WorldWideScience

Sample records for wisconsin river usa

  1. Predicted effects of future climate warming on thermal habitat suitability for Lake Sturgeon (Acipenser fulvescens, Rafinesque, 1817) in rivers in Wisconsin, USA

    Science.gov (United States)

    Lyons, John D.; Stewart, Jana S.

    2015-01-01

    The Lake Sturgeon (Acipenser fulvescens, Rafinesque, 1817) may be threatened by future climate warming. The purpose of this study was to identify river reaches in Wisconsin, USA, where they might be vulnerable to warming water temperatures. In Wisconsin, A. fulvescens is known from 2291 km of large-river habitat that has been fragmented into 48 discrete river-lake networks isolated by impassable dams. Although the exact temperature tolerances are uncertain, water temperatures above 28–30°C are potentially less suitable for this coolwater species. Predictions from 13 downscaled global climate models were input to a lotic water temperature model to estimate amounts of potential thermally less-suitable habitat at present and for 2046–2065. Currently, 341 km (14.9%) of the known habitat are estimated to regularly exceed 28°C for an entire day, but only 6 km (0.3%) to exceed 30°C. In 2046–2065, 685–2164 km (29.9–94.5%) are projected to exceed 28°C and 33–1056 km (1.4–46.1%) to exceed 30°C. Most river-lake networks have cooler segments, large tributaries, or lakes that might provide temporary escape from potentially less suitable temperatures, but 12 short networks in the Lower Fox and Middle Wisconsin rivers totaling 93.6 km are projected to have no potential thermal refugia. One possible adaptation to climate change could be to provide fish passage or translocation so that riverine Lake Sturgeon might have access to more thermally suitable habitats.

  2. Effects of dams in river networks on fish assemblages in non-impoundment sections of rivers in Michigan and Wisconsin, USA

    Science.gov (United States)

    Stewart, Jana S.; Lizhu Wang,; Infante, Dana M.; Lyons, John D.; Arthur Cooper,

    2011-01-01

    Regional assessment of cumulative impacts of dams on riverine fish assemblages provides resource managers essential information for dam operation, potential dam removal, river health assessment and overall ecosystem management. Such an assessment is challenging because characteristics of fish assemblages are not only affected by dams, but also influenced by natural variation and human-induced modification (in addition to dams) in thermal and flow regimes, physicochemical habitats and biological assemblages. This study evaluated the impacts of dams on river fish assemblages in the non-impoundment sections of rivers in the states of Michigan and Wisconsin using multiple fish assemblage indicators and multiple approaches to distinguish the influences of dams from those of other natural and human-induced factors. We found that environmental factors that influence fish assemblages in addition to dams should be incorporated when evaluating regional effects of dams on fish assemblages. Without considering such co-influential factors, the evaluation is inadequate and potentially misleading. The role of dams alone in determining fish assemblages at a regional spatial scale is relatively small (explained less than 20% of variance) compared with the other environmental factors, such as river size, flow and thermal regimes and land uses jointly. However, our results do demonstrate that downstream and upstream dams can substantially modify fish assemblages in the non-impoundment sections of rivers. After excluding river size and land-use influences, our results clearly demonstrate that dams have significant impacts on fish biotic-integrity and habitat-and-social-preference indicators. The influences of the upstream dams, downstream dams, distance to dams, and dam density differ among the fish indicators, which have different implications for maintaining river biotic integrity, protecting biodiversity and managing fisheries.

  3. National Uranium Resource Evaluation: Iron River Quadrangle, Michigan and Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Frishman, D

    1982-09-01

    No area within the Iron River 1/sup 0/ x 2/sup 0/ Quadrangle, Michigan and Wisconsin, appears to be favorable for the existence of a minimum of 100 tons of U/sub 3/O/sub 8/ at a grade of 0.01 percent or better.

  4. Relating groundwater to seasonal wetlands in southeastern Wisconsin, USA

    Science.gov (United States)

    Skalbeck, J.D.; Reed, D.M.; Hunt, R.J.; Lambert, J.D.

    2009-01-01

    Historically, drier types of wetlands have been difficult to characterize and are not well researched. Nonetheless, they are considered to reflect the precipitation history with little, if any, regard for possible relation to groundwater. Two seasonal coastal wetland types (wet prairie, sedge meadow) were investigated during three growing seasons at three sites in the Lake Michigan Basin, Wisconsin, USA. The six seasonal wetlands were characterized using standard soil and vegetation techniques and groundwater measurements from the shallow and deep systems. They all met wetland hydrology criteria (e.g., water within 30 cm of land surface for 5% of the growing season) during the early portion of the growing season despite the lack of appreciable regional groundwater discharge into the wetland root zones. Although root-zone duration analyses did not fit a lognormal distribution previously noted in groundwater-dominated wetlands, they were able to discriminate between the plant communities and showed that wet prairie communities had shorter durations of continuous soil saturation than sedge meadow communities. These results demonstrate that the relative rates of groundwater outflows can be important for wetland hydrology and resulting wetland type. Thus, regional stresses to the shallow groundwater system such as pumping or low Great Lake levels can be expected to affect even drier wetland types. ?? Springer-Verlag 2008.

  5. Mixing zones studies of the waste water discharge from the Consolidated Paper Company into the Wisconsin River at Wisconsin Rapids, Wisconsin

    Science.gov (United States)

    Hoopes, J. A.; Wu, D. S.; Ganatra, R.

    1973-01-01

    Effluent concentration distributions from the waste water discharge of the Kraft Division Mill, Consolidated Paper Company, into the Wisconsin River at Wisconsin Rapids, Wisconsin, is investigated. Effluent concentrations were determined from measurements of the temperature distribution, using temperature as a tracer. Measurements of the velocity distribution in the vicinity of the outfall were also made. Due to limitations in the extent of the field observations, the analysis and comparison of the measurements is limited to the region within about 300 feet from the outfall. Effects of outfall submergence, of buoyancy and momentum of the effluent and of the pattern and magnitude of river currents on these characteristics are considered.

  6. Uptake of planar polychlorinated biphenyls and 2,3,7,8-substituted polychlorinated dibenzofurans and dibenzo-p-dioxins by birds nesting in the lower Fox River and Green Bay, Wisconsin, USA

    Science.gov (United States)

    Ankley, Gerald T.; Niemi, Gerald J.; Lodge, Keith B.; Harris, Hallett J.; Beaver, Donald L.; Tillitt, Donald E.; Schwartz, Ted R.; Giesy, John P.; Jones, Paul D.; Hagley, Cynthia

    1993-01-01

    The uptake of persistent polychlorinated hydrocarbons (PCHs) by four avian species was investigated at upper trophic levels of two aquatic food chains of the lower Fox River and Green Bay, Wisconsin. Accumulation of total and specific planar polychlorinated biphenyls (PCBs), polychlorinated dibenzofurans (PCDFs), polychlorinated dibenzo-p-dioxin (PCDDs), and H411E rat hepatoma cell bioassay-derived 2,37,8-tetrachlorodibenzop-dioxin equivalents (TCDD-EQ) was evaluated in Forster's tern (Sterna forsteri) and common tern (Sterna hirundo) chicks, and in tree swallow (Tachycineta bicolor) and red-winged blackbird (Agelaius phoeniceus) nestlings from colonies nesting in several locations within the watershed. Concentrations of the PCHs were greatest in eggs and chicks of the two tern species, less in the tree swallows and least in the red-winged blackbirds. Young of all four species accumulated total PCBs, PCB congeners 77, 105, 126, and 169, and TCDD-EQ. The young birds also accumulated small concentrations of several 2,3,7,8-sbustituted PCDF and PCDD congeners. Uptake rates for certain of the PCHs for the Forster's tern chicks were: 15 μg/day for total PCBs, 70, 200, 6.5, and 0.14 ng/day for PCB congeners 77, 105, 126, and 169, respectively, and 270 μg/day for TCDD-EQ. Principal components analysis revealed that the patterns of PCH concentrations in the samples were influenced by species of bird, their age (or length of exposure) and nesting location. Collectively, our findings demonstrate that exposure of avian species to contaminants derived from aquatic food chains can be characterized and quantified for the purposes of ecological risk assessment.

  7. Influence of forest management alternatives and land type on susceptibility to fire in northern Wisconsin, USA

    Science.gov (United States)

    Eric J. Gustafson; Patrick A. Zollner; Brian R. Sturtevant; S. He Hong; David J. Mladenoff

    2004-01-01

    We used the LANDIS disturbance and succession model to study the effects of six alternative vegetation management scenarios on forest succession and the subsequent risk of canopy fire on a 2791 km2 landscape in northern Wisconsin, USA. The study area is a mix of fire-prone and fire-resistant land types. The alternatives vary the spatial...

  8. Birds of the St. Croix River valley: Minnesota and Wisconsin

    Science.gov (United States)

    Faanes, Craig A.

    1981-01-01

    The St. Croix River Valley encompasses nearly 11,550 km2 in east-central Minnesota and northwestern Wisconsin. A wide range of habitats are available for birds including upland oak, lowland deciduous, maple-basswood, lowland and upland coniferous forests, natural basin wetlands, and grasslands. Situated in the north-central region of the United States, the valley is a biological 'crossroads' for many species. Because of the mixed affinities of plant communities, the valley includes the northern and southern range limits for a number of species. Also, because the valley lies near the forest-prairie transition zone, many typical western breeding species (e.g. pintail, western meadowlark, yellow-headed blackbird) breed in proximity to typical eastern species such as tufted titmouse, eastern meadowlark, and cardinal. From 1966 to 1980, I conducted extensive surveys of avian distribution and abundance in the St. Croix River Valley. I have supplemented the results of these surveys with published and unpublished observations contributed by many ornithologists. These additional data include compilations from Christmas Bird Counts sponsored by the National Audubon Society and from the Breeding Bird Survey coordinated by the U.S. Fish and Wildlife Service. Three hundred fourteen species have been recorded in the study area; data are presented on the migration period, nesting season distribution, winter distribution, relative abundance, and habitat use of each species. Recognizing the uniqueness of the area, and its importance not only to wildlife but also to man, the U.S. Congress designated the St. Croix a National Scenic Riverway. This action provided a considerable degree of protection to lands along and directly adjacent to the river. Unfortunately, no similar legal measure exists to protect lands away from the river. With the exception of the northern quarter of the St. Croix River Valley, agricultural interests have made significant inroads into the habitat base. The

  9. Urban climate effects on extreme temperatures in Madison, Wisconsin, USA

    Science.gov (United States)

    Schatz, Jason; Kucharik, Christopher J.

    2015-09-01

    As climate change increases the frequency and intensity of extreme heat, cities and their urban heat island (UHI) effects are growing, as are the urban populations encountering them. These mutually reinforcing trends present a growing risk for urban populations. However, we have limited understanding of urban climates during extreme temperature episodes, when additional heat from the UHI may be most consequential. We observed a historically hot summer and historically cold winter using an array of up to 150 temperature and relative humidity sensors in and around Madison, Wisconsin, an urban area of population 402 000 surrounded by lakes and a rural landscape of agriculture, forests, wetlands, and grasslands. In the summer of 2012 (third hottest since 1869), Madison’s urban areas experienced up to twice as many hours ⩾32.2 °C (90 °F), mean July TMAX up to 1.8 °C higher, and mean July TMIN up to 5.3 °C higher than rural areas. During a record setting heat wave, dense urban areas spent over four consecutive nights above the National Weather Service nighttime heat stress threshold of 26.7 °C (80 °F), while rural areas fell below 26.7 °C nearly every night. In the winter of 2013-14 (coldest in 35 years), Madison’s most densely built urban areas experienced up to 40% fewer hours ⩽-17.8 °C (0 °F), mean January TMAX up to 1 °C higher, and mean January TMIN up to 3 °C higher than rural areas. Spatially, the UHI tended to be most intense in areas with higher population densities. Temporally, both daytime and nighttime UHIs tended to be slightly more intense during more-extreme heat days compared to average summer days. These results help us understand the climates for which cities must prepare in a warming, urbanizing world.

  10. Contaminant exposure of birds nesting in Green Bay, Wisconsin, USA.

    Science.gov (United States)

    Custer, Thomas W; Dummer, Paul M; Custer, Christine M; Franson, J Christian; Jones, Michael

    2014-08-01

    In earlier studies, elevated concentrations of polychlorinated biphenyl (PCB) and p,p'-dichlorodiphenyldichloroethylene (DDE) were reported in double-crested cormorant (Phalacrocorax auritus) eggs and tree swallow (Tachycineta bicolor) eggs and nestlings collected from lower Green Bay (WI, USA) in 1994 and 1995 and black-crowned night-heron (Nycticorax nycticorax) eggs collected in 1991. Comparable samples collected in 2010 and 2011 indicated that concentrations of PCBs were 35%, 62%, 70%, and 88% lower than in the early 1990s in tree swallow eggs, tree swallow nestlings, double-crested cormorant eggs, and black-crowned night-heron eggs, respectively; concentrations of DDE were 47%, 43%, 51%, and 80% lower, respectively. These declines are consistent with regional contaminant trends in other species. Concentrations of PCBs were higher in herring gull (Larus argentatus) than in black-crowned night-heron eggs collected from Green Bay in 2010; PCB concentrations in double-crested cormorant and tree swallow eggs were intermediate. The estimated toxicity of the PCB mixture in eggs of the insectivorous tree swallow was the equal to or greater than toxicity in the 3 piscivorous bird species. A multivariate analysis indicated that the composition percentage of lower-numbered PCB congeners was greater in eggs of the insectivorous tree swallow than in eggs of the 3 piscivorous species nesting in Green Bay. Dioxin and furan concentrations and the toxicity of these chemicals were also higher in tree swallows than these other waterbird species nesting in Green Bay. Published 2014 Wiley Periodicals, Inc.

  11. An Evaluation of Illicit Stimulants and Metabolites in Wastewa ter Effluent and the Wisconsin River Along the Central Wisconsin River Basin

    Directory of Open Access Journals (Sweden)

    Erik S. Hendrickson

    2015-09-01

    Full Text Available The goals of the study were to develop a method for extracting and quantifying illicit stimulants and metabolites, methamphetamine, amphetamine, cocaine, and benzoylecogonine from wastewater effluent and surface water grab samples, and evaluate Central Wisconsin wastewater treatment plant’s (WWTP removal efficiency of compounds of interest. The method created used HLB solid-phase extraction (SPE cartridges to extract substances of interest and High Performance Liquid Chromatography tandem Mass Spectrometry (HPLC/MS/MS for quantification and qualification. All four wastewater effluent samples and three Wisconsin River samples had quantifiable concentrations of at least one analyte. Conclusions derived from the study were: The method created is effective for separating, quantifying, and identifying amphetamine, cocaine, and benzoylecognine from wastewater effluent and surface water grab samples, and each illicit stimulant and metabolite analyzed in this study were all quantified in wastewater effluent, indicating these compounds have the ability to survive WWTP.

  12. Flood of July 2016 in northern Wisconsin and the Bad River Reservation

    Science.gov (United States)

    Fitzpatrick, Faith A.; Dantoin, Eric D.; Tillison, Naomi; Watson, Kara M.; Waschbusch, Robert J.; Blount, James D.

    2017-06-06

    Heavy rain fell across northern Wisconsin and the Bad River Reservation on July 11, 2016, as a result of several rounds of thunderstorms. The storms caused major flooding in the Bad River Basin and nearby tributaries along the south shore of Lake Superior. Rainfall totals were 8–10 inches or more and most of the rain fell in an 8-hour period. A streamgage on the Bad River near Odanah, Wisconsin, rose from 300 cubic feet per second to a record peak streamflow of 40,000 cubic feet per second in only 15 hours. Following the storms and through September 2016, personnel from the U.S. Geological Survey and Bad River Tribe Natural Resources Department recovered and documented 108 high-water marks near the Bad River Reservation. Many of these high-water marks were used to create three flood-inundation maps for the Bad River, Beartrap Creek, and Denomie Creek for the Bad River Reservation in the vicinity of the community of Odanah.

  13. Whole-system carbon balance for a regional temperate forest in Northern Wisconsin, USA

    Science.gov (United States)

    Peckham, S. D.; Gower, S. T.

    2010-12-01

    The whole-system (biological + industrial) carbon (C) balance was estimated for the Chequamegon-Nicolet National Forest (CNNF), a temperate forest covering 600,000 ha in Northern Wisconsin, USA. The biological system was modeled using a spatially-explicit version of the ecosystem process model Biome-BGC. The industrial system was modeled using life cycle inventory (LCI) models for wood and paper products. Biome-BGC was used to estimate net primary production, net ecosystem production (NEP), and timber harvest (H) over the entire CNNF. The industrial carbon budget (Ci) was estimated by applying LCI models of CO2 emissions resulting from timber harvest and production of specific wood and paper products in the CNNF region. In 2009, simulated NEP of the CNNF averaged 3.0 tC/ha and H averaged 0.1 tC/ha. Despite model uncertainty, the CNNF region is likely a carbon sink (NEP - Ci > 0), even when CO2 emissions from timber harvest and production of wood and paper products are included in the calculation of the entire forest system C budget.

  14. Organochlorine contaminants and reproductive success of double-crested cormorants from Green Bay, Wisconsin, USA

    Science.gov (United States)

    Custer, T.W.; Custer, Christine M.; Hines, R.K.; Gutreuter, S.; Stromborg, K.L.; Allen, P. David; Melancon, M.J.

    1999-01-01

    In 1994 and 1995, nesting success of double-crested cormorants (Phalacrocorax auritus) was measured at Cat Island, in southern Green Bay, Lake Michigan, Wisconsin, USA. Sample eggs at pipping and unhatched eggs were collected and analyzed for organochlorines (including total polychlorinated biphenyls [PCBs] and DDE), hepatic microsomal ethoxyresorufin-O-dealkylase (EROD) activity in embryos, and eggshell thickness. Of 1,570 eggs laid, 32% did not hatch and 0.4% had deformed embryos. Of 632 chicks monitored from hatching to 12 d of age, 9% were missing or found dead; no deformities were observed. The PCB concentrations in sample eggs from clutches with deformed embryos (mean = 10.2 μg/g wet weight) and dead embryos (11.4 μg/g) were not significantly higher than concentrations in sample eggs from nests where all eggs hatched (12.1 μg/g). A logistic regression of hatching success versus DDE, dieldrin, and PCB concentrations in sibling eggs identified DDE and not dieldrin or PCBs as a significant risk factor. A logistic regression of hatching success versus DDE and eggshell thickness implicated DDE and not eggshell thickness as a significant risk factor. Even though the insecticide DDT was banned in the early 1970s, we suggest that DDE concentrations in double-crested cormorant eggs in Green Bay are still having an effect on reproduction in this species.

  15. Flood Control, Mississippi River at Prairie du Chien, Wisconsin.

    Science.gov (United States)

    1977-02-01

    Rolette House (early 19th Century ) was the home of one of the most important and influential early settlers. Joseph Rolette, a French Canadian, was a...referred to as "the house on the mound" because it was built on a large Indian burial mound. in 1872, the home was remodeled into a Victorian styled...the Dakotas following the Civil War. It was also a fashionable stop- over for those traveling the Mississippi River by steamboat. 2.50 When the Second

  16. Metamodeling and mapping of nitrate flux in the unsaturated zone and groundwater, Wisconsin, USA

    Science.gov (United States)

    Nolan, Bernard T.; Green, Christopher T.; Juckem, Paul F.; Liao, Lixia; Reddy, James E.

    2018-01-01

    Nitrate contamination of groundwater in agricultural areas poses a major challenge to the sustainability of water resources. Aquifer vulnerability models are useful tools that can help resource managers identify areas of concern, but quantifying nitrogen (N) inputs in such models is challenging, especially at large spatial scales. We sought to improve regional nitrate (NO3−) input functions by characterizing unsaturated zone NO3− transport to groundwater through use of surrogate, machine-learning metamodels of a process-based N flux model. The metamodels used boosted regression trees (BRTs) to relate mappable landscape variables to parameters and outputs of a previous “vertical flux method” (VFM) applied at sampled wells in the Fox, Wolf, and Peshtigo (FWP) river basins in northeastern Wisconsin. In this context, the metamodels upscaled the VFM results throughout the region, and the VFM parameters and outputs are the metamodel response variables. The study area encompassed the domain of a detailed numerical model that provided additional predictor variables, including groundwater recharge, to the metamodels. We used a statistical learning framework to test a range of model complexities to identify suitable hyperparameters of the six BRT metamodels corresponding to each response variable of interest: NO3− source concentration factor (which determines the local NO3− input concentration); unsaturated zone travel time; NO3− concentration at the water table in 1980, 2000, and 2020 (three separate metamodels); and NO3− “extinction depth”, the eventual steady state depth of the NO3−front. The final metamodels were trained to 129 wells within the active numerical flow model area, and considered 58 mappable predictor variables compiled in a geographic information system (GIS). These metamodels had training and cross-validation testing R2 values of 0.52 – 0.86 and 0.22 – 0.38, respectively, and predictions were compiled as maps of the above

  17. Metamodeling and mapping of nitrate flux in the unsaturated zone and groundwater, Wisconsin, USA

    Science.gov (United States)

    Nolan, Bernard T.; Green, Christopher T.; Juckem, Paul F.; Liao, Lixia; Reddy, James E.

    2018-04-01

    Nitrate contamination of groundwater in agricultural areas poses a major challenge to the sustainability of water resources. Aquifer vulnerability models are useful tools that can help resource managers identify areas of concern, but quantifying nitrogen (N) inputs in such models is challenging, especially at large spatial scales. We sought to improve regional nitrate (NO3-) input functions by characterizing unsaturated zone NO3- transport to groundwater through use of surrogate, machine-learning metamodels of a process-based N flux model. The metamodels used boosted regression trees (BRTs) to relate mappable landscape variables to parameters and outputs of a previous "vertical flux method" (VFM) applied at sampled wells in the Fox, Wolf, and Peshtigo (FWP) river basins in northeastern Wisconsin. In this context, the metamodels upscaled the VFM results throughout the region, and the VFM parameters and outputs are the metamodel response variables. The study area encompassed the domain of a detailed numerical model that provided additional predictor variables, including groundwater recharge, to the metamodels. We used a statistical learning framework to test a range of model complexities to identify suitable hyperparameters of the six BRT metamodels corresponding to each response variable of interest: NO3- source concentration factor (which determines the local NO3- input concentration); unsaturated zone travel time; NO3- concentration at the water table in 1980, 2000, and 2020 (three separate metamodels); and NO3- "extinction depth", the eventual steady state depth of the NO3- front. The final metamodels were trained to 129 wells within the active numerical flow model area, and considered 58 mappable predictor variables compiled in a geographic information system (GIS). These metamodels had training and cross-validation testing R2 values of 0.52 - 0.86 and 0.22 - 0.38, respectively, and predictions were compiled as maps of the above response variables. Testing

  18. Groundwater Quantity and Quality Issues in a Water-Rich Region: Examples from Wisconsin, USA

    Directory of Open Access Journals (Sweden)

    John Luczaj

    2015-06-01

    Full Text Available The State of Wisconsin is located in an unusually water-rich portion of the world in the western part of the Great Lakes region of North America. This article presents an overview of the major groundwater quantity and quality concerns for this region in a geologic context. The water quantity concerns are most prominent in the central sand plain region and portions of a Paleozoic confined sandstone aquifer in eastern Wisconsin. Water quality concerns are more varied, with significant impacts from both naturally occurring inorganic contaminants and anthropogenic sources. Naturally occurring contaminants include radium, arsenic and associated heavy metals, fluoride, strontium, and others. Anthropogenic contaminants include nitrate, bacteria, viruses, as well as endocrine disrupting compounds. Groundwater quality in the region is highly dependent upon local geology and land use, but water bearing geologic units of all ages, Precambrian through Quaternary, are impacted by at least one kind of contaminant.

  19. County-Level Radon and Incidence of Female Thyroid Cancer in Iowa, New Jersey, and Wisconsin, USA

    Directory of Open Access Journals (Sweden)

    Caroline Oakland

    2018-03-01

    Full Text Available Background: Few studies have investigated the association between radon and thyroid cancer despite the sensitivity of the thyroid gland to radiation. Our goal is to investigate the association between county-level radon and incidence of female thyroid cancer in the US States of Iowa, New Jersey, and Wisconsin. Methods: Thyroid cancer incidence data were provided by individual state cancer registries and span 1990–2013. Radon data come from a publicly available third-party database, AirChek, accessed in 2017. We tabulated the percent of radon above four picocuries per liter and the female thyroid cancer incidence rate in each county. Quantile maps were constructed, and an ordinary least-squares regression model was run using Geoda 1.10.0.8 (Chicago, IL, USA. Results: No association was observed between county-level radon and incidence of female thyroid cancer in any of the States: New Jersey (β = 0.06, p = 0.23; Iowa (β = −0.07, p = 0.07; or Wisconsin (β = −0.01, p = 0.78. A spatial regression model was considered, but the Moran’s I of the residuals from each of the models was not significant, so no spatial term was required. Discussion: In this county-level ecological study across three different States in the US, we did not find an association between elevated radon and thyroid cancer incidence in women. While this ecologic study reports null findings, due to the ecologic fallacy, individual-level studies of this association may still be warranted.

  20. Response of aquatic macrophytes to human land use perturbations in the watersheds of Wisconsin lakes, U.S.A.

    Science.gov (United States)

    Sass, Laura L.; Bozek, Michael A.; Hauxwell, Jennifer A.; Wagner, Kelly; Knight, Susan

    2010-01-01

    Aquatic macrophyte communities were assessed in 53 lakes in Wisconsin, U.S.A. along environmental and land use development gradients to determine effects human land use perturbations have on aquatic macrophytes at the watershed and riparian development scales. Species richness and relative frequency were surveyed in lakes from two ecoregions: the Northern Lakes and Forests Ecoregion and the Southeastern Wisconsin Till Plain Ecoregion. Lakes were selected along a gradient of watershed development ranging from undeveloped (i.e., forested), to agricultural to urban development. Land uses occurring in the watershed and in perimeters of different width (0–100, 0–200, 0–500, and 0–1000 m from shore, in the watershed) were used to assess effects on macrophyte communities. Snorkel and SCUBA were used to survey aquatic macrophyte species in 18 quadrats of 0.25 m2 along 14 transects placed perpendicular to shore in each lake. Effects of watershed development (e.g., agriculture and/or urban) were tested at whole-lake (entire littoral zone) and near-shore (within 7 m of shore) scales using canonical correspondence analysis (CCA) and linear regression. Overall, species richness was negatively related to watershed development, while frequencies of individual species and groups differed in level of response to different land use perturbations. Effects of land use in the perimeters on macrophytes, with a few exceptions, did not provide higher correlations compared to land use at the watershed scale. In lakes with higher total watershed development levels, introduced species, particularly Myriophyllumspicatum, increased in abundance and native species, especially potamids, isoetids, and floating-leaved plants, declined in abundance. Correlations within the northern and southeastern ecoregions separately were not significant. Multivariate analyses suggested species composition is driven by environmental responses as well as human development pressures. Both water

  1. Population increase in Kirtland's warbler and summer range expansion to Wisconsin and Michigan's Upper Peninsula, USA

    Science.gov (United States)

    John R. Probst; Deahn Donner; Carol I. Bocetti; Steve Sjogren

    2003-01-01

    The threatened Kirtland`s warbler Dendroica kirtlandii breeds in stands of young jack pine Pinus banksiana growing on well-drained soils in Michigan, USA. We summarize information documenting the range expansion of Kirtland`s warbler due to increased habitat management in the core breeding range in the Lower Peninsula of Michigan...

  2. Freshwater mussel assemblage structure in a regulated river in the Lower Mississippi river Alluvial Basin, USA

    Science.gov (United States)

    Wendell R. Haag; Melvin L. Warren

    2007-01-01

    1. This paper documents a diverse, reproducing freshwater mussel community (20 species) in Lower Lake } an impounded, regulated portion of the Little Tallahatchie River below Sardis Dam in Panola Co., Mississippi, USA. 2. Despite being regulated and impounded, the lake has a heterogeneous array of habitats that differ markedly in mussel community attributes...

  3. Feasibility Report and Final Environmental Impact Statement, Wisconsin River at Portage, Wisconsin, Feasibility Study for Flood Control. Appendixes.

    Science.gov (United States)

    1983-12-01

    practical. A second option is to purchase floodplain property in fee, demolish existing floodprone structures, and reuse the land for agriculture or other...Aphanizomenon flos- aguae (a blue-green alga) and Cocconeis sp. (a pennate diatom). Station 1 had fewer species and fewer individuals than did Stations 2 and 3...algae were present in-each 7° river during the summer sampling period. Blue-green algae (Anabaena sp. and Aphanizomenon flos- aguae ) were the most abundant

  4. Estimation of natural historical flows for the Manitowish River near Manitowish Waters, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.; Reneau, Paul C.; Robertson, Dale M.

    2012-01-01

    The Wisconsin Department of Natural Resources is charged with oversight of dam operations throughout Wisconsin and is considering modifications to the operating orders for the Rest Lake Dam in Vilas County, Wisconsin. State law requires that the operation orders be tied to natural low flows at the dam. Because the presence of the dam confounds measurement of natural flows, the U.S. Geological Survey, in cooperation with the Wisconsin Department of Natural Resources, installed streamflow-gaging stations and developed two statistical methods to improve estimates of natural flows at the Rest Lake Dam. Two independent methods were used to estimate daily natural flow for the Manitowish River approximately 1 mile downstream of the Rest Lake Dam. The first method was an adjusted drainage-area ratio method, which used a regression analysis that related measured water yield (flow divided by watershed area) from short-term (2009–11) gaging stations upstream of the Manitowish Chain of Lakes to the water yield from two nearby long-term gaging stations in order to extend the flow record (1991–2011). In this approach, the computed flows into the Chain of Lakes at the upstream gaging stations were multiplied by a coefficient to account for the monthly hydrologic contributions (precipitation, evaporation, groundwater, and runoff) associated with the additional watershed area between the upstream gaging stations and the dam at the outlet of the Chain of Lakes (Rest Lake Dam). The second method used to estimate daily natural flow at the Rest Lake Dam was a water-budget approach, which used lake stage and dam outflow data provided by the dam operator. A water-budget model was constructed and then calibrated with an automated parameter-estimation program by matching simulated flow-duration statistics with measured flow-duration statistics at the upstream gaging stations. After calibration of the water-budget model, the model was used to compute natural flow at the dam from 1973 to

  5. Regional variability of nitrate fluxes in the unsaturated zone and groundwater, Wisconsin, USA

    Science.gov (United States)

    Green, Christopher T.; Liao, Lixia; Nolan, Bernard T.; Juckem, Paul F.; Shope, Christopher L.; Tesoriero, Anthony J.; Jurgens, Bryant

    2018-01-01

    Process-based modeling of regional NO3− fluxes to groundwater is critical for understanding and managing water quality, but the complexity of NO3− reactive transport processes make implementation a challenge. This study introduces a regional vertical flux method (VFM) for efficient estimation of reactive transport of NO3− in the vadose zone and groundwater. The regional VFM was applied to 443 well samples in central-eastern Wisconsin. Chemical measurements included O2, NO3−, N2 from denitrification, and atmospheric tracers of groundwater age including carbon-14, chlorofluorocarbons, tritium, and tritiogenic helium. VFM results were consistent with observed chemistry, and calibrated parameters were in-line with estimates from previous studies. Results indicated that (1) unsaturated zone travel times were a substantial portion of the transit time to wells and streams (2) since 1945 fractions of applied N leached to groundwater have increased for manure-N, possibly due to increased injection of liquid manure, and decreased for fertilizer-N, and (3) under current practices and conditions, approximately 60% of the shallow aquifer will eventually be affected by downward migration of NO3−, with denitrification protecting the remaining 40%. Recharge variability strongly affected the unsaturated zone lag times and the eventual depth of the NO3− front. Principal components regression demonstrated that VFM parameters and predictions were significantly correlated with hydrogeochemical landscape features. The diverse and sometimes conflicting aspects of N management (e.g. limiting N volatilization versus limiting N losses to groundwater) warrant continued development of large-scale holistic strategies to manage water quality and quantity.

  6. Regional Variability of Nitrate Fluxes in the Unsaturated Zone and Groundwater, Wisconsin, USA

    Science.gov (United States)

    Green, Christopher T.; Liao, Lixia; Nolan, Bernard T.; Juckem, Paul F.; Shope, Christopher L.; Tesoriero, Anthony J.; Jurgens, Bryant C.

    2018-01-01

    Process-based modeling of regional NO3- fluxes to groundwater is critical for understanding and managing water quality, but the complexity of NO3- reactive transport processes makes implementation a challenge. This study introduces a regional vertical flux method (VFM) for efficient estimation of reactive transport of NO3- in the vadose zone and groundwater. The regional VFM was applied to 443 well samples in central-eastern Wisconsin. Chemical measurements included O2, NO3-, N2 from denitrification, and atmospheric tracers of groundwater age including carbon-14, chlorofluorocarbons, tritium, and tritiogenic helium. VFM results were consistent with observed chemistry, and calibrated parameters were in-line with estimates from previous studies. Results indicated that (1) unsaturated zone travel times were a substantial portion of the transit time to wells and streams, (2) since 1945 fractions of applied N leached to groundwater have increased for manure-N, possibly due to increased injection of liquid manure, and decreased for fertilizer-N, and (3) under current practices and conditions, approximately 60% of the shallow aquifer will eventually be affected by downward migration of NO3-, with denitrification protecting the remaining 40%. Recharge variability strongly affected the unsaturated zone lag times and the eventual depth of the NO3- front. Principal components regression demonstrated that VFM parameters and predictions were significantly correlated with hydrogeochemical landscape features. The diverse and sometimes conflicting aspects of N management (e.g., limiting N volatilization versus limiting N losses to groundwater) warrant continued development of large-scale holistic strategies to manage water quality and quantity.

  7. Stratigraphic and geochemical controls on naturally occurring arsenic in groundwater, eastern Wisconsin, USA

    Science.gov (United States)

    Schreiber, M. E.; Simo, J. A.; Freiberg, P. G.

    High arsenic concentrations (up to 12,000μg/L) have been measured in groundwater from a confined sandstone aquifer in eastern Wisconsin. The main arsenic source is a sulfide-bearing secondary cement horizon (SCH) that has variable thickness, morphology, and arsenic concentrations. Arsenic occurs in pyrite and marcasite as well as in iron oxyhydroxides but not as a separate arsenopyrite phase. Nearly identical sulfur isotopic signatures in pyrite and dissolved sulfate and the correlation between dissolved sulfate, iron, and arsenic concentrations suggest that sulfide oxidation is the dominant process controlling arsenic release to groundwater. However, arsenic-bearing oxyhydroxides can potentially provide another arsenic source if reducing conditions develop or if they are transported as colloids in the aquifer. Analysis of well data indicates that the intersection of the SCH with static water levels measured in residential wells is strongly correlated with high concentrations of arsenic in groundwater. Field and laboratory data suggest that the most severe arsenic contamination is caused by localized borehole interactions of air, water, and sulfides. Although arsenic contamination is caused by oxidation of naturally occurring sulfides, it is influenced by water-level fluctuations caused by municipal well pumping or climate changes, which can shift geographic areas in which contamination occurs. Résumé De fortes concentrations en arsenic, jusqu'à 12000μg/L, ont été mesurées dans l'eau souterraine d'un aquifère gréseux captif, dans l'est du Wisconsin. La principale source d'arsenic est un horizon à cimentation secondaire (SCH) comportant des sulfures, dont l'épaisseur, la morphologie et les concentrations en arsenic sont variables. L'arsenic est présent dans la pyrite et dans la marcassite, de même que dans des oxy-hydroxydes de fer, mais non pas dans une phase séparée d'arsénopyrite. Les signatures isotopiques du soufre presque identiques dans la

  8. DETECTING FOREST STRESS AND DECLINE IN RESPONSE TO INCREASING RIVER FLOW IN SOUTHWEST FLORIDA, USA

    Science.gov (United States)

    Forest stress and decline resulting from increased river flows were investigated in Myakka River State Park (MRSP), Florida, USA. Since 1977, land-use changes around the upper Myakka River watershed have resulted in significant increases in water entering the river, which have...

  9. Sedimentology, sequence-stratigraphy, and geochemical variations in the Mesoproterozoic Nonesuch Formation, northern Wisconsin, USA

    Science.gov (United States)

    Kingsbury Stewart, Esther; Mauk, Jeffrey L.

    2017-01-01

    We use core descriptions and portable X-ray fluorescence analyses to identify lithofacies and stratigraphic surfaces for the Mesoproterozoic Nonesuch Formation within the Ashland syncline, Wisconsin. We group lithofacies into facies associations and construct a sequence stratigraphic framework based on lithofacies stacking and stratigraphic surfaces. The fluvial-alluvial facies association (upper Copper Harbor Conglomerate) is overlain across a transgressive surface by the fluctuating-profundal facies association (lower Nonesuch Formation). The fluctuating-profundal facies association comprises a retrogradational sequence set overlain across a maximum flooding surface by an aggradational-progradational sequence set comprising fluctuating-profundal, fluvial-lacustrine, and fluvial-alluvial facies associations (middle Nonesuch through lower Freda Formations). Lithogeochemistry supports sedimentologic and stratigraphic interpretations. Fe/S molar ratios reflect the oxidation state of the lithofacies; values are most depleted above the maximum flooding surface where lithofacies are chemically reduced and are greatest in the chemically oxidized lithofacies. Si/Al and Zr/Al molar ratios reflect the relative abundance of detrital heavy minerals vs. clay minerals; greater values correlate with larger grain size. Vertical facies association stacking records depositional environments that evolved from fluvial and alluvial, to balanced-fill lake, to overfilled lake, and returning to fluvial and alluvial. Elsewhere in the basin, where accommodation was greatest, some volume of fluvial-lacustrine facies is likely present below the transgressive stratigraphic surface. This succession of continental and lake-basin types indicates a predominant tectonic driver of basin evolution. Lithofacies distribution and geochemistry indicate deposition within an asymmetric half-graben bounded on the east by a west-dipping growth fault. While facies assemblages are lacustrine and continental

  10. Dairy sheep production research at the University of Wisconsin-Madison, USA - a review.

    Science.gov (United States)

    Thomas, David L; Berger, Yves M; McKusick, Brett C; Mikolayunas, Claire M

    2014-01-01

    Commercial milking of sheep is a new agricultural industry in the United States starting approximately 30 yr ago. The industry is still small, but it is growing. The majority of the sheep milk is used in the production of specialty cheeses. The United States is the major importer of sheep milk cheeses with 50 to 60% of annual world exports coming to the United States during the past 20 yr. Therefore, there is considerable growth potential for the industry in the United States. The only dairy sheep research flock in North America is located at the Spooner Agricultural Research Station of the University of Wisconsin-Madison. The research program started in 1993 and has been multifaceted; dealing with several areas important to commercial dairy sheep farmers. The East Friesian and Lacaune dairy breeds were compared and introduced to the industry through the research program. Both dairy breeds produced significantly more milk than traditional meat-wool breeds found in the U.S., but the two breeds differed in their production traits. East Friesian-cross ewes produced more lambs and slightly more milk than Lacaune-cross ewes whereas Lacaune-cross ewes produced milk with a higher percentage of fat and protein than East Friesian-cross ewes. Lactation physiology studies have shown that ewes with active corpora lutea have increased milk yields, oxytocin release during milking is required to obtain normal fat percentages in the milk, large udder cisterns of dairy ewes can allow for increased milking intervals, and short daylengths during late pregnancy results in increased milk yield. In the nutrition area, legume-grass pastures and forages with a higher percentage of legume will result in increased milk production. Grazing ewes respond to additional supplementation with increased milk yield, but it is important to match the supplement to the quality of the grazing. Ewes on high quality legume-grass pastures that are high in rumen degradable protein respond with increased

  11. Dairy sheep production research at the University of Wisconsin-Madison, USA – a review

    Science.gov (United States)

    2014-01-01

    Commercial milking of sheep is a new agricultural industry in the United States starting approximately 30 yr ago. The industry is still small, but it is growing. The majority of the sheep milk is used in the production of specialty cheeses. The United States is the major importer of sheep milk cheeses with 50 to 60% of annual world exports coming to the United States during the past 20 yr. Therefore, there is considerable growth potential for the industry in the United States. The only dairy sheep research flock in North America is located at the Spooner Agricultural Research Station of the University of Wisconsin-Madison. The research program started in 1993 and has been multifaceted; dealing with several areas important to commercial dairy sheep farmers. The East Friesian and Lacaune dairy breeds were compared and introduced to the industry through the research program. Both dairy breeds produced significantly more milk than traditional meat-wool breeds found in the U.S., but the two breeds differed in their production traits. East Friesian-cross ewes produced more lambs and slightly more milk than Lacaune-cross ewes whereas Lacaune-cross ewes produced milk with a higher percentage of fat and protein than East Friesian-cross ewes. Lactation physiology studies have shown that ewes with active corpora lutea have increased milk yields, oxytocin release during milking is required to obtain normal fat percentages in the milk, large udder cisterns of dairy ewes can allow for increased milking intervals, and short daylengths during late pregnancy results in increased milk yield. In the nutrition area, legume-grass pastures and forages with a higher percentage of legume will result in increased milk production. Grazing ewes respond to additional supplementation with increased milk yield, but it is important to match the supplement to the quality of the grazing. Ewes on high quality legume-grass pastures that are high in rumen degradable protein respond with increased

  12. Floodplain methylmercury biomagnification factor higher than that of the contiguous river (South River, Virginia USA)

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Michael C., E-mail: newman@vims.edu [College of William and Mary - VIMS, P.O. Box 1346, Rt. 1208 Greate Rd., Gloucester Point, VA 23062 (United States); Xu Xiaoyu, E-mail: xiaoyu@vims.edu [College of William and Mary - VIMS, P.O. Box 1346, Rt. 1208 Greate Rd., Gloucester Point, VA 23062 (United States); Condon, Anne, E-mail: anne_condon@fws.gov [U.S. Fish and Wildlife, 6669 Short Lane, Gloucester, VA 23061 (United States); Liang Lian, E-mail: liang@cebam.net [Cebam Analytical, Inc., 18804 North Creek Parkway, Suite 110, Bothell, WA 98011 (United States)

    2011-10-15

    Mercury biomagnification on the South River floodplain (Virginia, USA) was modeled at two locations along a river reach previously modeled for methylmercury movement through the aquatic trophic web. This provided an opportunity to compare biomagnification in adjoining trophic webs. Like the aquatic modeling results, methylmercury-based models provided better prediction than those for total mercury. Total mercury Food Web Magnification Factors (FWMF, fold per trophic level) for the two locations were 4.9 and 9.5. Methylmercury FWMF for the floodplain locations were higher (9.3 and 25.1) than that of the adjacent river (4.6). Previous speculation was not resolved regarding whether the high mercury concentrations observed in floodplain birds was materially influenced by river prey consumption by riparian spiders and subsequent spider movement into the trophic web of the adjacent floodplains. Results were consistent with a gradual methylmercury concentration increase from contaminated floodplain soil, to arthropod prey, and finally, to avian predators. - Highlights: > First comparison of methylmercury biomagnification in adjacent river/land food webs. > Methylmercury increased more rapidly in the terrestrial, than the aquatic, food web. > Methylmercury increased gradually from soil, to prey, and, to avian predators. - Higher methylmercury biomagnification on South River floodplain than the associated river likely explain high mercury in floodplain birds.

  13. Scroll bar growth on the coastal Trinity River, TX, USA

    Science.gov (United States)

    Mason, J.; Hassenruck-Gudipati, H. J.; Mohrig, D. C.

    2017-12-01

    The processes leading to the formation and growth of scroll bars remain relatively mysterious despite how often they are referenced in fluvial literature. Their definition is descriptive; they are characterized as arcuate topographic highs present on the inner banks of channel bends on meandering rivers, landward of point bars. Often, they are used as proxies for previous positions of point bars. This assumption of a one-to-one correspondence between point bars and scroll bars should be reconsidered as 1) planform curvature for scroll bars is consistently smaller than the curvature for adjacent point bars, and 2) deposition on the scroll bar is typically distinct and disconnected from the adjacent point bar deposition. Results from time-lapse airborne lidar data as well as from trenches through five separate scroll bar - point bar pairings on the Trinity River in east TX, USA, will be discussed in relation to formative scroll bar processes and their connection to point bars. On the lidar difference map, scroll bar growth appears as a strip of increased deposition flanked on both the land- and channel-ward sides by areas with no or limited deposition. Trenches perpendicular to these scrolls typically show a base of dune-scale cross stratification interpreted to be associated with a previous position of the point bar. These dune sets are overlain by sets of climbing-ripple cross-strata that form the core of the modern scroll bar and preserve a record of multiple transport directions (away from, towards, and parallel to the channel). Preliminary Trinity River grain-size analyses show that the constructional scrolls are enriched in all grain sizes less than 250 microns in diameter, while point bars are enriched in all grain sizes above this cut off. Scroll bars are hypothesized to be akin to levees along the inner banks of channels-flow expansion caused by the presence of point bars induces deposition of suspended sediment that defines the positions of the scroll bars.

  14. Estimates of Shear Stress and Measurements of Water Levels in the Lower Fox River near Green Bay, Wisconsin

    Science.gov (United States)

    Westenbroek, Stephen M.

    2006-01-01

    Turbulent shear stress in the boundary layer of a natural river system largely controls the deposition and resuspension of sediment, as well as the longevity and effectiveness of granular-material caps used to cover and isolate contaminated sediments. This report documents measurements and calculations made in order to estimate shear stress and shear velocity on the Lower Fox River, Wisconsin. Velocity profiles were generated using an acoustic Doppler current profiler (ADCP) mounted on a moored vessel. This method of data collection yielded 158 velocity profiles on the Lower Fox River between June 2003 and November 2004. Of these profiles, 109 were classified as valid and were used to estimate the bottom shear stress and velocity using log-profile and turbulent kinetic energy methods. Estimated shear stress ranged from 0.09 to 10.8 dynes per centimeter squared. Estimated coefficients of friction ranged from 0.001 to 0.025. This report describes both the field and data-analysis methods used to estimate shear-stress parameters for the Lower Fox River. Summaries of the estimated values for bottom shear stress, shear velocity, and coefficient of friction are presented. Confidence intervals about the shear-stress estimates are provided.

  15. Complex Messages in Long-Term Monitoring of Regal Fritillary (Speyeria idalia (Lepidoptera: Nymphalidae in the State of Wisconsin, USA, 1988–2015

    Directory of Open Access Journals (Sweden)

    Ann B. Swengel

    2017-01-01

    Full Text Available The regal fritillary (“regal” (Speyeria idalia is endangered in Wisconsin, USA, and declining and at risk range-wide. During 1988–2015, we surveyed 24 known regal sites and >100 areas of potential habitat in Wisconsin. We recorded 9037 individuals in 742.7 km on the peak survey per year at occupied sites. At six sites surveyed over 5–25 years, we found regal fritillaries in only one year, mostly in the latter half of the study. The three populations in the state with more favorable trends than the median had a never-burned refugium and/or infrequent fire management. They also all had substantial amounts of grazing, haying, and/or mowing managements. Sites with trends below the regional median trend had frequent or moderate fire management, and either a diminishing never-burned refugium or none at all. Regal populations at sites with ≤15 ha of grassland have become undetectable. Nonetheless, Hogback, a slightly larger than 15 ha site, had the most favorable trend, a significant increase. Nearly all Wisconsin Regal populations known before 1990 declined to consistent non-findability, even though these were conserved sites. More favorable trends at more recently discovered populations may be attributable to species-specific habitat management protocols implemented in the 1990s. Two sites with better than median long-term trends represent the longest consistent land ownership of known Regal populations in the state. This wide range of population outcomes illustrates both the need for long-term monitoring and the challenges of explaining the outcomes. Despite evidence of increasing Regal dispersal, this species remains very localized, indicating the unsuitability of the wider landscape as regal habitat. The number of significantly declining or no longer detectable populations in Wisconsin indicates an ever more adverse landscape for this species. Sites will need to have habitat characteristics that are ever more optimal in a wide range of

  16. Predicting thermal reference conditions for USA streams and rivers

    Science.gov (United States)

    Hill, Ryan A.; Hawkins, Charles P.; Carlisle, Daren M.

    2013-01-01

    Temperature is a primary driver of the structure and function of stream ecosystems. However, the lack of stream temperature (ST) data for the vast majority of streams and rivers severely compromises our ability to describe patterns of thermal variation among streams, test hypotheses regarding the effects of temperature on macroecological patterns, and assess the effects of altered STs on ecological resources. Our goal was to develop empirical models that could: 1) quantify the effects of stream and watershed alteration (SWA) on STs, and 2) accurately and precisely predict natural (i.e., reference condition) STs in conterminous USA streams and rivers. We modeled 3 ecologically important elements of the thermal regime: mean summer, mean winter, and mean annual ST. To build reference-condition models (RCMs), we used daily mean ST data obtained from several thousand US Geological Survey temperature sites distributed across the conterminous USA and iteratively modeled ST with Random Forests to identify sites in reference condition. We first created a set of dirty models (DMs) that related STs to both natural factors (e.g., climate, watershed area, topography) and measures of SWA, i.e., reservoirs, urbanization, and agriculture. The 3 models performed well (r2 = 0.84–0.94, residual mean square error [RMSE] = 1.2–2.0°C). For each DM, we used partial dependence plots to identify SWA thresholds below which response in ST was minimal. We then used data from only the sites with upstream SWA below these thresholds to build RCMs with only natural factors as predictors (r2 = 0.87–0.95, RMSE = 1.1–1.9°C). Use of only reference-quality sites caused RCMs to suffer modest loss of predictor space and spatial coverage, but this loss was associated with parts of ST response curves that were flat and, therefore, not responsive to further variation in predictor space. We then compared predictions made with the RCMs to predictions made with the DMs with SWA set to 0. For most

  17. Groundwater-surface water relations in the Fox River watershed: insights from exploratory studies in Illinois and Wisconsin

    Science.gov (United States)

    Mills, Patrick C.

    2014-01-01

    Exploratory studies were conducted at sites bordering the Fox River in Waukesha, Wisconsin, during 2010 and McHenry, Illinois, during 2011–13. The objectives of the studies were to assess strategies for the study of and insights into the potential for directly connected groundwater and surface-water systems with natural groundwater discharge to streams diverted and (or) streamflow induced (captured) by nearby production-well withdrawals. Several collection efforts of about 2 weeks or less provided information and data on site geology, groundwater and surface-water levels, hydraulic gradients, water-temperature and stream-seepage patterns, and water chemistry including stables isotopes. Overview information is presented for the Waukesha study, and selected data and preliminary findings are presented for the McHenry study.

  18. DCS Terrain Submission for Sauk County, Wisconsin USA (Baraboo River Project)

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  19. Use of real-time monitoring to predict concentrations of select constituents in the Menomonee River drainage basin, Southeast Wisconsin, 2008-9

    Science.gov (United States)

    Baldwin, Austin K.; Graczyk, David J.; Robertson, Dale M.; Saad, David A.; Magruder, Christopher

    2012-01-01

    The Menomonee River drainage basin in southeast Wisconsin is undergoing changes that may affect water quality. Several rehabilitation and flood-management projects are underway, including removal of concrete channels and the construction of floodwater retention basins. The city of Waukesha may begin discharging treated wastewater into Underwood Creek, thus approximately doubling the current base-flow discharge. In addition, the headwater basins, historically dominated by agriculture and natural areas, are becoming increasingly urbanized.

  20. Effects of landscape composition and wetland fragmentation on frog and toad abundance and species richness in Iowa and Wisconsin, USA

    Science.gov (United States)

    Knutson, M.G.; Sauer, J.R.; Olsen, D.A.; Mossman, M.J.; Hemesath, L.M.; Lannoo, M.J.

    1999-01-01

    Management of amphibian populations to reverse recent declines will require defining high-quality habitat for individual species or groups of species, followed by efforts to retain or restore these habitats on the landscape. We examined landscape-level habitat relationships for frogs and toads by measuring associations between relative abundance and species richness based on survey data derived from anuran calls and features of land-cover maps for Iowa and Wisconsin. The most consistent result across all anuran guilds was a negative association with the presence of urban land. Upland and wetland forests and emergent wetlands tended to be positively associated with anurans. Landscape metrics that represent edges and patch diversity also had generally positive associations, indicating that anurans benefit from a complex of habitats that include wetlands. In Iowa the most significant associations with relative abundance were the length of the edge between wetland and forest (positive) and the presence of urban land (negative). In Wisconsin the two most significant associations with relative abundance were forest area and agricultural area (both positive). Anurans had positive associations with agriculture in Wisconsin but not in Iowa. Remnant forest patches in agricultural landscapes may be providing refuges for some anuran species. Differences in anuran associations with deep water and permanent wetlands between the two states suggest opportunities for management action. Large-scale maps can contribute to predictive models of amphibian habitat use, but water quality and vegetation information collected from individual wetlands will likely be needed to strengthen those predictions. Landscape habitat analyses provide a framework for future experimental and intensive research on specific factors affecting the health of anurans.

  1. Surface-water-quality assessment of the upper Illinois River basin in Illinois, Indiana, and Wisconsin; project description

    Science.gov (United States)

    Mades, D.M.

    1987-01-01

    In 1986, the U.S. Geological Survey began a National Water-Quality Assessment program to (1) provide nationally consistent descriptions of the current status of water quality for a large, diverse, and geographically distributed part of the Nation's surface- and ground-water resources; (2) define, where possible, trends in water quality; and (3) identify and describe the relations of both status and trends in water quality to natural factors and the history of land use and land- and waste-management activities. The program is presently in a pilot phase that will test and modify, as necessary, concepts and approaches in preparation for possible full implementation of the program in the future. The upper Illinois River basin is one of four basins selected to test the concepts and approaches of the surface-water-quality element of the national program. The basin drains 10,949 square miles of Illinois, Indiana, and Wisconsin. Three principal tributaries are the Kankakee and Des Plaines Rivers that join to form the Illinois River and the Fox River. Land use is predominantly agricultural; about 75 percent of the basin is cultivated primarily for production of corn and soybeans. About 13 percent of the basin is urban area, most of which is located in the Chicago metropolitan area. The population of the basin is about 7 million. About 6 million people live in the Des Plaines River basin. Many water-quality issues in the upper Illinois River basin are related to sediment, nutrients, potentially toxic inorganic and organic constituents, and to water-management practices. Occurrence of sediment and the chemical constituents in the rivers and lakes within the basin has the potential to adversely affect the water's suitability for aquatic life, recreation, or, through the consumption of fish, human health. The upper Illinois River basin project consists of five major activities. The first activity--analysis of existing information and preparation of a report that describes

  2. Understanding Barriers to Participation in Cost-Share Programs For Pollinator Conservation by Wisconsin (USA) Cranberry Growers.

    Science.gov (United States)

    Gaines-Day, Hannah R; Gratton, Claudio

    2017-08-01

    The expansion of modern agriculture has led to the loss and fragmentation of natural habitat, resulting in a global decline in biodiversity, including bees. In many countries, farmers can participate in cost-share programs to create natural habitat on their farms for the conservation of beneficial insects, such as bees. Despite their dependence on bee pollinators and the demonstrated commitment to environmental stewardship, participation in such programs by Wisconsin cranberry growers has been low. The objective of this study was to understand the barriers that prevent participation by Wisconsin cranberry growers in cost-share programs for on-farm conservation of native bees. We conducted a survey of cranberry growers (n = 250) regarding farming practices, pollinators, and conservation. Although only 10% of growers were aware of federal pollinator cost-share programs, one third of them were managing habitat for pollinators without federal aid. Once informed of the programs, 50% of growers expressed interest in participating. Fifty-seven percent of growers manage habitat for other wildlife, although none receive cost-share funding to do so. Participation in cost-share programs could benefit from outreach activities that promote the programs, a reduction of bureaucratic hurdles to participate, and technical support for growers on how to manage habitat for wild bees.

  3. Understanding Barriers to Participation in Cost-Share Programs For Pollinator Conservation by Wisconsin (USA Cranberry Growers

    Directory of Open Access Journals (Sweden)

    Hannah R. Gaines-Day

    2017-08-01

    Full Text Available The expansion of modern agriculture has led to the loss and fragmentation of natural habitat, resulting in a global decline in biodiversity, including bees. In many countries, farmers can participate in cost-share programs to create natural habitat on their farms for the conservation of beneficial insects, such as bees. Despite their dependence on bee pollinators and the demonstrated commitment to environmental stewardship, participation in such programs by Wisconsin cranberry growers has been low. The objective of this study was to understand the barriers that prevent participation by Wisconsin cranberry growers in cost-share programs for on-farm conservation of native bees. We conducted a survey of cranberry growers (n = 250 regarding farming practices, pollinators, and conservation. Although only 10% of growers were aware of federal pollinator cost-share programs, one third of them were managing habitat for pollinators without federal aid. Once informed of the programs, 50% of growers expressed interest in participating. Fifty-seven percent of growers manage habitat for other wildlife, although none receive cost-share funding to do so. Participation in cost-share programs could benefit from outreach activities that promote the programs, a reduction of bureaucratic hurdles to participate, and technical support for growers on how to manage habitat for wild bees.

  4. Groundwater/surface-water interactions in the Bad River Watershed, Wisconsin

    Science.gov (United States)

    Leaf, Andrew T.; Fienen, Michael N.; Hunt, Randall J.; Buchwald, Cheryl A.

    2015-11-23

    A groundwater-flow model was developed for the Bad River Watershed and surrounding area by using the U.S. Geological Survey (USGS) finite-difference code MODFLOW-NWT. The model simulates steady-state groundwater-flow and base flow in streams by using the streamflow routing (SFR) package. The objectives of this study were to: (1) develop an improved understanding of the groundwater-flow system in the Bad River Watershed at the regional scale, including the sources of water to the Bad River Band of Lake Superior Chippewa Reservation (Reservation) and groundwater/surface-water interactions; (2) provide a quantitative platform for evaluating future impacts to the watershed, which can be used as a starting point for more detailed investigations at the local scale; and (3) identify areas where more data are needed. This report describes the construction and calibration of the groundwater-flow model that was subsequently used for analyzing potential locations for the collection of additional field data, including new observations of water-table elevation for refining the conceptualization and corresponding numerical model of the hydrogeologic system.

  5. DISTRIBUTION OF AQUATIC OFF-CHANNEL HABITATS AND ASSOCIATED RIPARIAN VEGETATION, WILLAMETTE RIVER, OREGON, USA

    Science.gov (United States)

    The extent of aquatic off-channel habitats such as secondary and side channels, sloughs, and alcoves, have been reduced more than 50% since the 1850s along the upper main stem of the Willamette River, Oregon, USA. Concurrently, the hydrogeomorphic potential, and associated flood...

  6. ALIEN SPECIES IMPORTANTANCE IN NATIVE VEGETATION ALONG WADEABLE STREAMS, JOHN DAY RIVER BASIN, OREGON, USA

    Science.gov (United States)

    We evaluated the importance of alien species in existing vegetation along wadeable streams of a large, topographically diverse river basin in eastern Oregon, USA; sampling 165 plots (30 × 30 m) across 29 randomly selected 1-km stream reaches. Plots represented eight streamside co...

  7. Recovery of thermophilic Campylobacter by three sampling methods from classified river sites in Northeast Georgia, USA

    Science.gov (United States)

    It is not clear how best to sample streams for the detection of Campylobacter which may be introduced from agricultural or community land use. Fifteen sites in the watershed of the South Fork of the Broad River (SFBR) in Northeastern Georgia, USA, were sampled in three seasons. Seven sites were cl...

  8. Large-scale dam removal on the Elwha River, Washington, USA: river channel and floodplain geomorphic change

    Science.gov (United States)

    East, Amy E.; Pess, George R.; Bountry, Jennifer A.; Magirl, Christopher S.; Ritchie, Andrew C.; Logan, Joshua; Randle, Timothy J.; Mastin, Mark C.; Minear, Justin T.; Duda, Jeffrey J.; Liermann, Martin C.; McHenry, Michael L.; Beechie, Timothy J.; Shafroth, Patrick B.

    2015-01-01

    A substantial increase in fluvial sediment supply relative to transport capacity causes complex, large-magnitude changes in river and floodplain morphology downstream. Although sedimentary and geomorphic responses to sediment pulses are a fundamental part of landscape evolution, few opportunities exist to quantify those processes over field scales. We investigated the downstream effects of sediment released during the largest dam removal in history, on the Elwha River, Washington, USA, by measuring changes in riverbed elevation and topography, bed sediment grain size, and channel planform as two dams were removed in stages over two years.

  9. Nitrogen-nitrate exposure from drinking water and colorectal cancer risk for rural women in Wisconsin, USA.

    Science.gov (United States)

    McElroy, Jane A; Trentham-Dietz, Amy; Gangnon, Ronald E; Hampton, John M; Bersch, Andrew J; Kanarek, Marty S; Newcomb, Polly A

    2008-09-01

    One unintentional result of widespread adoption of nitrogen application to croplands over the past 50 years has been nitrate contamination of drinking water with few studies evaluating the risk of colorectal cancer. In our population-based case-control study of 475 women age 20-74 years with colorectal cancer and 1447 community controls living in rural Wisconsin, drinking water nitrate exposure were interpolated to subjects residences based on measurements which had been taken as part of a separate water quality survey in 1994. Individual level risk factor data was gathered in 1990-1992 and 1999-2001. Logistic regression models estimated the risk of colorectal cancer for the study period, separately and pooled. In the pooled analyses, an overall colorectal cancer risk was not observed for exposure to nitrate-nitrogen in the highest category (> or =10 ppm) compared to the lowest category (cancer cases in the highest compared to the lowest category. Statistically significant increased distal colon or rectal cancer risk was not observed. These results suggest that if an association exists with nitrate-nitrogen exposure from residential drinking water consumption, it may be limited to proximal colon cancer.

  10. Physical heterogeneity and aquatic community function in river networks: A case study from the Kanawha River Basin, USA

    Science.gov (United States)

    Thoms, M. C.; Delong, M. D.; Flotemersch, J. E.; Collins, S. E.

    2017-08-01

    The geomorphological character of a river network provides the template upon which evolution acts to create unique biological communities. Deciphering commonly observed patterns and processes within riverine landscapes resulting from the interplay between physical and biological components is a central tenet for the interdisciplinary field of river science. Relationships between the physical heterogeneity and food web character of functional process zones (FPZs) - large tracts of river with a similar geomorphic character -in the Kanawha River (West Virginia, USA) are examined in this study. Food web character was measured as food chain length (FCL), which reflects ecological community structure and ecosystem function. Our results show that the same basal resources were present throughout the Kanawha River but that their assimilation into the aquatic food web by primary consumers differed between FPZs. Differences in the trophic position of higher consumers (fish) were also recorded between FPZs. Overall, the morphological heterogeneity and heterogeneity of the river bed sediment of FPZs were significantly correlated with FCL. Specifically, FCL increases with greater FPZ physical heterogeneity. The result of this study does not support the current paradigm that ecosystem size is the primary determinant of food web character in river ecosystems.

  11. Particle-bound metal transport after removal of a small dam in the Pawtuxet River, Rhode Island, USA

    Science.gov (United States)

    The Pawtuxet River in Rhode Island, USA, has a long history of industrial activity and pollutant discharges. Metal contamination of the river sediments is well documented and historically exceeded toxicity thresholds for a variety of organisms. The Pawtuxet River dam, a low-head ...

  12. Relatively high prevalence of pox-like lesions in Henslow's sparrow (Ammodrammus henslowii) among nine species of migratory grassland passerines in Wisconsin, USA.

    Science.gov (United States)

    Ellison, Kevin S; Hofmeister, Erik K; Ribic, Christine A; Sample, David W

    2014-10-01

    Globally, Avipoxvirus species affect over 230 species of wild birds and can significantly impair survival. During banding of nine grassland songbird species (n=346 individuals) in southwestern Wisconsin, USA, we noted species with a 2-6% prevalence of pox-like lesions (possible evidence of current infection) and 4-10% missing digits (potential evidence of past infection). These prevalences approach those recorded among island endemic birds (4-9% and 9-20% for the Galapagos and Hawaii, respectively) for which Avipoxvirus species have been implicated as contributing to dramatic population declines. Henslow's Sparrow Ammodramus henslowii (n=165 individuals) had the highest prevalence of lesions (6.1%) and missing digits (9.7%). Among a subset of 26 Henslow's Sparrows from which blood samples were obtained, none had detectable antibody reactive to fowlpox virus antigen. However, four samples (18%) had antibody to canarypox virus antigen with test sample and negative control ratios (P/N values) ranging from 2.4 to 6.5 (median 4.3). Of four antibody-positive birds, two had lesions recorded (one was also missing a digit), one had digits missing, and one had no signs. Additionally, the birds with lesions or missing digits had higher P/N values than did the antibody-positive bird without missing digits or recorded lesions. This study represents an impetus for considering the impacts and dynamics of disease caused by Avipoxvirus among North American grassland bird species.

  13. Relatively high prevalence of pox-like lesions in Henslow's Sparrow (Ammodramus henslowii) among nine species of migratory grassland passerines in Wisconsin, USA

    Science.gov (United States)

    Ellison, Kevin S.; Hofmeister, Erik K.; Ribic, Christine A.; Sample, David W.

    2014-01-01

    Globally, Avipoxvirus species affect over 230 species of wild birds and can significantly impair survival. During banding of nine grassland songbird species (n = 346 individuals) in southwestern Wisconsin, USA, we noted species with a 2–6% prevalence of pox-like lesions (possible evidence of current infection) and 4–10% missing digits (potential evidence of past infection). These prevalences approach those recorded among island endemic birds (4–9% and 9–20% for the Galapagos and Hawaii, respectively) for which Avipoxvirus species have been implicated as contributing to dramatic population declines. Henslow's Sparrow Ammodramus henslowii (n = 165 individuals) had the highest prevalence of lesions (6.1%) and missing digits (9.7%). Among a subset of 26 Henslow's Sparrows from which blood samples were obtained, none had detectable antibody reactive to fowlpox virus antigen. However, four samples (18%) had antibody to canarypox virus antigen with test sample and negative control ratios (P/N values) ranging from 2.4 to 6.5 (median 4.3). Of four antibody-positive birds, two had lesions recorded (one was also missing a digit), one had digits missing, and one had no signs. Additionally, the birds with lesions or missing digits had higher P/N values than did the antibody-positive bird without missing digits or recorded lesions. This study represents an impetus for considering the impacts and dynamics of disease caused by Avipoxvirus among North American grassland bird species.

  14. Arsenic release from chlorine-promoted alteration of a sulfide cement horizon: Evidence from batch studies on the St. Peter Sandstone, Wisconsin, USA

    International Nuclear Information System (INIS)

    West, Nicole; Schreiber, Madeline; Gotkowitz, Madeline

    2012-01-01

    Elevated As concentrations have been measured in wells in the St. Peter Sandstone aquifer of eastern Wisconsin, USA. The primary source is As-bearing sulfide minerals (pyrite and marcasite) within the aquifer. There is concern that well disinfection by chlorination may facilitate As release to groundwater by increasing the rate and extent of sulfide oxidation. The objective of this study was to examine the abiotic processes that mobilize As from the aquifer solids during controlled exposure to chlorinated solutions. Thin sections made from sulfidic aquifer material were characterized by quantitative electron probe micro-analysis before and after 24 h exposure to solutions of different Cl 2 concentrations. Batch experiments using crushed aquifer solids were also conducted to examine changes in solution chemistry over 24 h. Results of the combined experiments indicate that Cl 2 addition affects As release and uptake in two ways. First, Cl 2 increases oxidation of sulfide minerals, releasing more As from the mineral structure. Chlorine addition also increases the rate of Fe(II) oxidation and subsequent hydrous ferric oxide (HFO) precipitation, allowing for increased uptake of As onto the mineral surface. Although HFOs can act as sinks for As, they can release As if biogeochemical conditions (e.g. redox, pH) change. These results have implications not only for disinfection of drinking water wells in the study area, but also suggest that introduction of oxidants may adversely affect water quality during aquifer storage and recovery programs in aquifers containing As-bearing minerals.

  15. Collection methods, data compilation, and lessons learned from a study of stream geomorphology associated with riparian cattle grazing along the Fever River, University of Wisconsin- Platteville Pioneer Farm, Wisconsin, 2004–11

    Science.gov (United States)

    Peppler, Marie C.; Fitzpatrick, Faith A.

    2018-03-09

    Stream geomorphic characteristics were monitored along a 0.8-mile reach of the Fever River in the Driftless Area of southwestern Wisconsin from 2004 to 2011 where cattle grazed in paddocks along the riverbank at the University of Wisconsin-Platteville’s Pioneer Farm. The study reach encompassed seven paddocks that covered a total of 30 acres on both sides of the river. Monitoring data included channel crosssection surveys, eroding bank measurements and photograph points, erosion-pin measurements, longitudinal profile surveys, measurements of the volume of soft sediment in the channel, and repeated time-lapse photographs. Characteristics were summarized into subreaches by use of a geographic information system. From 2004 to 2007, baseline monitoring was done to identify geomorphic conditions prior to evaluating the effects of management alternatives for riparian grazing. Subsequent to the full-scale baseline monitoring, additional data were collected from 2007 to 2011. Samples of eroding bank and in-channel soft sediment were collected and analyzed for dry bulk density in 2008 for use in a sediment budget. One of the pastures was excluded from cattle grazing in the fall of 2007; in 2009 channel cross sections, longitudinal profiles, erosion-pin measurements, photographs, and a soft sediment survey were again collected along the full 0.8-mile reach for a comparison to baseline monitoring data. Channel cross sections were surveyed a final time in 2011. Lessons learned from bank monitoring with erosion pins were most numerous and included the need for consistent tracking of each pin and whether there was deposition or erosion, timing of measurements and bank conditions during measurements (frozen, postflood), and awareness of pins loosening in place. Repeated freezing and thawing of banks and consequential mass wasting and jointing enhance fluvial erosion. Monitoring equipment in the paddocks was kept flush to the ground or located high on posts to avoid injuring the

  16. Evidence of Hybridization between Common Gartersnakes (Thamnophis sirtalis) and Butler’s Gartersnakes (Thamnophis butleri) in Wisconsin (USA).

    Science.gov (United States)

    Joshua M. Kapfer,; Sloss, Brian L.; Gregor W. Schuurman,; Paloski, Rori A.; Jeffrey M. Lorch,

    2013-01-01

    Snakes within the genus Thamnophis (Gartersnakes and Ribbonsnakes) are often found in sympatry throughout their geographic distributions. Past work has indicated that some sympatric species within this genus may hybridize, but research of this nature is limited. We attempted to determine whether hybridization occurs between two Thamnophis species native to the upper midwestern United States: Common Gartersnake (Thamnophis sirtalis) and the Butler's Gartersnake (Thamnophis butleri). We sampled snakes (n = 411) across 26 locations in Wisconsin, including sites where both species coexist and sites where only Common Gartersnakes are found. We conducted genetic analyses on tissue collected from individuals field-identified as Common Gartersnakes or Butler's Gartersnakes. To verify the results of our field-collected data, we analyzed tissues from juvenile snakes (n = 4) suspected to be the offspring of a Common Gartersnake and a Butler's Gartersnake that were housed together in a captive situation. Of the field-collected snakes analyzed, eight snakes were consistent with expected Common × Butler's Gartersnake hybrids. All four of the captive offspring analyzed resolved as putative hybrids, corresponding with our field-collected samples. Butler's Gartersnake is a globally rare species, endemic only to the upper midwestern United States. Studies involving the potential for hybridization between common and uncommon species are useful from a conservation perspective. The low incidence of hybridization we observed would indicate that hybridization between these species is uncommon. Further research investigating rates of hybridization would help assess any potential threat posed by outbreeding between common and rare gartersnakes in this region of the United States.

  17. Optimization of ground-water withdrawal in the lower Fox River communities, Wisconsin

    Science.gov (United States)

    Walker, J.F.; Saad, D.A.; Krohelski, J.T.

    1998-01-01

    Pumping from closely spaced wells in the Central Brown County area and the Fox Cities area near the north shore of Lake Winnebago has resulted in the formation of deep cones of depression in the vicinity of the two pumping centers. Water-level measurements indicate there has been a steady decline in water levels in the vicinity of these two pumping centers for the past 50 years. This report describes the use of ground-water optimization modeling to efficiently allocate the ground-water resources in the Lower Fox River Valley. A 3-dimensional ground-water flow model was used along with optimization techniques to determine the optimal withdrawal rates for a variety of management alternatives. The simulations were conducted separately for the Central Brown County area and the Fox Cities area. For all simulations, the objective of the optimization was to maximize total ground-water withdrawals. The results indicate that ground water can supply nearly all of the projected 2030 demand for Central Brown County municipalities if all of the wells are managed (including the city of Green Bay), 8 new wells are installed, and the water-levels are allowed to decline to 100 ft below the bottom of the confining unit. Ground water can supply nearly all of the projected 2030 demand for the Fox Cities if the municipalities in Central Brown County convert to surface water; if Central Brown County municipalities follow the optimized strategy described above, there will be a considerable shortfall of available ground water for the Fox Cities communities. Relaxing the water-level constraint in a few wells, however, would likely result in increased availability of water. In all cases examined, optimization alternatives result in a rebound of the steady-state water levels due to projected 2030 withdrawal rates to levels at or near the bottom of the confining unit, resulting in increased well capacity. Because the simulations are steady-state, if all of the conditions of the model remain

  18. Hydrology, phosphorus, and suspended solids in five agricultural streams in the Lower Fox River and Green Bay Watersheds, Wisconsin, Water Years 2004-06

    Science.gov (United States)

    Graczyk, David J.; Robertson, Dale M.; Baumgart, Paul D.; Fermanich, Kevin J.

    2011-01-01

    A 3-year study was conducted by the U.S. Geological Survey and the University of Wisconsin-Green Bay to characterize water quality in agricultural streams in the Fox/Wolf watershed in northeastern Wisconsin and provide information to assist in the calibration of a watershed model for the area. Streamflow, phosphorus, and suspended solids data were collected between October 1, 2003, and September 30, 2006, in five streams, including Apple Creek, Ashwaubenon Creek, Baird Creek, Duck Creek, and the East River. During this study, total annual precipitation was close to the 30-year normal of 29.12 inches. The 3-year mean streamflow was highest in the East River (113 ft3/s), followed by Duck Creek (58.2 ft3/s), Apple Creek (26.9 ft3/s), Baird Creek (12.8 ft3/s), and Ashwaubenon Creek (9.1 ft3/s). On a yield basis, during these three years, the East River had the highest flow (0.78 ft3/s/mi2), followed by Baird Creek (0.61 ft3/s/mi2), Apple Creek (0.59 ft3/s/mi2), Duck Creek (0.54 ft3/s/mi2), and Ashwaubenon Creek (0.46 ft3/s/mi2). The overall median total suspended solids (TSS) concentration was highest in Baird Creek (73.5 mg/L), followed by Apple and Ashwaubenon Creeks (65 mg/L), East River (40 mg/L), and Duck Creek (30 mg/L). The median total phosphorus (TP) concentration was highest in Ashwaubenon Creek (0.60 mg/L), followed by Baird Creek (0.47 mg/L), Apple Creek (0.37 mg/L), East River (0.26 mg/L), and Duck Creek (0.22 mg/L).

  19. Hydrochemical evidence for mixing of river water and groundwater during high-flow conditions, lower Suwannee River basin, Florida, USA

    Science.gov (United States)

    Crandall, C.A.; Katz, B.G.; Hirten, J.J.

    1999-01-01

    Karstic aquifers are highly susceptible to rapid infiltration of river water, particularly during periods of high flow. Following a period of sustained rainfall in the Suwannee River basin, Florida, USA, the stage of the Suwannee River rose from 3.0 to 5.88 m above mean sea level in April 1996 and discharge peaked at 360 m3/s. During these high-flow conditions, water from the Suwannee River migrated directly into the karstic Upper Floridan aquifer, the main source of water supply for the area. Changes in the chemical composition of groundwater were quantified using naturally occurring geochemical tracers and mass-balance modeling techniques. Mixing of river water with groundwater was indicated by a decrease in the concentrations of calcium, silica, and 222Rn; and by an increase in dissolved organic carbon (DOC), tannic acid, and chloride, compared to low-flow conditions in water from a nearby monitoring well, Wingate Sink, and Little River Springs. The proportion (fraction) of river water in groundwater ranged from 0.13 to 0.65 at Wingate Sink and from 0.5 to 0.99 at well W-17258, based on binary mixing models using various tracers. The effectiveness of a natural tracer in quantifying mixing of river water and groundwater was related to differences in tracer concentration of the two end members and how conservatively the tracer reacted in the mixed water. Solutes with similar concentrations in the two end-member waters (Na, Mg, K, Cl, SO4, SiO2) were not as effective tracers for quantifying mixing of river water and groundwater as those with larger differences in end-member concentrations (Ca, tannic acid, DOC, 222Rn, HCO3). ?? Springer-Verlag.

  20. Regional Sediment Budget of the Columbia River Littoral Cell, USA

    Science.gov (United States)

    Buijsman, Maarten C.; Sherwood, C.R.; Gibbs, A.E.; Gelfenbaum, G.; Kaminsky, G.M.; Ruggiero, P.; Franklin, J.

    2002-01-01

    Summary -- In this Open-File Report we present calculations of changes in bathymetric and topographic volumes for the Grays Harbor, Willapa Bay, and Columbia River entrances and the adjacent coasts of North Beach, Grayland Plains, Long Beach, and Clatsop Plains for four intervals: pre-jetty - 1920s (Interval 1), 1920s - 1950s (Interval 2), 1950s - 1990s (Interval 3), and 1920s 1990s (Interval 4). This analysis is part of the Southwest Washington Coastal Erosion Study (SWCES), the goals of which are to understand and predict the morphologic behavior of the Columbia River littoral cell on a management scale of tens of kilometers and decades. We obtain topographic Light Detection and Ranging (LIDAR) data from a joint project by the U.S. Geological Survey (USGS), National Oceanic and Atmospheric Administration (NOAA), National Aeronautic and Space Administration (NASA), and the Washington State Department of Ecology (DOE) and bathymetric data from the U.S. Coast and Geodetic Survey (USC&GS), U.S. Army Corps of Engineers (USACE), USGS, and the DOE. Shoreline data are digitized from T-Sheets and aerial photographs from the USC&GS and National Ocean Service (NOS). Instead of uncritically adjusting each survey to NAVD88, a common vertical land-based datum, we adjust some surveys to produce optimal results according to the following criteria. First, we minimize offsets in overlapping surveys within the same era, and second, we minimize bathymetric changes (relative to the 1990s) in deep water, where we assume minimal change has taken place. We grid bathymetric and topographic datasets using kriging and triangulation algorithms, calculate bathymetric-change surfaces for each interval, and calculate volume changes within polygons that are overlaid on the bathymetric-change surfaces. We find similar morphologic changes near the entrances to Grays Harbor and the Columbia River following jetty construction between 1898 and 1916 at the Grays Harbor entrance and between 1885 and

  1. 2,3,7,8-Tetrachlorodibenzo-p-dioxin equivalents in tissues of birds at Green Bay, Wisconsin, USA

    Science.gov (United States)

    Jones, Paul D.; Giesy, John P.; Newsted, John L.; Verbrugge, David A.; Beaver, Donald L.; Ankley, Gerald T.; Tillitt, Donald E.; Lodge, Keith B.; Niemi, Gerald J.

    1993-01-01

    The environment has become contaminated with complex mixtures of planar, chlorinated hydrocarbons (PCHs) such as polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and structurally similar compounds. Because the potencies of individual congeners to cause the same adverse effects vary greatly and the relative as well as absolute concentrations of individual PCH vary among samples from different locations, it is difficult to assess the toxic effects of these mixtures on wildlife. These compounds can cause a number of adverse effects, however, because the toxic effects which occur at ecologically-relevant concentrations such as embryo-lethality and birth defects appear to be mediated through the same mechanism, the potency of individual congeners can be reported relative to 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) which is the most toxic congener in the PCH class. The concentations of 2,3,7,8-TCDD Equivalents (TCDD-EQ) were determined in the tissues of aquatic and terrestrial birds of Green Bay, Wisconsin by the H4IIE bioassay system and compared toxic equivalency factors (TEFs) with the concentration predicted by the use of toxic equivalency factors applied to concentrations of PCH, which were determined by instrumental analyses. Concentrations of TCDD-EQ ranged from 0.52 to 440 ng/kg, wet weight. The greatest concentrations occurred in the fish-eating birds. Concentrations of TCDD-EQ, which were determined by the two methods were significantly correlated, but the additive model which used the TEFs with concentrations of measured PCB, PCDD and PCDF congeners underestimated the concentrations of TCDD-EQ measured by the H4IIE bioassay by an average of 57%. This is thought to be due to contributions from un-quantified PCH, which are known to occur in the environment. Of the quantified PCH congeners, PCDD and PCDF contributed a small portion of the TCDD-EQ in the aquatic birds, while most of the

  2. Characteristics of water, sediment, and benthic communities of the Wolf River, Menominee Indian Reservation, Wisconsin, water years 1986-98

    Science.gov (United States)

    Garn, Herbert S.; Scudder, Barbara C.; Richards, Kevin D.; Sullivan, Daniel J.

    2001-01-01

    Analyses and interpretation of water quality, sediment, and biological data from water years 1986 through 1998 indicated that land use and other human activities have had only minimal effects on water quality in the Wolf River upstream from and within the Menominee Indian Reservation in northeastern Wisconsin. Relatively high concentrations of calcium and magnesium (natural hardness), iron, manganese, and aluminum were measured in Wolf River water samples during water years 1986?98 from the three sampled sites and attributed to presence of highly mineralized geologic materials in the basin. Average calcium and magnesium concentrations varied from 22?26 milligrams per liter (mg/L) and 11?13 mg/L, respectively. Average iron concentrations ranged from 290?380 micrograms per liter (?g/L); average manganese concentrations ranged from 53?56 mg/L. Average aluminum concentrations ranged from 63?67 ?g/L. Mercury was present in water samples but concentrations were not at levels of concern. Levels of Kjeldahl nitrogen, ammonia, nitrite plus nitrate, total phosphorus, and orthophosphorus in water samples were often low or below detection limits (0.01? 0.10 mg/L). Trace amounts of atrazine (maximum concentration of 0.031 ?g/L), deethylatrazine (maximum 0.032 ?g/L), and alachlor (maximum of 0.002 ?g/L) were detected. Low concentrations of most trace elements were found in streambed sediment. Tissues of fish and aquatic invertebrates collected once each year from 1995 through 1998 at the Langlade and Keshena sites, near the northern and southern boundaries of the Reservation, respectively, were low in concentrations of most trace elements. Arsenic and silver in fish livers from both sites were less than or equal to 2 ?g/g arsenic and less than 1 ?g/g silver for dry weight analysis, and concentrations of antimony, beryllium, cadmium, cobalt, lead, nickel, and uranium were all below detection limits (less than 1 ?g/g dry weight). Concentrations of most other trace elements in fish

  3. Managing Floodplain Expectations on the Lower Missouri River, USA.

    Science.gov (United States)

    Bulliner, E. A., IV; Jacobson, R. B.; Lindner, G. A.; Paukert, C.; Bouska, K.

    2017-12-01

    The Missouri River is an archetype of the challenges of managing large rivers and their floodplains for multiple objectives. At 1.3 million km2 drainage area, the Missouri boasts the largest reservoir system in North America with 91 km3 of total storage; in an average year the system generates 10 billion kilowatt hours of electricity. The Lower Missouri River floodplain extends 1,300 km downstream from the reservoir system and encompasses approximately 9,200 km2. For the past 150 years, the floodplain has been predominantly used for agriculture much of which is protected from flooding by private and Federal levees. Reservoir system operating policies prioritize flood-hazard reduction but in recent years, large, damaging floods have demonstrated system limitations. These large floods and changing societal values have created new expectations about how conversion of floodplain agricultural lands to conservation lands might increase ecosystem services, in particular decreasing flood risk and mitigating fluxes of nutrients to the Gulf of Mexico. Our research addresses these expectations at multiple spatial scales by starting with hydrologic and hydraulic models to understand controls on floodplain hydrodynamics. The results document the substantial regional spatial variability in floodplain connectivity that exists because of multi-decadal channel adjustments to channelization and sediment budgets. Exploration of levee setback scenarios with 1- and 2-dimensional hydrodynamic models indicates modest and spatially variable gains in flood-hazard reduction are possible if substantial land areas (50% or more) are converted from agricultural production. Estimates of potential denitrification benefits of connecting floodplains indicate that the floodplain has the capacity to remove 100's to 1,000's of metric tons of N each year, but amounts to a maximum of about 5% the existing load of 200,000 ton*y-1. The results indicate that in this river-floodplain system, the ecosystem

  4. USA

    DEFF Research Database (Denmark)

    Nedergaard, Peter

    http://www.systime.dk/ungdomsuddannelser/almen-studieforberedelse/usa-en-grundbog-i-politik-og-okonomi.html......http://www.systime.dk/ungdomsuddannelser/almen-studieforberedelse/usa-en-grundbog-i-politik-og-okonomi.html...

  5. Irrigation runoff insecticide pollution of rivers in the Imperial Valley, California (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Vlaming, V. de [Aquatic Toxicology Laboratory, VM: APC, 1321 Haring Hall, University of California, Davis, CA 95616 (United States)]. E-mail: vldevlaming@ucdavis.edu; DiGiorgio, C. [Department of Water Resources, P.O. Box 942836, Sacramento, CA 94236 (United States); Fong, S. [Aquatic Toxicology Laboratory, VM: APC, 1321 Haring Hall, University of California, Davis, CA 95616 (United States); Deanovic, L.A. [Aquatic Toxicology Laboratory, VM: APC, 1321 Haring Hall, University of California, Davis, CA 95616 (United States); Paz Carpio-Obeso, M. de la [Colorado River Basin Region Water Quality Control Board, 73-720 Fred Waring Drive, Suite 100, Palm Desert, CA 92260 (United States); Miller, J.L. [AQUA-Science, 17 Arboretum Drive, Davis, CA 95616 (United States); Miller, M.J. [AQUA-Science, 17 Arboretum Drive, Davis, CA 95616 (United States); Richard, N.J. [Division of Water Quality, State Water Resources Control Board, 1001 I Street, Sacramento, CA 95814 (United States)

    2004-11-01

    The Alamo and New Rivers located in the Imperial Valley, California receive large volumes of irrigation runoff and discharge into the ecologically sensitive Salton Sea. Between 1993 and 2002 we conducted a series of studies to assess water quality using three aquatic species: a cladoceran (Ceriodaphnia dubia), a mysid (Neomysis mercedis), and a larval fish (Pimephales promelas). Although no mortality was observed with the P. promelas, high-level toxicity to the invertebrate species was documented in samples from both rivers during many months of each year. Toxicity identifications and chemical analyses identified the organophosphorus insecticides (OP), chlorpyrifos and diazinon, as the cause of C. dubia toxicity. The extent of the C. dubia mortality was highly correlated with quantities of these OPs applied in the river watersheds. C. dubia mortality occurred during more months of our 2001/2002 study than in the 1990s investigations. During 2001/2002, the extensive C. dubia mortality observed in New River samples was caused by OP insecticide pollution that originated from Mexico. Mortality to N. mercedis in New River samples was likely caused by contaminants other than OP insecticides. Our studies document OP insecticide-caused pollution of the Alamo River over a 10-year period and provide the necessary information for remediation efforts. - Capsule: Organophosphorous insecticides in runoff water from the USA and Mexico have impacted rivers in the Imperial Valley, California.

  6. Irrigation runoff insecticide pollution of rivers in the Imperial Valley, California (USA)

    International Nuclear Information System (INIS)

    Vlaming, V. de; DiGiorgio, C.; Fong, S.; Deanovic, L.A.; Paz Carpio-Obeso, M. de la; Miller, J.L.; Miller, M.J.; Richard, N.J.

    2004-01-01

    The Alamo and New Rivers located in the Imperial Valley, California receive large volumes of irrigation runoff and discharge into the ecologically sensitive Salton Sea. Between 1993 and 2002 we conducted a series of studies to assess water quality using three aquatic species: a cladoceran (Ceriodaphnia dubia), a mysid (Neomysis mercedis), and a larval fish (Pimephales promelas). Although no mortality was observed with the P. promelas, high-level toxicity to the invertebrate species was documented in samples from both rivers during many months of each year. Toxicity identifications and chemical analyses identified the organophosphorus insecticides (OP), chlorpyrifos and diazinon, as the cause of C. dubia toxicity. The extent of the C. dubia mortality was highly correlated with quantities of these OPs applied in the river watersheds. C. dubia mortality occurred during more months of our 2001/2002 study than in the 1990s investigations. During 2001/2002, the extensive C. dubia mortality observed in New River samples was caused by OP insecticide pollution that originated from Mexico. Mortality to N. mercedis in New River samples was likely caused by contaminants other than OP insecticides. Our studies document OP insecticide-caused pollution of the Alamo River over a 10-year period and provide the necessary information for remediation efforts. - Capsule: Organophosphorous insecticides in runoff water from the USA and Mexico have impacted rivers in the Imperial Valley, California

  7. Methylmercury bioaccumulation in an urban estuary: Delaware River USA.

    Science.gov (United States)

    Buckman, Kate; Taylor, Vivien; Broadley, Hannah; Hocking, Daniel; Balcom, Prentiss; Mason, Rob; Nislow, Keith; Chen, Celia

    2017-09-01

    Spatial variation in mercury (Hg) and methylmercury (MeHg) bioaccumulation in urban coastal watersheds reflects complex interactions between Hg sources, land use, and environmental gradients. We examined MeHg concentrations in fauna from the Delaware River estuary, and related these measurements to environmental parameters and human impacts on the waterway. The sampling sites followed a north to south gradient of increasing salinity, decreasing urban influence, and increasing marsh cover. Although mean total Hg in surface sediments (top 4cm) peaked in the urban estuarine turbidity maximum and generally decreased downstream, surface sediment MeHg concentrations showed no spatial patterns consistent with the examined environmental gradients, indicating urban influence on Hg loading to the sediment but not subsequent methylation. Surface water particulate MeHg concentration showed a positive correlation with marsh cover whereas dissolved MeHg concentrations were slightly elevated in the estuarine turbidity maximum region. Spatial patterns of MeHg bioaccumulation in resident fauna varied across taxa. Small fish showed increased MeHg concentrations in the more urban/industrial sites upstream, with concentrations generally decreasing farther downstream. Invertebrates either showed no clear spatial patterns in MeHg concentrations (blue crabs, fiddler crabs) or increasing concentrations further downstream (grass shrimp). Best-supported linear mixed models relating tissue concentration to environmental variables reflected these complex patterns, with species specific model results dominated by random site effects with a combination of particulate MeHg and landscape variables influencing bioaccumulation in some species. The data strengthen accumulating evidence that bioaccumulation in estuaries can be decoupled from sediment MeHg concentration, and that drivers of MeHg production and fate may vary within a small region.

  8. Hydrodynamics and Connectivity of Channelized Floodplains: Insights from the Meandering East Fork White River, Indiana, USA

    Science.gov (United States)

    Czuba, J. A.; David, S. R.; Edmonds, D. A.

    2017-12-01

    High resolution topography reveals that meandering river floodplains in Indiana commonly have networks of channels. These floodplain channel networks are most prevalent in agricultural, low-gradient, wide floodplains. It appears that these networks are formed when floodplain channels connect oxbows to each other and the main river channel. Collectively, the channels in the floodplain create an interconnected network of pathways that convey water beginning at flows less than bankfull, and as stage increases, more of the floodplain becomes dissected by floodplain channels. In this work, we quantify the hydrodynamics and connectivity of the flow on the floodplain and in the main channel of the East Fork White River near Seymour, Indiana, USA. We constructed a two-dimensional numerical model using HECRAS of the river-floodplain system from LiDAR data and from main-channel river bathymetry to elucidate the behaviour of these floodplain channels across a range of flows. Model calibration and verification data included stage from a USGS gage, high-water marks at a high and medium flow, and an aerial photograph of inundation in the floodplain channels. The numerical model simulated flow depth and velocity, which was used to quantify connectivity of the floodplain channels, exchange between the main channel and floodplain channels, and residence time of water on the floodplain. Model simulations suggest that the floodplain channels convey roughly 50% of the total flow at what is typically considered "bankfull" flow. Overall, we present a process-based approach for analyzing complex floodplain-river systems where an individual floodplain-river system can be distilled down to a set of characteristic curves. Notably, we map the East Fork White River system to exchange-residence time space and argue that this characterization forms the basis for thinking about morphologic evolution (e.g., sediment deposition and erosion) and biogeochemistry (e.g., nitrate removal) in floodplain-river

  9. Survival of adult martens in Northern Wisconsin

    Science.gov (United States)

    Nicholas P. McCann; Patrick A. Zollner; Jonathan H. Gilbert

    2010-01-01

    Low adult marten (Martes americana) survival may be one factor limiting their population growth >30 yr after their reintroduction in Wisconsin, USA. We estimated annual adult marten survival at 0.81 in northern Wisconsin, with lower survival during winter (0.87) than summer-fall (1.00). Fisher (Martes pennanti) and raptor kills...

  10. State-and-transition simulation modeling to compare outcomes of alternative management scenarios under two natural disturbance regimes in a forested landscape in northeastern Wisconsin, USA

    Directory of Open Access Journals (Sweden)

    Amanda Swearingen

    2015-07-01

    Full Text Available Comparisons of the potential outcomes of multiple land management strategies and an understanding of the influence of potential increases in climate-related disturbances on these outcomes are essential for long term land management and conservation planning. To provide these insights, we developed an approach that uses collaborative scenario development and state-and-transition simulation modeling to provide land managers and conservation practitioners with a comparison of potential landscapes resulting from alternative management scenarios and climate conditions, and we have applied this approach in the Wild Rivers Legacy Forest (WRLF area in northeastern Wisconsin. Three management scenarios were developed with input from local land managers, scientists, and conservation practitioners: 1 continuation of current management, 2 expanded working forest conservation easements, and 3 cooperative ecological forestry. Scenarios were modeled under current climate with contemporary probabilities of natural disturbance and under increased probability of windthrow and wildfire that may result from climate change in this region. All scenarios were modeled for 100 years using the VDDT/TELSA modeling suite. Results showed that landscape composition and configuration were relatively similar among scenarios, and that management had a stronger effect than increased probability of windthrow and wildfire. These findings suggest that the scale of the landscape analysis used here and the lack of differences in predominant management strategies between ownerships in this region play significant roles in scenario outcomes. The approach used here does not rely on complex mechanistic modeling of uncertain dynamics and can therefore be used as starting point for planning and further analysis.

  11. Large-scale dam removal on the Elwha River, Washington, USA: coastal geomorphic change

    Science.gov (United States)

    Gelfenbaum, Guy R.; Stevens, Andrew W.; Miller, Ian M.; Warrick, Jonathan A.; Ogston, Andrea S.; Eidam, Emily

    2015-01-01

    Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of mud, sand, and gravel since 1927, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams, initiated in September 2011, induced massive increases in river sediment supply and provided an unprecedented opportunity to examine the geomorphic response of a coastal delta to these increases. Detailed measurements of beach topography and nearshore bathymetry show that ~ 2.5 million m3 of sediment was deposited during the first two years of dam removal, which is ~ 100 times greater than deposition rates measured prior to dam removal. The majority of the deposit was located in the intertidal and shallow subtidal region immediately offshore of the river mouth and was composed of sand and gravel. Additional areas of deposition include a secondary sandy deposit to the east of the river mouth and a muddy deposit west of the mouth. A comparison with fluvial sediment fluxes suggests that ~ 70% of the sand and gravel and ~ 6% of the mud supplied by the river was found in the survey area (within about 2 km of the mouth). A hydrodynamic and sediment transport model, validated with in-situ measurements, shows that tidal currents interacting with the larger relict submarine delta help disperse fine sediment large distances east and west of the river mouth. The model also suggests that waves and currents erode the primary deposit located near the river mouth and transport sandy sediment eastward to form the secondary deposit. Though most of the substrate of the larger relict submarine delta was unchanged during the first two years of dam removal, portions of the seafloor close to the river mouth became finer, modifying habitats for biological communities. These results show that river restoration, like natural changes in river sediment supply, can result in rapid and substantial coastal geomorphological

  12. Discovery of South American suckermouth armored catfishes (Loricariidae, Pterygoplichthys spp.) in the Santa Fe River drainage, Suwannee River basin, USA

    Science.gov (United States)

    Nico, Leo G.; Butt, Peter L.; Johnston, Gerald R.; Jelks, Howard L.; Kail, Matthew; Walsh, Stephen J.

    2012-01-01

    We report on the occurrence of South American suckermouth armored catfishes (Loricariidae) in the Suwannee River basin, southeastern USA. Over the past few years (2009-2012), loricariid catfishes have been observed at various sites in the Santa Fe River drainage, a major tributary of the Suwannee in the state of Florida. Similar to other introduced populations of Pterygoplichthys, there is high likelihood of hybridization. To date, we have captured nine specimens (270-585 mm, standard length) in the Santa Fe River drainage. One specimen taken from Poe Spring best agrees with Pterygoplichthys gibbiceps (Kner, 1854) or may be a hybrid with either P. pardalis or P. disjunctivus. The other specimens were taken from several sites in the drainage and include seven that best agree with Pterygoplichthys disjunctivus (Weber, 1991); and one a possible P. disjunctivus x P. pardalis hybrid. We observed additional individuals, either these or similar appearing loricariids, in Hornsby and Poe springs and at various sites upstream and downstream of the long (> 4 km) subterranean portion of the Santa Fe River. These specimens represent the first confirmed records of Pterygoplichthys in the Suwannee River basin. The P. gibbiceps specimen represents the first documented record of an adult or near adult of this species in open waters of North America. Pterygoplichthys disjunctivus or its hybrids (perhaps hybrid swarms) are already abundant and widespread in other parts of peninsular Florida, but the Santa Fe River represents a northern extension of the catfish in the state. Pterygoplichthys are still relatively uncommon in the Santa Fe drainage and successful reproduction not yet documented. However, in May 2012 we captured five adult catfish (two mature or maturing males and three gravid females) from a single riverine swallet pool. One male was stationed at a nest burrow (no eggs present). To survive the occasional harsh Florida winters, these South American catfish apparently use

  13. TERRAIN, BUFFALO COUNTY, WISCONSIN, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  14. Mercury and Dissolved Organic Matter Dynamics During Snowmelt in the Upper Provo River, Utah, USA

    Science.gov (United States)

    Packer, B. N.; Carling, G. T.; Nelson, S.; Aanderud, Z.; Shepherd Barkdull, N.; Gabor, R. S.

    2017-12-01

    Mercury (Hg) is deposited to mountains by atmospheric deposition and mobilized during snowmelt runoff, leading to Hg contamination in otherwise pristine watersheds. Mercury is typically transported with dissolved organic matter (DOM) from soils to streams and lakes. This study focused on Hg and DOM dynamics in the snowmelt-dominated upper Provo River watershed, northern Utah, USA. We sampled Hg, dissolved organic carbon (DOC) concentrations, and DOM fluorescence in river water, snowpack, and ephemeral streams over four years from 2014-2017 to investigate Hg transport mechanisms. During the snowmelt season (April through June), Hg concentrations typically increased from 1 to 8 ng/L showing a strong positive correlation with DOC. The dissolved Hg fraction was dominant in the river, averaging 75% of total Hg concentrations, suggesting that DOC is more important for transport than suspended particulate matter. Ephemeral channels, which represent shallow flow paths with strong interactions with soils, had the highest Hg (>10 ng/L) and DOC (>10 mg/L) concentrations, suggesting a soil water source of Hg and organic matter. Fluorescence spectroscopy results showed important changes in DOM type and quality during the snowmelt season and the soil water flow paths are activated. Changes in DOM characteristics during snowmelt improve the understanding of Hg dynamics with organic matter and elucidate transport pathways from the soil surface, ephemeral channels and groundwater to the Provo River. This study has implications for understanding Hg sources and transport mechanisms in mountain watersheds.

  15. Influence of hydrologic modifications on Fraxinus pennsylvanica in the Mississippi River Alluvial Valley, USA

    Science.gov (United States)

    Gee, Hugo K.W.; King, Sammy L.; Keim, Richard F.

    2015-01-01

    We used tree-ring analysis to examine radial growth response of a common, moderately flood-tolerant species (Fraxinus pennsylvanica Marshall) to hydrologic and climatic variability for > 40 years before and after hydrologic modifications affecting two forest stands in the Mississippi River Alluvial Valley (USA): a stand without levees below dams and a stand within a ring levee. At the stand without levees below dams, spring flood stages decreased and overall growth increased after dam construction, which we attribute to a reduction in flood stress. At the stand within a ring levee, growth responded to the elimination of overbank flooding by shifting from being positively correlated with river stage to not being correlated with river stage. In general, growth in swales was positively correlated with river stage and Palmer Drought Severity Index (an index of soil moisture) for longer periods than flats. Growth decreased after levee construction, but swales were less impacted than flats likely because of differences in elevation and soils provide higher soil moisture. Results of this study indicate that broad-scale hydrologic processes differ in their effects on the flood regime, and the effects on growth of moderately flood-tolerant species such as F. pennsylvanica can be mediated by local-scale factors such as topographic position, which affects soil moisture.

  16. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition

  17. Predicting Scour of Bedrock in Wisconsin

    Science.gov (United States)

    2017-04-01

    This research evaluates the scour potential of rocks supporting Wisconsin DOT bridge foundations. Ten highway bridges were selected for this study, of which seven are supported by shallow foundations, and five were built on sandstone in rivers/stream...

  18. The Influence of Salmon Recolonization on Riparian Communities in the Cedar River, Washington, USA

    Science.gov (United States)

    Moravek, J.; Clipp, H.; Kiffney, P.

    2016-02-01

    Salmon are a valuable resource throughout the Pacific Northwest, but increasing human activity is degrading coastal ecosystems and threatening local salmon populations. Salmon conservation efforts often focus on habitat restoration, including the re-colonization of salmon into historically obstructed areas such as the Cedar River in Washington, USA. However, to assess the long term implications of salmon re-colonization on a landscape scale, it is critical to consider not only the river ecosystem but also the surrounding riparian habitat. Although prior studies suggest that salmon alter riparian food web dynamics, the riparian community on the Cedar River has not yet been characterized. To investigate possible connections between salmon and the riparian habitat after 12 years of re-colonization, we surveyed riparian spider communities along a gradient of salmon inputs (g/m2). In 10-m transects along the banks of the river, we identified spiders and spider webs, collected prey from webs, and characterized nearby aquatic macroinvertebrate communities. We found that the density of aquatic macroinvertebrates, as well as the density of spider prey, both had significant positive relationships with salmon inputs, supporting the hypothesis that salmon provide energy and nutrients for both aquatic and riparian food webs. We also found that spider diversity significantly decreased with salmon inputs, potentially due to confounding factors such as stream gradient or vegetation structure. Although additional information is needed to fully understand this relationship, the significant connection between salmon inputs and spider diversity is compelling motivation for further studies regarding the link between aquatic and riparian systems on the Cedar River. Understanding the connections between salmon and the riparian community is critical to characterizing the long term, landscape-scale implications of sustainable salmon management in the Pacific Northwest.

  19. Water-quality assessment of the Upper Mississippi River Basin, Minnesota and Wisconsin- Polychlorinated biphenyls in common carp and walleye fillets, 1975-95

    Science.gov (United States)

    Lee, Kathy E.; Anderson, Jesse P.

    1998-01-01

    Spatial and temporal distribution of polychlorinated biphenyls (PCBs) in common carp (Cyprinus carpio) and walleye (Stizostedion vitreum) fillets from rivers in the Upper Mississippi River Basin upstream of the outlet of Lake Pepin are summarized. PCB concentrations in common carp and walleye fillets collected from rivers in the UMIS during 1975-95 by the Minnesota Fish Contaminant Monitoring Program (MFCMP) and the Wisconsin Department of Natural Resources (WDNR) were analyzed. PCBs in fish tissue are of concern because PCBs are potentially toxic, teratogenic, and are linked to poor fetal development and endocrine disruption in fish and other animals including humans, that consume fish. This summary was part of an analysis of historical data for the Upper Mississippi River (UMIS) study unit of the National Water-Quality Assessment (NAWQA) Program. The UMIS study unit is a 47,000 square-mile basin that includes the drainage of the Mississippi River upstream of the outlet of Lake Pepin and encompasses the Twin Cities metropolitan area. PCB concentrations for individual samples at all sites ranged from 0.07 to 33.0 milligrams per kilograms (mg/kg) for common carp and from 0.07 to 9.8 mg/kg for walleye during 1975-95. During 1975-79 and 1980-87, 10 and 4 percent of walleye samples and 45 and 36 percent of common carp samples, respectively, exceeded the U.S. Food and Drug Administration guideline of 2 mg/kg PCB in fish tissue. PCB concentrations in individual common carp and walleye samples were below 2 mg/kg after 1987. Median PCB concentrations at individual sites and within stream segments were generally greatest in common carp and walleye from Mississippi River segments in the TCMA during 1975-79 and 1980-87. There was a significant difference among lipid-normalized PCB (LNPCB) concentrations in common carp, considering all stream segments combined, during all three time periods (1975-79, 1980-87, and 1988-95). LNPCB concentrations in common carp and walleye at

  20. Adaptive management of flows in the lower Roanoke River, North Carolina, USA.

    Science.gov (United States)

    Pearsall, Sam H; McCrodden, Brian J; Townsend, Philip A

    2005-04-01

    The lower Roanoke River in North Carolina, USA, has been regulated by a series of dams since the 1950s. This river and its floodplain have been identified by The Nature Conservancy, the US Fish and Wildlife Service, and the State of North Carolina as critical resources for the conservation of bottomland hardwoods and other riparian and in-stream biota and communities. Upstream dams are causing extended floods in the growing season for bottomland hardwood forests, threatening their survival. A coalition of stakeholders including public agencies and private organizations is cooperating with the dam managers to establish an active adaptive management program to reduce the negative impacts of flow regulation, especially extended growing season inundation, on these conservation targets. We introduce the lower Roanoke River, describe the regulatory context for negotiating towards an active adaptive management program, present our conservation objective for bottomland hardwoods, and describe investigations in which we successfully employed a series of models to develop testable management hypotheses. We propose adaptive management strategies that we believe will enable the bottomland hardwoods to regenerate and support their associated biota and that are reasonable, flexible, and economically sustainable.

  1. Mercury and selenium accumulation in the Colorado River food web, Grand Canyon, USA

    Science.gov (United States)

    Walters, David M.; E.J. Rosi-Marshall,; Kennedy, Theodore A.; W.F. Cross,; C.V. Baxter,

    2015-01-01

    Mercury (Hg) and selenium (Se) biomagnify in aquatic food webs and are toxic to fish and wildlife. The authors measured Hg and Se in organic matter, invertebrates, and fishes in the Colorado River food web at sites spanning 387 river km downstream of Glen Canyon Dam (AZ, USA). Concentrations were relatively high among sites compared with other large rivers (mean wet wt for 6 fishes was 0.17–1.59 μg g–1 Hg and 1.35–2.65 μg g–1 Se), but consistent longitudinal patterns in Hg or Se concentrations relative to the dam were lacking. Mercury increased (slope = 0.147) with δ15N, a metric of trophic position, indicating biomagnification similar to that observed in other freshwater systems. Organisms regularly exceeded exposure risk thresholds for wildlife and humans (6–100% and 56–100% of samples for Hg and Se, respectfully, among risk thresholds). In the Colorado River, Grand Canyon, Hg and Se concentrations pose exposure risks for fish, wildlife, and humans, and the findings of the present study add to a growing body of evidence showing that remote ecosystems are vulnerable to long-range transport and subsequent bioaccumulation of contaminants. Management of exposure risks in Grand Canyon will remain a challenge, as sources and transport mechanisms of Hg and Se extend far beyond park boundaries. Environ Toxicol Chem2015;9999:1–10

  2. A spatial model of white sturgeon rearing habitat in the lower Columbia River, USA

    Science.gov (United States)

    Hatten, J.R.; Parsley, M.J.

    2009-01-01

    Concerns over the potential effects of in-water placement of dredged materials prompted us to develop a GIS-based model that characterizes in a spatially explicit manner white sturgeon Acipenser transmontanus rearing habitat in the lower Columbia River, USA. The spatial model was developed using water depth, riverbed slope and roughness, fish positions collected in 2002, and Mahalanobis distance (D2). We created a habitat suitability map by identifying a Mahalanobis distance under which >50% of white sturgeon locations occurred in 2002 (i.e., high-probability habitat). White sturgeon preferred relatively moderate to high water depths, and low to moderate riverbed slope and roughness values. The eigenvectors indicated that riverbed slope and roughness were slightly more important than water depth, but all three variables were important. We estimated the impacts that fill might have on sturgeon habitat by simulating the addition of fill to the thalweg, in 3-m increments, and recomputing Mahalanobis distances. Channel filling simulations revealed that up to 9 m of fill would have little impact on high-probability habitat, but 12 and 15 m of fill resulted in habitat declines of ???12% and ???45%, respectively. This is the first spatially explicit predictive model of white sturgeon rearing habitat in the lower Columbia River, and the first to quantitatively predict the impacts of dredging operations on sturgeon habitat. Future research should consider whether water velocity improves the accuracy and specificity of the model, and to assess its applicability to other areas in the Columbia River.

  3. Holocene Record of Major and Trace Components in the Sediments of an Urban Impoundment on the Mississippi River: Lake Pepin, Minnesota and Wisconsin

    Science.gov (United States)

    Dean, Walter E.

    2009-01-01

    Lake Pepin is a natural impoundment formed by damming of the Mississippi River about 9,180 radiocarbon years ago (19,600 calendar years) by an alluvial fan deposited by the Chippewa River, a tributary of the Mississippi in Wisconsin. Unique among 26 Mississippi River impoundments, Lake Pepin has stratigraphically preserved Holocene materials, including pollutants, that have been transported down the Mississippi. This natural Holocene record can then be compared to changes that have occurred since European settlement (ca. AD 1830), and since enactment of clean air and water legislation. The most immediate response to settlement in the sediments of Lake Pepin was an increase in bulk-sediment accumulation rate. This was accompanied by gradual increases in concentrations of phosphorus (P), and organic carbon (OC), followed by dramatic increases in these elements beginning about 1940. The increase in P was far greater than any of the minor fluctuations in P that occurred throughout the Holocene, but the increase in OC was comparable to an increase in OC that occurred in the mid-Holocene. The concentrations of several metals (for example, cadmium [Cd], and lead [Pb]) also are elevated in recent sediments. Increased Cd concentrations lasted only about two decades during the industrial era between World War II and the enactment of clean water standards in the 1970s. Increased Pb emissions, on the other hand, occurred over more than 100 years, first from burning of coal and smelting of lead ores, and then, beginning in the 1930s, burning of leaded gasoline. Concentrations of Pb in the sediments of Lake Pepin decreased to about two times preindustrial levels within a decade of enactment of unleaded gasoline restrictions.

  4. Changes in polychlorinated biphenyl (PCB) exposure in tree swallows (Tachycineta bicolor) nesting along the Sheboygan River, WI, USA

    Science.gov (United States)

    Custer, Christine M.; Custer, Thomas W.; Strom, Sean M.; Patnode, Kathleen A.; Franson, J. Christian

    2014-01-01

    Exposure to polychlorinated biphenyls (PCBs) in tree swallow (Tachycineta bicolor) eggs on the Sheboygan River, Wisconsin in the 1990s was higher at sites downstream (geometric means = 3.33–8.69 μg/g wet wt.) of the putative PCB source in Sheboygan Falls, Wisconsin than it was above the source (1.24 μg/g) with the exposure declining as the distance downstream of the source increased. A similar pattern of declining exposure was present in the 2010s as well. Although exposure to PCBs in eggs along the Sheboygan River at sites downstream of Sheboygan Falls has declined by ~60 % since the mid-1990s (8.69 down to 3.27 μg/g) there still seems to be residual pockets of contamination that are exposing some individuals (~25 %) to PCB contamination, similar to exposure found in the 1990s. The exposure patterns in eggs and nestlings among sites, and the changes between the two decades, are further validated by accumulation rate information.

  5. Impacts of Migratory Sandhill Cranes (Grus canadensis) on Microbial Water Quality in the Central Platte River, Nebraska, USA

    Science.gov (United States)

    Wild birds have been shown to be significant sources of numerous types of pathogens that are relevant to humans and agriculture. The presence of large numbers of migratory birds in such a sensitive and important ecosystem as the Platte River in central Nebraska, USA, could potent...

  6. Classification of High Spatial Resolution, Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA (Final)

    Science.gov (United States)

    EPA announced the availability of the final report,Classification of High Spatial Resolution, Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA . This report and associated land use/land cover (LULC) coverage is the result o...

  7. Rheomorphic ignimbrites of the Rogerson Formation, central Snake River plain, USA

    DEFF Research Database (Denmark)

    Knott, Thomas R.; Reichow, Marc K.; Branney, Michael J.

    2016-01-01

    Rogerson Graben, USA, is critically placed at the intersection between the Yellowstone hotspot track and the southern projection of the west Snake River rift. Eleven rhyolitic members of the re-defined, ≥420-m-thick, Rogerson Formation record voluminous high-temperature explosive eruptions....... Between 11.9 and ∼8 Ma, the average frequency of large explosive eruptions in this region was 1 per 354 ky, about twice that at Yellowstone. The chemistry and mineralogy of the early rhyolites show increasing maturity with time possibly by progressive fractional crystallisation. This was followed......-margin monocline, which developed between 10.59 and 8 Ma. The syn-volcanic basin topography contrasted significantly with the present-day elevated Yellowstone hotspot plateau. Concurrent basin-and-range extension produced the N-trending Rogerson Graben: early uplift of the Shoshone Hills (≥10.34 Ma) was followed...

  8. Development and application of a groundwater/surface-water flow model using MODFLOW-NWT for the Upper Fox River Basin, southeastern Wisconsin

    Science.gov (United States)

    Feinstein, D.T.; Fienen, M.N.; Kennedy, J.L.; Buchwald, C.A.; Greenwood, M.M.

    2012-01-01

    The Fox River is a 199-mile-long tributary to the Illinois River within the Mississippi River Basin in the states of Wisconsin and Illinois. For the purposes of this study the Upper Fox River Basin is defined as the topographic basin that extends from the upstream boundary of the Fox River Basin to a large wetland complex in south-central Waukesha County called the Vernon Marsh. The objectives for the study are to (1) develop a baseline study of groundwater conditions and groundwater/surface-water interactions in the shallow aquifer system of the Upper Fox River Basin, (2) develop a tool for evaluating possible alternative water-supply options for communities in Waukesha County, and (3) contribute to the methodology of groundwater-flow modeling by applying the recently published U.S. Geological Survey MODFLOW-NWT computer code, (a Newton formulation of MODFLOW-2005 intended for solving difficulties involving drying and rewetting nonlinearities of the unconfined groundwater-flow equation) to overcome computational problems connected with fine-scaled simulation of shallow aquifer systems by means of thin model layers. To simulate groundwater conditions, a MODFLOW grid is constructed with thin layers and small cell dimensions (125 feet per side). This nonlinear unconfined problem incorporates the streamflow/lake (SFR/LAK) packages to represent groundwater/surface-water interactions, which yields an unstable solution sensitive to initial conditions when solved using the Picard-based preconditioned-gradient (PCG2) solver. A particular problem is the presence of many isolated wet water-table cells over dry cells, causing the simulated water table to assume unrealistically high values. Attempts to work around the problem by converting to confined conditions or converting active to inactive cells introduce unacceptable bias. Application of MODFLOW-NWT overcomes numerical problem by smoothing the transition from wet to dry cells and keeps all cells active. The simulation is

  9. Observations and Predictability of Gap Winds in the Salmon River Canyon of Central Idaho, USA

    Directory of Open Access Journals (Sweden)

    Natalie S. Wagenbrenner

    2018-01-01

    Full Text Available This work investigates gap winds in a steep, deep river canyon prone to wildland fire. The driving mechanisms and the potential for forecasting the gap winds are investigated. The onset and strength of the gap winds are found to be correlated to the formation of an along-gap pressure gradient linked to periodic development of a thermal trough in the Pacific Northwest, USA. Numerical simulations are performed using a reanalysis dataset to investigate the ability of numerical weather prediction (NWP to simulate the observed gap wind events, including the timing and flow characteristics within the canyon. The effects of model horizontal grid spacing and terrain representation are considered. The reanalysis simulations suggest that horizontal grid spacings used in operational NWP could be sufficient for simulating the gap flow events given the regional-scale depression in which the Salmon River Canyon is situated. The strength of the events, however, is under-predicted due, at least in part, to terrain smoothing in the model. Routine NWP, however, is found to have mixed results in terms of forecasting the gap wind events, primarily due to problems in simulating the regional sea level pressure system correctly.

  10. Ecology of nonnative Siberian prawn (Palaemon modestus) in the lower Snake River, Washington, USA

    Science.gov (United States)

    Erhardt, John M.; Tiffan, Kenneth F.

    2016-01-01

    We assessed the abundance, distribution, and ecology of the nonnative Siberian prawn Palaemon modestus in the lower Snake River, Washington, USA. Analysis of prawn passage abundance at three Snake River dams showed that populations are growing at exponential rates, especially at Little Goose Dam where over 464,000 prawns were collected in 2015. Monthly beam trawling during 2011–2013 provided information on prawn abundance and distribution in Lower Granite and Little Goose Reservoirs. Zero-inflated regression predicted that the probability of prawn presence increased with decreasing water velocity and increasing depth. Negative binomial models predicted higher catch rates of prawns in deeper water and in closer proximity to dams. Temporally, prawn densities decreased slightly in the summer, likely due to the mortality of older individuals, and then increased in autumn and winter with the emergence and recruitment of young of the year. Seasonal length frequencies showed that distinct juvenile and adult size classes exist throughout the year, suggesting prawns live from 1 to 2 years and may be able to reproduce multiple times during their life. Most juvenile prawns become reproductive adults in 1 year, and peak reproduction occurs from late July through October. Mean fecundity (189 eggs) and reproductive output (11.9 %) are similar to that in their native range. The current use of deep habitats by prawns likely makes them unavailable to most predators in the reservoirs. The distribution and role of Siberian prawns in the lower Snake River food web will probably continue to change as the population grows and warrants continued monitoring and investigation.

  11. Biological and chemical characterization of metal bioavailability in sediments from Lake Roosevelt, Columbia River, Washington, USA

    Science.gov (United States)

    Besser, J.M.; Brumbaugh, W.G.; Ivey, C.D.; Ingersoll, C.G.; Moran, P.W.

    2008-01-01

    We studied the bioavailability and toxicity of copper, zinc, arsenic, cadmium, and lead in sediments from Lake Roosevelt (LR), a reservoir on the Columbia River in Washington, USA that receives inputs of metals from an upstream smelter facility. We characterized chronic sediment toxicity, metal bioaccumulation, and metal concentrations in sediment and pore water from eight study sites: one site upstream in the Columbia River, six sites in the reservoir, and a reference site in an uncontaminated tributary. Total recoverable metal concentrations in LR sediments generally decreased from upstream to downstream in the study area, but sediments from two sites in the reservoir had metal concentrations much lower than adjacent reservoir sites and similar to the reference site, apparently due to erosion of uncontaminated bank soils. Concentrations of acid-volatile sulfide in LR sediments were too low to provide strong controls on metal bioavailability, and selective sediment extractions indicated that metals in most LR sediments were primarily associated with iron and manganese oxides. Oligochaetes (Lumbriculus variegatus) accumulated greatest concentrations of copper from the river sediment, and greatest concentrations of arsenic, cadmium, and lead from reservoir sediments. Chronic toxic effects on amphipods (Hyalella azteca; reduced survival) and midge larvae (Chironomus dilutus; reduced growth) in whole-sediment exposures were generally consistent with predictions of metal toxicity based on empirical and equilibrium partitioning-based sediment quality guidelines. Elevated metal concentrations in pore waters of some LR sediments suggested that metals released from iron and manganese oxides under anoxic conditions contributed to metal bioaccumulation and toxicity. Results of both chemical and biological assays indicate that metals in sediments from both riverine and reservoir habitats of Lake Roosevelt are available to benthic invertebrates. These findings will be used as

  12. Tracing nutrient sources in the Mississippi River Basin, U.S.A

    International Nuclear Information System (INIS)

    Kendall, C.; Silva, S.R.; Chang, C.C.Y.; Wankel, S.D.; Hooper, R.P.; Frey, J.W.; Crain, A.S.; Delong, M.D.

    2003-01-01

    Full text: Periodic hypoxia in the Gulf of Mexico near the mouth of the Mississippi River is of increasing concern. The condition is thought to be primarily the result of nitrate delivered to the Gulf by the Mississippi River. However, as much as half of the nitrogen transported by large rivers to coastal areas is in dissolved or particulate organic form, with the remainder primarily as nitrate. Nitrate is thought to be conservatively transported in the Mississippi and other large rivers, but reduction can occur in marshy pools and backwater channels. Thus, it is important to examine all forms of nitrogen and their potential transformations, in both in groundwater and in riverine environments. To provide critically needed information for the development of management strategies to reduce N loads and enhance N attenuation mechanisms, we have been using isotopic techniques to investigate the sources and cycling of nutrients at a number of sites in the Mississippi Basin (which includes the Ohio and Missouri River Basins) since 1996, in collaboration with several national monitoring programs. One of our most noteworthy finding was that about half of the POM in the Mississippi (and other big rivers in the USA) is composed of plankton and/or heterotrophic bacteria. This suggests that in-situ productivity may be a significant source of bioavailable organic matter contributing to the hypoxia in the Gulf of Mexico. Monthly samples from 19 river sites in the Basin sampled over 5 years showed that δ 15 N and δ 13 C were quite useful in discriminating among four major categories of POM: terrestrial soil, fresh terrestrial vegetation, aquatic macrophytes, and plankton/bacteria. The δ 13 C values for the sites ranged from about -35 to -20 per mille, and the δ 15 N values ranged from about -15 to +15 per mille. The isotopic data, along with ancillary chemical and hydrologic measurements, were also useful for documenting seasonal changes in in-situ processes. A pilot study in

  13. Sedimentation History Of Halfway Creek Marsh, Upper Mississippi River National Wildlife And Fish Refuge, Wisconsin, 1846-2006. Scientific Investigations Report 2007–5209

    Science.gov (United States)

    The history of overbank sedimentation in the vicinity of Halfway Creek Marsh near La Crosse, Wisconsin, was examined during 2005-06 by the U.S. Geological Survey and University of Wisconsin-Madison as part of a broader study of sediment and nutrient loadings to the Upper Mississi...

  14. 75 FR 52369 - Notice of Inventory Completion: Wisconsin Historical Society, Museum Division, Madison, WI

    Science.gov (United States)

    2010-08-25

    ... member Indian tribes (Bad River Band of the Lake Superior Tribe of Chippewa Indians of the Bad River... Alliance and the Wisconsin Inter-tribal Repatriation Committee indicated that the Bad River Band of the Lake Superior Tribe of Chippewa Indians of the Bad River Reservation, Wisconsin, and Red Cliff Band of...

  15. Refinement of regression models to estimate real-time concentrations of contaminants in the Menomonee River drainage basin, southeast Wisconsin, 2008-11

    Science.gov (United States)

    Baldwin, Austin K.; Robertson, Dale M.; Saad, David A.; Magruder, Christopher

    2013-01-01

    In 2008, the U.S. Geological Survey and the Milwaukee Metropolitan Sewerage District initiated a study to develop regression models to estimate real-time concentrations and loads of chloride, suspended solids, phosphorus, and bacteria in streams near Milwaukee, Wisconsin. To collect monitoring data for calibration of models, water-quality sensors and automated samplers were installed at six sites in the Menomonee River drainage basin. The sensors continuously measured four potential explanatory variables: water temperature, specific conductance, dissolved oxygen, and turbidity. Discrete water-quality samples were collected and analyzed for five response variables: chloride, total suspended solids, total phosphorus, Escherichia coli bacteria, and fecal coliform bacteria. Using the first year of data, regression models were developed to continuously estimate the response variables on the basis of the continuously measured explanatory variables. Those models were published in a previous report. In this report, those models are refined using 2 years of additional data, and the relative improvement in model predictability is discussed. In addition, a set of regression models is presented for a new site in the Menomonee River Basin, Underwood Creek at Wauwatosa. The refined models use the same explanatory variables as the original models. The chloride models all used specific conductance as the explanatory variable, except for the model for the Little Menomonee River near Freistadt, which used both specific conductance and turbidity. Total suspended solids and total phosphorus models used turbidity as the only explanatory variable, and bacteria models used water temperature and turbidity as explanatory variables. An analysis of covariance (ANCOVA), used to compare the coefficients in the original models to those in the refined models calibrated using all of the data, showed that only 3 of the 25 original models changed significantly. Root-mean-squared errors (RMSEs

  16. Presence of selected chemicals of emerging concern in water and bottom sediment from the St. Louis River, St. Louis Bay, and Superior Bay, Minnesota and Wisconsin, 2010

    Science.gov (United States)

    Christensen, Victoria G.; Lee, Kathy E.; Kieta, Kristen A.; Elliott, Sarah M.

    2012-01-01

    The St. Louis Bay of Lake Superior receives substantial urban runoff, wastewater treatment plant effluent, and industrial effluent. In 1987, the International Joint Commission designated the St. Louis Bay portion of the lower St. Louis River as one of the Great Lakes Areas of Concern. Concerns exist about the potential effects of chemicals of emerging concern on aquatic biota because many of these chemicals, including endocrine active chemicals, have been shown to affect the endocrine systems of fish. To determine the occurrence of chemicals of emerging concern in the St. Louis River, the St. Louis Bay, and Superior Bay, the U.S. Geological Survey in cooperation with the Minnesota Pollution Control Agency and the Wisconsin Department of Natural Resources collected water and bottom-sediment samples from 40 sites from August through October 2010. The objectives of this study were to (1) identify the extent to which chemicals of emerging concern, including pharmaceuticals, hormones, and other organic chemicals, occur in the St. Louis River, St. Louis Bay, and Superior Bay, and (2) identify the extent to which the chemicals may have accumulated in bottom sediment of the study area. Samples were analyzed for selected wastewater indicators, hormones, sterols, bisphenol A, and human-health pharmaceuticals. During this study, 33 of 89 chemicals of emerging concern were detected among all water samples collected and 56 of 104 chemicals of emerging concern were detected in bottom-sediment samples. The chemical N,N-diethyl-meta-toluamide (DEET) was the most commonly detected chemical in water samples and 2,6-dimethylnaphthalene was the most commonly detected chemical in bottom-sediment samples. In general, chemicals of emerging concern were detected at a higher frequency in bottom-sediment samples than in water samples. Estrone (a steroid hormone) and hexahydrohexamethyl cyclopentabensopyran (a synthetic fragrance) were the most commonly detected endocrine active chemicals in

  17. Riverine Landscape Patch Heterogeneity Drives Riparian Ant Assemblages in the Scioto River Basin, USA.

    Directory of Open Access Journals (Sweden)

    Paradzayi Tagwireyi

    Full Text Available Although the principles of landscape ecology are increasingly extended to include riverine landscapes, explicit applications are few. We investigated associations between patch heterogeneity and riparian ant assemblages at 12 riverine landscapes of the Scioto River, Ohio, USA, that represent urban/developed, agricultural, and mixed (primarily forested, but also wetland, grassland/fallow, and exurban land-use settings. Using remotely-sensed and ground-collected data, we delineated riverine landscape patch types (crop, grass/herbaceous, gravel, lawn, mudflat, open water, shrub, swamp, and woody vegetation, computed patch metrics (area, density, edge, richness, and shape, and conducted coordinated sampling of surface-active Formicidae assemblages. Ant density and species richness was lower in agricultural riverine landscapes than at mixed or developed reaches (measured using S [total number of species], but not using Menhinick's Index [DM], whereas ant diversity (using the Berger-Park Index [DBP] was highest in agricultural reaches. We found no differences in ant density, richness, or diversity among internal riverine landscape patches. However, certain characteristics of patches influenced ant communities. Patch shape and density were significant predictors of richness (S: R2 = 0.72; DM: R2=0.57. Patch area, edge, and shape emerged as important predictors of DBP (R2 = 0.62 whereas patch area, edge, and density were strongly related to ant density (R2 = 0.65. Non-metric multidimensional scaling and analysis of similarities distinguished ant assemblage composition in grass and swamp patches from crop, gravel, lawn, and shrub as well as ant assemblages in woody vegetation patches from crop, lawn, and gravel (stress = 0.18, R2 = 0.64. These findings lend insight into the utility of landscape ecology to river science by providing evidence that spatial habitat patterns within riverine landscapes can influence assemblage characteristics of riparian

  18. Application of digital mapping technology to the display of hydrologic information; a proof-of-concept test in the Fox-Wolf River Basin, Wisconsin

    Science.gov (United States)

    Moore, G.K.; Baten, L.G.; Allord, G.J.; Robinove, C.J.

    1983-01-01

    The Fox-Wolf River basin in east-central Wisconsin was selected to test concepts for a water-resources information system using digital mapping technology. This basin of 16,800 sq km is typical of many areas in the country. Fifty digital data sets were included in the Fox-Wolf information system. Many data sets were digitized from 1:500,000 scale maps and overlays. Some thematic data were acquired from WATSTORE and other digital data files. All data were geometrically transformed into a Lambert Conformal Conic map projection and converted to a raster format with a 1-km resolution. The result of this preliminary processing was a group of spatially registered, digital data sets in map form. Parameter evaluation, areal stratification, data merging, and data integration were used to achieve the processing objectives and to obtain analysis results for the Fox-Wolf basin. Parameter evaluation includes the visual interpretation of single data sets and digital processing to obtain new derived data sets. In the areal stratification stage, masks were used to extract from one data set all features that are within a selected area on another data set. Most processing results were obtained by data merging. Merging is the combination of two or more data sets into a composite product, in which the contribution of each original data set is apparent and can be extracted from the composite. One processing result was also obtained by data integration. Integration is the combination of two or more data sets into a single new product, from which the original data cannot be separated or calculated. (USGS)

  19. Optical ages indicate the southwestern margin of the Green Bay Lobe in Wisconsin, USA, was at its maximum extent until about 18,500 years ago

    Science.gov (United States)

    Attig, J.W.; Hanson, P.R.; Rawling, J.E.; Young, A.R.; Carson, E.C.

    2011-01-01

    Samples for optical dating were collected to estimate the time of sediment deposition in small ice-marginal lakes in the Baraboo Hills of Wisconsin. These lakes formed high in the Baraboo Hills when drainage was blocked by the Green Bay Lobe when it was at or very near its maximum extent. Therefore, these optical ages provide control for the timing of the thinning and recession of the Green Bay Lobe from its maximum position. Sediment that accumulated in four small ice-marginal lakes was sampled and dated. Difficulties with field sampling and estimating dose rates made the interpretation of optical ages derived from samples from two of the lake basins problematic. Samples from the other two lake basins-South Bluff and Feltz basins-responded well during laboratory analysis and showed reasonably good agreement between the multiple ages produced at each site. These ages averaged 18.2. ka (n= 6) and 18.6. ka (n= 6), respectively. The optical ages from these two lake basins where we could carefully select sediment samples provide firm evidence that the Green Bay Lobe stood at or very near its maximum extent until about 18.5. ka.The persistence of ice-marginal lakes in these basins high in the Baraboo Hills indicates that the ice of the Green Bay Lobe had not experienced significant thinning near its margin prior to about 18.5. ka. These ages are the first to directly constrain the timing of the maximum extent of the Green Bay Lobe and the onset of deglaciation in the area for which the Wisconsin Glaciation was named. ?? 2011 Elsevier B.V.

  20. Linking Watershed Nitrogen Sources with Nitrogen Dynamics in Rivers of Western Oregon, USA

    Science.gov (United States)

    Sobota, D. J.; Compton, J.; Goodwin, K. E.

    2012-12-01

    We constructed contemporary nitrogen (N) budgets for 25 river basins in the Willamette River Basin (WRB) of western Oregon, USA, to improve the understanding of how recent trends in human-driven N loading have influenced riverine N dynamics in the region. Nearly 20% of WRB stream length is currently in fair or poor condition because of high N concentrations. Additionally, nitrate contamination of drinking water affects at least 8,000 people in the WRB. We hypothesized that 1) the majority of N inputs in the WRB would originate from agricultural activities in lowland portions of watersheds, 2) annual riverine N yield (kg/ha/yr) would correspond to annual per area watershed N inputs, and 3) riverine N yields would be seasonal and highest during winter due to the region's Mediterranean climate. We calculated average annual N inputs for each study basin by summing newly available datasets describing spatially explicit N inputs of synthetic fertilizer, atmospheric deposition, crop biological N2 fixation, biological N2 fixation by red alder (Alnus rubra Bong.), livestock manure, and point sources for the period 1996 - 2007. Annual and seasonal riverine N exports were estimated with the USGS model LOADEST calibrated to N concentration data collected during the study period. We estimated that two-thirds of total N input to the WRB study basins in the 2000s came from synthetic fertilizer application. Nearly all fertilizer application occurred on the lowlands near watershed mouths. We found a wide range of riverine N yields from the study basins, ranging from one to 70 kg N/ha/yr. Across the study basins, N export was more strongly correlated to fertilizer application rates than to percent of agricultural area in the watershed. Low watershed N yields reflected a high proportion of watershed area in the forested Cascade Mountain Range, which received low N inputs mainly from atmospheric deposition. N yields from study basins were strongly seasonal, with at least 50%, and

  1. Proceedings, sixth international symposium : moisture and creep effects on paper, board and containers: Madison, Wisconsin, USA, 14-15 July 2009

    Science.gov (United States)

    John M. Considine; Sally A. Ralph

    2011-01-01

    The USDA Forest Products Laboratory sponsored the 6th International Symposium: Moisture and Creep Effects on Paper, Board and Containers at the Monona Terrace Convention Center, Madison, WI, USA on 14-15 July 2009. Attendees heard 20 technical presentations; presenters were from seven different countries and three continents. Session topics included Corrugated...

  2. Monitoring biological control agents and leafy spurge populations along the Smith River in Montana, USA

    Science.gov (United States)

    J. Birdsall; G. Markin; T. Kalaris; J. Runyon

    2013-01-01

    The Smith River originates in west central Montana and flows north approximately 100 miles before joining the Missouri River. The central 60 miles of the river flows through a relatively inaccessible, forested, scenic limestone canyon famous for its trout fishing. Because of its popularity, the area was designated Montana's first and only controlled river, with...

  3. Mercury and other element exposure in tree swallows nesting at low pH and neutral pH lakes in northern Wisconsin USA

    International Nuclear Information System (INIS)

    Custer, Thomas W.; Custer, Christine M.; Thogmartin, Wayne E.; Dummer, Paul M.; Rossmann, Ronald; Kenow, Kevin P.; Meyer, Michael W.

    2012-01-01

    The primary objective of this study was to determine whether tree swallows (Tachycineta bicolor) demonstrate similar responses to lake pH and mercury (Hg) contamination in northern Wisconsin as do common loons (Gavia immer). Similar to common loons, Hg concentrations in the blood of tree swallow nestlings were higher, Hg concentrations in eggs tended to be higher, and egg size tended to be smaller at low (<6.2) pH lakes. In contrast to common loons, tree swallow nestling production was not lower at low pH lakes. Based on modeling associations, Hg concentrations in tree swallow eggs and nestling blood can be used to predict Hg concentrations in common loons without the invasive or destructive sampling of loons. Mean concentrations of cadmium, manganese, and mercury in nestling livers were higher at low pH lakes than neutral pH lakes. Concentrations of cadmium, chromium, mercury, selenium, and zinc were not at toxic levels. - Highlights: ► Mercury concentrations in tree swallow nestling livers were higher in low than neutral pH lakes. ► Tree swallow eggs were smaller at low than neutral pH lakes. ► Tree swallow hatching success was not correlated with mercury concentrations in eggs. ► Mercury concentrations in tree swallows can be used to predict common loon exposure. - Mercury concentrations in tree swallows were higher at low pH lakes.

  4. Longitudinal heterogeneity of flow and heat fluxes in a large lowland river: A study of the San Joaquin River, CA, USA during a large-scale flow experiment

    Science.gov (United States)

    Bray, E. N.; Dunne, T.; Dozier, J.

    2011-12-01

    Systematic downstream variation of channel characteristics, scaled by flow affects the transport and distribution of heat throughout a large river. As water moves through a river channel, streamflow and velocity may fluctuate by orders of magnitude primarily due to channel geometry, slope and resistance to flow, and the time scales of those fluctuations range from days to decades (Constantz et al., 1994; Lundquist and Cayan, 2002; McKerchar and Henderson, 2003). It is well understood that the heat budget of a river is primarily governed by surface exchanges, with the most significant surface flux coming from net shortwave radiation. The absorption of radiation at a given point in a river is determined by the wavelength-dependent index of refraction, expressed by the angle of refraction and the optical depth as a function of physical depth and the absorption coefficient (Dozier, 1980). Few studies consider the influence of hydrologic alteration to the optical properties governing net radiative heat transfer in a large lowland river, yet it is the most significant component of the heat budget and definitive to a river's thermal regime. We seek a physically based model without calibration to incorporate scale-dependent physical processes governing heat and flow dynamics in large rivers, how they change across the longitudinal profile, and how they change under different flow regimes. Longitudinal flow and heat flux analyses require synoptic flow time series from multiple sites along rivers, and few hydrometric networks meet this requirement (Larned et al, 2011). We model the energy budget in a regulated 240-km mainstem reach of the San Joaquin River California, USA equipped with multiple gaging stations from Friant Dam to its confluence with the Merced River during a large-scale flow experiment. We use detailed hydroclimatic observations distributed across the longitudinal gradient creating a non-replicable field experiment of heat fluxes across a range of flow regime

  5. 75 FR 70026 - Notice of Inventory Completion: Wisconsin Historical Society, Museum Division, Madison, WI

    Science.gov (United States)

    2010-11-16

    ... with representatives of the Bad River Band of the Lake Superior Tribe of Chippewa Indians of the Bad... Division, is responsible for notifying the Bad River Band of the Lake Superior Tribe of Chippewa Indians of the Bad River Reservation, Wisconsin; Forest County Potawatomi Community, Wisconsin; Lac Courte...

  6. Toxicity of Anacostia River, Washington, DC, USA, sediment fed to mute swans (Cygnus olor)

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, W.N.; Day, D.; Melancon, M.J.; Sileo, L.

    2000-03-01

    Sediment ingestion is sometimes the principal route by which waterfowl are exposed to environmental contaminants, and at severely contaminated sites waterfowl have been killed by ingesting sediment. Mute swans (Cygnus olor) were fed a diet for 6 weeks with a high but environmentally realistic concentration (24%) of sediment from the moderately polluted Anacostia River in the District of Columbia, USA, to estimate the sediment's toxicity. Control swans were fed the same diet without the sediment. Five organochlorine compounds were detected in the treated diets, but none of 22 organochlorine compounds included in the analyses was detected in livers of the treated swans. The concentrations of 24 polynuclear aromatic hydrocarbons measured in the treated diet were as high as 0.80 mg/kg, and they were thought to have been responsible for the observed induction of hepatic microsomal monooxygenase activity in livers. A concentration of 85 mg/kg of lead in the diet was enough to decrease red blood cell ALAD activity but was not high enough to cause more serious effects of lead poisoning. The dietary concentrations of Al, Fe, V, and Ba were high compared to the concentrations of these elements known to be toxic in laboratory feeding studies. However, the lack of accumulation in the livers of the treated swans suggested that these elements were not readily available from the ingested sediment. The authors did not study all potential toxic effects, but, on the basis of those that they did consider, they concluded that the treated swans were basically healthy after a chronic exposure to the sediment.

  7. The long-term legacy of geomorphic and riparian vegetation feedbacks on the dammed Bill Williams River, Arizona, USA

    Science.gov (United States)

    Kui, Li; Stella, John C.; Shafroth, Patrick B.; House, P. Kyle; Wilcox, Andrew C.

    2017-01-01

    On alluvial rivers, fluvial landforms and riparian vegetation communities codevelop as a result of feedbacks between plants and abiotic processes. The influence of vegetation on river channel and floodplain geomorphology can be particularly strong on dammed rivers with altered hydrology and reduced flood disturbance. We used a 56-year series of aerial photos on the dammed Bill Williams River (Arizona, USA) to investigate how (a) different woody riparian vegetation types influence river channel planform and (b) how different fluvial landforms drive the composition of riparian plant communities over time. We mapped vegetation types and geomorphic surfaces and quantified how relations between fluvial and biotic processes covaried over time using linear mixed models. In the decades after the dam was built, woody plant cover within the river's bottomland nearly doubled, narrowing the active channel by 60% and transforming its planform from wide and braided to a single thread and more sinuous channel. Compared with native cottonwood–willow vegetation, nonnative tamarisk locally induced a twofold greater reduction in channel braiding. Vegetation expanded at different rates depending on the type of landform, with tamarisk cover on former high-flow channels increasing 17% faster than cottonwood–willow. Former low-flow channels with frequent inundation supported a greater increase in cottonwood–willow relative to tamarisk. These findings give insight into how feedbacks between abiotic and biotic processes in river channels accelerate and fortify changes triggered by dam construction, creating river systems increasingly distinct from predam ecological communities and landforms, and progressively more resistant to restoration of predam forms and processes.

  8. Gonad organochlorine concentrations and plasma steroid levels in white sturgeon (Acipenser transmontanus) from the Columbia River, USA

    Science.gov (United States)

    Foster, E.P.; Fitzpatrick, M.S.; Feist, G.W.; Schreck, C.B.; Yates, J.

    2001-01-01

    Sturgeon are an important fishery resource world-wide, providing food and income through commercial, sport, and tribal fisheries. However, sturgeon populations are imperiled in many areas due to overharvest, habitat loss, and pollution. White Sturgeon (Acipenser transmontanus) are found along the west coast of North America from San Francisco Bay, USA to British Columbia, Canada. The Columbia River, located in the Pacific Northwest USA, supports active commercial, sport, and tribal white sturgeon fisheries. The white sturgeon fishery in the Columbia River estuary is one of the most productive sturgeon fisheries in the World. Despite the success of the Columbia River estuary white sturgeon fishery, the populations within the impounded sections (i.e. behind the hydroelectric dams) of the Columbia River experience poor reproductive success (Beamesderfer et al. 1995). This poor reproductive success has been attributed to hydroelectric development, but water pollution could also be a significant factor. The bottom dwelling life history and late maturing reproductive strategy for this species may make it particularly sensitive to the adverse effects of bioaccumulative pollutants.The Columbia River receives effluent from bleached-kraft pulp mills, aluminum smelters, municipal sewage treatment plants and runoff from agricultural. industrial, and urban areas. Bioaccumulative contaminants that have the potential for endocrine disruption have been detected in fish and sediments from the Columbia River (Foster et al. 1999). An integrated system of hormones control reproduction in vertebrates. Plasma steroids direct developmental events essential for reproduction. Disruption of endocrine control by contaminants has been linked to reproductive anomalies and failure in a number of vertebrate species (Guillette et al. 1996; Jobling et al. 1996). Because of this, it is important to understand if organochlorine compounds are accumulating in Columbia River white sturgeon and having

  9. Use of geochemical tracers for estimating groundwater influxes to the Big Sioux River, eastern South Dakota, USA

    Science.gov (United States)

    Neupane, Ram P.; Mehan, Sushant; Kumar, Sandeep

    2017-09-01

    Understanding the spatial distribution and variability of geochemical tracers is crucial for estimating groundwater influxes into a river and can contribute to better future water management strategies. Because of the much higher radon (222Rn) activities in groundwater compared to river water, 222Rn was used as the main tracer to estimate groundwater influxes to river discharge over a 323-km distance of the Big Sioux River, eastern South Dakota, USA; these influx estimates were compared to the estimates using Cl- concentrations. In the reaches overall, groundwater influxes using the 222Rn activity approach ranged between 0.3 and 6.4 m3/m/day (mean 1.8 m3/m/day) and the cumulative groundwater influx estimated during the study period was 3,982-146,594 m3/day (mean 40,568 m3/day), accounting for 0.2-41.9% (mean 12.5%) of the total river flow rate. The mean groundwater influx derived using the 222Rn activity approach was lower than that calculated based on Cl- concentration (35.6 m3/m/day) for most of the reaches. Based on the Cl- approach, groundwater accounted for 37.3% of the total river flow rate. The difference between the method estimates may be associated with minimal differences between groundwater and river Cl- concentrations. These assessments will provide a better understanding of estimates used for the allocation of water resources to sustain agricultural productivity in the basin. However, a more detailed sampling program is necessary for accurate influx estimation, and also to understand the influence of seasonal variation on groundwater influxes into the basin.

  10. The new Wallula CO2 project may revive the old Columbia River Basalt (western USA) nuclear-waste repository project

    Science.gov (United States)

    Schwartz, Michael O.

    2018-02-01

    A novel CO2 sequestration project at Wallula, Washington, USA, makes ample use of the geoscientific data collection of the old nuclear waste repository project at the Hanford Site nearby. Both projects target the Columbia River Basalt (CRB). The new publicity for the old project comes at a time when the approach to high-level nuclear waste disposal has undergone fundamental changes. The emphasis now is on a technical barrier that is chemically compatible with the host rock. In the ideal case, the waste container is in thermodynamic equilibrium with the host-rock groundwater regime. The CRB groundwater has what it takes to represent the ideal case.

  11. Applying downscaled Global Climate Model data to a groundwater model of the Suwannee River Basin, Florida, USA

    Science.gov (United States)

    Swain, Eric D.; Davis, J. Hal

    2016-01-01

    The application of Global Climate Model (GCM) output to a hydrologic model allows for comparisons between simulated recent and future conditions and provides insight into the dynamics of hydrology as it may be affected by climate change. A previously developed numerical model of the Suwannee River Basin, Florida, USA, was modified and calibrated to represent transient conditions. A simulation of recent conditions was developed for the 372-month period 1970-2000 and was compared with a simulation of future conditions for a similar-length period 2039-2069, which uses downscaled GCM data. The MODFLOW groundwater-simulation code was used in both of these simulations, and two different MODFLOW boundary condition “packages” (River and Streamflow-Routing Packages) were used to represent interactions between surface-water and groundwater features.

  12. Tornadoes Strike Northern Wisconsin

    Science.gov (United States)

    2007-01-01

    A series of tornadoes ripped through the Upper Midwest region of the United States in the evening of June 7, 2007. At least five different tornadoes touched down in Wisconsin, according to the Associated Press, one of which tore through the Bear Paw Resort in northern Wisconsin. Despite dropping as much as fifteen centimeters (six inches) of rain in some places and baseball-size hail in others, authorities were reporting no deaths attributable to the storm system, and only a smattering of injuries, but considerable property damage in some areas. When the MODIS instrument on NASA's Terra satellite observed the area on June 9, 2007, the track torn through the woods by one of the tornadoes stands out quite clearly. This photo-like image uses data collected by MODIS in the normal human vision range to give a familiar natural-looking appearance. The landscape is largely a checkerboard of farms, towns, roads, and cities. The pale land is predominantly farmland where crops have not fully grown in yet. Dark blue shows the winding path of rivers and lakes dotting the landscape. The large blue lake on the east (right) side of the image is Lake Michigan. Towns and cities, including the city of Green Bay, are gray. To the north side, farmland gives way to dark green as land use shifts from agriculture to the Menominee Indian Reservation and Nicolet National Forest. The diagonal slash through the dark green forested land shows the tornado track. Bare land was revealed where the tornado tore down trees or stripped vegetation off the branches. The high-resolution image provided above is at MODIS' full spatial resolution (level of detail) of 250 meters per pixel. The MODIS Rapid Response System provides this image at additional resolutions.

  13. Adult tree swallow survival on the polychlorinated biphenyl-contaminated Hudson River, New York, USA, between 2006 and 2010

    Science.gov (United States)

    Custer, Christine M.; Custer, Thomas W.; Hines, James E.

    2012-01-01

    The upper Hudson River basin in east central New York, USA, is highly contaminated, primarily with polychlorinated biphenyls (PCBs). Reduced adult survival has been documented in tree swallows (Tachycineta bicolor) at a similarly PCB-contaminated river system in western Massachusetts. The purpose of the present study was to assess whether adult survival of tree swallows was likewise affected in the Hudson River basin. Between 2006 and 2010, a total of 521 female tree swallows were banded, of which 148 were retrapped at least once. The authors used Program MARK and an information theoretic approach to test the hypothesis that PCB contamination reduced annual survival of female tree swallows. The model that best described the processes that generated the capture history data included covariate effects of year and female plumage coloration on survival but not PCB/river. Annual survival rates of brown-plumaged females (mostly one year old) were generally lower (mean phi = 0.39) than those of blue-plumaged females (mean phi = 0.50, one year or older). Poor early spring weather in 2007 was associated with reduced survival in both plumage-color groups compared to later years. Models with the effects of PCB exposure on survival (all ΔAICc values >5.0) received little support.

  14. Cadmium and lead in tissues of Mallards (Anas platyrhynchos) and Wood Ducks (Aix sponsa) using the Illinois River (USA)

    International Nuclear Information System (INIS)

    Levengood, J.M.

    2003-01-01

    Tissue lead and cadmium concentrations were examined in two common, widely distributed species of duck, utilizing a major river system. - Cadmium and lead concentrations were determined in the tissues of Mallards and Wood Ducks collected from two waterfowl management areas along the Illinois River, USA, during the autumn and late winter of 1997-1998. Lead concentrations in livers of Mallards were lower than previously reported, and, along with those in a small sample of Wood Duck livers, were within background levels (<2.0 μg/g wet weight). Mean concentrations of cadmium in the kidneys of Wood Ducks utilizing the Illinois River were four times greater than in after-hatch-year Mallards, and 14 times greater than in hatch-year Mallards. Concentrations of cadmium in the kidneys of Wood Ducks were comparable with those of specimens dosed with cadmium or inhabiting contaminated areas in previous studies. Wood Ducks utilizing wetlands associated with the Illinois River, and presumably other portions of the lower Great Lakes region, may be chronically exposed to cadmium

  15. Distributions of polyhalogenated compounds in Hudson River (New York, USA) fish in relation to human uses along the river

    International Nuclear Information System (INIS)

    Skinner, Lawrence C.

    2011-01-01

    PCBs (as Aroclor concentrations) have been extensively examined in fish along the Hudson River, but other xenobiotic chemicals in fish have had limited assessment. This study determined concentrations and congener distributions of polybrominated diphenyl ethers (PBDEs), polybrominated and polychlorinated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs and PCDD/Fs), and polychlorinated biphenyls (PCBs) in smallmouth bass and striped bass taken from a 385 km reach of the Hudson River. Concentrations of PBDEs and PCBs in smallmouth bass, and PCBs in striped bass, were positively related to human uses of the compounds in the basin. Generally low levels of PCDD/Fs were found. One striped bass, however, contained elevated 2,3,7,8-TCDD, indicating exposure to a known source in the adjacent Newark Bay-Passaic River basin. PBDDs were generally below detection. PBDFs were present in four of 18 smallmouth bass, but were not detected in striped bass. Dioxin-like PCBs contribute most to 2,3,7,8-TCDD toxic equivalents in 29 of 30 samples. - Highlights: → In the Hudson River, → PBDEs in smallmouth bass follow human population patterns, but do not for striped bass. → Proximity to known PCB sources govern PCB levels and patterns in fish. → PBDFs were in smallmouth bass but not striped bass. PBDDs were present in one fish. → PCDD/Fs were low in 29 of 30 fish. A 2,3,7,8-TCDD source affected one striped bass. → PCBs contribute most to 2,3,7,8-TCDD toxic equivalents in 29 of 30 samples. - Residues of polyhalogenated compounds in resident and migratory fish from the Hudson River are compared with human uses of the compounds in the river basin.

  16. Distributions of polyhalogenated compounds in Hudson River (New York, USA) fish in relation to human uses along the river

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Lawrence C., E-mail: lxskinne@gw.dec.state.ny.us [New York State Department of Environmental Conservation, 625 Broadway, Albany, NY 12233 (United States)

    2011-10-15

    PCBs (as Aroclor concentrations) have been extensively examined in fish along the Hudson River, but other xenobiotic chemicals in fish have had limited assessment. This study determined concentrations and congener distributions of polybrominated diphenyl ethers (PBDEs), polybrominated and polychlorinated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs and PCDD/Fs), and polychlorinated biphenyls (PCBs) in smallmouth bass and striped bass taken from a 385 km reach of the Hudson River. Concentrations of PBDEs and PCBs in smallmouth bass, and PCBs in striped bass, were positively related to human uses of the compounds in the basin. Generally low levels of PCDD/Fs were found. One striped bass, however, contained elevated 2,3,7,8-TCDD, indicating exposure to a known source in the adjacent Newark Bay-Passaic River basin. PBDDs were generally below detection. PBDFs were present in four of 18 smallmouth bass, but were not detected in striped bass. Dioxin-like PCBs contribute most to 2,3,7,8-TCDD toxic equivalents in 29 of 30 samples. - Highlights: > In the Hudson River, > PBDEs in smallmouth bass follow human population patterns, but do not for striped bass. > Proximity to known PCB sources govern PCB levels and patterns in fish. > PBDFs were in smallmouth bass but not striped bass. PBDDs were present in one fish. > PCDD/Fs were low in 29 of 30 fish. A 2,3,7,8-TCDD source affected one striped bass. > PCBs contribute most to 2,3,7,8-TCDD toxic equivalents in 29 of 30 samples. - Residues of polyhalogenated compounds in resident and migratory fish from the Hudson River are compared with human uses of the compounds in the river basin.

  17. Delineating groundwater/surface water interaction in a karst watershed: Lower Flint River Basin, southwestern Georgia, USA

    Directory of Open Access Journals (Sweden)

    Kathleen Rugel

    2016-03-01

    Full Text Available Study region: Karst watershed in Lower Flint River Basin (LFRB, southwestern Georgia, USA. Study focus: Baseflow discharges in the LFRB have declined for three decades as regional irrigation has increased; yet, the location and nature of connectivity between groundwater and surface water in this karstic region are poorly understood. Because growing water demands will likely be met by further development of regional aquifers, an important management concern is the nature of interactions between groundwater and surface water components under natural and anthropogenic perturbations. We conducted coarse and fine-scale stream sampling on a major tributary of the Lower Flint River (Ichawaynochaway Creek in southwestern Georgia, USA, to identify locations and patterns of enhanced hydrologic connectivity between this stream and the Upper Floridan Aquifer. New hydrological insights for the region: Prior water resource studies in the LFRB were based on regional modeling that neglected local heterogeneities in groundwater/surface water connectivity. Our results demonstrated groundwater inputs were concentrated around five of fifty sampled reaches, evidenced by increases in multiple groundwater indicators at these sites. These five reaches contributed up to 42% of the groundwater detected along the entire 50-km sampling section, with ∼24% entering through one groundwater-dominated tributary, Chickasawhatchee Creek. Intermittent flows occurred in two of these upstream reaches during extreme drought and heavy groundwater pumping, suggesting reach-scale behaviors should be considered in resource management and policy. Keywords: Karst hydrogeology, Hydrologic connectivity, Groundwater/surface water interaction, Upper Floridan Aquifer, Groundwater Irrigation

  18. Patterns and controls on historical channel change in the Willamette River, Oregon, USA

    Science.gov (United States)

    Jennifer Rose Wallick; Gordon E. Grant; Stephen T. Lancaster; John P. Bolte; Roger P. Denlinger

    2007-01-01

    Distinguishing human impacts on channel morphology from the natural behaviour of fluvial systems is problematic for large river basins. Large river basins, by virtue of their size, typically encompass wide ranges of geology and landforms resulting in diverse controls on channel form. They also inevitably incorporate long and complex histories of overlapping human and...

  19. Enhancing mud supply from the Lower Missouri River to the Mississippi River Delta USA: Dam bypassing and coastal restoration

    Science.gov (United States)

    Kemp, G. Paul; Day, John W.; Rogers, J. David; Giosan, Liviu; Peyronnin, Natalie

    2016-12-01

    Sand transport to the Mississippi River Delta (MRD) remains sufficient to build wetlands in shallow, sheltered coastal bays fed by engineered diversions on the Mississippi River (MR) and its Atchafalaya River (AR) distributary. But suspended mud (silt & clay) flux to the coast has dropped from a mean of 390 Mt y-1 in the early 1950s, to 100 Mt y-1 since 1970. This fine-grained sediment travels deeper into receiving estuarine basins and plays a critical role in sustaining existing marshes. Virtually all of the 300 Mt y-1 of missing mud once flowed from the Missouri River (MOR) Basin before nearly 100 dams were built as part of the Pick-Sloan water development project. About 100 Mt y-1 is now intercepted by main-stem Upper MOR dams closed in 1953. But the remaining 200 Mt y-1 is trapped by impoundments built on tributaries to the Lower MOR in the 1950s and 1960s. Sediment flux during the post-dam high MOR discharge years of 1973, 1993 and 2011 approached pre-dam levels when tributaries to the Lower MOR, including the Platte and Kansas Rivers, contributed to flood flows. West bank tributaries drain a vast, arid part of the Great Plains, while those entering from the east bank traverse the lowlands of the MOR floodplain. Both provinces are dominated by highly erodible loess soils. Staunching the continued decline in MR fine-grained sediment flux has assumed greater importance now that engineered diversions are being built to reconnect the Lowermost MR to the MRD. Tributary dam bypassing in the Lower MOR basin could increase mud supply to the MRD by 100-200 Mt y-1 within 1-2 decades. Such emergency measures to save the MRD are compatible with objectives of the Missouri River Restoration and Platte River Recovery Programs to restore MOR riparian habitat for endangered species. Rapid mobilization to shunt fine-grained sediments past as many as 50 Lower MOR tributary dams in several U.S. states will undoubtedly require as much regional coordination and funding in the 21st

  20. Evaluating natural and anthropogenic trace element inputs along an alpine to urban gradient in the Provo River, Utah, USA

    International Nuclear Information System (INIS)

    Carling, Gregory T.; Tingey, David G.; Fernandez, Diego P.; Nelson, Stephen T.; Aanderud, Zachary T.; Goodsell, Timothy H.; Chapman, Tucker R.

    2015-01-01

    Numerous natural and anthropogenic processes in a watershed produce the geochemical composition of a river, which can be altered over time by snowmelt and rainfall events and by built infrastructure (i.e., dams and diversions). Trace element concentrations coupled with isotopic ratios offer valuable insights to disentangle the effects of these processes on water quality. In this study, we measured a suite of 40+ trace and major elements (including As, Cd, Ce, Cr, Cs, Fe, La, Li, Mo, Pb, Rb, Sb, Se, Sr, Ti, Tl, U, and Zn), Sr isotopes ("8"7Sr/"8"6Sr), and stable isotopes of H and O (δD and δ"1"8O) to investigate natural and anthropogenic processes impacting the Provo River in northern Utah, USA. The river starts as a pristine mountain stream and passes through agricultural and urban areas, with two major reservoirs and several major diversions to and from the river. We sampled the entire 120 km length of the Provo River at 13 locations from the Uinta Mountains to Utah Valley, as well as two important tributaries, across the range of hydrologic conditions from low flow to snowmelt runoff during the 2013 water year. We also sampled the furthest downstream site in the Utah Valley urban area during a major flood event. Trace element concentrations indicate that a variety of factors potentially influence Provo River chemistry, including inputs from weathering of carbonate/siliciclastic rocks (Sr) and black shales (Se and U), geothermal groundwater (As, Cs, Li, and Rb), soil erosion during snowmelt runoff (Ce, Cr, Fe, La, Pb, and Ti), legacy mining operations (Mo, Sb, and Tl), and urban runoff (Cr, Pb, and Zn). Although specific elements overlap between different groups, the combination of different elements together with isotopic measurements and streamflow observations may act as diagnostic tools to identify sources. "8"7Sr/"8"6Sr ratios indicate a strong influence of siliciclastic bedrock in the headwaters with values exceeding 0.714 and carbonate bedrock in the

  1. Influence of groundwater on distribution of dwarf wedgemussels (Alasmidonta heterodon in the upper reaches of the Delaware River, northeastern USA

    Directory of Open Access Journals (Sweden)

    D. O. Rosenberry

    2016-10-01

    Full Text Available The remaining populations of the endangered dwarf wedgemussel (DWM (Alasmidonta heterodon in the upper Delaware River, northeastern USA, were hypothesized to be located in areas of greater-than-normal groundwater discharge to the river. We combined physical (seepage meters, monitoring wells and piezometers, thermal (fiber-optic distributed temperature sensing, infrared, vertical bed-temperature profiling, and geophysical (electromagnetic-induction methods at several spatial scales to characterize known DWM habitat and explore this hypothesis. Numerous springs were observed using visible and infrared imaging along the river banks at all three known DWM-populated areas, but not in adjacent areas where DWM were absent. Vertical and lateral groundwater gradients were toward the river along all three DWM-populated reaches, with median upward gradients 3 to 9 times larger than in adjacent reaches. Point-scale seepage-meter measurements indicated that upward seepage across the riverbed was faster and more consistently upward at DWM-populated areas. Discrete and areally distributed riverbed-temperature measurements indicated numerous cold areas of groundwater discharge during warm summer months; all were within areas populated by DWM. Electromagnetic-induction measurements, which may indicate riverbed geology, showed patterning but little correlation between bulk streambed electromagnetic conductivity and areal distribution of DWM. In spite of complexity introduced by hyporheic exchange, multiple lines of research provide strong evidence that DWM are located within or directly downstream of areas of substantial focused groundwater discharge to the river. Broad scale thermal-reconnaissance methods (e.g., infrared may be useful in locating and protecting other currently unknown mussel populations.

  2. Influence of groundwater on distribution of dwarf wedgemussels (Alasmidonta heterodon) in the upper reaches of the Delaware River, northeastern USA

    Science.gov (United States)

    Rosenberry, Donald O.; Briggs, Martin A.; Voytek, Emily B.; Lane, John W.

    2016-01-01

    The remaining populations of the endangered dwarf wedgemussel (DWM) (Alasmidonta heterodon) in the upper Delaware River, northeastern USA, were hypothesized to be located in areas of greater-than-normal groundwater discharge to the river. We combined physical (seepage meters, monitoring wells and piezometers), thermal (fiber-optic distributed temperature sensing, infrared, vertical bed-temperature profiling), and geophysical (electromagnetic-induction) methods at several spatial scales to characterize known DWM habitat and explore this hypothesis. Numerous springs were observed using visible and infrared imaging along the river banks at all three known DWM-populated areas, but not in adjacent areas where DWM were absent. Vertical and lateral groundwater gradients were toward the river along all three DWM-populated reaches, with median upward gradients 3 to 9 times larger than in adjacent reaches. Point-scale seepage-meter measurements indicated that upward seepage across the riverbed was faster and more consistently upward at DWM-populated areas. Discrete and areally distributed riverbed-temperature measurements indicated numerous cold areas of groundwater discharge during warm summer months; all were within areas populated by DWM. Electromagnetic-induction measurements, which may indicate riverbed geology, showed patterning but little correlation between bulk streambed electromagnetic conductivity and areal distribution of DWM. In spite of complexity introduced by hyporheic exchange, multiple lines of research provide strong evidence that DWM are located within or directly downstream of areas of substantial focused groundwater discharge to the river. Broad scale thermal-reconnaissance methods (e.g., infrared) may be useful in locating and protecting other currently unknown mussel populations.

  3. Geomorphic evolution of the Le Sueur River, Minnesota, USA, and implications for current sediment loading

    Science.gov (United States)

    Gran, K.B.; Belmont, P.; Day, S.S.; Jennings, C.; Johnson, Aaron H.; Perg, L.; Wilcock, P.R.

    2009-01-01

    There is clear evidence that the Minnesota River is the major sediment source for Lake Pepin and that the Le Sueur River is a major source to the Minnesota River. Turbidity levels are high enough to require management actions. We take advantage of the well-constrained Holocene history of the Le Sueur basin and use a combination of remote sensing, fi eld, and stream gauge observations to constrain the contributions of different sediment sources to the Le Sueur River. Understanding the type, location, and magnitude of sediment sources is essential for unraveling the Holocene development of the basin as well as for guiding management decisions about investments to reduce sediment loads. Rapid base-level fall at the outlet of the Le Sueur River 11,500 yr B.P. triggered up to 70 m of channel incision at the mouth. Slope-area analyses of river longitudinal profi les show that knickpoints have migrated 30-35 km upstream on all three major branches of the river, eroding 1.2-2.6 ?? 109 Mg of sediment from the lower valleys in the process. The knick zones separate the basin into an upper watershed, receiving sediment primarily from uplands and streambanks, and a lower, incised zone, which receives additional sediment from high bluffs and ravines. Stream gauges installed above and below knick zones show dramatic increases in sediment loading above that expected from increases in drainage area, indicating substantial inputs from bluffs and ravines.

  4. Spatial and temporal trends of freshwater mussel assemblages in the Meramec River Basin, Missouri, USA

    Science.gov (United States)

    Hinck, Jo Ellen; McMurray, Stephen E.; Roberts, Andrew D.; Barnhart, M. Christopher; Ingersoll, Christopher G.; Wang, Ning; Augspurger, Tom

    2012-01-01

    The Meramec River basin in east-central Missouri has one of the most diverse unionoid mussel faunas in the central United States with >40 species identified. Data were analyzed from historical surveys to test whether diversity and abundance of mussels in the Meramec River basin (Big, Bourbeuse, and Meramec rivers, representing >400 river miles) decreased between 1978 and 1997. We found that over 20y, species richness and diversity decreased significantly in the Bourbeuse and Meramec rivers but not in the Big River. Most species were found at fewer sites and in lower numbers in 1997 than in 1978. Federally endangered species and Missouri Species of Conservation Concern with the most severe temporal declines were Alasmidonta viridis, Arcidens confragosus, Elliptio crassidens, Epioblasma triquetra, Fusconaia ebena, Lampsilis abrupta, Lampsilis brittsi, and Simpsonaias ambigua. Averaged across all species, mussels were generally being extirpated from historical sampling sites more rapidly than colonization was occurring. An exception was one reach of the Meramec River between river miles 28.4 and 59.5, where mussel abundance and diversity were greater than in other reaches and where colonization of Margaritiferidae, Lampsilini, and Quadrulini exceeded extirpation. The exact reasons mussel diversity and abundance have remained robust in this 30- mile reach is uncertain, but the reach is associated with increased gradients, few long pools, and vertical rock faces, all of which are preferable for mussels. Complete loss of mussel communities at eight sites (16%) with relatively diverse historical assemblages was attributed to physical habitat changes including bank erosion, unstable substrate, and sedimentation. Mussel conservation efforts, including restoring and protecting riparian habitats, limiting the effects of in-stream sand and gravel mining, monitoring and controlling invasive species, and protecting water quality, may be warranted in the Meramec River basin.

  5. Using 87Sr/86Sr ratios to investigate changes in stream chemistry during snowmelt in the Provo River, Utah, USA

    Science.gov (United States)

    Hale, C. A.; Carling, G. T.; Fernandez, D. P.; Nelson, S.; Aanderud, Z.; Tingey, D. G.; Dastrup, D.

    2017-12-01

    Water chemistry in mountain streams is variable during spring snowmelt as shallow groundwater flow paths are activated in the watershed, introducing solutes derived from soil water. Sr isotopes and other tracers can be used to differentiate waters that have interacted with soils and dust (shallow groundwater) and bedrock (deep groundwater). To investigate processes controlling water chemistry during snowmelt, we analyzed 87Sr/86Sr ratios, Sr and other trace element concentrations in bulk snowpack, dust, soil, soil water, ephemeral channels, and river water during snowmelt runoff in the upper Provo River watershed in northern Utah, USA, over four years (2014-2017). Strontium concentrations in the river averaged 20 ppb during base flow and decreased to 10 ppb during snowmelt runoff. 87Sr/86Sr ratios were around 0.717 during base flow and decreased to 0.715 in 2014 and 0.713 in 2015 and 2016 during snowmelt, trending towards less radiogenic values of mineral dust inputs in the Uinta Mountain soils. Ephemeral channels, representing shallow flow paths with soil water inputs, had Sr concentrations between 7-20 ppb and 87Sr/86Sr ratios between 0.713-0.716. Snowpack Sr concentrations were generally soils that contain accumulated dust deposits with a less radiogenic 87Sr/86Sr ratio. These results suggest that flow paths and atmospheric dust are important to consider when investigating variable solute loads in mountain streams.

  6. Empirical yield tables for Wisconsin.

    Science.gov (United States)

    Jerold T. Hahn; Joan M. Stelman

    1989-01-01

    Describes the tables derived from the 1983 Forest Survey of Wisconsin and presents ways the tables can be used. These tables are broken down according to Wisconsin`s five Forest Survey Units and 14 forest types.

  7. Contingency table analysis of pebble lithology and roundness: A case study of Huangshui River, China and comparison to rivers in the Rocky Mountains, USA

    Science.gov (United States)

    Miao, X.; Lindsey, D.A.; Lai, Z.; Liu, Xiuying

    2010-01-01

    Contingency table analysis of pebble lithology and roundness is an effective way to identify the source terrane of a drainage basin and to distinguish changes in basin size, piracy, tectonism, and other events. First, the analysis to terrace gravel deposited by the Huangshui River, northeastern Tibet Plateau, China, shows statistically contrasting pebble populations for the oldest terrace (T7, Dadongling, 1.2. Ma) and the youngest terraces (T0-T3, ?. 0.15. Ma). Two fluvial processes are considered to explain the contrast in correlation between lithology and roundness in T7 gravel versus T0-T3 gravel: 1) reworking of T7 gravel into T0-T3 gravel and 2) growth in the size of the river basin between T7 and T0-T3 times. We favor growth in basin size as the dominant process, from comparison of pebble counts and contingency tables. Second, comparison of results from Huangshui River of China to three piedmont streams of the Rocky Mountains, USA highlights major differences in source terrane and history. Like Rocky Mountain piedmont gravel from Colorado examples, the Huangshui gravels show a preference (observed versus expected frequency) for rounded granite. But unlike Rocky Mountain gravel, Huangshui gravel shows a preference for angular quartzite and for rounded sandstone. In conclusion, contrasting behavior of lithologies during transport, not always apparent in raw pebble counts, is readily analyzed using contingency tables to identify the provenance of individual lithologies, including recycled clasts. Results of the analysis may help unravel river history, including changes in basin size and lithology. ?? 2009.

  8. Assessing the impacts of river regulation on native bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarkii lewisi) habitats in the upper Flathead River, Montana, USA

    Science.gov (United States)

    Muhlfeld, Clint C.; Jones, Leslie A.; Kotter, D.; Miller, William J.; Geise, Doran; Tohtz, Joel; Marotz, Brian

    2012-01-01

    Hungry Horse Dam on the South Fork Flathead River, Montana, USA, has modified the natural flow regimen for power generation, flood risk management and flow augmentation for anadromous fish recovery in the Columbia River. Concern over the detrimental effects of dam operations on native resident fishes prompted research to quantify the impacts of alternative flow management strategies on threatened bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarkii lewisi) habitats. Seasonal and life‐stage specific habitat suitability criteria were combined with a two‐dimensional hydrodynamic habitat model to assess discharge effects on usable habitats. Telemetry data used to construct seasonal habitat suitability curves revealed that subadult (fish that emigrated from natal streams to the river system) bull trout move to shallow, low‐velocity shoreline areas at night, which are most sensitive to flow fluctuations. Habitat time series analyses comparing the natural flow regimen (predam, 1929–1952) with five postdam flow management strategies (1953–2008) show that the natural flow conditions optimize the critical bull trout habitats and that the current strategy best resembles the natural flow conditions of all postdam periods. Late summer flow augmentation for anadromous fish recovery, however, produces higher discharges than predam conditions, which reduces the availability of usable habitat during this critical growing season. Our results suggest that past flow management policies that created sporadic streamflow fluctuations were likely detrimental to resident salmonids and that natural flow management strategies will likely improve the chances of protecting key ecosystem processes and help to maintain and restore threatened bull trout and westslope cutthroat trout populations in the upper Columbia River Basin.

  9. Precipitation Frequency for Ohio River Basin, USA - NOAA Atlas 14 Volume 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This GIS grid atlas contains precipitation frequency estimates for the Ohio River Basin and Surrounding states is based on precipitation data collected between...

  10. The western pond turtle (Clemmys marmorata) in the Mojave River, California, USA: Highly adapted survivor or tenuous relict?

    Science.gov (United States)

    Lovich, J.; Meyer, K.

    2002-01-01

    Aspects of the ecology of populations of the western pond turtle Clemmys marmorata were investigated in the Mojave River of the central Mojave Desert, California, U.S.A. One population occupied man-made ponds and the other occurred in natural ponds in the flood plain of the Mojave River. Both habitats are severely degraded as a result of ground water depletion from human activities along the river and one is infested with the exotic shrub saltcedar Tamarix ramosissima. Mean female carapace length (CL) was significantly greater (14.4 cm) than that of males (13.7 cm). Live juveniles were not detected during the period of study. Shelled eggs were visible in X-radiographs from 26 May to 14 July. Mean clutch size was 4.46 and ranged from 3 to 6 eggs. Clutch size did not vary between 1998 and 1999 but was significantly correlated with CL for both years combined, increasing at the rate of 0.548 eggs/cm CL. Gravid female CL ranged from 13.3-16.0 cm. Some females nested in both years. Mean X-ray egg width (21.8 mm) was not significantly correlated with CL or clutch size. X-ray egg width differed more among clutches than within, whether including CL as a co-variate or not. Nesting migrations occurred from 6 June to 8 July with minimum round trip distances ranging from 17.5-585 m with a mean of 195 m. Mean estimated time of departure as measured at the drift fence was 18:13. Most females returned to the ponds in the early morning. Nesting migrations required females to be out of the water for estimated periods of 0.83 to 86 h. The destination of nesting females was typically fluvial sand bars in the channel of the dry riverbed. Overall, the ecology of C. marmorata in the Mojave River is very similar to that reported for populations in less severe habitats along the west coast of the United States. Notable exceptions include long nesting migrations to sandbars in the dry river channel, a possible result of human modifications to the environment, and an apparent lack of

  11. Hydraulic modeling of mussel habitat at a bridge-replacement site, Allegheny River, Pennsylvania, USA

    Science.gov (United States)

    Fulton, John W.; Wagner, Chad R.; Rogers, Megan E.; Zimmerman, Gregory F.

    2010-01-01

    The Allegheny River in Pennsylvania supports a large and diverse freshwater-mussel community, including two federally listed endangered species, Pleurobema clava(Clubshell) and Epioblasma torulosa rangiana (Northern Riffleshell). It is recognized that river hydraulics and morphology play important roles in mussel distribution. To assess the hydraulic influences of bridge replacement on mussel habitat, metrics such as depth, velocity, and their derivatives (shear stress, Froude number) were collected or computed.

  12. Organic Carbon and Trace Element Cycling in a River-Dominated Tidal Coastal Wetland System (Tampa Bay, FL, USA)

    Science.gov (United States)

    Moyer, R. P.; Smoak, J. M.; Engelhart, S. E.; Powell, C. E.; Chappel, A. R.; Gerlach, M. J.; Kemp, A.; Breithaupt, J. L.

    2016-02-01

    Tampa Bay is the largest open water, river-fed estuary in Florida (USA), and is characterized by the presence of both mangrove and salt marsh ecosystems. Both coastal wetland systems, and small rivers such as the ones draining into Tampa Bay have historically been underestimated in terms of their role in the global carbon and elemental cycles. Climate change and sea-level rise (SLR) are major threats in Tampa Bay and stand to disrupt hydrologic cycles, compromising sediment accumulation and the rate of organic carbon (OC) burial. This study evaluates organic carbon content, sediment accumulation, and carbon burial rates in salt marsh and mangrove ecosystems, along with measurements of fluxes of dissolved OC (DOC) and trace elements in the water column of the Little Manatee River (LMR) in Tampa Bay. The characterization of OC and trace elements in tidal rivers and estuaries is critical for quantitatively constraining these systems in local-to-regional scale biogeochemical budgets, and provide insight into biogeochemical processes occurring with the estuary and adjacent tidal wetlands. Material fluxes of DOC and trace elements were tied to discharge irrespective of season, and the estuarine habitats removed 15-65% of DOC prior to export to Tampa Bay and the Gulf of Mexico. Thus, material is available for cycling and burial within marsh and mangrove peats, however, LMR mangrove peats have higher OC content and burial rates than adjacent salt marsh peats. Sedimentary accretion rates in LMR marshes are not currently keeping pace with SLR, thus furthering the rapid marsh-to-mangrove conversions that have been seen in Tampa Bay over the past half-century. Additionally, wetlands in Tampa Bay tend to have a lower rate of carbon burial than other Florida tidal wetlands, demonstrating their high sensitivity to climate change and SLR.

  13. The impact of the Suwannee River Sill on the surface hydrology of Okefenokee Swamp, USA

    Science.gov (United States)

    Yin, Zhi-Yong; Brook, George A.

    1992-08-01

    Okefenokee Swamp, located in southeastern Georgia and northeastern Florida, is one of the largest freshwater wetland complexes and a National Wildlife Refuge in the United States. A low earthen dam, the Suwannee River Sill, was built on the largest outlet stream of Okefenokee Swamp in the early 1960s. The purpose was to raise the water level and thus reduce fire frequency in this National Wildlife Refuge. In this study, hydrologic conditions in the swamp prior to (1937-1962) and after (1963-1986) sill construction were compared by statistical procedures. An average 9 cm increase in swamp water level at the Suwannee Canal Recreation Area was attributed to the sill. Increased precipitation and decreased evapotranspiration during the study period caused another 5 cm increase in water levels. Seasonal changes in climatic factors were also responsible for seasonal changes in water levels and streamflow in the pre- and post-sill periods. Although the effect of the sill on water level was more significant during dry periods, it is doubtful that the Suwannee River Sill actually prevented occurrence of severe fibres in the post-sill period, which was wetter than the period before sill construction. The sill diverted 2.6% of swamp outflow from the Suwannee River to the St. Mary's River. Diversion of flow was more marked during low flow periods. Therefore, the discharge of the St. Mary's River in the post-sill increased more than the discharge of the Suwannee River and its variability became lower that of the Suwannee River. The relationships between swamp water level, streamflow and precipitation were also changed due to construction of the sill.

  14. Spatial patterns of aquatic habitat richness in the Upper Mississippi River floodplain, USA

    Science.gov (United States)

    De Jager, Nathan R.; Rohweder, Jason J.

    2012-01-01

    Interactions among hydrology and geomorphology create shifting mosaics of aquatic habitat patches in large river floodplains (e.g., main and side channels, floodplain lakes, and shallow backwater areas) and the connectivity among these habitat patches underpins high levels of biotic diversity and productivity. However, the diversity and connectivity among the habitats of most floodplain rivers have been negatively impacted by hydrologic and structural modifications that support commercial navigation and control flooding. We therefore tested the hypothesis that the rate of increase in patch richness (# of types) with increasing scale reflects anthropogenic modifications to habitat diversity and connectivity in a large floodplain river, the Upper Mississippi River (UMR). To do this, we calculated the number of aquatic habitat patch types within neighborhoods surrounding each of the ≈19 million 5-m aquatic pixels of the UMR for multiple neighborhood sizes (1–100 ha). For all of the 87 river-reach focal areas we examined, changes in habitat richness (R) with increasing neighborhood length (L, # pixels) were characterized by a fractal-like power function R = Lz (R2 > 0.92 (P z) measures the rate of increase in habitat richness with neighborhood size and is related to a fractal dimension. Variation in z reflected fundamental changes to spatial patterns of aquatic habitat richness in this river system. With only a few exceptions, z exceeded the river-wide average of 0.18 in focal areas where side channels, contiguous floodplain lakes, and contiguous shallow-water areas exceeded 5%, 5%, and 10% of the floodplain respectively. In contrast, z was always less than 0.18 for focal areas where impounded water exceeded 40% of floodplain area. Our results suggest that rehabilitation efforts that target areas with <5% of the floodplain in side channels, <5% in floodplain lakes, and/or <10% in shallow-water areas could improve habitat diversity across multiple scales in the UMR.

  15. Golden alga presence and abundance are inversely related to salinity in a high-salinity river ecosystem, Pecos River, USA

    Science.gov (United States)

    Israël, Natascha M.D.; VanLandeghem, Matthew M.; Denny, Shawn; Ingle, John; Patino, Reynaldo

    2014-01-01

    Prymnesium parvum (golden alga, GA) is a toxigenic harmful alga native to marine ecosystems that has also affected brackish inland waters. The first toxic bloom of GA in the western hemisphere occurred in the Pecos River, one of the saltiest rivers in North America. Environmental factors (water quality) associated with GA occurrence in this basin, however, have not been examined. Water quality and GA presence and abundance were determined at eight sites in the Pecos River basin with or without prior history of toxic blooms. Sampling was conducted monthly from January 2012 to July 2013. Specific conductance (salinity) varied spatiotemporally between 4408 and 73,786 mS/cm. Results of graphical, principal component (PCA), and zero-inflated Poisson (ZIP) regression analyses indicated that the incidence and abundance of GA are reduced as salinity increases spatiotemporally. LOWESS regression and correlation analyses of archived data for specific conductance and GA abundance at one of the study sites retrospectively confirmed the negative association between these variables. Results of PCA also suggested that at <15,000 mS/cm, GA was present at a relatively wide range of nutrient (nitrogen and phosphorus) concentrations whereas at higher salinity, GA was observed only at mid-to-high nutrient levels. Generally consistent with earlier studies, results of ZIP regression indicated that GA presence is positively associated with organic phosphorus and in samples where GA is present, GA abundance is positively associated with organic nitrogen and negatively associated with inorganic nitrogen. This is the first report of an inverse relation between salinity and GA presence and abundance in riverine waters and of interaction effects of salinity and nutrients in the field. These observations contribute to a more complete understanding of environmental conditions that influence GA distribution in inland waters.

  16. Comparison of Cottonwood Dendrochronology and Optically Stimulated Luminescence Geochronometers Along a High Plains Meandering River, Powder River, Montana, USA

    Science.gov (United States)

    Hasse, T. R.; Schook, D. M.

    2017-12-01

    Geochronometers at centennial scales can aid our understanding of process rates in fluvial geomorphology. Plains cottonwood trees (Populus deltoides ssp. Monilifera) in the high plains of the United States are known to germinate on freshly created deposits such as point bars adjacent to rivers. As the trees mature they may be partially buried (up to a few meters) by additional flood deposits. Cottonwood age gives a minimum age estimate of the stratigraphic surface where the tree germinated and a maximum age estimate for overlying sediments, providing quantitative data on rates of river migration and sediment accumulation. Optically Stimulated Luminescence (OSL) of sand grains can be used to estimate the time since the sand grains were last exposed to sunlight, also giving a minimum age estimate of sediment burial. Both methods have disadvantages: Browsing, partial burial, and other damage to young cottonwoods can increase the time required for the tree to reach a height where it can be sampled with a tree corer, making the germination point a few years to a few decades older than the measured tree age; fluvial OSL samples can have inherited age (when the OSL age is older than the burial age) if the sediment was not completely bleached prior to burial. We collected OSL samples at 8 eroding banks of the Powder River Montana, and tree cores at breast height (±1.2 m) from cottonwood trees growing on the floodplain adjacent to the OSL sample locations. Using the Minimum Age Model (MAM) we found that OSL ages appear to be 500 to 1,000 years older than the adjacent cottonwood trees which range in age (at breast height) from 60 to 185 years. Three explanations for this apparent anomaly in ages are explored. Samples for OSL could be below a stratigraphic unconformity relative to the cottonwood germination elevation. Shallow samples for OSL could be affected by anthropogenic mixing of sediments due to plowing and leveling of hay fields. The OSL samples could have

  17. Water quality trends in the Delaware River Basin (USA) from 1980 to 2005.

    Science.gov (United States)

    Kauffman, Gerald J; Homsey, Andrew R; Belden, Andrew C; Sanchez, Jessica Rittler

    2011-06-01

    In 1940, the tidal Delaware River was "one of the most grossly polluted areas in the United States." During the 1950s, water quality was so poor along the river at Philadelphia that zero oxygen levels prevented migration of American shad leading to near extirpation of the species. Since then, water quality in the Delaware Basin has improved with implementation of the 1961 Delaware River Basin Compact and 1970s Federal Clean Water Act Amendments. At 15 gages along the Delaware River and major tributaries between 1980 and 2005, water quality for dissolved oxygen, phosphorus, nitrogen, and sediment improved at 39%, remained constant at 51%, and degraded at 10% of the stations. Since 1980, improved water-quality stations outnumbered degraded stations by a 4 to 1 margin. Water quality remains good in the nontidal river above Trenton and, while improved, remains fair to poor for phosphorus and nitrogen in the tidal estuary near Philadelphia and in the Lehigh and Schuylkill tributaries. Water quality is good in heavily forested watersheds (>50%) and poor in highly cultivated watersheds. Water quality recovery in the Delaware Basin is coincident with implementation of environmental laws enacted in the 1960s and 1970s and is congruent with return of striped bass, shad, blue crab, and bald eagle populations.

  18. Coastal change from a massive sediment input: Dam removal, Elwha River, Washington, USA

    Science.gov (United States)

    Warrick, Jonathan A.; Gelfenbaum, Guy R.; Stevens, Andrew; Miller, Ian M.; Kaminsky, George M.; Foley, Melissa M.

    2015-01-01

    The removal of two large dams on the Elwha River, Washington, provides an ideal opportunity to study coastal morphodynamics during increased sediment supply. The dam removal project exposed ~21 million cubic meters (~30 million tonnes) of sediment in the former reservoirs, and this sediment was allowed to erode by natural river processes. Elevated rates of sand and gravel sediment transport in the river occurred during dam removal. Most of the sediment was transported to the coast, and this renewed sediment supply resulted in hundreds of meters of seaward expansion of the river delta since 2011. Our most recent survey in January 2015 revealed that a cumulative ~3.5 million m3 of sediment deposition occurred at the delta since the beginning of the dam removal project, and that aggradation had exceeded 8 m near the river mouth. Some of the newly deposited sediment has been shaped by waves and currents into a series of subaerial berms that appear to move shoreward with time.

  19. Biological effects of simulated discharge plume entrainment at Indian Point Nuclear Power Station, Hudson River estuary, USA

    International Nuclear Information System (INIS)

    Lanza, G.R.; Lauer, G.J.; Ginn, T.C.; Storm, P.C.; Zubarik, L.; New York Univ., N.Y.

    1975-01-01

    Laboratory and field simulations of the discharge plume entrainment of phytoplankton, zooplankton and fish were carried out at the Indian Point Nuclear Station, Hudson River estuary, USA. Phytoplankton assemblages studied on two dates produced different response patterns measured as photosynthetic activity. Chlorophyll-a levels did not change following simulated entrainment. Possible explanations for the differences are discussed. The two abundant copepods Acartia tonsa and Eurytemorta affinis appear to tolerate exposure to discharge plume ΔT without adverse effects. Copepods subjected to plume entrainment may suffer considerable mortality during periods of condenser chlorination. In general, the amphipod Gammarus spp. did not appear to suffer significant mortality during simulated entrainment. Juvenile striped bass, Morone saxatilis, were not affected by simulated plume transit before and during plant condenser chlorination; however, a simulated ''worst possible case'' plume ΔT produced statistically significant moralities. (author)

  20. New Data on Conodonts of the Upper Devonian of the Polar Urals (Ostantsovy Section, Malaya Usa River

    Directory of Open Access Journals (Sweden)

    M.A. Soboleva

    2016-09-01

    Full Text Available The main features of the Upper Devonian sediments on the right side of the Ostantsovy Creek (the left tributary of the Malaya Usa River in the eastern part of the Bielsko-Eletskaya structural formational belt on the western slope of the Polar Urals have been considered. The late Frasnian age of these sediments has been determined on the basis of conodonts (the linguiformis zone of the standard conodont scale. The transition from clastic and organic limestones with massive stromatoporoid forms to limestones with fused (reservoir stromatoporoid forms and Palmatolepis biofacies is indicative of the transgressive shift of the linguiformis phase. This transgressive level is an indirect expression of the Upper Kellwasser global event.

  1. Wisconsin's forests, 2004

    Science.gov (United States)

    Charles H. (Hobie) Perry; Vern A. Everson; Ian K. Brown; Jane Cummings-Carlson; Sally E. Dahir; Edward A. Jepsen; Joe Kovach; Michael D. Labissoniere; Terry R. Mace; Eunice A. Padley; Richard B. Rideout; Brett J. Butler; Susan J. Crocker; Greg C. Liknes; Randall S. Morin; Mark D. Nelson; Barry T. (Ty) Wilson; Christopher W. Woodall

    2008-01-01

    The first full, annualized inventory of Wisconsin's forests was completed in 2004 after 6,478 forested plots were visited. There are more than 16.0 million acres of forest land in the Wisconsin, nearly half of the State's land area; 15.8 million acres meet the definition of timberland. The total area of both forest land and timberland continues an upward...

  2. Forests of Wisconsin, 2013

    Science.gov (United States)

    Charles H. Perry

    2014-01-01

    This resource update provides an overview of forest resources in Wisconsin based on an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program at the Northern Research Station in cooperation with the Wisconsin Department of Natural Resources. Data estimates are based on field data collected using the FIA annualized sample design and...

  3. Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA

    Science.gov (United States)

    Spencer, Robert G. M.; Butler, Kenna D.; Aiken, George R.

    2012-09-01

    Dissolved organic carbon (DOC) concentration and chromophoric dissolved organic matter (CDOM) parameters were measured over a range of discharge in 30 U.S. rivers, covering a diverse assortment of fluvial ecosystems in terms of watershed size and landscape drained. Relationships between CDOM absorption at a range of wavelengths (a254, a350, a440) and DOC in the 30 watersheds were found to correlate strongly and positively for the majority of U.S. rivers. However, four rivers (Colorado, Colombia, Rio Grande and St. Lawrence) exhibited statistically weak relationships between CDOM absorption and DOC. These four rivers are atypical, as they either drain from the Great Lakes or experience significant impoundment of water within their watersheds, and they exhibited values for dissolved organic matter (DOM) parameters indicative of autochthonous or anthropogenic sources or photochemically degraded allochthonous DOM and thus a decoupling between CDOM and DOC. CDOM quality parameters in the 30 rivers were found to be strongly correlated to DOM compositional metrics derived via XAD fractionation, highlighting the potential for examining DOM biochemical quality from CDOM measurements. This study establishes the ability to derive DOC concentration from CDOM absorption for the majority of U.S. rivers, describes characteristics of riverine systems where such an approach is not valid, and emphasizes the possibility of examining DOM composition and thus biogeochemical function via CDOM parameters. Therefore, the usefulness of CDOM measurements, both laboratory-based analyses and in situ instrumentation, for improving spatial and temporal resolution of DOC fluxes and DOM dynamics in future studies is considerable in a range of biogeochemical studies.

  4. High frequency measurement of nitrate concentration in the Lower Mississippi River, USA

    Science.gov (United States)

    Duan, Shuiwang; Powell, Rodney T.; Bianchi, Thomas S.

    2014-11-01

    Nutrient concentrations in the Mississippi River have increased dramatically since the 1950s, and high frequency measurements on nitrate concentration are required for accurate load estimations and examinations on nitrate transport and transformation processes. This three year record of high temporal resolution (every 2-3 h) data clearly illustrates the importance of high frequency sampling in improving load estimates and resolving variations in nitrate concentration with river flow and tributary inputs. Our results showed large short-term (days to weeks) variations in nitrate concentration but with no diurnal patterns. A repeatable and pronounced seasonal pattern of nitrate concentration was observed, and showed gradual increases from the lowest values in September (during base-flow), to the highest in June - which was followed by a rapid decrease. This seasonal pattern was only moderately linked with water discharge, and more controlled by nitrogen transformation/export from watershed as well as mixing patterns of the two primary tributaries (the upper Mississippi and the Ohio Rivers), which have distinctly different nitrate concentrations and flow patterns. Based on continuous in situ flow measurements, we estimated 554-886 × 106 kg of nitrate-N was exported from the Mississippi River system during years 2004-2006, which was <9% and <16% lower than U.S. Geological Survey's (USGS) estimates using their LOADEST or composite methods, respectively. USGS methods generally overestimated nitrate loads during rising stages and underestimated the loads during falling stages. While changes in nitrate concentrations in large rivers are generally not as responsive to alterations in diurnal inputs and/or watershed hydrology as small rivers, high-frequency water quality sampling would help in monitoring short-term (days to weeks) variations in nutrient concentration patterns and thus improve the accuracy of nutrient flux estimates.

  5. Integrated assessment of the impacts of agricultural drainwater in the Salinas River (California, USA)

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, B.S.; Hunt, J.W.; Phillips, B.M.; Nicely, P.A.; Vlaming, V. de; Connor, V.; Richard, N.; Tjeerdema, R.S

    2003-08-01

    Invertebrate mortality was correlated with levels of water and sediment contaminatioin in the Salinas River. - The Salinas River is the largest of the three rivers that drain into the Monterey Bay National Marine Sanctuary in central California. Large areas of this watershed are cultivated year-round in row crops and previous laboratory studies have demonstrated that acute toxicity of agricultural drainwater to Ceriodaphnia dubia is caused by the organophosphate (OP) pesticides chlorpyrifos and diazinon. In the current study, we used a combination of ecotoxicologic tools to investigate incidence of chemical contamination and toxicity in waters and sediments in the river downstream of a previously uncharacterized agricultural drainage creek system. Water column toxicity was investigated using a cladoceran C. dubia while sediment toxicity was investigated using an amphipod Hyalella azteca. Ecological impacts of drainwater were investigated using bioassessments of macroinvertebrate community structure. The results indicated that Salinas River water downstream of the agricultural drain is acutely toxic to Ceriodaphnia, and toxicity to this species was highly correlated with combined toxic units (TUs) of chlorpyrifos and diazinon. Laboratory tests were used to demonstrate that sediments in this system were acutely toxic to H. azteca, which is a resident genus. Macroinvertebrate community structure was moderately impacted downstream of the agricultural drain input. While the lowest macroinvertebrate abundances were measured at the station demonstrating the greatest water column and sediment toxicity and the highest concentrations of pesticides, macroinvertebrate metrics were more significantly correlated with bank vegetation cover than any other variable. Results of this study suggest that pesticide pollution is the likely cause of laboratory-measured toxicity in the Salinas River samples and that this factor may interact with other factors to impact the

  6. Integrated assessment of the impacts of agricultural drainwater in the Salinas River (California, USA)

    International Nuclear Information System (INIS)

    Anderson, B.S.; Hunt, J.W.; Phillips, B.M.; Nicely, P.A.; Vlaming, V. de; Connor, V.; Richard, N.; Tjeerdema, R.S.

    2003-01-01

    Invertebrate mortality was correlated with levels of water and sediment contaminatioin in the Salinas River. - The Salinas River is the largest of the three rivers that drain into the Monterey Bay National Marine Sanctuary in central California. Large areas of this watershed are cultivated year-round in row crops and previous laboratory studies have demonstrated that acute toxicity of agricultural drainwater to Ceriodaphnia dubia is caused by the organophosphate (OP) pesticides chlorpyrifos and diazinon. In the current study, we used a combination of ecotoxicologic tools to investigate incidence of chemical contamination and toxicity in waters and sediments in the river downstream of a previously uncharacterized agricultural drainage creek system. Water column toxicity was investigated using a cladoceran C. dubia while sediment toxicity was investigated using an amphipod Hyalella azteca. Ecological impacts of drainwater were investigated using bioassessments of macroinvertebrate community structure. The results indicated that Salinas River water downstream of the agricultural drain is acutely toxic to Ceriodaphnia, and toxicity to this species was highly correlated with combined toxic units (TUs) of chlorpyrifos and diazinon. Laboratory tests were used to demonstrate that sediments in this system were acutely toxic to H. azteca, which is a resident genus. Macroinvertebrate community structure was moderately impacted downstream of the agricultural drain input. While the lowest macroinvertebrate abundances were measured at the station demonstrating the greatest water column and sediment toxicity and the highest concentrations of pesticides, macroinvertebrate metrics were more significantly correlated with bank vegetation cover than any other variable. Results of this study suggest that pesticide pollution is the likely cause of laboratory-measured toxicity in the Salinas River samples and that this factor may interact with other factors to impact the

  7. Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA

    Science.gov (United States)

    Spencer, Robert G.M.; Butler, Kenna D.; Aiken, George R.

    2012-01-01

    Dissolved organic carbon (DOC) concentration and chromophoric dissolved organic matter (CDOM) parameters were measured over a range of discharge in 30 U.S. rivers, covering a diverse assortment of fluvial ecosystems in terms of watershed size and landscape drained. Relationships between CDOM absorption at a range of wavelengths (a254, a350, a440) and DOC in the 30 watersheds were found to correlate strongly and positively for the majority of U.S. rivers. However, four rivers (Colorado, Colombia, Rio Grande and St. Lawrence) exhibited statistically weak relationships between CDOM absorption and DOC. These four rivers are atypical, as they either drain from the Great Lakes or experience significant impoundment of water within their watersheds, and they exhibited values for dissolved organic matter (DOM) parameters indicative of autochthonous or anthropogenic sources or photochemically degraded allochthonous DOM and thus a decoupling between CDOM and DOC. CDOM quality parameters in the 30 rivers were found to be strongly correlated to DOM compositional metrics derived via XAD fractionation, highlighting the potential for examining DOM biochemical quality from CDOM measurements. This study establishes the ability to derive DOC concentration from CDOM absorption for the majority of U.S. rivers, describes characteristics of riverine systems where such an approach is not valid, and emphasizes the possibility of examining DOM composition and thus biogeochemical function via CDOM parameters. Therefore, the usefulness of CDOM measurements, both laboratory-based analyses and in situ instrumentation, for improving spatial and temporal resolution of DOC fluxes and DOM dynamics in future studies is considerable in a range of biogeochemical studies.

  8. Hyalella azteca (Saussure) responses to Coldwater River backwater sediments in Mississippi, USA.

    Science.gov (United States)

    Knight, Scott S; Lizotte, Richard E; Shields, F Douglas

    2009-10-01

    Sediment from three Coldwater River, Mississippi backwaters was examined using 28 day Hyalella azteca bioassays and chemical analyses for 33 pesticides, seven metals and seven PCB mixtures. Hydrologic connectivity between the main river channel and backwater varied widely among the three sites. Mortality occurred in the most highly connected backwater while growth impairment occurred in the other two. Precopulatory guarding behavior was not as sensitive as growth. Fourteen contaminants (seven metals, seven pesticides) were detected in sediments. Survival was associated with the organochlorine insecticide heptachlor.

  9. Spatial distribution of impacts to channel bed mobility due to flow regulation, Kootenai River, USA

    Science.gov (United States)

    Michael Burke; Klaus Jorde; John M. Buffington; Jeffrey H. Braatne; Rohan Benjakar

    2006-01-01

    The regulated hydrograph of the Kootenai River between Libby Dam and Kootenay Lake has altered the natural flow regime, resulting in a significant decrease in maximum flows (60% net reduction in median 1-day annual maximum, and 77%-84% net reductions in median monthly flows for the historic peak flow months of May and June, respectively). Other key hydrologic...

  10. Habitat use of age 0 Alabama shad in the Pascagoula River drainage, USA

    Science.gov (United States)

    P. F. Mickle; J.F. Schaefer; S.B. Adams; B.R. Kreiser

    2010-01-01

    Alabama shad (Alosa alabamae) is an anadromous species that spawns in Gulf of Mexico drainages and is a NOAA Fisheries Species of Concern. Habitat degradation and barriers to migration are considered contributing factors to range contraction that has left just the Pascagoula River drainage population in Mississippi. We studied juvenile life history and autecology in...

  11. A MASS BALANCE OF SURFACE WATER GENOTOXICITY IN PROVIDENCE RIVER (RHODE ISLAND USA)

    Science.gov (United States)

    White and Rasmussen (Mutation Res. 410:223-236) used a mass balance approach to demonstrate that over 85% of the total genotoxic loading to the St. Lawrence River at Montreal is non-industrial. To validate the mass balance approach and investigate the sources of genotoxins in sur...

  12. The Cost of Clean Water in the Delaware River Basin (USA

    Directory of Open Access Journals (Sweden)

    Gerald J. Kauffman

    2018-01-01

    Full Text Available The Delaware River has made a marked recovery in the half-century since the adoption of the Delaware River Basin Commission (DRBC Compact in 1961 and passage of the Federal Clean Water Act amendments during the 1970s. During the 1960s, the DRBC set a 3.5 mg/L dissolved oxygen criterion for the river based on an economic analysis that concluded that a waste load abatement program designed to meet fishable water quality goals would generate significant recreational and environmental benefits. Scientists with the Delaware Estuary Program have recently called for raising the 1960s dissolved oxygen criterion along the Delaware River from 3.5 mg/L to 5.0 mg/L to protect anadromous American shad and Atlantic sturgeon, and address the prospect of rising temperatures, sea levels, and salinity in the estuary. This research concludes, through a nitrogen marginal abatement cost (MAC analysis, that it would be cost-effective to raise dissolved oxygen levels to meet a more stringent standard by prioritizing agricultural conservation and some wastewater treatment investments in the Delaware River watershed to remove 90% of the nitrogen load by 13.6 million kg N/year (30 million lb N/year for just 35% ($160 million of the $449 million total cost. The annual least cost to reduce nitrogen loads and raise dissolved oxygen levels to meet more stringent water quality standards in the Delaware River totals $45 million for atmospheric NOX reduction, $130 million for wastewater treatment, $132 million for agriculture conservation, and $141 million for urban stormwater retrofitting. This 21st century least cost analysis estimates that an annual investment of $50 million is needed to reduce pollutant loads in the Delaware River to raise dissolved oxygen levels to 4.0 mg/L, $150 million is needed for dissolved oxygen levels to reach 4.5 mg/L, and $449 million is needed for dissolved oxygen levels to reach 5.0 mg/L.

  13. Geomorphic changes resulting from floods in reconfigured gravel-bed river channels in Colorado, USA

    Science.gov (United States)

    Elliott, J.G.; Capesius, J.P.

    2009-01-01

    Geomorphic changes in reconfi gured reaches of three Colorado rivers in response to floods in 2005 provide a benchmark for "restoration" assessment. Sedimententrainment potential is expressed as the ratio of the shear stress from the 2 yr, 5 yr, 10 yr, and 2005 floods to the critical shear stress for sediment. Some observed response was explained by the excess of flood shear stress relative to the resisting force of the sediment. Bed-load entrainment in the Uncompahgre River and the North Fork Gunnison River, during 4 and 6 yr floods respectively, resulted in streambed scour, streambed deposition, lateral-bar accretion, and channel migration at various locations. Some constructed boulder and log structures failed because of high rates of bank erosion or bed-material deposition. The Lake Fork showed little or no net change after the 2005 flood; however, this channel had not conveyed floods greater than the 2.5 yr flood since reconfi guration. Channel slope and the 2 yr flood, a surrogate for bankfull discharge, from all three reconfi gured reaches plotted above the Leopold and Wolman channel-pattern threshold in the "braided channel" region, indicating that braiding, rather than a single-thread meandering channel, and midchannel bar formation may be the natural tendency of these gravel-bed reaches. When plotted against a total stream-power and median-sediment-size threshold for the 2 yr flood, however, the Lake Fork plotted in the "single-thread channel" region, the North Fork Gunnison plotted in the " multiplethread" region, and the Uncompahgre River plotted on the threshold. All three rivers plotted in the multiple-thread region for floods of 5 yr recurrence or greater. ?? 2009 Geological Society of America.

  14. Spectrally based bathymetric mapping of a dynamic, sand‐bedded channel: Niobrara River, Nebraska, USA

    Science.gov (United States)

    Dilbone, Elizabeth; Legleiter, Carl; Alexander, Jason S.; McElroy, Brandon

    2018-01-01

    Methods for spectrally based mapping of river bathymetry have been developed and tested in clear‐flowing, gravel‐bed channels, with limited application to turbid, sand‐bed rivers. This study used hyperspectral images and field surveys from the dynamic, sandy Niobrara River to evaluate three depth retrieval methods. The first regression‐based approach, optimal band ratio analysis (OBRA), paired in situ depth measurements with image pixel values to estimate depth. The second approach used ground‐based field spectra to calibrate an OBRA relationship. The third technique, image‐to‐depth quantile transformation (IDQT), estimated depth by linking the cumulative distribution function (CDF) of depth to the CDF of an image‐derived variable. OBRA yielded the lowest depth retrieval mean error (0.005 m) and highest observed versus predicted R2 (0.817). Although misalignment between field and image data did not compromise the performance of OBRA in this study, poor georeferencing could limit regression‐based approaches such as OBRA in dynamic, sand‐bedded rivers. Field spectroscopy‐based depth maps exhibited a mean error with a slight shallow bias (0.068 m) but provided reliable estimates for most of the study reach. IDQT had a strong deep bias but provided informative relative depth maps. Overprediction of depth by IDQT highlights the need for an unbiased sampling strategy to define the depth CDF. Although each of the techniques we tested demonstrated potential to provide accurate depth estimates in sand‐bed rivers, each method also was subject to certain constraints and limitations.

  15. Pre-spawning migration of adult Pacific lamprey, Entosphenus tridentatus, in the Willamette River, Oregon, U.S.A.

    Science.gov (United States)

    Clemens, Benjamin J.; Mesa, Matthew G.; Magie, Robert J.; Young, Douglas A.; Schreck, Carl B.

    2012-01-01

    We describe the migration distances and timing of the adult Pacific lamprey, Entosphenus tridentatus, in the Willamette River Basin (Oregon, U.S.A.). We conducted aerial surveys to track radio-tagged fish upstream of a major waterfall and hydropower complex en route to spawning areas. We detected 24 out of the 43 fish that passed the waterfall-hydropower complex. Of the detected fish, 17 were detected multiple times. Their maximum migration distance upstream in the mainstem Willamette approximated a normal distribution. The maximum distance migrated upstream did not significantly correlate with total body length (r = −0.186, P = 0.385) or date that the fish passed Willamette Falls (r = −0.118, P = 0.582). Fish migrated primarily during the spring to early summer period before stopping during the summer, when peak river temperatures (≥20°C). However, at least three fish continued to migrate upstream after September. Behavior ranged from relatively slow migration, followed by holding; to rapid migration, followed by slow migration further up in the basin. This study provides a basis for informing more detailed research on Pacific lamprey in the future.

  16. Behaviour of wintering Tundra Swans Cygnus columbianus columbianus at the Eel River delta and Humboldt Bay, California, USA

    Science.gov (United States)

    Black, Jeffrey M.; Gress, Carol; Byers, Jacob W.; Jennings, Emily; Ely, Craig R.

    2010-01-01

    Tundra Swan Cygnus columbianus columbinanus phenology and behaviour at the Eel River delta and southern Humboldt Bay in northern California, USA, is described. Counts made each January from 1963 onwards peaked at 1,502 swans in 1988. Monthly counts recorded during the 2006/07 and 2008/09 winters peaked in February, at 1,033 and 772 swans respectively. Swans roosted on ephemeral ponds at the Humboldt Bay National Wildlife Refuge, on ephemeral ponds within grassland pastures in the vicinity of the Refuge, and perhaps also used the Eel River as a roost. Flights between Refuge roosts and the pastures and ponds occurred in the two hours after sunrise and before dark. In winters 2008/09 and 2009/10, the percentage of cygnets in the flocks was 10.6% and 21.4% respectively, and increased to =31% cygnets each year after most swans had departed from the area in March. Average brood size in 2009/10 was 2.1 cygnets. Daily activities consisted of foraging (44.9% of activities recorded), comfort behaviour (22.1%), locomotion (16.2%) and vigilance (15.5%). Eight neck-collared swans identified in the wintering flock were marked at four locations in different parts of Alaska, up to 1,300 km apart.

  17. Short-term vegetation response following mechanical control of saltcedar (Tamarix spp.) on the Virgin River, Nevada, USA

    Science.gov (United States)

    Ostoja, Steven M.; Brooks, Matthew L.; Dudley, Tom; Lee, Steven R.

    2014-01-01

    Tamarisk (a.k.a. saltcedar, Tamarix spp.) is an invasive plant species that occurs throughout western riparian and wetland ecosystems. It is implicated in alterations of ecosystem structure and function and is the subject of many local control projects, including removal using heavy equipment. We evaluated short-term vegetation responses to mechanical Tamarix spp. removal at sites ranging from 2 to 5 yr post-treatment along the Virgin River in Nevada, USA. Treatments resulted in lower density and cover (but not eradication) of Tamarix spp., increased cover of the native shrub Pluchea sericia (arrow weed), decreased density and cover of all woody species combined, increased density of both native annual forbs and the nonnative annual Salsola tragus (prickly Russian-thistle), and lower density of nonnative annual grasses. The treated plots had lower mean woody species richness, but greater herbaceous species richness and diversity. Among herbaceous species, native taxa increased in richness whereas nonnative species increased in both species richness and diversity. Thus, efforts to remove Tamarix,/i> spp. at the Virgin River reduced vegetative cover contributing to fuel loads and probability of fire, and resulted in positive effects for native plant diversity, with mixed effects on other nonnative species. However, absolute abundances of native species

  18. Water-quality assessment of the Lower Grand River Basin, Missouri and Iowa, USA, in support of integrated conservation practices

    Science.gov (United States)

    Wilkison, Donald H.; Armstrong, Daniel J.

    2016-01-01

    The effectiveness of agricultural conservation programmes to adequately reduce nutrient exports to receiving streams and to help limit downstream hypoxia issues remains a concern. Quantifying programme success can be difficult given that short-term basin changes may be masked by long-term water-quality shifts. We evaluated nutrient export at stream sites in the 44 months that followed a period of increased, integrated conservation implementation within the Lower Grand River Basin. These short-term responses were then compared with export that occurred in the main stem and adjacent rivers in northern Missouri over a 22-year period to better contextualize any recent changes. Results indicate that short-term (October 2010 through May 2014) total nitrogen (TN) concentrations in the Grand River were 20% less than the long-term average, and total phosphorus (TP) concentrations were 23% less. Nutrient reductions in the short term were primarily the result of the less-than-average precipitation and, consequently, streamflow that was 36% below normal. Therefore, nutrient concentrations measured in tributary streams were likely less than normal during the implementation period. Northern Missouri streamflow-normalized TN concentrations remained relatively flat or declined over the period 1991 through 2013 likely because available sources of nitrogen, determined as the sum of commercial fertilizers, available animal manures and atmospheric inputs, were typically less than crop requirement for much of that time frame. Conversely, flow-normalized stream TP concentrations increased over the past 22 years in northern Missouri streams, likely in response to many years of phosphorus inputs in excess of crop requirements. Stream nutrient changes were most pronounced during periods that coincided with the major tillage, planting and growth phases of row crops and increased streamflow. Nutrient reduction strategies targeted at the period February through June would likely have the

  19. Geomorphology-based interpretation of sedimentation rates from radiodating, lower Passaic River, New Jersey, USA.

    Science.gov (United States)

    Erickson, Michael J; Barnes, Charles R; Henderson, Matthew R; Romagnoli, Robert; Firstenberg, Clifford E

    2007-04-01

    Analysis of site geomorphology and sedimentation rates as an indicator of long-term bed stability is central to the evaluation of remedial alternatives for depositional aquatic environments. In conjunction with various investigations of contaminant distribution, sediment dynamics, and bed stability in the Passaic River Estuary, 121 sediment cores were collected in the early 1990s from the lower 9.7 km of the Passaic River and analyzed for lead-210 (210Pb), cesium-137 (137Cs), and other analytes. This paper opportunistically uses the extensive radiochemical dataset to examine the spatial patterns of long-term sedimentation rates in, and associated geomorphic aspects of, this area of the river. For the purposes of computing sedimentation rates, the utility of the 210Pb and 137Cs depositional profiles was assessed to inform appropriate interpretation. Sedimentation rates were computed for 90 datable cores by 3 different methods, depending on profile utility. A sedimentation rate of 0 was assigned to 17 additional cores that were not datable and for which evidence of no deposition exists. Sedimentation patterns were assessed by grouping results within similar geomorphic areas, delineated through inspection of bathymetric data. On the basis of channel morphology, results reflect expected patterns, with the highest sedimentation rates observed along point bars and channel margins. The lowest rates of sedimentation (and the largest percentage of undatable cores) were observed in the areas along the outer banks of channel bends. Increasing sedimentation rates from upstream to downstream were noted. Average and median sedimentation rates were estimated to be 3.8 and 3.7 cm/y, respectively, reflecting the highly depositional nature of the Passaic River estuary. This finding is consistent with published descriptions of long-term geomorphology for Atlantic Coastal Plain estuaries.

  20. The Niobrara Formation as a challenge to water quality in the Arkansas River, Colorado, USA

    Science.gov (United States)

    Bern, Carleton R.; Stogner, Sr., Robert W.

    2017-01-01

    Study regionArkansas River, east of the Rocky Mountains.Study focusCretaceous sedimentary rocks in the western United States generally pose challenges to water quality, often through mobilization of salts and trace metals by irrigation. However, in the Arkansas River Basin of Colorado, patchy exposure of multiple Cretaceous formations has made it difficult to identify which formations are most problematic. This paper examines water quality in surface-water inflows along a 26-km reach of the Arkansas River relative to the presence or absence of the Cretaceous Niobrara Formation within the watershed.New hydrological insights for the regionPrincipal component analysis (PCA) shows Niobrara-influenced inflows have distinctive geochemistry, particularly with respect to Na, Mg, SO42−, and Se. Uranium concentrations are also greater in Niobrara-influenced inflows. During the irrigation season, median dissolved solids, Se, and U concentrations in Niobrara-influenced inflows were 83%, 646%, and 55%, respectively, greater than medians where Niobrara Formation surface exposures were absent. During the non-irrigation season, which better reflects geologic influence, the differences were more striking. Median dissolved solids, Se, and U concentrations in Niobrara-influenced inflows were 288%, 863%, and 155%, respectively, greater than median concentrations where the Niobrara Formation was absent. Identification of the Niobrara Formation as a disproportionate source for dissolved solids, Se, and U will allow for more targeted studies and management, particularly where exposures underlie irrigated agriculture.

  1. Phase I of the Kissimmee River restoration project, Florida, USA: impacts of construction on water quality.

    Science.gov (United States)

    Colangelo, David J; Jones, Bradley L

    2005-03-01

    Phase I of the Kissimmee River restoration project included backfilling of 12 km of canal and restoring flow through 24 km of continuous river channel. We quantified the effects of construction activities on four water quality parameters (turbidity, total phosphorus flow-weighted concentration, total phosphorus load and dissolved oxygen concentration). Data were collected at stations upstream and downstream of the construction and at four stations within the construction zone to determine if canal backfilling and construction of 2.4 km of new river channel would negatively impact local and downstream water quality. Turbidity levels at the downstream station were elevated for approximately 2 weeks during the one and a half year construction period, but never exceeded the Florida Department of Environmental Protection construction permit criteria. Turbidity levels at stations within the construction zone were high at certain times. Flow-weighted concentration of total phosphorus at the downstream station was slightly higher than the upstream station during construction, but low discharge limited downstream transport of phosphorus. Total phosphorus loads at the upstream and downstream stations were similar and loading to Lake Okeechobee was not significantly affected by construction. Mean water column dissolved oxygen concentrations at all sampling stations were similar during construction.

  2. Aerial gamma ray and magnetic survey: Minnesota Project, the Alpena, Blind River, Cheboygan, Escanaba, and Sault Sainte Marie quadrangles of Michigan and Wisconsin. Final report

    International Nuclear Information System (INIS)

    1980-02-01

    During the month of September, 1979, EG and G geoMetrics collected 2,547 line miles of high sensitivity airborne radiometric and magnetic data in the states of Michigan and Wisconsin in five 1 0 x 2 0 NTMS quadrangles. This project is part of the Department of Energy's National Uranium Resource Evaluation Program. All radiometric and magnetic data were fully correcthed and interpreted by geoMetrics and are presented as four Volumes (one Volume I and three Volume II's). The study area is dominated by Pleistocene glacial debris. Underlying sediments of the Michigan Basin are predominantly limestone and dolomites of Ordovician through Devonian age. No uranium deposits are known in this region, but major uranium-producing areas lie just north of the project area in Precambrian quartz-pebble conglomerates

  3. Channel and island change in the lower Platte River, Eastern Nebraska, USA: 1855 2005

    Science.gov (United States)

    Joeckel, R. M.; Henebry, G. M.

    2008-12-01

    The lower Platte River has undergone considerable change in channel and bar characteristics since the mid-1850s in four 20-25 km-long study stretches. The same net effect of historical channel shrinkage that was detected upstream from Grand Island, Nebraska, can also be detected in the lower river but differences in the behaviors of study stretches upstream and downstream from major tributaries are striking. The least relative decrease occurred downstream from the Loup River confluence, and the stretch downstream from the Elkhorn River confluence actually showed an increase in channel area during the 1940s. Bank erosion was also greater downstream of the tributaries between ca. 1860 and 1938/1941, particularly in stretch RG, which showed more lateral migration. The cumulative island area and the ratio of island area to channel area relative to the 1938/1941 baseline data showed comparatively great fluctuations in median island size in both downstream stretches. The erratic behavior of island size distributions over time indicates that large islands were accreted to the banks at different times, and that some small, newly-stabilized islands were episodically "flushed" out of the system. In the upstream stretches the stabilization of mobile bars to create new, small islands had a more consistent impact over time. Channel decrease by the abandonment of large, long-lived anabranches and by the in-place narrowing resulting from island accretion were more prominent in these upstream stretches. Across all of the study area, channel area appears to be stabilizing gradually as the rate of decrease lessens. This trend began earliest in stretch RG in the late 1950s and was accompanied by shifts in the size distributions of stabilized islands in that stretch into the 1960s. Elsewhere, even in the easternmost study stretch, stabilizing was occurring by the late 1960s, the same time frame documented by investigations of the Platte system upstream of the study area. Comprehensive

  4. Late Quaternary Stratigraphic Architecture of the Santee River Delta, South Carolina, U.S.A.

    Science.gov (United States)

    Long, J. H.; Hanebuth, T. J. J.

    2017-12-01

    The Santee River of South Carolina is the second largest river in terms of drainage area and discharge in the eastern United States and forms the only river-fed delta on the country's Atlantic coast. Significant anthropogenic modifications to this system date back to the early 18th century with the extensive clearing of coastal wetland forest for rice cultivation. In the 1940's the construction of large upstream dams permanently altered the discharge of the Santee River. These modifications are likely documented within the sedimentary record of the Santee Delta as episodes of major environmental changes. The Piedmont-sourced Santee River system incised its valley to an estimated depth of 20 m during lower glacial sea level. Sedimentation during the subsequent Holocene transgression and highstand has filled much of this accommodation. The Santee system remains largely under-investigated with only a handful of studies completed in the 1970's and 1980's based on sediment cores and cuttings. Through the use of high frequency seismic profiles (0.5 - 24 kHz), sediment cores, and other field data, we differentiate depositional units, architectural elements, and bounding surfaces with temporal and spatial distributions reflecting the changing morphodynamics of this complex system at multiple scales. These lithosomes are preserved within both modern inshore and offshore settings and were deposited within a range of paralic environments by processes active on fluvial/estuarine bars, floodplains, marshes, tidal flats, spits, beach ridges, and in backbarrier settings. They are bound by surfaces ranging from diastems to regional, polygenetic, low-angle and channel-form erosional surfaces. Detailed descriptions of cores taken from within the upper 6 m of the modern lower delta plain document heterolithic, mixed-energy, organic-rich, largely aggradational sedimentation dating back to at least 5 ka cal BP. Offshore, stacked, sand-rich, progradational packages sit atop heterolithic

  5. Organic matter dynamics in a karstic watershed: Example from Santa Fe River, Florida, USA

    Science.gov (United States)

    Jin, J.; Khadka, M. B.; Martin, J. B.; Zimmerman, A. R.

    2011-12-01

    Organic matter (OM) dynamics in karstic watersheds can involve a range of interactions between organic and inorganic phases of carbon. These interactions include OM remineralization, which will changes its lability, increase dissolved inorganic carbon (DIC) concentrations, reduce pH, and enhance carbonate mineral dissolution. Dissolved organic carbon (DOC) concentrations are elevated in black-water rivers of northern Florida from both allochthonous and autochthonous sources and these rivers flow into and interact with the karstic Floridan Aquifer. One such river, the Santa Fe River, is split into upper confined and lower unconfined watersheds by the Cody Scarp, which represent the erosional edge of a regional confining unit. Water samples were collected from 8 sites across the entire Santa Fe River watershed (SFRW) during 9 sampling trips from December 2009 to May 2011 at flow conditions that ranged from 27 to 39 m3/s, with the highest flow about 45% higher than baseflow. At sites above the Cody Scarp, the river has elevated DOC concentrations, which decrease downstream, while dissolved inorganic carbon (DIC) and δ13C-DIC show opposite trends. At high flow, DOC concentrations progressively decrease downstream from dilution by low-DOC water discharging from the Floridan Aquifer. At low flow, the water chemistry varies little from upstream to downstream, largely because the composition of upstream water becomes similar to that of downstream water. DOC is inversely and linearly correlated with DIC and δ13C-DIC, but the slope of the correlations vary with discharge, with low flow having more negative slopes than high flow. The OM becomes more labile with distance downstream as assessed using two fluorescence indices, biological/autochthonous index (BIX) and humification index (HIX). This increase in lability suggests that DOC is produced in the river, and this production is reflected in a downstream increase in DOC flux regardless of dilution by the influx of low

  6. Phytophthora species recovered from the Connecticut River Valley in Massachusetts, USA.

    Science.gov (United States)

    Brazee, Nicholas J; Wick, Robert L; Hulvey, Jonathan P

    2016-01-01

    Little is currently known about the assemblage of Phytophthora species in northeastern North America, representing a gap in our understanding of species incidence. Therefore, Phytophthora species were surveyed at 20 sites in Massachusetts, with 16 occurring in the Connecticut River Valley. Many of the sampled waterways were adjacent to active agricultural lands, yet were buffered by mature floodplain forests composed of Acer, Platanus, Populus and Ulmus. Isolates were recovered with three types of baits (rhododendron leaves, pear, green pepper) in 2013 and water filtration in 2014. Overall, 457 isolates of Phytophthora were recovered and based on morphological characters and rDNA internal transcribed spacer (ITS), β-tubulin (β-tub) and cytochrome oxidase c subunit I (cox1) sequences, 18 taxa were identified, including three new species: P. taxon intercalaris, P. taxon caryae and P. taxon pocumtuck. In addition, 49 isolates representing five species of Phytopythium also were identified. Water filtration captured a greater number of taxa (18) compared to leaf and fruit baits (12). Of the three bait types rhododendron leaves yielded the greatest number of isolates and taxa, followed by pear and green pepper, respectively. Despite the proximity to agricultural lands, none of the Phytophthora species baited are considered serious pathogens of vegetable crops in the region. However, many of the recovered species are known woody plant pathogens, including four species in the P. citricola s.l. complex that were identified: P. plurivora, P. citricola III, P. pini and a putative novel species, referred to here as P. taxon caryae. An additional novel species, P. taxon pocumtuck, is a close relative of P. borealis based on cox1 sequences. The results illustrate a high level of Phytophthora species richness in the Connecticut River Valley and that major rivers can serve as a source of inoculum for pathogenic Phytophthora species in the northeast. © 2016 by The Mycological

  7. Particle size distribution of main-channel-bed sediments along the upper Mississippi River, USA

    Science.gov (United States)

    Remo, Jonathan; Heine, Ruben A.; Ickes, Brian

    2016-01-01

    In this study, we compared pre-lock-and-dam (ca. 1925) with a modern longitudinal survey of main-channel-bed sediments along a 740-km segment of the upper Mississippi River (UMR) between Davenport, IA, and Cairo, IL. This comparison was undertaken to gain a better understanding of how bed sediments are distributed longitudinally and to assess change since the completion of the UMR lock and dam navigation system and Missouri River dams (i.e., mid-twentieth century). The comparison of the historic and modern longitudinal bed sediment surveys showed similar bed sediment sizes and distributions along the study segment with the majority (> 90%) of bed sediment samples having a median diameter (D50) of fine to coarse sand. The fine tail (≤ D10) of the sediment size distributions was very fine to medium sand, and the coarse tail (≥ D90) of sediment-size distribution was coarse sand to gravel. Coarsest sediments in both surveys were found within or immediately downstream of bedrock-floored reaches. Statistical analysis revealed that the particle-size distributions between the survey samples were statistically identical, suggesting no overall difference in main-channel-bed sediment-size distribution between 1925 and present. This was a surprising result given the magnitude of river engineering undertaken along the study segment over the past ~ 90 years. The absence of substantial differences in main-channel-bed-sediment size suggests that flow competencies within the highly engineered navigation channel today are similar to conditions within the less-engineered historic channel.

  8. Precipitation Reconstructions and Periods of Drought in the Upper Green River Basin, Wyoming, USA

    Science.gov (United States)

    Follum, M.; Barnett, A.; Bellamy, J.; Gray, S.; Tootle, G.

    2008-12-01

    Due to recent drought and stress on water supplies in the Colorado River Compact States, more emphasis has been placed on the study of water resources in the Upper Green River Basin (UGRB) of Wyoming, Utah, and Colorado. The research described here focuses on the creation of long-duration precipitation records for the UGRB using tree-ring chronologies. When combined with existing proxy streamflow reconstructions and drought frequency analysis, these records offer a detailed look at hydrologic variability in the UGRB. Approximately thirty-three existing tree ring chronologies were analyzed for the UGRB area. Several new tree ring chronologies were also developed to enhance the accuracy and the geographical diversity of the resulting tree-ring reconstructions. In total, three new Douglas-fir (Pseudotsuga menziesii) and four new limber pine (Pinus flexilis) sites were added to the available tree-ring chronologies in this area. Tree-ring based reconstructions of annual (previous July through current June) precipitation were then created for each of the seventeen sub-watersheds in the UGRB. Reconstructed precipitation records extend back to at least 1654 AD, with reconstructions for some sub-basins beginning pre-1500. Variance explained (i.e. adjusted R2) ranged from 0.41 to 0.74, and the reconstructions performed well in a variety of verification tests. Additional analyses focused on stochastic estimation of drought frequency and return period, and detailed comparisons between reconstructed records and instrumental observations. Overall, this work points to the prevalence of severe, widespread drought in the UGRB. These analyses also highlight the relative wetness and lack of sustained dry periods during the instrumental period (1895-Present). Such long- term assessments are, in turn, vital tools as the Compact States contemplate the "Law of the River" in the face of climate change and ever-growing water demands.

  9. Surface-water and groundwater interactions in an extensively mined watershed, upper Schuylkill River, Pennsylvania, USA

    Science.gov (United States)

    Cravotta,, Charles A.; Goode, Daniel J.; Bartles, Michael D.; Risser, Dennis W.; Galeone, Daniel G.

    2014-01-01

    Streams crossing underground coal mines may lose flow, while abandoned mine drainage (AMD) restores flow downstream. During 2005-12, discharge from the Pine Knot Mine Tunnel, the largest AMD source in the upper Schuylkill River Basin, had near-neutral pH and elevated concentrations of iron, manganese, and sulfate. Discharge from the tunnel responded rapidly to recharge but exhibited a prolonged recession compared to nearby streams, consistent with rapid infiltration and slow release of groundwater from the mine. Downstream of the AMD, dissolved iron was attenuated by oxidation and precipitation while dissolved CO2 degassed and pH increased. During high-flow conditions, the AMD and downstream waters exhibited decreased pH, iron, and sulfate with increased acidity that were modeled by mixing net-alkaline AMD with recharge or runoff having low ionic strength and low pH. Attenuation of dissolved iron within the river was least effective during high-flow conditions because of decreased transport time coupled with inhibitory effects of low pH on oxidation kinetics. A numerical model of groundwater flow was calibrated using groundwater levels in the Pine Knot Mine and discharge data for the Pine Knot Mine Tunnel and the West Branch Schuylkill River during a snowmelt event in January 2012. Although the calibrated model indicated substantial recharge to the mine complex took place away from streams, simulation of rapid changes in mine pool level and tunnel discharge during a high flow event in May 2012 required a source of direct recharge to the Pine Knot Mine. Such recharge produced small changes in mine pool level and rapid changes in tunnel flow rate because of extensive unsaturated storage capacity and high transmissivity within the mine complex. Thus, elimination of stream leakage could have a small effect on the annual discharge from the tunnel, but a large effect on peak discharge and associated water quality in streams.

  10. Laurentide ice sheet meltwater routing along the Iro-Mohawk River, eastern New York, USA

    Science.gov (United States)

    Porreca, Charles; Briner, Jason P.; Kozlowski, Andrew

    2018-02-01

    The rerouting of meltwater as the configuration of ice sheets evolved during the last deglaciation is thought to have led to some of the most significant perturbations to the climate system in the late Quaternary. However, the complex pattern of ice sheet meltwater drainage off the continents, and the timing of rerouting events, remains to be fully resolved. As the Laurentide Ice Sheet (LIS) retreated north of the Adirondack Uplands of northeastern New York State during the last deglaciation, a large proglacial lake, Lake Iroquois, found a lower outlet that resulted in a significant flood event. This meltwater rerouting event, from outflow via the Iro-Mohawk River valley (southern Adirondack Mountains) to the spillway at Covey Hill (northeastern Adirondack Mountains), is hypothesized to have taken place 13.2 ka and disturbed meridional circulation in the North Atlantic Ocean. However, the timing of the rerouting event is not certain because the event has not been directly dated. With improving the history of Lake Iroquois drainage in mind, we obtained cosmogenic 10Be exposure ages on a strath terrace on Moss Island, along the Iro-Mohawk River spillway. We hypothesize that Moss Island's strath terrace became abandoned during the rerouting event. Six 10Be ages from the strath surface average 14.8 ± 1.3 ka, which predates the previously published bracketing radiocarbon ages of 13.2 ka. Several possibilities for the discrepancy exist: (1) the 10Be age accurately represents the timing of a decrease in discharge through the Iro-Mohawk River spillway; (2) the age is influenced by inheritance. The 10Be ages from glacially sculpted surfaces on Moss Island above the strath terrace predate the deglaciation of the site by 5 to 35 ky; and (3) the abandonment of the Moss Island strath terrace relates to knickpoint migration and not the final abandonment of the Iro-Mohawk River as the Lake Iroquois spillway. Further study and application of cosmogenic 10Be exposure dating in the

  11. Design of a naturalized flow regime—An example from the Lower Missouri River, USA

    Science.gov (United States)

    Jacobson, Robert B.; Galat, David L.

    2008-01-01

     group of river managers, stakeholders, and scientists met during summer 2005 to design a more naturalized flow regime for the Lower Missouri River (LMOR). The objective was to comply with requirements under the U.S. Endangered Species Act to support reproduction and survival of threatened and endangered species, with emphasis on the endangered pallid sturgeon (Scaphirhynchus albus), while minimizing negative effects to existing social and economic benefits of prevailing river management. Specific hydrograph requirements for pallid sturgeon reproduction are unknown, hence much of the design process was based on features of the natural flow regime. Environmental flow components (EFCs) extracted from the reference natural flow regime were used to design and assess performance of alternative flow regimes.The design process incorporated a primary stage in which conceptual hydrographs were developed and assessed for their general ecological and social-economic performance. The second stage accounted for hydroclimatic variation by coding the conceptual hydrographs into reservoir release rules, adding constraints for downstream flooding and low-storage precludes, and running the rules through 100 years of hydroclimatic simulation. The output flow regimes were then evaluated for presumed ecological benefits based on how closely they resembled EFCs in the reference natural flow regime. Flow regimes also were assessed for social-economic cost indicators, including days of flooding of low-lying agricultural land, days over flood stage, and storage levels in system reservoirs.Our experience with flow-regime design on the LMOR underscored the lack of confidence the stakeholders place in the value of the natural flow regime as a measure of ecosystem benefit in the absence of fundamental scientific documentation. Stakeholders desired proof of ecological benefits commensurate with the certainty of economic losses. We also gained insight into the processes of integrating science

  12. Exploration and discovery of the Pine Ridge uranium deposits, Powder River Basin, Wyoming, USA

    International Nuclear Information System (INIS)

    Doelger, M.

    2014-01-01

    The Pine Ridge uranium deposits are named for a newly identified area between the Pumpkin Buttes and Southern Powder River Basin (PRB) mining districts. This regional prospect, covering nine contiguous townships, is northwest of the Cameco Smith Ranch mine and west of the Uranium One Allemand-Ross project in Converse County, Wyoming. Surface mapping and 350+ measured sections of well exposed outcrops have identified 250 target sandstones and contributed to a model of the complex braided stream channel architecture within the Eocene Watsatch and Paleocene Fort Union Formations. The uranium-bearing sandstones occur in 3- D bundles of vertically aggrading river systems flowing into the PRB from distant uranium source areas of the Granite Mountains to the west and the northern Laramie Range to the south. Large volumes of mudstone overbank and swamp facies separate the individual river systems laterally, resulting in greater vertical reservoir continuity from sandstones stacking. At least five major paleo river systems have been identified and named. High organic content, within the host formations, and rising veils of hydrocarbon gases from underlying oil and gas deposits have resulted in classic roll front uranium deposits in individual sandstones and intervals. Mineralization in stacked sandstone bundles several hundred feet thick show a crescent-shaped distribution within the shallow mineralized interval “attic”, the “cellar” at the base of the alteration cell, and the furthest basin-ward “front door”. World-class uranium resource potential has been identified along 208 miles of redox boundary string length mapped from the 1522 control points consisting of outcrop data, pre-existing uranium drilling, oil and gas wells, and proprietary drilling in 2012 and 2013 by Stakeholder. All data is managed in ARC VIEW GIS with 3-D capability, which will be demonstrated. Very few restrictions apply to the project area. Uranium holes are permitted solely by the

  13. Reconstructions of Columbia River streamflow from tree-ring chronologies in the Pacific Northwest, USA

    Science.gov (United States)

    Littell, Jeremy; Pederson, Gregory T.; Gray, Stephen T.; Tjoelker, Michael; Hamlet, Alan F.; Woodhouse, Connie A.

    2016-01-01

    We developed Columbia River streamflow reconstructions using a network of existing, new, and updated tree-ring records sensitive to the main climatic factors governing discharge. Reconstruction quality is enhanced by incorporating tree-ring chronologies where high snowpack limits growth, which better represent the contribution of cool-season precipitation to flow than chronologies from trees positively sensitive to hydroclimate alone. The best performing reconstruction (back to 1609 CE) explains 59% of the historical variability and the longest reconstruction (back to 1502 CE) explains 52% of the variability. Droughts similar to the high-intensity, long-duration low flows observed during the 1920s and 1940s are rare, but occurred in the early 1500s and 1630s-1640s. The lowest Columbia flow events appear to be reflected in chronologies both positively and negatively related to streamflow, implying low snowpack and possibly low warm-season precipitation. High flows of magnitudes observed in the instrumental record appear to have been relatively common, and high flows from the 1680s to 1740s exceeded the magnitude and duration of observed wet periods in the late-19th and 20th Century. Comparisons between the Columbia River reconstructions and future projections of streamflow derived from global climate and hydrologic models show the potential for increased hydrologic variability, which could present challenges for managing water in the face of competing demands

  14. First Results from HOTSPOT: The Snake River Plain Scientific Drilling Project, Idaho, U.S.A.

    Directory of Open Access Journals (Sweden)

    John W. Shervais

    2013-03-01

    Full Text Available HOTSPOT is an international collaborative effort to understand the volcanic history of the Snake River Plain (SRP. The SRP overlies a thermal anomaly, the Yellowstone-Snake River hotspot, that is thought to represent a deep-seated mantle plume under North America. Theprimary goal of this project is to document the volcanic and stratigraphic history of the SRP, which represents the surface expression of this hotspot, and to understand how it affected the evolution of continental crust and mantle. An additional goal is to evaluate the geothermal potential of southern Idaho.Project HOTSPOT has completed three drill holes. (1 The Kimama site is located along the central volcanic axis of the SRP; our goal here was to sample a long-term record of basaltic volcanism in the wake of the SRP hotspot. (2 The Kimberly site is located near the margin of the plain; our goal here was to sample a record of high-temperaturerhyolite volcanism associated with the underlying plume. This site was chosen to form a nominally continuous record of volcanism when paired with the Kimama site. (3 The Mountain Home site is located in the western plain; our goal here was to sample the Pliocene-Pleistocene transition in lake sediments at this site and to sample older basalts that underlie the sediments.We report here on our initial results for each site, and on some of the geophysical logging studies carried out as part of this project.

  15. Geology and geophysics of the southern Raft River Valley geothermal area, Idaho, USA

    Science.gov (United States)

    Williams, Paul L.; Mabey, Don R.; Zohdy, Adel A.R.; Ackermann, Hans D.; Hoover, Donald B.; Pierce, Kenneth L.; Oriel, Steven S.

    1976-01-01

    The Raft River valley, near the boundary of the Snake River plain with the Basin and Range province, is a north-trending late Cenozoic downwarp bounded by faults on the west, south, and east. Pleistocene alluvium and Miocene-Pliocene tuffaceous sediments, conglomerate, and felsic volcanic rocks aggregate 2 km in thickness. Large gravity, magnetic, and total field resistivity highs probably indicate a buried igneous mass that is too old to serve as a heat source. Differing seismic velocities relate to known or inferred structures and to a suspected shallow zone of warm water. Resistivity anomalies reflect differences of both composition and degree of alteration of Cenozoic rocks. Resistivity soundings show a 2 to 5 ohm·m unit with a thickness of 1 km beneath a large part of the valley, and the unit may indicate partly hot water and partly clayey sediments. Observed self-potential anomalies are believed to indicate zones where warm water rises toward the surface. Boiling wells at Bridge, Idaho are near the intersection of north-northeast normal faults which have moved as recently as the late (?) Pleistocene, and an east-northeast structure, probably a right-lateral fault. Deep circulation of ground water in this region of relatively high heat flow and upwelling along faults is the probable cause of the thermal anomaly.

  16. Toxicity of Anacostia River, Washington, DC, USA, sediment fed to mute swans (Cygnus olor)

    Science.gov (United States)

    Beyer, W.N.; Day, D.; Melancon, M.J.; Sileo, L.

    2000-01-01

    Sediment ingestion is sometimes the principal route by which waterfowl are exposed to environmental contaminants, and at severely contaminated sites waterfowl have been killed by ingesting sediment. Mute swans (Cygnus olor) were fed a diet for six weeks with a high but environmentally realistic concentration (24%) of sediment from the moderately polluted Anacostia River in the District of Columbia, to estimate the sediment?s toxicity. Control swans were fed the same diet without the sediment. Five organochlorine compounds were detected in the treated diets but none of 22 organochlorine compounds included in the analyses were detected in livers of the treated swans. The concentrations of 24 polynuclear aromatic hydrocarbons measured in the treated diet were as high as 0.80 mg/kg and they were thought to have been responsible for the observed induction of hepatic microsomal monooxygenase activity in livers. A concentration of 85 mg/kg of lead in the diet was enough to decrease red blood cell ALAD activity but was not high enough to cause more serious effects of lead poisoning. The dietary concentrations of Al, Fe, V, and Ba were high compared to the concentrations of these elements known to be toxic in laboratory feeding studies, but these elements did not accumulate in the livers of the treated swans and probably were not readily available in the sediment. Although ingestion of the Anacostia River sediment caused subtle toxicological effects in swans, we concluded from pathological examinations and weight data that the treated swans remained basically healthy.

  17. Decreased runoff response to precipitation, Little Missouri River Basin, northern Great Plains, USA

    Science.gov (United States)

    Griffin, Eleanor R.; Friedman, Jonathan M.

    2017-01-01

    High variability in precipitation and streamflow in the semiarid northern Great Plains causes large uncertainty in water availability. This uncertainty is compounded by potential effects of future climate change. We examined historical variability in annual and growing season precipitation, temperature, and streamflow within the Little Missouri River Basin and identified differences in the runoff response to precipitation for the period 1976-2012 compared to 1939-1975 (n = 37 years in both cases). Computed mean values for the second half of the record showed little change (precipitation, but average annual runoff at the basin outlet decreased by 22%, with 66% of the reduction in flow occurring during the growing season. Our results show a statistically significant (p runoff response to precipitation (runoff ratio). Surface-water withdrawals for various uses appear to account for 1°C increases in January through March, are the dominant driver of the observed decrease in runoff response to precipitation in the Little Missouri River Basin.

  18. The role of floodplain restoration in mitigating flood risk, Lower Missouri River, USA

    Science.gov (United States)

    Jacobson, Robert B.; Lindner, Garth; Bitner, Chance; Hudson, Paul F.; Middelkoop, Hans

    2015-01-01

    Recent extreme floods on the Lower Missouri River have reinvigorated public policy debate about the potential role of floodplain restoration in decreasing costs of floods and possibly increasing other ecosystem service benefits. The first step to addressing the benefits of floodplain restoration is to understand the interactions of flow, floodplain morphology, and land cover that together determine the biophysical capacity of the floodplain. In this article we address interactions between ecological restoration of floodplains and flood-risk reduction at 3 scales. At the scale of the Lower Missouri River corridor (1300 km) floodplain elevation datasets and flow models provide first-order calculations of the potential for Missouri River floodplains to store floods of varying magnitude and duration. At this same scale assessment of floodplain sand deposition from the 2011 Missouri River flood indicates the magnitude of flood damage that could potentially be limited by floodplain restoration. At the segment scale (85 km), 1-dimensional hydraulic modeling predicts substantial stage reductions with increasing area of floodplain restoration; mean stage reductions range from 0.12 to 0.66 m. This analysis also indicates that channel widening may contribute substantially to stage reductions as part of a comprehensive strategy to restore floodplain and channel habitats. Unsteady 1-dimensional flow modeling of restoration scenarios at this scale indicates that attenuation of peak discharges of an observed hydrograph from May 2007, of similar magnitude to a 10 % annual exceedance probability flood, would be minimal, ranging from 0.04 % (with 16 % floodplain restoration) to 0.13 % (with 100 % restoration). At the reach scale (15–20 km) 2-dimensional hydraulic models of alternative levee setbacks and floodplain roughness indicate complex processes and patterns of flooding including substantial variation in stage reductions across floodplains depending on

  19. Large-scale dam removal on the Elwha River, Washington, USA: fluvial sediment load

    Science.gov (United States)

    Magirl, Christopher S.; Hilldale, Robert C.; Curran, Christopher A.; Duda, Jeffrey J.; Straub, Timothy D.; Domanski, Marian M.; Foreman, James R.

    2015-01-01

    The Elwha River restoration project, in Washington State, includes the largest dam-removal project in United States history to date. Starting September 2011, two nearly century-old dams that collectively contained 21 ± 3 million m3 of sediment were removed over the course of three years with a top-down deconstruction strategy designed to meter the release of a portion of the dam-trapped sediment. Gauging with sediment-surrogate technologies during the first two years downstream from the project measured 8,200,000 ± 3,400,000 tonnes of transported sediment, with 1,100,000 and 7,100,000 t moving in years 1 and 2, respectively, representing 3 and 20 times the Elwha River annual sediment load of 340,000 ± 80,000 t/y. During the study period, the discharge in the Elwha River was greater than normal (107% in year 1 and 108% in year 2); however, the magnitudes of the peak-flow events during the study period were relatively benign with the largest discharge of 292 m3/s (73% of the 2-year annual peak-flow event) early in the project when both extant reservoirs still retained sediment. Despite the muted peak flows, sediment transport was large, with measured suspended-sediment concentrations during the study period ranging from 44 to 16,300 mg/L and gauged bedload transport as large as 24,700 t/d. Five distinct sediment-release periods were identified when sediment loads were notably increased (when lateral erosion in the former reservoirs was active) or reduced (when reservoir retention or seasonal low flows and cessation of lateral erosion reduced sediment transport). Total suspended-sediment load was 930,000 t in year 1 and 5,400,000 t in year 2. Of the total 6,300,000 ± 3,200,000 t of suspended-sediment load, 3,400,000 t consisted of silt and clay and 2,900,000 t was sand. Gauged bedload on the lower Elwha River in year 2 of the project was 450,000 ± 360,000 t. Bedload was not quantified in year 1, but qualitative observations using bedload

  20. Bedload transport over run-of-river dams, Delaware, U.S.A.

    Science.gov (United States)

    Pearson, Adam J.; Pizzuto, Jim

    2015-11-01

    We document the detailed morphology and bed sediment size distribution of a stream channel upstream and downstream of a 200-year-old run-of-river dam on the Red Clay Creek, a fifth order stream in the Piedmont of northern Delaware, and combine these data with HEC-RAS modeling and bedload transport computations. We hypothesize that coarse bed material can be carried through run-of-river impoundments before they completely fill with sediment, and we explore mechanisms to facilitate this transport. Only 25% of the accommodation space in our study site is filled with sediment, and maximum water depths are approximately equal to the dam height. All grain-size fractions present upstream of the impoundment are also present throughout the impoundment. A characteristic coarse-grained sloping ramp leads from the floor of the impoundment to the crest of the dam. A 2.3-m-deep plunge pool has been excavated below the dam, followed immediately downstream by a mid-channel bar composed of coarse bed material similar in size distribution to the bed material of the impoundment. The mid-channel bar stores 1472 m3 of sediment, exceeding the volume excavated from the plunge pool by a factor of 2.8. These field observations are typical of five other sites nearby and suggest that all bed material grain-size fractions supplied from upstream can be transported through the impoundment, up the sloping ramp, and over the top of the dam. Sediment transport computations suggest that all grain sizes are in transport upstream and within the impoundment at all discharges with return periods from 1 to 50 years. Our computations suggest that transport of coarse bed material through the impoundment is facilitated by its smooth, sandy bed. Model results suggest that the impoundment is currently aggrading at 0.26 m/year, but bed elevations may be recovering after recent scour from a series of large floods during water year 2011-2012. We propose that impoundments upstream of these run-of-river dams

  1. Great horned owl (Bubo virginianus) dietary exposure to PCDD/DF in the Tittabawassee River floodplain in Midland, Michigan, USA.

    Science.gov (United States)

    Coefield, Sarah J; Zwiernik, Matthew J; Fredricks, Timothy B; Seston, Rita M; Nadeau, Michael W; Tazelaar, Dustin L; Moore, Jeremy N; Kay, Denise P; Roark, Shaun A; Giesy, John P

    2010-10-01

    Soils and sediments in the floodplain of the Tittabawassee River downstream of Midland, Michigan, USA contain elevated concentrations of polychlorinated dibenzofurans (PCDF) and polychlorinated dibenzo-p-dioxins (PCDD). As a long-lived, resident top predator, the great horned owl (Bubo virginianus; GHO) has the potential to be exposed to bioaccumulative compounds such as PCDD/DF. Site-specific components of the GHO diet were collected along 115 km of the Tittabawassee, Pine, Chippewa, and Saginaw Rivers during 2005 and 2006. The site-specific GHO biomass-based diet was dominated by cottontail rabbits (Sylvilagus floridanus) and muskrats (Ondatra zibethicus). Incidental soil ingestion and cottontail rabbits were the primary contributors of PCDD/DF to the GHO diet. The great horned owl daily dietary exposure estimates were greater in the study area (SA) (3.3 to 5.0 ng 2,3,7,8-TCDD equivalents (TEQ(WHO-avian))/kg body wt/d) than the reference area (RA) (0.07 ng TEQ(WHO-Avian)/kg body wt/d). Hazard quotients (HQs) based on central tendency estimates of the average daily dose and no-observable-adverse effect level (NOAEL) for the screech owl and uncertainty factors were <1.0 for both the RA and the SA. Hazard quotients based on upper end estimates of the average daily dose and NOAEL were <1.0 in the RA and up to 3.4 in the SA. Environ. Toxicol. Chem. 2010;29:2350-2362. © 2010 SETAC.

  2. Use of Fatty Acid Analysis to Determine Dispersal of Caspian Terns in the Columbia River Basin, U.S.A.

    Science.gov (United States)

    Maranto, C.J.; Parrish, J.K.; Herman, D.P.; Punt, A.E.; Olden, J.D.; Brett, M.T.; Roby, D.D.

    2011-01-01

    Lethal control, which has been used to reduce local abundances of animals in conflict with humans or with endangered species, may not achieve management goals if animal movement is not considered. In populations with emigration and immigration, lethal control may induce compensatory immigration, if the source of attraction remains unchanged. Within the Columbia River Basin (Washington, U.S.A.), avian predators forage at dams because dams tend to reduce rates of emigration of juvenile salmonids (Oncorhynchus spp.), artificially concentrating these prey. We used differences in fatty acid profiles between Caspian Terns (Hydroprogne caspia) at coastal and inland breeding colonies and terns culled by a lethal control program at a mid-Columbia River dam to infer dispersal patterns. We modeled the rate of loss of fatty acid biomarkers, which are fatty acids that can be traced to a single prey species or groups of species, to infer whether and when terns foraging at dams had emigrated from the coast. Nonmetric multidimensional scaling showed that coastal terns had high levels of C20 and C22 monounsaturated fatty acids, whereas fatty acids of inland breeders were high in C18:3n3, C20:4n6, and C22:5n3. Models of the rate of loss of fatty acid showed that approximately 60% of the terns collected at Rock Island Dam were unlikely to have bred successfully at local (inland) sites, suggesting that terns foraging at dams come from an extensive area. Fatty acid biomarkers may provide accurate information about patterns of dispersal in animal populations and may be extremely valuable in cases where populations differ demonstrably in prey base. ??2011 Society for Conservation Biology.

  3. A Casting Form from the Muranka Unfortified Site on the Usa River

    Directory of Open Access Journals (Sweden)

    Stashenkov Dmitry A.

    2012-03-01

    Full Text Available A new find from Muranka unfortified settlement, one of major Golden Horde period sites in the Middle Volga river region is published. It is a double-sided stone mould intended for casting jewelry. Each side of the form was used for casting individual jewelry items: women's hair, head and costume decorations. The head ornaments include two temple rings and earrings shaped as question marks. One more decorative element, styled as a bird’s figure could be either part of some complex piece or an individual product. The other side of the form was used for casting two product varieties: belt buckles and pendants. The mould is of high-quality workmanship. The exact analogy of this rare find is not yet known.

  4. Rates and probable causes of freshwater tidal marsh failure, Potomac River Estuary, Northern Virginia, USA

    Science.gov (United States)

    Litwin, Ronald J.; Smoot, Joseph P.; Pavich, Milan J.; Markewich, Helaine Walsh; Oberg, Erik T.; Steury, Brent W.; Helwig, Ben; Santucci, Vincent L.; Sanders, Geoffrey

    2013-01-01

    Dyke Marsh, a distal tidal marsh along the Potomac River estuary, is diminishing rapidly in areal extent. This study documents Dyke Marsh erosion rates from the early-1860s to the present during pre-mining, mining, and post-mining phases. From the late-1930s to the mid-1970s, Dyke Marsh and the adjacent shallow riverbottom were mined for gravel, resulting in a ~55 % initial loss of area. Marsh loss continued during the post-mining phase (1976–2012). Causes of post-mining loss were unknown, but were thought to include Potomac River flooding. Post-mining areal-erosion rates increased from 0.138 ha yr−1 (~0.37 ac yr−1) to 0.516 ha yr−1(~1.67 ac yr−1), and shoreline-erosion rates increased from 0.76 m yr−1 (~2.5 ft yr−1) to 2.60 m yr−1 (~8.5 ft yr−1). Results suggest the accelerating post-mining erosion reflects a process-driven feedback loop, enabled by the marsh's severely-altered geomorphic and hydrologic baseline system; the primary post-mining degradation process is wave-induced erosion from northbound cyclonic storms. Dyke Marsh erosion rates are now comparable to, or exceed, rates for proximal coastal marshes in the same region. Persistent and accelerated erosion of marshland long after cessation of mining illustrates the long-term, and potentially devastating, effects that temporally-restricted, anthropogenic destabilization can have on estuarine marsh systems.

  5. River restoration strategies in channelized, low-gradient landscapes of West Tennessee, USA

    Science.gov (United States)

    Smith, D.P.; Diehl, T.H.; Turrini-Smith, L. A.; Maas-Baldwin, J.; Croyle, Z.

    2009-01-01

    West Tennessee has a complex history of watershed disturbance, including agricultural erosion, channelization, accelerated valley sedimentation, and the removal and reestablishment of beaver. Watershed management has evolved from fl oodplain drainage via pervasive channelization to include local drainage canal maintenance and local river restoration. Many unmaintained canals are undergoing excessive aggradation and complex channel evolution driven by upland erosion and low valley gradient. The locus of aggradation in fully occluded canals (valley plugs) moves up-valley as sediment continues to accumulate in the backwater behind the plug. Valley plugs that cause canal avulsion can lead to redevelopment of meandering channels in less disturbed areas of the fl oodplain, in a process of passive self-restoration. Some valley plugs have brought restored fl oodplain function, reoccupation of extant historic river channels, and formation of a "sediment shadow" that protects downstream reaches from excess sedimentation. Despite the presence of numerous opportunities, there is presently no mechanism for including valley plugs in mitigation projects. In 1997 a survey of 14 reference reach cross sections documented relations between drainage area and bankfull geometry of relatively unmodified streams in West Tennessee. Reassessment of seven of those sites in 2007 showed that one had been dammed by beaver and that two sites could not be analyzed further because of signifi cant vertical or lateral instability. In contrast to other regions of North America, the results suggest that stream channels in this region fl ood more frequently than once each year, and can remain out of banks for several weeks each year. ?? 2009 Geological Society of America.

  6. Temporal and spatial patterns of sedimentation within the batture lands of the middle Mississippi River, USA

    Science.gov (United States)

    Remo, Jonathan W. F.; Ryherd, Julia; Ruffner, Charles M.; Therrell, Matthew D.

    2018-05-01

    Sediment deposition and storage are important functions of batture lands (the land between the channel's low-water elevation and the flood mitigation levee). However, sedimentation processes within these areas are not fully understood. In this paper, we explore the spatiotemporal patterns, rates, and volume of sedimentation within the batture lands along the middle Mississippi River (MMR; between the confluence of the Missouri and Ohio rivers) using three approaches: (1) comparison of historical to modern elevation data in order to estimate long-term (>100 yr) sedimentation rates; (2) estimation of medium- to short-term (sedimentation rates using dendrogeomorphological methods; and (3) geomorphic change detection (GCD) software to estimate short-term sedimentation rates ( 12 yr), spatial patterns of deposition, and volumes of geomorphic change within the batture lands. Comparison of long- to short-term sedimentation rates suggests up to a 300% increase in batture land sedimentation rates (from 6.2 to 25.4 mm yr-1) despite a substantial decrease in the MMR's suspended-sediment load (>70%) attributed largely to sediment trapping by dams during the second half of the twentieth century. The increase in MMR batture land sedimentation rates are attributed to at least two potential mechanisms: (1) the above average frequency and duration of low-magnitude floods (>2-yr and ≤5-yr flood) during the short-term assessment periods which allowed for more suspended sediment to be deposited within the batture lands; and (2) the construction of levees that substantially reduced the floodplain area ( 75%) available for storage of overbank deposits increasing the vertical accumulation and consequently the detectability of a given volume of sediment. The GCD estimated batture land sediment volumes were 9.0% of the suspended load at St. Louis. This substantial storage of sediment ( 8.5 Mt yr-1) along the MMR suggests batture lands are an important sink for suspended sediments.

  7. Salmon-mediated nutrient flux in selected streams of the Columbia River basin, USA

    Science.gov (United States)

    Kohler, Andre E.; Kusnierz, Paul C.; Copeland, Timothy; Venditti, David A.; Denny, Lytle; Gable, Josh; Lewis, Bert; Kinzer, Ryan; Barnett, Bruce; Wipfli, Mark S.

    2013-01-01

    Salmon provide an important resource subsidy and linkage between marine and land-based ecosystems. This flow of energy and nutrients is not uni-directional (i.e., upstream only); in addition to passive nutrient export via stream flow, juvenile emigrants actively export nutrients from freshwater environments. In some cases, nutrient export can exceed import. We evaluated nutrient fluxes in streams across central Idaho, USA using Chinook salmon (Oncorhynchus tshawytscha) adult escapement and juvenile production data from 1998 to 2008. We found in the majority of stream-years evaluated, adults imported more nutrients than progeny exported; however, in 3% of the years, juveniles exported more nutrients than their parents imported. On average, juvenile emigrants exported 22 ± 3% of the nitrogen and 30 ± 4% of the phosphorus their parents imported. This relationship was density dependent and nonlinear; during periods of low adult abundance juveniles were larger and exported up to 194% and 268% of parental nitrogen and phosphorus inputs, respectively. We highlight minimum escapement thresholds that appear to 1) maintain consistently positive net nutrient flux and 2) reduce the average proportional rate of export across study streams. Our results suggest a state-shift occurs when adult spawner abundance falls below a threshold to a point where the probability of juvenile nutrient exports exceeding adult imports becomes increasingly likely.

  8. Effect of irrigation pumpage during drought on karst aquifer systems in highly agricultural watersheds: example of the Apalachicola-Chattahoochee-Flint river basin, southeastern USA

    Science.gov (United States)

    Mitra, Subhasis; Srivastava, Puneet; Singh, Sarmistha

    2016-09-01

    In the Apalachicola-Chattahoochee-Flint (ACF) river basin in Alabama, Georgia, and Florida (USA), population growth in the city of Atlanta and increased groundwater withdrawal for irrigation in southwest Georgia are greatly affecting the supply of freshwater to downstream regions. This study was conducted to understand and quantify the effect of irrigation pumpage on the karst Upper Floridan Aquifer and river-aquifer interactions in the lower ACF river basin in southwest Georgia. The groundwater MODular Finite-Element model (MODFE) was used for this study. The effect of two drought years, a moderate and a severe drought year, were simulated. Comparison of the results of the irrigated and non-irrigated scenarios showed that groundwater discharge to streams is a major outflow from the aquifer, and irrigation can cause as much as 10 % change in river-aquifer flux. The results also show that during months with high irrigation (e.g., June 2011), storage loss (34 %), the recharge and discharge from the upper semi-confining unit (30 %), and the river-aquifer flux (31 %) are the major water components contributing towards the impact of irrigation pumpage in the study area. A similar scenario plays out in many river basins throughout the world, especially in basins in which underlying karst aquifers are directly connected to a nearby stream. The study suggests that improved groundwater withdrawal strategies using climate forecasts needs to be developed in such a way that excessive withdrawals during droughts can be reduced to protect streams and river flows.

  9. Groundwater flow, nutrient, and stable isotope dynamics in the parafluvial-hyporheic zone of the regulated Lower Colorado River (Texas, USA) over the course of a small flood

    Science.gov (United States)

    Briody, Alyse C.; Cardenas, M. Bayani; Shuai, Pin; Knappett, Peter S. K.; Bennett, Philip C.

    2016-06-01

    Periodic releases from an upstream dam cause rapid stage fluctuations in the Lower Colorado River near Austin, Texas, USA. These daily pulses modulate fluid exchange and residence times in the hyporheic zone where biogeochemical reactions are typically pronounced. The effects of a small flood pulse under low-flow conditions on surface-water/groundwater exchange and biogeochemical processes were studied by monitoring and sampling from two dense transects of wells perpendicular to the river. The first transect recorded water levels and the second transect was used for water sample collection at three depths. Samples were collected from 12 wells every 2 h over a 24-h period which had a 16-cm flood pulse. Analyses included nutrients, carbon, major ions, and stable isotopes of water. The relatively small flood pulse did not cause significant mixing in the parafluvial zone. Under these conditions, the river and groundwater were decoupled, showed potentially minimal mixing at the interface, and did not exhibit any discernible denitrification of river-borne nitrate. The chemical patterns observed in the parafluvial zone can be explained by evaporation of groundwater with little mixing with river water. Thus, large pulses may be necessary in order for substantial hyporheic mixing and exchange to occur. The large regulated river under a low-flow and small flood pulse regime functioned mainly as a gaining river with little hydrologic connectivity beyond a narrow hyporheic zone.

  10. Application of hydrologic tools and monitoring to support managed aquifer recharge decision making in the Upper San Pedro River, Arizona, USA

    Science.gov (United States)

    Lacher, Laurel J.; Turner, Dale S.; Gungle, Bruce W.; Bushman, Brooke M.; Richter, Holly E.

    2014-01-01

    The San Pedro River originates in Sonora, Mexico, and flows north through Arizona, USA, to its confluence with the Gila River. The 92-km Upper San Pedro River is characterized by interrupted perennial flow, and serves as a vital wildlife corridor through this semiarid to arid region. Over the past century, groundwater pumping in this bi-national basin has depleted baseflows in the river. In 2007, the United States Geological Survey published the most recent groundwater model of the basin. This model served as the basis for predictive simulations, including maps of stream flow capture due to pumping and of stream flow restoration due to managed aquifer recharge. Simulation results show that ramping up near-stream recharge, as needed, to compensate for downward pumping-related stress on the water table, could sustain baseflows in the Upper San Pedro River at or above 2003 levels until the year 2100 with less than 4.7 million cubic meters per year (MCM/yr). Wet-dry mapping of the river over a period of 15 years developed a body of empirical evidence which, when combined with the simulation tools, provided powerful technical support to decision makers struggling to manage aquifer recharge to support baseflows in the river while also accommodating the economic needs of the basin.

  11. Application of Hydrologic Tools and Monitoring to Support Managed Aquifer Recharge Decision Making in the Upper San Pedro River, Arizona, USA

    Directory of Open Access Journals (Sweden)

    Laurel J. Lacher

    2014-11-01

    Full Text Available The San Pedro River originates in Sonora, Mexico, and flows north through Arizona, USA, to its confluence with the Gila River. The 92-km Upper San Pedro River is characterized by interrupted perennial flow, and serves as a vital wildlife corridor through this semiarid to arid region. Over the past century, groundwater pumping in this bi-national basin has depleted baseflows in the river. In 2007, the United States Geological Survey published the most recent groundwater model of the basin. This model served as the basis for predictive simulations, including maps of stream flow capture due to pumping and of stream flow restoration due to managed aquifer recharge. Simulation results show that ramping up near-stream recharge, as needed, to compensate for downward pumping-related stress on the water table, could sustain baseflows in the Upper San Pedro River at or above 2003 levels until the year 2100 with less than 4.7 million cubic meters per year (MCM/yr. Wet-dry mapping of the river over a period of 15 years developed a body of empirical evidence which, when combined with the simulation tools, provided powerful technical support to decision makers struggling to manage aquifer recharge to support baseflows in the river while also accommodating the economic needs of the basin.

  12. DIGITAL FLOOD INSURANCE RATE MAP DATABASE, DODGE COUNTY, WISCONSIN, USA - MIP Dodge Portion Upper Rock River Watershed RiskMap DFIRM Update

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk;...

  13. DIGITAL FLOOD INSURANCE RATE MAP DATABASE, COLUMBIA COUNTY, WISCONSIN, USA - MIP Columbia Portion Baraboo River Watershed RiskMap DFIRM Update

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk;...

  14. Does Habitat Restoration Increase Coexistence of Native Stream Fishes with Introduced Brown Trout: A Case Study on the Middle Provo River, Utah, USA

    OpenAIRE

    Mark C. Belk; Eric J. Billman; Craig Ellsworth; Brock R. McMillan

    2016-01-01

    Restoration of altered or degraded habitats is often a key component in the conservation plan of native aquatic species, but introduced species may influence the response of the native community to restoration. Recent habitat restoration of the middle section of the Provo River in central Utah, USA, provided an opportunity to evaluate the effect of habitat restoration on the native fish community in a system with an introduced, dominant predator—brown trout (Salmo trutta). To determine the ch...

  15. Physical Volcanological and Petrogenetic Implications of Intra-lava Flow Geochemical Heterogeneity in the Columbia River Flood Basalt Province, USA.

    Science.gov (United States)

    Vye, C. L.; Barry, T. L.; Self, S.; Gannoun, A.; Burton, K. W.

    2007-12-01

    Continental flood basalt lava flows are widely assumed to represent compositionally uniform and rapidly erupted products of large well-mixed magma reservoirs. However, this study presents new data to illustrate systematic element and isotope variations within the flow field formed by an individual flood basalt eruption, both vertically within each sheet lobe and laterally between the constituent lobes. Such variation is significant in chemostratigraphic correlation of flood basalt lava units, in identifying source variability during one eruption, and in petrogenetic modeling. We investigate the extent and cause of compositional variation through tracing lava sheet lobes in a 2,660 cubic kilometer pahoehoe flow field formed during a single eruption in the Columbia River Basalt Province, USA. This is based on features related to emplacement by the inflation mechanism. This method of emplacement is supported by small but statistically significant and systematic major and trace element variation e.g. MgO 3.09- 4.55 wt%, Ni 17.5-25.6 ppm, indicative of fractional crystallisation. Re-Os isotopes indicate progressive crustal contamination of the magma over the timescale of a single flood basalt eruption. By establishing this physical volcanological framework, we determine a temporal link with the supply of lava from the vent(s) and apply it to investigate sequential magmatic evolution during the timescale of one eruption.

  16. Projected Hg dietary exposure of 3 bird species nesting on a contaminated floodplain (South River, Virginia, USA).

    Science.gov (United States)

    Wang, Jincheng; Newman, Michael C

    2013-04-01

    Dietary Hg exposure was modeled for Carolina wren (Thryothorus ludovicianus), Eastern song sparrow (Melospiza melodia), and Eastern screech owl (Otus asio) nesting on the contaminated South River floodplain (Virginia, USA). Parameterization of Monte-Carlo models required formal expert elicitation to define bird body weight and feeding ecology characteristics because specific information was either unavailable in the published literature or too difficult to collect reliably by field survey. Mercury concentrations and weights for candidate food items were obtained directly by field survey. Simulations predicted the probability that an adult bird during breeding season would ingest specific amounts of Hg during daily foraging and the probability that the average Hg ingestion rate for the breeding season of an adult bird would exceed published rates reported to cause harm to other birds (>100 ng total Hg/g body weight per day). Despite the extensive floodplain contamination, the probabilities that these species' average ingestion rates exceeded the threshold value were all <0.01. Sensitivity analysis indicated that overall food ingestion rate was the most important factor determining projected Hg ingestion rates. Expert elicitation was useful in providing sufficiently reliable information for Monte-Carlo simulation. Copyright © 2013 SETAC.

  17. Environmental contaminants in great blue herons (Ardea herodias) from the lower Columbia and Willamette Rivers, Oregon and Washington, USA

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.M.; Anthony, R.G.

    1999-12-01

    Great blue heron (Ardea herodias) eggs and prey items were collected from six colonies in Oregon and Washington, USA, during 1994 to 1995. Contaminant concentrations, reproductive success, and biomagnification factors were determined and effects of residue levels were measured by H4IIE rat hepatoma bioassays. Mean residue concentrations in heron eggs and prey items were generally low. However, elevated concentrations of polychlorinated biphenyls (PCBs) were detected in eggs and prey from Ross Island on the Willamette River. Biomagnification factors varied among sites. Sites were not significantly different in H4IIE tetrachlorodibenzo-p-dioxin equivalents (TCDD-EQs), although the TCDD-EQ for Karlson Island was 9 to 20 times greater than that of any other site. Large differences existed between toxic equivalents calculated from egg residue concentrations and TCDD-EQs, which indicated nonadditive interactions among the compounds. Tetrachlorodibenzo-p-dioxin equivalents and nest failure were positively correlated with TCDD concentration. Fledging and reproductive rates were similar to those determined for healthy heron populations, however, indicating that any adverse effects were occurring at the individual level and not at the colony level. Their results support the use of great blue herons as a biomonitor for contamination in aquatic ecosystems. Their relatively low sensitivity to organochlorine contaminants and high trophic position allows contaminant accumulation and biomagnification without immediate adverse effects that are often seen in other, more sensitive species.

  18. Role of climate and invasive species in structuring trout distributions in the interior Columbia River Basin, USA

    Science.gov (United States)

    Wenger, Seth J.; Isaak, Daniel J.; Dunham, Jason B.; Fausch, Kurt D.; Luce, Charles H.; Neville, Helen M.; Rieman, Bruce E.; Young, Michael K.; Nagel, David E.; Horan, Dona L.; Chandler, Gwynne L.

    2011-01-01

    Recent and projected climate warming trends have prompted interest in impacts on coldwater fishes. We examined the role of climate (temperature and flow regime) relative to geomorphology and land use in determining the observed distributions of three trout species in the interior Columbia River Basin, USA. We considered two native species, cutthroat trout (Oncorhynchus clarkii) and bull trout (Salvelinus confluentus), as well as nonnative brook trout (Salvelinus fontinalis). We also examined the response of the native species to the presence of brook trout. Analyses were conducted using multilevel logistic regression applied to a geographically broad database of 4165 fish surveys. The results indicated that bull trout distributions were strongly related to climatic factors, and more weakly related to the presence of brook trout and geomorphic variables. Cutthroat trout distributions were weakly related to climate but strongly related to the presence of brook trout. Brook trout distributions were related to both climate and geomorphic variables, including proximity to unconfined valley bottoms. We conclude that brook trout and bull trout are likely to be adversely affected by climate warming, whereas cutthroat trout may be less sensitive. The results illustrate the importance of considering species interactions and flow regime alongside temperature in understanding climate effects on fish.

  19. Holocene alluvial stratigraphy and response to climate change in the Roaring River valley, Front Range, Colorado, USA

    Science.gov (United States)

    Madole, Richard F.

    2012-09-01

    Stratigraphic analyses and radiocarbon geochronology of alluvial deposits exposed along the Roaring River, Colorado, lead to three principal conclusions: (1) the opinion that stream channels in the higher parts of the Front Range are relics of the Pleistocene and nonalluvial under the present climate, as argued in a water-rights trial USA v. Colorado, is untenable, (2) beds of clast-supported gravel alternate in vertical succession with beds of fine-grained sediment (sand, mud, and peat) in response to centennial-scale changes in snowmelt-driven peak discharges, and (3) alluvial strata provide information about Holocene climate history that complements the history provided by cirque moraines, periglacial deposits, and paleontological data. Most alluvial strata are of late Holocene age and record, among other things, that: (1) the largest peak flows since the end of the Pleistocene occurred during the late Holocene; (2) the occurrence of a mid- to late Holocene interval (~ 2450-1630(?) cal yr BP) of warmer climate, which is not clearly identified in palynological records; and (3) the Little Ice Age climate seems to have had little impact on stream channels, except perhaps for minor (~ 1 m) incision.

  20. Water's Way at Sleepers River watershed – revisiting flow generation in a post-glacial landscape, Vermont USA

    Science.gov (United States)

    Shanley, James B.; Sebestyen, Stephen D.; McDonnell, Jeffrey J.; McGlynn, Brian L.; Dunne, Thomas

    2015-01-01

    The Sleepers River Research Watershed (SRRW) in Vermont, USA, has been the site of active hydrologic research since 1959 and was the setting where Dunne and Black demonstrated the importance and controls of saturation-excess overland flow (SOF) on streamflow generation. Here, we review the early studies from the SRRW and show how they guided our conceptual approach to hydrologic research at the SRRW during the most recent 25 years. In so doing, we chronicle a shift in the field from early studies that relied exclusively on hydrometric measurements to today's studies that include chemical and isotopic approaches to further elucidate streamflow generation mechanisms. Highlights of this evolution in hydrologic understanding include the following: (i) confirmation of the importance of SOF to streamflow generation, and at larger scales than first imagined; (ii) stored catchment water dominates stream response, except under unusual conditions such as deep frozen ground; (iii) hydrometric, chemical and isotopic approaches to hydrograph separation yield consistent and complementary results; (iv) nitrate and sulfate isotopic compositions specific to atmospheric inputs constrain new water contributions to streamflow; and (v) convergent areas, or ‘hillslope hollows’, contribute disproportionately to event hydrographs. We conclude by summarizing some remaining challenges that lead us to a vision for the future of research at the SRRW to address fundamental questions in the catchment sciences.

  1. Wildfire may increase habitat quality for spring Chinook salmon in the Wenatchee River subbasin, WA, USA

    Science.gov (United States)

    Flitcroft, Rebecca L; Falke, Jeffrey A.; Reeves, Gordon H.; Hessburg, Paul F.; McNyset, Kris M.; Benda, Lee E.

    2016-01-01

    Pacific Northwest salmonids are adapted to natural disturbance regimes that create dynamic habitat patterns over space and through time. However, human land use, particularly long-term fire suppression, has altered the intensity and frequency of wildfire in forested upland and riparian areas. To examine the potential impacts of wildfire on aquatic systems, we developed stream-reach-scale models of freshwater habitat for three life stages (adult, egg/fry, and juvenile) of spring Chinook salmon (Oncorhynchus tshawytscha) in the Wenatchee River subbasin, Washington. We used variables representing pre- and post-fire habitat conditions and employed novel techniques to capture changes in in-stream fine sediment, wood, and water temperature. Watershed-scale comparisons of high-quality habitat for each life stage of spring Chinook salmon habitat suggested that there are smaller quantities of high-quality juvenile overwinter habitat as compared to habitat for other life stages. We found that wildfire has the potential to increase quality of adult and overwintering juvenile habitat through increased delivery of wood, while decreasing the quality of egg and fry habitat due to the introduction of fine sediments. Model results showed the largest effect of fire on habitat quality associated with the juvenile life stage, resulting in increases in high-quality habitat in all watersheds. Due to the limited availability of pre-fire high-quality juvenile habitat, and increased habitat quality for this life stage post-fire, occurrence of characteristic wildfires would likely create a positive effect on spring Chinook salmon habitat in the Wenatchee River subbasin. We also compared pre- and post-fire model results of freshwater habitat for each life stage, and for the geometric mean of habitat quality across all life stages, using current compared to the historic distribution of spring Chinook salmon. We found that spring Chinook salmon are currently distributed in stream channels in

  2. Ensemble modeling of E. coli in the Charles River, Boston, Massachusetts, USA.

    Science.gov (United States)

    Hellweger, F L

    2007-01-01

    A case study of ensemble modeling of Escherichia coli (E. coli) densities in surface waters in the context of public health risk prediction is presented. The output of two different models, mechanistic and empirical, are combined and compared to data. The mechanistic model is a high-resolution, time-variable, three-dimensional coupled hydrodynamic and water quality model. It generally reproduces the mechanisms of E. coli fate and transport in the river, including the presence and absence of a plume in the study area under similar input, but different hydrodynamic conditions caused by the operation of a downstream dam and wind. At the time series station, the model has a root mean square error (RMSE) of 370 CFU/100mL, a total error rate (with respect to the EPA-recommended single sample criteria value of 235 CFU/100mL) (TER) of 15% and negative error rate (NER) of 30%. The empirical model is based on multiple linear regression using the forcing functions of the mechanistic model as independent variables. It has better overall performance (at the time series station), due to a strong correlation of E. coli density with upstream inflow for this time period (RMSE =200 CFU/100mL, TER =13%, NER =1.6%). However, the model is mechanistically incorrect in that it predicts decreasing densities with increasing Combined Sewer Overflow (CSO) input. The two models are fundamentally different and their errors are uncorrelated (R(2) =0.02), which motivates their combination in an ensemble. Two combination approaches, a geometric mean ensemble (GME) and an "either exceeds" ensemble (EEE), are explored. The GME model outperforms the mechanistic and empirical models in terms of RMSE (190 CFU/100mL) and TER (11%), but has a higher NER (23%). The EEE has relatively high TER (16%), but low NER (0.8%) and may be the best method for a conservative prediction. The study demonstrates the potential utility of ensemble modeling for pathogen indicators, but significant further research is

  3. Anatomy and dynamics of a floodplain, Powder River, Montana, U.S.A.

    Science.gov (United States)

    Pizzuto, J.E.; Moody, J.A.; Meade, R.H.

    2008-01-01

    Centimeter-scale measurements on several Powder River floodplains provide insights into the nature of overbank depositional processes that created the floodplains; during a 20-year period after a major flood in 1978. Rising stages initially entered across a sill at the downriver end of the floodplains. Later, as stages continued to rise, water entered the floodplains through distinct low saddles along natural levees. The annual maximum depth of water over the levee crest averaged 0.19 in from 1983 through 1996, and the estimated flow velocities were approximately 0.15 m s-1. Water ponded in the floodplain trough, a topographic low between the natural levee and the pre-flood riverbank, and mud settled as thin layers of nearly constant thickness. Mud layers alternated with sand layers, which were relatively thick near the channel. Together, these beds created a distinctive natural levee. In some locations, individual flood deposits began as a thin mud layer that gradually coarsened upwards to medium-grained sand. Coarsening-upwards sequences form initially as mud because only the uppermost layers of water in the channel supply the first overbank flows, which are rich in mud but starved of sand. At successively higher stages, fine sands and then medium sands increase in concentration in the floodwater and are deposited as fine- and medium-sand layers overlying the initial mud layer. Theoretical predictions from mathematical models of sediment transport by advection and diffusion indicate that these processes acting alone are unlikely to create the observed sand layers of nearly uniform thickness that extend across much of the floodplain. We infer that other transport processes, notably bedload transport, must be important along Powder River. Even with the centimeter-scale measurements of floodplain deposits, daily hydraulic data, and precise annual surface topographic surveys, we were unable to determine any clear correspondence between the gauged flow record of

  4. Assessing water quality suitability for shortnose sturgeon in the Roanoke River, North Carolina, USA with an in situ bioassay approach

    Science.gov (United States)

    Cope, W.G.; Holliman, F.M.; Kwak, T.J.; Oakley, N.C.; Lazaro, P.R.; Shea, D.; Augspurger, T.; Law, J.M.; Henne, J.P.; Ware, K.M.

    2011-01-01

    dry weight) at several river sites, no correlation was detected of adverse water quality conditions or measured contaminant concentrations to the poor survival of sturgeon among riverine test sites. Histopathology analysis determined that the mortality of the river deployed shortnose sturgeon was likely due to liver and kidney lesions from an unknown agent(s). Given the poor survival of shortnose sturgeon (9%) and high survival of fathead minnows (99.4%) at the riverine test sites, our study indicates that conditions in the Roanoke River are incongruous with the needs of juvenile shortnose sturgeon and that fathead minnows, commonly used standard toxicity test organisms, do not adequately predict the sensitivity of shortnose sturgeon. Therefore, additional research is needed to help identify specific limiting factors and management actions for the enhancement and recovery of this imperiled fish species. Published 2010. This article is a US Government work and is in the public domain in the USA.

  5. Reconstructing Historical Riparian Conditions of Two River Basins in Eastern Oregon, USA

    Science.gov (United States)

    McAllister, Lynne S.

    2008-09-01

    As land use continues to alter riparian areas, historical information is increasingly needed to help establish reference conditions for monitoring and assessment. I developed and applied a procedure in the John Day and Deschutes river basins of eastern Oregon for synthesizing historical documentary records available across broad spatial areas to reconstruct 19th-century riparian conditions. The study area was stratified by ecoregion and stream physical characteristics to partition regional variability. Three primary data sources—General Land Office survey notes, historical photographs, and written accounts—provided descriptive records, which were grouped by topic to develop common riparian attributes. The number of records for each attribute was tallied by stratum to compare and contrast riparian structure and composition across strata and ecoregions. Detailed descriptions of historical riparian conditions using the original documentary records further illustrated the unique riparian conditions in each stratum. Similarities and differences in historical riparian structure and composition at the stratum and ecoregion levels were evident based on the distributional pattern and numbers of records of attributes across strata. A high number of repeated observations within and among primary data sources helped to corroborate descriptive data. Although these reference data cannot provide the detail needed for rigorous quantitative assessments, they do describe a range of conditions approaching a minimally disturbed condition and provide an important perspective for conducting riparian assessments in highly disturbed regions where least-disturbed reference sites are often poor examples of a desired condition.

  6. Establishing a Multi-scale Stream Gaging Network in the Whitewater River Basin, Kansas, USA

    Science.gov (United States)

    Clayton, J.A.; Kean, J.W.

    2010-01-01

    Investigating the routing of streamflow through a large drainage basin requires the determination of discharge at numerous locations in the channel network. Establishing a dense network of stream gages using conventional methods is both cost-prohibitive and functionally impractical for many research projects. We employ herein a previously tested, fluid-mechanically based model for generating rating curves to establish a stream gaging network in the Whitewater River basin in south-central Kansas. The model was developed for the type of channels typically found in this watershed, meaning that it is designed to handle deep, narrow geomorphically stable channels with irregular planforms, and can model overbank flow over a vegetated floodplain. We applied the model to ten previously ungaged stream reaches in the basin, ranging from third- to sixth-order channels. At each site, detailed field measurements of the channel and floodplain morphology, bed and bank roughness, and vegetation characteristics were used to quantify the roughness for a range of flow stages, from low flow to overbank flooding. Rating curves that relate stage to discharge were developed for all ten sites. Both fieldwork and modeling were completed in less than 2 years during an anomalously dry period in the region, which underscores an advantage of using theoretically based (as opposed to empirically based) discharge estimation techniques. ?? 2010 Springer Science+Business Media B.V.

  7. Quantifying and valuing ecosystem services: An application of ARIES to the San Pedro River basin, USA

    Science.gov (United States)

    Bagstad, Kenneth J.; Semmens, Darius J.; Villa, Ferdinando; Johnson, Gary

    2014-01-01

    A large body of research exists that identifies and values ecosystem services - the benefits that ecosystems provide to humans (MA, 2005) - and their underlying ecological processes. However, the development of software decision support tools that integrate ecology, economics and geography that can be independently used within the public, private, academic and NGO sectors is a more recent phenomenon (Ruhl et al., 2007; Daily et al., 2009). Spurred by growing demand for more sophisticated analysis of the social and economic consequences of land management decisions, the US Department of Interior - Bureau of Land Management (BLM) launched a pilot project with the US Geological Survey (USGS) to assess the usefulness and feasibility of ecosystem service assessment and valuation tools to provide inputs to decision-making. The project analysed ecosystem services in the US portion of the San Pedro River watershed, which includes the BLM-managed San Pedro Riparian National Conservation Area (SPRNCA), to improve the understanding of complex social and ecological relationships that transcend administrative divisions. The BLM manages some 99 million hectares, primarily in the western United States, and 283 million hectares of sub-surface mineral estate. BLM's multiple-use mission requires that it appropriately balance non-extractive uses such as habitat conservation, recreation and archaeological heritage protection and the extractive use of resources such as timber, oil and gas, coal, uranium, and other minerals.

  8. Holocene volcanism of the upper McKenzie River catchment, central Oregon Cascades, USA

    Science.gov (United States)

    Deligne, Natalia I.; Conrey, Richard M.; Cashman, Katharine V.; Champion, Duane E.; Amidon, William H.

    2016-01-01

    To assess the complexity of eruptive activity within mafic volcanic fields, we present a detailed geologic investigation of Holocene volcanism in the upper McKenzie River catchment in the central Oregon Cascades, United States. We focus on the Sand Mountain volcanic field, which covers 76 km2 and consists of 23 vents, associated tephra deposits, and lava fields. We find that the Sand Mountain volcanic field was active for a few decades around 3 ka and involved at least 13 eruptive units. Despite the small total volume erupted (∼1 km3 dense rock equivalent [DRE]), Sand Mountain volcanic field lava geochemistry indicates that erupted magmas were derived from at least two, and likely three, different magma sources. Single units erupted from one or more vents, and field data provide evidence of both vent migration and reoccupation. Overall, our study shows that mafic volcanism was clustered in space and time, involved both explosive and effusive behavior, and tapped several magma sources. These observations provide important insights on possible future hazards from mafic volcanism in the central Oregon Cascades.

  9. Concentrations and distributions of metals associated with dissolved organic matter from the Suwannee River (GA, USA)

    Science.gov (United States)

    Kuhn, M. Keshia; Neubauer, Elisabeth; Hofmann, Thilo; von der Kammer, Frank; Aiken, George R.; Maurice, Patricia A.

    2015-01-01

    Concentrations and distributions of metals in Suwannee River (SR) raw filtered surface water (RFSW) and dissolved organic matter (DOM) processed by reverse osmosis (RO), XAD-8 resin (for humic and fulvic acids [FA]), and XAD-4 resin (for “transphilic” acids) were analyzed by asymmetrical flow field-flow fractionation (AsFlFFF). SR samples were compared with DOM samples from Nelson's Creek (NLC), a wetland-draining stream in northern Michigan; previous International Humic Substances Society (IHSS) FA and RO samples from the SR; and an XAD-8 sample from Lake Fryxell (LF), Antarctica. Despite application of cation exchange during sample processing, all XAD and RO samples contained substantial metal concentrations. AsFlFFF fractograms allowed metal distributions to be characterized as a function of DOM component molecular weight (MW). In SR RFSW, Fe, Al, and Cu were primarily associated with intermediate to higher than average MW DOM components. SR RO, XAD-8, and XAD-4 samples from May 2012 showed similar MW trends for Fe and Al but Cu tended to associate more with lower MW DOM. LF DOM had abundant Cu and Zn, perhaps due to amine groups that should be present due to its primarily algal origins. None of the fractograms showed obvious evidence for mineral nanoparticles, although some very small mineral nanoparticles might have been present at trace concentrations. This research suggests that AsFlFFF is important for understanding how metals are distributed in different DOM samples (including IHSS samples), which may be key to metal reactivity and bioavailability.

  10. Abiotic controls of emergent macrophyte density in a bedrock channel - The Cahaba River, AL (USA)

    Science.gov (United States)

    Vaughn, Ryan S.; Davis, Lisa

    2015-10-01

    Research examining bedrock channels is growing. Despite this, biotic-abiotic interactions remain a topic mostly addressed in alluvial systems. This research identified hydrogeomorphic factors operating at the patch-scale (100-102 m) in bedrock shoals of the Cahaba River (AL) that help determine the distribution of the emergent aquatic macrophyte, Justicia americana. Macrophyte patch density (number of stems/m2) and percent bedrock void surface area (rock surface area/m2 occupied by joints, fractures, and potholes) were measured (n = 24 within two bedrock shoals) using stem counts and underwater photography, respectively. One-dimensional hydrologic modeling (HEC-RAS 4.1.0) was completed for a section within a shoal to examine velocity and channel depth as controlling variables for macrophyte patch density. Results from binary logistic regression analysis identified depth and velocity as good predictors of the presence or absence of Justicia americana within shoal structures (depth p = 0.001, velocity p = 0.007), which is a similar finding to previous research conducted in alluvial systems. Correlation analysis between bedrock surface void area and stem density demonstrated a statistically significant positive correlation (r = 0.665, p = 0.01), elucidating a link between abiotic-biotic processes that may well be unique to bedrock channels. These results suggest that the amount of void space present in bedrock surfaces, in addition to localized depth and velocity, helps control macrophyte patch density in bedrock shoal complexes. The utility of geomorphology in explaining patch-scale habitat heterogeneity in this study highlights geomorphology's potential to help understand macrophyte habitat heterogeneity at the reach scale, while also demonstrating its promise for mapping and understanding habitat heterogeneity at the system scale.

  11. Effects of extreme floods on macroinvertebrate assemblages in tributaries to the Mohawk River, New York, USA

    Science.gov (United States)

    Calderon, Mirian R.; Baldigo, Barry P.; Smith, Alexander J.; Endreny, Theodore A.

    2017-01-01

    Climate change is forecast to bring more frequent and intense precipitation to New York which has motivated research into the effects of floods on stream ecosystems. Macroinvertebrate assemblages were sampled at 13 sites in the Mohawk River basin during August 2011, and again in October 2011, following historic floods caused by remnants of Hurricane Irene and Tropical Storm Lee. The annual exceedance probabilities of floods at regional flow-monitoring sites ranged from 0.5 to 0.001. Data from the first 2 surveys, and from additional surveys done during July and October 2014, were assessed to characterize the severity of flood impacts, effect of seasonality, and recovery. Indices of total taxa richness; Ephemeroptera, Plecoptera, and Trichoptera (EPT) richness; Hilsenhoff's biotic index; per cent model affinity; and nutrient biotic index-phosphorus were combined to calculate New York State Biological Assessment Profile scores. Analysis of variance tests were used to determine if the Biological Assessment Profile, its component metrics, relative abundance, and diversity differed significantly (p ≤ .05) among the four surveys. Only total taxa richness and Shannon–Wiener diversity increased significantly, and abundance decreased significantly, following the floods. No metrics differed significantly between the July and August 2014 surveys which indicates that the differences denoted between the August and October 2011 surveys were caused by the floods. Changes in taxa richness, EPT richness, and diversity were significantly correlated with flood annual exceedance probabilities. This study increased our understanding of the resistance and resilience of benthic macroinvertebrate communities by showing that their assemblages were relatively impervious to extreme floods across the region.

  12. Evaluation of levee setbacks for flood-loss reduction, Middle Mississippi River, USA

    Science.gov (United States)

    Dierauer, Jennifer; Pinter, Nicholas; Remo, Jonathan W. F.

    2012-07-01

    SummaryOne-dimensional hydraulic modeling and flood-loss modeling were used to test the effectiveness of levee setbacks for flood-loss reduction along the Middle Mississippi River (MMR). Four levee scenarios were assessed: (1) the present-day levee configuration, (2) a 1000 m levee setback, (3) a 1500 m levee setback, and (4) an optimized setback configuration. Flood losses were estimated using FEMA's Hazus-MH (Hazards US Multi-Hazard) loss-estimation software on a structure-by-structure basis for a range of floods from the 2- to the 500-year events. These flood-loss estimates were combined with a levee-reliability model to calculate probability-weighted damage estimates. In the simplest case, the levee setback scenarios tested here reduced flood losses compared to current conditions for large, infrequent flooding events but increased flood losses for smaller, more frequent flood events. These increases occurred because levee protection was removed for some of the existing structures. When combined with buyouts of unprotected structures, levee setbacks reduced flood losses for all recurrence intervals. The "optimized" levee setback scenario, involving a levee configuration manually planned to protect existing high-value infrastructure, reduced damages with or without buyouts. This research shows that levee setbacks in combination with buyouts are an economically viable approach for flood-risk reduction along the study reach and likely elsewhere where levees are widely employed for flood control. Designing a levee setback around existing high-value infrastructure can maximize the benefit of the setback while simultaneously minimizing the costs. The optimized levee setback scenario analyzed here produced payback periods (costs divided by benefits) of less than 12 years. With many aging levees failing current inspections across the US, and flood losses spiraling up over time, levee setbacks are a viable solution for reducing flood exposure and flood levels.

  13. Watershed Response to Climate Change and Fire-Burns in the Upper Umatilla River Basin, USA

    Directory of Open Access Journals (Sweden)

    Kimberly Yazzie

    2017-02-01

    Full Text Available This study analyzed watershed response to climate change and forest fire impacts in the upper Umatilla River Basin (URB, Oregon, using the precipitation runoff modeling system. Ten global climate models using Coupled Intercomparison Project Phase 5 experiments with Representative Concentration Pathways (RCP 4.5 and 8.5 were used to simulate the effects of climate and fire-burns on runoff behavior throughout the 21st century. We observed the center timing (CT of flow, seasonal flows, snow water equivalent (SWE and basin recharge. In the upper URB, hydrologic regime shifts from a snow-rain-dominated to rain-dominated basin. Ensemble mean CT occurs 27 days earlier in RCP 4.5 and 33 days earlier in RCP 8.5, in comparison to historic conditions (1980s by the end of the 21st century. After forest cover reduction in the 2080s, CT occurs 35 days earlier in RCP 4.5 and 29 days earlier in RCP 8.5. The difference in mean CT after fire-burns may be due to projected changes in the individual climate model. Winter flow is projected to decline after forest cover reduction in the 2080s by 85% and 72% in RCP 4.5 and RCP 8.5, in comparison to 98% change in ensemble mean winter flows in the 2080s before forest cover reduction. The ratio of ensemble mean snow water equivalent to precipitation substantially decreases by 81% and 91% in the 2050s and 2080s before forest cover reduction and a decrease of 90% in RCP 4.5 and 99% in RCP 8.5 in the 2080s after fire-burns. Mean basin recharge is 10% and 14% lower in the 2080s before fire-burns and after fire-burns, and it decreases by 13% in RCP 4.5 and decreases 22% in RCP 8.5 in the 2080s in comparison to historical conditions. Mixed results for recharge after forest cover reduction suggest that an increase may be due to the size of burned areas, decreased canopy interception and less evaporation occurring at the watershed surface, increasing the potential for infiltration. The effects of fire on the watershed system are

  14. Changes to subaqueous delta bathymetry following a high river flow event, Wax Lake Delta, LA, USA

    Science.gov (United States)

    Whaling, A. R.; Shaw, J.

    2017-12-01

    Sediment transport capacity is increased during high river flow (flood) events which are characterized by discharges that exceed the 15 year median daily statistic. The Wax Lake Delta (WLD) in coastal Louisiana has experienced 19 of these high flow events in the past 20 years, yet the depositional patterns of single floods are rarely measured in a field-scale deltaic setting. We characterize flood deposition and erosion patterns on the subaqueous portion of the WLD by differencing two Digital Elevation Models (DEMs) constructed from bathymetric surveys before and after the third largest flood in the WLD's recorded history. The total suspended sediment discharge for the 496 day inter-survey period was 2.14x107 cubic meters measured 21 km upstream of the delta apex. The difference map showed 1.06x107 cubic meters of sediment was deposited and 8.2x106 cubic meters was eroded, yielding 2.40x106 cubic meters of net deposition in the survey area ( 79.7 km2 ). Therefore the average deposition rate was 0.061 mm/day. Channel planform remained relatively unchanged for five out of six distributary passes however Gadwall Pass experienced a maximum channel displacement of 166 m ( 1 channel width) measured from the thalweg centerline. Channel tip extension was negligible. In addition, channel displacement was not concentrated at any portion along the channel centerline. Maximum erosion occurred within channel margins and increased upstream whereas maximum deposition occurred immediately outside the channel margins. Sediment eroded from the survey area was either subsequently re-deposited or transported out of the system. Our results show that up to 77.4% of deposition in the survey area originated from sediment eroded during the flood. Surprisingly, only 11.2% of the total suspended sediment discharge was retained in the subaqueous portion of the delta after the flood. We conclude that a high flow event does not produce channel progradation. Rather, high flow causes delta

  15. Phreatic explosions during basaltic fissure eruptions: Kings Bowl lava field, Snake River Plain, USA

    Science.gov (United States)

    Hughes, Scott S.; Kobs Nawotniak, Shannon E.; Sears, Derek W. G.; Borg, Christian; Garry, William Brent; Christiansen, Eric H.; Haberle, Christopher W.; Lim, Darlene S. S.; Heldmann, Jennifer L.

    2018-02-01

    Physical and compositional measurements are made at the 7 km-long ( 2200 years B.P.) Kings Bowl basaltic fissure system and surrounding lava field in order to further understand the interaction of fissure-fed lavas with phreatic explosive events. These assessments are intended to elucidate the cause and potential for hazards associated with phreatic phases that occur during basaltic fissure eruptions. In the present paper we focus on a general understanding of the geological history of the site. We utilize geospatial analysis of lava surfaces, lithologic and geochemical signatures of lava flows and explosively ejected blocks, and surveys via ground observation and remote sensing. Lithologic and geochemical signatures readily distinguish between Kings Bowl and underlying pre-Kings Bowl lava flows, both of which comprise phreatic ejecta from the Kings Bowl fissure. These basalt types, as well as neighboring lava flows from the contemporaneous Wapi lava field and the older Inferno Chasm vent and outflow channel, fall compositionally within the framework of eastern Snake River Plain olivine tholeiites. Total volume of lava in the Kings Bowl field is estimated to be 0.0125 km3, compared to a previous estimate of 0.005 km3. The main (central) lava lake lost a total of 0.0018 km3 of magma by either drain-back into the fissure system or breakout flows from breached levees. Phreatic explosions along the Kings Bowl fissure system occurred after magma supply was cut off, leading to fissure evacuation, and were triggered by magma withdrawal. The fissure system produced multiple phreatic explosions and the main pit is accompanied by others that occur as subordinate pits and linear blast corridors along the fissure. The drop in magma supply and the concomitant influx of groundwater were necessary processes that led to the formation of Kings Bowl and other pits along the fissure. A conceptual model is presented that has relevance to the broader range of low-volume, monogenetic

  16. Tree growth and recruitment in a leveed floodplain forest in the Mississippi River Alluvial Valley, USA

    Science.gov (United States)

    Gee, Hugo K.W.; King, Sammy L.; Keim, Richard F.

    2014-01-01

    Flooding is a defining disturbance in floodplain forests affecting seed germination, seedling establishment, and tree growth. Globally, flood control, including artificial levees, dams, and channelization has altered flood regimes in floodplains. However, a paucity of data are available in regards to the long-term effects of levees on stand establishment and tree growth in floodplain forests. In this study, we used dendrochronological techniques to reconstruct tree recruitment and tree growth over a 90-year period at three stands within a ring levee in the Mississippi River Alluvial Valley (MAV) and to evaluate whether recruitment patterns and tree growth changed following levee construction. We hypothesized that: (1) sugarberry is increasing in dominance and overcup oak (Quercus lyrata) is becoming less dominant since the levee, and that changes in hydrology are playing a greater role than canopy disturbance in these changes in species dominance; and (2) that overcup oak growth has declined following construction of the levee and cessation of overbank flooding whereas that of sugarberry has increased. Recruitment patterns shifted from flood-tolerant overcup oak to flood-intolerant sugarberry (Celtis laevigata) after levee construction. None of the 122 sugarberry trees cored in this study established prior to the levee, but it was the most common species established after the levee. The mechanisms behind the compositional change are unknown, however, the cosmopolitan distribution of overcup oak during the pre-levee period and sugarberry during the post-levee period, the lack of sugarberry establishment in the pre-levee period, and the confinement of overcup oak regeneration to the lowest areas in each stand after harvest in the post-levee period indicate that species-specific responses to flooding and light availability are forcing recruitment patterns. Overcup oak growth was also affected by levee construction, but in contrast to our hypothesis, growth actually

  17. Assessing climate-change risks to cultural and natural resources in the Yakima River Basin, Washington, USA

    Science.gov (United States)

    Hatten, James R.; Waste, Stephen M.; Maule, Alec G.

    2014-01-01

    We provide an overview of an interdisciplinary special issue that examines the influence of climate change on people and fish in the Yakima River Basin, USA. Jenni et al. (2013) addresses stakeholder-relevant climate change issues, such as water availability and uncertainty, with decision analysis tools. Montag et al. (2014) explores Yakama Tribal cultural values and well-being and their incorporation into the decision-making process. Graves and Maule (2012) simulates effects of climate change on stream temperatures under baseline conditions (1981–2005) and two future climate scenarios (increased air temperature of 1 °C and 2 °C). Hardiman and Mesa (2013) looks at the effects of increased stream temperatures on juvenile steelhead growth with a bioenergetics model. Finally, Hatten et al. (2013) examines how changes in stream flow will affect salmonids with a rule-based fish habitat model. Our simulations indicate that future summer will be a very challenging season for salmonids when low flows and high water temperatures can restrict movement, inhibit or alter growth, and decrease habitat. While some of our simulations indicate salmonids may benefit from warmer water temperatures and increased winter flows, the majority of simulations produced less habitat. The floodplain and tributary habitats we sampled are representative of the larger landscape, so it is likely that climate change will reduce salmonid habitat potential throughout particular areas of the basin. Management strategies are needed to minimize potential salmonid habitat bottlenecks that may result from climate change, such as keeping streams cool through riparian protection, stream restoration, and the reduction of water diversions. An investment in decision analysis and support technologies can help managers understand tradeoffs under different climate scenarios and possibly improve water and fish conservation over the next century.

  18. Effects of Nitrogen Availability and Form on Phytoplankton Growth in a Eutrophied Estuary (Neuse River Estuary, NC, USA)

    Science.gov (United States)

    Paerl, Hans W.; Wetz, Michael S.

    2016-01-01

    Nitrogen availability and form are important controls on estuarine phytoplankton growth. This study experimentally determined the influence of urea and nitrate additions on phytoplankton growth throughout the growing season (March 2012, June 2011, August 2011) in a temperate, eutrophied estuary (Neuse River Estuary, North Carolina, USA). Photopigments (chlorophyll a and diagnostic photopigments: peridinin, fucoxanthin, alloxanthin, zeaxanthin, chlorophyll b) and microscopy-based cell counts were used as indicators of phytoplankton growth. In March, the phytoplankton community was dominated by Gyrodinium instriatum and only fucoxanthin-based growth rates were stimulated by nitrogen addition. The limited response to nitrogen suggests other factors may control phytoplankton growth and community composition in early spring. In June, inorganic nitrogen concentrations were low and stimulatory effects of both nitrogen forms were observed for chlorophyll a- and diagnostic photopigment-based growth rates. In contrast, cell counts showed that only cryptophyte and dinoflagellate (Heterocapsa rotundata) growth were stimulated. Responses of other photopigments may have been due to an increase in pigment per cell or growth of plankton too small to be counted with the microscopic methods used. Despite high nitrate concentrations in August, growth rates were elevated in response to urea and/or nitrate addition for all photopigments except peridinin. However, this response was not observed in cell counts, again suggesting that pigment-based growth responses may not always be indicative of a true community and/or taxa-specific growth response. This highlights the need to employ targeted microscopy-based cell enumeration concurrent with pigment-based technology to facilitate a more complete understanding of phytoplankton dynamics in estuarine systems. These results are consistent with previous studies showing the seasonal importance of nitrogen availability in estuaries, and also

  19. Organic and inorganic carbon dynamics in a karst aquifer: Santa Fe River Sink-Rise system, north Florida, USA

    Science.gov (United States)

    Jin, Jin; Zimmerman, Andrew R.; Moore, Paul J.; Martin, Jonathan B.

    2014-03-01

    Spatiotemporal variations in dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), major ions concentrations and other geochemical parameters including stable carbon isotopes of DIC (δ13CDIC), were measured in surface water and deep and shallow well water samples of the Santa Fe River Sink-Rise eogenetic karst system, north Florida, USA. Three end-member water sources were identified: one DOC-rich/DIC-poor/δ13CDIC-depleted, one DOC-poor/DIC-rich/δ13CDIC-enriched, and one enriched in major ions. Given their spatiotemporal distributions, they were presumed to represent soil water, upper aquifer groundwater, and deep aquifer water sources, respectively. Using assumed ratios of Na+, Cl, and SO42- for each end-member, a mixing model calculated the contribution of each water source to each sample. Then, chemical effects of biogeochemical reactions were calculated as the difference between those predicted by the mixing model and measured species concentrations. In general, carbonate mineral dissolution occurred throughout the Sink-Rise system, surface waters were net autotrophic and the subsurface was in metabolic balance, i.e., no net DOC or DIC production or consumption. However, there was evidence for chemolithoautotrophy, perhaps by hydrogen oxidizing microbes, at some deep aquifer sites. Mineralization of this autochthonous natural dissolved organic matter (NDOM) led to localized carbonate dissolution as did surface water-derived NDOM supplied to shallow well sites during the highest flow periods. This study demonstrates linkages between hydrology, abiotic and microbial processes and carbon dynamics and has important implications for groundwater quality, karst morphologic evolution, and hydrogeologic projects such as aquifer storage and recovery in karst systems.

  20. Urbanization is a major influence on microplastic ingestion by sunfish in the Brazos River Basin, Central Texas, USA.

    Science.gov (United States)

    Peters, Colleen A; Bratton, Susan P

    2016-03-01

    Microplastics, degraded and weathered polymer-based particles, and manufactured products ranging between 50 and 5000 μm in size, are found within marine, freshwater, and estuarine environments. While numerous peer-reviewed papers have quantified the ingestion of microplastics by marine vertebrates, relatively few studies have focused on microplastic ingestion by freshwater organisms. This study documents microplastic and manufactured fiber ingestion by bluegill (Lepomis macrochirus) and longear (Lepomis megalotis) sunfish (Centrarchidae) from the Brazos River Basin, between Lake Whitney and Marlin, Texas, USA. Fourteen sample sites were studied and categorized into urban, downstream, and upstream areas. A total of 436 sunfish were collected, and 196 (45%) stomachs contained microplastics. Four percent (4%) of items sampled were debris on the macro size scale (i.e. >5 mm) and consisted of masses of plastic, metal, Styrofoam, or fishing material, while 96% of items sampled were in the form of microplastic threads. Fish length was statistically correlated to the number of microplastics detected (p = 0.019). Fish collected from urban sites displayed the highest mean number of microplastics ingested, followed by downstream and upstream sites. Microplastics were associated with the ingestion of other debris items (e.g. sand and wood) and correlated to the ingestion of fish eggs, earthworms, and mollusks, suggesting that sunfish incidentally ingest microplastics during their normal feeding methods. The high frequency of microplastic ingestion suggest that further research is needed to determine the residence time of microplastics within the stomach and gut, potential for food web transfer, and adverse effects on wildlife and ecosystemic health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. NDVI saturation adjustment: a new approach for improving cropland performance estimates in the Greater Platte River Basin, USA

    Science.gov (United States)

    Gu, Yingxin; Wylie, Bruce K.; Howard, Daniel M.; Phuyal, Khem P.; Ji, Lei

    2013-01-01

    In this study, we developed a new approach that adjusted normalized difference vegetation index (NDVI) pixel values that were near saturation to better characterize the cropland performance (CP) in the Greater Platte River Basin (GPRB), USA. The relationship between NDVI and the ratio vegetation index (RVI) at high NDVI values was investigated, and an empirical equation for estimating saturation-adjusted NDVI (NDVIsat_adjust) based on RVI was developed. A 10-year (2000–2009) NDVIsat_adjust data set was developed using 250-m 7-day composite historical eMODIS (expedited Moderate Resolution Imaging Spectroradiometer) NDVI data. The growing season averaged NDVI (GSN), which is a proxy for ecosystem performance, was estimated and long-term NDVI non-saturation- and saturation-adjusted cropland performance (CPnon_sat_adjust, CPsat_adjust) maps were produced over the GPRB. The final CP maps were validated using National Agricultural Statistics Service (NASS) crop yield data. The relationship between CPsat_adjust and the NASS average corn yield data (r = 0.78, 113 samples) is stronger than the relationship between CPnon_sat_adjust and the NASS average corn yield data (r = 0.67, 113 samples), indicating that the new CPsat_adjust map reduces the NDVI saturation effects and is in good agreement with the corn yield ground observations. Results demonstrate that the NDVI saturation adjustment approach improves the quality of the original GSN map and better depicts the actual vegetation conditions of the GPRB cropland systems.

  2. Urbanization is a major influence on microplastic ingestion by sunfish in the Brazos River Basin, Central Texas, USA

    International Nuclear Information System (INIS)

    Peters, Colleen A.; Bratton, Susan P.

    2016-01-01

    Microplastics, degraded and weathered polymer-based particles, and manufactured products ranging between 50 and 5000 μm in size, are found within marine, freshwater, and estuarine environments. While numerous peer-reviewed papers have quantified the ingestion of microplastics by marine vertebrates, relatively few studies have focused on microplastic ingestion by freshwater organisms. This study documents microplastic and manufactured fiber ingestion by bluegill (Lepomis macrochirus) and longear (Lepomis megalotis) sunfish (Centrarchidae) from the Brazos River Basin, between Lake Whitney and Marlin, Texas, USA. Fourteen sample sites were studied and categorized into urban, downstream, and upstream areas. A total of 436 sunfish were collected, and 196 (45%) stomachs contained microplastics. Four percent (4%) of items sampled were debris on the macro size scale (i.e. >5 mm) and consisted of masses of plastic, metal, Styrofoam, or fishing material, while 96% of items sampled were in the form of microplastic threads. Fish length was statistically correlated to the number of microplastics detected (p = 0.019). Fish collected from urban sites displayed the highest mean number of microplastics ingested, followed by downstream and upstream sites. Microplastics were associated with the ingestion of other debris items (e.g. sand and wood) and correlated to the ingestion of fish eggs, earthworms, and mollusks, suggesting that sunfish incidentally ingest microplastics during their normal feeding methods. The high frequency of microplastic ingestion suggest that further research is needed to determine the residence time of microplastics within the stomach and gut, potential for food web transfer, and adverse effects on wildlife and ecosystemic health. - Highlights: • Sunfish ingest microplastics and manufactured materials at significant levels. • Local urbanization influences microplastic ingestion. • Sunfish incidentally ingest microplastics during their normal

  3. Effects of Nitrogen Availability and Form on Phytoplankton Growth in a Eutrophied Estuary (Neuse River Estuary, NC, USA).

    Science.gov (United States)

    Cira, Emily K; Paerl, Hans W; Wetz, Michael S

    2016-01-01

    Nitrogen availability and form are important controls on estuarine phytoplankton growth. This study experimentally determined the influence of urea and nitrate additions on phytoplankton growth throughout the growing season (March 2012, June 2011, August 2011) in a temperate, eutrophied estuary (Neuse River Estuary, North Carolina, USA). Photopigments (chlorophyll a and diagnostic photopigments: peridinin, fucoxanthin, alloxanthin, zeaxanthin, chlorophyll b) and microscopy-based cell counts were used as indicators of phytoplankton growth. In March, the phytoplankton community was dominated by Gyrodinium instriatum and only fucoxanthin-based growth rates were stimulated by nitrogen addition. The limited response to nitrogen suggests other factors may control phytoplankton growth and community composition in early spring. In June, inorganic nitrogen concentrations were low and stimulatory effects of both nitrogen forms were observed for chlorophyll a- and diagnostic photopigment-based growth rates. In contrast, cell counts showed that only cryptophyte and dinoflagellate (Heterocapsa rotundata) growth were stimulated. Responses of other photopigments may have been due to an increase in pigment per cell or growth of plankton too small to be counted with the microscopic methods used. Despite high nitrate concentrations in August, growth rates were elevated in response to urea and/or nitrate addition for all photopigments except peridinin. However, this response was not observed in cell counts, again suggesting that pigment-based growth responses may not always be indicative of a true community and/or taxa-specific growth response. This highlights the need to employ targeted microscopy-based cell enumeration concurrent with pigment-based technology to facilitate a more complete understanding of phytoplankton dynamics in estuarine systems. These results are consistent with previous studies showing the seasonal importance of nitrogen availability in estuaries, and also

  4. Population dynamics of zebra mussels Dreissena polymorpha (Pallas, 1771) during the initial invasion of the Upper Mississippi River, USA

    Science.gov (United States)

    Cope, W.G.; Bartsch, M.R.; Hightower, J.E.

    2006-01-01

    The aim of this study was to document and model the population dynamics of zebra mussels Dreissena polymorpha (Pallas, 1771) in Pool 8 of the Upper Mississippi River (UMR), USA, for five consecutive years (1992-1996) following their initial discovery in September 1991. Artificial substrates (concrete blocks, 0.49 m2 surface area) were deployed on or around the first of May at two sites within each of two habitat types (main channel border and contiguous backwater). Blocks were removed monthly (30 ?? 10 d) from the end of May to the end of October to obtain density and growth information. Some blocks deployed in May 1995 were retrieved in April 1996 to obtain information about overwinter growth and survival. The annual density of zebra mussels in Pool 8 of the UMR increased from 3.5/m2 in 1992 to 14,956/m 2 in 1996. The average May-October growth rate of newly recruited individuals, based on a von Bertalanffy growth model fitted to monthly shell-length composition data, was 0.11 mm/d. Model estimates of the average survival rate varied from 21 to 100% per month. Estimated recruitment varied substantially among months, with highest levels occurring in September-October of 1994 and 1996, and in July of 1995. Recruitment and density in both habitat types increased by two orders of magnitude in 1996. Follow-up studies will be necessary to assess the long-term stability of zebra mussel populations in the UMR; this study provides the critical baseline information needed for those future comparisons. ?? Published by Oxford University Press on behalf of The Malacological Society of London 2006.

  5. Evaluating methods to establish habitat suitability criteria: A case study in the upper Delaware River Basin, USA

    Science.gov (United States)

    Galbraith, Heather S.; Blakeslee, Carrie J.; Cole, Jeffrey C.; Talbert, Colin; Maloney, Kelly O.

    2016-01-01

    Defining habitat suitability criteria (HSC) of aquatic biota can be a key component to environmental flow science. HSC can be developed through numerous methods; however, few studies have evaluated the consistency of HSC developed by different methodologies. We directly compared HSC for depth and velocity developed by the Delphi method (expert opinion) and by two primary literature meta-analyses (literature-derived range and interquartile range) to assess whether these independent methods produce analogous criteria for multiple species (rainbow trout, brown trout, American shad, and shallow fast guild) and life stages. We further evaluated how these two independently developed HSC affect calculations of habitat availability under three alternative reservoir management scenarios in the upper Delaware River at a mesohabitat (main channel, stream margins, and flood plain), reach, and basin scale. In general, literature-derived HSC fell within the range of the Delphi HSC, with highest congruence for velocity habitat. Habitat area predicted using the Delphi HSC fell between the habitat area predicted using two literature-derived HSC, both at the basin and the site scale. Predicted habitat increased in shallow regions (stream margins and flood plain) using literature-derived HSC while Delphi-derived HSC predicted increased channel habitat. HSC generally favoured the same reservoir management scenario; however, no favoured reservoir management scenario was the most common outcome when applying the literature range HSC. The differences found in this study lend insight into how different methodologies can shape HSC and their consequences for predicted habitat and water management decisions. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  6. Archaeological Investigations at a Wisconsin Petroglyph Site

    Directory of Open Access Journals (Sweden)

    Jack Steinbring

    2014-01-01

    Full Text Available Preliminary test excavations at the Hensler Petroglyph Site in East Central Wisconsin, U.S.A. have disclosed the remains of aboriginal engravings below Aeolian sediments dated to ca. 15,000 years B.P. The stratified deposits lying adjacent to an engraved panel, containing 35 pecked images, have yielded animal-like cobbles, some covered with red ochre, apparently picked for some esoteric use. The site itself has unusual natural shapes in the rock formation, along with acoustical properties, lightning strikes, a magnetic anomaly, and geographic prominence. Collectively these factors are thought to have attracted the ancient rock artists to the site.

  7. Anthropogenic impacts on mercury concentrations and nitrogen and carbon isotope ratios in fish muscle tissue of the Truckee River watershed, Nevada, USA

    International Nuclear Information System (INIS)

    Sexauer Gustin, Mae; Saito, Laurel; Peacock, Mary

    2005-01-01

    The lower Truckee River originates at Lake Tahoe, California/Nevada (NV), USA and ends in the terminal water body, Pyramid Lake, NV. The river has minimal anthropogenic inputs of contaminants until it encounters the cities of Reno and Sparks, NV, and receives inflows from Steamboat Creek (SBC). SBC originates at Washoe Lake, NV, where there were approximately six mills that used mercury for gold and silver amalgamation in the late 1800s. Since then, mercury has been distributed down the creek to the Truckee River. In addition, SBC receives agricultural and urban nonpoint source pollution, and treated effluent from the Reno-Sparks water reclamation facility. Fish muscle tissue was collected from different species in SBC and the Truckee River and analyzed for mercury and stable isotopes. Nitrogen (?δ 15 N) and carbon (?δ 13 C) isotopic values in these tissues provide insight as to fish food resources and help to explain their relative Hg concentrations. Mercury concentrations, and ?δ 15 N and ?δ 13 C values in fish muscle from the Truckee River, collected below the SBC confluence, were significantly different than that found in fish collected upstream. Mercury concentrations in fish tissue collected below the confluence for all but three fish sampled were significantly greater (0.1 to 0.65 μg/g wet wt.) than that measured in the tissue collected above the confluence (0.02 to 0.1 μg/g). ?δ 15 N and ?δ 13 C isotopic values of fish muscle collected from the river below the confluence were higher and lower, respectively, than that measured in fish collected up river, most likely reflecting wastewater inputs. The impact of SBC inputs on muscle tissue isotope values declined down river whereas the impact due to Hg inputs showed the opposite trend

  8. Learning from Wisconsin

    Science.gov (United States)

    Daniel, Jamie Owen

    2011-01-01

    Like thousands of other people from around the country and around the world, this author was heartened and inspired by the tenacity, immediacy, and creativity of the pushback by Wisconsin's public-sector unions against Governor Scott Walker's efforts to limit their collective bargaining rights. And like many others who made the trek to Madison to…

  9. University of Wisconsin - Extension

    Science.gov (United States)

    ... to know how to advance an innovative tech idea I want to know more about agricultural resources available in Wisconsin I want to learn how I can get training and support for my small business I want to learn how I can get ...

  10. Wisconsin's forest resources, 2010

    Science.gov (United States)

    C.H. Perry

    2011-01-01

    This publication provides an overview of forest resource attributes for Wisconsin based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These estimates, along with web-posted core tables, will be updated annually. For more information please refer to page 4 of this report...

  11. Wisconsin's forest resources, 2005

    Science.gov (United States)

    Charles, H. (Hobie) Perry; Gary J. Brand

    2006-01-01

    The annual forest inventory of Wisconsin continues, and this document reports 2001-05 moving averages for most variables and comparisons between 2000 and 2005 for growth, removals, and mortality. Summary resource tables can be generated through the Forest Inventory Mapmaker website at http://ncrs2.fs.fed.us/4801/fiadb/index. htm. Estimates from this inventory show a...

  12. Wisconsin's forest resources, 2006

    Science.gov (United States)

    C.H. Perry; V.A. Everson

    2007-01-01

    Figure 2 was revised by the author in August 2008. This publication provides an overview of forest resource attributes for Wisconsin based on an annual inventory conducted by the Forest Inventory and Analysis program at the Northern Research Station of the U.S. Forest Service from 2002-2006. These estimates, along with associated core tables postedon the Internet, are...

  13. Wisconsin's Forest Resources, 2007

    Science.gov (United States)

    C.H. Perry; V.A. Everson

    2008-01-01

    This publication provides an overview of forest resource attributes for Wisconsin based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program of the U.S. Forest Service, Northern Research Station. These estimates, along with web-posted core tables, are updated annually. For more information please refer to page 4 of this report.

  14. Wisconsin's forest resources, 2009

    Science.gov (United States)

    C.H. Perry

    2011-01-01

    This publication provides an overview of forest resource attributes for Wisconsin based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These estimates, along with web-posted core tables, will be updated annually. For more information, please refer to page 4 of this report...

  15. Polychlorinated biphenyl congener patterns in tree swallows (Tachycineta bicolor) nesting in the Housatonic River watershed, western Massachusetts, USA, using a novel statistical approach

    International Nuclear Information System (INIS)

    Custer, Christine M.; Read, Lorraine B.

    2006-01-01

    A novel application of a commonly used statistical approach was used to examine differences in polychlorinated biphenyl (PCB) congener patterns among locations and sample matrices in tree swallows (Tachycineta bicolor) nesting in the Housatonic River watershed in western Massachusetts, USA. The most prevalent PCB congeners in tree swallow tissue samples from the Housatonic River watershed were Ballsmitter Zell numbers 153, 138, 180, 187, 149, 101, and 170. These congeners were seven of the eight most prevalent congeners in Aroclor[reg] 1260, the PCB mixture that was the primary source of contamination in the Housatonic River system. Using paired-Euclidean distances and tolerance limits, it was demonstrated that congener patterns in swallow tissues from sites on the main stem of the Housatonic River were more similar to one another than to two sites upstream of the contamination or from a nearby reference area. The congener patterns also differed between the reference area and the two upstream tributaries and between the two tributaries. These pattern differences were the same in both pipper (eggs or just hatched nestlings) and 12-day-old nestling samples. Lower-chlorinated congeners appeared to be metabolized in nestlings and pippers compared to diet, and metabolized more in pippers compared to nestlings. Euclidean distances and tolerance limits provide a simple and statistically valid method to compare PCB congener patterns among groups. - Polychlorinated biphenyl congener patterns in swallows differed between the main stem of the Housatonic River, MA and other locations in the watershed

  16. Mineral weathering experiments to explore the effects of vegetation shifts in high mountain region (Wind River Range, Wyoming, USA)

    Science.gov (United States)

    Mavris, Christian; Furrer, Gerhard; Dahms, Dennis; Anderson, Suzanne P.; Blum, Alex; Goetze, Jens; Wells, Aaron; Egli, Markus

    2015-04-01

    Climate change influences the evolution of soil and landscape. With changing climate, both flora and fauna must adapt to new conditions. It is unknown in many respects to what extent soils will react to warming and vegetation change. The aim of this study was to identify possible consequences for soils in a dry-alpine region with respect to weathering of primary minerals and leaching of elements under expected warming climate conditions due to shifts in vegetation. To achieve this, a field empirical approach was used in combination with laboratory weathering experiments simulating several scenarios. Study sites located in Sinks Canyon and in Stough Basin of the Wind River Range, Wyoming, USA, encompass ecotones that consist of tundra, forest, or sagebrush (from moist to dry, with increasing temperature, respectively). All soils are developed on granitoid moraines. The mineralogy of the soils along the altitudinal sequence was analysed using cathodoluminescence and X-ray diffraction, and revealed clear mineral transformations: biotite and plagioclase were both weathered to smectite while plagioclase also weathered to kaolinite. Cooler, wetter, altitude-dependent conditions seemed to promote weathering of these primary minerals. To test the impact of soil solutions from different ecotones on mineral weathering, aqueous extracts from topsoils (A horizons) were reacted with subsoils (B horizons) in batch experiments. Aqueous extracts of topsoil samples were generated for all three ecotones, and these solutions were characterized. For the batch experiments, the topsoil extracts were reacted for 1800 hours with the subsoil samples of the same ecotone, or with the subsoil samples from higher altitude ecotones. Solutions collected periodically during the experiments were measured using ICP-OES and ion chromatography. Dissolved Ca, Mg and K were mainly controlled by the chemical weathering of oligoclase, K-feldspar and biotite. With increasing altitude (and consequently

  17. Utilization of protein expression profiles as indicators of environmental impairment of smallmouth bass (Micropterus dolomieu) from the Shenandoah River, Virginia, USA.

    Science.gov (United States)

    Ripley, Jennifer; Iwanowicz, Luke; Blazer, Vicki; Foran, Christy

    2008-08-01

    The Shenandoah River (VA, USA), the largest tributary of the Potomac River (MD, USA) and an important source of drinking water, has been the site of extensive fish kills since 2004. Previous investigations indicate environmental stressors may be adversely modulating the immune system of smallmouth bass (Micropterus dolomieu) and other species. Anterior kidney (AK) tissue, the major site of blood cell production in fish, was collected from smallmouth bass at three sites along the Shenandoah River. The tissue was divided for immune function and proteomics analyses. Bactericidal activity and respiratory burst were significantly different between North Fork and mainstem Shenandoah River smallmouth bass, whereas South Fork AK tissue did not significantly differ in either of these measures compared with the other sites. Cytotoxic cell activity was highest among South Fork and lowest among North Fork AK leukocytes. The composite two-dimension gels of the North Fork and mainstem smallmouth bass AK tissues contained 584 and 591 spots, respectively. South Fork smallmouth bass AK expressed only 335 proteins. Nineteen of 50 proteins analyzed by matrix-assisted laser desorption ionization-time of flight were successfully identified. Three of the four identified proteins with increased expression in South Fork AK tissue were involved in metabolism. Seven proteins exclusive to mainstem and North Fork smallmouth bass AK and expressed at comparable abundances serve immune and stress response functions. The proteomics data indicate these fish differ in metabolic capacity of AK tissue and in the ability to produce functional leukocytes. The variable responses of the immune function assays further indicate disruption to the immune system. Our results allow us to hypothesize underlying physiological changes that may relate to fish kills and suggest relevant contaminants known to produce similar physiological disruption.

  18. Channel-planform evolution in four rivers of Olympic National Park, Washington, U.S.A.: The roles of physical drivers and trophic cascades

    Science.gov (United States)

    East, Amy E.; Jenkins, Kurt J.; Happe, Patricia J.; Bountry, Jennifer A.; Beechie, Timothy J.; Mastin, Mark C.; Sankey, Joel B.; Randle, Timothy J.

    2017-01-01

    Identifying the relative contributions of physical and ecological processes to channel evolution remains a substantial challenge in fluvial geomorphology. We use a 74-year aerial photographic record of the Hoh, Queets, Quinault, and Elwha Rivers, Olympic National Park, Washington, U.S.A., to investigate whether physical or trophic-cascade-driven ecological factors—excessive elk impacts after wolves were extirpated a century ago—are the dominant controls on channel planform of these gravel-bed rivers. We find that channel width and braiding show strong relationships with recent flood history. All four rivers have widened significantly in recent decades, consistent with increased flood activity since the 1970s. Channel planform also reflects sediment-supply changes, evident from landslide response on the Elwha River. We surmise that the Hoh River, which shows a multi-decadal trend toward greater braiding, is adjusting to increased sediment supply associated with rapid glacial retreat. In this sediment-routing system with high connectivity, such climate-driven signals appear to propagate downstream without being buffered substantially by sediment storage. Legacy effects of anthropogenic modification likely also affect the Quinault River planform. We infer no correspondence between channel geomorphic evolution and elk abundance, suggesting that trophic-cascade effects in this setting are subsidiary to physical controls on channel morphology. Our findings differ from previous interpretations of Olympic National Park fluvial dynamics and contrast with the classic example of Yellowstone National Park, where legacy effects of elk overuse are apparent in channel morphology; we attribute these differences to hydrologic regime and large-wood availability.

  19. The response of source-bordering aeolian dunefields to sediment-supply changes 2: Controlled floods of the Colorado River in Grand Canyon, Arizona, USA

    Science.gov (United States)

    Sankey, Joel B.; Caster, Joshua; Kasprak, Alan; East, Amy E.

    2018-06-01

    In the Colorado River downstream of Glen Canyon Dam in the Grand Canyon, USA, controlled floods are used to resupply sediment to, and rebuild, river sandbars that have eroded severely over the past five decades owing to dam-induced changes in river flow and sediment supply. In this study, we examine whether controlled floods, can in turn resupply aeolian sediment to some of the large source-bordering aeolian dunefields (SBDs) along the margins of the river. Using a legacy of high-resolution lidar remote-sensing and meteorological data, we characterize the response of four SBDs (a subset of 117 SBDs and other aeolian-sand-dominated areas in the canyon) during four sediment-laden controlled floods of the Colorado River in 2012, 2013, 2014, and 2016. We find that aeolian sediment resupply unambiguously occurred in 8 of the 16 instances of controlled flooding adjacent to SBDs. Resupply attributed to individual floods varied substantially among sites, and occurred with four, three, one, and zero floods at the four sites, respectively. We infer that the relative success of controlled floods as a regulated-river management tool for resupplying sediment to SBDs is analogous to the frequency of resupply observed for fluvial sandbars in this setting, in that sediment resupply was estimated to have occurred for roughly half of the instances of recent controlled flooding at sandbars monitored separately from this study. We find the methods developed in this, and a companion study, are effective tools to quantify geomorphic changes in sediment storage, along linked fluvial and aeolian pathways of sedimentary systems.

  20. Proposal for adaptive management to conserve biotic integrity in a regulated segment of the Tallapoosa River, Alabama, U.S.A

    Science.gov (United States)

    Irwin, Elise R.; Freeman, Mary C.

    2002-01-01

    Conserving river biota will require innovative approaches that foster and utilize scientific understanding of ecosystem responses to alternative river-management scenarios. We describe ecological and societal issues involved in flow management of a section of the Tallapoosa River (Alabama, U.S.A.) in which a species-rich native fauna is adversely affected by flow alteration by an upstream hydropower dam. We hypothesize that depleted Iow flows, flow instability and thermal alteration resulting from pulsed flow releases at the hydropower dam are most responsible for changes in the Tallapoosa River biota. However, existing data are insufficient to prescribe with certainty minimum flow levels or the frequency and duration of stable flow periods that would be necessary or sufficient to protect riverine biotic integrity. Rather than negotiate a specific change in the flow regime, we propose that stakeholders--including management agencies, the power utility, and river advocates--engage in a process of adaptive-flow management. This process would require that stakeholders (1) develop and agree to management objectives; (2) model hypothesized relations between dam operations and management objectives; (3) implement a change in dam operations; and (4) evaluate biological responses and other stakeholder benefits through an externally reviewed monitoring program. Models would be updated with monitoring data and stakeholders would agree to further modify flow regimes as necessary to achieve management objectives. A primary obstacle to adaptive management will be a perceived uncertainty of future costs for the power utility and other stakeholders. However, an adaptive, iterative approach offers the best opportunity for improving flow regimes for native biota while gaining information critical to guiding management decisions in other flow-regulated rivers.

  1. The response of source-bordering aeolian dunefields to sediment-supply changes 2: Controlled floods of the Colorado River in Grand Canyon, Arizona, USA

    Science.gov (United States)

    Sankey, Joel B.; Caster, Joshua; Kasprak, Alan; East, Amy

    2018-01-01

    In the Colorado River downstream of Glen Canyon Dam in the Grand Canyon, USA, controlled floods are used to resupply sediment to, and rebuild, river sandbars that have eroded severely over the past five decades owing to dam-induced changes in river flow and sediment supply. In this study, we examine whether controlled floods, can in turn resupply aeolian sediment to some of the large source-bordering aeolian dunefields (SBDs) along the margins of the river. Using a legacy of high-resolution lidar remote-sensing and meteorological data, we characterize the response of four SBDs (a subset of 117 SBDs and other aeolian-sand-dominated areas in the canyon) during four sediment-laden controlled floods of the Colorado River in 2012, 2013, 2014, and 2016. We find that aeolian sediment resupply unambiguously occurred in 8 of the 16 instances of controlled flooding adjacent to SBDs. Resupply attributed to individual floods varied substantially among sites, and occurred with four, three, one, and zero floods at the four sites, respectively. We infer that the relative success of controlled floods as a regulated-river management tool for resupplying sediment to SBDs is analogous to the frequency of resupply observed for fluvial sandbars in this setting, in that sediment resupply was estimated to have occurred for roughly half of the instances of recent controlled flooding at sandbars monitored separately from this study. We find the methods developed in this, and a companion study, are effective tools to quantify geomorphic changes in sediment storage, along linked fluvial and aeolian pathways of sedimentary systems.

  2. Molecular composition and bioavailability of dissolved organic nitrogen in a lake flow-influenced river in south Florida, USA

    Science.gov (United States)

    Dissolved organic nitrogen (DON) represents a large percentage of the total nitrogen in rivers and estuaries, and can contribute to coastal eutrophication and hypoxia. This study reports on the composition and bioavailability of DON along the Caloosahatchee River (Florida), a heavily managed system ...

  3. Restoration of hard mast species for wildlife in Missouri using precocious flowering oak in the Missouri River floodplain, USA

    Science.gov (United States)

    B. C. Grossman; M. A. Gold; Daniel C. Dey

    2003-01-01

    Increased planting of hard mast oak species in the Lower Missouri River floodplain is critical as natural regeneration of oak along the Upper Mississippi and Lower Missouri Rivers has been limited following major flood events in 1993 and 1995. Traditional planting methods have limited success due to frequent flood events, competition from faster growing vegetation and...

  4. Inundation and draining of the Trinity River floodplain associated with extreme precipitation from Hurricane Harvey, east Texas, USA

    Science.gov (United States)

    Hassenruck-Gudipati, H. J.; Goudge, T. A.; Mohrig, D. C.

    2017-12-01

    Rivers swelled up beyond their historic high-water marks due to precipitation from Hurricane Harvey. We used Harvey-induced flooding to investigate the flow connectivity between the coastal Trinity River and its floodplain by measuring water depth and velocity, as well as sediment-transporting conditions on the natural levee that separates the two. River discharge within the study area peaked at a historic high of 3600 cubic meters per second on September 1, 2017. The levees on two river bends were investigated on September 3 and 4 in order to characterize the hydraulic connectivity between the channel and its floodplain during the early falling limb of this flood. On September 3, a river bend located approximately 28km upstream of the river mouth was visited. Water was overtopping the levee crest at this location, 30m away from the levee crest. This overland flow only experienced about a threefold reduction in average velocity to 0.16 m/s (in 2.2 m of water) 600m away from the levee crest. On September 4, a river bend approximately 59km upstream of the river mouth was investigated. Even though the river stage was at the National Weather Service major flood stage, the levee crest separating the river and floodplain was emergent. Regardless of this local disconnect between the river and its floodplain, substantial and variable drainage velocities were measured depending on drainage patterns controlled by local topography. Velocities measured in shallow water immediately adjacent to the emergent levee were low (< 0.05 m/s in 0.2 m of water). The highest drainage velocity ( 0.18 m/s in 1.7 m of water) associated with the upstream river-bend was measured at 750m from the channel and was similar in magnitude to those recorded for the distal inundating overland flow a day before on the downstream river-bend. Results from this work highlight the maintenance of high flow velocities across the distal floodplain even during its drainage phase. The transport of sediment

  5. Science to Manage a Very Rare Fish in a Very Large River - Pallid Sturgeon in the Missouri River, U.S.A.

    Science.gov (United States)

    Jacobson, R. B.; Colvin, M. E.; Marmorek, D.; Randall, M.

    2017-12-01

    The Missouri River Recovery Program (MRRP) seeks to revise river-management strategies to avoid jeopardizing the existence of three species: pallid sturgeon (Scaphirhynchus albus), interior least tern (Sterna antillarum)), and piping plover (Charadrius melodus). Managing the river to maintain populations of the two birds (terns and plovers) is relatively straightforward: reproductive success can be modeled with some certainty as a direct, increasing function of exposed sandbar area. In contrast, the pallid sturgeon inhabits the benthic zone of a deep, turbid river and many parts of its complex life history are not directly observable. Hence, pervasive uncertainties exist about what factors are limiting population growth and what management actions may reverse population declines. These uncertainties are being addressed by the MRRP through a multi-step process. The first step was an Effects Analysis (EA), which: documented what is known and unknown about the river and the species; documented quality and quantity of existing information; used an expert-driven process to develop conceptual ecological models and to prioritize management hypotheses; and developed quantitative models linking management actions (flows, channel reconfigurations, and stocking) to population responses. The EA led to development of a science and adaptive-management plan with prioritized allocation of investment among 4 levels of effort ranging from fundamental research to full implementation. The plan includes learning from robust, hypothesis-driven effectiveness monitoring for all actions, with statistically sound experimental designs, multiple metrics, and explicit decision criteria to guide management. Finally, the science plan has been fully integrated with a new adaptive-management structure that links science to decision makers. The reinvigorated investment in science stems from the understanding that costly river-management decisions are not socially or politically supportable without

  6. Use of preserved museum fish to evaluate historical and current mercury contamination in fish from two rivers in Oklahoma, USA.

    Science.gov (United States)

    Hill, J Jaron; Chumchal, Matthew M; Drenner, Ray W; Pinder, John E; Drenner, S Matthew

    2010-02-01

    We examined the effects of a commonly used preservation technique on mercury concentration in fish tissue. After fixing fish muscle tissue in formalin followed by preservation in isopropanol, we found that mercury concentration in fish muscle tissue increased by 18%, reaching an asymptote after 40 days. We used formalin-isopropanol-preserved longear sunfish (Lepomis megalotis) from the Sam Noble Oklahoma Museum of Natural History to examine historical changes and predict current mercury concentrations in fish from two rivers in southeastern Oklahoma. Glover River was free-flowing, while Mountain Fork River was impounded in 1970 and a coldwater trout fishery was established upstream from the collection site in 1989. Mercury concentrations in longear sunfish from Glover River showed no historical changes from 1963 to 2001. Mercury concentrations in longear sunfish from Mountain Fork River showed no change from 1925 to 1993 but declined significantly from 1993 to 2003. We also compared mercury concentrations of the most recently collected longear sunfish in the museum to mercury concentrations of unpreserved fish collected from the rivers in 2006. Concentrations of mercury in museum fish were not significantly different from mercury concentrations in unpreserved fish we collected from the rivers. Our study indicates that preserved museum fish specimens can be used to evaluate historical changes and predict current levels of mercury contamination in fish.

  7. Polychlorinated biphenyls in adult black bass and yellow perch were not associated with their reproductive success in the upper Hudson River, New York, USA.

    Science.gov (United States)

    Maceina, Michael J; Sammons, Steven M

    2013-07-01

    Although production and use of polychlorinated biphenyls (PCBs) ceased nearly 35 yr ago, questions still remain concerning the potential chronic effects these compounds may have on wild fish, including their reproductive success. In the upper Hudson River, New York, USA, fish were exposed to PCBs primarily from 2 manufacturing plants located approximately 320 km upstream of New York City, New York, from the 1940s to 1977. The authors collected yellow perch (Perca flavescens), smallmouth bass (Micropterus dolomieu), and largemouth bass (M. salmoides) using electrofishing, measured PCBs in these adults, and estimated abundance and size of their offspring at age 1 yr (age-1 fish). Fish were collected annually from 2004 to 2009 from 1 control site upstream of the PCB discharge sites and from 2 sites downstream from where PCBs were released. These sites (pools) are separated by a series of dams, locks, and canals. Muscle tissue wet weight PCB and lipid-based PCB concentrations in adults in the 2 PCB exposure pools averaged approximately 1 to 3 µg/g and 100 to 500 µg/g, respectively. Age-1 abundances were not related to adult PCB concentrations but were inversely related to river flow. Size of age-1 fish was slightly greater at the PCB-exposure sites. Levels of PCBs in yellow perch, largemouth bass, and smallmouth bass in the upper Hudson River did not impair or reduce recruitment or reproductive success. Copyright © 2013 SETAC.

  8. Butterfly (Papilionoidea and Hesperioidea) assemblages associated with natural, exotic, and restored riparian habitats along the lower Colorado River, USA

    Science.gov (United States)

    Nelson, S.M.; Andersen, D.C.

    1999-01-01

    Butterfly assemblages were used to compare revegetated and natural riparian areas along the lower Colorado River. Species richness and correspondence analyses of assemblages showed that revegetated sites had fewer biological elements than more natural sites along the Bill Williams River. Data suggest that revegetated sites do not provide resources needed by some members of the butterfly assemblage, especially those species historically associated with the cottonwood/willow ecosystem. Revegetated sites generally lacked nectar resources, larval host plants, and closed canopies. The riparian system along the regulated river segment that contains these small revegetated sites also appears to have diminished habitat heterogeneity and uncoupled riparian corridors.Revegetated sites were static environments without the successional stages caused by flooding disturbance found in more natural systems. We hypothesize that revegetation coupled with a more natural hydrology is important for restoration of butterfly assemblages along the lower Colorado River

  9. A legacy of change: The lower Colorado River, Arizona-California-Nevada, USA, and Sonora-Baja California Norte, Mexico

    Science.gov (United States)

    Mueller, G.A.; Marsh, P.C.; Minckley, W.L.

    2005-01-01

    The lower Colorado is among the most regulated rivers in the world. It ranks as the fifth largest river in volume in the coterminous United States, but its flow is fully allocated and no longer reaches the sea. Lower basin reservoirs flood nearly one third of the river channel and store 2 years of annual flow. Diverted water irrigates 1.5 million ha of cropland and provides water for industry and domestic use by 22 million people in the southwestern United States and northern Mexico. The native fish community of the lower Colorado River was among the most unique in the world, and the main stem was home to nine freshwater species, all of which were endemic to the basin. Today, five are extirpated, seven are federally endangered, and three are being reintroduced through stocking. Decline of the native fauna is attributed to predation by nonnative fishes and physical habitat degradation. Nearly 80 alien species have been introduced, and more than 20 now are common. These nonnative species thrived in modified habitats, where they largely eliminated the native kinds. As a result, the lower Colorado River has the dubious distinction of being among the few major rivers of the world with an entirely introduced fish fauna. ?? 2005 by the American Fisheries Society.

  10. Large-scale dam removal on the Elwha River, Washington, USA: source-to-sink sediment budget and synthesis

    Science.gov (United States)

    Warrick, Jonathan A.; Bountry, Jennifer A.; East, Amy E.; Magirl, Christopher S.; Randle, Timothy J.; Gelfenbaum, Guy R.; Ritchie, Andrew C.; Pess, George R.; Leung, Vivian; Duda, Jeff J.

    2015-01-01

    Understanding landscape responses to sediment supply changes constitutes a fundamental part of many problems in geomorphology, but opportunities to study such processes at field scales are rare. The phased removal of two large dams on the Elwha River, Washington, exposed 21 ± 3 million m3, or ~ 30 million tonnes (t), of sediment that had been deposited in the two former reservoirs, allowing a comprehensive investigation of watershed and coastal responses to a substantial increase in sediment supply. Here we provide a source-to-sink sediment budget of this sediment release during the first two years of the project (September 2011–September 2013) and synthesize the geomorphic changes that occurred to downstream fluvial and coastal landforms. Owing to the phased removal of each dam, the release of sediment to the river was a function of the amount of dam structure removed, the progradation of reservoir delta sediments, exposure of more cohesive lakebed sediment, and the hydrologic conditions of the river. The greatest downstream geomorphic effects were observed after water bodies of both reservoirs were fully drained and fine (silt and clay) and coarse (sand and gravel) sediments were spilling past the former dam sites. After both dams were spilling fine and coarse sediments, river suspended-sediment concentrations were commonly several thousand mg/L with ~ 50% sand during moderate and high river flow. At the same time, a sand and gravel sediment wave dispersed down the river channel, filling channel pools and floodplain channels, aggrading much of the river channel by ~ 1 m, reducing river channel sediment grain sizes by ~ 16-fold, and depositing ~ 2.2 million m3 of sand and gravel on the seafloor offshore of the river mouth. The total sediment budget during the first two years revealed that the vast majority (~ 90%) of the sediment released from the former reservoirs to the river passed through the fluvial system and was discharged to the coastal

  11. Catalyzing Collaboration: Wisconsin's Agency-Initiated Basin Partnerships

    Science.gov (United States)

    Genskow, Kenneth D.

    2009-03-01

    Experience with collaborative approaches to natural resource and environmental management has grown substantially over the past 20 years, and multi-interest, shared-resources initiatives have become prevalent in the United States and internationally. Although often viewed as “grass-roots” and locally initiated, governmental participants are crucial to the success of collaborative efforts, and important questions remain regarding their appropriate roles, including roles in partnership initiation. In the midst of growing governmental support for collaborative approaches in the mid-1990s, the primary natural resource and environmental management agency in Wisconsin (USA) attempted to generate a statewide system of self-sustaining, collaborative partnerships, organized around the state’s river basin boundaries. The agency expected the partnerships to enhance participation by stakeholders, leverage additional resources, and help move the agency toward more integrated and ecosystem-based resource management initiatives. Most of the basin partnerships did form and function, but ten years after this initiative, the agency has moved away from these partnerships and half have disbanded. Those that remain active have changed, but continue to work closely with agency staff. Those no longer functioning lacked clear focus, were dependent upon agency leadership, or could not overcome issues of scale. This article outlines the context for state support of collaborative initiatives and explores Wisconsin’s experience with basin partnerships by discussing their formation and reviewing governmental roles in partnerships’ emergence and change. Wisconsin’s experience suggests benefits from agency support and agency responsiveness to partnership opportunities, but cautions about expectations for initiating general-purpose partnerships.

  12. Integrating understanding of biophysical processes governing larval fish dispersal with basin-scale management decisions: lessons from the Missouri River, USA

    Science.gov (United States)

    Erwin, S. O.; Jacobson, R. B.; Fischenich, C. J.; Bulliner, E. A., IV; McDonald, R.; DeLonay, A. J.; Braaten, P.; Elliott, C. M.; Chojnacki, K.

    2017-12-01

    Management of the Missouri River—the longest river in the USA, with a drainage basin covering one sixth of the conterminous USA—is increasingly driven by the need to understand biophysical processes governing the dispersal of 8-mm long larval pallid sturgeon. In both the upper and lower basin, survival of larval sturgeon is thought to be a bottleneck limiting populations, but because of different physical processes at play, different modeling frameworks and resolutions are required to link management actions with population-level responses. In the upper basin, a series of impoundments reduce the length of river for the drifting larval sturgeon to complete their development. Downstream from the mainstem dams, recruitment is most likely diminished by channelization and reduced floodplain connectivity that limit the benthic habitat available for larval sturgeon to settle and initiate feeding. We present a synthesis of complementary field studies, laboratory observations, and numerical simulations that evaluate the physical processes related to larval dispersal of sturgeon in the Missouri River basin. In the upper basin, we use one-dimensional advection-dispersion models, calibrated with field experiments conducted in 2016-2017 using surrogate particles and tracers, to evaluate reservoir management alternatives. Results of field experimentation and numerical modeling show that proposed management alternatives in the upper basin may be limited by insufficient lengths of flowing river for drifting larvae to fully develop into their juvenile lifestage. In the intensively engineered lower basin, we employ higher resolution measurements and models to evaluate potential for channel reconfiguration and flow alteration to promote successful interception of drifting larvae into supportive benthic habitats for the initiation of feeding and transition to the juvenile life stage. We illustrate how refined understanding of small-scale biophysical process has been incorporated

  13. Hydrological Controls on Dissolved Organic Matter Quality and Export in a Coastal River System in Southeastern USA

    Science.gov (United States)

    Bhattacharya, R.; Osburn, C. L.

    2017-12-01

    Dissolved organic matter (DOM) exported from river catchments can influence the biogeochemical processes in coastal environments with implications for water quality and carbon budget. High flow conditions are responsible for most DOM export ("pulses") from watersheds, and these events reduce DOM transformation and production by "shunting" DOM from river networks into coastal waters: the Pulse-Shunt Concept (PSC). Subsequently, the source and quality of DOM is also expected to change as a function of river flow. Here, we used stream dissolved organic carbon concentrations ([DOC]) along with DOM optical properties, such as absorbance at 350 nm (a350) and fluorescence excitation and emission matrices modeled by parallel factor analysis (PARAFAC), to characterize DOM source, quality and fluxes under variable flow conditions for the Neuse River, a coastal river system in the southeastern US. Observations were made at a flow gauged station above head of tide periodically between Aug 2011 and Feb 2013, which captured low flow periods in summer and several high flow events including Hurricane Irene. [DOC] and a350 were correlated and varied positively with river flow, implying that a large portion of the DOM was colored, humic and flow-mobilized. During high flow conditions, PARAFAC results demonstrated the higher influx of terrestrial humic DOM, and lower in-stream phytoplankton production or microbial degradation. However, during low flow, DOM transformation and production increased in response to higher residence times and elevated productivity. Further, 70% of the DOC was exported by above average flows, where 3-4 fold increases in DOC fluxes were observed during episodic events, consistent with PSC. These results imply that storms dramatically affects DOM export to coastal waters, whereby high river flow caused by episodic events primarily shunt terrestrial DOM to coastal waters, whereas low flow promotes in-stream DOM transformation and amendment with microbial DOM.

  14. Flood Control, Mississippi River, La Crosse, Wisconsin.

    Science.gov (United States)

    1975-10-01

    in 4ega/ td to pages 2 and 58 conceAruing lte.6den-tiat 6tuctmtes on BaA~von 1t6Land (PCtite 1): The BoaAd o6 Pank Comm"ZsioneA., and the Commnon...La Crosse.TFhe proper spelling of the park is Houska. p. 54. Please specify in the title of this sectiox4 and in Ihq ito- ductory tex that it is

  15. Calcite growth-rate inhibition by fulvic acids isolated from Big Soda Lake, Nevada, USA, The Suwannee River, Georgia, USA and by polycarboxylic acids

    Science.gov (United States)

    Reddy, Michael M.; Leenheer, Jerry

    2011-01-01

    Calcite crystallization rates are characterized using a constant solution composition at 25°C, pH=8.5, and calcite supersaturation (Ω) of 4.5 in the absence and presence of fulvic acids isolated from Big Soda Lake, Nevada (BSLFA), and a fulvic acid from the Suwannee River, Georgia (SRFA). Rates are also measured in the presence and absence of low-molar mass, aliphatic-alicyclic polycarboxylic acids (PCA). BSLFA inhibits calcite crystal-growth rates with increasing BSLFA concentration, suggesting that BSLFA adsorbs at growth sites on the calcite crystal surface. Calcite growth morphology in the presence of BSLFA differed from growth in its absence, supporting an adsorption mechanism of calcite-growth inhibition by BSLFA. Calcite growth-rate inhibition by BSLFA is consistent with a model indicating that polycarboxylic acid molecules present in BSLFA adsorb at growth sites on the calcite crystal surface. In contrast to published results for an unfractionated SRFA, there is dramatic calcite growth inhibition (at a concentration of 1 mg/L) by a SRFA fraction eluted by pH 5 solution from XAD-8 resin, indicating that calcite growth-rate inhibition is related to specific SRFA component fractions. A cyclic PCA, 1, 2, 3, 4, 5, 6-cyclohexane hexacarboxylic acid (CHXHCA) is a strong calcite growth-rate inhibitor at concentrations less than 0.1 mg/L. Two other cyclic PCAs, 1, 1 cyclopentanedicarboxylic acid (CPDCA) and 1, 1 cyclobutanedicarboxylic acid (CBDCA) with the carboxylic acid groups attached to the same ring carbon atom, have no effect on calcite growth rates up to concentrations of 10 mg/L. Organic matter ad-sorbed from the air onto the seed crystals has no effect on the measured calcite crystal-growth rates.

  16. Identifying primary stressors impacting macroinvertebrates in the Salinas River (California, USA): Relative effects of pesticides and suspended particles

    International Nuclear Information System (INIS)

    Anderson, B.S.; Phillips, B.M.; Hunt, J.W.; Connor, V.; Richard, N.; Tjeerdema, R.S.

    2006-01-01

    Laboratory dose-response experiments with organophosphate and pyrethroid pesticides, and dose-response experiments with increasing particle loads were used to determine which of these stressors were likely responsible for the toxicity and macroinvertebrate impacts previously observed in the Salinas River. Experiments were conducted with the amphipod Hyalella azteca, the baetid mayfly Procloeon sp., and the midge Chironomus dilutus (Shobanov, formerly Chironomus tentans). The results indicate the primary stressor impacting H. azteca was pesticides, including chlorpyrifos and permethrin. The mayfly Procloeon sp. was sensitive to chlorpyrifos and permethrin within the range of concentrations of these pesticides measured in the river. Chironomus dilutus were sensitive to chlorpyrifos within the ranges of concentrations measured in the river. None of the species tested were affected by turbidity as high as 1000 NTUs. The current study shows that pesticides are more important acute stressors of macroinvertebrates than suspended sediments in the Salinas River. - Pesticides are the primary stressor impacting macroinvertebrates in sections of the lower Salinas River

  17. Identifying primary stressors impacting macroinvertebrates in the Salinas River (California, USA): Relative effects of pesticides and suspended particles

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, B.S. [Department of Environmental Toxicology, University of California, Davis, CA 95616 (United States)]. E-mail: anderson@ucdavis.edu; Phillips, B.M. [Department of Environmental Toxicology, University of California, Davis, CA 95616 (United States); Hunt, J.W. [Department of Environmental Toxicology, University of California, Davis, CA 95616 (United States); Connor, V. [Division of Water Quality, State Water Resources Control Board, 1001 I. Street, Sacramento, CA 95814 (United States); Richard, N. [Division of Water Quality, State Water Resources Control Board, 1001 I. Street, Sacramento, CA 95814 (United States); Tjeerdema, R.S. [Department of Environmental Toxicology, University of California, Davis, CA 95616 (United States)

    2006-06-15

    Laboratory dose-response experiments with organophosphate and pyrethroid pesticides, and dose-response experiments with increasing particle loads were used to determine which of these stressors were likely responsible for the toxicity and macroinvertebrate impacts previously observed in the Salinas River. Experiments were conducted with the amphipod Hyalella azteca, the baetid mayfly Procloeon sp., and the midge Chironomus dilutus (Shobanov, formerly Chironomus tentans). The results indicate the primary stressor impacting H. azteca was pesticides, including chlorpyrifos and permethrin. The mayfly Procloeon sp. was sensitive to chlorpyrifos and permethrin within the range of concentrations of these pesticides measured in the river. Chironomus dilutus were sensitive to chlorpyrifos within the ranges of concentrations measured in the river. None of the species tested were affected by turbidity as high as 1000 NTUs. The current study shows that pesticides are more important acute stressors of macroinvertebrates than suspended sediments in the Salinas River. - Pesticides are the primary stressor impacting macroinvertebrates in sections of the lower Salinas River.

  18. Tracking sedimentation from the historic A.D. 2011 Mississippi River flood in the deltaic wetlands of Louisiana, USA

    Science.gov (United States)

    Khan, Nicole S.; Horton, Benjamin P.; McKee, Karen L.; Jerolmack, Douglas; Falcini, Federico; Enache, Mihaela D.; Vane, Christopher H.

    2013-01-01

    Management and restoration of the Mississippi River deltaic plain (southern United States) and associated wetlands require a quantitative understanding of sediment delivery during large flood events, past and present. Here, we investigate the sedimentary fingerprint of the 2011 Mississippi River flood across the Louisiana coast (Atchafalaya Delta, Terrebonne, Barataria, and Mississippi River Delta basins) to assess spatial patterns of sedimentation and to identify key indicators of sediment provenance. The sediment deposited in wetlands during the 2011 flood was distinguished from earlier deposits based on biological characteristics, primarily absence of plant roots and increased presence of centric (planktonic) diatoms indicative of riverine origin. By comparison, the lithological (bulk density, organic matter content, and grain size) and chemical (stable carbon isotopes of bulk organic matter) properties of flood sediments were nearly identical to the underlying deposit. Flood sediment deposition was greatest in wetlands near the Atchafalaya and Mississippi Rivers and accounted for a substantial portion (37% to 85%) of the annual accretion measured at nearby monitoring stations. The amount of sediment delivered to those basins (1.1–1.6 g cm−2) was comparable to that reported previously for hurricane sedimentation along the Louisiana coast (0.8–2.1 g cm−2). Our findings not only provide insight into how large-scale river floods influence wetland sedimentation, they lay the groundwork for identifying previous flood events in the stratigraphic record.

  19. Identifying the Driving Factors of Water Quality in a Sub-Watershed of the Republican River Basin, Kansas USA.

    Science.gov (United States)

    Burke, Morgen W V; Shahabi, Mojtaba; Xu, Yeqian; Zheng, Haochi; Zhang, Xiaodong; VanLooy, Jeffrey

    2018-05-22

    Studies have shown that the agricultural expansion and land use changes in the Midwest of the U.S. are major drivers for increased nonpoint source pollution throughout the regional river systems. In this study, we empirically examined the relationship of planted area and production of three dominant crops with nitrate flux in the Republican River, Kansas, a sub-watershed of Mississippi River Basin. Our results show that land use in the region could not explain the observed changes in nitrate flux in the river. Instead, after including explanatory variables such as precipitation, growing degree days, and well water irrigation in the regression model we found that irrigation and spring precipitation could explain >85% of the variability in nitrate flux from 2000 to 2014. This suggests that changes in crop acreage and production alone cannot explain variability in nitrate flux. Future agricultural policy for the region should focus on controlling both the timing and amount of fertilizer applied to the field to reduce the potential leaching of excess fertilizer through spring time runoff and/or over-irrigation into nearby river systems.

  20. Groundwater remediation of hexavalent chromium along the Columbia River at the Hanford site in Washington state, USA - 59030

    International Nuclear Information System (INIS)

    Foss, Dyan L.; Charboneau, Briant L.

    2012-01-01

    The U.S. Department of Energy Hanford Site, formerly used for nuclear weapons production, encompasses 1500 square kilometers in southeast Washington State along the Columbia River. A principle threat to the river are the groundwater plumes of hexavalent chromium (Cr(VI)), which affect approximately 9.8 square kilometers, and 4.1 kilometers of shoreline. Cleanup goals are to stop Cr(VI) from entering the river by the end of 2012 and remediate the groundwater plumes to the drinking water standards by the end of 2020. Five groundwater pump-and-treat systems are currently in operation for the remediation of Cr(VI). Since the 1990's, over 13.6 billion L of groundwater have been treated; over 1, 435 kg of Cr(VI) have been removed. This paper describes the unique aspects of the site, its environmental setting, hydrogeology, groundwater-river interface, riverine hydraulic effects, remediation activities completed to date, a summary of the current and proposed pump-and-treat operations, the in situ redox manipulation barrier, and the effectiveness of passive barriers, resins, and treatability testing results of calcium polysulfide, bio-stimulation, and electrocoagulation, currently under evaluation. (authors)

  1. Analysis of the spatial and temporal variability of mountain snowpack and terrestrial water storage in the Upper Snake River, USA

    Science.gov (United States)

    The spatial and temporal relationships of winter snowpack and terrestrial water storage (TWS) in the Upper Snake River were analyzed for water years 2001–2010 at a monthly time step. We coupled a regionally validated snow model with gravimetric measurements of the Earth’s water...

  2. The socio-hydrologic evolution of human-flood interactions on the Charles and Mystic River, eastern Massachusetts, USA.

    Science.gov (United States)

    Mertz, Z.

    2015-12-01

    Socio-hydrology is an emerging subdiscipline for identifying the emergent properties of human-flood interactions. The Charles and the Mystic Rivers, in eastern Massachusetts, have been the subject of such interactions for hundreds of years. Over time, human dependency and settlement have altered the natural conditions of the rivers, and changed the potential for flood occurrence and property damage. As a result, flood management strategies have been enacted to counter this potential. Before we can assess how human vulnerability and actions related to river flooding will change under future climate conditions, we must first document the evolution of flooding and flood management and understand the motivations and thresholds of response that describe how the system has evolved in the past. We have mined historical data from traditional and non-traditional sources and have developed "mental models" from in-depth interviews of key personnel. We will present the socio-hydrological history of the Charles and Mystic Rivers and recommend how this information can inform future flood management strategies in the face of climate change.

  3. Using epiphytic lichens to monitor nitrogen deposition near natural gas drilling operations in the Wind River Range, WY, USA

    Science.gov (United States)

    Jill A. McMurray; Dave W. Roberts; Mark E. Fenn; Linda H. Geiser; Sarah Jovan

    2013-01-01

    Rapid expansion of natural gas drilling in Sublette County, WY (1999-present), has raised concerns about the potential ecological effects of enhanced atmospheric nitrogen (N) deposition to the Wind River Range (WRR) including the Class I BridgerWilderness. We sampled annual throughfall (TF) N deposition and lichen thalli N concentrations under forest canopies in four...

  4. Dynamics of Plains Cottonwood ( Populus deltoides) Forests and Historical Landscape Change along Unchannelized Segments of the Missouri River, USA

    Science.gov (United States)

    Dixon, Mark D.; Johnson, W. Carter; Scott, Michael L.; Bowen, Daniel E.; Rabbe, Lisa A.

    2012-05-01

    Construction of six large dams and reservoirs on the Missouri River over the last 50-75 years has resulted in major landscape changes and alterations in flow patterns, with implications for riparian forests dominated by plains cottonwood ( Populus deltoides). We quantified changes in land cover from 1892-1950s and the 1950s-2006 and the current extent and age structure of cottonwood forests on seven segments (two reservoir and five remnant floodplain) comprising 1127 km (53 %) of the unchannelized upper two-thirds of the Missouri River. Riparian forest area declined by 49 %; grassland 61 %; shrubland 52 %; and sandbar habitat 96 %; while agricultural cropland increased six-fold and river/reservoir surface area doubled from 1892 to 2006. Net rates of erosion and accretion declined between the 1892-1950s and 1950s-2006 periods. Accretion exceeded erosion on remnant floodplain segments, resulting in declines in active channel width, particularly in 1950s-2006. Across all study segments in 2006, most cottonwood stands (67 %) were >50 years old, 22 % were 25-50 years old, and only 10 % were <25 years old. Among stands <50 years old, the higher proportion of 25-50 year old stands represents recruitment that accompanied initial post-dam channel narrowing; while declines in sandbar and shrubland area and the low proportion of stands <25 years old suggest declines in geomorphic dynamism and limited recruitment under recent river management. Future conservation and restoration efforts should focus both on limiting further loss of remnant cottonwood stands and developing approaches to restore river dynamics and cottonwood recruitment processes.

  5. Wisconsin's forest resources in 2004

    Science.gov (United States)

    Charles H. Perry

    2006-01-01

    Results of the 2000-2004 annual inventory of Wisconsin show about 16.0 million acres of forest land, more than 22.1 billion cubic feet of live volume on forest land, and nearly 593 million dry tons of all live aboveground tree biomass on timberland. Populations of jack pine budworm are increasing, and it remains a significant pest in Wisconsin forests. A complete...

  6. Changes in Channel Geometry through the Holocene in the Le Sueur River, South-Central Minnesota, USA

    Science.gov (United States)

    Targos, Courtney Ann

    Paleochannels preserved on terraces via meander cutoffs during an incisional period record the channel geometry and thus discharge at distinct points in time throughout a river's history. We measured paleochannel geometry on terraces throughout the Le Sueur River in south-central Minnesota, to track how channel geometry has changed over the last 13,400 years. A rapid drop in base level 13,400 yr B.P. triggered knickpoint migration and valley incision that is ongoing today. Since the 1800's, the area has developed rapidly with an increase in agriculture and associated drainage, directly impacting river discharge by increasing water input to the river. Five paleochannels were identified on terraces along the Le Sueur River from 1m-resolution lidar data. Ground Penetrating Radar (GPR) was used to obtain a subsurface image across paleomeanders to estimate the geometry of paleochannels. Paleochannel geometry and estimated discharge were then compared to modern conditions to assess how much change has occurred. Three lines were run across each paleochannel perpendicular to the historic water flow. Each of the 15 lines were processed using the EKKO Project 2 software supplied by Sensors and Software to sharpen the images, making it easier to identify the paleochannel geometry. Paleodischarge was determined using the Law of the Wall and Manning's Equation, using modern slope and roughness conditions. OSL samples were collected from overbank deposits on terraces to determine the time of channel abandonment, and supplemented with terrace ages obtained from a numerical model of valley incision. Paleodischarge coupled with depositional ages provide a history of flow conditions on the Le Sueur River. Results show an increase in channel widths from the time paleochannels were occupied to modern channel dimensions from an average of 20 meters to 35 meters. The change was not constant through time, as all paleochannels analyzed on terraces had similar-sized channels. The best way

  7. Constraining the dynamics of the water budget at high spatial resolution in the world's water towers using models and remote sensing data; Snake River Basin, USA

    Science.gov (United States)

    Watson, K. A.; Masarik, M. T.; Flores, A. N.

    2016-12-01

    Mountainous, snow-dominated basins are often referred to as the water towers of the world because they store precipitation in seasonal snowpacks, which gradually melt and provide water supplies to downstream communities. Yet significant uncertainties remain in terms of quantifying the stores and fluxes of water in these regions as well as the associated energy exchanges. Constraining these stores and fluxes is crucial for advancing process understanding and managing these water resources in a changing climate. Remote sensing data are particularly important to these efforts due to the remoteness of these landscapes and high spatial variability in water budget components. We have developed a high resolution regional climate dataset extending from 1986 to the present for the Snake River Basin in the northwestern USA. The Snake River Basin is the largest tributary of the Columbia River by volume and a critically important basin for regional economies and communities. The core of the dataset was developed using a regional climate model, forced by reanalysis data. Specifically the Weather Research and Forecasting (WRF) model was used to dynamically downscale the North American Regional Reanalysis (NARR) over the region at 3 km horizontal resolution for the period of interest. A suite of satellite remote sensing products provide independent, albeit uncertain, constraint on a number of components of the water and energy budgets for the region across a range of spatial and temporal scales. For example, GRACE data are used to constrain basinwide terrestrial water storage and MODIS products are used to constrain the spatial and temporal evolution of evapotranspiration and snow cover. The joint use of both models and remote sensing products allows for both better understanding of water cycle dynamics and associated hydrometeorologic processes, and identification of limitations in both the remote sensing products and regional climate simulations.

  8. Edaphic, salinity, and stand structural trends in chronosequences of native and non-native dominated riparian forests along the Colorado River, USA

    Science.gov (United States)

    Merritt, David M.; Shafroth, Patrick B.

    2012-01-01

    Tamarix spp. are introduced shrubs that have become among the most abundant woody plants growing along western North American rivers. We sought to empirically test the long-held belief that Tamarix actively displaces native species through elevating soil salinity via salt exudation. We measured chemical and physical attributes of soils (e.g., salinity, major cations and anions, texture), litter cover and depth, and stand structure along chronosequences dominated by Tamarix and those dominated by native riparian species (Populus or Salix) along the upper and lower Colorado River in Colorado and Arizona/California, USA. We tested four hypotheses: (1) the rate of salt accumulation in soils is faster in Tamarix-dominated stands than stands dominated by native species, (2) the concentration of salts in the soil is higher in mature stands dominated by Tamarix compared to native stands, (3) soil salinity is a function of Tamarix abundance, and (4) available nutrients are more concentrated in native-dominated stands compared to Tamarix-dominated stands. We found that salt concentration increases at a faster rate in Tamarix-dominated stands along the relatively free-flowing upper Colorado but not along the heavily-regulated lower Colorado. Concentrations of ions that are known to be preferentially exuded by Tamarix (e.g., B, Na, and Cl) were higher in Tamarix stands than in native stands. Soil salt concentrations in older Tamarix stands along the upper Colorado were sufficiently high to inhibit germination, establishment, or growth of some native species. On the lower Colorado, salinity was very high in all stands and is likely due to factors associated with floodplain development and the hydrologic effects of river regulation, such as reduced overbank flooding, evaporation of shallow ground water, higher salt concentrations in surface and ground water due to agricultural practices, and higher salt concentrations in fine-textured sediments derived from naturally saline

  9. Surface complexation modeling for predicting solid phase arsenic concentrations in the sediments of the Mississippi River Valley alluvial aquifer, Arkansas, USA

    Science.gov (United States)

    Sharif, M.S.U.; Davis, R.K.; Steele, K.F.; Kim, B.; Hays, P.D.; Kresse, T.M.; Fazio, J.A.

    2011-01-01

    The potential health impact of As in drinking water supply systems in the Mississippi River Valley alluvial aquifer in the state of Arkansas, USA is significant. In this context it is important to understand the occurrence, distribution and mobilization of As in the Mississippi River Valley alluvial aquifer. Application of surface complexation models (SCMs) to predict the sorption behavior of As and hydrous Fe oxides (HFO) in the laboratory has increased in the last decade. However, the application of SCMs to predict the sorption of As in natural sediments has not often been reported, and such applications are greatly constrained by the lack of site-specific model parameters. Attempts have been made to use SCMs considering a component additivity (CA) approach which accounts for relative abundances of pure phases in natural sediments, followed by the addition of SCM parameters individually for each phase. Although few reliable and internally consistent sorption databases related to HFO exist, the use of SCMs using laboratory-derived sorption databases to predict the mobility of As in natural sediments has increased. This study is an attempt to evaluate the ability of the SCMs using the geochemical code PHREEQC to predict solid phase As in the sediments of the Mississippi River Valley alluvial aquifer in Arkansas. The SCM option of the double-layer model (DLM) was simulated using ferrihydrite and goethite as sorbents quantified from chemical extractions, calculated surface-site densities, published surface properties, and published laboratory-derived sorption constants for the sorbents. The model results are satisfactory for shallow wells (10.6. m below ground surface), where the redox condition is relatively oxic or mildly suboxic. However, for the deep alluvial aquifer (21-36.6. m below ground surface) where the redox condition is suboxic to anoxic, the model results are unsatisfactory. ?? 2011 Elsevier Ltd.

  10. Factors Influencing Bacterial Diversity and Community Composition in Municipal Drinking Waters in the Ohio River Basin, USA

    OpenAIRE

    Stanish, Lee F.; Hull, Natalie M.; Robertson, Charles E.; Harris, J. Kirk; Stevens, Mark J.; Spear, John R.; Pace, Norman R.

    2016-01-01

    The composition and metabolic activities of microbes in drinking water distribution systems can affect water quality and distribution system integrity. In order to understand regional variations in drinking water microbiology in the upper Ohio River watershed, the chemical and microbiological constituents of 17 municipal distribution systems were assessed. While sporadic variations were observed, the microbial diversity was generally dominated by fewer than 10 taxa, and was driven by the amou...

  11. Individual growth and reproductive behavior in a newly established population of northern snakehead (Channa argus), Potomac River, USA

    Science.gov (United States)

    Landis, Andrew M. Gascho; Lapointe, Nicolas W. R.; Angermeier, Paul L.

    2010-01-01

    Northern snakehead (Channa argus) were first found in the Potomac River in 2004. In 2007, we documented feeding and reproductive behavior to better understand how this species is performing in this novel environment. From April to October, we used electrofishing surveys to collect data on growth, condition, and gonad weight of adult fish. Growth rates of young were measured on a daily basis for several weeks. Mean length-at-age for Potomac River northern snakehead was lower than for fish from China, Russia, and Uzbekistan. Fish condition was above average during spring and fall, but below average in summer. Below-average condition corresponded to periods of high spawning activity. Gonadosomatic index indicated that females began spawning at the end of April and continued through August. Peak spawning occurred at the beginning of June when average temperatures reached 26°C. Larval fish growth rate, after the transition to exogenous feeding, was 2.3 (SD ± 0.7) mm (total length, TL) per day. Although Potomac River northern snakehead exhibited lower overall growth rates when compared to other populations, these fish demonstrated plasticity in timing of reproduction and rapid larval growth rates. Such life history characteristics likely contribute to the success of northern snakehead in its new environment and limit managers’ options for significant control of its invasion.

  12. Absorption spectroscopy of colored dissolved organic carbon in Georgia (USA rivers: the impact of molecular size distribution

    Directory of Open Access Journals (Sweden)

    Michelle McELVAINE

    2003-02-01

    Full Text Available Dissolved organic carbon (DOC was collected in six rivers that transect the coastal plain of Georgia in July 1999 and February 2000. DOC concentrations ranged from 4.9 to 40.7 g m-3 and from 7.1 to 40.5 g m-3, respectively. The absorption coefficient at 440 nm was highly correlated with DOC concentration, suggesting that the optical parameter may be utilized for rapid estimation of DOC in these waters. The isolated DOC was separated into fractions of operationally defined molecular size, using an ultrafiltration technique that yielded three fractions: 50 ("large" kilodalton. The smallest fraction was the most abundant (>50% in 4 rivers in July and in all rivers in February, and considerably more abundant than in previous years. The wavelength-dependent absorption of the total DOC and its fractions showed approximately uniform shape of a curve declining exponentially with the increase of wavelength. The average slope of logarithmically transformed curves was 0.0151 and 0.0159 nm-1, for the material collected in July and February, respectively and showed a dependence on DOC molecular size. In unfractionated DOC samples, the mass-specific light absorption determined at 440 nm was on average 0.33 m2 g-1 in July, and 0.26 m2 g-1 in February. The mass-specific absorption coefficient in all fractions ranged between 0.085 and 1.347 m2 g-1 in July and between 0.085 and 1.877 m2 g-1 in February, and was positively correlated with the molecular size of the measured samples. The results of the reported study clearly suggest that the specific absorption coefficient of the yellow substance is an outcome of the relative contribution of its different size fractions.

  13. Episodic sediment delivery and landscape connectivity in the Mancos Shale badlands and Fremont River system, Utah, USA

    Science.gov (United States)

    Godfrey, Andrew E.; Everitt, Benjamin L.; Duque, José F. Martín

    2008-12-01

    The Fremont River drains about 1000 km 2 of Mancos Shale badlands, which provide a large percentage of the total sediment load of its middle and lower reaches. Factors controlling sediment movement include: weathering that produces thin paralithic soils, mass movement events that move the soil onto locations susceptible to fluvial transport, intense precipitation events that move the sediment along rills and across local pediments, and finally Fremont River floods that move the sediment to the main-stem Colorado River. A forty-year erosion-pin study has shown that down-slope creep moves the weathered shale crust an average of 5.9 cm/yr. Weather records and our monitoring show that wet winters add large slab failures and mudflows. Recent sediment-trap studies show that about 95% of sediment movement across pediments is accomplished by high-intensity summer convective storms. Between 1890 and 1910, a series of large autumn floods swept down the Fremont River, eroding its floodplain and transforming it from a narrow and meandering channel to a broad, braided one. Beginning about 1940, the Fremont's channel began to narrow. Sequential aerial photos and cross-sections suggest that floodplain construction since about 1966 has stored about 4000 to 8000 m 3 of sediment per kilometer per year. These data suggest that it will take two centuries to restore the floodplain to its pre-1890 condition, which is in line with geologic studies elsewhere on the Colorado Plateau. The various landscape elements of slope, pediment, and floodplain are semi-independent actors in sediment delivery, each with its own style. Accelerated mass movement on the slopes has an approximate 20-year recurrence. Sediment movement from slope across pediments to master stream is episodic and recurs more frequently. The slope-to-pediment portion of the system appears well connected. However, sediment transport through the floodplain is not well connected in the decadal time scale, but increases in the

  14. Assessing the impacts of dams and levees on the hydrologic record of the Middle and Lower Mississippi River, USA

    Science.gov (United States)

    Remo, Jonathan W.F.; Ickes, Brian; Ryherd, Julia K.; Guida, Ross J.; Therrell, Matthew D.

    2018-01-01

    The impacts of dams and levees on the long-term (>130 years) discharge record was assessed along a ~1200 km segment of the Mississippi River between St. Louis, Missouri, and Vicksburg, Mississippi. To aid in our evaluation of dam impacts, we used data from the U.S. National Inventory of Dams to calculate the rate of reservoir expansion at five long-term hydrologic monitoring stations along the study segment. We divided the hydrologic record at each station into three periods: (1) a pre-rapid reservoir expansion period; (2) a rapid reservoir expansion period; and (3) a post-rapid reservoir expansion period. We then used three approaches to assess changes in the hydrologic record at each station. Indicators of hydrologic alteration (IHA) and flow duration hydrographs were used to quantify changes in flow conditions between the pre- and post-rapid reservoir expansion periods. Auto-regressive interrupted time series analysis (ARITS) was used to assess trends in maximum annual discharge, mean annual discharge, minimum annual discharge, and standard deviation of daily discharges within a given water year. A one-dimensional HEC-RAS hydraulic model was used to assess the impact of levees on flood flows. Our results revealed that minimum annual discharges and low-flow IHA parameters showed the most significant changes. Additionally, increasing trends in minimum annual discharge during the rapid reservoir expansion period were found at three out of the five hydrologic monitoring stations. These IHA and ARITS results support previous findings consistent with the observation that reservoirs generally have the greatest impacts on low-flow conditions. River segment scale hydraulic modeling revealed levees can modestly increase peak flood discharges, while basin-scale hydrologic modeling assessments by the U.S. Army Corps of Engineers showed that tributary reservoirs reduced peak discharges by a similar magnitude (2 to 30%). This finding suggests that the effects of dams and

  15. Successes of Restoration and Its Effect on the Fish Community in a Freshwater Tidal Embayment of the Potomac River, USA

    Directory of Open Access Journals (Sweden)

    Kim de Mutsert

    2017-06-01

    Full Text Available After a local wastewater treatment plant significantly reduced phosphorus loading into a phytoplankton-dominated tributary of the Potomac River in the early 1980s, water quality and biological communities were monitored bi-weekly from April to September. After a 10-year time-lag, submerged aquatic vegetation (SAV, once abundant in this freshwater tidal embayment, returned to the area in 1993. After additional reductions in nitrogen load starting in 2000, the system switched to an SAV-dominated state in 2005. Fish abundance did not change during these distinct phase changes, but the fish community structure did. Increases in SAV provided refuge and additional spawning substrate for species with adhesive eggs such as Banded Killifish (Fundulus diaphanus, which is now the most abundant species in the embayment. Other changes observed were a decrease in the relative contribution of open water dwelling species such as White Perch (Morone americana, and an increase of visual predators such as Largemouth Bass (Micropterus salmoides. The 30-year record of data from this Potomac River tributary has revealed important long-term trends that validate the effectiveness of initiatives to reduce excess nutrient inputs, and will aid in the continued management of the watershed and point-source inputs.

  16. GAMMA-PULSE-HEIGHT EVALUATION OF A USA SAVANNAH RIVER SITE BURIAL GROUND SPECIAL CONFIGURATION WASTE ITEM

    Energy Technology Data Exchange (ETDEWEB)

    Dewberry, R.; Sigg, R.; Salaymeh, S.

    2009-03-23

    The Savannah River Site (SRS) Burial Ground had a container labeled as Box 33 for which they had no reliable solid waste stream designation. The container consisted of an outer box of dimensions 48-inch x 46-inch x 66-inch and an inner box that contained high density and high radiation dose material. From the outer box Radiation Control measured an extremity dose rate of 22 mrem/h. With the lid removed from the outer box, the maximum dose rate measured from the inner box was 100 mrem/h extremity and 80 mrem/h whole body. From the outer box the material was sufficiently high in density that the Solid Waste Management operators were unable to obtain a Co-60 radiograph of the contents. Solid Waste Management requested that the Analytical Development Section of Savannah River National Laboratory perform a {gamma}-ray assay of the item to evaluate the radioactive content and possibly to designate a solid waste stream. This paper contains the results of three models used to analyze the measured {gamma}-ray data acquired in an unusual configuration.

  17. Responses of macroinvertebrate community metrics to a wastewater discharge in the Upper Blue River of Kansas and Missouri, USA

    Science.gov (United States)

    Poulton, Barry C.; Graham, Jennifer L.; Rasmussen, Teresa J.; Stone, Mandy L.

    2015-01-01

    The Blue River Main wastewater treatment facility (WWTF) discharges into the upper Blue River (725 km2), and is recently upgraded to implement biological nutrient removal. We measured biotic condition upstream and downstream of the discharge utilizing the macroinvertebrate protocol developed for Kansas streams. We examined responses of 34 metrics to determine the best indicators for discriminating site differences and for predicting biological condition. Significant differences between sites upstream and downstream of the discharge were identified for 15 metrics in April and 12 metrics in August. Upstream biotic condition scores were significantly greater than scores at both downstream sites in April (p = 0.02), and in August the most downstream site was classified as non-biologically supporting. Thirteen EPT taxa (Ephemeroptera, Plecoptera, Trichoptera) considered intolerant of degraded stream quality were absent at one or both downstream sites. Increases in tolerance metrics and filtering macroinvertebrates, and a decline in ratio of scrapers to filterers all indicated effects of increased nutrient enrichment. Stepwise regressions identified several significant models containing a suite of metrics with low redundancy (R2 = 0.90 - 0.99). Based on the rapid decline in biological condition downstream of the discharge, the level of nutrient removal resulting from the facility upgrade (10% - 20%) was not enough to mitigate negative effects on macroinvertebrate communities.

  18. Peace on the River? Social-Ecological Restoration and Large Dam Removal in the Klamath Basin, USA

    Directory of Open Access Journals (Sweden)

    Hannah Gosnell

    2010-06-01

    Full Text Available This paper aims to explain the multiple factors that contributed to a 2010 agreement to remove four large dams along the Klamath river in California and Oregon and initiate a comprehensive social-ecological restoration effort that will benefit Indian tribes, the endangered fish on which they depend, irrigated agriculture, and local economies in the river basin. We suggest that the legal framework, including the tribal trust responsibility, the Endangered Species Act, and the Federal Power Act, combined with an innovative approach to negotiation that allowed for collaboration and compromise, created a space for divergent interests to come together and forge a legally and politically viable solution to a suite of social and environmental problems. Improved social relations between formerly antagonistic Indian tribes and non-tribal farmers and ranchers, which came about due to a number of local collaborative processes during the early 2000s, were critical to the success of this effort. Overall, we suggest that recent events in the Klamath basin are indicative of a significant power shift taking place between tribal and non-tribal interests as tribes gain access to decision-making processes regarding tribal trust resources and develop capacity to participate in the development of complex restoration strategies.

  19. Atmospheric deposition inputs and effects on lichen chemistry and indicator species in the Columbia River Gorge, USA

    International Nuclear Information System (INIS)

    Fenn, M.E.; Geiser, L.; Bachman, R.; Blubaugh, T.J.; Bytnerowicz, A.

    2007-01-01

    Topographic and meteorological conditions make the Columbia River Gorge (CRG) an 'exhaust pipe' for air pollutants generated by the Portland-Vancouver metropolis and Columbia Basin. We sampled fog, bulk precipitation, throughfall, airborne particulates, lichen thalli, and nitrophytic lichen distribution. Throughfall N and S deposition were high, 11.5-25.4 and 3.4-6.7 kg ha -1 over 4.5 months at all 9 and 4/9 sites, respectively. Deposition and lichen thallus N were highest at eastern- and western-most sites, implicating both agricultural and urban sources. Fog and precipitation pH were frequently as low as 3.7-5.0. Peak NO x , NH 3 , and SO 2 concentrations in the eastern CRG were low, suggesting enhanced N and S inputs were largely from particulate deposition. Lichens indicating nitrogen-enriched environments were abundant and lichen N and S concentrations were 2x higher in the CRG than surrounding national forests. The atmospheric deposition levels detected likely threaten Gorge ecosystems and cultural resources. - Nitrogen, sulfur and acidic deposition threaten natural and cultural resources in the Columbia River Gorge National Scenic Area

  20. GAMMA-PULSE-HEIGHT EVALUATION OF A USA SAVANNAH RIVER SITE BURIAL GROUND SPECIAL CONFIGURATION WASTE ITEM

    International Nuclear Information System (INIS)

    Dewberry, R.; Sigg, R.; Salaymeh, S.

    2009-01-01

    The Savannah River Site (SRS) Burial Ground had a container labeled as Box 33 for which they had no reliable solid waste stream designation. The container consisted of an outer box of dimensions 48-inch x 46-inch x 66-inch and an inner box that contained high density and high radiation dose material. From the outer box Radiation Control measured an extremity dose rate of 22 mrem/h. With the lid removed from the outer box, the maximum dose rate measured from the inner box was 100 mrem/h extremity and 80 mrem/h whole body. From the outer box the material was sufficiently high in density that the Solid Waste Management operators were unable to obtain a Co-60 radiograph of the contents. Solid Waste Management requested that the Analytical Development Section of Savannah River National Laboratory perform a γ-ray assay of the item to evaluate the radioactive content and possibly to designate a solid waste stream. This paper contains the results of three models used to analyze the measured γ-ray data acquired in an unusual configuration

  1. Managed flood effects on beaver pond habitat in a desert riverine ecosystem, bill williams river, Arizona USA

    Science.gov (United States)

    Andersen, D.C.; Shafroth, P.B.; Pritekel, C.M.; O'Neill, M. W.

    2011-01-01

    The ecological effects of beaver in warm-desert streams are poorly documented, but potentially significant. For example, stream water and sediment budgets may be affected by increased evaporative losses and sediment retention in beaver ponds. We measured physical attributes of beaver pond and adjacent lotic habitats on a regulated Sonoran Desert stream, the Bill Williams River, after ???11 flood-free months in Spring 2007 and Spring 2008. Neither a predicted warming of surface water as it passed through a pond nor a reduction in dissolved oxygen in ponds was consistently observed, but bed sediment sorted to finest in ponds as expected. We observed a river segment-scale downstream rise in daily minimum stream temperature that may have been influenced by the series of ??100 beaver ponds present. Channel cross-sections surveyed before and after an experimental flood (peak flow 65 m3/s) showed net aggradation on nine of 13 cross-sections through ponds and three of seven through lotic reaches. Our results indicate that beaver affect riverine processes in warm deserts much as they do in other biomes. However, effects may be magnified in deserts through the potential for beaver to alter the stream thermal regime and water budget. ?? Society of Wetland Scientists 2011.

  2. Riparian soil development linked to forest succession above and below dams along the Elwha River, Washington, USA

    Science.gov (United States)

    Perry, Laura G; Shafroth, Patrick B.; Perakis, Steven

    2017-01-01

    Riparian forest soils can be highly dynamic, due to frequent fluvial disturbance, erosion, and sediment deposition, but effects of dams on riparian soils are poorly understood. We examined soils along toposequences within three river segments located upstream, between, and downstream of two dams on the Elwha River to evaluate relationships between riparian soil development and forest age, succession, and channel proximity, explore dam effects on riparian soils, and provide a baseline for the largest dam removal in history. We found that older, later-successional forests and geomorphic surfaces contained soils with finer texture and greater depth to cobble, supporting greater forest floor mass, mineral soil nutrient levels, and cation exchange. Forest stand age was a better predictor than channel proximity for many soil characteristics, though elevation and distance from the channel were often also important, highlighting how complex interactions between fluvial disturbance, sediment deposition, and biotic retention regulate soil development in this ecosystem. Soils between the dams, and to a lesser extent below the lower dam, had finer textures and higher mineral soil carbon, nitrogen, and cation exchange than above the dams. These results suggested that decreased fluvial disturbance below the dams, due to reduced sediment supply and channel stabilization, accelerated soil development. In addition, reduced sediment supply below the dams may have decreased soil phosphorus. Soil δ15N suggested that salmon exclusion by the dams had no discernable effect on nitrogen inputs to upstream soils. Recent dam removal may alter riparian soils further, with ongoing implications for riparian ecosystems.

  3. Radionuclides in ground water of the Carson River Basin, western Nevada and eastern California, U.S.A.

    Science.gov (United States)

    Thomas, J.M.; Welch, A.H.; Lico, M.S.; Hughes, J.L.; Whitney, R.

    1993-01-01

    Ground water is the main source of domestic and public supply in the Carson River Basin. Ground water originates as precipitation primarily in the Sierra Nevada in the western part of Carson and Eagle Valleys, and flows down gradient in the direction of the Carson River through Dayton and Churchill Valleys to a terminal sink in the Carson Desert. Because radionuclides dissolved in ground water can pose a threat to human health, the distribution and sources of several naturally occurring radionuclides that contribute to gross-alpha and gross-beta activities in the study area were investigated. Generally, alpha and beta activities and U concentration increase from the up-gradient to down-gradient hydrographic areas of the Carson River Basin, whereas 222Rn concentration decreases. Both 226Ra and 228Ra concentrations are similar throughout the study area. Alpha and beta activities and U concentration commonly exceed 100 pCi/l in the Carson Desert at the distal end of the flow system. Radon-222 commonly exceeds 2,000 pCi/l in the western part of Carson and Eagle Valleys adjacent to the Sierra Nevada. Radium-226 and 228Ra concentrations are processes. Thus, U is transported as dissolved and adsorbed species. A rise in the water table in the Carson Desert because of irrigation has resulted in the oxidation of U-rich organic matter and dissolution of U-bearing coatings on sediments, producing unusually high U concentration in the ground water. Alpha activity in the ground water is almost entirely from the decay of U dissolved in the water. Beta activity in ground water samples is primarily from the decay of 40K dissolved in the water and ingrowth of 238U progeny in the sample before analysis. Approximately one-half of the measured beta activity may not be present in ground water in the aquifer, but instead is produced in the sample after collection and before analysis. Potassium-40 is primarily from the dissolution of K-containing minerals, probably K-feldspar and biotite

  4. Are the Columbia River Basalts, Columbia Plateau, Idaho, Oregon, and Washington, USA, a viable geothermal target? A preliminary analysis

    Science.gov (United States)

    Burns, Erick R.; Williams, Colin F.; Tolan, Terry; Kaven, Joern Ole

    2016-01-01

    The successful development of a geothermal electric power generation facility relies on (1) the identification of sufficiently high temperatures at an economically viable depth and (2) the existence of or potential to create and maintain a permeable zone (permeability >10-14 m2) of sufficient size to allow efficient long-term extraction of heat from the reservoir host rock. If both occur at depth under the Columbia Plateau, development of geothermal resources there has the potential to expand both the magnitude and spatial extent of geothermal energy production. However, a number of scientific and technical issues must be resolved in order to evaluate the likelihood that the Columbia River Basalts, or deeper geologic units under the Columbia Plateau, are viable geothermal targets.Recent research has demonstrated that heat flow beneath the Columbia Plateau Regional Aquifer System may be higher than previously measured in relatively shallow (characteristic of natural hydrothermal reservoirs. From a hydraulic perspective, Columbia River Basalts are typically divided into dense, impermeable flow interiors and interflow zones comprising the top of one flow, the bottom of the overlying flow, and any sedimentary interbed. Interflow zones are highly variable in texture but, at depths 10-14 m2) interflows are documented at depths up to ~1,400 m. If the elevated permeability in these zones persists to greater depths, they may provide natural permeability of sufficient magnitude to allow their exploitation as conventional geothermal reservoirs. Alternatively, if the permeability in these interflow zones is less than 10-14 m2 at depth, it may be possible to use hydraulic and thermal stimulation to enhance the permeability of both the interflow zones and the natural jointing within the low-permeability interior portions of individual basalt flows in order to develop Enhanced/Engineered Geothermal System (EGS) reservoirs. The key challenge for an improved Columbia Plateau

  5. Health status of Largescale Sucker (Catostomus macrocheilus) collected along an organic contaminant gradient in the lower Columbia River, Oregon and Washington, USA

    Science.gov (United States)

    Torres, Leticia; Nilsen, Elena B.; Grove, Robert A.; Patino, Reynaldo

    2014-01-01

    The health of Largescale Sucker (Catostomus macrocheilus) in the lower Columbia River (USA) was evaluated using morphometric and histopathological approaches, and its association with organic contaminants accumulated in liver was evaluated in males. Fish were sampled from three sites along a contaminant gradient In 2009, body length and mass, condition factor, gonadosomatic index, and hematocrit were measured in males and females; liver and gonad tissue were collected from males for histological analyses; and organ composites were analyzed for contaminant content in males. In 2010, additional data were collected for males and females, including external fish condition assessment, histopathologies of spleen, kidney and gill and, for males, liver contaminant content. Multivariate analysis of variance indicated that biological traits in males, but not females, differed among sites in 2009 and 2010. Discriminant function analysis indicated that site-related differences among male populations were relatively small in 2009, but in 2010, when more variables were analyzed, males differed among sites in regards to kidney, spleen, and liver histopathologies and gill parasites. Kidney tubular hyperplasia, liver and spleen macrophage aggregations, and gill parasites were generally more severe in the downstream sites compared to the reference location. The contaminant content of male livers was also generally higher downstream, and the legacy pesticide hexachlorobenzene and flame retardants BDE-47 and BDE-154 were the primary drivers for site discrimination. However, bivariate correlations between biological variables and liver contaminants retained in the discriminant models failed to reveal associations between the two variable sets. In conclusion, whereas certain non-reproductive biological traits and liver contaminant contents of male Largescale Sucker differed according to an upstream-downstream gradient in the lower Columbia River, results from this study did not reveal

  6. Relationships between water temperatures and upstream migration, cold water refuge use, and spawning of adult bull trout from the Lostine River, Oregon, USA

    Science.gov (United States)

    Howell, P.J.; Dunham, J.B.; Sankovich, P.M.

    2010-01-01

    Understanding thermal habitat use by migratory fish has been limited by difficulties in matching fish locations with water temperatures. To describe spatial and temporal patterns of thermal habitat use by migratory adult bull trout, Salvelinus confluentus, that spawn in the Lostine River, Oregon, we employed a combination of archival temperature tags, radio tags, and thermographs. We also compared temperatures of the tagged fish to ambient water temperatures to determine if the fish were using thermal refuges. The timing and temperatures at which fish moved upstream from overwintering areas to spawning locations varied considerably among individuals. The annual maximum 7-day average daily maximum (7DADM) temperatures of tagged fish were 16-18 ??C and potentially as high as 21 ??C. Maximum 7DADM ambient water temperatures within the range of tagged fish during summer were 18-25 ??C. However, there was no evidence of the tagged fish using localized cold water refuges. Tagged fish appeared to spawn at 7DADM temperatures of 7-14 ??C. Maximum 7DADM temperatures of tagged fish and ambient temperatures at the onset of the spawning period in late August were 11-18 ??C. Water temperatures in most of the upper Lostine River used for spawning and rearing appear to be largely natural since there has been little development, whereas downstream reaches used by migratory bull trout are heavily diverted for irrigation. Although the population effects of these temperatures are unknown, summer temperatures and the higher temperatures observed for spawning fish appear to be at or above the upper range of suitability reported for the species. Published 2009. This article is a US Governmentwork and is in the public domain in the USA.

  7. Bioaccumulation of polychlorinated dibenzo-p-dioxins, dibenzofurans, and dioxin-like polychlorinated biphenyls in fishes from the Tittabawassee and Saginaw Rivers, Michigan, USA

    International Nuclear Information System (INIS)

    Wan, Yi; Jones, Paul D.; Holem, Ryan R.; Khim, Jong Seong; Chang, Hong; Kay, Denise P.; Roark, Shaun A.; Newsted, John L.; Patterson, William P.; Giesy, John P.

    2010-01-01

    Characterizing biological factors associated with species-specific accumulation of contaminants is one of the major focuses in ecotoxicology and environmental chemistry studies. In this study, polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and non- and mono-ortho-substituted polychlorinated biphenyl (PCB) congeners were analyzed in various fish species from the Tittabawassee and Saginaw Rivers (12 fish species; n = 314 individuals), Michigan, USA. Due to their migratory habits, greater δ 13 C stable isotope values were found in walleye and white sucker among 12 fish species. Meanwhile, the δ 15 N values indicated that the trophic status was least in carp and greatest in largemouth bass. The greatest total concentrations of dioxins were found in fishes with the lowest trophic status (carp (n = 50) followed by channel catfish (n = 49)), and concentrations of ΣPCDD/Fs (20-440 pg/g ww (wet weight)), ΣPCBs (16-690 ng/g ww), and TEQs (6.8-350 pg/g ww) in carp were also greater than the least mean concentrations in other fishes. Contributions of various biological factors to the species accumulation were assessed. Body weight and lipid content were found to be the most significant factors influencing accumulation of ΣPCDD/Fs. Lipid content and trophic level seemed to be dominant factors determining accumulation of ΣPCB and TEQs, but negative correlations between trophic status and concentrations of ΣPCBs and TEQs were observed possibly due to the great concentrations in benthivorous fishes such as carp occupying lower trophic levels. These factors can be used to predict the contaminant levels of dioxins and health risks of the fishes in the river ecosystem.

  8. Water-quality assessment of the largely urban blue river basin, Metropolitan Kansas City, USA, 1998 to 2007

    Science.gov (United States)

    Wilkison, D.H.; Armstrong, D.J.; Hampton, S.A.

    2009-01-01

    From 1998 through 2007, over 750 surface-water or bed-sediment samples in the Blue River Basin - a largely urban basin in metropolitan Kansas City - were analyzed for more than 100 anthropogenic compounds. Compounds analyzed included nutrients, fecal-indicator bacteria, suspended sediment, pharmaceuticals and personal care products. Non-point source runoff, hydrologic alterations, and numerous waste-water discharge points resulted in the routine detection of complex mixtures of anthropogenic compounds in samples from basin stream sites. Temporal and spatial variations in concentrations and loads of nutrients, pharmaceuticals, and organic wastewater compounds were observed, primarily related to a site's proximity to point-source discharges and stream-flow dynamics. ?? 2009 ASCE.

  9. The speciation of iodine in the salt impacted Black Butte soil series along the Virgin river, Nevada, USA

    International Nuclear Information System (INIS)

    Steinberg, Spencer M.; Buck, Brenda; Morton, Janice; Dorman, James

    2008-01-01

    Salt-impacted soils occur in floodplains, wetlands and backswamps in arid climates. These soils become sinks or temporary storage sites for soluble salts and contaminants including agricultural chemicals, industrial pollutants and radionuclides such as 129 I. The vertical distribution of I in the Black Butte soil series along the Virgin river was assessed and the distribution of I between I - , IO 3 - and organically bound I was determined. The speciation of I was compared to the organic C content, specific components of the organic C, and clay content. This study indicates that organic I was the most abundant form of I in these soil samples and that the content of organic I generally correlated to total organic matter and lignin (as measured by chemolysis) of the samples

  10. The speciation of iodine in the salt impacted Black Butte soil series along the Virgin river, Nevada, USA

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Spencer M. [Department of Chemistry, University of Nevada Las Vegas, Las Vegas, NV 80154 (United States)], E-mail: spencer.steinberg@unlv.edu; Buck, Brenda; Morton, Janice [Department of Geoscience, University of Nevada Las Vegas, Las Vegas, NV 80154 (United States); Dorman, James [Department of Chemistry, University of Nevada Las Vegas, Las Vegas, NV 80154 (United States)

    2008-12-15

    Salt-impacted soils occur in floodplains, wetlands and backswamps in arid climates. These soils become sinks or temporary storage sites for soluble salts and contaminants including agricultural chemicals, industrial pollutants and radionuclides such as {sup 129}I. The vertical distribution of I in the Black Butte soil series along the Virgin river was assessed and the distribution of I between I{sup -}, IO{sub 3}{sup -} and organically bound I was determined. The speciation of I was compared to the organic C content, specific components of the organic C, and clay content. This study indicates that organic I was the most abundant form of I in these soil samples and that the content of organic I generally correlated to total organic matter and lignin (as measured by chemolysis) of the samples.

  11. From Midges to Spiders: Mercury Biotransport in Riparian Zones Near the Buffalo River Area of Concern (AOC), USA.

    Science.gov (United States)

    Pennuto, C M; Smith, M

    2015-12-01

    Riparian communities can receive environmental contaminants from adjacent aquatic 'donor' habitats. We investigated mercury biotransport from aquatic to terrestrial habitats via aquatic insect emergence and uptake by riparian spiders at sites within and upstream of the Buffalo River Area of Concern (AOC), a site with known sediment Hg contamination. Mercury concentration in emerging midges was roughly 10× less than contaminated sediment levels with the AOC, but biomagnification factors from midges to spiders ranged from 2.0 to 2.65 between sites. There was a significantly negative body mass:total mercury relationship in spiders (p Spiders contained significantly more mercury than their midge prey and spiders upstream of the AOC had higher mercury concentrations than spiders from within the AOC. Collectively, these data indicate that riparian spiders can be good mercury sentinels in urban environments, and that riparian communities upstream from the AOC may be at greater risk to mercury than has been previously considered.

  12. Drivers and Effects of Groundwater-Surface Water Interaction in the Karstic Lower Flint River Basin, Southwestern Georgia, USA

    Science.gov (United States)

    Rugel, K.; Golladay, S. W.; Jackson, C. R.; Rasmussen, T. C.; Dowd, J. F.; Mcdowell, R. J.

    2017-12-01

    Groundwater provides the majority of global water resources for domestic and agricultural usage while contributing vital surface water baseflows which support healthy aquatic ecosystems. Understanding the extent and magnitude of hydrologic connectivity between groundwater and surface water components in karst watersheds is essential to the prudent management of these hydraulically-interactive systems. We examined groundwater and surface water connectivity between the Upper Floridan Aquifer (UFA) and streams in the Lower Flint River Basin (LFRB) in southwestern Georgia where development of agricultural irrigation intensified over the past 30 years. An analysis of USGS streamflow data for the pre- and post-irrigation period showed summer baseflows in some Lower Flint River tributaries were reduced by an order of magnitude in the post-irrigation period, reiterating the strong hydraulic connection between these streams and the underlying aquifer. Large and fine-scale monitoring of calcium, nitrate, specific conductance and stable isotopes (δ18O and δD) on 50 km of Ichawaynochaway Creek, a major tributary of the Lower Flint, detected discrete groundwater-surface water flow paths which accounted for 42% of total groundwater contributions in the 50 km study reach. This presentation will highlight a new analysis using the metadata EPA Reach File (1) and comparing stream reach and instream bedrock joint azimuths with stream geochemical results from previous field study. Our findings suggested that reaches with NNW bearing may be more likely to display enhanced groundwater-surface water connectivity. Our results show that local heterogeneity can significantly affect water budgets and quality within these watersheds, making the use of geomorphological stream attributes a valuable tool to water resource management for the prediction and protection of vulnerable regions of hydrologic connectivity in karst catchments.

  13. Comparative evaluation of molecular diagnostic tests for Nucleospora salmonis and prevalence in migrating juvenile salmonids from the Snake River, USA

    Science.gov (United States)

    Badil, Samantha; Elliott, Diane G.; Kurobe, Tomofumi; Hedrick, Ronald P.; Clemens, Kathy; Blair, Marilyn; Purcell, Maureen K.

    2011-01-01

    Nucleospora salmonis is an intranuclear microsporidian that primarily infects lymphoblast cells and contributes to chronic lymphoblastosis and a leukemia-like condition in a range of salmonid species. The primary goal of this study was to evaluate the prevalence of N. salmonis in out-migrating juvenile hatchery and wild Chinook salmon Oncorhynchus tshawytscha and steelhead O. mykiss from the Snake River in the U.S. Pacific Northwest. To achieve this goal, we first addressed the following concerns about current molecular diagnostic tests for N. salmonis: (1) nonspecific amplification patterns by the published nested polymerase chain reaction (nPCR) test, (2) incomplete validation of the published quantitative PCR (qPCR) test, and (3) whether N. salmonis can be detected reliably from nonlethal samples. Here, we present an optimized nPCR protocol that eliminates nonspecific amplification. During validation of the published qPCR test, our laboratory developed a second qPCR test that targeted a different gene sequence and used different probe chemistry for comparison purposes. We simultaneously evaluated the two different qPCR tests for N. salmonis and found that both assays were highly specific, sensitive, and repeatable. The nPCR and qPCR tests had good overall concordance when DNA samples derived from both apparently healthy and clinically diseased hatchery rainbow trout were tested. Finally, we demonstrated that gill snips were a suitable tissue for nonlethal detection of N. salmonis DNA in juvenile salmonids. Monitoring of juvenile salmonid fish in the Snake River over a 3-year period revealed low prevalence of N. salmonis in hatchery and wild Chinook salmon and wild steelhead but significantly higher prevalence in hatchery-derived steelhead. Routine monitoring of N. salmonis is not performed for all hatchery steelhead populations. At present, the possible contribution of this pathogen to delayed mortality of steelhead has not been determined.

  14. Toxicity of sediment cores collected from the Ashtabula River in northeastern Ohio, USA, to the amphipod Hyalella azteca

    Science.gov (United States)

    Ingersoll, C.G.; Kemble, N.E.; Kunz, J.L.; Brumbaugh, W.G.; MacDonald, D.D.; Smorong, D.

    2009-01-01

    This study was conducted to support a Natural Resource Damage Assessment and Restoration project associated with the Ashtabula River in Ohio. The objective of the study was to evaluate the chemistry and toxicity of 50 sediment samples obtained from five cores collected from the Ashtabula River (10 samples/core, with each 10-cm-diameter core collected to a total depth of about 150 cm). Effects of chemicals of potential concern (COPCs) measured in the sediment samples were evaluated by measuring whole-sediment chemistry and whole-sediment toxicity in the sediment samples (including polycyclic aromatic hydrocarbons [PAHs], polychlorinated biphenyls [PCBs], organochlorine pesticides, and metals). Effects on the amphipod Hyalella azteca at the end of a 28-day sediment toxicity test were determined by comparing survival or length of amphipods in individual sediment samples in the cores to the range of responses of amphipods exposed to selected reference sediments that were also collected from the cores. Mean survival or length of amphipods was below the lower limit of the reference envelope in 56% of the sediment samples. Concentrations of total PCBs alone in some samples or concentrations of total PAHs alone in other samples were likely high enough to have caused the reduced survival or length of amphipods (i.e., concentrations of PAHs or PCBs exceeded mechanistically based and empirically based sediment quality guidelines). While elevated concentrations of ammonia in pore water may have contributed to the reduced length of amphipods, it is unlikely that the reduced length was caused solely by elevated ammonia (i.e., concentrations of ammonia were not significantly correlated with the concentrations of PCBs or PAHs and concentrations of ammonia were elevated both in the reference sediments and in the test sediments). Results of this study show that PAHs, PCBs, and ammonia are the primary COPCs that are likely causing or substantially contributing to the toxicity to

  15. Potential pollutant sources in a Choptank River (USA) subwatershed and the influence of land use and watershed characteristics

    Science.gov (United States)

    Nino de Guzman, Gabriela T.; Hapeman, Cathleen J.; Prabhakara, Kusuma; Codling, Eton E.; Shelton, Daniel R.; Rice, Clifford P.; Hively, W. Dean; McCarty, Gregory W.; Lang, Megan W.; Torrents, Alba

    2012-01-01

    Row-crop and poultry production have been implicated as sources of water pollution along the Choptank River, an estuary and tributary of the Chesapeake Bay. This study examined the effects of land use, subwatershed characteristics, and climatic conditions on the water quality parameters of a subwatershed in the Choptank River watershed. The catchments within the subwatershed were defined using advanced remotely-sensed data and current geographic information system processing techniques. Water and sediment samples were collected in May–October 2009 and April–June 2010 under mostly baseflow conditions and analyzed for select bacteria, nitrate-N, ammonium-N, total arsenic, total phosphorus (TP), orthophosphate (ortho-P), and particle-phase phosphorus (PP); n = 96 for all analytes except for arsenic, n = 136, and for bacteria, n = 89 (aqueous) and 62 (sediment). Detections of Enterococci and Escherichia coli concentrations were ubiquitous in this subwatershed and showed no correlation to location or land use, however larger bacterial counts were observed shortly after precipitation. Nitrate-N concentrations were not correlated with agricultural lands, which may reflect the small change in percent agriculture and/or the similarity of agronomic practices and crops produced between catchments. Concentration data suggested that ammonia emission and possible deposition to surface waters occurred and that these processes may be influenced by local agronomic practices and climatic conditions. The negative correlation of PP and arsenic concentrations with percent forest was explained by the stronger signal of the head waters and overland flow of particulate phase analytes versus dissolved phase inputs from groundwater. Service roadways at some poultry production facilities were found to redirect runoff from the facilities to neighboring catchment areas, which affected water quality parameters. Results suggest that in this subwatershed, catchments with poultry production

  16. Vertical accretion sand proxies of gaged floods along the upper Little Tennessee River, Blue Ridge Mountains, USA

    Science.gov (United States)

    Leigh, David S.

    2018-02-01

    Understanding environmental hazards presented by river flooding has been enhanced by paleoflood analysis, which uses sedimentary records to document floods beyond historical records. Bottomland overbank deposits (e.g., natural levees, floodbasins, meander scars, low terraces) have the potential as continuous paleoflood archives of flood frequency and magnitude, but they have been under-utilized because of uncertainty about their ability to derive flood magnitude estimates. The purpose of this paper is to provide a case study that illuminates tremendous potential of bottomland overbank sediments as reliable proxies of both flood frequency and magnitude. Methods involve correlation of particle-size measurements of the coarse tail of overbank deposits (> 0.25 mm sand) from three separate sites with historical flood discharge records for the upper Little Tennessee River in the Blue Ridge Mountains of the southeastern United States. Results show that essentially all floods larger than a 20% probability event can be detected by the coarse tail of particle-size distributions, especially if the temporal resolution of sampling is annual or sub-annual. Coarser temporal resolution (1.0 to 2.5 year sample intervals) provides an adequate record of large floods, but is unable to discriminate individual floods separated by only one to three years. Measurements of > 0.25 mm sand that are normalized against a smoothed trend line through the down-column data produce highly significant correlations (R2 values of 0.50 to 0.60 with p-values of 0.004 to Time-series data of particle-size should be detrended to minimize variation from dynamic aspects of fluvial sedimentation that are not related to flood magnitude; and 5) Multiple sites should be chosen to allow for replication of findings.

  17. Water-quality assessment of part of the upper Mississippi River basin, Minnesota and Wisconsin - Ground-water quality in an urban part of the Twin Cities Metropolitan area, Minnesota, 1996

    Science.gov (United States)

    Andrews, W.J.; Fong, A.L.; Harrod, Leigh; Dittes, M.E.

    1998-01-01

    In the spring of 1996, the Upper Mississippi River Basin Study Unit of the National Water-Quality Assessment Program drilled 30 shallow monitoring wells in a study area characterized by urban residential and commercial land uses. The monitoring wells were installed in sandy river-terrace deposits adjacent to the Mississippi River in Anoka and Hennepin Counties, Minnesota, in areas where urban development primarily occurred during the past 30 years.

  18. Decadal-scale export of nitrogen, phosphorus, and sediment from the Susquehanna River basin, USA: Analysis and synthesis of temporal and spatial patterns.

    Science.gov (United States)

    Zhang, Qian; Ball, William P; Moyer, Douglas L

    2016-09-01

    The export of nitrogen (N), phosphorus (P), and suspended sediment (SS) is a long-standing management concern for the Chesapeake Bay watershed, USA. Here we present a comprehensive evaluation of nutrient and sediment loads over the last three decades at multiple locations in the Susquehanna River basin (SRB), Chesapeake's largest tributary watershed. Sediment and nutrient riverine loadings, including both dissolved and particulate fractions, have generally declined at all sites upstream of Conowingo Dam (non-tidal SRB outlet). Period-of-record declines in riverine yield are generally smaller than those in source input, suggesting the possibility of legacy contributions. Consistent with other watershed studies, these results reinforce the importance of considering lag time between the implementation of management actions and achievement of river quality improvement. Whereas flow-normalized loadings for particulate species have increased recently below Conowingo Reservoir, those for upstream sites have declined, thus substantiating conclusions from prior studies about decreased reservoir trapping efficiency. In regard to streamflow effects, statistically significant log-linear relationships between annual streamflow and annual constituent load suggest the dominance of hydrological control on the inter-annual variability of constituent export. Concentration-discharge relationships revealed general chemostasis and mobilization effects for dissolved and particulate species, respectively, both suggesting transport-limitation conditions. In addition to affecting annual export rates, streamflow has also modulated the relative importance of dissolved and particulate fractions, as reflected by its negative correlations with dissolved P/total P, dissolved N/total N, particulate P/SS, and total N/total P ratios. For land-use effects, period-of-record median annual yields of N, P, and SS all correlate positively with the area fraction of non-forested land but negatively with

  19. Decadal-scale export of nitrogen, phosphorus, and sediment from the Susquehanna River basin, USA: Analysis and synthesis of temporal and spatial patterns

    Science.gov (United States)

    Zhang, Qian; Ball, William P.; Moyer, Douglas

    2016-01-01

    The export of nitrogen (N), phosphorus (P), and suspended sediment (SS) is a long-standing management concern for the Chesapeake Bay watershed, USA. Here we present a comprehensive evaluation of nutrient and sediment loads over the last three decades at multiple locations in the Susquehanna River basin (SRB), Chesapeake's largest tributary watershed. Sediment and nutrient riverine loadings, including both dissolved and particulate fractions, have generally declined at all sites upstream of Conowingo Dam (non-tidal SRB outlet). Period-of-record declines in riverine yield are generally smaller than those in source input, suggesting the possibility of legacy contributions. Consistent with other watershed studies, these results reinforce the importance of considering lag time between the implementation of management actions and achievement of river quality improvement. Whereas flow-normalized loadings for particulate species have increased recently below Conowingo Reservoir, those for upstream sites have declined, thus substantiating conclusions from prior studies about decreased reservoir trapping efficiency. In regard to streamflow effects, statistically significant log-linear relationships between annual streamflow and annual constituent load suggest the dominance of hydrological control on the inter-annual variability of constituent export. Concentration-discharge relationships revealed general chemostasis and mobilization effects for dissolved and particulate species, respectively, both suggesting transport-limitation conditions. In addition to affecting annual export rates, streamflow has also modulated the relative importance of dissolved and particulate fractions, as reflected by its negative correlations with dissolved P/total P, dissolved N/total N, particulate P/SS, and total N/total P ratios. For land-use effects, period-of-record median annual yields of N, P, and SS all correlate positively with the area fraction of non-forested land but negatively with

  20. Isotope niche dimension and trophic overlap between bigheaded carps and native filter-feeding fish in the lower Missouri River, USA

    Science.gov (United States)

    Wang, Jianzhu; Chapman, Duane C.; Xu, Jun; Wang, Yang; Gu, Binhe

    2018-01-01

    Stable carbon and nitrogen isotope values (δ13C and δ15N) were used to evaluate trophic niche overlap between two filter-feeding fishes (known together as bigheaded carp) native to China, silver carp (Hypophthalmichthys molitrix) and bighead carp (Hypophthalmichthys nobilis), and three native filter-feeding fish including bigmouth buffalo (Ictiobus cyprinellus), gizzard shad (Dorosoma cepedianum) and paddlefish (Polyodon spathula) in the lower Missouri River, USA, using the Bayesian Stable Isotope in R statistics. Results indicate that except for bigmouth buffalo, all species displayed similar trophic niche size and trophic diversity. Bigmouth buffalo occupied a small trophic niche and had the greatest trophic overlap with silver carp (93.6%) and bighead carp (94.1%) followed by gizzard shad (91.0%). Paddlefish had a trophic niche which relied on some resources different from those used by other species, and therefore had the lowest trophic overlap with bigheaded carp and other two native fish. The trophic overlap by bigheaded carp onto native fish was typically stronger than the reverse effects from native fish. Average niche overlap between silver carp and native species was as high as 71%, greater than niche overlap between bighead carp and native fish (64%). Our findings indicate that bigheaded carps are a potential threat to a diverse and stable native fish community.

  1. Gully annealing by aeolian sediment: field and remote-sensing investigation of aeolian-hillslope-fluvial interactions, Colorado River corridor, Arizona, USA

    Science.gov (United States)

    Sankey, Joel B.; Draut, Amy E.

    2014-01-01

    Processes contributing to development of ephemeral gully channels are of great importance to landscapes worldwide, and particularly in dryland regions where soil loss and land degradation from gully erosion pose long-term land-management problems. Whereas gully formation has been relatively well studied, much less is known of the processes that anneal gullies and impede their growth. This study of gully annealing by aeolian sediment, spanning 95 km along the Colorado River corridor in Glen, Marble, and Grand Canyon, Arizona, USA, employed field and remote sensing observations, including digital topographic modelling. Results indicate that aeolian sediment activity can be locally effective at counteracting gully erosion. Gullies are less prevalent in areas where surficial sediment undergoes active aeolian transport, and have a greater tendency to terminate in active aeolian sand. Although not common, examples exist in the record of historical imagery of gullies that underwent infilling by aeolian sediment in past decades and evidently were effectively annealed. We thus provide new evidence for a potentially important interaction of aeolian–hillslope–fluvial processes, which could affect dryland regions substantially in ways not widely recognized. Moreover, because the biologic soil crust plays an important role in determining aeolian sand activity, and so in turn the extent of gully development, this study highlights a critical role of geomorphic–ecologic interactions in determining arid-landscape evolution.

  2. Tests of bioaccumulation models for polychlorinated biphenyl compounds: a study of young-of-the-year bluefish in the Hudson River estuary, USA.

    Science.gov (United States)

    Leblanc, Lawrence A; Buckel, Jeffrey A; Conover, David O; Brownawell, Bruce J

    2006-08-01

    A field-based study regarding uptake of polychlorinated biphenyl compounds (PCBs) by young-of-the-year (YOY) bluefish (Pomatomus saltatrix) was initiated to test a steady-state model of bioaccumulation and trophic transfer in a rapidly growing fish. Determination of prey composition as well as size-dependent growth and specific consumption rates for YOY bluefish from separate field and laboratory studies enabled the input of these species-specific parameters into the model. Furthermore, the time and duration of the exposure of YOY bluefish to dissolved PCBs from a well-characterized system (Hudson River, USA) was well known. Patterns of accumulation of individual PCB congeners differed relative to the accumulation of total PCBs, with the greatest net accumulation occurring for the higher-molecular-weight congeners. Comparison of lipid-normalized bioaccumulation factors (BAFs) with the octanol-water partition coefficients of individual PCB congeners revealed bluefish to be above the BAFs predicted by lipid-based equilibrium partitioning, suggesting that uptake from food is an important source of PCBs in YOY bluefish. Comparison of measured BAFs with values predicted by a steady-state, food-chain model showed good first-order agreement.

  3. Assessment of chevron dikes for the enhancement of physical-aquatic habitat within the Middle Mississippi River, USA

    Science.gov (United States)

    Remo, Jonathan W. F.; Khanal, Anish; Pinter, Nicholas

    2013-09-01

    Blunt-nosed chevron dikes, a new invention now being widely constructed on the Middle Mississippi River (MMR), have been justified as a tool for enhancing physical-aquatic habitat. Chevron dikes were initially designed to concentrate flow, induce channel scour, and thus facilitate river navigation. More recently, these structures have been justified, in part, for promoting habitat heterogeneity. The ability of chevrons to create and diversify physical-aquatic habitat, however, has not been empirically evaluated. To assess the ability of chevrons to create and diversify physical-aquatic habitat, we compiled hydrologic and geospatial data for three channel reference conditions along a 2.0 km (∼140 ha) reach of the MMR where three chevrons were constructed in late 2007. We used the hydrologic and hydraulic data to construct detailed 2-D hydrodynamic models for three reference condition: historic (circa 1890), pre-chevron, and post-chevron channel conditions. These models documented changes in depths and flow dynamics for a wide range of in-channel discharges. Depth-velocity habitat classes were used to assess change in physical-aquatic habitat patches and spatial statistical tools in order to evaluate the reach-scale habitat patch diversity. Comparisons of pre- and post-chevron conditions revealed increases in deep to very deep (>3.0 m) areas of slow moving (3.0 m], low velocity [<0.6 m/s]). Chevron construction also created some (0.8-3.8 ha) shallow-water habitat (0-1.5 m depth with a 0-0.6 m/s velocity) for flows ⩽2.0 × MAF and contributed to an 8-35% increase in physical-aquatic-habitat diversity compared to pre-chevron channel conditions. However, modeling of the historic reference condition (less engineered channel, circa 1890) revealed that the historical physical-aquatic-habitat mosaic consisted of a wider and shallower channel with: 45-390% more shallow-water habitat (2.4-11.0 ha) and 22-83% more physical-aquatic-habitat diversity, but little over

  4. Contaminant profiles in Southeast Asian immigrants consuming fish from polluted waters in northeastern Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Schantz, Susan L., E-mail: schantz@illinois.edu [Department of Veterinary Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802 (United States); Gardiner, Joseph C. [Department of Epidemiology, Michigan State University (United States); Aguiar, Andrea [Department of Veterinary Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802 (United States); Tang, Xiaoqin; Gasior, Donna M. [Department of Epidemiology, Michigan State University (United States); Sweeney, Anne M. [Department of Epidemiology and Biostatistics, Texas A and M University System Health Science Center USA (United States); Peck, Jennifer D. [Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center (United States); Gillard, Douglas; Kostyniak, Paul J. [Toxicology Research Center, University at Buffalo (United States)

    2010-01-15

    Recent immigrants to the USA from Southeast Asia may be at higher risk of exposure to fish-borne contaminants including polychlorinated biphenyls (PCBs), p, p'-dichlorodiphenyldichloroethene (DDE) and methylmercury (MeHg) because of their propensity to engage in subsistence fishing. Exposure to contaminants was assessed in men and women of Hmong descent living in Green Bay, Wisconsin, where the Fox River and lower Green Bay are contaminated with PCBs, and to a lesser extent with mercury. Serum samples from 142 people were analyzed for PCBs and p,p'-DDE by capillary column gas chromatography with electron capture detection (ECD). Whole blood was analyzed for total mercury by cold vapor atomic absorption spectrometry and atomic fluorescence spectroscopy. Lipid-adjusted total PCB concentrations ranged from 8.7 to 3,091 ng/g (full range of the data), with a geometric mean of 183.6 ng/g (estimated after eliminating one outlier). DDE ranged from 0.3 to 7,083 (full range of the data) with a geometric mean of 449.8 ng/g (estimated after eliminating two outliers). Men had higher PCB and DDE concentrations than women. Serum PCB concentrations were significantly correlated with fish consumption (r=0.43, p<0.0001), whereas DDE concentrations were not (r=0.09,p=0.29). Instead, serum DDE was strongly associated with the number of years spent in a Thai refugee camp before immigrating to the USA (r=0.60;p<0.0001). PCB congeners 138, 153, 118 and 180 accounted for a smaller percentage of the total PCBs than has been reported in other fish-eating populations, and several lightly chlorinated congeners were present in relatively large amounts. Mercury exposure was low in this population. In conclusion, Hmong immigrants in northeastern Wisconsin are at risk of elevated PCB exposure from consumption of locally caught fish. The pattern of exposure is somewhat different than patterns in other fish-eating populations, possibly due to use of Aroclor 1242 by the paper industry in

  5. Contaminant profiles in Southeast Asian immigrants consuming fish from polluted waters in northeastern Wisconsin

    International Nuclear Information System (INIS)

    Schantz, Susan L.; Gardiner, Joseph C.; Aguiar, Andrea; Tang, Xiaoqin; Gasior, Donna M.; Sweeney, Anne M.; Peck, Jennifer D.; Gillard, Douglas; Kostyniak, Paul J.

    2010-01-01

    Recent immigrants to the USA from Southeast Asia may be at higher risk of exposure to fish-borne contaminants including polychlorinated biphenyls (PCBs), p, p'-dichlorodiphenyldichloroethene (DDE) and methylmercury (MeHg) because of their propensity to engage in subsistence fishing. Exposure to contaminants was assessed in men and women of Hmong descent living in Green Bay, Wisconsin, where the Fox River and lower Green Bay are contaminated with PCBs, and to a lesser extent with mercury. Serum samples from 142 people were analyzed for PCBs and p,p'-DDE by capillary column gas chromatography with electron capture detection (ECD). Whole blood was analyzed for total mercury by cold vapor atomic absorption spectrometry and atomic fluorescence spectroscopy. Lipid-adjusted total PCB concentrations ranged from 8.7 to 3,091 ng/g (full range of the data), with a geometric mean of 183.6 ng/g (estimated after eliminating one outlier). DDE ranged from 0.3 to 7,083 (full range of the data) with a geometric mean of 449.8 ng/g (estimated after eliminating two outliers). Men had higher PCB and DDE concentrations than women. Serum PCB concentrations were significantly correlated with fish consumption (r=0.43, p<0.0001), whereas DDE concentrations were not (r=0.09,p=0.29). Instead, serum DDE was strongly associated with the number of years spent in a Thai refugee camp before immigrating to the USA (r=0.60;p<0.0001). PCB congeners 138, 153, 118 and 180 accounted for a smaller percentage of the total PCBs than has been reported in other fish-eating populations, and several lightly chlorinated congeners were present in relatively large amounts. Mercury exposure was low in this population. In conclusion, Hmong immigrants in northeastern Wisconsin are at risk of elevated PCB exposure from consumption of locally caught fish. The pattern of exposure is somewhat different than patterns in other fish-eating populations, possibly due to use of Aroclor 1242 by the paper industry in this region.

  6. Spatial scaling of core and dominant forest cover in the Upper Mississippi and Illinois River floodplains, USA

    Science.gov (United States)

    De Jager, Nathan R.; Rohweder, Jason J.

    2011-01-01

    Different organisms respond to spatial structure in different terms and across different spatial scales. As a consequence, efforts to reverse habitat loss and fragmentation through strategic habitat restoration ought to account for the different habitat density and scale requirements of various taxonomic groups. Here, we estimated the local density of floodplain forest surrounding each of ~20 million 10-m forested pixels of the Upper Mississippi and Illinois River floodplains by using moving windows of multiple sizes (1–100 ha). We further identified forest pixels that met two local density thresholds: 'core' forest pixels were nested in a 100% (unfragmented) forested window and 'dominant' forest pixels were those nested in a >60% forested window. Finally, we fit two scaling functions to declines in the proportion of forest cover meeting these criteria with increasing window length for 107 management-relevant focal areas: a power function (i.e. self-similar, fractal-like scaling) and an exponential decay function (fractal dimension depends on scale). The exponential decay function consistently explained more variation in changes to the proportion of forest meeting both the 'core' and 'dominant' criteria with increasing window length than did the power function, suggesting that elevation, soil type, hydrology, and human land use constrain these forest types to a limited range of scales. To examine these scales, we transformed the decay constants to measures of the distance at which the probability of forest meeting the 'core' and 'dominant' criteria was cut in half (S 1/2, m). S 1/2 for core forest was typically between ~55 and ~95 m depending on location along the river, indicating that core forest cover is restricted to extremely fine scales. In contrast, half of all dominant forest cover was lost at scales that were typically between ~525 and 750 m, but S 1/2 was as long as 1,800 m. S 1/2 is a simple measure that (1) condenses information derived from multi

  7. Geographic specificity of Aroclor 1268 in bottlenose dolphins (Tursiops truncatus) frequenting the Turtle/Brunswick River Estuary, Georgia (USA)

    International Nuclear Information System (INIS)

    Pulster, Erin L.; Maruya, Keith A.

    2008-01-01

    Coastal marine resources are at risk from anthropogenic contaminants, including legacy persistent organic pollutants (POPs) with half-lives of decades or more. To determine if polychlorinated biphenyl (PCB) signatures can be used to distinguish among local populations of inshore bottlenose dolphins (Tursiops truncatus) along the southeastern U.S. coast, blubber from free-ranging and stranded animals were collected along the Georgia coast in 2004 and analyzed for PCB congeners using gas chromatography with electron capture and negative chemical ionization mass spectrometric detection (GC-ECD and GC-NCI-MS). Mean total PCB concentrations (77 ± 34 μg/g lipid) were more than 10 fold higher and congener distributions were highly enriched in Cl 7 -Cl 10 homologs in free-ranging animals from the Turtle/Brunswick River estuary (TBRE) compared with strandings samples from Savannah area estuaries 90 km to the north. Using principal components analysis (PCA), the Aroclor 1268 signature associated with TBRE animals was distinct from that observed in Savannah area animals, and also from those in animals biopsied in other southeastern U.S estuaries. Moreover, PCB signatures in dolphin blubber closely resembled those in local preferred prey fish species, strengthening the hypothesis that inshore T. truncatus populations exhibit long-term fidelity to specific estuaries and making them excellent sentinels for assessing the impact of stressors on coastal ecosystem health

  8. Geographic specificity of Aroclor 1268 in bottlenose dolphins (Tursiops truncatus) frequenting the Turtle/Brunswick River Estuary, Georgia (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Pulster, Erin L. [Marine Sciences Department, Savannah State University, Savannah, Georgia, 31404 (United States); Skidaway Institute of Oceanography, 10 Ocean Science Circle, Savannah, Georgia, 31411 (United States)], E-mail: epulster@mote.org; Maruya, Keith A. [Skidaway Institute of Oceanography, 10 Ocean Science Circle, Savannah, Georgia, 31411 (United States)

    2008-04-15

    Coastal marine resources are at risk from anthropogenic contaminants, including legacy persistent organic pollutants (POPs) with half-lives of decades or more. To determine if polychlorinated biphenyl (PCB) signatures can be used to distinguish among local populations of inshore bottlenose dolphins (Tursiops truncatus) along the southeastern U.S. coast, blubber from free-ranging and stranded animals were collected along the Georgia coast in 2004 and analyzed for PCB congeners using gas chromatography with electron capture and negative chemical ionization mass spectrometric detection (GC-ECD and GC-NCI-MS). Mean total PCB concentrations (77 {+-} 34 {mu}g/g lipid) were more than 10 fold higher and congener distributions were highly enriched in Cl{sub 7}-Cl{sub 10} homologs in free-ranging animals from the Turtle/Brunswick River estuary (TBRE) compared with strandings samples from Savannah area estuaries 90 km to the north. Using principal components analysis (PCA), the Aroclor 1268 signature associated with TBRE animals was distinct from that observed in Savannah area animals, and also from those in animals biopsied in other southeastern U.S estuaries. Moreover, PCB signatures in dolphin blubber closely resembled those in local preferred prey fish species, strengthening the hypothesis that inshore T. truncatus populations exhibit long-term fidelity to specific estuaries and making them excellent sentinels for assessing the impact of stressors on coastal ecosystem health.

  9. Identifying stakeholder-relevant climate change impacts: a case study in the Yakima River Basin, Washington, USA

    Science.gov (United States)

    Jenni, K.; Graves, D.; Hardiman, Jill M.; Hatten, James R.; Mastin, Mark C.; Mesa, Matthew G.; Montag, J.; Nieman, Timothy; Voss, Frank D.; Maule, Alec G.

    2014-01-01

    Designing climate-related research so that study results will be useful to natural resource managers is a unique challenge. While decision makers increasingly recognize the need to consider climate change in their resource management plans, and climate scientists recognize the importance of providing locally-relevant climate data and projections, there often remains a gap between management needs and the information that is available or is being collected. We used decision analysis concepts to bring decision-maker and stakeholder perspectives into the applied research planning process. In 2009 we initiated a series of studies on the impacts of climate change in the Yakima River Basin (YRB) with a four-day stakeholder workshop, bringing together managers, stakeholders, and scientists to develop an integrated conceptual model of climate change and climate change impacts in the YRB. The conceptual model development highlighted areas of uncertainty that limit the understanding of the potential impacts of climate change and decision alternatives by those who will be most directly affected by those changes, and pointed to areas where additional study and engagement of stakeholders would be beneficial. The workshop and resulting conceptual model highlighted the importance of numerous different outcomes to stakeholders in the basin, including social and economic outcomes that go beyond the physical and biological outcomes typically reported in climate impacts studies. Subsequent studies addressed several of those areas of uncertainty, including changes in water temperatures, habitat quality, and bioenergetics of salmonid populations.

  10. Characterization of polycyclic aromatic hydrocarbons in urban stormwater runoff flowing into the tidal Anacostia River, Washington, DC, USA

    International Nuclear Information System (INIS)

    Hwang, H.-M.; Foster, Gregory D.

    2006-01-01

    To investigate the sources, fate, and transport dynamics of PAHs (polycyclic aromatic hydrocarbons) in stormwater runoff that is a leading source of pollution in urban watersheds, storm and base flow samples were collected in six branches along the lower Anacostia River. PAHs in storm flow (1510-12,500 ng/L) were significantly enriched in the particle phase, which accounted for 68-97% of the total PAHs. It suggests that reducing particles in stormwater using post-treatment system would decrease PAHs considerably. The solid-water distribution coefficients (K D ) of PAHs in the storm flow samples were up to 340 times higher than predicted values. A greater portion of high molecular weight PAHs and their distribution patterns indicate higher contribution of automobile originated pyrogenic PAHs. Total suspended solids in storm flow had a positive relationship with flow rates and exceeded benchmark level for the protection of aquatic biota in some samples. - PAHs in urban stormwater runoff degrade the quality of watersheds and need to be removed before runoff enters into receiving water bodies

  11. Mapping grassland productivity with 250-m eMODIS NDVI and SSURGO database over the Greater Platte River Basin, USA

    Science.gov (United States)

    Gu, Yingxin; Wylie, Bruce K.; Bliss, Norman B.

    2013-01-01

    This study assessed and described a relationship between satellite-derived growing season averaged Normalized Difference Vegetation Index (NDVI) and annual productivity for grasslands within the Greater Platte River Basin (GPRB) of the United States. We compared growing season averaged NDVI (GSN) with Soil Survey Geographic (SSURGO) database rangeland productivity and flux tower Gross Primary Productivity (GPP) for grassland areas. The GSN was calculated for each of nine years (2000–2008) using the 7-day composite 250-m eMODIS (expedited Moderate Resolution Imaging Spectroradiometer) NDVI data. Strong correlations exist between the nine-year mean GSN (MGSN) and SSURGO annual productivity for grasslands (R2 = 0.74 for approximately 8000 pixels randomly selected from eight homogeneous regions within the GPRB; R2 = 0.96 for the 14 cluster-averaged points). Results also reveal a strong correlation between GSN and flux tower growing season averaged GPP (R2 = 0.71). Finally, we developed an empirical equation to estimate grassland productivity based on the MGSN. Spatially explicit estimates of grassland productivity over the GPRB were generated, which improved the regional consistency of SSURGO grassland productivity data and can help scientists and land managers to better understand the actual biophysical and ecological characteristics of grassland systems in the GPRB. This final estimated grassland production map can also be used as an input for biogeochemical, ecological, and climate change models.

  12. Multilayer perceptron neural network-based approach for modeling phycocyanin pigment concentrations: case study from lower Charles River buoy, USA.

    Science.gov (United States)

    Heddam, Salim

    2016-09-01

    This paper proposes multilayer perceptron neural network (MLPNN) to predict phycocyanin (PC) pigment using water quality variables as predictor. In the proposed model, four water quality variables that are water temperature, dissolved oxygen, pH, and specific conductance were selected as the inputs for the MLPNN model, and the PC as the output. To demonstrate the capability and the usefulness of the MLPNN model, a total of 15,849 data measured at 15-min (15 min) intervals of time are used for the development of the model. The data are collected at the lower Charles River buoy, and available from the US Environmental Protection Agency (USEPA). For comparison purposes, a multiple linear regression (MLR) model that was frequently used for predicting water quality variables in previous studies is also built. The performances of the models are evaluated using a set of widely used statistical indices. The performance of the MLPNN and MLR models is compared with the measured data. The obtained results show that (i) the all proposed MLPNN models are more accurate than the MLR models and (ii) the results obtained are very promising and encouraging for the development of phycocyanin-predictive models.

  13. Factors Influencing Bacterial Diversity and Community Composition in Municipal Drinking Waters in the Ohio River Basin, USA.

    Directory of Open Access Journals (Sweden)

    Lee F Stanish

    Full Text Available The composition and metabolic activities of microbes in drinking water distribution systems can affect water quality and distribution system integrity. In order to understand regional variations in drinking water microbiology in the upper Ohio River watershed, the chemical and microbiological constituents of 17 municipal distribution systems were assessed. While sporadic variations were observed, the microbial diversity was generally dominated by fewer than 10 taxa, and was driven by the amount of disinfectant residual in the water. Overall, Mycobacterium spp. (Actinobacteria, MLE1-12 (phylum Cyanobacteria, Methylobacterium spp., and sphingomonads were the dominant taxa. Shifts in community composition from Alphaproteobacteria and Betaproteobacteria to Firmicutes and Gammaproteobacteria were associated with higher residual chlorine. Alpha- and beta-diversity were higher in systems with higher chlorine loads, which may reflect changes in the ecological processes structuring the communities under different levels of oxidative stress. These results expand the assessment of microbial diversity in municipal distribution systems and demonstrate the value of considering ecological theory to understand the processes controlling microbial makeup. Such understanding may inform the management of municipal drinking water resources.

  14. Evaluation of a combined macrophyte–epiphyte bioassay for assessing nutrient enrichment in the Portneuf River, Idaho, USA

    Science.gov (United States)

    Ray, Andrew M.; Mebane, Christopher A.; Raben, Flint; Irvine, Kathryn M.; Marcarelli, Amy M.

    2014-01-01

    We describe and evaluate a laboratory bioassay that uses Lemna minor L. and attached epiphytes to characterize the status of ambient and nutrient-enriched water from the Portneuf River, Idaho. Specifically, we measured morphological (number of fronds, longest surface axis, and root length) and population-level (number of plants and dry mass) responses of L. minor and community-level (ash-free dry mass [AFDM] and chlorophyll a [Chl a]) responses of epiphytes to nutrient enrichment. Overall, measures of macrophyte biomass and abundance increased with increasing concentrations of dissolved phosphorus (P) and responded more predictably to nutrient enrichment than morphological measures. Epiphyte AFDM and Chl a were also greatest in P-enriched water; enrichments of N alone produced no measurable epiphytic response. The epiphyte biomass response did not directly mirror macrophyte biomass responses, illustrating the value of a combined macrophyte–epiphyte assay to more fully evaluate nutrient management strategies. Finally, the most P-enriched waters not only supported greater standing stocks of macrophyte and epiphytes but also had significantly higher water column dissolved oxygen and dissolved organic carbon concentrations and a lower pH. Advantages of this macrophyte–epiphyte bioassay over more traditional single-species assays include the use of a more realistic level of biological organization, a relatively short assay schedule (~10 days), and the inclusion of multiple biological response and water-quality measures.

  15. Wisconsin's fourth forest inventory, 1983.

    Science.gov (United States)

    John S. Jr. Spencer; W. Brad Smith; Jerold T. Hahn; Gerhard K. Raile

    1988-01-01

    The fourth inventory of the timber resource of Wisconsin shows that growing-stock volume increased from 11.2 to 15.5 billion cubic feet between 1968 and 1983, and area of timberland increased from 14.5 to 14.8 million acres. Presented are analysis and statistics on forest area and timber volume, growth, mortality, removals, and projections.

  16. Residential Energy Efficiency Potential: Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by Wisconsin single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  17. Architecture and emplacement of flood basalt flow fields: case studies from the Columbia River Basalt Group, NW USA

    Science.gov (United States)

    Vye-Brown, C.; Self, S.; Barry, T. L.

    2013-03-01

    The physical features and morphologies of collections of lava bodies emplaced during single eruptions (known as flow fields) can be used to understand flood basalt emplacement mechanisms. Characteristics and internal features of lava lobes and whole flow field morphologies result from the forward propagation, radial spread, and cooling of individual lobes and are used as a tool to understand the architecture of extensive flood basalt lavas. The features of three flood basalt flow fields from the Columbia River Basalt Group are presented, including the Palouse Falls flow field, a small (8,890 km2, ˜190 km3) unit by common flood basalt proportions, and visualized in three dimensions. The architecture of the Palouse Falls flow field is compared to the complex Ginkgo and more extensive Sand Hollow flow fields to investigate the degree to which simple emplacement models represent the style, as well as the spatial and temporal developments, of flow fields. Evidence from each flow field supports emplacement by inflation as the predominant mechanism producing thick lobes. Inflation enables existing lobes to transmit lava to form new lobes, thus extending the advance and spread of lava flow fields. Minimum emplacement timescales calculated for each flow field are 19.3 years for Palouse Falls, 8.3 years for Ginkgo, and 16.9 years for Sand Hollow. Simple flow fields can be traced from vent to distal areas and an emplacement sequence visualized, but those with multiple-layered lobes present a degree of complexity that make lava pathways and emplacement sequences more difficult to identify.

  18. Project Strategy For The Remediation And Disposition Of Legacy Transuranic Waste At The Savannah River Site, South Carolina, USA

    International Nuclear Information System (INIS)

    Rodriguez, M.

    2010-01-01

    This paper discusses the Savannah River Site Accelerated Transuranic (TRU) Waste Project that was initiated in April of 2009 to accelerate the disposition of remaining legacy transuranic waste at the site. An overview of the project execution strategy that was implemented is discussed along with the lessons learned, challenges and improvements to date associated with waste characterization, facility modifications, startup planning, and remediation activities. The legacy waste was generated from approximately 1970 through 1990 and originated both on site as well as at multiple US Department of Energy sites. Approximately two thirds of the waste was previously dispositioned from 2006 to 2008, with the remaining one third being the more hazardous waste due to its activity (curie content) and the plutonium isotope Pu-238 quantities in the waste. The project strategy is a phased approach beginning with the lower activity waste in existing facilities while upgrades are made to support remediation of the higher activity waste. Five waste remediation process lines will be used to support the full remediation efforts which involve receipt of the legacy waste container, removal of prohibited items, venting of containers, and resizing of contents to fit into current approved waste shipping containers. Modifications have been minimized to the extent possible to meet the accelerated goals and involve limited upgrades to address life safety requirements, radiological containment needs, and handling equipment for the larger waste containers. Upgrades are also in progress for implementation of the TRUPACT III for the shipment of Standard Large Boxes to the Waste Isolation Pilot Plant, the US TRU waste repository. The use of this larger shipping container is necessary for approximately 20% of the waste by volume due to limited size reduction capability. To date, approximately 25% of the waste has been dispositioned, and several improvements have been made to the overall processing

  19. Organic compounds in produced waters from coalbed natural gas wells in the Powder River Basin, Wyoming, USA

    Science.gov (United States)

    Orem, W.H.; Tatu, C.A.; Lerch, H.E.; Rice, C.A.; Bartos, T.T.; Bates, A.L.; Tewalt, S.; Corum, M.D.

    2007-01-01

    The organic composition of produced water samples from coalbed natural gas (CBNG) wells in the Powder River Basin, WY, sampled in 2001 and 2002 are reported as part of a larger study of the potential health and environmental effects of organic compounds derived from coal. The quality of CBNG produced waters is a potential environmental concern and disposal problem for CBNG producers, and no previous studies of organic compounds in CBNG produced water have been published. Organic compounds identified in the produced water samples included: phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, various non-aromatic compounds, and phthalates. Many of the identified organic compounds (phenols, heterocyclic compounds, PAHs) are probably coal-derived. PAHs represented the group of organic compounds most commonly observed. Concentrations of total PAHs ranged up to 23 ??g/L. Concentrations of individual compounds ranged from about 18 to compound concentrations was documented, as two wells with relatively high organic compound contents in produced water in 2001 had much lower concentrations in 2002. In many areas, including the PRB, coal strata provide aquifers for drinking water wells. Organic compounds observed in produced water are also likely present in drinking water supplied from wells in the coal. Some of the organic compounds identified in the produced water samples are potentially toxic, but at the levels measured in these samples are unlikely to have acute health effects. The human health effects of low-level, chronic exposure to coal-derived organic compounds in drinking water are currently unknown. Continuing studies will evaluate possible toxic effects from low level, chronic exposure to coal-derived organic compounds in drinking water supplies.

  20. Geomorphic origin of Merritt Island-Cape Canaveral, Florida, USA: A paleodelta of the reversed St. Johns River?

    Science.gov (United States)

    Adams, Peter N.

    2018-04-01

    The Merritt Island-Cape Canaveral (MICCSC) sedimentary complex consists of a series of adjacent, non-conformable, beach ridge sets that suggest a multi-phase constructional history, but the feature's geomorphic and sedimentary origins are not well-understood. In spite of its notable sedimentary volume (surface area = 1200 km2), the MICCSC lacks a clear sediment source, or supply mechanism, to explain its presence today. Previously published U/Th, radiocarbon and OSL dates indicate that beach ridge deposition was active during MIS 5 (130-80 ka) on Merritt Island, but has occurred over a shorter, younger time interval on Cape Canaveral proper (6 ka to present). In this paper, it is proposed that the MICCSC is an abandoned paleodelta whose fluvial source provided a sediment supply sufficient for coastal progradation. Although the MICCSC, today, does not receive an appreciable sediment supply, the nearly 23,000 km2 drainage basin of the St. Johns River may well have provided such a sediment supply during MIS 5 times. This low-gradient fluvial system currently empties to the Atlantic Ocean some 200 km north of the MICCSC (near Jacksonville, Florida) but may have flowed southward during the time of MICCSC sedimentary construction, then experienced flow reversal since MIS 5 times. Three possible uplift mechanisms are proposed to explain the northward down-tilting that may have reversed the flow direction of the St. Johns, abandoning deltaic construction of the MICCSC: (1) karst-driven, flexural isostatic uplift in response to carbonate rock dissolution in central Florida, (2) glacio-hydro-isostatic tilting/back-tilting cycles during loading and unloading of the Laurentide ice sheet during the Pleistocene, and (3) mantle convection-driven dynamic topography operating within southeastern North America since the Pliocene. This example testifies to the sensitivity of low-gradient, low-relief landscapes to various sources of uplift, be they isostatic or otherwise.

  1. Astronomically-Forced Lake Expansion and Contraction Cycles: Sr Isotopic Evidence from the Eocene Green River Formation, Western USA

    Science.gov (United States)

    Baddouh, M.; Meyers, S. R.; Carroll, A.; Beard, B. L.; Johnson, C.

    2014-12-01

    87Sr/86Sr ratio from ancient lake deposits offer a unique insight into the astronomical forcing of lake expansion and contraction, by recording changes in runoff/groundwater provenance. We present new high-resolution 87Sr/86Sr data from the upper Wilkins Peak Member, to investigate linkages between astronomical forcing, water sources, and lake level in a classic rhythmic succession. Fifty-one 87Sr/86Sr ratios from White Mountain core #1 were acquired with a sampling interval of ~30 cm starting from the top of alluvial "I" bed to the lower Laney Member. The 87Sr/86Sr data show a strong and significant negative correlation with oil-yield, a traditional proxy for paleolake level and organic productivity. Application of a radioisotopic time scale, using previously dated ash beds, reveals that both 87Sr/86Sr and oil yield have a strong 20 kyr rhythm. The 87Sr/86Sr data more clearly express a longer period 100 kyr signal, similar to the Laskar 10D eccentricity solution. Using our nominal radioisotopic time scale, the Laskar 10D solution and 87Sr/86Sr data suggest that highest lake levels and greatest organic enrichment are attained during greatest precession and eccentricity. Regional geologic studies and modern river water analyses have shown that less radiogenic waters mostly originate west of the basin, where drainage is strongly influenced by thick Paleozoic and Mesozoic marine carbonate units. Decreased in 87Sr/86Sr therefore imply greater relative water contributions from the Sevier orogenic highlands, relative to lower relief, more radiogenic ranges lying to the east. We therefore propose that highstands of Lake Gosiute record increased penetration of Pacific moisture, related either to increased El Niño frequency or southward displacement of major storm tracks. We hypothesize that the occurrence of wetter winters caused expansion of Lake Gosiute, deposition of organic carbon rich facies, and decreased lake water 87Sr/86Sr.

  2. 76 FR 63852 - Proposed Establishment of the Wisconsin Ledge Viticultural Area

    Science.gov (United States)

    2011-10-14

    ..., University of Wisconsin Press, 1965, page 281). The western portion of the proposed boundary line extends... grapevine growth (``General Viticulture,'' by Albert J. Winkler, University of California Press, 1974, pages... River National Wildlife Refuges. Finally, the petition adds that Horicon Ledge Park, Ledge View County...

  3. Using the index of biotic integrity (IBI) to measure environmental quality in warmwater streams of Wisconsin.

    Science.gov (United States)

    John Lyons

    1992-01-01

    Describes an index based on attributes of fish assemblages that has proven effective in assessing biotic integrity and environmental health in intermediate-sized, warmwater (i.e., too warm for salmonids) streams and rivers of Wisconsin. Provides detailed guidelines for applying this index.

  4. The evolution of a subaqueous delta in the Anthropocene: A stratigraphic investigation of the Brazos River delta, TX USA

    Science.gov (United States)

    Carlin, Joseph A.; Dellapenna, Timothy M.

    2015-12-01

    Globally, deltas are increasingly threatened by anthropogenic activities. As a result, deltas now evolve through the combined effects of natural and human-induced processes occurring throughout the fluvial-deltaic system. The Brazos River delta, located along the Texas coast in the northwestern Gulf of Mexico, and its watershed have been impacted by direct and indirect human activities since the late 19th century. This provides an opportunity to investigate how such alterations have shaped the evolution of a delta in the Anthropocene, a time when humans are drivers of geological change. Historic alteration to the delta and watershed include extensive agricultural activity, jetty construction at the mouth in the late 1890s, mouth diversion ~10 km to the southwest in 1929, and reservoir construction throughout the early and mid 20th Century. Three subaerial deltaic geometries provided the framework to connect subaerial deltaic responses, to the anthropogenic alterations, to the resulting stratigraphic characteristics observed in the subaqueous delta. This study utilized high-resolution geophysical data (swath bathymetry, side scan sonar, CHIRP subbottom profiling) on the subaqueous delta to investigate the subaqueous delta stratigraphy and infer the processes that shaped the deltaic record over time. The results showed distinct areas across the subaqueous delta that were dominated by erosion and deposition. Erosional areas corresponded to earlier growth phase depocenters being exposed at the surface, while the depositional areas corresponded to areas with the most recent growth phase depocenter overlying the earlier depocenters. These results highlight that the subaqueous depocenter has migrated westward over time, consistent with the observed changes to the subaerial delta. Additionally, the data showed that evidence for these past growth phases and depocenters may be preserved within the subaqueous delta, even after subaerial portions of the delta returned to pre

  5. Erosion characteristics and horizontal variability for small erosion depths in the Sacramento-San Joaquin River Delta, California, USA

    Science.gov (United States)

    Schoellhamer, David H.; Manning, Andrew J.; Work, Paul A.

    2017-01-01

    Erodibility of cohesive sediment in the Sacramento-San Joaquin River Delta (Delta) was investigated with an erosion microcosm. Erosion depths in the Delta and in the microcosm were estimated to be about one floc diameter over a range of shear stresses and times comparable to half of a typical tidal cycle. Using the conventional assumption of horizontally homogeneous bed sediment, data from 27 of 34 microcosm experiments indicate that the erosion rate coefficient increased as eroded mass increased, contrary to theory. We believe that small erosion depths, erosion rate coefficient deviation from theory, and visual observation of horizontally varying biota and texture at the sediment surface indicate that erosion cannot solely be a function of depth but must also vary horizontally. We test this hypothesis by developing a simple numerical model that includes horizontal heterogeneity, use it to develop an artificial time series of suspended-sediment concentration (SSC) in an erosion microcosm, then analyze that time series assuming horizontal homogeneity. A shear vane was used to estimate that the horizontal standard deviation of critical shear stress was about 30% of the mean value at a site in the Delta. The numerical model of the erosion microcosm included a normal distribution of initial critical shear stress, a linear increase in critical shear stress with eroded mass, an exponential decrease of erosion rate coefficient with eroded mass, and a stepped increase in applied shear stress. The maximum SSC for each step increased gradually, thus confounding identification of a single well-defined critical shear stress as encountered with the empirical data. Analysis of the artificial SSC time series with the assumption of a homogeneous bed reproduced the original profile of critical shear stress, but the erosion rate coefficient increased with eroded mass, similar to the empirical data. Thus, the numerical experiment confirms the small-depth erosion hypothesis. A linear

  6. Landscape-scale Habitat Templates and Life Histories of Endangered and Invasive Fish Species in Large Rivers of the Mid-Continent USA (Invited)

    Science.gov (United States)

    Jacobson, R. B.; Braaten, P. J.; Chapman, D.; DeLonay, A. J.

    2013-12-01

    Many fish species migrate through river systems to complete their life cycles, occupying specific habitats during specific life stages. Regional geomorphology sets a template for their habitat-use patterns and ontogenetic development. In large rivers of the Mid-continent USA, understanding of relations of fish life histories to landscape-scale habitat templates informs recovery of endangered species and prevention of spread of invasive species. The endangered pallid sturgeon has evolved in the Missouri-Mississippi river system over 150 Ma. Its present-day distribution probably results from extensive drainage re-arrangements during the Pleistocene, followed by contemporary fragmentation. The reproductive and early life-stage needs of pallid sturgeon encompass hundreds of km, as adults migrate upstream to spawn and free embryos and larvae disperse downstream. Spawning requires coarse, hard substrate for incubation of adhesive eggs but adult pallid sturgeon are found predominately over sand, indicating that coarse substrate is a critical but transient habitat need. Once hatched, free-embryos initiate 9-17 days of downstream dispersal that distributes them over several hundreds of km. Lotic conditions at the dispersal terminus are required for survival. Persistent recruitment failure has been attributed to dams and channelization, which have fragmented migration and dispersal corridors, altered flow regimes, and diminished rearing habitats. Key elements of the natural history of this species remain poorly understood because adults are rare and difficult to observe, while the earliest life stages are nearly undetectable. Recent understanding has been accelerated using telemetry and hydroacoustics, but such assessments occur in altered systems and may not be indicative of natural behaviors. Restoration activities attempt - within considerable uncertainty -- to restore elements of the habitat template where they are needed. In comparison, invasive Asian carps have been

  7. Lithologic and hydrologic controls of mixed alluvial-bedrock channels in flood-prone fluvial systems: bankfull and macrochannels in the Llano River watershed, central Texas, USA

    Science.gov (United States)

    Heitmuller, Frank T.; Hudson, Paul F.; Asquith, William H.

    2015-01-01

    The rural and unregulated Llano River watershed located in central Texas, USA, has a highly variable flow regime and a wide range of instantaneous peak flows. Abrupt transitions in surface lithology exist along the main-stem channel course. Both of these characteristics afford an opportunity to examine hydrologic, lithologic, and sedimentary controls on downstream changes in channel morphology. Field surveys of channel topography and boundary composition are coupled with sediment analyses, hydraulic computations, flood-frequency analyses, and geographic information system mapping to discern controls on channel geometry (profile, pattern, and shape) and dimensions along the mixed alluvial-bedrock Llano River and key tributaries. Four categories of channel classification in a downstream direction include: (i) uppermost ephemeral reaches, (ii) straight or sinuous gravel-bed channels in Cretaceous carbonate sedimentary zones, (iii) straight or sinuous gravel-bed or bedrock channels in Paleozoic sedimentary zones, and (iv) straight, braided, or multithread mixed alluvial–bedrock channels with sandy beds in Precambrian igneous and metamorphic zones. Principal findings include: (i) a nearly linear channel profile attributed to resistant bedrock incision checkpoints; (ii) statistically significant correlations of both alluvial sinuosity and valley confinement to relatively high f (mean depth) hydraulic geometry values; (iii) relatively high b (width) hydraulic geometry values in partly confined settings with sinuous channels upstream from a prominent incision checkpoint; (iv) different functional flow categories including frequently occurring events (< 1.5-year return periods) that mobilize channel-bed material and less frequent events that determine bankfull channel (1.5- to 3-year return periods) and macrochannel (10- to 40-year return periods) dimensions; (v) macrochannels with high f values (most ≤ 0.45) that develop at sites with unit stream power values in excess

  8. Time as An Important Soil-Forming Factor Influencing Modern and Ancient Magnetic Susceptibility Enhancement Along the Delaware River Valley, USA

    Science.gov (United States)

    Stinchcomb, G. E.; Peppe, D. J.; Driese, S. G.

    2011-12-01

    Magnetic susceptibility is an increasingly popular low-cost method for rapidly assessing paleoclimate and paleoenvironmental impact on buried soils. The goal of this study is to determine the primary influence(s) on soil magnetic susceptibility along floodplain, terrace and upland soils in the middle Delaware River Valley, USA, using environmental magnetic, pedologic, and stratigraphic techniques. Two-hundred thirty samples were collected from age-constrained sandy, quartz-rich, floodplain, terrace, and upland soils (Entisols, Inceptisols). A Kruskal-Wallis (K-W) and post-hoc Tukey-Kramer (T-K) (α=0.05) multiple comparisons analysis on 176 mass-specific low-field susceptibility (Xlf) assays show that A and B horizons are magnetically enhanced compared to C and E horizons (ptesting show that Xlf results, when grouped by floodplain-terrace designation (i.e., chronofunction) are significantly different (p<0.0001). The older T3 terrace and upland Xlf values (0.34±0.14 10^-6 m^3 kg^-1) are greater than the younger T2 terrace (0.18±0.06 10^-6 m^3 kg^-1) values, which are greater than modern floodplain (0.09±0.01 10^-6 m^3 kg^-1) Xlf values. These data suggest that longer intervals of soil formation enhance the Χlf value. This hypothesis is further supported when 159 Xlf values are plotted vs. age for the entire Holocene. A locally-weighted regression smoothing curve (LOESS) shows two distinct intervals of magnetic enhancement during previously established dry intervals, the early and late-middle Holocene. We hypothesize that prolonged drought during the early and middle Holocene reduced flood frequency and magnitude and the likelihood of soil burial, resulting in longer soil forming intervals and higher Xlf values. Although precipitation influences the Xlf signature, the results from this study suggest that the magnetic susceptibility values of well-drained buried floodplain soils along the Delaware River Valley are partly a function of time.

  9. Lithologic and hydrologic controls of mixed alluvial-bedrock channels in flood-prone fluvial systems: bankfull and macrochannels in the Llano River watershed, central Texas, USA

    Science.gov (United States)

    Heitmuller, Frank T.; Hudson, Paul F.; Asquith, William H.

    2015-01-01

    The rural and unregulated Llano River watershed located in central Texas, USA, has a highly variable flow regime and a wide range of instantaneous peak flows. Abrupt transitions in surface lithology exist along the main-stem channel course. Both of these characteristics afford an opportunity to examine hydrologic, lithologic, and sedimentary controls on downstream changes in channel morphology. Field surveys of channel topography and boundary composition are coupled with sediment analyses, hydraulic computations, flood-frequency analyses, and geographic information system mapping to discern controls on channel geometry (profile, pattern, and shape) and dimensions along the mixed alluvial-bedrock Llano River and key tributaries. Four categories of channel classification in a downstream direction include: (i) uppermost ephemeral reaches, (ii) straight or sinuous gravel-bed channels in Cretaceous carbonate sedimentary zones, (iii) straight or sinuous gravel-bed or bedrock channels in Paleozoic sedimentary zones, and (iv) straight, braided, or multithread mixed alluvial–bedrock channels with sandy beds in Precambrian igneous and metamorphic zones. Principal findings include: (i) a nearly linear channel profile attributed to resistant bedrock incision checkpoints; (ii) statistically significant correlations of both alluvial sinuosity and valley confinement to relatively high f (mean depth) hydraulic geometry values; (iii) relatively high b (width) hydraulic geometry values in partly confined settings with sinuous channels upstream from a prominent incision checkpoint; (iv) different functional flow categories including frequently occurring events (high f values (most ≤ 0.45) that develop at sites with unit stream power values in excess of 200 watts per square meter (W/m2); and (vi) downstream convergence of hydraulic geometry exponents for bankfull and macrochannels, explained by co-increases of flood magnitude and noncohesive sandy sediments that collectively

  10. Mercury and selenium concentrations in biofilm, macroinvertebrates, and fish collected in the Yankee Fork of the Salmon River, Idaho, USA, and their potential effects on fish health

    Science.gov (United States)

    Rhea, Darren T.; Farag, Aïda M.; Harper, David D.; McConnell, Elizabeth; Brumbaugh, William G.

    2013-01-01

    The Yankee Fork is a large tributary of the Salmon River located in central Idaho, USA, with an extensive history of placer and dredge-mining activities. Concentrations of selenium (Se) and mercury (Hg) in various aquatic trophic levels were measured in the Yankee Fork during 2001 and 2002. Various measurements of fish health were also performed. Sites included four on the mainstem of the Yankee Fork and two off-channel sites in partially reclaimed dredge pools used as rearing habitat for cultured salmonid eggs and fry. Hg concentrations in whole mountain whitefish and shorthead sculpin ranged from 0.28 to 0.56 μg/g dry weight (dw), concentrations that are generally less than those reported to have significant impacts on fish. Biofilm and invertebrates ranged from 0.05 to 0.43 μg Hg/g dw. Se concentrations measured in biota samples from the Yankee Fork were greater than many representative samples collected in the Snake and Columbia watersheds and often exceeded literature-based toxic thresholds. Biofilm and invertebrates ranged from 0.58 to 4.66 μg Se/g dw. Whole fish ranged from 3.92 to 7.10 μg Se/g dw, and gonads ranged from 6.91 to 31.84 μg Se/g dw. Whole-body Se concentrations exceeded reported toxicological thresholds at three of four sites and concentrations in liver samples were mostly greater than concentrations shown to have negative impacts on fish health. Histological examinations performed during this study noted liver abnormalities, especially in shorthead sculpin, a bottom-dwelling species.

  11. The influence of time on the magnetic properties of late Quaternary periglacial and alluvial surface and buried soils along the Delaware River, USA

    Directory of Open Access Journals (Sweden)

    Gary E Stinchcomb

    2014-08-01

    Full Text Available Magnetic susceptibility of soils has been used as a proxy for rainfall, but other factors can contribute to magnetic enhancement in soils. Here we explore influence of century- to millennial-scale duration of soil formation on periglacial and alluvial soil magnetic properties by assessing three terraces with surface and buried soils ranging in exposure ages from <0.01 to ~16 kyrs along the Delaware River in northeastern USA. The A and B soil horizons have higher Xlf, Ms, and S-ratios compared to parent material, and these values increase in a non-linear fashion with increasing duration of soil formation. Magnetic remanence measurements show a mixed low- and high-coercivity mineral assemblage likely consisting of goethite, hematite and maghemite that contributes to the magnetic enhancement of the soil. Room-temperature and low-temperature field-cooled and zero field-cooled remanence curves confirm the presence of goethite and magnetite and show an increase in magnetization with increasing soil age. These data suggest that as the Delaware alluvial soils weather, the concentration of secondary ferrimagnetic minerals increase in the A and B soil horizons. We then compared the time-dependent Xlf from several age-constrained buried alluvial soils with known climate data for the region during the Quaternary. Contradictory to most studies that suggest a link between increases in magnetic susceptibility and high moisture, increased magnetic enhancement of Delaware alluvial soils coincides with dry climate intervals. Early Holocene enhanced soil Xlf (9.5 – 8.5 ka corresponds with a well-documented cool-dry climate episode. This relationship is probably related to less frequent flooding during dry intervals allowing more time for low-coercive pedogenic magnetic minerals to form and accumulate, which resulted in increased Xlf. Middle Holocene enhanced Xlf (6.1 – 4.3 ka corresponds with a transitional wet/dry phase and a previously documented incision

  12. Prior knowledge-based approach for associating contaminants with biological effects: A case study in the St. Croix River basin, MN, WI, USA

    Science.gov (United States)

    Schroeder, Anthony L.; Martinovic-Weigelt, Dalma; Ankley, Gerald T.; Lee, Kathy E.; Garcia-Reyero, Natalia; Perkins, Edward J.; Schoenfuss, Heiko L.; Villeneuve, Daniel L.

    2017-01-01

    Evaluating potential adverse effects of complex chemical mixtures in the environment is challenging. One way to address that challenge is through more integrated analysis of chemical monitoring and biological effects data. In the present study, water samples from five locations near two municipal wastewater treatment plants in the St. Croix River basin, on the border of MN and WI, USA, were analyzed for 127 organic contaminants. Known chemical-gene interactions were used to develop site-specific knowledge assembly models (KAMs) and formulate hypotheses concerning possible biological effects associated with chemicals detected in water samples from each location. Additionally, hepatic gene expression data were collected for fathead minnows (Pimephales promelas) exposed in situ, for 12 d, at each location. Expression data from oligonucleotide microarrays were analyzed to identify functional annotation terms enriched among the differentially-expressed probes. The general nature of many of the terms made hypothesis formulation on the basis of the transcriptome-level response alone difficult. However, integrated analysis of the transcriptome data in the context of the site-specific KAMs allowed for evaluation of the likelihood of specific chemicals contributing to observed biological responses. Thirteen chemicals (atrazine, carbamazepine, metformin, thiabendazole, diazepam, cholesterol, p-cresol, phenytoin, omeprazole, ethyromycin, 17β-estradiol, cimetidine, and estrone), for which there was statistically significant concordance between occurrence at a site and expected biological response as represented in the KAM, were identified. While not definitive, the approach provides a line of evidence for evaluating potential cause-effect relationships between components of a complex mixture of contaminants and biological effects data, which can inform subsequent monitoring and investigation.

  13. Characterization of mean transit time at large springs in the Upper Colorado River Basin, USA: A tool for assessing groundwater discharge vulnerability

    Science.gov (United States)

    Solder, John; Stolp, Bernard J.; Heilweil, Victor M.; Susong, David D.

    2016-01-01

    Environmental tracers (noble gases, tritium, industrial gases, stable isotopes, and radio-carbon) and hydrogeology were interpreted to determine groundwater transit-time distribution and calculate mean transit time (MTT) with lumped parameter modeling at 19 large springs distributed throughout the Upper Colorado River Basin (UCRB), USA. The predictive value of the MTT to evaluate the pattern and timing of groundwater response to hydraulic stress (i.e., vulnerability) is examined by a statistical analysis of MTT, historical spring discharge records, and the Palmer Hydrological Drought Index. MTTs of the springs range from 10 to 15,000 years and 90 % of the cumulative discharge-weighted travel-time distribution falls within the range of 2−10,000 years. Historical variability in discharge was assessed as the ratio of 10–90 % flow-exceedance (R 10/90%) and ranged from 2.8 to 1.1 for select springs with available discharge data. The lag-time (i.e., delay in discharge response to drought conditions) was determined by cross-correlation analysis and ranged from 0.5 to 6 years for the same select springs. Springs with shorter MTTs (<80 years) statistically correlate with larger discharge variations and faster responses to drought, indicating MTT can be used for estimating the relative magnitude and timing of groundwater response. Results indicate that groundwater discharge to streams in the UCRB will likely respond on the order of years to climate variation and increasing groundwater withdrawals.

  14. Regional variation in the chemical composition of winter snow pack and terricolous lichens in relation to sources of acid emissions in the Usa river basin, northeast European Russia

    International Nuclear Information System (INIS)

    Walker, T.R.; Crittenden, P.D.; Young, S.D.

    2003-01-01

    The chemistry of winter snow pack and terricolous lichens indicate pollution distribution in Arctic Russia. - The chemical composition of snow and terricolous lichens was determined along transects through the Subarctic towns of Vorkuta (130 km west-east), Inta (240 km south-north) and Usinsk (140 km, southwest-northeast) in the Usa river basin, northeast European Russia. Evidence of pollution gradients was found on two spatial scales. First, on the Inta transect, northward decreases in concentrations of N in the lichen Cladonia stellaris (from 0.57 mmol N g -1 at 90 km south to 0.43 mmol N g -1 at 130 km north of Inta) and winter deposition of non-sea salt sulphate (from 29.3 to 12.8 mol ha -1 at 90 km south and 110 km north of Inta, respectively) were attributed to long range transport of N and S from lower latitudes. Second, increased ionic content (SO 4 2- , Ca 2+ , K + ) and pH of snow, and modified N concentration and the concentration ratios K + :Mg 2+ and K + : (Mg 2+ +Ca 2+ ) in lichens (Cladonia arbuscula and Flavocetraria cucullata) within ca. 25-40 km of Vorkuta and Inta were largely attributed to local deposition of alkaline coal ash. Total sulphate concentrations in snow varied from ca. 5 μmol l -1 at remote sites to ca. 19 μmol l -1 near Vorkuta. Nitrate concentration in snow (typically ca. 9 μmol l -1 ) did not vary with proximity to perceived pollution sources

  15. Effects of historical lead–zinc mining on riffle-dwelling benthic fish and crayfish in the Big River of southeastern Missouri, USA

    Science.gov (United States)

    Allert, A.L.; DiStefano, R.J.; Fairchild, J.F.; Schmitt, C.J.; McKee, M.J.; Girondo, J.A.; Brumbaugh, W.G.; May, T.W.

    2013-01-01

    The Big River (BGR) drains much of the Old Lead Belt mining district (OLB) in southeastern Missouri, USA, which was historically among the largest producers of lead–zinc (Pb–Zn) ore in the world. We sampled benthic fish and crayfish in riffle habitats at eight sites in the BGR and conducted 56-day in situ exposures to the woodland crayfish (Orconectes hylas) and golden crayfish (Orconectes luteus) in cages at four sites affected to differing degrees by mining. Densities of fish and crayfish, physical habitat and water quality, and the survival and growth of caged crayfish were examined at sites with no known upstream mining activities (i.e., reference sites) and at sites downstream of mining areas (i.e., mining and downstream sites). Lead, zinc, and cadmium were analyzed in surface and pore water, sediment, detritus, fish, crayfish, and other benthic macro-invertebrates. Metals concentrations in all materials analyzed were greater at mining and downstream sites than at reference sites. Ten species of fish and four species of crayfish were collected. Fish and crayfish densities were significantly greater at reference than mining or downstream sites, and densities were greater at downstream than mining sites. Survival of caged crayfish was significantly lower at mining sites than reference sites; downstream sites were not tested. Chronic toxic-unit scores and sediment probable effects quotients indicated significant risk of toxicity to fish and crayfish, and metals concentrations in crayfish were sufficiently high to represent a risk to wildlife at mining and downstream sites. Collectively, the results provided direct evidence that metals associated with historical mining activities in the OLB continue to affect aquatic life in the BGR.

  16. DIGITAL FLOOD INSURANCE RATE MAP DATABASE, GRANT COUNTY, WISCONSIN, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk;...

  17. DCS Terrain Submission for Washburn County, Wisconsin, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describes the digital topographic data that was used to create...

  18. Advocacy and education in Wisconsin

    International Nuclear Information System (INIS)

    Wise, M.

    1986-01-01

    Wisconsin's Radioactive Waste Review Board is required by law to advocate for and educate the public on the high-level nuclear waste issue. The goal of its education program is to empower people by giving them information and skills. Environmental advocacy and public activism are part of the State's Progressive political tradition. The Board seeks and uses public input while developing education programs, and helps local areas organize committees to develop their own programs

  19. Distribution of invasive and native riparian woody plants across the western USA in relation to climate, river flow, floodplain geometry and patterns of introduction

    Science.gov (United States)

    Ryan McShane,; Daniel Auerbach,; Friedman, Jonathan M.; Auble, Gregor T.; Shafroth, Patrick B.; Michael Merigliano,; Scott, Michael L.; N. Leroy Poff,

    2015-01-01

    Management of riparian plant invasions across the landscape requires understanding the combined influence of climate, hydrology, geologic constraints and patterns of introduction. We measured abundance of nine riparian woody taxa at 456 stream gages across the western USA. We constructed conditional inference recursive binary partitioning models to discriminate the influence of eleven environmental variables on plant occurrence and abundance, focusing on the two most abundant non-native taxa, Tamarix spp. and Elaeagnus angustifolia, and their native competitor Populus deltoides. River reaches in this study were distributed along a composite gradient from cooler, wetter higher-elevation reaches with higher stream power and earlier snowmelt flood peaks to warmer, drier lower-elevation reaches with lower power and later peaks. Plant distributions were strongly related to climate, hydrologic and geomorphic factors, and introduction history. The strongest associations were with temperature and then precipitation. Among hydrologic and geomorphic variables, stream power, peak flow timing and 10-yr flood magnitude had stronger associations than did peak flow predictability, low-flow magnitude, mean annual flow and channel confinement. Nearby intentional planting of Elaeagnus was the best predictor of its occurrence, but planting of Tamarix was rare. Higher temperatures were associated with greater abundance of Tamarix relative to P. deltoides, and greater abundance of P. deltoides relative toElaeagnus. Populus deltoides abundance was more strongly related to peak flow timing than was that of Elaeagnus or Tamarix. Higher stream power and larger 10-yr floods were associated with greater abundance of P. deltoides and Tamarix relative to Elaeagnus. Therefore, increases in temperature could increase abundance of Tamarix and decrease that of Elaeagnus relative to P. deltoides, changes in peak flow timing caused by climate change or dam operations could

  20. Long-term controls of soil organic carbon with depth and time: a case study from the Cowlitz River Chronosequence, WA USA

    Science.gov (United States)

    Lawrence, Corey R.; Harden, Jennifer W.; Xu, Xiaomei; Schulz, Marjorie S.; Trumbore, Susan E.

    2015-01-01

    Over timescales of soil development (millennia), the capacity of soils to stabilize soil organic carbon (SOC) is linked to soil development through changes in soil mineralogy and other soil properties. In this study, an extensive dataset of soil profile chemistry and mineralogy is compiled from the Cowlitz River Chronosequence (CRC), WA USA. The CRC soils range in age from 0.25 to 1200 kyr, spanning a developmental gradient encompassing clear changes in soil mineralogy, chemistry, and surface area. Comparison of these and other metrics of soil development with SOC properties reveal several relationships that may be diagnostic of the long-term coupling of soil development and C cycling. Specifically, SOC content was significantly correlated with sodium pyrophosphate extractable metals emphasizing the relevance of organo-metal complexes in volcanic soils. The depth distributions of organo-metals and other secondary weathering products, including the kaolin and short-range order (SRO) minerals, support the so-called “binary composition” of volcanic soils. The formation of organo-metal complexes limits the accumulation of secondary minerals in shallow soils, whereas in deep soils with lower SOC content, secondary minerals accumulate. In the CRC soils, secondary minerals formed in deep soils (below 50 cm) including smectite, allophane, Fe-oxides and dominated by the kaolin mineral halloysite. The abundance of halloysite was significantly correlated with bulk soil surface area and 14C content (a proxy for the mean age of SOC), implying enhanced stability of C in deep soils. Allophane, an SRO mineral commonly associated with SOC storage, was not correlated with SOC content or 14C values in CRC soils. We propose conceptual framework to describe these observations based on a general understanding of pedogenesis in volcanic soils, where SOC cycling is coupled with soil development through the formation of and fate of organo-metal or other mobile weathering products

  1. Using 10Be erosion rates and fluvial channel morphology to constrain fault throw rates in the southwestern Sacramento River Valley, California, USA

    Science.gov (United States)

    Cyr, A. J.

    2013-12-01

    The Sacramento - San Joaquin River Delta, California, USA, is a critical region for California water resources, agriculture, and threatened or endangered species. This landscape is affected by an extensive set of levees that enclose artificial islands created for agricultural use. In addition to their importance for sustaining agriculture, this levee system also supports extensive transport and power transmission infrastructure and urban/suburban development. These levees are susceptible to damage from even moderate ground shaking by either a large earthquake on one of the high-activity faults in the nearby San Francisco Bay region, or even a moderate earthquake on one of the low-activity faults in the Delta region itself. However, despite this danger the earthquake hazards in this region are poorly constrained due to our lack of understanding of faults in and near the Delta region. As part of an effort to better constrain the seismic hazard associated with known, but poorly constrained, faults in the region, a geomorphic analysis of the Dunnigan Hills, northwest of Woodland, CA, is being combined with cosmogenic 10Be catchment-averaged erosion rates. The Dunnigan Hills are a low-relief (maximum elevation 87 m) landscape generated by fault-bend folding above the west-vergent Sweitzer reverse fault that soles into a blind east-vergent reverse fault. These faults have been imaged by seismic reflection data, and local microseismicity indicates that this system is actively propagating to the east. However, the throw rates on the faults in this system remain unconstrained, despite the potential for significant shaking such as that experienced in the nearby April, 1892 earthquake sequence between Winters and Vacaville, Ca, ~25 km to the south, which has been estimated at magnitude 6.0 or greater. Geomorphic and cosmogenic 10Be analyses from 12 catchments draining the eastern flank of the Dunnigan Hills will be used to infer vertical rock uplift rates to better constrain

  2. Water Use in Wisconsin, 2005

    Science.gov (United States)

    Buchwald, Cheryl A.

    2009-01-01

    The U.S. Geological Survey (USGS) Wisconsin Water Science Center is responsible for presenting data collected or estimated for water withdrawals and diversions every 5 years to the National Water-Use Information Program (NWUIP). This program serves many purposes such as quantifying how much, where, and for what purpose water is used; tracking and documenting water-use trends and changes; and providing these data to other agencies to support hydrologic projects. In 2005, data at both the county and subbasin levels were compiled into the USGS national water-use database system; these data are published in a statewide summary report and a national circular. This publication, Water Use in Wisconsin, 2005, presents the water-use estimates for 2005; this publication also describes how these water-use data were determined (including assumptions used), limitations of using these data, and trends in water-use data presented to the NWUIP. Estimates of water use in Wisconsin indicate that about 8,608 million gallons per day (Mgal/d) were withdrawn during 2005. Of this amount, about 7,622 Mgal/d (89 percent) were from surface-water sources and about 986 Mgal/d (11 percent) were from ground-water sources. Surface water used for cooling at thermoelectric-power plants constituted the largest portion of daily use at 6,898 Mgal/d. Water provided by public-supply water utilities is the second largest use of water and totaled 552 Mgal/d. Public supply served approximately 71 percent of the estimated 2005 Wisconsin population of 5.54 million people; two counties - Milwaukee and Dane - accounted for more than one-third of the public-supply withdrawal. Industrial and irrigation were the next major water uses at 471 and 402 Mgal/d, respectively. Non-irrigational agricultural (livestock and aquaculture) accounted for approximately 155 Mgal/d and is similar to the combined withdrawal for the remaining water-use categories of domestic, commercial, and mining (131 Mgal/d). Data on water use

  3. Nursing Quality Assurance: The Wisconsin System

    Science.gov (United States)

    Hover, Julie; Zimmer, Marie J.

    1978-01-01

    Evaluation model guidelines for hospital departments of nursing to use in their nursing quality assurance programs are presented as developed in Wisconsin. Four essential components of the Wisconsin outcome evaluation system are criteria, assessment, standards, and improvement of care. Sample tests and charts are included in the article. (MF)

  4. 33 CFR 117.1087 - Fox River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Fox River. 117.1087 Section 117.1087 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Wisconsin § 117.1087 Fox River. (a) The draws of the Canadian...

  5. 33 CFR 117.1095 - Root River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Root River. 117.1095 Section 117.1095 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Wisconsin § 117.1095 Root River. (a) The draw of the Main Street...

  6. Mercury concentrations in fillets of fish collected in the U.S. EPA National Rivers and Streams Assessment of the continental USA

    Science.gov (United States)

    The National Rivers and Streams Assessment (NRSA) is a statistical survey of flowing waters of the U.S. The purpose of this survey was to assess the condition of the nation's rivers and streams, establish a baseline to evaluate progress of pollution control activities in flowing...

  7. Channelization and floodplain forests: impacts of accelerated sedimentation and valley plug formation on floodplain forests of the Middle Fork Forked Deer River, Tennessee, USA

    Science.gov (United States)

    Sonja N. Oswalt; Sammy L. King

    2005-01-01

    We evaluated the severe degradation of floodplain habitats resulting from channelization and concomitant excessive coarse sedimentation on the Middle Fork Forked Deer River in west Tennessee from 2000 to 2003. Land use practices have resulted in excessive sediment in the tributaries and river system eventually resulting in sand deposition on the floodplain, increased...

  8. 76 FR 13312 - Drawbridge Operation Regulations; Fox River, Oshkosh, WI

    Science.gov (United States)

    2011-03-11

    ...-AA09 Drawbridge Operation Regulations; Fox River, Oshkosh, WI AGENCY: Coast Guard, DHS. ACTION: Notice... National Railway Bridge across the Fox River at Mile 55.72 at Oshkosh, Wisconsin. After careful... On December 8, 2010, we published an NPRM entitled Drawbridge Operation Regulation; Fox River...

  9. Processes affecting δ34S and δ18O values of dissolved sulfate in alluvium along the Canadian River, central Oklahoma, USA

    Science.gov (United States)

    Tuttle, Michele L.W.; Breit, George N.; Cozzarelli, Isabelle M.

    2009-01-01

    The δ34S and δ18O values for dissolved sulfate in groundwater are commonly used in aquifer studies to identify sulfate reservoirs and describe biogeochemical processes. The utility of these data, however, often is compromised by mixing of sulfate sources within reservoirs and isotope fractionation during sulfur redox cycling. Our study shows that, after all potential sulfate sources are identified and isotopically characterized, the δ34SSO4 and δ18OSO4 values differentiate processes such as sulfate-source mixing, sulfide oxidation, barite dissolution, and organosulfur decomposition. During bacterial reduction of sulfate, the values reflect kinetic sulfur isotope fractionation and exchange of oxygen isotopes between sulfate and water. Detailed analysis of the chemistry (Cl and SO4 concentrations) and isotopic composition (δ2HH2Oand δ18OH2O) of groundwater in an alluvial aquifer in Central Oklahoma, USA allowed the identification of five distinct end members that supply water to the aquifer (regional groundwater flowing into the study area, river water, leachate from a closed landfill that operated within the site, rain, and surface runoff). The δ34SSO4 and δ18OSO4 values in each end member differentiated three sources of sulfate: sulfate dissolved from Early to Late Permian rocks within the drainage basin (δ34SSO4 = 8–12‰ and δ18OSO4 = 10‰), iron sulfides oxidized by molecular oxygen during low water-table levels (δ34SSO4 = − 16‰ and δ18OSO4 = 10‰), and organosulfur compounds (predominately ester sulfates) from decomposition of vegetation on the surface and from landfill trash buried in the alluvium (δ34SSO4 = 8‰ and δ18OSO4 = 6‰). During bacterial reduction of these sulfate sources, similar isotope fractionation processes are recorded in the parallel trends of increasing δ34SSO4 and δ18OSO4 values. When extensive reduction occurs, the kinetic sulfur isotope fractionation (estimated by εH2S–SO4 = − 23

  10. Water-quality assessment of part of the Upper Mississippi River Basin Study Unit, Minnesota and Wisconsin- Nutrients, chlorophyll a, phytoplankton, and suspended sediment in streams, 1996-98

    Science.gov (United States)

    Kroening, Sharon E.; Lee, Kathy E.; Goldstein, R.M.

    2003-01-01

    Stream water-quality data from part of the Upper Mississippi River Basin Study Unit (Study Unit) from 1995 through 1998 was used to describe the distribution of nutrients, chlorophyll a, phytoplankton, and suspended sediment; and the influence of natural and anthropogenic factors on reported concentrations, loads, and yields. During the study period, streamflows generally were near to greater than average. Agricultural land cover, particularly on tile-drained soils, had the most substantial influence on nutrients, chlorophyll a, and suspended sediment in the Study Unit. The greatest concentrations and yields of total nitrogen, dissolved nitrite plus nitrate nitrogen, dissolved nitrite nitrogen, total organic plus ammonia nitrogen, total phosphorus, and suspended sediment were measured in a stream representing agricultural land cover on tile-drained soils. Total nitrogen yields also were about 6 times greater in a stream representing agricultural land cover on tile-drained soils than in a stream representing agricultural land cover on naturally welldrained soils.

  11. Viewing Indians: Native Encounters with Power, Tourism, and the Camera in the Wisconsin Dells, 1866-1907

    Science.gov (United States)

    Hoelscher, Steven

    2003-01-01

    In the winter of 1883, the photographer H. H. Bennett decided to spice up his descriptive catalogue of stereo views with something new. Several years earlier, a simple listing of his photographs--mostly landscape views of the area surrounding the Wisconsin River Dells--brought the small-town studio photographer considerable renown and enhanced…

  12. Soil Exchangeable Phosphorus Pools, Equilibrium Characteristics, and Mass Distribution Coefficients for Eight-Mile Run Watershed, Wisconsin

    Science.gov (United States)

    2009-09-01

    Galle River Basin, west-central Wisconsin (Figure 1). Livestock ( dairy ) pasture and associated barnyards represent approximately 6 percent of the...Reddy. 1998. Dairy manure influences on phosphorus retention capacity of Spodosols. J. Environ. Qual. 27:522-527. Pierzynski, G. M. 2000. Methods

  13. Geomorphic, flood, and groundwater-flow characteristics of Bayfield Peninsula streams, Wisconsin, and implications for brook-trout habitat

    Science.gov (United States)

    Fitzpatrick, Faith A.; Peppler, Marie C.; Saad, David A.; Pratt, Dennis M.; Lenz, Bernard N.

    2015-01-01

    In 2002–03, the U.S. Geological Survey conducted a study of the geomorphic, flood, and groundwater-flow characteristics of five Bayfield Peninsula streams, Wisconsin (Cranberry River, Bark River, Raspberry River, Sioux River, and Whittlesey Creek) to determine the physical limitations for brook-trout habitat. The goals of the study were threefold: (1) to describe geomorphic characteristics and processes, (2) to determine how land-cover characteristics affect flood peaks, and (3) to determine how regional groundwater flow patterns affect base flow.

  14. Late Pleistocene fishes of the Tennessee River Basin: an analysis of a late Pleistocene freshwater fish fauna from Bell Cave (site ACb-2) in Colbert County, Alabama, USA

    OpenAIRE

    Stephen J. Jacquemin; Jun A. Ebersole; William C. Dickinson; Charles N. Ciampaglio

    2016-01-01

    The Tennessee River Basin is considered one of the most important regions for freshwater biodiversity anywhere on the globe. The Tennessee River Basin currently includes populations of at least half of the described contemporary diversity of extant North American freshwater fishes, crayfish, mussel, and gastropod species. However, comparatively little is known about the biodiversity of this basin from the Pleistocene Epoch, particularly the late Pleistocene (?10,000 to 30,000 years B.P.) lead...

  15. Effects of recent volcanic eruptions on aquatic habitat in the Drift River, Alaska, USA: Implications at other Cook Inlet region volcanoes

    Science.gov (United States)

    Dorava, J.M.; Milner, A.M.

    1999-01-01

    Numerous drainages supporting productive salmon habitat are surrounded by active volcanoes on the west side of Cook Inlet in south-central Alaska. Eruptions have caused massive quantities of flowing water and sediment to enter the river channels emanating from glaciers and snowfields on these volcanoes. Extensive damage to riparian and aquatic habitat has commonly resulted, and benthic macroinvertebrate and salmonid communities can be affected. Because of the economic importance of Alaska's fisheries, detrimental effects on salmonid habitat can have significant economic implications. The Drift River drains glaciers on the northern and eastern flanks of Redoubt Volcano: During and following eruptions in 1989-1990, severe physical disturbances to the habitat features of the river adversely affected the fishery. Frequent eruptions at other Cook Inlet region volcanoes exemplify the potential effects of volcanic activity on Alaska's important commercial, sport, and subsistence fisheries. Few studies have documented the recovery of aquatic habitat following volcanic eruptions. The eruptions of Redoubt Volcano in 1989-1990 offered an opportunity to examine the recovery of the macroinvertebrate community. Macroinvertebrate community composition and structure in the Drift River were similar in both undisturbed and recently disturbed sites. Additionally, macroinvertebrate samples from sites in nearby undisturbed streams were highly similar to those from some Drift River sites. This similarity and the agreement between the Drift River macroinvertebrate community composition and that predicted by a qualitative model of typical macroinvertebrate communities in glacier-fed rivers indicate that the Drift River macroinvertebrate community is recovering five years after the disturbances associated with the most recent eruptions of Redoubt Volcano.

  16. RESEARCH: Effects of Recent Volcanic Eruptions on Aquatic Habitat in the Drift River, Alaska, USA: Implications at Other Cook Inlet Region Volcanoes.

    Science.gov (United States)

    DORAVA; MILNER

    1999-02-01

    / Numerous drainages supporting productive salmon habitat are surrounded by active volcanoes on the west side of Cook Inlet in south-central Alaska. Eruptions have caused massive quantities of flowing water and sediment to enter the river channels emanating from glaciers and snowfields on these volcanoes. Extensive damage to riparian and aquatic habitat has commonly resulted, and benthic macroinvertebrate and salmonid communities can be affected. Because of the economic importance of Alaska's fisheries, detrimental effects on salmonid habitat can have significant economic implications. The Drift River drains glaciers on the northern and eastern flanks of Redoubt Volcano. During and following eruptions in 1989-1990, severe physical disturbances to the habitat features of the river adversely affected the fishery. Frequent eruptions at other Cook Inlet region volcanoes exemplify the potential effects of volcanic activity on Alaska's important commercial, sport, and subsistence fisheries. Few studies have documented the recovery of aquatic habitat following volcanic eruptions. The eruptions of Redoubt Volcano in 1989-1990 offered an opportunity to examine the recovery of the macroinvertebrate community. Macroinvertebrate community composition and structure in the Drift River were similar in both undisturbed and recently disturbed sites. Additionally, macroinvertebrate samples from sites in nearby undisturbed streams were highly similar to those from some Drift River sites. This similarity and the agreement between the Drift River macroinvertebrate community composition and that predicted by a qualitative model of typical macroinvertebrate communities in glacier-fed rivers indicate that the Drift River macroinvertebrate community is recovering five years after the disturbances associated with the most recent eruptions of Redoubt Volcano. KEY WORDS: Aquatic habitat; Volcanoes; Lahars; Lahar-runout flows; Macroinvertebrates; Community structure; Community composition

  17. Wisconsin Inventors` Network Database final report

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-04

    The Wisconsin Innovation Service Center at UW-Whitewater received a DOE grant to create an Inventor`s Network Database to assist independent inventors and entrepreneurs with new product development. Since 1980, the Wisconsin Innovation Service Center (WISC) at the University of Wisconsin-Whitewater has assisted independent and small business inventors in estimating the marketability of their new product ideas and inventions. The purpose of the WISC as an economic development entity is to encourage inventors who appear to have commercially viable inventions, based on preliminary market research, to invest in the next stages of development, perhaps investigating prototype development, legal protection, or more in-depth market research. To address inventor`s information needs, WISC developed on electronic database with search capabilities by geographic region and by product category/industry. It targets both public and private resources capable of, and interested in, working with individual and small business inventors. At present, the project includes resources in Wisconsin only.

  18. Water-quality assessment of part of the Upper Mississippi River Basin, Minnesota and Wisconsin - Ground-water quality in three different land-use areas, 1996-98

    Science.gov (United States)

    Fong, Alison L.

    2000-01-01

    The surficial sand and gravel aquifer is susceptible to effects from land-use in the Upper Mississippi River Basin study unit of the National Water-Quality Assessment (NAWQA) Program. The purpose of this report is to describe the ground-water quality and the assessment of how different land-uses affect the shallow ground-water quality in the surficial sand and gravel aquifer. Ground-water quality was compared in three different land-use areas; an urban residential/commercial area on the edge of the Anoka Sand Plain in a portion of the Twin Cities metropolitan area (urban study), an intensive agricultural area in the Anoka Sand Plain (agricultural study), and a forested area in the Bemidji-Bagley Sand Plain (forested study). Ground water was sampled and analyzed for about 200 constituents, including physical parameters, major ions, selected trace elements, nutrients, dissolved organic carbon, selected pesticides, selected volatile organic compounds (VOCs), and tritium. The urban study wells were sampled during June and July 1996. The agricultural study wells were sampled during May and September 1998. The forested study wells were sampled during June 1998.

  19. Fates of dissolved and particulate materials from the Mississippi river immediately after discharge into the northern Gulf of Mexico, USA, during a period of low wind stress

    Science.gov (United States)

    Dagg, M. J.; Bianchi, T.; McKee, B.; Powell, R.

    2008-07-01

    In June 2003, we conducted a two-part field exercise to examine biogeochemical characteristics of water in the lower Mississippi river during the 4 days prior to discharge and in the Mississippi river plume over 2 days after discharge. Here we describe the fates of materials immediately after their discharge through Southwest Pass of the Mississippi delta into the northern Gulf of Mexico. Changes in surface water properties immediately after discharge were much larger and more rapid than changes prior to discharge. Total suspended matter (TSM) declined, probably due to sinking, dissolved macronutrients were rapidly diminished by mixing and biological uptake, and phytoplankton populations increased dramatically, and then declined. This decline appeared to begin at salinities of approximately 10 and was nearly complete by 15. A large increase in dissolved organic carbon (DOC) occurred over approximately the same salinity range. Weak winds (releasing large amounts of DOC. Macronutrients from the river were utilized by the river phytoplankton community in the extensive freshwater lens. This contrasted with the more typical situation in which river nutrients stimulate a marine phytoplankton bloom at salinities in the mid-20s. We concluded that the direct effects of dissolved and particulate bio-reactive materials discharged by the Mississippi river were spatially restricted at this time to low-salinity water, at least as surface phenomena. After being transported through the lower river essentially unaltered, these materials were biogeochemically processed within days and tens of km. More generally, the mixing rate of plume water with receiving oceanic water has profound effects on the food web structure and biogeochemical cycling in the plume.

  20. A new genus and species of entocytherid ostracod (Ostracoda: Entocytheridae) from the John Day River Basin of Oregon, U.S.A., with a key to genera of the subfamily Entocytherinae.

    Science.gov (United States)

    Weaver, Patricia G; Williams, Bronwyn W

    2017-06-07

    Targeted sampling efforts by the authors for the signal crayfish, Pacifastacus leniusculus, from its native range in the John Day River Basin, Oregon, U.S.A. yielded entocytherid ostracods with a male copulatory complex so clearly different from other entocytherines that a new genus, Aurumcythere gen. nov. is proposed to receive them. This newly proposed, apparently nonsclerotized, genus with hook and spur-like prominences of the posteroventral end of the peniferum is the first new genus of the subfamily Entocytherinae named since Hobbs & Peters described Aphelocythere (= Waltoncythere) in 1977. Aurumcythere gen. nov. represents only the second genus of entocytherid known from the Pacific Northwest. Lack of sclerotization in Aurumcythere gen. nov. provides new insight into poorly understood mating behaviors of entocytherid ostracods.

  1. Late Pleistocene fishes of the Tennessee River Basin: an analysis of a late Pleistocene freshwater fish fauna from Bell Cave (site ACb-2) in Colbert County, Alabama, USA.

    Science.gov (United States)

    Jacquemin, Stephen J; Ebersole, Jun A; Dickinson, William C; Ciampaglio, Charles N

    2016-01-01

    The Tennessee River Basin is considered one of the most important regions for freshwater biodiversity anywhere on the globe. The Tennessee River Basin currently includes populations of at least half of the described contemporary diversity of extant North American freshwater fishes, crayfish, mussel, and gastropod species. However, comparatively little is known about the biodiversity of this basin from the Pleistocene Epoch, particularly the late Pleistocene (∼10,000 to 30,000 years B.P.) leading to modern Holocene fish diversity patterns. The objective of this study was to describe the fish assemblages of the Tennessee River Basin from the late Pleistocene using a series of faunas from locales throughout the basin documented from published literature, unpublished reports, and an undocumented fauna from Bell Cave (site ACb-2, Colbert County, AL). Herein we discuss 41 unequivocal taxa from 10 late Pleistocene localities within the basin and include a systematic discussion of 11 families, 19 genera, and 24 identifiable species (28 unequivocal taxa) specific to the Bell Cave locality. Among the described fauna are several extirpated (e.g., Northern Pike Esox lucius, Northern Madtom Noturus stigmosus) and a single extinct (Harelip Sucker Moxostoma lacerum) taxa that suggest a combination of late Pleistocene displacement events coupled with more recent changes in habitat that have resulted in modern basin diversity patterns. The Bell Cave locality represents one of the most intact Pleistocene freshwater fish deposits anywhere in North America. Significant preservational, taphonomic, sampling, and identification biases preclude the identification of additional taxa. Overall, this study provides a detailed look into paleo-river ecology, as well as freshwater fish diversity and distribution leading up to the contemporary biodiversity patterns of the Tennessee River Basin and Mississippi River Basin as a whole.

  2. Late Pleistocene fishes of the Tennessee River Basin: an analysis of a late Pleistocene freshwater fish fauna from Bell Cave (site ACb-2 in Colbert County, Alabama, USA

    Directory of Open Access Journals (Sweden)

    Stephen J. Jacquemin

    2016-02-01

    Full Text Available The Tennessee River Basin is considered one of the most important regions for freshwater biodiversity anywhere on the globe. The Tennessee River Basin currently includes populations of at least half of the described contemporary diversity of extant North American freshwater fishes, crayfish, mussel, and gastropod species. However, comparatively little is known about the biodiversity of this basin from the Pleistocene Epoch, particularly the late Pleistocene (∼10,000 to 30,000 years B.P. leading to modern Holocene fish diversity patterns. The objective of this study was to describe the fish assemblages of the Tennessee River Basin from the late Pleistocene using a series of faunas from locales throughout the basin documented from published literature, unpublished reports, and an undocumented fauna from Bell Cave (site ACb-2, Colbert County, AL. Herein we discuss 41 unequivocal taxa from 10 late Pleistocene localities within the basin and include a systematic discussion of 11 families, 19 genera, and 24 identifiable species (28 unequivocal taxa specific to the Bell Cave locality. Among the described fauna are several extirpated (e.g., Northern Pike Esox lucius, Northern Madtom Noturus stigmosus and a single extinct (Harelip Sucker Moxostoma lacerum taxa that suggest a combination of late Pleistocene displacement events coupled with more recent changes in habitat that have resulted in modern basin diversity patterns. The Bell Cave locality represents one of the most intact Pleistocene freshwater fish deposits anywhere in North America. Significant preservational, taphonomic, sampling, and identification biases preclude the identification of additional taxa. Overall, this study provides a detailed look into paleo-river ecology, as well as freshwater fish diversity and distribution leading up to the contemporary biodiversity patterns of the Tennessee River Basin and Mississippi River Basin as a whole.

  3. Remote sensing of tamarisk beetle (Diorhabda carinulata) impacts along 412 km of the Colorado River in the Grand Canyon, Arizona, USA

    Science.gov (United States)

    Bedford, Ashton; Sankey, Temuulen T.; Sankey, Joel B.; Durning, Laura E.C.; Ralston, Barbara

    2018-01-01

    Tamarisk (Tamarix spp.) is an invasive plant species that is rapidly expanding along arid and semi-arid rivers in the western United States. A biocontrol agent, tamarisk beetle (Diorhabda carinulata), was released in 2001 in California, Colorado, Utah, and Texas. In 2009, the tamarisk beetle was found further south than anticipated in the Colorado River ecosystem within the Grand Canyon National Park and Glen Canyon National Recreation Area. Our objectives were to classify tamarisk stands along 412 km of the Colorado River from the Glen Canyon Dam through the Grand Canyon National Park using 2009 aerial, high spatial resolution multispectral imagery, and then quantify tamarisk beetle impacts by comparing the pre-beetle images from 2009 with 2013 post-beetle images. We classified tamarisk presence in 2009 using the Mahalanobis Distance method with a total of 2500 training samples, and assessed the classification accuracy with an independent set of 7858 samples across 49 image quads. A total of 214 ha of tamarisk were detected in 2009 along the Colorado River, where each image quad, on average, included an 8.4 km segment of the river. Tamarisk detection accuracies varied across the 49 image quads, but the combined overall accuracy across the entire study region was 74%. Using the Normalized Difference Vegetation Index (NDVI) from 2009 and 2013 with a region-specific ratio of >1.5 decline between the two image dates (2009NDVI/2013NDVI), we detected tamarisk defoliation due to beetle herbivory. The total beetle-impacted tamarisk area was 32 ha across the study region, where tamarisk defoliation ranged 1–86% at the local levels. Our tamarisk classification can aid long-term efforts to monitor the spread and impact of the beetle along the river and the eventual mortality of tamarisk due to beetle impacts. Identifying areas of tamarisk defoliation is a useful ecological indicator for managers to plan restoration and tamarisk removal efforts.

  4. BANK STABILIZATION, SHORELINE LAND-USE, AND THE DISTRIBUTION OF LARGE WOODY DEBRIS IN A REGULATED REACH OF THE UPPER MISSOURI RIVER, NORTH DAKOTA, USA

    Science.gov (United States)

    Large woody debris (LWD) is an important component of ecosystem function in floodplain rivers. We examined the effects on LWD distribution of shoreline land use, bank stabilization, local channel geomorphology, and distance from the dam in the Garrison Reach, a regulated reach of...

  5. Emerging concepts for management of river ecosystems and challenges to applied integration of physical and biological sciences in the Pacific Northwest, USA

    Science.gov (United States)

    Bruce E. Rieman; Jason B. Dunham; James L. Clayton

    2006-01-01

    Integration of biological and physical concepts is necessary to understand and conserve the ecological integrity of river systems. Past attempts at integration have often focused at relatively small scales and on mechanistic models that may not capture the complexity of natural systems leaving substantial uncertainty about ecological responses to management actions....

  6. Predicting recolonization patterns and interactions between potamodromous and anadromous salmonids in response to dam removal in the Elwha River, Washington State, USA

    Science.gov (United States)

    Brenkman, S.J.; Pess, G.R.; Torgersen, C.E.; Kloehn, K.K.; Duda, J.J.; Corbett, S.C.

    2008-01-01

    The restoration of salmonids in the Elwha River following dam removal will cause interactions between anadromous and potamodromous forms as recolonization occurs in upstream and downstream directions. Anadromous salmonids are expected to recolonize historic habitats, and rainbow trout (Oncorhynchus mykiss) and bull trout (Salvelinus confluentus) isolated above the dams for 90 years are expected to reestablish anadromy. We summarized the distribution and abundance of potamodromous salmonids, determined locations of spawning areas, and mapped natural barriers to fish migration at the watershed scale based on data collected from 1993 to 2006. Rainbow trout were far more abundant than bull trout throughout the watershed and both species were distributed up to river km 71. Spawning locations for bull trout and rainbow trout occurred in areas where we anticipate returning anadromous fish to spawn. Nonnative brook trout were confined to areas between and below the dams, and seasonal velocity barriers are expected to prevent their upstream movements. We hypothesize that the extent of interaction between potamodromous and anadromous salmonids will vary spatially due to natural barriers that will limit upstream-directed recolonization for some species of salmonids. Consequently, most competitive interactions will occur in the main stem and floodplain downstream of river km 25 and in larger tributaries. Understanding future responses of Pacific salmonids after dam removal in the Elwha River depends upon an understanding of existing conditions of the salmonid community upstream of the dams prior to dam removal.

  7. Development of a shared vision for groundwater management to protect and sustain baseflows of the Upper San Pedro River, Arizona, USA

    Science.gov (United States)

    Richter, Holly E.; Gungle, Bruce; Lacher, Laurel J.; Turner, Dale S.; Bushman, Brooke M.

    2014-01-01

    Groundwater pumping along portions of the binational San Pedro River has depleted aquifer storage that supports baseflow in the San Pedro River. A consortium of 23 agencies, business interests, and non-governmental organizations pooled their collective resources to develop the scientific understanding and technical tools required to optimize the management of this complex, interconnected groundwater-surface water system. A paradigm shift occurred as stakeholders first collaboratively developed, and then later applied, several key hydrologic simulation and monitoring tools. Water resources planning and management transitioned from a traditional water budget-based approach to a more strategic and spatially-explicit optimization process. After groundwater modeling results suggested that strategic near-stream recharge could reasonably sustain baseflows at or above 2003 levels until the year 2100, even in the presence of continued groundwater development, a group of collaborators worked for four years to acquire 2250 hectares of land in key locations along 34 kilometers of the river specifically for this purpose. These actions reflect an evolved common vision that considers the multiple water demands of both humans and the riparian ecosystem associated with the San Pedro River.

  8. Development of a Shared Vision for Groundwater Management to Protect and Sustain Baseflows of the Upper San Pedro River, Arizona, USA

    Directory of Open Access Journals (Sweden)

    Holly E. Richter

    2014-08-01

    Full Text Available Groundwater pumping along portions of the binational San Pedro River has depleted aquifer storage that supports baseflow in the San Pedro River. A consortium of 23 agencies, business interests, and non-governmental organizations pooled their collective resources to develop the scientific understanding and technical tools required to optimize the management of this complex, interconnected groundwater-surface water system. A paradigm shift occurred as stakeholders first collaboratively developed, and then later applied, several key hydrologic simulation and monitoring tools. Water resources planning and management transitioned from a traditional water budget-based approach to a more strategic and spatially-explicit optimization process. After groundwater modeling results suggested that strategic near-stream recharge could reasonably sustain baseflows at or above 2003 levels until the year 2100, even in the presence of continued groundwater development, a group of collaborators worked for four years to acquire 2250 hectares of land in key locations along 34 kilometers of the river specifically for this purpose. These actions reflect an evolved common vision that considers the multiple water demands of both humans and the riparian ecosystem associated with the San Pedro River.

  9. Assessment of salinity intrusion in the James and Chickahominy Rivers as a result of simulated sea-level rise in Chesapeake Bay, East Coast, USA.

    Science.gov (United States)

    Rice, Karen C; Hong, Bo; Shen, Jian

    2012-11-30

    Global sea level is rising, and the relative rate in the Chesapeake Bay region of the East Coast of the United States is greater than the worldwide rate. Sea-level rise can cause saline water to migrate upstream in estuaries and rivers, threatening freshwater habitat and drinking-water supplies. The effects of future sea-level rise on two tributaries of Chesapeake Bay, the James and Chickahominy (CHK) Rivers, were evaluated in order to quantify the salinity change with respect to the magnitude of sea-level rise. Such changes are critical to: 1) local floral and faunal habitats that have limited tolerance ranges to salinity; and 2) a drinking-water supply for the City of Newport News, Virginia. By using the three-dimensional Hydrodynamic-Eutrophication Model (HEM-3D), sea-level rise scenarios of 30, 50, and 100 cm, based on the U.S. Climate Change Science Program for the mid-Atlantic region for the 21st century, were evaluated. The model results indicate that salinity increases in the entire river as sea level rises and that the salinity increase in a dry year is greater than that in a typical year. In the James River, the salinity increase in the middle-to-upper river (from 25 to 50 km upstream of the mouth) is larger than that in the lower and upper parts of the river. The maximum mean salinity increase would be 2 and 4 ppt for a sea-level rise of 50 and 100 cm, respectively. The upstream movement of the 10 ppt isohaline is much larger than the 5 and 20 ppt isohalines. The volume of water with salinity between 10 and 20 ppt would increase greatly if sea level rises 100 cm. In the CHK River, with a sea-level rise of 100 cm, the mean salinity at the drinking-water intake 34 km upstream of the mouth would be about 3 ppt in a typical year and greater than 5 ppt in a dry year, both far in excess of the U.S. Environmental Protection Agency's secondary standard for total dissolved solids for drinking water. At the drinking-water intake, the number of days of salinity

  10. Long-term trend analysis of reservoir water quality and quantity at the landscape scale in two major river basins of Texas, USA.

    Science.gov (United States)

    Patino, Reynaldo; Asquith, William H.; VanLandeghem, Matthew M.; Dawson, D.

    2016-01-01

    Trends in water quality and quantity were assessed for 11 major reservoirs of the Brazos and Colorado river basins in the southern Great Plains (maximum period of record, 1965–2010). Water quality, major contributing-stream inflow, storage, local precipitation, and basin-wide total water withdrawals were analyzed. Inflow and storage decreased and total phosphorus increased in most reservoirs. The overall, warmest-, or coldest-monthly temperatures increased in 7 reservoirs, decreased in 1 reservoir, and did not significantly change in 3 reservoirs. The most common monotonic trend in salinity-related variables (specific conductance, chloride, sulfate) was one of no change, and when significant change occurred, it was inconsistent among reservoirs. No significant change was detected in monthly sums of local precipitation. Annual water withdrawals increased in both basins, but the increase was significant (P < 0.05) only in the Colorado River and marginally significant (P < 0.1) in the Brazos River. Salinity-related variables dominated spatial variability in water quality data due to the presence of high- and low-salinity reservoirs in both basins. These observations present a landscape in the Brazos and Colorado river basins where, in the last ∼40 years, reservoir inflow and storage generally decreased, eutrophication generally increased, and water temperature generally increased in at least 1 of 3 temperature indicators evaluated. Because local precipitation remained generally stable, observed reductions in reservoir inflow and storage during the study period may be attributable to other proximate factors, including increased water withdrawals (at least in the Colorado River basin) or decreased runoff from contributing watersheds.

  11. Tracing historical trends of Hg in the Mississippi River using Hg concentrations and Hg isotopic compositions in a lake sediment core, Lake Whittington, Mississippi, USA

    Science.gov (United States)

    Gray, John E.; Van Metre, Peter C.; Pribil, Michael J.; Horowitz, Arthur J.

    2015-01-01

    Concentrations and isotopic compositions of mercury (Hg) in a sediment core collected from Lake Whittington, an oxbow lake on the Lower Mississippi River, were used to evaluate historical sources of Hg in the Mississippi River basin. Sediment Hg concentrations in the Lake Whittington core have a large 10-15 y peak centered on the 1960s, with a maximum enrichment factor relative to Hg in the core of 4.8 in 1966. The Hg concentration profile indicates a different Hg source history than seen in most historical reconstructions of Hg loading. The timing of the peak is consistent with large releases of Hg from Oak Ridge National Laboratory (ORNL), primarily in the late 1950s and 1960s. Mercury was used in a lithiumisotope separation process by ORNL and an estimated 128Mg (megagrams) of Hgwas discharged to a local stream that flows into the Tennessee River and, eventually, the Mississippi River. Mass balance analyses of Hg concentrations and isotopic compositions in the Lake Whittington core fit a binary mixing model with a Hg-rich upstream source contributing about 70% of the Hg to Lake Whittington at the height of the Hg peak in 1966. This upstream Hg source is isotopically similar to Hg isotope compositions of stream sediment collected downstream near ORNL. It is estimated that about one-half of the Hg released from the ORNL potentially reached the LowerMississippi River basin in the 1960s, suggesting considerable downstream transport of Hg. It is also possible that upstream urban and industrial sources contributed some proportion of Hg to Lake Whittington in the 1960s and 1970s.

  12. Modelling hourly dissolved oxygen concentration (DO) using dynamic evolving neural-fuzzy inference system (DENFIS)-based approach: case study of Klamath River at Miller Island Boat Ramp, OR, USA.

    Science.gov (United States)

    Heddam, Salim

    2014-01-01

    In this study, we present application of an artificial intelligence (AI) technique model called dynamic evolving neural-fuzzy inference system (DENFIS) based on an evolving clustering method (ECM), for modelling dissolved oxygen concentration in a river. To demonstrate the forecasting capability of DENFIS, a one year period from 1 January 2009 to 30 December 2009, of hourly experimental water quality data collected by the United States Geological Survey (USGS Station No: 420853121505500) station at Klamath River at Miller Island Boat Ramp, OR, USA, were used for model development. Two DENFIS-based models are presented and compared. The two DENFIS systems are: (1) offline-based system named DENFIS-OF, and (2) online-based system, named DENFIS-ON. The input variables used for the two models are water pH, temperature, specific conductance, and sensor depth. The performances of the models are evaluated using root mean square errors (RMSE), mean absolute error (MAE), Willmott index of agreement (d) and correlation coefficient (CC) statistics. The lowest root mean square error and highest correlation coefficient values were obtained with the DENFIS-ON method. The results obtained with DENFIS models are compared with linear (multiple linear regression, MLR) and nonlinear (multi-layer perceptron neural networks, MLPNN) methods. This study demonstrates that DENFIS-ON investigated herein outperforms all the proposed techniques for DO modelling.

  13. Multiple lines of evidence risk assessment of American robins exposed to polychlorinated dibenzofurans (PCDFS) and polychlorinated dibenzo-P-dioxins (PCDDS) in the Tittabawassee River floodplain, Midland, Michigan, USA.

    Science.gov (United States)

    Tazelaar, Dustin L; Fredricks, Timothy B; Seston, Rita M; Coefield, Sarah J; Bradley, Patrick W; Roark, Shaun A; Kay, Denise P; Newsted, John L; Giesy, John P; Bursian, Steven J; Zwiernik, Matthew J

    2013-06-01

    Concentrations of polychlorinated dibenzofurans (PCDFs) and polychlorinated dibenzo-p-dioxins (PCDDs) in Tittabawassee River floodplain soils and biota downstream of Midland, Michigan, USA, are greater than regional background concentrations. From 2005 to 2008, a multiple lines of evidence approach was utilized to evaluate the potential for effects of PCDD/DFs on American robins (Turdus migratorius) breeding in the floodplains. A dietary-based assessment indicated there was potential for adverse effects for American robins predicted to have the greatest exposures. Conversely, a tissue-based risk assessment based on site-specific PCDD/DF concentrations in American robin eggs indicated minimal potential for adverse effects. An assessment based on reproductive endpoints indicated that measures of hatch success in study areas were significantly less than those of reference areas. However, there was no dose-response relationship between that endpoint and concentrations of PCDD/DF. Although dietary-based exposure and reproductive endpoint assessments predicted potential for adverse effects to resident American robins, the tissue-based assessment indicates minimal to no potential for adverse effects, which is reinforced by the fact the response was not dose related. It is likely that the dietary assessment is overly conservative given the inherent uncertainties of estimating dietary exposure relative to direct tissue-based assessment measures. Based on the available data, it can be concluded that exposure to PCDD/DFs in the Tittabawassee River floodplain would not likely result in adverse population-level effects to American robins. Copyright © 2013 SETAC.

  14. Urbanization and the Level of Microplastic Ingestion by Fish: A Comparison of Freshwater Sunfish (Centrarchidae) from the Brazos River watershed, and Pinfish (Sparidae), from the Brazos Estuary and Inshore Marine Sites, Texas, USA

    Science.gov (United States)

    Rieper, K. B.; Peters, C. A.; Bratton, S. P.

    2016-02-01

    While previous research has documented ingestion of macro- and microplastics by aquatic fauna in both freshwater and marine ecosystems, relatively little is known of the environmental and ecological factors influencing the entry and diffusion of plastics and artificial polymers into aquatic foodwebs. Microplastics are defined as 50 μm to 5 mm in length. This study utilized stomach content analysis to compare the level of microplastic artificial polymer ingestion for fish collected from the Brazos River watershed, Brazos estuary, and inshore coastal waters of Texas, USA, in areas with varying levels of urbanization. We collected 318 bluegill (Lepomis macrochirus) and 118 longear sunfish (Lepomis megalotis) at 14 freshwater locales, and 11 samples of 298 pinfish (Lagodon rhomboides) at 6 saltwater locales. Sunfish averaged 12.6 cm in length, and pinfish averaged 14.9 cm. Sunfish averaged .807 microplastics per fish, and pinfish averaged 1.09. The maximum percentage for pinfish with microplastics present per sample (frequency) was 77%, compared to 75% for sunfish. Mean frequencies per sample were also similar: 45% for sunfish and 47% for pinfish. The Brazos River collections, however, had a greater percentage with frequencies of colors. Comparison with presence of natural food items suggests microplastic ingestion is predominantly incidental for these sentinel fish species.

  15. Compact fluorescent lighting in Wisconsin: elevated atmospheric emission and landfill deposition post-EISA implementation.

    Science.gov (United States)

    Arendt, John D; Katers, John F

    2013-07-01

    The majority of states in the USA, including Wisconsin, have been affected by elevated air, soil and waterborne mercury levels. Health risks associated with mercury increase from the consumption of larger fish species, such as Walleye or Pike, which bio-accumulate mercury in muscle tissue. Federal legislation with the 2011 Mercury and Air Toxics Standards and the Wisconsin legislation on mercury, 2009 Wisconsin Act 44, continue to aim at lowering allowable levels of mercury emissions. Meanwhile, mercury-containing compact fluorescent lights (CFL) sales continue to grow as businesses and consumers move away from energy intensive incandescent light bulbs. An exchange in pollution media is occurring as airborne mercury emissions from coal-burning power plants, the largest anthropogenic source of mercury, are being reduced by lower energy demand and standards, while more universal solid waste containing mercury is generated each time a CFL is disposed. The treatment of CFLs as a 'universal waste' by the Environmental Protection Agency (EPA) led to the banning of non-household fluorescent bulbs from most municipal solid waste. Although the EPA encourages recycling of bulbs, industry currently recycles fluorescent lamps and CFLs at a rate of only 29%. Monitoring programs at the federal and state level have had only marginal success with industrial and business CFL recycling. The consumer recycling rate is even lower at only 2%. A projected increase in residential CFL use in Wisconsin owing to the ramifications of the Energy Independence and Security Act of 2007 will lead to elevated atmospheric mercury and landfill deposition in Wisconsin.

  16. Sediment Dynamics Affecting the Threatened Santa Ana Sucker in the Highly-modified Santa Ana River and Inset Channel, Southern California, USA

    Science.gov (United States)

    Minear, J. T.; Wright, S. A.

    2015-12-01

    In this study, we investigate the sediment dynamics of the low-flow channel of the Santa Ana River that is formed by wastewater discharges and contains some of the last remaining habitat of the Santa Ana Sucker (Catostomus santaanae). The Santa Ana River is a highly-modified river draining the San Bernardino Mountains and Inland Empire metropolitan area east of Los Angeles. Home to over 4 million people, the watershed provides habitat for the federally-threatened Santa Ana Sucker, which presently reside within the mainstem Santa Ana River in a reach supported by year-round constant discharges from water treatment plants. The nearly constant low-flow wastewater discharges and infrequent runoff events create a small, approximately 8 m wide, inset channel within the approximately 300 m wide mainstem channel that is typically dry except for large flood flows. The sediment dynamics within the inset channel are characterized by constantly evolving bed substrate and sediment transport rates, and occasional channel avulsions. The sediment dynamics have large influence on the Sucker, which rely on coarse-substrate (gravel and cobble) for their food production. In WY 2013 through the present, we investigated the sediment dynamics of the inset channel using repeat bathymetric and substrate surveys, bedload sampling, and discharge measurements. We found two distinct phases of the inset channel behavior: 1. 'Reset' flows, where sediment-laden mainstem discharges from upstream runoff events result in sand deposition in the inset channel or avulse the inset channel onto previously dry riverbed; and 2. 'Winnowing' flows, whereby the sand within the inset channel is removed by clear-water low flows from the wastewater treatment plant discharges. Thus, in contrast to many regulated rivers where high flows are required to flush fine sediments from the bed (for example, downstream from dams), in the Santa Ana River the low flows from wastewater treatment plants serve as the flushing

  17. Undergraduate Research and Economic Development: A Systems Approach in Wisconsin

    Science.gov (United States)

    Van Galen, Dean; Schneider-Rebozo, Lissa; Havholm, Karen; Andrews, Kris

    2015-01-01

    This chapter presents the state of Wisconsin and the University of Wisconsin System as an ongoing case study for best practices in systematic, intentional, statewide programming and initiatives connecting undergraduate research and economic development.

  18. Implementing high-speed rail in Wisconsin peer exchange.

    Science.gov (United States)

    2009-01-01

    The Wisconsin Department of Transportation Division of Transportation Investment Management hosted : a peer exchange on June 2 -4, 2009 in Milwaukee, Wisconsin. Representatives from four state DOTs and : two freight railroads joined representatives f...

  19. Community-level response of fishes and aquatic macroinvertebrates to stream restoration in a third-order tributary of the Potomac River, USA

    Science.gov (United States)

    Selego, Stephen M.; Rose, Charnee L.; Merovich, George T.; Welsh, Stuart A.; Anderson, James T.

    2012-01-01

    Natural stream channel design principles and riparian restoration practices were applied during spring 2010 to an agriculturally impaired reach of the Cacapon River, a tributary of the Potomac River which flows into the Chesapeake Bay. Aquatic macroinvertebrates and fishes were sampled from the restoration reach, two degraded control, and two natural reference reaches prior to, concurrently with, and following restoration (2009 through 2010). Collector filterers and scrapers replaced collector gatherers as the dominant macroinvertebrate functional feeding groups in the restoration reach. Before restoration, based on indices of biotic integrity (IBI), the restoration reach fish and macroinvertebrate communities closely resembled those sampled from the control reaches, and after restoration more closely resembled those from the reference reaches. Although the macroinvertebrate community responded more favorably than the fish community, both communities recovered quickly from the temporary impairment caused by the disturbance of restoration procedures and suggest rapid improvement in local ecological conditions.

  20. Community-Level Response of Fishes and Aquatic Macroinvertebrates to Stream Restoration in a Third-Order Tributary of the Potomac River, USA

    Directory of Open Access Journals (Sweden)

    Stephen M. Selego

    2012-01-01

    Full Text Available Natural stream channel design principles and riparian restoration practices were applied during spring 2010 to an agriculturally impaired reach of the Cacapon River, a tributary of the Potomac River which flows into the Chesapeake Bay. Aquatic macroinvertebrates and fishes were sampled from the restoration reach, two degraded control, and two natural reference reaches prior to, concurrently with, and following restoration (2009 through 2010. Collector filterers and scrapers replaced collector gatherers as the dominant macroinvertebrate functional feeding groups in the restoration reach. Before restoration, based on indices of biotic integrity (IBI, the restoration reach fish and macroinvertebrate communities closely resembled those sampled from the control reaches, and after restoration more closely resembled those from the reference reaches. Although the macroinvertebrate community responded more favorably than the fish community, both communities recovered quickly from the temporary impairment caused by the disturbance of restoration procedures and suggest rapid improvement in local ecological conditions.

  1. Geochemistry and mineralogy of late Quaternary loess in the upper Mississippi River valley, USA: Provenance and correlation with Laurentide Ice Sheet history

    Science.gov (United States)

    Muhs, Daniel; Bettis, E. Arthur; Skipp, Gary L.

    2018-01-01

    The midcontinent of North America contains some of the thickest and most extensive last-glacial loess deposits in the world, known as Peoria Loess. Peoria Loess of the upper Mississippi River valley region is thought to have had temporally varying glaciogenic sources resulting from inputs of sediment to the Mississippi River from different lobes of the Laurentide Ice Sheet. Here, we explore a new method of determining loess provenance using K/Rb and K/Ba values (in K-feldspars and micas) in loess from a number of different regions in North America. Results indicate that K/Rb and K/Ba values can distinguish loess originating from diverse geologic terrains in North America. Further, different loess bodies that are known to have had the same source sediments (using other criteria) have similar K/Rb and K/Ba values. We also studied three thick loess sections in the upper Mississippi River valley region. At each site, the primary composition of the loess changed over the course of the last glacial period, and K/Rb and K/Ba values parallel changes in carbonate mineral content and clay mineralogy. We thus confirm conclusions of earlier investigators that loess composition changed as a result of the shifting dominance of different lobes of the Laurentide Ice Sheet and the changing course of the Mississippi River. We conclude that K/Rb and K/Ba values are effective, robust, and rapid indicators of loess provenance that can be applied to many regions of the world.

  2. Geochemistry and mineralogy of late Quaternary loess in the upper Mississippi River valley, USA: Provenance and correlation with Laurentide Ice Sheet history

    Science.gov (United States)

    Muhs, Daniel R.; Bettis, E. Arthur; Skipp, Gary L.

    2018-05-01

    The midcontinent of North America contains some of the thickest and most extensive last-glacial loess deposits in the world, known as Peoria Loess. Peoria Loess of the upper Mississippi River valley region is thought to have had temporally varying glaciogenic sources resulting from inputs of sediment to the Mississippi River from different lobes of the Laurentide Ice Sheet. Here, we explore a new method of determining loess provenance using K/Rb and K/Ba values (in K-feldspars and micas) in loess from a number of different regions in North America. Results indicate that K/Rb and K/Ba values can distinguish loess originating from diverse geologic terrains in North America. Further, different loess bodies that are known to have had the same source sediments (using other criteria) have similar K/Rb and K/Ba values. We also studied three thick loess sections in the upper Mississippi River valley region. At each site, the primary composition of the loess changed over the course of the last glacial period, and K/Rb and K/Ba values parallel changes in carbonate mineral content and clay mineralogy. We thus confirm conclusions of earlier investigators that loess composition changed as a result of the shifting dominance of different lobes of the Laurentide Ice Sheet and the changing course of the Mississippi River. We conclude that K/Rb and K/Ba values are effective, robust, and rapid indicators of loess provenance that can be applied to many regions of the world.

  3. Impacts of Land Use Change on the Natural Flow Regime: A Case Study in the Meramec River Watershed in Eastern Missouri, USA

    Science.gov (United States)

    Wu, C. L.; Knouft, J.; Chu, M.

    2017-12-01

    The natural flow regime within a watershed can be considered as the expected temporal patterns of streamflow variation in the absence of human impacts. While ecosystems have evolved to function under these conditions, the natural flow regime of most rivers has been significantly altered by human activities. Land use change, including the development of agriculture and urbanization, is a primary cause of the loss of natural flow regimes. These changes have altered discharge volume, timing, and variability, and consequently affected the structure and functioning of river ecosystems. The Meramec River watershed is located in east central Missouri and changes in land use have been the primary factor impacting flow regimes across the watershed. In this study, a watershed model, the Soil and Water Assessment Tool (SWAT), was developed to simulate a long-term time series of streamflow (1978-2014) within the watershed. Model performance was evaluated using statistical metrics and graphical technique including R-squared, Nash-Sutcliffe efficiency, cumulative error, and 1:1-ratio comparison between observed and simulated variables. The calibrated and validated SWAT model was then used to quantify the responses of the watershed when it was a forested natural landscape. An Indicator of Hydrologic Alteration (IHA) approach was applied to characterize the flow regime under the current landcover conditions as well as the simulated natural flow regime under the no land use change scenario. Differences in intra- and inter-annual ecologically relevant flow metrics were then compared using SWAT model outputs in conjunction with the IHA approach based on model outputs from current and no land use change conditions. This study provides a watershed-scale understanding of effects of land use change on a river's flow variability and provides a framework for the development of restoration plans for heavily altered watersheds.

  4. Changes in sediment and organic carbon accumulation in a highly-disturbed ecosystem: The Sacramento-San Joaquin River Delta (California, USA)

    International Nuclear Information System (INIS)

    Canuel, Elizabeth A.; Lerberg, Elizabeth J.; Dickhut, Rebecca M.; Kuehl, Steven A.; Bianchi, Thomas S.; Wakeham, Stuart G.

    2009-01-01

    We used the Sacramento-San Joaquin River Delta CA (Delta, hereafter) as a model system for understanding how human activities influence the delivery of sediment and total organic carbon (TOC) over the past 50-60 years. Sediment cores were collected from sites within the Delta representing the Sacramento River (SAC), the San Joaquin River (SJR), and Franks Tract (FT), a flooded agricultural tract. A variety of anthropogenic tracers including 137 Cs, total DDE (ΣDDE) and brominated diphenyl ether (BDE) congeners were used to quantify sediment accumulation rates. This information was combined with total organic carbon (TOC) profiles to quantify rates of TOC accumulation. Across the three sites, sediment and TOC accumulation rates were four to eight-fold higher prior to 1972. Changes in sediment and TOC accumulation were coincident with completion of several large reservoirs and increased agriculture and urbanization in the Delta watershed. Radiocarbon content of TOC indicated that much of the carbon delivered to the Delta is 'pre-aged' reflecting processing in the Delta watershed or during transport to the sites rather than an input of predominantly contemporary carbon (e.g., 900-1400 years BP in surface sediments and 2200 yrs BP and 3610 yrs BP at the base of the SJR and FT cores, respectively). Together, these data suggest that human activities have altered the amount and age of TOC accumulating in the Delta since the 1940s.

  5. The distribution of plutonium, americium and curium isotopes in pond and stream sediments of the Savannah River Plant, South Carolina, USA

    International Nuclear Information System (INIS)

    Alberts, J.J.; Halverson, J.E.; Orlandini, K.A.

    1986-01-01

    The concentrations of 238 Pu, 239 , 240 Pu, 241 Am and 244 Cm were determined in sediment samples from five streams and two ponds on the Savannah River Plant (SRP) and in four sediment samples from the Savannah River above and below the plant site. The following concentration ranges were determined: 238 Pu, 0.07-386 fCi g -1 ; 239 , 240 Pu, 0.37-1410 fCi g -1 ; 241 Am, 0.1-4360 fCi g -1 ; 244 Cm, -1 . Comparisons of the elemental and isotopic ratios of the sediments show that the majority of the sediments studied have been impacted upon by plant operations and that sediments outside the plant boundary in the Savannah River have only been influenced by aerial releases. Atom ratios of 240 Pu/ 239 Pu indicate that up to 86% of the Pu in these sediments is derived from plant operations. However, comparisons of the concentration data with values for other impacted sediments near nuclear facilities indicate that the levels are relatively small. Finally, <13% of the Pu, Am or Cm in pond sediments is associated with humic or fulvic acids, indicating that little of the material should be remobilized in oxic environments through organic complexation. (author)

  6. A critical assessment of geographic clusters of breast and lung cancer incidences among residents living near the Tittabawassee and Saginaw Rivers, Michigan, USA.

    Science.gov (United States)

    Guajardo, Olga A; Oyana, Tonny J

    2009-01-01

    To assess previously determined geographic clusters of breast and lung cancer incidences among residents living near the Tittabawassee and Saginaw Rivers, Michigan, using a new set of environmental factors. Breast and lung cancer data were acquired from the Michigan Department of Community Health, along with point source pollution data from the U.S. Environmental Protection Agency. The datasets were used to determine whether there is a spatial association between disease risk and environmental contamination. GIS and spatial techniques were combined with statistical analysis to investigate local risk of breast and lung cancer. The study suggests that neighborhoods in close proximity to the river were associated with a high risk of breast cancer, while increased risk of lung cancer was detected among neighborhoods in close proximity to point source pollution and major highways. Statistically significant (P rivers. These findings are useful to researchers and governmental agencies for risk assessment, regulation, and control of environmental contamination in the floodplains.

  7. A Critical Assessment of Geographic Clusters of Breast and Lung Cancer Incidences among Residents Living near the Tittabawassee and Saginaw Rivers, Michigan, USA

    Directory of Open Access Journals (Sweden)

    Olga A. Guajardo

    2009-01-01

    Full Text Available Objectives. To assess previously determined geographic clusters of breast and lung cancer incidences among residents living near the Tittabawassee and Saginaw Rivers, Michigan, using a new set of environmental factors. Materials and Methods. Breast and lung cancer data were acquired from the Michigan Department of Community Health, along with point source pollution data from the U.S. Environmental Protection Agency. The datasets were used to determine whether there is a spatial association between disease risk and environmental contamination. GIS and spatial techniques were combined with statistical analysis to investigate local risk of breast and lung cancer. Results and Conclusion. The study suggests that neighborhoods in close proximity to the river were associated with a high risk of breast cancer, while increased risk of lung cancer was detected among neighborhoods in close proximity to point source pollution and major highways. Statistically significant (P≤.001 clusters of cancer incidences were observed among residents living near the rivers. These findings are useful to researchers and governmental agencies for risk assessment, regulation, and control of environmental contamination in the floodplains.

  8. A Critical Assessment of Geographic Clusters of Breast and Lung Cancer Incidences among Residents Living near the Tittabawassee and Saginaw Rivers, Michigan, USA

    International Nuclear Information System (INIS)

    Guajardo, O.A.; Oyana, T.J.

    2010-01-01

    Objectives. To assess previously determined geographic clusters of breast and lung cancer incidences among residents living near the Tittabawassee and Saginaw Rivers, Michigan, using a new set of environmental factors. Materials and Methods. Breast and lung cancer data were acquired from the Michigan Department of Community Health, along with point source pollution data from the U.S. Environmental Protection Agency. The datasets were used to determine whether there is a spatial association between disease risk and environmental contamination. GIS and spatial techniques were combined with statistical analysis to investigate local risk of breast and lung cancer. Results and Conclusion. The study suggests that neighborhoods in close proximity to the river were associated with a high risk of breast cancer, while increased risk of lung cancer was detected among neighborhoods in close proximity to point source pollution and major highways. Statistically significant (P=.001) clusters of cancer incidences were observed among residents living near the rivers. These findings are useful to researchers and governmental agencies for risk assessment, regulation, and control of environmental contamination in the flood plains.

  9. A new ankylosaurine dinosaur from the Judith River Formation of Montana, USA, based on an exceptional skeleton with soft tissue preservation

    Science.gov (United States)

    Arbour, Victoria M.; Evans, David C.

    2017-05-01

    The terrestrial Judith River Formation of northern Montana was deposited over an approximately 4 Myr interval during the Campanian (Late Cretaceous). Despite having been prospected and collected continuously by palaeontologists for over a century, few relatively complete dinosaur skeletons have been recovered from this unit to date. Here we describe a new genus and species of ankylosaurine dinosaur, Zuul crurivastator, from the Coal Ridge Member of the Judith River Formation, based on an exceptionally complete and well-preserved skeleton (ROM 75860). This is the first ankylosaurin skeleton known with a complete skull and tail club, and it is the most complete ankylosaurid ever found in North America. The presence of abundant soft tissue preservation across the skeleton, including in situ osteoderms, skin impressions and dark films that probably represent preserved keratin, make this exceptional skeleton an important reference for understanding the evolution of dermal and epidermal structures in this clade. Phylogenetic analysis recovers Zuul as an ankylosaurin ankylosaurid within a clade of Dyoplosaurus and Scolosaurus, with Euoplocephalus being more distantly related within Ankylosaurini. The occurrence of Z. crurivastator from the upper Judith River Formation fills a gap in the ankylosaurine stratigraphic and geographical record in North America, and further highlights that Campanian ankylosaurines were undergoing rapid evolution and stratigraphic succession of taxa as observed for Laramidian ceratopsids, hadrosaurids, pachycephalosaurids and tyrannosaurids.

  10. Growth potential and habitat requirements of endangered age-0 pallid sturgeon (Scaphirhynchus albus) in the Missouri River, USA, determined using a individual-based model framework

    Science.gov (United States)

    Deslauriers, David; Heironimus, Laura B.; Rapp, Tobias; Graeb, Brian D. S.; Klumb, Robert A.; Chipps, Steven R.

    2018-01-01

    An individual-based model framework was used to evaluate growth potential of the federally endangered pallid sturgeon (Scaphirhynchus albus) in the Missouri River. The model, developed for age-0 sturgeon, combines information on functional feeding response, bioenergetics and swimming ability to regulate consumption and growth within a virtual foraging arena. Empirical data on water temperature, water velocity and prey density were obtained from three sites in the Missouri River and used as inputs in the model to evaluate hypotheses concerning factors affecting pallid sturgeon growth. The model was also used to evaluate the impacts of environmental heterogeneity and water velocity on individual growth variability, foraging success and dispersal ability. Growth was simulated for a period of 100 days using 100 individuals (first feeding; 19 mm and 0.035 g) per scenario. Higher growth was shown to occur at sites where high densities of Ephemeroptera and Chironomidae larvae occurred throughout the growing season. Highly heterogeneous habitats (i.e., wide range of environmental conditions) and moderate water velocities (0.3 m/s) were also found to positively affect growth rates. The model developed here provides an important management and conservation tool for evaluating growth hypotheses and(or) identifying habitats in the Missouri River that are favourable to age-0 pallid sturgeon growth.

  11. Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas

    Science.gov (United States)

    Trucks Wisconsin Reduces Emissions With Natural Gas Trucks to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Twitter Bookmark

  12. Temporal changes in spatial patterns of submersed macrophytes in two impounded reaches of the Upper Mississippi River, USA, 1998-2009

    Science.gov (United States)

    De Jager, Nathan R.; Yin, Yao

    2011-01-01

    We examined temporal changes in spatial patterns of submersed aquatic macrophytes during a recent three-fold increase in macrophyte abundance and in response to the cumulative effects of management actions (island construction and water level management) and changes in regional environmental conditions (turbidity) in two navigation pools of the Upper Mississippi River, Pool 8 (managed) and Pool 13 (unmanaged). We used cross-correlograms to quantify changes in the degree and range of spatial correlation between submersed macrophytes and depth across the impounded portions of the two pools from 1998-2009. Along with increases in abundance, we observed gradual expansion of submersed macrophytes into deeper water in both pools. However, we detected no temporal change in spatial patterns in Pool 13, where the range of spatial correlation was ~ 1500-2500 m in length in the downriver direction and ~ 500-1000 m in length in the crossriver direction. We initially detected similar ranges of spatial correlation in Pool 8, but over time the range of correlation in the cross river direction increased from ~ 500 m in 1998 to ~ 2000 m by 2009. Thus, the expansion of submersed macrophytes into deeper water areas in Pool 8 appears to have occurred in the cross-river direction and led to increases in patch size and a more symmetrical patch configuration. Hence, very similar temporal changes in submersed macrophyte abundance corresponded with different diffusion dynamics and spatial patterns in the two pools. We hypothesize that management actions altered spatial patterns of depth, water flow and/or wind fetch and led to the differences in spatial patterns reported here.

  13. Fate and transport of trace metals and rare earth elements in the Snake River, an AMD/ARD-impacted watershed. Montezuma, Colorado USA.

    Science.gov (United States)

    McKnight, D. M.; Rue, G.

    2017-12-01

    Recent research in Snake River Watershed, located near the historic boomtown of Montezuma and adjacent the Continental Divide in the Colorado Rocky Mountains, has revealed the distinctive occurrence of rare earth elements (REE) at high concentrations. Here the weathering of the mineralized lithology naturally generates acid rock drainage (ARD) in addition to drainage recieved from abandoned mine adits throughout the area, results in aqueous REE concentrations three orders of magnitude higher than in most major rivers. The dominant mechanism responsible for this enrichment; their dissolution from secondary and accessory mineral stocks, abundant in REEs, promoted by the low pH waters generated from geochemical weathering of disseminated sulfide minerals. While REEs behave conservatively in acidic conditions, as well as in the presence of stabilizing ligands such as sulfate, downstream circumneutral inputs from pristine streams and a rising pH are resulting in observed fractional losses of heavy rare earth elements as well as partitioning towards colloidal and solid phases. These finding in combination with the established role of dissolved organic matter (DOM) in binding with both trace metals and REEs, suggest that competitive interactions, complexation, and scavenging are likely contributing to these proportional losses. However, outstanding questions yet remain regarding the effects of an increasing flux of trace metals as well as REEs from the Snake River Watershed into Dillon Reservoir, a major drinking water supply for the City of Denver, in part due to hydroclimatological drivers that are enhancing geochemical weathering and reducing groundwater recharge in alpine areas across the Colorado Rockies. Based on these findings also we seek to broaden this body of work to further investigate the behavior of rare earth elements (REE) in other aquatic environment as well the influence of trace metals, DOM, and pH in altering their reactivity and subsequent watershed

  14. Diurnal variability in riverine dissolved organic matter composition determined by in situ optical measurement in the San Joaquin River (California, USA)

    Science.gov (United States)

    Spencer, R.G.M.; Pellerin, B.A.; Bergamaschi, B.A.; Downing, B.D.; Kraus, T.E.C.; Smart, D.R.; Dahlgren, R.A.; Hernes, P.J.

    2007-01-01

    Dissolved organic matter (DOM) concentration and composition in riverine and stream systems are known to vary with hydrological and productivity cycles over the annual and interannual time scales. Rivers are commonly perceived as homogeneous with respect to DOM concentration and composition, particularly under steady flow conditions over short time periods. However, few studies have evaluated the impact of short term variability ( monitored and serves to increase our understanding of its processing and fundamental role in the aquatic environment. Copyright ?? 2007 John Wiley & Sons, Ltd.

  15. Remote Sensing and Mapping of Tamarisk along the Colorado River, USA: A Comparative Use of Summer-Acquired Hyperion, Thematic Mapper and QuickBird Data

    Directory of Open Access Journals (Sweden)

    Jerry A. Griffith

    2009-07-01

    Full Text Available Tamarisk (Tamarix spp., saltcedar is a well-known invasive phreatophyte introduced from Asia to North America in the 1800s. This report compares the efficacy of Landsat 5 Thematic Mapper (TM5, QuickBird (QB and EO-1 Hyperion data in discriminating tamarisk populations near De Beque, Colorado, USA. As a result of highly correlated reflectance among the spectral bands provided by each sensor, relatively standard image analysis methods were employed. Multispectral data at high spatial resolution (QB, 2.5 m Ground Spatial Distance or GSD proved more effective in tamarisk delineation than either multispectral (TM5 or hyperspectral (Hyperion data at moderate spatial resolution (30 m GSD.

  16. Diet of non-native northern snakehead (Channa argus) compared to three co-occurring predators in the lower Potomac River, USA

    Science.gov (United States)

    Ryan K. Saylor,; Nicolas W.R. Laointe,; Angermeier, Paul

    2012-01-01

    Introductions of large, non-native, carnivorous fishes continue to occur worldwide and represent a substantial management concern to global biodiversity. One of the most recent non-native fishes to successfully establish in North America is the northern snakehead (Channa argus), found in the lower Potomac River catchment. Dispersal of the northern snakehead throughout this system has been well documented since its original discovery in May 2004; however, little is known about the foraging habits of this species and its interactions with co-occurring predators. Here, we quantify northern snakehead diet in comparison with the diets of naturalised largemouth bass (Micropterus salmoides), and native American eel (Anguilla rostrata) and yellow perch (Perca flavescens) collected from tidal freshwaters bordering Virginia and Maryland near Fort Belvoir, Virginia. Over 97% of northern snakehead gut contents were fishes, with fundulid and centrarchid species consumed most frequently. Dietary overlap was biologically significant only between northern snakehead and largemouth bass. Aquatic invertebrates were >10 times more common in native predator diets, reducing dietary overlap with northern snakehead. Ontogenic shifts in adult northern snakehead diet were also detected, which may be explained by optimal foraging rather than true prey specificity. Northern snakehead may be occupying a novel niche based on a piscivorous diet, therefore limiting competition with resident predators in the lower Potomac River. Further research into interactions between largemouth bass and northern snakehead is needed to inform management decisions and understand the ecological impacts of this non-native species.

  17. Model behavior and sensitivity in an application of the cohesive bed component of the community sediment transport modeling system for the York River estuary, VA, USA

    Science.gov (United States)

    Fall, Kelsey A.; Harris, Courtney K.; Friedrichs, Carl T.; Rinehimer, J. Paul; Sherwood, Christopher R.

    2014-01-01

    The Community Sediment Transport Modeling System (CSTMS) cohesive bed sub-model that accounts for erosion, deposition, consolidation, and swelling was implemented in a three-dimensional domain to represent the York River estuary, Virginia. The objectives of this paper are to (1) describe the application of the three-dimensional hydrodynamic York Cohesive Bed Model, (2) compare calculations to observations, and (3) investigate sensitivities of the cohesive bed sub-model to user-defined parameters. Model results for summer 2007 showed good agreement with tidal-phase averaged estimates of sediment concentration, bed stress, and current velocity derived from Acoustic Doppler Velocimeter (ADV) field measurements. An important step in implementing the cohesive bed model was specification of both the initial and equilibrium critical shear stress profiles, in addition to choosing other parameters like the consolidation and swelling timescales. This model promises to be a useful tool for investigating the fundamental controls on bed erodibility and settling velocity in the York River, a classical muddy estuary, provided that appropriate data exists to inform the choice of model parameters.

  18. Persistence of organochlorine chemical residues in fish from the Tombigbee River (Alabama, USA): Continuing risk to wildlife from a former DDT manufacturing facility

    International Nuclear Information System (INIS)

    Hinck, Jo Ellen; Norstrom, Ross J.; Orazio, Carl E.; Schmitt, Christopher J.; Tillitt, Donald E.

    2009-01-01

    Organochlorine pesticide and total polychlorinated biphenyl (PCB) concentrations were measured in largemouth bass from the Tombigbee River near a former DDT manufacturing facility at McIntosh, Alabama. Evaluation of mean p,p'- and o,p'-DDT isomer concentrations and o,p'- versus p,p'-isomer proportions in McIntosh bass indicated that DDT is moving off site from the facility and into the Tombigbee River. Concentrations of p,p'-DDT isomers in McIntosh bass remained unchanged from 1974 to 2004 and were four times greater than contemporary concentrations from a national program. Total DDT in McIntosh bass exceeded dietary effect concentrations developed for bald eagle and osprey. Hexachlorobenzene, PCBs, and toxaphene concentrations in bass from McIntosh also exceeded thresholds to protect fish and piscivorous wildlife. Whereas concentrations of DDT and most other organochlorine chemicals in fish have generally declined in the U.S. since their ban, concentrations of DDT in fish from McIntosh remain elevated and represent a threat to wildlife. - DDT persists in the environment near a former manufacturing facility that ceased production over 40 years ago, and concentrations represent a risk to fish and piscivorous birds in the area

  19. Persistence of organochlorine chemical residues in fish from the Tombigbee River (Alabama, USA): Continuing risk to wildlife from a former DDT manufacturing facility

    Science.gov (United States)

    Hinck, J.E.; Norstrom, R.J.; Orazio, C.E.; Schmitt, C.J.; Tillitt, D.E.

    2009-01-01

    Organochlorine pesticide and total polychlorinated biphenyl (PCB) concentrations were measured in largemouth bass from the Tombigbee River near a former DDT manufacturing facility at McIntosh, Alabama. Evaluation of mean p,p???- and o,p???-DDT isomer concentrations and o,p???- versus p,p???-isomer proportions in McIntosh bass indicated that DDT is moving off site from the facility and into the Tombigbee River. Concentrations of p,p???-DDT isomers in McIntosh bass remained unchanged from 1974 to 2004 and were four times greater than contemporary concentrations from a national program. Total DDT in McIntosh bass exceeded dietary effect concentrations developed for bald eagle and osprey. Hexachlorobenzene, PCBs, and toxaphene concentrations in bass from McIntosh also exceeded thresholds to protect fish and piscivorous wildlife. Whereas concentrations of DDT and most other organochlorine chemicals in fish have generally declined in the U.S. since their ban, concentrations of DDT in fish from McIntosh remain elevated and represent a threat to wildlife.

  20. A stakeholder project to model water temperature under future climate scenarios in the Satus and Toppenish watersheds of the Yakima River Basinin Washington, USA

    Science.gov (United States)

    Graves, D.; Maule, A.

    2014-01-01

    The goal of this study was to support an assessment of the potential effects of climate change on select natural, social, and economic resources in the Yakima River Basin. A workshop with local stakeholders highlighted the usefulness of projecting climate change impacts on anadromous steelhead (Oncorhynchus mykiss), a fish species of importance to local tribes, fisherman, and conservationists. Stream temperature is an important environmental variable for the freshwater stages of steelhead. For this study, we developed water temperature models for the Satus and Toppenish watersheds, two of the key stronghold areas for steelhead in the Yakima River Basin. We constructed the models with the Stream Network Temperature Model (SNTEMP), a mechanistic approach to simulate water temperature in a stream network. The models were calibrated over the April 15, 2008 to September 30, 2008 period and validated over the April 15, 2009 to September 30, 2009 period using historic measurements of stream temperature and discharge provided by the Yakama Nation Fisheries Resource Management Program. Once validated, the models were run to simulate conditions during the spring and summer seasons over a baseline period (1981–2005) and two future climate scenarios with increased air temperature of 1°C and 2°C. The models simulated daily mean and maximum water temperatures at sites throughout the two watersheds under the baseline and future climate scenarios.

  1. High-Precision Land-Cover-Land-Use GIS Mapping and Land Availability and Suitability Analysis for Grass Biomass Production in the Aroostook River Valley, Maine, USA

    Directory of Open Access Journals (Sweden)

    Chunzeng Wang

    2015-03-01

    Full Text Available High-precision land-cover-land-use GIS mapping was performed in four major townships in Maine’s Aroostook River Valley, using on-screen digitization and direct interpretation of very high spatial resolution satellite multispectral imagery (15–60 cm and high spatial resolution LiDAR data (2 m and the field mapping method. The project not only provides the first-ever high-precision land-use maps for northern Maine, but it also yields accurate hectarage estimates of different land-use types, in particular grassland, defined as fallow land, pasture, and hay field. This enables analysis of potential land availability and suitability for grass biomass production and other sustainable land uses. The results show that the total area of fallow land in the four towns is 7594 hectares, which accounts for 25% of total open land, and that fallow plots equal to or over four hectares in size total 4870, or 16% of open land. Union overlay analysis, using the Natural Resources Conservation Service (NRCS soil data, indicates that only a very small percentage of grassland (4.9% is on “poorly-drained” or “very-poorly-drained” soils, and that most grassland (85% falls into the “farmland of state importance” or “prime farmland” categories, as determined by NRCS. It is concluded that Maine’s Aroostook River Valley has an ample base of suitable, underutilized land for producing grass biomass.

  2. The University of Wisconsin OAO operating system

    Science.gov (United States)

    Heacox, H. C.; Mcnall, J. F.

    1972-01-01

    The Wisconsin OAO operating system is presented which consists of two parts: a computer program called HARUSPEX, which makes possible reasonably efficient and convenient operation of the package and ground operations equipment which provides real-time status monitoring, commanding and a quick-look at the data.

  3. Wisconsin's forest statistics, 1987: an inventory update.

    Science.gov (United States)

    W. Brad Smith; Jerold T. Hahn

    1989-01-01

    The Wisconsin 1987 inventory update, derived by using tree growth models, reports 14.7 million acres of timberland, a decline of less than 1% since 1983. This bulletin presents findings from the inventory update in tables detailing timberland area, volume, and biomass.

  4. Operability and location of Wisconsin's timber resource.

    Science.gov (United States)

    Jerold T. Hahn; Mark H. Hansen

    1989-01-01

    Data collected during the 1983 Wisconsin Statewide forest inventory were used to examine operability of the timber resource based on seven operability components. Operability is the ease or difficulty of managing or harvesting timber because of physical conditions in the stand or on the site.

  5. Divided Wisconsin: Partisan Spatial Electoral Realignment

    Science.gov (United States)

    Zaniewski, Kazimierz J.; Simmons, James R.

    2016-01-01

    When the Republican and Democratic presidential candidates head into the general election this fall, they will be courting votes from a statewide electorate that has dramatically shifted over time, mirroring the political polarization that is happening across the country. Over the last three decades, Wisconsin's political geography has evolved…

  6. The Legal Status of Homemakers in Wisconsin.

    Science.gov (United States)

    Melli, Marygold Shire

    This report focuses on laws in the state of Wisconsin as they relate to homemakers. Four areas are discussed, each in separate sections: marriage, widowhood, divorce, and wife abuse. The section on marriage includes information on property rights, disability and death of homemaker, federal Equal Credit Opportunity Act, domicile, interspousal…

  7. Wisconsin Educators Tackle Violence Head On.

    Science.gov (United States)

    Jones, Katherine A.

    1999-01-01

    In August 1999, Wisconsin school business officials and other school administrators met with police officers to discuss cooperative ventures to ensure school safety. Conference participants attended sessions on identifying troubled students, physical security measures, safety planning, dealing with bomb threats, and prevention and punishment. (MLH)

  8. Stakeholders' Perceptions of Parcelization in Wisconsin's Northwoods

    Science.gov (United States)

    Mark G. Rickenbach; Paul H. Gobster

    2003-01-01

    Parcelization, the process by which relatively large forest ownerships become subdivided into smaller ones, is often related to changes in ownership and can bring changes to the use of the land. Landowners, resource professionals, and others interested in Wisconsin's Northwoods were asked their views on parcelization in a series of stakeholder forums. We analyzed...

  9. Libraries in Wisconsin Institutions: Status Report.

    Science.gov (United States)

    Merriam, Elizabeth B.

    The Wisconsin Library Association Round Table of Hospitals and Institutional Librarians became concerned about adequate funding of institutional libraries; the right of institutionalized persons to read and to have educational, legal, and recreational materials; and the development of staff libraries for treatment, rehabilitation, and research…

  10. Wisconsin Public Schools at a Glance, 2016

    Science.gov (United States)

    Wisconsin Department of Public Instruction, 2016

    2016-01-01

    "Wisconsin Public Schools at a Glance" provides in a single page document statistical information on the following topics: (1) Total number of public schools (2015-16); (2) Student (2015-16); (3) Attendance & Graduation (2014-15);(4) Staff (2013-14); (5) School Funding; and (6) Student Performance (2014-15). [For the previous report…

  11. Wisconsin Public Schools at a Glance

    Science.gov (United States)

    Wisconsin Department of Public Instruction, 2014

    2014-01-01

    "Wisconsin Public Schools at a Glance" provides in a single page document statistical information on the following topics: (1) Total number of public schools (2014-15); (2) Staff (2013-14); (3) Students (2013-14);(4) Report Cards (2013-14); (5) Attendance and Graduation (2012-13); (6) Student Performance (2013-14); and (7) School Funding.

  12. A framework for identifying water management typologies for agent based modeling of water resources and its application in the Boise River Basin, USA.

    Science.gov (United States)

    Kaiser, K. E.; Flores, A. N.; Hillis, V.; Moroney, J.; Schneider, J.

    2017-12-01

    Modeling the management of water resources necessitates incorporation of complex social and hydrologic dynamics. Simulation of these socio-ecological systems requires characterization of the decision-making process of relevant actors, the mechanisms through which they exert control on the biophysical system, their ability to react and adapt to regional environmental conditions, and the plausible behaviors in response to changes in those conditions. Agent based models (ABMs) are a useful tool in simulating these complex adaptive systems because they can dynamically couple hydrological models and the behavior of decision making actors. ABMs can provide a flexible, integrated framework that can represent multi-scale interactions, and the heterogeneity of information networks and sources. However, the variability in behavior of water management actors across systems makes characterizing agent behaviors and relationships challenging. Agent typologies, or agent functional types (AFTs), group together individuals and/or agencies with similar functional roles, management objectives, and decision-making strategies. AFTs have been used to represent archetypal land managers in the agricultural and forestry sectors in large-scale socio-economic system models. A similar typology of water actors could simplify the representation of water management across river basins, and increase transferability and scaling of resulting ABMs. Here, we present a framework for identifying and classifying major water actors and show how we will link an ABM of water management to a regional hydrologic model in a western river basin. The Boise River Basin in southwest Idaho is an interesting setting to apply our AFT framework because of the diverse stakeholders and associated management objectives which include managing urban growth pressures and water supply in the face of climate change. Precipitation in the upper basin supplies 90% of the surface water used in the basin, thus managers of the

  13. Contaminants of legacy and emerging concern in largescale suckers (Catostomus macrocheilus) and the foodweb in the lower Columbia River, Oregon and Washington, USA

    Science.gov (United States)

    Nilsen, Elena B.; Zaugg, Steven D.; Alvarez, David A.; Morace, Jennifer L.; Waite, Ian R.; Counihan, Timothy D.; Hardiman, Jill M.; Torres, Leticia; Patino, Reynaldo; Mesa, Matthew G.; Grove, Robert

    2014-01-01

    We investigated occurrence, transport pathways, and effects of polybrominated diphenyl ether (PBDE) flame retardants and other endocrine disrupting chemicals (EDCs) in aquatic media and the foodweb in the lower Columbia River. In 2009 and 2010, foodweb sampling at three sites along a gradient of contaminant exposure near Skamania (Washington), Columbia City (Oregon) and Longview (Washington) included water (via passive samplers), bed sediment, invertebrate biomass residing in sediment, a resident fish species (largescale suckers [Catostomus macrocheilus]), and eggs from osprey (Pandion haliaetus). This paper primarily reports fish tissue concentrations. In 2009, composites of fish brain, fillet, liver, stomach, and gonad tissues revealed that overall contaminant concentrations were highest in livers, followed by brain, stomach, gonad, and fillet. Concentrations of halogenated compounds in tissue samples from all three sites ranged from contaminants in the environment lead to bioaccumulation and potential negative effects in multiple levels of the foodweb.

  14. Feeding ecology of non-native Siberian prawns, Palaemon modestus (Heller, 1862) (Decapoda, Palaemonidae), in the lower Snake River, Washington, U.S.A.

    Science.gov (United States)

    Tiffan, Kenneth F.; Hurst, William

    2016-01-01

    We used both stomach content and stable isotope analyses to describe the feeding ecology of Siberian prawns Palaemon modestus (Heller, 1862), a non-native caridean shrimp that is a relatively recent invader of the lower Snake River. Based on identifiable prey in stomachs, the opossum shrimp Neomysis mercedis Holmes, 1896 comprised up to 34-55% (by weight) of diets of juvenile to adult P. modestus, which showed little seasonal variation. Other predominant items/taxa consumed included detritus, amphipods, dipteran larvae, and oligochaetes. Stable isotope analysis supported diet results and also suggested that much of the food consumed by P. modestus that was not identifiable came from benthic sources — predominantly invertebrates of lower trophic levels and detritus. Palaemon modestus consumption of N. mercedis may pose a competitive threat to juvenile salmon and resident fishes which also rely heavily on that prey.

  15. Reconnaissance of contaminants in larval Pacific lamprey (Entosphenus tridentatus) tissues and habitats in the Columbia River Basin, Oregon and Washington, USA

    Science.gov (United States)

    Nilsen, Elena B.; Hapke, Whitney B.; McIlraith, Brian; Markovchick, Dennis J.

    2015-01-01

    Pacific lampreys (Entosphenus tridentatus) have resided in the Columbia River Basin for millennia and have great ecological and cultural importance. The role of habitat contamination in the recent decline of the species has rarely been studied and was the main objective of this effort. A wide range of contaminants (115 analytes) was measured in sediments and tissues at 27 sites across a large geographic area of diverse land use. This is the largest dataset of contaminants in habitats and tissues of Pacific lamprey in North America and the first study to compare contaminant bioburden during the larval life stage and the anadromous, adult portion of the life cycle. Bioaccumulation of pesticides, flame retardants, and mercury was observed at many sites. Based on available data, contaminants are accumulating in larval Pacific lamprey at levels that are likely detrimental to organism health and may be contributing to the decline of the species.

  16. Changes in fish communities following recolonization of the Cedar river, Wa, USA by Pacific salmon after 103 years of local extirpation

    Science.gov (United States)

    Kiffney, P.M.; Pess, G.R.; Anderson, J.H.; Faulds, P.; Burton, Kenneth; Riley, S.C.

    2009-01-01

    Migration barriers are a major reason for species loss and population decline of freshwater organisms. Significant efforts have been made to remove or provide passage around these barriers; however, our understanding of the ecological effects of these efforts is minimal. Installation of a fish passage facility at the Landsburg Dam, WA, USA provided migratory fish access to habitat from which they had been excluded for over 100 years. Relying on voluntary recruitment, we examined the effectiveness of this facility in restoring coho (Oncorhynchus kisutch) salmon populations above the diversion, and whether reintroduction of native anadromous species affected the distribution and abundance of resident trout (O. mykiss and O. clarki). Before the ladder, late summer total salmonid (trout only) density increased with distance from the dam. This pattern was reversed after the ladder was opened, as total salmonid density (salmon {thorn} trout) approximately doubled in the three reaches closest to the dam. These changes were primarily due to the addition of coho, but small trout density also increased in lower reaches and decreased in upper reaches. A nearby source population, dispersal by adults and juveniles, low density of resident trout and high quality habitat above the barrier likely promoted rapid colonization of targeted species. Our results suggest that barrier removal creates an opportunity for migratory species to re-establish populations leading to range expansion and potentially to increased population size. ?? 2008 John Wiley & Sons, Ltd.

  17. A landscape-based reconnaissance survey of estrogenicactivity in streams of the upper Potomac, upper James,and Shenandoah Rivers, USA

    Science.gov (United States)

    Young, John A.; Iwanowicz, Luke R.; Sperry, Adam J.; Blazer, Vicki

    2014-01-01

    Endocrine-disrupting compounds (EDCs) are becoming of increasing concern in waterways of the USA and worldwide. What remains poorly understood, however, is how prevalent these emerging contaminants are in the environment and what methods are best able to determine landscape sources of EDCs. We describe the development of a spatially structured sampling design and a reconnaissance survey of estrogenic activity along gradients of land use within sub-watersheds.We present this example as a useful approach for state and federal agencies with an interest in identifying locations potentially impacted by EDCs that warrant more intensive, focused research. Our study confirms the importance of agricultural activities on levels of a measured estrogenic equivalent (E2Eq) and also highlights the importance of other potential sources of E2Eq in areas where intensive agriculture is not the dominant land use. Through application of readily available geographic information system (GIS) data, coupled with spatial statistical analysis, we demonstrate the correlation of specific land use types to levels of estrogenic activity across a large area in a consistent and unbiased manner.

  18. A landscape-based reconnaissance survey of estrogenic activity in streams of the upper Potomac, upper James, and Shenandoah Rivers, USA.

    Science.gov (United States)

    Young, John; Iwanowicz, Luke; Sperry, Adam; Blazer, Vicki

    2014-09-01

    Endocrine-disrupting compounds (EDCs) are becoming of increasing concern in waterways of the USA and worldwide. What remains poorly understood, however, is how prevalent these emerging contaminants are in the environment and what methods are best able to determine landscape sources of EDCs. We describe the development of a spatially structured sampling design and a reconnaissance survey of estrogenic activity along gradients of land use within sub-watersheds. We present this example as a useful approach for state and federal agencies with an interest in identifying locations potentially impacted by EDCs that warrant more intensive, focused research. Our study confirms the importance of agricultural activities on levels of a measured estrogenic equivalent (E2Eq) and also highlights the importance of other potential sources of E2Eq in areas where intensive agriculture is not the dominant land use. Through application of readily available geographic information system (GIS) data, coupled with spatial statistical analysis, we demonstrate the correlation of specific land use types to levels of estrogenic activity across a large area in a consistent and unbiased manner.

  19. Transportation of 33 irradiated MTR fuel assemblies from FRM/Garching to Savannah River Site, USA, using a GNS transport cask and using a new loading device

    International Nuclear Information System (INIS)

    Dreesen, K.; Goetze, H.G.; Holst, L.; Gerstenberg, H.; Schreckenbach, K.

    2000-01-01

    According to the Department of Energy program of the return spent fuel from the foreign research reactors operators, 33 irradiated MTR box shaped fuel assemblies from the Technical University Munich were shipped to SRS/USA. The fuel assemblies were irradiated for typically 800 full days and, after a sufficient cooling time, loaded into a GNS 16 cask. The GNS 16 cask is a new transport cask for box shaped MTR fuel assemblies and TRIGA fuel assemblies and was used for the first time at the FRM Garching. The capacity of the cask is 33 box shaped MTR fuel assemblies. During the loading of the fuel assemblies, a newly developed loading device was used. The main components of the loading device are the transfer flask, the shielded loading lock, adapter plate and a mobile water tank. The loading device works mechanically with manpower. For the handling of the transfer flask, a crane with a capacity of 5 metric tons is necessary. During installation of the lid the mobile water pool is filled with demineralized water and the shielded loading passage is taken away. After that the lid is put on the cask. After drainage, the mobile water pool is disassembled, and the cask is dewatered. Finally leak tests of all seals are made. The achieved leakage rate was -5 Pa x I/s. The work in FRM was done between 03.02.99 and 12.02.99 including a dry run and leak test. (author)

  20. Field Comparisons of the Elwha Bedload Sampler and an Acoustic Gravel-transport Sensor: Middle Fork of the Piedra River, Colorado, USA

    Science.gov (United States)

    Downing, J.; Ryan, S. E.

    2001-12-01

    Ten simultaneous bedload measurements were made with an Elhwa sampler and an acoustic-gravel-transport sensor (GTS) on the Middle Fork of the Piedra River in southwestern Colorado near the end of the spring freshet in water year 2001. The purpose was to compare bedload samples with acoustic measurements acquired under field conditions. Upstream of the measurement site, the river drains 86 km2 of andesite, ash flows, tuffs, and breccias in the San Juan Mountains, contributing a relatively high sediment load to the river system. The channel transitions from step-pools at high elevations to a plane bed with a slope of 0.018 in the study reach. Channel width, mean depth and bank-full velocity at the site are: 13.6 m, 0.52, and 1.5 m s-1. The D50 of the riverbed surface is 0.08 m which is 6 to 40 times larger than the D50s of the bedload samples. D16 and D84 of the bed = 0.02 and 0.21 m respectively. Water discharges from 7.3 to 9.3 m3 s-1 transported about 0.01 kg of gravel m-1 s-1 in the channel. Transport of coarse gravel (8-64 mm) ranged from 0.00063 to 0.024 kg m-1 s-1. The Elwha sampler is a portable, pressure-differential trap with a 0.2 m wide by 0.1 m high opening. The acoustic sensor is a 0.025-m wide by 0.1 m high strip of PVDF piezoelectric film connected to a signal processor and bonded to an aluminum pressure plate. When the plate is struck by stones, the GTS produces signal peaks with areas that are accurate measures of stone momentum. The GTS was calibrated with steels balls dropped on the pressure plate in still water to develop a curve of ball momentum as a function of peak areas. Based on these calibrations, the standard error of the GTS momentum estimates is 0.0017 kg m s-1. Five transects with 30 verticals, each occupied for 60 s, were completed with the sampler and GTS separated by < 1 m. Five additional verticals were occupied for about 1800 s each with the instruments separated by < 0.5 m. The trapped material was sieved and weighed and the water

  1. Legacy sediment, lead, and zinc storage in channel and floodplain deposits of the Big River, Old Lead Belt Mining District, Missouri, USA

    Science.gov (United States)

    Pavlowsky, Robert T.; Lecce, Scott A.; Owen, Marc R.; Martin, Derek J.

    2017-12-01

    The Old Lead Belt of southeastern Missouri was one of the leading producers of Pb ore for more than a century (1869-1972). Large quantities of contaminated mine waste have been, and continue to be, supplied to local streams. This study assessed the magnitude and spatial distribution of mining-contaminated legacy sediment stored in channel and floodplain deposits of the Big River in the Ozark Highlands of southeastern Missouri. Although metal concentrations decline downstream from the mine sources, the channel and floodplain sediments are contaminated above background levels with Pb and Zn along its entire 171-km length below the mine sources. Mean concentrations in floodplain cores > 2000 mg kg- 1 for Pb and > 1000 mg kg- 1 for Zn extend 40-50 km downstream from the mining area in association with the supply of fine tailings particles that were easily dispersed downstream in the suspended load. Mean concentrations in channel bed and bar sediments ranging from 1400 to 1700 mg kg- 1 for Pb extend 30 km below the mines, while Zn concentrations of 1000-3000 mg kg- 1 extend 20 km downstream. Coarse dolomite fragments in the 2-16 mm channel sediment fraction provide significant storage of Pb and Zn, representing 13-20% of the bulk sediment storage mass in the channel and can contain concentrations of > 4000 mg kg- 1 for Pb and > 1000 mg kg- 1 for Zn. These coarse tailings have been transported a maximum distance of only about 30 km from the source over a period of 120 years for an average of about 250 m/y. About 37% of the Pb and 9% of the Zn that was originally released to the watershed in tailings wastes is still stored in the Big River. A total of 157 million Mg of contaminated sediment is stored along the Big River, with 92% of it located in floodplain deposits that are typically contaminated to depths of 1.5-3.5 m. These contaminated sediments store a total of 188,549 Mg of Pb and 34,299 Mg of Zn, of which 98% of the Pb and 95% of the Zn are stored in floodplain

  2. Distribution of metals during digestion by cutthroat trout fed benthic invertebrates contaminated in the Clark Fork River, Montana and the Coeur d'Alene River, Idaho, U.S.A., and fed artificially contaminated Artemia

    Science.gov (United States)

    Farag, A.M.; Suedkamp, M.J.; Meyer, J.S.; Barrows, R.; Woodward, D.F.

    2000-01-01

    The concentrations of essential amino acids in three, undigested invertebrate diets collected from the Clark Fork River (CFR) for cutthroat trout were similar to each other, but were c. 25–75% less than Artemia that were exposed to a mixture of arsenic, copper, cadmium, lead and zinc in the laboratory. The Artemia diet appeared less palatable and the texture, quantity and appearance of the intestinal contents differed between fish fed the Artemia and CFR diets. The Pb% in the fluid fraction of the intestinal contents was greater for the Artemia (29%) than for the CFR diets (10–17%), and the Cu% in the amino acid plus metal fraction of the intestinal contents was greater for the Artemia (78%) than for two of the three CFR diets (67% and 70%). Intestinal contents of fish fed invertebrate diets collected from various sites on the Coeur d'Alene River (CDA), Idaho, were similar in texture, quantity, and appearance. For fish fed the CDA diets, differences in the distribution of metals among fractions of the digestive fluids appeared to be related to concentrations of metals in the invertebrate diets. Pb% was lowest of all metals in the fluid portion of the intestinal contents. However, >80% of all metals in the hind gut were associated with the particulate fraction where they may still be available for uptake through pinocytosis.

  3. Using tracer-derived groundwater transit times to assess storage within a high-elevation watershed of the upper Colorado River Basin, USA

    Science.gov (United States)

    Georgek, Jennifer L.; Kip Solomon, D.; Heilweil, Victor M.; Miller, Matthew P.

    2018-03-01

    Previous watershed assessments have relied on annual baseflow to evaluate the groundwater contribution to streams. To quantify the volume of groundwater in storage, additional information such as groundwater mean transit time (MTT) is needed. This study determined the groundwater MTT in the West Fork Duchesne watershed in Utah (USA) with lumped-parameter modeling of environmental tracers (SF6, CFCs, and 3H/3He) from 21 springs. Approximately 30% of the springs exhibited an exponential transit time distribution (TTD); the remaining 70% were best characterized by a piston-flow TTD. The flow-weighted groundwater MTT for the West Fork watershed is about 40 years with approximately 20 years in the unsaturated zone. A cumulative distribution of these ages revealed that most of the groundwater is between 30 and 50 years old, suggesting that declining recharge associated with 5-10-year droughts is less likely to have a profound effect on this watershed compared with systems with shorter MTTs. The estimated annual baseflow of West Fork stream flow based on chemical hydrograph separation is 1.7 × 107 m3/year, a proxy for groundwater discharge. Using both MTT and groundwater discharge, the volume of mobile groundwater stored in the watershed was calculated to be 6.5 × 108 m3, or 20 m thickness of active groundwater storage and recharge of 0.09 m/year (assuming porosity = 15%). Future watershed-scale assessments should evaluate groundwater MTT, in addition to annual baseflow, to quantify groundwater storage and more accurately assess watershed susceptibility to drought, groundwater extraction, and land-use change.

  4. Utility experiences in redevelopment of formerly used sites -- Wisconsin Electric's risk management and economic development activities

    International Nuclear Information System (INIS)

    Borofka, B.P.

    1999-01-01

    Wisconsin Electric Power Company, which recently celebrated its 100th anniversary, has actively promoted the redevelopment of its former sites as well as those of its customers. Serving Milwaukee and southeast Wisconsin, Wisconsin Electric's (WE) sites include former power plants, landfills, right-of-ways, and manufactured gas plant sites. In setting an example for others, as well as seeking to maximize the economic value of these sites, WE has either redeveloped or promoted the redevelopment of these sites by others. Examples include the East Wells Power Plant (now home of the Milwaukee Repertory Theater), the Lakeside Power Plant Site (now the home of Harnischfeger Corporation's headquarters), and the Commerce Street Power Plant located on the Milwaukee River near downtown Milwaukee. In each case the company evaluated the potential environmental liabilities against the unrealized asset value derived from facility location, site size, architectural uniqueness, or other characteristics. At the Commerce Street Power Plant, walking distance to the downtown Milwaukee business district combined with river frontage, were significant site values leveraged against a $5 million asbestos and lead-based paint removal project done to prepare the plant for marketing. More recently, WE has used its experience in promoting the redevelopment of the Menomonee River Valley, the original core of Milwaukee's industrial community, and in advancing a more practical regulatory approach to redeveloping older sites. Finally, the company is working with a non-profit community health clinic, community groups and local foundations in linking these redevelopment activities with the economic and physical health of inner city residents

  5. Concentration trends for lead and calcium-normalized lead in fish fillets from the Big River, a mining-contaminated stream in southeastern Missouri USA

    Science.gov (United States)

    Schmitt, Christopher J.; McKee, Michael J.

    2016-01-01

    Lead (Pb) and calcium (Ca) concentrations were measured in fillet samples of longear sunfish (Lepomis megalotis) and redhorse suckers (Moxostoma spp.) collected in 2005–2012 from the Big River, which drains a historical mining area in southeastern Missouri and where a consumption advisory is in effect due to elevated Pb concentrations in fish. Lead tends to accumulated in Ca-rich tissues such as bone and scale. Concentrations of Pb in fish muscle are typically low, but can become elevated in fillets from Pb-contaminated sites depending in part on how much bone, scale, and skin is included in the sample. We used analysis-of-covariance to normalize Pb concentration to the geometric mean Ca concentration (415 ug/g wet weight, ww), which reduced variation between taxa, sites, and years, as was the number of samples that exceeded Missouri consumption advisory threshold (300 ng/g ww). Concentrations of Pb in 2005–2012 were lower than in the past, especially after Ca-normalization, but the consumption advisory is still warranted because concentrations were >300 ng/g ww in samples of both taxa from contaminated sites. For monitoring purposes, a simple linear regression model is proposed for estimating Ca-normalized Pb concentrations in fillets from Pb:Ca molar ratios as a way of reducing the effects of differing preparation methods on fillet Pb variation.

  6. Assessment of sediment quality in dredged and undredged areas of the Trenton Channel of the Detroit River, Michigan USA, using the sediment quality triad

    Science.gov (United States)

    Besser, John M.; Giesy, John P.; Kubitz, Jody A.; Verbrugge, David A.; Coon, Thomas G.; Braselton, W. Emmett

    1996-01-01

    The “sediment quality triad” approach was used to assess the effects of dredging on the sediment quality of a new marina in the Trenton Channel of the Detroit River, and to evaluate spatial and temporal variation in sediment quality in the Trenton Channel. Samples were collected in November of 1993 (10 months after dredging) and characterized by chemical analysis, sediment bioassays, and assessment of benthic invertebrate communities. The three study components indicated little difference in sediment quality at dredged sites in the marina relative to nearby areas in the Trenton Channel, and little change in sediment quality of Trenton Channel sites relative to conditions reported in the mid-1980s. These results suggest that improvement in sediment quality in the Trenton Channel, due to dredging or natural processes, will depend on elimination of sediment “hot spots” and other upstream contaminant sources. Concentrations of chemical contaminants, especially metals and polycyclic aromatic hydrocarbons, exceeded concentrations associated with effects on biota and were significantly correlated with results of sediment bioassays and characteristics of benthic communities. Laboratory sediment bioassays with Hyalella azteca andChironomus tentans produced better discrimination among sites with differing degrees of contamination than did characterization of benthic communities, which were dominated by oligochaetes at all sites in the marina and the Trenton Channel.

  7. Determination of pesticides associated with suspended sediments in the San Joaquin River, California, USA, using gas chromatography-ion trap mass spectrometry

    Science.gov (United States)

    Bergamaschi, B.A.; Baston, D.S.; Crepeau, K.L.; Kuivila, K.M.

    1999-01-01

    An analytical method useful for the quantification of a range of pesticides and pesticide degradation products associated with suspended sediments was developed by testing a variety of extraction and cleanup schemes. The final extraction and cleanup methods chosen for use are suitable for the quantification of the listed pesticides using gas chromatography-ion trap mass spectrometry and the removal of interfering coextractable organic material found in suspended sediments. Methylene chloride extraction followed by Florisil cleanup proved most effective for separation of coextractives from the pesticide analytes. Removal of elemental sulfur was accomplished with tetrabutylammonium hydrogen sulfite. The suitability of the method for the analysis of a variety of pesticides was evaluated, and the method detection limits (MDLs) were determined (0.1-6.0 ng/g dry weight of sediment) for 21 compounds. Recovery of pesticides dried onto natural sediments averaged 63%. Analysis of duplicate San Joaquin River suspended-sediment samples demonstrated the utility of the method for environmental samples with variability between replicate analyses lower than between environmental samples. Eight of 21 pesticides measured were observed at concentrations ranging from the MDL to more than 80 ng/g dry weight of sediment and exhibited significant temporal variability. Sediment-associated pesticides, therefore, may contribute to the transport of pesticides through aquatic systems and should be studied separately from dissolved pesticides.

  8. Emerging concepts for management of river ecosystems and challenges to applied integration of physical and biological sciences in the Pacific Northwest, USA

    Science.gov (United States)

    Rieman, Bruce; Dunham, Jason B.; Clayton, James

    2006-01-01

    Integration of biological and physical concepts is necessary to understand and conserve the ecological integrity of river systems. Past attempts at integration have often focused at relatively small scales and on mechanistic models that may not capture the complexity of natural systems leaving substantial uncertainty about ecological responses to management actions. Two solutions have been proposed to guide management in the face of that uncertainty: the use of “natural variability” in key environmental patterns, processes, or disturbance as a reference; and the retention of some areas as essentially unmanaged reserves to conserve and represent as much biological diversity as possible. Both concepts are scale dependent because dominant processes or patterns that might be referenced will change with scale. Context and linkages across scales may be as important in structuring biological systems as conditions within habitats used by individual organisms. Both ideas view the physical environment as a template for expression, maintenance, and evolution of ecological diversity. To conserve or restore a diverse physical template it will be important to recognize the ecologically important differences in physical characteristics and processes among streams or watersheds that we might attempt to mimic in management or represent in conservation or restoration reserves.

  9. Concentration Trends for Lead and Calcium-Normalized Lead in Fish Fillets from the Big River, a Mining-Contaminated Stream in Southeastern Missouri USA.

    Science.gov (United States)

    Schmitt, Christopher J; McKee, Michael J

    2016-11-01

    Lead (Pb) and calcium (Ca) concentrations were measured in fillet samples of longear sunfish (Lepomis megalotis) and redhorse suckers (Moxostoma spp.) collected in 2005-2012 from the Big River, which drains a historical mining area in southeastern Missouri and where a consumption advisory is in effect due to elevated Pb concentrations in fish. Lead tends to accumulated in Ca-rich tissues such as bone and scale. Concentrations of Pb in fish muscle are typically low, but can become elevated in fillets from Pb-contaminated sites depending in part on how much bone, scale, and skin is included in the sample. We used analysis-of-covariance to normalize Pb concentration to the geometric mean Ca concentration (415 ug/g wet weight, ww), which reduced variation between taxa, sites, and years, as was the number of samples that exceeded Missouri consumption advisory threshold (300 ng/g ww). Concentrations of Pb in 2005-2012 were lower than in the past, especially after Ca-normalization, but the consumption advisory is still warranted because concentrations were >300 ng/g ww in samples of both taxa from contaminated sites. For monitoring purposes, a simple linear regression model is proposed for estimating Ca-normalized Pb concentrations in fillets from Pb:Ca molar ratios as a way of reducing the effects of differing preparation methods on fillet Pb variation.

  10. Private drinking water quality in rural Wisconsin.

    Science.gov (United States)

    Knobeloch, Lynda; Gorski, Patrick; Christenson, Megan; Anderson, Henry

    2013-03-01

    Between July 1, 2007, and December 31, 2010, Wisconsin health departments tested nearly 4,000 rural drinking water supplies for coliform bacteria, nitrate, fluoride, and 13 metals as part of a state-funded program that provides assistance to low-income families. The authors' review of laboratory findings found that 47% of these wells had an exceedance of one or more health-based water quality standards. Test results for iron and coliform bacteria exceeded safe limits in 21% and 18% of these wells, respectively. In addition, 10% of the water samples from these wells were high in nitrate and 11% had an elevated result for aluminum, arsenic, lead, manganese, or strontium. The high percentage of unsafe test results emphasizes the importance of water quality monitoring to the health of nearly one million families including 300,000 Wisconsin children whose drinking water comes from a privately owned well.

  11. Participatory Modeling Processes to Build Community Knowledge Using Shared Model and Data Resources and in a Transboundary Pacific Northwest Watershed (Nooksack River Basin, Washington, USA)

    Science.gov (United States)

    Bandaragoda, C.; Dumas, M.

    2014-12-01

    As with many western US watersheds, the Nooksack River Basin faces strong pressures associated with climate variability and change, rapid population growth, and deep-rooted water law. This transboundary basin includes contributing areas in British Columbia, Canada, and has a long history of joint data collection, model development, and facilitated communication between governmental (federal, tribal, state, local), environmental, timber, agricultural, and recreational user groups. However, each entity in the watershed responds to unique data coordination, information sharing, and adaptive management regimes and thresholds, further increasing the complexity of watershed management. Over the past four years, participatory methods were used to compile and review scientific data and models, including fish habitat (endangered salmonid species), channel hydraulics, climate data, agricultural, municipal and industrial water use, and integrated watershed scale distributed hydrologic models from over 15 years of projects (from jointly funded to independent shared work by individual companies, agencies, and universities). A specific outcome of the work includes participatory design of a collective problem statement used for guidance on future investment of shared resources and development of a data-generation process where modeling results are communicated in a three-tiers for 1) public/decision-making, 2) technical, and 3) research audiences. We establish features for successful participation using tools that are iteratively developed, tested for usability through incremental knowledge building, and designed to provide rigor in modeling. A general outcome of the work is ongoing support by tribal, state, and local governments, as well as the agricultural community, to continue the generation of shared watershed data using models in a dynamic legal and regulatory setting, where two federally recognized tribes have requested federal court resolution of federal treaty rights

  12. Assessing reproductive and endocrine parameters in male largescale suckers (Catostomus macrocheilus) along a contaminant gradient in the lower Columbia River, USA

    Science.gov (United States)

    Jenkins, Jill A.; Olivier, H.M.; Draugelis-Dale, R. O.; Eilts, B.E.; Torres, L.; Patiño, R.; Nilsen, Elena B.; Goodbred, Steven L.

    2014-01-01

    Persistent organochlorine pollutants such as polychlorinated biphenyls (PCBs), dichlorodiphenyldichloroethylene (p,p′-DDE), and polybrominated diphenyl ethers (PBDEs) are stable, bioaccumulative, and widely found in the environment, wildlife, and the human population. To explore the hypothesis that reproduction in male fish is associated with environmental exposures in the lower Columbia River (LCR), reproductive and endocrine parameters were studied in male resident, non-anadromous largescale sucker (Catostomus macrocheilus) (LSS) in the same habitats as anadromous salmonids having conservation status. Testes, thyroid tissue and plasma collected in 2010 from Longview (LV), Columbia City (CC), and Skamania (SK; reference) were studied. Sperm morphologies and thyrocyte heights were measured by light microscopy, sperm motilities by computer-assisted sperm motion analysis, sperm adenosine triphosphate (ATP) with luciferase, and plasma vitellogenin (VTG), thyroxine (T4), and triiodothyronine (T3) by immunoassay. Sperm apoptosis, viability, mitochondrial membrane potential, nuclear DNA fragmentation, and reproductive stage were measured by flow cytometry. Sperm quality parameters (except counts) and VTG were significantly different among sites, with correlations between VTG and 7 sperm parameters. Thyrocyte heights, T4, T3, gonadosomatic index and Fulton's condition factor differed among sites, but not significantly. Sperm quality was significantly lower and VTG higher where liver contaminants and water estrogen equivalents were highest (LV site). Total PCBs (specifically PCB-138, -146, -151, -170, -174, -177, -180, -183, -187, -194, and -206) and total PBDEs (specifically BDE-47, -100, -153, and -154) were negatively correlated with sperm motility. PCB-206 and BDE-154 were positively correlated with DNA fragmentation, and pentachloroanisole and VTG were positively correlated with sperm apoptosis and negatively correlated with ATP. BDE-99 was positively correlated

  13. Diurnal variability in riverine dissolved organic matter composition determined by in situ optical measurement in the San Joaquin River (California, USA)

    Science.gov (United States)

    Spencer, R.G.M.; Pellerin, B.A.; Bergamaschi, B.A.; Downing, B.D.; Kraus, T.E.C.; Smart, D.R.; Dahlgren, R.A.; Hernes, P.J.

    2007-01-01

    Dissolved organic matter (DOM) concentration and composition in riverine and stream systems are known to vary with hydrological and productivity cycles over the annual and interannual time scales. Rivers are commonly perceived as homogeneous with respect to DOM concentration and composition, particularly under steady flow conditions over short time periods. However, few studies have evaluated the impact of short term variability ( DOC) measurement alone. The in situ optical measurements described in this study clearly showed for the first time diurnal variations in DOM measurements, which have previously been related to both composition and concentration, even though diurnal changes were not well reflected in bulk DOC concentrations. An apparent asynchronous trend of DOM absorbance and chlorophyll-a in comparison to chromophoric dissolved organic matter (CDOM) fluorescence and spectral slope S290-350 suggests that no one specific CDOM spectrophotometric measurement explains absolutely DOM diurnal variation in this system; the measurement of multiple optical parameters is therefore recommended. The observed diurnal changes in DOM composition, measured by in situ optical instrumentation likely reflect both photochemical and biologically-mediated processes. The results of this study highlight that short-term variability in DOM composition may complicate trends for studies aiming to distinguish different DOM sources in riverine systems and emphasizes the importance of sampling specific study sites to be compared at the same time of day. The utilization of in situ optical technology allows short-term variability in DOM dynamics to be monitored and serves to increase our understanding of its processing and fundamental role in the aquatic environment. Copyright ?? 2007 John Wiley & Sons, Ltd.

  14. Using remote sensing to monitor past changes and assess future scenarios for the Sacramento-San Joaquin River Delta waterways, California USA

    Science.gov (United States)

    Santos, Maria J.; Hestir, Erin; Khanna, Shruti; Ustin, Susan L.

    2017-04-01

    Historically, deltas have been extensively affected both by natural processes and human intervention. Thus, understanding drivers, predicting impacts and optimizing solutions to delta problems requires a holistic approach spanning many sectors, disciplines and fields of expertise. Deltas are ideal model systems to understand the effects of the interaction between social and ecological domains, as they face unprecedented disturbances and threats to their biological and ecological sustainability. The challenge for deltas is to meet the goals of supporting biodiversity and ecosystem processes while also provisioning fresh water resources for human use. We provide an overview of the last 150 years of the Sacramento-San Joaquin River delta, where we illustrate the parallel process of an increase in disturbances, by particularly zooming in on the current cascading effects of invasive species on geophysical and biological processes. Using remote sensing data coupled with in situ measurements of water quality, turbidity, and species presence we show how the spread and persistence of aquatic invasive species affects sedimentation processes and ecosystem functioning. Our results show that the interactions between the biological and physical conditions in the Delta affect the trajectory of dominance by native and invasive aquatic plant species. Trends in growth and community characteristics associated with predicted impacts of climate change (sea level rise, warmer temperatures, changes in the hydrograph with high winter and low summer outflows) do not provide simple predictions. Individually, the impact of specific environmental changes on the biological components can be predicted, however it is the complex interactions of biological communities with the suite of physical changes that make predictions uncertain. Systematic monitoring is critical to provide the data needed to document and understand change of these delta systems, and to identify successful adaptation

  15. Predicting Impacts of Increased CO2 and Climate Change on the Water Cycle and Water Quality in the Semiarid James River Basin of the Midwestern USA

    Science.gov (United States)

    Wu, Yiping; Liu, Shu-Guang; Gallant, Alisa L.

    2012-01-01

    Emissions of greenhouse gases and aerosols from human activities continue to alter the climate and likely will have significant impacts on the terrestrial hydrological cycle and water quality, especially in arid and semiarid regions. We applied an improved Soil and Water Assessment Tool (SWAT) to evaluate impacts of increased atmospheric CO2 concentration and potential climate change on the water cycle and nitrogen loads in the semiarid James River Basin (JRB) in the Midwestern United States. We assessed responses of water yield, soil water content, groundwater recharge, and nitrate nitrogen (NO3–N) load under hypothetical climate-sensitivity scenarios in terms of CO2, precipitation, and air temperature. We extended our predictions of the dynamics of these hydrological variables into the mid-21st century with downscaled climate projections integrated across output from six General Circulation Models. Our simulation results compared against the baseline period 1980 to 2009 suggest the JRB hydrological system is highly responsive to rising levels of CO2 concentration and potential climate change. Under our scenarios, substantial decrease in precipitation and increase in air temperature by the mid-21st century could result in significant reduction in water yield, soil water content, and groundwater recharge. Our model also estimated decreased NO3–N load to streams, which could be beneficial, but a concomitant increase in NO3–N concentration due to a decrease in streamflow likely would degrade stream water and threaten aquatic ecosystems. These results highlight possible risks of drought, water supply shortage, and water quality degradation in this basin.

  16. Canopy volume removal from oil and gas development activity in the upper Susquehanna River basin in Pennsylvania and New York (USA): An assessment using lidar data

    Science.gov (United States)

    Young, John A.; Maloney, Kelly O.; Slonecker, Terry; Milheim, Lesley E.; Siripoonsup, David

    2018-01-01

    Oil and gas development is changing the landscape in many regions of the United States and globally. However, the nature, extent, and magnitude of landscape change and development, and precisely how this development compares to other ongoing land conversion (e.g. urban/sub-urban development, timber harvest) is not well understood. In this study, we examine land conversion from oil and gas infrastructure development in the upper Susquehanna River basin in Pennsylvania and New York, an area that has experienced much oil and gas development over the past 10 years. We quantified land conversion in terms of forest canopy geometric volume loss in contrast to previous studies that considered only areal impacts. For the first time in a study of this type, we use fine-scale lidar forest canopy geometric models to assess the volumetric change due to forest clearing from oil and gas development and contrast this land change to clear cut forest harvesting, and urban and suburban development. Results show that oil and gas infrastructure development removed a large volume of forest canopy from 2006 to 2013, and this removal spread over a large portion of the study area. Timber operations (clear cutting) on Pennsylvania State Forest lands removed a larger total volume of forest canopy during the same time period, but this canopy removal was concentrated in a smaller area. Results of our study point to the need to consider volumetric impacts of oil and gas development on ecosystems, and to place potential impacts in context with other ongoing land conversions.

  17. Controls on selenium distribution and mobilization in an irrigated shallow groundwater system underlain by Mancos Shale, Uncompahgre River Basin, Colorado, USA

    Science.gov (United States)

    Mills, Taylor J.; Mast, M. Alisa; Thomas, Judith C.; Keith, Gabrielle L.

    2016-01-01

    Elevated selenium (Se) concentrations in surface water and groundwater have become a concern in areas of the Western United States due to the deleterious effects of Se on aquatic ecosystems. Elevated Se concentrations are most prevalent in irrigated alluvial valleys underlain by Se-bearing marine shales where Se can be leached from geologic materials into the shallow groundwater and surface water systems. This study presents groundwater chemistry and solid-phase geochemical data from the Uncompahgre River Basin in Western Colorado, an irrigated alluvial landscape underlain by Se-rich Cretaceous marine shale. We analyzed Se species, major and trace elements, and stable nitrogen and oxygen isotopes of nitrate in groundwater and aquifer sediments to examine processes governing selenium release and transport in the shallow groundwater system. Groundwater Se concentrations ranged from below detection limit (groundwater nitrate concentrations that maintain oxidizing conditions in the aquifer despite low dissolved oxygen concentrations. High nitrate concentrations in non-irrigated soils and nitrate isotopes indicate nitrate is largely derived from natural sources in the Mancos Shale and alluvial material. Thus, in contrast to areas that receive substantial NO3 inputs through inorganic fertilizer application, Se mitigation efforts that involve limiting NO3 application might have little impact on groundwater Se concentrations in the study area. Soluble salts are the primary source of Se to the groundwater system in the study area at-present, but they constitute a small percentage of the total Se content of core material. Sequential extraction results indicate insoluble Se is likely composed of reduced Se in recalcitrant organic matter or discrete selenide phases. Oxidation of reduced Se species that constitute the majority of the Se pool in the study area could be a potential source of Se in the future as soluble salts are progressively depleted.

  18. Riparian bird density decline in response to biocontrol of Tamarix from riparian ecosystems along the Dolores River in SW Colorado, USA

    Science.gov (United States)

    Darrah, Abigail J.; van Riper, Charles

    2018-01-01

    Biocontrol of invasive tamarisk (Tamarix spp.) in the arid Southwest using the introduced tamarisk beetle (Diorhabda elongata) has been hypothesized to negatively affect some breeding bird species, but no studies to date have documented the effects of beetle-induced defoliation on riparian bird abundance. We assessed the effects of tamarisk defoliation by monitoring defoliation rates, changes in vegetation composition, and changes in density of six obligate riparian breeding bird species at two sites along the Dolores River in Colorado following the arrival of tamarisk beetles. We conducted bird point counts from 2010 to 2014 and modeled bird density as a function of native vegetation density and extent of defoliation using hierarchical distance sampling. Maximum annual defoliation decreased throughout the study period, peaking at 32–37% in 2009–2010 and dropping to 0.5–15% from 2011–2014. Stem density of both tamarisk and native plants declined throughout the study period until 2014. Density of all bird species declined throughout most of the study, with Song Sparrow disappearing from the study sites after 2011. Blue Grosbeak, Yellow-breasted Chat, and Yellow Warbler densities were negatively related to defoliation in the previous year, while Lazuli Bunting exhibited a positive relationship with defoliation. These findings corroborate earlier predictions of species expected to be sensitive to defoliation as a result of nest site selection. Tamarisk defoliation thus had short-term negative impacts on riparian bird species; active restoration may be needed to encourage the regrowth of native riparian vegetation, which in the longer-term may result in increased riparian bird density.

  19. Geographic variability in amoeboid protists and other microbial groups in the water column of the lower Hudson River Estuary (New York, USA)

    Science.gov (United States)

    Juhl, Andrew R.; Anderson, O. Roger

    2014-12-01

    In comparison to other groups of planktonic microorganisms, relatively little is known about the role of amoeboid protists (amebas) in planktonic ecosystems. This study describes the first geographic survey of the abundance and biomass of amebas in an estuarine water column. Samples collected in the lower Hudson River Estuary were used to investigate relationships between ameba abundance and biomass and hydrographic variables (temperature, salinity, and turbidity), water depth (surface and near bottom), distance from mid-channel to shore, phytoplankton biomass (chlorophyll fluorescence) and the occurrence of other heterotrophic microbial groups (heterotrophic bacteria, nanoflagellates, and ciliates) in the plankton. Although salinity increased significantly towards the mouth of the estuary, there were no significant differences in the abundance or biomass of any microbial group in surface samples collected at three stations separated by 44 km along the estuary's mid-channel. Peak biomass values for all microbial groups were found at the station closest to shore, however, cross-channel trends in microbial abundance and biomass were not statistically significant. Although ameba abundance and biomass in most samples were low compared to other microbial groups, clear patterns in ameba distribution were nevertheless found. Unlike other microbial groups examined, ameba numbers and biomass greatly increased in near bottom water compared to surface samples. Ameba abundance and biomass (in surface samples) were also strongly related to increasing turbidity. The different relationships of ameba abundance and biomass with turbidity suggest a rising contribution of large amebas in microbial communities of the Hudson estuary when turbidity increases. These results, emphasizing the importance of particle concentration as attachment and feeding surfaces for amebas, will help identify the environmental conditions when amebas are most likely to contribute significantly to estuarine

  20. SMES developments at the University of Wisconsin

    International Nuclear Information System (INIS)

    Boom, R.W.; Abdelsalam, M.K.; Eyssa, Y.; Hilal, M.; Huang, X.; McIntosh, G.E.; Pfotenhauer, J.

    1988-01-01

    This paper reports on a long term SMES program in the Applied Superconductivity Center (ASC) in progress at the University of Wisconsin since 1970. The present principal interest in SMES stems from the US DNA-SDI program to build an engineering test model (ETM) for utility and government use. This paper is a review of SMES design highlights and of some small scale SMES studies

  1. Modal Investment Comparison : The Impact of Upper Mississippi River Lock and Dam Shutdowns on State Highway Infrastructure.

    Science.gov (United States)

    2017-10-30

    This project reviews southbound agricultural shipments from the Upper Mississippi River originating from the states of Illinois, Iowa, Minnesota, Missouri, and Wisconsin to understand the potential impacts of shifting barge shipments to the parallel ...

  2. Wisconsin Earth and Space Science Education

    Science.gov (United States)

    Bilbrough, Larry (Technical Monitor); French, George

    2003-01-01

    The Wisconsin Earth and Space Science Education project successfilly met its objectives of creating a comprehensive online portfolio of science education curricular resources and providing a professional development program to increase educator competency with Earth and Space science content and teaching pedagogy. Overall, 97% of participants stated that their experience was either good or excellent. The favorable response of participant reactions to the professional development opportunities highlights the high quality of the professional development opportunity. The enthusiasm generated for using the curricular material in classroom settings was overwhelmingly positive at 92%. This enthusiasm carried over into actual classroom implementation of resources from the curricular portfolio, with 90% using the resources between 1-6 times during the school year. The project has had a positive impact on student learning in Wisconsin. Although direct measurement of student performance is not possible in a project of this kind, nearly 75% of participating teachers stated that they saw an increase in student performance in math and science as a result of using project resources. Additionally, nearly 75% of participants saw an increase in the enthusiasm of students towards math and science. Finally, some evidence exists that the professional development academies and curricular portfolio have been effective in changing educator behavior. More than half of all participants indicated that they have used more hands-on activities as a result of the Wisconsin Earth and Space Science Education project.

  3. Using landscape epidemiological models to understand the distribution of chronic wasting disease in the Midwestern USA

    Science.gov (United States)

    Robinson, Stacie J.; Samuel, Michael D.; Rolley, Robert E.; Shelton, Paul

    2013-01-01

    Animal movement across the landscape plays a critical role in the ecology of infectious wildlife diseases. Dispersing animals can spread pathogens between infected areas and naïve populations. While tracking free-ranging animals over the geographic scales relevant to landscape-level disease management is challenging, landscape features that influence gene flow among wildlife populations may also influence the contact rates and disease spread between populations. We used spatial diffusion and barriers to white-tailed deer gene flow, identified through landscape genetics, to model the distribution of chronic wasting disease (CWD) in the infected region of southern Wisconsin and northern Illinois, USA. Our generalized linear model showed that risk of CWD infection declined exponentially with distance from current outbreaks, and inclusion of gene flow barriers dramatically improved fit and predictive power of the model. Our results indicate that CWD is spreading across the Midwestern landscape from these two endemic foci, but spread is strongly influenced by highways and rivers that also reduce deer gene flow. We used our model to plot a risk map, providing important information for CWD management by identifying likely routes of disease spread and providing a tool for prioritizing disease monitoring and containment efforts. The current analysis may serve as a framework for modeling future disease risk drawing on genetic information to investigate barriers to spread and extending management and monitoring beyond currently affected regions.

  4. The role of ocean tides on groundwater-surface water exchange in a mangrove-dominated estuary: Shark River Slough, Florida Coastal Everglades, USA

    Science.gov (United States)

    Smith, Christopher G.; Price, René M.; Swarzenski, Peter W.; Stalker, Jeremy C.

    2016-01-01

    Low-relief environments like the Florida Coastal Everglades (FCE) have complicated hydrologic systems where surface water and groundwater processes are intimately linked yet hard to separate. Fluid exchange within these lowhydraulic-gradient systems can occur across broad spatial and temporal scales, with variable contributions to material transport and transformation. Identifying and assessing the scales at which these processes operate is essential for accurate evaluations of how these systems contribute to global biogeochemical cycles. The distribution of 222Rn and 223,224,226Ra have complex spatial patterns along the Shark River Slough estuary (SRSE), Everglades, FL. High-resolution time-series measurements of 222Rn activity, salinity, and water level were used to quantify processes affecting radon fluxes out of the mangrove forest over a tidal cycle. Based on field data, tidal pumping through an extensive network of crab burrows in the lower FCE provides the best explanation for the high radon and fluid fluxes. Burrows are irrigated during rising tides when radon and other dissolved constituents are released from the mangrove soil. Flushing efficiency of the burrows—defined as the tidal volume divided by the volume of burrows— estimated for the creek drainage area vary seasonally from 25 (wet season) to 100 % (dry season) in this study. The tidal pumping of the mangrove forest soil acts as a significant vector for exchange between the forest and the estuary. Processes that enhance exchange of O2 and other materials across the sediment-water interface could have a profound impact on the environmental response to larger scale processes such as sea level rise and climate change. Compounding the material budgets of the SRSE are additional inputs from groundwater from the Biscayne Aquifer, which were identified using radium isotopes. Quantification of the deep groundwater component is not obtainable, but isotopic data suggest a more prevalent signal in the dry

  5. Predicting impacts of increased CO2 and climate change on the water cycle and water quality in the semiarid James River Basin of the Midwestern USA

    International Nuclear Information System (INIS)

    Wu, Yiping; Liu, Shuguang; Gallant, Alisa L.

    2012-01-01

    Emissions of greenhouse gases and aerosols from human activities continue to alter the climate and likely will have significant impacts on the terrestrial hydrological cycle and water quality, especially in arid and semiarid regions. We applied an improved Soil and Water Assessment Tool (SWAT) to evaluate impacts of increased atmospheric CO 2 concentration and potential climate change on the water cycle and nitrogen loads in the semiarid James River Basin (JRB) in the Midwestern United States. We assessed responses of water yield, soil water content, groundwater recharge, and nitrate nitrogen (NO 3 –N) load under hypothetical climate-sensitivity scenarios in terms of CO 2 , precipitation, and air temperature. We extended our predictions of the dynamics of these hydrological variables into the mid-21st century with downscaled climate projections integrated across output from six General Circulation Models. Our simulation results compared against the baseline period 1980 to 2009 suggest the JRB hydrological system is highly responsive to rising levels of CO 2 concentration and potential climate change. Under our scenarios, substantial decrease in precipitation and increase in air temperature by the mid-21st century could result in significant reduction in water yield, soil water content, and groundwater recharge. Our model also estimated decreased NO 3 –N load to streams, which could be beneficial, but a concomitant increase in NO 3 –N concentration due to a decrease in streamflow likely would degrade stream water and threaten aquatic ecosystems. These results highlight possible risks of drought, water supply shortage, and water quality degradation in this basin. - Highlights: ► We used a modified version of SWAT to more accurately simulate the effects of CO 2 . ► Our sensitivity analysis indicated this basin is very responsive to climate change. ► Downscaled GCM outputs showed decreased precipitation and increased temperature. ► There may be large

  6. Constraining frequency–magnitude–area relationships for rainfall and flood discharges using radar-derived precipitation estimates: example applications in the Upper and Lower Colorado River basins, USA

    Directory of Open Access Journals (Sweden)

    C. A. Orem

    2016-11-01

    Full Text Available Flood-envelope curves (FECs are useful for constraining the upper limit of possible flood discharges within drainage basins in a particular hydroclimatic region. Their usefulness, however, is limited by their lack of a well-defined recurrence interval. In this study we use radar-derived precipitation estimates to develop an alternative to the FEC method, i.e., the frequency–magnitude–area-curve (FMAC method that incorporates recurrence intervals. The FMAC method is demonstrated in two well-studied US drainage basins, i.e., the Upper and Lower Colorado River basins (UCRB and LCRB, respectively, using Stage III Next-Generation-Radar (NEXRAD gridded products and the diffusion-wave flow-routing algorithm. The FMAC method can be applied worldwide using any radar-derived precipitation estimates. In the FMAC method, idealized basins of similar contributing area are grouped together for frequency–magnitude analysis of precipitation intensity. These data are then routed through the idealized drainage basins of different contributing areas, using contributing-area-specific estimates for channel slope and channel width. Our results show that FMACs of precipitation discharge are power-law functions of contributing area with an average exponent of 0.82 ± 0.06 for recurrence intervals from 10 to 500 years. We compare our FMACs to published FECs and find that for wet antecedent-moisture conditions, the 500-year FMAC of flood discharge in the UCRB is on par with the US FEC for contributing areas of  ∼ 102 to 103 km2. FMACs of flood discharge for the LCRB exceed the published FEC for the LCRB for contributing areas in the range of  ∼ 103 to 104 km2. The FMAC method retains the power of the FEC method for constraining flood hazards in basins that are ungauged or have short flood records, yet it has the added advantage that it includes recurrence-interval information necessary for estimating event probabilities.

  7. Controls on selenium distribution and mobilization in an irrigated shallow groundwater system underlain by Mancos Shale, Uncompahgre River Basin, Colorado, USA

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Taylor J.; Mast, M. Alisa; Thomas, Judith; Keith, Gabrielle

    2016-10-01

    Elevated selenium (Se) concentrations in surface water and groundwater have become a concern in areas of the Western United States due to the deleterious effects of Se on aquatic ecosystems. Elevated Se concentrations are most prevalent in irrigated alluvial valleys underlain by Se-bearing marine shales where Se can be leached from geologic materials into the shallow groundwater and surface water systems. This study presents groundwater chemistry and solid-phase geochemical data from the Uncompahgre River Basin in Western Colorado, an irrigated alluvial landscape underlain by Se-rich Cretaceous marine shale. We analyzed Se species, major and trace elements, and stable nitrogen and oxygen isotopes of nitrate in groundwater and aquifer sediments to examine processes governing selenium release and transport in the shallow groundwater system. Groundwater Se concentrations ranged from below detection limit (< 0.5 μg L{sup −1}) to 4070 μg L{sup −1}, and primarily are controlled by high groundwater nitrate concentrations that maintain oxidizing conditions in the aquifer despite low dissolved oxygen concentrations. High nitrate concentrations in non-irrigated soils and nitrate isotopes indicate nitrate is largely derived from natural sources in the Mancos Shale and alluvial material. Thus, in contrast to areas that receive substantial NO{sub 3} inputs through inorganic fertilizer application, Se mitigation efforts that involve limiting NO{sub 3} application might have little impact on groundwater Se concentrations in the study area. Soluble salts are the primary source of Se to the groundwater system in the study area at-present, but they constitute a small percentage of the total Se content of core material. Sequential extraction results indicate insoluble Se is likely composed of reduced Se in recalcitrant organic matter or discrete selenide phases. Oxidation of reduced Se species that constitute the majority of the Se pool in the study area could be a potential

  8. Predicting impacts of increased CO{sub 2} and climate change on the water cycle and water quality in the semiarid James River Basin of the Midwestern USA

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yiping, E-mail: ywu@usgs.gov [ASRC Research and Technology Solutions, contractor to the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, Sioux Falls, SD 57198 (United States); Liu, Shuguang, E-mail: sliu@usgs.gov [U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, Sioux Falls, SD 57198 (United States); Geographic Information Science Center of Excellence, South Dakota State University, Brookings, SD 57007 (United States); Gallant, Alisa L., E-mail: gallant@usgs.gov [U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, Sioux Falls, SD 57198 (United States); Geographic Information Science Center of Excellence, South Dakota State University, Brookings, SD 57007 (United States)

    2012-07-15

    Emissions of greenhouse gases and aerosols from human activities continue to alter the climate and likely will have significant impacts on the terrestrial hydrological cycle and water quality, especially in arid and semiarid regions. We applied an improved Soil and Water Assessment Tool (SWAT) to evaluate impacts of increased atmospheric CO{sub 2} concentration and potential climate change on the water cycle and nitrogen loads in the semiarid James River Basin (JRB) in the Midwestern United States. We assessed responses of water yield, soil water content, groundwater recharge, and nitrate nitrogen (NO{sub 3}-N) load under hypothetical climate-sensitivity scenarios in terms of CO{sub 2}, precipitation, and air temperature. We extended our predictions of the dynamics of these hydrological variables into the mid-21st century with downscaled climate projections integrated across output from six General Circulation Models. Our simulation results compared against the baseline period 1980 to 2009 suggest the JRB hydrological system is highly responsive to rising levels of CO{sub 2} concentration and potential climate change. Under our scenarios, substantial decrease in precipitation and increase in air temperature by the mid-21st century could result in significant reduction in water yield, soil water content, and groundwater recharge. Our model also estimated decreased NO{sub 3}-N load to streams, which could be beneficial, but a concomitant increase in NO{sub 3}-N concentration due to a decrease in streamflow likely would degrade stream water and threaten aquatic ecosystems. These results highlight possible risks of drought, water supply shortage, and water quality degradation in this basin. - Highlights: Black-Right-Pointing-Pointer We used a modified version of SWAT to more accurately simulate the effects of CO{sub 2}. Black-Right-Pointing-Pointer Our sensitivity analysis indicated this basin is very responsive to climate change. Black

  9. Stratigraphic and microfossil evidence for a 4500-year history of Cascadia subduction zone earthquakes and tsunamis at Yaquina River estuary, Oregon, USA

    Science.gov (United States)

    Graehl, Nicholas A; Kelsey, Harvey M.; Witter, Robert C.; Hemphill-Haley, Eileen; Engelhart, Simon E.

    2015-01-01

    The Sallys Bend swamp and marsh area on the central Oregon coast onshore of the Cascadia subduction zone contains a sequence of buried coastal wetland soils that extends back ∼4500 yr B.P. The upper 10 of the 12 soils are represented in multiple cores. Each soil is abruptly overlain by a sandy deposit and then, in most cases, by greater than 10 cm of mud. For eight of the 10 buried soils, times of soil burial are constrained through radiocarbon ages on fine, delicate detritus from the top of the buried soil; for two of the buried soils, diatom and foraminifera data constrain paleoenvironment at the time of soil burial.We infer that each buried soil represents a Cascadia subduction zone earthquake because the soils are laterally extensive and abruptly overlain by sandy deposits and mud. Preservation of coseismically buried soils occurred from 4500 yr ago until ∼500–600 yr ago, after which preservation was compromised by cessation of gradual relative sea-level rise, which in turn precluded drowning of marsh soils during instances of coseismic subsidence. Based on grain-size and microfossil data, sandy deposits overlying buried soils accumulated immediately after a subduction zone earthquake, during tsunami incursion into Sallys Bend. The possibility that the sandy deposits were sourced directly from landslides triggered upstream in the Yaquina River basin by seismic shaking was discounted based on sedimentologic, microfossil, and depositional site characteristics of the sandy deposits, which were inconsistent with a fluvial origin. Biostratigraphic analyses of sediment above two buried soils—in the case of two earthquakes, one occurring shortly after 1541–1708 cal. yr B.P. and the other occurring shortly after 3227–3444 cal. yr B.P.—provide estimates that coseismic subsidence was a minimum of 0.4 m. The average recurrence interval of subduction zone earthquakes is 420–580 yr, based on an ∼3750–4050-yr-long record and seven to nine interearthquake

  10. Bridge Scour Monitoring Methods at Three Sites in Wisconsin

    National Research Council Canada - National Science Library

    Walker, John F; Hughes, Peter E

    2005-01-01

    .... Geological Survey, in cooperation with the Wisconsin Department of Transportation, the Marathon County Highway Department, and the Jefferson County Highway Department, performed routine monitoring...

  11. Growth of plutons by incremental emplacement of sheets in crystal-rich host: Evidence from Miocene intrusions of the Colorado River region, Nevada, USA

    Science.gov (United States)

    Miller, C.F.; Furbish, D.J.; Walker, B.A.; Claiborne, L.L.; Koteas, G.C.; Bleick, H.A.; Miller, J.S.

    2011-01-01

    Growing evidence supports the notion that plutons are constructed incrementally, commonly over long periods of time, yet field evidence for the multiple injections that seem to be required is commonly sparse or absent. Timescales of up to several million years, among other arguments, indicate that the dominant volume does not remain largely molten, yet if growing plutons are constructed from rapidly solidifying increments it is unlikely that intrusive contacts would escape notice. A model wherein magma increments are emplaced into melt-bearing but crystal-rich host, rather than either solid or crystal-poor material, provides a plausible explanation for this apparent conundrum. A partially solidified intrusion undoubtedly comprises zones with contrasting melt fraction and therefore strength. Depending on whether these zones behave elastically or ductilely in response to dike emplacement, intruding magma may spread to form sheets by either of two mechanisms. If the melt-bearing host is elastic on the relevant timescale, magma spreads rather than continuing to propagate upward, where it encounters a zone of higher rigidity (higher crystal fraction). Similarly, if the dike at first ascends through rigid, melt-poor material and then encounters a zone that is weak enough (poor enough in crystals) to respond ductilely, the ascending material will also spread because the dike tip ceases to propagate as in rigid material. We propose that ascending magma is thus in essence trapped, by either mechanism, within relatively crystal-poor zones. Contacts will commonly be obscure from the start because the contrast between intruding material (crystal-poorer magma) and host (crystal-richer material) is subtle, and they may be obscured even further by subsequent destabilization of the crystal-melt framework. Field evidence and zircon zoning stratigraphy in plutons of the Colorado River region of southern Nevada support the hypothesis that emplacement of magma replenishments into a

  12. [Proceedings of the 5th Symposium on Mesozoic and Cenozoic Decapod Crustaceans, Krakow, Poland, 2013: A tribute to Pál Mihály Müller / R.H.B. Fraaije, M. Hyžný, J.W.M. Jagt, M. Krobicki & B.W.M. van Bakel (eds.)]: Neozanthopsis americana (Decapoda, Brachyura, Carpilioidea) from the Middle Eocene Cane River Formation of Louisiana, USA, and associated teleost otoliths

    NARCIS (Netherlands)

    Schweitzer, C.E.; Feldmann, R.M.; Stringer, G.L.

    2014-01-01

    A large collection of Neozanthopsis americana (Rathbun, 1928) from the Middle Eocene (Lutetian) Cane River Formation in Louisiana, USA, represents the first opportunity to describe the species in detail. Detailed analysis of associated teleost otoliths and other vertebrate remains documents a

  13. Flood-frequency characteristics of Wisconsin streams

    Science.gov (United States)

    Walker, John F.; Peppler, Marie C.; Danz, Mari E.; Hubbard, Laura E.

    2017-05-22

    Flood-frequency characteristics for 360 gaged sites on unregulated rural streams in Wisconsin are presented for percent annual exceedance probabilities ranging from 0.2 to 50 using a statewide skewness map developed for this report. Equations of the relations between flood-frequency and drainage-basin characteristics were developed by multiple-regression analyses. Flood-frequency characteristics for ungaged sites on unregulated, rural streams can be estimated by use of the equations presented in this report. The State was divided into eight areas of similar physiographic characteristics. The most significant basin characteristics are drainage area, soil saturated hydraulic conductivity, main-channel slope, and several land-use variables. The standard error of prediction for the equation for the 1-percent annual exceedance probability flood ranges from 56 to 70 percent for Wisconsin Streams; these values are larger than results presented in previous reports. The increase in the standard error of prediction is likely due to increased variability of the annual-peak discharges, resulting in increased variability in the magnitude of flood peaks at higher frequencies. For each of the unregulated rural streamflow-gaging stations, a weighted estimate based on the at-site log Pearson type III analysis and the multiple regression results was determined. The weighted estimate generally has a lower uncertainty than either the Log Pearson type III or multiple regression estimates. For regulated streams, a graphical method for estimating flood-frequency characteristics was developed from the relations of discharge and drainage area for selected annual exceedance probabilities. Graphs for the major regulated streams in Wisconsin are presented in the report.

  14. Pulmonary Blastomycosis in Vilas County, Wisconsin: Weather, Exposures and Symptoms

    Directory of Open Access Journals (Sweden)

    Dennis J. Baumgardner

    2015-01-01

    Full Text Available Purpose: Blastomycosis is a serious fungal infection contracted by inhalation of Blastomyces spores from the environment. Case occurrence in dogs in Vilas County, Wisconsin, has been associated with antecedent weather. We aimed to explore the effects of weather on the occurrence of human pulmonary blastomycosis in this area, and update exposure factors and symptoms since last published reports. Methods: Mandatory case reports were reviewed. Chi-square test was used for categorical data of exposures, comparing 1979–1996 (n=101 versus 1997–June 2013 (n=95. Linear regression was used to model local weather data (available 1990–2013; n=126; Southern Oscillation Index (SOI, North Atlantic Oscillation Index (NAOI, and Wisconsin River water discharge (WRD from the adjacent county (all available for 1984–2013; n=174; and case counts of known onset by warm (April–September and cold (October–March 6-month periods. Results: Distribution of pulmonary blastomycosis cases did not vary by season. Environmental exposures for the 1997–June 2013 group (mean age 45, 59% male were: residence(76%, excavation (42% and gardening (31%, all similar to the 1979–1996 group. Fishing (23% vs. 37%; P=0.09 and hunting (15% vs. 26%; P=0.13 exposures were less common in 1997–June 2013, but not significantly different. Overall, 69% of cases recalled some prior soil-disturbing activities. Considering the 6-month warm/cold periods, 19% of variation is explained by a direct relationship with total precipitation from two periods prior (P=0.005. There was no association of case occurrence with SOI, NAOI or WRD. Estimated annual incidence of blastomycosis for 1997–June 2013 was 27/100,000 compared with 44/100,000 for 1984–1996. Several symptoms were significantly less frequent in 2002–June 2013 compared to earlier years. Conclusions: As with dogs, human pulmonary blastomycosis occurrence is partially determined by antecedent precipitation. It is unclear if

  15. The Wisconsin Test of Adult Basic Education (WITABE).

    Science.gov (United States)

    Pandey, Tej N.; Cleary, T. Anne

    A description is given of "The Wisconsin Test of Adult Basic Education (WITABE)" which was developed specifically to measure the achievement of the individuals enrolled in the Rural Family Development (RGD) program at the University Extension, University of Wisconsin. The test is divided into three main parts or subtests: subtests 1 and…

  16. Wisconsin Maternity Leave and Fringe Benefits: Policies, Practices and Problems.

    Science.gov (United States)

    Gerner, Jennifer

    The study examines the economic implications in Wisconsin of the 1972 Equal Employment Opportunity Commission guideline which requires employers to treat maternity leave as a temporary disability. First, the static cost of the maternity leave guideline to employers is estimated for the State of Wisconsin. Second, some examination of the economic…

  17. Environmental Education in Wisconsin: What the Textbooks Teach.

    Science.gov (United States)

    Sanera, Michael

    1996-01-01

    This report contains a study done at the request of the Wisconsin Policy Research Institute, which studies public policy issues affecting the state of Wisconsin. Environmental education texts for Grades 6 through 10 were examined for scientific and economic accuracy, objectivity, and balance in accomplishing the following: 1) stating facts that…

  18. Wisconsin EE Mandates: The Bad News and the Good News.

    Science.gov (United States)

    Lane, Jennie; And Others

    1996-01-01

    Examines Wisconsin teachers' perceived competencies in, attitudes toward, and amount of class time devoted to teaching about the environment. Discusses the effects of Wisconsin environmental education mandates concerning preservice preparation in environmental education and K-12 environmental education curriculum plans. Identifies areas where the…

  19. Progress toward the Wisconsin Free Electron Laser

    International Nuclear Information System (INIS)

    Bisognano, Joseph; Bosch, R.A.; Eisert, D.; Fisher, M.V.; Green, M.A.; Jacobs, K.; Kleman, K.J.; Kulpin, J.; Rogers, G.C.; Lawler, J.E.; Yavuz, D.; Legg, R.

    2011-01-01

    The University of Wisconsin-Madison/Synchrotron Radiation Center is advancing its design for a seeded VUV/soft X-ray Free Electron Laser facility called WiFEL. To support this vision of an ultimate light source, we are pursuing a program of strategic R and D addressing several crucial elements. This includes development of a high repetition rate, VHF superconducting RF electron gun, R and D on photocathode materials by ARPES studies, and evaluation of FEL facility architectures (e.g., recirculation, compressor scenarios, CSR dechirping, undulator technologies) with the specific goal of cost containment. Studies of high harmonic generation for laser seeding are also planned.