WorldWideScience

Sample records for work function material

  1. Low work function thermionic emission materials

    Energy Technology Data Exchange (ETDEWEB)

    Zavadil, K.R.; King, D.B.; Ruffner, J.A.

    1999-11-01

    Thermionic energy conversion in a microminiature format shows potential as a viable, high efficiency, on-chip power source. Microminiature thermionic converters (MTC) with inter-electrode spacings on the order of microns are currently being prototyped and evaluated at Sandia. The remaining enabling technology is the development of low work function materials and processes than can be integrated into these converters. In this report, the authors demonstrate a method of incorporating thin film emitters into converters using rf sputtering. They find that the resultant films possess a minimum work function of 1.2 eV. Practical energy conversion is hindered by surface work function non-uniformity. They postulate the source of this heterogeneity to be a result of limited bulk and surface transport of barium. Several methods are proposed for maximizing transport, including increased film porosity and the use of metal terminating layers. They demonstrate a novel method for incorporating film porosity based on metal interlayer coalescence.

  2. Low work function material development for the microminiature thermionic converter.

    Energy Technology Data Exchange (ETDEWEB)

    Zavadil, Kevin Robert; Battaile, Corbett Chandler; Marshall, Albert Christian; King, Donald Bryan; Jennison, Dwight Richard

    2004-03-01

    Thermionic energy conversion in a miniature format shows potential as a viable, high efficiency, micro to macro-scale power source. A microminiature thermionic converter (MTC) with inter-electrode spacings on the order of microns has been prototyped and evaluated at Sandia. The remaining enabling technology is the development of low work function materials and processes that can be integrated into these converters to increase power production at modest temperatures (800 - 1300 K). The electrode materials are not well understood and the electrode thermionic properties are highly sensitive to manufacturing processes. Advanced theoretical, modeling, and fabrication capabilities are required to achieve optimum performance for MTC diodes. This report describes the modeling and fabrication efforts performed to develop micro dispenser cathodes for use in the MTC.

  3. Work function characterization of electroactive materials using an E MOSFET

    NARCIS (Netherlands)

    Dam, T.V.A.; Olthuis, Wouter; Bergveld, Piet

    2004-01-01

    Materials with redox properties have been widely used in sensing applications. Understanding the redox properties of these materials is an important issue. In order to investigate the redox properties, there are several methods, such as using the Kelvin probe and a conductivity sensor, or using

  4. Variations in erosive wear of metallic materials with temperature via the electron work function

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaochen; Yu, Bin [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 (Canada); Yan, X.G. [School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi (China); Li, D.Y., E-mail: dongyang.li@ualberta.ca [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 (Canada); School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi (China)

    2016-04-01

    Mechanical properties of metals are intrinsically determined by their electron behavior, which is largely reflected by the electron work function (EWF or φ). Since the work function varies with temperature, the dependence of material properties on temperature could be predicted via variations in work function with temperature. Combining a hardness – φ relationship and the dependence of work function on temperature, a temperature-dependent model for predicting solid-particle erosion is proposed. Erosive wear losses of copper, nickel, and carbon steel as sample materials were measured at different temperatures. Results of the tests are consistent with the theoretical prediction. This study demonstrates a promising parameter, electron work function, for looking into fundamental aspects of wear phenomena, which would also help develop alternative methodologies for material design. - Highlights: • Metallic materials' wear resistance is influenced by temperature. • Electron work function (EWF) intrinsically determines materials' wear resistance. • An EWF-based temperature-dependent solid-particle erosion model is proposed.

  5. Influence of H2 and D2 plasmas on the work function of caesiated materials

    Science.gov (United States)

    Friedl, R.; Fantz, U.

    2017-08-01

    Caesium-covered surfaces are used in negative hydrogen ion sources as a low work function converter for H-/D- surface production. The work function χ of the converter surface is one of the key parameters determining the performance of the ion source. Under idealized conditions, pure bulk Cs has 2.14 eV. However, residual gases at ion source background pressures of 10-7-10-6 mbar and the plasma surface interaction with the hydrogen discharge in front of the caesiated surface dynamically affect the actual surface work function. Necessary fundamental investigations on the resulting χ are performed at a dedicated laboratory experiment. Under the vacuum conditions of ion sources, the incorporation of impurities into the Cs layer leads to very stable Cs compounds. The result is a minimal work function of χvac ≈ 2.75 eV for Cs evaporation rates of up to 10 mg/h independent of substrate material and surface temperature (up to 260 °C). Moreover, a distinct degradation behavior can be observed in the absence of a Cs flux onto the surface leading to a deterioration of the work function by about 0.1 eV/h. However, in a hydrogen discharge with plasma parameters close to those of ion sources, fluxes of reactive hydrogen species and VUV photons impact on the surface which reduces the work function of the caesiated substrate down to about 2.6 eV even without Cs supply. Establishing a Cs flux onto the surface with ΓCs ≈ 1017 m-2 s-1 further enhances the work function obtaining values around 2.1 eV, which can be maintained stable for several hours of plasma exposure. Hence, Cs layers with work functions close to that of pure bulk Cs can be achieved for both H2 and D2 plasmas. Isotopic differences can be neglected within the measurement accuracy of about 0.1 eV due to comparable plasma parameters. Furthermore, after shutting down the Cs evaporation, continuing plasma exposure helps against degradation of the Cs layer resulting in a constant low work function for at least 1 h.

  6. Low work function materials for microminiature energy conversion and recovery applications

    Energy Technology Data Exchange (ETDEWEB)

    Zavadil, Kevin R.; Ruffner, Judith A.; King, Donald B.

    2003-05-13

    Low work function materials are disclosed together with methods for their manufacture and integration with electrodes used in thermionic conversion applications (specifically microminiature thermionic conversion applications). The materials include a mixed oxide system and metal in a compositionally modulated structure comprised of localized discontinuous structures of material that are deposited using techniques suited to IC manufacture, such as rf sputtering or CVD. The structures, which can include layers are then heated to coalescence yielding a thin film that is both durable and capable of electron emission under thermionic conversion conditions used for microminiature thermionic converters. Using the principles of the invention, thin film electrodes (emitters and collectors) required for microconverter technology are manufactured using a single process deposition so as to allow for full fabrication integration consistent with batch processing, and tailoring of emission/collection properties. In the preferred embodiment, the individual layers include mixed BaSrCaO, scandium oxide and tungsten.

  7. Study of Low Work Function Materials for Hot Cavity Resonance Ionization Laser Ion Sources

    CERN Document Server

    Catherall, R; Fedosseev, V; Marsh, B; Mattolat, C; Menna, Mariano; Österdahl, F; Raeder, S; Schwellnus, F; Stora, T; Wendt, K; CERN. Geneva. AB Department

    2008-01-01

    The selectivity of a hot cavity resonance ionization laser ion source (RILIS) is most often limited by contributions from competing surface ionization on the hot walls of the ionization cavity. In this article we present investigations on the properties of designated high-temperature, low-work function materials regarding their performance and suitability as cavity material for RILIS. Tungsten test cavities, impregnated with a mixture of barium oxide and strontium oxide (BaOSrO on W), or alternatively gadolinium hexaboride (GdB6) were studied in comparison to a standard tungsten RILIS cavity as being routinely used for hot cavity laser ionization at ISOLDE. Measurement campaigns took place at the off-line mass separators at ISOLDE / CERN, Geneva and RISIKO / University of Mainz.

  8. Study of low work function materials for hot cavity resonance ionization laser ion sources

    CERN Document Server

    Schwellnus, F; Crepieux, B; Fedosseev, V N; Marsh, B A; Mattolat, Ch; Menna, M; Österdahl, F K; Raeder, S; Stora, T; Wendta, K

    2009-01-01

    The selectivity of a hot cavity resonance ionization laser ion source (RILIS) is most often limited by contributions from competing surface ionization of the hot walls of the ionization cavity. In this article we present investigations on the properties of designated high temperature, low work function materials regarding their performance and suitability as cavity material for RILIS. Tungsten test cavities, impregnated with a mixture of barium oxide and strontium oxide (BaOSrO on W), or alternatively gadolinium hexaboride (GdB6) were studied in comparison to a standard tungsten RILIS cavity as being routinely used for hot cavity laser ionization at ISOLDE. Measurement campaigns took place at the off-line mass separators at ISOLDE/CERN, Geneva and RISIKO/University of Mainz.

  9. A compact model for single material double work function gate MOSFET

    Science.gov (United States)

    Changyong, Zheng; Wei, Zhang; Tailong, Xu; Yuehua, Dai; Junning, Chen

    2013-09-01

    An analytical surface potential model for the single material double work function gate (SMDWG) MOSFET is developed based on the exact resultant solution of the two-dimensional Poisson equation. The model includes the effects of drain biases, gate oxide thickness, different combinations of S-gate and D-gate length and values of substrate doping concentration. More attention has been paid to seeking to explain the attributes of the SMDWG MOSFET, such as suppressing drain-induced barrier lowering (DIBL), accelerating carrier drift velocity and device speed. The model is verified by comparison to the simulated results using the device simulator MEDICI. The accuracy of the results obtained using our analytical model is verified using numerical simulations. The model not only offers the physical insight into device physics but also provides the basic designing guideline for the device.

  10. Explore the electron work function as a promising indicative parameter for supplementary clues towards tailoring of wear-resistant materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian [School of Mechanical Engineering, Taiyuan University of Science and Technology (China); Department of Chemical and Materials Engineering, University of Alberta (Canada); Lu, Hao; Bin Yu [Department of Chemical and Materials Engineering, University of Alberta (Canada); Wang, Rongfeng [School of Mechanical Engineering, Taiyuan University of Science and Technology (China); Hua, Guomin [Department of Chemical and Materials Engineering, University of Alberta (Canada); Yan, Xianguo [School of Mechanical Engineering, Taiyuan University of Science and Technology (China); Parent, Leo [Suncor Energy, Fort McMurray, Alberta, Canada T9H 3E3 (Canada); Tian, Harry [Metallurgical/Materials R& D, GIW Industries, Grovetown, GA 30813-2842 (United States); Chung, Reinaldo [Suncor Energy, Fort McMurray, Alberta, Canada T9H 3E3 (Canada); Li, Dongyang, E-mail: dongyang.li@ualberta.ca [School of Mechanical Engineering, Taiyuan University of Science and Technology (China); Department of Chemical and Materials Engineering, University of Alberta (Canada)

    2016-07-04

    For materials used under dynamic loading conditions such as impact and impact wear, an appropriate balance between hardness and toughness is highly desired. However, determination of such a balance is challenging, since the toughness depends on both the mechanical strength and ductility, which complicates the judgement and control. Besides, local defects, poor phases and interfaces all could trigger local cracking and consequent global failure. These undesired structural or microstructural imperfections increase the difficulty in controlling the hardness-toughness balance. In this article, using high-Cr cast irons (HCCI) as example, we demonstrate that electron work function is a promising indicative parameter for supplementary clues to adjust the balance between hardness and toughness for HCCIs towards improved performance.

  11. Smart hydrogel functional materials

    CERN Document Server

    Chu, Liang-Yin; Ju, Xiao-Jie

    2014-01-01

    This book systematically introduces smart hydrogel functional materials with the configurations ranging from hydrogels to microgels. It serves as an excellent reference for designing and fabricating artificial smart hydrogel functional materials.

  12. A Sheath Collision Model with Thermionic Electron Emission and the Schottky Correction Factor for Work Function of Wall Material

    CERN Document Server

    Pekker, Leonid

    2015-01-01

    This paper proposes a model that expands Godyak's collisional sheath model to the case of hot electrodes (anode or cathode) with thermionic electron emission. In the model, the electrodes are assumed to be made from refractory metals and, consequently, the erosion of the electrodes is small and can be neglected. In the frame of two temperature thermal plasma modeling, this model allows self-consistent calculation of the sheath potential drop, the Schottky correction factor for the work function of the wall material, the thermionic electron current density, and the heat fluxes of the charged particles from the plasma to the wall. The model is applied to the cathode spot at the tungsten cathode in argon. It is shown that the Shottky correction factor plays a crucial role in modeling high-intensity arcs. It is demonstrated that a virtual cathode can be formed in the atmospheric pressure argon plasma at the cathode surface temperature of 4785 K if the cathode current density is sufficiently small. The heat flux t...

  13. Physically Functional Materials

    DEFF Research Database (Denmark)

    2002-01-01

    acids or peptides having azobenzenes or other physicially functional groups, e.g., photoresponsive groups, as side chains. These compounds may be synthesized using solid phase peptide synthesis techniques. Materials, e.g., thin films, comprising such compounds may be used for optical storage...... of information (holographic data storage), nonlinear optics (NLO), as photoconductors, photonic band-gap materials, electrically conducting materials, electroluminescent materials, piezo-electric materials, pyroelectric materials, magnetic materials, ferromagnetic materials, ferroelectric materials......, photorefractive materials, or materials in which light-induced conformational changes can be produced. Optical anisotropy may reversibly be generated with polarized laser light whereby a hologram is formed. First order diffraction efficiencies of up to around 80% have been obtained....

  14. Functionally graded materials

    CERN Document Server

    Mahamood, Rasheedat Modupe

    2017-01-01

    This book presents the concept of functionally graded materials as well as their use and different fabrication processes. The authors describe the use of additive manufacturing technology for the production of very complex parts directly from the three dimension computer aided design of the part by adding material layer after layer. A case study is also presented in the book on the experimental analysis of functionally graded material using laser metal deposition process.

  15. Engineering living functional materials.

    Science.gov (United States)

    Chen, Allen Y; Zhong, Chao; Lu, Timothy K

    2015-01-16

    Natural materials, such as bone, integrate living cells composed of organic molecules together with inorganic components. This enables combinations of functionalities, such as mechanical strength and the ability to regenerate and remodel, which are not present in existing synthetic materials. Taking a cue from nature, we propose that engineered 'living functional materials' and 'living materials synthesis platforms' that incorporate both living systems and inorganic components could transform the performance and the manufacturing of materials. As a proof-of-concept, we recently demonstrated that synthetic gene circuits in Escherichia coli enabled biofilms to be both a functional material in its own right and a materials-synthesis platform. To demonstrate the former, we engineered E. coli biofilms into a chemical-inducer-responsive electrical switch. To demonstrate the latter, we engineered E. coli biofilms to dynamically organize biotic-abiotic materials across multiple length scales, template gold nanorods, gold nanowires, and metal/semiconductor heterostructures, and synthesize semiconductor nanoparticles (Chen, A. Y. et al. (2014) Synthesis and patterning of tunable multiscale materials with engineered cells. Nat. Mater. 13, 515-523.). Thus, tools from synthetic biology, such as those for artificial gene regulation, can be used to engineer the spatiotemporal characteristics of living systems and to interface living systems with inorganic materials. Such hybrids can possess novel properties enabled by living cells while retaining desirable functionalities of inorganic systems. These systems, as living functional materials and as living materials foundries, would provide a radically different paradigm of materials performance and synthesis-materials possessing multifunctional, self-healing, adaptable, and evolvable properties that are created and organized in a distributed, bottom-up, autonomously assembled, and environmentally sustainable manner.

  16. Work Function Engineering of Graphene

    Science.gov (United States)

    Garg, Rajni; Dutta, Naba K.; Roy Choudhury, Namita

    2014-01-01

    Graphene is a two dimensional one atom thick allotrope of carbon that displays unusual crystal structure, electronic characteristics, charge transport behavior, optical clarity, physical & mechanical properties, thermal conductivity and much more that is yet to be discovered. Consequently, it has generated unprecedented excitement in the scientific community; and is of great interest to wide ranging industries including semiconductor, optoelectronics and printed electronics. Graphene is considered to be a next-generation conducting material with a remarkable band-gap structure, and has the potential to replace traditional electrode materials in optoelectronic devices. It has also been identified as one of the most promising materials for post-silicon electronics. For many such applications, modulation of the electrical and optical properties, together with tuning the band gap and the resulting work function of zero band gap graphene are critical in achieving the desired properties and outcome. In understanding the importance, a number of strategies including various functionalization, doping and hybridization have recently been identified and explored to successfully alter the work function of graphene. In this review we primarily highlight the different ways of surface modification, which have been used to specifically modify the band gap of graphene and its work function. This article focuses on the most recent perspectives, current trends and gives some indication of future challenges and possibilities. PMID:28344223

  17. Work Function Engineering of Graphene

    Directory of Open Access Journals (Sweden)

    Rajni Garg

    2014-04-01

    Full Text Available Graphene is a two dimensional one atom thick allotrope of carbon that displays unusual crystal structure, electronic characteristics, charge transport behavior, optical clarity, physical & mechanical properties, thermal conductivity and much more that is yet to be discovered. Consequently, it has generated unprecedented excitement in the scientific community; and is of great interest to wide ranging industries including semiconductor, optoelectronics and printed electronics. Graphene is considered to be a next-generation conducting material with a remarkable band-gap structure, and has the potential to replace traditional electrode materials in optoelectronic devices. It has also been identified as one of the most promising materials for post-silicon electronics. For many such applications, modulation of the electrical and optical properties, together with tuning the band gap and the resulting work function of zero band gap graphene are critical in achieving the desired properties and outcome. In understanding the importance, a number of strategies including various functionalization, doping and hybridization have recently been identified and explored to successfully alter the work function of graphene. In this review we primarily highlight the different ways of surface modification, which have been used to specifically modify the band gap of graphene and its work function. This article focuses on the most recent perspectives, current trends and gives some indication of future challenges and possibilities.

  18. Functionally Graded Materials Database

    Science.gov (United States)

    Kisara, Katsuto; Konno, Tomomi; Niino, Masayuki

    2008-02-01

    Functionally Graded Materials Database (hereinafter referred to as FGMs Database) was open to the society via Internet in October 2002, and since then it has been managed by the Japan Aerospace Exploration Agency (JAXA). As of October 2006, the database includes 1,703 research information entries with 2,429 researchers data, 509 institution data and so on. Reading materials such as "Applicability of FGMs Technology to Space Plane" and "FGMs Application to Space Solar Power System (SSPS)" were prepared in FY 2004 and 2005, respectively. The English version of "FGMs Application to Space Solar Power System (SSPS)" is now under preparation. This present paper explains the FGMs Database, describing the research information data, the sitemap and how to use it. From the access analysis, user access results and users' interests are discussed.

  19. Emergent functions of quantum materials

    Science.gov (United States)

    Tokura, Yoshinori; Kawasaki, Masashi; Nagaosa, Naoto

    2017-11-01

    Materials can harbour quantum many-body systems, most typically in the form of strongly correlated electrons in solids, that lead to novel and remarkable functions thanks to emergence--collective behaviours that arise from strong interactions among the elements. These include the Mott transition, high-temperature superconductivity, topological superconductivity, colossal magnetoresistance, giant magnetoelectric effect, and topological insulators. These phenomena will probably be crucial for developing the next-generation quantum technologies that will meet the urgent technological demands for achieving a sustainable and safe society. Dissipationless electronics using topological currents and quantum spins, energy harvesting such as photovoltaics and thermoelectrics, and secure quantum computing and communication are the three major fields of applications working towards this goal. Here, we review the basic principles and the current status of the emergent phenomena and functions in materials from the viewpoint of strong correlation and topology.

  20. Charge injection in thin dielectric layers by atomic force microscopy: influence of geometry and material work function of the AFM tip on the injection process.

    Science.gov (United States)

    Villeneuve-Faure, C; Makasheva, K; Boudou, L; Teyssedre, G

    2016-06-17

    Charge injection and retention in thin dielectric layers remain critical issues for the reliability of many electronic devices because of their association with a large number of failure mechanisms. To overcome this drawback, a deep understanding of the mechanisms leading to charge injection close to the injection area is needed. Even though the charge injection is extensively studied and reported in the literature to characterize the charge storage capability of dielectric materials, questions about charge injection mechanisms when using atomic force microscopy (AFM) remain open. In this paper, a thorough study of charge injection by using AFM in thin plasma-processed amorphous silicon oxynitride layers with properties close to that of thermal silica layers is presented. The study considers the impact of applied voltage polarity, work function of the AFM tip coating and tip curvature radius. A simple theoretical model was developed and used to analyze the obtained experimental results. The electric field distribution is computed as a function of tip geometry. The obtained experimental results highlight that after injection in the dielectric layer the charge lateral spreading is mainly controlled by the radial electric field component independently of the carrier polarity. The injected charge density is influenced by the nature of electrode metal coating (work function) and its geometry (tip curvature radius). The electron injection is mainly ruled by the Schottky injection barrier through the field electron emission mechanism enhanced by thermionic electron emission. The hole injection mechanism seems to differ from the electron one depending on the work function of the metal coating. Based on the performed analysis, it is suggested that for hole injection by AFM, pinning of the metal Fermi level with the metal-induced gap states in the studied silicon oxynitride layers starts playing a role in the injection mechanisms.

  1. Robots Working with Hazardous Materials

    Energy Technology Data Exchange (ETDEWEB)

    Amai, W.; Fahrenholtz, J.

    1999-01-06

    While many research and development activities take place at Sandia National Laboratories' Intelligent Systems and Robotics Center (ISRC), where the "rubber meets the road" is in the ISRC'S delivered systems. The ISRC has delivered several systems over the last few years that handle hazardous materials on a daily basis, and allow human workers to move to a safer, supervisory role than the "hands-on" operations that they used to perform. The ISRC at Sandia performs a large range of research and development activities, including development and delivery of one-of-a-kind robotic systems for use with hazardous materials. Our mission is to create systems for operations where people can't or don't want to perform the operations by hand, and the systems described in this article are several of our first-of-a-kind deliveries to achieve that mission.

  2. Mechanics of advanced functional materials

    CERN Document Server

    Wang, Biao

    2013-01-01

    Mechanics of Advanced Functional Materials emphasizes the coupling effect between the electric and mechanical field in the piezoelectric, ferroelectric and other functional materials. It also discusses the size effect on the ferroelectric domain instability and phase transition behaviors using the continuum micro-structural evolution models. Functional materials usually have a very wide application in engineering due to their unique thermal, electric, magnetic, optoelectronic, etc., functions. Almost all the applications demand that the material should have reasonable stiffness, strength, fracture toughness and the other mechanical properties. Furthermore, usually the stress and strain fields on the functional materials and devices have some important coupling effect on the functionality of the materials. Much progress has been made concerning the coupling electric and mechanical behaviors such as the coupled electric and stress field distribution in piezoelectric solids, ferroelectric domain patterns in ferr...

  3. Recent work on material interface reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Mosso, S.J.; Swartz, B.K. [Los Alamos National Lab., NM (United States)

    1997-12-31

    For the last 15 years, many Eulerian codes have relied on a series of piecewise linear interface reconstruction algorithms developed by David Youngs. In a typical Youngs` method, the material interfaces were reconstructed based upon nearly cell values of volume fractions of each material. The interfaces were locally represented by linear segments in two dimensions and by pieces of planes in three dimensions. The first step in such reconstruction was to locally approximate an interface normal. In Youngs` 3D method, a local gradient of a cell-volume-fraction function was estimated and taken to be the local interface normal. A linear interface was moved perpendicular to the now known normal until the mass behind it matched the material volume fraction for the cell in question. But for distorted or nonorthogonal meshes, the gradient normal estimate didn`t accurately match that of linear material interfaces. Moreover, curved material interfaces were also poorly represented. The authors will present some recent work in the computation of more accurate interface normals, without necessarily increasing stencil size. Their estimate of the normal is made using an iterative process that, given mass fractions for nearby cells of known but arbitrary variable density, converges in 3 or 4 passes in practice (and quadratically--like Newton`s method--in principle). The method reproduces a linear interface in both orthogonal and nonorthogonal meshes. The local linear approximation is generally 2nd-order accurate, with a 1st-order accurate normal for curved interfaces in both two and three dimensional polyhedral meshes. Recent work demonstrating the interface reconstruction for curved surfaces will /be discussed.

  4. Mahlburg's Work on Crank Functions

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 3. Mahlburg's Work on Crank Functions - Ramanujan's Partitions Revisited ... Author Affiliations. Nagesh Juluru1 Arni S R Srinivasa Rao1. 5th Floor, PSU, R.A. Fisher Building, Indian Statistical Institute, 203 B.T. Road, Kolkata 700 108, India.

  5. Design tools and materials in creative work

    DEFF Research Database (Denmark)

    Hansen, Nicolai Brodersen; Dalsgaard, Peter; Halskov, Kim

    2017-01-01

    This workshop aims to examine and discuss the role and nature of design tools and materials in creative work, and to explore how novel tools can meaningfully combine existing and novel tools to support and augment creative work. By exploring and combining methodological, theoretical, and design......-oriented perspectives, we wish to examine the potentials and limitations in current uses of design tools and materials, and discuss and explore when and how we can introduce ones. Participation in the workshop requires participants to document and analyse central themes in a case, and the resulting material will serve...

  6. CITA Working for and with material performance

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette

    2011-01-01

    The understanding of materials as active, whether compressed, under tension or flexed while handled, is at the root of all craft traditions. The ability to work a material, to saw and chisel wood, to weld and hammer steel or to weave and knit yarn relies on a profound understanding of its...... performance. The soft flex of wood, the sprung stiffness of steel and the tensile elasticity of yarn are inherent properties that inform and shape our crafts traditions. It is through material understanding that we come to shape the world of artefacts and structure that surrounds us....

  7. Biosynthetic Polymers as Functional Materials

    OpenAIRE

    Carlini, Andrea S.; Adamiak, Lisa; Gianneschi, Nathan C.

    2016-01-01

    The synthesis of functional polymers encoded with biomolecules has been an extensive area of research for decades. As such, a diverse toolbox of polymerization techniques and bioconjugation methods has been developed. The greatest impact of this work has been in biomedicine and biotechnology, where fully synthetic and naturally derived biomolecules are used cooperatively. Despite significant improvements in biocompatible and functionally diverse polymers, our success in the field is constrain...

  8. [A material reading of Kenji Miyazawa's work].

    Science.gov (United States)

    Kanamori, Osamu

    2013-01-01

    This article offers an interpretation of Kenji Miyazawa's fairy tales using the theory of material imagination proposed by Gaston Bachelard. Putting Bachelard's theoretical framework to the test in a totally different culture, the article focuses on the way Japanese fairy tales make use of the four elements of Empedocles. These four elements in turn help to uncover an unconscious source of creative inspiration for Miyazawa, revealing the predominant role of earth in his work.

  9. Mahlburg's Work on Crank Functions

    Indian Academy of Sciences (India)

    IAS Admin

    jan's work inspired their career in mathematics. 1. Introduction, Background and Motivation. A partition of a positive number n is any non-increasing .... primes less than 33. Mahlburg's outstanding paper im- proved results that were given by Ono [8] to prove the existence of infinite families of partition congruences for.

  10. Functional materials for rechargeable batteries.

    Science.gov (United States)

    Cheng, Fangyi; Liang, Jing; Tao, Zhanliang; Chen, Jun

    2011-04-19

    There is an ever-growing demand for rechargeable batteries with reversible and efficient electrochemical energy storage and conversion. Rechargeable batteries cover applications in many fields, which include portable electronic consumer devices, electric vehicles, and large-scale electricity storage in smart or intelligent grids. The performance of rechargeable batteries depends essentially on the thermodynamics and kinetics of the electrochemical reactions involved in the components (i.e., the anode, cathode, electrolyte, and separator) of the cells. During the past decade, extensive efforts have been dedicated to developing advanced batteries with large capacity, high energy and power density, high safety, long cycle life, fast response, and low cost. Here, recent progress in functional materials applied in the currently prevailing rechargeable lithium-ion, nickel-metal hydride, lead acid, vanadium redox flow, and sodium-sulfur batteries is reviewed. The focus is on research activities toward the ionic, atomic, or molecular diffusion and transport; electron transfer; surface/interface structure optimization; the regulation of the electrochemical reactions; and the key materials and devices for rechargeable batteries. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Study of photoemission and work function of large surface areas, phase 3, phase 4. [wavelength dependences of photoelectric space probe materials

    Science.gov (United States)

    1973-01-01

    The photoemission of materials which might be used in probe measurements of the exo-atmospheric electric field is considered by evaluating the wavelength dependence of their photoelectric yield for eleven elements over the range 800 to 3200 A. Yield data for zinc, copper beryllium, platinum, cadmium, graphite, carbon, gold, silver, tantalum, and tungsten show that copper-beryllium is a preferred material. Silver has one of the highest photoemissions when exposed to solar radiation.

  12. Modeling Bamboo as a Functionally Graded Material

    Science.gov (United States)

    Silva, Emílio Carlos Nelli; Walters, Matthew C.; Paulino, Glaucio H.

    2008-02-01

    Natural fibers are promising for engineering applications due to their low cost. They are abundantly available in tropical and subtropical regions of the world, and they can be employed as construction materials. Among natural fibers, bamboo has been widely used for housing construction around the world. Bamboo is an optimized composite material which exploits the concept of Functionally Graded Material (FGM). Biological structures, such as bamboo, are composite materials that have complicated shapes and material distribution inside their domain, and thus the use of numerical methods such as the finite element method and multiscale methods such as homogenization, can help to further understanding of the mechanical behavior of these materials. The objective of this work is to explore techniques such as the finite element method and homogenization to investigate the structural behavior of bamboo. The finite element formulation uses graded finite elements to capture the varying material distribution through the bamboo wall. To observe bamboo behavior under applied loads, simulations are conducted considering a spatially-varying Young's modulus, an averaged Young's modulus, and orthotropic constitutive properties obtained from homogenization theory. The homogenization procedure uses effective, axisymmetric properties estimated from the spatially-varying bamboo composite. Three-dimensional models of bamboo cells were built and simulated under tension, torsion, and bending load cases.

  13. High Speed SPM of Functional Materials

    Energy Technology Data Exchange (ETDEWEB)

    Huey, Bryan D. [Univ. of Connecticut, Storrs, CT (United States)

    2015-08-14

    The development and optimization of applications comprising functional materials necessitates a thorough understanding of their static and dynamic properties and performance at the nanoscale. Leveraging High Speed SPM and concepts enabled by it, efficient measurements and maps with nanoscale and nanosecond temporal resolution are uniquely feasible. This includes recent enhancements for topographic, conductivity, ferroelectric, and piezoelectric properties as originally proposed, as well as newly developed methods or improvements to AFM-based mechanical, friction, thermal, and photoconductivity measurements. The results of this work reveal fundamental mechanisms of operation, and suggest new approaches for improving the ultimate speed and/or efficiency, of data storage systems, magnetic-electric sensors, and solar cells.

  14. Magnetic spectroscopy and microscopy of functional materials

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, Catherine Ann [Univ. of Mainz (Germany)

    2011-05-01

    Heusler intermetallics Mn2Y Ga and X2MnGa (X; Y =Fe, Co, Ni) undergo tetragonal magnetostructural transitions that can result in half metallicity, magnetic shape memory, or the magnetocaloric effect. Understanding the magnetism and magnetic behavior in functional materials is often the most direct route to being able to optimize current materials for todays applications and to design novel ones for tomorrow. Synchrotron soft x-ray magnetic spectromicroscopy techniques are well suited to explore the the competing effects from the magnetization and the lattice parameters in these materials as they provide detailed element-, valence-, and site-specifc information on the coupling of crystallographic ordering and electronic structure as well as external parameters like temperature and pressure on the bonding and exchange. Fundamental work preparing the model systems of spintronic, multiferroic, and energy-related compositions is presented for context. The methodology of synchrotron spectroscopy is presented and applied to not only magnetic characterization but also of developing a systematic screening method for future examples of materials exhibiting any of the above effects. The chapter progression is as follows: an introduction to the concepts and materials under consideration (Chapter 1); an overview of sample preparation techniques and results, and the kinds of characterization methods employed (Chapter 2); spectro- and microscopic explorations of X2MnGa/Ge (Chapter 3); spectroscopic investigations of the composition series Mn2Y Ga to the logical Mn3Ga endpoint (Chapter 4); and a summary and overview of upcoming work (Chapter 5). Appendices include the results of a Think Tank for the Graduate School of Excellence MAINZ (Appendix A) and details of an imaging project now in progress on magnetic reversal and domain wall observation in the classical Heusler material Co2FeSi (Appendix B).

  15. To what extent does the longevity of fixed dental prostheses depend on the function of the cement? Working Group 4 materials: cementation.

    Science.gov (United States)

    Edelhoff, Daniel; Ozcan, Mutlu

    2007-06-01

    The objective of this review was to define the impact of cementation mode on the longevity of different types of single tooth restorations and fixed dental prostheses (FDP). Literature search by PubMed as the major database was used utilizing the terms namely, adhesive techniques, all-ceramic crowns, cast-metal, cement, cementation, ceramic inlays, gold inlays, metal-ceramic, non-bonded fixed-partial-dentures, porcelain veneers, resin-bonded fixed-partial-dentures, porcelain-fused-to-metal, and implant-supported-restorations together with manual search of non-indexed literature. Cementation of root canal posts and cores were excluded. Due to lack of randomized prospective clinical studies in some fields of cementation, recommendations had to be based on lower evidence level (Centre of Evidence Based Medicine, Oxford) for special applications of current cements. One-hundred-and-twenty-five articles were selected for the review. The primary function of the cementation is to establish reliable retention, a durable seal of the space between the tooth and the restoration, and to provide adequate optical properties. The various types of cements used in dentistry could be mainly divided into two groups: Water-based cements and polymerizing cements. Water-based cements exhibited satisfying long-term clinical performance associated with cast metal (inlays, onlays, partial crowns) as well as single unit metal-ceramic FDPs and multiple unit FDPs with macroretentive preparation designs and adequate marginal fit. Early short-term clinical results with high-strength all-ceramic restorations luted with water-based cements are also promising. Current polymerizing cements cover almost all fields of water-based cements and in addition to that they are mainly indicated for non-retentive restorations. They are able to seal the tooth completely creating hybrid layer formation. Furthermore, adhesive capabilities of polymerizing cements allowed for bonded restorations, promoting at the

  16. Functionalized silica materials for electrocatalysis

    Indian Academy of Sciences (India)

    Electrocatalysis is an important phenomenon which is utilized in metal–air batteries, fuel cells, electrochemical sensors, etc. ... Owing to the uniform dispersion of electrocatalysts (metal complex and/or metal nanoparticles (NPs)) on the functionalized and non-functionalized silica, an enormous increase in the redox current ...

  17. Functionally Graded Material: An overview

    CSIR Research Space (South Africa)

    Mahamood, RM

    2012-07-01

    Full Text Available . There is a wide range of applications for FGM and it is expected to increase as the cost of material processing and fabrication processes are reduced by improving these processes. In this study, an overview of fabrication processes, area of application, some...

  18. Melanin-Based Functional Materials

    OpenAIRE

    Marco d’Ischia

    2018-01-01

    Melanin biopolymers are currently the focus of growing interest for a broad range of applications at the cutting edge of biomedical research and technology. This Special Issue presents a collection of papers dealing with melanin-type materials, e.g., polydopamine, for classic and innovative applications, offering a stimulating perspective of current trends in the field. Besides basic scientists, the Special Issue is directed to researchers from industries and companies that are willing to inv...

  19. Ab initio work function of elemental metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Rosengaard, N. M.

    1992-01-01

    We have used a recently developed self-consistent Green’s-function technique based on tight-binding linear-muffin-tin-orbital theory to calculate the work function for the close-packed surfaces of 37 elemental metals. The results agree with the limited experimental data obtained from single...

  20. Functional Materials Produced On An Industrial Scale

    Directory of Open Access Journals (Sweden)

    Barska Justyna

    2015-08-01

    Full Text Available The article presents a wide range of applications of functional materials and a scale of their current industrial production. These are the materials which have specific characteristics, thanks to which they became virtually indispensable in certain constructional solutions. Their basic characteristics, properties, methods of production and use as smart materials were described.

  1. Magnetism and Structure in Functional Materials

    CERN Document Server

    Planes, Antoni; Saxena, Avadh

    2005-01-01

    Magnetism and Structure in Functional Materials addresses three distinct but related topics: (i) magnetoelastic materials such as magnetic martensites and magnetic shape memory alloys, (ii) the magnetocaloric effect related to magnetostructural transitions, and (iii) colossal magnetoresistance (CMR) and related magnanites. The goal is to identify common underlying principles in these classes of materials that are relevant for optimizing various functionalities. The emergence of apparently different magnetic/structural phenomena in disparate classes of materials clearly points to a need for common concepts in order to achieve a broader understanding of the interplay between magnetism and structure in this general class of new functional materials exhibiting ever more complex microstructure and function. The topic is interdisciplinary in nature and the contributors correspondingly include physicists, materials scientists and engineers. Likewise the book will appeal to scientists from all these areas.

  2. Melanin-Based Functional Materials.

    Science.gov (United States)

    d'Ischia, Marco

    2018-01-12

    Melanin biopolymers are currently the focus of growing interest for a broad range of applications at the cutting edge of biomedical research and technology. This Special Issue presents a collection of papers dealing with melanin-type materials, e.g., polydopamine, for classic and innovative applications, offering a stimulating perspective of current trends in the field. Besides basic scientists, the Special Issue is directed to researchers from industries and companies that are willing to invest in melanin research for innovative and inspiring solutions.

  3. Melanin-Based Functional Materials

    Directory of Open Access Journals (Sweden)

    Marco d’Ischia

    2018-01-01

    Full Text Available Melanin biopolymers are currently the focus of growing interest for a broad range of applications at the cutting edge of biomedical research and technology. This Special Issue presents a collection of papers dealing with melanin-type materials, e.g., polydopamine, for classic and innovative applications, offering a stimulating perspective of current trends in the field. Besides basic scientists, the Special Issue is directed to researchers from industries and companies that are willing to invest in melanin research for innovative and inspiring solutions.

  4. Functional Carbon Materials for Electrochemical Energy Storage

    Science.gov (United States)

    Zhou, Huihui

    The ability to harvest and convert solar energy has been associated with the evolution of human civilization. The increasing consumption of fossil fuels since the industrial revolution, however, has brought to concerns in ecological deterioration and depletion of the fossil fuels. Facing these challenges, humankind is forced to seek for clean, sustainable and renewable energy resources, such as biofuels, hydraulic power, wind power, geothermal energy and other kinds of alternative energies. However, most alternative energy sources, generally in the form of electrical energy, could not be made available on a continuous basis. It is, therefore, essential to store such energy into chemical energy, which are portable and various applications. In this context, electrochemical energy-storage devices hold great promises towards this goal. The most common electrochemical energy-storage devices are electrochemical capacitors (ECs, also called supercapacitors) and batteries. In comparison to batteries, ECs posses high power density, high efficiency, long cycling life and low cost. ECs commonly utilize carbon as both (symmetric) or one of the electrodes (asymmetric), of which their performance is generally limited by the capacitance of the carbon electrodes. Therefore, developing better carbon materials with high energy density has been emerging as one the most essential challenges in the field. The primary objective of this dissertation is to design and synthesize functional carbon materials with high energy density at both aqueous and organic electrolyte systems. The energy density (E) of ECs are governed by E = CV 2/2, where C is the total capacitance and V is the voltage of the devices. Carbon electrodes with high capacitance and high working voltage should lead to high energy density. In the first part of this thesis, a new class of nanoporous carbons were synthesized for symmetric supercapacitors using aqueous Li2SO4 as the electrolyte. A unique precursor was adopted to

  5. Novel functional magnetic materials fundamentals and applications

    CERN Document Server

    2016-01-01

    This book presents current research on advanced magnetic materials and multifunctional composites. Recent advances in technology and engineering have resulted from the development of advanced magnetic materials with improved functional magnetic and magneto-transport properties. Certain industrial sectors, such as magnetic sensors, microelectronics, and security, demand cost-effective materials with reduced dimensionality and desirable magnetic properties such as enhanced magnetic softness, giant magnetic field sensitivity, and large magnetocaloric effect.  Expert chapters present the most up-to-date information on the fabrication process, processing, tailoring of properties, and applications of different families of modern functional materials for advanced smart applications. Topics covered include novel magnetic materials and applications; amorphous and nanocrystalline magnetic materials and applications; hard magnetic materials; magnetic shape memory alloys; and magnetic oxides. The book's highly interdis...

  6. Method of making low work function component

    Science.gov (United States)

    Robinson, Vance [Niskayuna, NY; Weaver, Stanton Earl [Northville, NY; Michael, Joseph Darryl [Delmar, NY

    2011-11-15

    A method for fabricating a component is disclosed. The method includes: providing a member having an effective work function of an initial value, disposing a sacrificial layer on a surface of the member, disposing a first agent within the member to obtain a predetermined concentration of the agent at said surface of the member, annealing the member, and removing the sacrificial layer to expose said surface of the member, wherein said surface has a post-process effective work function that is different from the initial value.

  7. Work Function Calculation For Hafnium- Barium System

    Directory of Open Access Journals (Sweden)

    K.A. Tursunmetov

    2015-08-01

    Full Text Available The adsorption process of barium atoms on hafnium is considered. A structural model of the system is presented and on the basis of calculation of interaction between ions dipole system the dependence of the work function on the coating.

  8. Electroceramic functional gradient materials. Final report 1995 - 1998

    Energy Technology Data Exchange (ETDEWEB)

    Toft Soerensen, O. [ed.

    1999-10-01

    In this programme the research and development is focused on electroceramic materials, which are of direct interest for the Danish producers of electronic components (AMP Danmark) and ceramic gas sensors (PBI-Dansensor) as well as companies involved in development of fuel cells (Haldor Topsoee). The R and D work has been focused on strategic materials research, both application oriented and more basic research, and on development of new techniques for fabrication of EFGM (Electroceramic Functional Gradient Materials) of three types: LC circuit materials (electronic noise filters), oxides for electrochemical reactors and solid oxide fuel cell applications (SOFC) and materials (semiconductors, oxygen ion conductors) for oxygen sensors. This work has been carried out in five projects: 1) Integrated filter components; 2) Electrochemical reactor materials; 3) Oxygen sensors based on semiconductors and oxygen ion conductors; 4) Interface models - synthesis and characterisation; 5) Suppression of cracking in multilayered ceramic materials. (EHS)

  9. Functional materials based on nanocrystalline cellulose

    Science.gov (United States)

    Surov, O. V.; Voronova, M. I.; Zakharov, A. G.

    2017-10-01

    The data on the synthesis of functional materials based on nanocrystalline cellulose (NCC) published over the past 10 years are analyzed. The liquid-crystal properties of NCC suspensions, methods of investigation of NCC suspensions and films, conditions for preserving chiral nematic structure in the NCC films after removal of the solvent and features of templated sol–gel synthesis of functional materials based on NCC are considered. The bibliography includes 106 references.

  10. [Modeling of functional working state in hypoxia].

    Science.gov (United States)

    Kravchenko, Iu V

    2003-01-01

    The given method automatically allows us to watch functional working states of the brain (FWSB) in dependence on the neurodynamic loading (first-signal positive and brake stimuli). It defines main properties of nervous processes, wave frame of the sensomotor loading (WFSL) at implementation of three following FWSB: hard work of a brain, a prestressful mode with maximal mobilization of forces and stressful mode. It defines a level of function mobility of nervous processes, force of nervous processes, efficiency of a brain, balance of nervous processes by a method of the parametrical spectral analysis WFSL. The given model allows defining a level of men training who operate in extreme conditions of information processing and hypoxia.

  11. Dental implants from functionally graded materials.

    Science.gov (United States)

    Mehrali, Mehdi; Shirazi, Farid Seyed; Mehrali, Mohammad; Metselaar, Hendrik Simon Cornelis; Kadri, Nahrizul Adib Bin; Osman, Noor Azuan Abu

    2013-10-01

    Functionally graded material (FGM) is a heterogeneous composite material including a number of constituents that exhibit a compositional gradient from one surface of the material to the other subsequently, resulting in a material with continuously varying properties in the thickness direction. FGMs are gaining attention for biomedical applications, especially for implants, owing to their reported superior composition. Dental implants can be functionally graded to create an optimized mechanical behavior and achieve the intended biocompatibility and osseointegration improvement. This review presents a comprehensive summary of biomaterials and manufacturing techniques researchers employ throughout the world. Generally, FGM and FGM porous biomaterials are more difficult to fabricate than uniform or homogenous biomaterials. Therefore, our discussion is intended to give the readers about successful and obstacles fabrication of FGM and porous FGM in dental implants that will bring state-of-the-art technology to the bedside and develop quality of life and present standards of care. Copyright © 2013 Wiley Periodicals, Inc.

  12. Green's function and boundary elements of multifield materials

    CERN Document Server

    Qin, Qing-Hua

    2007-01-01

    Green's Function and Boundary Elements of Multifield Materials contains a comprehensive treatment of multifield materials under coupled thermal, magnetic, electric, and mechanical loads. Its easy-to-understand text clarifies some of the most advanced techniques for deriving Green's function and the related boundary element formulation of magnetoelectroelastic materials: Radon transform, potential function approach, Fourier transform. Our hope in preparing this book is to attract interested readers and researchers to a new field that continues to provide fascinating and technologically important challenges. You will benefit from the authors' thorough coverage of general principles for each topic, followed by detailed mathematical derivation and worked examples as well as tables and figures where appropriate. In-depth explanations of the concept of Green's function Coupled thermo-magneto-electro-elastic analysis Detailed mathematical derivation for Green's functions.

  13. Functionally graded materials with laser cladding

    NARCIS (Netherlands)

    de Hosson, J.T.M.; Pei, Y.T.; Brebbia, CA

    2001-01-01

    Al-40 w/o Si functionally graded materials (FGMs) were produced by a onestep laser cladding process on cast Al-alloy substrate as a possible solution for interfacial problems often present in laser coatings. The microstructure of the FGMs consists of a large amount of silicon primary particles

  14. Density functional theory and multiscale materials modeling*

    Indian Academy of Sciences (India)

    Unknown

    wide class of problems involving nanomaterials, interfacial science and soft condensed matter has been addressed using the density based ... Keywords. Density functional theory; soft condensed matter; materials modeling. 1. Introduction ... the basic laws of quantum mechanics, their prediction through a direct ab initio ...

  15. Work Criteria Function of Irreversible Heat Engines

    Directory of Open Access Journals (Sweden)

    Mahmoud Huleihil

    2014-01-01

    Full Text Available The irreversible heat engine is reconsidered with a general heat transfer law. Three criteria known in the literature—power, power density, and efficient power—are redefined in terms of the work criteria function (WCF, a concept introduced in this study. The formulation enabled the suggestion and analysis of a unique criterion—the efficient power density (which accounts for the efficiency and power density. Practically speaking, the efficient power and the efficient power density could be defined on any order based on the WCF. The applicability of the WCF is illustrated for the Newtonian heat transfer law (n=1 and for the radiative law (n=4. The importance of WCF is twofold: it gives an explicit design and educational tool to analyze and to display graphically the different criteria side by side and thus helps in design process. Finally, the criteria were compared and some conclusions were drawn.

  16. Work function engineering of graphene oxide via covalent functionalization for organic field-effect transistors

    Science.gov (United States)

    Ji, Seulki; Min, Bok Ki; Kim, Seong K.; Myung, Sung; Kang, Minseo; Shin, Hong-Suk; Song, Wooseok; Heo, Jungseok; Lim, Jongsun; An, Ki-Seok; Lee, Ill-Young; Lee, Sun Sook

    2017-10-01

    We report a simple method to produce work-function-tuned graphene nanosheets based on the nucleophilic substitution of the epoxy groups on graphene oxide. The electrical property of the graphene oxide is controlled dramatically, which results in the apparent work functions in a broad range between 3.73 eV and 5.1 eV, by attaching various functional groups on the graphene surface. As a proof of concept, we successfully demonstrated organic field effect transistors incorporating the functionalized graphene nanosheet interlayers. Here, when nanosheets were applied in an organic transistor as the interlayer material between electrodes and organic channel, the device performance was significantly improved. Our approach can be utilized to increase the performance and the flexibility of various advanced carbon-material-based hybrid electrical devices.

  17. Avalanches in functional materials and geophysics

    CERN Document Server

    Saxena, Avadh; Planes, Antoni

    2017-01-01

    This book provides the state-of-the art of the present understanding of avalanche phenomena in both functional materials and geophysics. The main emphasis of the book is analyzing these apparently different problems within the common perspective of out-of-equilibrium phenomena displaying spatial and temporal complexity that occur in a broad range of scales. Many systems, when subjected to an external force, respond intermittently in the form of avalanches that often span over a wide range of sizes, energies and durations. This is often related to a class of critical behavior characterized by the absence of characteristic scales. Typical examples are magnetization processes, plastic deformation and failure occuring in functional materials. These phenomena share many similarities with seismicity arising from the earth crust failure due to stresses that originate from plate tectonics.

  18. Energy harvesting with functional materials and microsystems

    CERN Document Server

    Bhaskaran, Madhu; Iniewski, Krzysztof

    2013-01-01

    For decades, people have searched for ways to harvest energy from natural sources. Lately, a desire to address the issue of global warming and climate change has popularized solar or photovoltaic technology, while piezoelectric technology is being developed to power handheld devices without batteries, and thermoelectric technology is being explored to convert wasted heat, such as in automobile engine combustion, into electricity. Featuring contributions from international researchers in both academics and industry, Energy Harvesting with Functional Materials and Microsystems explains the growi

  19. Aeroelastic Tailoring of a Plate Wing with Functionally Graded Materials

    Science.gov (United States)

    Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia; Jutte, Christine V.

    2014-01-01

    This work explores the use of functionally graded materials for the aeroelastic tailoring of a metallic cantilevered plate-like wing. Pareto trade-off curves between dynamic stability (flutter) and static aeroelastic stresses are obtained for a variety of grading strategies. A key comparison is between the effectiveness of material grading, geometric grading (i.e., plate thickness variations), and using both simultaneously. The introduction of material grading does, in some cases, improve the aeroelastic performance. This improvement, and the physical mechanism upon which it is based, depends on numerous factors: the two sets of metallic material parameters used for grading, the sweep of the plate, the aspect ratio of the plate, and whether the material is graded continuously or discretely.

  20. Lawrence Livermore National Laboratory Working Reference Material Production Pla

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Amy; Thronas, Denise; Marshall, Robert

    1998-11-04

    This Lawrence Livermore National Laboratory (LLNL) Working Reference Material Production Plan was written for LLNL by the Los Alamos National Laboratory to address key elements of producing seven Pu-diatomaceous earth NDA Working Reference Materials (WRMS). These WRMS contain low burnup Pu ranging in mass from 0.1 grams to 68 grams. The composite Pu mass of the seven WRMS was designed to approximate the maximum TRU allowable loading of 200 grams Pu. This document serves two purposes: first, it defines all the operations required to meet the LLNL Statement of Work quality objectives, and second, it provides a record of the production and certification of the WRMS. Guidance provided in ASTM Standard Guide C1128-89 was used to ensure that this Plan addressed all the required elements for producing and certifying Working Reference Materials. The Production Plan was written to provide a general description of the processes, steps, files, quality control, and certification measures that were taken to produce the WRMS. The Plan identifies the files where detailed procedures, data, quality control, and certification documentation and forms are retained. The Production Plan is organized into three parts: a) an initial section describing the preparation and characterization of the Pu02 and diatomaceous earth materials, b) middle sections describing the loading, encapsulation, and measurement on the encapsulated WRMS, and c) final sections describing the calculations of the Pu, Am, and alpha activity for the WRMS and the uncertainties associated with these quantities.

  1. Synthesis of functional materials by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nho, Young Chang; Kim, Ki Yup; Kang, Phil Hyun and others

    2000-04-01

    The radiation can induce chemical reaction to modify polymer under even the solid condition or in the low temperature. Therefore, the radiation processing is used as the means to develop the high functional polymer and new material which is impossible by chemical process. The radiation grafting process has the advantage to endow the adsorption function to the existing materials such as polymer membrane, fabric, non-fabric, non-woven fabric and film. Radiation crosslinking is effected with no pressure and is performed at low temperatures. Thus, temperature sensitive additives can be used in radiation crosslinking. The radiation crosslinking and grafting can be easily adjusted and is easily reproducible by controlling the radiation dose. The finished product contains no residuals of substances required to initiate the chemical crosslinking and grafting which can restrict the application possibilities, or can increase the failure rate. In these studies, radiation grafting and crosslinking were used to develop the toxic gas adsorbent, blood compatible polymer, acetabular cup of artificial joint, urokinase adsorbent, hydrogel, hollow fiber membrane adsorbing the heavy metals, and battery separator membrane. Because cable in nuclear power plant is directly related to safe operation, the life assessment of the cable system is an important issue. To assess the degradation and life time of cable is complicated owing to the various types and the different formulation of cable. In order to make an estimate the long term degradation occurring in a material, it is necessary to carry out the accelerated aging studies and to establish the appropriate test method to characterize the degradation. These studies are aimed at the evaluation technique on radiation degradation of polymer material and applying these results to nuclear equipment qualification.

  2. Gen IV Materials Handbook Functionalities and Operation

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Weiju [ORNL

    2009-12-01

    This document is prepared for navigation and operation of the Gen IV Materials Handbook, with architecture description and new user access initiation instructions. Development rationale and history of the Handbook is summarized. The major development aspects, architecture, and design principles of the Handbook are briefly introduced to provide an overview of its past evolution and future prospects. Detailed instructions are given with examples for navigating the constructed Handbook components and using the main functionalities. Procedures are provided in a step-by-step fashion for Data Upload Managers to upload reports and data files, as well as for new users to initiate Handbook access.

  3. Metal-molecular assembly for functional materials

    CERN Document Server

    Matsuo, Yutaka; Negishi, Yuichi; Yoshizawa, Michito; Uemura, Takashi; Takaya, Hikaru; Takeuchi, Masayuki; Yoshimoto, Soichiro

    2013-01-01

    This book focuses on modern coordination chemistry, covering porous coordination polymers, metalloproteins, metallopeptides, nanoclusters, nanocapsules, aligned polymers, and fullerenes. As well, it deals with applications to electronic devices and surface characterization. These wide-ranging topics are integrally described from the perspectives of dimensionality (one-, two-, and three-dimension), new materials design, synthesis, molecular assembly, function and application. The nine chapters making up this book have been authored by scientists who are at the cutting edge of research in this p

  4. Surface Functionalization of Graphene-based Materials

    Science.gov (United States)

    Mathkar, Akshay

    Graphene-based materials have generated tremendous interest in the past decade. Manipulating their characteristics using wet-chemistry methods holds distinctive value, as it provides a means towards scaling up, while not being limited by yield. The majority of this thesis focuses on the surface functionalization of graphene oxide (GO), which has drawn tremendous attention as a tunable precursor due to its readily chemically manipulable surface and richly functionalized basal plane. Firstly, a room-temperature based method is presented to reduce GO stepwise, with each organic moiety being removed sequentially. Characterization confirms the carbonyl group to be reduced first, while the tertiary alcohol is reduced last, as the optical gap decrease from 3.5 eV down to 1 eV. This provides greater control over GO, which is an inhomogeneous system, and is the first study to elucidate the order of removal of each functional group. In addition to organically manipulating GO, this thesis also reports a chemical methodology to inorganically functionalize GO and tune its wetting characteristics. A chemical method to covalently attach fluorine atoms in the form of tertiary alkyl fluorides is reported, and confirmed by MAS 13C NMR, as two forms of fluorinated graphene oxide (FGO) with varying C/F and C/O ratios are synthesized. Introducing C-F bonds decreases the overall surface free energy, which drastically reduces GO's wetting behavior, especially in its highly fluorinated form. Ease of solution processing leads to development of sprayable inks that are deposited on a range of porous and nonporous surfaces to impart amphiphobicity. This is the first report that tunes the wetting characteristics of GO. Lastly as a part of a collaboration with ConocoPhillips, another class of carbon nanomaterials - carbon nanotubes (CNTs), have been inorganically functionalized to repel 30 wt% MEA, a critical solvent in CO 2 recovery. In addition to improving the solution processability of CNTs

  5. Experimental Fracture Measurements of Functionally Graded Materials

    Science.gov (United States)

    Carpenter, Ray Douglas

    The primary objective of this research was to extend established fracture toughness testing methods to a new class of engineering materials known as functionally graded materials (FGMs). Secondary goals were to compare experimental results to those predicted by finite element models and to provide fracture test results as feedback toward optimizing processing parameters for the in-house synthesis of a MoSi2/SiC FGM. Preliminary experiments were performed on commercially pure (CP) Ti and uniform axial tensile tests resulted in mechanical property data including yield strength, 268 MPa, ultimate tensile strength, 470 MPa and Young's modulus, 110 GPa. Results from 3-point bending fracture experiments on CP Ti demonstrated rising R-curve behavior and experimentally determined JQ fracture toughness values ranged between 153 N/mm and 254 N/mm. Similar experimental protocols were used for fracture experiments on a 7- layered Ti/TiB FGM material obtained from Cercom in Vista, California. A novel technique for pre-cracking in reverse 4-point bending was developed for this ductile/brittle FGM material. Fracture test results exhibited rising R-curve behavior and estimated JQ fracture toughness values ranged from 0.49 N/mm to 2.63 N/mm. A 5- layered MoSi2/SiC FGM was synthesized using spark plasma sintering (SPS). Samples of this material were fracture tested and the results again exhibited a rising R-curve with KIC fracture toughness values ranging from 2.7 MPa-m1/2 to 6.0 MPa-m1/2. Finite Element Models predicted rising R-curve behavior for both of the FGM materials tested. Model results were in close agreement for the brittle MoSi2/SiC FGM. For the relatively more ductile Ti/TiB material, results were in close agreement at short crack lengths but diverged at longer crack lengths because the models accounted for fracture toughening mechanisms at the crack tip but not those acting in the crack wake.

  6. Fabrication and characteristics of alumina-iron functionally graded materials

    DEFF Research Database (Denmark)

    He, Zeming; Ma, J.; Tan, G.E.B.

    2009-01-01

    In the present work, five-layered alumina–iron functionally graded materials (FGMs) were fabricated via a simple route of die pressing and pressureless sintering. The shrinkage differences among the layers in the FGM were minimized by particle size selection and processing control. The microstruc......In the present work, five-layered alumina–iron functionally graded materials (FGMs) were fabricated via a simple route of die pressing and pressureless sintering. The shrinkage differences among the layers in the FGM were minimized by particle size selection and processing control....... The microstructure and the composition of the prepared component were studied, and its flexural strength, fracture toughness, and fracture energy were tested and evaluated. The relative density and the Vickers hardness of each layer in the graded material were also measured. The correlation between microstructure...... and composition and mechanical properties was discussed. Flat, crack-free, and relatively high-density gradient components were obtained from this work. Compared to monolithic alumina ceramic, the remarkable improvement on fracture toughness and fracture energy of the investigated graded material system...

  7. Work functioning trajectories in cancer patients: Results from the longitudinal Work Life after Cancer (WOLICA) study.

    Science.gov (United States)

    Dorland, Heleen F; Abma, Femke I; Roelen, Corné A M; Stewart, Roy E; Amick, Benjamin C; Ranchor, Adelita V; Bültmann, Ute

    2017-11-01

    More than 60% of cancer patients are able to work after cancer diagnosis. However, little is known about their functioning at work. Therefore, the aims of this study were to (1) identify work functioning trajectories in the year following return to work (RTW) in cancer patients and (2) examine baseline sociodemographic, health-related and work-related variables associated with work functioning trajectories. This longitudinal cohort study included 384 cancer patients who have returned to work after cancer diagnosis. Work functioning was measured at baseline, 3, 6, 9 and 12 months follow-up. Latent class growth modeling (LCGM) was used to identify work functioning trajectories. Associations of baseline variables with work functioning trajectories were examined using univariate and multivariate analyses. LCGM analyses with cancer patients who completed on at least three time points the Work Role Functioning Questionnaire (n = 324) identified three work functioning trajectories: "persistently high" (16% of the sample), "moderate to high" (54%) and "persistently low" work functioning (32%). Cancer patients with persistently high work functioning had less time between diagnosis and RTW and had less often a changed meaning of work, while cancer patients with persistently low work functioning reported more baseline cognitive symptoms compared to cancer patients in the other trajectories. This knowledge has implications for cancer care and guidance of cancer patients at work. © 2017 UICC.

  8. Function and application of isotope controlled materials

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Koichi; Suzuki, Hiroshi; Araki, Hiroshi; Fujita, Mitsutane; Hirano, Toshiyuki; Numazawa, Takenori; Noda, Tetsuji [National Research Inst. for Metals, Tsukuba, Ibaraki (Japan)

    2000-02-01

    As large amounts of silicone isotopes were separated in previous research, we tried to develop function of isotope controlled materials. Molecular vibration excitation control to control laser wavelength, physical properties of isotope control materials and nuclear transformation function were studied. A gas circulation system for isotope laser development was manufactured. When a part of {sup 16}O in CO{sub 2} were changed by {sup 18}O, the stretching mode of CO{sub 2} became unsymmetrical mode. P17 and P19 of laser oscillation were observed. They are odd lines that have never been observed. SiF{sub 4} and Si{sub 2}F{sub 6} were decomposed by plasma CVD method. About 28% Si crystal was obtained by controlling the reaction temperature at about 350 to 450degC. Homogeneous P single crystal(100) with 10 mm diameter was obtained. Thermal conductivity of B single crystal with {sup 10}B showed 1.5 times as much as that of natural components. Calculation of displacement damages, change of components, induced radioactivity and decay heat were improved by arrangement of simulation code. (S.Y.)

  9. Work function modifications of graphite surface via oxygen plasma treatment

    Science.gov (United States)

    Duch, J.; Kubisiak, P.; Adolfsson, K. H.; Hakkarainen, M.; Golda-Cepa, M.; Kotarba, A.

    2017-10-01

    The surface modification of graphite by oxygen plasma was investigated experimentally (X-ray diffraction, nanoparticle tracking analysis, laser desorption ionization mass spectrometry, thermogravimetry, water contact angle) and by molecular modelling (Density Functional Theory). Generation of surface functional groups (mainly sbnd OHsurf) leads to substantial changes in electrodonor properties and wettability gauged by work function and water contact angle, respectively. The invoked modifications were analyzed in terms of Helmholtz model taking into account the theoretically determined surface dipole moment of graphite-OHsurf system (μ = 2.71 D) and experimentally measured work function increase (from 0.75 to 1.02 eV) to determine the sbnd OH surface coverage (from 0.70 to 1.03 × 1014 groups cm-2). Since the plasma treatment was confined to the surface, the high thermal stability of the graphite material was preserved as revealed by the thermogravimetric analysis. The obtained results provide a suitable quantitative background for tuning the key operating parameters of carbon electrodes: electronic properties, interaction with water and thermal stability.

  10. Functional, Responsive Materials Assembled from Recombinant Oleosin

    Science.gov (United States)

    Hammer, Daniel

    Biological cells are surrounded by a plasma membrane made primarily of phospholipids that form a bilayer. This membrane is permselective and compartmentalizes the cell. A simple form of artificial cell is the vesicle, in which a phospholipid bilayer membrane surrounds an aqueous solution. However, there is no a priori reason why a membrane needs to be made of phospholipids. It could be made of any surfactant that forms a bilayer. We have assembled membranes and other structures from the recombinant plant protein oleosin. The ability to assemble from a recombinant protein means that every molecule is identical, we have complete control over the sequence, and hence can build in designer functionality with high fidelity, including adhesion and enzymatic activity. Such incorporation is trivial using the tools of molecular biology. We find that while many variants of oleosin make membranes, others make micelles and sheets. We show how the type of supramolecular structure can be altered by the conditions of solvent, such as ionic strength, and the architecture of the surfactant itself. We show that protease cleavable domains can be incorporated within oleosin, and be engineered to protect other functional domains such as adhesive motifs, to make responsive materials whose activity and shape depend on the action of proteases. We will also present the idea of making ``Franken''-oleosins, where large domains of native oleosin are replaced with domains from other functional proteins, to make hybrids conferred by the donor protein. Thus, we can view oleosin as a template upon which a vast array of designer functionalities can be imparted..

  11. Functional materials for energy-efficient buildings

    Directory of Open Access Journals (Sweden)

    Ebert H.-P

    2015-01-01

    Full Text Available The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.

  12. Synthesis of functional materials in combustion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravlev, V. D., E-mail: zhvd@ihim.uran.ru; Bamburov, V. G.; Ermakova, L. V.; Lobachevskaya, N. I. [Russian Academy of Sciences, Institute of Solid State Chemistry, Ural Branch (Russian Federation)

    2015-12-15

    The conditions for obtaining oxide compounds in combustion reactions of nitrates of metals with organic chelating–reducing agents such as amino acids, urea, and polyvinyl alcohol are reviewed. Changing the nature of internal fuels and the reducing agent-to-oxidizing agent ratio makes possible to modify the thermal regime of the process, fractal dimensionality, morphology, and dispersion of synthesized functional materials. This method can be used to synthesize simple and complex oxides, composites, and metal powders, as well as ceramics and coatings. The possibilities of synthesis in combustion reactions are illustrated by examples of αand γ-Al{sub 2}O{sub 3}, YSZ composites, uranium oxides, nickel powder, NiO and NiO: YSZ composite, TiO{sub 2}, and manganites, cobaltites, and aluminates of rare earth elements.

  13. Synthesis of functional materials in combustion reactions

    Science.gov (United States)

    Zhuravlev, V. D.; Bamburov, V. G.; Ermakova, L. V.; Lobachevskaya, N. I.

    2015-12-01

    The conditions for obtaining oxide compounds in combustion reactions of nitrates of metals with organic chelating-reducing agents such as amino acids, urea, and polyvinyl alcohol are reviewed. Changing the nature of internal fuels and the reducing agent-to-oxidizing agent ratio makes possible to modify the thermal regime of the process, fractal dimensionality, morphology, and dispersion of synthesized functional materials. This method can be used to synthesize simple and complex oxides, composites, and metal powders, as well as ceramics and coatings. The possibilities of synthesis in combustion reactions are illustrated by examples of αand γ-Al2O3, YSZ composites, uranium oxides, nickel powder, NiO and NiO: YSZ composite, TiO2, and manganites, cobaltites, and aluminates of rare earth elements.

  14. Factors Associated with Work Participation and Work Functioning in Depressed Workers : A Systematic Review

    NARCIS (Netherlands)

    Lagerveld, S. E.; Bultmann, U.; Franche, R. L.; van Dijk, F. J. H.; Vlasveld, M. C.; van der Feltz-Cornelis, C. M.; Bruinvels, D. J.; Huijs, J. J. J. M.; Blonk, R. W. B.; van der Klink, J. J. L.; Nieuwenhuijsen, K.

    Background Depression is associated with negative work outcomes such as reduced work participation (WP) (e.g., sick leave duration, work status) and work functioning (WF) (e.g., loss of productivity, work limitations). For the development of evidence-based interventions to improve these work

  15. Ionic-Functionalized Polymeric Microporous Materials

    Science.gov (United States)

    Rukmani, Shalini J.; Liyana-Arachchi, Thilanga; Hart, Kyle; Colina, Coray

    Ionic-functionalized microporous materials are attractive for gas adsorption and separation applications. In this study, we investigate the effect of changing ions (Li+, Na+, K+, Rb+, and Mg2+) on the porosity, carbon dioxide (CO2) gas adsorption, and selectivity in ionic functionalized polymers of intrinsic microporosity (IonomIMs). Structure generation and gas adsorption are studied using molecular dynamics and Monte Carlo simulations respectively. The IonomIMs show an enhanced performance for CO2 selectivity in CO2 /CH4 and CO2 /N2 gas mixtures at pressure swing adsorption and vacuum swing adsorption conditions. For 100% ionic concentration, ions with the same charge show a decrease in the adsorption capacity with increasing cation size. Mg2+ has the highest pure CO2 adsorption and lowest mixed gas separation performance. The increasing concentration of ions decreases the porosity of the framework and increases the tunability of structural and adsorption properties. Hence, the concentration of ions, size, and charge play a vital role in determining the optimum adsorbent for a targeted industrial application.

  16. Work functioning trajectories in cancer patients : Results from the longitudinal Work Life after Cancer (WOLICA) study

    NARCIS (Netherlands)

    Dorland, Heleen F; Abma, Femke I; Roelen, Corné A M; Stewart, Roy E; Amick, Benjamin C; Ranchor, Adelita V; Bültmann, Ute

    2017-01-01

    More than 60% of cancer patients are able to work after cancer diagnosis. However, little is known about their functioning at work. Therefore, the aims of this study were to (1) identify work functioning trajectories in the year following return to work (RTW) in cancer patients and (2) examine

  17. Which Working Memory Functions Predict Intelligence?

    Science.gov (United States)

    Oberauer, Klaus; Sub, Heinz-Martin; Wilhelm, Oliver; Wittmann, Werner W.

    2008-01-01

    Investigates the relationship between three factors of working memory (storage and processing, relational integration, and supervision) and four factors of intelligence (reasoning, speed, memory, and creativity) using structural equation models. Relational integration predicted reasoning ability at least as well as the storage-and-processing…

  18. Functional organic materials for electronics industries

    Science.gov (United States)

    Shibayama, K.; Ono, H.

    1982-01-01

    Topics closely related with organic, high molecular weight material synthesis are discussed. These are related to applications such as display, recording, sensors, semiconductors, and I.C. correlation. New materials are also discussed. General principles of individual application are not included. Materials discussed include color, electrochromic, thermal recording, organic photoconductors for electrophotography, and photochromic materials.

  19. Engineering Cell Instructive Materials To Control Cell Fate and Functions through Material Cues and Surface Patterning.

    Science.gov (United States)

    Ventre, Maurizio; Netti, Paolo A

    2016-06-22

    Mastering the interaction between cells and extracellular environment is a fundamental prerequisite in order to engineer functional biomaterial interfaces able to instruct cells with specific commands. Such advanced biomaterials might find relevant application in prosthesis design, tissue engineering, diagnostics and stem cell biology. Because of the highly complex, dynamic, and multifaceted context, a thorough understanding of the cell-material crosstalk has not been achieved yet; however, a variety of material features including biological cues, topography, and mechanical properties have been proved to impact the strength and the nature of the cell-material interaction, eventually affecting cell fate and functions. Although the nature of these three signals may appear very different, they are equated by their participation in the same material-cytoskeleton crosstalk pathway as they regulate cell adhesion events. In this work we present recent and relevant findings on the material-induced cell responses, with a particular emphasis on how the presentation of biochemical/biophysical signals modulates cell behavior. Finally, we summarize and discuss the literature data to draw out unifying elements concerning cell recognition of and reaction to signals displayed by material surfaces.

  20. Functional materials discovery using energy–structure–function maps

    Science.gov (United States)

    Pulido, Angeles; Chen, Linjiang; Kaczorowski, Tomasz; Holden, Daniel; Little, Marc A.; Chong, Samantha Y.; Slater, Benjamin J.; McMahon, David P.; Bonillo, Baltasar; Stackhouse, Chloe J.; Stephenson, Andrew; Kane, Christopher M.; Clowes, Rob; Hasell, Tom; Cooper, Andrew I.; Day, Graeme M.

    2017-01-01

    Molecular crystals cannot be designed like macroscopic objects because they do not assemble according to simple, intuitive rules. Their structure results from the balance of many weak interactions, unlike the strong and predictable bonding patterns found in metal–organic frameworks and covalent organic frameworks. Hence, design strategies that assume a topology or other structural blueprint will often fail. Here, we combine computational crystal structure prediction and property prediction to build energy–structure–function maps describing the possible structures and properties available to a candidate molecule. Using these maps, we identify a highly porous solid with the lowest density reported for a molecular crystal. Both crystal structure and physical properties, such as the methane storage capacity and guest selectivity, are predicted using the molecular diagram as the only input. More generally, energy–structure–function maps could be used to guide the experimental discovery of materials with any target function that can be calculated from predicted crystal structures, such as electronic structure or mechanical properties. PMID:28329756

  1. Functional materials discovery using energy-structure-function maps.

    Science.gov (United States)

    Pulido, Angeles; Chen, Linjiang; Kaczorowski, Tomasz; Holden, Daniel; Little, Marc A; Chong, Samantha Y; Slater, Benjamin J; McMahon, David P; Bonillo, Baltasar; Stackhouse, Chloe J; Stephenson, Andrew; Kane, Christopher M; Clowes, Rob; Hasell, Tom; Cooper, Andrew I; Day, Graeme M

    2017-03-30

    Molecular crystals cannot be designed in the same manner as macroscopic objects, because they do not assemble according to simple, intuitive rules. Their structures result from the balance of many weak interactions, rather than from the strong and predictable bonding patterns found in metal-organic frameworks and covalent organic frameworks. Hence, design strategies that assume a topology or other structural blueprint will often fail. Here we combine computational crystal structure prediction and property prediction to build energy-structure-function maps that describe the possible structures and properties that are available to a candidate molecule. Using these maps, we identify a highly porous solid, which has the lowest density reported for a molecular crystal so far. Both the structure of the crystal and its physical properties, such as methane storage capacity and guest-molecule selectivity, are predicted using the molecular structure as the only input. More generally, energy-structure-function maps could be used to guide the experimental discovery of materials with any target function that can be calculated from predicted crystal structures, such as electronic structure or mechanical properties.

  2. Characterization of low concentration uranium glass working materials

    Energy Technology Data Exchange (ETDEWEB)

    Eppich, G. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wimpenny, J. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Leever, M. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Knight, K. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hutcheon, I. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ryerson, F. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-22

    A series of uranium-doped silicate glasses were created at (Lawrence Livermore National Laboratory) LLNL, to be used as working reference material analogs for low uranium concentration research. Specifically, the aim of this effort was the generation of well-characterized glasses spanning a range of concentrations and compositions, and of sufficient homogeneity in uranium concentration and isotopic composition, for instrumentation research and development purposes. While the glasses produced here are not intended to replace or become standard materials for uranium concentration or uranium isotopic composition, it is hoped that they will help fill a current gap, providing low-level uranium glasses sufficient for methods development and method comparisons within the limitations of the produced glass suite. Glasses are available for research use by request.

  3. Simultaneous current-, force- and work function measurement with atomic resolution

    OpenAIRE

    Herz, Markus; Schiller, Christian H.; Giessibl, Franz J.; Mannhart, Jochen

    2005-01-01

    The local work function of a surface determines the spatial decay of the charge density at the Fermi level normal to the surface. Here, we present a method that enables simultaneous measurements of local work function and tip-sample forces. A combined dynamic scanning tunneling microscope and atomic force microscope is used to measure the tunneling current between an oscillating tip and the sample in real time as a function of the cantilever's deflection. Atomically resolved work function mea...

  4. Napping and Human Functioning during Prolonged Work

    Science.gov (United States)

    1987-04-30

    alternative to napping is prolonged wakefulness. Polyphasic sleep , with frequent naps rather than a single sleep period per 24 hours, is natural for both the...very young and for the aged. It is not practiced by most adults, perhaps because of societal demands. Possibly a polyphasic sleep schedule could be...Functioning 1.2 Scope of this Chapter 2. REVIEW OF LITERATURE 2.1 Partial Sleep Deprivation Studies 2.2 Nap Studies: Four Nap Factors Affecting Performance

  5. Functional and Multifunctional Polymers: Materials for Smart Structures

    Science.gov (United States)

    Arnold, S.; Pratt, L. M.; Li, J.; Wuagaman, M.; Khan, I. M.

    1996-01-01

    The ultimate goal of the research in smart structures and smart materials is the development of a new generation of products/devices which will perform better than products/devices built from passive materials. There are a few examples of multilayer polymer systems which function as smart structures, e.g. a synthetic muscle which is a multilayer assembly of a poly(ethylene) layer, a gold layer, and a poly(pyrrole) layer immersed in a liquid electrolyte. Oxidation and reductions of the active pyrrole layer causes the assembly to reversibly deflect and mimic biological muscles. The drawback of such a setup is slow response times and the use of a liquid electrolyte. We have developed multifunctional polymers which will eliminate the use of a liquid electrolyte, and also because the functionalities of the polymers are within a few hundred angstroms, an improved response time to changes in the external field should be possible. Such multifunctional polymers may be classified as the futuristic 'smart materials.' These materials are composed of a number of different functionalities which work in a synergistic fashion to function as a device. The device performs on the application of an external field and such multifunctional polymers may be scientifically labeled as 'field responsive polymers.' Our group has undertaken a systematic approach to develop functional and multifunctional polymers capable of functioning as field responsive polymers. Our approach utilizes multicomponent polymer systems (block copolymers and graft copolymers), the strategy involves the preparation of block or graft copolymers where the functionalities are limited to different phases in a microphase separated system. Depending on the weight (or volume) fractions of each of the components, different microstructures are possible. And, because of the intimate contact between the functional components, an increase in the synergism between the functionalities may be observed. In this presentation, three

  6. Executive Functions and Working Memory Behaviours in Children with a Poor Working Memory

    Science.gov (United States)

    St. Clair-Thompson, Helen L.

    2011-01-01

    Previous research has suggested that working memory difficulties play an integral role in children's underachievement at school. However, working memory is just one of several executive functions. The extent to which problems in working memory extend to other executive functions is not well understood. In the current study 38 children with a poor…

  7. The Acchivement Social Function Principal Contract in the Work Environment

    OpenAIRE

    Silva, Leda Maria Messias da; CESUMAR

    2008-01-01

    The following essay, aiming the work environment, deals with the acchivement of Social Function Principal Contract in the work environment. The work environment must be healthy, balanced, decent so that the worker may execute his/her activities eficently and well, preserving his/her dignity being helped by everyone in the process: employer, employee and also the state in the role of promoter of public policies. In the end, presents proposals that help in the work place and the social function...

  8. Mesoporous functionalized carbon materials as advanced sorbents and electrode materials

    OpenAIRE

    Wu, Zhangxiong

    2017-01-01

    The problems of environmental pollution and energy depletion have triggered enormous concerns across the world. There has been a vast abundance of global research development and demonstration efforts to alleviate these problems. However, it is obvious that these problems will continue in the 21st century, and thus advances in development and deployment of new technologies are in high demand. To approach these goals, fundamental research regarding creating novel materials carrying targeted fu...

  9. Surface energy and work function of the light actinides

    DEFF Research Database (Denmark)

    Kollár, J.; Vitos, Levente; Skriver, Hans Lomholt

    1994-01-01

    We have calculated the surface energy and work function of the light actinides Fr, Ra, Ac, Th, Pa, U, Np, and Pu by means of a Green's-function technique based on the linear-muffin-tin-orbitals method within the tight-binding representation. In these calculations we apply an energy functional which....... The calculated surface energies and work functions are in good agreement with the limited experimental data....

  10. Inkjet Printing of Functional Materials for Optical and Photonic Applications

    Directory of Open Access Journals (Sweden)

    Jorge Alamán

    2016-11-01

    Full Text Available Inkjet printing, traditionally used in graphics, has been widely investigated as a valuable tool in the preparation of functional surfaces and devices. This review focuses on the use of inkjet printing technology for the manufacturing of different optical elements and photonic devices. The presented overview mainly surveys work done in the fabrication of micro-optical components such as microlenses, waveguides and integrated lasers; the manufacturing of large area light emitting diodes displays, liquid crystal displays and solar cells; as well as the preparation of liquid crystal and colloidal crystal based photonic devices working as lasers or optical sensors. Special emphasis is placed on reviewing the materials employed as well as in the relevance of inkjet in the manufacturing of the different devices showing in each of the revised technologies, main achievements, applications and challenges.

  11. Inkjet Printing of Functional Materials for Optical and Photonic Applications

    Science.gov (United States)

    Alamán, Jorge; Alicante, Raquel; Peña, Jose Ignacio; Sánchez-Somolinos, Carlos

    2016-01-01

    Inkjet printing, traditionally used in graphics, has been widely investigated as a valuable tool in the preparation of functional surfaces and devices. This review focuses on the use of inkjet printing technology for the manufacturing of different optical elements and photonic devices. The presented overview mainly surveys work done in the fabrication of micro-optical components such as microlenses, waveguides and integrated lasers; the manufacturing of large area light emitting diodes displays, liquid crystal displays and solar cells; as well as the preparation of liquid crystal and colloidal crystal based photonic devices working as lasers or optical sensors. Special emphasis is placed on reviewing the materials employed as well as in the relevance of inkjet in the manufacturing of the different devices showing in each of the revised technologies, main achievements, applications and challenges. PMID:28774032

  12. Work function of elemental metals and its face dependence ...

    African Journals Online (AJOL)

    The stabilizing potentials and work functions of elemental metals were calculated for the flat surface, the (111), (100) and (110) faces using the stabilized jellium model. The calculated work functions were compared with experimental values and calculated values obtained using the ab initio method. The stabilizing ...

  13. The Work Function Associated with Ultra-relativistic Electron ...

    Indian Academy of Sciences (India)

    At absolute zero, the energy of the most energetic electrons in a metal is referred to as the Fermi energy; the work function of a metal is then equal to the energy required to raise an electron with the Fermi energy to the energy level corre- sponding to an electron at rest in vacuum. The work function of a semiconductor or.

  14. Towards a sustainable healthy working life: associations between chronological age, functional age and work outcomes.

    Science.gov (United States)

    Koolhaas, Wendy; van der Klink, Jac J L; Groothoff, Johan W; Brouwer, Sandra

    2012-06-01

    The aims of this study were: (i) to determine the relation between chronological and functional age; (ii) to examine the association between chronological age and work outcomes; and (iii) to examine the association between functional age and work outcomes. An overview of the most reported work outcomes is outlined. Chronological age refers to the calendar age; functional age was measured with perceived health status (SF-36) and the presence of a chronic health condition. Perspectives on experienced problems, barriers, facilitators and support needs due to ageing and the Work Ability Index were gathered out as work outcomes. The association of chronological and functional age of workers aged ≥45 years (n = 2971) on work outcomes were significant but small, except for the presence of a chronic health condition. The presence of a chronic health condition was not related to chronological age. Older workers (60-64 years) reported better scores on social functioning, mental health and vitality compared with workers aged 45-59 years. Most reported problems due to ageing were energy decline, muscle function decline, concentration lapses and memory deterioration. Experienced barriers were concentration, work pace problems and mobility; facilitators were support from colleagues, informal relations at work and supervisors. Individual agreement had to be met to continue working life. This study confirmed that both chronological and functional age were associated with a decrease in work outcomes. Workers >60 years did not experience more problems and barriers compared with workers between 45 and 49 years of age.

  15. Bibliography of Legal Education Materials. PDE Working Paper.

    Science.gov (United States)

    Pennsylvania State Dept. of Education, Harrisburg. Bureau of General and Academic Education.

    This list is of print and non-print materials that may have application to legal education for elementary and secondary grades. Types of print materials include student texts, periodicals, and pamphlets, curriculum materials, and books, both hardbound and paperback. Non-print materials include sound films and filmstrips and pre-recorded tapes.…

  16. Strain effects on the work function of an organic semiconductor

    KAUST Repository

    Wu, Yanfei

    2016-02-01

    Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively with density functional theory calculations. An elastic-to-plastic transition, characterized by a steep rise of the WF, occurs at ~0.05% tensile strain along the rubrene π-stacking direction. The results provide the first concrete link between mechanical strain and WF of an organic semiconductor and have important implications for understanding the connection between structural and electronic disorder in soft organic electronic materials.

  17. Production of Working Reference Materials for the Capability Evaluation Project

    Energy Technology Data Exchange (ETDEWEB)

    Phillip D. Noll, Jr.; Robert S. Marshall

    1999-03-01

    Nondestructive waste assay (NDA) methods are employed to determine the mass and activity of waste-entrained radionuclides as part of the National TRU (Trans-Uranic) Waste Characterization Program. In support of this program the Idaho National Engineering and Environmental Laboratory Mixed Waste Focus Area developed a plan to acquire capability/performance data on systems proposed for NDA purposes. The Capability Evaluation Project (CEP) was designed to evaluate the NDA systems of commercial contractors by subjecting all participants to identical tests involving 55 gallon drum surrogates containing known quantities and distributions of radioactive materials in the form of sealed-source standards, referred to as working reference materials (WRMs). Although numerous Pu WRMs already exist, the CEP WRM set allows for the evaluation of the capability and performance of systems with respect to waste types/configurations which contain increased amounts of {sup 241}Am relative to weapons grade Pu, waste that is dominantly {sup 241}Am, as well as wastes containing various proportions of depleted uranium. The CEP WRMs consist of a special mixture of PuO{sub 2}/AmO{sub 2} (IAP) and diatomaceous earth (DE) or depleted uranium (DU) oxide and DE and were fabricated at Los Alamos National Laboratory. The IAP WRMS are contained inside a pair of welded inner and outer stainless steel containers. The DU WRMs are singly contained within a stainless steel container equivalent to the outer container of the IAP standards. This report gives a general overview and discussion relating to the production and certification of the CEP WRMs.

  18. Towards a sustainable healthy working life : associations between chronological age, functional age and work outcomes

    NARCIS (Netherlands)

    Koolhaas, Wendy; van der Klink, Jac J. L.; Groothoff, Johan W.; Brouwer, Sandra

    Background: The aims of this study were: (i) to determine the relation between chronological and functional age; (ii) to examine the association between chronological age and work outcomes; and (iii) to examine the association between functional age and work outcomes. An overview of the most

  19. Nonsmooth fracture dynamics of functionally graded materials

    Science.gov (United States)

    Perales, F.; Monerie, Y.; Chrysochoos, A.

    2006-08-01

    This paper presents a numerical framework for the simulation of dynamic fracture of heterogeneous material. It consists in a multibody approach based both on the concept of Frictional Cohesive Zone Model and on NonSmooth Contact Dynamics. The heterogeneities of the material are taken into account using a multiscale method. The microscopic scale corresponds to the scale of heterogeneities. The macroscopic scale corresponds to the structure where gradients of properties will be invoked. The ability of the framework is illustrated by the fracture of hydrided Zircaloy-4, constituting nuclear cladding tube, under transient loading.

  20. Impaired work functioning due to common mental disorders in nurses and allied health professionals: the Nurses Work Functioning Questionnaire.

    Science.gov (United States)

    Gärtner, F R; Nieuwenhuijsen, K; van Dijk, F J H; Sluiter, J K

    2012-02-01

    Common mental disorders (CMD) negatively affect work functioning. In the health service sector not only the prevalence of CMDs is high, but work functioning problems are associated with a risk of serious consequences for patients and healthcare providers. If work functioning problems due to CMDs are detected early, timely help can be provided. Therefore, the aim of this study is to develop a detection questionnaire for impaired work functioning due to CMDs in nurses and allied health professionals working in hospitals. First, an item pool was developed by a systematic literature study and five focus group interviews with employees and experts. To evaluate the content validity, additional interviews were held. Second, a cross-sectional assessment of the item pool in 314 nurses and allied health professionals was used for item selection and for identification and corroboration of subscales by explorative and confirmatory factor analysis. The study results in the Nurses Work Functioning Questionnaire (NWFQ), a 50-item self-report questionnaire consisting of seven subscales: cognitive aspects of task execution, impaired decision making, causing incidents at work, avoidance behavior, conflicts and irritations with colleagues, impaired contact with patients and their family, and lack of energy and motivation. The questionnaire has a proven high content validity. All subscales have good or acceptable internal consistency. The Nurses Work Functioning Questionnaire gives insight into precise and concrete aspects of impaired work functioning of nurses and allied health professionals. The scores can be used as a starting point for purposeful interventions.

  1. Density functional calculations on structural materials for nuclear energy applications and functional materials for photovoltaic energy applications (abstract only).

    Science.gov (United States)

    Domain, C; Olsson, P; Becquart, C S; Legris, A; Guillemoles, J F

    2008-02-13

    Ab initio density functional theory calculations are carried out in order to predict the evolution of structural materials under aggressive working conditions such as cases with exposure to corrosion and irradiation, as well as to predict and investigate the properties of functional materials for photovoltaic energy applications. Structural metallic materials used in nuclear facilities are subjected to irradiation which induces the creation of large amounts of point defects. These defects interact with each other as well as with the different elements constituting the alloys, which leads to modifications of the microstructure and the mechanical properties. VASP (Vienna Ab initio Simulation Package) has been used to determine the properties of point defect clusters and also those of extended defects such as dislocations. The resulting quantities, such as interaction energies and migration energies, are used in larger scale simulation methods in order to build predictive tools. For photovoltaic energy applications, ab initio calculations are used in order to search for new semiconductors and possible element substitutions for existing ones in order to improve their efficiency.

  2. Density functional theory and multiscale materials modeling

    Indian Academy of Sciences (India)

    One of the vital ingredients in the theoretical tools useful in materials modeling at all the length scales of interest is the concept of density. In the microscopic length scale, it is the electron density that has played a major role in providing a deeper understanding of chemical binding in atoms, molecules and solids.

  3. Working memory processing of traumatic material in women with posttraumatic stress disorder.

    Science.gov (United States)

    Landré, Lionel; Destrieux, Christophe; Andersson, Frédéric; Barantin, Laurent; Quidé, Yann; Tapia, Géraldine; Jaafari, Nematollah; Clarys, David; Gaillard, Philippe; Isingrini, Michel; El-Hage, Wissam

    2012-02-01

    Posttraumatic stress disorder (PTSD) is associated with medial frontal and amygdala functional alterations during the processing of traumatic material and frontoparietal dysfunctions during working memory tasks. This functional magnetic resonance imaging (fMRI) study investigated the effects of trauma-related words processing on working memory in patients with PTSD. We obtained fMRI scans during a 3-back task and an identity task on both neutral and trauma-related words in women with PTSD who had been sexually abused and in healthy, nonexposed pair-matched controls. Seventeen women with PTSD and 17 controls participated in the study. We found no behavioural working memory deficit for the PTSD group. In both tasks, deactivation of posterior parietal midline regions was more pronounced in patients than controls. Additionally, patients with PTSD recruited the left dorsolateral frontal sites to a greater extent during the processing of trauma-related material than neutral material. This study included only women and did not include a trauma-exposed non-PTSD control group; the results may, therefore, have been influenced by sex or by effects specific to trauma exposure. Our results broadly confirm frontal and parietal functional variations in women with PTSD and suggest a compensatory nature of these variations with regard to the retreival of traumatic memories and global attentional deficits, respectively, during cognitively challenging tasks.

  4. Surface-functionalized mesoporous carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Sheng; Gorka, Joanna; Mayes, Richard T.

    2016-02-02

    A functionalized mesoporous carbon composition comprising a mesoporous carbon scaffold having mesopores in which polyvinyl polymer grafts are covalently attached, wherein said mesopores have a size of at least 2 nm and up to 50 nm. Also described is a method for producing the functionalized mesoporous composition, wherein a reaction medium comprising a precursor mesoporous carbon, vinyl monomer, initiator, and solvent is subjected to sonication of sufficient power to result in grafting and polymerization of the vinyl monomer into mesopores of the precursor mesoporous carbon. Also described are methods for using the functionalized mesoporous carbon, particularly in extracting metal ions from metal-containing solutions.

  5. Surface energy and work function of elemental metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Rosengaard, N. M.

    1992-01-01

    and noble metals, as derived from the surface tension of liquid metals. In addition, they give work functions which agree with the limited experimental data obtained from single crystals to within 15%, and explain the smooth behavior of the experimental work functions of polycrystalline samples......We have performed an ab initio study of the surface energy and the work function for six close-packed surfaces of 40 elemental metals by means of a Green’s-function technique, based on the linear-muffin-tin-orbitals method within the tight-binding and atomic-sphere approximations. The results...... are in excellent agreement with a recent full-potential, all-electron, slab-supercell calculation of surface energies and work functions for the 4d metals. The present calculations explain the trend exhibited by the surface energies of the alkali, alkaline earth, divalent rare-earth, 3d, 4d, and 5d transition...

  6. Overweight, obesity and work functioning : The role of working-time arrangements

    NARCIS (Netherlands)

    Nigatu, Yeshambel T.; van de Ven, Hardy A.; van der Klink, Jac J. L.; Brouwer, Sandra; Reijneveld, Sijmen A.; Bultmann, Ute

    Background: Obesity is associated with productivity loss, but little is known about how obese workers function at work and also the role of working-time arrangements on this association is lacking. Therefore, the aim of this study was to examine the association of overweight and obesity with work

  7. Lung function changes in wildland firefighters working at prescribed burns.

    Energy Technology Data Exchange (ETDEWEB)

    Adetona, Olorunfemi; Hall, Daniel, B.; Naeher, L,P.

    2011-10-01

    Although decline in lung function across workshift has been observed in wildland firefighters, measurements have been restricted to days when they worked at fires. Consequently, such results could have been confounded by normal circadian variation associated with lung function. We investigated the across-shift changes in lung function of wildland firefighters, and the effect of cumulative exposure on lung function during the burn season.

  8. Fabrication and application of advanced functional materials from lignincellulosic biomass

    Science.gov (United States)

    Hu, Sixiao

    This dissertation explored the conversion of lignocellulosic biomass into advanced functional materials and their potential applications. Lignocellulosic biomass represents an as-of-yet underutilized renewable source for not only biofuel production but also functional materials fabrication. This renewable source is a great alternative for fossil fuel based chemicals, which could be one of the solutions to energy crisis. In this work, it was demonstrated a variety of advanced materials including functional carbons, metal and silica nanoparticles could be derived from lignocellulosic biomass. Chapter 1 provided overall reviewed of the lignin structures, productions and its utilizations as plastics, absorbents and carbons, as well as the preparation of nano-structured silver, silica and silicon carbide/nitride from biomass. Chapter 2, 3 and 4 discussed the fabrication of highly porous carbons from isolated lignin, and their applications as electric supercapacitors for energy storage. In chapter 2, ultrafine porous carbon fibers were prepared via electrospinning followed by simultaneous carbonization and activation. Chapter 3 covered the fabrication of supercapacitor based on the porous carbon fibers and the investigation of their electrochemical performances. In chapter 4, porous carbon particulates with layered carbon nano plates structures were produced by simple oven-drying followed by simultaneous carbonization and activation. The effects of heat processing parameters on the resulting carbon structures and their electrochemical properties were discussed in details. Chapter 5 and 6 addressed the preparation of silver nanoparticles using lignin. Chapter 5 reported the synthesis, underlying kinetics and mechanism of monodispersed silver nanospheres with diameter less than 25 nm in aqueous solutions using lignin as dual reducing and capping agents. Chapter 6 covered the preparation of silver nanoparticles on electrospun celluloses ultrafine fibers using lignin as both

  9. Substitution of dangerous substances and Materials to improve the Working Environment

    DEFF Research Database (Denmark)

    Jacobsen, Thomas

    2000-01-01

    Substitution of dangerous substances and Materials as a method to improve the Working Environment - 25 years of Danish experience......Substitution of dangerous substances and Materials as a method to improve the Working Environment - 25 years of Danish experience...

  10. Hearing aid noise suppression and working memory function

    DEFF Research Database (Denmark)

    Neher, Tobias; Wagener, Kirsten C.; Fischer, Rosa-Linde

    2017-01-01

    OBJECTIVE: Research findings concerning the relation between benefit from hearing aid (HA) noise suppression and working memory function are inconsistent. The current study thus investigated the effects of three noise suppression algorithms on auditory working memory and the relation with reading...

  11. Workers with health problems : three perspectives on functioning at work

    NARCIS (Netherlands)

    Abma, Femke I.; Bultmann, Ute; Varekamp, Inge; van der Klink, Jac J. L.

    2013-01-01

    Purpose: Our aims were (i) to explore why it is that one worker with a health problem is able to stay at work while the other is not, (ii) to identify signals for decreased functioning at work, and (iii) to explore if and how this can be measured. Method: We conducted three focus groups: with

  12. Preparations and properties of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials.

    Science.gov (United States)

    Watanabe, Shoji

    2008-01-01

    This short review describes various types of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials. It is concerned with synthetic additives classified according to their functional groups; silicone compounds, carboxylic acids and dibasic acids, esters, Diels-Alder adducts, various polymers, nitrogen compounds, phosphoric esters, phosphonic acids, and others. Testing methods for water-soluble metal working fluids for aluminum alloy materials are described for a practical application in a laboratory.

  13. Metal-Organic Frameworks as Platforms for Functional Materials.

    Science.gov (United States)

    Cui, Yuanjing; Li, Bin; He, Huajun; Zhou, Wei; Chen, Banglin; Qian, Guodong

    2016-03-15

    Discoveries of novel functional materials have played very important roles to the development of science and technologies and thus to benefit our daily life. Among the diverse materials, metal-organic framework (MOF) materials are rapidly emerging as a unique type of porous and organic/inorganic hybrid materials which can be simply self-assembled from their corresponding inorganic metal ions/clusters with organic linkers, and can be straightforwardly characterized by various analytical methods. In terms of porosity, they are superior to other well-known porous materials such as zeolites and carbon materials; exhibiting extremely high porosity with surface area up to 7000 m(2)/g, tunable pore sizes, and metrics through the interplay of both organic and inorganic components with the pore sizes ranging from 3 to 100 Å, and lowest framework density down to 0.13 g/cm(3). Such unique features have enabled metal-organic frameworks to exhibit great potentials for a broad range of applications in gas storage, gas separations, enantioselective separations, heterogeneous catalysis, chemical sensing and drug delivery. On the other hand, metal-organic frameworks can be also considered as organic/inorganic self-assembled hybrid materials, we can take advantages of the physical and chemical properties of both organic and inorganic components to develop their functional optical, photonic, and magnetic materials. Furthermore, the pores within MOFs can also be utilized to encapsulate a large number of different species of diverse functions, so a variety of functional MOF/composite materials can be readily synthesized. In this Account, we describe our recent research progress on pore and function engineering to develop functional MOF materials. We have been able to tune and optimize pore spaces, immobilize specific functional groups, and introduce chiral pore environments to target MOF materials for methane storage, light hydrocarbon separations, enantioselective recognitions

  14. Reduced work function of graphene by metal adatoms

    Energy Technology Data Exchange (ETDEWEB)

    Legesse, Merid; Mellouhi, Fedwa El; Bentria, El Tayeb; Madjet, Mohamed E. [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Doha (Qatar); Fisher, Timothy S. [School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907 (United States); Kais, Sabre [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Doha (Qatar); Department of Chemistry and Physics, Purdue University, West Lafayette, IN 46323 (United States); College of Science and Engineering, Hamad Bin Khalifa University, Doha (Qatar); Alharbi, Fahhad H., E-mail: falharbi@qf.org.qa [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Doha (Qatar); College of Science and Engineering, Hamad Bin Khalifa University, Doha (Qatar)

    2017-02-01

    Highlights: • Using DFT, the maximum reduction of graphene workfunction is investigated. This is important for many applications. • The calculations show that the adatoms prefer to relax at hollow sites. • The transfer of electrons from the adatoms to graphene shifts up the Fermi level. So, graphene becomes metallic. • For those dopants that have been used experimentally, the calculations agree with the experimental data. • We found that 8% doping by Cs reduces the work function to 2.05 eV. - Abstract: In this paper, the work function of graphene doped by different metal adatoms and at different concentrations is investigated. Density functional theory is used to maximize the reduction of the work function. In general, the work function drops significantly before reaching saturation. For example in the case of Cs doping, the work function saturates at 2.05 eV with a modest 8% doping. The adsorption of different concentrations on metal adatoms on graphene is also studied. Our calculations show that the adatoms prefer to relax at hollow sites. The transfer of electron from metallic dopants to the graphene for all the studied systems shifts the Fermi energy levels above the Dirac-point and the doped graphenes become metallic. The value of Fermi energy shifts depends on the type of metallic dopants and its concentrations. A detail analysis of the electronic structure in terms of band structure and density of states, absorption energy, and charge transfer for each adatom-graphene system is presented.

  15. New Elastomeric Materials and Functional Composites for Stretchable Electronics

    Science.gov (United States)

    Vohra, Akhil

    This dissertation reports a diverse range of new components for the fabrication of soft flexible, stretchable and wearable electronic devices. The components investigated spans design and development of a new elastomer, layered elastomeric material, investigation and modification of surface chemistries, and development of new techniques for fabrication of stretchable, conductive composites using nanomaterials and metals. Simple, low-cost, benchtop techniques for the fabrication of the functional materials has been a strong focus of the work reported in this dissertation. Chapter 2 reports the development of a new transparent formulation of a renowned elastomer, butyl rubber, that enables its use in stretchable electronics applications. We design a new compression molding method to prepare highly smooth and transparent butyl rubber (T-IIR) substrates. We demonstrate the T-IIR protection to sensitive electronic materials from degradation and corrosion by oxygen and moisture to extend the lifetimes of stretchable devices. The demonstrated benefits positions T-IIR as an important elastomer for future generation of impermeable stretchable electronics. Chapter 3 examines the surface properties of T-IIR reported in Chapter 2 and reports methods to modify the surface chemistry of T-IIR to enable the deposition of electronic materials. This report advances the new elastomer from being a mere encapsulant to a substrate for direct device fabrication on its surface. As a proof of concept, we demonstrate the deposition of stretchable gold films on the organosilane-modified surface of T-IIR. Chapter 4 expands upon the work presented in Chapter 3 and reports the fabrication of a multilayered elastomeric composite built upon T-IIR. The properties of the composite enables the deposition of stretchable metal films, while T-IIR prevents degradation from gases and water vapor when the composite/metal is used in electronic devices. We demonstrate the fabrication and long lifetime

  16. Functional materials for sustainable energy technologies: four case studies.

    Science.gov (United States)

    Kuznetsov, V L; Edwards, P P

    2010-01-01

    The critical topic of energy and the environment has rarely had such a high profile, nor have the associated materials challenges been more exciting. The subject of functional materials for sustainable energy technologies is demanding and recognized as a top priority in providing many of the key underpinning technological solutions for a sustainable energy future. Energy generation, consumption, storage, and supply security will continue to be major drivers for this subject. There exists, in particular, an urgent need for new functional materials for next-generation energy conversion and storage systems. Many limitations on the performances and costs of these systems are mainly due to the materials' intrinsic performance. We highlight four areas of activity where functional materials are already a significant element of world-wide research efforts. These four areas are transparent conducting oxides, solar energy materials for converting solar radiation into electricity and chemical fuels, materials for thermoelectric energy conversion, and hydrogen storage materials. We outline recent advances in the development of these classes of energy materials, major factors limiting their intrinsic functional performance, and potential ways to overcome these limitations.

  17. Functional materials in amperometric sensing polymeric, inorganic, and nanocomposite materials for modified electrodes

    CERN Document Server

    Seeber, Renato; Zanardi, Chiara

    2014-01-01

    Amperometric sensors, biosensors included, particularly rely on suitable electrode materials. Progress in material science has led to a wide variety of options that are available today. For the first time, these novel functional electrode coating materials are reviewed in this monograph, written by and for electroanalytical chemists. This includes intrinsically conducting, redox and ion-exchange polymers, metal and carbon nanostructures, silica based materials. Monolayers and relatively thick films are considered. The authors critically discuss preparation methods, in addition to chemical and

  18. Bike Desks in the Office: Physical Health, Cognitive Function, Work Engagement, and Work Performance.

    Science.gov (United States)

    Torbeyns, Tine; de Geus, Bas; Bailey, Stephen; De Pauw, Kevin; Decroix, Lieselot; Van Cutsem, Jeroen; Meeusen, Romain

    2016-12-01

    The aim of this study was to examine the longitudinal effect of implementing bike desks in an office setting on physical health, cognition, and work parameters. Physical health, cognitive function, work engagement, and work performance measured before (T0) and after (T2) the intervention period were compared between office workers who used the bike desk (IG, n = 22) and those who did not (CG, n = 16). The IG cycled approximately 98 minutes/week. The IG showed a significantly lower fat percentage and a trend toward a higher work engagement at T2 relative to T0, while this was not different for the CG. No effects on other parameters of health, cognition, or work performance were found. Providing bike desks in the office positively influences employees' fat percentage and could positively influence work engagement without compromising work performance.

  19. Material selection for Multi-Function Waste Tank Facility tanks

    Energy Technology Data Exchange (ETDEWEB)

    Larrick, A.P.; Blackburn, L.D.; Brehm, W.F.; Carlos, W.C.; Hauptmann, J.P. [Westinghouse Hanford Co., Richland, WA (United States); Danielson, M.J.; Westerman, R.E. [Pacific Northwest Lab., Richland, WA (United States); Divine, J.R. [ChemMet Ltd., West Richland, WA (United States); Foster, G.M. [ICF Kaiser Hanford Co., Richland, WA (United States)

    1995-03-01

    This paper briefly summarizes the history of the materials selection for the US Department of Energy`s high-level waste carbon steel storage tanks. It also provides an evaluation of the materials for the construction of new tanks at the evaluation of the materials for the construction of new tanks at the Multi-Function Waste Tank Facility. The evaluation included a materials matrix that summarized the critical design, fabrication, construction, and corrosion resistance requirements: assessed. each requirement: and cataloged the advantages and disadvantages of each material. This evaluation is based on the mission of the Multi-Function Waste Tank Facility. On the basis of the compositions of the wastes stored in Hanford waste tanks, it is recommended that tanks for the Multi-Function Waste Tank Facility be constructed of ASME SA 515, Grade 70, carbon steel.

  20. Systems and methods for producing low work function electrodes

    Science.gov (United States)

    Kippelen, Bernard; Fuentes-Hernandez, Canek; Zhou, Yinhua; Kahn, Antoine; Meyer, Jens; Shim, Jae Won; Marder, Seth R.

    2015-07-07

    According to an exemplary embodiment of the invention, systems and methods are provided for producing low work function electrodes. According to an exemplary embodiment, a method is provided for reducing a work function of an electrode. The method includes applying, to at least a portion of the electrode, a solution comprising a Lewis basic oligomer or polymer; and based at least in part on applying the solution, forming an ultra-thin layer on a surface of the electrode, wherein the ultra-thin layer reduces the work function associated with the electrode by greater than 0.5 eV. According to another exemplary embodiment of the invention, a device is provided. The device includes a semiconductor; at least one electrode disposed adjacent to the semiconductor and configured to transport electrons in or out of the semiconductor.

  1. Porous Organic Materials: Strategic Design and Structure-Function Correlation.

    Science.gov (United States)

    Das, Saikat; Heasman, Patrick; Ben, Teng; Qiu, Shilun

    2017-02-08

    Porous organic materials have garnered colossal interest with the scientific fraternity due to their excellent gas sorption performances, catalytic abilities, energy storage capacities, and other intriguing applications. This review encompasses the recent significant breakthroughs and the conventional functions and practices in the field of porous organic materials to find useful applications and imparts a comprehensive understanding of the strategic evolution of the design and synthetic approaches of porous organic materials with tunable characteristics. We present an exhaustive analysis of the design strategies with special emphasis on the topologies of crystalline and amorphous porous organic materials. In addition to elucidating the structure-function correlation and state-of-the-art applications of porous organic materials, we address the challenges and restrictions that prevent us from realizing porous organic materials with tailored structures and properties for useful applications.

  2. EDITORIAL: The 2nd International Symposium on Functional Materials

    Science.gov (United States)

    Lu, L.; Lai, M. O.

    2007-12-01

    Following the success of the 1st International Symposium on Functional Materials held in Kuala Lumpur, Malaysia, 5-8 December 2005, the second symposium was held in the beautiful city of Hangzhou, People's Republic of China, 16-19 May 2007. The latter symposium was a gathering of about 200 renowned researchers from 16 countries around the world. The conference consisted of 24 symposia, 5 keynote papers, 21 invited papers, 108 oral presentations and about 160 poster papers covering the frontier areas of materials science and technology of functional materials. They included topics such as energy storage materials, ferroelectric materials, ferromagnetic materials, ferroelectric thin films, applications of functional materials, nanofabrication, computational design, shape memory alloys, application of shape memory materials, ferroelectrics and thermoelectrics, advances in characterizations, magneto-optical materials, Zn and Ti oxides, synthesis of nanopowders and wires, and many other advanced functional materials. With the receipt of more than 396 abstracts, this conference was a gathering of great minds in one place to discuss the research frontiers and discoveries in functional materials. The Organizing Committee would like to express its sincere thanks to the members of the International Advisory Committee for their invaluable contributions to the symposium. The committee is also grateful for the generous support from the many sponsors. A word of sincere thanks needs to go to Professor Roger Wäppling, Editor-in-Chief and the editorial staff of IOP Publishing for the publication of selected papers in this special issue of Physica Scripta. Finally, our deepest gratitude should be directed to the National University of Singapore, Zhejiang University and the General Research Institute for Nonferrous Metals, People's Republic of China for, without their support, the conference would not have been a success.

  3. Southeast Asian Languages - High Priority Materials Development Needs. Working Paper.

    Science.gov (United States)

    Jones, R. B.

    The material development needs for the Southeast Asian languages are analyzed as follows: (1) both student and reference grammars must be produced; (2) student and reference English-Foreign Language dictionaries are needed; (3) research is needed in sociolinguistics, semantic analyses, linguistic surveys; (4) elementary, intermediate and advanced…

  4. Improvement of marginal materials by flyash in road works | Sahu ...

    African Journals Online (AJOL)

    However, a combination of adverse climatic and geologic factors, such as scarcity of conventional road building materials, near absence of a non saline surface water, and climatic extremes have dictated the need for innovative engineering approaches to highway design, construction and maintenance. In recent years ...

  5. Organic and perovskite solar cells: Working principles, materials and interfaces.

    Science.gov (United States)

    Marinova, Nevena; Valero, Silvia; Delgado, Juan Luis

    2017-02-15

    In the last decades organic solar cells (OSCs) have been considered as a promising photovoltaic technology with the potential to provide reasonable power conversion efficiencies combined with low cost and easy processability. Unexpectedly, Perovskite Solar Cells (PSCs) have experienced unprecedented rise in Power Conversion Efficiency (PCE) thus emerging as a highly efficient photovoltaic technology. OSCs and PSCs are two different kind of devices with distinct charge generation mechanism, which however share some similarities in the materials processing, thus standard strategies developed for OSCs are currently being employed in PSCs. In this article, we recapitulate the main processes in these two types of photovoltaic technologies with an emphasis on interfacial processes and interfacial modification, spotlighting the materials and newest approaches in the interfacial engineering. We discuss on the relevance of well-known materials coming from the OSCs field, which are now being tested in the PSCs field, while maintaining a focus on the importance of the material design for highly efficient, stable and accessible solar cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Ab initio and work function and surface energy anisotropy of LaB6

    NARCIS (Netherlands)

    Uijttewaal, M. A.; de Wijs, G. A.; de Groot, R. A.

    2006-01-01

    Lanthanum hexaboride is one of the cathode materials most used in high-power electronics technology, but the many experimental results do not provide a consistent picture of the surface properties. Therefore, we report the first ab initio calculations of the work functions and surface energies of

  7. Pulmonary Function Tests and Work-Related Respiratory and Allergic

    OpenAIRE

    Boskabady Mohammad Hosein; Taheri Ehsan; Ahmadi Sina; Ebrahimi Kolsoumeh; Soudaneh Malihe; Mohammadi Fatemeh; Sabourhasanzadeh Alireza

    2009-01-01

    Bakers are frequently exposed to various irritant chemicals during work which can induce respiratory problems. In this study, pulmonary function tests and self-reported respiratory and allergic symptoms in bakers were compared with matched control subjects. The frequency of respiratory and allergic symptoms was evaluated in a sample of 58 Iranian bakers and 58 control subjects using a questionnaire. Pulmonary function tests (PFT) were also measured in all participants. All respiratory symptom...

  8. ON THE ELASTIC-PLASTIC TORSION OF A BAR MADE OF WORK HARDENING MATERIAL

    Directory of Open Access Journals (Sweden)

    Yaşar PALA

    1995-01-01

    Full Text Available In this study, we reconsider the problem of an elastic-plastic torsion of a bar made of work hardening material. Nonlinear partial differential equation derived is reduced to a well known Laplace equation by means of transformation functions and stresses τ xz, τ yz and the torque T are analytically found for elliptical and circular cross sections. It is further shown that the stresses and the twisting moment do not depend on the value of n in the stress-strain law.

  9. Hearing aid noise suppression and working memory function

    DEFF Research Database (Denmark)

    Fischer, Rosa-Linde; Neher, Tobias; Wagener, Kirsten C.

    Research findings concerning the relation between outcome from hearing aid (HA) noise suppression and working memory function are unclear. The current study thus investigated the effects of three noise suppression algorithms on auditory working memory as well as the relation with reading span......) improvement. Auditory working memory was assessed at +6 dB SNR using a listening span and an N-back paradigm. Twenty experienced HA users aged 55-80 yr with large differences in reading span took part. For the listening span measurements, there was an influence of HA setting on final word recognition...

  10. Hearing aid noise suppression and working memory function

    DEFF Research Database (Denmark)

    Neher, Tobias; Wagener, Kirsten C.; Fischer, Rosa-Linde

    2018-01-01

    OBJECTIVE: Research findings concerning the relation between benefit from hearing aid (HA) noise suppression and working memory function are inconsistent. The current study thus investigated the effects of three noise suppression algorithms on auditory working memory and the relation with reading......-to-noise ratio (SNR) improvement. Auditory working memory was assessed at +6 dB SNR using listening span and N-back paradigms. STUDY SAMPLE: Twenty experienced HA users ages 55-80 with large differences in reading span. RESULTS: For the listening span measurements, there was an influence of HA setting....... CONCLUSIONS: HA noise suppression may affect the recognition and recall of speech at positive SNRs, irrespective of individual reading span. Future work should improve the reliability of the auditory working memory measurements....

  11. Functional Requirements for an Electronic Work Package System

    Energy Technology Data Exchange (ETDEWEB)

    Oxstrand, Johanna H. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-01

    This document provides a set of high level functional requirements for a generic electronic work package (eWP) system. The requirements have been identified by the U.S. nuclear industry as a part of the Nuclear Electronic Work Packages - Enterprise Requirements (NEWPER) initiative. The functional requirements are mainly applied to eWP system supporting Basic and Moderate types of smart documents, i.e., documents that have fields for recording input such as text, dates, numbers, and equipment status, and documents which incorporate additional functionalities such as form field data “type“ validation (e.g. date, text, number, and signature) of data entered and/or self-populate basic document information (usually from existing host application meta data) on the form when the user first opens it. All the requirements are categorized by the roles; Planner, Supervisor, Craft, Work Package Approval Reviewer, Operations, Scheduling/Work Control, and Supporting Functions. The categories Statistics, Records, Information Technology are also included used to group the requirements. All requirements are presented in Section 2 through Section 11. Examples of more detailed requirements are provided for the majority of high level requirements. These examples are meant as an inspiration to be used as each utility goes through the process of identifying their specific requirements. The report’s table of contents provides a summary of the high level requirements.

  12. Effects of ¿9-Tetrahydrocannabinol on human working memory function

    NARCIS (Netherlands)

    Bossong, M.G.; Jansma, J.M.; Hell, van H.H.; Jager, G.; Oudman, E.; Saliasi, E.; Kahn, R.S.; Ramsey, N.F.

    2012-01-01

    Background Evidence indicates involvement of the endocannabinoid (eCB) system in both the pathophysiology of schizophrenia and working memory (WM) function. Additionally, schizophrenia patients exhibit relatively strong WM deficits. These findings suggest the possibility that the eCB system is also

  13. Tuning of metal work functions with self-assembled monolayers

    NARCIS (Netherlands)

    de Boer, B; Hadipour, A; Mandoc, MM; van Woudenbergh, T; Blom, PWM

    2005-01-01

    Work functions of gold and silver are varied by over 1.4 and 1.7 eV, respectively, by using self-assembled monolayers. Using these modified electrodes, the hole current in a poly(2-methoxy-5-(2'-ethylhexyloxy)- 1,4-phenylene vinylene) light-emitting diode is tuned by more than six orders of

  14. Postadsorption Work Function Tuning via Hydrogen Pressure Control.

    Science.gov (United States)

    Edlbauer, Hermann; Zojer, Egbert; Hofmann, Oliver T

    2015-12-03

    The work function of metal substrates can be easily tuned, for instance, by adsorbing layers of molecular electron donors and acceptors. In this work, we discuss the possibility of changing the donor/acceptor mixing ratio reversibly after adsorption by choosing a donor/acceptor pair that is coupled via a redox reaction and that is in equilibrium with a surrounding gas phase. We discuss such a situation for the example of tetrafluoro-1,4-benzenediol (TFBD)/tetrafluoro-1,4-benzoquinone (TFBQ), adsorbed on Cu(111) and Ag(111) surfaces. We use density functional theory and ab initio thermodynamics to show that arbitrary TFBD/TFBQ mixing ratios can be set using hydrogen pressures attainable in low to ultrahigh vacuum. Adjusting the mixing ratio allows modifying the work function over a range of about 1 eV. Finally, we contrast single-species submonolayers with mixed layers to discuss why the resulting inhomogeneities in the electrostatic energy above the surface have different impacts on the interfacial level alignment and the work function.

  15. Work Characteristics Associated with Physical Functioning in Women.

    Science.gov (United States)

    Palumbo, Aimee J; De Roos, Anneclaire J; Cannuscio, Carolyn; Robinson, Lucy; Mossey, Jana; Weitlauf, Julie; Garcia, Lorena; Wallace, Robert; Michael, Yvonne

    2017-04-15

    Women make up almost half of the labor force with older women becoming a growing segment of the population. Work characteristics influence physical functioning and women are at particular risk for physical limitations. However, little research has explored the effects of work characteristics on women's physical functioning. U.S. women between the ages of 50 and 79 were enrolled in the Women's Health Initiative Observational Study between 1993 and 1998. Women provided job titles and years worked at their three longest-held jobs (n = 79,147). Jobs were linked to characteristics in the Occupational Information Network. Three categories of job characteristics related to substantive complexity, physical demand, and social collaboration emerged. The association between job characteristics and physical limitations in later life, measured using a SF-36 Physical Functioning score critical thinking were associated with better physical functioning. Employers should explore opportunities to reduce strain from physically demanding jobs and incorporate substantively complex tasks into women's work to improve long-term health.

  16. A Review on Functionally Gradient Materials (FGMs) and Their Applications

    Science.gov (United States)

    Bhavar, Valmik; Kattire, Prakash; Thakare, Sandeep; patil, Sachin; Singh, RKP, Dr.

    2017-09-01

    Functionally gradient materials (FGM) are innovative materials in which final properties varies gradually with dimensions. It is the recent development in traditional composite materials which retains their strengths and eliminates their weaknesses. It can be formed by varying chemical composition, microstructure or design attributes from one end to other as per requirement. This feature allows FGM to have best material properties in required quantities only where it is needed. Though there are several methods available for manufacturing FGMs, additive based metal deposition (by laser, electron beam, plasma etc.) technologies are reaping particular interest owing to their recent developments. This paper presents evolution, current status and challenges of functionally gradient materials (FGMs). Various manufacturing processes of different types of FGMs are also presented. In addition, applications of FGMs in various fields including aerospace, defence, mining, power and tools manufacturing sectors are discussed in detail.

  17. Work function engineering using lanthanum oxide interfacial layers

    Science.gov (United States)

    Alshareef, H. N.; Quevedo-Lopez, M.; Wen, H. C.; Harris, R.; Kirsch, P.; Majhi, P.; Lee, B. H.; Jammy, R.; Lichtenwalner, D. J.; Jur, J. S.; Kingon, A. I.

    2006-12-01

    A La2O3 capping scheme has been developed to obtain n-type band-edge metal gates on Hf-based gate dielectrics. The viability of the technique is demonstrated using multiple metal gates that normally show midgap work function when deposited directly on HfSiO. The technique involves depositing a thin interfacial of La2O3 on a Hf-based gate dielectric prior to metal gate deposition. This process preserves the excellent device characteristic of Hf-based dielectrics, but also allows the realization of band-edge metal gates. The effectiveness of the technique is demonstrated by fabricating fully functional transistor devices. A model is proposed to explain the effect of La2O3 capping on metal gate work function.

  18. Review on Advances of Functional Material for Additive Manufacturing

    Science.gov (United States)

    Zulkifli, Nur Amalina Binti; Akmal Johar, Muhammad; Faizan Marwah, Omar Mohd; Irwan Ibrahim, Mohd Halim

    2017-08-01

    The attempt of finding and making new materials in improving products that are already in the market are widely done by researchers nowadays. This project is focusing on making new materials for functional material through additive manufacturing application. The idea of this project came from the ability limitation of capacitor in market nowadays in storing higher charges but smaller in size. Powder glass is the new material that could to be used as a dielectric material for capacitor with the help of palm kernel oil as the binder. This paper reviews on applications done through additive manufacturing method and also types of functional materials used in this method previously. Structure of a capacitor, dielectric properties and measurement techniques that are trying to be carried out are also explains in this paper. Last part of this paper brief on the material proposal and reasons those materials are chosen. New dielectric material for capacitor which are able to store more charges but still small in size are expected to be produced as the outcome of this research.

  19. Silk Materials Functionalized via Genetic Engineering for Biomedical Applications.

    Science.gov (United States)

    Deptuch, Tomasz; Dams-Kozlowska, Hanna

    2017-12-12

    The great mechanical properties, biocompatibility and biodegradability of silk-based materials make them applicable to the biomedical field. Genetic engineering enables the construction of synthetic equivalents of natural silks. Knowledge about the relationship between the structure and function of silk proteins enables the design of bioengineered silks that can serve as the foundation of new biomaterials. Furthermore, in order to better address the needs of modern biomedicine, genetic engineering can be used to obtain silk-based materials with new functionalities. Sequences encoding new peptides or domains can be added to the sequences encoding the silk proteins. The expression of one cDNA fragment indicates that each silk molecule is related to a functional fragment. This review summarizes the proposed genetic functionalization of silk-based materials that can be potentially useful for biomedical applications.

  20. A valuation method on physiological functionality of food materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-10-15

    This reports is about valuation method on physiological functionality of food materials. It includes ten reports: maintenance condition of functional foods in Korea by Kim, Byeong Tae, management plan and classification of functional foods by Jung, Myeong Seop, measurement method vitality of functional foods for preventing diabetes, measurement way of aging delayed activation by Lee, Jae Yong, improvement on effectiveness of anti hypertension by functional foods by Park, Jeon Hong, and practice case for the method of test on anti gastritis antiulcer by Lee, Eun Bang.

  1. Reconstruction of Single-Grain Orientation Distribution Functions for Crystalline Materials

    DEFF Research Database (Denmark)

    Hansen, Per Christian; Sørensen, Henning Osholm; Sükösd, Zsuzsanna

    A fundamental imaging problem in microstructural analysis of metals is the reconstruction of local crystallographic orientations from X-ray diffraction measurements. This work deals with the computation of the 3D orientation distribution function for individual grains of the material in considera......A fundamental imaging problem in microstructural analysis of metals is the reconstruction of local crystallographic orientations from X-ray diffraction measurements. This work deals with the computation of the 3D orientation distribution function for individual grains of the material...

  2. 3D printing functional materials and devices (Conference Presentation)

    Science.gov (United States)

    McAlpine, Michael C.

    2017-05-01

    The development of methods for interfacing high performance functional devices with biology could impact regenerative medicine, smart prosthetics, and human-machine interfaces. Indeed, the ability to three-dimensionally interweave biological and functional materials could enable the creation of devices possessing unique geometries, properties, and functionalities. Yet, most high quality functional materials are two dimensional, hard and brittle, and require high crystallization temperatures for maximal performance. These properties render the corresponding devices incompatible with biology, which is three-dimensional, soft, stretchable, and temperature sensitive. We overcome these dichotomies by: 1) using 3D printing and scanning for customized, interwoven, anatomically accurate device architectures; 2) employing nanotechnology as an enabling route for overcoming mechanical discrepancies while retaining high performance; and 3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This three-dimensional blending of functional materials and `living' platforms may enable next-generation 3D printed devices.

  3. Work softening in nanocrystalline materials induced by dislocation annihilation

    DEFF Research Database (Denmark)

    Ungar, Tamas; Li, Li; Tichy, Geza

    2011-01-01

    Cold rolling reduces the quantity of dislocation densities in Ni–18% Fe alloys prepared by electrochemical deposition. The dislocation density evolution proposed earlier for the linearly decreasing work-hardening rate during stage III is revisited. The solution of the differential equation predicts...... that when the initial dislocation density is smaller or larger than the saturation value, then the dislocation density will increase or decrease during further plastic deformation. The predictions are verified by experimental values of dislocation densities determined by X-ray line-profile analysis....

  4. Work function and surface stability of tungsten-based thermionic electron emission cathodes

    Science.gov (United States)

    Jacobs, Ryan; Morgan, Dane; Booske, John

    2017-11-01

    Materials that exhibit a low work function and therefore easily emit electrons into vacuum form the basis of electronic devices used in applications ranging from satellite communications to thermionic energy conversion. W-Ba-O is the canonical materials system that functions as the thermionic electron emitter commercially used in a range of high-power electron devices. However, the work functions, surface stability, and kinetic characteristics of a polycrystalline W emitter surface are still not well understood or characterized. In this study, we examined the work function and surface stability of the eight lowest index surfaces of the W-Ba-O system using density functional theory methods. We found that under the typical thermionic cathode operating conditions of high temperature and low oxygen partial pressure, the most stable surface adsorbates are Ba-O species with compositions in the range of Ba0.125O-Ba0.25O per surface W atom, with O passivating all dangling W bonds and Ba creating work function-lowering surface dipoles. Wulff construction analysis reveals that the presence of O and Ba significantly alters the surface energetics and changes the proportions of surface facets present under equilibrium conditions. Analysis of previously published data on W sintering kinetics suggests that fine W particles in the size range of 100-500 nm may be at or near equilibrium during cathode synthesis and thus may exhibit surface orientation fractions well described by the calculated Wulff construction.

  5. Career Development and Personal Functioning Differences between Work-Bound and Non-Work Bound Students

    Science.gov (United States)

    Creed, Peter A.; Patton, Wendy; Hood, Michelle

    2010-01-01

    We surveyed 506 Australian high school students on career development (exploration, planning, job-knowledge, decision-making, indecision), personal functioning (well-being, self-esteem, life satisfaction, school satisfaction) and control variables (parent education, school achievement), and tested differences among work-bound, college-bound and…

  6. Cell-based composite materials with programmed structures and functions

    Science.gov (United States)

    None

    2016-03-01

    The present invention is directed to the use of silicic acid to transform biological materials, including cellular architecture into inorganic materials to provide biocomposites (nanomaterials) with stabilized structure and function. In the present invention, there has been discovered a means to stabilize the structure and function of biological materials, including cells, biomolecules, peptides, proteins (especially including enzymes), lipids, lipid vesicles, polysaccharides, cytoskeletal filaments, tissue and organs with silicic acid such that these materials may be used as biocomposites. In many instances, these materials retain their original biological activity and may be used in harsh conditions which would otherwise destroy the integrity of the biological material. In certain instances, these biomaterials may be storage stable for long periods of time and reconstituted after storage to return the biological material back to its original form. In addition, by exposing an entire cell to form CSCs, the CSCs may function to provide a unique system to study enzymes or a cascade of enzymes which are otherwise unavailable.

  7. Functionalized Materials From Elastomers to High Performance Thermoplastics

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, Laura Ann [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    Synthesis and incorporation of functionalized materials continues to generate significant research interest in academia and in industry. If chosen correctly, a functional group when incorporated into a polymer can deliver enhanced properties, such as adhesion, water solubility, thermal stability, etc. The utility of these new materials has been demonstrated in drug-delivery systems, coatings, membranes and compatibilizers. Two approaches exist to functionalize a material. The desired moiety can be added to the monomer either before or after polymerization. The polymers used range from low glass transition temperature elastomers to high glass transition temperature, high performance materials. One industrial example of the first approach is the synthesis of Teflon(reg. sign). Poly(tetrafluoroethylene) (PTFE or Teflon(reg. sign)) is synthesized from tetrafluoroethylene, a functionalized monomer. The resulting material has significant property differences from the parent, poly(ethylene). Due to the fluorine in the polymer, PTFE has excellent solvent and heat resistance, a low surface energy and a low coefficient of friction. This allows the material to be used in high temperature applications where the surface needs to be nonabrasive and nonstick. This material has a wide spread use in the cooking industry because it allows for ease of cooking and cleaning as a nonstick coating on cookware. One of the best examples of the second approach, functionalization after polymerization, is the vulcanization process used to make tires. Natural rubber (from the Hevea brasiliensis) has a very low glass transition temperature, is very tacky and would not be useful to make tires without synthetic alteration. Goodyear's invention was the vulcanization of polyisoprene by crosslinking the material with sulfur to create a rubber that was tough enough to withstand the elements of weather and road conditions. Due to the development of polymerization techniques to make cis

  8. Trajectories of Work-Related Functional Impairment prior to Suicide.

    Science.gov (United States)

    Wang, Mo; Björkenstam, Charlotte; Alexanderson, Kristina; Runeson, Bo; Tinghög, Petter; Mittendorfer-Rutz, Ellenor

    2015-01-01

    Work-related functional impairment in terms of sickness absence and disability pension (SA/DP) has been reported to be associated with subsequent suicide. However, there is only limited knowledge on SA/DP patterns prior to suicide. The aim was to identify trajectories of work-related functional impairment prior to suicide and to describe associations of socio-demographic and medical factors with such trajectories. This is a population-based retrospective cohort study of the 4 209 individuals aged 22-65 years who committed suicide during 2007-2010 in Sweden. Work-related functional impairment was measured as mean annual number of months of SA/DP. We analyzed trajectories of SA/DP during five years prior to suicide (i.e., 2002-2009) by a group-based trajectory method. Associations between socio-demographic and medical factors with different groups of trajectories were estimated by chi2-test and multinomial logistic regression. Five different functional impairment trajectory groups were identified prior to suicide. One group had constant low levels of SA/DP (46%), while 30% had constant high levels of SA/DP. Two groups (16%) showed increasing number of SA/DP months. The remaining 7% showed decreasing number of SA/DP months before the suicide. Sex, age, educational level, family situation, and diagnosis-specific healthcare were significantly associated with different trajectory groups (Likelihood ratio X2 tests suicide attempts were found in the group with constant low levels. Opposite characteristics were displayed in the group with constant high levels. This study identified five different groups of work-related functional impairment trajectories before suicide. These differences might be partly explained by the variations in socio-demographic profiles and health care consumptions five years before suicide.

  9. A short executive function training program improves preschoolers’ working memory

    Directory of Open Access Journals (Sweden)

    Emma eBlakey

    2015-11-01

    Full Text Available Cognitive training has been shown to improve executive functions in middle childhood and adulthood. However, fewer studies have targeted the preschool years – a time when executive functions undergo rapid development. The present study tested the effects of a short four session executive function training program in 54 four-year-olds. The training group significantly improved their working memory from pre-training relative to an active control group. Notably, this effect extended to a task sharing few surface features with the trained tasks, and continued to be apparent three months later. In addition, the benefits of training extended to a measure of mathematical reasoning three months later, indicating that training executive functions during the preschool years has the potential to convey benefits that are both long-lasting and wide-ranging.

  10. Influence of estradiol on functional brain organization for working memory.

    Science.gov (United States)

    Joseph, Jane E; Swearingen, Joshua E; Corbly, Christine R; Curry, Thomas E; Kelly, Thomas H

    2012-02-01

    Working memory is a cognitive function that is affected by aging and disease. To better understand the neural substrates for working memory, the present study examined the influence of estradiol on working memory using functional magnetic resonance imaging. Pre-menopausal women were tested on a verbal n-back task during the early (EF) and late follicular (LF) phases of the menstrual cycle. Although brain activation patterns were similar across the two phases, the most striking pattern that emerged was that estradiol had different associations with the two hemispheres. Increased activation in left frontal circuitry in the LF phase was associated with increased estradiol levels and decrements in working memory performance. In contrast, increased activation in right hemisphere regions in the LF phase was associated with improved task performance. The present study showed that better performance in the LF than the EF phase was associated with a pattern of reduced recruitment of the left-hemisphere and increased recruitment of the right-hemisphere in the LF compared to EF phase. We speculate that estradiol interferes with left-hemisphere working-memory processing in the LF phase, but that recruitment of the right hemisphere can compensate for left-hemisphere interference. This may be related to the proposal that estradiol can reduce cerebral asymmetries by modulating transcallosal communication (Hausmann, 2005). Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Novel Functionalized Ceramic Getter Materials for Adsorption of Radioiodine

    Energy Technology Data Exchange (ETDEWEB)

    Mattigod, Shas V.; Fryxell, Glen E.; Parker, Kent E.; Kaplan, Daniel I.

    2003-08-02

    A new class of getter materials has been synthesized for immobilization of long-lived radionuclides such as 129I. These novel materials consist of nanoporous ceramic substrates with tailored pore sizes ranging from 2 – 20 nm. These high surface area (~1000 m2/g) ceramic substrates have been functionalized with self-assembled monolayers consisting of soft cation-capped thiol-functionality. The resulting getter materials exhibit highly dense binding sites, and excellent selectivity for iodide. The effectiveness of these novel getter materials was evaluated using radioiodide-spiked samples of surface water and concrete leachate and adsorption performance was compared with natural sulfide mineral getter materials. The data indicated that the novel getter materials have very high affinity for radioiodide (Kd: 4 x 104 – 3 x 105 ml/g and 6 x 105 ml/g in surface and concrete leachate respectively). Comparatively, the radioiodide Kd values for natural mineral getters were typically two to three orders magnitude less than the novel getters. The results indicated that the synthetic getter materials have the potential to immobilize and therefore retard the migration of 129I in the subsurface environment. Additional studies are being conducted to evaluate the long-term stability of these materials in waste disposal environments.

  12. Electropolymerized conjugated polyelectrolytes with tunable work function and hydrophobicity as an anode buffer in organic optoelectronics.

    Science.gov (United States)

    Lacher, Sebastian; Obata, Naoki; Luo, Shyh-Chyang; Matsuo, Yutaka; Zhu, Bo; Yu, Hsiao-hua; Nakamura, Eiichi

    2012-07-25

    A new class of conductive polyelectrolyte films with tunable work function and hydrophobicity has been developed for the anode buffer layer in organic electronic devices. The work function of these films featuring a copolymer of ethylenedioxythiophene (EDOT), and its functionalized analogues were found to be easily tunable over a range of almost 1 eV and reach values as high as those of PEDOT:PSS. The new buffer material does not need the addition of any insulating or acidic material that might limit the film conductivity or device lifetime. Organic photovoltaic devices built with these films showed improved open-circuit voltage over those of the known PSS-free conductive EDOT-based polymers with values as high as that obtained for PEDOT:PSS. Furthermore, the surface hydrophobicity of these new copolymer films was found to be sensitive to the chemical groups attached to the polymer backbone, offering an attractive method for surface energy tuning.

  13. Learning from data to design functional materials without inversion symmetry

    Science.gov (United States)

    Balachandran, Prasanna V.; Young, Joshua; Lookman, Turab; Rondinelli, James M.

    2017-02-01

    Accelerating the search for functional materials is a challenging problem. Here we develop an informatics-guided ab initio approach to accelerate the design and discovery of noncentrosymmetric materials. The workflow integrates group theory, informatics and density-functional theory to uncover design guidelines for predicting noncentrosymmetric compounds, which we apply to layered Ruddlesden-Popper oxides. Group theory identifies how configurations of oxygen octahedral rotation patterns, ordered cation arrangements and their interplay break inversion symmetry, while informatics tools learn from available data to select candidate compositions that fulfil the group-theoretical postulates. Our key outcome is the identification of 242 compositions after screening ~3,200 that show potential for noncentrosymmetric structures, a 25-fold increase in the projected number of known noncentrosymmetric Ruddlesden-Popper oxides. We validate our predictions for 19 compounds using phonon calculations, among which 17 have noncentrosymmetric ground states including two potential multiferroics. Our approach enables rational design of materials with targeted crystal symmetries and functionalities.

  14. Fabrication, Characterization and Modeling of Functionally Graded Materials

    Science.gov (United States)

    Lee, Po-Hua

    In the past few decades, a number of theoretical and experimental studies for design, fabrication and performance analysis of solar panel systems (photovoltaic/thermal systems) have been documented. The existing literature shows that the use of solar energy provides a promising solution to alleviate the shortage of natural resources and the environmental pollution associated with electricity generation. A hybrid solar panel has been invented to integrate photovoltaic (PV) cells onto a substrate through a functionally graded material (FGM) with water tubes cast inside, through which water flow serves as both a heat sink and a solar heat collector. Due to the unique and graded material properties of FGMs, this novel design not only supplies efficient thermal harvest and electrical production, but also provides benefits such as structural integrity and material efficiency. In this work, a sedimentation method has been used to fabricate aluminum (Al) and high-density polyethylene (HDPE) FGMs. The size effect of aluminum powder on the material gradation along the depth direction is investigated. Aluminum powder or the mixture of Al and HDPE powder is thoroughly mixed and uniformly dispersed in ethanol and then subjected to sedimentation. During the sedimentation process, the concentration of Al and HDPE particles temporally and spatially changes in the depth direction due to the non-uniform motion of particles; this change further affects the effective viscosity of the suspension and thus changes the drag force of particles. A Stokes' law based model is developed to simulate the sedimentation process, demonstrate the effect of manufacturing parameters on sedimentation, and predict the graded microstructure of deposition in the depth direction. In order to improve the modeling for sedimentation behavior of particles, the Eshelby's equivalent inclusion method (EIM) is presented to determine the interaction between particles, which is not considered in a Stokes' law based

  15. Ionic self-assembly for functional hierarchical nanostructured materials.

    Science.gov (United States)

    Faul, Charl F J

    2014-12-16

    CONSPECTUS: The challenge of constructing soft functional materials over multiple length scales can be addressed by a number of different routes based on the principles of self-assembly, with the judicious use of various noncovalent interactions providing the tools to control such self-assembly processes. It is within the context of this challenge that we have extensively explored the use of an important approach for materials construction over the past decade: exploiting electrostatic interactions in our ionic self-assembly (ISA) method. In this approach, cooperative assembly of carefully chosen charged surfactants and oppositely charged building blocks (or tectons) provides a facile noncovalent route for the rational design and production of functional nanostructured materials. Generally, our research efforts have developed with an initial focus on establishing rules for the construction of novel noncovalent liquid-crystalline (LC) materials. We found that the use of double-tailed surfactant species (especially branched double-tailed surfactants) led to the facile formation of thermotropic (and, in certain cases, lyotropic) phases, as demonstrated by extensive temperature-dependent X-ray and light microscopy investigations. From this core area of activity, research expanded to cover issues beyond simple construction of anisotropic materials, turning to the challenge of inclusion and exploitation of switchable functionality. The use of photoactive azobenzene-containing ISA materials afforded opportunities to exploit both photo-orientation and surface relief grating formation. The preparation of these anisotropic LC materials was of interest, as the aim was the facile production of disposable and low-cost optical components for display applications and data storage. However, the prohibitive cost of the photo-orientation processes hampered further exploitation of these materials. We also expanded our activities to explore ISA of biologically relevant tectons

  16. PREFACE: 4th International Symposium on Functional Materials (ISFM2011)

    Science.gov (United States)

    Yin, Shu; Sekino, Tohru; Tanaka, Shun-ichiro; Sato, Tsugio; Lu, Li; Xue, Dongfeng

    2012-01-01

    The 4th International Symposium on Functional Materials (ISFM2011) was held in Sendai, Japan, on 2-6 August 2011. This Special Issue of Journal of Physics: Conference Series (JPCS) consists of partial manuscripts which were presented at ISFM2011. Advanced materials have experienced a dramatic increase in demand for research, development and applications. The aim of the International Symposium on Functional Materials (ISFM) was to provide an overview of the present status with historical background and to foresee future trends in the field of functional materials. The 4th symposium, ISFM 2011, covered a wide variety of topics within state-of-the-art advanced materials science and technology, and focused especially on four major categories including: Environmental Materials, Electronic Materials, Energy Materials and Biomedical Materials. As you know, a massive earthquake and the Tsunami that followed occurred near the Tohoku region on 11 March 2011. After the earthquake, although there were many difficulties in continuing to organize the symposium, we received warm encouragement from many researchers and societies, especially from the members of the International Advisory Committee and Organizing Committee, so that ISFM2011 could be held on schedule. We are honored that ISFM2011 was the first formal international academic conference held in the Tohoku area of Japan after the 11 March earthquake. About 140 participants from 14 countries took part in the ISFM2011 symposium, which included five plenary talks by world-leading scientists, 32 invited talks, and many oral and poster presentations. We are delighted to see that many researchers are interested in the synthesis and the properties as well as the applications of functional materials. Many fruitful and exciting research achievements were presented in the symposium. We believe that this symposium provided a good chance for scientists to communicate and exchange opinions with each other. We would also like to

  17. Disorder and strain-induced complexity in functional materials

    CERN Document Server

    Saxena, Avadh; Planes, Antoni; Kakeshita, Tomoyuki

    2012-01-01

    This book brings together an emerging consensus on our understanding of the complex functional materials including ferroics, perovskites, multiferroics, CMR and high-temperature superconductors. The common theme is the existence of many competing ground states and frustration as a collusion of spin, charge, orbital and lattice degrees of freedom in the presence of disorder and (both dipolar and elastic) long-range forces. An important consequence of the complex unit cell and the competing interactions is that the emergent materials properties are very sensitive to external fields thus rendering these materials with highly desirable, technologically important applications enabled by cross-response.

  18. Recent Advances as Materials of Functional Metal-Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Xiao-Lan Tong

    2013-01-01

    Full Text Available Metal-organic frameworks (MOFs, also known as hybrid inorganic-organic materials, represent an emerging class of materials that have attracted the imagination of solid-state chemists because MOFs combine unprecedented levels of porosity with a range of other functional properties that occur through the metal moiety and/or the organic ligand. The purpose of this critical review is to give a representative and comprehensive overview of the arising developments in the field of functional metal-organic frameworks, including luminescence, magnetism, and porosity through presenting examples. This review will be of interest to researchers and synthetic chemists attempting to design multifunctional MOFs.

  19. Working memory in social anxiety disorder: better manipulation of emotional versus neutral material in working memory.

    Science.gov (United States)

    Yoon, K Lira; Kutz, Amanda M; LeMoult, Joelle; Joormann, Jutta

    2017-12-01

    Individuals with social anxiety disorder (SAD) engage in post-event processing, a form of perseverative thinking. Given that deficits in working memory might underlie perseverative thinking, we examined working memory in SAD with a particular focus on the effects of stimulus valence. SAD (n = 31) and healthy control (n = 20) participants either maintained (forward trials) or reversed (backward trials) in working memory the order of four emotional or four neutral pictures, and we examined sorting costs, which reflect the extent to which performance deteriorated on the backward trials compared to the forward trials. Emotionality of stimuli affected performance of the two groups differently. Whereas control participants exhibited higher sorting costs for emotional stimuli compared to neutral stimuli, SAD participants exhibited the opposite pattern. Greater attention to emotional stimuli in SAD might facilitate the processing of emotional (vs. neutral) stimuli in working memory.

  20. Between concept and material. Working with conceptual art: a conservator’s testimony

    NARCIS (Netherlands)

    Stigter, S.

    2016-01-01

    Conceptual art challenges the idea of traditional art conservation. How can one preserve a concept when there is material to work with? Should this be done through keeping the material, even when it no longer conveys the message? Or through working with artist interviews or artist participation,

  1. Three roles for textiles as tangible working materials in co-design processes

    DEFF Research Database (Denmark)

    Heimdal, Elisabeth Jacobsen; Rosenqvist, Tanja Schultz

    2012-01-01

    we call tangible working materials to stage the collaboration between the stakeholders engaged as co-designers. Our experience using the tangible working materials showed us that they can be divided into three types, with different attributes and roles in the design process: real, mediating...

  2. Hearing aid noise suppression and working memory function.

    Science.gov (United States)

    Neher, Tobias; Wagener, Kirsten C; Fischer, Rosa-Linde

    2018-01-09

    Research findings concerning the relation between benefit from hearing aid (HA) noise suppression and working memory function are inconsistent. The current study thus investigated the effects of three noise suppression algorithms on auditory working memory and the relation with reading span. Using a computer simulation of bilaterally fitted HAs, four settings were tested: (1) unprocessed, (2) directional microphones, (3) single-channel noise reduction, and (4) binaural coherence-based noise reduction. Settings 2-4 were matched in terms of the speech-weighted signal-to-noise ratio (SNR) improvement. Auditory working memory was assessed at +6 dB SNR using listening span and N-back paradigms. Twenty experienced HA users aged 55-80 years with large differences in reading span. For the listening span measurements, there was an influence of HA setting on sentence-final word recognition and recall, with the directional microphones leading to ∼6% better performance than the single-channel noise reduction. For the N-back measurements, there was substantial test-retest variability and no influence of HA setting. No interactions with reading span were found. HA noise suppression may affect the recognition and recall of speech at positive SNRs, irrespective of individual reading span. Future work should improve the reliability of the auditory working memory measurements.

  3. Metal-organic frameworks as functional, porous materials

    Science.gov (United States)

    Rood, Jeffrey A.

    networks in which the pore size was dependent on the size of the linker molecule (bipy or apyr). Additonally, the compounds [Zn2(Cam)2(bipy)⊃3DMF] and [Zn2(Cam)2(apyr)⊃2DMF] were found to be capable of guest exchange. Due to their chiral nature, these materials were screened for the enanatioselective separation of racemic alcohols. No selectivity was seen with either MOF, likely owing to factors such as large pore size and disorder in the chiral camphorate ligand. [Zn2(Cam)2(bipy)⊃3DMF] contained large voids and preliminary studies showed that free-radical polymerization of methylmethacrylate could take place within the channels of the material. The amino group of the apyr ligand in [Zn2(Cam)2(apyr)⊃2DMF] was able to be functionaled with acetaldehyde by treatment of the porous MOF with the bulk organic reagent. A further area of study detailed in this work deals with a central question in MOF chemistry, concerning the assembly process of these extended materials from solution. Chapter 3 reveals that the trimeric species Mg2(HCam) 3+, the SBU for the formation of the MOF [Mg2(Hcam) 3˙3H2O]˙NO3˙MeCN, can be identified using ESI-MS on the the reaction solution prior to crystallization. Further studies showed that the addition of chelating additives led to new solid-state structures and new ions in the mass spectrum, indicating that the Mg 2(HCam)3+ ion is likely present in solution prior to MOF formation. Chapter 4 discusses extension of these ESI-MS studies on various other MOF and organometallic systems. Finally, Chapter 7 discusses the synthesis and structures of magnesium imides. These compounds were originally investigated for use as SBUs in network synthesis. This strategy proved to be unsuccessful, as the compounds form molecular clusters in the solid state. The coordination chemistry and computational studies regarding the adopted aggregation state is detailed.

  4. Static Response of Functionally Graded Material Plate under Transverse Load for Varying Aspect Ratio

    Directory of Open Access Journals (Sweden)

    Manish Bhandari

    2014-01-01

    Full Text Available Functionally gradient materials (FGM are one of the most widely used materials in various applications because of their adaptability to different situations by changing the material constituents as per the requirement. Nowadays it is very easy to tailor the properties to serve specific purposes in functionally gradient material. Most structural components used in the field of engineering can be classified as beams, plates, or shells for analysis purposes. In the present study the power law, sigmoid law and exponential distribution, is considered for the volume fraction distributions of the functionally graded plates. The work includes parametric studies performed by varying volume fraction distributions and aspect ratio. The FGM plate is subjected to transverse UDL (uniformly distributed load and point load and the response is analysed.

  5. Spectroscopic investigation of nitrogen-functionalized carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Kevin N. [Department of Metallurgical and Materials Engineering, Colorado School of Mines, 1500 Illinois Street Golden CO 80401 USA; Department of Mechanical Engineering, University of Michigan, Ann Arbor MI 48109 USA; Christensen, Steven T. [National Renewable Energy Laboratory, 15013 Denver West Pkwy Golden CO 80401 USA; Nordlund, Dennis [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd Menlo Park CA 94023 USA; Dameron, Arrelaine A. [National Renewable Energy Laboratory, 15013 Denver West Pkwy Golden CO 80401 USA; Ngo, Chilan [Department of Chemistry and Geochemistry, Colorado School of Mines, 1012 14th Street Golden CO 80401 USA; Dinh, Huyen [National Renewable Energy Laboratory, 15013 Denver West Pkwy Golden CO 80401 USA; Gennett, Thomas [National Renewable Energy Laboratory, 15013 Denver West Pkwy Golden CO 80401 USA; O' Hayre, Ryan [Department of Metallurgical and Materials Engineering, Colorado School of Mines, 1500 Illinois Street Golden CO 80401 USA; Pylypenko, Svitlana [Department of Chemistry and Geochemistry, Colorado School of Mines, 1012 14th Street Golden CO 80401 USA

    2016-04-07

    Carbon materials are used in a diverse set of applications ranging from pharmaceuticals to catalysis. Nitrogen modification of carbon powders has shown to be an effective method for enhancing both surface and bulk properties of as-received material for a number of applications. Unfortunately, control of the nitrogen modification process is challenging and can limit the effectiveness and reproducibility of N-doped materials. Additionally, the assignment of functional groups to specific moieties on the surface of nitrogen-modified carbon materials is not straightforward. Herein, we complete an in-depth analysis of functional groups present at the surface of ion-implanted Vulcan and Graphitic Vulcan through the use of X-ray photoelectron spectroscopy (XPS) and near edge X-ray adsorption fine structure spectroscopy (NEXAFS). Our results show that regardless of the initial starting materials used, nitrogen ion implantation conditions can be tuned to increase the amount of nitrogen incorporation and to obtain both similar and reproducible final distributions of nitrogen functional groups. The development of a well-controlled/reproducible nitrogen implantation pathway opens the door for carbon supported catalyst architectures to have improved numbers of nucleation sites, decreased particle size, and enhanced catalyst-support interactions.

  6. On the impacts of working memory training on executive functioning

    Directory of Open Access Journals (Sweden)

    Tiina eSalminen

    2012-06-01

    Full Text Available Recent studies have reported improvements in a variety of cognitive functions following sole working memory (WM training. In spite of the emergence of several successful training paradigms, the scope of transfer effects has remained mixed. This is most likely due to the heterogeneity of cognitive functions that have been measured and tasks that have been applied. In the present study, we approached this issue systematically by investigating transfer effects from WM training to different aspects of executive functioning. Our training task was a demanding WM task that requires simultaneous performance of a visual and an auditory n-back task, while the transfer tasks tapped WM updating, coordination of the performance of multiple simultaneous tasks (i.e., dual-tasks and sequential tasks (i.e., task switching, and the temporal distribution of attentional processing. Additionally, we examined whether WM training improves reasoning abilities; a hypothesis that has so far gained mixed support. Following training, participants showed improvements in the trained task as well as in the transfer WM updating task. As for the other executive functions, trained participants improved in a task switching situation and in attentional processing. There was no transfer to the dual-task situation or to reasoning skills. These results therefore confirm previous findings that WM can be trained, and additionally, they show that the training effects can generalize to various other tasks tapping on executive functions.

  7. Interfacial adhesion of laser clad functionally graded materials

    NARCIS (Netherlands)

    Pei, Y. T.; Ocelik, V.; De Hosson, J. T. M.

    2003-01-01

    Specially designed samples of laser clad AlSi40 functionally graded materials (FGM) are made for evaluating the interfacial adhesion. To obtain the interfacial bond strength notches are made right at the interface of the FGMs. In-situ microstructural observations during straining in a field-emission

  8. Functionally graded materials produced with high power lasers

    NARCIS (Netherlands)

    de Hosson, J.T.M.; Pei, Y.T.; Kumar, A; Chung, YW; Moore, JJ; Doll, GL; Yatsui, K; Misra, DS

    2002-01-01

    With a well-controlled laser melt injection (LMI) process, for the first time the feasibility is demonstrated to produce SiC particles (SiCp) reinforced Ti6Al4V functionally graded materials (FGMs). SiCp are injected just behind the laser beam into the extended part of the laser melt pool that is

  9. Functional materials derived from block copolymer self-assembly

    DEFF Research Database (Denmark)

    Li, Tao

    The main objective of this project is to explore block copolymer self-assembly for generating functional materials with well-defined morphology on sub-20 nanometer length scale, which can be utilized in many important applications such as solar cells and nanolithography. One of the specific targe...

  10. Dental composite materials and renal function in children.

    Science.gov (United States)

    Trachtenberg, F L; Shrader, P; Barregard, L; Maserejian, N N

    2014-01-01

    To examine whether greater exposure to resin-based composite materials, which may intra-orally release bisphenol A (BPA), is associated with worse renal function outcomes in children. Prospective multi-centre study. Community health dental clinics in Boston and Maine from 1997-2005.Subjects and methods Five hundred and thirty-four New England Children's Amalgam Trial participants aged six to ten years were randomised to treatment with amalgam or resin-based composite restorations over five years of follow-up. Restorations were placed according to treatment arm, and sealants placed per standard of care. Cumulative composite exposure was calculated using surface-years (each treated surface weighted by number years present). Urinary excretion of albumin, gamma-glutamyl transpeptidase (gamma-GT), and N-acetyl-β-D-glucosaminidase (NAG) were available for 417 children. Analysis of covariance showed no association between exposure to dental composites, polyacid-modified compomer, or flowable composite dental sealants and preventative resin restorations with levels of renal function. There was no association between composite materials and thresholds indicating renal damage in logistic regression models. This study found no harmful associations between dental composite materials and renal function in children. Therefore, concerns about renal function need not be a consideration in the choice of dental restoration material or placement of preventative dental sealants.

  11. Summary of: dental composite materials and renal function in children.

    Science.gov (United States)

    McGinley, Emma Louise

    2014-01-01

    To examine whether greater exposure to resin-based composite materials, which may intra-orally release bisphenol A (BPA), is associated with worse renal function outcomes in children. Prospective multi-centre study. Community health dental clinics in Boston and Maine from 1997-2005. Five hundred and thirty-four New England Children's Amalgam Trial participants aged six to ten years were randomised to treatment with amalgam or resin-based composite restorations over five years of follow-up. Restorations were placed according to treatment arm, and sealants placed per standard of care. Cumulative composite exposure was calculated using surface-years (each treated surface weighted by number years present). Urinary excretion of albumin, gamma-glutamyl transpeptidase (gamma-GT), and N-acetyl-β-D-glucosaminidase (NAG) were available for 417 children. Analysis of covariance showed no association between exposure to dental composites, polyacid-modified compomer, or flowable composite dental sealants and preventative resin restorations with levels of renal function. There was no association between composite materials and thresholds indicating renal damage in logistic regression models. This study found no harmful associations between dental composite materials and renal function in children. Therefore, concerns about renal function need not be a consideration in the choice of dental restoration material or placement of preventative dental sealants.

  12. Functionally graded materials produced with high power lasers

    NARCIS (Netherlands)

    De Hosson, JTM; Ocelík, Vašek; Chandra, T; Torralba, JM; Sakai, T

    2003-01-01

    In this keynote paper two examples will be present of functionally graded materials produced with high power Nd:YAG lasers. In particular the conditions for a successful Laser Melt Injection (LMI) of SiC and WC particles into the melt pool of A18Si and Ti6Al4V alloys are presented. The formation of

  13. Collaborative Augmented Reality Environments: Integrating VR, Working Materials, and Distributed Work Spaces

    DEFF Research Database (Denmark)

    Buscher, Monika; Christensen, Michael; Grønbæk, Kaj

    2000-01-01

    In this work, we present a new method for displaying stereo scenes, which speeds up the rendering time of complex geometry. We first discuss a scene splitting strategy, allowing us to partition objects to the distant background or the near foreground. Furthermore, wededuce a computation rule for ...

  14. Working Memory and Executive Function Profiles of Individuals with Borderline Intellectual Functioning

    Science.gov (United States)

    Alloway, T. P.

    2010-01-01

    Background: The aim of the present study was to investigate the following issues: (1) Do students with borderline intellectual functioning have a pervasive pattern of impaired working memory skills across both verbal and visuo-spatial domains? (2) Is there evidence for impairment in executive function skills, and which tasks indicate greater…

  15. Artificial Molecular Machine Immobilized Surfaces: A New Platform To Construct Functional Materials.

    Science.gov (United States)

    Zhang, Qi; Qu, Da-Hui

    2016-06-17

    Artificial molecular machines have received significant attention from chemists because of their unique ability to mimic the behaviors of biological systems. Artificial molecular machines can be easily modified with functional groups to construct new types of functional molecular switches. However, practical applications of artificial molecular machines are still challenging, because the working platform of artificial molecular machines is mostly in solution. Artificial molecular machine immobilized surfaces (AMMISs) are considered a promising platform to construct functional materials. Herein, we provide a minireview of some recent advances of functional AMMISs. The functions of AMMISs are highlighted and strategies for their construction are also discussed. Furthermore, a brief perspective of the development of artificial molecular machines towards functional materials is given. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A photometric function for diffuse reflection by particulate materials

    Science.gov (United States)

    Meador, W. E.; Weaver, W. R.

    1975-01-01

    A photometric function is proposed to describe the diffuse reflection of radiation by particulate materials. Both multiple scattering and the dominant effects of particle shadowing are included and the function is verified by comparisons with the photometries of laboratory surfaces. Brightness measurements of planetary and other diffusely scattering surfaces can be used to calculate the brightness for geometries other than those used in the measurements and for which the Minnaert function does not apply. The measurements also can be directly related to such surface characteristics as particle size, single-particle albedo, and compactness.

  17. Reutilization of discarded biomass for preparing functional polymer materials.

    Science.gov (United States)

    Wang, Jianfeng; Qian, Wenzhen; He, Yufeng; Xiong, Yubing; Song, Pengfei; Wang, Rong-Min

    2017-07-01

    Biomass is abundant and recyclable on the earth, which has been assigned numerous roles to human beings. However, over the past decades, accompanying with the rapid expansion of man-made materials, such as alloy, plastic, synthetic rubber and fiber, a great number of natural materials had been neglected and abandoned, such as straw, which cause a waste of resource and environmental pollution. In this review, based on introducing sources of discarded biomass, the main composition and polymer chains in discarded biomass materials, the traditional treatment and novel approach for reutilization of discarded biomass were summarized. The discarded biomass mainly come from plant wastes generated in the process of agriculture and forestry production and manufacturing processes, animal wastes generated in the process of animal husbandry and fishery production as well as the residual wastes produced in the process of food processing and rural living garbage. Compared with the traditional treatment including burning, landfill, feeding and fertilizer, the novel approach for reutilization of discarded biomass principally allotted to energy, ecology and polymer materials. The prepared functional materials covered in composite materials, biopolymer based adsorbent and flocculant, carrier materials, energy materials, smart polymer materials for medical and other intelligent polymer materials, which can effectively serve the environmental management and human life, such as wastewater treatment, catalyst, new energy, tissue engineering, drug controlled release, and coating. To sum up, the renewable and biodegradable discarded biomass resources play a vital role in the sustainable development of human society, as well as will be put more emphases in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Fabrication and Measurement of Low Work Function Cesiated Dispenser Photocathodes

    CERN Document Server

    Moody, Nathan A; Jensen, Kevin

    2005-01-01

    Photoinjector performance is a limiting factor in the continued development of high powered FELs and electron beam-based accelerators. Presently available photocathodes are plagued with limited efficiency and short lifetime in an RF-gun environment, due to contamination or evaporation of a photosensitive surface layer. An ideal photocathode should have high efficiency at long wavelengths, long lifetime in practical vacuum environments, and prompt emission. Cathodes with high efficiency typically have limited lifetime, and vice versa, and the needs of the photocathode are generally at odds with those of the drive laser. A potential solution is the low work function dispenser cathode, where lifetime issues are overcome by periodic in situ regeneration that restores the photosensitive surface layer, analogous to those used in the microwave power tube industry. This work reports on the fabrication techniques and performance of cesiated metal photocathodes and cesiated dispenser cathodes, with a focus on understan...

  19. Note: Work function change measurement via improved Anderson method

    Energy Technology Data Exchange (ETDEWEB)

    Sabik, A., E-mail: sabik@ifd.uni.wroc.pl; Gołek, F.; Antczak, G. [Institute of Experimental Physics, University of Wrocław, Wrocław (Poland)

    2015-05-15

    We propose the modification to the Anderson method of work function change (Δϕ) measurements. In this technique, the kinetic energy of the probing electrons is already low enough for non-destructive investigation of delicate molecular systems. However, in our implementation, all electrodes including filament of the electron gun are polarized positively. As a consequence, electron bombardment of any elements of experimental system is eliminated. Our modification improves cleanliness of the ultra-high vacuum system. As an illustration of the solution capabilities, we present Δϕ of the Ag(100) surface induced by cobalt phthalocyanine layers.

  20. Aperiodic topological order in the domain configurations of functional materials

    Science.gov (United States)

    Huang, Fei-Ting; Cheong, Sang-Wook

    2017-03-01

    In numerous functional materials, such as steels, ferroelectrics and magnets, new functionalities can be achieved through the engineering of the domain structures, which are associated with the ordering of certain parameters within the material. The recent progress in technologies that enable imaging at atomic-scale spatial resolution has transformed our understanding of domain topology, revealing that, along with simple stripe-like or irregularly shaped domains, intriguing vortex-type topological domain configurations also exist. In this Review, we present a new classification scheme of 'Zm Zn domains with Zl vortices' for 2D macroscopic domain structures with m directional variants and n translational antiphases. This classification, together with the concepts of topological protection and topological charge conservation, can be applied to a wide range of materials, such as multiferroics, improper ferroelectrics, layered transition metal dichalcogenides and magnetic superconductors, as we discuss using selected examples. The resulting topological considerations provide a new basis for the understanding of the formation, kinetics, manipulation and property optimization of domains and domain boundaries in functional materials.

  1. Achieving Functionally Graded Material Composition Through Bicontinuous Mesostructural Geometry in Material Extrusion Additive Manufacturing

    Science.gov (United States)

    Stoner, Brant; Bartolai, Joseph; Kaweesa, Dorcas V.; Meisel, Nicholas A.; Simpson, Timothy W.

    2017-11-01

    Functionally graded materials (FGMs) gradually change composition throughout their volume, allowing for areas of a part to be optimized for specific performance requirements. While additive manufacturing (AM) process types such as material jetting and directed energy deposition are capable of creating FGMs, design guidelines for varying the material composition in an FGM do not exist. This article presents a novel design solution for FGMs: creating the material gradient by varying the mesostructural size and thickness of bicontinuous, multi-material geometries. By using a bicontinuous structure, such as Schoen's gyroid surface or Schwarz's P and D surfaces, each component material exists as a continuous discrete structure, which allows FGMs to be fabricated by a wider range of AM processes. The gradient is created by varying the volume fraction occupied by the surface structure inside the part volume. This article explores the use of this technique to create FGMs with material extrusion AM. Properties of these bicontinuous structures are experimentally characterized and shown to outperform typical material extrusion FGMs.

  2. Relation between geometry of fracture surfaces and impact work of wood composite materials

    Directory of Open Access Journals (Sweden)

    Eva Přemyslovská

    2006-01-01

    Full Text Available The aim of this work is description of geometry of fracture surfaces of wood composite materials (cement-bonded particleboard, gypsum-bonded fibreboard and wood particleboard using fractal analysis and exploration relation between fractal dimension and impact work. Fractal dimension determinated by filtration, volumetric and robust Box-Counting methods and Richardson method is different considering type of material and method. Proportional relationship between fractal dimension (computed by robust BC method and impact work of mentioned materials was found in other cases non-proportional relationships were founded.

  3. Optimal Experiment Design for Thermal Characterization of Functionally Graded Materials

    Science.gov (United States)

    Cole, Kevin D.

    2003-01-01

    The purpose of the project was to investigate methods to accurately verify that designed , materials meet thermal specifications. The project involved heat transfer calculations and optimization studies, and no laboratory experiments were performed. One part of the research involved study of materials in which conduction heat transfer predominates. Results include techniques to choose among several experimental designs, and protocols for determining the optimum experimental conditions for determination of thermal properties. Metal foam materials were also studied in which both conduction and radiation heat transfer are present. Results of this work include procedures to optimize the design of experiments to accurately measure both conductive and radiative thermal properties. Detailed results in the form of three journal papers have been appended to this report.

  4. Density Functional Theory and Materials Modeling at Atomistic Length Scales

    Directory of Open Access Journals (Sweden)

    Swapan K. Ghosh

    2002-04-01

    Full Text Available Abstract: We discuss the basic concepts of density functional theory (DFT as applied to materials modeling in the microscopic, mesoscopic and macroscopic length scales. The picture that emerges is that of a single unified framework for the study of both quantum and classical systems. While for quantum DFT, the central equation is a one-particle Schrodinger-like Kohn-Sham equation, the classical DFT consists of Boltzmann type distributions, both corresponding to a system of noninteracting particles in the field of a density-dependent effective potential, the exact functional form of which is unknown. One therefore approximates the exchange-correlation potential for quantum systems and the excess free energy density functional or the direct correlation functions for classical systems. Illustrative applications of quantum DFT to microscopic modeling of molecular interaction and that of classical DFT to a mesoscopic modeling of soft condensed matter systems are highlighted.

  5. Piezoelectric materials mimic the function of the cochlear sensory epithelium

    Science.gov (United States)

    Inaoka, Takatoshi; Shintaku, Hirofumi; Nakagawa, Takayuki; Kawano, Satoyuki; Ogita, Hideaki; Sakamoto, Tatsunori; Hamanishi, Shinji; Wada, Hiroshi; Ito, Juichi

    2011-01-01

    Cochlear hair cells convert sound vibration into electrical potential, and loss of these cells diminishes auditory function. In response to mechanical stimuli, piezoelectric materials generate electricity, suggesting that they could be used in place of hair cells to create an artificial cochlear epithelium. Here, we report that a piezoelectric membrane generated electrical potentials in response to sound stimuli that were able to induce auditory brainstem responses in deafened guinea pigs, indicating its capacity to mimic basilar membrane function. In addition, sound stimuli were transmitted through the external auditory canal to a piezoelectric membrane implanted in the cochlea, inducing it to vibrate. The application of sound to the middle ear ossicle induced voltage output from the implanted piezoelectric membrane. These findings establish the fundamental principles for the development of hearing devices using piezoelectric materials, although there are many problems to be overcome before practical application. PMID:22025702

  6. Working memory training improves cognitive function in VLBW preschoolers.

    Science.gov (United States)

    Grunewaldt, Kristine Hermansen; Løhaugen, Gro Christine Christiansen; Austeng, Dordi; Brubakk, Ann-Mari; Skranes, Jon

    2013-03-01

    Preterm born children perform poorer than term peers on tests of attention and executive functions including working memory tests. Our aim was to evaluate if preterm born preschoolers with very low birth weight (VLBW) would benefit from a computerized working memory training program and if the training would have a generalizing effect on memory, learning, attention, behavior, and anxiety. A prospective intervention study with a stepped wedge design where 20 VLBW preschoolers aged 5 to 6 years participated. The children trained with the Cogmed JM program for 10 to 15 minutes a day, 5 days a week over a 5-week period. Extensive neuropsychological assessment and parental questionnaires regarding behavior and anxiety were performed before and 4 weeks after intervention. The children improved significantly on trained (mean Start Index 42.1 [SD 6.3]), mean Max Index 60.6 [SD 5.7]), and nontrained working memory tasks (Spatial Span backward; 2.3 [before] to 3.6 [after training] [confidence interval {CI} -2.2 to -0.4] and Spatial Span total score; 6.4-8.3 [CI -3.7 to -0.1]). A generalization effect was found on auditory attention (49.6-58.2 [CI -15.5 to -1.6]), phonological awareness (9.3-12.6 [CI -5.2 to -1.4]), visual (memory for faces 20.0-24.9 [CI -7.4 to -2.5]), as well as verbal memory (narrative memory; 12.9-17.5 [CI -7.1 to -2.0], and sentence repetition 15.7-17.7 [CI -3.3 to -0.7]). This study shows that VLBW preschoolers benefit from a computerized working memory training program. We speculate that such training before starting school may prevent or reduce cognitive problems that impact educational achievement.

  7. Prediction of the adhesive behavior of bio-inspired functionally graded materials against rough surfaces

    Science.gov (United States)

    Peijian, Chen; Juan, Peng; Yucheng, Zhao; Feng, Gao

    2014-06-01

    Roughness effect and adhesion properties are important characteristics to be accessed in the development of functionally graded materials for biological and biomimetic applications, particularly for the hierarchical composition in biomimetic gecko robot. A multi-asperities adhesion model to predict the adhesive forces is presented in this work. The effect of surface roughness and graded material properties, which significantly alter the adhesive strength between contact bodies, can be simultaneously considered in the generalized model. It is found that proper interfacial strength can be controlled by adjusting surface roughness σ / R, graded exponent k and material parameter E*R / Δγ. The results should be helpful in the design of new biomimetic materials and useful in application of micro functional instruments.

  8. Prediction of the adhesive behavior of bio-inspired functionally graded materials against rough surfaces

    Directory of Open Access Journals (Sweden)

    Chen Peijian

    2014-06-01

    Full Text Available Roughness effect and adhesion properties are important characteristics to be accessed in the development of functionally graded materials for biological and biomimetic applications, particularly for the hierarchical composition in biomimetic gecko robot. A multi-asperities adhesion model to predict the adhesive forces is presented in this work. The effect of surface roughness and graded material properties, which significantly alter the adhesive strength between contact bodies, can be simultaneously considered in the generalized model. It is found that proper interfacial strength can be controlled by adjusting surface roughness σ / R, graded exponent k and material parameter E*R / Δγ. The results should be helpful in the design of new biomimetic materials and useful in application of micro functional instruments.

  9. Approximate Green's function methods for HZE transport in multilayered materials

    Science.gov (United States)

    Wilson, John W.; Badavi, Francis F.; Shinn, Judy L.; Costen, Robert C.

    1993-01-01

    A nonperturbative analytic solution of the high charge and energy (HZE) Green's function is used to implement a computer code for laboratory ion beam transport in multilayered materials. The code is established to operate on the Langley nuclear fragmentation model used in engineering applications. Computational procedures are established to generate linear energy transfer (LET) distributions for a specified ion beam and target for comparison with experimental measurements. The code was found to be highly efficient and compared well with the perturbation approximation.

  10. Analysis of Advanced Thermoelectric Materials and Their Functional Limits

    Science.gov (United States)

    Kim, Hyun Jung

    2015-01-01

    The world's demand for energy is increasing dramatically, but the best energy conversion systems operate at approximately 30% efficiency. One way to decrease energy loss is in the recovery of waste heat using thermoelectric (TE) generators. A TE generator is device that generates electricity by exploiting heat flow across a thermal gradient. The efficiency of a TE material for power generation and cooling is determined by the dimensionless Figure of Merit (ZT): ZT = S(exp. 2)sigmaT/?: where S is the Seebeck coefficient, sigma is the electrical conductivity, T is the absolute temperature, and ? is the thermal conductivity. The parameters are not physically independent, but intrinsically coupled since they are a function of the transport properties of electrons. Traditional research on TE materials has focused on synthesizing bulk semiconductor-type materials that have low thermal conductivity and high electrical conductivity affording ZT values of 1. The optimization of the s/? ratio is difficult to achieve using current material formats, as these material constants are complementary. Recent areas of research are focusing on using nanostructural artifacts that introduce specific dislocations and boundary conditions that scatter the phonons. This disrupts the physical link between thermal (phonon) and electrical (electron) transport. The result is that ? is decreased without decreasing s. These material formats give ZT values of up to 2 which represent approximately 18% energy gain from waste heat recovery. The next challenge in developing the next generation of TE materials with superior performance is to tailor the interconnected thermoelectric physical parameters of the material system. In order to approach this problem, the fundamental physics of each parameter S, sigma, and ? need to be physically understood in their context of electron/phonon interaction for the construction of new high ZT thermoelectric devices. Is it possible to overcome the physical limit

  11. Implementing New Work Processes at the Royal Norwegian Navy Material Command

    National Research Council Canada - National Science Library

    Birkelund, Morten

    1999-01-01

    ... to solve organizational and technical problems. Using integrated teams, matched technologies, and tailored work processes in several material programs, RNoNMC observed an increase in quality in the form of quicker results with fewer revisions...

  12. Learning from data to design functional materials without inversion symmetry.

    Science.gov (United States)

    Balachandran, Prasanna V; Young, Joshua; Lookman, Turab; Rondinelli, James M

    2017-02-17

    Accelerating the search for functional materials is a challenging problem. Here we develop an informatics-guided ab initio approach to accelerate the design and discovery of noncentrosymmetric materials. The workflow integrates group theory, informatics and density-functional theory to uncover design guidelines for predicting noncentrosymmetric compounds, which we apply to layered Ruddlesden-Popper oxides. Group theory identifies how configurations of oxygen octahedral rotation patterns, ordered cation arrangements and their interplay break inversion symmetry, while informatics tools learn from available data to select candidate compositions that fulfil the group-theoretical postulates. Our key outcome is the identification of 242 compositions after screening ∼3,200 that show potential for noncentrosymmetric structures, a 25-fold increase in the projected number of known noncentrosymmetric Ruddlesden-Popper oxides. We validate our predictions for 19 compounds using phonon calculations, among which 17 have noncentrosymmetric ground states including two potential multiferroics. Our approach enables rational design of materials with targeted crystal symmetries and functionalities.

  13. Relation between geometry of fracture surfaces and impact work of wood composite materials

    OpenAIRE

    Eva Přemyslovská; Petr Koňas

    2006-01-01

    The aim of this work is description of geometry of fracture surfaces of wood composite materials (cement-bonded particleboard, gypsum-bonded fibreboard and wood particleboard) using fractal analysis and exploration relation between fractal dimension and impact work. Fractal dimension determinated by filtration, volumetric and robust Box-Counting methods and Richardson method is different considering type of material and method. Proportional relationship between fractal dimension (computed by ...

  14. Probing local work function of electron emitting Si-nanofacets

    Science.gov (United States)

    Basu, Tanmoy; Som, Tapobrata

    2017-10-01

    Large area, Si-nanofacets are synthesized by obliquely incident low energy Ar+-ion-beam bombardment at room temperature (RT). The field emission properties of such nanofacets are studied based on current-voltage measurements and the Fowler-Nordheim equation. Low turn-on field with relatively high current density is obtained due to the shape and an overall rough morphology. We demonstrate a tunable field emission property from the silicon nanofacets by varying the ion exposure time. Atomic force microscopy (AFM) in conjunction with Kelvin probe force microscopy (KPFM) measurements provide the information on the aspect ratio and confirms the presence of native oxide layer near the apexes of the facets, respectively. The inhomogeneous oxidation leads to an increase in the local work function at the apexes of the facets, restricting the electron emission from the same. Due to its room temperature fabrication, the present method is of great significance to the low-cost vacuum field emission devices fabrication.

  15. An evaluation of the stress intensity factor in functionally graded materials

    Directory of Open Access Journals (Sweden)

    Ševčík M.

    2009-12-01

    Full Text Available Functionally graded materials (FGM are characterised by variations in their material properties in terms of their geometry. They are often used as a coating for interfacial zones to protect the basic material against thermally or mechanically induced stresses. FGM can be also produced by technological process for example butt-welding of polymer pipes. This work is focused on a numerical estimation of the stress intensity factor for cracks propagating through FGM structure. The main difficulty of the FE model creation is the accurate description of continual changes in mechanical properties. An analysis of the FGM layer bonded from both sides with different homogenous materials was performed to study the influence of material property distribution. The thickness effect of the FGM layer is also discussed. All analyses are simulated as a 2D problem of an edge cracked specimen. In this paper, the above effects are quantified and conclusions concerning the applicability of the proposed model are discussed.

  16. Cross Functional Working and Concurrent Engineering – a UK Study

    Directory of Open Access Journals (Sweden)

    H. Williams

    2000-01-01

    Full Text Available This paper reports on the preliminary results of an investigative study into the implementation of concurrent engineering applied to new product development. Concurrent (or Simultaneous engineering is the term commonly given to creating new products using multi-disciplined teams of marketing, design, manufacturing and support functions together with supplier and customers. Such techniques have produced robust, low cost quality products in short concept to market times compared to traditional ones. The research investigated design management practice and performance in a number of organisations across a range of industrial sectors in the UK by means of a questionnaire survey. The results identify the current use of a variety of design practices and methodologies such as different organisational structures, the extent of cross-functional working, the use of design and phase reviews and the use of different technologies. They indicate that companies implementing CE are more successful in time to market performance than those who don’t implement CE. Factors most influencing the successful adoption of CE are design and phase reviews, and, to a lesser extent, the use of multifunctional teams and supplier partnerships.

  17. Written work: the social functions of Research Ethics Committee letters.

    Science.gov (United States)

    Dixon-Woods, Mary; Angell, Emma; Ashcroft, Richard E; Bryman, Alan

    2007-08-01

    Research Ethics Committees (RECs) are increasingly institutionalised as a feature of research practice, but have remained strangely neglected by social scientists. In this paper, we argue that analysis of letters from RECs to researchers offers important insights into how RECs operate. We report a traditional content analysis and an ethnographic content analysis of 141 letters to researchers, together with an analysis of the organisational and institutional arrangements for RECs in the UK. We show that REC letters perform three important social functions. First, they define what is deemed by a REC to be ethical practice for any particular application, and confer authority on that definition. They do this actively, through comments on particular aspects of proposals, and passively, through silences about other aspects. Second, they provide an account of the work of the REC, and function as a form of institutional display. Third, they specify the nature of the relationship between the REC and the applicant, casting the applicant in a supplicant role and requiring forms of docility. Writing and reading REC letters require highly specific competences, and engage both parties in a Bourdieusian "game" that discourages challenges from researchers. The authority of RECs' decisions derives not from their appeal to the moral superiority of any ethical position, but through their place in the organisational structure and the social positioning of the parties to the process thus implied. Letters are the critical point at which RECs act on researchers and their projects.

  18. The ``Missing Compounds'' affair in functionality-driven material discovery

    Science.gov (United States)

    Zunger, Alex

    2014-03-01

    In the paradigm of ``data-driven discovery,'' underlying one of the leading streams of the Material Genome Initiative (MGI), one attempts to compute high-throughput style as many of the properties of as many of the N (about 10**5- 10**6) compounds listed in databases of previously known compounds. One then inspects the ensuing Big Data, searching for useful trends. The alternative and complimentary paradigm of ``functionality-directed search and optimization'' used here, searches instead for the n much smaller than N configurations and compositions that have the desired value of the target functionality. Examples include the use of genetic and other search methods that optimize the structure or identity of atoms on lattice sites, using atomistic electronic structure (such as first-principles) approaches in search of a given electronic property. This addresses a few of the bottlenecks that have faced the alternative, data-driven/high throughput/Big Data philosophy: (i) When the configuration space is theoretically of infinite size, building a complete data base as in data-driven discovery is impossible, yet searching for the optimum functionality, is still a well-posed problem. (ii) The configuration space that we explore might include artificially grown, kinetically stabilized systems (such as 2D layer stacks; superlattices; colloidal nanostructures; Fullerenes) that are not listed in compound databases (used by data-driven approaches), (iii) a large fraction of chemically plausible compounds have not been experimentally synthesized, so in the data-driven approach these are often skipped. In our approach we search explicitly for such ``Missing Compounds''. It is likely that many interesting material properties will be found in cases (i)-(iii) that elude high throughput searches based on databases encapsulating existing knowledge. I will illustrate (a) Functionality-driven discovery of topological insulators and valley-split quantum-computer semiconductors, as well

  19. Design Strategies for Functionalized Poly(2-oxazolines and Derived Materials

    Directory of Open Access Journals (Sweden)

    Frank Wiesbrock

    2013-07-01

    Full Text Available The polymer class of poly(2-oxazolines currently is under intensive investigation due to the versatile properties that can be tailor-made by the variation and manipulation of the functional groups they bear. In particular their utilization in the biomedic(inal field is the subject of numerous studies. Given the mechanism of the cationic ring-opening polymerization, a plethora of synthetic strategies exists for the preparation of poly(2-oxazolines with dedicated functionality patterns, comprising among others the functionalization by telechelic end-groups, the incorporation of substituted monomers into (copoly(2-oxazolines, and polymeranalogous reactions. This review summarizes the current state-of-the-art of poly(2-oxazoline preparation and showcases prominent examples of poly(2-oxazoline-based materials, which are retraced to the desktop-planned synthetic strategy and the variability of their properties for dedicated applications.

  20. Electromagnetic Processing of Materials Materials Processing by Using Electric and Magnetic Functions

    CERN Document Server

    Asai, Shigeo

    2012-01-01

    This book is both a course book and a monograph. In fact, it has developed from notes given to graduate course students on materials processing in the years 1989 to 2006. Electromagnetic Processing of Materials (EPM), originates from a branch of materials science and engineering developed in the 1980s as a field aiming to create new materials and/or design processes by making use of various functions which appear when applying the electric and magnetic fields to materials. It is based on transport phenomena, materials processing and magnetohydrodynamics. The first chapter briefly introduces the history, background and technology of EPM. In the second chapter, the concept of transport phenomena is concisely introduced and in the third chapter the essential part of magnetohydrodynamics is transcribed and readers are shown that the concept of transport phenomena does not only apply to heat, mass and momentum, but also magnetic field. The fourth chapter describes electromagnetic processing of electrica...

  1. Experimental Measurement of Relative Permeability Functions for Fuel Cell GDL Materials

    KAUST Repository

    Hussaini, Irfan

    2009-01-01

    Gas diffusion layer in PEM fuel cells plays a pivotal role in water management. Modeling of liquid water transport through the GDL relies on knowledge of relative permeability functions in the in-plane and through-plane directions. In the present work, air and water relative permeabilities are experimentally determined as functions of saturation for typical GDL materials such as Toray-060, -090, -120 carbon paper and E-Tek carbon cloth materials in their plain, untreated forms. Saturation is measured using an ex-situ gravimetric method. Absolute and relative permeability functions in the two directions of interest are presented. Significant departure from the generally assumed cubic function of saturation is observed. ©The Electrochemical Society.

  2. Potential of hybrid functionalized meso-porous materials for the separation and immobilization of radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Luca, V. [Programa Nacional de Gestion de Residuos Radiactivos, Comision Nacional de Energia Atomica, Centro Atomico Constituyentes, Av. General, Paz 1499, 1650 San Martin, Provincia de Buenos Aires (Argentina)

    2013-07-01

    Functionalized meso-porous materials are a class of hybrid organic-inorganic material in which a meso-porous metal oxide framework is functionalized with multifunctional organic molecules. These molecules may contain one or more anchor groups that form strong bonds to the pore surfaces of the metal oxide framework and free functional groups that can impart and or modify the functionality of the material such as for binding metal ions in solution. Such materials have been extensively studied over the past decade and are of particular interest in absorption applications because of the tremendous versatility in choosing the composition and architecture of the metal oxide framework and the nature of the functional organic molecule as well as the efficient mass transfer that can occur through a well-designed hierarchically porous network. A sorbent for nuclear applications would have to be highly selective for particular radio nuclides, it would need to be hydrolytically and radiolytically stable, and it would have to possess reasonable capacity and fast kinetics. The sorbent would also have to be available in a form suitable for use in a column. Finally, it would also be desirable if once saturated with radio nuclides, the sorbent could be recycled or converted directly into a ceramic or glass waste form suitable for direct repository disposal or even converted directly into a material that could be used as a transmutation target. Such a cradle-to- grave strategy could have many benefits in so far as process efficiency and the generation of secondary wastes are concerned.This paper will provide an overview of work done on all of the above mentioned aspects of the development of functionalized meso-porous adsorbent materials for the selective separation of lanthanides and actinides and discuss the prospects for future implementation of a cradle-to-grave strategy with such materials. (author)

  3. FOREWORD: Some thoughts about Jürgen Hafner's work in computational materials science Some thoughts about Jürgen Hafner's work in computational materials science

    Science.gov (United States)

    Heine, Volker

    2011-10-01

    Jürgen Hafner started in the early 1970s with pseudopotential calculations on the structures and properties of sp-bonded metals, improving on work done elsewhere [1]. This expanded in four directions: transition metals, molten metals, magnetism and alloys, and combinations of these. As well as electronic structure calculations, he helped to advance the statistical mechanical classical theory of liquids for the molten metals [2]. In magnetism he was one of the pioneers of calculations with non-collinear spins [3, 4]. As well as simple (solid and molten) alloys, he also treated materials with strong chemical interaction such as sulphides and liquids such as arsenic and tellurium [5, 6]. All this fed into two directions which dominated much of his work for many years, namely the theory of glassy metals [7] and that of quasicrystals [8]. One notable result in the latter was to show that it was possible to construct hypothetical materials for which the quasicrystalline state is indeed the lowest energy structure. This displaced the established wisdom of the time that quasicrystals were necessarily metastable forms. In more recent years he has turned to calculations in surface science [9, 10], including catalysis of chemical reactions on surfaces [11, 12]. What really brought Jürgen first to my attention was that he had managed to do a better job than we had of calculations with the new approach of pseudopotentials, particularly regarding the screening part of the calculation. This is very important in alloys where there is a large difference in the electron density in the two types of atom due to their different volumes or valences such as in the phase diagram and structure of LiK or KPb [5, 13]. We have been in contact over many years including one close collaboration and I always learned something new in talking with Jürgen. In the late 1970s in Cambridge we performed phonon calculations on models of amorphous silicon [14], to see if these could distinguish between

  4. ANALYSIS OF STUDENTS’ LEARNING OBSTACLES ON LEARNING INVERS FUNCTION MATERIAL

    Directory of Open Access Journals (Sweden)

    Krisna Satrio Perbowo

    2017-09-01

    Full Text Available This research is based on the presence of obstacle in learning mathematics on inverse function. This research aims to analyze the learning obstacle, to know the types of error that is suffered by the students in learning inverse function. Kind of this kualitative research descriptive with data triangulation. The research subjects are high school students which is contained of 74 students and was taken 6 students to be main sample. The data of students’ error is obtained from the writen test result, the students’ false answers are identified into the type of error. Then it was chosen several students to be interviewed. Which the analysis result finding data in this research showed there are 4 types of errors, which are concept error, procedure error, counting error and concluding error. An obstacle which appear in learning inverse function is influenced by two factors, i.e internal factor and eksternal factor. Internal factor is showed by the students’ motivation in following learning and students’ skill in receiving learning material. While the eksternal factor is showed by the curriculum which applied in school with acceleration class caused many narrow learning time, teaching materials that is less complete with the discussion of question sample.

  5. Bio-functionalization of conductive textile materials with redox enzymes

    Science.gov (United States)

    Kahoush, M.; Behary, N.; Cayla, A.; Nierstrasz, V.

    2017-10-01

    In recent years, immobilization of oxidoreductase enzymes on electrically conductive materials has played an important role in the development of sustainable bio-technologies. Immobilization process allows the re-use of these bio-catalysts in their final applications. In this study, different methods of immobilizing redox enzymes on conductive textile materials were used to produce bio-functionalized electrodes. These electrodes can be used for bio-processes and bio-sensing in eco-designed applications in domains such as medicine and pollution control. However, the main challenge facing the stability and durability of these electrodes is the maintenance of the enzymatic activity after the immobilization. Hence, preventing the enzyme’s denaturation and leaching is a critical factor for the success of the immobilization processes.

  6. Material Innovation in Advancing Organometal Halide Perovskite Functionality.

    Science.gov (United States)

    Zheng, Fan; Saldana-Greco, Diomedes; Liu, Shi; Rappe, Andrew M

    2015-12-03

    Organometal halide perovskites (OMHPs) have garnered much attention recently for their unprecedented rate of increasing power conversion efficiency (PCE), positioning them as a promising basis for the next-generation photovoltaic devices. However, the gap between the rapid increasing PCE and the incomplete understanding of the structure-property-performance relationship prevents the realization of the true potential of OMHPs. This Perspective aims to provide a concise overview of the current status of OMHP research, highlighting the unique properties of OMHPs that are critical for solar applications but still not adequately explained. Stability and performance challenges of OMHP solar cells are discussed, calling upon combined experimental and theoretical efforts to address these challenges for pioneering commercialization of OMHP solar cells. Various material innovation strategies for improving the performance and stability of OMHPs are surveyed, showing that the OMHP architecture can serve as a promising and robust platform for the design and optimization of materials with desired functionalities.

  7. Functional brain activation associated with working memory training and transfer.

    Science.gov (United States)

    Clark, Cameron M; Lawlor-Savage, Linette; Goghari, Vina M

    2017-09-15

    While behavioural trials of working memory (WM) training have received much attention in recent years, a lesser explored parallel approach is functional neuroimaging. A small literature has suggested a complex time course for functional activation pattern changes following WM training (i.e. not simply increasing or decreasing due to training); however, no study to date has examined such neuroplastic effects in both the training task (dual n-back) and the fluid intelligence transfer task to which the training is purported to transfer (Raven's Matrices). This study investigated neural correlates of WM training in healthy young adults randomized to six weeks of WM training, or an active control condition (processing speed training) with a pre- and post-training fMRI design. Results indicated significant reductions in activation for the WM trained group in key WM-task related areas for trained WM tasks after training compared to the processing speed active control group. The same pattern of training related decreases in activation for the WM trained group was not observed for the transfer task, which is consistent with null results for all cognitive outcomes of the present trial. The observed pattern of results suggests that repetitive practice with a complex task does indeed lead to neuroplastic processes that very likely represent the reduced demand for attentional control while sub-components of the task become more routinized with practice. We suggest that future research investigate neural correlates of WM training in populations for which WM itself is impaired and/or behavioural trials of WM training have returned more promising results. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Quantitative ionization energies and work functions of aqueous solutions.

    Science.gov (United States)

    Olivieri, Giorgia; Goel, Alok; Kleibert, Armin; Cvetko, Dean; Brown, Matthew A

    2016-10-26

    Despite the ubiquitous nature of aqueous solutions across the chemical, biological and environmental sciences our experimental understanding of their electronic structure is rudimentary-qualitative at best. One of the most basic and seemingly straightforward properties of aqueous solutions-ionization energies-are (qualitatively) tabulated at the water-air interface for a mere handful of solutes, and the manner in which these results are obtained assume the aqueous solutions behave like a gas in the photoelectron experiment (where the vacuum levels of the aqueous solution and of the photoelectron analyzer are equilibrated). Here we report the experimental measure of a sizeable offset (ca. 0.6 eV) between the vacuum levels of an aqueous solution (0.05 M NaCl) and that of our photoelectron analyzer, indicating a breakdown of the gas-like vacuum level alignment assumption for the aqueous solution. By quantifying the vacuum level offset as a function of solution chemical composition our measurements enable, for the first time, quantitative determination of ionization energies in liquid solutions. These results reveal that the ionization energy of liquid water is not independent of the chemical composition of the solution as is usually inferred in the literature, a finding that has important ramifications as measured ionization energies are frequently used to validate theoretical models that posses the ability to provide microscopic insight not directly available by experiment. Finally, we derive the work function, or the electrochemical potential of the aqueous solution and show that it too varies with the chemical composition of the solution.

  9. Preheated ignition and work function studies on alkaline earth metal oxides coated tungsten electrodes of fluorescent lamps

    Science.gov (United States)

    Langer, Reinhard; Dar, Farrukh; Hilscher, Achim; Horn, Siegfried; Tidecks, Reinhard

    2015-03-01

    This paper describes measurements on the alkaline earth (Ba, Sr, Ca) oxide layers utilized as emitting material in fluorescent lamp electrodes. In a first approach we compared the emission capabilities of the different materials (BaO, SrO and CaO coatings on tungsten filaments) by their ability to facilitate the start of a lamp. In a second investigation the work function was measured quantitatively by means of a Kelvin probe. Basically, the results of both measurements coincide. The impact of sample geometry on measurement results of a Kelvin probe applied for work function measurements of lamp electrodes are discussed in detail.

  10. Influence of the brittle behavior of work materials on polishing characteristics

    Science.gov (United States)

    Sakamoto, Satoshi; Gemma, Masaya; Hayashi, Keitoku; Kondo, Yasuo; Yamaguchi, Kenji; Yakou, Takao; Arakawa, Susumu

    2017-09-01

    Diamond electrodeposited wire tools are frequently used to cut thin wafers from hard and brittle materials. However, microcracks sometimes appear during the slicing process. The appearance of microcracks adversely affects slicing efficiency and slicing accuracy. In this study, we examine the influence of brittle behavior on the polishing characteristics such as polishing depth and tool wear. This is the first step toward investigating the influence of the brittle behavior of work materials on slicing characteristics. Ceramics such as alumina, silicon carbide, and zirconia are used as work materials. Even with the same degree of hardness, we found that the polishing depth values were greater for materials exhibiting brittle behavior. In the polishing of high-hardness materials, abrasive grains were badly damaged during the initial stages of polishing. Damage to the abrasive paper was less in wet polishing as compared with dry polishing. Moreover, wet polishing had a greater polishing depth than dry polishing. The polishing characteristics of the brittle materials were similar to the grooving characteristics produced using wire tools; however, both these characteristics depend on the brittle behavior of the work materials. Therefore, by performing simple polishing tests, estimating the state of grooving or slicing using wire tools is possible.

  11. Understanding the bond-energy, hardness, and adhesive force from the phase diagram via the electron work function

    Science.gov (United States)

    Lu, Hao; Huang, Xiaochen; Li, Dongyang

    2014-11-01

    Properties of metallic materials are intrinsically determined by their electron behavior. However, relevant theoretical treatment involving quantum mechanics is complicated and difficult to be applied in materials design. Electron work function (EWF) has been demonstrated to be a simple but fundamental parameter which well correlates properties of materials with their electron behavior and could thus be used to predict material properties from the aspect of electron activities in a relatively easy manner. In this article, we propose a method to extract the electron work functions of binary solid solutions or alloys from their phase diagrams and use this simple approach to predict their mechanical strength and surface properties, such as adhesion. Two alloys, Fe-Ni and Cu-Zn, are used as samples for the study. EWFs extracted from phase diagrams show same trends as experimentally observed ones, based on which hardness and surface adhesive force of the alloys are predicted. This new methodology provides an alternative approach to predict material properties based on the work function, which is extractable from the phase diagram. This work may also help maximize the power of phase diagram for materials design and development.

  12. Design of Stratified Functional Nanoporous Materials for CO2 Capture and Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J. Karl [Univ. of Pittsburgh, PA (United States); Ye, Jingyun [Univ. of Pittsburgh, PA (United States)

    2017-10-03

    The objective of this project is to develop novel nanoporous materials for CO2 capture and conversion. The motivation of this work is that capture of CO2 from flue gas or the atmosphere coupled with catalytic hydrogenation of CO2 into valuable chemicals and fuels can reduce the net amount of CO2 in the atmosphere while providing liquid transportation fuels and other commodity chemicals. One approach to increasing the economic viability of carbon capture and conversion is to design a single material that can be used for both the capture and catalytic conversion of CO2, because such a material could increase efficiency through process intensification. We have used density functional theory (DFT) methods to design catalytic moieties that can be incorporated into various metal organic framework (MOF) materials. We chose to work with MOFs because they are highly tailorable, can be functionalized, and have been shown to selectively adsorb CO2 over N2, which is a requirement for CO2 capture from flue gas. Moreover, the incorporation of molecular catalytic moieties into MOF, through covalent bonding, produces a heterogeneous catalytic material having activities and selectivities close to those of homogeneous catalysts, but without the draw-backs associated with homogeneous catalysis.

  13. Functions of Nano-Materials in Food Packaging

    Science.gov (United States)

    Yap, Ray Chin Chong; Kwablah, Amegadze Paul Seyram; He, Jiating; Li, Xu

    Food packaging has been changing from bulky and rigid form in the past to different variation of lights and plastic packagings. Regardless of the changes, the packaging must be able to uphold its original function which is to serve as food containment as well as to protect the food from the external environment. Coupled with the increasing consumer’s awareness on food waste, higher standard of living, technological developments are underway to enhance the shelf-life of packed food as well as methods to provide indications of food packaging environment. There are many different indicators for food spoilage, but two commonly found gases in food packaging are oxygen and carbon dioxide. Oxygen is the main mechanism for food spoilage, while carbon dioxide is often used in modified-atmosphere-packaging. There are also different methods of gas scavenging and/or sensing techniques based on different concepts in the literature. In this review, the focus will be on nano-materials, namely titanium dioxide, silica, zeolites and metal organic frameworks. This review is structured in a manner to highlight how each material can be used in both gas scavenging and/or indicators applications. The last part of the review focuses on the approach and some key considerations when integrating nano-materials into the plastic film.

  14. Charge-Transfer Interactions in Organic Functional Materials

    Directory of Open Access Journals (Sweden)

    Bih-Yaw Jin

    2010-08-01

    Full Text Available Our goal in this review is three-fold. First, we provide an overview of a number of quantum-chemical methods that can abstract charge-transfer (CT information on the excited-state species of organic conjugated materials, which can then be exploited for the understanding and design of organic photodiodes and solar cells at the molecular level. We stress that the Composite-Molecule (CM model is useful for evaluating the electronic excited states and excitonic couplings of the organic molecules in the solid state. We start from a simple polyene dimer as an example to illustrate how interchain separation and chain size affect the intercahin interaction and the role of the charge transfer interaction in the excited state of the polyene dimers. With the basic knowledge from analysis of the polyene system, we then study more practical organic materials such as oligophenylenevinylenes (OPVn, oligothiophenes (OTn, and oligophenylenes (OPn. Finally, we apply this method to address the delocalization pathway (through-bond and/or through-space in the lowest excited state for cyclophanes by combining the charge-transfer contributions calculated on the cyclophanes and the corresponding hypothetical molecules with tethers removed. This review represents a step forward in the understanding of the nature of the charge-transfer interactions in the excited state of organic functional materials.

  15. NASA's Advanced TPS Materials and Technology Development: Multi-Functional Materials and Systems for Space Exploration

    Science.gov (United States)

    Venkatapathy, Ethiraj; Feldman, Jay; Ellerby, Donald T.; Wercinski, Paul F.; Beck, Robin A S.

    2017-01-01

    NASA's future missions will be more demanding. They require materials to be mass efficient, robust, multi-functional, scalable and able to be integrated with other subsystems to enable innovative missions to accomplish future science missions. Thermal protection systems and materials (TPSM) are critical for the robotic and human exploration of the solar system when it involves entry. TPSM is a single string system with no back-up. Mass efficiency and robustness are required. Integration of TPSM with the aeroshell is both a challenge and an opportunity. Since 2010, NASA's Space Technology Mission Directorate has invested in innovative new materials and systems across a spectrum of game changing technologies. In this keynote address, we plan to highlight and present our successful approaches utilized in developing four different materials and system technologies that use innovative new manufacturing techniques to meet mission needs. 3-D weaving and felt manufacturing allowed us to successfully propose new ways of addressing TPSM challenges. In the 3-D MAT project, we developed and delivered a multi-functional TPS materials solution, in under three years that is an enabler for Lunar Capable Orion Spacecraft. Under the HEEET project, we are developing a robust heat-shield that can withstand extreme entry conditions, both thermally and mechanically, for entry at Venus, Saturn or higher speed sample return missions. The improved efficiency of HEEET allows science missions entry at much reduced G'loads enabling delicate science instruments to be used. The ADEPT concept is a foldable and deployable entry system and the critical component is a multi-functional fabric that is foldable and deployable and also functions as a mechanical aeroshell and a TPS. The fourth technology we will highlight involves felt to address integration challenges of rigid ablative system such as PICA that was used on MSL. The felt technology allows us to develop a compliant TPS for easy

  16. Mn-based antiperovskite functional materials: Review of research

    Science.gov (United States)

    Tong, Peng; Wang, Bo-Sen; Sun, Yu-Ping

    2013-06-01

    Our recent research on the Mn-based antiperovskite functional materials AXMn3 (A: metal or semiconducting elements; X: C or N) is outlined. Antiperovskite carbides (e.g., AlCMn3) show large magnetocaloric effect comparable to those of typical magnetic refrigerant materials. Enhanced giant magnetoresistance up to 70% at 50 kOe (1 Oe = 79.5775 Am-1) over a wide temperature span was obtained in Ga1-xZnxCMn3 and GaCMn3-xNix. In Cu0.3Sn0.5NMn3.2, negative thermal expansion (NTE) was achieved in a wide temperature region covering room temperature (α = -6.8 ppm/K, 150 K-400 K). Neutron pair distribution function analysis suggests the Cu/Sn-Mn bond fluctuation is the driving force for the NTE in Cu1-xSnxNMn3. In CuN1-xCxMn3 and CuNMn3-yCoy, the temperature coefficient of resistivity (TCR) decreases monotonically from positive to negative as Co or C content increases. TCR is extremely low when the composition approaches the critical points. For example, TCR is ~ 1.29 ppm/K between 240 K and 320 K in CuN0.95C0.05Mn3, which is one twentieth of that in the typical low-TCR materials (~ 25 ppm/K). By studying the critical scaling behavior and X deficiency effect, some clues of localized-electron magnetism have been found against the background of electronic itinerant magnetism.

  17. The Work Role Functioning Questionnaire v2.0 Showed Consistent Factor Structure Across Six Working Samples

    NARCIS (Netherlands)

    Abma, F.I.; Bultmann, U.; Amick III, B.C.; Arends, I.; Dorland, P.A.; Flach, P.A.; Klink, J.J.L van der; Ven H.A., van de; Bjørner, J.B.

    2017-01-01

    Objective The Work Role Functioning Questionnaire v2.0 (WRFQ) is an outcome measure linking a persons’ health to the ability to meet work demands in the twenty-first century. We aimed to examine the construct validity of the WRFQ in a heterogeneous set of working samples in the Netherlands with

  18. Storage and Processing Working Memory Functions in Alzheimer-Type Dementia

    Directory of Open Access Journals (Sweden)

    T. Vecchi

    1999-01-01

    Full Text Available A selective deterioration of working memory functions has been suggested as an explanation of the cognitive decay occurring in normal ageing as well as in Alzheimer-type dementia. Recent studies have highlighted that elderly people’s limitations in working memory functions may be better interpreted when analysing the specific characteristics of the cognitive process (i.e., passive storage or active manipulation of information. In the present study, we have adapted a procedure used to investigate age-related memory modifications, involving both verbal and visuo-spatial material in tasks tapping passive and active processes, to investigate the deterioration associated with Alzheimer's disease. A group of Alzheimer patients in the early stages of the disease were matched to a control group of healthy elderly. Results show that Alzheimer patients performed less accurately than the control group in all tasks. However, the deficit was maximised in the case of active processes, regardless of the type of material used (verbal or visuo-spatial. These data highlight the importance of considering the amount of active processing as the key variable when interpreting the decay in cognitive functions in the early stages of Alzheimer’s disease.

  19. Mindfulness, Authentic Functioning, and Work Engagement: A Growth Modeling Approach

    Science.gov (United States)

    Leroy, Hannes; Anseel, Frederik; Dimitrova, Nicoletta G.; Sels, Luc

    2013-01-01

    Previous research has demonstrated that mindfulness helps reduce symptoms of work stress but research has yet to clarify "whether" and "how" mindfulness is linked to work engagement. Using self-determination theory we hypothesize that mindfulness is positively related to work engagement and that this relationship can be better understood through…

  20. Bioinspiration from fish for smart material design and function

    Science.gov (United States)

    Lauder, G. V.; Madden, P. G. A.; Tangorra, J. L.; Anderson, E.; Baker, T. V.

    2011-09-01

    Fish are a potentially rich source of inspiration for the design of smart materials. Fish exemplify the use of flexible materials to generate forces during locomotion, and a hallmark of fish functional design is the use of body and fin deformation to power propulsion and maneuvering. As a result of nearly 500 million years of evolutionary experimentation, fish design has a number of interesting features of note to materials engineers. In this paper we first provide a brief general overview of some key features of the mechanical design of fish, and then focus on two key properties of fish: the bilaminar mechanical design of bony fish fin rays that allows active muscular control of curvature, and the role of body flexibility in propulsion. After describing the anatomy of bony fish fin rays, we provide new data on their mechanical properties. Three-point bending tests and measurement of force inputs to and outputs from the fin rays show that these fin rays are effective displacement transducers. Fin rays in different regions of the fin differ considerably in their material properties, and in the curvature produced by displacement of one of the two fin ray halves. The mean modulus for the proximal (basal) region of the fin rays was 1.34 GPa, but this varied from 0.24 to 3.7 GPa for different fin rays. The distal fin region was less stiff, and moduli for the different fin rays measured varied from 0.11 to 0.67 GPa. These data are similar to those for human tendons (modulus around 0.5 GPa). Analysis of propulsion using flexible foils controlled using a robotic flapping device allows investigation of the effect of altering flexural stiffness on swimming speed. Flexible foils with the leading edge moved in a heave show a distinct peak in propulsive performance, while the addition of pitch input produces a broad plateau where the swimming speed is relatively unaffected by the flexural stiffness. Our understanding of the material design of fish and the control of tissue

  1. Transparent Conducting Oxides for Photovoltaics: Manipulation of Fermi Level, Work Function and Energy Band Alignment

    Directory of Open Access Journals (Sweden)

    Diana E. Proffit

    2010-11-01

    Full Text Available Doping limits, band gaps, work functions and energy band alignments of undoped and donor-doped transparent conducting oxides Zn0, In2O3, and SnO2 as accessed by X-ray and ultraviolet photoelectron spectroscopy (XPS/UPS are summarized and compared. The presented collection provides an extensive data set of technologically relevant electronic properties of photovoltaic transparent electrode materials and illustrates how these relate to the underlying defect chemistry, the dependence of surface dipoles on crystallographic orientation and/or surface termination, and Fermi level pinning.

  2. Functionalization of Biodegradable PLA Nonwoven Fabric as Superoleophilic and Superhydrophobic Material for Efficient Oil Absorption and Oil/Water Separation.

    Science.gov (United States)

    Gu, Jincui; Xiao, Peng; Chen, Peng; Zhang, Lei; Wang, Hanlin; Dai, Liwei; Song, Liping; Huang, Youju; Zhang, Jiawei; Chen, Tao

    2017-02-22

    Although the construction of superwettability materials for oil/water separation has been developed rapidly, the postprocess of the used separation materials themselves is still a thorny problem due to their nondegradation in the natural environment. In this work, we reported the functionalization of polylactic acid (PLA) nonwoven fabric as superoleophilic and superhydrophobic material for efficient treatment of oily wastewater with eco-friendly post-treatment due to the well-known biodegradable nature of PLA matrix.

  3. Natural material adsorbed onto a polymer to enhance immune function

    Directory of Open Access Journals (Sweden)

    Reinaque AP

    2012-08-01

    Full Text Available Ana Paula Barcelos Reinaque,1 Eduardo Luzía França,2 Edson Fredulin Scherer,3 Mayra Aparecida Côrtes,1 Francisco José Dutra Souto,4 Adenilda Cristina Honorio-França51Post Graduate Program in Material Science, 2Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, 3Post Graduate Program in Material Science, Institute of Biological and Health Science, Federal University of Mato Grosso, Pontal do Araguaia, 4Faculty of Medical Sciences, Federal University of Mato Grosso, Cuiabá, 5Institute of Biological and Health Science, Federal University of Mato Grosso, Pontal do Araguaia, MT, BrazilBackground: In this study, we produced poly(ethylene glycol (PEG microspheres of different sizes and adsorbing a medicinal plant mixture, and verified their effect in vitro on the viability, superoxide production, and bactericidal activity of phagocytes in the blood.Methods: The medicinal plant mixture was adsorbed onto PEG microspheres and its effects were evaluated by flow cytometry and fluorescence microscopy.Results: Adsorption of the herbal mixture onto the PEG microspheres was achieved and the particles were internalized by phagocytes. PEG microspheres bearing the adsorbed herbal mixture stimulated superoxide release, and activated scavenging and microbicidal activity in phagocytes. No differences in functional activity were observed when the phagocytes were not incubated with PEG microspheres bearing the adsorbed herbal mixture.Conclusion: This system may be useful for the delivery of a variety of medicinal plants and can confer additional protection against infection. The data reported here suggest that a polymer adsorbed with a natural product is a treatment alternative for enhancing immune function.Keywords: natural product, polymer, adsorption, immune function, phagocytes

  4. Selective visual working memory in fear of spiders: the role of automaticity and material-specificity.

    Science.gov (United States)

    Reinecke, Andrea; Becker, Eni S; Rinck, Mike

    2009-12-01

    Following cognitive models of anxiety, biases occur if threat processing is automatic versus strategic. Therefore, most of these models predict attentional bias, but not explicit memory bias. We suggest dividing memory into the highly automatic working memory (WM) component versus long-term memory when investigating bias in anxiety. WM for threat has rarely been investigated although its main function is stimulus monitoring, particularly important in anxiety. We investigated WM for spiders in spider fearfuls (SFs) versus non-anxious controls (NACs). In Experiment 1 (23 SFs/24 NACs), we replicated an earlier WM study, reducing strategic processing options. This led to stronger group differences and, thus, clearer WM threat biases. There were no group differences in Experiment 2 (18 SFs/19 NACs), using snakes instead of spiders to test whether WM biases are material-specific. This article supports cognitive models of anxiety in that biases are more likely to occur when reducing strategic processing. However, it contradicts the assumption that explicit memory biases are not characteristic of anxiety.

  5. Harvesting bioenergy with rationally designed complex functional materials

    Science.gov (United States)

    Kuang, Liangju

    A key challenge in renewable energy is to capture, convert and store solar power with earth-abundant materials and environmentally benign technologies. The goal of this thesis is to develop rationally designed complex functional materials for bio-renewable energy applications. On one hand, photoconversion membrane proteins (MPs) are nature's nanoengineering feats for renewable energy management. Harnessing their functions in synthetic systems could help understand, predict, and ultimately control matter and energy at the nanoscale. This is particularly enticing in the post-genome era as recombinant or cell-free expression of many MPs with high yields becomes possible. However, the labile nature of lipid bilayers renders them unsuitable for use in a broad range of engineered systems. A knowledge gap exists about how to design robust synthetic nanomembranes as lipid-bilayer-mimics to support MP functions and how to direct hierarchical MP reconstitution into those membranes to form 2-D or 3-D ordered proteomembrane arrays. Our studies on proteorhodopsin (PR) and bacterial reaction center (BRC), the two light-harvesting MPs, reveal that a charge-interaction-directed reconstitution (CIDR) mechanism induces spontaneous reconstitution of detergent-solubilized MPs into various amphiphilic block copolymer membranes, many of which have far superior stability than lipid bilayers. Our preliminary data also suggest MPs are not enslaved by the biological membranes they derive from; rather, the chemically nonspecific material properties of MP-supporting membranes may act as allosteric regulators. Versatile chemical designs are possible to modulate the conformational energetics of MPs, hence their transport performance in synthetic systems. On the other hand, microalgae are widely regarded as a sustainable feedstock for biofuel production. Microalgae-derived biofuels have not been commercialized yet because current technologies for microalgae dewatering add a huge cost to the

  6. Standard guide for preparation of working reference materials for use in analysis of nuclear fuel cycle materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This guide covers the preparation and characterization of working reference materials (WRM) that are produced by a laboratory for its own use in the analysis of nuclear materials. Guidance is provided for establishing traceability of WRMs to certified reference materials by a defined characterization process. The guidance provided is generic; it is not specific for a given material. 1.2 The information provided by this guide is found in the following sections: Section Planning 6 Preparation 7 Packaging and Storage 8 Characterization 9 Statistical Analysis 10 Documentation 11 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  7. Large work function difference driven electron transfer from electrides to single-walled carbon nanotubes

    KAUST Repository

    Menamparambath, Mini Mol

    2014-06-23

    A difference in work function plays a key role in charge transfer between two materials. Inorganic electrides provide a unique opportunity for electron transfer since interstitial anionic electrons result in a very low work function of 2.4-2.6 eV. Here we investigated charge transfer between two different types of electrides, [Ca2N]+·e- and [Ca 24Al28O64]4+·4e-, and single-walled carbon nanotubes (SWNTs) with a work function of 4.73-5.05 eV. [Ca2N]+·e- with open 2-dimensional electron layers was more effective in donating electrons to SWNTs than closed cage structured [Ca24Al28O64] 4+·4e- due to the higher electron concentration (1.3 × 1022 cm-3) and mobility (∼200 cm 2 V-1 s-1 at RT). A non-covalent conjugation enhanced near-infrared fluorescence of SWNTs as high as 52%. The field emission current density of electride-SWNT-silver paste dramatically increased by a factor of 46000 (14.8 mA cm-2) at 2 V μm-1 (3.5 wt% [Ca2N]+·e-) with a turn-on voltage of 0.85 V μm-1. This journal is © the Partner Organisations 2014.

  8. ATRP in the design of functional materials for biomedical applications.

    Science.gov (United States)

    Siegwart, Daniel J; Oh, Jung Kwon; Matyjaszewski, Krzysztof

    2012-01-01

    Atom Transfer Radical Polymerization (ATRP) is an effective technique for the design and preparation of multifunctional, nanostructured materials for a variety of applications in biology and medicine. ATRP enables precise control over macromolecular structure, order, and functionality, which are important considerations for emerging biomedical designs. This article reviews recent advances in the preparation of polymer-based nanomaterials using ATRP, including polymer bioconjugates, block copolymer-based drug delivery systems, cross-linked microgels/nanogels, diagnostic and imaging platforms, tissue engineering hydrogels, and degradable polymers. It is envisioned that precise engineering at the molecular level will translate to tailored macroscopic physical properties, thus enabling control of the key elements for realized biomedical applications.

  9. The way to develop translation skills of students working with authentic material

    OpenAIRE

    Bogdanchick, L.

    2012-01-01

    The article presents the problem of developing translations skills of students working with authentic material as the translation came into being as a human activity which enabled people to exchange ideas and thoughts in spite of differences existing in the languages used

  10. Phosphorescent Organic Light-Emitting Devices: Working Principle and Iridium Based Emitter Materials

    Directory of Open Access Journals (Sweden)

    Emil J. W. List

    2008-08-01

    Full Text Available Even though organic light-emitting device (OLED technology has evolved to a point where it is now an important competitor to liquid crystal displays (LCDs, further scientific efforts devoted to the design, engineering and fabrication of OLEDs are required for complete commercialization of this technology. Along these lines, the present work reviews the essentials of OLED technology putting special focus on the general working principle of single and multilayer OLEDs, fluorescent and phosphorescent emitter materials as well as transfer processes in host materials doped with phosphorescent dyes. Moreover, as a prototypical example of phosphorescent emitter materials, a brief discussion of homo- and heteroleptic iridium(III complexes is enclosed concentrating on their synthesis, photophysical properties and approaches for realizing iridium based phosphorescent polymers.

  11. Processing speed and visuospatial executive function predict visual working memory ability in older adults.

    Science.gov (United States)

    Brown, Louise A; Brockmole, James R; Gow, Alan J; Deary, Ian J

    2012-01-01

    BACKGROUND/STUDY CONTEXT: Visual working memory (VWM) has been shown to be particularly age sensitive. Determining which measures share variance with this cognitive ability in older adults may help to elucidate the key factors underlying the effects of aging. Predictors of VWM (measured by a modified Visual Patterns Test) were investigated in a subsample (N = 44, mean age = 73) of older adults from the Lothian Birth Cohort 1936 (LBC1936; Deary et al., 2007 , BMC Geriatrics, 7, 28). Childhood intelligence (Moray House Test) and contemporaneous measures of processing speed (four-choice reaction time), executive function (verbal fluency; block design), and spatial working memory (backward spatial span), were assessed as potential predictors. All contemporaneous measures except verbal fluency were significantly associated with VWM, and processing speed had the largest effect size (r = -.53, p material are also important.

  12. Effect of Structure, Temperature, and Metal Work Function on Performance of Organometallic Perovskite Solar Cells

    Science.gov (United States)

    Hossain, M. I.; Aïssa, B.

    2017-03-01

    The impact of hole transport materials (HTMs) on the performance of methylammonium lead halide (CH3NH3PbI3)-based perovskite solar cells has been investigated using computational analysis. The main objective is to replace the HTM with the aim of enhancing the lifetime and decreasing the overall cost of the device. As the CH3NH3PbI3 absorber layer shows an absorption coefficient as high as 105/cm, all photons with incident energy larger the material bandgap are absorbed within only a 400-nm-thick layer. Also, all the electronic and optical properties of such an absorber layer are suitable for use in photovoltaic (PV) devices. Hence, the effects of the HTM thickness, operating temperature, incident light spectrum, and metal electrode work function on the charge collection were studied numerically. For a cell with Cu2O as HTM, efficiency exceeding 25% is predicted for a 350-nm-thick absorber layer. Also, a fully optimized device architecture without HTM shows the possibility of fabricating a perovskite solar cell with PV efficiency exceeding 15%. We expect considerable minimization of the energy loss in this structure due to charge transfer across the heterojunction. Moreover, the effect of temperature on perovskite solar cells and potential electrodes with different work functions has been investigated. Our results are believed to help open an experimental avenue to achieve optimum results for perovskite solar cells with various structures.

  13. Functional work breaks in a high-demanding work environment: an experimental field study.

    Science.gov (United States)

    Scholz, André; Ghadiri, Argang; Singh, Usha; Wendsche, Johannes; Peters, Theo; Schneider, Stefan

    2018-02-01

    Work breaks are known to have positive effects on employees' health, performance and safety. Using a sample of twelve employees working in a stressful and cognitively demanding working environment, this experimental field study examined how different types of work breaks (boxing, deep relaxation and usual breaks) affect participants' mood, cognitive performance and neurophysiological state compared to a control condition without any break. In a repeated measures experimental design, cognitive performance was assessed using an auditory oddball test and a Movement Detection Test. Brain cortical activity was recorded using electroencephalography. Individual's mood was analysed using a profile of mood state. Although neurophysiological data showed improved relaxation of cortical state after boxing (vs. 'no break' and 'deep relaxation'), neither performance nor mood assessment showed similar results. It remains questionable whether there is a universal work break type that has beneficial effects for all individuals. Practitioner Summary: Research on work breaks and their positive effects on employees' health and performance often disregards break activities. This experimental field study in a stressful working environment investigated the effect of different work break activities. A universal work break type that is beneficial for this workplace could not be identified.

  14. Momentary Work Happiness as a Function of Enduring Burnout and Work Engagement.

    Science.gov (United States)

    Bakker, Arnold B; Oerlemans, Wido G M

    2016-08-17

    The present study (N = 136) combined global measures with specific, experience-based measures to investigate how enduring job burnout and engagement influence the impact of daily work activities on momentary need satisfaction and happiness. We used the day reconstruction method (DRM) to ask employees from various occupations to reconstruct their working days. On the basis of employee work engagement and self-determination theories, we hypothesized that time spent on (a) core work tasks; (b) administrative work tasks; (c) client interactions; (d) interactions with colleagues; and (e) meetings would be negatively related to need satisfaction on the task level for employees high (vs. low) in enduring burnout; and positively related to need satisfaction on the task level for employees high (vs. low) in enduring work engagement. In addition, we predicted that psychological need satisfaction would mediate the relationships between time spent on work tasks and happiness during the tasks. The results of multilevel analyses largely supported these hypotheses. Our findings contribute to the literature by showing how those with high levels of burnout do not manage to satisfy their basic needs through their work, whereas those with high levels of work engagement satisfy their daily needs and stay happy.

  15. Effects of bilingualism and aging on executive function and working memory.

    Science.gov (United States)

    Bialystok, Ellen; Poarch, Gregory; Luo, Lin; Craik, Fergus I M

    2014-09-01

    Two studies are reported in which younger and older monolingual and bilingual adults performed executive function tasks. In Study 1, 130 participants performed a Stroop task and bilinguals in both age groups showed less interference than monolinguals with a greater benefit for older adults. In Study 2, 108 participants performed a complex working memory task based on verbal or nonverbal stimuli. Bilinguals showed less interference than monolinguals, with a larger bilingual advantage in the older adult group and in the nonverbal task. Together, these results show that bilingual advantages in executive function depend on characteristics of the participants and features of the tasks, with larger effects found for older than younger adults and for complex tasks using nonverbal material. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  16. New water-soluble metal working fluids additives from phosphonic acid derivatives for aluminum alloy materials.

    Science.gov (United States)

    Kohara, Ichitaro; Tomoda, Hideyuki; Watanabe, Shoji

    2007-01-01

    Water-soluble metal working fluids are used for processing of aluminum alloy materials. This short paper describes properties of new additives for water-soluble cutting fluids for aluminum alloy materials. Some alkyldiphosphonic acids were prepared with known method. Amine salts of these phosphonic acids showed anti-corrosion property for aluminum alloy materials. However, they have no hard water tolerance. Monoesters of octylphosphonic acid were prepared by the reaction of octylphosphonic acid dichloride with various alcohols in the presence of triethylamine. Amine salts of monoester of octylphosphonic acid with diethyleneglycol monomethyl ether, ethyleneglycol monomethyl ether and triethyleneglycol monomethyl ether showed both of a good anti-corrosion property for aluminum alloy materials and hard water tolerance.

  17. MAK and BAT values list 2015. Maximum permissible concentrations at the place of work and biological tolerance values for working materials; MAK- und BAT-Werte-Liste 2015. Maximale Arbeitsplatzkonzentrationen und Biologische Arbeitsstofftoleranzwerte

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-11-01

    The book on the MAK (maximum permissible concentrations at the place of work) and BAT (biological tolerance values for working materials) value list 2015 includes the following chapters: (a) Maximum permissible concentrations at the place of work: definition, application and determination of MAT values, list of materials; carcinogenic working materials, sensibilizing working materials, aerosols, limiting the exposition peaks, skin resorption, MAK values during pregnancy, germ cell mutagens, specific working materials; (b) Biological tolerance values for working materials: definition and application of BAT values, list of materials, carcinogenic working materials, biological guide values, biological working material reference values.

  18. Thiol-ene functionalized siloxanes for use as elastomeric dental impression materials.

    Science.gov (United States)

    Cole, Megan A; Jankousky, Katherine C; Bowman, Christopher N

    2014-04-01

    Thiol- and allyl-functionalized siloxane oligomers are synthesized and evaluated for use as a radical-mediated, rapid set elastomeric dental impression material. Thiol-ene siloxane formulations are crosslinked using a redox-initiated polymerization scheme, and the mechanical properties of the thiol-ene network are manipulated through the incorporation of varying degrees of plasticizer and kaolin filler. Formulations with medium and light body consistencies are further evaluated for their ability to accurately replicate features on both the gross and microscopic levels. We hypothesize that thiol-ene functionalized siloxane systems will exhibit faster setting times and greater detail reproduction than commercially available polyvinylsiloxane (PVS) materials of comparable consistencies. Thiol-ene functionalized siloxane mixtures formulated with varying levels of redox initiators, plasticizer, and kaolin filler are made and evaluated for their polymerization speed (FTIR), consistency (ISO4823.9.2), and surface energy (goniometer). Feature replication is evaluated quantitatively by SEM. The Tg, storage modulus, and creep behavior are determined by DMA. Increasing redox initiation rate increases the polymerization rate but at high levels also limits working time. Combining 0.86 wt% oxidizing agent with up to 5 wt% plasticizer gave a working time of 3 min and a setting time of 2 min. The selected medium and light body thiol-ene formulations also achieved greater qualitative detail reproduction than the commercial material and reproduced micrometer patterns with 98% accuracy. Improving detail reproduction and setting speed is a primary focus of dental impression material design and synthesis. Radical-mediated polymerizations, particularly thiol-ene reactions, are recognized for their speed, reduced shrinkage, and 'click' nature. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Functional materials - Study of process for CVD SiC/C composite material

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Doo Jin; Wang, Chae Chyun; Lee, Young Jin; Oh, Byung Jun [Yonsei University, Seoul (Korea)

    2000-04-01

    The CVD SiC coating techniques are the one of high functional material manufactures that improve the thermal, wear, oxidization and infiltration resistance of the surface of raw materials and extend the life of material. Silicon carbide films have been grown onto graphite substrates by low pressure chemical vapor deposition using MTS(CH{sub 3}SiCl{sub 3}) as a source precursor and H{sub 2} or N{sub 2} as a diluent gas. The experiments for temperature and diluent gas addition changes were performed. The effect of temperature from 900 deg. C to 1350 deg. C and the alteration of diluent gas species on the growth rate and structure of deposits have been studied. The experimental results showed that the deposition rate increased with increasing deposition temperature irrespective of diluent gases and reactant depletion effect increased especially at H{sub 2} diluent gas ambient. As the diluent gas added, the growth rate decreased parabolically. For N{sub 2} addition, surface morphology of leaf-like structure appeared, and for H{sub 2}, faceted structure at 1350 deg. C. The observed features were involved by crystalline phase of {beta}-SiC and surface composition with different gas ambient. We also compared the experimental results of the effect of partial pressure on the growth rate with the results of theoretical approach based on the Langmuir-Hinshelwood model. C/SiC composites were prepared by isothermal chemical vapor infiltration (ICVI). In order to fabricate the more dense C/SiC composites, a novel process of the in-situ whisker growing and filling during ICVI was devised, which was manipulated by alternating dilute gas species. The denser C/SiC composites were successfully prepared by the novel process comparing with the conventional ICVI process. 64 refs., 36 figs., 5 tabs. (Author)

  20. Research Paper Working memory functioning in children with ...

    African Journals Online (AJOL)

    Objective: Children with attention-deficit/hyperactivity disorder (ADHD) often experience working memory difficulties. However, research findings are inconsistent, making it difficult to compare results across studies. There are several reasons for this inconsistency. Firstly, most studies make no distinction between ADHD ...

  1. Beyond Conflict: Functional Facets of the Work-Family Interplay

    Science.gov (United States)

    Wiese, Bettina S.; Seiger, Christine P.; Schmid, Christian M.; Freund, Alexandra M.

    2010-01-01

    The present paper deals with three positive facets of the work-family interplay, i.e., transfer of competencies, transfer of positive mood, and cross-domain compensation. The latter refers to the experience that engagement in one domain helps dealing with failures in the other domain. In two correlational studies (N[subscript 1] = 107 working…

  2. Functional materials for breeding blankets—status and developments

    Science.gov (United States)

    Konishi, S.; Enoeda, M.; Nakamichi, M.; Hoshino, T.; Ying, A.; Sharafat, S.; Smolentsev, S.

    2017-09-01

    The development of tritium breeder, neutron multiplier and flow channel insert materials for the breeding blanket of the DEMO reactor is reviewed. Present emphasis is on the ITER test blanket module (TBM); lithium metatitanate (Li2TiO3) and lithium orthosilicate (Li4SiO4) pebbles have been developed by leading TBM parties. Beryllium pebbles have been selected as the neutron multiplier. Good progress has been made in their fabrication; however, verification of the design by experiments is in the planning stage. Irradiation data are also limited, but the decrease in thermal conductivity of beryllium due to irradiation followed by swelling is a concern. Tests at ITER are regarded as a major milestone. For the DEMO reactor, improvement of the breeder has been attempted to obtain a higher lithium content, and Be12Ti and other beryllide intermetallic compounds that have superior chemical stability have been studied. LiPb eutectic has been considered as a DEMO blanket in the liquid breeder option and is used as a coolant to achieve a higher outlet temperature; a SiC flow channel insert is used to prevent magnetohydrodynamic pressure drop and corrosion. A significant technical gap between ITER TBM and DEMO is recognized, and the world fusion community is working on ITER TBM and DEMO blanket development in parallel.

  3. Propagation of ultrasonic Love waves in nonhomogeneous elastic functionally graded materials.

    Science.gov (United States)

    Kiełczyński, P; Szalewski, M; Balcerzak, A; Wieja, K

    2016-02-01

    This paper presents a theoretical study of the propagation behavior of ultrasonic Love waves in nonhomogeneous functionally graded elastic materials, which is a vital problem in the mechanics of solids. The elastic properties (shear modulus) of a semi-infinite elastic half-space vary monotonically with the depth (distance from the surface of the material). The Direct Sturm-Liouville Problem that describes the propagation of Love waves in nonhomogeneous elastic functionally graded materials is formulated and solved by using two methods: i.e., (1) Finite Difference Method, and (2) Haskell-Thompson Transfer Matrix Method. The dispersion curves of phase and group velocity of surface Love waves in inhomogeneous elastic graded materials are evaluated. The integral formula for the group velocity of Love waves in nonhomogeneous elastic graded materials has been established. The effect of elastic non-homogeneities on the dispersion curves of Love waves is discussed. Two Love wave waveguide structures are analyzed: (1) a nonhomogeneous elastic surface layer deposited on a homogeneous elastic substrate, and (2) a semi-infinite nonhomogeneous elastic half-space. Obtained in this work, the phase and group velocity dispersion curves of Love waves propagating in the considered nonhomogeneous elastic waveguides have not previously been reported in the scientific literature. The results of this paper may give a deeper insight into the nature of Love waves propagation in elastic nonhomogeneous functionally graded materials, and can provide theoretical guidance for the design and optimization of Love wave based devices. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Radiation damage and nuclear heating studies in selected functional materials during the JET DT campaign

    Energy Technology Data Exchange (ETDEWEB)

    Lengar, Igor, E-mail: igor.lengar@ijs.si [Jozef Stefan Institute, Reactor Physics Department, Jamova 39, SI-1000 Ljubljana (Slovenia); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Čufar, Aljaž [Jozef Stefan Institute, Reactor Physics Department, Jamova 39, SI-1000 Ljubljana (Slovenia); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Conroy, Sean [Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala (Sweden); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Batistoni, Paola [ENEA, via E. Fermi 45, 00044 Frascati, Roma (Italy); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Popovichev, Sergey [CCFE, Culham Science Centre, Abingdon OX14 3DB, Oxon (United Kingdom); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Snoj, Luka [Jozef Stefan Institute, Reactor Physics Department, Jamova 39, SI-1000 Ljubljana (Slovenia); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Syme, Brian [CCFE, Culham Science Centre, Abingdon OX14 3DB, Oxon (United Kingdom); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Vila, Rafael [Laboratorio Nacional de Fusión, CIEMAT, Madrid (Spain); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Stankunas, Gediminas [Lithuanian Energy Institute, Laboratory of Nuclear Installation Safety, Breslaujos str. 3, LT-44403 Kaunas (Lithuania); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2016-11-01

    Highlights: • Material damage calculation in during the JET DT campaign nuclear heating ratio of the damage due to 14 MeV neutronsgamma activity and dose rates. - Abstract: A new Deuterium-Tritium campaign (DTE2) is planned at JET in the next years, with a proposed 14 MeV neutron budget of 1.7 × 10{sup 21}, which is nearly an order of magnitude higher than any previous DT campaigns. The neutron and gamma ray fields inside the JET device during DT plasma operations at specific locations have previously been evaluated. It is estimated that a total neutron fluence on the first wall of JET of up to 10{sup 20} n/m{sup 2} could be achieved, which is comparable to the fluence occurring in ITER at the end of life in the rear part of the port plug, where several diagnostic components will be located. The purpose of the present work is to evaluate the radiation damage and nuclear heating in selected functional materials to be irradiated at JET during DT plasma operation. These quantities are calculated with the use of the MCNP6 code and the FISPACT II code. In particular the neutron and gamma ray fields at specific locations inside the JET device, dedicated to material damage studies, were characterized. The emphasis is on a potential long term irradiation station located close to the first wall at outboard midplane, offering the opportunity to irradiate samples of functional materials used in ITER diagnostics, to assess the degradation of the physical properties. The radiation damage and the nuclear heating were calculated for selected materials irradiated in these positions and for the neutron flux and fluence expected in DTE2. The studied candidate functional materials include, among others, Sapphire, YAG, ZnS, Spinel, Diamond. In addition the activation of the internal irradiation holder itself was calculated with FISPACT. Damage levels in the range of 10{sup −5} dpa were found.

  5. Porous Organic Polymer Films with Tunable Work Functions and Selective Hole and Electron Flows for Energy Conversions.

    Science.gov (United States)

    Gu, Cheng; Huang, Ning; Chen, Youchun; Zhang, Huanhuan; Zhang, Shitong; Li, Fenghong; Ma, Yuguang; Jiang, Donglin

    2016-02-24

    Organic optoelectronics are promising technologies for energy conversion. However, the electrode interlayer, a key material between active layers and conducting electrodes that controls the transport of charge carriers in and out of devices, is still a chemical challenge. Herein, we report a class of porous organic polymers with tunable work function as hole- and electron-selective electrode interlayers. The network with organoborane and carbazole units exhibits extremely low work-function-selective electron flow; while upon ionic ligation and electro-oxidation, the network significantly increases the work function and turns into hole conduction. We demonstrate their outstanding functions as anode and cathode interlayers in energy-converting solar cells and light-emitting diodes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Research on Free Vibration Frequency Characteristics of Rotating Functionally Graded Material Truncated Conical Shells with Eccentric Functionally Graded Material Stringer and Ring Stiffeners

    Directory of Open Access Journals (Sweden)

    Dao Van Dung

    Full Text Available Abstract In this research work, an exact analytical solution for frequency characteristics of the free vibration of rotating functionally graded material (FGM truncated conical shells reinforced by eccentric FGM stringers and rings has been investigated by the displacement function method. Material properties of shell and stiffeners are assumed to be graded in the thickness direction according to a simple power law distribution. The change of spacing between stringers is considered. Using the Donnell shell theory, Leckhnisky smeared stiffeners technique and taking into account the influences of centrifugal force and Coriolis acceleration the governing equations are derived. For stiffened FGM conical shells, it is difficult that free vibration equations are a couple set of three variable coefficient partial differential equations. By suitable transformations and applying Galerkin method, this difficulty is overcome in the paper. The sixth order polynomial equation for w is obtained and it is used to analyze the frequency characteristics of rotating ES-FGM conical shells. Effects of stiffener, geometrics parameters, cone angle, vibration modes and rotating speed on frequency characteristics of the shell forward and backward wave are discussed in detail. The present approach proves to be reliable and accurate by comparing with published results available in the literature.

  7. Work-function measurement by high-resolution scanning Kelvin nanoprobe

    Science.gov (United States)

    Cheran, Larisa-Emilia; Johnstone, Sherri; Sadeghi, Saman; Thompson, Michael

    2007-03-01

    Nanoscience promises to transform today's world in the same way that integrated semiconductor devices transformed the world of electronics and computation. In the post-genomic era, the greatest challenge is to make connections between the structures and functions of biomolecules at the nanometre-scale level in order to underpin the understanding of larger scale systems in the fields of human biology and physiology. To achieve this, instruments with new capabilities need to be researched and developed, with particular emphasis on new levels of sensitivity, precision and resolution for biomolecular analysis. This paper describes an instrument able to analyse structures that range from tenths of a nanometre (proteins, DNA) to micron-scale structures (living cells), which can be investigated non-destructively in their normal state and subsequently in chemical- or biochemical-modified conditions. The high-resolution scanning Kelvin nanoprobe (SKN) measures the work-function changes at molecular level, instigated by local charge reconfiguration due to translational motion of mobile charges, dipolar relaxation of bound charges, interfacial polarization and structural and conformational modifications. In addition to detecting surface electrical properties, the instrument offers, in parallel, the surface topographic image, with nanometre resolution. The instrument can also be used to investigate subtle work function/topography variations which occur in, for example, corrosion, contamination, adsorption and desorption of molecules, crystallographic studies, mechanical stress studies, surface photovoltaic studies, material science, biocompatibility studies, microelectronic characterization in semiconductor technology, oxide and thin films, surface processing and treatments, surfaces and interfaces characterization. This paper presents the design and development of the instrument, the basic principles of the method and the challenges involved to achieve nanometric resolution

  8. Functional and morphological alterations associated with working memory dysfunction in patients with generalized anxiety disorder.

    Science.gov (United States)

    Moon, Chung-Man; Jeong, Gwang-Woo

    2017-03-01

    Background Generalized anxiety disorder (GAD) has been related to functional brain activities and structural brain abnormalities. Purpose To investigate the neural mechanism on working memory dysfunction in patients with GAD in terms of the combined functional and morphological brain abnormalities. Material and Methods Patients with GAD and healthy controls matched for age, sex, and education level underwent high-resolution T1-weighted (T1W) magnetic resonance imaging (MRI) and functional MRI (fMRI). In this study, fMRI and voxel-based morphometry (VBM) were used for assessing the differential brain activation patterns, as well as for comparing the morphological alterations between the two groups. Results In response to the neutral distractors, the patients showed significantly lower activities in the regions of the fusiform gyrus (FuG), superior parietal gyrus (SPG), precuneus (PCu), superior occipital gyrus (SOG), lingual gyrus (LiG), cuneus (Cun), calcarine cortex (CaC), parahippocampal gyrus (PHG) and cerebellar cortex (Cb) compared to the controls. In response to the anxiety-inducing distractors, the patients showed significantly higher activity in the hippocampus and lower activities in the regions of the dorsolateral prefrontal cortex (DLPFC), FuG, SPG, PCu, SOG, and Cb. Also, the patients showed a significant reduction of the white matter volumes in the DLPFC, anterior limb of the internal capsule (ALIC) and midbrain. Conclusion This study provides the first evidence for the association between the morphometric alterations and functional deficit in the working memory processing with the neutral and anxiety-inducing distractors in GAD patients. These findings would be helpful to understand the neural mechanisms on working memory impairment in connection with GAD symptoms.

  9. Functionalization and post-functionalization: a step towards polyoxometalate-based materials.

    Science.gov (United States)

    Proust, Anna; Matt, Benjamin; Villanneau, Richard; Guillemot, Geoffroy; Gouzerh, Pierre; Izzet, Guillaume

    2012-11-21

    Polyoxometalates (POMs) have remarkable properties and a great deal of potential to meet contemporary societal demands regarding health, environment, energy and information technologies. However, implementation of POMs in various functional architectures, devices or materials requires a processing step. Most developments have considered the exchange of POM counterions in an electrostatically driven approach: immobilization of POMs on electrodes and other surfaces including oxides, embedding in polymers, incorporation into Layer-by-Layer assemblies or Langmuir-Blodgett films and hierarchical self-assembly of surfactant-encapsulated POMs have thus been thoroughly investigated. Meanwhile, the field of organic-inorganic POM hybrids has expanded and offers the opportunity to explore the covalent approach for the organization or immobilization of POMs. In this critical review, we focus on the use of POM hybrids in selected fields of applications such as catalysis, energy conversion and molecular nanosciences and we endeavor to discuss the impact of the covalent approach compared to the electrostatic one. The synthesis of organic-inorganic POM hybrids starting from bare POMs, that is the direct functionalization of POMs, is well documented and reliable and efficient synthetic procedures are available. However, as the complexity of the targeted functional system increases a multi-step strategy relying on the post-functionalization of preformed hybrid POM platforms could prove more appealing. In the second part of this review, we thus survey the synthetic methodologies of post-functionalization of POMs and critically discuss the opportunities it offers compared to direct functionalization.

  10. Pulse thermal processing of functional materials using directed plasma arc

    Science.gov (United States)

    Ott, Ronald D.; Blue, Craig A.; Dudney, Nancy J.; Harper, David C.

    2007-05-22

    A method of thermally processing a material includes exposing the material to at least one pulse of infrared light emitted from a directed plasma arc to thermally process the material, the pulse having a duration of no more than 10 s.

  11. Environmental safety providing during heat insulation works and using thermal insulation materials

    Directory of Open Access Journals (Sweden)

    Velichko Evgeny

    2017-01-01

    Full Text Available This article considers the negative effect of thermal insulating materials and products on human health and environment pollution, particularly in terms of the composition of environmentally hazardous construction products. The authors have analyzed the complex measures for providing ecological safety, sanitary and epidemiological requirements, rules and regulations both during thermal insulation works and throughout the following operation of buildings and premises. The article suggests the protective and preventive measures to reduce and eliminate the negative impact of the proceeding of thermal insulation works on the natural environment and on human health.

  12. A study of cardiopulmonary function and working capacity of ...

    African Journals Online (AJOL)

    Forced vital capacity (fvc, L/sec), forced expiratory volume (fev1, L/sec), fev1%, forced expiratory flow rate (fef 200—1200 ml,. L/sec), forced mid-expiratory flow rate (fmf 25—75 %, L/sec), peak expiratory flow rate (pefr, L/min), minute ventilation (ve, L/min), oxygen saturation of arterial blood (SaO2%), working capacity ...

  13. Brain injury impairs working memory and prefrontal circuit function

    Directory of Open Access Journals (Sweden)

    Colin James Smith

    2015-11-01

    Full Text Available More than 2.5 million Americans suffer a traumatic brain injury (TBI each year. Even mild to moderate traumatic brain injury causes long-lasting neurological effects. Despite its prevalence, no therapy currently exists to treat the underlying cause of cognitive impairment suffered by TBI patients. Following lateral fluid percussion injury (LFPI, the most widely used experimental model of TBI, we investigated alterations in working memory and excitatory/inhibitory synaptic balance in the prefrontal cortex. LFPI impaired working memory as assessed with a T-maze behavioral task. Field excitatory postsynaptic potentials recorded in the prefrontal cortex were reduced in slices derived from brain-injured mice. Spontaneous and miniature excitatory postsynaptic currents onto layer 2/3 neurons were more frequent in slices derived from LFPI mice while inhibitory currents onto layer 2/3 neurons were smaller after LFPI. Additionally, an increase in action potential threshold and concomitant decrease in firing rate was observed in layer 2/3 neurons in slices from injured animals. Conversely, no differences in excitatory or inhibitory synaptic transmission onto layer 5 neurons were observed; however, layer 5 neurons demonstrated a decrease in input resistance and action potential duration after LFPI. These results demonstrate synaptic and intrinsic alterations in prefrontal circuitry that may underlie working memory impairment caused by TBI.

  14. Overview of recent work on self-healing in cementitious materials

    OpenAIRE

    Lv, Z.; Chen, D.

    2014-01-01

    Cracks, especially microcracks, in concrete are of paramount importance to the durability and the service life of cementitious composite. However, the self-healing technology, including autogenous healing and autonomous healing, is expected to be one of effective tools to overcome this boring problem. In this paper, we focus on the autogenous healing of concrete material and a few of recent works of autonomous healing are also mentioned. The durability and the mechanical properties improved b...

  15. Multi-material micro-electromechanical fibers with bendable functional domains

    Science.gov (United States)

    Nguyen-Dang, Tung; Page, Alexis G.; Qu, Yunpeng; Volpi, Marco; Yan, Wei; Sorin, Fabien

    2017-04-01

    The integration of increasingly complex functionalities within thermally drawn multi-material fibers is heralding a novel path towards advanced soft electronics and smart fabrics. Fibers capable of electronic, optoelectronic, piezoelectric or energy harvesting functions are created by assembling new materials in intimate contact within increasingly complex architectures. Thus far, however, the opportunities associated with the integration of cantilever-like structures with freely moving functional domains within multi-material fibers have not been explored. Used extensively in the micro-electromechanical system (MEMS) technology, electro-mechanical transductance from moving and bendable domains is used in a myriad of applications. In this article we demonstrate the thermal drawing of micro-electromechanical fibers (MEMF) that can detect and localize pressure with high accuracy along their entire length. This ability results from an original cantilever-like design where a freestanding electrically conductive polymer composite film bends under an applied pressure. As it comes into contact with another conducting domain, placed at a prescribed position in the fiber cross-section, an electrical signal is generated. We show that by a judicious choice of materials and electrical connectivity, this signal can be uniquely related to a position along the fiber axis. We establish a model that predicts the position of a local touch from the measurement of currents generated in the 1D MEMF device, and demonstrate an excellent agreement with the experimental data. This ability to detect and localize touch over large areas, curved surfaces and textiles holds significant opportunities in robotics and prosthetics, flexible electronic interfaces, and medical textiles. , which features invited work from the best early-career researchers working within the scope of J. Phys. D. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Fabien Sorin

  16. Modeling the Local Structure of Amorphous Materials: A Density Functional Theory Investigation

    Science.gov (United States)

    Gong, Kai; Ozcelik, Ongun; White, Claire

    Here, we present an iterative methodology alternating between density functional theory (DFT) calculations and pair distribution function (PDF) analysis to uncover the detailed atomic structure of highly amorphous materials. In this methodology, the DFT calculations are used to maintain chemical feasibility of the atomic structure, while the experimentally-driven refinements allow for exploration of the potential energy landscape. Through this iterative process, a final structure is obtained that is not only thermodynamically favorable but also in agreement with experiment data. Previously, we have demonstrated the applicability of similar DFT-PDF iterative methods in metakaolin and amorphous magnesium carbonate. Here, we have modified the methodology and applied it to resolve the atomic structure of ground granulated blast-furnace slag, a highly disordered calcium-magnesium aluminosilicate glassy material. Prior to applying the iterative process, a high temperature molecular dynamics (MD) simulation was used to generate a reasonable starting structure, which was found to be crucial. The iterative methodology outlined here is expected to be readily transferable to other disordered material systems where detailed atomic structures are currently not available. This material is based on work supported by the National Science Foundation under Grant No. 1362039.

  17. Work functioning in persons with depressive and anxiety disorders : The role of specific psychopathological characteristics

    NARCIS (Netherlands)

    Plaisier, I.; Beekman, A.T.F.; de Graaf, R.; Smit, J. H.; van Dyck, R.; Penninx, Brenda

    Background: Depressive and anxiety disorders affect work functioning and cause high labour costs. Aims: To examine and compare psychopathological characteristics of depressive and anxiety disorders in their effect on work functioning. Method: In 1876 working participants of the Netherlands Study of

  18. Predictors of impaired work functioning in employees with major depression in remission

    NARCIS (Netherlands)

    Vries, G. de; Koeter, M.W.; Nieuwenhuijsen, K.; Hees, H.L.; Schene, A.H.

    2015-01-01

    OBJECTIVES: This study aims to (i) assess work functioning in employees returning to work with a major depression in remission, (ii) study the predictors of impaired work functioning. METHODS: Participants diagnosed with major depressive disorder (MDD), on long term sick leave (mean 27 weeks) and

  19. Predictors of impaired work functioning in employees with major depression in remission

    NARCIS (Netherlands)

    de Vries, Gabe; Koeter, Maarten W. J.; Nieuwenhuijsen, Karen; Hees, Hiske L.; Schene, Aart H.

    2015-01-01

    This study aims to (i) assess work functioning in employees returning to work with a major depression in remission, (ii) study the predictors of impaired work functioning. Participants diagnosed with major depressive disorder (MDD), on long term sick leave (mean 27 weeks) and treated in a

  20. A scaled boundary finite element formulation with bubble functions for elasto-static analyses of functionally graded materials

    Science.gov (United States)

    Ooi, E. T.; Song, C.; Natarajan, S.

    2017-07-01

    This manuscript presents an extension of the recently-developed high order complete scaled boundary shape functions to model elasto-static problems in functionally graded materials. Both isotropic and orthotropic functionally graded materials are modelled. The high order complete properties of the shape functions are realized through the introduction of bubble-like functions derived from the equilibrium condition of a polygon subjected to body loads. The bubble functions preserve the displacement compatibility between the elements in the mesh. The heterogeneity resulting from the material gradient introduces additional terms in the polygon stiffness matrix that are integrated analytically. Few numerical benchmarks were used to validate the developed formulation. The high order completeness property of the bubble functions result in superior accuracy and convergence rates for generic elasto-static and fracture problems involving functionally graded materials.

  1. The Work Role Functioning Questionnaire v2.0 Showed Consistent Factor Structure Across Six Working Samples

    DEFF Research Database (Denmark)

    Abma, Femke I.; Bültmann, Ute; Amick, Benjamin C.

    2017-01-01

    Objective: The Work Role Functioning Questionnaire v2.0 (WRFQ) is an outcome measure linking a persons’ health to the ability to meet work demands in the twenty-first century. We aimed to examine the construct validity of the WRFQ in a heterogeneous set of working samples in the Netherlands...... with mixed clinical conditions and job types to evaluate the comparability of the scale structure. Methods: Confirmatory factor and multi-group analyses were conducted in six cross-sectional working samples (total N = 2433) to evaluate and compare a five-factor model structure of the WRFQ (work scheduling....... Therefore subscale scores are recommended to compare across different clinical and working samples....

  2. Analytical estimation of distance-disorientation function of the material microstructure

    Science.gov (United States)

    Staraselski, Yauheni; Brahme, Abhijit; Inal, Kaan; Mishra, Raja K.

    2013-08-01

    This work presents a new functional approach to estimate the distance-disorientation correlation function of a given microstructure. The proposed approach separates the crystallographic domain into texture defined by its Euler angles ( ? ) and geometrical domain defined by distance distribution function ? . The crystallographic domain is treated as independent (known) variable and an analytical estimate for the Euclidian distance distribution function ? is obtained. The proposed analytical solution for the estimation of ? is based on existing statistical growth models and the logistic probability distribution function. The solution is optimized for the measured experimental data and takes into account morphological features of the microstructure such as grain volume, grain radius and grain size as well as their distribution inside the material. An analytical model is proposed for constructing the distance-disorientation function (DDF) using the estimated Euclidian distance between pixel pairs. The new functional solution is a highly effective way to calculate DDF values, making it suitable for application to the real microstructure optimization problems. The DDF obtained by using the results of probabilistic solution is validated by comparing them with the DDF obtained from experimental electron back-scatter diffraction data.

  3. Metal-organic frameworks: functional luminescent and photonic materials for sensing applications.

    Science.gov (United States)

    Lustig, William P; Mukherjee, Soumya; Rudd, Nathan D; Desai, Aamod V; Li, Jing; Ghosh, Sujit K

    2017-06-06

    Metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) are open, crystalline supramolecular coordination architectures with porous facets. These chemically tailorable framework materials are the subject of intense and expansive research, and are particularly relevant in the fields of sensory materials and device engineering. As the subfield of MOF-based sensing has developed, many diverse chemical functionalities have been carefully and rationally implanted into the coordination nanospace of MOF materials. MOFs with widely varied fluorometric sensing properties have been developed using the design principles of crystal engineering and structure-property correlations, resulting in a large and rapidly growing body of literature. This work has led to advancements in a number of crucial sensing domains, including biomolecules, environmental toxins, explosives, ionic species, and many others. Furthermore, new classes of MOF sensory materials utilizing advanced signal transduction by devices based on MOF photonic crystals and thin films have been developed. This comprehensive review summarizes the topical developments in the field of luminescent MOF and MOF-based photonic crystals/thin film sensory materials.

  4. Emerging functional chiral microporous materials: synthetic strategies and enantioselective separations

    OpenAIRE

    Xue, Ming; Li, Bin; Qiu, Shilun; Chen, Banglin

    2016-01-01

    In recent years, chiral microporous materials with open pores have attracted much attention because of their potential applications in enantioselective separation and catalysis. This review summarizes the recent advances on chiral microporous materials, such as metal-organic frameworks (MOFs), hydrogen-bonded organic frameworks (HOFs) and covalent organic frameworks (COFs). We will introduce the synthetic strategies in detail and highlight the current status of chiral microporous materials on...

  5. Surface characterization and functional properties of carbon-based materials

    OpenAIRE

    2012-01-01

    Carbon-based materials are poised to be an important class of 21st century materials, for bio-medical, bio-electronic, and bio-sensing applications. Diamond and polymers are two examples of carbon-based materials of high interest to the bio-materials community. Diamond, in its conductive form, can be used as an electrochemical bio-sensor, whilst its nanoparticle form is considered a non-inflammatory platform to deliver drugs or to grow neuronal cells. Polymers, especially when chemically m...

  6. The Relationship Between Working Memory Capacity and Executive Functioning: Evidence for a Common Executive Attention Construct

    Science.gov (United States)

    McCabe, David P.; Roediger, Henry L.; McDaniel, Mark A.; Balota, David A.; Hambrick, David Z.

    2010-01-01

    Attentional control has been conceptualized as executive functioning by neuropsychologists and as working memory capacity by experimental psychologists. We examined the relationship between these constructs using a factor analytic approach in an adult lifespan sample. Several tests of working memory capacity and executive function were administered to over 200 subjects between the ages of 18-90 years old, along with tests of processing speed and episodic memory. The correlation between working memory capacity and executive functioning constructs was very strong (r = .97), but correlations between these constructs and processing speed were considerably weaker (r's ≈ .79). Controlling for working memory capacity or executive function eliminated age effects on episodic memory, and working memory capacity or executive function accounted for variance in episodic memory beyond that accounted for by processing speed. We conclude that tests of working memory capacity and executive function share a common underlying executive attention component that is strongly predictive of higher-level cognition. PMID:20230116

  7. Assessment of the lung function status of the goldsmiths working in an unorganized sector of India

    Directory of Open Access Journals (Sweden)

    Subhashis Sahu

    2013-01-01

    Full Text Available Context: Exposure to various types of fumes and gases are very common in Jewelery industries. No Report is available regarding the effects of those fumes and gases on the respiratory functions of the goldsmiths. Due to lack of proper monitoring of the workplace environments in these unorganized sectors, workers get very much affected by the occupational exposures to those irritants. Aims: The present study aimed to investigate whether the occupational exposures to fumes and gases might alter the lung functions of the goldsmiths. Materials and Methods: A total of 118 goldsmiths and 66 unexposed control subjects were taken randomly for the study. The goldsmiths were further classified in 3 groups according to duration (year of exposures in the work environment, ETA 1 (less than 5 years, ETA 2 (more than 5 years but less than 10 years, and ETA 3 (more than 10 years. Peak expiratory flow rates (PEFR, forced vital capacity (FVC, and forced expiratory flow rates of different intervals (FEF 25% , FEF 50% , FEF 75% , FEF 25-75% were measured using computerized Spirometer (Maestros Mediline, India. The statistical analyses were carried out using Minitab software version 3. Results: Lung functions of the goldsmiths significantly (P < 0.01 decreased from that of the control group. Inter-group comparison also showed the deteriorations of lung functions was associated with exposure time, and more exposed workers had significantly less (P < 0.01 efficiencies of lung functions. Conclusions: Workplace fumes and gases were responsible for deterioration of the lung function status of the goldsmiths.

  8. Applications of Click Chemistry Reactions to the Synthesis of Functional Materials

    Science.gov (United States)

    Accurso, Adrian A.

    This body of work focuses on the production of functional materials using the most reliable carbon-hetoratom bond-forming processes available, which are widely termed "click chemistry" reactions in the literature. This focus on function is enabled by a basis in synthetic chemistry, and where appropriate, brings in techniques from the related fields of materials science and biology to address current needs in those areas. Chapter 1 concerns the in situ production of azide and alkyne-based click chemistry adhesive polymers. Screening of a library of multivalent azides and alkynes was accomplished on a custom-built highthroughput instrument and followed up on a lap-shear testing apparatus. The conductivity of composites made of the adhesive was also explored according to standard methods. The second and third chapters explore the synthesis and function of a family of related [3.3.1]-bicyclononane dichlorides, which we have termed "WCL" electrophiles, and their potential applications for surface functionalization, the synthesis of polycations, and candidate membrane disruptive compounds. The rates of consumption of dichlorides and hydrolysis of model compounds were also explored using NMR, GC-MS, and HPLC-based methods.

  9. Simultaneous dynamic electrical and structural measurements of functional materials

    Energy Technology Data Exchange (ETDEWEB)

    Vecchini, C.; Stewart, M.; Muñiz-Piniella, A.; Wooldridge, J. [National Physical Laboratory, Hampton Road, Teddington TW11 0LW (United Kingdom); Thompson, P.; McMitchell, S. R. C.; Bouchenoire, L.; Brown, S.; Wermeille, D.; Lucas, C. A. [XMaS, The UK-CRG, ESRF-The European Synchrotron, CS40220, F-38043, Grenoble Cedex 09 (France); Department of Physics, University of Liverpool, Liverpool L69 3BX (United Kingdom); Lepadatu, S. [National Physical Laboratory, Hampton Road, Teddington TW11 0LW (United Kingdom); Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Bikondoa, O.; Hase, T. P. A. [XMaS, The UK-CRG, ESRF-The European Synchrotron, CS40220, F-38043, Grenoble Cedex 09 (France); Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Lesourd, M. [ESRF-The European Synchrotron, CS40220, F-38043, Grenoble Cedex 09 (France); Dontsov, D. [SIOS Meßtechnik GmbH, Am Vogelherd 46, 98693 Ilmenau (Germany); Cain, M. G. [National Physical Laboratory, Hampton Road, Teddington TW11 0LW (United Kingdom); Electrosciences Ltd., Farnham, Surrey GU9 9QT (United Kingdom)

    2015-10-15

    A new materials characterization system developed at the XMaS beamline, located at the European Synchrotron Radiation Facility in France, is presented. We show that this new capability allows to measure the atomic structural evolution (crystallography) of piezoelectric materials whilst simultaneously measuring the overall strain characteristics and electrical response to dynamically (ac) applied external stimuli.

  10. Design, Fabrication, Characterization and Modeling of Integrated Functional Materials

    Science.gov (United States)

    2015-12-01

    alumina template was dissolved by gently crushing the nanoparticle-filled alumina template and sonicating in an 8 molar solution of sodium hydroxide ...fiber growth; fundamentals of materials manufacturing processes and computational theoretical materials physics. This research synergistically... methods , we have been able to synthesize highly crystalline iron oxide magnetic nanoparticles with controlled sizes and shapes. For the hyperthermia

  11. Functional MRI in Awake Dogs Predicts Suitability for Assistance Work

    Science.gov (United States)

    Berns, Gregory S.; Brooks, Andrew M.; Spivak, Mark; Levy, Kerinne

    2017-03-01

    The overall goal of this work was to measure the efficacy of fMRI for predicting whether a dog would be a successful service dog. The training and imaging were performed in 49 dogs entering service training at 17-21 months of age. 33 dogs completed service training and were matched with a person, while 10 were released for behavioral reasons (4 were selected as breeders and 2 were released for medical reasons.) After 2 months of training, fMRI responses were measured while each dog observed hand signals indicating either reward or no reward and given by both a familiar handler and a stranger. Using anatomically defined ROIs in the caudate, amygdala, and visual cortex, we developed a classifier based on the dogs’ subsequent training outcomes. The classifier had a positive predictive value of 94% and a negative predictive value of 67%. The area under the ROC curve was 0.91 (0.80 with 4-fold cross-validation, P = 0.01), indicating a significant predictive capability. The magnitude of response in the caudate was positively correlated with a successful outcome, while the response in the amygdala depended on the interaction with the visual cortex during the stranger condition and was negatively correlated with outcome (higher being associated with failure). These results suggest that, as indexed by caudate activity, successful service dogs generalize associations to hand signals regardless who gives them but without excessive arousal as measured in the amygdala.

  12. Functionalization of linen/cotton pigment prints using inorganic nano structure materials.

    Science.gov (United States)

    Ibahim, N A; Eid, B M; Abd El-Aziz, E; Abou Elmaaty, T M

    2013-09-12

    The present work opens up a novel strategy for the development of new multifunctional cellulosic pigment prints. The developed process aims at modifying the solvent-free pigment printing formulations via inclusion of certain inorganic nano materials namely silver (Ag-NPs), zinc oxide (ZnO-NPs), zirconium oxide (ZrO₂-NPs) or titanium dioxide (TiO₂-NPs) at 20 g/kg paste followed by screen printing and microwave fixation. The imparted functional properties together with the depth of the obtained prints are governed by the type of nano additives, type of binder and the pigment colorant. The imparted antibacterial and/or UV protection properties to the pigment prints were retained with an acceptable level (>70%) of durability even after 20 washing cycles. The presence of nano materials on the surface of the obtained pigment prints was confirmed using SEM images and EDX spectra. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Functional capacity and work ability in patients with chronic musculoskeletal pain

    NARCIS (Netherlands)

    van der Meer, Suzan

    2014-01-01

    Patients suffering from chronic low back pain (CLBP) and whiplash associated disorders (WAD) may experience many problems, including in work. Work ability is considered a balance between work demands and personal resources. Functional Capacity Evaluations (FCE) can be used to measure aspects of work

  14. Introducing Trimming and Function Ranking to SolidWorks based on Function Analysis

    NARCIS (Netherlands)

    Chechurin, L.S.; Wits, Wessel Willems; Bakker, Hans M.; Vaneker, Thomas H.J.

    2015-01-01

    TRIZ based Function Analysis models existing products based on functional interactions between product parts. Such a function model description is the ideal starting point for product innovation. Design engineers can apply (TRIZ) methods such as trimming and function ranking to this function model

  15. Introducing trimming and function ranking to Solid Works based on function analysis

    NARCIS (Netherlands)

    Chechurin, Leonid S.; Wits, Wessel Willems; Bakker, Hans M.; Cascini, G.; Vaneker, Thomas H.J.

    2011-01-01

    TRIZ based Function Analysis models existing products based on functional interactions between product parts. Such a function model description is the ideal starting point for product innovation. Design engineers can apply (TRIZ) methods such as trimming and function ranking to this function model

  16. A universal method to produce low-work function electrodes for organic electronics

    National Research Council Canada - National Science Library

    Zhou, Yinhua; Fuentes-Hernandez, Canek; Shim, Jaewon; Meyer, Jens; Giordano, Anthony J; Li, Hong; Winget, Paul; Papadopoulos, Theodoros; Cheun, Hyeunseok; Kim, Jungbae; Fenoll, Mathieu; Dindar, Amir; Haske, Wojciech; Najafabadi, Ehsan; Khan, Talha M; Sojoudi, Hossein; Barlow, Stephen; Graham, Samuel; Brédas, Jean-Luc; Marder, Seth R; Kahn, Antoine; Kippelen, Bernard

    2012-01-01

    .... We show that surface modifiers based on polymers containing simple aliphatic amine groups substantially reduce the work function of conductors including metals, transparent conductive metal oxides...

  17. Zonal disintegration of rocks around underground workings. Part II. Rock fracture simulated in equivalent materials

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, E.I.; Fisenko, G.L.; Kurlenya, M.V.; Oparin, V.N.; Reva, V.N.; Glushikhin, F.P.; Rozenbaum, M.A.; Tropp, E.A.; Kuznetsov, Yu.S.

    1987-05-01

    For a detailed testing of the effects discovered in situ, analysis of the patterns and origination conditions of fractured rock zones inside the bed around workings, and ways explosions affect the surrounding rocks, a program and a method of study on models of equivalent materials have been developed. The method of simulation on two- and three-dimensional models involved building in a solid or fissured medium a tunnel of a circular or arched cross section. The tests were done for elongate adit-type workings. At the first stage, three models were tested with different working support systems: anchor supports, concrete-spray supports and no supports. Zone formation is shown and described. Tests were continued on two groups of three-dimensional models to bring the model closer to in situ conditions. The presence of gaping cracks and heavily fractured zones deep in the interior of the bed with a quasicylindrical symmetry indicates that the common views concerning the stressed-strained state of rocks around underground workings are at variance with the actual patterns of deformation and destruction of rocks near the workings in deep horizons.

  18. Functional carbon nitride materials — design strategies for electrochemical devices

    Science.gov (United States)

    Kessler, Fabian K.; Zheng, Yun; Schwarz, Dana; Merschjann, Christoph; Schnick, Wolfgang; Wang, Xinchen; Bojdys, Michael J.

    2017-06-01

    In the past decade, research in the field of artificial photosynthesis has shifted from simple, inorganic semiconductors to more abundant, polymeric materials. For example, polymeric carbon nitrides have emerged as promising materials for metal-free semiconductors and metal-free photocatalysts. Polymeric carbon nitride (melon) and related carbon nitride materials are desirable alternatives to industrially used catalysts because they are easily synthesized from abundant and inexpensive starting materials. Furthermore, these materials are chemically benign because they do not contain heavy metal ions, thereby facilitating handling and disposal. In this Review, we discuss the building blocks of carbon nitride materials and examine how strategies in synthesis, templating and post-processing translate from the molecular level to macroscopic properties, such as optical and electronic bandgap. Applications of carbon nitride materials in bulk heterojunctions, laser-patterned memory devices and energy storage devices indicate that photocatalytic overall water splitting on an industrial scale may be realized in the near future and reveal a new avenue of 'post-silicon electronics'.

  19. Functional Nanofibers via Electospinning: New Materials and Processes

    Science.gov (United States)

    Manasco, Joshua Lee

    Cyclodextrins are fascinating, amphiphilic molecules that are of considerable interest due to their ability to be used in a variety of applications ranging from pharmaceuticals and cosmetics to foods and agriculture. These are ring-shaped sugar molecules possess a hydrophobic cavity and a hydrophilic exterior which imparts them water solubility. There are three main types of naturally occurring cyclodextrins namely alpha-, beta- and gamma- CD which have 6, 7 and 8 member rings, respectively. Owing to their hydrophobic interior, cyclodextrin molecules encapsulate hydrophobic guest molecules (from small to macromolecules) to form host-guest supermolecular structures. Chemically modified CDs are often preferred to the natural forms, particularly methylated (MbetaCD) and hydroxypropylated (HPbetaCD) cyclodextrins, for their enhanced solubility and chemical stability. Electrostatic spinning (electrospinning) of nanofibers has drawn significant research attention in recent decades. This technique involves the stretching of a polymer solution or melt in a high electric field to produce fibers on the nanoscale. These 1-Dimensional nanostructures possess extraordinary surface-to-weight ratio and find applications that vary from filtration membranes and tissue scaffolding materials to drug delivery and many others. The scope of this research attempts to leverage the unique features of CDs with the high aspect ratio of nanofibers to create functional nanomaterials. The present study can be divided into three sections. In the first part, we establish that CDs can be electrospun without the need for a "carrier" polymer. This discovery may serve to extend the horizon of what is currently considered "electrospinnable" from macromolecules now to small molecules. The ability to electrospin CDs led to their incorporation of other polymers to create bicomponent fibers with poly (vinyl alcohol) (PVA) and polyacrylonitrile (PAN). In the case of PVA we demonstrate the ability to not

  20. Enhancement of scale-related sensitivity through field-work prototyping and materializations

    Directory of Open Access Journals (Sweden)

    Tadeja Zupančič

    2013-07-01

    Full Text Available This article addresses the problems related to the student lacking of the comprehension of the space and proportions scale in architectural and urban design education. The research is based on carefully selected case studies taken from our recent architectural-urban design workshops, which have presented a methodological framework process within the design ideas have been tested by the complex process of physical materialization. Our goal have been to develop the adequate methodological model which would enhance the scale-related sensitivity of students through field-work prototyping and materialization »in one to one scale«. The discussion covers some potentials and limitations of the model proposed and focuses to the potentials of the scientific research level in the implementation of the practice-based research in architecture and urban design.

  1. Nanostructured functional hybrid materials via self-assembly of brush block copolymers

    Science.gov (United States)

    Song, Dong-Po; Gai, Yue; Yavitt, Benjamin; Watkins, James

    The self-assembly of well-ordered nanoparticle (NP) / block copolymer (BCP) composites enables precise control over the spatial distribution of NP arrays, providing a simple route to the low-cost ``bottom-up'' fabrication of hybrid materials with enhanced mechanical, optical and electric properties. Here we summarize the fabrication of nanocomposites via the self-assembly of brush BCPs (BBCPs). In comparison to conventional materials based on linear BCPs, the BBCP hybrids exhibit many attractive features, including rapid supramolecular self-assembly (100 nm), and high loading of functional additives (>70 wt%). Both the self-assembled structures and the compositions of the nanocomposites can be widely tuned for applications such as photonic crystals or coatings, nonlinear optics, and metamaterials. In addition, BBCPs were employed as templates for the mesoporous hybrid materials that have large mesopores (up to 40 nm) and high loadings of functional NPs (up to 50 wt%). Simple solutionbased processing and rapid self-assembly of brush BCP nanocomposites are promising for roll-to-roll manufacturing of low-cost and flexible devices. This work was supported by NSF Center for Hierarchical Manufacturing at the University of Massachusetts, Amherst.

  2. Study on work function change of ITO modified by using a self-assembled monolayer for organic based devices

    Energy Technology Data Exchange (ETDEWEB)

    Jee, Seung Hyun; Kim, Soo Ho; Ko, Jae Hwan; Yoon, Young Soo [Konkuk University, Seoul (Korea, Republic of)

    2006-11-15

    The surface of Indium tin oxide (ITO) used as an electrode in organic light emitting diodes (OLEDs) and organic thin film transistors (OTFTs) was modified by a self-assembled monolayer (SAM). In order to increase the work function of the electrode, we modified the surface of the ITO by immersion in solutions including various SAM materials, such as 4-chlorophenhyl trichlorosilane (4-CPTS), chloromethyl trichlorosilane (CMTS), 4-chlorophenyl phosphonic acid (4-CPPA), 3-nitrophenyl phosphonic acid (3-NPPA) and 2-chloroethyl phosphonic acid (2-CEPA), at room temperature. The work function changes of the ITO with a SAM were measured by using a Kelvin probe. A work function increase of 1.09 eV was observed in the ITO with CMTS. In addition, it was found by using X-ray photoelectron spectroscopy that an increase in oxygen bonding energy contributed to the work function increase of the ITO. Through a SAM process, the transmittance of the ITO with a SAM was not changed. Therefore, some possibility of ohmic contact was shown because the energy barrier was removed in an interface between the ITO and an organic layer (pentacene or TPD) in the OTFT or the OLED. The origin of the work function increase of the ITO with a SAM was analyzed by X-ray photoelectron spectroscopy. These results suggest that ITO with a SAM greatly increases the probability for high-performance OLEDs and OTFTs.

  3. Integrated micro/nanoengineered functional biomaterials for cell mechanics and mechanobiology: a materials perspective.

    Science.gov (United States)

    Shao, Yue; Fu, Jianping

    2014-03-12

    The rapid development of micro/nanoengineered functional biomaterials in the last two decades has empowered materials scientists and bioengineers to precisely control different aspects of the in vitro cell microenvironment. Following a philosophy of reductionism, many studies using synthetic functional biomaterials have revealed instructive roles of individual extracellular biophysical and biochemical cues in regulating cellular behaviors. Development of integrated micro/nanoengineered functional biomaterials to study complex and emergent biological phenomena has also thrived rapidly in recent years, revealing adaptive and integrated cellular behaviors closely relevant to human physiological and pathological conditions. Working at the interface between materials science and engineering, biology, and medicine, we are now at the beginning of a great exploration using micro/nanoengineered functional biomaterials for both fundamental biology study and clinical and biomedical applications such as regenerative medicine and drug screening. In this review, an overview of state of the art micro/nanoengineered functional biomaterials that can control precisely individual aspects of cell-microenvironment interactions is presented and they are highlighted them as well-controlled platforms for mechanistic studies of mechano-sensitive and -responsive cellular behaviors and integrative biology research. The recent exciting trend where micro/nanoengineered biomaterials are integrated into miniaturized biological and biomimetic systems for dynamic multiparametric microenvironmental control of emergent and integrated cellular behaviors is also discussed. The impact of integrated micro/nanoengineered functional biomaterials for future in vitro studies of regenerative medicine, cell biology, as well as human development and disease models are discussed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The analysis of mathematics teachers' learning on algebra function limit material based on teaching experience difference

    Science.gov (United States)

    Ma'rufi, Budayasa, I. Ketut; Juniati, Dwi

    2017-08-01

    The aim of this study was to describe the analysis of mathematics teachers' learning on algebra function limit material based on teaching experience difference. The purpose of this study is to describe the analysis of mathematics teacher's learning on limit algebraic functions in terms of the differences of teaching experience. Learning analysis focused on Pedagogical Content Knowledge (PCK) of teachers in mathematics on limit algebraic functions related to the knowledge of pedagogy. PCK of teachers on limit algebraic function is a type of specialized knowledge for teachers on how to teach limit algebraic function that can be understood by students. Subjects are two high school mathematics teacher who has difference of teaching experience they are one Novice Teacher (NP) and one Experienced Teacher (ET). Data are collected through observation of learning in the class, videos of learning, and then analyzed using qualitative analysis. Teacher's knowledge of Pedagogic defined as a knowledge and understanding of teacher about planning and organizing of learning, and application of learning strategy. The research results showed that the Knowledge of Pedagogy on subject NT in mathematics learning on the material of limit function algebra showed that the subject NT tended to describe procedurally, without explaining the reasons why such steps were used, asking questions which tended to be monotonous not be guiding and digging deeper, and less varied in the use of learning strategies while subject ET gave limited guidance and opportunities to the students to find their own answers, exploit the potential of students to answer questions, provide an opportunity for students to interact and work in groups, and subject ET tended to combine conceptual and procedural explanation.

  5. Improving the work position of worker based on manual material handling in rice mill industry

    Science.gov (United States)

    Astuti, Rahmaniyah Dwi; Susmartini, Susy; Kinanthi, Ade Putri

    2017-11-01

    In traditional industries still using manual material handling to weight lifting. Worker at the rice mill, especially in rice filtering activity has wrong ergonomic posture to enforce the body bends and carried loads too heavy cause of injury for lower back and waist. The work attitude is unnatural posture. This study aimed to determine the severity of the workload, the level of risk posed to the rice taking activities and suggested as an improvement to it. Identify the operator complaints used Nordic Body Map method. Rapid Entire Body Assessment (REBA) method is used to provide an assessment of the working posture of the operator. Assessment of the working posture on rice filtering process shows that REBA score is 12 with an explanation very high level of risk and action level is 4 which means the action needs to be repaired immediately. Biomechanics calculation shows result 6713.21 N, the result of the calculation of the biomechanics of worker in the rice filtering activities indicates that the activities would pose a risk or injury. Therefore, improvement in rice filtering activity by designing a tool for lowering the risk level worker. The design tools are illustrated with 2D modeling resulted in the level of risk that is working REBA score became 3 which shows a low risk level. Biomechanics calculation after designed of tools show the result is 6282.86 N. The results means the activities carried out are still in safe condition and does not pose a risk or injury.

  6. Age effects on load-dependent brain activations in working memory for novel material.

    Science.gov (United States)

    Holtzer, Roee; Rakitin, Brian C; Steffener, Jason; Flynn, Joe; Kumar, Arjun; Stern, Yaakov

    2009-01-16

    Three competing models of cognitive aging (neural compensation, capacity limitations, neural inefficiency) were examined in relation to working memory for novel non-verbal material. To accomplish this goal young (n=25) and old (n=25) participants performed a delayed item recognition (DIR) task while being scanned with bold fMRI. The stimuli in the DIR task consisted of computer-generated closed-curve shapes with each shape presented only once in the testing conditions of each participant. This ensured that both the novelty and appearance of the shapes maximized visual demands and limited the extent of phonologic processing. Behaviorally, as expected, the old participants were slower and less accurate compared to the young participants. Spatial patterns of brain activation that corresponded to load-dependent (stimulus set size ranged from 1 to 3) fMRI signal during the three phases of the DIR task (memory set presentation, retention delay, probe presentation) were evaluated in both age groups. Support for neural compensation and capacity limitation was evident in retention delay and the probe phase, respectively. Data were inconsistent with the neural inefficiency model. The process specific support for the theories we examined is consistent with a large corpus of research showing that the substrates underlying the encoding, retention and probe phases are different. That is, cognitive aging theories can be specific to the neural networks/regions underlying the different phases of working memory. Delineating how these theories work in concert can increase knowledge of age-related effects on working memory.

  7. WORK EXPERIENCE INTERNSHIP THROUGH THE EYES OF TECHNICAL UNIVERSITY STUDENTS (ON THE MATERIALS OF SOCIOLOGICAL RESEARCH

    Directory of Open Access Journals (Sweden)

    Alexandr Yu. Myagkov

    2015-01-01

    Full Text Available The aim of the investigation is to study the problem of efficiency of work experience internship in a technical university and its role in the education of future professionals (problem has been investigated in the framework of the research project «Monitoring of social well-being and problems of professional adaptation of ISPEU students».Methods. While carrying out of sociological research, selection of respondents was occurred on the multistage combined (serially-nested model of sample among students I, III and V courses of six faculties of full-time course of ISPEU. The complex of questions (its answers show features of professional identity of the future experts on initial (I course, intermediate (III course and finishing (V course stages of their professional formation has been developed to find out the dynamics of process of professional adaptation of students from the first to the fifth year. The information was processed with application of program and analytical complex SPSS. The comparative analysis to a gender sign of degree of satisfaction/dissatisfaction has been undertaken by the work experience internship organization on the side of high school and the accepting enterprises.Results. The level of graduates’ satisfaction with the work experience internship is revealed that works on an estimation by students of quality of preparation in high school, the relation to a received speciality and success in the future profession. The data on a self-estimation of readiness of students to work experience internship is cited. Criteria of successful work experience internship are formulated.Scientific novelty. The given researches carried out by the authors, prove that work experience internship positively influences professional consciousness of students and promote formation of steady positive installations for professional job. However, work experience internship in its institutional forms is functional and appears to be the effective

  8. Tuning Energetic Material Reactivity Using Surface Functionalization of Aluminum Fuels

    Science.gov (United States)

    2012-10-30

    analysis of three different thermites consisting of aluminum (Al) particles with and without surface functionalization combined with molybdenum...of thermites , aluminum synthesis, aluminum fluoropolymer combustion, acid coatings Keerti S. Kappagantula, Cory Farley, Michelle L. Pantoya, Jillian...Reactivity Using Surface Functionalization of Aluminum Fuels Report Title ABSTRACT Combustion analysis of three different thermites consisting of aluminum (Al

  9. Functional Impairments and Work-Related Outcomes in Breast Cancer Survivors: A Systematic Review.

    Science.gov (United States)

    Bijker, Rimke; Duijts, Saskia F A; Smith, Sherzel N; de Wildt-Liesveld, Renée; Anema, Johannes R; Regeer, Barbara J

    2017-10-30

    Purpose Work participation after breast cancer treatment is generally negatively affected. Occupational health professionals might improve work-related outcomes by bridging the gap between sick-listed employees' levels of functioning and work demands. To aid them in this task, this review explored the association between functional impairments and work-related outcomes in breast cancer survivors. Methods Publications from January 2000-March 2016 were identified through five online databases (i.e. Pubmed, EMBASE, PsycINFO, CINAHL and the Cochrane Library). Quantitative and qualitative studies were included if they focused on functional impairments and work-related outcomes in breast cancer survivors. Two reviewers independently selected studies, extracted data and performed quality assessment. Results The search identified 998 studies, of which 20 studies met eligibility criteria. Impairments in physical functioning negatively affected return to work (RTW) and work ability in quantitative and qualitative studies. Studies measuring cognitive functioning with tests found no association with work-related outcomes, whereas the results of studies using self-reported measures were ambiguous. Social functioning was less commonly investigated and findings differed across work-related outcomes. Emotional functioning was not associated with work-related outcomes in quantitative studies, while in qualitative studies feelings such as insecurity were described as influencing RTW. Conclusions Functional impairments can severely hamper work participation in breast cancer survivors. This provides important opportunities for occupational health professionals to enhance RTW in breast cancer survivors, such as adequately addressing illness perceptions and work expectations. Ongoing research is warranted to aid occupational health professionals in providing effective vocational guidance and improve work-related outcomes in breast cancer survivors.

  10. Does polycystic ovary syndrome affect cognition? : A functional magnetic resonance imaging study exploring working memory

    NARCIS (Netherlands)

    Soleman, Remi S; Kreukels, Baudewijntje P C; Veltman, Dick J; Cohen-Kettenis, Peggy T; Hompes, Peter G A; Drent, Madeleine L; Lambalk, Cornelis B

    OBJECTIVE: To study effects of overexposure to androgens and subsequent antiandrogenic treatment on brain activity during working memory processes in women with polycystic ovary syndrome (PCOS). DESIGN: In this longitudinal study, working memory function was evaluated with the use of functional

  11. Reliability and Validity of the Work Role Functioning Questionnaire (Spanish Version)

    NARCIS (Netherlands)

    Ramada, Jose M.; Serra, Consol; Amick, Benjamin C.; Abma, Femke I.; Castano, Juan R.; Pidemunt, Gemma; Bultmann, Ute; Delclos, George L.

    2014-01-01

    Purpose Recently, the cross-cultural adaptation of the Work Role Functioning Questionnaire to Spanish was carried out, achieving satisfactory psychometric properties. Now we examined the reliability and validity of the adapted [Work role functioning questionnaire-Spanish version (WRFQ-SpV)] in a

  12. Work function anisotropy and surface stability of half-metallic CrO(2)

    NARCIS (Netherlands)

    Attema, J. J.; Uijttewaal, M. A.; de Wijs, G. A.; de Groot, R. A.

    Insight in the interplay between work function and stability is important for many areas of physics. In this paper, we calculate the anisotropy in the work function and the surface stability of CrO(2), a prototype half-metal, and find an anisotropy of 3.8 eV. An earlier model for the relation

  13. Team nursing: Accidents at work with biological material in a public hospital

    Directory of Open Access Journals (Sweden)

    Andressa Baleeiro da Silva

    2014-08-01

    Full Text Available Safety in the workplace is very important in the social sciences, and economic health. In the context of health care, the nurse is among the health professionals most affected by accidents with biological material, which reveals the need for studies and discussions on this subject. This study was conducted in a public hospital located in Bahia. Objective: To analyze the occurrence of work accidents with nursing professionals related to biological hazards. Methodology: This is a documentary study, conducted in the period from June to December of 2010. Results and discussion: The study population was predominantly female, 87% of nursing. The perforating was the major cause of accidents, among registered. This study highlighted the characteristics of professional nursing that is more exposed to accidents involving biological material and the need for inclusion of vocational training activities. Conclusion: With this study was to analyze the exposure to the professional nursing accidents with biological material, and highlight how this issue is troubling in the context of hospital care.

  14. TEAM NURSING: ACCIDENTS AT WORK WITH BIOLOGICAL MATERIAL IN A PUBLIC HOSPITAL

    Directory of Open Access Journals (Sweden)

    Andressa Baleeiro da Silva

    2014-06-01

    Full Text Available Safety in the workplace is very important in the social sciences, and economic health. In the context of health care, the nurse is among the health professionals most affected by accidents with biological material, which reveals the need for studies and discussions on this subject. This study was conducted in a public hospital located in Bahia. Objective: To analyze the occurrence of work accidents with nursing professionals related to biological hazards. Methodology: This is a documentary study, conducted in the period from June to December of 2010. Results and discussion: The study population was predominantly female, 87% of nursing. The perforating was the major cause of accidents, among registered. This study highlighted the characteristics of professional nursing that is more exposed to accidents involving biological material and the need for inclusion of vocational training activities. Conclusion: With this study was to analyze the exposure to the professional nursing accidents with biological material, and highlight how this issue is troubling in the context of hospital care.

  15. MAK and BAT values list 2017. Maximum permissible concentrations at the place of work and biological tolerance values for working materials; MAK- und BAT-Werte-Liste 2017. Maximale Arbeitsplatzkonzentrationen und Biologische Arbeitsstofftoleranzwerte

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-08-01

    The MAK and BAT values list 2017 includes the maximum permissible concentrations at the place of work and biological tolerance values for working materials. The following working materials are covered: carcinogenic working materials, sensitizing materials and aerosols. The report discusses the restriction of exposure peaks, skin resorption, MAK (maximum working place concentration) values during pregnancy, germ cell mutagens and specific working materials. Importance and application of BAT (biological working material tolerance) values, list of materials, carcinogens, biological guide values and reference values are also included.

  16. Work functioning in persons with depressive and anxiety disorders: the role of specific psychopathological characteristics.

    Science.gov (United States)

    Plaisier, I; Beekman, A T F; de Graaf, R; Smit, J H; van Dyck, R; Penninx, B W J H

    2010-09-01

    Depressive and anxiety disorders affect work functioning and cause high labour costs. To examine and compare psychopathological characteristics of depressive and anxiety disorders in their effect on work functioning. In 1876 working participants of the Netherlands Study of Depression and Anxiety (NESDA) associations of presence, severity, comorbidity, duration and type of DSM-IV anxiety and depressive disorders with both absenteeism (2 weeks) and work performance (reduced and impaired) were assessed. People with current depressive disorders had 7.10 times greater odds for the risk of >2 weeks work-absence and 5.67 greater odds for the risk of impaired work performance, while persons with current anxiety disorders had 1.84 and 2.13 greater odds for the risk of >2 weeks absence and impaired work performance, respectively. Even when persons were recovered from depressive and anxiety disorders, they still had a higher risk of poor work functioning. Persons with comorbidity, chronic depressive disorder, a generalized anxiety disorder, and more severity of both anxiety and depressive disorder had higher odds for the risk of absenteeism and decreased work performance. Anxiety disorders have significant negative impact on work functioning, although smaller than the effect of depressive disorders. Comorbidity, severity, type and duration of the disorder, differentiate the risk of poor work functioning. 2010 Elsevier B.V. All rights reserved.

  17. Dithiocarbamate Self-Assembled Monolayers as Efficient Surface Modifiers for Low Work Function Noble Metals

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Dominik; Schäfer, Tobias; Schulz, Philip; Jung, Sebastian; Rittich, Julia; Mokros, Daniel; Segger, Ingolf; Maercks, Franziska; Effertz, Christian; Mazzarello, Riccardo; Wuttig, Matthias

    2016-09-06

    Tuning the work function of the electrode is one of the crucial steps to improve charge extraction in organic electronic devices. Here, we show that N,N-dialkyl dithiocarbamates (DTC) can be effectively employed to produce low work function noble metal electrodes. Work functions between 3.1 and 3.5 eV are observed for all metals investigated (Cu, Ag, and Au). Ultraviolet photoemission spectroscopy (UPS) reveals a maximum decrease in work function by 2.1 eV as compared to the bare metal surface. Electronic structure calculations elucidate how the complex interplay between intrinsic dipoles and dipoles induced by bond formation generates such large work function shifts. Subsequently, we quantify the improvement in contact resistance of organic thin film transistor devices with DTC coated source and drain electrodes. These findings demonstrate that DTC molecules can be employed as universal surface modifiers to produce stable electrodes for electron injection in high performance hybrid organic optoelectronics.

  18. Materials for monolithic integration of optical functions on CMOS

    NARCIS (Netherlands)

    Rangarajan, B.

    2013-01-01

    This thesis, under the program called MEMPHIS (Merging Electronics and Micro & Nano Photonics in Integrated Systems - http://www.smartmix-memphis.nl/), focuses on the selection and optimization of materials and low temperature processes to realize waveguides and photodetectors on top of

  19. Development of functionally graded materials by ultrasonic consolidation

    CSIR Research Space (South Africa)

    Kumar, S

    2010-08-01

    Full Text Available parameters for welding various combinations of materials have been found for making a sample of aminimumo f62 foils of width 2” and length 3”. Optical microscopy and mirohardness test have been performed thereupon for the characterization....

  20. Inkjet Printing of Functional Materials on Selectively Plasma Treated Surfaces

    NARCIS (Netherlands)

    ir Renee Verkuijlen; ir Martijn van Dongen; Dr Jan Bernards

    2011-01-01

    In manufacturing of organic electronics, inkjet printing as an alternative technique for depositing materials is becoming increasingly important. Aside to the ink formulations challenges, improving the resolution of the printed patterns is a major goal. In this study we will discuss a newly

  1. DNA Block Copolymers : Functional Materials for Nanoscience and Biomedicine

    NARCIS (Netherlands)

    Schnitzler, Tobias; Herrmann, Andreas

    2012-01-01

    We live in a world full of synthetic materials, and the development of new technologies builds on the design and synthesis of new chemical structures, such as polymers. Synthetic macromolecules have changed the world and currently play a major role in all aspects of daily life. Due to their

  2. Reduction of the Work Function of Gold by N-Heterocyclic Carbenes

    KAUST Repository

    Kim, Hye Kyung

    2017-04-12

    N-Heterocyclic carbenes (NHCs) bind strongly to gold and other metals. This work experimentally probes the effect of NHCs on the work function (WF) of gold for the first time, theoretically analyzes the origin of this effect, and examines the effectiveness of NHC-modified gold as an electron-injecting electrode. UV photoelectron spectroscopy shows the WF of planar gold is reduced by nearly 2 eV to values of 3.3–3.5 eV. This effect is seen for NHCs with various heterocyclic cores, and with either small or large N,N′-substituents. DFT calculations indicate the WF reduction results from both the interface dipole formed between the NHC and the gold and from the NHC molecular dipole. For N,N′-diisopropyl-NHCs, an important contributor to the former is charge transfer associated with coordination of the carbene carbon atom to gold. In contrast, the carbene carbon of N,N′-2,6-diisopropylphenyl-NHCs is not covalently bound to gold, resulting in a lower interface dipole; however, a larger molecular dipole partially compensates for this. Single-layer C60 diodes with NHC-modified gold as the bottom electrode demonstrate high rectification ratios and show that these electrodes can act as effective electron-injecting contacts, suggesting they may be useful for a variety of materials applications.

  3. Functional Impairments and Work-Related Outcomes in Breast Cancer Survivors: A Systematic Review

    NARCIS (Netherlands)

    Bijker, R.; Duijts, Saskia; Smith, S.N.; de Wildt- Liesveld, R.; Anema, Johannes R.; Regeer, B.J.

    2017-01-01

    Purpose Work participation after breast cancer treatment is generally negatively affected. Occupational health professionals might improve work-related outcomes by bridging the gap between sick-listed employees' levels of functioning and work demands. To aid them in this task, this review explored

  4. Working Memory Functioning in Children with Learning Disorders and Specific Language Impairment

    Science.gov (United States)

    Schuchardt, Kirsten; Bockmann, Ann-Katrin; Bornemann, Galina; Maehler, Claudia

    2013-01-01

    Purpose: On the basis of Baddeley's working memory model (1986), we examined working memory functioning in children with learning disorders with and without specific language impairment (SLI). We pursued the question whether children with learning disorders exhibit similar working memory deficits as children with additional SLI. Method: In…

  5. Functional properties of whey protein and its application in nanocomposite materials and functional foods

    Science.gov (United States)

    Walsh, Helen

    Whey is a byproduct of cheese making; whey proteins are globular proteins which can be modified and polymerized to add functional benefits, these benefits can be both nutritional and structural in foods. Modified proteins can be used in non-foods, being of particular interest in polymer films and coatings. Food packaging materials, including plastics, can linings, interior coatings of paper containers, and beverage cap sealing materials, are generally made of synthetic petroleum based compounds. These synthetic materials may pose a potential human health risk due to presence of certain chemicals such as Bisphenol A (BPA). They also add to environmental pollution, being difficult to degrade. Protein-based materials do not have the same issues as synthetics and so can be used as alternatives in many packaging types. As proteins are generally hydrophilic they must be modified structurally and their performance enhanced by the addition of waterproofing agents. Polymerization of whey proteins results in a network, adding both strength and flexibility. The most interesting of the food-safe waterproofing agents are the (large aspect ratio) nanoclays. Nanoclays are relatively inexpensive, widely available and have low environmental impact. The clay surface can be modified to make it organophilic and so compatible with organic polymers. The objective of this study is the use of polymerized whey protein (PWP), with reinforcing nanoclays, to produce flexible surface coatings which limit the transfer of contents while maintaining food safety. Four smectite and kaolin type clays, one treated and three natural were assessed for strengthening qualities and the potential waterproofing and plasticizing benefits of other additives were also analyzed. The nutritional benefits of whey proteins can also be used to enhance the protein content of various foodstuffs. Drinkable yogurt is a popular beverage in the US and other countries and is considered a functional food, especially when

  6. Coating and Patterning Functional Materials for Large Area Electrofluidic Arrays

    Directory of Open Access Journals (Sweden)

    Hao Wu

    2016-08-01

    Full Text Available Industrialization of electrofluidic devices requires both high performance coating laminates and efficient material utilization on large area substrates. Here we show that screen printing can be effectively used to provide homogeneous pin-hole free patterned amorphous fluoropolymer dielectric layers to provide both the insulating and fluidic reversibility required for devices. Subsequently, we over-coat photoresist using slit coating on this normally extremely hydrophobic layer. In this way, we are able to pattern the photoresist by conventional lithography to provide the chemical contrast required for liquids dosing by self-assembly and highly-reversible electrofluidic switching. Materials, interfacial chemistry, and processing all contribute to the provision of the required engineered substrate properties. Coating homogeneity as characterized by metrology and device performance data are used to validate the methodology, which is well-suited for transfer to high volume production in existing LCD cell-making facilities.

  7. Design, Fabrication, Characterization and Modeling of Integrated Functional Materials

    Science.gov (United States)

    2012-10-01

    thermoelectrics, solar cells, photovoltaics, polypeptide multilayer films 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES...heterostructures for RF and microwave applications Project 6 Flexible photonic materials for solar -based energy sources Task III: Solid-state...were made for all six dendrimer-containing film systems following dehydration (Figure 35). Note that the z-scale varies from image to image

  8. Design, Fabrication, Characterization and Modeling of Integrated Functional Materials

    Science.gov (United States)

    2010-10-19

    referred to as delafossites . These derive their name from the mineral CuFeO2 [6], with which their crystal structures are isotypic. Denoted by the... delafossite oxides also exhibit a significant richness in properties. Motivated by the relatively high electrical conductivities observed in some... delafossite compounds [116-119], an investigation of these novel oxide materials for thermoelectric power generation applications was undertaken. Very

  9. Enhanced Functionality for Materials Analysis in the DTEM

    Energy Technology Data Exchange (ETDEWEB)

    Nigel D. Browning

    2008-04-28

    The recent explosion in the use of pump–probe studies on the picosecond timescale to investigate structural and electronic phase transitions and the dynamics of chemical reactions has been based largely on laser–induced reactions coupled with laser interrogation techniques, or on laser induced reactions coupled with synchrotron radiation interrogation techniques. Much less attention has been given to approaches based on laser–induced (or electron–beam–induced) reactions coupled with electron interrogation methods, despite the fact that electron sources are brighter, and their interactions with matter stronger (thereby giving higher signal levels). The use of electrons as probes has great potential to study complex transient events not only because of the possible high temporal resolution using ultrafast electron diffraction (UED) but also the potential for high spatial resolution using dynamic transmission electron microscopy (DTEM). Taking this potential of electron interrogation methods and turning it into a routine nanoscale characterization technique requires several key aspects of the instrumentation used for electron microscopy/diffraction to be optimized. In this proposal, several approaches to instrument optimization for DTEM and UED (to be performed in the same instrument) will be addressed. The new instrumentation developments will be used to study the dynamics of strongly driven materials, aging and corrosion in structural materials, as well as the nanoscale structural properties of other materials systems. In addition to providing new instrument capabilities (the technology for which will be transferred to the DTEM at Lawrence Livermore National Laboratory (LLNL)) and fundamental insights into the dynamic properties of materials, the interaction between 3 universities (University of California-Davis, University of Illinois at Chicago and Arizona State University) and 2 national laboratories (LLNL and Sandia National Laboratory) will help train

  10. Soft nanostructured films for directing the assembly of functional materials

    Science.gov (United States)

    Steer, D.; Kang, M.; Leal, C.

    2017-04-01

    Lipids are a class of biological small molecules with hydrophilic and hydrophobic constituents forming the structural membranes in cells. Over the past century an extensive understanding of lipid biology and biophysics has been developed illuminating lipids as an intricate, highly tunable, and hierarchical soft-matter system. In addition to serving as cell membrane models, lipids have been investigated as microphase separated structures in aqueous solutions. In terms of applications lipids have been realized as powerful structural motifs for the encapsulation and cellular delivery of genetic material. More recently, lipids have also revealed promise as thin film materials, exhibiting long-range periodic nano-scale order and tunable orientation. In this review we summarize the pertinent understanding of lipid nanostructure development in bulk aqueous systems followed by the current and potential perturbations to these results induced by introduction of a substrate. These effects are punctuated by a summary of our published results in the field of lipid thin films with added nucleic acids and key results introducing hard materials into lipid nanostructured substrates.

  11. Micro-/nanostructured multicomponent molecular materials: design, assembly, and functionality.

    Science.gov (United States)

    Yan, Dongpeng

    2015-03-23

    Molecule-based micro-/nanomaterials have attracted considerable attention because their properties can vary greatly from the corresponding macro-sized bulk systems. Recently, the construction of multicomponent molecular solids based on crystal engineering principles has emerged as a promising alternative way to develop micro-/nanomaterials. Unlike single-component materials, the resulting multicomponent systems offer the advantages of tunable composition, and adjustable molecular arrangement, and intermolecular interactions within their solid states. The study of these materials also supplies insight into how the crystal structure, molecular components, and micro-/nanoscale effects can influence the performance of molecular materials. In this review, we describe recent advances and current directions in the assembly and applications of crystalline multicomponent micro-/nanostructures. Firstly, the design strategies for multicomponent systems based on molecular recognition and crystal engineering principles are introduced. Attention is then focused on the methods of fabrication of low-dimensional multicomponent micro-/nanostructures. Their new applications are also outlined. Finally, we briefly discuss perspectives for the further development of these molecular crystalline micro-/nanomaterials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Factors predicting work outcome in Japanese patients with schizophrenia: role of multiple functioning levels

    Directory of Open Access Journals (Sweden)

    Chika Sumiyoshi

    2015-09-01

    Full Text Available Functional outcomes in individuals with schizophrenia suggest recovery of cognitive, everyday, and social functioning. Specifically improvement of work status is considered to be most important for their independent living and self-efficacy. The main purposes of the present study were 1 to identify which outcome factors predict occupational functioning, quantified as work hours, and 2 to provide cut-offs on the scales for those factors to attain better work status. Forty-five Japanese patients with schizophrenia and 111 healthy controls entered the study. Cognition, capacity for everyday activities, and social functioning were assessed by the Japanese versions of the MATRICS Cognitive Consensus Battery (MCCB, the UCSD Performance-based Skills Assessment-Brief (UPSA-B, and the Social Functioning Scale Individuals’ version modified for the MATRICS-PASS (Modified SFS for PASS, respectively. Potential factors for work outcome were estimated by multiple linear regression analyses (predicting work hours directly and a multiple logistic regression analyses (predicting dichotomized work status based on work hours. ROC curve analyses were performed to determine cut-off points for differentiating between the better- and poor work status. The results showed that a cognitive component, comprising visual/verbal learning and emotional management, and a social functioning component, comprising independent living and vocational functioning, were potential factors for predicting work hours/status. Cut-off points obtained in ROC analyses indicated that 60–70% achievements on the measures of those factors were expected to maintain the better work status. Our findings suggest that improvement on specific aspects of cognitive and social functioning are important for work outcome in patients with schizophrenia.

  13. Work Function Characterization of Potassium-Intercalated, Boron Nitride Doped Graphitic Petals

    Directory of Open Access Journals (Sweden)

    Patrick T. McCarthy

    2017-07-01

    Full Text Available This paper reports on characterization techniques for electron emission from potassium-intercalated boron nitride-modified graphitic petals (GPs. Carbon-based materials offer potentially good performance in electron emission applications owing to high thermal stability and a wide range of nanostructures that increase emission current via field enhancement. Furthermore, potassium adsorption and intercalation of carbon-based nanoscale emitters decreases work functions from approximately 4.6 eV to as low as 2.0 eV. In this study, boron nitride modifications of GPs were performed. Hexagonal boron nitride is a planar structure akin to graphene and has demonstrated useful chemical and electrical properties when embedded in graphitic layers. Photoemission induced by simulated solar excitation was employed to characterize the emitter electron energy distributions, and changes in the electron emission characteristics with respect to temperature identified annealing temperature limits. After several heating cycles, a single stable emission peak with work function of 2.8 eV was present for the intercalated GP sample up to 1,000 K. Up to 600 K, the potassium-intercalated boron nitride modified sample exhibited improved retention of potassium in the form of multiple emission peaks (1.8, 2.5, and 3.3 eV resulting in a large net electron emission relative to the unmodified graphitic sample. However, upon further heating to 1,000 K, the unmodified GP sample demonstrated better stability and higher emission current than the boron nitride modified sample. Both samples deintercalated above 1,000 K.

  14. Sub-50 nm Scale to Micrometer Scale Soft Lithographic Patterning of Functional Materials

    NARCIS (Netherlands)

    George, A.

    2011-01-01

    This PhD thesis addresses two major issues: 1) Fabricating nanometer-scale patterns of functional materials, 2) Extending the applicability of soft lithographic processes to a wide range of functional materials on conventional silicon substrates and flexible plastic substrates. This thesis describes

  15. Bottom-Up Approaches Towards Functional Fullerene-Containing Nanostructured Materials

    NARCIS (Netherlands)

    Hummelen, J.C.; Kuzmany, H; Fink, J; Mehring, M; Roth, S

    2001-01-01

    Fullerenes can play an important role in functional materials, the most common being that of an electron acceptor and electron transport material. Functional feasibility of fullerene derivatives has been shown in photovoltaic, photo detection, and image scanning devices, for example. In these

  16. Reducing the effects of dredged material levees on coastal marsh function: sediment deposition and nekton utilization.

    Science.gov (United States)

    Reed, Denise J; Peterson, Mark S; Lezina, Brian J

    2006-05-01

    Dredged material levees in coastal Louisiana are normally associated with pipeline canals or, more frequently, canals dredged through the wetlands to allow access to drilling locations for mineral extraction. The hydrologic impact on marshes behind the levee is of concern to coastal resource managers because of the potential impact on sediment transport and deposition, and the effect on estuarine organism access to valuable nursery habitat. This study examined the effects of gaps in dredged material levees, compared to continuous levees and natural channel banks, on these two aspects of marsh function. Field studies for sediment deposition were conducted biweekly for a year, and nekton samples were collected in spring and fall. Variation in nekton density among study areas and landscape types was great in part because of the inherent sampling gear issues and in part because of differences in characteristics among areas. Nekton densities were generally greater in natural compared to leveed and gapped landscapes. Differences in landscape type did not explain patterns in sediment deposition. The gaps examined appear to be too restrictive of marsh flooding to provide efficient movements of floodwaters onto the marsh during moderate flooding events. The "trapping" effect of the levees increases sediment deposition during extreme events. Gapping material levees may be an effective method of partially restoring upper marsh connection to nekton, but this method may work best in lower elevation marshes where nekton use is greater.

  17. Inscriptions apparatus according Latour and Woolgar: working with materiality in documents

    Directory of Open Access Journals (Sweden)

    Ricardo Pimentel Méllo

    2016-11-01

    Full Text Available In this essay, we seek out a way to work in documents using the interface of “inscriptors” concept, which was developed by the anthropologist Bruno Latour and the sociologist Steve Woolgar when both were starting their studies within the so called Actor-Network Theory. The “inscriptors” have the responsibility to “fabricate” things that are being investigated (maps, graphs, photos, etc.. As an example of documents seen in this framework we point out the dictionaries that express and construct language, which we understand as a practice. Thus, documents as the dictionary propagate ways of daily life that goes beyond the compilation of vocabulary once it creates possibilities of interpretation and visibility that express practices of power. Therefore, documents must be analyzed as “tools of inscription” built in shared articulation, networks. Documents are materialized as much as by the agencies that grant them existence, as by the agencies that produce them.

  18. The Properties of Nano Silver (Ag-Geopolymer as Antibacterial Composite for Functional Surface Materials

    Directory of Open Access Journals (Sweden)

    Armayani. M

    2017-01-01

    Full Text Available The purpose of this research was to produce and characterize nano silver (Ag-geopolymer composite for functional surface materials. Geopolymer matrix was synthesized through alkali activation of metakaolin and nano silver was added into geopolymers paste with a mass of 0, 0.5 g, 1 g, 1.5 g and 2 g keeping the mass of metakaolin constant. The mixture was cured at 70°C/1 hour and stored for 7 days before conducting any measurements. The structure of the resulting composite was examined by using Rigaku Mini Flex II x-ray diffraction (XRD. Scanning Electron Microscopy (SEM coupled with Energy Dispersive Spectroscopy (EDS was used to examine the morphology of the composite surface as well as the capability of the composite to isolate the growth of bacteria. The thermal properties of composites in terms of their working temperature and enthalpy were examined by using Perkin Elmer Differential Scanning Calorimetry (DSC. The heat resistance of composite was observed through calcination at 750°C for 18 hours. The results indicate that the resulting composites were able resist up 750°C. SEM examinations showed that nano Ag-geopolymer composites were effectively restraining the growth of bacteria. It is suggested that nano Ag-geopolymer composites are suitable for functional surface applications such as floor and wall, kitchen ware utensils, hospital instruments, art and decoration materials.

  19. The associations between menstrual function and life style/working conditions among nurses in Taiwan.

    Science.gov (United States)

    Chung, Fen-Fang; Yao, Chuan-Chiang Chou; Wan, Gwo-Hwa

    2005-03-01

    This study was aimed at understanding the relationship among menstrual pattern, dysmenorrhea, life style and working conditions in nurses. The nurses were randomly selected from a medical center in Northern Taiwan. Each subject completed daily records including life and working conditions during the study period. The study showed that there were statistically significant differences in work years, daily working hours and type of work shift among nurses that worked at different units in the hospital. In the perceived regular cycle group, nurses that worked the night shift only exhibited the shortest menstrual cycles, less than 25 d. There was a significant difference (pstress) and working factors (such as work years, perceived work satisfaction and perceived work stress) were not significantly related to menstrual cycle regularity. In addition, 30% of the nurses complained of dysmenorrhea. Some factors including age, marital status and perceived life satisfaction were significantly related to dysmenorrhea. However, other life factors (such as passive tobacco smoke exposure, smoking, coffee, alcohol, cold drink habits, exercise and perceived life stress) and working factors (such as working places, type of work shift, daily work hours, perceived work satisfaction and perceived work stress) showed no correlation with dysmenorrhea. This study indicates that women should pay attention to their menstrual function and dysmenorrhea phenomenon.

  20. Oxide based functional materials through solid state and electrochemical synthesis

    OpenAIRE

    Todorova, Vanya

    2010-01-01

    The presented dissertation combines synthesis and characterization techniques of solid state chemistry and electrochemistry. The work is organized into two main parts. The first part deals with the synthesis, structural characterization and investigation of the physical properties of new ternary and quaternary transition metal oxides with layered structures. Several compounds of delafossite structure ABO2 with silver on A position and different trivalent cation capable of adopting an octa...

  1. Design, Fabrication, Characterization and Modeling of Integrated Functional Materials

    Science.gov (United States)

    2014-10-01

    temperature electric contact free magnetic sensors for use in industry, biomagnetism , space science, and geoscience. The main results of the work have...aqueous solutions on the LCST The effect of adding salt to introduce ions to the PNIPAM/Fe3O4 aqueous solutions was also studied. Enough KOH was...This is understood in terms of the added ion’s effect on the interaction of the solvent with the polymer. The hydroxide ion , through its electric

  2. Functional materials analysis using in situ and in operando X-ray and neutron scattering.

    Science.gov (United States)

    Peterson, Vanessa K; Papadakis, Christine M

    2015-03-01

    In situ and in operando studies are commonplace and necessary in functional materials research. This review highlights recent developments in the analysis of functional materials using state-of-the-art in situ and in operando X-ray and neutron scattering and analysis. Examples are given covering a number of important materials areas, alongside a description of the types of information that can be obtained and the experimental setups used to acquire them.

  3. Functional materials analysis using in situ and in operando X-ray and neutron scattering

    Directory of Open Access Journals (Sweden)

    Vanessa K. Peterson

    2015-03-01

    Full Text Available In situ and in operando studies are commonplace and necessary in functional materials research. This review highlights recent developments in the analysis of functional materials using state-of-the-art in situ and in operando X-ray and neutron scattering and analysis. Examples are given covering a number of important materials areas, alongside a description of the types of information that can be obtained and the experimental setups used to acquire them.

  4. Functional materials analysis using in situ and in operando X-ray and neutron scattering

    Science.gov (United States)

    Peterson, Vanessa K.; Papadakis, Christine M.

    2015-01-01

    In situ and in operando studies are commonplace and necessary in functional materials research. This review highlights recent developments in the analysis of functional materials using state-of-the-art in situ and in operando X-ray and neutron scattering and analysis. Examples are given covering a number of important materials areas, alongside a description of the types of information that can be obtained and the experimental setups used to acquire them. PMID:25866665

  5. A functional magnetic resonance imaging study of working memory in youth after sports-related concussion: is it still working?

    Science.gov (United States)

    Keightley, Michelle L; Saluja, Rajeet Singh; Chen, Jen-Kai; Gagnon, Isabelle; Leonard, Gabriel; Petrides, Michael; Ptito, Alain

    2014-03-01

    Abstract In children, the importance of detecting deficits after mild traumatic brain injury (mTBI) or concussion has grown with the increasing popularity of leisure physical activities and contact sports. Whereas most postconcussive symptoms (PCS) are similar for children and adults, the breadth of consequences to children remains largely unknown. To investigate the effect of mTBI on brain function, we compared working memory performance and related brain activity using blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) in 15 concussed youths and 15 healthy age-matched control subjects. Neuropsychological tests, self-perceived PCS, and levels of anxiety and depression were also assessed. Our results showed that, behaviorally, concussed youths had significantly worse performances on the working memory tasks, as well as on the Rey figure delayed recall and verbal fluency. fMRI results revealed that, compared to healthy children, concussed youths had significantly reduced task-related activity in bilateral dorsolateral prefrontal cortex, left premotor cortex, supplementary motor area, and left superior parietal lobule during performance of verbal and nonverbal working memory tasks. Additionally, concussed youths also showed less activation than healthy controls in the dorsal anterior cingulate cortex, left thalamus, and left caudate nucleus during the nonverbal task. Regression analysis indicated that BOLD signal changes in bilateral dorsolateral prefrontal cortex were significantly correlated with performance such that greater activities in these regions, relative to the control condition, were associated with greater accuracy. Our findings confirmed functional alterations in brain activity after concussion in youths, a result similar to that observed in adults. However, significant differences were noted. In particular, the observation of reduced working memory accuracy suggests that youths may be unable to engage compensatory

  6. Effect of Wheelchair Frame Material on Users' Mechanical Work and Transmitted Vibration

    Science.gov (United States)

    Aissaoui, Rachid

    2014-01-01

    Wheelchair propulsion exposes the user to a high risk of shoulder injury and to whole-body vibration that exceeds recommendations of ISO 2631-1:1997. Reducing the mechanical work required to travel a given distance (WN-WPM, weight-normalized work-per-meter) can help reduce the risk of shoulder injury, while reducing the vibration transmissibility (VT) of the wheelchair frame can reduce whole-body vibration. New materials such as titanium and carbon are used in today's wheelchairs and are advertised to improve both parameters, but current knowledge on this matter is limited. In this study, WN-WPM and VT were measured simultaneously and compared between six folding wheelchairs (1 titanium, 1 carbon, and 4 aluminium). Ten able-bodied users propelled the six wheelchairs on three ground surfaces. Although no significant difference of WN-WPM was found between wheelchairs (P < 0.1), significant differences of VT were found (P < 0.05). The carbon wheelchair had the lowest VT. Contrarily to current belief, the titanium wheelchair VT was similar to aluminium wheelchairs. A negative correlation between VT and WN-WPM was found, which means that reducing VT may be at the expense of increasing WN-WPM. Based on our results, use of carbon in wheelchair construction seems promising to reduce VT without increasing WN-WPM. PMID:25276802

  7. PREFACE: 12th International Symposium on Multiscale, Multifunctional and Functionally Graded Materials (FGM 2012)

    Science.gov (United States)

    Zhou, Zhangjian; Li, Jingfeng; Zhang, Lianmeng; Ge, Changchun

    2013-03-01

    The 12th International Symposium on Multiscale, Multifunctional and Functionally Graded Materials (FGM-2012) was held in Beijing, China, from 22-36 October 2012. This was part of a series of conferences organized every two years endorsed by International Advisory Committee for FGM's, which serves as a forum for scientists, educators, engineers and young students interested in the development of functionally graded materials (FGM). The series continues from the previous international symposium on FGM held in Sendai, Japan (1990), San Francisco, USA (1992), Lausanne, Switzerland (1994), Tsukuba, Japan (1996), Dresden, Germany (1998), Estes Park, USA (2000), Beijing, China (2002), Leuven, Belgium (2004), Hawaii, USA (2006), Sendai, Japan (2008) and Guimaraes, Portugal (2010). Functionally graded materials are non-uniform materials which are designed with embodied continuous spatial variations in composition and microstructure for the specific purpose of adjusting their thermal, structural, mechanical, biological or functional response to specific application conditions. Such multi-phase materials cover a range of space and time scales, and are best understood by means of a comprehensive multiscale, multiphysics approach. These kinds of materials are presently in the forefront of materials research, receiving worldwide attention. They have a broad range of applications including for example, biomedical, biomechanical, automotive, aerospace, mechanical, civil, nuclear, and naval engineering. New applications are continuously being discovered and developed. The objective of the FGM-2012 intends to provide opportunities for exchanging ideas and discussing state-of-the-art theories, techniques and applications in the fields of multiscale, multifunctional and FGM, through invited lectures, oral and poster presentations. FGM-2012 was organized and hosted by University of Science and Technology Beijing, China, together with Tsing-hua University and Wuhan University of

  8. Supramolecular effects as driving force of dipyrrin based functional materials engineering

    Science.gov (United States)

    Banakova, E.; Bobrov, A.; Kazak, A.; Marfin, Yu; Merkushev, D.; Molchanov, E.; Rumyantsev, E.; Shipalova, M.; Usoltsev, S.; Vodyanova, O.

    2018-01-01

    Dipyrrin based luminophores are of major interest in different areas of chemistry, material science and molecular biology. Vast variety of the structures with dipyrrin motif were synthesized and investigated up to date. Modern trend in the dipyrrin chemistry is the aimed functionalization of the ligand or complex structure allowing to gain the mechanism based on supramolecular interactions for controlling spectral and photophysical characteristics of compounds for tuning practically valuable properties for specific tasks. Presented paper summarize the results of our research group, working in the field of dipyrrin complexes with p-elements: synthesis, spectral characteristics evaluation and possibilities of practical application investigation. Discussion is focused on the opportunities of molecules preorganization for achieving the supramolecular interactions causing the tuning of fluorescence of the compounds in solutions, polymeric matrices and thin films.

  9. A Conceptual Foundation for Measures of Physical Function and Behavioral Health Function for Social Security Work Disability Evaluation

    Science.gov (United States)

    Marfeo, Elizabeth E.; Haley, Stephen M.; Jette, Alan M.; Eisen, Susan V.; Ni, Pengsheng; Bogusz, Kara; Meterko, Mark; McDonough, Christine M.; Chan, Leighton; Brandt, Diane E.; Rasch, Elizabeth K.

    2014-01-01

    Physical and mental impairments represent the two largest health condition categories for which workers receive Social Security disability benefits. Comprehensive assessment of physical and mental impairments should include aspects beyond medical conditions such as a person’s underlying capabilities as well as activity demands relevant to the context of work. The objective of this paper is to describe the initial conceptual stages of developing new measurement instruments of behavioral health and physical functioning relevant for Social Security work disability evaluation purposes. To outline a clear conceptualization of the constructs to be measured, two content models were developed using structured and informal qualitative approaches. We performed a structured literature review focusing on work disability and incorporating aspects of the International Classification of Functioning, Disability, and Health (ICF) as a unifying taxonomy for framework development. Expert interviews provided advice and consultation to enhance face validity of the resulting content models. The content model for work-related behavioral health function identifies five major domains (1) Behavior Control, (2) Basic Interactions, (3) Temperament and Personality, (4) Adaptability, and (5) Workplace Behaviors. The content model describing physical functioning includes three domains (1) Changing and Maintaining Body Position, (2) Whole Body Mobility, and (3) Carrying, Moving and Handling Objects. These content models informed subsequent measurement properties including item development, measurement scale construction, and provided conceptual coherence guiding future empirical inquiry. The proposed measurement approaches show promise to comprehensively and systematically assess physical and behavioral health functioning relevant to work. PMID:23548543

  10. Meltable dextran esters as biocompatible and functional coating materials.

    Science.gov (United States)

    Liebert, Tim; Wotschadlo, Jana; Laudeley, Peggy; Heinze, Thomas

    2011-08-08

    The conversion of dextran with in situ synthesized iminium chlorides of long chain carboxylic acids was used to obtain pure and defined melting dextran esters in an efficient one-pot synthesis. The melting point of these esters can be tailored by the degree of substitutions (DS), the molecular weight of the starting polymer, and the chain length of the ester moiety. The dextran esters give homogeneous and completely transparent melts, which form stable films on a broad variety of materials. Even complex geometries, such as implants, can be evenly coated by multiple melting steps. The films do not display any inhomogeneity and have a very low surface roughness. Therefore, no unspecific protein binding is observed. Moreover, the dextran esters are biocompatible as demonstrated for the interaction with three types of cells namely human brain microvascular endothelial cell, primary human fibroblasts, and mouse myoblast cells.

  11. The effect of remission status on work functioning in employed patients treated for major depressive disorder.

    Science.gov (United States)

    Sarfati, David; Stewart, Kurtis; Woo, Cindy; Parikh, Sagar V; Yatham, Lakshmi N; Lam, Raymond W

    2017-02-01

    The ability to function at work is impaired in patients with major depressive disorder (MDD) but few clinical trials include occupational outcome assessments. This study examined whether symptom remission following treatment for MDD is associated with work functioning improvement. We conducted a secondary analysis of a 12-week randomized clinical trial comparing escitalopram with or without telephone-administered cognitive therapy in employed patients with MDD (N = 86). Outcomes included the Montgomery-Åsberg Depression Rating Scale (MADRS) and validated, self-rated work functioning scales including the Lam Employment Absence and Productivity Scale (LEAPS), Work Performance Questionnaire (HPQ), and Sheehan Disability Scale (SDS). Remission was defined as MADRS score ≤10 at 12 weeks. Data were evaluated using analysis of covariance with baseline score as covariates. Remission status was associated with significant improvement in work performance as assessed by the LEAPS productivity subscale, HPQ overall performance, and the SDS work/school item; a trend (P = .08) was observed with the HPQ productivity subscale. The effect sizes (d = 0.23, 0.51, 0.36, and 0.43, respectively) indicate small to medium effects that are likely clinically significant. The results of our study confirm that symptom remission following treatment is associated significantly with improvement in work performance and productivity, as measured by validated work functioning scales. Measurement-based care for MDD should include both symptom and functional outcome assessments.

  12. Postpolymerization Modifications of Alkene-Functional Polycarbonates for the Development of Advanced Materials Biomaterials.

    Science.gov (United States)

    Thomas, Anthony W; Dove, Andrew P

    2016-12-01

    Functional aliphatic polycarbonates have attracted significant attention as materials for use as biomedical polymers in recent years. The incorporation of pendent functionality offers a facile method of modifying materials postpolymerization, thus enabling functionalities not compatible with ring-opening polymerization (ROP) to be introduced into the polymer. In particular, polycarbonates bearing alkene-terminated functional groups have generated considerable interest as a result of their ease of synthesis, and the wide range of materials that can be obtained by performing simple postpolymerization modifications on this functionality, for example, through radical thiol-ene addition, Michael addition, and epoxidation reactions. This review presents an in-depth appraisal of the methods used to modify alkene-functional polycarbonates postpolymerization, and the diversity of practical applications for which these materials and their derivatives have been used. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Draft Site Management and Monitoring Plan for Corpus Christi Maintenance and New Work Ocean Dredged Material Disposal Site

    Science.gov (United States)

    USEPA Region 6 and the US Army Corps of Engineers submit for public comment the Draft Site Management and Monitoring Plan for Corpus Christi Maintenance and New Work Ocean Dredged Material Disposal Site

  14. Decreased functions of astrocytes on carbon nanofiber materials.

    Science.gov (United States)

    McKenzie, Janice L; Waid, Michael C; Shi, Riyi; Webster, Thomas J

    2004-01-01

    Carbon nanofibers possess excellent conductivity properties, which may be beneficial in the design of more effective neural prostheses; however, limited evidence on their cytocompatibility properties currently exists. The objective of the present in vitro study was to determine cytocompatibility properties of formulations containing carbon nanofibers pertinent to neural implant applications. Substrates were prepared from four different types of carbon fibers, two with nanoscale diameters (nanophase, or less than or equal to 100 nm) and two with conventional diameters (or greater than 100 nm). Within these two categories, both a high and a low surface energy fiber were investigated and tested. Carbon fibers were compacted in a manual hydraulic press via a uniaxial loading cycle. Astrocytes (glial scar tissue-forming cells) were seeded onto the substrates for adhesion, proliferation, and long-term function studies (such as total intracellular protein and alkaline phosphatase activity). Results provided the first evidence that astrocytes preferentially adhered and proliferated on carbon fibers that had the largest diameter and the lowest surface energy. Based on these results, composite substrates were also formed using different weight percentages (0-25 wt%) of the nanophase, high surface energy fibers in a polycarbonate urethane matrix. Results provided the first evidence of decreased adhesion of astrocytes with increasing weight percents of the high surface energy carbon nanofibers in the polymer composite; this further demonstrates that formulations containing carbon fibers in the nanometer regime may limit astrocyte functions leading to decreased glial scar tissue formation. Positive interactions with neurons, and, at the same time, limited astrocyte functions leading to decreased gliotic scar tissue formation are essential for increased neuronal implant efficacy.

  15. Usage of analytical diagnostics when evaluating functional surface material defects

    Directory of Open Access Journals (Sweden)

    R. Frischer

    2015-10-01

    Full Text Available There are occurring defects due to defects mechanisms on parts of production devices surfaces. Outer defects pronouncement is changing throw the time with unequal speed. This variability of defect’s mechanism development cause that is impossible to evaluate technical state of the device in any moment, without the necessary underlying information. Proposed model is based on analytical diagnostics basis. Stochastic model with usage of Weibull probability distribution can assign probability of function surface defect occurrence on the operational information in any moment basis. The knowledge of defect range limiting moment, then enable when and in what range will be necessary to make renewal.

  16. Electron Injection into Organic Semiconductor Devices from High Work Function Cathodes

    National Research Council Canada - National Science Library

    Corey V. Hoven; Renqiang Yang; Andres Garcia; Victoria Crockett; Alan J. Heeger; Guillermo C. Bazan; Thuc-Quyen Nguyen

    2008-01-01

    We show that polymer light-emitting diodes with high work-function cathodes and conjugated polyelectrolyte injection/transport layers exhibit excellent efficiencies despite large electron-injection barriers...

  17. Development and investigation of functional hierarchical hybrid materials

    Science.gov (United States)

    Athauda, Thushara J.

    In this dissertation, a series of hierarchical hybrid materials were developed and their process-morphology-activity relationship was studied. In this context, zinc oxide was used as a model metal-oxide semiconductor for the development of branched hierarchical nanostructures on various flexible substrates including cotton, nylon, and electrospun organic and inorganic nanofibers. In all cases, well-defined, radially oriented, highly dense, uniform, and single crystalline arrays of ZnO nanostructures were successfully grown using an optimized hydrothermal growth strategy. This process involves seed solution treatment of a substrate with ZnO nanocrystals that will form nucleation sites for subsequent anisotropic growth of single crystalline ZnO nanowires by incubation in the growth solution. All ZnO nanowires exhibit wurtzite crystal structure oriented along the c-axis which was confirmed by XRD analysis. Seed-to-growth solution concentration ratio ([S]/[G]) was determined to be the most important process parameter on the morphology of the resulting nanostructures when applied to cotton and nylon surfaces. Increase in the [S]/[G] values resulted in the amount of ZnO grown on the surfaces to drop significantly, which also resulted in a morphological transform from nanorods to needle-like structures. Consequently, a strong dependency of the physical, optical, and electrochemical properties of the resulting materials was observed. In addition, room temperature photoluminescence measurements revealed that the band-gap of ZnO widened as the morphology changed from nanorods to nanoneedles. Additional analyses revealed that cotton bearing ZnO nanorods exhibits a lower propensity for contact transfer of E. coli than unmodified cotton fabric. Moreover, studies with nonwoven nanofibers generated by electrospinning revealed that the morphology of the branched nanostructures was also controlled by the density of the underlying fibrous platform. The amount of ZnO nanorods grown

  18. Transitioning Rationally Designed Catalytic Materials to Real 'Working' Catalysts Produced at Commercial Scale: Nanoparticle Materials

    Energy Technology Data Exchange (ETDEWEB)

    Schaidle, Joshua A.; Habas, Susan E.; Baddour, Frederick G.; Farberow, Carrie A.; Ruddy, Daniel A.; Hensley, Jesse E.; Brutchey, Richard L.; Malmstadt, Noah; Robota, Heinz

    2017-02-01

    Catalyst design, from idea to commercialization, requires multi-disciplinary scientific and engineering research and development over 10-20 year time periods. Historically, the identification of new or improved catalyst materials has largely been an empirical trial-and-error process. However, advances in computational capabilities (new tools and increased processing power) coupled with new synthetic techniques have started to yield rationally-designed catalysts with controlled nano-structures and tailored properties. This technological advancement represents an opportunity to accelerate the catalyst development timeline and to deliver new materials that outperform existing industrial catalysts or enable new applications, once a number of unique challenges associated with the scale-up of nano-structured materials are overcome.

  19. METHODS FOR LOCAL CHANGES IN THE PLASTIC DEFORMATION DIAGNOSTICS ON THE WORK FUNCTION

    Directory of Open Access Journals (Sweden)

    K. V. Panteleyev

    2015-01-01

    Full Text Available The paper describes the electronic work function measurements by the contact potential difference technique, and experimental demonstration of the possibility of these methods application for the stress-strain state of the surface layer of the metals and alloys. The techniques end examples of their application of localization of plastic deformation studies using the Kelvin probe are developed and present. The study topology of work function the deformed surface possible to determine the type of deformation and dynamics of

  20. Primary role of electron work function for evaluation of nanostructured titania implant surface against bacterial infection.

    Science.gov (United States)

    Golda-Cepa, M; Syrek, K; Brzychczy-Wloch, M; Sulka, G D; Kotarba, A

    2016-09-01

    The electron work function as an essential descriptor for the evaluation of metal implant surfaces against bacterial infection is identified for the first time. Its validity is demonstrated on Staphylococcus aureus adhesion to nanostructured titania surfaces. The established correlation: work function-bacteria adhesion is of general importance since it can be used for direct evaluation of any electrically conductive implant surfaces. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Molecular Engineering of Azobenzene-Functionalized Polyimides to Enhance Both Photomechanical Work and Motion (POSTPRINT)

    Science.gov (United States)

    2014-09-01

    concentrations of azobenzene in both linear and cross-linked PIs, 30 mol % azobenzene diamine (4) and 20 mol % of azobenzene triamine (7) were added...AFRL-RX-WP-JA-2014-0204 MOLECULAR ENGINEERING OF AZOBENZENE - FUNCTIONALIZED POLYIMIDES TO ENHANCE BOTH PHOTOMECHANICAL WORK AND MOTION...August 2014 4. TITLE AND SUBTITLE MOLECULAR ENGINEERING OF AZOBENZENE - FUNCTIONALIZED POLYIMIDES TO ENHANCE BOTH PHOTOMECHANICAL WORK AND MOTION

  2. (Microstructural dependence of the cavitation damage function in the FCC materials: Annual report, 1990--1991)

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The interface damage function (IDF) defines an area fraction of damage on crystallite interfaces. This function, which is material and condition dependent, sustains a complete geometrical description of grain boundaries and identifies those types of interfaces which are preferentially damaged. Included in the IDF is functional dependence, not only upon lattice orientations or misorientations, but also upon grain boundary normal; this dependence has been largely neglected in other studies examining damage inhomogeneity of polycrystals. The experimental method used in describing the damaged microstructures included random sectioning of the damaged specimen, and the manual or semi-automatic construction of grain maps describing the observed microstructure. The grain maps for the initial IDF determination were constructed from scanning electron micrographs. Several of these micrographs were joined together and the grain boundaries were traced. There were manually fed back into the computer using a digitizing pad with each grain boundary intersection defined by an (x,y) pair of coordinates. Using algorithms written as a part of this work, the computer then reconstructs the grain map from this series of points. Manual correction of the computer generated maps was required to obtain an acceptable digitized reproduction of the observed microstructure.

  3. Development of biological functional material and product from Nelumbo nucifera

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Il Yun; Park, Yong Dae; Jin, Chang Hyun; Choi, Dae Seong

    2008-01-15

    The solvent extracts of Nelumbo nucifera G. were investigated for the activities of antioxidant, whitening, anti-wrinkle and antimicrobial effects to apply as a functional ingredient for cosmetic products. The electron donating ability of irradiated NN-L extract was above 85% at the concentration of 50ppm. The superoxide dismutase(SOD)-like activity of irradiated NN-L extract was about 76% at 1,000ppm concentration. The xanthine oxidase inhibitory effect of irradiated NN-L extract was about 15% at 1,000ppm. The tyrosinase inhibitory effect of irradiated NN-L extract was about 18% at 1,000ppm. Anti-wrinkle effect, the elastase inhibition activity of irradiated NN-L extract was about 45% at 1,000ppm concentration. All these findings suggested that Nelumbo nucifera G. has a great potential as a cosmeceutical ingredient.

  4. Work function mediated by deposition of ultrathin polar FeO on Pt(111)

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shuangzan; Qin, Zhihui; Guo, Qinmin; Cao, Gengyu, E-mail: gycao@wipm.ac.cn

    2017-01-15

    Highlights: • Growth of FeO layers on Pt(111) is found to consecutively reduce the work function of the system. • The electrostatic compression effect and the structural relaxation make major contributions to the reductions. • Significant rectifying effect observed in the FeO layer is induced by band alignment shift as work function changing. - Abstract: Significant work function changes from bare Pt(111) surface to 1 monolayer and 2 monolayers of ultrathin iron oxide (FeO) films on it are investigated by means of scanning tunneling microscopy/spectroscopy (STM/STS). With FeO layer-by-layer growth, a continuous reduction of the work function along with the surface vacuum level (VL) shifting is observed. We found that the compression of the electron spill-out at the metal-oxide interface and the substantial reconstruction of 2 ML FeO film, respectively, make major contributions to the first and the second reductions of the work function. The rectifying effect in FeO films is also observed, which is attributed to the downward shift of band alignment imposed by the total change in surface dipole. Our work shows that the polar oxide films play an important role to adjust surface electronic structures for enhancing device functionality.

  5. Effects of Marital Status and Shift Work on Family Function among Registered Nurses

    Science.gov (United States)

    TAI, Shu-Yu; LIN, Pei-Chen; CHEN, Yao-Mei; HUNG, Hsin-Chia; PAN, Chih-Hong; PAN, Shung-Mei; LEE, Chung-Yin; HUANG, Chia-Tsuan; WU, Ming-Tsang

    2014-01-01

    This study aims to assess the interactive effect of marital status and shift work on family function. A population-based sample of 1,438 nurses between the ages of 20–45 yr was recruited from Taiwan during the period from July 2005 to April 2006 using a mailed questionnaire. The self-administered questionnaire contained information about demographic data, work status, shift work schedule, and the Family APGAR (Adaptation, Partnership, Growth, Affection, and Resolve) Scale, to evaluate family function. Compared to day shift nurses, non-night and rotation shift nurses had 1.53- and 1.38-fold (95% CI=1.09–2.14 and 1.01–1.88) risk to have poor family function after adjusting for other covariates. Married nurses, by contrast, had a 0.44-fold (95% CI=0.29–0.66) risk to have poor family function compared to single nurses. In addition, married nurses who worked non-night or rotation shifts had a significantly higher percent of poor family function than those married nurses working day shifts; however, similar results were not replicated in single nurses. We concluded that shift work and marital status could influence family function. PMID:24909112

  6. Efficacy of Training of Executive Functions (Working Memory on the Rate of Attention in Preschool Children with Developmental Coordination Disorder

    Directory of Open Access Journals (Sweden)

    Farnoush Kavianpour

    2014-09-01

    Full Text Available Background: The present study aims to investigate the efficacy of executive functions training (working memory on the rate of attention in preschool children with developmental coordination disorder in Isfahan city. Materials and Methods: The participants of this study were three preschool children which were recognized to have developmental coordination disorder. To collect data used NEPSY neuropsychology test, Conner’s parent rating scale, Wechsler intelligence scale for children, basic motor ability tests and clinical interview. Results: The results of the data chart analysis based on descriptive statistics' and visual analysis indices revealed that the intervention has been effective on the three participants [respectively PND (Percentage of Non-Overlapping Data 80, 70 and 50% for test number one, two and three]. Conclusion: The results of the present study show that working memory executive function training, the rate of attention deficit can be reduced.

  7. The cross-cultural adaptation of the Work Role Functioning Questionnaire to Dutch

    NARCIS (Netherlands)

    Abma, Femke I.; Amick, Benjamin C.; Brouwer, Sandra; van der Klink, Jac J. L.; Bultmann, Ute

    2012-01-01

    Objective: The study objectives were to performa cross-cultural adaptation of the Work Role Functioning Questionnaire, a health-related work outcome measure, into Dutch and to assess the questionnaire's reliability and validity in the Dutch context (WRFQ-DV). Participants: 40 workers with a health

  8. Neural correlates of enhanced working-memory performance in dissociative disorder: a functional MRI study

    NARCIS (Netherlands)

    Elzinga, Bernet M.; Ardon, Angelique M.; Heijnis, Maaike K.; de Ruiter, Michiel B.; van Dyck, Richard; Veltman, Dick J.

    2007-01-01

    BACKGROUND: Memory functioning has been highlighted as a central issue in pathological dissociation. In non-pathological dissociation, evidence for enhanced working memory has been found, together with greater task-load related activity. So far, no imaging studies have investigated working memory in

  9. Test-retest reliability of the isernhagen work systems functional capacity evaluation in healthy adults

    NARCIS (Netherlands)

    Reneman, MF; Brouwer, S; Meinema, A; Dijkstra, PU; Geertzen, JHB; Groothoff, JW

    2004-01-01

    Aim of this study was to investigate test-retest reliability of the Isernhagen Work System Functional Capacity Evaluation (IWS FCE) in healthy subjects. The IWS FCE consists of 28 tests that reflect work-related activities such as lifting, carrying, bending, etc. A convenience sample of 26 healthy

  10. Influence of Decontaminating Agents and Swipe Materials on Laboratory Simulated Working Surfaces Wet Spilled with Sodium Pertechnetate.

    Science.gov (United States)

    Akchata, Suman; Lavanya, K; Shivanand, Bhushan

    2017-01-01

    Decontamination of various working surfaces with sodium pertechnetate minor spillage is essential for maintaining good radiation safety practices as well as for regulatory compliance. To observe the influences of decontaminating agents and swipe materials on different type of surfaces used in nuclear medicine laboratory work area wet spilled with 99m-technetium (99mTc) sodium pertechnetate. Lab-simulated working surface materials. Experimental study design. Direct decontamination method on dust-free lab simulated new working surfaces [stainless steel, polyvinyl chloride (PVC), Perspex, resin] using four decontaminating agents [tap water, soap water (SW), Radiacwash, and spirit] with four different swipe material [cotton, tissue paper (TP), Whatman paper (WP), adsorbent sheet (AS)] was taken 10 samples (n = 10) for each group. Parametric test two-way analysis of variance is used with significance level of 0.005, was used to evaluate statistical differences between different group of decontaminating agent and swipe material, and the results are expressed in mean ± SD. Decontamination factor is calculated after five cleaning for each group. A total of 160 samples result calculated using four decontaminating agent (tap water, SW, Radiacwash, and spirit), four swipe material (cotton, TP, WP, and AS) for commonly used surface (stainless steel, PVC, Perspex, resin) using direct method by 10 samples (n = 10) for each group. Tap water is the best decontaminating agent compared with SW, Radiac wash and spirit for the laboratory simulated stainless steel, PVC, and Perspex surface material, whereas in case of resin surface material, SW decontaminating agent is showing better effectiveness. Cotton is the best swipe material compared to WP-1, AS and TP for the stainless steel, PVC, Perspex, and resin laboratory simulated surface materials. Perspex and stainless steel are the most suitable and recommended laboratory surface material compared to PVC and resin in nuclear medicine

  11. Functional Thermoplastic Materials from Derivatives of Cellulose and Related Structural Polysaccharides

    Directory of Open Access Journals (Sweden)

    Yoshikuni Teramoto

    2015-03-01

    Full Text Available This review surveys advances in the development of various material functionalities based on thermoplastic cellulose and related structural polysaccharide derivatives. First, the dependence of thermal (phase transition behavior on the molecular composition of simple derivatives is rationalized. Next, approaches enabling effective thermoplasticization and further incorporation of material functionalities into structural polysaccharides are discussed. These approaches include: (a single-substituent derivatization, (b derivatization with multi-substituents, (c blending of simple derivatives with synthetic polymers, and (d graft copolymerization. Some examples addressing the control of supramolecular structures and the regulation of molecular and segmental orientations for functional materials fabrication, which have especially progressed over the past decade, are also addressed. Attractive material functions include improved mechanical performance, controlled biodegradability, cytocompatiblity, and optical functions.

  12. Enhanced Functionality for Materials Analysis in the DTEM

    Energy Technology Data Exchange (ETDEWEB)

    N. D. Browning; W. A. Schoeder; J. C. H. Spence

    2009-03-01

    The recent explosion in the use of pump–probe studies on picosecond and shorter timescales to investigate structural and electronic phase transitions and the dynamics of chemical reactions has been based largely on laser–induced reactions coupled with laser interrogation techniques, or on laser induced reactions coupled with synchrotron radiation interrogation techniques. Much less attention has been given to approaches based on laser–induced (or electron–beam–induced) reactions coupled with electron interrogation methods, despite the fact that electron sources are brighter, and their interactions with matter stronger (thereby giving higher signal levels). The use of electrons as temporal probes has great potential for the study of complex transient events not only because of the high temporal resolution attainable by ultrafast electron diffraction (UED) but also the potential for direct high spatial resolution imaging using dynamic transmission electron microscopy (DTEM). However, taking this potential for electron interrogation methods and turning it into a routine nanoscale characterization technique requires several key aspects of the instrumentation used for electron microscopy/diffraction to be optimized. In this work, several approaches to instrument optimization for DTEM and UED (to be performed in the same instrument) are being addressed.

  13. Evaluation of physiological functions and human operator working in extreme conditions

    Directory of Open Access Journals (Sweden)

    П.В. Білошицький

    2009-03-01

    Full Text Available  Some methods and results of psycho-physiological human functions investigation in mountain conditions are given. These results form the base of developed approaches for professional selection of special contingents for the work in extreme conditions. Mathematic model for reliability of human nervous system functioning in extreme conditions is suggested.

  14. [Magnetic micro-/nano-materials: functionalization and their applications in pretreatment for food samples].

    Science.gov (United States)

    Gao, Qiang; Feng, Yuqi

    2014-10-01

    Magnetic solid phase extraction technique, based on functional magnetic materials, is currently a hot topic in the separation and analysis of complex samples. This paper reviews the reported methods for the functionalization of magnetic micro-/nano-materials, such as sur- face grafting organic groups, coating carbon or inorganic oxide, grafting or coating polymer, being loaded to the surface or pores of supports, being introduced into the skeleton of sup- ports, and physically co-mixing methods. Moreover, we briefly introduce the applications of the functional magnetic micro-/nano-materials in pretreatment for food samples.

  15. Chronic pain disrupts ability to work by interfering with social function: A cross-sectional study.

    Science.gov (United States)

    Hengstebeck, Elizabeth; Roskos, Steven; Breejen, Karen; Arnetz, Bengt; Arnetz, Judy

    2017-10-01

    Some 100 million adults in the United States suffer from chronic pain. While research to date has focused primarily on pain interference with physical and psychological function and its effects on employment, few studies have examined the impact of pain interference on social functioning and its effects on employment. The aims of our study were to (1) evaluate the association between pain interference with ability to work and actual employment status among working age adults with chronic pain; and (2) evaluate pain interference with four types of functioning - cognitive, physical, psychological, and social - as possible mediators of pain interference with the ability to work. Data were collected via a self-selected sample of individuals visiting the American Chronic Pain Association (ACPA) website. The final dataset included 966 respondents. We examined the association between pain interference with the ability to work and employment in a population with chronic pain. We then analyzed pain interference with four types of functioning, physical, psychological, cognitive, and social, for their impact on the ability to work. Pain interference with ability to work was significantly inversely associated with employment status, i.e., the less that pain interfered with one's ability to work, the greater the likelihood of being employed. Moreover, pain interference with ability to work was a stronger predictor of employment status than an individual's rating of their pain intensity. Pain interference with social functioning partially mediated the effects of pain interference with cognitive and physical functioning and fully mediated the effects of pain intensity and pain interference with psychological functioning on pain interference with the ability to work. Results suggest that pain interference with social function may be a significant contributor to pain interference with ability to work in working age adults with chronic pain. In the development of effective solutions

  16. Primary role of electron work function for evaluation of nanostructured titania implant surface against bacterial infection

    Energy Technology Data Exchange (ETDEWEB)

    Golda-Cepa, M., E-mail: golda@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Syrek, K. [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Brzychczy-Wloch, M. [Department of Bacteriology, Microbial Ecology and Parasitology, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow (Poland); Sulka, G.D. [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Kotarba, A., E-mail: kotarba@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland)

    2016-09-01

    The electron work function as an essential descriptor for the evaluation of metal implant surfaces against bacterial infection is identified for the first time. Its validity is demonstrated on Staphylococcus aureus adhesion to nanostructured titania surfaces. The established correlation: work function–bacteria adhesion is of general importance since it can be used for direct evaluation of any electrically conductive implant surfaces. - Highlights: • The correlation between work function and bacteria adhesion was discovered. • The discovered correlation is rationalized in terms of electrostatic bacteria–surface repulsion. • The results provide basis for the simple evaluation of implant surfaces against infection.

  17. The Work Role Functioning Questionnaire 2.0 (Dutch Version) : Examination of its Reliability, Validity and Responsiveness in the General Working Population

    NARCIS (Netherlands)

    Abma, Femke I.; van der Klink, Jac J. L.; Bultmann, Ute

    Purpose: The promotion of a sustainable, healthy and productive working life attracts more and more attention. Recently the Work Role Functioning Questionnaire (WRFQ) has been cross-culturally translated and adapted to Dutch. This questionnaire aims to measure the health-related work functioning of

  18. PREFACE: 3rd International Symposium on Functional Materials 2009 (ISFM 2009) 3rd International Symposium on Functional Materials 2009 (ISFM 2009)

    Science.gov (United States)

    Kiwon, Kim; Li, Lu; Taehyun, Nam; Jouhyeon, Ahn

    2010-05-01

    The 3rd International Symposium on Functional Materials 2009 (ISFM 2009) and its preconference, Advances in Functional Materials 2009 (AFM 2009), were successfully held in the Republic of Korea from 15-18 June 2009 and in the People's Republic of China from 8-12 June 2009, respectively. The two conferences attracted over 300 oral and poster presentations from over 12 countries including Australia, Canada, China, Germany, Japan, India, Israel, Korea, The Netherlands, Thailand, the UK and the USA. In the two conferences, eight keynote lectures were delivered by S Miyazaki, S A Akbar, D J Singh, C Suryanarayana, M~Greenblatt, H Zhang, T Sato and J Ding. This topical issue of Physica Scripta contains papers presented at the ISFM 2009 and AFM 2009. Keyan Li from Dalian University, People's Republic of China, presents some empirical formulae to estimate the elastic moduli of rocksalt-, zincblende- and chalcopyrite-structured crystals, on the basis of electronegativities of bonded atoms in the crystallographic frame. Min-Jung Kim from Hanyang University, Korea, reports on the preparation and characterization of carboxyl functionalization of magnetite nanoparticles for oligonucleotide immobilization. F Yan from the National University of Singapore studies the fabrication of Bi(Fe0.5Sc0.5)O3-PbTiO3 (BSF-PT) thin films by pulsed laser deposition, and the enhanced magnetic moment with respect to BiFeO3-PbTiO3. Dong-Gil Lee from Pusan National University, Korea, reports on the sterilization of enteropathogenic Escherichia coli using nanofiber TiO2 films prepared by the electrostatic spray method. Sang-Eun Park from the Korea Institute of Science and Technology reports on the study of encapsulated Fe3O4 nanoparticles with a silica thin layer with a reversible capacity of about 363 mAhg-1. Other researchers report on many other exiting achievements in the fields of ferromagnetic materials, magneto-optical materials, thermoelectric materials, shape memory materials, fuel-cell and

  19. Is functional integration of resting state brain networks an unspecific biomarker for working memory performance?

    Science.gov (United States)

    Alavash, Mohsen; Doebler, Philipp; Holling, Heinz; Thiel, Christiane M; Gießing, Carsten

    2015-03-01

    Is there one optimal topology of functional brain networks at rest from which our cognitive performance would profit? Previous studies suggest that functional integration of resting state brain networks is an important biomarker for cognitive performance. However, it is still unknown whether higher network integration is an unspecific predictor for good cognitive performance or, alternatively, whether specific network organization during rest predicts only specific cognitive abilities. Here, we investigated the relationship between network integration at rest and cognitive performance using two tasks that measured different aspects of working memory; one task assessed visual-spatial and the other numerical working memory. Network clustering, modularity and efficiency were computed to capture network integration on different levels of network organization, and to statistically compare their correlations with the performance in each working memory test. The results revealed that each working memory aspect profits from a different resting state topology, and the tests showed significantly different correlations with each of the measures of network integration. While higher global network integration and modularity predicted significantly better performance in visual-spatial working memory, both measures showed no significant correlation with numerical working memory performance. In contrast, numerical working memory was superior in subjects with highly clustered brain networks, predominantly in the intraparietal sulcus, a core brain region of the working memory network. Our findings suggest that a specific balance between local and global functional integration of resting state brain networks facilitates special aspects of cognitive performance. In the context of working memory, while visual-spatial performance is facilitated by globally integrated functional resting state brain networks, numerical working memory profits from increased capacities for local processing

  20. Instructional materials for SARA/OSHA training. Volume 1, General site working training

    Energy Technology Data Exchange (ETDEWEB)

    Copenhaver, E.D.; White, D.A.; Wells, S.M. [Oak Ridge National Lab., TN (United States)

    1988-04-01

    This proposed 24 hour ORNL SARA/OSHA training curriculum emphasizes health and safety concerns in hazardous waste operations as well as methods of worker protection. Consistent with guidelines for hazardous waste site activities developed jointly by National Institute for Occupational Safety and Health, Occupational Safety and Health Administration, US Coast Guard, and the Envirorunental Protection Agency, the program material will address Basic Training for General Site Workers to include: ORNL Site Safety Documentation, Safe Work Practices, Nature of Anticipated Hazards, Handling Emergencies and Self-Rescue, Employee Rights and Responsibilities, Demonstration of Use, Care, and Limitations of Personal Protective, Clothing and Equipment, and Demonstration of Monitoring Equipment and Sampling Techniques. The basic training courses includes major fundamentals of industrial hygiene presented to the workers in a format that encourages them to assume responsibility for their own safety and health protection. Basic course development has focused on the special needs of ORNL facilities. Because ORNL generates chemical wastes, radioactive wastes, and mixed wastes, we have added significant modules on radiation protection in general, as well as modules on radiation toxicology and on radiation protective clothing and equipment.

  1. ACTIVITY OF HEALTH EDUCATION AIMED AT PREVENTING WORK ACCIDENTS WITH NEEDLESTICK MATERIALS: EXPERIENCE REPORT

    Directory of Open Access Journals (Sweden)

    Prince Vangeris Silva Fernandes de Lima

    2014-02-01

    Full Text Available Introduction: Health services are composed of complex work environments. For this reason, they present several risks to the health of workers and also of people being treated at these places. Among these risks, one that is peculiar to health services is the risk of occupational accidents with biological material involving sharps. Objective: This study aimed to describe a health education activity conducted in a Health Center of the Federal District, Brazil. Methods: This is an experience report that discusses the final paper of the discipline “Administration Applied to Nursing and Internship”, offered by the Department of Nursing, Faculty of Health Sciences, University of Brasilia. A lecture was prepared, aimed at health workers and support staff, on general aspects of occupational accidents involving sharps, as well as preventive aspects. Results: In each clinical room of the Health Center were fixed two posters: the first discussing the proper disposal of sharps and the second, in turn, was a message of reflection. 31 professionals attended the lecture as listeners. Conclusion: We understand the validity of the lecture delivered, based on scientific studies that highlight the need and shortage of health education activities that address the prevention of occupational accidents involving sharps among Health Professionals. Additionally, it is important mentioning that such activity demand was estimated by the workers of the Health Center in study.

  2. Functional connectivity among multi-channel EEGs when working memory load reaches the capacity.

    Science.gov (United States)

    Zhang, Dan; Zhao, Huipo; Bai, Wenwen; Tian, Xin

    2016-01-15

    Evidence from behavioral studies has suggested a capacity existed in working memory. As the concept of functional connectivity has been introduced into neuroscience research in the recent years, the aim of this study is to investigate the functional connectivity in the brain when working memory load reaches the capacity. 32-channel electroencephalographs (EEGs) were recorded for 16 healthy subjects, while they performed a visual working memory task with load 1-6. Individual working memory capacity was calculated according to behavioral results. Short-time Fourier transform was used to determine the principal frequency band (theta band) related to working memory. The functional connectivity among EEGs was measured by the directed transform function (DTF) via spectral Granger causal analysis. The capacity was 4 calculated from the behavioral results. The power was focused in the frontal midline region. The strongest connectivity strengths of EEG theta components from load 1 to 6 distributed in the frontal midline region. The curve of DTF values vs load numbers showed that DTF increased from load 1 to 4, peaked at load 4, then decreased after load 4. This study finds that the functional connectivity between EEGs, described quantitatively by DTF, became less strong when working memory load exceeded the capacity. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Age old antipodes united: stable and low-work-function surfaces are generic

    Science.gov (United States)

    Uijttewaal, M. A.; de Wijs, G. A.; de Groot, R. A.

    2006-03-01

    Both a low work function and a stable surface are crucial for the application of cathodes in e.g. microwave ovens, organic photoconductors and displays as CRTs and OLEDs. Until recently they were considered antipodes. In previous work[1] we showed a stable low-work-function surface to be realised for the compound BaAl4 and even predicted that stable, low-work-function surfaces would be generic for metals with polar surfaces. Now, ab initio calculations confirm the prediction for the compounds CaAl4, BaAuIn3 and LaB6.[1] M.A. Uijttewaal, G.A. de Wijs, R.A. de Groot, R. Coehoorn, V. van Elsbergen, and C. H. L. Weijtens, Chem. Mater. 17, 3879 (2005)

  4. Does polycystic ovary syndrome affect cognition? A functional magnetic resonance imaging study exploring working memory.

    Science.gov (United States)

    Soleman, Remi S; Kreukels, Baudewijntje P C; Veltman, Dick J; Cohen-Kettenis, Peggy T; Hompes, Peter G A; Drent, Madeleine L; Lambalk, Cornelis B

    2016-05-01

    To study effects of overexposure to androgens and subsequent antiandrogenic treatment on brain activity during working memory processes in women with polycystic ovary syndrome (PCOS). In this longitudinal study, working memory function was evaluated with the use of functional magnetic resonance imaging (MRI) in women with PCOS before and after antiandrogenic treatment. Department of reproductive medicine, university medical center. Fourteen women with PCOS and with hyperandrogenism and 20 healthy control women without any features of PCOS or other hormonal disorders. Antiandrogenic hormone treatment. Functional MRI response during a working memory task. At baseline women with PCOS showed more activation than the control group within the right superior parietal lobe and the inferior parietal lobe during task (all memory conditions). Task performance (speed and accuracy) did not differ between the groups. After antiandrogenic treatment the difference in overall brain activity between the groups disappeared and accuracy in the high memory load condition of the working memory task increased in women with PCOS. Women with PCOS may need additional neural resources during a working memory task compared with women without PCOS, suggesting less efficient executive functioning. This inefficiency may have effects on daily life functioning of women with PCOS. Antiandrogenic treatment appears to have a beneficial effect on this area of cognitive functioning. NTR2493. Copyright © 2016. Published by Elsevier Inc.

  5. Selective Attention, Working Memory, and Executive Function as Potential Independent Sources of Cognitive Dysfunction in Schizophrenia.

    Science.gov (United States)

    Gold, James M; Robinson, Benjamin; Leonard, Carly J; Hahn, Britta; Chen, Shuo; McMahon, Robert P; Luck, Steven J

    2017-11-11

    People with schizophrenia demonstrate impairments in selective attention, working memory, and executive function. Given the overlap in these constructs, it is unclear if these represent distinct impairments or different manifestations of one higher-order impairment. To examine this question, we administered tasks from the basic cognitive neuroscience literature to measure visual selective attention, working memory capacity, and executive function in 126 people with schizophrenia and 122 healthy volunteers. Patients demonstrated deficits on all tasks with the exception of selective attention guided by strong bottom-up inputs. Although the measures of top-down control of selective attention, working memory, and executive function were all intercorrelated, several sources of evidence indicate that working memory and executive function are separate sources of variance. Specifically, both working memory and executive function independently contributed to the discrimination of group status and independently accounted for variance in overall general cognitive ability as assessed by the MATRICS battery. These two cognitive functions appear to be separable features of the cognitive impairments observed in schizophrenia. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Porosity-dependent nonlinear forced vibration analysis of functionally graded piezoelectric smart material plates

    Science.gov (United States)

    Qing Wang, Yan; Zu, Jean W.

    2017-10-01

    This work investigates the porosity-dependent nonlinear forced vibrations of functionally graded piezoelectric material (FGPM) plates by using both analytical and numerical methods. The FGPM plates contain porosities owing to the technical issues during the preparation of FGPMs. Two types of porosity distribution, namely, even and uneven distribution, are considered. A modified power law model is adopted to describe the material properties of the porous FGPM plates. Using D’Alembert’s principle, the out-of-plane equation of motion is derived by taking into account the Kármán nonlinear geometrical relations. After that, the Galerkin method is used to discretize the equation of motion, resulting in a set of ordinary differential equations with respect to time. These ordinary differential equations are solved analytically by employing the harmonic balance method. The approximate analytical results are verified by using the adaptive step-size fourth-order Runge-Kutta method. By means of the perturbation technique, the stability of approximate analytical solutions is examined. An interesting nonlinear broadband vibration phenomenon is detected in the FGPM plates with porosities. Nonlinear frequency-response characteristics of the present smart structures are investigated for various system parameters including the porosity type, the porosity volume fraction, the electric potential, the external excitation, the damping and the constituent volume fraction. It is found that these parameters have significant effects on the nonlinear vibration characteristics of porous FGPM plates.

  7. Work function reduction by a redox-active organometallic sandwich complex

    KAUST Repository

    Hyla, Alexander

    2016-07-14

    We have investigated, at the density functional theory level, the geometric and electronic structures of the pentamethyliridocene (IrCpCp*) monomer and dimer adsorbed on the Au(111) and indium tin oxide (ITO) (222) surfaces, as well as their impact on the work functions. Our calculations show that the adsorption of a monomer lowers the work function of ITO(222) by 1.2 eV and Au(111) by 1.2–1.3 eV. The main origin for this reduction is the formation of an interface dipole between the monomer and the substrate via charge transfer. Dimer adsorption as well as adsorption of possible byproducts formed from dimer bond-cleavage in solution, show a lesser ability to lower the work function. © 2016 Elsevier B.V.

  8. The work function for Li+-ion emission from spodumene: A complete characterization of thermionic emission

    Science.gov (United States)

    Schuld, Stephan; Diekmann, Mira; Schäfer, Martin; Weitzel, Karl-Michael

    2016-11-01

    The thermionic emission of Li+ from synthetic spodumene (LiAlSi2O6) has been investigated as a function of temperature and electric field. The data presented cover the entire range from the space charge limited Child-Langmuir regime, to the Richardson-Dushman regime, and finally the field assisted Schottky regime. From a self-consistent analysis of all data measured, the work function for Li+ emission from synthetic spodumene is determined as (2.47 ± 0.015) eV. The thermionic currents exhibit a voltage offset of (1.7 ± 0.1) eV, which can be traced to a combination of the ionic work function of the emitter, the recombination energy Li+ + electron, the electronic work function of the detector, and the contact potential between the detector and filament.

  9. Deep eutectic solvents: sustainable media for nanoscale and functional materials.

    Science.gov (United States)

    Wagle, Durgesh V; Zhao, Hua; Baker, Gary A

    2014-08-19

    genesis of nanostructure. Furthermore, DES components may modulate nucleation and growth mechanisms by charge neutralization, modification of reduction potentials (or chemical activities), and passivation of particular crystal faces, dictating growth along preferred crystallographic directions. Broad operational windows for electrochemical reactions coupled with their inherent ionic nature facilitate the electrodeposition of alloys and semiconductors inaccessible to classical means and the use of cosolvents or applied potential control provide under-explored strategies for mediating interfacial interactions leading to control over film characteristics. The biocompatibility of DESs suggests intriguing potential for the construction of biomolecular architectures in these novel media. It has been demonstrated that nucleic acid structures can be manipulated in the ionic, crowded, dehydrating (low water activity) DES environment-including the adoption of duplex helical structures divergent from the canonical B form and parallel G-quadruplex DNA persisting near water's boiling point-challenging the misconception that water is a necessity for maintenance of nucleic acid structure/functionality and suggesting an enticing trajectory toward DNA/RNA-based nanocatalysis within a strictly anhydrous medium. DESs offer tremendous opportunities and open intriguing perspectives for generating sophisticated nanostructures within an anhydrous or low-water medium. We conclude this Account by offering our thoughts on the evolution of the field, pointing to areas of clear and compelling utility which will surely see fruition in the coming years. Finally, we highlight a few hurdles (e.g., need for a universal nomenclature, absence of water-immiscible, oriented-phase, and low-viscosity DESs) which, once navigated, will hasten progress in this area.

  10. Interconversion of linearly viscoelastic material functions expressed as Prony series: a closure

    Science.gov (United States)

    Luk-Cyr, Jacques; Crochon, Thibaut; Li, Chun; Lévesque, Martin

    2013-02-01

    Interconversion of viscoelastic material functions is a longstanding problem that has received attention since the 1950s. There is currently no accepted methodology for interconverting viscoelastic material functions due to the lack of stability and accuracy of the existing methods. This paper presents a new exact, analytical interconversion method for linearly viscoelastic material functions expressed as Prony series. The new algorithm relies on the equations of the thermodynamics of irreversible processes used for defining linearly viscoelastic constitutive theories. As a result, interconversion is made possible for unidimensional and tridimensional materials for arbitrary material symmetry. The algorithm has been tested over a broad range of cases and was found to deliver accurate interconversion in all cases. Based on its accuracy and stability, the authors believe that their algorithm provides a closure to the interconversion of linearly viscoelastic constitutive theories expressed with Prony series.

  11. Compositions, Functions, and Testing of Friction Brake Materials and Their Additives

    Energy Technology Data Exchange (ETDEWEB)

    Blau, PJ

    2001-10-22

    The purpose of this report is to present a survey of commercial brake materials and additives, and to indicate their typical properties and functions, especially as regards their use in heavy trucks. Most truck pad and shoe materials described here were designed to wear against cast iron. Brake material test methods are also briefly described. This report does not address issues associated with the fabrication and manufacturing of brake materials. Since there are literally thousands of brake material additives, and their combinations are nearly limitless, it is impractical to list them all here. Rather, an attempt has been made to capture the primary constituents and their functions. An Appendix contains thermo-physical properties of some current and potential brake materials.

  12. Conceptual foundation for measures of physical function and behavioral health function for Social Security work disability evaluation.

    Science.gov (United States)

    Marfeo, Elizabeth E; Haley, Stephen M; Jette, Alan M; Eisen, Susan V; Ni, Pengsheng; Bogusz, Kara; Meterko, Mark; McDonough, Christine M; Chan, Leighton; Brandt, Diane E; Rasch, Elizabeth K

    2013-09-01

    Physical and mental impairments represent the 2 largest health condition categories for which workers receive Social Security disability benefits. Comprehensive assessment of physical and mental impairments should include aspects beyond medical conditions such as a person's underlying capabilities as well as activity demands relevant to the context of work. The objective of this article is to describe the initial conceptual stages of developing new measurement instruments of behavioral health and physical functioning relevant for Social Security work disability evaluation purposes. To outline a clear conceptualization of the constructs to be measured, 2 content models were developed using structured and informal qualitative approaches. We performed a structured literature review focusing on work disability and incorporating aspects of the International Classification of Functioning, Disability and Health as a unifying taxonomy for framework development. Expert interviews provided advice and consultation to enhance face validity of the resulting content models. The content model for work-related behavioral health function identifies 5 major domains: (1) behavior control, (2) basic interactions, (3) temperament and personality, (4) adaptability, and (5) workplace behaviors. The content model describing physical functioning includes 3 domains: (1) changing and maintaining body position, (2) whole-body mobility, and (3) carrying, moving, and handling objects. These content models informed subsequent measurement properties including item development and measurement scale construction, and provided conceptual coherence guiding future empirical inquiry. The proposed measurement approaches show promise to comprehensively and systematically assess physical and behavioral health functioning relevant to work. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  13. Strain, nano-phase separation, multi-scale structures and function of advanced materials

    OpenAIRE

    Billinge, S. J. L.

    2002-01-01

    Recent atomic pair distribution function results from our group from manganites and cuprate systems are reviewed in light of the presence of multi-scale structures. These structures have a profound effect on the material properties

  14. PREFACE: International Conference on Functional Materials and Nanotechnologies 2013 (FM&NT2013)

    Science.gov (United States)

    Nõmmiste, Ergo; Kirm, Marco; Plank, Toomas

    2013-12-01

    The International Conference Functional Materials and Nanotechnologies (FM&NT - 2013) was held in Tartu, 21-24 April 2013 at the Dorpat Conference Centre. The conference was organised by Institute of Physics, University of Tartu. The FM&NT conference series was started in 2006 by scientists from the Institute of Solid State Physics, University of Latvia. It is an annual conference bringing together researchers from the whole world. The warm and open atmosphere of this scientific conference has turned it into event where people from different fields meet under the common name of functional materials and nanotechnology. It is particularly important for early stage scientists who are looking for new knowledge and contact with people from various fields. Our Latvian colleagues with their success in internationalization made us neighbouring Estonians so envious that we could not withstand proposing that we host the conference in every second year in Estonia. Actually this is in a way the continuation of the idea of the famous Baltic seminars which took place over several decades during the last century. Due to political constraints these seminars were only opened to scientist of the former Eastern European countries, but which were extremely popular and attracted attendees from over the whole Soviet Union. Much fruitful cooperation started from the initial personal contacts of scientists at these seminars held twice per year, once in Latvia and the second time in Estonia. At the last FM&NT 2012 conference, the decision was made that Institute of Physics, University of Tartu would organise the event in Tartu in 2013. Along with traditional topics such as multifunctional materials, nanomaterials, materials for sustainable energy applications and theory, this conference focused on studies using synchrotron radiation and other novel light sources. The number of registered participants from 21 countries was nearly 300. During the three days of the conference 14 invited, 45

  15. Dendronized Metal Nanoparticles-Self-Organizing Building Blocks for the Design of New Functional Materials

    Science.gov (United States)

    2016-04-01

    AFRL-AFOSR-UK-TR-2016-0010 Dendronized metal nanoparticles - self-organizing building blocks for the design of new functional materials Bertrand...2015 4. TITLE AND SUBTITLE Dendronized metal nanoparticles - self-organizing building blocks for the design of new functional materials 5a. CONTRACT...restrictions or special markings are indicated, follow agency authorization procedures, e.g. RD/FRD, PROPIN, ITAR, etc. Include copyright

  16. Towards the Industrial Application of Spark Ablation for Nanostructured Functional Materials

    NARCIS (Netherlands)

    Pfeiffer, T.V.

    2014-01-01

    Nanostructuring of functional materials is an essential part in the design of energy related devices – but the industrial tools we have to make these materials are lacking. This dissertation explores the green, flexible, and scalable spark discharge process for the fabrication of complex

  17. Buckling Analysis of Functionally Graded Material Plates Using Higher Order Shear Deformation Theory

    Directory of Open Access Journals (Sweden)

    B. Sidda Reddy

    2013-01-01

    Full Text Available The prime aim of the present study is to present analytical formulations and solutions for the buckling analysis of simply supported functionally graded plates (FGPs using higher order shear deformation theory (HSDT without enforcing zero transverse shear stresses on the top and bottom surfaces of the plate. It does not require shear correction factors and transverse shear stresses vary parabolically across the thickness. Material properties of the plate are assumed to vary in the thickness direction according to a power law distribution in terms of the volume fractions of the constituents. The equations of motion and boundary conditions are derived using the principle of virtual work. Solutions are obtained for FGPs in closed-form using Navier’s technique. Comparison studies are performed to verify the validity of the present results from which it can be concluded that the proposed theory is accurate and efficient in predicting the buckling behavior of functionally graded plates. The effect of side-to-thickness ratio, aspect ratio, modulus ratio, the volume fraction exponent, and the loading conditions on the critical buckling load of FGPs is also investigated and discussed.

  18. The influence of shift work on cognitive functions and oxidative stress.

    Science.gov (United States)

    Özdemir, Pınar Güzel; Selvi, Yavuz; Özkol, Halil; Aydın, Adem; Tülüce, Yasin; Boysan, Murat; Beşiroğlu, Lütfullah

    2013-12-30

    Shift work influences health, performance, activity, and social relationships, and it causes impairment in cognitive functions. In this study, we investigated the effects of shift work on participants' cognitive functions in terms of memory, attention, and learning, and we measured the effects on oxidative stress. Additionally, we investigated whether there were significant relationships between cognitive functions and whole blood oxidant/antioxidant status of participants. A total of 90 health care workers participated in the study, of whom 45 subjects were night-shift workers. Neuropsychological tests were administered to the participants to assess cognitive function, and blood samples were taken to detect total antioxidant capacity and total oxidant status at 08:00. Differences in anxiety, depression, and chronotype characteristics between shift work groups were not significant. Shift workers achieved significantly lower scores on verbal memory, attention-concentration, and the digit span forward sub-scales of the Wechsler Memory Scale-Revised (WMS-R), as well as on the immediate memory and total learning sub-scales of the Auditory Verbal Learning Test (AVLT). Oxidative stress parameters were significantly associated with some types of cognitive function, including attention-concentration, recognition, and long-term memory. These findings suggest that night shift work may result in significantly poorer cognitive performance, particularly working memory. © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Drawing a dog: The role of working memory and executive function.

    Science.gov (United States)

    Panesi, Sabrina; Morra, Sergio

    2016-12-01

    Previous research suggests that young children draw animals by adapting their scheme for the human figure. This can be considered an early form of drawing flexibility. This study investigated preschoolers' ability to draw a dog that is different from the human figure. The role of working memory capacity and executive function was examined. The participants were 123 children (36-73 months old) who were required to draw both a person and a dog. The dog figure was scored on a list of features that could render it different from the human figure. Regression analyses showed that both working memory capacity and executive function predicted development in the dog drawing; the dog drawing score correlated with working memory capacity and executive function, even partialling out age, motor coordination, and drawing ability (measured with Goodenough's Draw-a-Man test). These results suggest that both working memory capacity and executive function play an important role in the early development of drawing flexibility. The implications regarding executive functions and working memory are also discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Sleep disturbances and reduced work functioning in depressive or anxiety disorders.

    Science.gov (United States)

    van Mill, Josine G; Vogelzangs, Nicole; Hoogendijk, Witte J G; Penninx, Brenda W J H

    2013-11-01

    We aimed to examine the associations between sleep disturbances and work functioning in an epidemiologic cohort study in subjects with or without depressive or anxiety disorders. There were 707 subjects included in our analyses with depressive or anxiety disorders and 728 subjects without current depressive or anxiety disorders. Insomnia was defined as a score ≥9 using the Insomnia Rating Scale. Self-reported sleep duration was categorized in short, normal, and long (≤6, 7-9, and ≥10 h, respectively). Work absenteeism was defined as none, short (≤2 weeks), or long (>2 weeks). Work performance was defined as not impaired, reduced, or impaired. Logistic regression analyses were performed to examine the associations of sleep disturbances with work functioning. In subjects with psychopathology, insomnia and short sleep duration were significantly associated with impaired work performance (odds ratio [OR] for insomnia, 2.20; [95% confidence interval {CI}, 1.50-3.22]; OR for short sleep, 2.54 [95% CI, 1.66-3.88] compared to normal sleep duration). Insomnia (OR, 2.48 [95% CI, 1.67-3.69]) and short sleep duration (OR, 1.85 [95% CI, 1.23-2.78]) also were associated with long-term absenteeism. These findings remained the same after considering clinical characteristics including medication use and symptom severity. In subjects without psychopathology, no significant associations were found between insomnia and short sleep duration on work functioning after considering subthreshold depression symptoms. In subjects with psychopathology, sleep disturbances were negatively associated with work functioning, independent of disorder severity and use of psychotropic medication. Further research is needed to determine if treatment of sleep disturbances in subjects with psychopathology improves work functioning. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Limitations of workers diagnosed with cancer evaluated with Work Role Functioning Questionnaire-Br.

    Science.gov (United States)

    Gallasch, Cristiane H; Alexandre, Neusa Mc; Esteves, Sergio Cb; Gomes, Helena F; da Rocha, Elaine Cl; Baptista, Patricia Cp

    2017-01-01

    The main subject of the current study is to look into the limitations found in individuals diagnosed with cancer, considered a public health problem, especially in developing countries where the impact of this disease is expected to account for 80% of 20 million new cases estimated worldwide by 2025. For some patients undergoing treatment, continuing to be professionally active is challenging especially considering that work fosters a purpose in life, a sense of contribution, distraction, and self-esteem, which aids in physical, cognitive, emotional, and interpersonal recovery. Within this context, the aim is to describe the limitations found in individuals with cancer, who have maintained their work activities in private service during radiotherapy treatment, through a descriptive study and a quantitative approach. The final sample of 51 participants was defined by non-probability convenience sampling, based on information from all patients admitted in that period, with a research protocol approved by the Research Ethics Committee. The assessment using the Brazilian version of the Work Role Functioning Questionnaire showed higher average work functioning indexes for social demand, with an average score of 94.33 (11.47). In turn, the worst indexes were registered in physical demand. No significant differences were observed between groups of treatment protocols in terms of WRFQ-Br scores. The work functioning assessment of workers diagnosed with cancer in radiotherapy using the WRFQ-Br showed higher scores for social demands and lower for physical demands. The preserved social performance may be linked to individual work functioning within the family, at work and, consequently, within society, given that the study included patients who maintained their work activities during the proposed treatment period, highlighting the social role of work for patients with cancer.

  2. Overview of recent work on self-healing in cementitious materials

    Directory of Open Access Journals (Sweden)

    Lv, Z.

    2014-12-01

    Full Text Available Cracks, especially microcracks, in concrete are of paramount importance to the durability and the service life of cementitious composite. However, the self-healing technology, including autogenous healing and autonomous healing, is expected to be one of effective tools to overcome this boring problem. In this paper, we focus on the autogenous healing of concrete material and a few of recent works of autonomous healing are also mentioned. The durability and the mechanical properties improved by the self-healing phenomenon are reviewed from experimental investigation and practical experience. Several aspects of researches, such as autogenous healing capability of an innovative concrete incorporated geo-materials, self-healing of engineered cementitious composite and fire-damaged concrete, effect of mineral and admixtures on mechanism and efficiency of self-healing concrete are summarized to evaluate the presented progresses in the past several years and to outline the perspective for the further developments. Moreover, a special emphasis is given on the analytical models and computer simulation method of the researches of self-healing in cementitious materials.Las fisuras, y sobre todo las microfisuras, tienen una gran repercusión en la durabilidad y en la vida útil de los materiales cementantes. Ante este problema, la tecnología de la autorreparación, tanto autógena como autónoma, se presenta como una solución eficaz. El artículo se centra en la reparación autógena del hormigón, así como en algunos trabajos recientes sobre la reparación autónoma. Se describen las mejoras de las propiedades de durabilidad y de resistencia que proporciona la técnica del hormigón autorreparable, tanto desde el punto de vista de la investigación experimental como del de la experiencia práctica. A fin de evaluar los avances logrados en los últimos años y de trazar las grandes líneas de desarrollo futuro, se resumen varios de los aspectos

  3. Optimization of WEDM process parameters using deep cryo-treated Inconel 718 as work material

    Directory of Open Access Journals (Sweden)

    Bijaya Bijeta Nayak

    2016-03-01

    Full Text Available The present work proposes an experimental investigation and optimization of various process parameters during taper cutting of deep cryo-treated Inconel 718 in wire electrical discharge machining process. Taguchi's design of experiment is used to gather information regarding the process with less number of experimental runs considering six input parameters such as part thickness, taper angle, pulse duration, discharge current, wire speed and wire tension. Since traditional Taguchi method fails to optimize multiple performance characteristics, maximum deviation theory is applied to convert multiple performance characteristics into an equivalent single performance characteristic. Due to the complexity and non-linearity involved in this process, good functional relationship with reasonable accuracy between performance characteristics and process parameters is difficult to obtain. To address this issue, the present study proposes artificial neural network (ANN model to determine the relationship between input parameters and performance characteristics. Finally, the process model is optimized to obtain a best parametric combination by a new meta-heuristic approach known as bat algorithm. The results of the proposed algorithm show that the proposed method is an effective tool for simultaneous optimization of performance characteristics during taper cutting in WEDM process.

  4. The effects of desvenlafaxine on neurocognitive and work functioning in employed outpatients with major depressive disorder.

    Science.gov (United States)

    Lam, Raymond W; Iverson, Grant L; Evans, Vanessa C; Yatham, Lakshmi N; Stewart, Kurtis; Tam, Edwin M; Axler, Auby; Woo, Cindy

    2016-10-01

    Major depressive disorder (MDD) is associated with staggering personal and economic costs, a major proportion of which stem from impaired psychosocial and occupational functioning. Few studies have examined the impact of depression-related cognitive dysfunction on work functioning. We examined the association between neurocognitive and work functioning in employed patients with MDD. Employed adult outpatients (n=36) with MDD of at least moderate severity (≥23 on the Montgomery Asberg Depression Rating Scale, MADRS) and subjective cognitive complaints completed neurocognitive tests (CNS Vital Signs computerized battery) and validated self-reports of their work functioning (LEAPS, HPQ) before and after 8 weeks of open-label treatment with flexibly-dosed desvenlafaxine 50-100mg/day. Relationships between neurocognitive tests and functional measures were examined using bivariate correlational and multiple regression analyses, as appropriate. An ANCOVA model examined whether significant change in neurocognitive performance, defined as improvement of ≥1SD in the Neurocognition Index (NCI) from baseline to post-treatment, was associated with improved outcomes. Patients showed significant improvements in depressive symptom, neurocognitive, and work functioning measures following treatment with desvenlafaxine (e.g., MADRS response=77% and MADRS remission=49%). There were no significant correlations between changes in NCI or cognitive domain subscales and changes in MADRS, LEAPS, or HPQ scores. However, patients demonstrating significant improvement in NCI scores (n=11, 29%) had significantly greater improvement in clinical and work functioning outcomes compared to those without NCI improvement. The limitations of this study include small sample size, lack of a placebo control group, and lack of a healthy comparison group. Our sample also had more years of education and higher premorbid intelligence than the general population. There were no significant correlations

  5. Is Work-Related Rumination Associated with Deficits in Executive Functioning?

    Science.gov (United States)

    Cropley, Mark; Zijlstra, Fred R H; Querstret, Dawn; Beck, Sarah

    2016-01-01

    Work-related rumination, that is, perseverative thinking about work during leisure time, has been associated with a range of negative health and wellbeing issues. The present paper examined the association between work-related rumination and cognitive processes centerd around the theoretical construct of executive functioning. Executive functioning is an umbrella term for high level cognitive processes such as planning, working memory, inhibition, mental flexibility; and it underlies how people manage and regulate their goal directed behavior. Three studies are reported. Study I, reports the results of a cross-sectional study of 240 employees, and demonstrates significant correlations between work-related rumination and three proxy measures of executive functioning: cognitive failures (0.33), cognitive flexibility (-0.24), and situational awareness at work (-0.28). Study II (n = 939), expands on the findings from study 1 and demonstrates that workers reporting medium and high work-related rumination were 2.8 and 5 times, respectively, more likely to report cognitive failures relative to low ruminators. High ruminators also demonstrated greater difficulties with 'lapses of attention' (OR = 4.8), 'lack of focus of attention' (OR = 3.4), and 'absent mindedness' (OR = 4.3). The final study, examined the association between work-related rumination and executive functioning using interview data from 2460 full time workers. Workers were divided into tertiles low, medium, and high. The findings showed that high work-related rumination was associated with deficits in starting (OR = 2.3) and finishing projects (OR = 2.4), fidgeting (OR = 1.9), memory (OR = 2.2), pursuing tasks in order (OR = 1.8), and feeling compelled to do things (OR = 2.0). It was argued that work-related rumination may not be related to work demands per se, but appears to be an executive functioning/control issue. Such findings are important for the design and delivery of intervention programes aimed at

  6. Imparting the unique properties of DNA into complex material architectures and functions

    Science.gov (United States)

    Xu, Phyllis F.; Noh, Hyunwoo; Lee, Ju Hun; Domaille, Dylan W.; Nakatsuka, Matthew A.; Goodwin, Andrew P.; Cha, Jennifer N.

    2014-01-01

    While the remarkable chemical and biological properties of DNA have been known for decades, these properties have only been imparted into materials with unprecedented function much more recently. The inimitable ability of DNA to form programmable, complex assemblies through stable, specific, and reversible molecular recognition has allowed the creation of new materials through DNA’s ability to control a material’s architecture and properties. In this review we discuss recent progress in how DNA has brought unmatched function to materials, focusing specifically on new advances in delivery agents, devices, and sensors. PMID:25525408

  7. Determination of the Local Thermal Conductivity of Functionally Graded Materials by a Laser Flash Method

    DEFF Research Database (Denmark)

    Zajas, Jan Jakub; Heiselberg, Per

    2013-01-01

    Determination of thermal conductivity of construction materials is essential to estimate their insulation capabilities. In most cases, homogenous materials are used and well developed methods exist for measurements of their thermal conductivity. The task becomes more challenging when dealing...... by scanning them point by point and determining the thermal conductivity as a function of the spatial dimensions. The method proves to be repeatable and of reasonable accuracy and can be used to determine the local thermal properties on a scale of millimeters. In this study, the method was successfully...... applied to create a map of thermal conductivity of a functionally graded material sample....

  8. Emotion perception and executive functioning predict work status in euthymic bipolar disorder.

    Science.gov (United States)

    Ryan, Kelly A; Vederman, Aaron C; Kamali, Masoud; Marshall, David; Weldon, Anne L; McInnis, Melvin G; Langenecker, Scott A

    2013-12-15

    Functional recovery, including return to work, in Bipolar Disorder (BD) lags behind clinical recovery and may be incomplete when acute mood symptoms have subsided. We examined impact of cognition on work status and underemployment in a sample of 156 Euthymic-BD and 143 controls (HC) who were divided into working/not working groups. Clinical, health, social support, and personality data were collected, and eight cognitive factors were derived from a battery of neuropsychological tests. The HC groups outperformed the BD groups on seven of eight cognitive factors. The working-BD group outperformed the not working-BD group on 4 cognitive factors composed of tasks of emotion processing and executive functioning including processing speed and set shifting. Emotion processing and executive tasks were predictive of BD unemployment, after accounting for number of mood episodes. Four cognitive factors accounted for a significant amount of the variance in work status among the BD participants. Results indicate that patients with BD who are unemployed/unable to work exhibit greater difficulties processing emotional information and on executive tasks that comprise a set shifting or interference resolution component as compared to those who are employed, independent of other factors. These cognitive and affective factors are suggested as targets for treatment and/or accommodations. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Functional Brain Network Modularity Captures Inter- and Intra-Individual Variation in Working Memory Capacity

    Science.gov (United States)

    Stevens, Alexander A.; Tappon, Sarah C.; Garg, Arun; Fair, Damien A.

    2012-01-01

    Background Cognitive abilities, such as working memory, differ among people; however, individuals also vary in their own day-to-day cognitive performance. One potential source of cognitive variability may be fluctuations in the functional organization of neural systems. The degree to which the organization of these functional networks is optimized may relate to the effective cognitive functioning of the individual. Here we specifically examine how changes in the organization of large-scale networks measured via resting state functional connectivity MRI and graph theory track changes in working memory capacity. Methodology/Principal Findings Twenty-two participants performed a test of working memory capacity and then underwent resting-state fMRI. Seventeen subjects repeated the protocol three weeks later. We applied graph theoretic techniques to measure network organization on 34 brain regions of interest (ROI). Network modularity, which measures the level of integration and segregation across sub-networks, and small-worldness, which measures global network connection efficiency, both predicted individual differences in memory capacity; however, only modularity predicted intra-individual variation across the two sessions. Partial correlations controlling for the component of working memory that was stable across sessions revealed that modularity was almost entirely associated with the variability of working memory at each session. Analyses of specific sub-networks and individual circuits were unable to consistently account for working memory capacity variability. Conclusions/Significance The results suggest that the intrinsic functional organization of an a priori defined cognitive control network measured at rest provides substantial information about actual cognitive performance. The association of network modularity to the variability in an individual's working memory capacity suggests that the organization of this network into high connectivity within modules

  10. Functional brain network modularity captures inter- and intra-individual variation in working memory capacity.

    Directory of Open Access Journals (Sweden)

    Alexander A Stevens

    Full Text Available Cognitive abilities, such as working memory, differ among people; however, individuals also vary in their own day-to-day cognitive performance. One potential source of cognitive variability may be fluctuations in the functional organization of neural systems. The degree to which the organization of these functional networks is optimized may relate to the effective cognitive functioning of the individual. Here we specifically examine how changes in the organization of large-scale networks measured via resting state functional connectivity MRI and graph theory track changes in working memory capacity.Twenty-two participants performed a test of working memory capacity and then underwent resting-state fMRI. Seventeen subjects repeated the protocol three weeks later. We applied graph theoretic techniques to measure network organization on 34 brain regions of interest (ROI. Network modularity, which measures the level of integration and segregation across sub-networks, and small-worldness, which measures global network connection efficiency, both predicted individual differences in memory capacity; however, only modularity predicted intra-individual variation across the two sessions. Partial correlations controlling for the component of working memory that was stable across sessions revealed that modularity was almost entirely associated with the variability of working memory at each session. Analyses of specific sub-networks and individual circuits were unable to consistently account for working memory capacity variability.The results suggest that the intrinsic functional organization of an a priori defined cognitive control network measured at rest provides substantial information about actual cognitive performance. The association of network modularity to the variability in an individual's working memory capacity suggests that the organization of this network into high connectivity within modules and sparse connections between modules may reflect

  11. Simultaneous measurements of work function and H‒ density including caesiation of a converter surface

    Science.gov (United States)

    Cristofaro, S.; Friedl, R.; Fantz, U.

    2017-08-01

    Negative hydrogen ion sources rely on the surface conversion of neutral atomic hydrogen and positive hydrogen ions to H-. The efficiency of this process depends on the actual work function of the converter surface. By introducing caesium into the source the work function decreases, enhancing the negative ion yield. In order to study the impact of the work function on the H- surface production at similar conditions to the ones in ion sources for fusion devices like ITER and DEMO, fundamental investigations are performed in a flexible laboratory experiment. The work function of the converter surface can be absolutely measured by photoelectric effect, while a newly installed cavity ring-down spectroscopy system (CRDS) measures the H- density. The CRDS is firstly tested and characterized by investigations on H- volume production. Caesiation of a stainless steel sample is then performed in vacuum and the plasma effect on the Cs layer is investigated also for long plasma-on times. A minimum work function of (1.9±0.1) eV is reached after some minutes of plasma treatment, resulting in a reduction by a value of 0.8 eV compared to vacuum measurements. The H- density above the surface is (2.1±0.5)×1015 m-3. With further plasma exposure of the caesiated surface, the work function increases up to 3.75 eV, due to the impinging plasma particles which gradually remove the Cs layer. As a result, the H- density decreases by a factor of at least 2.

  12. Making Materials Matter—A Contribution to a Sociomaterial Perspective on Work Environment

    Directory of Open Access Journals (Sweden)

    Johan Simonsen Abildgaard

    2013-12-01

    Full Text Available This paper aims to discuss the implications of adopting an STS (science and technology studies- based conceptualization of the psychosocial work environment. We problematize how work environment research presently divides elements of working conditions into separate physical and psychosocial dimensions. Based on actor network theory, a currently dominant perspective in the field of STS, we discuss the concept of sociomaterial work environment. An ANT perspective on work environment is relevant and timely, we argue, first and foremost because more entities are embraced in the analyses. We argue that the ANT perspective leads to a more nuanced understanding of the work environment where it is not a set of predefined categories that is the focus of interest, but rather the work environment as multiple locally performed aspects of agency, translation, and collectively constructed reality. This perspective on work environment, we argue, addresses pivotal issues raised in the work environment debate during the last ten years, for instance of how the work environment as a concept saliently belongs to a social democratic Scandinavian agenda in which the singular employee in a work environment context is predominantly seen as a victim. This trope, which was peaking in the 1970s, is increasingly becoming obsolete in a changing economy with still more flexible jobs. The contribution of this paper is to provide a presentation and a discussion of the potentials and pitfalls provided by a shift toward a sociomaterial work environment perspective, as well as an empirical exemplification of a sociomaterial approach to work environment assessment.

  13. Variation in the thermionic work function of semiconductor powders exposed to electromagnetic radiation

    Science.gov (United States)

    Bourasseau, S.; Martin, J. R.; Juillet, F.; Teichner, S. J.

    1977-01-01

    The study of the variation of thermoelectronic work function potential of TiO2 in the presence of isobutane shows that this gas is not adsorbed on this solid, in either the presence or the absence of ultraviolet radiation. These results, as well as those obtained in a previous work, lead to the mechanism of the photo-oxidation of isobutane at room temperature, in which excited atomic oxygen is the active species.

  14. Mediating pathways and gender differences between shift work and subjective cognitive function.

    Science.gov (United States)

    Wong, Imelda S; Smith, Peter M; Ibrahim, Selahadin; Mustard, Cameron A; Gignac, Monique A M

    2016-11-01

    Increased injury risk among shift workers is often attributed to cognitive function deficits that come about as a result of sleep disruptions. However, little is known about the intermediate influences of other factors (eg, work stress, health) which may affect this relationship. In addition, gender differences in these the complex relationships have not been fully explored. The purpose of this study is to (1) identify the extent to which work and non-work factors mediate the relationship between shift work, sleep and subsequent subjective cognitive function; and (2) determine if the mediating pathways differ for men and women. Data from the 2010 National Population Health Survey was used to create a cross-sectional sample of 4255 employed Canadians. Using path modelling, we examined the direct and indirect relationships between shift work, sleep duration, sleep quality and subjective cognitive function. Multigroup analyses tested for significantly different pathways between men and women. Potential confounding effects of age and self-reported health and potential mediating effects of work stress were simultaneously examined. Work stress and sleep quality significantly mediated the effects of shift work on cognition. Age and health confounded the relationship between sleep quality and subjective cognition. No differences were found between men and women. Occupational health and safety programmes are needed to address stress and health factors, in addition to sleep hygiene, to effectively address cognitive function among shift workers. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  15. Intensive Working Memory Training Produces Functional Changes in Large-scale Frontoparietal Networks.

    Science.gov (United States)

    Thompson, Todd W; Waskom, Michael L; Gabrieli, John D E

    2016-04-01

    Working memory is central to human cognition, and intensive cognitive training has been shown to expand working memory capacity in a given domain. It remains unknown, however, how the neural systems that support working memory are altered through intensive training to enable the expansion of working memory capacity. We used fMRI to measure plasticity in activations associated with complex working memory before and after 20 days of training. Healthy young adults were randomly assigned to train on either a dual n-back working memory task or a demanding visuospatial attention task. Training resulted in substantial and task-specific expansion of dual n-back abilities accompanied by changes in the relationship between working memory load and activation. Training differentially affected activations in two large-scale frontoparietal networks thought to underlie working memory: the executive control network and the dorsal attention network. Activations in both networks linearly scaled with working memory load before training, but training dissociated the role of the two networks and eliminated this relationship in the executive control network. Load-dependent functional connectivity both within and between these two networks increased following training, and the magnitudes of increased connectivity were positively correlated with improvements in task performance. These results provide insight into the adaptive neural systems that underlie large gains in working memory capacity through training.

  16. The cost of misremembering: Inferring the loss function in visual working memory.

    Science.gov (United States)

    Sims, Chris R

    2015-03-04

    Visual working memory (VWM) is a highly limited storage system. A basic consequence of this fact is that visual memories cannot perfectly encode or represent the veridical structure of the world. However, in natural tasks, some memory errors might be more costly than others. This raises the intriguing possibility that the nature of memory error reflects the costs of committing different kinds of errors. Many existing theories assume that visual memories are noise-corrupted versions of afferent perceptual signals. However, this additive noise assumption oversimplifies the problem. Implicit in the behavioral phenomena of visual working memory is the concept of a loss function: a mathematical entity that describes the relative cost to the organism of making different types of memory errors. An optimally efficient memory system is one that minimizes the expected loss according to a particular loss function, while subject to a constraint on memory capacity. This paper describes a novel theoretical framework for characterizing visual working memory in terms of its implicit loss function. Using inverse decision theory, the empirical loss function is estimated from the results of a standard delayed recall visual memory experiment. These results are compared to the predicted behavior of a visual working memory system that is optimally efficient for a previously identified natural task, gaze correction following saccadic error. Finally, the approach is compared to alternative models of visual working memory, and shown to offer a superior account of the empirical data across a range of experimental datasets. © 2015 ARVO.

  17. Attentional blink magnitude is predicted by the ability to keep irrelevant material out of working memory.

    Science.gov (United States)

    Arnell, Karen M; Stubitz, Shawn M

    2010-09-01

    Participants have difficulty in reporting the second of two masked targets if the second target is presented within 500 ms of the first target-an attentional blink (AB). Individual participants differ in the magnitude of their AB. The present study employed an individual differences design and two visual working memory tasks to examine whether visual working memory capacity and/or the ability to exclude irrelevant information from visual working memory (working memory filtering efficiency) could predict individual differences in the AB. Visual working memory capacity was positively related to filtering efficiency, but did not predict AB magnitude. However, the degree to which irrelevant stimuli were admitted into visual working memory (i.e., poor filtering efficiency) was positively correlated with AB magnitude over and above visual working memory capacity. Good filtering efficiency may benefit the AB by not allowing irrelevant RSVP distractors to gain access to working memory.

  18. Carbon-Based Functional Materials Derived from Waste for Water Remediation and Energy Storage.

    Science.gov (United States)

    Ma, Qinglang; Yu, Yifu; Sindoro, Melinda; Fane, Anthony G; Wang, Rong; Zhang, Hua

    2017-04-01

    Carbon-based functional materials hold the key for solving global challenges in the areas of water scarcity and the energy crisis. Although carbon nanotubes (CNTs) and graphene have shown promising results in various fields of application, their high preparation cost and low production yield still dramatically hinder their wide practical applications. Therefore, there is an urgent call for preparing carbon-based functional materials from low-cost, abundant, and sustainable sources. Recent innovative strategies have been developed to convert various waste materials into valuable carbon-based functional materials. These waste-derived carbon-based functional materials have shown great potential in many applications, especially as sorbents for water remediation and electrodes for energy storage. Here, the research progress in the preparation of waste-derived carbon-based functional materials is summarized, along with their applications in water remediation and energy storage; challenges and future research directions in this emerging research field are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Functional connectivity among spike trains in neural assemblies during rat working memory task.

    Science.gov (United States)

    Xie, Jiacun; Bai, Wenwen; Liu, Tiaotiao; Tian, Xin

    2014-11-01

    Working memory refers to a brain system that provides temporary storage to manipulate information for complex cognitive tasks. As the brain is a more complex, dynamic and interwoven network of connections and interactions, the questions raised here: how to investigate the mechanism of working memory from the view of functional connectivity in brain network? How to present most characteristic features of functional connectivity in a low-dimensional network? To address these questions, we recorded the spike trains in prefrontal cortex with multi-electrodes when rats performed a working memory task in Y-maze. The functional connectivity matrix among spike trains was calculated via maximum likelihood estimation (MLE). The average connectivity value Cc, mean of the matrix, was calculated and used to describe connectivity strength quantitatively. The spike network was constructed by the functional connectivity matrix. The information transfer efficiency Eglob was calculated and used to present the features of the network. In order to establish a low-dimensional spike network, the active neurons with higher firing rates than average rate were selected based on sparse coding. The results show that the connectivity Cc and the network transfer efficiency Eglob vaired with time during the task. The maximum values of Cc and Eglob were prior to the working memory behavior reference point. Comparing with the results in the original network, the feature network could present more characteristic features of functional connectivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. On the work function and the charging of small ( r ≤ 5 nm) nanoparticles in plasmas

    Science.gov (United States)

    Kalered, E.; Brenning, N.; Pilch, I.; Caillault, L.; Minéa, T.; Ojamäe, L.

    2017-01-01

    The growth of nanoparticles (NPs) in plasmas is an attractive technique where improved theoretical understanding is needed for quantitative modeling. The variation of the work function W with size for small NPs, rN P≤ 5 nm, is a key quantity for modeling of three NP charging processes that become increasingly important at a smaller size: electron field emission, thermionic electron emission, and electron impact detachment. Here we report the theoretical values of the work function in this size range. Density functional theory is used to calculate the work functions for a set of NP charge numbers, sizes, and shapes, using copper for a case study. An analytical approximation is shown to give quite accurate work functions provided that rN P > 0.4 nm, i.e., consisting of about >20 atoms, and provided also that the NPs have relaxed close to spherical shape. For smaller sizes, W deviates from the approximation, and also depends on the charge number. Some consequences of these results for nanoparticle charging are outlined. In particular, a decrease in W for NP radius below about 1 nm has fundamental consequences for their charge in a plasma environment, and thereby on the important processes of NP nucleation, early growth, and agglomeration.

  1. Effects of combined pharmacotherapy and psychotherapy for improving work functioning in major depressive disorder.

    Science.gov (United States)

    Lam, Raymond W; Parikh, Sagar V; Ramasubbu, Rajamannar; Michalak, Erin E; Tam, Edwin M; Axler, Auby; Yatham, Lakshmi N; Kennedy, Sidney H; Manjunath, Chinnapalli V

    2013-11-01

    Major depressive disorder is associated with significant impairment in occupational functioning and reduced productivity, which represents a large part of the overall burden of depression. To examine symptom-based and work functioning outcomes with combined pharmacotherapy and psychotherapy treatment of major depressive disorder. Employed patients with a DSM-IV diagnosis of major depressive disorder were treated with escitalopram 10-20 mg/day and randomised to: (a) telephone-administered cognitive-behavioural therapy (telephone CBT) (n = 48); or (b) adherence-reminder telephone calls (n = 51). Outcomes included the Montgomery-Åsberg Depression Rating Scale (MADRS), administered by masked evaluators via telephone, and self-rated work functioning scales completed online. (Registered at clinicaltrials.gov: NCT00702598.) After 12 weeks, there were no significant between-group differences in change in MADRS score or in response/remission rates. However, participants in the telephone-CBT group had significantly greater improvement on some measures of work functioning than the escitalopram-alone group. Combined treatment with escitalopram and telephone-administered CBT significantly improved some self-reported work functioning outcomes, but not symptom-based outcomes, compared with escitalopram alone.

  2. Atomic pair distribution functions analysis of disordered low-Z materials.

    Science.gov (United States)

    Petkov, V; Ren, Y; Kabekkodu, S; Murphy, D

    2013-06-14

    Results of high-energy X-ray diffraction experiments coupled to atomic pair distribution function analysis of disordered low-Z materials are presented. Several scientifically and technologically important classes of disordered low-Z materials such as small and large organic molecules, graphitic powders, polymers and liquids are intentionally explored to certify the technique's performance. Results clearly show that disordered low-Z materials can be well characterized in terms of material's phase identity, relative abundance in mixtures and atomic-scale structure. The demonstrated efficiency of the technique provides the scientific community with much needed confidence to apply it more often than now.

  3. Research Update: Towards designed functionalities in oxide-based electronic materials

    Directory of Open Access Journals (Sweden)

    James M. Rondinelli

    2015-08-01

    Full Text Available One of the grand challenges facing materials-by-design approaches for complex oxide deployment in electronic devices is how to balance transformative first-principles based predictions with experimental feasibility. Here, we briefly review the functionality-driven approach (inverse design for materials discovery, encapsulated in three modalities for materials discovery (m3D that integrate experimental feedback. We compare it to both traditional theoretical and high-throughput database-directed approaches aimed at advancing oxide-based materials into technologies.

  4. Amorphous Silk Nanofiber Solutions for Fabricating Silk-Based Functional Materials.

    Science.gov (United States)

    Dong, Xiaodan; Zhao, Qun; Xiao, Liying; Lu, Qiang; Kaplan, David L

    2016-09-12

    As a functional material, silk has been widely used in tissue engineering, drug release, and tissue regeneration. Increasing subtle control of silk hierarchical structures and thus specific functional performance is required for these applications but remains a challenge. Here, we report a novel silk nanofiber solution achieved through tuning solvent systems used to generate the material. Unlike the β-sheet rich silk nanofibers reported previously, these new silk nanofibers are mainly composed of amorphous structures and maintain a solution state in aqueous environments. The amorphous silk nanofibers are stable enough for storage and also metastable, making them easy to use in the further fabrication of materials through various processes. Silk scaffolds, hydrogels, and films were prepared from these silk nanofiber solutions. These silk materials from amorphous nanofiber solutions show different properties and tunable performance features. Therefore, these amorphous silk nanofibers are suitable units or building blocks for designing silk-based materials.

  5. FUNCTIONAL VALUES OF VILLAGE LIBRARY IN INHERITANCE WORKS OF LOCAL CULTURE

    Directory of Open Access Journals (Sweden)

    Pawit M Yusup

    2017-12-01

    books, magazines, newspapers, maps, brochures, and the like, both in print and digital format. These works contain a benefit for knowledge and education. Meanwhile, the library as an institution in charge of managing printed and recorded works, including ancient works, continues to contribute in this work with storage for wider dissemination. This study examines the existence of public libraries and village libraries in West Java related to its role as referred to above. The method used is direct observation to the field. The result illustrates that public libraries and village libraries already participate to provide this type of collection for the benefit of the public on the current generation and the future. Keywords: Printed Materials, Paper records, Ancient manuscripts,Cultural Values, Public Library.

  6. An Investigation into the Efficacy of Work Shops on Sex-Role Stereotyping in Reading Materials.

    Science.gov (United States)

    Rowell, Elizabeth H.

    The purpose of this study was to determine the effectiveness of programs on sexism in reading materials, that were part of four Title IX workshops held in various areas of Rhode Island. Principals, teachers, counselors, and guidance directors were invited to the workshops. The session on sex-role stereotyping in reading materials consisted of a…

  7. PREFACE: International Conference on Functional Materials and Nanotechnologies (FM&NT2012)

    Science.gov (United States)

    Sternberg, Andris; Muzikante, Inta; Sarakovskis, Anatolijs; Grinberga, Liga

    2012-08-01

    The International Conference Functional Materials and Nanotechnologies (FM&NT - 2012) was held in Riga, 17-20 April 2012 at the Institute of Solid State Physics, University of Latvia (ISSP UL). The conference was organised by ISSP UL in co-operation with National Research programme in Materials Science and Information Technologies of Latvia. The purpose of this series of conferences is to bring together scientists, researchers, engineers and students from universities, research institutes and related industrial companies working in the field of advanced material science, energy and materials technologies. The contributions of the participants were grouped according to three main topics of the conference: 1. Multifunctional Materials including advanced inorganic, organic and hybrid materials; ferroics; multiscale and multiphenomenal material modeling and simulation 2. Nanotechnologies including progressive methods, technologies and design for investigation of nanoparticles, nanostructures, nanocomposites, thin films and coatings; 3. Energy including perspective materials and technologies for renewable and hydrogen energy, fuel cells, photovoltaics and developing diverse energy systems. A special section devoted to Organic Materials was organized to commemorate a long-time organizer of the FM&NT conference series, Dr. habil. phys, academician Inta Muzikante who passed away on 15 February 2012. The number of registered participants from 21 countries was nearly 300. During the three days of the conference 2 plenary, 16 invited, 54 oral reports and 184 posters were presented. 64 papers, based on these reports, are included in this volume of IOP Conference Series: Materials Science and Engineering. Additional information about FM&NT-2012 is available at its homepage http://www.fmnt.lu.lv. The Organizing Committee would like to thank all the speakers, contributors, session chairs, referees and other involved staff for their efforts in making the FM&NT-2012 successful. The

  8. Working memory as a predictor of negative symptoms and functional outcome in first episode psychosis.

    Science.gov (United States)

    González-Ortega, Itxaso; de Los Mozos, Vanesa; Echeburúa, Enrique; Mezo, Maria; Besga, Ariadna; Ruiz de Azúa, Sonia; González-Pinto, Asunción; Gutierrez, Miguel; Zorrilla, Iñaki; González-Pinto, Ana

    2013-03-30

    The relationship of neurocognitive course with clinical and functional outcomes in psychosis is not well known, especially in the long term. The aim of the study was to examine the clinical and neuropsychological course of first-episode psychosis patients at 5-year follow-up and analyze the relationship of cognitive performance with clinical and functional outcome. The 5-year follow-up was conducted with 26 first-episode psychosis patients. Psychotic symptoms were measured by the Positive and Negative Syndrome Scale, manic and depressive symptoms by the Young Mania Rating Scale and Hamilton Depression Rating Scale respectively, and psychosocial functioning by the Functioning Assessment Short Test. The cognitive domains were assessed by the Wechsler Adult Intelligence Scale, the Wisconsin Card Sorting Test, the Trail Making Test, the Verbal Fluency Test, the Stroop Colour-Word Test and the Wechsler Memory Scale. Patients showed symptomatic improvement in the follow-up except in negative psychotic symptoms. There was also improvement in most cognitive domains except in working memory and processing speed in the follow-up. Working memory impairment was associated to negative psychotic symptoms and poor functional outcomes. Negative symptoms mediated the relationship between working memory and outcome. Therefore, negative symptoms should be a primary target of treatment to improve functional outcomes. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. An energy-efficient intrinsic functional organization of human working memory: A resting-state functional connectivity study.

    Science.gov (United States)

    Liu, Huaigui; Yu, Hongxu; Li, Yanjun; Qin, Wen; Xu, Lixue; Yu, Chunshui; Liang, Meng

    2017-01-01

    Working memory (WM) is the active maintenance of currently relevant information that was just experienced or retrieved from long-term memory but no longer exists in the external environment; however, the intrinsic functional organization of the brain underlying human WM performance remains largely unknown. We hypothesize that the intrinsic functional organization of human WM is an energy-efficient system. We tested this hypothesis by analyzing associations between WM performance (reaction times of correct responses) at different task difficulties (2-back and 3-back tasks) and the resting-state functional connectivity density (FCD) and strength (FCS) in 282 healthy young adults. Voxel-based FCD analysis showed that the reaction times were negatively correlated with the FCD values of several brain regions known to be engaged in WM performance: the right inferior parietal lobule and inferior frontal gyrus for both the 2-back and the 3-back tasks and the right superior parietal lobule, supramarginal gyrus, left inferior parietal lobule and bilateral middle occipital gyrus for the 3-back task. Further analyses showed that the FCS values of these regions with several frontal, parietal and occipital regions were also negatively correlated with the reaction times; the 3-back task was associated with much more functional connections than the 2-back task. These findings suggest that the intrinsic working memory network is an energy-efficient and hierarchical system. A simple working memory task is controlled only by the core subsystem; however, a complex working memory task is associated with more nodes and connections of the system. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. 3D Printing in Zero G Technology Demonstration Mission: Summary of On-Orbit Operations, Material Testing, and Future Work

    Science.gov (United States)

    Prater, Tracie; Bean, Quincy; Werkheiser, Niki; Ordonez, Erick; Ledbetter, Frank; Ryan, Richard; Newton, Steve

    2016-01-01

    Human space exploration to date has been limited to low Earth orbit and the moon. The International Space Station (ISS), an orbiting laboratory 200 miles above the earth, provides a unique and incredible opportunity for researchers to prove out the technologies that will enable humans to safely live and work in space for longer periods of time and venture farther into the solar system. The ability to manufacture parts in-space rather than launch them from earth represents a fundamental shift in the current risk and logistics paradigm for human spaceflight. In particularly, additive manufacturing (or 3D printing) techniques can potentially be deployed in the space environment to enhance crew safety (by providing an on-demand part replacement capability) and decrease launch mass by reducing the number of spare components that must be launched for missions where cargo resupply is not a near-term option. In September 2014, NASA launched the 3D Printing in Zero G technology demonstration mission to the ISS to explore the potential of additive manufacturing for in-space applications and demonstrate the capability to manufacture parts and tools on-orbit. The printer for this mission was designed and operated by the company Made In Space under a NASA SBIR (Small Business Innovation Research) phase III contract. The overarching objectives of the 3D print mission were to use ISS as a testbed to further maturation of enhancing technologies needed for long duration human exploration missions, introduce new materials and methods to fabricate structure in space, enable cost-effective manufacturing for structures and mechanisms made in low-unit production, and enable physical components to be manufactured in space on long duration missions if necessary. The 3D print unit for fused deposition modeling (FDM) of acrylonitrile butadiene styrene (ABS) was integrated into the ISS Microgravity Science Glovebox (MSG) in November 2014 and phase I printing operations took place from

  11. Programming function into mechanical forms by directed assembly of silk bulk materials.

    Science.gov (United States)

    Marelli, Benedetto; Patel, Nereus; Duggan, Thomas; Perotto, Giovanni; Shirman, Elijah; Li, Chunmei; Kaplan, David L; Omenetto, Fiorenzo G

    2017-01-17

    We report simple, water-based fabrication methods based on protein self-assembly to generate 3D silk fibroin bulk materials that can be easily hybridized with water-soluble molecules to obtain multiple solid formats with predesigned functions. Controlling self-assembly leads to robust, machinable formats that exhibit thermoplastic behavior consenting material reshaping at the nanoscale, microscale, and macroscale. We illustrate the versatility of the approach by realizing demonstrator devices where large silk monoliths can be generated, polished, and reshaped into functional mechanical components that can be nanopatterned, embed optical function, heated on demand in response to infrared light, or can visualize mechanical failure through colorimetric chemistries embedded in the assembled (bulk) protein matrix. Finally, we show an enzyme-loaded solid mechanical part, illustrating the ability to incorporate biological function within the bulk material with possible utility for sustained release in robust, programmably shapeable mechanical formats.

  12. Spatial working memory in children with high-functioning autism: intact configural processing but impaired capacity.

    Science.gov (United States)

    Jiang, Yuhong V; Capistrano, Christian G; Palm, Bryce E

    2014-02-01

    Visual attention and visual working memory exert severe capacity limitations on cognitive processing. Impairments in both functions may exacerbate the social and communication deficits seen in children with an autism spectrum disorder (ASD). This study characterizes spatial working memory and visual attention in school-age children with high-functioning autism. Children with ASD, and age, gender, and IQ-matched typically developing (TD) children performed 2 tasks: a spatial working memory task and an attentive tracking task. Compared with TD children, children with ASD showed a more pronounced deficit in the spatial working memory task than the attentive tracking task, even though the latter placed significant demands on sustained attention, location updating, and distractor inhibition. Because both groups of children were sensitive to configuration mismatches between the sample and test arrays, the spatial working memory deficit was not because of atypical organization of spatial working memory. These findings show that attention and working memory are dissociable, and that children with ASD show a specific deficit in buffering visual information across temporal discontinuity. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  13. Spatial working memory in heavy cannabis users: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Kanayama, Gen; Rogowska, Jadwiga; Pope, Harrison G; Gruber, Staci A; Yurgelun-Todd, Deborah A

    2004-11-01

    Many neuropsychological studies have documented deficits in working memory among recent heavy cannabis users. However, little is known about the effects of cannabis on brain activity. We assessed brain function among recent heavy cannabis users while they performed a working memory task. Functional magnetic resonance imaging was used to examine brain activity in 12 long-term heavy cannabis users, 6-36 h after last use, and in 10 control subjects while they performed a spatial working memory task. Regional brain activation was analyzed and compared using statistical parametric mapping techniques. Compared with controls, cannabis users exhibited increased activation of brain regions typically used for spatial working memory tasks (such as prefrontal cortex and anterior cingulate). Users also recruited additional regions not typically used for spatial working memory (such as regions in the basal ganglia). These findings remained essentially unchanged when re-analyzed using subjects' ages as a covariate. Brain activation showed little or no significant correlation with subjects' years of education, verbal IQ, lifetime episodes of cannabis use, or urinary cannabinoid levels at the time of scanning. Recent cannabis users displayed greater and more widespread brain activation than normal subjects when attempting to perform a spatial working memory task. This observation suggests that recent cannabis users may experience subtle neurophysiological deficits, and that they compensate for these deficits by "working harder"-calling upon additional brain regions to meet the demands of the task.

  14. Social anhedonia and work and social functioning in the acute and recovered phases of eating disorders.

    Science.gov (United States)

    Harrison, Amy; Mountford, Victoria A; Tchanturia, Kate

    2014-08-15

    Interpersonal difficulties are proposed to maintain eating disorders (EDs). This study explored whether social anhedonia (SA) was an additional social emotional maintenance factor which might also explain work/social problems in EDs. Additionally, the study explored SA and work and social adjustment in recovered participants. Women with anorexia nervosa (AN; n=105), bulimia nervosa (BN; n=46), recovered from AN (RAN; n=30) and non-ED controls (n=136) completed the Work and Social Adjustment Scale (WSAS) and the Revised Social Anhedonia Scale. ED participants reported greater SA and WSAS scores than non-ED controls; the RAN group reported an intermediate profile. AN participants had poorer work/social adjustment than BN participants. SA was associated with longer illness duration. SA, current severity (BMI) and lifetime severity (lowest adult BMI) significantly predicted work/social difficulties. Recovered participants scoring in the clinical range for SA experienced significantly greater work/social difficulties than recovered participants scoring outside the clinical range for SA. EDs are associated with clinical levels of SA and poor work/social functioning which reduce in recovery. SA may maintain the interpersonal functioning difficulties. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Work stress, anthropometry, lung function, blood pressure, and blood-based biomarkers

    DEFF Research Database (Denmark)

    Magnusson Hanson, Linda L.; Westerlund, Hugo; Goldberg, Marcel

    2017-01-01

    -based biomarkers. Linear regression analyses before and after multivariable adjustment for age, socioeconomic status, depressive symptoms, health-related behaviours, and chronic conditions showed that work stress was associated with higher BMI, waist circumference, waist-hip ratio, alanine transaminase, white......, creatinine, glucose levels or resting blood pressure measures. This indicates that work stress is associated altered metabolic profile, increased systemic inflammation, and, in men, poorer liver function, which is a marker of high alcohol consumption.......Work stress is a risk factor for cardio-metabolic diseases, but few large-scale studies have examined the clinical profile of individuals with work stress. To address this limitation, we conducted a cross-sectional study including 43,593 working adults from a French population-based sample aged 18...

  16. Synthesis of periphery-functionalized dendritic molecules using polylithiated dendrimers as starting material

    Science.gov (United States)

    Wijkens; Jastrzebski; van Der Schaaf PA; Kolly; Hafner; van Koten G

    2000-06-01

    A general method for the functionalization of Si-Cl terminated carbosilane dendritic molecules via organolithium or organomagnesium reagents is described. Quantitative exchange of the bromine atoms of 4-bromophenyl-functionalized dendrimers affords polylithiated species that are valuable starting materials for further functionalization, e.g., into pyridyl alcohols. The latter were successfully applied as catalyst precursors in a ruthenium-mediated ring-closure metathesis reaction.

  17. Flow behaviour of autoclaved, 20% cold worked, Zr-2.5Nb alloy pressure tube material in the temperature range of room temperature to 800 °C

    Science.gov (United States)

    Dureja, A. K.; Sinha, S. K.; Srivastava, Ankit; Sinha, R. K.; Chakravartty, J. K.; Seshu, P.; Pawaskar, D. N.

    2011-05-01

    Pressure tube material of Indian Heavy Water Reactors is 20% cold-worked and stress relieved Zr-2.5Nb alloy. Inherent variability in the process parameters during the fabrication stages of pressure tube and also along the length of component have their effect on micro-structural and texture properties of the material, which in turn affect its strength parameters (yield strength and ultimate tensile strength) and flow characteristics. Data of tensile tests carried out in the temperature range from room temperature to 800 °C using the samples taken out from a single pressure tube have been used to develop correlations for characterizing the strength parameters' variation as a function of axial location along length of the tube and the test temperature. Applicability of Ramberg-Osgood, Holloman and Voce's correlations for defining the post yield behaviour of the material has been investigated. Effect of strain rate change on the deformation behaviour has also been studied.

  18. Recent works carried out at the IDIEM by the group in charge of probabilistic strength of materials

    Directory of Open Access Journals (Sweden)

    Kittl, P.

    1990-09-01

    Full Text Available This updating review describes, from the conceptual standpoint, all the research works so far carried out at the IDIEM by the group in charge of Probabilistic Strength of Materials as well as research activities under way at present. This description considers three aspects. First, the general purposes of the commented discipline and the discussion of its theoretical foundations are presented. In the second place, an analysis is conducted in connection with materials subjected to diverse stresses of tension, compression, shearing, bending, torsion, eccentrical bending, and also subjected to buckling, eccentrical compressive and eccentrical tensile stresses: in all these cases the pertaining parameters of Weibull's function are determined. Thirdly, sundry engineering applications of said discipline are set out in such fields as, for example, soil mechanics, rock mechanics, seismology, nuclear reactors industry, fatigue, and concrete pavements. At last a brief description of research work now in progress is given.

    Se describen, desde un punto de vista conceptual, todos los trabajos desarrollados hasta la fecha por el grupo de Resistencia Probabilística de Materiales del IDIEM así como los que están actualmente en ejecución. Se consideran tres aspectos en la descripción. En primer lugar, se comentan los objetivos generales de la disciplina discutiendo su fundamentación teórica. En segundo lugar, se analizan casos de materiales sometidos a esfuerzos de tracción, compresión, corte, flexión, torsión, flexión excéntrica, pandeo, compresión y tracción excéntricas y la consecuente determinación de los parámetros de la función de Weibull en todos ellos. En tercer lugar, se mencionan las aplicaciones que esta disciplina tiene en la ingeniería, tales como en: mecánica de suelos, mecánica de rocas, fatiga, pavimentos de hormigón, sismología, industria nuclear, entre otras. Por último, se hace una sucinta descripción de los

  19. DOE Energy Frontiers Research Center for Heterogeneous Functional Materials; the “HeteroFoaM Center”

    Energy Technology Data Exchange (ETDEWEB)

    Reifsnider, Kenneth Leonard [Univ. of South Carolina, Columbia, SC (United States)

    2016-11-03

    Synopsis of five year accomplishments: Devices that convert and store energy are generally made from heterogeneous constituent materials that act and interact to selectively conduct, transport, and separate mass, heat, and charge. Controlling these actions and interactions enables the technical breakthroughs that have made fuel cells, batteries, and solid state membranes, for example, essential parts of our society. In the biological sense, these materials are ‘vascular’ rather than primitive ‘cellular’ materials, in which the arrangements and configurations of the constituents (including their void phases) play essential and definitive roles in their functional capabilities. In 2009 a group of investigators, with lifetime investments of effort in the understanding of heterogeneous materials, recognized that the design of such material systems is not an optimization problem as such. Local interactions of the constituents create “emergent” properties and responses that are not part of the formal set of constituent characteristics, in much the same sense that society and culture is created by the group interactions of the people involved. The design of emergent properties is an open question in all formal science, but for energy materials the lack of this foundation science relegates development tasks to Edisonian trial and error, with anecdotal success and frequent costly failures. That group defined, for the first time, multi-scale heterogeneous functional materials with functional disordered and void phase regions as “HeteroFoaM,” and formed the first multidisciplinary research team to define and codify the foundation science of that material class. The primary goal of the HeteroFoaM Center was, and is, to create and establish the multi-scale fundamental knowledge and related methodology required for the rational and systematic multiphysics design of heterogeneous functional materials and their interfaces and surfaces for applications in energy

  20. Functional connectivity among spikes in low dimensional space during working memory task in rat.

    Science.gov (United States)

    Ouyang, Mei; Li, Shuangyan; Tian, Xin

    2014-01-01

    Working memory (WM) is critically important in cognitive tasks. The functional connectivity has been a powerful tool for understanding the mechanism underlying the information processing during WM tasks. The aim of this study is to investigate how to effectively characterize the dynamic variations of the functional connectivity in low dimensional space among the principal components (PCs) which were extracted from the instantaneous firing rate series. Spikes were obtained from medial prefrontal cortex (mPFC) of rats with implanted microelectrode array and then transformed into continuous series via instantaneous firing rate method. Granger causality method is proposed to study the functional connectivity. Then three scalar metrics were applied to identify the changes of the reduced dimensionality functional network during working memory tasks: functional connectivity (GC), global efficiency (E) and casual density (CD). As a comparison, GC, E and CD were also calculated to describe the functional connectivity in the original space. The results showed that these network characteristics dynamically changed during the correct WM tasks. The measure values increased to maximum, and then decreased both in the original and in the reduced dimensionality. Besides, the feature values of the reduced dimensionality were significantly higher during the WM tasks than they were in the original space. These findings suggested that functional connectivity among the spikes varied dynamically during the WM tasks and could be described effectively in the low dimensional space.

  1. Functional connectivity among spikes in low dimensional space during working memory task in rat.

    Directory of Open Access Journals (Sweden)

    Mei Ouyang

    Full Text Available Working memory (WM is critically important in cognitive tasks. The functional connectivity has been a powerful tool for understanding the mechanism underlying the information processing during WM tasks. The aim of this study is to investigate how to effectively characterize the dynamic variations of the functional connectivity in low dimensional space among the principal components (PCs which were extracted from the instantaneous firing rate series. Spikes were obtained from medial prefrontal cortex (mPFC of rats with implanted microelectrode array and then transformed into continuous series via instantaneous firing rate method. Granger causality method is proposed to study the functional connectivity. Then three scalar metrics were applied to identify the changes of the reduced dimensionality functional network during working memory tasks: functional connectivity (GC, global efficiency (E and casual density (CD. As a comparison, GC, E and CD were also calculated to describe the functional connectivity in the original space. The results showed that these network characteristics dynamically changed during the correct WM tasks. The measure values increased to maximum, and then decreased both in the original and in the reduced dimensionality. Besides, the feature values of the reduced dimensionality were significantly higher during the WM tasks than they were in the original space. These findings suggested that functional connectivity among the spikes varied dynamically during the WM tasks and could be described effectively in the low dimensional space.

  2. Synthesis of functional mesoporous materials and their applications for oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Mutyala, S.; Rahimi, P.; Fairbridge, C.; Alem, T. [National Centre for Upgrading Technology, Devon, AB (Canada); Natural Resources Canada, Devon, AB (Canada). CanmetENERGY

    2009-07-01

    Athabasca bitumen contains about 1 weight per cent of organic acids. Naphthenic acids (NAs) can cause corrosion in refinery equipment and should therefore be removed. This study focused on converting or removing NAs by using functional mesoporous materials under mild conditions. This poster described the synthesis of functional hybrid mesoporous materials. The materials were characterized by scanning electron microscopy/transmission electron microscopy (SEM/TEM) and Fourier transform infrared (FTIR) analysis. Thiol modified mesoporous materials showed higher activity for adsorption of metals. Alkyl or aryl sulphonic acid-functionalized mesoporous silicas were synthesized using a one-step approach with in-situ oxidation of thiol groups to the sulphonic acid groups. The resulting solid acid materials were tested for their catalytic performance in the esterification of naphthenic acids model compounds with methanol to produce corresponding methyl esters. Well dispersed palladium nanoparticles were identified in the mesoporous materials. High product yields were obtained for naphthenic acids model compounds and isolated NA's by sulphonic acid functionalized catalyst. tabs., figs.

  3. Ab initio density-functional calculations in materials science: from quasicrystals over microporous catalysts to spintronics.

    Science.gov (United States)

    Hafner, Jürgen

    2010-09-29

    During the last 20 years computer simulations based on a quantum-mechanical description of the interactions between electrons and atomic nuclei have developed an increasingly important impact on materials science, not only in promoting a deeper understanding of the fundamental physical phenomena, but also enabling the computer-assisted design of materials for future technologies. The backbone of atomic-scale computational materials science is density-functional theory (DFT) which allows us to cast the intractable complexity of electron-electron interactions into the form of an effective single-particle equation determined by the exchange-correlation functional. Progress in DFT-based calculations of the properties of materials and of simulations of processes in materials depends on: (1) the development of improved exchange-correlation functionals and advanced post-DFT methods and their implementation in highly efficient computer codes, (2) the development of methods allowing us to bridge the gaps in the temperature, pressure, time and length scales between the ab initio calculations and real-world experiments and (3) the extension of the functionality of these codes, permitting us to treat additional properties and new processes. In this paper we discuss the current status of techniques for performing quantum-based simulations on materials and present some illustrative examples of applications to complex quasiperiodic alloys, cluster-support interactions in microporous acid catalysts and magnetic nanostructures.

  4. Channel length scaling and the impact of metal gate work function ...

    Indian Academy of Sciences (India)

    Further- more, quantum effects on the performance of DG-MOSFETs are addressed and discussed. We also study the influence of metal gate work function on the performance of nanoscale MOSFETs. We use a self-consistent Poisson–Schrödinger solver in two dimensions over the entire device. A good agreement with ...

  5. Magnetic tunnel contacts to silicon with low-work-function ytterbium nanolayers

    NARCIS (Netherlands)

    Patel, R.S.; Dash, S.P.; de Jong, Machiel Pieter; Jansen, R.

    2009-01-01

    Unambiguous proof of spin transport in semiconductor spintronic devices requires a control experiment to exclude spurious signals that arise from the presence of the ferromagnetic contacts. It is shown here that insertion of a low-work-function Yb nanolayer in ferromagnetic tunnel contacts to

  6. Functional Differentiation of Job Demands: Dilemmas Confronting the Continuum in Social Work Education.

    Science.gov (United States)

    Kolevzon, Michael S.; Biggerstaff, Marilyn A.

    1983-01-01

    In a survey comparing 22 work activities of BA, BSW, and MSW social workers, little functional differentiation was found between BAs and BSWs, and significant differentiation was found between BSWs and MSWs on at least half of the activities studied. Intervening variables and implications for BSW curricula are discussed. (MSE)

  7. High work function transparent middle electrode for organic tandem solar cells

    NARCIS (Netherlands)

    Moet, D. J. D.; de Bruyn, P.; Blom, P. W. M.

    2010-01-01

    The use of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) in combination with ZnO as middle electrode in solution-processed organic tandem solar cells requires a pH modification of the PEDOT:PSS dispersion. We demonstrate that this neutralization leads to a reduced work function

  8. Functional specialization of the left ventral parietal cortex in working memory

    Directory of Open Access Journals (Sweden)

    Jennifer Lou Langel

    2014-06-01

    Full Text Available The function of the ventral parietal cortex (VPC is subject to much debate. Many studies suggest a lateralization of function in the VPC, with the left hemisphere facilitating verbal working memory and the right subserving stimulus-driven attention. However, many attentional tasks elicit activity in the VPC bilaterally. To elucidate the potential divides across the VPC in function, we assessed the pattern of activity in the VPC bilaterally across two tasks that require different demands, an oddball attentional task with low working memory demands and a working memory task. An anterior region of the VPC was bilaterally active during novel targets in the oddball task and during retrieval in WM, while more posterior regions of the VPC displayed dissociable functions in the left and right hemisphere, with the left being active during the encoding and retrieval of WM, but not during the oddball task and the right showing the reverse pattern. These results suggest that bilateral regions of the anterior VPC subserve non-mnemonic processes, such as stimulus-driven attention during WM retrieval and oddball detection. The left posterior VPC may be important for speech-related processing important for both working memory and perception, while the right hemisphere is more lateralized for attention.

  9. Recovery to Preinterventional Functioning, Return-to-Work, and Life Satisfaction After Treatment of Unruptured Aneurysms

    NARCIS (Netherlands)

    Backes, D.; Rinkel, G.J.; Van der Schaaf, I.C.; Bijvank, J.A.; Verweij, B.H.; Visser-Meily, J.M.A.; Post, Marcel W.M.; Algra, A.; Vergouwen, M.D.

    Background and Purpose—The eventual goal of preventive treatment of unruptured intracranial aneurysms is to increase the number of life years with high life satisfaction. Insight in the time with reduced functioning, working capacity, and life satisfaction after aneurysm treatment is pivotal to

  10. Utility of the International Classification of Functioning, Disability and Health (ICF) for Educational Psychologists' Work

    Science.gov (United States)

    Aljunied, Mariam; Frederickson, Norah

    2014-01-01

    Despite embracing a bio-psycho-social perspective, the World Health Organization's International Classification of Functioning, Disability and Health (ICF) assessment framework has had limited application to date with children who have special educational needs (SEN). This study examines its utility for educational psychologists' work with…

  11. Transposition of provisions of the Recast Directive on the functioning of the European Works Council

    NARCIS (Netherlands)

    Cremers, Jan; Lorber, Pascale; Jagodzinski, Romuald

    2015-01-01

    The aim of this chapter is to list selected broader legal provisions and key conditions that can contribute to an improved environment for EWC work and thus stimulate improved functioning of this European body (sine qua non conditions), although an analysis of several of these broader concepts is

  12. A COGNITIVE-BEHAVIOURAL GROUP TREATMENT IMPROVED WORK ABILITY IN PATIENTS WITH SEVERE FUNCTIONAL SOMATIC SYNDROMES

    DEFF Research Database (Denmark)

    Schröder, Andreas; Ørnbøl, Eva; Jensen, Jens Søndergaard

    2014-01-01

    Objective: Functional somatic syndromes (FSS) such as fibromyalgia, irritable bowel and chronic fatigue syndrome often disrupt employment and may lead to long-term dependence on social benefits and permanently reduced work ability. Cognitive-behavioural treatments (CBT) relief symptoms and improve...

  13. [State of the visual function in locomotive team personnel working in zones of radioactive pollution].

    Science.gov (United States)

    Sosnova, T L; Kudriashova, Zh M; Baranova, E L; Bukhareva, E A

    1995-01-01

    Professionally significant visual functions were examined in members of locomotive teams living and working in zones of radioactive pollution. Exposure to low-dose radiation was found to have an adverse effect on the status of visual analyzer, the degree of impairment being related to the level of radioactivity and age of the patient.

  14. Intellectual Growth in Children as a Function of Domain Specific and Domain General Working Memory Subgroups

    Science.gov (United States)

    Swanson, H. Lee

    2011-01-01

    This study examined whether children's growth on measures of fluid (Raven Colored Progressive Matrices) and crystallized (reading and math achievement) intelligence was attributable to domain-specific or domain-general functions of working memory (WM). A sample of 290 elementary school children was tested on measures of intelligence across three…

  15. Does work-related training reduce the discrepancy between function requirements and competencies?

    NARCIS (Netherlands)

    E.R. Kappe; G.E. Bijwaard (Govert)

    2005-01-01

    textabstractThe issue of lifelong learning is high on the political agenda. However, despite this political interest and the large economic literature on human capital, the impact of work-related training on the discrepancy between function requirements and the skills of the employee has been

  16. The Influence of Domain Knowledge on the Functional Capacity of Working Memory

    Science.gov (United States)

    Ricks, Travis Rex; Wiley, Jennifer

    2009-01-01

    Theories of expertise have proposed that superior cognitive performance is in part due to increases in the functional capacity of working memory during domain-related tasks. Consistent with this approach Fincher-Kiefer et al. (1988), found that domain knowledge increased scores on baseball-related reading span tasks. The present studies extended…

  17. Sleep disturbances and reduced work functioning in depressive or anxiety disorders

    NARCIS (Netherlands)

    van Mill, Josine G.; Vogelzangs, Nicole; Hoogendijk, Witte J. G.; Penninx, Brenda W. J. H.

    2013-01-01

    Objectives: We aimed to examine the associations between sleep disturbances and work functioning in an epidemiologic cohort study in subjects with or without depressive or anxiety disorders. Methods: There were 707 subjects included in our analyses with depressive or anxiety disorders and 728

  18. Self-Regulation, Executive Function, Working Memory, and Academic Achievement of Female High School Students

    Science.gov (United States)

    Halloran, Roberta Kathryn

    2011-01-01

    Self-regulation, executive function and working memory are areas of cognitive processing that have been studied extensively. Although many studies have examined the constructs, there is limited empirical support suggesting a formal link between the three cognitive processes and their prediction of academic achievement. Thus, the present study…

  19. Does Working Memory Impact Functional Outcomes in Individuals With ADHD: A Qualitative and Comprehensive Literature Review.

    Science.gov (United States)

    Fried, Ronna; Abrams, Jessica; Hall, Anna; Feinberg, Leah; Pope, Amanda; Biederman, Joseph

    2017-09-01

    Working Memory (WM) is a domain of executive functioning often impaired in individuals with ADHD. Although assumed to cause difficulties across functioning, the scope of impairments from WM deficits in ADHD has not been investigated. The aim of this study was to examine outcomes associated with WM deficits in ADHD. We conducted a search of the scientific literature on WM deficits, and Freedom From Distractibility (FFD), in ADHD using PubMed and PsycInfo databases. The final sample included 11 controlled studies of WM/FFD deficits in ADHD with operationalized assessment of outcomes in academic, social, and emotional areas. WM assessment was divided into auditory-verbal memory (AVM) and spatial-visual memory (SWM). Seven studies examined WM deficits in academic functioning, eight studies assessed WM deficits in social functioning, and three assessed WM deficits in psychopathology. The majority of the literature suggests that WM deficits affect primarily academic functioning.

  20. Working memory, long-term memory, and medial temporal lobe function

    Science.gov (United States)

    Jeneson, Annette; Squire, Larry R.

    2012-01-01

    Early studies of memory-impaired patients with medial temporal lobe (MTL) damage led to the view that the hippocampus and related MTL structures are involved in the formation of long-term memory and that immediate memory and working memory are independent of these structures. This traditional idea has recently been revisited. Impaired performance in patients with MTL lesions on tasks with short retention intervals, or no retention interval, and neuroimaging findings with similar tasks have been interpreted to mean that the MTL is sometimes needed for working memory and possibly even for visual perception itself. We present a reappraisal of this interpretation. Our main conclusion is that, if the material to be learned exceeds working memory capacity, if the material is difficult to rehearse, or if attention is diverted, performance depends on long-term memory even when the retention interval is brief. This fundamental notion is better captured by the terms subspan memory and supraspan memory than by the terms short-term memory and long-term memory. We propose methods for determining when performance on short-delay tasks must depend on long-term (supraspan) memory and suggest that MTL lesions impair performance only when immediate memory and working memory are insufficient to support performance. In neuroimaging studies, MTL activity during encoding is influenced by the memory load and correlates positively with long-term retention of the material that was presented. The most parsimonious and consistent interpretation of all the data is that subspan memoranda are supported by immediate memory and working memory and are independent of the MTL. PMID:22180053

  1. Work distribution function for a Brownian particle driven by a nonconservative force

    Science.gov (United States)

    Saha, Bappa; Mukherji, Sutapa

    2015-06-01

    We derive the distribution function of work performed by a harmonic force acting on a uniformly dragged Brownian particle subjected to a rotational torque. Following the Onsager and Machlup's functional integral approach, we obtain the transition probability of finding the Brownian particle at a particular position at time t given that it started the journey from a specific location at an earlier time. The difference between the forward and the time-reversed form of the generalized Onsager-Machlup's Lagrangian is identified as the rate of medium entropy production which further helps us develop the stochastic thermodynamics formalism for our model. The probability distribution for the work done by the harmonic trap is evaluated for an equilibrium initial condition. Although this distribution has a Gaussian form, it is found that the distribution does not satisfy the conventional work fluctuation theorem.

  2. Pulmonary function tests and work-related respiratory and allergic symptoms in Iranian bakers.

    Science.gov (United States)

    Boskabady, Mohammad Hosein; Taheri, Ehsan; Ahmadi, Sina; Ebrahimi, Kolsoumeh; Soudaneh, Malihe; Mohammadi, Fatemeh; Sabourhasanzadeh, Alireza

    2009-06-01

    Bakers are frequently exposed to various irritant chemicals during work which can induce respiratory problems. In this study, pulmonary function tests and self-reported respiratory and allergic symptoms in bakers were compared with matched control subjects. The frequency of respiratory and allergic symptoms was evaluated in a sample of 58 Iranian bakers and 58 control subjects using a questionnaire. Pulmonary function tests (PFT) were also measured in all participants. All respiratory symptoms were significantly higher in bakers than control croup (pbakers were also significantly greater than control group (pbakers compared to rest period (pbakers than control subjects (pbakers have a higher frequency of work related respiratory symptoms and to a lesser extend allergic symptoms particularly during the work period. PFT values were also significantly reduced among bakers.

  3. Efficiency of initial presbyopia functional correction in visually intensive work persons

    Directory of Open Access Journals (Sweden)

    I. G. Ovechkin

    2015-01-01

    Full Text Available Aim: To study the efficacy of functional (physiotherapeutic stimulation of an eye in visually intensive work patients with the initial symptoms of presbyopia.Methods: 104 visually intensive work patients before and after complex physiotherapy (low-energy laser radiation, magnitotherapy, stimulation of accommodation were examined.Results: Physiotherapy improved near vision (by 0.16 RU on average and subjective psychophysiological status (by 11.8 % and reduced eye strain (by 2.1 times. Additionally, objective accommodography indices improved, brightness sensitivity thresholds decreased by 16.5 %, and psychological status improved by 18.2 %. These positive effects of physiotherapeutic stimulation enabled to delay eyeglasses prescription for 6 months in 76 % of patients and for 9 months in 42 % of patients.Conclusion: Functional (physiotherapeutic stimulation provides effective correction of initial presbyopia in visually intensive work persons.

  4. Strain Effect on Electronic Structure and Work Function in α-Fe2O3 Films

    Directory of Open Access Journals (Sweden)

    Li Chen

    2017-03-01

    Full Text Available We investigate the electronic structure and work function modulation of α-Fe2O3 films by strain based on the density functional method. We find that the band gap of clean α-Fe2O3 films is a function of the strain and is influenced significantly by the element termination on the surface. The px and py orbitals keep close to Fermi level and account for a pronounced narrowing band gap under compressive strain, while unoccupied dz2 orbitals from conduction band minimum draw nearer to Fermi level and are responsible for the pronounced narrowing band gap under tensile strain. The spin polarized surface state, arising from localized dangling-bond states, is insensitive to strain, while the bulk band, especially for pz orbital, arising from extended Bloch states, is very sensitive to strain, which plays an important role for work function decreasing (increasing under compressive (tensile strain in Fe termination films. In particular, the work function in O terminated films is insensitive to strain because pz orbitals are less sensitive to strain than that of Fe termination films. Our findings confirm that the strain is an effective means to manipulate electronic structures and corrosion potential.

  5. Strain Effect on Electronic Structure and Work Function in α-Fe2O3 Films

    Science.gov (United States)

    Chen, Li; Shi, Changmin; Li, Xiaolong; Mi, Zhishan; Wang, Dongchao; Liu, Hongmei; Qiao, Lijie

    2017-01-01

    We investigate the electronic structure and work function modulation of α-Fe2O3 films by strain based on the density functional method. We find that the band gap of clean α-Fe2O3 films is a function of the strain and is influenced significantly by the element termination on the surface. The px and py orbitals keep close to Fermi level and account for a pronounced narrowing band gap under compressive strain, while unoccupied dz2 orbitals from conduction band minimum draw nearer to Fermi level and are responsible for the pronounced narrowing band gap under tensile strain. The spin polarized surface state, arising from localized dangling-bond states, is insensitive to strain, while the bulk band, especially for pz orbital, arising from extended Bloch states, is very sensitive to strain, which plays an important role for work function decreasing (increasing) under compressive (tensile) strain in Fe termination films. In particular, the work function in O terminated films is insensitive to strain because pz orbitals are less sensitive to strain than that of Fe termination films. Our findings confirm that the strain is an effective means to manipulate electronic structures and corrosion potential. PMID:28772631

  6. Tuning the work function of stepped metal surfaces by adsorption of organic molecules.

    Science.gov (United States)

    Jiang, Yingda; Li, Jingtai; Su, Guirong; Ferri, Nicola; Liu, Wei; Tkatchenko, Alexandre

    2017-05-24

    Understanding the binding mechanisms for aromatic molecules on transition-metal surfaces, especially with defects such as vacancies, steps and kinks, is a major challenge in designing functional interfaces for organic devices. One important parameter in the performance of organic/inorganic devices is the barrier of charge carrier injection. In the case of a metallic electrode, tuning the electronic interface potential or the work function for electronic level alignment is crucial. Here, we use density-functional theory (DFT) calculations with van der Waals (vdW) interactions treated with both screened pairwise (vdW(surf)) and many-body dispersion (MBD) methods, to systematically study the interactions of benzene with a variety of stepped surfaces. Our calculations confirm the physisorptive character of Ag(2 1 1), Ag(5 3 3), Ag(3 2 2), Ag(7 5 5) and Ag(5 4 4) surfaces upon the adsorption of benzene. The MBD effects reduce the adsorption energies by about 0.15 eV per molecule compared to the results from the DFT  +  vdW(surf) method. In addition, we find that the higher the step density, the larger the reduction of the work function upon the adsorption of benzene. We also study the effect of vdW interactions on the electronic structure using a fully self-consistent implementation of the vdW(surf) method in the Kohn-Sham DFT framework. We find that the self-consistent vdW(surf) effects increase the work function due to the lowered Fermi level and the increased vacuum level. As a result, the benzene/Ag(2 1 1) system has the lowest work function (3.67 eV) among the five adsorption systems, significantly smaller than the work function of the clean Ag(1 1 1) surface (4.74 eV). Our results provide important insights into the stability and electronic properties of molecules adsorbed on stepped metal surfaces, which could help in designing more appropriate interfaces with low work functions for electron transfer.

  7. Tuning the work function of stepped metal surfaces by adsorption of organic molecules

    Science.gov (United States)

    Jiang, Yingda; Li, Jingtai; Su, Guirong; Ferri, Nicola; Liu, Wei; Tkatchenko, Alexandre

    2017-05-01

    Understanding the binding mechanisms for aromatic molecules on transition-metal surfaces, especially with defects such as vacancies, steps and kinks, is a major challenge in designing functional interfaces for organic devices. One important parameter in the performance of organic/inorganic devices is the barrier of charge carrier injection. In the case of a metallic electrode, tuning the electronic interface potential or the work function for electronic level alignment is crucial. Here, we use density-functional theory (DFT) calculations with van der Waals (vdW) interactions treated with both screened pairwise (vdWsurf) and many-body dispersion (MBD) methods, to systematically study the interactions of benzene with a variety of stepped surfaces. Our calculations confirm the physisorptive character of Ag(2 1 1), Ag(5 3 3), Ag(3 2 2), Ag(7 5 5) and Ag(5 4 4) surfaces upon the adsorption of benzene. The MBD effects reduce the adsorption energies by about 0.15 eV per molecule compared to the results from the DFT  +  vdWsurf method. In addition, we find that the higher the step density, the larger the reduction of the work function upon the adsorption of benzene. We also study the effect of vdW interactions on the electronic structure using a fully self-consistent implementation of the vdWsurf method in the Kohn-Sham DFT framework. We find that the self-consistent vdWsurf effects increase the work function due to the lowered Fermi level and the increased vacuum level. As a result, the benzene/Ag(2 1 1) system has the lowest work function (3.67 eV) among the five adsorption systems, significantly smaller than the work function of the clean Ag(1 1 1) surface (4.74 eV). Our results provide important insights into the stability and electronic properties of molecules adsorbed on stepped metal surfaces, which could help in designing more appropriate interfaces with low work functions for electron transfer.

  8. Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing.

    Science.gov (United States)

    Liu, Zhike; Lau, Shu Ping; Yan, Feng

    2015-08-07

    Graphene is the thinnest two-dimensional (2D) carbon material and has many advantages including high carrier mobilities and conductivity, high optical transparency, excellent mechanical flexibility and chemical stability, which make graphene an ideal material for various optoelectronic devices. The major applications of graphene in photovoltaic devices are for transparent electrodes and charge transport layers. Several other 2D materials have also shown advantages in charge transport and light absorption over traditional semiconductor materials used in photovoltaic devices. Great achievements in the applications of 2D materials in photovoltaic devices have been reported, yet numerous challenges still remain. For practical applications, the device performance should be further improved by optimizing the 2D material synthesis, film transfer, surface functionalization and chemical/physical doping processes. In this review, we will focus on the recent advances in the applications of graphene and other 2D materials in various photovoltaic devices, including organic solar cells, Schottky junction solar cells, dye-sensitized solar cells, quantum dot-sensitized solar cells, other inorganic solar cells, and perovskite solar cells, in terms of the functionalization techniques of the materials, the device design and the device performance. Finally, conclusions and an outlook for the future development of this field will be addressed.

  9. North American Indian Language Materials, 1890-1965: An Annotated Bibliography of Monographic Works. American Indian Bibliographic Series No. 3.

    Science.gov (United States)

    Evans, G. Edward; Clark, Jeffrey

    The 187 monographs cited in this annotated bibliography on North American Indian language materials cover the period 1890-1965, updating the 9 linguistic bibliographies compiled by James C. Pilling for the U.S. Bureau of (American) Ethnology. Filling the gap between Pilling's works (variously published between 1887 and 1894), this bibliography is…

  10. Human Perception, SBS Sympsoms and Performance of Office Work during Exposure to Air Polluted by Building Materials and Personal Computers

    DEFF Research Database (Denmark)

    Bako-Biro, Zsolt

    The present thesis deals with the impact of polluted air from building materials and personal computers on human perception, Sick Building Syndrome (SBS) symptoms and performance of office work. These effects have been studies in a series of experiments that are described in two different chapters...

  11. Coffee, Cookies and Cards: The Use of Visuals and Materiality to Reproduce and Transform Masculinity in Dutch Social Work Interventions

    NARCIS (Netherlands)

    Huis, I.B. van; Haar, M. van der

    2015-01-01

    In what way do gender -specific interventions aimed at marginalised men reproduce and transform masculinities, and what kind of masculinity do social professionals, who carry out these projects, work with? This paper analyses how visual materials, spaces and artefacts enable professionals to deal

  12. Dosimetry of radium equivalent in construction material of brick works in Sao Jose do Sabugi City - Paraiba, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Eduardo Eudes Nobrega de; Santos Junior, Jose Araujo dos; Amaral, Romilton dos Santos; Santos, Josineide Marques do Nascimento; Spacov, Isabel Cristina Guerra; Fernandez, Zahily Herrero, E-mail: eduardo.eudes@ufpe.br, E-mail: jaraujo@ufpe.br, E-mail: romilton@ufpe.br, E-mail: neideden@hotmail.com, E-mail: isabelspacov@gmail.com, E-mail: zahily1985@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear. Grupo de Radioecologia

    2015-07-01

    The earth's crust has in its composition the Naturally Occurring Radioactive Material (NORM) that may have increased concentration due to activities of exploration and extraction of environmental resources. The civil construction is an economic activity that requires the use of much of the natural resources, such as the raw material of brick works, like clays, mainly used for the production of bricks and tiles. These construction materials may contain high levels of natural radioactive elements, even with concentrations higher than the limits established, given that the levels vary according to the composition of rocks and soil, due to the geological formation and may result in increased exposure of humans to natural radioactive activities. In this context, the radioecological dosimetry is defined in terms of Radium Equivalent activity (Ra{sub eq}), that ensure radiometric conditions for the use of material derived from clays before its final application in housing construction, an initiative that ensures the radioecological safety of population. Thus, this study aimed to establish the calculation of Ra{sub eq} in the raw material of brick works located in Sao Jose do Sabugi city, state of Paraiba, in an area adjacent to the uranium deposits of Espinharas, to estimate the risks associated with primordial radionuclides attributed to TENORM activities (Technologically Enhanced Naturally Occurring Radioactive Materials) from the extraction and use of clay as a raw material in the manufacture of bricks and tiles. Analyses were performed by High Resolution Gamma Spectrometry, with HPGe-Be detector, assuming the state of secular radioactive equilibrium. The results ranged from 183.2 to 747.78 Bq/kg, with an average of 494.6 Bq/kg which exceeded the limit of 370 Bq/kg established by UNSCEAR for construction materials. Some samples obtained values exceeded by up the double this limit, suggesting control and radiometric certification for application of this material

  13. Impairment of working memory maintenance and response in schizophrenia: functional magnetic resonance imaging evidence.

    Science.gov (United States)

    Driesen, Naomi R; Leung, Hoi-Chung; Calhoun, Vincent D; Constable, R Todd; Gueorguieva, Ralitza; Hoffman, Ralph; Skudlarski, Pawel; Goldman-Rakic, Patricia S; Krystal, John H

    2008-12-15

    Comparing prefrontal cortical activity during particular phases of working memory in healthy subjects and individuals diagnosed with schizophrenia might help to define the phase-specific deficits in cortical function that contribute to cognitive impairments associated with schizophrenia. This study featured a spatial working memory task, similar to that used in nonhuman primates, that was designed to facilitate separating brain activation into encoding, maintenance, and response phases. Fourteen patients with schizophrenia (4 medication-free) and 12 healthy comparison participants completed functional magnetic resonance imaging while performing a spatial working memory task with two levels of memory load. Task accuracy was similar in patients and healthy participants. However, patients showed reductions in brain activation during maintenance and response phases but not during the encoding phase. The reduced prefrontal activity during the maintenance phase of working memory was attributed to a greater rate of decay of prefrontal activity over time in patients. Cortical deficits in patients did not appear to be related to antipsychotic treatment. In patients and in healthy subjects, the time-dependent reduction in prefrontal activity during working memory maintenance correlated with poorer performance on the memory task. Overall, these data highlight that basic research insights into the distinct neurobiologies of the maintenance and response phases of working memory are of potential importance for understanding the neurobiology of cognitive impairment in schizophrenia and advancing its treatment.

  14. Functional neuroanatomical associations of working memory in early-onset Alzheimer's disease.

    Science.gov (United States)

    Kobylecki, Christopher; Haense, Cathleen; Harris, Jennifer M; Stopford, Cheryl L; Segobin, Shailendra H; Jones, Matthew; Richardson, Anna M T; Gerhard, Alexander; Anton-Rodriguez, José; Thompson, Jennifer C; Herholz, Karl; Snowden, Julie S

    2017-03-16

    To characterize metabolic correlates of working memory impairment in clinically defined subtypes of early-onset Alzheimer's disease. Established models of working memory suggest a key role for frontal lobe function, yet the association in Alzheimer's disease between working memory impairment and visuospatial and language symptoms suggests that temporoparietal neocortical dysfunction may be responsible. Twenty-four patients with predominantly early-onset Alzheimer's disease were clinically classified into groups with predominantly amnestic, multidomain or visual deficits. Patients underwent neuropsychological evaluation focused on the domains of episodic and working memory, T1-weighted magnetic resonance imaging and brain fluorodeoxyglucose positron emission tomography. Fluorodeoxyglucose positron emission tomography data were analysed by using a region-of-interest approach. Patients with multidomain and visual presentations performed more poorly on tests of working memory compared with amnestic Alzheimer's disease. Working memory performance correlated with glucose metabolism in left-sided temporoparietal, but not frontal neocortex. Carriers of the apolipoprotein E4 gene showed poorer episodic memory and better working memory performance compared with noncarriers. Our findings support the hypothesis that working memory changes in early-onset Alzheimer's disease are related to temporoparietal rather than frontal hypometabolism and show dissociation from episodic memory performance. They further support the concept of subtypes of Alzheimer's disease with distinct cognitive profiles due to prominent neocortical dysfunction early in the disease course. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Assessment of performance of new working bodies of shell type for food raw materials cleaning and grinding

    Directory of Open Access Journals (Sweden)

    Alekseev G. V.

    2017-09-01

    Full Text Available The analytical evaluation of effectiveness of new working bodies for improving equipment has been given. The equipment should provide the most complete preservation of useful nutrients in the manufacture of various kinds of food products. The ever-dwindling resources of food raw materials give relevance of the issues under review. In such circumstances the loss of nutrients while processing food production, especially in the stages of its cleaning and grinding becomes completely unacceptable. This is even more important as often in near-surface zones directly adjacent to the shells or the skin of the raw materials supplied for processing a significant portion of such substances is contained. The same pattern is observed in some types of unconventional raw materials increasingly involved in the production process of food products, they are for example lupine and amaranth. The problem forced the developers of technological equipment to seek ways of reducing the thickness removed from the surface of the raw material layer. This became available when using an abrasive tool in which the elastic materials are the substrate for attaching abrasive grain, these materials allow accurately reproducing the shape of the treated surface. The development and implementation of such working bodies is difficult because of lack of their production basis.

  16. Functional activation in the cerebellum during working memory and simple speech tasks.

    Science.gov (United States)

    Durisko, Corrine; Fiez, Julie A

    2010-01-01

    Verbal working memory is the ability to temporarily store and manipulate verbal information. This study tested the predictions of a neuroanatomical model of how the cerebellum contributes to verbal working memory (Desmond et al., 1997). In this model, a large bilateral region in the superior cerebellum is associated with articulatory rehearsal and a right-lateralized region in the inferior cerebellum is associated with the correction of errors within the working memory system. The Desmond et al. (1997) model was based on neuroimaging findings using item recognition tasks and comparisons between working memory and covert rehearsal tasks, whereas in this functional magnetic resonance imaging (fMRI) study we used a delayed serial recall (DSR) task because it relies more heavily on articulatory rehearsal, and our comparison tasks included both overt and covert speech tasks. Our results provide some support for the Desmond et al. (1997) model. In particular, we found multiple activation foci within the superior and inferior sectors of the cerebellum and evidence that these regions show different patterns of activation across working memory and speech tasks. However, the specific patterns of activation were not fully consistent with those reported by Desmond et al. (1997). Namely, our results indicate that activation in the superior sector should be functionally subdivided into a medial focus involved in speech processing and a lateral focus more specific to verbal working memory; the results also indicate that activation in the inferior sector is not uniquely right lateralized. These complex findings speak to the need for future studies to consider the speech-motor aspects of tasks, to investigate the functional significance of adjacent peaks of activation within large regions of cerebellar activation, and to use analysis procedures that support regional distinctions through direct statistical tests. Such studies would help to refine our understanding of how the

  17. Apparatus and test method for characterizing the temperature regulating properties of thermal functional porous polymeric materials

    Science.gov (United States)

    Yao, Bao-guo; Zhang, Shan; Zhang, De-pin

    2017-05-01

    In order to evaluate the temperature regulating properties of thermal functional porous polymeric materials such as fabrics treated with phase change material microcapsules, a new apparatus was developed. The apparatus and the test method can measure the heat flux, temperature, and displacement signals during the dynamic contact and then quickly give an evaluation for the temperature regulating properties by simulating the dynamic heat transfer and temperature regulating process when the materials contact the body skin. A series of indices including the psychosensory intensity, regulating capability index, and relative regulating index were defined to characterize the temperature regulating properties. The measurement principle, the evaluation criteria and grading method, the experimental setup and the test results discussion, and the gage capability analysis of the apparatus are presented. The new apparatus provides a method for the objective measurement and evaluation of the temperature regulating properties of thermal functional porous polymeric materials.

  18. Perceptions of Sustainability and Functional Aspects on Liquid Carton Board Packaging Materials versus Competing Materials for Juice Applications in Sweden

    Directory of Open Access Journals (Sweden)

    Carl Olsmats

    2015-08-01

    Full Text Available This research explores the downstream perceptions of liquid carton board versus competing materials in packaging applications for juice. The methodology used is focus groups. The context is sustainability and functional performance, and related potential implications for the beverage industry value chain. The purpose is to get a deeper insight and understanding of functionality in relation to juice beverage packaging. The results confirm that there is no optimal packaging for every juice product, but a multitude, depending on the distribution channel, retail outlet, customer preferences, and context of consumption. There are some general packaging preferences, but the main deciding criteria for purchase seem to be the product characteristics in terms of quality, taste, brand, price and shelf life. For marketing reasons, packaging has to be adopted to the product and its positioning, liquid carton board packaging seem to have some functional advantages in distribution and is considered as sustainable and functional among many consumers. Major drawbacks seem to be shape limitations, lack of transparency, and lack of a “premium look”. To improve packaging performance and avoid sub-optimization, actors in the beverage industry value chain need to be integrated in development processes.

  19. Thermal Buckling and Free Vibration Analysis of Heated Functionally Graded Material Beams

    OpenAIRE

    Khalane Sanjay Anandrao; R. K. Gupta; P. Ramachandran; G. V. Rao

    2013-01-01

    The effect of temperature dependency of material properties on thermal buckling and free vibration of functionally graded material (FGM) beams is studied. The FGM beam is assumed to be at a uniform through thickness temperature, above the ambient temperature. Finite element system of equations based on the first order shear deformation theory is developed. FGM beam with axially immovable ends having the classical boundary conditions is analysed. An exhaustive set of numerical results, in term...

  20. Using neural networks to predict the functionality of reconfigurable nano-material networks

    NARCIS (Netherlands)

    Greff, Klaus; van Damme, Rudolf M.J.; Koutnik, Jan; Broersma, Haitze J.; Mikhal, Julia Olegivna; Lawrence, Celestine Preetham; van der Wiel, Wilfred Gerard; Schmidhuber, Jürgen

    2017-01-01

    This paper demonstrates how neural networks can be applied to model and predict the functional behaviour of disordered nano-particle and nano-tube networks. In recently published experimental work, nano-particle and nano-tube networks show promising functionality for future reconfigurable devices,

  1. Triphenyl borate as a bi-functional additive to improve surface stability of Ni-rich cathode material

    Science.gov (United States)

    Yim, Taeeun; Jang, Seol Heui; Han, Young-Kyu

    2017-12-01

    Nickel-rich cathode material has received marked attention as an advanced cathode material, however, its inferior surface property limits the achievement of high performance in lithium-ion batteries. We propose the use of a bi-functional additive of triphenyl borate (TPB) for improvement of the safety and electrochemical performance of Ni-rich cathode materials. First, TPB removes residual lithium species from the Ni-rich cathode surface via chemical binding with anion part of residual lithium species, and effectively reduces swelling behavior of the cell. Second, TPB creates effective cathode-electrolyte interphase (CEI) layers on the electrode surface by an electrochemical reaction, and greatly enhances the surface stability of the nickel-rich cathode. This work demonstrate that a cell cycled with the TPB additive exhibits a remarkable retention of 88.6% at 60 °C after 100 cycles for an NCM721 cathode material. We suggest a working mechanism for TPB based on systematic analyses, including in-situ and ex-situ experiments.

  2. Serotonergic modulation in executive functioning: linking genetic variations to working memory performance.

    Science.gov (United States)

    Enge, Sören; Fleischhauer, Monika; Lesch, Klaus-Peter; Reif, Andreas; Strobel, Alexander

    2011-11-01

    Emerging evidence from studies using, for example, acute tryptophan depletion or investigating genetic variation of genes related to the serotonin signaling pathway suggest a role of serotonin in executive functions such as top-down attention, working memory and inhibitory control. In the current study, we aimed at extending this evidence by using the n-back task to examine working memory performance of 130 participants via behavioral and neurophysiological indices and by focusing on variations within genes encoding key regulators of the serotonergic system: the serotonin transporter gene-linked polymorphic region (5-HTTLPR) and a repeat polymorphism in the transcriptional control region of the monoamine-oxidase gene (MAOA-uVNTR). Because serotonin and norepinephrine systems have been shown to be structurally and functionally highly interrelated, we also examined a novel polymorphism in the promoter region of the norepinephrine transporter gene (NET -3081) in anticipation of epistatic effects. We found that carriers of 5-HTTLPR and MAOA-uVNTR alleles recently implicated in executive processing showed a more efficient executive control of working memory-related performance as evidenced by reaction time, error rate as well as N2 and P3b event-related potential measures. This impact was further supported by interactions with the NET polymorphism. Linking serotonergic influence to mechanisms of inhibitory response control implicated in working memory, our results provide further support for and add new evidence concerning the importance of serotonergic neuromodulation in executive functioning. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. An fMRI Investigation of Cerebellar Function During Verbal Working Memory in Methadone Maintenance Patients

    Science.gov (United States)

    Marvel, Cherie L.; Faulkner, Monica L.; Strain, Eric C.; Mintzer, Miriam Z.; Desmond, John E.

    2011-01-01

    Working memory is impaired in opioid-dependent individuals, yet the neural underpinnings of working memory in this population are largely unknown. Previous studies in healthy adults have demonstrated that working memory is supported by a network of brain regions that includes a cerebro-cerebellar circuit. The cerebellum, in particular, may be important for inner speech mechanisms that assist verbal working memory. This study used functional magnetic resonance imaging (fMRI) to examine brain activity associated with working memory in 5 opioid-dependent, methadone-maintained patients and 5 matched, healthy controls. An item recognition task was administered in two conditions: 1) a low working memory load “match” condition in which participants determined whether target letters presented at the beginning of the trial matched a probe item, and 2) a high working memory load “manipulation” condition in which participants counted two alphabetical letters forward of each of the targets and determined whether either of these new items matched a probe item. Response times and accuracy scores were not significantly different between the groups. FMRI analyses indicated that, in association with higher working memory load (“manipulation” condition), the patient group exhibited hyperactivity in the superior and inferior cerebellum and amygdala relative to that of controls. At a more liberal statistical threshold, patients exhibited hypoactivity in the left prefrontal and medial frontal/pre-SMA regions. These results indicate that verbal working memory in opioid-dependent individuals involves a disrupted cerebro-cerebellar circuit, and shed light on the neuroanatomical basis of working memory impairments in this population. PMID:21892700

  4. THE FUNCTIONS OF VIENNESE DIALECT IN THE WORKS OF MODERN AUSTRIAN FICTION

    Directory of Open Access Journals (Sweden)

    Chukshis Vadim Andreevich

    2015-03-01

    Full Text Available The problem of definition of linguistic status of the Austrian dialects and their functions in Austrian fiction continues to preserve the academic value. The main peculiarities of Viennese dialect are given, the conclusions of its status among the other Austrian dialects are made in the article, the characteristic features of the functions of the Viennese dialect are given in the works of Austrian fiction. The author of the article proceeds from the position that the Viennese dialect is the important stylistic means and makes the conclusion about its functions in the works of Austrian fiction. Three novels and one story of modern Austrian writers have been selected for the analysis: H. Anderle (The Worthy Funeral. The Mortal Histories, E. Menasse (Vienna, F. Nabl (Edhof, P Campa (The Second Travel. The article studies four functions of Viennese dialect based on the research of the texts of the Austrian fiction works. The analysis based on the utterances of the heroes helped to prove that Austrian writers use the Viennese dialect as 1 means of marking the regional characteristics; 2 means of marking the age; 3 means of marking the social type and 4 means of emotions expression. The research of the speech of the heroes permitted to reveal the most common Viennese words and expressions and demonstrate their role in the texts not only as the means of creating the speech portrait of the heroes but only the markers of the originality of modern Austrian German.

  5. Functional connectivity in a rat model of Alzheimer's disease during a working memory task.

    Science.gov (United States)

    Liu, Tiaotiao; Bai, Wenwen; Yi, Hu; Tan, Tao; Wei, Jing; Wang, Ju; Tian, Xin

    2014-01-01

    Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive loss of memory. Impairment of working memory was typically observed in AD. The concept of brain functional connectivity plays an important role in neuroscience as a useful tool to understand the organized behavior of brain. Hence, the purpose of this study is to investigate the possible mechanism of working memory deficits in AD from a new perspective of functional connectivity. Rats were randomly divided into 2 groups: Aβ injection group (Aβ₁₋₄₂-induced toxicity rat model) and control group. Multi-channel local field potentials (LFPs) were obtained from rat prefrontal cortex with implanted microelectrode arrays while the rats performed a Y-maze working memory task. The short-time Fourier transform was utilized to analyze the power changes in LFPs and sub-bands (in particular theta and low gamma bands) were extracted via band filtering. Then the Directed transfer function (DTF) method was applied to calculate the functional connections among LFPs. From the DTF calculation, the causal networks in the sub-bands were identified. DTFmean (mean of connectivity matrix elements) was used to quantify connection strength as well as global efficiency (Eglob) was calculated to quantitatively describe the efficient of information transfer in the network. Our results showed that both connection strength and efficient of information transfer increased during the working memory task in the control group; by contrast, there was no significantly change in the Aβ injection group. These findings could lead to improve the understanding of the mechanism of working memory deficits in AD.

  6. Functionally Graded Thermoelectric Material though One Step Band Gap and Dopant Engineering

    DEFF Research Database (Denmark)

    Jensen, Ellen Marie; Borup, Kasper Andersen; Cederkrantz, Daniel

    For a given doping level a thermoelectric material is optimized for a given temperature. Thermoelectric modules, however, operates over large gradients in temperature. To circumvent this problem we have synthesized a functionally graded thermoelectric material optimized for large temperature...... gradients. It has previously been shown that a large functionally graded thermoelectric single crystal can be synthesized by the Czochralski method (1). Utilizing element gradients inherent to the Czochralski process we have synthesized a Ge1-xSix:B crystal with a continuously varying x, band gap...

  7. AIEgens-Functionalized Inorganic-Organic Hybrid Materials: Fabrications and Applications.

    Science.gov (United States)

    Li, Dongdong; Yu, Jihong

    2016-12-01

    Inorganic materials functionalized with organic fluorescent molecules combine advantages of them both, showing potential applications in biomedicine, chemosensors, light-emitting, and so on. However, when more traditional organic dyes are doped into the inorganic materials, the emission of resulting hybrid materials may be quenched, which is not conducive to the efficiency and sensitivity of detection. In contrast to the aggregation-caused quenching (ACQ) system, the aggregation-induced emission luminogens (AIEgens) with high solid quantum efficiency, offer new potential for developing highly efficient inorganic-organic hybrid luminescent materials. So far, many AIEgens have been incorporated into inorganic materials through either physical doping caused by aggregation induced emission (AIE) or chemical bonding (e.g., covalent bonding, ionic bonding, and coordination bonding) caused by bonding induced emission (BIE) strategy. The hybrid materials exhibit excellent photoactive properties due to the intramolecular motion of AIEgens is restricted by inorganic matrix. Recent advances in the fabrication of AIEgens-functionalized inorganic-organic hybrid materials and their applications in biomedicine, chemical sensing, and solid-state light emitting are presented. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Precision synthesis of functional materials via RAFT polymerization and click-type chemical reactions

    Science.gov (United States)

    Flores, Joel Diez

    2011-12-01

    The need to tailor polymeric architectures with specific physico-chemical properties via the simplest, cleanest, and most efficient synthetic route possible has become the ultimate goal in polymer synthesis. Recent progress in macromolecular science, such as the discoveries of controlled/"living" free radical polymerization (CRP) methods, has brought about synthetic capabilities to prepare (co)polymers with advanced topologies, predetermined molecular weights, narrow molecular weight distributions, and precisely located functional groups. In addition, the establishment of click chemistry has redefined the selected few highly efficient chemical reactions that become highly useful in post-polymerization modification strategies. Hence, the ability to make well-defined topologies afforded by controlled polymerization techniques and the facile incorporation of functionalities along the chain via click-type reactions have yielded complex architectures, allowing the investigation of physical phenomena which otherwise could not be studied with systems prepared via conventional methods. The overarching theme of the research work described in this dissertation is the fusion of the excellent attributes of reversible addition-fragmentation chain transfer (RAFT) polymerization method, which is one of the CRP techniques, and click-type chemical reactions in the precision of synthesis of advanced functional materials. Chapter IV is divided into three sections. In Section I, the direct RAFT homopolymerization of 2-(acryloyloxy)ethyl isocyanate (AOI) and subsequent post-polymerization modifications are described. The polymerization conditions were optimized in terms of the choice of RAFT chain transfer agent (CTA), polymerization temperature and the reaction medium. Direct RAFT polymerization of AOI requires a neutral CTA, and relatively low reaction temperature to yield AOI homopolymers with low polydispersities. Efficient side-chain functionalization of PAOI homopolymers was

  9. Reaction Times to Consecutive Automation Failures: A Function of Working Memory and Sustained Attention.

    Science.gov (United States)

    Jipp, Meike

    2016-12-01

    This study explored whether working memory and sustained attention influence cognitive lock-up, which is a delay in the response to consecutive automation failures. Previous research has demonstrated that the information that automation provides about failures and the time pressure that is associated with a task influence cognitive lock-up. Previous research has also demonstrated considerable variability in cognitive lock-up between participants. This is why individual differences might influence cognitive lock-up. The present study tested whether working memory-including flexibility in executive functioning-and sustained attention might be crucial in this regard. Eighty-five participants were asked to monitor automated aircraft functions. The experimental manipulation consisted of whether or not an initial automation failure was followed by a consecutive failure. Reaction times to the failures were recorded. Participants' working-memory and sustained-attention abilities were assessed with standardized tests. As expected, participants' reactions to consecutive failures were slower than their reactions to initial failures. In addition, working-memory and sustained-attention abilities enhanced the speed with which participants reacted to failures, more so with regard to consecutive than to initial failures. The findings highlight that operators with better working memory and sustained attention have small advantages when initial failures occur, but their advantages increase across consecutive failures. The results stress the need to consider personnel selection strategies to mitigate cognitive lock-up in general and training procedures to enhance the performance of low ability operators. © 2016, Human Factors and Ergonomics Society.

  10. Factors influencing work functioning after cancer diagnosis: a focus group study with cancer survivors and occupational health professionals

    OpenAIRE

    Dorland, H. F.; Abma, F. I.; Roelen, C. A. M.; Smink, J. G.; Ranchor, A V; Bultmann, U.

    2015-01-01

    Purpose Cancer survivors (CSs) frequently return to work, but little is known about work functioning after return to work (RTW). We aimed to identify barriers and facilitators of work functioning among CSs. Methods Three focus groups were conducted with CSs (n?=?6, n?=?8 and n?=?8) and one focus group with occupational health professionals (n?=?7). Concepts were identified by thematic analysis, using the Cancer and Work model as theoretical framework to structure the results. Results Long-las...

  11. WORK FUNCTION CHARACTERIZATION OF DIRECTIONALLY SOLIDIFIED LAB6VB2 EUTECTIC (POSTPRINT)

    Science.gov (United States)

    2017-05-10

    Ultramicroscopy 0 0 0 (2017) 1–5 Contents lists available at ScienceDirect Ultramicroscopy journal homepage: www.elsevier.com/locate/ultramic Work function...temperature to the primarily the B 2 at 977 °C. Although the SPLEEM is capable of heating the samples to tem - eratures that are typical of a working...by e -beam nd thermal evaporation during image acquisition at room tem - erature. Fig. 5 (a), (b), (c) shows the results of the dosing exper- ments

  12. Development of utility generic functional requirements for electronic work packages and computer-based procedures

    Energy Technology Data Exchange (ETDEWEB)

    Oxstrand, Johanna [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-01

    The Nuclear Electronic Work Packages - Enterprise Requirements (NEWPER) initiative is a step toward a vision of implementing an eWP framework that includes many types of eWPs. This will enable immediate paper-related cost savings in work management and provide a path to future labor efficiency gains through enhanced integration and process improvement in support of the Nuclear Promise (Nuclear Energy Institute 2016). The NEWPER initiative was organized by the Nuclear Information Technology Strategic Leadership (NITSL) group, which is an organization that brings together leaders from the nuclear utility industry and regulatory agencies to address issues involved with information technology used in nuclear-power utilities. NITSL strives to maintain awareness of industry information technology-related initiatives and events and communicates those events to its membership. NITSL and LWRS Program researchers have been coordinating activities, including joint organization of NEWPER-related meetings and report development. The main goal of the NEWPER initiative was to develop a set of utility generic functional requirements for eWP systems. This set of requirements will support each utility in their process of identifying plant-specific functional and non-functional requirements. The NEWPER initiative has 140 members where the largest group of members consists of 19 commercial U.S. nuclear utilities and eleven of the most prominent vendors of eWP solutions. Through the NEWPER initiative two sets of functional requirements were developed; functional requirements for electronic work packages and functional requirements for computer-based procedures. This paper will describe the development process as well as a summary of the requirements.

  13. The Neuropsychological Function of Older First-Time Child Exploitation Material Offenders: A Pilot Study.

    Science.gov (United States)

    Rodriguez, Marcelo; Ellis, Andrew

    2017-04-01

    Despite the growing incidence of child exploitation offences, there is little knowledge of the neuropsychological function of older child exploitation material offenders (CEMOs). Given that studies have reported that sex offenders demonstrate deficits attributed to frontal and temporal lobe function, the aim of this pilot study was to investigate the frontotemporal function of older first-time child exploitation material offenders (FTCEMOs). The neuropsychological performance of 11 older FTCEMOs was compared with 34 older historical sex offenders (HSOs) and 32 older nonsex offender (NSO) controls. Forty-five percent of FTCEMOs admitted to a pedophilic interest, which was significantly lower than those reported by HSOs. FTCEMOs provided significantly higher intellectual function scores than HSOs. Results revealed no evidence of mild or major neurocognitive disorder in FTCEMOs. Although the groups were not significantly different, compared with normative data, FTCEMOs reported a high incidence of impairment on a measure of decision making and on a measure of facial emotional recognition.

  14. Benchmarking Density Functional Theory Based Methods To Model NiOOH Material Properties: Hubbard and van der Waals Corrections vs Hybrid Functionals.

    Science.gov (United States)

    Zaffran, Jeremie; Caspary Toroker, Maytal

    2016-08-09

    NiOOH has recently been used to catalyze water oxidation by way of electrochemical water splitting. Few experimental data are available to rationalize the successful catalytic capability of NiOOH. Thus, theory has a distinctive role for studying its properties. However, the unique layered structure of NiOOH is associated with the presence of essential dispersion forces within the lattice. Hence, the choice of an appropriate exchange-correlation functional within Density Functional Theory (DFT) is not straightforward. In this work, we will show that standard DFT is sufficient to evaluate the geometry, but DFT+U and hybrid functionals are required to calculate the oxidation states. Notably, the benefit of DFT with van der Waals correction is marginal. Furthermore, only hybrid functionals succeed in opening a bandgap, and such methods are necessary to study NiOOH electronic structure. In this work, we expect to give guidelines to theoreticians dealing with this material and to present a rational approach in the choice of the DFT method of calculation.

  15. Characterizing Cognitive Aging of Working Memory and Executive Function in Animal Models

    Directory of Open Access Journals (Sweden)

    Jennifer Lynn Bizon

    2012-09-01

    Full Text Available Executive functions supported by prefrontal cortical systems provide essential control and planning mechanisms to guide goal-directed behavior. As such, age-related alterations in executive functions can mediate profound and widespread deficits on a diverse array of neurocognitive processes. Many of the critical neuroanatomical and functional characteristics of prefrontal cortex are preserved in rodents, allowing for meaningful cross-species comparisons relevant to the study of cognitive aging. In particular, as rodents lend themselves to genetic, cellular and biochemical approaches, rodent models of executive function stand to significantly contribute to our understanding of the critical neurobiological mechanisms that mediate decline of executive processes across the lifespan. Moreover, rodent analogues of executive functions that decline in human aging represent an essential component of a targeted, rational approach for developing and testing effective treatment and prevention therapies for age-related cognitive decline. This paper reviews behavioral approaches used to study executive function in rodents, with a focus on those assays that share a foundation in the psychological and neuroanatomical constructs important for human aging. A particular emphasis is placed on behavioral approaches used to assess working memory and cognitive flexibility, which are sensitive to decline with age across species and for which strong rodent models currently exist. In addition, other approaches in rodent behavior that have potential for providing analogues to functions that reliably decline to human aging (e.g., information processing speed are discussed.

  16. `Sex' – It's not only Women's Work: A Case for Refocusing on the Functional Role that Sex Plays in Work for both Women and Men

    OpenAIRE

    URETSKY, ELANAH

    2014-01-01

    Mention of the term sex work often invokes images of marginalized women at risk for HIV infection. Such images, however, are counterintuitive to the functional role intended by the movement that spawned use of the terms `sex work' and `sex worker'. This article looks at the sexual practices of men in urban China to argue for a return to a functional definition of `sex work', which was originally meant to legitimize the role sex plays in work. The progenitors of this movement intended to use `...

  17. Impaired working memory updating affects memory for emotional and non-emotional materials the same way: evidence from post-traumatic stress disorder (PTSD).

    Science.gov (United States)

    Nejati, Vahid; Salehinejad, Mohammad Ali; Sabayee, Azam

    2017-09-19

    Due to the limited capacity of working memory (WM), efficient suppression of no longer relevant memory contents (inhibition) and revising the current contents of the memory (updating) are crucial factors in memorizing. However, not every individual is able to do so; among them are post-traumatic stress disorder (PTSD) patients who seem to have trouble forgetting trauma-related materials, making their memory overloaded with irrelevant information. The present study assumes that the inability to forget in PTSD patients is due to the impaired updating function of WM and, therefore, suggests that these individuals have inferior WM function for both emotional and unemotional materials. A sample of 30 male veterans with PTSD and 30 healthy individuals (mean age = 46.62, SD = 5.23) participated in the study completing PTSD Checklist, Digit Span Task, and a computerized n-back task. Results revealed that although PTSD subjects showed a generally inferior WM compared with normal individuals; however, their WM performance for emotional and non-emotional stimuli was not significantly different. Supporting the main hypothesis of the study, the findings suggest that a dysfunctional updating function of WM underlies both forgetting and memorizing which affects memory for both emotional and non-emotional material similarly.

  18. Functional Outcome of Lumbar Discectomy by Fenestration Technique in Lumbar Disc Prolapse – Return to Work and Relief of Pain

    Science.gov (United States)

    Umashankar, Mahesh Kotehal; Reddy, B.S. Jayakrishna

    2016-01-01

    Introduction Low back pain affects every population and is one of world’s foremost debilitating conditions. Clinically significant sciatica due to lumbar disc prolapse occurs in 4-6% of population. Fenestration discectomy as a surgical procedure is less time consuming, with lesser blood loss, lesser post-operative complications and does not compromise with stability of spine when compared to laminectomy. Aim Present study was conducted to determine extent of functional recovery i.e. pain relief and return to work in patients with lumbar disc prolapse treated by fenestration technique. Materials and Methods From October 2010 to March 2012, 50 patients with signs and symptoms of prolapsed lumbar intervertebral disc who failed to respond to conservative treatment were operated for discectomy by fenestration technique and studied prospectively. Functional outcome was evaluated by ‘Back Pain Functional Score (BPFS)’ of Strafford et al., PROLO rating scale to determine preoperative functional and economical status and outcome at final follow up after 6 months. In order to identify physical signs from non organic signs Wadell’s score system was used. Result of surgery was evaluated with help of McNab’s criteria. Results In our study, according to Back Pain Functional Scale by Strafford et al., and PROLO scale, good results were found in 42 (84%) cases, fair result in 8 cases (16%) and none with poor results at follow up of six months. According to PROLO economical and functional scale, 84% cases were able to join their previous occupation at end of six months and 76% cases had complete pain relief. In our study, correlation of age and duration of symptoms to functional outcome was statistically significant (p=0.089 & p = 0.098+ respectively) showing more good results among patients with age less than 30 years and patients having duration of symptoms less than 6 months. Conclusion Functional outcome of fenestration technique in terms of return to work and

  19. Composite materials comprising two jonal functions and methods for making the same

    Science.gov (United States)

    Fareed, Ali Syed; Garnier, John Edward; Schiroky, Gerhard Hans; Kennedy, Christopher Robin; Sonuparlak, Birol

    2001-01-01

    The present invention generally relates to mechanisms for preventing undesirable oxidation (i.e., oxidation protection mechanisms) in composite bodies. The oxidation protection mechanisms include getterer materials which are added to the composite body which gather or scavenge undesirable oxidants which may enter the composite body. The getterer materials may be placed into at least a portion of the composite body such that any undesirable oxidant approaching, for example, a fiber reinforcement, would be scavenged by (e.g., reacted with) the getterer. The getterer materials) may form at least one compound which acts as a passivation layer, and/or is able to move by bulk transport (e.g., by viscous flow as a glassy material) to a crack, and sealing the crack, thereby further enhancing the oxidation protection of the composite body. One or more ceramic filler materials which serve as reinforcements may have a plurality of super-imposed coatings thereon, at least one of which coatings may function as or contain an oxidation protection mechanism. Specifically, a coating comprising boron nitride which has been engineered or modified to contain some silicon exhibits improved corrosion resistance, specifically to oxygen and moisture. The coated materials may be useful as reinforcing materials in high performance composites to provide improved mechanical properties such as fracture toughness. The present invention also relates to improved composites which incorporate these materials, and to their methods of manufacture.

  20. Deformation mechanism under essential work of fracture process in polycyclo-olefin materials

    Directory of Open Access Journals (Sweden)

    2008-06-01

    Full Text Available The fracture toughness of a glassy polycyclo-olefin (PCO was investigated by the essential work of fracture (EWF method using a double-edge notched specimens. It was shown that the PCO follows the EWF concept in the temperature range between room temperature and glass transition temperature Tg where the ligament yielding appear at a maximum point on the stress-displacement curves and subsequently the necking and tearing processes take place in the post yielding region. The essential work of fracture required for the ligament yielding drops as the temperature approaches Tg. The non-essential work of fracture attributed to tearing process after yielding is consumed to expand the plastic region and causes molecular chains to orient to the stretching direction.

  1. Oxide films at the nanoscale: new structures, new functions, and new materials.

    Science.gov (United States)

    Giordano, Livia; Pacchioni, Gianfranco

    2011-11-15

    flexibility, electronic modifications, and nanoporosity) are now largely understood, thus paving the way for the rational design of new catalytic systems based on oxide ultrathin films. Many of the mechanisms involved (electron tunneling, work function changes, defects engineering, and so forth) are typical of semiconductor physics and allow a direct link between the two fields. A related conceptual framework, the "electronic theory of catalysis", was proposed a long time ago but has been largely neglected by the catalytic community. A renewed appreciation of this catalytic framework, together with spectacular advances in modeling and electronic structure methods, now makes it possible to combine theory with advanced experimental setups and meet the challenge of designing new materials with tailored properties. In this Account, we discuss some of the recent advances with nanoscale oxide films, highlighting contributions from our laboratory. Once mastered, ultrathin oxide films on metals will provide vast and unforeseen opportunities in heterogeneous catalysis as well as in other fields of science and technology.

  2. Oscillatory lower body negative pressure impairs working memory task-related functional hyperemia in healthy volunteers.

    Science.gov (United States)

    Merchant, Sana; Medow, Marvin S; Visintainer, Paul; Terilli, Courtney; Stewart, Julian M

    2017-04-01

    Neurovascular coupling (NVC) describes the link between an increase in task-related neural activity and increased cerebral blood flow denoted "functional hyperemia." We previously showed induced cerebral blood flow oscillations suppressed functional hyperemia; conversely functional hyperemia also suppressed cerebral blood flow oscillations. We used lower body negative pressure (OLBNP) oscillations to force oscillations in middle cerebral artery cerebral blood flow velocity (CBFv). Here, we used N-back testing, an intellectual memory challenge as a neural activation task, to test the hypothesis that OLBNP-induced oscillatory cerebral blood flow can reduce functional hyperemia and NVC produced by a working memory task and can interfere with working memory. We used OLBNP (-30 mmHg) at 0.03, 0.05, and 0.10 Hz and measured spectral power of CBFv at all frequencies. Neither OLBNP nor N-back, alone or combined, affected hemodynamic parameters. 2-Back power and OLBNP individually were compared with 2-back power during OLBNP. 2-Back alone produced a narrow band increase in oscillatory arterial pressure (OAP) and oscillatory cerebral blood flow power centered at 0.0083 Hz. Functional hyperemia in response to 2-back was reduced to near baseline and 2-back memory performance was decreased by 0.03-, 0.05-, and 0.10-Hz OLBNP. OLBNP alone produced increased oscillatory power at frequencies of oscillation not suppressed by added 2-back. However, 2-back preceding OLBNP suppressed OLBNP power. OLBNP-driven oscillatory CBFv blunts NVC and memory performance, while memory task reciprocally interfered with forced CBFv oscillations. This shows that induced cerebral blood flow oscillations suppress functional hyperemia and functional hyperemia suppresses cerebral blood flow oscillations.NEW & NOTEWORTHY We show that induced cerebral blood flow oscillations suppress functional hyperemia produced by a working memory task as well as memory task performance. We conclude that oscillatory

  3. Work in the classrooms with European perspective: materials and resources for autonomus learning

    Directory of Open Access Journals (Sweden)

    Manuela RAPOSO RIVAS

    2011-04-01

    Full Text Available One of the key principles set forth in the bologna process is to focus teaching on students, by getting involved actively and independently in their learning process and in developing their skills. This requires the use of teaching and learning methods together with materials and resources to motivate and guide them. In this paper, we present three of them, from our experience in adapting the subject of «New Technologies Applied to education» to the ecTs system, which we have found useful for guiding and evaluating the learning process and promote the intended learning. These materials and resources are: «learning guides», the portfolio and the rubric.

  4. Visual Working Memory Load-Related Changes in Neural Activity and Functional Connectivity

    OpenAIRE

    Ling Li; Jin-Xiang Zhang; Tao Jiang

    2011-01-01

    BACKGROUND: Visual working memory (VWM) helps us store visual information to prepare for subsequent behavior. The neuronal mechanisms for sustaining coherent visual information and the mechanisms for limited VWM capacity have remained uncharacterized. Although numerous studies have utilized behavioral accuracy, neural activity, and connectivity to explore the mechanism of VWM retention, little is known about the load-related changes in functional connectivity for hemi-field VWM retention. MET...

  5. Electron injection into organic semiconductor devices from high work function cathodes

    OpenAIRE

    Hoven, Corey V.; Yang, Renqiang; Garcia, Andres; Crockett, Victoria; Heeger, Alan J.; Bazan, Guillermo C.; Nguyen, Thuc-Quyen

    2008-01-01

    We show that polymer light-emitting diodes with high work-function cathodes and conjugated polyelectrolyte injection/transport layers exhibit excellent efficiencies despite large electron-injection barriers. Correlation of device response times with structure provides evidence that the electron-injection mechanism involves redistribution of the ions within the polyelectrolyte electron-transport layer and hole accumulation at the interface between the emissive and electron-transport layers. Bo...

  6. Work function tuning for high-performance solution-processed organic photodetectors with inverted structure.

    Science.gov (United States)

    Saracco, Emeline; Bouthinon, Benjamin; Verilhac, Jean-Marie; Celle, Caroline; Chevalier, Nicolas; Mariolle, Denis; Dhez, Olivier; Simonato, Jean-Pierre

    2013-12-03

    Organic photodetectors with inverted structure are fabricated by solution process techniques. A very thin interfacing layer of polyethyleneimine leads to a homogenous interface with low work function. The devices exhibit excellent performances, in particular in terms of low dark current density, wide range linearity, high detectivity, and remarkable stability in ambient air without encapsulation. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Recommendations on the work with authentic video materials in foreign language teaching

    OpenAIRE

    Kuimova, Marina Valerievna; Uzunboylu, H.; Golousenko, Maksim Anatoljevich

    2016-01-01

    Video is one of the most appreciated language teaching materials and well-liked by both teachers and learners. It brings variety and flexibility to the language classroom, gives a wide range of communicative situations, makes meaning clearer by providing visual clues (environment, dress, posture, gesture, facial expression, etc.) and communicates with viewers on an emotional as well as a cognitive level. Authentic video motivates learning interest and enthusiasm, improves students’ language s...

  8. VOICES FROM THE STREET: meanings of work and employment relations of collectors of recyclable materials

    Directory of Open Access Journals (Sweden)

    Carlos Antonio de Souza Moraes

    2011-11-01

    Full Text Available The article presents a study on work and employment relations of recyclable waste collectors on the streets of Bom Jesus do Itabapoana - RJ. It provides a discussion of informality and survival strategies (LUTIER, 1993; 1994, themes not much studied in some professional fields of social policy such as social work. The study included review of the literature and field survey in which 10 collectors were interviewed. Results show that these workers are keeping traditional survival and marginalization habits, as they cannot afford to respond to current labor requirements such as high school degree and qualification.

  9. Working memory, attention, and executive function in Alzheimer's disease and frontotemporal dementia.

    Science.gov (United States)

    Stopford, Cheryl L; Thompson, Jennifer C; Neary, David; Richardson, Anna M T; Snowden, Julie S

    2012-04-01

    Working memory deficits are a recognised feature of Alzheimer's disease (AD). They are commonly ascribed to central executive impairment and assumed to relate to frontal lobe dysfunction. Performance failures on standard tests of attention and executive function reinforce this interpretation. Nevertheless, early-onset AD patients do not show the frank behavioural changes indicative of frontal lobe dysfunction, and the characteristic functional neuroimaging changes are in posterior hemispheres rather than frontal lobes. We explored this anomaly through a comparison of working memory, attention and executive test performance in patients with AD (a 'typical' early-onset group with deficits in memory, language and perceptuospatial function and an 'amnesic' group) and frontotemporal dementia (FTD). Typical-AD and FTD patients both showed impaired performance, whereas amnesic-AD patients performed well. Despite similar quantitative performance measures, typical-AD and FTD patients showed qualitatively distinct performance profiles. Impairments in FTD patients were interpreted in 'frontal' executive terms as deficits in attention, set shifting and response inhibition. AD patients' performance appeared to be influenced by information load and was interpreted in terms of working memory capacity. In keeping with these different interpretations, neuroimaging showed characteristic frontal lobe abnormalities in FTD and temporoparietal change in typical-AD. The findings highlight the importance of the posterior hemispheres in working memory and point to a need for caution in the automatic attribution of working memory, attention and executive test failures to frontal lobe failure. They underline also the phenotypic variation within AD. Copyright © 2010 Elsevier Srl. All rights reserved.

  10. Thermochemical Storage of Middle Temperature Wasted Heat by Functionalized C/Mg(OH2 Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Emanuela Mastronardo

    2017-01-01

    Full Text Available For the thermochemical performance implementation of Mg(OH2 as a heat storage medium, several hybrid materials have been investigated. For this study, high-performance hybrid materials have been developed by exploiting the authors’ previous findings. Expanded graphite (EG/carbon nanotubes (CNTs-Mg(OH2 hybrid materials have been prepared through Mg(OH2 deposition-precipitation over functionalized, i.e., oxidized, or un-functionalized EG or CNTs. The heat storage performances of the carbon-based hybrid materials have been investigated through a laboratory-scale experimental simulation of the heat storage/release cycles, carried out by a thermogravimetric apparatus. This study offers a critical evaluation of the thermochemical performances of developed materials through their comparison in terms of heat storage and output capacities per mass and volume unit. It was demonstrated that both EG and CNTs improves the thermochemical performances of the storage medium in terms of reaction rate and conversion with respect to pure Mg(OH2. With functionalized EG/CNTs-Mg(OH2, (i the potential heat storage and output capacities per mass unit of Mg(OH2 have been completely exploited; and (ii higher heat storage and output capacities per volume unit were obtained. That means, for technological applications, as smaller volume at equal stored/released heat.

  11. Exploration of new superconductors and functional materials, and fabrication of superconducting tapes and wires of iron pnictides

    Science.gov (United States)

    Hosono, Hideo; Tanabe, Keiichi; Takayama-Muromachi, Eiji; Kageyama, Hiroshi; Yamanaka, Shoji; Kumakura, Hiroaki; Nohara, Minoru; Hiramatsu, Hidenori; Fujitsu, Satoru

    2015-01-01

    This review shows the highlights of a 4-year-long research project supported by the Japanese Government to explore new superconducting materials and relevant functional materials. The project found several tens of new superconductors by examining ∼1000 materials, each of which was chosen by Japanese experts with a background in solid state chemistry. This review summarizes the major achievements of the project in newly found superconducting materials, and the fabrication wires and tapes of iron-based superconductors; it incorporates a list of ∼700 unsuccessful materials examined for superconductivity in the project. In addition, described are new functional materials and functionalities discovered during the project. PMID:27877784

  12. Effect of shift work on endothelial function in young cardiology trainees.

    Science.gov (United States)

    Tarzia, Pierpaolo; Milo, Maria; Di Franco, Antonino; Di Monaco, Antonio; Cosenza, Alessandro; Laurito, Marianna; Lanza, Gaetano Antonio; Crea, Filippo

    2012-10-01

    Long-term shift work (SW) is associated with an increase in cardiovascular disease (CVD). Previous studies have shown that prolonged SW is associated with endothelial dysfunction, suggesting that this abnormality may contribute to the SW-related increase in cardiovascular risk. The immediate effect of SW on endothelial function in healthy subjects, however, is unknown. We studied endothelial function and endothelium-independent function in 20 healthy specialty trainees in cardiology at our Institute, without any cardiovascular risk factor (27.3 ± 1.9 years, nine males), at two different times: (1) after a working night (WN), and (2) after a restful night (RN). The two test sessions were performed in a random sequence. Endothelial function was assessed by measuring brachial artery dilation during post-ischaemic forearm hyperaemia (flow-mediated dilation, FMD). Endothelium-independent function in response to 25 µg of sublingual glyceryl trinitrate (nitrate-mediated dilation, NMD) was also assessed. FMD was 8.02 ± 1.4% and 8.56 ± 1.7% after WN and RN, respectively (p = 0.025), whereas NMD was 10.5 ± 2.1% and 10.4 ± 2.0% after WN and RN, respectively (p = 0.48). The difference in FMD between WN and RN was not influenced by the numbers of hours slept during WN (4 hours) and by the duration of involvement of specialty trainees in nocturnal work (12 months). Our study shows that in healthy medical residents, without any cardiovascular risk factor, FMD is slightly impaired after WN compared to RN. Disruption of physiological circadian neuro-humoral rhythm is likely to be responsible for this adverse vascular effect.

  13. An extensive investigation of work function modulated trapezoidal recessed channel MOSFET

    Science.gov (United States)

    Lenka, Annada Shankar; Mishra, Sikha; Mishra, Satyaranjan; Bhanja, Urmila; Mishra, Guru Prasad

    2017-11-01

    The concept of silicon on insulator (SOI) and grooved gate help to lessen the short channel effects (SCEs). Again the work function modulation along the metal gate gives a better drain current due to the uniform electric field along the channel. So all these concepts are combined and used in the proposed MOSFET structure for more improved performance. In this work, trapezoidal recessed channel silicon on insulator (TRC-SOI) MOSFET and work function modulated trapezoidal recessed channel silicon on insulator (WFM-TRC-SOI) MOSFET are compared with DC and RF parameters and later linearity of both the devices is tested. An analytical model is formulated by using a 2-D Poisson's equation and develops a compact equation for threshold voltage using minimum surface potential. In this work we analyze the effect of negative junction depth and the corner angle on various device parameters such as minimum surface potential, sub-threshold slope (SS), drain induced barrier lowering (DIBL) and threshold voltage. The analysis interprets that the switching performance of WFM-TRC-SOI MOSFET surpasses TRC-SOI MOSFET in terms of high Ion/Ioff ratio and also the proposed structure can minimize the short channel effects (SCEs) in RF application. The validity of proposed model has been verified with simulation result performed on Sentaurus TCAD device simulator.

  14. Functional materials based on self-assembled comb-shaped supramolecules

    NARCIS (Netherlands)

    ten Brinke, G; Ikkala, O; KorugicKarasz, LS; MacKnight, WJ; Martuscelli, E

    2005-01-01

    In this paper we will review the main features of our approach to create functional materials using self-assembly of hydrogenbonded comb-shaped supramolecules. Typically, the supramolecules consist of homopolymers or diblock copolymers, where short chain amphiphiles are hydrogenbonded to the

  15. SiCp/Ti6Al4V functionally graded materials produced by laser melt injection

    NARCIS (Netherlands)

    Pei, Y.T.; Ocelik, V.; Hosson, J.Th.M. De

    2002-01-01

    With a well-controlled laser melt injection (LMI) process, for the first time the feasibility is demonstrated to produce SiC particles (SiCp) reinforced Ti6Al4V functionally graded materials (FGMs). SiCp are injected just behind the laser beam into the extended part of the laser melt pool that is

  16. Selective visual working memory in fear of spiders: The role of automaticity and material-specificity

    NARCIS (Netherlands)

    Reinecke, A.; Becker, E.S.; Rinck, M.

    2009-01-01

    Following cognitive models of anxiety, biases occur if threat processing is automatic versus strategic. Therefore, most of these models predict attentional bias, but not explicit memory bias. We suggest dividing memory into the highly automatic working memory (WM) component versus long-term memory

  17. Neuropsychological function and employment status in a welfare-to-work sample.

    Science.gov (United States)

    Gorske, Tad T; Daley, Dennis C; Yenerall, Eric; Morrow, Lisa A

    2006-01-01

    Since 1996, individuals who participate in welfare programs are mandated to find employment. Welfare recipients may have difficulty transitioning to the workforce due to impairments in psychosocial functioning. Examples include mental health and substance use disorders, medical problems, academic and learning difficulties, and lack of resources such as childcare and transportation. An area unexplored as a potential barrier is cognitive functioning as influencing recipient's ability to transition into the workforce. This is important because many Welfare to Work (WtW) recipients have personal risk factors related to impaired cognitive ability. We evaluated the relationship between demographics, cognitive functioning, and substance abuse severity in a group of 180 WtW recipients in order to assess predictors of employment impairment. No relationship was found between employment functioning and alcohol use, drug use, or psychiatric impairment. However neuropsychological test results demonstrate that WtW study participants with lower scores on tests of general intelligence are more impaired in their employment functioning. General intelligence emerged as the best predictor of employment functioning. The results have implications for identifying individuals at risk for unsuccessful transition into the workforce and for the development of effective vocational rehabilitation strategies.

  18. [Functional digestive disorders in infants. Working protocol of diagnostic and treatment].

    Science.gov (United States)

    Khavkin, A I; Bel'mer, S V; Zakharova, I N; Keshishian, E S; Pampura, A N; Faĭzullina, R A

    2014-01-01

    Functional digestive disorders in infants comprise a group of disorders characterized by several specific features. They are related to structural and physiological peculiarities of the gastrointestinal tract in children during lactotrophic period of nutrition, limited pharmacotherapeutic options and supremacy of dietary correction in this age group, and psychological discomfort that has a negative impact on the quality of life of the whole family. The working protocol "Functional gastrointestinal disorders in infants' was prepared by the Russian Society for Pediatric Gastroenterology, Hepatology, and Nutrition (RusPGHAN) based on the previously proposed European (ESPGHAN) and American (NASPGHAN) guidelines. The protocol includes detailed description of the current approaches to diagnosis and management of the functional digestive disorders in young children, as well as algorithm tables that can be used by pediatricians and familial physicians in routine clinical practice.

  19. Organic-Inorganic Hybrid Materials: Multi-Functional Solids for Multi-Step Reaction Processes.

    Science.gov (United States)

    Díaz, Urbano; Corma, Avelino

    2017-11-30

    The design of new hybrid materials with tailored properties at the nano-, meso-, and macro-scale, with the use of structural functional nanobuilding units, is carried out to obtain specific multi-functional materials. Organization into controlled 1D, 2D, and 3D architectures with selected functionalities is key for developing advanced catalysts, but this is hardly accomplished using conventional synthesis procedures. The use of pre-formed nanostructures, derived either from known materials or made with specific innovative synthetic methodologies, has enormous potential in the generation of multi-site catalytic materials for one-pot processes. The present concept article introduces a new archetype wherein self-assembled nanostructured builder units are the base for the design of multifunctional catalysts, which combine catalytic efficiency with fast reactant and product diffusion. The article addresses a new generation of versatile hybrid organic-inorganic multi-site catalytic materials for their use in the production of (chiral) high-added-value products within the scope of chemicals and fine chemicals production. The use of those multi-reactive solids for more nanotechnological applications, such as sensors, due to the inclusion of electron donor-acceptor structural arrays is also considered, together with the adsorption-desorption capacities due to the combination of hydrophobic and hydrophilic sub-domains. The innovative structured hybrid materials for multipurpose processes here considered, can allow the development of multi-stage one-pot reactions with industrial applications, using the materials as one nanoreactor systems, favoring more sustainable production pathways with economic, environmental and energetic advantages. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Effects of vacuum heat treatment on the photoelectric work function and surface morphology of multilayered silver–metal electrical contacts

    Energy Technology Data Exchange (ETDEWEB)

    Akbi, Mohamed, E-mail: akbi_mohamed@umbb.dz [Laboratoire “Arc Electrique et Plasmas Thermiques”, CNRS, UPRES-A 6069, 24, Avenue des Landais, F-63177 Aubière Cedex (France); Department of Physics, Faculty of Sciences, University of Boumerdes (UMBB), Independence Avenue, 35000 Boumerdes (Algeria); Bouchou, Aïssa [Faculty of Physics, University of Algiers (USTHB), B.P. 32, El-Alia, Bab-Ezzouar, 16111 Algiers (Algeria); Zouache, Noureddine [Laboratoire “Arc Electrique et Plasmas Thermiques”, CNRS, UPRES-A 6069, 24, Avenue des Landais, F-63177 Aubière Cedex (France)

    2014-06-01

    Contact materials used for electrical breakers are often made with silver alloys. Mechanical and thermodynamical properties as well as electron emission of such complicated alloys present a lack of reliable and accurate experimental data. This paper deals mainly with electron work function (EWF) measurements about silver–metal (Ag–Me) electrical contacts (Ag–Ni (60/40) and Ag–W (50/50)), before and after surface heat treatments at 513 K–873 K, under UHV conditions (residual gas pressure of 1.4 × 10{sup −7} mbar). The electron work function (EWF) of silver alloyed contacts was measured photoelectrically, using both Fowler's method of isothermal curves and linearized Fowler plots. An interesting fact brought to light by this investigation is that after vacuum heat treatments, the diffusion and/or evaporation phenomena, affecting the atomic composition of the alloy surface, somehow confine the EWF of the silver–nickel alloy, Φ(Ag–Ni), determined at room temperature in interval]Φ(Ag), Φ(Ni) [=] 4.26 eV, 4.51 eV[. Surface analysis of two specimens before and after heating showed a significant increase of tungsten atomic proportion on the contact surface for Ag–W contacts after VH treatments. A multilayer model, taking into account the strong intergranular and volume segregation gives a good interpretation of the obtained results.