WorldWideScience

Sample records for wireless traffic sensing

  1. FeltRadio: Sensing and Making Sense of Wireless Traffic

    DEFF Research Database (Denmark)

    Gronvall, Erik; Fritsch, Jonas; Vallgårda, Anna

    2016-01-01

    that makes it possible to turn radio signals into visual and tactile stimuli as a form of sensorial augmentation. FeltRadio explores and makes us reflect upon what it would be like if we could sense, and feel, wireless traffic such as WiFi or Bluetooth. We present the technological design behind Felt......Radio and the outcome of two exploratory studies with the technology focused on people's experience of being able to suddenly sense and make sense of wireless traffic. We discuss the possible qualities of this embodied experience of FeltRadio and point to future experiments with the technology....

  2. A wireless computational platform for distributed computing based traffic monitoring involving mixed Eulerian-Lagrangian sensing

    KAUST Repository

    Jiang, Jiming

    2013-06-01

    This paper presents a new wireless platform designed for an integrated traffic monitoring system based on combined Lagrangian (mobile) and Eulerian (fixed) sensing. The sensor platform is built around a 32-bit ARM Cortex M4 micro-controller and a 2.4GHz 802.15.4 ISM compliant radio module, and can be interfaced with fixed traffic sensors, or receive data from vehicle transponders. The platform is specially designed and optimized to be integrated in a solar-powered wireless sensor network in which traffic flow maps are computed by the nodes directly using distributed computing. A MPPT circuitry is proposed to increase the power output of the attached solar panel. A self-recovering unit is designed to increase reliability and allow periodic hard resets, an essential requirement for sensor networks. A radio monitoring circuitry is proposed to monitor incoming and outgoing transmissions, simplifying software debug. An ongoing implementation is briefly discussed, and compared with existing platforms used in wireless sensor networks. © 2013 IEEE.

  3. Sensing Traffic Density Combining V2V and V2I Wireless Communications.

    Science.gov (United States)

    Sanguesa, Julio A; Barrachina, Javier; Fogue, Manuel; Garrido, Piedad; Martinez, Francisco J; Cano, Juan-Carlos; Calafate, Carlos T; Manzoni, Pietro

    2015-12-16

    Wireless technologies are making the development of new applications and services in vehicular environments possible since they enable mobile communication between vehicles (V2V), as well as communication between vehicles and infrastructure nodes (V2I). Usually, V2V communications are dedicated to the transmission of small messages mainly focused on improving traffic safety. Instead, V2I communications allow users to access the Internet and benefit from higher level applications. The combination of both V2V and V2I, known as V2X communications, can increase the benefits even further, thereby making intelligent transportation systems (ITS) a reality. In this paper, we introduce V2X-d, a novel architecture specially designed to estimate traffic density on the road. In particular, V2X-d exploits the combination of V2V and V2I communications. Our approach is based on the information gathered by sensors (i.e., vehicles and road side units (RSUs)) and the characteristics of the roadmap topology to accurately make an estimation of the instant vehicle density. The combination of both mechanisms improves the accuracy and coverage area of the data gathered, while increasing the robustness and fault tolerance of the overall approach, e.g., using the information offered by V2V communications to provide additional density information in areas where RSUs are scarce or malfunctioning. By using our collaborative sensing scheme, future ITS solutions will be able to establish adequate dissemination protocols or to apply more efficient traffic congestion reduction policies, since they will be aware of the instantaneous density of vehicles.

  4. Sensing Traffic Density Combining V2V and V2I Wireless Communications

    Directory of Open Access Journals (Sweden)

    Julio A. Sanguesa

    2015-12-01

    Full Text Available Wireless technologies are making the development of new applications and services in vehicular environments possible since they enable mobile communication between vehicles (V2V, as well as communication between vehicles and infrastructure nodes (V2I. Usually, V2V communications are dedicated to the transmission of small messages mainly focused on improving traffic safety. Instead, V2I communications allow users to access the Internet and benefit from higher level applications. The combination of both V2V and V2I, known as V2X communications, can increase the benefits even further, thereby making intelligent transportation systems (ITS a reality. In this paper, we introduce V2X-d, a novel architecture specially designed to estimate traffic density on the road. In particular, V2X-d exploits the combination of V2V and V2I communications. Our approach is based on the information gathered by sensors (i.e., vehicles and road side units (RSUs and the characteristics of the roadmap topology to accurately make an estimation of the instant vehicle density. The combination of both mechanisms improves the accuracy and coverage area of the data gathered, while increasing the robustness and fault tolerance of the overall approach, e.g., using the information offered by V2V communications to provide additional density information in areas where RSUs are scarce or malfunctioning. By using our collaborative sensing scheme, future ITS solutions will be able to establish adequate dissemination protocols or to apply more efficient traffic congestion reduction policies, since they will be aware of the instantaneous density of vehicles.

  5. Network Traffic Prediction Based on Deep Belief Network and Spatiotemporal Compressive Sensing in Wireless Mesh Backbone Networks

    Directory of Open Access Journals (Sweden)

    Laisen Nie

    2018-01-01

    Full Text Available Wireless mesh network is prevalent for providing a decentralized access for users and other intelligent devices. Meanwhile, it can be employed as the infrastructure of the last few miles connectivity for various network applications, for example, Internet of Things (IoT and mobile networks. For a wireless mesh backbone network, it has obtained extensive attention because of its large capacity and low cost. Network traffic prediction is important for network planning and routing configurations that are implemented to improve the quality of service for users. This paper proposes a network traffic prediction method based on a deep learning architecture and the Spatiotemporal Compressive Sensing method. The proposed method first adopts discrete wavelet transform to extract the low-pass component of network traffic that describes the long-range dependence of itself. Then, a prediction model is built by learning a deep architecture based on the deep belief network from the extracted low-pass component. Otherwise, for the remaining high-pass component that expresses the gusty and irregular fluctuations of network traffic, the Spatiotemporal Compressive Sensing method is adopted to predict it. Based on the predictors of two components, we can obtain a predictor of network traffic. From the simulation, the proposed prediction method outperforms three existing methods.

  6. Traffic data collection and anonymous vehicle detection using wireless sensor networks.

    Science.gov (United States)

    2012-05-01

    New traffic sensing devices based on wireless sensing technologies were designed and tested. Such devices encompass a cost-effective, battery-free, and energy self-sustained architecture for real-time traffic measurement over distributed points in a ...

  7. Wireless traffic steering for green cellular networks

    CERN Document Server

    Zhang, Shan; Zhou, Sheng; Niu, Zhisheng; Shen, Xuemin (Sherman)

    2016-01-01

    This book introduces wireless traffic steering as a paradigm to realize green communication in multi-tier heterogeneous cellular networks. By matching network resources and dynamic mobile traffic demand, traffic steering helps to reduce on-grid power consumption with on-demand services provided. This book reviews existing solutions from the perspectives of energy consumption reduction and renewable energy harvesting. Specifically, it explains how traffic steering can improve energy efficiency through intelligent traffic-resource matching. Several promising traffic steering approaches for dynamic network planning and renewable energy demand-supply balancing are discussed. This book presents an energy-aware traffic steering method for networks with energy harvesting, which optimizes the traffic allocated to each cell based on the renewable energy status. Renewable energy demand-supply balancing is a key factor in energy dynamics, aimed at enhancing renewable energy sustainability to reduce on-grid energy consum...

  8. Wireless Damage Location Sensing System

    Science.gov (United States)

    Woodard, Stanley E. (Inventor); Taylor, Bryant Douglas (Inventor)

    2012-01-01

    A wireless damage location sensing system uses a geometric-patterned wireless sensor that resonates in the presence of a time-varying magnetic field to generate a harmonic response that will experience a change when the sensor experiences a change in its geometric pattern. The sensing system also includes a magnetic field response recorder for wirelessly transmitting the time-varying magnetic field and for wirelessly detecting the harmonic response. The sensing system compares the actual harmonic response to a plurality of predetermined harmonic responses. Each predetermined harmonic response is associated with a severing of the sensor at a corresponding known location thereof so that a match between the actual harmonic response and one of the predetermined harmonic responses defines the known location of the severing that is associated therewith.

  9. Proposal of Wireless Traffic Control Schemes for Wireless LANs

    Science.gov (United States)

    Hiraguri, Takefumi; Ichikawa, Takeo; Iizuka, Masataka; Kubota, Shuji

    This paper proposes two traffic control schemes to support the communication quality of multimedia streaming services such as VoIP and audio/video over IEEE 802.11 wireless LAN systems. The main features of the proposed scheme are bandwidth control for each flow of the multimedia streaming service and load balancing between access points (APs) of the wireless LAN by using information of data link, network and transport layers. The proposed schemes are implemented on a Linux machine which is called the wireless traffic controller (WTC). The WTC connects a high capacity backbone network and an access network to which the APs are attached. We evaluated the performance of the proposed WTC and confirmed that the communication quality of the multimedia streaming would be greatly improved by using this technique.

  10. Flood and Traffic Wireless Monitoring System for Smart Cities

    KAUST Repository

    Moussa, Mustafa

    2016-10-01

    The convergence of computation, communication and sensing has led to the emergence of Wireless Sensor Networks (WSNs), which allow distributed monitoring of physical phenomena over extended areas. In this thesis, we focus on a dual flood and traffic flow WSN applicable to urban environments. This fixed sensing system is based on the combination of ultrasonic range-finding with remote temperature sensing, and can sense both phenomena with a high degree of accuracy. This enables the monitoring of urban areas to lessen the impact of catastrophic flood events, by monitoring flood parameters and traffic flow to enable public evacuation and early warning, allocate the resources efficiently or control the traffic to make cities more productive and smarter. We present an implementation of the device, and illustrate its performance in water level estimation and rain detection using a novel combination of L1 regularized reconstruction and machine learning algorithms on a 6-month dataset involving four different sensors. Our results show that water level can be estimated with an uncertainty of 1 cm using a combination of thermal sensing and ultrasonic distance measurements. The demonstration of the performance included the detection of an actual flash flood event using two sensors located in Umm Al Qura University (Mecca). Finally, we show that Lagrangian (mobile) sensors can be used to inexpensively increase the performance of the system with respect to traffic sensing. These sensors are based on Inertial Measurement Units (IMUs), which have never been investigated in the context of traffic ow monitoring before. We investigate the divergence of the speed estimation process, the lack of the calibration parameters of the system, and the problem of reconstructing vehicle trajectories evolving in a given transportation network. To address these problems, we propose an automatic calibration algorithm applicable to IMU-equipped ground vehicles, and an L1 regularized least squares

  11. Thermoelectric Powered High Temperature Wireless Sensing

    Science.gov (United States)

    Kucukkomurler, Ahmet

    This study describes use of a thermoelectric power converter to transform waste heat into electrical energy to power an RF receiver and transmitter, for use in harsh environment wireless temperature sensing and telemetry. The sensing and transmitting module employs a DS-1820 low power digital temperature sensor to perform temperature to voltage conversion, an ATX-34 RF transmitter, an ARX-34 RF receiver module, and a PIC16f84A microcontroller to synchronize data communication between them. The unit has been tested in a laboratory environment, and promising results have been obtained for an actual automotive wireless under hood temperature sensing and telemetry implementation.

  12. Traffic Profiling in Wireless Sensor Networks

    National Research Council Canada - National Science Library

    Kirykos, Georgios

    2006-01-01

    .... Wireless sensor networks pose unique challenges and limitations to the traditional schemes, which are used in the other wireless networks for security protection, and are due mainly to the increased...

  13. Wireless Sensing Opportunities for Aerospace Applications

    Directory of Open Access Journals (Sweden)

    William Wilson

    2008-07-01

    Full Text Available Wireless sensors and sensor networks is an emerging technology area with many applications within the aerospace industry. Integrated vehicle health monitoring (IVHM of aerospace vehicles is needed to ensure the safety of the crew and the vehicle, yet often high costs, weight, size and other constraints prevent the incorporation of instrumentation onto spacecraft. This paper presents a few of the areas such as IVHM, where new wireless sensing technology is needed on both existing vehicles as well as future spacecraft. From ground tests to inflatable structures to the International Space Station, many applications could receive benefits from small, low power, wireless sensors. This paper also highlights some of the challenges that need to overcome when implementing wireless sensor networks for aerospace vehicles.

  14. Mobile Crowd Sensing for Traffic Prediction in Internet of Vehicles.

    Science.gov (United States)

    Wan, Jiafu; Liu, Jianqi; Shao, Zehui; Vasilakos, Athanasios V; Imran, Muhammad; Zhou, Keliang

    2016-01-11

    The advances in wireless communication techniques, mobile cloud computing, automotive and intelligent terminal technology are driving the evolution of vehicle ad hoc networks into the Internet of Vehicles (IoV) paradigm. This leads to a change in the vehicle routing problem from a calculation based on static data towards real-time traffic prediction. In this paper, we first address the taxonomy of cloud-assisted IoV from the viewpoint of the service relationship between cloud computing and IoV. Then, we review the traditional traffic prediction approached used by both Vehicle to Infrastructure (V2I) and Vehicle to Vehicle (V2V) communications. On this basis, we propose a mobile crowd sensing technology to support the creation of dynamic route choices for drivers wishing to avoid congestion. Experiments were carried out to verify the proposed approaches. Finally, we discuss the outlook of reliable traffic prediction.

  15. Analysis of Wireless Traffic Data through Machine Learning

    Directory of Open Access Journals (Sweden)

    Muhammad Ahsan Latif

    2017-06-01

    Full Text Available The paper presents an analytical study on a wireless traffic dataset carried out under the different approaches of machine learning including the backpropagation feedforward neural network, the time-series NARX network, the self-organizing map and the principal component analyses. These approaches are well-known for their usefulness in the modeling and in transforming a high dimensional data into a more convenient form to make the understanding and the analysis of the trends, the patterns within the data easy. We witness to an exponential rise in the volume of the wireless traffic data in the recent decade and it is increasingly becoming a problem for the service providers to ensure the QoS for the end-users given the limited resources as the demand for a larger bandwidth almost always exist. The inception of the next generation wireless networks (3G/4G somehow provide such services to meet the amplified capacity, higher data rates, seamless mobile connectivity as well as the dynamic ability of reconfiguration and the self-organization. Nevertheless, having an intelligent base-station able to perceive the demand well before the actual need may assist in the management of the traffic data. The outcome of the analysis conducted in this paper may be considered in designing an efficient and an intelligent base-station for better resource management for wireless network traffic.

  16. INTELLIGENT TRAFFIC-SAFETY MIRROR BY USING WIRELESS SENSOR NETWORK

    Directory of Open Access Journals (Sweden)

    Peter Danišovič

    2014-03-01

    Full Text Available This article is focused on the problematic of traffic safety, dealing with the problem of car intersections with blocked view crossing by a special wireless sensor network (WSN proposed for the traffic monitoring, concretely for vehicle’s detection at places, where it is necessary. Some ultra-low-power TI products were developed due to this reason: microcontroller MSP430F2232, 868MHz RF transceiver CC1101 and LDO voltage regulator TPS7033. The WSN consist of four network nodes supplied with the special safety lightings which serve the function of intelligent traffic safety mirror.

  17. Improving Performance in Dense Wireless Spaces by Controlling Bulk Traffic

    Directory of Open Access Journals (Sweden)

    Marat Zhanikeev

    2017-01-01

    Full Text Available The growing number of wireless devices nowadays often results in congestion of wireless channels. In research, this topic is referred to as networking in dense wireless spaces. The literature on the topic shows that the biggest problem is the high number of concurrent sessions to a wireless access point. The obvious solution is to reduce the number of concurrent sessions. This paper proposes a simple method called Bulk-n-Pick which minimizes the number of prolonged concurrent sessions by separating bulk from sync traffic. Aiming at educational applications, under the proposed design, web applications would distribute the main bulk of content once at the beginning of a class and then rely on small messages for real time sync traffic during the class. For realistic performance analysis, this paper first performs real-life experiments with various counts of wireless devices, bulk sizes, and levels of sync intensity. Based on the experiments, this paper shows that the proposed Bulk-n-Pick method outperforms the traditional design even when only two concurrent bulk sessions are allowed. The experiment shows that up to 10 concurrent bulk sessions are feasible in practice. Based on these results, a method for online performance optimization is proposed and validated in a trace-based emulation.

  18. Intelligent Control in Automation Based on Wireless Traffic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kurt Derr; Milos Manic

    2007-08-01

    Wireless technology is a central component of many factory automation infrastructures in both the commercial and government sectors, providing connectivity among various components in industrial realms (distributed sensors, machines, mobile process controllers). However wireless technologies provide more threats to computer security than wired environments. The advantageous features of Bluetooth technology resulted in Bluetooth units shipments climbing to five million per week at the end of 2005 [1, 2]. This is why the real-time interpretation and understanding of Bluetooth traffic behavior is critical in both maintaining the integrity of computer systems and increasing the efficient use of this technology in control type applications. Although neuro-fuzzy approaches have been applied to wireless 802.11 behavior analysis in the past, a significantly different Bluetooth protocol framework has not been extensively explored using this technology. This paper presents a new neurofuzzy traffic analysis algorithm of this still new territory of Bluetooth traffic. Further enhancements of this algorithm are presented along with the comparison against the traditional, numerical approach. Through test examples, interesting Bluetooth traffic behavior characteristics were captured, and the comparative elegance of this computationally inexpensive approach was demonstrated. This analysis can be used to provide directions for future development and use of this prevailing technology in various control type applications, as well as making the use of it more secure.

  19. Intelligent Control in Automation Based on Wireless Traffic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kurt Derr; Milos Manic

    2007-09-01

    Wireless technology is a central component of many factory automation infrastructures in both the commercial and government sectors, providing connectivity among various components in industrial realms (distributed sensors, machines, mobile process controllers). However wireless technologies provide more threats to computer security than wired environments. The advantageous features of Bluetooth technology resulted in Bluetooth units shipments climbing to five million per week at the end of 2005 [1, 2]. This is why the real-time interpretation and understanding of Bluetooth traffic behavior is critical in both maintaining the integrity of computer systems and increasing the efficient use of this technology in control type applications. Although neuro-fuzzy approaches have been applied to wireless 802.11 behavior analysis in the past, a significantly different Bluetooth protocol framework has not been extensively explored using this technology. This paper presents a new neurofuzzy traffic analysis algorithm of this still new territory of Bluetooth traffic. Further enhancements of this algorithm are presented along with the comparison against the traditional, numerical approach. Through test examples, interesting Bluetooth traffic behavior characteristics were captured, and the comparative elegance of this computationally inexpensive approach was demonstrated. This analysis can be used to provide directions for future development and use of this prevailing technology in various control type applications, as well as making the use of it more secure.

  20. Traffic Engineering of Cellular Wireless Communication Systems

    DEFF Research Database (Denmark)

    Iversen, Villy Bæk

    2002-01-01

    In mobile communications an efficient utilisation of the channels is of great importance. In this paper we describe the basic principles for obtaining the maximum utilisation and study strategies for obtaining these limits. In general a high degree of sharing is efficient, but requires service...... arrival processes, and multi-rate (multi-media) traffic for third generation systems....

  1. Energy-efficient digital and wireless IC design for wireless smart sensing

    Science.gov (United States)

    Zhou, Jun; Huang, Xiongchuan; Wang, Chao; Tae-Hyoung Kim, Tony; Lian, Yong

    2017-10-01

    Wireless smart sensing is now widely used in various applications such as health monitoring and structural monitoring. In conventional wireless sensor nodes, significant power is consumed in wirelessly transmitting the raw data. Smart sensing adds local intelligence to the sensor node and reduces the amount of wireless data transmission via on-node digital signal processing. While the total power consumption is reduced compared to conventional wireless sensing, the power consumption of the digital processing becomes as dominant as wireless data transmission. This paper reviews the state-of-the-art energy-efficient digital and wireless IC design techniques for reducing the power consumption of the wireless smart sensor node to prolong battery life and enable self-powered applications.

  2. Occupant traffic estimation through structural vibration sensing

    Science.gov (United States)

    Pan, Shijia; Mirshekari, Mostafa; Zhang, Pei; Noh, Hae Young

    2016-04-01

    The number of people passing through different indoor areas is useful in various smart structure applications, including occupancy-based building energy/space management, marketing research, security, etc. Existing approaches to estimate occupant traffic include vision-, sound-, and radio-based (mobile) sensing methods, which have placement limitations (e.g., requirement of line-of-sight, quiet environment, carrying a device all the time). Such limitations make these direct sensing approaches difficult to deploy and maintain. An indirect approach using geophones to measure floor vibration induced by footsteps can be utilized. However, the main challenge lies in distinguishing multiple simultaneous walkers by developing features that can effectively represent the number of mixed signals and characterize the selected features under different traffic conditions. This paper presents a method to monitor multiple persons. Once the vibration signals are obtained, features are extracted to describe the overlapping vibration signals induced by multiple footsteps, which are used for occupancy traffic estimation. In particular, we focus on analysis of the efficiency and limitations of the four selected key features when used for estimating various traffic conditions. We characterize these features with signals collected from controlled impulse load tests as well as from multiple people walking through a real-world sensing area. In our experiments, the system achieves the mean estimation error of +/-0.2 people for different occupant traffic conditions (from one to four) using k-nearest neighbor classifier.

  3. Design of Optical Wireless Networks with Fair Traffic Flows

    Directory of Open Access Journals (Sweden)

    Artur Tomaszewski

    2014-01-01

    Full Text Available The paper presents a method for optimising the wireless optical network that carries elastic packet traffic. The particular focus is on modelling the effect of elastic traffic flows slowing down in response to the decrease of the optical transmission systems’ capacity at bad weather conditions. A mathematical programming model of the network design problem is presented that assumes that the packet rates of elastic traffic flows decrease fairly. While practically any subset of network links can be simultaneously affected by unfavourable transmission conditions, a particular challenge of solving the problem results from a huge number of network states considered in the model. Therefore, how the problem can be solved by generating the most unfavourable network states is presented. Moreover, it is proved that it is entirely sufficient to consider only the states that correspond to the decrease of capacity on a single link. Finally, as the general problem is nonlinear, it is shown that the problem can be transformed to a linear MIP problem and solved effectively when single-path routing of traffic flows is assumed.

  4. Final Scientific Report - Wireless and Sensing Solutions Advancing Industrial Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Budampati, Rama; McBrady, Adam; Nusseibeh, Fouad

    2009-09-28

    The project team's goal for the Wireless and Sensing Solution Advancing Industrial Efficiency award (DE-FC36-04GO14002) was to develop, demonstrate, and test a number of leading edge technologies that could enable the emergence of wireless sensor and sampling systems for the industrial market space. This effort combined initiatives in advanced sensor development, configurable sampling and deployment platforms, and robust wireless communications to address critical obstacles in enabling enhanced industrial efficiency.

  5. Performance analysis of wireless sensor networks in geophysical sensing applications

    Science.gov (United States)

    Uligere Narasimhamurthy, Adithya

    Performance is an important criteria to consider before switching from a wired network to a wireless sensing network. Performance is especially important in geophysical sensing where the quality of the sensing system is measured by the precision of the acquired signal. Can a wireless sensing network maintain the same reliability and quality metrics that a wired system provides? Our work focuses on evaluating the wireless GeoMote sensor motes that were developed by previous computer science graduate students at Mines. Specifically, we conducted a set of experiments, namely WalkAway and Linear Array experiments, to characterize the performance of the wireless motes. The motes were also equipped with the Sticking Heartbeat Aperture Resynchronization Protocol (SHARP), a time synchronization protocol developed by a previous computer science graduate student at Mines. This protocol should automatically synchronize the mote's internal clocks and reduce time synchronization errors. We also collected passive data to evaluate the response of GeoMotes to various frequency components associated with the seismic waves. With the data collected from these experiments, we evaluated the performance of the SHARP protocol and compared the performance of our GeoMote wireless system against the industry standard wired seismograph system (Geometric-Geode). Using arrival time analysis and seismic velocity calculations, we set out to answer the following question. Can our wireless sensing system (GeoMotes) perform similarly to a traditional wired system in a realistic scenario?

  6. Compressive sensing based data collection in wireless sensor networks

    NARCIS (Netherlands)

    Masoum, Alireza; Meratnia, Nirvana; Havinga, Paul J.M.

    2017-01-01

    Compressive sensing originates in the field of signal processing and has recently become a topic of energy-efficient data gathering in wireless sensor networks. In this paper, we introduce a distributed compressive sensing approach, which utilizes spatial correlation among sensor nodes to group them

  7. Wireless Sensor Networks Data Processing Summary Based on Compressive Sensing

    Directory of Open Access Journals (Sweden)

    Caiyun Huang

    2014-07-01

    Full Text Available As a newly proposed theory, compressive sensing (CS is commonly used in signal processing area. This paper investigates the applications of compressed sensing (CS in wireless sensor networks (WSNs. First, the development and research status of compressed sensing technology and wireless sensor networks are described, then a detailed investigation of WSNs research based on CS are conducted from aspects of data fusion, signal acquisition, signal routing transmission, and signal reconstruction. At the end of the paper, we conclude our survey and point out the possible future research directions.

  8. Low-profile wireless passive resonators for sensing

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xun; An, Linan

    2017-04-04

    A resonator for sensing a physical or an environmental parameter includes a support having a top surface that provides a ground plane, and a polymer-derived ceramic (PDC) element positioned on the top surface including a PDC layer, and a metal patch on the PDC layer. The metal patch is electrically isolated from all surrounding structure, and the resonator has a resonant frequency that changes as a function of the physical or environmental parameter. A system for wirelessly sensing a physical or environmental parameter includes at least one resonator and a wireless RF reader located remotely from the resonator for transmitting a wide-band RF interrogation signal that excites the resonator. The wireless RF reader detects a sensing signal retransmitted by the resonator and includes a processor for determining the physical or environmental parameter at the location of the resonator from the sensing signal.

  9. Compressed Sensing Based Fingerprint Identification for Wireless Transmitters

    Directory of Open Access Journals (Sweden)

    Caidan Zhao

    2014-01-01

    Full Text Available Most of the existing fingerprint identification techniques are unable to distinguish different wireless transmitters, whose emitted signals are highly attenuated, long-distance propagating, and of strong similarity to their transient waveforms. Therefore, this paper proposes a new method to identify different wireless transmitters based on compressed sensing. A data acquisition system is designed to capture the wireless transmitter signals. Complex analytical wavelet transform is used to obtain the envelope of the transient signal, and the corresponding features are extracted by using the compressed sensing theory. Feature selection utilizing minimum redundancy maximum relevance (mRMR is employed to obtain the optimal feature subsets for identification. The results show that the proposed method is more efficient for the identification of wireless transmitters with similar transient waveforms.

  10. Macroscopic Traffic State Estimation: Understanding Traffic Sensing Data-Based Estimation Errors

    Directory of Open Access Journals (Sweden)

    Paul B. C. van Erp

    2017-01-01

    Full Text Available Traffic state estimation is a crucial element in traffic management systems and in providing traffic information to road users. In this article, we evaluate traffic sensing data-based estimation error characteristics in macroscopic traffic state estimation. We consider two types of sensing data, that is, loop-detector data and probe speed data. These data are used to estimate the mean speed in a discrete space-time mesh. We assume that there are no errors in the sensing data. This allows us to study the errors resulting from the differences in characteristics between the sensing data and desired estimate together with the incomplete description of the relation between the two. The aim of the study is to evaluate the dependency of this estimation error on the traffic conditions and sensing data characteristics. For this purpose, we use microscopic traffic simulation, where we compare the estimates with the ground truth using Edie’s definitions. The study exposes a relation between the error distribution characteristics and traffic conditions. Furthermore, we find that it is important to account for the correlation between individual probe data-based estimation errors. Knowledge related to these estimation errors contributes to making better use of the available sensing data in traffic state estimation.

  11. Traffic Congestion Evaluation and Signal Control Optimization Based on Wireless Sensor Networks: Model and Algorithms

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2012-01-01

    Full Text Available This paper presents the model and algorithms for traffic flow data monitoring and optimal traffic light control based on wireless sensor networks. Given the scenario that sensor nodes are sparsely deployed along the segments between signalized intersections, an analytical model is built using continuum traffic equation and develops the method to estimate traffic parameter with the scattered sensor data. Based on the traffic data and principle of traffic congestion formation, we introduce the congestion factor which can be used to evaluate the real-time traffic congestion status along the segment and to predict the subcritical state of traffic jams. The result is expected to support the timing phase optimization of traffic light control for the purpose of avoiding traffic congestion before its formation. We simulate the traffic monitoring based on the Mobile Century dataset and analyze the performance of traffic light control on VISSIM platform when congestion factor is introduced into the signal timing optimization model. The simulation result shows that this method can improve the spatial-temporal resolution of traffic data monitoring and evaluate traffic congestion status with high precision. It is helpful to remarkably alleviate urban traffic congestion and decrease the average traffic delays and maximum queue length.

  12. Performance evaluation of traffic sensing and control devices : [technical summary].

    Science.gov (United States)

    2011-01-01

    High quality sensing and control systems are essential for providing efficient signalized arterial operations. INDOT operates over 2600 traffic signal controllers, approximately 2000 of which use some form of vehicle detection. The private sector con...

  13. A new type of intelligent wireless sensing network for health monitoring of large-size structures

    Science.gov (United States)

    Lei, Ying; Liu, Ch.; Wu, D. T.; Tang, Y. L.; Wang, J. X.; Wu, L. J.; Jiang, X. D.

    2009-07-01

    In recent years, some innovative wireless sensing systems have been proposed. However, more exploration and research on wireless sensing systems are required before wireless systems can substitute for the traditional wire-based systems. In this paper, a new type of intelligent wireless sensing network is proposed for the heath monitoring of large-size structures. Hardware design of the new wireless sensing units is first studied. The wireless sensing unit mainly consists of functional modules of: sensing interface, signal conditioning, signal digitization, computational core, wireless communication and battery management. Then, software architecture of the unit is introduced. The sensing network has a two-level cluster-tree architecture with Zigbee communication protocol. Important issues such as power saving and fault tolerance are considered in the designs of the new wireless sensing units and sensing network. Each cluster head in the network is characterized by its computational capabilities that can be used to implement the computational methodologies of structural health monitoring; making the wireless sensing units and sensing network have "intelligent" characteristics. Primary tests on the measurement data collected by the wireless system are performed. The distributed computational capacity of the intelligent sensing network is also demonstrated. It is shown that the new type of intelligent wireless sensing network provides an efficient tool for structural health monitoring of large-size structures.

  14. Rotating-Disk-Based Hybridized Electromagnetic-Triboelectric Nanogenerator for Sustainably Powering Wireless Traffic Volume Sensors.

    Science.gov (United States)

    Zhang, Binbin; Chen, Jun; Jin, Long; Deng, Weili; Zhang, Lei; Zhang, Haitao; Zhu, Minhao; Yang, Weiqing; Wang, Zhong Lin

    2016-06-28

    Wireless traffic volume detectors play a critical role for measuring the traffic-flow in a real-time for current Intelligent Traffic System. However, as a battery-operated electronic device, regularly replacing battery remains a great challenge, especially in the remote area and wide distribution. Here, we report a self-powered active wireless traffic volume sensor by using a rotating-disk-based hybridized nanogenerator of triboelectric nanogenerator and electromagnetic generator as the sustainable power source. Operated at a rotating rate of 1000 rpm, the device delivered an output power of 17.5 mW, corresponding to a volume power density of 55.7 W/m(3) (Pd = P/V, see Supporting Information for detailed calculation) at a loading resistance of 700 Ω. The hybridized nanogenerator was demonstrated to effectively harvest energy from wind generated by a moving vehicle through the tunnel. And the delivered power is capable of triggering a counter via a wireless transmitter for real-time monitoring the traffic volume in the tunnel. This study further expands the applications of triboelectric nanogenerators for high-performance ambient mechanical energy harvesting and as sustainable power sources for driving wireless traffic volume sensors.

  15. Wireless Structural Sensing for Health Monitoring and Control Applications

    Science.gov (United States)

    Lynch, J. P.

    2003-12-01

    The economic and societal impact of civil structures under-performing during large earthquakes can be significant. While in recent years the structural engineering community has made great strides in advancing knowledge of structural behavior under extreme loads, a need still exists for the rapid assessment of structural performance during seismic events. Numerous options are commercially available to facility owners who wish to install a structural monitoring system within their structures. However, these structural monitoring systems are defined by their use of coaxial cables for the transfer of response measurements from sensors to centralized data servers. The installation and maintenance of cables within a civil structure often drive system costs high thereby preventing widespread industry adoption. In response to these limitations, the integration of information technologies such as wireless communications and microcontrollers have been explored for the creation of alternative structural monitoring systems defined by low installation costs and decentralized computational frameworks. In particular, a novel wireless structural monitoring system assembled from a dense network of inexpensive wireless sensing units has been designed and fabricated. The wireless sensing unit architecture consists of three functional components: a data acquisition interface for the collection of data from attached sensors, a computational core for data interrogation, and a wireless communication channel for the transfer of data to the sensor network. The use of wireless modems drastically reduces the efforts and costs of system installations rendering the technology attractive for widespread adoption in a broad class of civil structures. A second innovation of the system is the inclusion of computational power within each wireless sensing unit allowing for local execution of embedded engineering analyses. In particular, analyses for the detection of damage in structures (structural

  16. Passive wireless sensing tags NASA inflatable structures.

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert Wesley

    2006-03-01

    This report gives a description of several types of wireless, unpowered remote sensors. Surface acoustic wave (SAW) devices were coupled with conventional sensors to create entirely new types of sensors. These sensors report physically measurable data in the same manner as the conventional sensors, but they do it remotely and without any local power source. The sensors are measured remotely using a radar-like interrogation device, and the sensors and their related communication electronics draw all of the power needed for communicating from the radar pulse. The report covers only a description of prototype sensors and not of the manufacturing requirements of these devices.

  17. Ubiquitous Wireless Smart Sensing and Control

    Science.gov (United States)

    Wagner, Raymond

    2013-01-01

    Need new technologies to reliably and safely have humans interact within sensored environments (integrated user interfaces, physical and cognitive augmentation, training, and human-systems integration tools). Areas of focus include: radio frequency identification (RFID), motion tracking, wireless communication, wearable computing, adaptive training and decision support systems, and tele-operations. The challenge is developing effective, low cost/mass/volume/power integrated monitoring systems to assess and control system, environmental, and operator health; and accurately determining and controlling the physical, chemical, and biological environments of the areas and associated environmental control systems.

  18. What Can Wireless Cellular Technologies Do about the Upcoming Smart Metering Traffic?

    DEFF Research Database (Denmark)

    Nielsen, Jimmy Jessen; Madueño, Germán Corrales; Pratas, Nuno

    2015-01-01

    The introduction of smart electricity meters with cellular radio interface puts an additional load on the wireless cellular networks. Currently, these meters are designed for low duty cycle billing and occasional system check, which generates a low-rate sporadic traffic. As the number...... and higher rates per device. In this paper, we characterize the current traffic generated by smart electricity meters and supplement it with the potential traffic requirements brought by introducing enhanced Smart Meters, i.e., meters with PMU-like capabilities. Our study shows how GSM/GPRS and LTE cellular...... system performance behaves with the current and next generation smart meters traffic, where it is clearly seen that the PMU data will seriously challenge these wireless systems. We conclude by highlighting the possible solutions for upgrading the cellular standards, in order to cope with the upcoming...

  19. Surface Acoustic Wave Devices for Harsh Environment Wireless Sensing

    Directory of Open Access Journals (Sweden)

    David W. Greve

    2013-05-01

    Full Text Available Langasite surface acoustic wave devices can be used to implement harsh-environment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensor with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity.

  20. Radio frequency identification enabled wireless sensing for intelligent food logistics.

    Science.gov (United States)

    Zou, Zhuo; Chen, Qiang; Chen, Qing; Uysal, Ismail; Zheng, Lirong

    2014-06-13

    Future technologies and applications for the Internet of Things (IoT) will evolve the process of the food supply chain and create added value of business. Radio frequency identifications (RFIDs) and wireless sensor networks (WSNs) have been considered as the key technological enablers. Intelligent tags, powered by autonomous energy, are attached on objects, networked by short-range wireless links, allowing the physical parameters such as temperatures and humidities as well as the location information to seamlessly integrate with the enterprise information system over the Internet. In this paper, challenges, considerations and design examples are reviewed from system, implementation and application perspectives, particularly with focus on intelligent packaging and logistics for the fresh food tracking and monitoring service. An IoT platform with a two-layer network architecture is introduced consisting of an asymmetric tag-reader link (RFID layer) and an ad-hoc link between readers (WSN layer), which are further connected to the Internet via cellular or Wi-Fi. Then, we provide insights into the enabling technology of RFID with sensing capabilities. Passive, semi-passive and active RFID solutions are discussed. In particular, we describe ultra-wideband radio RFID which has been considered as one of the most promising techniques for ultra-low-power and low-cost wireless sensing. Finally, an example is provided in the form of an application in fresh food tracking services and corresponding field testing results.

  1. Wireless Hybrid Identification and Sensing Platform for Equipment Recovery (WHISPER), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Systems & Technologies proposed WHISPER (Wireless Hybrid Identification and Sensing Platform for Equipment Recovery) solution to NASA's need for...

  2. Wireless Hybrid Identification and Sensing Platform for Equipment Recovery (WHISPER), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Systems & Technologies proposed WHISPER (Wireless Hybrid Identification and Sensing Platform for Equipment Recovery) solution to NASA's need for...

  3. Performance Modeling for Heterogeneous Wireless Networks with Multiservice Overflow Traffic

    DEFF Research Database (Denmark)

    Huang, Qian; Ko, King-Tim; Iversen, Villy Bæk

    2009-01-01

    . Multiservice loss analysis based on multi-dimensional Markov chain becomes intractable in these networks due to intensive computations required. This paper focuses on performance modeling for heterogeneous wireless networks based on a hierarchical overlay infrastructure. A method based on decomposition...

  4. Remote sensing applications for transportation and traffic engineering studies: A review of the literature

    Science.gov (United States)

    Epps, J. W.

    1973-01-01

    Current references were surveyed for the application of remote sensing to traffic and transportation studies. The major problems are presented that concern traffic engineers and transportation managers, and the literature references that discuss remote sensing applications are summarized.

  5. A Survey on Urban Traffic Management System Using Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Kapileswar Nellore

    2016-01-01

    Full Text Available Nowadays, the number of vehicles has increased exponentially, but the bedrock capacities of roads and transportation systems have not developed in an equivalent way to efficiently cope with the number of vehicles traveling on them. Due to this, road jamming and traffic correlated pollution have increased with the associated adverse societal and financial effect on different markets worldwide. A static control system may block emergency vehicles due to traffic jams. Wireless Sensor networks (WSNs have gained increasing attention in traffic detection and avoiding road congestion. WSNs are very trendy due to their faster transfer of information, easy installation, less maintenance, compactness and for being less expensive compared to other network options. There has been significant research on Traffic Management Systems using WSNs to avoid congestion, ensure priority for emergency vehicles and cut the Average Waiting Time (AWT of vehicles at intersections. In recent decades, researchers have started to monitor real-time traffic using WSNs, RFIDs, ZigBee, VANETs, Bluetooth devices, cameras and infrared signals. This paper presents a survey of current urban traffic management schemes for priority-based signalling, and reducing congestion and the AWT of vehicles. The main objective of this survey is to provide a taxonomy of different traffic management schemes used for avoiding congestion. Existing urban traffic management schemes for the avoidance of congestion and providing priority to emergency vehicles are considered and set the foundation for further research.

  6. Ubiquitous Emergency Medical Service System Based on Wireless Biosensors, Traffic Information, and Wireless Communication Technologies: Development and Evaluation

    Directory of Open Access Journals (Sweden)

    Tan-Hsu Tan

    2017-01-01

    Full Text Available This study presents a new ubiquitous emergency medical service system (UEMS that consists of a ubiquitous tele-diagnosis interface and a traffic guiding subsystem. The UEMS addresses unresolved issues of emergency medical services by managing the sensor wires for eliminating inconvenience for both patients and paramedics in an ambulance, providing ubiquitous accessibility of patients’ biosignals in remote areas where the ambulance cannot arrive directly, and offering availability of real-time traffic information which can make the ambulance reach the destination within the shortest time. In the proposed system, patient’s biosignals and real-time video, acquired by wireless biosensors and a webcam, can be simultaneously transmitted to an emergency room for pre-hospital treatment via WiMax/3.5 G networks. Performances of WiMax and 3.5 G, in terms of initialization time, data rate, and average end-to-end delay are evaluated and compared. A driver can choose the route of the shortest time among the suggested routes by Google Maps after inspecting the current traffic conditions based on real-time CCTV camera streams and traffic information. The destination address can be inputted vocally for easiness and safety in driving. A series of field test results validates the feasibility of the proposed system for application in real-life scenarios.

  7. Ubiquitous Emergency Medical Service System Based on Wireless Biosensors, Traffic Information, and Wireless Communication Technologies: Development and Evaluation.

    Science.gov (United States)

    Tan, Tan-Hsu; Gochoo, Munkhjargal; Chen, Yung-Fu; Hu, Jin-Jia; Chiang, John Y; Chang, Ching-Su; Lee, Ming-Huei; Hsu, Yung-Nian; Hsu, Jiin-Chyr

    2017-01-21

    This study presents a new ubiquitous emergency medical service system (UEMS) that consists of a ubiquitous tele-diagnosis interface and a traffic guiding subsystem. The UEMS addresses unresolved issues of emergency medical services by managing the sensor wires for eliminating inconvenience for both patients and paramedics in an ambulance, providing ubiquitous accessibility of patients' biosignals in remote areas where the ambulance cannot arrive directly, and offering availability of real-time traffic information which can make the ambulance reach the destination within the shortest time. In the proposed system, patient's biosignals and real-time video, acquired by wireless biosensors and a webcam, can be simultaneously transmitted to an emergency room for pre-hospital treatment via WiMax/3.5 G networks. Performances of WiMax and 3.5 G, in terms of initialization time, data rate, and average end-to-end delay are evaluated and compared. A driver can choose the route of the shortest time among the suggested routes by Google Maps after inspecting the current traffic conditions based on real-time CCTV camera streams and traffic information. The destination address can be inputted vocally for easiness and safety in driving. A series of field test results validates the feasibility of the proposed system for application in real-life scenarios.

  8. Wireless Magnetic Sensor Network for Road Traffic Monitoring and Vehicle Classification

    Directory of Open Access Journals (Sweden)

    Velisavljevic Vladan

    2016-12-01

    Full Text Available Efficiency of transportation of people and goods is playing a vital role in economic growth. A key component for enabling effective planning of transportation networks is the deployment and operation of autonomous monitoring and traffic analysis tools. For that reason, such systems have been developed to register and classify road traffic usage. In this paper, we propose a novel system for road traffic monitoring and classification based on highly energy efficient wireless magnetic sensor networks. We develop novel algorithms for vehicle speed and length estimation and vehicle classification that use multiple magnetic sensors. We also demonstrate that, using such a low-cost system with simplified installation and maintenance compared to current solutions, it is possible to achieve highly accurate estimation and a high rate of positive vehicle classification.

  9. Near-field wireless sensing of single and multiple open-ended micro coils

    Directory of Open Access Journals (Sweden)

    A. Yousaf

    2013-05-01

    Full Text Available In this work we present near-field wireless sensing of single and multiple open-ended micro coils using an electrically small loop antenna. Wirelessly characterized parameters of open-ended micro coils include its resonance frequency, quality factor and inductance. Moreover a wireless frequency-dependent analytical model was developed. Micro coil inductance was extracted from the wirelessly measured signal using a constraint-based least-squares approach. Wireless measurements and analytical fit of micro coils are in strong agreement which validates the analytical model. Finite element method (FEM simulations of the coupled system were done in COMSOL Multiphysics.

  10. gTBS: A green Task-Based Sensing for energy efficient Wireless Sensor Networks

    KAUST Repository

    Al-Halafi, Abdullah

    2016-09-08

    Wireless sensor networks (WSN) are widely used to sense and measure physical conditions for different purposes and within different regions. However due to the limited lifetime of the sensor\\'s energy source, many efforts are made to design energy efficient WSN. As a result, many techniques were presented in the literature such as power adaptation, sleep and wake-up, and scheduling in order to enhance WSN lifetime. These techniques where presented separately and shown to achieve some gain in terms of energy efficiency. In this paper, we present an energy efficient cross layer design for WSN that we named \\'green Task-Based Sensing\\' (gTBS) scheme. The gTBS design is a task based sensing scheme that not only prevents wasting power in unnecessary signaling, but also utilizes several techniques for achieving reliable and energy efficient WSN. The proposed gTBS combines the power adaptation with a sleep and wake-up technique that allows inactive nodes to sleep. Also, it adopts a gradient-oriented unicast approach to overcome the synchronization problem, minimize network traffic hurdles, and significantly reduce the overall power consumption of the network. We implement the gTBS on a testbed and we show that it reduces the power consumption by a factor of 20%-55% compared to traditional TBS. It also reduces the delay by 54%-145% and improves the delivery ratio by 24%-73%. © 2016 IEEE.

  11. Use of agents to optimize traffic over wireless mobile connections

    Science.gov (United States)

    Helin, Mikko; Jarvinen, Jari; Kalliokorpi, Janne; Kolehmainen, Jari; Narikka, Jorma

    2002-08-01

    Wireless mobile connections have some well known disadvantages, like slow data rate, high and variable error-rate. In addition to that there are possible (and probable) inefficiencies when connecting different types of protocols stacks, like running TCP over GPRS. On the other hand mobile and portable devices have some limitations, which are based on their size and cannot therefore be removed totally. Potential users are so-called common people and they would like to have very simple-to-use applications solving their daily problems, not causing new ones. One approach to make this situation better is to use agents. They could operate on many different levels, like connecting different physical servers to produce the service needed, connecting different services together, optimizing for different types of user devices, connecting different message types (like audio, animation etc.) to produce the service, making transformations (like reading e-mails as voice mail etc.). This paper will discuss these various aspects of agent technology in the context of mobile services provided to consumers. Discussion and conclusions are partly based on the ZanderMail project. Although it is a mail agent project its results can easily be extended to various message types and various other services, like those based on the location of mobile device. The paper will cover widely these different ideas and ZanderMail is just used as an example and a tool for testing various issues. The idea is to utilize agents many ways to fade away at least partly those known problems mentioned in the beginning. An agent could operate in the network quite near the mobile device to overcome the problem caused by different protocol stacks. It could make logical decisions based on location and other local information, like weather, and it could handle priority issues on various levels of application(s).

  12. Combination Adaptive Traffic Algorithm and Coordinated Sleeping in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    M. Udin Harun Al Rasyid

    2014-12-01

    Full Text Available Wireless sensor network (WSN uses a battery as its primary power source, so that WSN will be limited to battery power for long operations. The WSN should be able to save the energy consumption in order to operate in a long time.WSN has the potential to be the future of wireless communications solutions. WSN are small but has a variety of functions that can help human life. WSN has the wide variety of sensors and can communicate quickly making it easier for people to obtain information accurately and quickly. In this study, we combine adaptive traffic algorithms and coordinated sleeping as power‐efficient WSN solution. We compared the performance of our proposed ideas combination adaptive traffic and coordinated sleeping algorithm with non‐adaptive scheme. From the simulation results, our proposed idea has good‐quality data transmission and more efficient in energy consumption, but it has higher delay than that of non‐adaptive scheme. Keywords:WSN,adaptive traffic,coordinated sleeping,beacon order,superframe order.

  13. Energy-Saving Traffic Scheduling in Hybrid Software Defined Wireless Rechargeable Sensor Networks.

    Science.gov (United States)

    Wei, Yunkai; Ma, Xiaohui; Yang, Ning; Chen, Yijin

    2017-09-15

    Software Defined Wireless Rechargeable Sensor Networks (SDWRSNs) are an inexorable trend for Wireless Sensor Networks (WSNs), including Wireless Rechargeable Sensor Network (WRSNs). However, the traditional network devices cannot be completely substituted in the short term. Hybrid SDWRSNs, where software defined devices and traditional devices coexist, will last for a long time. Hybrid SDWRSNs bring new challenges as well as opportunities for energy saving issues, which is still a key problem considering that the wireless chargers are also exhaustible, especially in some rigid environment out of the main supply. Numerous energy saving schemes for WSNs, or even some works for WRSNs, are no longer suitable for the new features of hybrid SDWRSNs. To solve this problem, this paper puts forward an Energy-saving Traffic Scheduling (ETS) algorithm. The ETS algorithm adequately considers the new characters in hybrid SDWRSNs, and takes advantage of the Software Defined Networking (SDN) controller's direct control ability on SDN nodes and indirect control ability on normal nodes. The simulation results show that, comparing with traditional Minimum Transmission Energy (MTE) protocol, ETS can substantially improve the energy efficiency in hybrid SDWRSNs for up to 20-40% while ensuring feasible data delay.

  14. PASSIVE WIRELESS MULTI-SENSOR TEMPERATURE AND PRESSURE SENSING SYSTEM USING ACOUSTIC WAVE DEVICES Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive surface acoustic wave (SAW) sensors and multi-sensor systems for NASA application to remote wireless sensing of...

  15. PASSIVE WIRELESS MULTI-SENSOR TEMPERATURE AND PRESSURE SENSING SYSTEM USING ACOUSTIC WAVE DEVICES, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive surface acoustic wave (SAW) sensors and multi-sensor systems for NASA application to remote wireless sensing of...

  16. A wireless sensor network for urban traffic characterization and trend monitoring.

    Science.gov (United States)

    Fernández-Lozano, J J; Martín-Guzmán, Miguel; Martín-Ávila, Juan; García-Cerezo, A

    2015-10-15

    Sustainable mobility requires a better management of the available infrastructure resources. To achieve this goal, it is necessary to obtain accurate data about road usage, in particular in urban areas. Although a variety of sensor alternates for urban traffic exist, they usually require extensive investments in the form of construction works for installation, processing means, etc. Wireless Sensor Networks (WSN) are an alternative to acquire urban traffic data, allowing for flexible, easy deployment. Together with the use of the appropriate sensors, like Bluetooth identification, and associate processing, WSN can provide the means to obtain in real time data like the origin-destination matrix, a key tool for trend monitoring which previously required weeks or months to be completed. This paper presents a system based on WSN designed to characterize urban traffic, particularly traffic trend monitoring through the calculation of the origin-destination matrix in real time by using Bluetooth identification. Additional sensors are also available integrated in different types of nodes. Experiments in real conditions have been performed, both for separate sensors (Bluetooth, ultrasound and laser), and for the whole system, showing the feasibility of this approach.

  17. Congestion Control and Traffic Scheduling for Collaborative Crowdsourcing in SDN Enabled Mobile Wireless Networks

    Directory of Open Access Journals (Sweden)

    Dawei Shen

    2018-01-01

    Full Text Available Currently, a number of crowdsourcing-based mobile applications have been implemented in mobile networks and Internet of Things (IoT, targeted at real-time services and recommendation. The frequent information exchanges and data transmissions in collaborative crowdsourcing are heavily injected into the current communication networks, which poses great challenges for Mobile Wireless Networks (MWN. This paper focuses on the traffic scheduling and load balancing problem in software-defined MWN and designs a hybrid routing forwarding scheme as well as a congestion control algorithm to achieve the feasible solution. The traffic scheduling algorithm first sorts the tasks in an ascending order depending on the amount of tasks and then solves it using a greedy scheme. In the proposed congestion control scheme, the traffic assignment is first transformed into a multiknapsack problem, and then the Artificial Fish Swarm Algorithm (AFSA is utilized to solve this problem. Numerical results on practical network topology reveal that, compared with the traditional schemes, the proposed congestion control and traffic scheduling schemes can achieve load balancing, reduce the probability of network congestion, and improve the network throughput.

  18. Traffic Management for Emergency Vehicle Priority Based on Visual Sensing

    Directory of Open Access Journals (Sweden)

    Kapileswar Nellore

    2016-11-01

    Full Text Available Vehicular traffic is endlessly increasing everywhere in the world and can cause terrible traffic congestion at intersections. Most of the traffic lights today feature a fixed green light sequence, therefore the green light sequence is determined without taking the presence of the emergency vehicles into account. Therefore, emergency vehicles such as ambulances, police cars, fire engines, etc. stuck in a traffic jam and delayed in reaching their destination can lead to loss of property and valuable lives. This paper presents an approach to schedule emergency vehicles in traffic. The approach combines the measurement of the distance between the emergency vehicle and an intersection using visual sensing methods, vehicle counting and time sensitive alert transmission within the sensor network. The distance between the emergency vehicle and the intersection is calculated for comparison using Euclidean distance, Manhattan distance and Canberra distance techniques. The experimental results have shown that the Euclidean distance outperforms other distance measurement techniques. Along with visual sensing techniques to collect emergency vehicle information, it is very important to have a Medium Access Control (MAC protocol to deliver the emergency vehicle information to the Traffic Management Center (TMC with less delay. Then only the emergency vehicle is quickly served and can reach the destination in time. In this paper, we have also investigated the MAC layer in WSNs to prioritize the emergency vehicle data and to reduce the transmission delay for emergency messages. We have modified the medium access procedure used in standard IEEE 802.11p with PE-MAC protocol, which is a new back off selection and contention window adjustment scheme to achieve low broadcast delay for emergency messages. A VANET model for the UTMS is developed and simulated in NS-2. The performance of the standard IEEE 802.11p and the proposed PE-MAC is analysed in detail. The NS-2

  19. Traffic Management for Emergency Vehicle Priority Based on Visual Sensing.

    Science.gov (United States)

    Nellore, Kapileswar; Hancke, Gerhard P

    2016-11-10

    Vehicular traffic is endlessly increasing everywhere in the world and can cause terrible traffic congestion at intersections. Most of the traffic lights today feature a fixed green light sequence, therefore the green light sequence is determined without taking the presence of the emergency vehicles into account. Therefore, emergency vehicles such as ambulances, police cars, fire engines, etc. stuck in a traffic jam and delayed in reaching their destination can lead to loss of property and valuable lives. This paper presents an approach to schedule emergency vehicles in traffic. The approach combines the measurement of the distance between the emergency vehicle and an intersection using visual sensing methods, vehicle counting and time sensitive alert transmission within the sensor network. The distance between the emergency vehicle and the intersection is calculated for comparison using Euclidean distance, Manhattan distance and Canberra distance techniques. The experimental results have shown that the Euclidean distance outperforms other distance measurement techniques. Along with visual sensing techniques to collect emergency vehicle information, it is very important to have a Medium Access Control (MAC) protocol to deliver the emergency vehicle information to the Traffic Management Center (TMC) with less delay. Then only the emergency vehicle is quickly served and can reach the destination in time. In this paper, we have also investigated the MAC layer in WSNs to prioritize the emergency vehicle data and to reduce the transmission delay for emergency messages. We have modified the medium access procedure used in standard IEEE 802.11p with PE-MAC protocol, which is a new back off selection and contention window adjustment scheme to achieve low broadcast delay for emergency messages. A VANET model for the UTMS is developed and simulated in NS-2. The performance of the standard IEEE 802.11p and the proposed PE-MAC is analysed in detail. The NS-2 simulation results

  20. Wireless Module for Sensing Superficial Vibrations of Soils

    Directory of Open Access Journals (Sweden)

    Marlon R. Fulla

    2013-11-01

    Full Text Available In the present work, the feasibility of implementing the XBee technology in wireless accelerometric sensors (WAS development for sensing of elastic waves on soils surface is analyzed. The incidence of distance and obstacles between a coordinator and end-device pair in their radio link by examining the number of packets received successfully was verified. Additionally, it was investigated the influence of the transmission rate over the sampling frequency of signals associated to mechanical vibrations from a testing ground by measuring the effective sampling periods of the "A / D Conversion - Transmission" process. The data reception errors introduced by the channel attenuation and the presence of obstacles, impose severe restrictions on the maximum allowable distance between the communication modules. The transmission rate features provided by XBee technology in association with the A / D time sampling of the microcontroller, allow to carry out recordings to a maximum sampling frequency of 1 kHz , useful for real-time applications where seismic signals are into the spectral range 0 to 500 Hz. In order to increase the sampling frequency of the sensor for prospection applications with signals with bandwidths greater than 500 Hz , it was successfully tested a prototype that uses a fast external memory for storing data, which significantly improves the sampling signal allowing to retake XBee technology due to its excellent low consumption features.

  1. A mobile-agent based wireless sensing network for structural monitoring applications

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Stuart G [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Figueiredo, Eloi [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory; Farrar, Charles R [Los Alamos National Laboratory; Flynn, Eric B [UCSD; Mascarenas, David L [UCSD; Todd, Michael D [UCSD

    2008-01-01

    A new wireless sensing network paradigm is presented for structural monitoring applications. In this approach, both power and data interrogation commands are conveyed via a mobile agent that is sent to sensor nodes to perform intended interrogations, which can alleviate several limitations of the traditional sensing networks. Furthermore, the mobile agent provides computational power to make near real-time assessments on the structural conditions. This paper will discuss such prototype systems, which are used to interrogate impedance-based sensors for structural health monitoring applications. Our wireless sensor node is specifically designed to accept various energy sources, including wireless energy transmission, and to be wirelessly triggered on an as-needed basis by the mobile agent or other sensor nodes. The capabilities of this proposed sensing network paradigm are demonstrated in the laboratory and the field.

  2. Integrated 3d printed wireless sensing system for environmental monitoring

    KAUST Repository

    Farooqui, Muhammad Fahad

    2017-12-21

    Disclosed are various embodiments of a wireless sensor device for monitoring environment conditions. A wireless sensor device may comprise, for example, a computing device, printable circuitry, sensors, and antennas combined with one or more transmitters on a panel. The wireless sensor device may be configured to take environment measurements, such as temperature, gas, humidity, and wirelessly communicate the environment measurements to a remote computing device, in addition, the present disclosure relates to a method of assembling the wireless sensor device. The method may comprise printing sensors, circuitry, and antennas to a panel; folding the panel to form an enclosure comprising a plurality of side panels; and attaching the plurality of side panels to a circuit board panel.

  3. Advanced wireless mobile collaborative sensing network for tactical and strategic missions

    Science.gov (United States)

    Xu, Hao

    2017-05-01

    In this paper, an advanced wireless mobile collaborative sensing network will be developed. Through properly combining wireless sensor network, emerging mobile robots and multi-antenna sensing/communication techniques, we could demonstrate superiority of developed sensing network. To be concrete, heterogeneous mobile robots including unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) are equipped with multi-model sensors and wireless transceiver antennas. Through real-time collaborative formation control, multiple mobile robots can team the best formation that can provide most accurate sensing results. Also, formatting multiple mobile robots can also construct a multiple-input multiple-output (MIMO) communication system that can provide a reliable and high performance communication network.

  4. Enhancing Trust Management for Wireless Intrusion Detection via Traffic Sampling in the Era of Big Data

    DEFF Research Database (Denmark)

    Meng, Weizhi; Li, Wenjuan; Su, Chunhua

    2017-01-01

    many kinds of information among sensors, whereas such network is vulnerable to a wide range of attacks, especially insider attacks, due to its natural environment and inherent unreliable transmission. To safeguard its security, intrusion detection systems (IDSs) are widely adopted in a WSN to defend...... against insider attacks through implementing proper trustbased mechanisms. However, in the era of big data, sensors may generate excessive information and data, which could degrade the effectiveness of trust computation. In this paper, we focus on this challenge and propose a way of combining Bayesian......-based trust management with traffic sampling for wireless intrusion detection under a hierarchical structure. In the evaluation, we investigate the performance of our approach in both a simulated and a real network environment. Experimental results demonstrate that packet-based trust management would become...

  5. An electric vehicle driving behavior model in the traffic system with a wireless charging lane

    Science.gov (United States)

    He, Jia; Huang, Hai-Jun; Yang, Hai; Tang, Tie-Qiao

    2017-09-01

    In this paper, a car-following model is proposed to study each EV's (electric vehicle) motion behavior near the WCL (wireless charging lane) and a lane-changing rule is designed to describe the EV's lane-changing behavior. Then, the car-following model and lane-changing rule are used to explore each EV's micro driving behavior in a two-lane system with a WCL. Finally, the impacts of the WCL on each EV's motion behavior are investigated. The numerical results show that each EV should run slowly on the WCL if it needs charge of electricity, that the EV's lane-changing behavior has great effects on the whole system, that the delay time caused by the WCL turns more prominent when the traffic turns heavy, and that lane-changing frequently occurs near the WCL (especially at the downstream of the WCL).

  6. Power Stabilization Strategy of Random Access Loads in Electric Vehicles Wireless Charging System at Traffic Lights

    Directory of Open Access Journals (Sweden)

    Linlin Tan

    2016-10-01

    Full Text Available An opportunity wireless charging system for electric vehicles when they stop and wait at traffic lights is proposed in this paper. In order to solve the serious power fluctuation caused by random access loads, this study presents a power stabilization strategy based on counting the number of electric vehicles in a designated area, including counting method, power source voltage adjustment strategy and choice of counting points. Firstly, the circuit model of a wireless power system with multi-loads is built and the equation of each load is obtained. Secondly, after the counting method of electric vehicles is stated, the voltage adjustment strategy, based on the number of electric vehicles when the system is at a steady state, is set out. Then, the counting points are chosen according to power curves when the voltage adjustment strategy is adopted. Finally, an experimental prototype is implemented to verify the power stabilization strategy. The experimental results show that, with the application of this strategy, the charging power is stabilized with the fluctuation of no more than 5% when loads access randomly.

  7. A self-sensing carbon nanotube/cement composite for traffic monitoring

    International Nuclear Information System (INIS)

    Han Baoguo; Yu Xun; Kwon, Eil

    2009-01-01

    In this paper, a self-sensing carbon nanotube (CNT)/cement composite is investigated for traffic monitoring. The cement composite is filled with multi-walled carbon nanotubes whose piezoresistive properties enable the detection of mechanical stresses induced by traffic flow. The sensing capability of the self-sensing CNT/cement composite is explored in laboratory tests and road tests. Experimental results show that the fabricated self-sensing CNT/cement composite presents sensitive and stable responses to repeated compressive loadings and impulsive loadings, and has remarkable responses to vehicular loadings. These findings indicate that the self-sensing CNT/cement composite has great potential for traffic monitoring use, such as in traffic flow detection, weigh-in-motion measurement and vehicle speed detection.

  8. Performance evaluation of traffic sensing and control devices.

    Science.gov (United States)

    2011-01-01

    High quality vehicle detection is essential to properly operate actuated phases at traffic signals and to facilitate effective : management of technician and engineering resources. INDOT operates over 2600 traffic signal controllers, approximately 20...

  9. Developing a robust wireless sensor network structure for environmental sensing

    Science.gov (United States)

    Zhang, Z.; Oroza, C.; Glaser, S. D.; Bales, R. C.; Conklin, M. H.

    2013-12-01

    The American River Hydrologic Observatory is being strategically deployed as a real-time ground-based measurement network that delivers accurate and timely information on snow conditions and other hydrologic attributes with a previously unheard of granularity of time and space. The basin-scale network involves 18 sub-networks set out at physiographically representative locations spanning the seasonally snow-covered half of the 5000 km2 American river basin. Each sub-network, covering about a 1-km2 area, consists of 10 wirelessly networked sensing nodes that continuously measure and telemeter temperature, and snow depth; plus selected locations are equipped with sensors for relative humidity, solar radiation, and soil moisture at several depths. The sensor locations were chosen to maximize the variance sampled for snow depth within the basin. Network design and deployment involves an iterative but efficient process. After sensor-station locations are determined, a robust network of interlinking sensor stations and signal repeaters must be constructed to route sensor data to a central base station with a two-way communicable data uplink. Data can then be uploaded from site to remote servers in real time through satellite and cell modems. Signal repeaters are placed for robustness of a self-healing network with redundant signal paths to the base station. Manual, trial-and-error heuristic approaches for node placement are inefficient and labor intensive. In that approach field personnel must restructure the network in real time and wait for new network statistics to be calculated at the base station before finalizing a placement, acting without knowledge of the global topography or overall network structure. We show how digital elevation plus high-definition aerial photographs to give foliage coverage can optimize planning of signal repeater placements and guarantee a robust network structure prior to the physical deployment. We can also 'stress test' the final network

  10. Handbook of sensor networks compact wireless and wired sensing systems

    CERN Document Server

    Ilyas, Mohammad

    2004-01-01

    INTRODUCTION Opportunities and Challenges in Wireless Sensor Networks, M. Haenggi, Next Generation Technologies to Enable Sensor Networks, J. I.  Goodman, A. I. Reuther, and D. R. Martinez Sensor Networks Management, L. B. Ruiz, J. M. Nogueira, and A. A. F. Loureiro Models for Programmability in Sensor Networks, A. Boulis Miniaturizing Sensor Networks with MEMS, Brett Warneke A Taxonomy of Routing Techniques in Wireless Sensor Networks, J. N. Al-Karaki and A. E. Kamal Artificial Perceptual Systems, A. Loutfi, M. Lindquist, and P. Wide APPLICATIONS Sensor Network Architecture and Appl

  11. Cross-layer based adaptive wireless traffic control for per-flow and per-station fairness

    Directory of Open Access Journals (Sweden)

    Siwamogsatham Siwaruk

    2011-01-01

    Full Text Available Abstract In the IEEE 802.11 wireless LANs, the bandwidth is not fairly shared among stations due to the distributed coordination function (DCF mechanism in the IEEE 802.11 MAC protocol. It introduces the per-flow and per-station unfairness problems between uplink and downlink flows, as the uplink flows usually dominate the downlink flows. In addition, some users may use greedy applications such as video streaming, which may prevent other applications from connecting to the Internet. In this article, we propose an adaptive cross-layer bandwidth allocation mechanism to provide per-station and per-flow fairness. To verify the effectiveness and scalability, our scheme is implemented on a wireless access router and numerous experiments in a typical wireless environment with both TCP and UDP traffic are conducted to evaluate performance of the proposed scheme.

  12. LightFD: A Lightweight Flow Detection Mechanism for Traffic Grooming in Optical Wireless DCNs

    KAUST Repository

    Al-Ghadhban, Amer

    2018-05-05

    State of the art wireless technologies have recently shown a great potential for enabling re-configurable data center network (DCN) topologies by augmenting the cabling complexity and link inflexibility of traditional wired data centers (DCs). In this paper, we propose an optical traffic grooming (TG) method for mice flows (MFs) and elephant flows (EFs) in wireless DCNs which are interconnected with wavelength division multiplexing (WDM) capable free-space optical (FSO) links. Since handling the bandwidth-hungry EFs along with delay-sensitive MFs over the same network resources have undesirable consequences, proposed TG policy handles MFs and EFs over distinctive network resources. MFs/EFs destined to the same rack are groomed into larger rack-to-rack MF/EF flows over dedicated lightpaths whose routes and capacities are jointly determined in a load balancing manner. Performance evaluations of proposed TG policy show a significant throughput improvement thanks to efficient bandwidth utilization of the WDM-FSO links. As MFs and EFs are needed to be separated, proposed TG requires expeditious flow detection mechanisms which can immediately classify EFs with very high accuracy. Since these cannot be met by existing packet-sampling and port-mirroring based solutions, we propose a fast and lightweight in-network flow detection (LightFD) mechanism with perfect accuracy. LightFD is designed as a module on the Virtual-Switch/Hypervisor, which detects EFs based on acknowledgment sequence number of flow packets. Emulation results show that LightFD can provide up to 500 times faster detection speeds than the sampling-based methods with %100 detection precision. We also demonstrate that the EF detection speed has a considerable impact on achievable EF throughput.

  13. Field Implementation of Wireless Vibration Sensing System for Monitoring of Harbor Caisson Breakwaters

    OpenAIRE

    Jin-Hak Yi; Jeong-Tae Kim; So-Young Lee; Han-Sam Yoon

    2012-01-01

    A wireless sensing system for structural health monitoring (SHM) of harbor caisson structures is presented. To achieve the objective, the following approaches were implemented. First, a wave-induced vibration sensing system was designed for global structural health monitoring. Second, global SHM methods which are suitable for damage monitoring of caisson structures were selected to alarm the occurrence of unwanted behaviors. Third, an SHM scheme was designed for the target structure by implem...

  14. Adjusting Sensing Range to Maximize Throughput on Ad-Hoc Multi-Hop Wireless Networks

    National Research Council Canada - National Science Library

    Roberts, Christopher

    2003-01-01

    .... Such a network is referred to as a multi-hop ad-hoc network, or simply a multi-hop network. Most multi-hop network protocols use some form of carrier sensing to determine if the wireless channel is in use...

  15. Readout Distance Enhancement of the Passive Wireless Multi-Parameter Sensing System Using a Repeater Coil

    Directory of Open Access Journals (Sweden)

    Lifeng Wang

    2018-01-01

    Full Text Available A repeater coil is used to extend the detection distance of a passive wireless multi-parameter sensing system. The passive wireless sensing system has the ability of simultaneously monitoring three parameters by using backscatter modulation together with channel multiplexing. Two different repeater coils are designed and fabricated for readout distance enhancement of the sensing system: one is a PCB (printed circuit board repeater coil, and the other is a copper wire repeater coil. Under the conditions of fixed voltage and adjustable voltage, the maximum readout distance of the sensing system with and without a repeater coil is measured. Experimental results show that larger power supply voltage can help further increase the readout distance. The maximum readout distance of the sensing system with a PCB repeater coil has been extended 2.3 times, and the one with a copper wire repeater coil has been extended 3 times. Theoretical analysis and experimental results both indicate that the high Q factor repeater coil can extend the readout distance more. With the copper wire repeater coil as well as a higher power supply voltage, the passive wireless multi-parameter sensing system finally achieves a maximum readout distance of 13.5 cm.

  16. Consensus-Based Cooperative Control Based on Pollution Sensing and Traffic Information for Urban Traffic Networks

    Directory of Open Access Journals (Sweden)

    Antonio Artuñedo

    2017-04-01

    Full Text Available Nowadays many studies are being conducted to develop solutions for improving the performance of urban traffic networks. One of the main challenges is the necessary cooperation among different entities such as vehicles or infrastructure systems and how to exploit the information available through networks of sensors deployed as infrastructures for smart cities. In this work an algorithm for cooperative control of urban subsystems is proposed to provide a solution for mobility problems in cities. The interconnected traffic lights controller (TLC network adapts traffic lights cycles, based on traffic and air pollution sensory information, in order to improve the performance of urban traffic networks. The presence of air pollution in cities is not only caused by road traffic but there are other pollution sources that contribute to increase or decrease the pollution level. Due to the distributed and heterogeneous nature of the different components involved, a system of systems engineering approach is applied to design a consensus-based control algorithm. The designed control strategy contains a consensus-based component that uses the information shared in the network for reaching a consensus in the state of TLC network components. Discrete event systems specification is applied for modelling and simulation. The proposed solution is assessed by simulation studies with very promising results to deal with simultaneous responses to both pollution levels and traffic flows in urban traffic networks.

  17. Consensus-Based Cooperative Control Based on Pollution Sensing and Traffic Information for Urban Traffic Networks.

    Science.gov (United States)

    Artuñedo, Antonio; Del Toro, Raúl M; Haber, Rodolfo E

    2017-04-26

    Nowadays many studies are being conducted to develop solutions for improving the performance of urban traffic networks. One of the main challenges is the necessary cooperation among different entities such as vehicles or infrastructure systems and how to exploit the information available through networks of sensors deployed as infrastructures for smart cities. In this work an algorithm for cooperative control of urban subsystems is proposed to provide a solution for mobility problems in cities. The interconnected traffic lights controller ( TLC ) network adapts traffic lights cycles, based on traffic and air pollution sensory information, in order to improve the performance of urban traffic networks. The presence of air pollution in cities is not only caused by road traffic but there are other pollution sources that contribute to increase or decrease the pollution level. Due to the distributed and heterogeneous nature of the different components involved, a system of systems engineering approach is applied to design a consensus-based control algorithm. The designed control strategy contains a consensus-based component that uses the information shared in the network for reaching a consensus in the state of TLC network components. Discrete event systems specification is applied for modelling and simulation. The proposed solution is assessed by simulation studies with very promising results to deal with simultaneous responses to both pollution levels and traffic flows in urban traffic networks.

  18. Wireless data collection system for travel time estimation and traffic performance evaluation.

    Science.gov (United States)

    2012-05-01

    This report presents the results of the third and final research and development project of an implementable wireless : travel time data collection system. Utilizing Bluetooth wireless technology as a platform, the prior projects focused on : data co...

  19. Performance analysis of spectrum sensing with multiple status changes in primary user traffic

    KAUST Repository

    Tang, Liang

    2012-06-01

    In this letter, the impact of primary user traffic with multiple status changes on the spectrum sensing performance is analyzed. Closed-form expressions for the probabilities of false alarm and detection are derived. Numerical results show that the multiple status changes of the primary user cause considerable degradation in the sensing performance. This degradation depends on the number of changes, the primary user traffic model, the primary user traffic intensity and the signal-to-noise ratio of the received signal. Numerical results also show that the amount of degradation decreases when the number of changes increases, and converges to a minimum sensing performance due to the limited sensing period and primary holding time. © 2012 IEEE.

  20. Density-Based Statistical Clustering: Enabling Sidefire Ultrasonic Traffic Sensing in Smart Cities

    Directory of Open Access Journals (Sweden)

    Volker Lücken

    2018-01-01

    Full Text Available Traffic routing is a central challenge in the context of urban areas, with a direct impact on personal mobility, traffic congestion, and air pollution. In the last decade, the possibilities for traffic flow control have improved together with the corresponding management systems. However, the lack of real-time traffic flow information with a city-wide coverage is a major limiting factor for an optimum operation. Smart City concepts seek to tackle these challenges in the future by combining sensing, communications, distributed information, and actuation. This paper presents an integrated approach that combines smart street lamps with traffic sensing technology. More specifically, infrastructure-based ultrasonic sensors, which are deployed together with a street light system, are used for multilane traffic participant detection and classification. Application of these sensors in time-varying reflective environments posed an unresolved problem for many ultrasonic sensing solutions in the past and therefore widely limited the dissemination of this technology. We present a solution using an algorithmic approach that combines statistical standardization with clustering techniques from the field of unsupervised learning. By using a multilevel communication concept, centralized and decentralized traffic information fusion is possible. The evaluation is based on results from automotive test track measurements and several European real-world installations.

  1. Wireless Chemical Sensor and Sensing Method for Use Therewith

    Science.gov (United States)

    Woodard, Stanley E. (Inventor); Oglesby, Donald M. (Inventor); Taylor, Bryant D. (Inventor)

    2016-01-01

    A wireless chemical sensor includes an electrical conductor and a material separated therefrom by an electric insulator. The electrical conductor is an unconnected open-circuit shaped for storage of an electric field and a magnetic field. In the presence of a time-varying magnetic field, the first electrical conductor resonates to generate harmonic electric and magnetic field responses. The material is positioned at a location lying within at least one of the electric and magnetic field responses so-generated. The material changes in electrical conductivity in the presence of a chemical-of-interest.

  2. Wireless gas sensing in South African underground platinum mines

    CSIR Research Space (South Africa)

    Abu-Mahfouz, Adnan M

    2014-04-01

    Full Text Available . Methane is the predominant gas, although often associated with other hydrocarbons and hydrogen. The geological origins of methane can be determined by isotopic analysis of the carbon and hydrogen in the methane, with the carbon isotope 13C the main... by SINTEF [1] and GasSecure [2] for the oil and gas sector to the mining sector in South Africa. This gas detector falls in the category of infrared sensors. It is the first wireless infrared hydrocarbon gas detector to operate on battery power as well...

  3. Low-power wireless trace gas sensing network

    Science.gov (United States)

    Smith, Clinton J.; So, Stephen; Khan, Amir; Zondlo, Mark A.; Wysocki, Gerard

    2011-06-01

    A basic wireless laser spectroscopic sensor network for monitoring of trace-gases will be presented. The prototype lowpower sensor nodes targeting carbon dioxide are based on tunable diode laser absorption spectroscopy and operate using a 2 μm VCSEL and a 3.5 m Herriott multi-pass cell. The sensor system, which employs real-time wireless communications, is controlled by custom electronics and can be operated autonomously. The sensor core electronics performs molecular concentration measurements using wavelength modulation spectroscopy with an active laser frequency locking to the target transition. The operating sensor node consumes approximately 300 mW of electrical power and can work autonomously for up to 100 hours when powered by a 10.5 Ah Lithium-ion polymer battery. Environmentally controlled long term (12 hours) stability tests show sensor node detection limit of ~0.286 ppm with 1 second integration time and the ultimate minimum detectable fractional absorption of 1.5x10-6 is obtained after 3500 seconds averaging time. The sensor node performance results and preliminary tests in a basic network configuration are discussed.

  4. Wireless sensing system for non-invasive monitoring of attributes of contents in a container

    Science.gov (United States)

    Woodard, Stanley E. (Inventor)

    2010-01-01

    A wireless sensing system monitors the level, temperature, magnetic permeability and electrical dielectric constant of a non-gaseous material in a container. An open-circuit electrical conductor is shaped to form a two-dimensional geometric pattern that can store and transfer electrical and magnetic energy. The conductor resonates in the presence of a time-varying magnetic field to generate a harmonic response. The conductor is mounted in an environmentally-sealed housing. A magnetic field response recorder wirelessly transmits the time-varying magnetic field to power the conductor, and wirelessly detects the harmonic response that is an indication of at least one of level of the material in the container, temperature of the material in the container, magnetic permeability of the material in the container, and dielectric constant of the material in the container.

  5. Traffic

    International Nuclear Information System (INIS)

    Lichtblau, G.

    2001-01-01

    This chapter deals with passenger and freight traffic, public and private transportation, traffic related environmental impacts, future developments, traffic indicators, regional traffic planning, health costs due to road traffic related air pollution, noise pollution, measures and regulations for traffic control and fuels for traffic. In particular energy consumption, energy efficiency, pollutant emissions ( CO 2 , SO 2 , NO x , HC, CO, N 2 O, NH 3 and particulates) and environmental effects of the different types of traffic and different types of fuels are compared and studied. Legal regulations and measures for an effective traffic control are discussed. (a.n.)

  6. CMOS indoor light energy harvesting system for wireless sensing applications

    CERN Document Server

    Ferreira Carvalho, Carlos Manuel

    2016-01-01

    This book discusses in detail the CMOS implementation of energy harvesting.  The authors describe an integrated, indoor light energy harvesting system, based on a controller circuit that dynamically and automatically adjusts its operation to meet the actual light circumstances of the environment where the system is placed.  The system is intended to power a sensor node, enabling an autonomous wireless sensor network (WSN). Although designed to cope with indoor light levels, the system is also able to work with higher levels, making it an all-round light energy harvesting system.  The discussion includes experimental data obtained from an integrated manufactured prototype, which in conjunction with a photovoltaic (PV) cell, serves as a proof of concept of the desired energy harvesting system.  ·         Discusses several energy sources which can be used to power energy harvesting systems and includes an overview of PV cell technologies  ·         Includes an introduction to voltage step-...

  7. Wireless sensing of substation parameters for remote monitoring and analysis

    Directory of Open Access Journals (Sweden)

    Ayindrila Roy

    2015-03-01

    Full Text Available This paper aimed to monitor the different bus parameters in a substation from a centralized control room with the help of Zigbee enabled wireless sensor network (WSN. The parameters such as magnitude and phase angles of voltage and current, frequency, rate-of-change-of-frequency (ROCOF, active and reactive powers are measured using a state-of-the-art customized Zigbee enabled phasor measurement unit (ZPMU. The data from different ZPMUs at different bus nodes are acquired with the help of WSN system in order to have a centralized monitoring of different equipments load status. The coordination among different parameters for different buses and/or equipment is done from a centralized control room within the substation or plant with the help of substation management software and Zigbee networking. The data thus collected are utilized to study the power flow status of the different buses on real time basis and are stored within a server based database for future analysis purposes.

  8. Integration of wireless sensor network and remote sensing for monitoring and determining irrigation demand in Cyprus

    Science.gov (United States)

    Agapiou, Athos; Papadavid, George; Hadjimitsis, Diofantos G.

    2009-09-01

    This paper aims to highlight the benefits from the integration of wireless sensor network / meteorological data and remote sensing for monitoring and determine irrigation demand in Cyprus. Estimating evapotranspiration in Cyprus will help, in taking measures for an effective irrigation water management in the future in the island. For this purpose both multi-spectral satellite images (Landsat 7 ETM+ and ASTER) and hydro-meteorological data from wireless sensors and automatic meteorological stations have been used. The wireless sensor network, which consist approximately twenty wireless nodes, was placed in our case study. The wireless sensor network acts as a wide area distributed data collection system deployed to collect and reliably transmit soil and air environmental data to a remote base-station hosted at Cyprus University of Technology. Furthermore auxiliary meteorological field data, from an automatic meteorological station, nearby our case study, where used such as solar radiation, air temperature, air humidity and wind speed. These data were used in conjunction with remote sensing results. Satellite images where used in ERDAS Imagine Software after the necessary processing: geometric rectification, radiometric calibration and atmospheric corrections. The satellite images were atmospheric corrected and calibrated using spectro-radiometers and sun-photometers measurements taken in situ, in an agricultural area, south-west of the island of Cyprus. Evapotranspiration is difficult to determine since it combines various meteorological and field parameters while in literature quite many different models for estimating ET are indicated. For estimating evapotranspiration from satellite images and the hydro-meteorological data different methods have been evaluated such as FAO Penman-Monteith, Carlson-Buffum and Granger methods. These results have been compared with E-pan methods. Finally a water management irrigation schedule has been applied. The final results are

  9. Implementation of Multiple Host Nodes in Wireless Sensing Node Network System for Landslide Monitoring

    Science.gov (United States)

    Abas, Faizulsalihin bin; Takayama, Shigeru

    2015-02-01

    This paper proposes multiple host nodes in Wireless Sensing Node Network System (WSNNS) for landslide monitoring. As landslide disasters damage monitoring system easily, one major demand in landslide monitoring is the flexibility and robustness of the system to evaluate the current situation in the monitored area. For various reasons WSNNS can provide an important contribution to reach that aim. In this system, acceleration sensors and GPS are deployed in sensing nodes. Location information by GPS, enable the system to estimate network topology and enable the system to perceive the location in emergency by monitoring the node mode. Acceleration sensors deployment, capacitate this system to detect slow mass movement that can lead to landslide occurrence. Once deployed, sensing nodes self-organize into an autonomous wireless ad hoc network. The measurement parameter data from sensing nodes is transmitted to Host System via host node and "Cloud" System. The implementation of multiple host nodes in Local Sensing Node Network System (LSNNS), improve risk- management of the WSNNS for real-time monitoring of landslide disaster.

  10. Traffic data collection and anonymous vehicle detection using wireless sensor networks : research summary.

    Science.gov (United States)

    2012-05-01

    Problem: : Most Intelligent Transportation System (ITS) applications require distributed : acquisition of various traffic metrics such as traffic speed, volume, and density. : The existing measurement technologies, such as inductive loops, infrared, ...

  11. An Interference-Aware Traffic-Priority-Based Link Scheduling Algorithm for Interference Mitigation in Multiple Wireless Body Area Networks

    Directory of Open Access Journals (Sweden)

    Thien T. T. Le

    2016-12-01

    Full Text Available Currently, wireless body area networks (WBANs are effectively used for health monitoring services. However, in cases where WBANs are densely deployed, interference among WBANs can cause serious degradation of network performance and reliability. Inter-WBAN interference can be reduced by scheduling the communication links of interfering WBANs. In this paper, we propose an interference-aware traffic-priority-based link scheduling (ITLS algorithm to overcome inter-WBAN interference in densely deployed WBANs. First, we model a network with multiple WBANs as an interference graph where node-level interference and traffic priority are taken into account. Second, we formulate link scheduling for multiple WBANs as an optimization model where the objective is to maximize the throughput of the entire network while ensuring the traffic priority of sensor nodes. Finally, we propose the ITLS algorithm for multiple WBANs on the basis of the optimization model. High spatial reuse is also achieved in the proposed ITLS algorithm. The proposed ITLS achieves high spatial reuse while considering traffic priority, packet length, and the number of interfered sensor nodes. Our simulation results show that the proposed ITLS significantly increases spatial reuse and network throughput with lower delay by mitigating inter-WBAN interference.

  12. Wireless Sensing Node Network Management for Monitoring Landslide Disaster

    International Nuclear Information System (INIS)

    Takayama, S; Akiyama, J; Fujiki, T; Mokhtar, N A B

    2013-01-01

    This paper shows the network management and operation to monitor landslide disaster at slop of mountain and hill. Natural disasters damage a measuring system easily. It is necessary for the measuring system to be flexible and robust. The measuring network proposed in this paper is the telemetry system consisted of host system (HS) and local sensing nodes network system (LSNNS). LSNNS operates autonomously and sometimes is controlled by commands from HS. HS collects data/information of landslide disaster from LSNNS, and controls LSNNS remotely. HS and LSNNS are communicated by using 'cloud' system. The dual communication is very effective and convenient to manage a network system operation

  13. Evaluation of Digital Compressed Sensing for Real-Time Wireless ECG System with Bluetooth low Energy.

    Science.gov (United States)

    Wang, Yishan; Doleschel, Sammy; Wunderlich, Ralf; Heinen, Stefan

    2016-07-01

    In this paper, a wearable and wireless ECG system is firstly designed with Bluetooth Low Energy (BLE). It can detect 3-lead ECG signals and is completely wireless. Secondly the digital Compressed Sensing (CS) is implemented to increase the energy efficiency of wireless ECG sensor. Different sparsifying basis, various compression ratio (CR) and several reconstruction algorithms are simulated and discussed. Finally the reconstruction is done by the android application (App) on smartphone to display the signal in real time. The power efficiency is measured and compared with the system without CS. The optimum satisfying basis built by 3-level decomposed db4 wavelet coefficients, 1-bit Bernoulli random matrix and the most suitable reconstruction algorithm are selected by the simulations and applied on the sensor node and App. The signal is successfully reconstructed and displayed on the App of smartphone. Battery life of sensor node is extended from 55 h to 67 h. The presented wireless ECG system with CS can significantly extend the battery life by 22 %. With the compact characteristic and long term working time, the system provides a feasible solution for the long term homecare utilization.

  14. Effect of primary user traffic on sensing-throughput tradeoff for cognitive radios

    KAUST Repository

    Tang, Liang

    2011-04-01

    The effect of the primary user traffic on the performance of the secondary network is investigated for the tradeoff between the sensing quality and the achievable throughput. Numerical results show that the actual secondary network performance when the random departure or arrival of the primary user is taken into account is worse than the predicted secondary network performance in the literature assuming constant occupancy state of the primary user. The degree of degradation depends on the traffic intensity as well as the received signal-to-noise ratio at the secondary user. Also, unlike the conventional model where the occupancy state of the primary user is assumed constant, the optimal sensing time in the new model varies for different primary channel conditions when the primary user traffic is considered. © 2011 IEEE.

  15. McMAC: Towards a MAC Protocol with Multi-Constrained QoS Provisioning for Diverse Traffic in Wireless Body Area Networks

    OpenAIRE

    Monowar, Muhammad; Hassan, Mohammad; Bajaber, Fuad; Al-Hussein, Musaed; Alamri, Atif

    2012-01-01

    The emergence of heterogeneous applications with diverse requirements for resource-constrained Wireless Body Area Networks (WBANs) poses significant challenges for provisioning Quality of Service (QoS) with multi-constraints (delay and reliability) while preserving energy efficiency. To address such challenges, this paper proposes McMAC, a MAC protocol with multi-constrained QoS provisioning for diverse traffic classes in WBANs. McMAC classifies traffic based on their multi-constrained QoS de...

  16. Study on additional carrier sensing for IEEE 802.15.4 wireless sensor networks.

    Science.gov (United States)

    Lee, Bih-Hwang; Lai, Ruei-Lung; Wu, Huai-Kuei; Wong, Chi-Ming

    2010-01-01

    Wireless sensor networks based on the IEEE 802.15.4 standard are able to achieve low-power transmissions in the guise of low-rate and short-distance wireless personal area networks (WPANs). The slotted carrier sense multiple access with collision avoidance (CSMA/CA) is used for contention mechanism. Sensor nodes perform a backoff process as soon as the clear channel assessment (CCA) detects a busy channel. In doing so they may neglect the implicit information of the failed CCA detection and further cause the redundant sensing. The blind backoff process in the slotted CSMA/CA will cause lower channel utilization. This paper proposes an additional carrier sensing (ACS) algorithm based on IEEE 802.15.4 to enhance the carrier sensing mechanism for the original slotted CSMA/CA. An analytical Markov chain model is developed to evaluate the performance of the ACS algorithm. Both analytical and simulation results show that the proposed algorithm performs better than IEEE 802.15.4, which in turn significantly improves throughput, average medium access control (MAC) delay and power consumption of CCA detection.

  17. Privacy Leakage in Mobile Sensing: Your Unlock Passwords Can Be Leaked through Wireless Hotspot Functionality

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2016-01-01

    Full Text Available Mobile sensing has become a new style of applications and most of the smart devices are equipped with varieties of sensors or functionalities to enhance sensing capabilities. Current sensing systems concentrate on how to enhance sensing capabilities; however, the sensors or functionalities may lead to the leakage of users’ privacy. In this paper, we present WiPass, a way to leverage the wireless hotspot functionality on the smart devices to snoop the unlock passwords/patterns without the support of additional hardware. The attacker can “see” your unlock passwords/patterns even one meter away. WiPass leverages the impacts of finger motions on the wireless signals during the unlocking period to analyze the passwords/patterns. To practically implement WiPass, we are facing the difficult feature extraction and complex unlock passwords matching, making the analysis of the finger motions challenging. To conquer the challenges, we use DCASW to extract feature and hierarchical DTW to do unlock passwords matching. Besides, the combination of amplitude and phase information is used to accurately recognize the passwords/patterns. We implement a prototype of WiPass and evaluate its performance under various environments. The experimental results show that WiPass achieves the detection accuracy of 85.6% and 74.7% for passwords/patterns detection in LOS and in NLOS scenarios, respectively.

  18. Study on Additional Carrier Sensing for IEEE 802.15.4 Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Bih-Hwang Lee

    2010-06-01

    Full Text Available Wireless sensor networks based on the IEEE 802.15.4 standard are able to achieve low-power transmissions in the guise of low-rate and short-distance wireless personal area networks (WPANs. The slotted carrier sense multiple access with collision avoidance (CSMA/CA is used for contention mechanism. Sensor nodes perform a backoff process as soon as the clear channel assessment (CCA detects a busy channel. In doing so they may neglect the implicit information of the failed CCA detection and further cause the redundant sensing. The blind backoff process in the slotted CSMA/CA will cause lower channel utilization. This paper proposes an additional carrier sensing (ACS algorithm based on IEEE 802.15.4 to enhance the carrier sensing mechanism for the original slotted CSMA/CA. An analytical Markov chain model is developed to evaluate the performance of the ACS algorithm. Both analytical and simulation results show that the proposed algorithm performs better than IEEE 802.15.4, which in turn significantly improves throughput, average medium access control (MAC delay and power consumption of CCA detection.

  19. A wireless bio-sensing microfluidic chip based on resonating 'μ-divers'.

    Science.gov (United States)

    Xue, Cong; Yang, Chen; Xu, Tiegang; Zhan, Jing; Li, Xinxin

    2015-05-21

    A magneto-elastic resonant 'micro-diver' system (MER-μDS) is proposed and developed for rapid liquid-phase detection of pathogens in a wireless way. The magneto-elastic micro-resonator (i.e., the μ-diver) is placed in the micro-chamber of the MER-μDS that is connected to the inlet/outlet for flow of the liquid analyte and a closed-loop micro-channel. After specific attachment of the analyte onto the μ-diver, the μ-diver is conveyed by the flow into the detection segment of the channel, around which a metal micro-coil is wound for both excitation resonance of the μ-diver and reading of its resonance frequency signal. After the pre-functionalized μ-diver captures the analyte and, then, is driven into the detection channel segment, the added mass induced resonant frequency shift can be wirelessly sensed by the coil. The micro-system features rapid and repeatable liquid-phase bio-sensing and the wireless signal readout scheme is favorable to real-time pathogen detection in liquid food, e.g., milk or juice, for food safety applications. An equivalent circuit model is established for design of the magneto-elastic μ-diver. After a bar-shaped μ-diver with length-extensional bulk-resonance mode is optimally designed and micro-fabricated, the MER-μDS is formed by micro-machining/assembling techniques. By placing a biotin-immobilized μ-diver into the wireless micro-sensing system, avidin-attached magnetic beads are detected to calibrate the mass sensitivity as 0.061 Hz pg(-1), which well confirms the modeling result. By using the antibody-immobilized μ-diver, PBS solution with an E. coli concentration of 10(2)-10(8) CFU mL(-1) is detected, resulting in a corresponding wireless f0-shift sensing signal of about 300-2300 Hz and a limit of detection of 10(2) CFU mL(-1). Food safety application potential of the MER-μDS technique is proven by detection of E. coli added to orange and apple juices (E. coli concentration: 10(4)-10(8) CFU mL(-1)).

  20. Compressive Sensing for Feedback Reduction in Wireless Multiuser Networks

    KAUST Repository

    Elkhalil, Khalil

    2015-05-01

    User/relay selection is a simple technique that achieves spatial diversity in multiuser networks. However, for user/relay selection algorithms to make a selection decision, channel state information (CSI) from all cooperating users/relays is usually required at a central node. This requirement poses two important challenges. Firstly, CSI acquisition generates a great deal of feedback overhead (air-time) that could result in significant transmission delays. Secondly, the fed-back channel information is usually corrupted by additive noise. This could lead to transmission outages if the central node selects the set of cooperating relays based on inaccurate feedback information. Motivated by the aforementioned challenges, we propose a limited feedback user/relay selection scheme that is based on the theory of compressed sensing. Firstly, we introduce a limited feedback relay selection algorithm for a multicast relay network. The proposed algorithm exploits the theory of compressive sensing to first obtain the identity of the “strong” relays with limited feedback air-time. Following that, the CSI of the selected relays is estimated using minimum mean square error estimation without any additional feedback. To minimize the effect of noise on the fed-back CSI, we introduce a back-off strategy that optimally backs-off on the noisy received CSI. In the second part of the thesis, we propose a feedback reduction scheme for full-duplex relay-aided multiuser networks. The proposed scheme permits the base station (BS) to obtain channel state information (CSI) from a subset of strong users under substantially reduced feedback overhead. More specifically, we cast the problem of user identification and CSI estimation as a block sparse signal recovery problem in compressive sensing (CS). Using existing CS block recovery algorithms, we first obtain the identity of the strong users and then estimate their CSI using the best linear unbiased estimator (BLUE). Moreover, we derive the

  1. A Spectrum Sensing Method Based on Signal Feature and Clustering Algorithm in Cognitive Wireless Multimedia Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yongwei Zhang

    2017-01-01

    Full Text Available In order to solve the problem of difficulty in determining the threshold in spectrum sensing technologies based on the random matrix theory, a spectrum sensing method based on clustering algorithm and signal feature is proposed for Cognitive Wireless Multimedia Sensor Networks. Firstly, the wireless communication signal features are obtained according to the sampling signal covariance matrix. Then, the clustering algorithm is used to classify and test the signal features. Different signal features and clustering algorithms are compared in this paper. The experimental results show that the proposed method has better sensing performance.

  2. Bimodal wireless sensing with dual-channel wide bandgap heterostructure varactors

    International Nuclear Information System (INIS)

    Deen, David A.; Osinsky, Andrei; Miller, Ross

    2014-01-01

    A capacitive wireless sensing scheme is developed that utilizes an AlN/GaN-based dual-channel varactor. The dual-channel heterostructure affords two capacitance plateaus within the capacitance-voltage (CV) characteristic, owing to the two parallel two-dimensional electron gases (2DEGs) located at respective AlN/GaN interfaces. The capacitance plateaus are leveraged for the definition of two resonant states of the sensor when implemented in an inductively-coupled resonant LRC network for wireless readout. The physics-based CV model is compared with published experimental results, which serve as a basis for the sensor embodiment. The bimodal resonant sensor is befitting for a broad application space ranging from gas, electrostatic, and piezoelectric sensors to biological and chemical detection

  3. Enhanced compressed sensing for visual target tracking in wireless visual sensor networks

    Science.gov (United States)

    Qiang, Guo

    2017-11-01

    Moving object tracking in wireless sensor networks (WSNs) has been widely applied in various fields. Designing low-power WSNs for the limited resources of the sensor, such as energy limitation, energy restriction, and bandwidth constraints, is of high priority. However, most existing works focus on only single conflicting optimization criteria. An efficient compressive sensing technique based on a customized memory gradient pursuit algorithm with early termination in WSNs is presented, which strikes compelling trade-offs among energy dissipation for wireless transmission, certain types of bandwidth, and minimum storage. Then, the proposed approach adopts an unscented particle filter to predict the location of the target. The experimental results with a theoretical analysis demonstrate the substantially superior effectiveness of the proposed model and framework in regard to the energy and speed under the resource limitation of a visual sensor node.

  4. Model establishing and performance analysis of service stratum traffic in the integrated sensing network

    Science.gov (United States)

    Ge, Zhiqun; Wang, Ying; Zhang, Xiaolu; Zheng, Yu; Zhao, Xinqun; Sun, Xiaohan

    2017-01-01

    We propose a time-division hybrid-user data flow model scheme based on semi-Markov state-transition algorithm for multiclass business and service in Integrated Sensing Network (ISN). Two typical flow models, visual sense and auditory sense service models, are set up due to the real situation of service stratum traffic, respectively. The experimental system based on the Asynchronous Optical Packet Switching (AOPS) network simulation platform is established for the feasibility of the proposed data flow model. The results show that the proposed models achieve reasonable packet loss rate and delay time in the case of different business and service levels.

  5. A Spike Neural Controller for Traffic Load Parameter with Priority-Based Rate in Wireless Multimedia Sensor Networks

    Directory of Open Access Journals (Sweden)

    Nadia Adnan Shiltagh

    2015-11-01

    Full Text Available Wireless Multimedia Sensor Networks (WMSNs are a type of sensor network that contains sensor nodes equipped with cameras, microphones; therefore the WMSNS are able to produce multimedia data such as video and audio streams, still images, and scalar data from the surrounding environment. Most multimedia applications typically produce huge volumes of data, this leads to congestion. To address this challenge, This paper proposes Modify Spike Neural Network control for Traffic Load Parameter with Exponential Weight of Priority Based Rate Control algorithm (MSNTLP with EWBPRC. The Modify Spike Neural Network controller (MSNC can calculate the appropriate traffic load parameter μ for each parent node and then use in the EWPBRC algorithm to estimate the transmission rate of parent nodes and then assign a suitable transmission rate for each child node. A comparative study between (MSNTLP with EWBPRC and fuzzy logic controller for traffic load parameter with Exponential Weight of Priority Based Rate Control algorithm (FTLP with EWBPRC algorithm shows that the (MSNTLP with EWBPRC is more efficient than (FTLP with EWBPRC algorithm in terms of packet loss, queue delay and throughput. Another comparative study between (MSNTLP with EWBPRC and EWBPRC with fixed traffic load parameter (µ shows that the MSNTLP with EWBPRC is more efficient than EWBPRC with fixed traffic load parameter (µ in terms of packet loss ratio and queue delay. A simulation process is developed and tested using the network simulator _2 (NS2 in a computer having the following properties: windows 7 (64-bit, core i7, RAM 8GB, hard 1TB.

  6. Fast manifold spectral clustering algorithm for intelligent traffic remote sensing image fuzzy edge

    Science.gov (United States)

    Deng, Cong; Jia, Zelin; Li, Shen'an; Tang, Pengfei

    2017-09-01

    Intelligent transportation system is the future development of traffic systems. Higher precision map requires a higher absolute coordinate accuracy. However, cluster labels cloud be connected to the wrong pixels near the edges of regions, and edges will be misplaced. This paper proposed a fast Manifold Spectrum Clustering Algorithm for the fuzzy-edge of intelligent traffic remote sensing image. we first construct the fuzzy edge of remote sensing image, then analyze and evaluate the influence degree of the fuzzy edge on detailed image, and proposed a spectrum clustering method based on manifold to improve the accuracy and speed to obtain the fuzzy edge of the road in the high resolution remote sensing image. The simulation environment is built by Matlab 2015a, and it is proved that this paper is superior to the existing method in clustering speed and precision performance.

  7. Integrated digital printing of flexible circuits for wireless sensing (Conference Presentation)

    Science.gov (United States)

    Mei, Ping; Whiting, Gregory L.; Schwartz, David E.; Ng, Tse Nga; Krusor, Brent S.; Ready, Steve E.; Daniel, George; Veres, Janos; Street, Bob

    2016-09-01

    Wireless sensing has broad applications in a wide variety of fields such as infrastructure monitoring, chemistry, environmental engineering and cold supply chain management. Further development of sensing systems will focus on achieving light weight, flexibility, low power consumption and low cost. Fully printed electronics provide excellent flexibility and customizability, as well as the potential for low cost and large area applications, but lack solutions for high-density, high-performance circuitry. Conventional electronics mounted on flexible printed circuit boards provide high performance but are not digitally fabricated or readily customizable. Incorporation of small silicon dies or packaged chips into a printed platform enables high performance without compromising flexibility or cost. At PARC, we combine high functionality c-Si CMOS and digitally printed components and interconnects to create an integrated platform that can read and process multiple discrete sensors. Our approach facilitates customization to a wide variety of sensors and user interfaces suitable for a broad range of applications including remote monitoring of health, structures and environment. This talk will describe several examples of printed wireless sensing systems. The technologies required for these sensor systems are a mix of novel sensors, printing processes, conventional microchips, flexible substrates and energy harvesting power solutions.

  8. Data Collection Method for Mobile Control Sink Node in Wireless Sensor Network Based on Compressive Sensing

    Directory of Open Access Journals (Sweden)

    Ling Yongfa

    2016-01-01

    Full Text Available The paper proposes a mobile control sink node data collection method in the wireless sensor network based on compressive sensing. This method, with regular track, selects the optimal data collection points in the monitoring area via the disc method, calcu-lates the shortest path by using the quantum genetic algorithm, and hence determines the data collection route. Simulation results show that this method has higher network throughput and better energy efficiency, capable of collecting a huge amount of data with balanced energy consumption in the network.

  9. A wirelessly programmable actuation and sensing system for structural health monitoring

    Science.gov (United States)

    Long, James; Büyüköztürk, Oral

    2016-04-01

    Wireless sensor networks promise to deliver low cost, low power and massively distributed systems for structural health monitoring. A key component of these systems, particularly when sampling rates are high, is the capability to process data within the network. Although progress has been made towards this vision, it remains a difficult task to develop and program 'smart' wireless sensing applications. In this paper we present a system which allows data acquisition and computational tasks to be specified in Python, a high level programming language, and executed within the sensor network. Key features of this system include the ability to execute custom application code without firmware updates, to run multiple users' requests concurrently and to conserve power through adjustable sleep settings. Specific examples of sensor node tasks are given to demonstrate the features of this system in the context of structural health monitoring. The system comprises of individual firmware for nodes in the wireless sensor network, and a gateway server and web application through which users can remotely submit their requests.

  10. A Preliminary Design Of Application Of Wireless Identification And Sensing Platform On External Beam Radiotherapy

    Science.gov (United States)

    Heranudin; Bakhri, S.

    2018-02-01

    A linear accelerator (linac) is widely used as a means of radiotherapy by focusing high-energy photons in the targeted tumor of patient. Incorrectness of the shooting can lead normal tissue surrounding the tumor received unnecessary radiation and become damaged cells. A method is required to minimize the incorrectness that mostly caused by movement of the patient during radiotherapy process. In this paper, the Wireless Identification and Sensing Platform (WISP) architecture was employed to monitor in real time the movement of the patient’s body during radiotherapy process. In general, the WISP is a wearable sensors device that can transmit measurement data wirelessly. In this design, the measurement devices consist of an accelerometer, a barometer and an ionizing radiation sensor. If any changes in the body position which resulted in incorrectness of the shooting, the accelerometer and the barometer will trigger a warning to the linac operator. In addition, the radiation sensor in the WISP will detect unwanted radiation and that can endanger the patient. A wireless feature in this device can ease in implementation. Initial analyses have been performed and showed that the WISP is feasible to be applied on external beam radiotherapy.

  11. A Fully Integrated Wireless Compressed Sensing Neural Signal Acquisition System for Chronic Recording and Brain Machine Interface.

    Science.gov (United States)

    Liu, Xilin; Zhang, Milin; Xiong, Tao; Richardson, Andrew G; Lucas, Timothy H; Chin, Peter S; Etienne-Cummings, Ralph; Tran, Trac D; Van der Spiegel, Jan

    2016-07-18

    Reliable, multi-channel neural recording is critical to the neuroscience research and clinical treatment. However, most hardware development of fully integrated, multi-channel wireless neural recorders to-date, is still in the proof-of-concept stage. To be ready for practical use, the trade-offs between performance, power consumption, device size, robustness, and compatibility need to be carefully taken into account. This paper presents an optimized wireless compressed sensing neural signal recording system. The system takes advantages of both custom integrated circuits and universal compatible wireless solutions. The proposed system includes an implantable wireless system-on-chip (SoC) and an external wireless relay. The SoC integrates 16-channel low-noise neural amplifiers, programmable filters and gain stages, a SAR ADC, a real-time compressed sensing module, and a near field wireless power and data transmission link. The external relay integrates a 32 bit low-power microcontroller with Bluetooth 4.0 wireless module, a programming interface, and an inductive charging unit. The SoC achieves high signal recording quality with minimized power consumption, while reducing the risk of infection from through-skin connectors. The external relay maximizes the compatibility and programmability. The proposed compressed sensing module is highly configurable, featuring a SNDR of 9.78 dB with a compression ratio of 8×. The SoC has been fabricated in a 180 nm standard CMOS technology, occupying 2.1 mm × 0.6 mm silicon area. A pre-implantable system has been assembled to demonstrate the proposed paradigm. The developed system has been successfully used for long-term wireless neural recording in freely behaving rhesus monkey.

  12. A Distributed Compressive Sensing Scheme for Event Capture in Wireless Visual Sensor Networks

    Science.gov (United States)

    Hou, Meng; Xu, Sen; Wu, Weiling; Lin, Fei

    2018-01-01

    Image signals which acquired by wireless visual sensor network can be used for specific event capture. This event capture is realized by image processing at the sink node. A distributed compressive sensing scheme is used for the transmission of these image signals from the camera nodes to the sink node. A measurement and joint reconstruction algorithm for these image signals are proposed in this paper. Make advantage of spatial correlation between images within a sensing area, the cluster head node which as the image decoder can accurately co-reconstruct these image signals. The subjective visual quality and the reconstruction error rate are used for the evaluation of reconstructed image quality. Simulation results show that the joint reconstruction algorithm achieves higher image quality at the same image compressive rate than the independent reconstruction algorithm.

  13. Secure Data Fusion in Wireless Multimedia Sensor Networks via Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Rui Gao

    2015-01-01

    Full Text Available The paper proposes a novel secure data fusion strategy based on compressed image sensing and watermarking; namely, the algorithm exploits the sparsity in the image encryption. The approach relies on l1-norm regularization, common in compressive sensing, to enhance the detection of sparsity over wireless multimedia sensor networks. The resulting algorithms endow sensor nodes with learning abilities and allow them to learn the sparse structure from the still image data, and also utilize the watermarking approach to achieve authentication mechanism. We provide the total transmission volume and the energy consumption performance analysis of each node, and summarize the peak signal to noise ratio values of the proposed method. We also show how to adaptively select the sampling parameter. Simulation results illustrate the advantage of the proposed strategy for secure data fusion.

  14. Sensing across large-scale cognitive radio networks: Data processing, algorithms, and testbed for wireless tomography and moving target tracking

    Science.gov (United States)

    Bonior, Jason David

    As the use of wireless devices has become more widespread so has the potential for utilizing wireless networks for remote sensing applications. Regular wireless communication devices are not typically designed for remote sensing. Remote sensing techniques must be carefully tailored to the capabilities of these networks before they can be applied. Experimental verification of these techniques and algorithms requires robust yet flexible testbeds. In this dissertation, two experimental testbeds for the advancement of research into sensing across large-scale cognitive radio networks are presented. System architectures, implementations, capabilities, experimental verification, and performance are discussed. One testbed is designed for the collection of scattering data to be used in RF and wireless tomography research. This system is used to collect full complex scattering data using a vector network analyzer (VNA) and amplitude-only data using non-synchronous software-defined radios (SDRs). Collected data is used to experimentally validate a technique for phase reconstruction using semidefinite relaxation and demonstrate the feasibility of wireless tomography. The second testbed is a SDR network for the collection of experimental data. The development of tools for network maintenance and data collection is presented and discussed. A novel recursive weighted centroid algorithm for device-free target localization using the variance of received signal strength for wireless links is proposed. The signal variance resulting from a moving target is modeled as having contours related to Cassini ovals. This model is used to formulate recursive weights which reduce the influence of wireless links that are farther from the target location estimate. The algorithm and its implementation on this testbed are presented and experimental results discussed.

  15. Site-Specific Study of In-Building Wireless Solutions with Poisson Traffic

    DEFF Research Database (Denmark)

    Liu, Zhen; Sørensen, Troels Bundgaard; Mogensen, Preben

    2011-01-01

    traffic model with fixed buffer size and Poisson arrival. Our new results show better performance for Femto cells with frequency reuse 1 at light to medium load, although the intelligent distributed system still obtains considerable better cell edge user throughput for the same number of access points....... system - together with another multi-cell system using our proposed centralized scheduling scheme. In our previous work, their performance is evaluated and compared in the LTE downlink context with full buffer traffic. Compared to real mobile networks, the full buffer traffic model is usually a worst......-case estimation of traffic load which causes severe interference conditions. Especially for Femto cells with universal frequency reuse it degrades system performance and may lead to biased conclusions on the relative performance of the different in-building solutions. In this study, we use a more realistic...

  16. A Harsh Environment Wireless Pressure Sensing Solution Utilizing High Temperature Electronics

    Directory of Open Access Journals (Sweden)

    Jie Yang

    2013-02-01

    Full Text Available Pressure measurement under harsh environments, especially at high temperatures, is of great interest to many industries. The applicability of current pressure sensing technologies in extreme environments is limited by the embedded electronics which cannot survive beyond 300 °C ambient temperature as of today. In this paper, a pressure signal processing and wireless transmission module based on the cutting-edge Silicon Carbide (SiC devices is designed and developed, for a commercial piezoresistive MEMS pressure sensor from Kulite Semiconductor Products, Inc. Equipped with this advanced high-temperature SiC electronics, not only the sensor head, but the entire pressure sensor suite is capable of operating at 450 °C. The addition of wireless functionality also makes the pressure sensor more flexible in harsh environments by eliminating the costly and fragile cable connections. The proposed approach was verified through prototype fabrication and high temperature bench testing from room temperature up to 450 °C. This novel high-temperature pressure sensing technology can be applied in real-time health monitoring of many systems involving harsh environments, such as military and commercial turbine engines.

  17. A Harsh Environment Wireless Pressure Sensing Solution Utilizing High Temperature Electronics

    Science.gov (United States)

    Yang, Jie

    2013-01-01

    Pressure measurement under harsh environments, especially at high temperatures, is of great interest to many industries. The applicability of current pressure sensing technologies in extreme environments is limited by the embedded electronics which cannot survive beyond 300 °C ambient temperature as of today. In this paper, a pressure signal processing and wireless transmission module based on the cutting-edge Silicon Carbide (SiC) devices is designed and developed, for a commercial piezoresistive MEMS pressure sensor from Kulite Semiconductor Products, Inc. Equipped with this advanced high-temperature SiC electronics, not only the sensor head, but the entire pressure sensor suite is capable of operating at 450 °C. The addition of wireless functionality also makes the pressure sensor more flexible in harsh environments by eliminating the costly and fragile cable connections. The proposed approach was verified through prototype fabrication and high temperature bench testing from room temperature up to 450 °C. This novel high-temperature pressure sensing technology can be applied in real-time health monitoring of many systems involving harsh environments, such as military and commercial turbine engines. PMID:23447006

  18. Improving Management Performance of P2PSIP for Mobile Sensing in Wireless Overlays

    Science.gov (United States)

    Sendín-Raña, Pablo; González-Castaño, Francisco Javier; Gómez-Cuba, Felipe; Asorey-Cacheda, Rafael; Pousada-Carballo, José María

    2013-01-01

    Future wireless communications are heading towards an all-Internet Protocol (all-IP) design, and will rely on the Session Initiation Protocol (SIP) to manage services, such as voice over IP (VoIP). The centralized architecture of traditional SIP has numerous disadvantages for mobile ad hoc services that may be possibly overcome by advanced peer-to-peer (P2P) technologies initially developed for the Internet. In the context of mobile sensing, P2PSIP protocols facilitate decentralized and fast communications with sensor-enabled terminals. Nevertheless, in order to make P2PSIP protocols feasible in mobile sensing networks, it is necessary to minimize overhead transmissions for signaling purposes, which reduces the battery lifetime. In this paper, we present a solution to improve the management of wireless overlay networks by defining an adaptive algorithm for the calculation of refresh time. The main advantage of the proposed algorithm is that it takes into account new parameters, such as the delay between nodes, and provides satisfactory performance and reliability levels at a much lower management overhead than previous approaches. The proposed solution can be applied to many structured P2P overlays or P2PSIP protocols. We evaluate it with Kademlia-based distributed hash tables (DHT) and dSIP PMID:24217358

  19. Integration and road tests of a self-sensing CNT concrete pavement system for traffic detection

    Science.gov (United States)

    Han, Baoguo; Zhang, Kun; Burnham, Tom; Kwon, Eil; Yu, Xun

    2013-01-01

    In this paper, a self-sensing carbon nanotube (CNT) concrete pavement system for traffic detection is proposed and tested in a roadway. Pre-cast and cast-in-place self-sensing CNT concrete sensors were simultaneously integrated into a controlled pavement test section at the Minnesota Road Research Facility (MnROAD), USA. Road tests of the system were conducted by using an MnROAD five-axle semi-trailer tractor truck and a van, respectively, both in the winter and summer. Test results show that the proposed self-sensing pavement system can accurately detect the passing of different vehicles under different vehicular speeds and test environments. These findings indicate that the developed self-sensing CNT concrete pavement system can achieve real-time vehicle flow detection with a high detection rate and a low false-alarm rate.

  20. Integration and road tests of a self-sensing CNT concrete pavement system for traffic detection

    International Nuclear Information System (INIS)

    Han, Baoguo; Zhang, Kun; Yu, Xun; Burnham, Tom; Kwon, Eil

    2013-01-01

    In this paper, a self-sensing carbon nanotube (CNT) concrete pavement system for traffic detection is proposed and tested in a roadway. Pre-cast and cast-in-place self-sensing CNT concrete sensors were simultaneously integrated into a controlled pavement test section at the Minnesota Road Research Facility (MnROAD), USA. Road tests of the system were conducted by using an MnROAD five-axle semi-trailer tractor truck and a van, respectively, both in the winter and summer. Test results show that the proposed self-sensing pavement system can accurately detect the passing of different vehicles under different vehicular speeds and test environments. These findings indicate that the developed self-sensing CNT concrete pavement system can achieve real-time vehicle flow detection with a high detection rate and a low false-alarm rate. (paper)

  1. Monitoring of traffic noise in an urban area using a wireless sensor network

    NARCIS (Netherlands)

    Wessels, P.W.; Basten, T.G.H.; Eerden, F.J.M. van der; Graafland, F.

    2014-01-01

    Developments in systems for monitoring environmental noise have made it possible to monitor the acoustic situation within large urban areas. The developments in hardware size and costs, combined with the developments in wireless communication allow to deploy networks with many acoustic sensors

  2. Receiver Based Traffic Control Mechanism to Protect Low Capacity Network in Infrastructure Based Wireless Mesh Network

    Science.gov (United States)

    Gilani, Syed Sherjeel Ahmad; Zubair, Muhammad; Khan, Zeeshan Shafi

    Infrastructure-based Wireless Mesh Networks are emerging as an affordable, robust, flexible and scalable technology. With the advent of Wireless Mesh Networks (WMNs) the dream of connecting multiple technology based networks seems to come true. A fully secure WMN is still a challenge for the researchers. In infrastructure-based WMNs almost all types of existing Wireless Networks like Wi-Fi, Cellular, WiMAX, and Sensor etc can be connected through Wireless Mesh Routers (WMRs). This situation can lead to a security problem. Some nodes can be part of the network with high processing power, large memory and least energy issues while others may belong to a network having low processing power, small memory and serious energy limitations. The later type of the nodes is very much vulnerable to targeted attacks. In our research we have suggested to set some rules on the WMR to mitigate these kinds of targeted flooding attacks. The WMR will then share those set of rules with other WMRs for Effective Utilization of Resources.

  3. New Solutions Based On Wireless Networks For Dynamic Traffic Lights Management: A Comparison Between IEEE 802.15.4 And Bluetooth

    Directory of Open Access Journals (Sweden)

    Collotta Mario

    2015-09-01

    Full Text Available The Wireless Sensor Networks are widely used to detect and exchange information and in recent years they have been increasingly involved in Intelligent Transportation System applications, especially in dynamic management of signalized intersections. In fact, the real-time knowledge of information concerning traffic light junctions represents a valid solution to congestion problems. In this paper, a wireless network architecture, based on IEEE 802.15.4 or Bluetooth, in order to monitor vehicular traffic flows near to traffic lights, is introduced. Moreover, an innovative algorithm is proposed in order to determine dynamically green times and phase sequence of traffic lights, based on measured values of traffic flows. Several simulations compare IEEE 802.15.4 and Bluetooth protocols in order to identify the more suitable communication protocol for ITS applications. Furthermore, in order to confirm the validity of the proposed algorithm for the dynamic management of traffic lights, some case studies have been considered and several simulations have been performed.

  4. Effective Low-Power Wearable Wireless Surface EMG Sensor Design Based on Analog-Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Mohammadreza Balouchestani

    2014-12-01

    Full Text Available Surface Electromyography (sEMG is a non-invasive measurement process that does not involve tools and instruments to break the skin or physically enter the body to investigate and evaluate the muscular activities produced by skeletal muscles. The main drawbacks of existing sEMG systems are: (1 they are not able to provide real-time monitoring; (2 they suffer from long processing time and low speed; (3 they are not effective for wireless healthcare systems because they consume huge power. In this work, we present an analog-based Compressed Sensing (CS architecture, which consists of three novel algorithms for design and implementation of wearable wireless sEMG bio-sensor. At the transmitter side, two new algorithms are presented in order to apply the analog-CS theory before Analog to Digital Converter (ADC. At the receiver side, a robust reconstruction algorithm based on a combination of ℓ1-ℓ1-optimization and Block Sparse Bayesian Learning (BSBL framework is presented to reconstruct the original bio-signals from the compressed bio-signals. The proposed architecture allows reducing the sampling rate to 25% of Nyquist Rate (NR. In addition, the proposed architecture reduces the power consumption to 40%, Percentage Residual Difference (PRD to 24%, Root Mean Squared Error (RMSE to 2%, and the computation time from 22 s to 9.01 s, which provide good background for establishing wearable wireless healthcare systems. The proposed architecture achieves robust performance in low Signal-to-Noise Ratio (SNR for the reconstruction process.

  5. Traffic-Aware Channel Allocation and Routing in Multichannel, Multi-Radio Wireless Networks

    Science.gov (United States)

    2012-01-01

    25]. The authors of [26] have estimated that the packet sizes for video traffic may be Weibull or exponentially distributed, depending on the codec ... codec type VoIP packets for 50 seconds. The tool generates approximately 100 byte VoIP packets every 20 ms. The same D-ITG tool is used for generating

  6. Sub-1GHz wireless sensing and control instruments for green house farming system

    Science.gov (United States)

    Wardana, I. N. K.; Ciptayani, P. I.; Suranata, I. W. A.

    2018-01-01

    Radio frequency enabled devices was developed to make the data gathering and instruments control process become wirelessly possible for greenhouse. This research used 915 MHz radio frequency band, which is also known as ISM (industrial, scientific, and medical) band. To accomplish the experiments, three main devices was developed. They are node sensors (NoSe), node actuators (NoAc), and gateway. According to communication range test, the devices can transmit flawlessly up to 43 meters in harsh environment (Non-Line of Sight or Non-LoS). The result was increased dramatically in an open field (Line of Sight or LoS ) with maximum range that can be achieved is up to 280 meters. The RSSI (Received Signal Strength Indication) for LoS and Non-LoS measurements were recorded. The number of transmitted data was approximately 500 samples and transferred approximately every 200 ms. In Non-Los scenario, RSSI ranged from -74 dB to -96 dB with average -82 dB. The better performance was shown in LoS measurement that is RSSI varied from -67 dB to -89 dB with average -76 dB. Based on that results, this technology have a great prospect as an option to greenhouse wireless sensing and controlling technology.

  7. Effective Data Acquisition Protocol for Multi-Hop Heterogeneous Wireless Sensor Networks Using Compressive Sensing

    Directory of Open Access Journals (Sweden)

    Ahmed M. Khedr

    2015-10-01

    Full Text Available In designing wireless sensor networks (WSNs, it is important to reduce energy dissipation and prolong network lifetime. Clustering of nodes is one of the most effective approaches for conserving energy in WSNs. Cluster formation protocols generally consider the heterogeneity of sensor nodes in terms of energy difference of nodes but ignore the different transmission ranges of them. In this paper, we propose an effective data acquisition clustered protocol using compressive sensing (EDACP-CS for heterogeneous WSNs that aims to conserve the energy of sensor nodes in the presence of energy and transmission range heterogeneity. In EDACP-CS, cluster heads are selected based on the distance from the base station and sensor residual energy. Simulation results show that our protocol offers a much better performance than the existing protocols in terms of energy consumption, stability, network lifetime, and throughput.

  8. Monitoring Animal Behaviour and Environmental Interactions Using Wireless Sensor Networks, GPS Collars and Satellite Remote Sensing

    Science.gov (United States)

    Handcock, Rebecca N.; Swain, Dave L.; Bishop-Hurley, Greg J.; Patison, Kym P.; Wark, Tim; Valencia, Philip; Corke, Peter; O'Neill, Christopher J.

    2009-01-01

    Remote monitoring of animal behaviour in the environment can assist in managing both the animal and its environmental impact. GPS collars which record animal locations with high temporal frequency allow researchers to monitor both animal behaviour and interactions with the environment. These ground-based sensors can be combined with remotely-sensed satellite images to understand animal-landscape interactions. The key to combining these technologies is communication methods such as wireless sensor networks (WSNs). We explore this concept using a case-study from an extensive cattle enterprise in northern Australia and demonstrate the potential for combining GPS collars and satellite images in a WSN to monitor behavioural preferences and social behaviour of cattle. PMID:22412327

  9. Multiple Sensing Application on Wireless Sensor Network Simulation using NS3

    Science.gov (United States)

    Kurniawan, I. F.; Bisma, R.

    2018-01-01

    Hardware enhancement provides opportunity to install various sensor device on single monitoring node which then enables users to acquire multiple data simultaneously. Constructing multiple sensing application in NS3 is a challenging task since numbers of aspects such as wireless communication, packet transmission pattern, and energy model must be taken into account. Despite of numerous types of monitoring data available, this study only considers two types such as periodic, and event-based data. Periodical data will generate monitoring data follows configured interval, while event-based transmit data when certain determined condition is met. Therefore, this study attempts to cover mentioned aspects in NS3. Several simulations are performed with different number of nodes on arbitrary communication scheme.

  10. Monitoring Animal Behaviour and Environmental Interactions Using Wireless Sensor Networks, GPS Collars and Satellite Remote Sensing

    Directory of Open Access Journals (Sweden)

    Peter Corke

    2009-05-01

    Full Text Available Remote monitoring of animal behaviour in the environment can assist in managing both the animal and its environmental impact. GPS collars which record animal locations with high temporal frequency allow researchers to monitor both animal behaviour and interactions with the environment. These ground-based sensors can be combined with remotely-sensed satellite images to understand animal-landscape interactions. The key to combining these technologies is communication methods such as wireless sensor networks (WSNs. We explore this concept using a case-study from an extensive cattle enterprise in northern Australia and demonstrate the potential for combining GPS collars and satellite images in a WSN to monitor behavioural preferences and social behaviour of cattle.

  11. Enhancing Trust Management for Wireless Intrusion Detection via Traffic Sampling in the Era of Big Data

    DEFF Research Database (Denmark)

    Meng, Weizhi; Li, Wenjuan; Su, Chunhua

    2017-01-01

    Internet of Things (IoT) has been widely used in our daily life, which enables various objects to be interconnected for data exchange, including physical devices, vehicles, and other items embedded with network connectivity. Wireless sensor network (WSN) is a vital application of IoT, providing...... against insider attacks through implementing proper trustbased mechanisms. However, in the era of big data, sensors may generate excessive information and data, which could degrade the effectiveness of trust computation. In this paper, we focus on this challenge and propose a way of combining Bayesian...

  12. Mobile Wireless Sensor Networks for Advanced Soil Sensing and Ecosystem Monitoring

    Science.gov (United States)

    Mollenhauer, Hannes; Schima, Robert; Remmler, Paul; Mollenhauer, Olaf; Hutschenreuther, Tino; Toepfer, Hannes; Dietrich, Peter; Bumberger, Jan

    2015-04-01

    For an adequate characterization of ecosystems it is necessary to detect individual processes with suitable monitoring strategies and methods. Due to the natural complexity of all environmental compartments, single point or temporally and spatially fixed measurements are mostly insufficient for an adequate representation. The application of mobile wireless sensor networks for soil and atmosphere sensing offers significant benefits, due to the simple adjustment of the sensor distribution, the sensor types and the sample rate (e.g. by using optimization approaches or event triggering modes) to the local test conditions. This can be essential for the monitoring of heterogeneous and dynamic environmental systems and processes. One significant advantage in the application of mobile ad-hoc wireless sensor networks is their self-organizing behavior. Thus, the network autonomously initializes and optimizes itself. Due to the localization via satellite a major reduction in installation and operation costs and time is generated. In addition, single point measurements with a sensor are significantly improved by measuring at several optimized points continuously. Since performing analog and digital signal processing and computation in the sensor nodes close to the sensors a significant reduction of the data to be transmitted can be achieved which leads to a better energy management of nodes. Furthermore, the miniaturization of the nodes and energy harvesting are current topics under investigation. First results of field measurements are given to present the potentials and limitations of this application in environmental science. In particular, collected in-situ data with numerous specific soil and atmosphere parameters per sensor node (more than 25) recorded over several days illustrates the high performance of this system for advanced soil sensing and soil-atmosphere interaction monitoring. Moreover, investigations of biotic and abiotic process interactions and optimization

  13. Grid Mapping for Spatial Pattern Analyses of Recurrent Urban Traffic Congestion Based on Taxi GPS Sensing Data

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2017-03-01

    Full Text Available Traffic congestion is one of the most serious problems that impact urban transportation efficiency, especially in big cities. Identifying traffic congestion locations and occurring patterns is a prerequisite for urban transportation managers in order to take proper countermeasures for mitigating traffic congestion. In this study, the historical GPS sensing data of about 12,000 taxi floating cars in Beijing were used for pattern analyses of recurrent traffic congestion based on the grid mapping method. Through the use of ArcGIS software, 2D and 3D maps of the road network congestion were generated for traffic congestion pattern visualization. The study results showed that three types of traffic congestion patterns were identified, namely: point type, stemming from insufficient capacities at the nodes of the road network; line type, caused by high traffic demand or bottleneck issues in the road segments; and region type, resulting from multiple high-demand expressways merging and connecting to each other. The study illustrated that the proposed method would be effective for discovering traffic congestion locations and patterns and helpful for decision makers to take corresponding traffic engineering countermeasures in order to relieve the urban traffic congestion issues.

  14. Traffic Regulation on Wireless 802.11 Networks Using Multiple Queue Technique

    Science.gov (United States)

    Dhanal, Radhika J.; Patil, G. A.

    2010-11-01

    WLAN technologies are becoming increasingly popular and are platform for many future applications. IEEE 802.11 Wireless LAN (WLAN) is an excellent solution for the broadband wireless networking. This paper presents a simple approach to enhance the performance of real time (RT) and non-real time (NRT) services over the 802.11 WLAN by using some special queues. This requires the system to first identify the type of service and then use the appropriate scheduling algorithm. The admission control algorithm is used first to determine the admission of particular station. Deficit round robin algorithm is used to set the priorities to RT and NRT packets in order to increase the QoS of WLAN. So we can combine both these algorithms by implementing them one after another. The proposed scheme can improve Voice/Data/Video services through simple software upgrades by reducing the delay, jitter and increasing the throughput. Through simulation, we show that the proposed scheme can give better QoS than existing schemes.

  15. Effectiveness of compressed sensing and transmission in wireless sensor networks for structural health monitoring

    Science.gov (United States)

    Fujiwara, Takahiro; Uchiito, Haruki; Tokairin, Tomoya; Kawai, Hiroyuki

    2017-04-01

    Regarding Structural Health Monitoring (SHM) for seismic acceleration, Wireless Sensor Networks (WSN) is a promising tool for low-cost monitoring. Compressed sensing and transmission schemes have been drawing attention to achieve effective data collection in WSN. Especially, SHM systems installing massive nodes of WSN require efficient data transmission due to restricted communications capability. The dominant frequency band of seismic acceleration is occupied within 100 Hz or less. In addition, the response motions on upper floors of a structure are activated at a natural frequency, resulting in induced shaking at the specified narrow band. Focusing on the vibration characteristics of structures, we introduce data compression techniques for seismic acceleration monitoring in order to reduce the amount of transmission data. We carry out a compressed sensing and transmission scheme by band pass filtering for seismic acceleration data. The algorithm executes the discrete Fourier transform for the frequency domain and band path filtering for the compressed transmission. Assuming that the compressed data is transmitted through computer networks, restoration of the data is performed by the inverse Fourier transform in the receiving node. This paper discusses the evaluation of the compressed sensing for seismic acceleration by way of an average error. The results present the average error was 0.06 or less for the horizontal acceleration, in conditions where the acceleration was compressed into 1/32. Especially, the average error on the 4th floor achieved a small error of 0.02. Those results indicate that compressed sensing and transmission technique is effective to reduce the amount of data with maintaining the small average error.

  16. Standardized Low-Power Wireless Communication Technologies for Distributed Sensing Applications

    Directory of Open Access Journals (Sweden)

    Xavier Vilajosana

    2014-02-01

    Full Text Available Recent standardization efforts on low-power wireless communication technologies, including time-slotted channel hopping (TSCH and DASH7 Alliance Mode (D7AM, are starting to change industrial sensing applications, enabling networks to scale up to thousands of nodes whilst achieving high reliability. Past technologies, such as ZigBee, rooted in IEEE 802.15.4, and ISO 18000-7, rooted in frame-slotted ALOHA (FSA, are based on contention medium access control (MAC layers and have very poor performance in dense networks, thus preventing the Internet of Things (IoT paradigm from really taking off. Industrial sensing applications, such as those being deployed in oil refineries, have stringent requirements on data reliability and are being built using new standards. Despite the benefits of these new technologies, industrial shifts are not happening due to the enormous technology development and adoption costs and the fact that new standards are not well-known and completely understood. In this article, we provide a deep analysis of TSCH and D7AM, outlining operational and implementation details with the aim of facilitating the adoption of these technologies to sensor application developers.

  17. TwitterSensing: An Event-Based Approach for Wireless Sensor Networks Optimization Exploiting Social Media in Smart City Applications.

    Science.gov (United States)

    Costa, Daniel G; Duran-Faundez, Cristian; Andrade, Daniel C; Rocha-Junior, João B; Peixoto, João Paulo Just

    2018-04-03

    Modern cities are subject to periodic or unexpected critical events, which may bring economic losses or even put people in danger. When some monitoring systems based on wireless sensor networks are deployed, sensing and transmission configurations of sensor nodes may be adjusted exploiting the relevance of the considered events, but efficient detection and classification of events of interest may be hard to achieve. In Smart City environments, several people spontaneously post information in social media about some event that is being observed and such information may be mined and processed for detection and classification of critical events. This article proposes an integrated approach to detect and classify events of interest posted in social media, notably in Twitter , and the assignment of sensing priorities to source nodes. By doing so, wireless sensor networks deployed in Smart City scenarios can be optimized for higher efficiency when monitoring areas under the influence of the detected events.

  18. TwitterSensing: An Event-Based Approach for Wireless Sensor Networks Optimization Exploiting Social Media in Smart City Applications

    Directory of Open Access Journals (Sweden)

    Daniel G. Costa

    2018-04-01

    Full Text Available Modern cities are subject to periodic or unexpected critical events, which may bring economic losses or even put people in danger. When some monitoring systems based on wireless sensor networks are deployed, sensing and transmission configurations of sensor nodes may be adjusted exploiting the relevance of the considered events, but efficient detection and classification of events of interest may be hard to achieve. In Smart City environments, several people spontaneously post information in social media about some event that is being observed and such information may be mined and processed for detection and classification of critical events. This article proposes an integrated approach to detect and classify events of interest posted in social media, notably in Twitter, and the assignment of sensing priorities to source nodes. By doing so, wireless sensor networks deployed in Smart City scenarios can be optimized for higher efficiency when monitoring areas under the influence of the detected events.

  19. A Data-Gathering Scheme with Joint Routing and Compressive Sensing Based on Modified Diffusion Wavelets in Wireless Sensor Networks

    OpenAIRE

    Xiangping Gu; Xiaofeng Zhou; Yanjing Sun

    2018-01-01

    Compressive sensing (CS)-based data gathering is a promising method to reduce energy consumption in wireless sensor networks (WSNs). Traditional CS-based data-gathering approaches require a large number of sensor nodes to participate in each CS measurement task, resulting in high energy consumption, and do not guarantee load balance. In this paper, we propose a sparser analysis that depends on modified diffusion wavelets, which exploit sensor readings’ spatial correlation in WSNs. In particul...

  20. Wireless Metal Detection and Surface Coverage Sensing for All-Surface Induction Heating

    Directory of Open Access Journals (Sweden)

    Veli Tayfun Kilic

    2016-03-01

    Full Text Available All-surface induction heating systems, typically comprising small-area coils, face a major challenge in detecting the presence of a metallic vessel and identifying its partial surface coverage over the coils to determine which of the coils to power up. The difficulty arises due to the fact that the user can heat vessels made of a wide variety of metals (and their alloys. To address this problem, we propose and demonstrate a new wireless detection methodology that allows for detecting the presence of metallic vessels together with uniquely sensing their surface coverages while also identifying their effective material type in all-surface induction heating systems. The proposed method is based on telemetrically measuring simultaneously inductance and resistance of the induction coil coupled with the vessel in the heating system. Here, variations in the inductance and resistance values for an all-surface heating coil loaded by vessels (made of stainless steel and aluminum at different positions were systematically investigated at different frequencies. Results show that, independent of the metal material type, unique identification of the surface coverage is possible at all freqeuncies. Additionally, using the magnitude and phase information extracted from the coupled coil impedance, unique identification of the vessel effective material is also achievable, this time independent of its surface coverage.

  1. Wireless Instantaneous Neurotransmitter Concentration Sensing System (WINCS) for intraoperative neurochemical monitoring.

    Science.gov (United States)

    Kimble, Christopher J; Johnson, David M; Winter, Bruce A; Whitlock, Sidney V; Kressin, Kenneth R; Horne, April E; Robinson, Justin C; Bledsoe, Jonathan M; Tye, Susannah J; Chang, Su-Youne; Agnesi, Filippo; Griessenauer, Christoph J; Covey, Daniel; Shon, Young-Min; Bennet, Kevin E; Garris, Paul A; Lee, Kendall H

    2009-01-01

    The Wireless Instantaneous Neurotransmitter Concentration Sensing System (WINCS) measures extracellular neurotransmitter concentration in vivo and displays the data graphically in nearly real time. WINCS implements two electroanalytical methods, fast-scan cyclic voltammetry (FSCV) and fixed-potential amperometry (FPA), to measure neurotransmitter concentrations at an electrochemical sensor, typically a carbon-fiber microelectrode. WINCS comprises a battery-powered patient module and a custom software application (WINCSware) running on a nearby personal computer. The patient module impresses upon the electrochemical sensor either a constant potential (for FPA) or a time-varying waveform (for FSCV). A transimpedance amplifier converts the resulting current to a signal that is digitized and transmitted to the base station via a Bluetooth radio link. WINCSware controls the operational parameters for FPA or FSCV, and records the transmitted data stream. Filtered data is displayed in various formats, including a background-subtracted plot of sequential FSCV scans - a representation that enables users to distinguish the signatures of various analytes with considerable specificity. Dopamine, glutamate, adenosine and serotonin were selected as analytes for test trials. Proof-of-principle tests included in vitro flow-injection measurements and in vivo measurements in rat and pig. Further testing demonstrated basic functionality in a 3-Tesla MRI unit. WINCS was designed in compliance with consensus standards for medical electrical device safety, and it is anticipated that its capability for real-time intraoperative monitoring of neurotransmitter release at an implanted sensor will prove useful for advancing functional neurosurgery.

  2. Training-free compressed sensing for wireless neural recording using analysis model and group weighted [Formula: see text]-minimization.

    Science.gov (United States)

    Sun, Biao; Zhao, Wenfeng; Zhu, Xinshan

    2017-06-01

    Data compression is crucial for resource-constrained wireless neural recording applications with limited data bandwidth, and compressed sensing (CS) theory has successfully demonstrated its potential in neural recording applications. In this paper, an analytical, training-free CS recovery method, termed group weighted analysis [Formula: see text]-minimization (GWALM), is proposed for wireless neural recording. The GWALM method consists of three parts: (1) the analysis model is adopted to enforce sparsity of the neural signals, therefore overcoming the drawbacks of conventional synthesis models and enhancing the recovery performance. (2) A multi-fractional-order difference matrix is constructed as the analysis operator, thus avoiding the dictionary learning procedure and reducing the need for previously acquired data and computational complexities. (3) By exploiting the statistical properties of the analysis coefficients, a group weighting approach is developed to enhance the performance of analysis [Formula: see text]-minimization. Experimental results on synthetic and real datasets reveal that the proposed approach outperforms state-of-the-art CS-based methods in terms of both spike recovery quality and classification accuracy. Energy and area efficiency of the GWALM make it an ideal candidate for resource-constrained, large scale wireless neural recording applications. The training-free feature of the GWALM further improves its robustness to spike shape variation, thus making it more practical for long term wireless neural recording.

  3. Training-free compressed sensing for wireless neural recording using analysis model and group weighted {{\\ell}_{1}} -minimization

    Science.gov (United States)

    Sun, Biao; Zhao, Wenfeng; Zhu, Xinshan

    2017-06-01

    Objective. Data compression is crucial for resource-constrained wireless neural recording applications with limited data bandwidth, and compressed sensing (CS) theory has successfully demonstrated its potential in neural recording applications. In this paper, an analytical, training-free CS recovery method, termed group weighted analysis {{\\ell}1} -minimization (GWALM), is proposed for wireless neural recording. Approach. The GWALM method consists of three parts: (1) the analysis model is adopted to enforce sparsity of the neural signals, therefore overcoming the drawbacks of conventional synthesis models and enhancing the recovery performance. (2) A multi-fractional-order difference matrix is constructed as the analysis operator, thus avoiding the dictionary learning procedure and reducing the need for previously acquired data and computational complexities. (3) By exploiting the statistical properties of the analysis coefficients, a group weighting approach is developed to enhance the performance of analysis {{\\ell}1} -minimization. Main results. Experimental results on synthetic and real datasets reveal that the proposed approach outperforms state-of-the-art CS-based methods in terms of both spike recovery quality and classification accuracy. Significance. Energy and area efficiency of the GWALM make it an ideal candidate for resource-constrained, large scale wireless neural recording applications. The training-free feature of the GWALM further improves its robustness to spike shape variation, thus making it more practical for long term wireless neural recording.

  4. A sensor network architecture for urban traffic state estimation with mixed eulerian/lagrangian sensing based on distributed computing

    KAUST Repository

    Canepa, Edward S.

    2014-01-01

    This article describes a new approach to urban traffic flow sensing using decentralized traffic state estimation. Traffic sensor data is generated both by fixed traffic flow sensor nodes and by probe vehicles equipped with a short range transceiver. The data generated by these sensors is sent to a local coordinator node, that poses the problem of estimating the local state of traffic as a mixed integer linear program (MILP). The resulting optimization program is then solved by the nodes in a distributed manner, using branch-and-bound methods. An optimal amount of noise is then added to the maps before dissemination to a central database. Unlike existing probe-based traffic monitoring systems, this system does not transmit user generated location tracks nor any user presence information to a centralized server, effectively preventing privacy attacks. A simulation of the system performance on computer-generated traffic data shows that the system can be implemented with currently available technology. © 2014 Springer International Publishing Switzerland.

  5. A Wireless Swing Angle Measurement Scheme Using Attitude Heading Reference System Sensing Units Based on Microelectromechanical Devices

    Directory of Open Access Journals (Sweden)

    Bingtuan Gao

    2014-11-01

    Full Text Available Feasible real-time swing angle measurement is significant to improve the efficiency and safety of industrial crane systems. This paper presents a wireless microelectromechanical system (MEMS-based swing angle measurement system. The system consists of two attitude heading reference system (AHRS sensing units with a wireless communication function, which are mounted on the hook (or payload and the jib (or base of the crane, respectively. With a combination of a three-axis accelerometer, a three-axis gyroscope and a three-axis magnetometer, the standard extended Kalman filter (EKF is used to estimate the desired orientation of the payload and the base. Wireless ZigBee communication is employed to transmit the orientation of the payload to the sensing unit mounted on the base, which measures the orientation of the base. Because several physical parameters from the payload to the base can be acquired from the original crane control system, the swing angles of the payload can be calculated based on the two measured orientation parameters together with the known physical parameters. Experiments were performed to show the feasibility and effectiveness of the proposed swing angle measurement system.

  6. A Wearable and Wireless Gas-Sensing System Using Flexible Polymer/Multi-Walled Carbon Nanotube Composite Films

    Directory of Open Access Journals (Sweden)

    Jin-Chern Chiou

    2017-09-01

    Full Text Available In this study, an integrated flexible gas sensor was developed based on a polymer/multi-walled carbon nanotube composite film by using Bluetooth wireless communication/interface technology. Polymer/multi-walled carbon nanotube composite films were deposited over a polyimide flexible substrate for building a gas sensor array by using a drop-casting method. Sensor response was acquired through interdigitated electrodes and multi-channel sensor boards, which were linked to a Bluetooth wireless transceiver. Additionally, a double-spiral-shaped heater was built into the backside of the gas sensor array as a thermostat to protect it from the influence of ambient temperature. Multi-channel sensing responses were read on a display screen via a smartphone application (app. The advantages of this system include light weight, low cost, highly integrated sensors, wireless telecommunication, and real-time functioning. Thus, it is a promising candidate for deployment in a wearable gas-sensing system used to study air pollution.

  7. McMAC: Towards a MAC Protocol with Multi-Constrained QoS Provisioning for Diverse Traffic in Wireless Body Area Networks

    Directory of Open Access Journals (Sweden)

    Muhammad Mostafa Monowar

    2012-11-01

    Full Text Available The emergence of heterogeneous applications with diverse requirements forresource-constrained Wireless Body Area Networks (WBANs poses significant challengesfor provisioning Quality of Service (QoS with multi-constraints (delay and reliability whilepreserving energy efficiency. To address such challenges, this paper proposes McMAC,a MAC protocol with multi-constrained QoS provisioning for diverse traffic classes inWBANs. McMAC classifies traffic based on their multi-constrained QoS demands andintroduces a novel superframe structure based on the "transmit-whenever-appropriate"principle, which allows diverse periods for diverse traffic classes according to their respectiveQoS requirements. Furthermore, a novel emergency packet handling mechanism is proposedto ensure packet delivery with the least possible delay and the highest reliability. McMACis also modeled analytically, and extensive simulations were performed to evaluate itsperformance. The results reveal that McMAC achieves the desired delay and reliabilityguarantee according to the requirements of a particular traffic class while achieving energyefficiency.

  8. McMAC: towards a MAC protocol with multi-constrained QoS provisioning for diverse traffic in Wireless Body Area Networks.

    Science.gov (United States)

    Monowar, Muhammad Mostafa; Hassan, Mohammad Mehedi; Bajaber, Fuad; Al-Hussein, Musaed; Alamri, Atif

    2012-11-12

    The emergence of heterogeneous applications with diverse requirements for resource-constrained Wireless Body Area Networks (WBANs) poses significant challenges for provisioning Quality of Service (QoS) with multi-constraints (delay and reliability) while preserving energy efficiency. To address such challenges, this paper proposes McMAC,a MAC protocol with multi-constrained QoS provisioning for diverse traffic classes in WBANs. McMAC classifies traffic based on their multi-constrained QoS demands and introduces a novel superframe structure based on the "transmit-whenever-appropriate"principle, which allows diverse periods for diverse traffic classes according to their respective QoS requirements. Furthermore, a novel emergency packet handling mechanism is proposedto ensure packet delivery with the least possible delay and the highest reliability. McMAC is also modeled analytically, and extensive simulations were performed to evaluate its performance. The results reveal that McMAC achieves the desired delay and reliability guarantee according to the requirements of a particular traffic class while achieving energy efficiency.

  9. Monitoring of Regional Land Surface Temperature in city by Wireless Sensing Network

    Science.gov (United States)

    Wang, Y.; Jiang, H.; Jin, J.

    2015-12-01

    Land surface temperature (LST) is an important environmental factor. The precise monitoring data of LST can provide crucial support for further ecological researches such as the environment change and urban heat island. The Wireless Sensing Network (WSN) is a kind of modern information technology which integrates sensor technology, automatic control technology with data network transmission, storage, processing and analysis technology. As a new kind of data collection method, WSN is innovatively applied to monitor regional LST in different land cover types of city in this study. The LST data with high temporal resolution is obtained from temperature sensors of WSN. The land cover types of city are extracted from WorldView-II image with high resolution. The Southeast University Wuxi Branch campus and its surroundings which covers 2 km2 is chosen as the study area in Wuxi city, Jiangsu province, China. WSN is established to continuously monitor LST in real-time for one week. Then, the heterogeneous pattern of LST is investigated at a fine spatial and temporal scale based on different land cover types. The result shows LST of streets is higher than LST of campus in the daytime, but lower than LST of campus at night. The spatial heterogeneity of LST in the campus is not significant. This is because the number of vehicle was larger in the daytime than that at night, while the population of campus in day and night almost having little change. Notably, the influence of plant activities (e.g. photosynthesis and respiration) on LST can be detected by WSN. This study is a new attempt to monitor regional environment of city by WSN technology. Moreover, compared to traditional methods, WSN technology can improve the detection of LST with finer temporal and spatial resolution.

  10. Nondestructive Wireless Monitoring of Early-Age Concrete Strength Gain Using an Innovative Electromechanical Impedance Sensing System

    Directory of Open Access Journals (Sweden)

    C. P. Providakis

    2013-01-01

    Full Text Available Monitoring the concrete early-age strength gain at any arbitrary time from a few minutes to a few hours after mixing is crucial for operations such as removal of frameworks, prestress, or cracking control. This paper presents the development and evaluation of a potential active wireless USB sensing tool that consists of a miniaturized electromechanical impedance measuring chip and a reusable piezoelectric transducer appropriately installed in a Teflon-based enclosure to monitor the concrete strength development at early ages and initial hydration states. In this study, the changes of the measured electromechanical impedance signatures as obtained by using the proposed sensing system during the whole early-age concrete hydration process are experimentally investigated. It is found that the proposed electromechanical impedance (EMI sensing system associated with a properly defined statistical index which evaluates the rate of concrete strength development is very sensitive to the strength gain of concrete structures from their earliest stages.

  11. Wireless sensing and vibration control with increased redundancy and robustness design.

    Science.gov (United States)

    Li, Peng; Li, Luyu; Song, Gangbing; Yu, Yan

    2014-11-01

    Control systems with long distance sensor and actuator wiring have the problem of high system cost and increased sensor noise. Wireless sensor network (WSN)-based control systems are an alternative solution involving lower setup and maintenance costs and reduced sensor noise. However, WSN-based control systems also encounter problems such as possible data loss, irregular sampling periods (due to the uncertainty of the wireless channel), and the possibility of sensor breakdown (due to the increased complexity of the overall control system). In this paper, a wireless microcontroller-based control system is designed and implemented to wirelessly perform vibration control. The wireless microcontroller-based system is quite different from regular control systems due to its limited speed and computational power. Hardware, software, and control algorithm design are described in detail to demonstrate this prototype. Model and system state compensation is used in the wireless control system to solve the problems of data loss and sensor breakdown. A positive position feedback controller is used as the control law for the task of active vibration suppression. Both wired and wireless controllers are implemented. The results show that the WSN-based control system can be successfully used to suppress the vibration and produces resilient results in the presence of sensor failure.

  12. A Novel Wireless Power Transfer-Based Weighed Clustering Cooperative Spectrum Sensing Method for Cognitive Sensor Networks.

    Science.gov (United States)

    Liu, Xin

    2015-10-30

    In a cognitive sensor network (CSN), the wastage of sensing time and energy is a challenge to cooperative spectrum sensing, when the number of cooperative cognitive nodes (CNs) becomes very large. In this paper, a novel wireless power transfer (WPT)-based weighed clustering cooperative spectrum sensing model is proposed, which divides all the CNs into several clusters, and then selects the most favorable CNs as the cluster heads and allows the common CNs to transfer the received radio frequency (RF) energy of the primary node (PN) to the cluster heads, in order to supply the electrical energy needed for sensing and cooperation. A joint resource optimization is formulated to maximize the spectrum access probability of the CSN, through jointly allocating sensing time and clustering number. According to the resource optimization results, a clustering algorithm is proposed. The simulation results have shown that compared to the traditional model, the cluster heads of the proposed model can achieve more transmission power and there exists optimal sensing time and clustering number to maximize the spectrum access probability.

  13. A Wireless Sensor Network for Growth Environment Measurement and Multi-Band Optical Sensing to Diagnose Tree Vigor.

    Science.gov (United States)

    Kameoka, Shinichi; Isoda, Shuhei; Hashimoto, Atsushi; Ito, Ryoei; Miyamoto, Satoru; Wada, Genki; Watanabe, Naoki; Yamakami, Takashi; Suzuki, Ken; Kameoka, Takaharu

    2017-04-27

    We have tried to develop the guidance system for farmers to cultivate using various phenological indices. As the sensing part of this system, we deployed a new Wireless Sensor Network (WSN). This system uses the 920 MHz radio wave based on the Wireless Smart Utility Network that enables long-range wireless communication. In addition, the data acquired by the WSN were standardized for the advanced web service interoperability. By using these standardized data, we can create a web service that offers various kinds of phenological indices as secondary information to the farmers in the field. We have also established the field management system using thermal image, fluorescent and X-ray fluorescent methods, which enable the nondestructive, chemical-free, simple, and rapid measurement of fruits or trees. We can get the information about the transpiration of plants through a thermal image. The fluorescence sensor gives us information, such as nitrate balance index (NBI), that shows the nitrate balance inside the leaf, chlorophyll content, flavonol content and anthocyanin content. These methods allow one to quickly check the health of trees and find ways to improve the tree vigor of weak ones. Furthermore, the fluorescent x-ray sensor has the possibility to quantify the loss of minerals necessary for fruit growth.

  14. A Wireless Sensor Network for Growth Environment Measurement and Multi-Band Optical Sensing to Diagnose Tree Vigor

    Science.gov (United States)

    Kameoka, Shinichi; Isoda, Shuhei; Hashimoto, Atsushi; Ito, Ryoei; Miyamoto, Satoru; Wada, Genki; Watanabe, Naoki; Yamakami, Takashi; Suzuki, Ken; Kameoka, Takaharu

    2017-01-01

    We have tried to develop the guidance system for farmers to cultivate using various phenological indices. As the sensing part of this system, we deployed a new Wireless Sensor Network (WSN). This system uses the 920 MHz radio wave based on the Wireless Smart Utility Network that enables long-range wireless communication. In addition, the data acquired by the WSN were standardized for the advanced web service interoperability. By using these standardized data, we can create a web service that offers various kinds of phenological indices as secondary information to the farmers in the field. We have also established the field management system using thermal image, fluorescent and X-ray fluorescent methods, which enable the nondestructive, chemical-free, simple, and rapid measurement of fruits or trees. We can get the information about the transpiration of plants through a thermal image. The fluorescence sensor gives us information, such as nitrate balance index (NBI), that shows the nitrate balance inside the leaf, chlorophyll content, flavonol content and anthocyanin content. These methods allow one to quickly check the health of trees and find ways to improve the tree vigor of weak ones. Furthermore, the fluorescent x-ray sensor has the possibility to quantify the loss of minerals necessary for fruit growth. PMID:28448452

  15. A Wireless Sensor Network for Growth Environment Measurement and Multi-Band Optical Sensing to Diagnose Tree Vigor

    Directory of Open Access Journals (Sweden)

    Shinichi Kameoka

    2017-04-01

    Full Text Available We have tried to develop the guidance system for farmers to cultivate using various phenological indices. As the sensing part of this system, we deployed a new Wireless Sensor Network (WSN. This system uses the 920 MHz radio wave based on the Wireless Smart Utility Network that enables long-range wireless communication. In addition, the data acquired by the WSN were standardized for the advanced web service interoperability. By using these standardized data, we can create a web service that offers various kinds of phenological indices as secondary information to the farmers in the field. We have also established the field management system using thermal image, fluorescent and X-ray fluorescent methods, which enable the nondestructive, chemical-free, simple, and rapid measurement of fruits or trees. We can get the information about the transpiration of plants through a thermal image. The fluorescence sensor gives us information, such as nitrate balance index (NBI, that shows the nitrate balance inside the leaf, chlorophyll content, flavonol content and anthocyanin content. These methods allow one to quickly check the health of trees and find ways to improve the tree vigor of weak ones. Furthermore, the fluorescent x-ray sensor has the possibility to quantify the loss of minerals necessary for fruit growth.

  16. Additively Manufactured IN718 Components with Wirelessly Powered and Interrogated Embedded Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Attridge, Paul [United Technologies Research Center, East Hartford, CT (United States); Bajekal, Sanjay [United Technologies Research Center, East Hartford, CT (United States); Klecka, Michael [United Technologies Research Center, East Hartford, CT (United States); Wu, Xin [United Technologies Research Center, East Hartford, CT (United States); Savulak, Steve [United Technologies Research Center, East Hartford, CT (United States); Viens, Dan [United Technologies Research Center, East Hartford, CT (United States); Carey, Michael [United Technologies Research Center, East Hartford, CT (United States); Miano, John [United Technologies Research Center, East Hartford, CT (United States); Rioux, William [United Technologies Research Center, East Hartford, CT (United States); Zacchio, Joseph [United Technologies Research Center, East Hartford, CT (United States); Dunst, Richard [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Straub, Doug [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Mantese, Joseph [United Technologies Research Center, East Hartford, CT (United States)

    2017-07-14

    A methodology is described for embedding commercial-off-the-shelf sensors together with wireless communication and power circuit elements using direct laser metal sintered additively manufactured components. Physics based models of the additive manufacturing processes and sensor/wireless level performance models guided the design and embedment processes. A combination of cold spray deposition and laser engineered net shaping was used to fashion the transmitter/receiving elements and embed the sensors, thereby providing environmental protection and component robustness/survivability for harsh conditions. By design, this complement of analog and digital sensors were wirelessly powered and interrogated using a health and utilization monitoring system; enabling real-time, in situ prognostics and diagnostics.

  17. Wireless Biological Electronic Sensors.

    Science.gov (United States)

    Cui, Yue

    2017-10-09

    The development of wireless biological electronic sensors could open up significant advances for both fundamental studies and practical applications in a variety of areas, including medical diagnosis, environmental monitoring, and defense applications. One of the major challenges in the development of wireless bioelectronic sensors is the successful integration of biosensing units and wireless signal transducers. In recent years, there are a few types of wireless communication systems that have been integrated with biosensing systems to construct wireless bioelectronic sensors. To successfully construct wireless biological electronic sensors, there are several interesting questions: What types of biosensing transducers can be used in wireless bioelectronic sensors? What types of wireless systems can be integrated with biosensing transducers to construct wireless bioelectronic sensors? How are the electrical sensing signals generated and transmitted? This review will highlight the early attempts to address these questions in the development of wireless biological electronic sensors.

  18. Energy Minimization Approach for Cooperative Spectrum Sensing in Cognitive Radio Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    I. Mustapha

    2017-08-01

    Full Text Available Cooperative spectrum sensing is a promising method for improving spectrum sensing performance in cognitive radio. Although it yields better spectrum sensing performance, it also incurs additional energy consumption that drains more energy from the sensor nodes and hence shortens the lifetime of sensor networks. This paper proposes energy minimization approach to reduce energy consumption due to spectrum sensing and sensed result reporting in a cooperative spectrum sensing. The approach determines optimal number of cooperative sensing nodes using particle swarm optimization. We derived mathematical lower bound and upper bound for the number of cooperative sensing nodes in the network. Then we formulate a constraint optimization problem and used particle swarm optimization to simultaneously optimize the two mathematical bounds to determine the optimal number of sensing nodes. Simulation results indicate viability of the proposed approach and show that significant amount of energy savings can be achieved by employing optimal number of sensing nodes for cooperative spectrum sensing. Performance comparison with conventional approach shows performance improvement of the proposed approach over the conventional method in minimizing spectrum sensing energy consumption without compromising spectrum sensing performance.

  19. Identifying High-Traffic Patterns in the Workplace with Radio Tomographic Imaging in 3D Wireless Sensor Networks

    Science.gov (United States)

    2014-03-27

    Tomographic Imaging for Ambient Assisted Living,” in Evaluating AAL Systems Through Competitive Benchmarking, pp. 108–130. Springer, 2013. [10] S...Int’l Conf. on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2011, pp. 3976–3979. [28] G. Mao , B. Fidan, and B. Anderson, “Wireless Sensor

  20. Flexible, Disposable Cellulose-Paper-Based MoS2/Cu2S Hybrid for Wireless Environmental Monitoring and Multifunctional Sensing of Chemical Stimuli.

    Science.gov (United States)

    Sahatiya, Parikshit; Kadu, Anand; Gupta, Harshit; Thanga Gomathi, P; Badhulika, Sushmee

    2018-03-14

    Multifunctional sensors responding to different chemical stimuli fabricated using functional nanomaterials still remain a challenge because of the usage of the same sensor multiple times for different sensing applications and unreliable front-end processing of the sensing data. This challenge is intensified by the lack of suitable techniques for fabricating disposable sensors, which can be integrated into smartphones with a dedicated application developed for each sensing application. A novel MoS 2 /Cu 2 S hybrid grown on disposable cellulose paper by the hydrothermal method is reported for its utilization in sensing humidity, temperature, breath, and ethanol adulteration, wherein the data can be wirelessly transmitted to a smartphone with the dedicated application module for each sensing application. The sensor can be utilized for a particular sensing application and then can be disposed, avoiding the need for utilizing the same sensor for different sensing applications, thereby increasing the accuracy of the sensing data. The sensing mechanism of the fabricated sensor is explained for each stimulus in terms of change in the transport properties of the MoS 2 /Cu 2 S hybrid. The development of such unique hybrid materials for wireless disposable multifunctional sensors is a great step ahead in flexible and wearable electronics having potential applications in medical, security, Internet of things, etc.

  1. HIPAA Compliant Wireless Sensing Smartwatch Application for the Self-Management of Pediatric Asthma

    OpenAIRE

    Hosseini, Anahita; Buonocore, Chris M.; Hashemzadeh, Sepideh; Hojaiji, Hannaneh; Kalantarian, Haik; Sideris, Costas; Bui, Alex A.T.; King, Christine E.; Sarrafzadeh, Majid

    2016-01-01

    Asthma is the most prevalent chronic disease among pediatrics, as it is the leading cause of student absenteeism and hospitalization for those under the age of 15. To address the significant need to manage this disease in children, the authors present a mobile health (mHealth) system that determines the risk of an asthma attack through physiological and environmental wireless sensors and representational state transfer application program interfaces (RESTful APIs). The data is sent from wirel...

  2. HIPAA Compliant Wireless Sensing Smartwatch Application for the Self-Management of Pediatric Asthma.

    Science.gov (United States)

    Hosseini, Anahita; Buonocore, Chris M; Hashemzadeh, Sepideh; Hojaiji, Hannaneh; Kalantarian, Haik; Sideris, Costas; Bui, Alex A T; King, Christine E; Sarrafzadeh, Majid

    2016-06-01

    Asthma is the most prevalent chronic disease among pediatrics, as it is the leading cause of student absenteeism and hospitalization for those under the age of 15. To address the significant need to manage this disease in children, the authors present a mobile health (mHealth) system that determines the risk of an asthma attack through physiological and environmental wireless sensors and representational state transfer application program interfaces (RESTful APIs). The data is sent from wireless sensors to a smartwatch application (app) via a Health Insurance Portability and Accountability Act (HIPAA) compliant cryptography framework, which then sends data to a cloud for real-time analytics. The asthma risk is then sent to the smartwatch and provided to the user via simple graphics for easy interpretation by children. After testing the safety and feasibility of the system in an adult with moderate asthma prior to testing in children, it was found that the analytics model is able to determine the overall asthma risk (high, medium, or low risk) with an accuracy of 80.10 ± 14.13%. Furthermore, the features most important for assessing the risk of an asthma attack were multifaceted, highlighting the importance of continuously monitoring different wireless sensors and RESTful APIs. Future testing this asthma attack risk prediction system in pediatric asthma individuals may lead to an effective self-management asthma program.

  3. Validation of Remote Sensing Retrieval Products using Data from a Wireless Sensor-Based Online Monitoring in Antarctica

    Directory of Open Access Journals (Sweden)

    Xiuhong Li

    2016-11-01

    Full Text Available Of the modern technologies in polar-region monitoring, the remote sensing technology that can instantaneously form large-scale images has become much more important in helping acquire parameters such as the freezing and melting of ice as well as the surface temperature, which can be used in the research of global climate change, Antarctic ice sheet responses, and cap formation and evolution. However, the acquirement of those parameters is impacted remarkably by the climate and satellite transit time which makes it almost impossible to have timely and continuous observation data. In this research, a wireless sensor-based online monitoring platform (WSOOP for the extreme polar environment is applied to obtain a long-term series of data which is site-specific and continuous in time. Those data are compared and validated with the data from a weather station at Zhongshan Station Antarctica and the result shows an obvious correlation. Then those data are used to validate the remote sensing products of the freezing and melting of ice and the surface temperature and the result also indicated a similar correlation. The experiment in Antarctica has proven that WSOOP is an effective system to validate remotely sensed data in the polar region.

  4. Validation of Remote Sensing Retrieval Products using Data from a Wireless Sensor-Based Online Monitoring in Antarctica

    Science.gov (United States)

    Li, Xiuhong; Cheng, Xiao; Yang, Rongjin; Liu, Qiang; Qiu, Yubao; Zhang, Jialin; Cai, Erli; Zhao, Long

    2016-01-01

    Of the modern technologies in polar-region monitoring, the remote sensing technology that can instantaneously form large-scale images has become much more important in helping acquire parameters such as the freezing and melting of ice as well as the surface temperature, which can be used in the research of global climate change, Antarctic ice sheet responses, and cap formation and evolution. However, the acquirement of those parameters is impacted remarkably by the climate and satellite transit time which makes it almost impossible to have timely and continuous observation data. In this research, a wireless sensor-based online monitoring platform (WSOOP) for the extreme polar environment is applied to obtain a long-term series of data which is site-specific and continuous in time. Those data are compared and validated with the data from a weather station at Zhongshan Station Antarctica and the result shows an obvious correlation. Then those data are used to validate the remote sensing products of the freezing and melting of ice and the surface temperature and the result also indicated a similar correlation. The experiment in Antarctica has proven that WSOOP is an effective system to validate remotely sensed data in the polar region. PMID:27869668

  5. Implementation of an Optical-Wireless Network with Spectrum Sensing and Dynamic Resource Allocation Using Optically Controlled Reconfigurable Antennas

    Directory of Open Access Journals (Sweden)

    E. Raimundo-Neto

    2014-01-01

    Full Text Available This work proposes the concept and reports the implementation of an adaptive and cognitive radio over fiber architecture. It is aimed at dealing with the new demands for convergent networks by means of simultaneously providing the functionalities of multiband radiofrequency spectrum sensing, dynamic resource allocation, and centralized processing capability, as well as the use of optically controlled reconfigurable antennas and radio over fiber technology. The performance of this novel and innovative architecture has been evaluated in a geographically distributed optical-wireless network under real conditions and for different fiber lengths. Experimental results demonstrate reach extension of more than 40 times and an enhancement of more than 30 dB in the carrier to interference plus noise ratio parameter.

  6. Ubiquitous Wireless Smart Sensing and Control. Pumps and Pipes JSC: Uniquely Houston

    Science.gov (United States)

    Wagner, Raymond

    2013-01-01

    Need new technologies to reliably and safely have humans interact within sensored environments (integrated user interfaces, physical and cognitive augmentation, training, and human-systems integration tools).Areas of focus include: radio frequency identification (RFID), motion tracking, wireless communication, wearable computing, adaptive training and decision support systems, and tele-operations. The challenge is developing effective, low cost/mass/volume/power integrated monitoring systems to assess and control system, environmental, and operator health; and accurately determining and controlling the physical, chemical, and biological environments of the areas and associated environmental control systems.

  7. High-Temperature Dielectric Properties of Aluminum Nitride Ceramic for Wireless Passive Sensing Applications.

    Science.gov (United States)

    Liu, Jun; Yuan, Yukun; Ren, Zhong; Tan, Qiulin; Xiong, Jijun

    2015-09-08

    The accurate characterization of the temperature-dependent permittivity of aluminum nitride (AlN) ceramic is quite critical to the application of wireless passive sensors for harsh environments. Since the change of the temperature-dependent permittivity will vary the ceramic-based capacitance, which can be converted into the change of the resonant frequency, an LC resonator, based on AlN ceramic, is prepared by the thick film technology. The dielectric properties of AlN ceramic are measured by the wireless coupling method, and discussed within the temperature range of 12 °C (room temperature) to 600 °C. The results show that the extracted relative permittivity of ceramic at room temperature is 2.3% higher than the nominal value of 9, and increases from 9.21 to 10.79, and the quality factor Q is decreased from 29.77 at room temperature to 3.61 at 600 °C within the temperature range.

  8. High-Temperature Dielectric Properties of Aluminum Nitride Ceramic for Wireless Passive Sensing Applications

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2015-09-01

    Full Text Available The accurate characterization of the temperature-dependent permittivity of aluminum nitride (AlN ceramic is quite critical to the application of wireless passive sensors for harsh environments. Since the change of the temperature-dependent permittivity will vary the ceramic-based capacitance, which can be converted into the change of the resonant frequency, an LC resonator, based on AlN ceramic, is prepared by the thick film technology. The dielectric properties of AlN ceramic are measured by the wireless coupling method, and discussed within the temperature range of 12 °C (room temperature to 600 °C. The results show that the extracted relative permittivity of ceramic at room temperature is 2.3% higher than the nominal value of 9, and increases from 9.21 to 10.79, and the quality factor Q is decreased from 29.77 at room temperature to 3.61 at 600 °C within the temperature range.

  9. Ultra-low power wireless sensing for long-term structural health monitoring

    Science.gov (United States)

    Bilbao, Argenis; Hoover, Davis; Rice, Jennifer; Chapman, Jamie

    2011-04-01

    Researchers have made significant progress in recent years towards realizing long-term structural health monitoring (SHM) utilizing wireless smart sensor networks (WSSNs). These efforts have focused on improving the performance and robustness of such networks to achieve high quality data acquisition and in-network processing. One of the primary challenges still facing the use of smart sensors for long-term monitoring deployments is their limited power resources. Periodically accessing the sensor nodes to change batteries is not feasible or economical in many deployment cases. While energy harvesting techniques show promise for prolonging unattended network life, low-power design and operation are still critically important. This research presents a new, fully integrated ultra-low power wireless smart sensor node and a flexible base station, both designed for long-term SHM applications. The power consumption of the sensor nodes and base station has been minimized through careful hardware selection and the implementation of power-aware network software, without sacrificing flexibility and functionality.

  10. Graphene Oxide Dielectric Permittivity at GHz and Its Applications for Wireless Humidity Sensing.

    Science.gov (United States)

    Huang, Xianjun; Leng, Ting; Georgiou, Thanasis; Abraham, Jijo; Raveendran Nair, Rahul; Novoselov, Kostya S; Hu, Zhirun

    2018-01-08

    In this work, the relative dielectric permittivity of graphene oxide (GO), both its real and imaginary parts, have been measured under various humidity conditions at GHz. It is demonstrated that the relative dielectric permittivity increases with increasing humidity due to water uptake. This finding is very different to that at a couple of MHz or lower frequency, where the relative dielectric permittivity increases with decreasing humidity. This GO electrical property was used to create a battery-free wireless radio-frequency identification (RFID) humidity sensor by coating printed graphene antenna with the GO layer. The resonance frequency as well as the backscattering phase of such GO/graphene antenna become sensitive to the surrounding humidity and can be detected by the RFID reader. This enables battery-free wireless monitoring of the local humidity with digital identification attached to any location or item and paves the way for low-cost efficient sensors for Internet of Things (IoTs) applications.

  11. A Data-Gathering Scheme with Joint Routing and Compressive Sensing Based on Modified Diffusion Wavelets in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xiangping Gu

    2018-02-01

    Full Text Available Compressive sensing (CS-based data gathering is a promising method to reduce energy consumption in wireless sensor networks (WSNs. Traditional CS-based data-gathering approaches require a large number of sensor nodes to participate in each CS measurement task, resulting in high energy consumption, and do not guarantee load balance. In this paper, we propose a sparser analysis that depends on modified diffusion wavelets, which exploit sensor readings’ spatial correlation in WSNs. In particular, a novel data-gathering scheme with joint routing and CS is presented. A modified ant colony algorithm is adopted, where next hop node selection takes a node’s residual energy and path length into consideration simultaneously. Moreover, in order to speed up the coverage rate and avoid the local optimal of the algorithm, an improved pheromone impact factor is put forward. More importantly, theoretical proof is given that the equivalent sensing matrix generated can satisfy the restricted isometric property (RIP. The simulation results demonstrate that the modified diffusion wavelets’ sparsity affects the sensor signal and has better reconstruction performance than DFT. Furthermore, our data gathering with joint routing and CS can dramatically reduce the energy consumption of WSNs, balance the load, and prolong the network lifetime in comparison to state-of-the-art CS-based methods.

  12. A Data-Gathering Scheme with Joint Routing and Compressive Sensing Based on Modified Diffusion Wavelets in Wireless Sensor Networks.

    Science.gov (United States)

    Gu, Xiangping; Zhou, Xiaofeng; Sun, Yanjing

    2018-02-28

    Compressive sensing (CS)-based data gathering is a promising method to reduce energy consumption in wireless sensor networks (WSNs). Traditional CS-based data-gathering approaches require a large number of sensor nodes to participate in each CS measurement task, resulting in high energy consumption, and do not guarantee load balance. In this paper, we propose a sparser analysis that depends on modified diffusion wavelets, which exploit sensor readings' spatial correlation in WSNs. In particular, a novel data-gathering scheme with joint routing and CS is presented. A modified ant colony algorithm is adopted, where next hop node selection takes a node's residual energy and path length into consideration simultaneously. Moreover, in order to speed up the coverage rate and avoid the local optimal of the algorithm, an improved pheromone impact factor is put forward. More importantly, theoretical proof is given that the equivalent sensing matrix generated can satisfy the restricted isometric property (RIP). The simulation results demonstrate that the modified diffusion wavelets' sparsity affects the sensor signal and has better reconstruction performance than DFT. Furthermore, our data gathering with joint routing and CS can dramatically reduce the energy consumption of WSNs, balance the load, and prolong the network lifetime in comparison to state-of-the-art CS-based methods.

  13. Utilization of multi-band OFDM modulation to increase traffic rate of phosphor-LED wireless VLC.

    Science.gov (United States)

    Yeh, Chien-Hung; Chen, Hsing-Yu; Chow, Chi-Wai; Liu, Yen-Liang

    2015-01-26

    To increase the traffic rate in phosphor-LED visible light communication (VLC), a multi-band orthogonal frequency division multiplexed (OFDM) modulation is first proposed and demonstrated. In the measurement, we do not utilize optical blue filter to increase modulation bandwidth of phosphor-LED in the VLC system. In this proposed scheme, different bands of OFDM signals are applied to different LED chips in a LED lamp, this can avoid the power fading and nonlinearity issue by applying the same OFDM signal to all the LED chips in a LED lamp. Here, the maximum increase percentages of traffic rates are 41.1%, 17.8% and 17.8% under received illuminations of 200, 500 and 1000 Lux, respectively, when the proposed three-band OFDM modulation is used in the VLC system. In addition, the analysis and verification by experiments are also performed.

  14. Traffic flow wide-area surveillance system definition

    Energy Technology Data Exchange (ETDEWEB)

    Allgood, G.O.; Ferrell, R.K.; Kercel, S.W.; Abston, R.A.; Carnal, C.L. [Oak Ridge National Lab., TN (United States); Moynihan, P.I. [Jet Propulsion Lab., Pasadena, CA (United States)

    1994-11-01

    Traffic Flow Wide-Area Surveillance (TFWAS) is a system for assessing the state of traffic flow over a wide area for enhanced traffic control and improved traffic management and planning. The primary purpose of a TFWAS system is to provide a detailed traffic flow description and context description to sophisticated traffic management and control systems being developed or envisioned for the future. A successful TFWAS system must possess the attributes of safety, reconfigurability, reliability, and expandability. The primary safety premise of TFWAS is to ensure that no action or failure of the TFWAS system or its components can result in risk of injury to humans. A wide variety of communication techniques is available for use with TFWAS systems. These communication techniques can be broken down into two categories, landlines and wireless. Currently used and possible future traffic sensing technologies have been examined. Important criteria for selecting TFWAS sensors include sensor capabilities, costs, operational constraints, sensor compatibility with the infrastructure, and extent. TFWAS is a concept that can take advantage of the strengths of different traffic sensing technologies, can readily adapt to newly developed technologies, and can grow with the development of new traffic control strategies. By developing innovative algorithms that will take information from a variety of sensor types and develop descriptions of traffic flows over a wide area, a more comprehensive understanding of the traffic state can be provided to the control system to perform the most reasonable control actions over the entire wide area. The capability of characterizing the state of traffic over an entire region should revolutionize developments in traffic control strategies.

  15. Sensing Home: A Cost-Effective Design for Smart Home via Heterogeneous Wireless Networks.

    Science.gov (United States)

    Fan, Xiaohu; Huang, Hao; Qi, Shipeng; Luo, Xincheng; Zeng, Jing; Xie, Qubo; Xie, Changsheng

    2015-12-03

    The aging population has inspired the marketing of advanced real time devices for home health care, more and more wearable devices and mobile applications, which have emerged in this field. However, to properly collect behavior information, accurately recognize human activities, and deploy the whole system in a real living environment is a challenging task. In this paper, we propose a feasible wireless-based solution to deploy a data collection scheme, activity recognition model, feedback control and mobile integration via heterogeneous networks. We compared and found a suitable algorithm that can be run on cost-efficient embedded devices. Specifically, we use the Super Set Transformation method to map the raw data into a sparse binary matrix. Furthermore, designed front-end devices of low power consumption gather the living data of the habitant via ZigBee to reduce the burden of wiring work. Finally, we evaluated our approach and show it can achieve a theoretical time-slice accuracy of 98%. The mapping solution we propose is compatible with more wearable devices and mobile apps.

  16. Mobile-Cloud Assisted Video Summarization Framework for Efficient Management of Remote Sensing Data Generated by Wireless Capsule Sensors

    Directory of Open Access Journals (Sweden)

    Irfan Mehmood

    2014-09-01

    Full Text Available Wireless capsule endoscopy (WCE has great advantages over traditional endoscopy because it is portable and easy to use, especially in remote monitoring health-services. However, during the WCE process, the large amount of captured video data demands a significant deal of computation to analyze and retrieve informative video frames. In order to facilitate efficient WCE data collection and browsing task, we present a resource- and bandwidth-aware WCE video summarization framework that extracts the representative keyframes of the WCE video contents by removing redundant and non-informative frames. For redundancy elimination, we use Jeffrey-divergence between color histograms and inter-frame Boolean series-based correlation of color channels. To remove non-informative frames, multi-fractal texture features are extracted to assist the classification using an ensemble-based classifier. Owing to the limited WCE resources, it is impossible for the WCE system to perform computationally intensive video summarization tasks. To resolve computational challenges, mobile-cloud architecture is incorporated, which provides resizable computing capacities by adaptively offloading video summarization tasks between the client and the cloud server. The qualitative and quantitative results are encouraging and show that the proposed framework saves information transmission cost and bandwidth, as well as the valuable time of data analysts in browsing remote sensing data.

  17. TinyONet: A Cache-Based Sensor Network Bridge Enabling Sensing Data Reusability and Customized Wireless Sensor Network Services

    Directory of Open Access Journals (Sweden)

    Yong-Jin Park

    2008-12-01

    Full Text Available In recent years, a few protocol bridge research projects have been announced to enable a seamless integration of Wireless Sensor Networks (WSNs with the TCP/IP network. These studies have ensured the transparent end-to-end communication between two network sides in the node-centric manner. Researchers expect this integration will trigger the development of various application domains. However, prior research projects have not fully explored some essential features for WSNs, especially the reusability of sensing data and the data-centric communication. To resolve these issues, we suggested a new protocol bridge system named TinyONet. In TinyONet, virtual sensors play roles as virtual counterparts of physical sensors and they dynamically group to make a functional entity, Slice. Instead of direct interaction with individual physical sensors, each sensor application uses its own WSN service provided by Slices. If a new kind of service is required in TinyONet, the corresponding function can be dynamically added at runtime. Beside the data-centric communication, it also supports the node-centric communication and the synchronous access. In order to show the effectiveness of the system, we implemented TinyONet on an embedded Linux machine and evaluated it with several experimental scenarios.

  18. TinyONet: A Cache-Based Sensor Network Bridge Enabling Sensing Data Reusability and Customized Wireless Sensor Network Services.

    Science.gov (United States)

    Jung, Eui-Hyun; Park, Yong-Jin

    2008-12-05

    In recent years, a few protocol bridge research projects have been announced to enable a seamless integration of Wireless Sensor Networks (WSNs) with the TCP/IP network. These studies have ensured the transparent end-to-end communication between two network sides in the node-centric manner. Researchers expect this integration will trigger the development of various application domains. However, prior research projects have not fully explored some essential features for WSNs, especially the reusability of sensing data and the data-centric communication. To resolve these issues, we suggested a new protocol bridge system named TinyONet. In TinyONet, virtual sensors play roles as virtual counterparts of physical sensors and they dynamically group to make a functional entity, Slice. Instead of direct interaction with individual physical sensors, each sensor application uses its own WSN service provided by Slices. If a new kind of service is required in TinyONet, the corresponding function can be dynamically added at runtime. Beside the data-centric communication, it also supports the node-centric communication and the synchronous access. In order to show the effectiveness of the system, we implemented TinyONet on an embedded Linux machine and evaluated it with several experimental scenarios.

  19. Compressive sensing-based channel bandwidth improvement in optical wireless orthogonal frequency division multiplexing link using visible light emitting diode.

    Science.gov (United States)

    Won, Yong-Yuk; Yoon, Sang Min

    2014-08-25

    A new technique, which can compensate for the lack of channel bandwidth in an optical wireless orthogonal frequency division multiplexing (OFDM) link based on a light emitting diode (LED), is proposed. It uses an adaptive sampling and an inverse discrete cosine transform in order to convert an OFDM signal into a sparse waveform so that not only is the important data obtained efficiently but the redundancy one is removed. In compressive sensing (CS), a sparse signal that is sampled below the Nyquist/Shannon limit can be reconstructed successively with enough measurement. This means that the CS technique can increase the data rate of visible light communication (VLC) systems based on LEDs. It is observed that the data rate of the proposed CS-based VLC-OFDM link can be made 1.7 times greater than a conventional VLC-OFDM link (from 30.72 Mb/s to 51.2 Mb/s). We see that the error vector magnitude (EVM) of the quadrature phase shift keying (QPSK) symbol is 31% (FEC limit: EVM of 32%) at a compression ratio of 40%.

  20. Mobile-cloud assisted video summarization framework for efficient management of remote sensing data generated by wireless capsule sensors.

    Science.gov (United States)

    Mehmood, Irfan; Sajjad, Muhammad; Baik, Sung Wook

    2014-09-15

    Wireless capsule endoscopy (WCE) has great advantages over traditional endoscopy because it is portable and easy to use, especially in remote monitoring health-services. However, during the WCE process, the large amount of captured video data demands a significant deal of computation to analyze and retrieve informative video frames. In order to facilitate efficient WCE data collection and browsing task, we present a resource- and bandwidth-aware WCE video summarization framework that extracts the representative keyframes of the WCE video contents by removing redundant and non-informative frames. For redundancy elimination, we use Jeffrey-divergence between color histograms and inter-frame Boolean series-based correlation of color channels. To remove non-informative frames, multi-fractal texture features are extracted to assist the classification using an ensemble-based classifier. Owing to the limited WCE resources, it is impossible for the WCE system to perform computationally intensive video summarization tasks. To resolve computational challenges, mobile-cloud architecture is incorporated, which provides resizable computing capacities by adaptively offloading video summarization tasks between the client and the cloud server. The qualitative and quantitative results are encouraging and show that the proposed framework saves information transmission cost and bandwidth, as well as the valuable time of data analysts in browsing remote sensing data.

  1. The development of a monitoring system using a Wireless and Powerless Sensing Node deployed inside a spindle.

    Science.gov (United States)

    Chang, Liang-Cheng; Lee, Da-Sheng

    2012-01-01

    Installation of a Wireless and Powerless Sensing Node (WPSN) inside a spindle enables the direct transmission of monitoring signals through a metal case of a certain thickness instead of the traditional method of using connecting cables. Thus, the node can be conveniently installed inside motors to measure various operational parameters. This study extends this earlier finding by applying this advantage to the monitoring of spindle systems. After over 2 years of system observation and optimization, the system has been verified to be superior to traditional methods. The innovation of fault diagnosis in this study includes the unmatched assembly dimensions of the spindle system, the unbalanced system, and bearing damage. The results of the experiment demonstrate that the WPSN provides a desirable signal-to-noise ratio (SNR) in all three of the simulated faults, with the difference of SNR reaching a maximum of 8.6 dB. Following multiple repetitions of the three experiment types, 80% of the faults were diagnosed when the spindle revolved at 4,000 rpm, significantly higher than the 30% fault recognition rate of traditional methods. The experimental results of monitoring of the spindle production line indicated that monitoring using the WPSN encounters less interference from noise compared to that of traditional methods. Therefore, this study has successfully developed a prototype concept into a well-developed monitoring system, and the monitoring can be implemented in a spindle production line or real-time monitoring of machine tools.

  2. A Real-Time Smooth Weighted Data Fusion Algorithm for Greenhouse Sensing Based on Wireless Sensor Networks.

    Science.gov (United States)

    Zou, Tengyue; Wang, Yuanxia; Wang, Mengyi; Lin, Shouying

    2017-11-06

    Wireless sensor networks are widely used to acquire environmental parameters to support agricultural production. However, data variation and noise caused by actuators often produce complex measurement conditions. These factors can lead to nonconformity in reporting samples from different nodes and cause errors when making a final decision. Data fusion is well suited to reduce the influence of actuator-based noise and improve automation accuracy. A key step is to identify the sensor nodes disturbed by actuator noise and reduce their degree of participation in the data fusion results. A smoothing value is introduced and a searching method based on Prim's algorithm is designed to help obtain stable sensing data. A voting mechanism with dynamic weights is then proposed to obtain the data fusion result. The dynamic weighting process can sharply reduce the influence of actuator noise in data fusion and gradually condition the data to normal levels over time. To shorten the data fusion time in large networks, an acceleration method with prediction is also presented to reduce the data collection time. A real-time system is implemented on STMicroelectronics STM32F103 and NORDIC nRF24L01 platforms and the experimental results verify the improvement provided by these new algorithms.

  3. A Real-Time Smooth Weighted Data Fusion Algorithm for Greenhouse Sensing Based on Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Tengyue Zou

    2017-11-01

    Full Text Available Wireless sensor networks are widely used to acquire environmental parameters to support agricultural production. However, data variation and noise caused by actuators often produce complex measurement conditions. These factors can lead to nonconformity in reporting samples from different nodes and cause errors when making a final decision. Data fusion is well suited to reduce the influence of actuator-based noise and improve automation accuracy. A key step is to identify the sensor nodes disturbed by actuator noise and reduce their degree of participation in the data fusion results. A smoothing value is introduced and a searching method based on Prim’s algorithm is designed to help obtain stable sensing data. A voting mechanism with dynamic weights is then proposed to obtain the data fusion result. The dynamic weighting process can sharply reduce the influence of actuator noise in data fusion and gradually condition the data to normal levels over time. To shorten the data fusion time in large networks, an acceleration method with prediction is also presented to reduce the data collection time. A real-time system is implemented on STMicroelectronics STM32F103 and NORDIC nRF24L01 platforms and the experimental results verify the improvement provided by these new algorithms.

  4. Frequency-agile antennas for wireless communications

    CERN Document Server

    Petosa, Aldo

    2013-01-01

    Mobile data subscriptions are expected to more than double and mobile wireless traffic to increase by more than tenfold over the next few years. Proliferation of smart phones, tablets, and other portable devices are placing greater demands for services such as web browsing, global positioning, video streaming, and video telephony. Many of the proposed solutions to deal with these demands will have a significant impact on antenna designs. Antennas with frequency agility are considered a promising technology to help implement these new solutions.This book provides readers with a sense of the cap

  5. Cross-Layer Resource Scheduling for Video Traffic in the Downlink of OFDMA-Based Wireless 4G Networks

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available Designing scheduling algorithms at the medium access control (MAC layer relies on a variety of parameters including quality of service (QoS requirements, resource allocation mechanisms, and link qualities from the corresponding layers. In this paper, we present an efficient cross-layer scheduling scheme, namely, Adaptive Token Bank Fair Queuing (ATBFQ algorithm, which is designed for packet scheduling and resource allocation in the downlink of OFDMA-based wireless 4G networks. This algorithm focuses on the mechanisms of efficiency and fairness in multiuser frequency-selective fading environments. We propose an adaptive method for ATBFQ parameter selection which integrates packet scheduling with resource mapping. The performance of the proposed scheme is compared to that of the round-robin (RR and the score-based (SB schedulers. It is observed from simulation results that the proposed scheme with adaptive parameter selection provides enhanced performance in terms of queuing delay, packet dropping rate, and cell-edge user performance, while the total sector throughput remains comparable. We further analyze and compare achieved fairness of the schemes in terms of different fairness indices available in literature.

  6. A new method for determining gastric acid output using a wireless ph sensing capsule

    Science.gov (United States)

    Weinstein, D.H.; deRijke, S.; Chow, C. C.; Foruraghi, L.; Zhao, X.; Wright, E.C.; Whatley, M.; Maass-Moreno, R.; Chen, C. C.; Wank, S. A.

    2013-01-01

    BACKGROUND Gastroesophageal reflux disease (GERD) and gastric acid hypersecretion respond well to suppression of gastric acid secretion. However, clinical management and research in diseases of acid secretion have been hindered by the lack of a non-invasive, accurate and reproducible tool to measure gastric acid output (GAO). Thus, symptoms or, in refractory cases, invasive testing may guide acid suppression therapy. AIM To present and validate a novel, non-invasive method of GAO analysis in healthy subjects using a wireless pH sensor, SmartPill® (SP) (SmartPill® Corporation, Buffalo, NY). METHODS Twenty healthy subjects underwent conventional GAO studies with a nasogastric tube. Variables impacting liquid meal-stimulated GAO analysis were assessed by modeling and in vitro verification. Buffering capacity of Ensure Plus® was empirically determined. SP GAO was calculated using the rate of acidification of the Ensure Plus® meal. Gastric emptying scintigraphy and GAO studies with radiolabeled Ensure Plus® and SP assessed emptying time, acidification rate and mixing. Twelve subjects had a second SP GAO study to assess reproducibility. RESULTS Meal stimulated SP GAO analysis was dependent on acid secretion rate and meal buffering capacity but not on gastric emptying time. On repeated studies, SP GAO strongly correlated with conventional BAO (r=0.51, P=0.02), MAO (r=0.72, P=0.0004) and PAO; (r=0.60, P=0.006). The SP sampled the stomach well during meal acidification. CONCLUSIONS SP GAO analysis is a non-invasive, accurate and reproducible method for the quantitative measurement of GAO in healthy subjects. SP GAO analysis could facilitate research and clinical management of GERD and other disorders of gastric acid secretion. PMID:23639004

  7. A wireless magnetoresistive sensing system for an intraoral tongue-computer interface.

    Science.gov (United States)

    Park, Hangue; Kiani, Mehdi; Lee, Hyung-Min; Kim, Jeonghee; Block, Jacob; Gosselin, Benoit; Ghovanloo, Maysam

    2012-12-01

    Tongue drive system (TDS) is a tongue-operated, minimally invasive, unobtrusive, and wireless assistive technology (AT) that infers users' intentions by detecting their voluntary tongue motion and translating them into user-defined commands. Here we present the new intraoral version of the TDS (iTDS), which has been implemented in the form of a dental retainer. The iTDS system-on-a-chip (SoC) features a configurable analog front-end (AFE) that reads the magnetic field variations inside the mouth from four 3-axial magnetoresistive sensors located at four corners of the iTDS printed circuit board (PCB). A dual-band transmitter (Tx) on the same chip operates at 27 and 432 MHz in the Industrial/Scientific/Medical (ISM) band to allow users to switch in the presence of external interference. The Tx streams the digitized samples to a custom-designed TDS universal interface, built from commercial off-the-shelf (COTS) components, which delivers the iTDS data to other devices such as smartphones, personal computers (PC), and powered wheelchairs (PWC). Another key block on the iTDS SoC is the power management integrated circuit (PMIC), which provides individually regulated and duty-cycled 1.8 V supplies for sensors, AFE, Tx, and digital control blocks. The PMIC also charges a 50 mAh Li-ion battery with constant current up to 4.2 V, and recovers data and clock to update its configuration register through a 13.56 MHz inductive link. The iTDS SoC has been implemented in a 0.5-μm standard CMOS process and consumes 3.7 mW on average.

  8. A Wireless Magnetoresistive Sensing System for an Intraoral Tongue-Computer Interface

    Science.gov (United States)

    Park, Hangue; Kiani, Mehdi; Lee, Hyung-Min; Kim, Jeonghee; Block, Jacob; Gosselin, Benoit; Ghovanloo, Maysam

    2015-01-01

    Tongue drive system (TDS) is a tongue-operated, minimally invasive, unobtrusive, and wireless assistive technology (AT) that infers users’ intentions by detecting their voluntary tongue motion and translating them into user-defined commands. Here we present the new intraoral version of the TDS (iTDS), which has been implemented in the form of a dental retainer. The iTDS system-on-a-chip (SoC) features a configurable analog front-end (AFE) that reads the magnetic field variations inside the mouth from four 3-axial magnetoresistive sensors located at four corners of the iTDS printed circuit board (PCB). A dual-band transmitter (Tx) on the same chip operates at 27 and 432 MHz in the Industrial/Scientific/Medical (ISM) band to allow users to switch in the presence of external interference. The Tx streams the digitized samples to a custom-designed TDS universal interface, built from commercial off-the-shelf (COTS) components, which delivers the iTDS data to other devices such as smartphones, personal computers (PC), and powered wheelchairs (PWC). Another key block on the iTDS SoC is the power management integrated circuit (PMIC), which provides individually regulated and duty-cycled 1.8 V supplies for sensors, AFE, Tx, and digital control blocks. The PMIC also charges a 50 mAh Li-ion battery with constant current up to 4.2 V, and recovers data and clock to update its configuration register through a 13.56 MHz inductive link. The iTDS SoC has been implemented in a 0.5-μm standard CMOS process and consumes 3.7 mW on average. PMID:23853258

  9. Optical power transfer and communication methods for wireless implantable sensing platforms.

    Science.gov (United States)

    Mujeeb-U-Rahman, Muhammad; Adalian, Dvin; Chang, Chieh-Feng; Scherer, Axel

    2015-09-01

    Ultrasmall scale implants have recently attracted focus as valuable tools for monitoring both acute and chronic diseases. Semiconductor optical technologies are the key to miniaturizing these devices to the long-sought sub-mm scale, which will enable long-term use of these devices for medical applications. This can also enable the use of multiple implantable devices concurrently to form a true body area network of sensors. We demonstrate optical power transfer techniques and methods to effectively harness this power for implantable devices. Furthermore, we also present methods for optical data transfer from such implants. Simultaneous use of these technologies can result in miniaturized sensing platforms that can allow for large-scale use of such systems in real world applications.

  10. A Multi-Sensor RSS Spatial Sensing-Based Robust Stochastic Optimization Algorithm for Enhanced Wireless Tethering

    CERN Document Server

    Parasuraman, Ramviyas; Molinari, Luca; Kershaw, Keith; Di Castro, Mario; Masi, Alessandro; Ferre, Manuel

    2014-01-01

    The reliability of wireless communication in a network of mobile wireless robot nodes depends on the received radio signal strength (RSS). When the robot nodes are deployed in hostile environments with ionizing radiations (such as in some scientific facilities), there is a possibility that some electronic components may fail randomly (due to radiation effects), which causes problems in wireless connectivity. The objective of this paper is to maximize robot mission capabilities by maximizing the wireless network capacity and to reduce the risk of communication failure. Thus, in this paper, we consider a multi-node wireless tethering structure called the “server-relay-client” framework that uses (multiple) relay nodes in between a server and a client node. We propose a robust stochastic optimization (RSO) algorithm using a multi-sensor-based RSS sampling method at the relay nodes to efficiently improve and balance the RSS between the source and client nodes to improve the network capacity and to provide red...

  11. Interference Effects Redress over Power-Efficient Wireless-Friendly Mesh Networks for Ubiquitous Sensor Communications across Smart Cities.

    Science.gov (United States)

    Santana, Jose; Marrero, Domingo; Macías, Elsa; Mena, Vicente; Suárez, Álvaro

    2017-07-21

    Ubiquitous sensing allows smart cities to take control of many parameters (e.g., road traffic, air or noise pollution levels, etc.). An inexpensive Wireless Mesh Network can be used as an efficient way to transport sensed data. When that mesh is autonomously powered (e.g., solar powered), it constitutes an ideal portable network system which can be deployed when needed. Nevertheless, its power consumption must be restrained to extend its operational cycle and for preserving the environment. To this end, our strategy fosters wireless interface deactivation among nodes which do not participate in any route. As we show, this contributes to a significant power saving for the mesh. Furthermore, our strategy is wireless-friendly, meaning that it gives priority to deactivation of nodes receiving (and also causing) interferences from (to) the rest of the smart city. We also show that a routing protocol can adapt to this strategy in which certain nodes deactivate their own wireless interfaces.

  12. Optical sensing system based on wireless paired emitter detector diode device and ionogels for lab-on-a-disc water quality analysis.

    Science.gov (United States)

    Czugala, Monika; Gorkin, Robert; Phelan, Thomas; Gaughran, Jennifer; Curto, Vincenzo Fabio; Ducrée, Jens; Diamond, Dermot; Benito-Lopez, Fernando

    2012-12-07

    This work describes the first use of a wireless paired emitter detector diode device (PEDD) as an optical sensor for water quality monitoring in a lab-on-a-disc device. The microfluidic platform, based on an ionogel sensing area combined with a low-cost optical sensor, is applied for quantitative pH and qualitative turbidity monitoring of water samples at point-of-need. The autonomous capabilities of the PEDD system, combined with the portability and wireless communication of the full device, provide the flexibility needed for on-site water testing. Water samples from local fresh and brackish sources were successfully analysed using the device, showing very good correlation with standard bench-top systems.

  13. Distributed Acoustic Sensing for Seismic Monitoring of The Near Surface: A Traffic-Noise Interferometry Case Study.

    Science.gov (United States)

    Dou, Shan; Lindsey, Nate; Wagner, Anna M; Daley, Thomas M; Freifeld, Barry; Robertson, Michelle; Peterson, John; Ulrich, Craig; Martin, Eileen R; Ajo-Franklin, Jonathan B

    2017-09-14

    Ambient-noise-based seismic monitoring of the near surface often has limited spatiotemporal resolutions because dense seismic arrays are rarely sufficiently affordable for such applications. In recent years, however, distributed acoustic sensing (DAS) techniques have emerged to transform telecommunication fiber-optic cables into dense seismic arrays that are cost effective. With DAS enabling both high sensor counts ("large N") and long-term operations ("large T"), time-lapse imaging of shear-wave velocity (V S ) structures is now possible by combining ambient noise interferometry and multichannel analysis of surface waves (MASW). Here we report the first end-to-end study of time-lapse V S imaging that uses traffic noise continuously recorded on linear DAS arrays over a three-week period. Our results illustrate that for the top 20 meters the V S models that is well constrained by the data, we obtain time-lapse repeatability of about 2% in the model domain-a threshold that is low enough for observing subtle near-surface changes such as water content variations and permafrost alteration. This study demonstrates the efficacy of near-surface seismic monitoring using DAS-recorded ambient noise.

  14. A multi-sensor RSS spatial sensing-based robust stochastic optimization algorithm for enhanced wireless tethering.

    Science.gov (United States)

    Parasuraman, Ramviyas; Fabry, Thomas; Molinari, Luca; Kershaw, Keith; Di Castro, Mario; Masi, Alessandro; Ferre, Manuel

    2014-12-12

    The reliability of wireless communication in a network of mobile wireless robot nodes depends on the received radio signal strength (RSS). When the robot nodes are deployed in hostile environments with ionizing radiations (such as in some scientific facilities), there is a possibility that some electronic components may fail randomly (due to radiation effects), which causes problems in wireless connectivity. The objective of this paper is to maximize robot mission capabilities by maximizing the wireless network capacity and to reduce the risk of communication failure. Thus, in this paper, we consider a multi-node wireless tethering structure called the "server-relay-client" framework that uses (multiple) relay nodes in between a server and a client node. We propose a robust stochastic optimization (RSO) algorithm using a multi-sensor-based RSS sampling method at the relay nodes to efficiently improve and balance the RSS between the source and client nodes to improve the network capacity and to provide redundant networking abilities. We use pre-processing techniques, such as exponential moving averaging and spatial averaging filters on the RSS data for smoothing. We apply a receiver spatial diversity concept and employ a position controller on the relay node using a stochastic gradient ascent method for self-positioning the relay node to achieve the RSS balancing task. The effectiveness of the proposed solution is validated by extensive simulations and field experiments in CERN facilities. For the field trials, we used a youBot mobile robot platform as the relay node, and two stand-alone Raspberry Pi computers as the client and server nodes. The algorithm has been proven to be robust to noise in the radio signals and to work effectively even under non-line-of-sight conditions.

  15. A Multi-Sensor RSS Spatial Sensing-Based Robust Stochastic Optimization Algorithm for Enhanced Wireless Tethering

    Directory of Open Access Journals (Sweden)

    Ramviyas Parasuraman

    2014-12-01

    Full Text Available The reliability of wireless communication in a network of mobile wireless robot nodes depends on the received radio signal strength (RSS. When the robot nodes are deployed in hostile environments with ionizing radiations (such as in some scientific facilities, there is a possibility that some electronic components may fail randomly (due to radiation effects, which causes problems in wireless connectivity. The objective of this paper is to maximize robot mission capabilities by maximizing the wireless network capacity and to reduce the risk of communication failure. Thus, in this paper, we consider a multi-node wireless tethering structure called the “server-relay-client” framework that uses (multiple relay nodes in between a server and a client node. We propose a robust stochastic optimization (RSO algorithm using a multi-sensor-based RSS sampling method at the relay nodes to efficiently improve and balance the RSS between the source and client nodes to improve the network capacity and to provide redundant networking abilities. We use pre-processing techniques, such as exponential moving averaging and spatial averaging filters on the RSS data for smoothing. We apply a receiver spatial diversity concept and employ a position controller on the relay node using a stochastic gradient ascent method for self-positioning the relay node to achieve the RSS balancing task. The effectiveness of the proposed solution is validated by extensive simulations and field experiments in CERN facilities. For the field trials, we used a youBot mobile robot platform as the relay node, and two stand-alone Raspberry Pi computers as the client and server nodes. The algorithm has been proven to be robust to noise in the radio signals and to work effectively even under non-line-of-sight conditions.

  16. A 868MHz-based wireless sensor network for ground truthing of soil moisture for a hyperspectral remote sensing campaign - design and preliminary results

    Science.gov (United States)

    Näthe, Paul; Becker, Rolf

    2014-05-01

    Soil moisture and plant available water are important environmental parameters that affect plant growth and crop yield. Hence, they are significant parameters for vegetation monitoring and precision agriculture. However, validation through ground-based soil moisture measurements is necessary for accessing soil moisture, plant canopy temperature, soil temperature and soil roughness with airborne hyperspectral imaging systems in a corresponding hyperspectral imaging campaign as a part of the INTERREG IV A-Project SMART INSPECTORS. At this point, commercially available sensors for matric potential, plant available water and volumetric water content are utilized for automated measurements with smart sensor nodes which are developed on the basis of open-source 868MHz radio modules, featuring a full-scale microcontroller unit that allows an autarkic operation of the sensor nodes on batteries in the field. The generated data from each of these sensor nodes is transferred wirelessly with an open-source protocol to a central node, the so-called "gateway". This gateway collects, interprets and buffers the sensor readings and, eventually, pushes the data-time series onto a server-based database. The entire data processing chain from the sensor reading to the final storage of data-time series on a server is realized with open-source hardware and software in such a way that the recorded data can be accessed from anywhere through the internet. It will be presented how this open-source based wireless sensor network is developed and specified for the application of ground truthing. In addition, the system's perspectives and potentials with respect to usability and applicability for vegetation monitoring and precision agriculture shall be pointed out. Regarding the corresponding hyperspectral imaging campaign, results from ground measurements will be discussed in terms of their contributing aspects to the remote sensing system. Finally, the significance of the wireless sensor

  17. Voice over IP in Wireless Heterogeneous Networks

    DEFF Research Database (Denmark)

    Fathi, Hanane; Chakraborty, Shyam; Prasad, Ramjee

    The convergence of different types of traffic has preceded the convergence of systems and services in a wireless heterogeneous network. Voice and data traffic are usually treated separate in both 2G and 2.5G wireless networks. With advances in packet switching technology and especially with the d...... and to the discruption caused by the user mobility during the session. Voice over IP in Wireless Hetetrogeneous Networks thus investigates and proposes cross-layer techniques for realizing time-efficient control mechanisms for VoIP: signaling, mobility and security.......The convergence of different types of traffic has preceded the convergence of systems and services in a wireless heterogeneous network. Voice and data traffic are usually treated separate in both 2G and 2.5G wireless networks. With advances in packet switching technology and especially...... with the deployment of wireless heterogeneous systems, both speech and data traffic are carrried over wireless links by the same IP-based packet-switched infrastructure. However, this combination faces some challenges due to the inherent properties of the wireless network. The requirements for good quality Vo...

  18. Wireless rechargeable sensor networks

    CERN Document Server

    Yang, Yuanyuan

    2015-01-01

    This SpringerBrief provides a concise guide to applying wireless energy transfer techniques in traditional battery-powered sensor networks. It examines the benefits and challenges of wireless power including efficiency and reliability. The authors build a wireless rechargeable sensor networks from scratch and aim to provide perpetual network operation. Chapters cover a wide range of topics from the collection of energy information and recharge scheduling to joint design with typical sensing applications such as data gathering. Problems are approached using a natural combination of probability

  19. Passive Wireless Temperature Sensors with Enhanced Sensitivity and Range, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of a wireless multisensor system for NASA application to remote wireless sensing of temperature distributions in composite...

  20. Distributed Acoustic Sensing (DAS) Array near a Highway for Traffic Monitoring and Near-Surface Shear-Wave Velocity Profiles

    Science.gov (United States)

    Wang, H. F.; Fratta, D.; Lancelle, C.; Ak, E. Ms; Lord, N. E.

    2017-12-01

    Monitoring traffic is important for many technical reasons. It allows for better design of future roads and assessment of the state of current roads. The number, size, weight, and speed of vehicles control deterioration rate. Also, real-time information supplies data to intelligent information systems to help control traffic. Recently there have been studies looking at monitoring traffic seismically as vibrations from traffic are not sensitive to weather and poor visibility. Furthermore, traffic noise can be used to image S-wave velocity distribution in the near surface by capturing and interpreting Rayleigh and Love waves (Nakata, 2016; Zeng et al. 2016). The capability of DAS for high spatial sampling (1 m), temporal sampling (up to 10 kHz), and distributed nature (tens of kilometers) allows for a closer look at the traffic as it passes and how the speed of the vehicle may change over the length of the array. The potential and difficulties of using DAS for these objectives were studied using two DAS arrays. One at Garner Valley in Southern California (a 700-meter array adjacent to CA Highway 74) and another in Brady Hot Springs, Nevada (an 8700-meter array adjacent to Interstate 80). These studies experimentally evaluated the use of DAS data for monitoring traffic and assessing the use of traffic vibration as non-localized sources for seismic imaging. DAS arrays should also be resilient to issues with lighting conditions that are problematic for video monitoring and it may be sensitive to the weight of a vehicle. This study along a major interstate provides a basis for examining DAS' potential and limitations as a key component of intelligent highway systems.

  1. Design of wireless synchronous structural monitoring system for large bridges

    Science.gov (United States)

    Liu, Zhiqiang; Liu, Wei; Li, Na; Yu, Yan; Mao, Xingquan; Yang, Zhitao

    2017-04-01

    Large bridges play a significant role in the development of both the urban traffic condition and the social economy. It is of high importance to monitor the operational bridges and to assess their security from the perspective of people's life and property safety. In this paper, a wireless bridge structure monitoring system was developed and DMTS synchronization algorithm (based on the one-way synchronization mechanism of the sender) which can meet the system requirement was proposed. Then the deck vibration test of a bridge in Xiamen was carried out. The study shows that the wireless sensing system has the advantage of high accuracy, and the feature of easy operation, good instantaneity, and low overhead costs, which has a good application prospect in the field of structure monitoring and condition assessment of the bridges.

  2. Dynamic Wireless Power Transfer - Grid Impacts Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Markel, Tony; Meintz, Andrew; Gonder, Jeff

    2015-12-04

    This presentation discusses the current status of analysis of the electricity grid impacts of a dynamic wireless power transfer system deployed to the Atlanta region on select high traffic roadway segments.

  3. Traffic Driven Analysis of Cellular and WiFi Networks

    Science.gov (United States)

    Paul, Utpal Kumar

    2012-01-01

    Since the days Internet traffic proliferated, measurement, monitoring and analysis of network traffic have been critical to not only the basic understanding of large networks, but also to seek improvements in resource management, traffic engineering and security. At the current times traffic in wireless local and wide area networks are facing…

  4. Monitoring of bacteria growth using a wireless, remote query resonant-circuit sensor: application to environmental sensing

    Science.gov (United States)

    Ong, K. G.; Wang, J.; Singh, R. S.; Bachas, L. G.; Grimes, C. A.; Daunert, S. (Principal Investigator)

    2001-01-01

    A new technique is presented for in-vivo remote query measurement of the complex permittivity spectra of a biological culture solution. A sensor comprised of a printed inductor-capacitor resonant-circuit is placed within the culture solution of interest, with the impedance spectrum of the sensor measured using a remotely located loop antenna; the complex permittivity spectra of the culture is calculated from the measured impedance spectrum. The remote query nature of the sensor platform enables, for example, the in-vivo real-time monitoring of bacteria or yeast growth from within sealed opaque containers. The wireless monitoring technique does not require a specific alignment between sensor and antenna. Results are presented for studies conducted on laboratory strains of Bacillus subtilis, Escherichia coli JM109, Pseudomonas putida and Saccharomyces cerevisiae.

  5. A Secure, Intelligent, and Smart-Sensing Approach for Industrial System Automation and Transmission over Unsecured Wireless Networks

    Science.gov (United States)

    Shahzad, Aamir; Lee, Malrey; Xiong, Neal Naixue; Jeong, Gisung; Lee, Young-Keun; Choi, Jae-Young; Mahesar, Abdul Wheed; Ahmad, Iftikhar

    2016-01-01

    In Industrial systems, Supervisory control and data acquisition (SCADA) system, the pseudo-transport layer of the distributed network protocol (DNP3) performs the functions of the transport layer and network layer of the open systems interconnection (OSI) model. This study used a simulation design of water pumping system, in-which the network nodes are directly and wirelessly connected with sensors, and are monitored by the main controller, as part of the wireless SCADA system. This study also intends to focus on the security issues inherent in the pseudo-transport layer of the DNP3 protocol. During disassembly and reassembling processes, the pseudo-transport layer keeps track of the bytes sequence. However, no mechanism is available that can verify the message or maintain the integrity of the bytes in the bytes received/transmitted from/to the data link layer or in the send/respond from the main controller/sensors. To properly and sequentially keep track of the bytes, a mechanism is required that can perform verification while bytes are received/transmitted from/to the lower layer of the DNP3 protocol or the send/respond to/from field sensors. For security and byte verification purposes, a mechanism needs to be proposed for the pseudo-transport layer, by employing cryptography algorithm. A dynamic choice security buffer (SB) is designed and employed during the security development. To achieve the desired goals of the proposed study, a pseudo-transport layer stack model is designed using the DNP3 protocol open library and the security is deployed and tested, without changing the original design. PMID:26950129

  6. A Secure, Intelligent, and Smart-Sensing Approach for Industrial System Automation and Transmission over Unsecured Wireless Networks.

    Science.gov (United States)

    Shahzad, Aamir; Lee, Malrey; Xiong, Neal Naixue; Jeong, Gisung; Lee, Young-Keun; Choi, Jae-Young; Mahesar, Abdul Wheed; Ahmad, Iftikhar

    2016-03-03

    In Industrial systems, Supervisory control and data acquisition (SCADA) system, the pseudo-transport layer of the distributed network protocol (DNP3) performs the functions of the transport layer and network layer of the open systems interconnection (OSI) model. This study used a simulation design of water pumping system, in-which the network nodes are directly and wirelessly connected with sensors, and are monitored by the main controller, as part of the wireless SCADA system. This study also intends to focus on the security issues inherent in the pseudo-transport layer of the DNP3 protocol. During disassembly and reassembling processes, the pseudo-transport layer keeps track of the bytes sequence. However, no mechanism is available that can verify the message or maintain the integrity of the bytes in the bytes received/transmitted from/to the data link layer or in the send/respond from the main controller/sensors. To properly and sequentially keep track of the bytes, a mechanism is required that can perform verification while bytes are received/transmitted from/to the lower layer of the DNP3 protocol or the send/respond to/from field sensors. For security and byte verification purposes, a mechanism needs to be proposed for the pseudo-transport layer, by employing cryptography algorithm. A dynamic choice security buffer (SB) is designed and employed during the security development. To achieve the desired goals of the proposed study, a pseudo-transport layer stack model is designed using the DNP3 protocol open library and the security is deployed and tested, without changing the original design.

  7. A Secure, Intelligent, and Smart-Sensing Approach for Industrial System Automation and Transmission over Unsecured Wireless Networks

    Directory of Open Access Journals (Sweden)

    Aamir Shahzad

    2016-03-01

    Full Text Available In Industrial systems, Supervisory control and data acquisition (SCADA system, the pseudo-transport layer of the distributed network protocol (DNP3 performs the functions of the transport layer and network layer of the open systems interconnection (OSI model. This study used a simulation design of water pumping system, in-which the network nodes are directly and wirelessly connected with sensors, and are monitored by the main controller, as part of the wireless SCADA system. This study also intends to focus on the security issues inherent in the pseudo-transport layer of the DNP3 protocol. During disassembly and reassembling processes, the pseudo-transport layer keeps track of the bytes sequence. However, no mechanism is available that can verify the message or maintain the integrity of the bytes in the bytes received/transmitted from/to the data link layer or in the send/respond from the main controller/sensors. To properly and sequentially keep track of the bytes, a mechanism is required that can perform verification while bytes are received/transmitted from/to the lower layer of the DNP3 protocol or the send/respond to/from field sensors. For security and byte verification purposes, a mechanism needs to be proposed for the pseudo-transport layer, by employing cryptography algorithm. A dynamic choice security buffer (SB is designed and employed during the security development. To achieve the desired goals of the proposed study, a pseudo-transport layer stack model is designed using the DNP3 protocol open library and the security is deployed and tested, without changing the original design.

  8. Traffic & rural intersection monitoring with a solar-based infrared wireless system : phase 2 final report, long term effect and justification for further analysis, May 2008 [summary].

    Science.gov (United States)

    2008-05-01

    This study concerns the development and evaluation of a dynamic speed monitoring (DSM) system for use at rural intersections. The purpose of the DSM system is to give traffic speed feedback to drivers via an advisory sign, with the goals of improving...

  9. Real-time stress monitoring of highway bridges with a secured wireless sensor network.

    Science.gov (United States)

    2011-12-01

    "This collaborative research aims to develop a real-time stress monitoring system for highway bridges with a secured wireless sensor network. The near term goal is to collect wireless sensor data under different traffic patterns from local highway br...

  10. Traffic theory

    National Research Council Canada - National Science Library

    Gazis, Denos C

    2002-01-01

    ... of traffic signal settings The vehicle-actuated traffic signal 87 89 77 CHAPTER 3. TRAFFIC CONTROL 101 Objectives of Traffic Control 103 Single, Isolated Intersection 105 Synchronization Scheme...

  11. Locating Damage Using Integrated Global-Local Approach with Wireless Sensing System and Single-Chip Impedance Measurement Device

    Directory of Open Access Journals (Sweden)

    Tzu-Hsuan Lin

    2014-01-01

    Full Text Available This study developed an integrated global-local approach for locating damage on building structures. A damage detection approach with a novel embedded frequency response function damage index (NEFDI was proposed and embedded in the Imote2.NET-based wireless structural health monitoring (SHM system to locate global damage. Local damage is then identified using an electromechanical impedance- (EMI- based damage detection method. The electromechanical impedance was measured using a single-chip impedance measurement device which has the advantages of small size, low cost, and portability. The feasibility of the proposed damage detection scheme was studied with reference to a numerical example of a six-storey shear plane frame structure and a small-scale experimental steel frame. Numerical and experimental analysis using the integrated global-local SHM approach reveals that, after NEFDI indicates the approximate location of a damaged area, the EMI-based damage detection approach can then identify the detailed damage location in the structure of the building.

  12. Locating damage using integrated global-local approach with wireless sensing system and single-chip impedance measurement device.

    Science.gov (United States)

    Lin, Tzu-Hsuan; Lu, Yung-Chi; Hung, Shih-Lin

    2014-01-01

    This study developed an integrated global-local approach for locating damage on building structures. A damage detection approach with a novel embedded frequency response function damage index (NEFDI) was proposed and embedded in the Imote2.NET-based wireless structural health monitoring (SHM) system to locate global damage. Local damage is then identified using an electromechanical impedance- (EMI-) based damage detection method. The electromechanical impedance was measured using a single-chip impedance measurement device which has the advantages of small size, low cost, and portability. The feasibility of the proposed damage detection scheme was studied with reference to a numerical example of a six-storey shear plane frame structure and a small-scale experimental steel frame. Numerical and experimental analysis using the integrated global-local SHM approach reveals that, after NEFDI indicates the approximate location of a damaged area, the EMI-based damage detection approach can then identify the detailed damage location in the structure of the building.

  13. Artificial intelligence based event detection in wireless sensor networks

    NARCIS (Netherlands)

    Bahrepour, M.

    2013-01-01

    Wireless sensor networks (WSNs) are composed of large number of small, inexpensive devices, called sensor nodes, which are equipped with sensing, processing, and communication capabilities. While traditional applications of wireless sensor networks focused on periodic monitoring, the focus of more

  14. Wireless, Passive Encoded Saw Sensors and Communication Links - Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation proposed here is a complete, wireless remote sensing solution using passive SAW Orthogonal Frequency Coded (OFC) sensors and a wireless interrogation...

  15. Wireless Access

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Wireless Access. Wireless connect to the Base station. Easy and Convenient access. Costlier as compared to the wired technology. Reliability challenges. We see it as a complementary technology to the DSL.

  16. Distributed medium access control in wireless networks

    CERN Document Server

    Wang, Ping

    2013-01-01

    This brief investigates distributed medium access control (MAC) with QoS provisioning for both single- and multi-hop wireless networks including wireless local area networks (WLANs), wireless ad hoc networks, and wireless mesh networks. For WLANs, an efficient MAC scheme and a call admission control algorithm are presented to provide guaranteed QoS for voice traffic and, at the same time, increase the voice capacity significantly compared with the current WLAN standard. In addition, a novel token-based scheduling scheme is proposed to provide great flexibility and facility to the network servi

  17. Data centric wireless sensor networks

    NARCIS (Netherlands)

    Dulman, S.O.; Havinga, Paul J.M.

    2005-01-01

    The vision of wirteless sensing systems requires the development of devices and technologies that can be pervasive without being intrusive. The basic component of such a smart environment will be a small node with sensing and wireless communications capabilities, able to organize itself flexibly

  18. Insecurity of Wireless Networks

    Energy Technology Data Exchange (ETDEWEB)

    Sheldon, Frederick T [ORNL; Weber, John Mark [Dynetics, Inc.; Yoo, Seong-Moo [University of Alabama, Huntsville; Pan, W. David [University of Alabama, Huntsville

    2012-01-01

    Wireless is a powerful core technology enabling our global digital infrastructure. Wi-Fi networks are susceptible to attacks on Wired Equivalency Privacy, Wi-Fi Protected Access (WPA), and WPA2. These attack signatures can be profiled into a system that defends against such attacks on the basis of their inherent characteristics. Wi-Fi is the standard protocol for wireless networks used extensively in US critical infrastructures. Since the Wired Equivalency Privacy (WEP) security protocol was broken, the Wi-Fi Protected Access (WPA) protocol has been considered the secure alternative compatible with hardware developed for WEP. However, in November 2008, researchers developed an attack on WPA, allowing forgery of Address Resolution Protocol (ARP) packets. Subsequent enhancements have enabled ARP poisoning, cryptosystem denial of service, and man-in-the-middle attacks. Open source systems and methods (OSSM) have long been used to secure networks against such attacks. This article reviews OSSMs and the results of experimental attacks on WPA. These experiments re-created current attacks in a laboratory setting, recording both wired and wireless traffic. The article discusses methods of intrusion detection and prevention in the context of cyber physical protection of critical Internet infrastructure. The basis for this research is a specialized (and undoubtedly incomplete) taxonomy of Wi-Fi attacks and their adaptations to existing countermeasures and protocol revisions. Ultimately, this article aims to provide a clearer picture of how and why wireless protection protocols and encryption must achieve a more scientific basis for detecting and preventing such attacks.

  19. Use of mobile data for weather-responsive traffic management models.

    Science.gov (United States)

    2012-10-01

    The evolution of telecommunications and wireless technologies has brought in new sources of traffic data (particularly mobile data generated by vehicle probes), which could offer a breakthrough in the quality and extent of traffic data. This study re...

  20. Existing PON Infrastructure Supported Hybrid Fiber-Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Yu, Xianbin; Zhao, Ying; Deng, Lei

    2012-01-01

    We propose a hybrid fiber wireless sensor network based on the existing PON infrastructure. The feasibility of remote sensing and PON convergence is experimentally proven by transmitting direct-sequence spread-spectrum wireless sensing and 2.5Gbps GPON signals.......We propose a hybrid fiber wireless sensor network based on the existing PON infrastructure. The feasibility of remote sensing and PON convergence is experimentally proven by transmitting direct-sequence spread-spectrum wireless sensing and 2.5Gbps GPON signals....

  1. Wireless virtualization

    CERN Document Server

    Wen, Heming; Le-Ngoc, Tho

    2013-01-01

    This SpringerBriefs is an overview of the emerging field of wireless access and mobile network virtualization. It provides a clear and relevant picture of the current virtualization trends in wireless technologies by summarizing and comparing different architectures, techniques and technologies applicable to a future virtualized wireless network infrastructure. The readers are exposed to a short walkthrough of the future Internet initiative and network virtualization technologies in order to understand the potential role of wireless virtualization in the broader context of next-generation ubiq

  2. Optimising Signalised Intersection Using Wireless Vehicle Detectors

    DEFF Research Database (Denmark)

    Adjin, Daniel Michael Okwabi; Torkudzor, Moses; Asare, Jack

    Traffic congestion on roads wastes travel times. In this paper, we developed a vehicular traffic model to optimise a signalised intersection in Accra, using wireless vehicle detectors. Traffic volume gathered was extrapolated to cover 2011 and 2016 and were analysed to obtain the peak hour traffic...... volume causing congestion. The intersection was modelled and simulated in Synchro7 as an actuated signalised model using results from the analysed data. The model for morning peak periods gave optimal cycle lengths of 100s and 150s with corresponding intersection delay of 48.9s and 90.6s in 2011 and 2016...

  3. Voice and Video Capacity of a Secure Wireless System

    National Research Council Canada - National Science Library

    Seyba, Jason R

    2007-01-01

    .... The effects of securing the voice signal, real-time traffic originating foreign to a wireless local area network and use of an audio-only signal compared with a combined signal were all studied...

  4. Distributed Estimation, Coding, and Scheduling in Wireless Visual Sensor Networks

    Science.gov (United States)

    Yu, Chao

    2013-01-01

    In this thesis, we consider estimation, coding, and sensor scheduling for energy efficient operation of wireless visual sensor networks (VSN), which consist of battery-powered wireless sensors with sensing (imaging), computation, and communication capabilities. The competing requirements for applications of these wireless sensor networks (WSN)…

  5. Industrial wireless networking with resource constraint devices

    NARCIS (Netherlands)

    Das, Kallol

    2015-01-01

    During the last decade, wireless technologies have revolutionized the industrial automation sector by enabling wireless sensing and actuation for industrial applications. Most of these recently developed industrial standards are built on top of IEEE802.15.4 interface, which uses 2.4GHz frequency

  6. Wireless Internet

    NARCIS (Netherlands)

    el Zarki, M.; Heijenk, Geert; Lee, Kenneth S.; Bidgoli, H.

    This chapter addresses the topic of wireless Internet, the extension of the wireline Internet architecture to the wireless domain. As such the chapter introduces the reader to the dominant characteristics of the Internet, from its structure to the protocols that control the forwarding of data and

  7. Efficient DV-HOP Localization for Wireless Cyber-Physical Social Sensing System: A Correntropy-Based Neural Network Learning Scheme

    Directory of Open Access Journals (Sweden)

    Yang Xu

    2017-01-01

    Full Text Available Integrating wireless sensor network (WSN into the emerging computing paradigm, e.g., cyber-physical social sensing (CPSS, has witnessed a growing interest, and WSN can serve as a social network while receiving more attention from the social computing research field. Then, the localization of sensor nodes has become an essential requirement for many applications over WSN. Meanwhile, the localization information of unknown nodes has strongly affected the performance of WSN. The received signal strength indication (RSSI as a typical range-based algorithm for positioning sensor nodes in WSN could achieve accurate location with hardware saving, but is sensitive to environmental noises. Moreover, the original distance vector hop (DV-HOP as an important range-free localization algorithm is simple, inexpensive and not related to the environment factors, but performs poorly when lacking anchor nodes. Motivated by these, various improved DV-HOP schemes with RSSI have been introduced, and we present a new neural network (NN-based node localization scheme, named RHOP-ELM-RCC, through the use of DV-HOP, RSSI and a regularized correntropy criterion (RCC-based extreme learning machine (ELM algorithm (ELM-RCC. Firstly, the proposed scheme employs both RSSI and DV-HOP to evaluate the distances between nodes to enhance the accuracy of distance estimation at a reasonable cost. Then, with the help of ELM featured with a fast learning speed with a good generalization performance and minimal human intervention, a single hidden layer feedforward network (SLFN on the basis of ELM-RCC is used to implement the optimization task for obtaining the location of unknown nodes. Since the RSSI may be influenced by the environmental noises and may bring estimation error, the RCC instead of the mean square error (MSE estimation, which is sensitive to noises, is exploited in ELM. Hence, it may make the estimation more robust against outliers. Additionally, the least square

  8. Efficient DV-HOP Localization for Wireless Cyber-Physical Social Sensing System: A Correntropy-Based Neural Network Learning Scheme.

    Science.gov (United States)

    Xu, Yang; Luo, Xiong; Wang, Weiping; Zhao, Wenbing

    2017-01-12

    Integrating wireless sensor network (WSN) into the emerging computing paradigm, e.g., cyber-physical social sensing (CPSS), has witnessed a growing interest, and WSN can serve as a social network while receiving more attention from the social computing research field. Then, the localization of sensor nodes has become an essential requirement for many applications over WSN. Meanwhile, the localization information of unknown nodes has strongly affected the performance of WSN. The received signal strength indication (RSSI) as a typical range-based algorithm for positioning sensor nodes in WSN could achieve accurate location with hardware saving, but is sensitive to environmental noises. Moreover, the original distance vector hop (DV-HOP) as an important range-free localization algorithm is simple, inexpensive and not related to the environment factors, but performs poorly when lacking anchor nodes. Motivated by these, various improved DV-HOP schemes with RSSI have been introduced, and we present a new neural network (NN)-based node localization scheme, named RHOP-ELM-RCC, through the use of DV-HOP, RSSI and a regularized correntropy criterion (RCC)-based extreme learning machine (ELM) algorithm (ELM-RCC). Firstly, the proposed scheme employs both RSSI and DV-HOP to evaluate the distances between nodes to enhance the accuracy of distance estimation at a reasonable cost. Then, with the help of ELM featured with a fast learning speed with a good generalization performance and minimal human intervention, a single hidden layer feedforward network (SLFN) on the basis of ELM-RCC is used to implement the optimization task for obtaining the location of unknown nodes. Since the RSSI may be influenced by the environmental noises and may bring estimation error, the RCC instead of the mean square error (MSE) estimation, which is sensitive to noises, is exploited in ELM. Hence, it may make the estimation more robust against outliers. Additionally, the least square estimation (LSE

  9. Terabit Wireless Communication Challenges

    Science.gov (United States)

    Hwu, Shian U.

    2012-01-01

    This presentation briefly discusses a research effort on Terabit Wireless communication systems for possible space applications. Recently, terahertz (THz) technology (300-3000 GHz frequency) has attracted a great deal of interest from academia and industry. This is due to a number of interesting features of THz waves, including the nearly unlimited bandwidths available, and the non-ionizing radiation nature which does not damage human tissues and DNA with minimum health threat. Also, as millimeter-wave communication systems mature, the focus of research is, naturally, moving to the THz range. Many scientists regard THz as the last great frontier of the electromagnetic spectrum, but finding new applications outside the traditional niches of radio astronomy, Earth and planetary remote sensing, and molecular spectroscopy particularly in biomedical imaging and wireless communications has been relatively slow. Radiologists find this area of study so attractive because t-rays are non-ionizing, which suggests no harm is done to tissue or DNA. They also offer the possibility of performing spectroscopic measurements over a very wide frequency range, and can even capture signatures from liquids and solids. According to Shannon theory, the broad bandwidth of the THz frequency bands can be used for terabit-per-second (Tb/s) wireless communication systems. This enables several new applications, such as cell phones with 360 degrees autostereoscopic displays, optic-fiber replacement, and wireless Tb/s file transferring. Although THz technology could satisfy the demand for an extremely high data rate, a number of technical challenges need to be overcome before its development. This presentation provides an overview the state-of-the- art in THz wireless communication and the technical challenges for an emerging application in Terabit wireless systems. The main issue for THz wave propagation is the high atmospheric attenuation, which is dominated by water vapor absorption in the THz

  10. 4-D permafrost thaw observations from ambient road traffic noise and a very dense distributed fiber optic sensing array

    Science.gov (United States)

    Lindsey, N.; Dou, S.; Martin, E. R.; Wagner, A. M.; Ajo Franklin, J. B.

    2017-12-01

    How does frozen soil thaw? The answer to this question affects hydrology, ecology, climate, and human infrastructure. We are using the local ambient noise field from a road recorded on a distributed fiber optic acoustic sensing (DAS) array to monitor the evolution in seismic parameters related to the top-down permafrost thaw process in the upper 10 m. Our field experiment demonstrates the advantages of "Large N" ambient noise studies using DAS, particularly to probe near surface critical zone dynamics. Over 60 days beginning in August 2016, we made continuous seismic recordings with a >4000 channel trenched fiber optic DAS dataset above a controlled permafrost warming demonstration experiment in Fairbanks, AK. The warming experiment accelerated the state of permafrost degradation by approximately two decades in a small 15 m x 20 m area, deepening the permafrost table from 4 m to 5.5 m. Continuous seismic DAS recording of high frequency surface waves (5-30 Hz) generated by vehicles traveling along a nearby road enables our investigation of hypothesized shear wave speed and attenuation changes, which lab measurements suggest may result from decreasing shear modulus and increasing saturation. We develop daily auto- and crosscorrelation function estimates using combinations of horizontal inline, collinear, and crossline DAS sensor orientations and vertical component geophone data, and then invert for maps of Love and Rayleigh wave speed that are sensitive to the upper 30 m. Many issues related to the accuracy, stability, and repeatability of the recovered empirical Green's tensor, as well as the sensitivity of the DAS sensor network will be considered.

  11. Integration of a prototype wireless communication system with micro-electromechanical temperature and humidity sensor for concrete pavement health monitoring

    Directory of Open Access Journals (Sweden)

    Shuo Yang

    2015-12-01

    Full Text Available In recent years, structural health monitoring and management (SHMM has become a popular approach and is considered essential for achieving well-performing, long-lasting, sustainable transportation infrastructure systems. Key requirements in ideal SHMM of road infrastructure include long-term, continuous, and real-time monitoring of pavement response and performance under various pavement geometry-materials-loading configurations and environmental conditions. With advancements in wireless technologies, integration of wireless communications into sensing device is considered an alternate and superior solution to existing time- and labor-intensive wired sensing systems in meeting the requirements of an ideal SHMM. This study explored the development and integration of a wireless communications sub-system into a commercial off-the-shelf micro-electromechanical sensor-based concrete pavement monitoring system. A success-rate test was performed after the wireless transmission system was buried in the concrete slab, and the test results indicated that the system was able to provide reliable communications at a distance of more than 46 m (150 feet. This will be a useful feature for highway engineers performing routine pavement scans from the pavement shoulder without the need for traffic control or road closure.

  12. On traffic modelling in GPRS networks

    DEFF Research Database (Denmark)

    Madsen, Tatiana Kozlova; Schwefel, Hans-Peter; Prasad, Ramjee

    2005-01-01

    Optimal design and dimensioning of wireless data networks, such as GPRS, requires the knowledge of traffic characteristics of different data services. This paper presents an in-detail analysis of an IP-level traffic measurements taken in an operational GPRS network. The data measurements reported...... here are done at the Gi interface. The aim of this paper is to reveal some key statistics of GPRS data applications and to validate if the existing traffic models can adequately describe traffic volume and inter-arrival time distribution for different services. Additionally, we present a method of user...

  13. STRAW - An Integrated Mobility and Traffic Model for VANETs

    National Research Council Canada - National Science Library

    Choffnes, David R; Bustamante, Fabian E

    2005-01-01

    Ad-hoc wireless communication among highly dynamic, mobile nodes in a urban network is a critical capability for a wide range of important applications including automated vehicles, real-time traffic...

  14. Introduction to wireless sensor networks

    CERN Document Server

    Forster, Anna

    2016-01-01

    Explores real-world wireless sensor network development, deployment, and applications. The book begins with an introduction to wireless sensor networks and their fundamental concepts. Hardware components, operating systems, protocols, and algorithms that make up the anatomy of a sensor node are described in chapter two. Properties of wireless communications, medium access protocols, wireless links, and link estimation protocols are described in chapter three and chapter four. Routing basics and metrics, clustering techniques, time synchronization and localization protocols, as well as sensing techniques are introduced in chapter five to nine. The concluding chapter summarizes the learnt methods and shows how to use them to deploy real-world sensor networks in a structured way.

  15. Priority Based Congestion Control Dynamic Clustering Protocol in Mobile Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    R. Beulah Jayakumari

    2015-01-01

    Full Text Available Wireless sensor network is widely used to monitor natural phenomena because natural disaster has globally increased which causes significant loss of life, economic setback, and social development. Saving energy in a wireless sensor network (WSN is a critical factor to be considered. The sensor nodes are deployed to sense, compute, and communicate alerts in a WSN which are used to prevent natural hazards. Generally communication consumes more energy than sensing and computing; hence cluster based protocol is preferred. Even with clustering, multiclass traffic creates congested hotspots in the cluster, thereby causing packet loss and delay. In order to conserve energy and to avoid congestion during multiclass traffic a novel Priority Based Congestion Control Dynamic Clustering (PCCDC protocol is developed. PCCDC is designed with mobile nodes which are organized dynamically into clusters to provide complete coverage and connectivity. PCCDC computes congestion at intra- and intercluster level using linear and binary feedback method. Each mobile node within the cluster has an appropriate queue model for scheduling prioritized packet during congestion without drop or delay. Simulation results have proven that packet drop, control overhead, and end-to-end delay are much lower in PCCDC which in turn significantly increases packet delivery ratio, network lifetime, and residual energy when compared with PASCC protocol.

  16. Intelligent environmental sensing

    CERN Document Server

    Mukhopadhyay, Subhas

    2015-01-01

    Developing environmental sensing and monitoring technologies become essential especially for industries that may cause severe contamination. Intelligent environmental sensing uses novel sensor techniques, intelligent signal and data processing algorithms, and wireless sensor networks to enhance environmental sensing and monitoring. It finds applications in many environmental problems such as oil and gas, water quality, and agriculture. This book addresses issues related to three main approaches to intelligent environmental sensing and discusses their latest technological developments. Key contents of the book include:   Agricultural monitoring Classification, detection, and estimation Data fusion Geological monitoring Motor monitoring Multi-sensor systems Oil reservoirs monitoring Sensor motes Water quality monitoring Wireless sensor network protocol  

  17. Advances in Antenna Technology for Wireless Handheld Devices

    Directory of Open Access Journals (Sweden)

    Jaume Anguera

    2013-01-01

    Full Text Available The constant evolution of wireless handheld devices together with the apparition of multiple wireless communication systems fosters the antenna community to design new radiating and measurements systems capable of satisfying the market demands. It is an object of the present paper to provide an overview of the evolution that wireless handheld technology has experienced in the last years. In this sense, a description of the evolution of wireless handheld devices, regulations, challenges in today’s smartphones, and handset characterization is reviewed. Finally, recent advances in antenna technology for wireless handheld or portable devices are presented.

  18. A Hybrid Structure for Data Aggregation in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Hedieh Sajedi

    2014-01-01

    Full Text Available In recent years, wireless sensor networks have been used for various applications such as environmental monitoring, military and medical applications. A wireless sensor network uses a large number of sensor nodes that continuously collect and send data from a specific region to a base station. Data from sensors are collected from the study area in the common scenario of sensor networks. Afterward, sensed data is sent to the base station. However, neighboring sensors often lead to redundancy of data. Transmission of redundant data to the base station consumes energy and produces traffic, because process is run in a large network. Data aggregation was proposed in order to reduce redundancy in data transformation and traffic. The most popular communication protocol in this field is cluster based data aggregation. Clustering causes energy balance, but sometimes energy consumption is not efficient due to the long distance between cluster heads and base station. In another communication protocol, which is based on a tree construction, because of the short distance between the sensors, energy consumption is low. In this data aggregation approach, since each sensor node is considered as one of the vertices of a tree, the depth of tree is usually high. In this paper, an efficient hierarchical hybrid approach for data aggregation is presented. It reduces energy consumption based on clustering and minimum spanning tree. The benefit of combining clustering and tree structure is reducing the disadvantages of previous structures. The proposed method firstly employs clustering algorithm and then a minimum spanning tree is constructed based on cluster heads. Our proposed method was compared to LEACH which is a well-known data aggregation method in terms of energy consumption and the amount of energy remaining in each sensor network lifetime. Simulation results indicate that our proposed method is more efficient than LEACH algorithm considering energy

  19. Algorithms for energy efficiency in wireless sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Busse, M.

    2007-01-21

    The recent advances in microsensor and semiconductor technology have opened a new field within computer science: the networking of small-sized sensors which are capable of sensing, processing, and communicating. Such wireless sensor networks offer new applications in the areas of habitat and environment monitoring, disaster control and operation, military and intelligence control, object tracking, video surveillance, traffic control, as well as in health care and home automation. It is likely that the deployed sensors will be battery-powered, which will limit the energy capacity significantly. Thus, energy efficiency becomes one of the main challenges that need to be taken into account, and the design of energy-efficient algorithms is a major contribution of this thesis. As the wireless communication in the network is one of the main energy consumers, we first consider in detail the characteristics of wireless communication. By using the embedded sensor board (ESB) platform recently developed by the Free University of Berlin, we analyze the means of forward error correction and propose an appropriate resync mechanism, which improves the communication between two ESB nodes substantially. Afterwards, we focus on the forwarding of data packets through the network. We present the algorithms energy-efficient forwarding (EEF), lifetime-efficient forwarding (LEF), and energy-efficient aggregation forwarding (EEAF). While EEF is designed to maximize the number of data bytes delivered per energy unit, LEF additionally takes into account the residual energy of forwarding nodes. In so doing, LEF further prolongs the lifetime of the network. Energy savings due to data aggregation and in-network processing are exploited by EEAF. Besides single-link forwarding, in which data packets are sent to only one forwarding node, we also study the impact of multi-link forwarding, which exploits the broadcast characteristics of the wireless medium by sending packets to several (potential

  20. Progress on the Development of Future Airport Surface Wireless Communications Network

    Science.gov (United States)

    Kerczewski, Robert J.; Budinger, James M.; Brooks, David E.; Franklin, Morgan; DeHart, Steve; Dimond, Robert P.; Borden, Michael

    2009-01-01

    Continuing advances in airport surface management and improvements in airport surface safety are required to enable future growth in air traffic throughout the airspace, as airport arrival and departure delays create a major system bottleneck. These airport management and safety advances will be built upon improved communications, navigation, surveillance, and weather sensing, creating an information environment supporting system automation. The efficient movement of the digital data generated from these systems requires an underlying communications network infrastructure to connect data sources with the intended users with the required quality of service. Current airport surface communications consists primarily of buried copper or fiber cable. Safety related communications with mobile airport surface assets occurs over 25 kHz VHF voice and data channels. The available VHF spectrum, already congested in many areas, will be insufficient to support future data traffic requirements. Therefore, a broadband wireless airport surface communications network is considered a requirement for the future airport component of the air transportation system. Progress has been made on defining the technology and frequency spectrum for the airport surface wireless communications network. The development of a test and demonstration facility and the definition of required testing and standards development are now underway. This paper will review the progress and planned future work.

  1. SVANET: A smart vehicular ad hoc network for efficient data transmission with wireless sensors.

    Science.gov (United States)

    Sahoo, Prasan Kumar; Chiang, Ming-Jer; Wu, Shih-Lin

    2014-11-25

    Wireless sensors can sense any event, such as accidents, as well as icy roads, and can forward the rescue/warning messages through intermediate vehicles for any necessary help. In this paper, we propose a smart vehicular ad hoc network (SVANET) architecture that uses wireless sensors to detect events and vehicles to transmit the safety and non-safety messages efficiently by using different service channels and one control channel with different priorities. We have developed a data transmission protocol for the vehicles in the highway, in which data can be forwarded with the help of vehicles if they are connected with each other or data can be forwarded with the help of nearby wireless sensors. Our data transmission protocol is designed to increase the driving safety, to prevent accidents and to utilize channels efficiently by adjusting the control and service channel time intervals dynamically. Besides, our protocol can transmit information to vehicles in advance, so that drivers can decide an alternate route in case of traffic congestion. For various data sharing, we design a method that can select a few leader nodes among vehicles running along a highway to broadcast data efficiently. Simulation results show that our protocol can outperform the existing standard in terms of the end to end packet delivery ratio and latency.

  2. SVANET: A Smart Vehicular Ad Hoc Network for Efficient Data Transmission with Wireless Sensors

    Directory of Open Access Journals (Sweden)

    Prasan Kumar Sahoo

    2014-11-01

    Full Text Available Wireless sensors can sense any event, such as accidents, as well as icy roads, and can forward the rescue/warning messages through intermediate vehicles for any necessary help. In this paper, we propose a smart vehicular ad hoc network (SVANET architecture that uses wireless sensors to detect events and vehicles to transmit the safety and non-safety messages efficiently by using different service channels and one control channel with different priorities. We have developed a data transmission protocol for the vehicles in the highway, in which data can be forwarded with the help of vehicles if they are connected with each other or data can be forwarded with the help of nearby wireless sensors. Our data transmission protocol is designed to increase the driving safety, to prevent accidents and to utilize channels efficiently by adjusting the control and service channel time intervals dynamically. Besides, our protocol can transmit information to vehicles in advance, so that drivers can decide an alternate route in case of traffic congestion. For various data sharing, we design a method that can select a few leader nodes among vehicles running along a highway to broadcast data efficiently. Simulation results show that our protocol can outperform the existing standard in terms of the end to end packet delivery ratio and latency.

  3. Apparatus, system, and method for traffic monitoring

    KAUST Repository

    Claudel, Christian G.

    2016-08-25

    An apparatus, system, and method for traffic monitory can have a Lagrangian inertial measurement unit. The Lagrangian inertial measurement unit can have a processor, an accelerometer, a gyroscope, and/or a wireless transmitter. The processor can have an integrated direction cosine matrix. The accelerometer can be configured to measure linear accelerations of a vehicle and/or can communicate measured linear acceleration to the processor. The gyroscope can be configured to measure rotational accelerations of the vehicle and/or can communicate measured rotational acceleration to the processor. The processor can be configured to calculate estimated vehicle speed and/or estimated vehicle attitude. The wireless transmitter can be configured to wirelessly transmit estimated vehicle speed and/or estimated vehicle attitude. The apparatus, system, and method can be integrated with a wireless sensor network.

  4. Physics of Traffic Flow

    Science.gov (United States)

    Davis, L. C.

    2015-03-01

    The Texas A&M Transportation Institute estimated that traffic congestion cost the United States 121 billion in 2011 (the latest data available). The cost is due to wasted time and fuel. In addition to accidents and road construction, factors contributing to congestion include large demand, instability of high-density free flow and selfish behavior of drivers, which produces self-organized traffic bottlenecks. Extensive data collected on instrumented highways in various countries have led to a better understanding of traffic dynamics. From these measurements, Boris Kerner and colleagues developed a new theory called three-phase theory. They identified three major phases of flow observed in the data: free flow, synchronous flow and wide moving jams. The intermediate phase is called synchronous because vehicles in different lanes tend to have similar velocities. This congested phase, characterized by lower velocities yet modestly high throughput, frequently occurs near on-ramps and lane reductions. At present there are only two widely used methods of congestion mitigation: ramp metering and the display of current travel-time information to drivers. To find more effective methods to reduce congestion, researchers perform large-scale simulations using models based on the new theories. An algorithm has been proposed to realize Wardrop equilibria with real-time route information. Such equilibria have equal travel time on alternative routes between a given origin and destination. An active area of current research is the dynamics of connected vehicles, which communicate wirelessly with other vehicles and the surrounding infrastructure. These systems show great promise for improving traffic flow and safety.

  5. Stochastic petri nets for wireless networks

    CERN Document Server

    Lei, Lei; Zhong, Zhangdui

    2015-01-01

    This SpringerBrief presents research in the application of Stochastic Petri Nets (SPN) to the performance evaluation of wireless networks under bursty traffic. It covers typical Quality-of-Service performance metrics such as mean throughput, average delay and packet dropping probability. Along with an introduction of SPN basics, the authors introduce the key motivation and challenges of using SPN to analyze the resource sharing performance in wireless networks. The authors explain two powerful modeling techniques that treat the well-known state space explosion problem: model decomposition and

  6. Time Synchronized Wireless Sensor Network for Vibration Measurement

    Science.gov (United States)

    Uchimura, Yutaka; Nasu, Tadashi; Takahashi, Motoichi

    Network based wireless sensing has become an important area of research and various new applications for remote sensing are expected to emerge. One of the promising applications is structural health monitoring of building or civil engineering structure and it often requires vibration measurement. For the vibration measurement via wireless network, time synchronization is indispensable. In this paper, we introduce a newly developed time synchronized wireless sensor network system. The system employs IEEE 802.11 standard based TSF counter and sends the measured data with the counter value. TSF based synchronization enables consistency on common clock among different wireless nodes. We consider the scale effect on the synchronization accuracy and the effect is evaluated by stochastic analysis and simulation studies. A new wireless sensing system is developed and the hardware and software specifications are shown. The experiments are conducted in a reinforced concrete building and results show good performance enough for vibration measurement purpose.

  7. Reward and Punishment based Cooperative Adaptive Sampling in Wireless Sensor Networks

    NARCIS (Netherlands)

    Masoum, Alireza; Meratnia, Nirvana; Taghikhaki, Zahra; Havinga, Paul J.M.

    2010-01-01

    Energy conservation is one of the main concerns in wireless sensor networks. One of the mechanisms to better manage energy in wireless sensor networks is adaptive sampling, by which instead of using a fixed frequency interval for sensing and data transmission, the wireless sensor network employs a

  8. Possibilistic Clustering Technique-Based Traffic Light Control for Handling Emergency Vehicle

    OpenAIRE

    F. Titouna; S. Benferhat; K. Aksa; C. Titouna

    2012-01-01

    A traffic light gives security from traffic congestion,reducing the traffic jam, and organizing the traffic flow. Furthermore,increasing congestion level in public road networks is a growingproblem in many countries. Using Intelligent Transportation Systemsto provide emergency vehicles a green light at intersections canreduce driver confusion, reduce conflicts, and improve emergencyresponse times. Nowadays, the technology of wireless sensornetworks can solve many problems and can offer a good...

  9. Fine-Tuning ADAS Algorithm Parameters for Optimizing Traffic ...

    Science.gov (United States)

    With the development of the Connected Vehicle technology that facilitates wirelessly communication among vehicles and road-side infrastructure, the Advanced Driver Assistance Systems (ADAS) can be adopted as an effective tool for accelerating traffic safety and mobility optimization at various highway facilities. To this end, the traffic management centers identify the optimal ADAS algorithm parameter set that enables the maximum improvement of the traffic safety and mobility performance, and broadcast the optimal parameter set wirelessly to individual ADAS-equipped vehicles. After adopting the optimal parameter set, the ADAS-equipped drivers become active agents in the traffic stream that work collectively and consistently to prevent traffic conflicts, lower the intensity of traffic disturbances, and suppress the development of traffic oscillations into heavy traffic jams. Successful implementation of this objective requires the analysis capability of capturing the impact of the ADAS on driving behaviors, and measuring traffic safety and mobility performance under the influence of the ADAS. To address this challenge, this research proposes a synthetic methodology that incorporates the ADAS-affected driving behavior modeling and state-of-the-art microscopic traffic flow modeling into a virtually simulated environment. Building on such an environment, the optimal ADAS algorithm parameter set is identified through an optimization programming framework to enable th

  10. Passive Classification of Wireless NICs during Rate Switching

    Directory of Open Access Journals (Sweden)

    Cherita L. Corbett

    2008-02-01

    Full Text Available Computer networks have become increasingly ubiquitous. However, with the increase in networked applications, there has also been an increase in difficulty to manage and secure these networks. The proliferation of 802.11 wireless networks has heightened this problem by extending networks beyond physical boundaries. We propose the use of spectral analysis to identify the type of wireless network interface card (NIC. This mechanism can be applied to support the detection of unauthorized systems that use NICs which are different from that of a legitimate system. We focus on rate switching, a vaguely specified mechanism required by the 802.11 standard that is implemented in the hardware and software of the wireless NIC. We show that the implementation of this function influences the transmission patterns of a wireless stream, which are observable through traffic analysis. Our mechanism for NIC identification uses signal processing to analyze the periodicity embedded in the wireless traffic caused by rate switching. A stable spectral profile is created from the periodic components of the traffic and used for the identity of the wireless NIC. We show that we can distinguish between NICs manufactured by different vendors and NICs manufactured by the same vendor using their spectral profiles.

  11. Passive Classification of Wireless NICs during Rate Switching

    Directory of Open Access Journals (Sweden)

    Beyah RaheemA

    2008-01-01

    Full Text Available Abstract Computer networks have become increasingly ubiquitous. However, with the increase in networked applications, there has also been an increase in difficulty to manage and secure these networks. The proliferation of 802.11 wireless networks has heightened this problem by extending networks beyond physical boundaries. We propose the use of spectral analysis to identify the type of wireless network interface card (NIC. This mechanism can be applied to support the detection of unauthorized systems that use NICs which are different from that of a legitimate system. We focus on rate switching, a vaguely specified mechanism required by the 802.11 standard that is implemented in the hardware and software of the wireless NIC. We show that the implementation of this function influences the transmission patterns of a wireless stream, which are observable through traffic analysis. Our mechanism for NIC identification uses signal processing to analyze the periodicity embedded in the wireless traffic caused by rate switching. A stable spectral profile is created from the periodic components of the traffic and used for the identity of the wireless NIC. We show that we can distinguish between NICs manufactured by different vendors and NICs manufactured by the same vendor using their spectral profiles.

  12. Software Defined RF Transceiver for Wireless Sensor Network Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The concept of a smart device capable of communicating and making its own local decisions for wireless sensing, monitoring control, data acquisition, tracking, and...

  13. Software Defined RF Transceiver for Wireless Sensor Network, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The concept of a smart device capable of communicating and making its own local decisions for wireless sensing, monitoring control, data acquisition, tracking, and...

  14. Fuzzy logic congestion control in IEEE 802.11 wireless local area networks: A performance evaluation

    CSIR Research Space (South Africa)

    Nyirenda, CN

    2007-09-01

    Full Text Available In 802.11 Wireless Local Area Networks, the wired and the wireless interfaces of the Access Point are characterized by the disparity in channel capacity. This presents a significant bottleneck for traffic flowing from the wired network...

  15. 160 Gbit/s photonics wireless transmission in the 300-500 GHz band

    DEFF Research Database (Denmark)

    Yu, Xianbin; Jia, S.; Hu, Hao

    2016-01-01

    To accommodate the ever increasing wireless traffic in the access networks, considerable efforts have been recently invested in developing photonics-assisted wireless communication systems with very high data rates. Superior to photonic millimeter-wave systems, terahertz (THz) band (300 GHz-10 THz...

  16. Optimized and Executive Survey of Physical Node Capture Attack in Wireless Sensor Network

    OpenAIRE

    Bhavana Butani; Piyush Kumar Shukla; Sanjay Silakari

    2014-01-01

    Wireless sensor networks (WSNs) are novel large-scale wireless networks that consist of distributed, self organizing, low-power, low-cost, tiny sensor devices to cooperatively collect information through infrastructure less wireless networks. These networks are envisioned to play a crucial role in variety of applications like critical military surveillance applications, forest fire monitoring, commercial applications such as building security monitoring, traffic surveillance, habitat monitori...

  17. Fine-Tuning ADAS Algorithm Parameters for Optimizing Traffic Safety and Mobility in Connected Vehicle Environment

    Science.gov (United States)

    With the development of Connected Vehicle Technology that facilitates wireless communication among vehicles and road-side infrastructure, the Advanced Driver Assistance Systems (ADAS) can be adopted as an effective tool for accelerating traffic safety and mobility optimization at...

  18. Household wireless electroencephalogram hat

    Science.gov (United States)

    Szu, Harold; Hsu, Charles; Moon, Gyu; Yamakawa, Takeshi; Tran, Binh

    2012-06-01

    We applied Compressive Sensing to design an affordable, convenient Brain Machine Interface (BMI) measuring the high spatial density, and real-time process of Electroencephalogram (EEG) brainwaves by a Smartphone. It is useful for therapeutic and mental health monitoring, learning disability biofeedback, handicap interfaces, and war gaming. Its spec is adequate for a biomedical laboratory, without the cables hanging over the head and tethered to a fixed computer terminal. Our improved the intrinsic signal to noise ratio (SNR) by using the non-uniform placement of the measuring electrodes to create the proximity of measurement to the source effect. We computing a spatiotemporal average the larger magnitude of EEG data centers in 0.3 second taking on tethered laboratory data, using fuzzy logic, and computing the inside brainwave sources, by Independent Component Analysis (ICA). Consequently, we can overlay them together by non-uniform electrode distribution enhancing the signal noise ratio and therefore the degree of sparseness by threshold. We overcame the conflicting requirements between a high spatial electrode density and precise temporal resolution (beyond Event Related Potential (ERP) P300 brainwave at 0.3 sec), and Smartphone wireless bottleneck of spatiotemporal throughput rate. Our main contribution in this paper is the quality and the speed of iterative compressed image recovery algorithm based on a Block Sparse Code (Baranuick et al, IEEE/IT 2008). As a result, we achieved real-time wireless dynamic measurement of EEG brainwaves, matching well with traditionally tethered high density EEG.

  19. Biomonitoring with Wireless Communications

    Energy Technology Data Exchange (ETDEWEB)

    Budinger, Thomas F.

    2003-03-01

    This review is divided into three sections: technologies for monitoring physiological parameters; biosensors for chemical assays and wireless communications technologies including image transmissions. Applications range from monitoring high risk patients for heart, respiratory activity and falls to sensing levels of physical activity in military, rescue, and sports personnel. The range of measurements include, heart rate, pulse wave form, respiratory rate, blood oxygen, tissue pCO2, exhaled carbon dioxide and physical activity. Other feasible measurements will employ miniature chemical laboratories on silicon or plastic chips. The measurements can be extended to clinical chemical assays ranging from common blood assays to protein or specialized protein measurements (e.g., troponin, creatine, and cytokines such as TNF and IL6). Though the feasibility of using wireless technology to communicate vital signs has been demonstrated 32 years ago (1) it has been only recently that practical and portable devices and communications net works have become generally available for inexpensive deployment of comfortable and affordable devices and systems.

  20. Wireless Monitoring of Automobile Tires for Intelligent Tires

    Directory of Open Access Journals (Sweden)

    Akira Todoroki

    2008-12-01

    Full Text Available This review discusses key technologies of intelligent tires focusing on sensors and wireless data transmission. Intelligent automobile tires, which monitor their pressure, deformation, wheel loading, friction, or tread wear, are expected to improve the reliability of tires and tire control systems. However, in installing sensors in a tire, many problems have to be considered, such as compatibility of the sensors with tire rubber, wireless transmission, and battery installments. As regards sensing, this review discusses indirect methods using existing sensors, such as that for wheel speed, and direct methods, such as surface acoustic wave sensors and piezoelectric sensors. For wireless transmission, passive wireless methods and energy harvesting are also discussed.

  1. Energy efficiency in future wireless broadband networks

    CSIR Research Space (South Africa)

    Masonta, MT

    2012-10-01

    Full Text Available , and will require unique energy efficient solutions. For instance, an MS may be battery-powered, and the relevant energy efficient solution would include switching-off the display and minimizing signalling overhead (e.g. sleep mode). Meanwhile energy efficient... solution for the BS may include the intelligent sleep mode policies when the number of users and the traffic load decreases [3]. Due to the growing demand for advanced broadband wireless technologies and services, research in green radio solutions...

  2. A Modified Kriging Method to Interpolate the Soil Moisture Measured by Wireless Sensor Network with the Aid of Remote Sensing Images

    Science.gov (United States)

    Zhang, J.; Liu, Q.; Li, X.; Niu, H.; Cai, E.

    2015-12-01

    In recent years, wireless sensor network (WSN) emerges to collect Earth observation data at relatively low cost and light labor load, while its observations are still point-data. To learn the spatial distribution of a land surface parameter, interpolating the point data is necessary. Taking soil moisture (SM) for example, its spatial distribution is critical information for agriculture management, hydrological and ecological researches. This study developed a method to interpolate the WSN-measured SM to acquire the spatial distribution in a 5km*5km study area, located in the middle reaches of HEIHE River, western China. As SM is related to many factors such as topology, soil type, vegetation and etc., even the WSN observation grid is not dense enough to reflect the SM distribution pattern. Our idea is to revise the traditional Kriging algorithm, introducing spectral variables, i.e., vegetation index (VI) and abledo, from satellite imagery as supplementary information to aid the interpolation. Thus, the new Extended-Kriging algorithm operates on the spatial & spectral combined space. To run the algorithm, first we need to estimate the SM variance function, which is also extended to the combined space. As the number of WSN samples in the study area is not enough to gather robust statistics, we have to assume that the SM variance function is invariant over time. So, the variance function is estimated from a SM map, derived from the airborne CASI/TASI images acquired in July 10, 2012, and then applied to interpolate WSN data in that season. Data analysis indicates that the new algorithm can provide more details to the variation of land SM. Then, the Leave-one-out cross-validation is adopted to estimate the interpolation accuracy. Although a reasonable accuracy can be achieved, the result is not yet satisfactory. Besides improving the algorithm, the uncertainties in WSN measurements may also need to be controlled in our further work.

  3. Connected vehicle insights : trends in roadway domain active sensing. Developments in radar, LIDAR and other sensing technologies and impact on vehicle crash avoidance/automation and active traffic management.

    Science.gov (United States)

    2013-08-01

    This report analyzes the merits and limits of active sensing technologies such as radar, LIDAR, and ultrasonic detectors and how the market for these technologies is evolving and being applied to vehicles and highway infrastructure to improve...

  4. TRAFFIC SIMULATION FOR MIXED TRAFFIC SYSTEMS

    African Journals Online (AJOL)

    EGETE

    2012-05-04

    2002). Description of a microscopic traffic model of an urban district and the analysis and problem solving traffic congestion based on actual data is its objective. There suggested models for a vehicular traffic flow based on partial ...

  5. Internet usage and performance analysis of a rural wireless network in Macha, Zambia

    CSIR Research Space (South Africa)

    Johnson, DL

    2010-06-01

    Full Text Available -to-point links, hotspots and wireless mesh networks. Our analysis reveals largely web-based traffic as opposed to the peer-to-peer traffic dominance that one finds in urban areas. Social networking sites receive the most hits, and large file downloads from...

  6. Propagation Engineering in Wireless Communications

    CERN Document Server

    Ghasemi, Abdollah; Ghasemi, Farshid

    2012-01-01

    Wireless communications has seen explosive growth in recent decades, in a realm that is both broad and rapidly expanding to include satellite services, navigational aids, remote sensing, telemetering, audio and video broadcasting, high-speed data communications, mobile radio systems and much more. Propagation Engineering in Wireless Communications deals with the basic principles of radiowaves propagation for frequency bands used in radio-communications, offering descriptions of new achievements and newly developed propagation models. The book bridges the gap between theoretical calculations and approaches, and applied procedures needed for advanced radio links design. The primary objective of this two-volume set is to demonstrate the fundamentals, and to introduce propagation phenomena and mechanisms that engineers are likely to encounter in the design and evaluation of radio links of a given type and operating frequency. Volume one covers basic principles, along with tropospheric and ionospheric propagation,...

  7. A Wireless Sensor Enabled by Wireless Power

    Science.gov (United States)

    Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey

    2012-01-01

    Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network. PMID:23443370

  8. A Wireless Sensor Enabled by Wireless Power

    Directory of Open Access Journals (Sweden)

    Da-Sheng Lee

    2012-11-01

    Full Text Available Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network.

  9. A wireless sensor enabled by wireless power.

    Science.gov (United States)

    Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey

    2012-11-22

    Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network.

  10. Integrated Passive And Wireless Sensor

    KAUST Repository

    Li, Bodong

    2015-04-30

    A passive and wireless sensor is provided for sensing at least one of magnetic field, temperature or humidity. The sensor can provide only one of the sensing functions, individually or any combination of them simultaneously. It can be used for various applications where magnetic field changes, temperature and/or humidity need to be measured. In one or more embodiments, a surface acoustic wave (SAW) sensor is provided that can measure one or more of a magnetic field (or current that generates the magnetic field), temperature and humidity. In one or more embodiments, a magnetoimpedence (MI) sensor (for example a thin film giant magnetoimpedance (GMI) sensor), a thermally sensitive (for example a Lithium Niobite (LiNbO.sub.3)) substrate, and a humidity sensitive film (for example a hydrogel film) can be used as sensing elements.

  11. A tutorial survey of topics in wireless networking: Part I

    Indian Academy of Sciences (India)

    smith 2005), which will be entirely based on CDMA technology, and will carry multimedia traffic (i.e. store and forward data, packetised telephony, interactive video, and streaming video). Cellular networks were developed with the primary objective of providing wireless access for mobile users. With the growth of the Internet ...

  12. Adaptive Wireless Transceiver Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Many wireless technologies are already available for sensor applications. It is inevitable that many non-interoperable wireless technologies between 400 MHz and 5.8...

  13. Bandwidth Estimation in Wireless Lans for Multimedia Streaming Services

    Directory of Open Access Journals (Sweden)

    Heung Ki Lee

    2007-01-01

    Full Text Available The popularity of multimedia streaming services via wireless networks presents major challenges in the management of network bandwidth. One challenge is to quickly and precisely estimate the available bandwidth for the decision of streaming rates of layered and scalable multimedia services. Previous studies based on wired networks are too burdensome to be applied to multimedia applications in wireless networks. In this paper, a new method, IdleGap, is suggested to estimate the available bandwidth of a wireless LAN based on the information from a low layer in the protocol stack. We use a network simulation tool, NS-2, to evaluate our new method with various ranges of cross-traffic and observation times. Our simulation results show that IdleGap accurately estimates the available bandwidth for all ranges of cross-traffic (100 Kbps ∼ 1 Mbps with a very short observation time of 10 seconds.

  14. An Improved Compressive Sensing and Received Signal Strength-Based Target Localization Algorithm with Unknown Target Population for Wireless Local Area Networks

    Directory of Open Access Journals (Sweden)

    Jun Yan

    2017-05-01

    Full Text Available In this paper a two-phase compressive sensing (CS and received signal strength (RSS-based target localization approach is proposed to improve position accuracy by dealing with the unknown target population and the effect of grid dimensions on position error. In the coarse localization phase, by formulating target localization as a sparse signal recovery problem, grids with recovery vector components greater than a threshold are chosen as the candidate target grids. In the fine localization phase, by partitioning each candidate grid, the target position in a grid is iteratively refined by using the minimum residual error rule and the least-squares technique. When all the candidate target grids are iteratively partitioned and the measurement matrix is updated, the recovery vector is re-estimated. Threshold-based detection is employed again to determine the target grids and hence the target population. As a consequence, both the target population and the position estimation accuracy can be significantly improved. Simulation results demonstrate that the proposed approach achieves the best accuracy among all the algorithms compared.

  15. Wireless Communication Technologies

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Wireless Communication Technologies. Since 1999, the wireless LAN has experienced a tremendous growth. Reasons: Adoption of industry standards. Interoperability testing. The progress of wireless equipments to higher data rates. Rapid decrease in product ...

  16. Sensing a changing world

    NARCIS (Netherlands)

    Ligtenberg, A.; Kooistra, L.

    2009-01-01

    workshop “Sensing a Changing World” was held in Wageningen, The Netherlands, from November 19–21, 2008. The main goal of the workshop was to explore and discuss recent developments in sensors and (wireless) sensor networks for monitoring environmental processes and human spatial behavior in a

  17. Cognitive radio wireless sensor networks: applications, challenges and research trends.

    Science.gov (United States)

    Joshi, Gyanendra Prasad; Nam, Seung Yeob; Kim, Sung Won

    2013-08-22

    A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized.

  18. Cognitive Radio Wireless Sensor Networks: Applications, Challenges and Research Trends

    Directory of Open Access Journals (Sweden)

    Gyanendra Prasad Joshi

    2013-08-01

    Full Text Available A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized.

  19. CCNA Wireless Study Guide

    CERN Document Server

    Lammle, Todd

    2010-01-01

    A complete guide to the CCNA Wireless exam by leading networking authority Todd Lammle. The CCNA Wireless certification is the most respected entry-level certification in this rapidly growing field. Todd Lammle is the undisputed authority on networking, and this book focuses exclusively on the skills covered in this Cisco certification exam. The CCNA Wireless Study Guide joins the popular Sybex study guide family and helps network administrators advance their careers with a highly desirable certification.: The CCNA Wireless certification is the most respected entry-level wireless certification

  20. Reliable and Congestion Control Protocols for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Kirti Kharb

    2016-01-01

    Full Text Available The objective of this paper is to analyze review and different congestion control protocols that are employed at the transport layer and some of them working at the medium access control layer in wireless sensor networks. Firstly, a brief introduction is given about wireless sensor networks and how congestion occurs in such networks. Secondly, the concept of congestion is discussed. Thirdly, the reason of occurrence of congestion in wireless sensor networks is analyzed. After that, congestion control and why it is needed in the wireless sensor networks is discussed. Then, a brief review of different congestion control and reliable data transport mechanisms are discussed. Finally, a comparative analysis of different protocols is made depending on their performance on various parameters such as - traffic direction, energy conservation characteristic, efficiency etc. and the paper is concluded.

  1. Energy Saving: Scaling Network Energy Efficiency Faster than Traffic Growth

    NARCIS (Netherlands)

    Chen, Y.; Blume, O.; Gati, A.; Capone, A.; Wu, C.-E.; Barth, U.; Marzetta, T.; Zhang, H.; Xu, S.

    2013-01-01

    As the mobile traffic is expected to continue its exponential growth in the near future, energy efficiency has gradually become a must criterion for wireless network design. Three fundamental questions need to be answered before the detailed design could be carried out, namely what energy efficiency

  2. Smartphone Household Wireless Electroencephalogram Hat

    Directory of Open Access Journals (Sweden)

    Harold Szu

    2013-01-01

    Full Text Available Rudimentary brain machine interface has existed for the gaming industry. Here, we propose a wireless, real-time, and smartphone-based electroencephalogram (EEG system for homecare applications. The system uses high-density dry electrodes and compressive sensing strategies to overcome conflicting requirements between spatial electrode density, temporal resolution, and spatiotemporal throughput rate. Spatial sparseness is addressed by close proximity between active electrodes and desired source locations and using an adaptive selection of N active among 10N passive electrodes to form m-organized random linear combinations of readouts, m≪N≪10N. Temporal sparseness is addressed via parallel frame differences in hardware. During the design phase, we took tethered laboratory EEG dataset and applied fuzzy logic to compute (a spatiotemporal average of larger magnitude EEG data centers in 0.3 second intervals and (b inside brainwave sources by Independent Component Analysis blind deconvolution without knowing the impulse response function. Our main contributions are the fidelity of quality wireless EEG data compared to original tethered data and the speed of compressive image recovery. We have compared our recovery of ill-posed inverse data against results using Block Sparse Code. Future work includes development of strategies to filter unwanted artifact from high-density EEGs (i.e., facial muscle-related events and wireless environmental electromagnetic interferences.

  3. Research investigations in and demonstrations of remote sensing applications to urban environmental problems

    Science.gov (United States)

    Hidalgo, J. U.

    1975-01-01

    The applicability of remote sensing to transportation and traffic analysis, urban quality, and land use problems is discussed. Other topics discussed include preliminary user analysis, potential uses, traffic study by remote sensing, and urban condition analysis using ERTS.

  4. Experiment of Wireless Sensor Network to Monitor Field Data

    Directory of Open Access Journals (Sweden)

    Kwang Sik Kim

    2009-08-01

    Full Text Available Recently the mobile wireless network has been drastically enhanced and one of the most efficient ways to realize the ubiquitous network will be to develop the converged network by integrating the mobile wireless network with other IP fixed network like NGN (Next Generation Network. So in this paper the term of the wireless ubiquitous network is used to describe this approach. In this paper, first, the wireless ubiquitous network architecture is described based on IMS which has been standardized by 3GPP (3rd Generation Partnership Program. Next, the field data collection system to match the satellite data using location information is proposed based on the concept of the wireless ubiquitous network architecture. The purpose of the proposed system is to provide more accurate analyzing method with the researchers in the remote sensing area.

  5. Increase the Safety of Road Traffic Accidents by Applying Clustering

    Directory of Open Access Journals (Sweden)

    Kos Goran

    2013-12-01

    Full Text Available In terms of continual increase of number of traffic accidents and alarming trend of increasing number of traffic accidents with catastrophic consequences for human life and health, it is necessary to actively research and develop methods to combat these trends. One of the measures is the implementation of advanced information systems in existing traffic environment. Accidents clusters, as databases of traffic accidents, introduce a new dimension in traffic systems in the form of experience, providing information on current accidents and the ones that have previously occurred in a given period. This paper proposes a new approach to predictive management of traffic processes, based on the collection of data in real time and is based on accidents clusters. The modern traffic information services collects road traffic status data from a wide variety of traffic sensing systems using modern ICT technologies, creating the most accurate road traffic situation awareness achieved so far. Road traffic situation awareness enhanced by accident clusters' data can be visualized and distributed in various ways (including the forms of dynamic heat maps and on various information platforms, suiting the requirements of the end-users. Accent is placed on their significant features that are based on additional knowledge about existing traffic processes and distribution of important traffic information in order to prevent and reduce traffic accidents.

  6. Advancing Profiling Sensors with a Wireless Approach

    Science.gov (United States)

    Galvis, Alex; Russomanno, David J.

    2012-01-01

    The notion of a profiling sensor was first realized by a Near-Infrared (N-IR) retro-reflective prototype consisting of a vertical column of wired sparse detectors. This paper extends that prior work and presents a wireless version of a profiling sensor as a collection of sensor nodes. The sensor incorporates wireless sensing elements, a distributed data collection and aggregation scheme, and an enhanced classification technique. In this novel approach, a base station pre-processes the data collected from the sensor nodes and performs data re-alignment. A back-propagation neural network was also developed for the wireless version of the N-IR profiling sensor that classifies objects into the broad categories of human, animal or vehicle with an accuracy of approximately 94%. These enhancements improve deployment options as compared with the first generation of wired profiling sensors, possibly increasing the application scenarios for such sensors, including intelligent fence applications. PMID:23443371

  7. Availability Issues in Wireless Visual Sensor Networks

    Science.gov (United States)

    Costa, Daniel G.; Silva, Ivanovitch; Guedes, Luiz Affonso; Vasques, Francisco; Portugal, Paulo

    2014-01-01

    Wireless visual sensor networks have been considered for a large set of monitoring applications related with surveillance, tracking and multipurpose visual monitoring. When sensors are deployed over a monitored field, permanent faults may happen during the network lifetime, reducing the monitoring quality or rendering parts or the entire network unavailable. In a different way from scalar sensor networks, camera-enabled sensors collect information following a directional sensing model, which changes the notions of vicinity and redundancy. Moreover, visual source nodes may have different relevancies for the applications, according to the monitoring requirements and cameras' poses. In this paper we discuss the most relevant availability issues related to wireless visual sensor networks, addressing availability evaluation and enhancement. Such discussions are valuable when designing, deploying and managing wireless visual sensor networks, bringing significant contributions to these networks. PMID:24526301

  8. Static Three-Dimensional Fuzzy Routing Based on the Receiving Probability in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sohrab Khanmohammadi

    2013-11-01

    Full Text Available A Wireless Sensor Network (WSN is a collection of low-cost, low-power and large-scale wireless sensor nodes. Routing protocols are an important topic in WSN. Every sensor node should use a proper mechanism to transmit the generated packets to its destination, usually a base station. In previous works, routing protocols use the global information of the network that causes the redundant packets to be increased. Moreover, it leads to an increase in the network traffic, to a decrease in the delivery ratio of data packets, and to a reduction in network life. In this paper, we propose a new inferential routing protocol called SFRRP (Static Three-Dimensional Fuzzy Routing based on the Receiving Probability. The proposed protocol solves the above mentioned problems considerably. The data packets are transmitted by hop-to-hop delivery to the base station. It uses a fuzzy procedure to transmit the sensed data or the buffered data packets to one of the neighbors called selected node. In the proposed fuzzy system, the distance and number of neighbors are input variables, while the receiving probability is the output variable. SFRRP just uses the local neighborhood information to forward the packets and is not needed by any redundant packet for route discovery. The proposed protocol has some advantages such as a high delivery ratio, less delay time, high network life, and less network traffic. The performance of the proposed protocol surpasses the performance of the Flooding routing protocol in terms of delivery ratio, delay time and network lifetime.

  9. Mobility- Aware Cache Management in Wireless Environment

    Science.gov (United States)

    Kaur, Gagandeep; Saini, J. S.

    2010-11-01

    In infrastructure wireless environments, a base station provides communication links between mobile client and remote servers. Placing a proxy cache at the base station is an effective way of managing the wireless Internet bandwidth efficiently. However, in the situation of non-uniform heavy traffic, requests of all the mobile clients in the service area of the base station may cause overload in the cache. If the proxy cache has to release some cache space for the new mobile client in the environment, overload occurs. In this paper, we propose a novel cache management strategy to decrease the penalty of overloaded traffic on the proxy and to reduce the number of remote accesses by increasing the cache hit ratio. We predict the number of overload ahead of time based on its history and adapt the cache for the heavy traffic to be able to provide continuous and fair service to the current mobile clients and incoming ones. We have tested the algorithms over a real implementation of the cache management system in presence of fault tolerance and security. In our cache replacement algorithm, mobility of the clients, predicted overload number, size of the cached packets and their access frequencies are considered altogether. Performance results show that our cache management strategy outperforms the existing policies with less number of overloads and higher cache hit ratio.

  10. Mobile Sensing Systems

    Science.gov (United States)

    Macias, Elsa; Suarez, Alvaro; Lloret, Jaime

    2013-01-01

    Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high. PMID:24351637

  11. Mobile Sensing Systems

    Directory of Open Access Journals (Sweden)

    Elsa Macias

    2013-12-01

    Full Text Available Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high.

  12. TrafficTurk evaluation.

    Science.gov (United States)

    2014-04-01

    This report summarizes a project undertaken by the University of Illinois on behalf of the Illinois Department of : Transportation to evaluate a smartphone application called TrafficTurk for traffic safety and traffic monitoring : applications. Traff...

  13. Design of Wireless Readout System for Resonant Gas Sensors

    OpenAIRE

    S. Mohamed Rabeek; Mi Kyoung Park; M. Annamalai Arasu

    2016-01-01

    This paper presents a design of a wireless read out system for tracking the frequency shift of the polymer coated piezoelectric micro electromechanical resonator due to gas absorption. The measure of this frequency shift indicates the percentage of a particular gas the sensor is exposed to. It is measured using an oscillator and an FPGA based frequency counter by employing the resonator as a frequency determining element in the oscillator. This system consists of a Gas Sensing Wireless Readou...

  14. A Survey on Clustering Techniques for Wireless Sensor Network

    OpenAIRE

    Rudranath Mitra; Diya Nandy

    2012-01-01

    Wireless sensor networks have been used in various fields like battle feilds, surveillance, schools, colleges, etc. It has been used in our day-to-day life. Its growth increases day by day. Sensor node normally senses the physical event from the environment such as temperature, sound, vibration, pressure etc. Sensor nodes are connected with each other through wireless medium such as infrared or radio waves it depends on applications. Each node has its internal memory to store the information ...

  15. UTRaLab – Urban Traffic Research Laboratory

    Directory of Open Access Journals (Sweden)

    Karsten Kozempel

    2017-08-01

    Full Text Available The Urban Traffic Research Laboratory (UTRaLab is a research and test track for traffic detection methods and sensors. It is located at the Ernst-Ruska-Ufer, in the southeast of the city of Berlin (Germany. The UTRaLab covers 1 km of a highly-frequented urban road and is connected to a motorway. It is equipped with two gantries with distance of 850 m in between and has several outstations for data collection. The gantries contain many different traffic sensors like inductive loops, cameras, lasers or wireless sensors for traffic data acquisition. Additionally a weather station records environmental data. The UTRaLab’s main purposes are the data collection of traffic data on the one hand and testing newly developed sensors on the other hand.

  16. Optical wireless communications an emerging technology

    CERN Document Server

    Capsoni, Carlo; Ghassemlooy, Zabih; Boucouvalas, Anthony; Udvary, Eszter

    2016-01-01

    This book focuses on optical wireless communications (OWC), an emerging technology with huge potential for the provision of pervasive and reliable next-generation communications networks. It shows how the development of novel and efficient wireless technologies can contribute to a range of transmission links essential for the heterogeneous networks of the future to support various communications services and traffic patterns with ever-increasing demands for higher data-transfer rates. The book starts with a chapter reviewing the OWC field, which explains different sub-technologies (visible-light, ultraviolet (UV) and infrared (IR) communications) and introduces the spectrum of application areas (indoor, vehicular, terrestrial, underwater, intersatellite, deep space, etc.). This provides readers with the necessary background information to understand the specialist material in the main body of the book, which is in four parts. The first of these deals with propagation modelling and channel characterization of ...

  17. REAL TIME WIRELESS AIR POLLUTION MONITORING SYSTEM

    Directory of Open Access Journals (Sweden)

    Raja Vara Prasad Y

    2011-06-01

    Full Text Available Air pollution has significant influence on the concentration of constituents in the atmosphere leading to effects like global warming and acid rains. To avoid such adverse imbalances in the nature, an air pollution monitoring system is utmost important. This paper attempts to develop an effective solution for pollution monitoring using wireless sensor networks (WSN on a real time basis namely real time wireless air pollution monitoring system. Commercially available discrete gas sensors for sensing concentration of gases like CO2, NO2, CO and O2 are calibrated using appropriate calibration technologies. These pre-calibrated gas sensors are then integrated with the wireless sensor motes for field deployment at the campus and the Hyderabad city using multi hop data aggregation algorithm. A light weight middleware and a web interface to view the live pollution data in the form of numbers and charts from the test beds was developed and made available from anywhere on the internet. Other parameters like temperature and humidity were also sensed along with gas concentrations to enable data analysis through data fusion techniques. Experimentation carried out using the developed wireless air pollution monitoring system under different physical conditions show that the system collects reliable source of real time fine-grain pollution data.

  18. Design of Wireless Sensors for Intelligent Manufacture Monitoring

    OpenAIRE

    Chia-Chan Chang; Chung-Yi Liu; Kui-Hua Huang; Guo-Hua Feng

    2014-01-01

    The continuous monitoring on the operated machine can allow the industrial manufacturers to proactively react to the degenerations of the parts. Therefore, development of precise and cost-effective sensing system gains a lot of interest lately. In this paper we proposed and demonstrated a wireless sensing system, which is composed by a temperature sensor module and a Wi-Fi transceiver module, aiming to ball screw health monitoring. This sensing unit is built up by SMD-type glass PT-100 under ...

  19. Wireless physical layer security

    OpenAIRE

    Poor, H. Vincent; Schaefer, Rafael F.

    2016-01-01

    Security is a very important issue in the design and use of wireless networks. Traditional methods of providing security in such networks are impractical for some emerging types of wireless networks due to the light computational abilities of some wireless devices [such as radio-frequency identification (RFID) tags, certain sensors, etc.] or to the very large scale or loose organizational structure of some networks. Physical layer security has the potential to address these concerns by taking...

  20. Traffic planning for non-homogeneous traffic

    Indian Academy of Sciences (India)

    2.3c Data summary The summarization of the density data based on videotape obser- vations is in table 1 which shows average, 30-second, sampled densities. Using the non- homogeneous traffic continuity equation of (2), the resultant traffic concentrations appear in table 2. Comparing the traffic concentrations in table 1 to ...

  1. Adaptive Wavelet Coding Applied in a Wireless Control System

    Science.gov (United States)

    Gama, Felipe O. S.; O. Salazar, Andrés

    2017-01-01

    Wireless control systems can sense, control and act on the information exchanged between the wireless sensor nodes in a control loop. However, the exchanged information becomes susceptible to the degenerative effects produced by the multipath propagation. In order to minimize the destructive effects characteristic of wireless channels, several techniques have been investigated recently. Among them, wavelet coding is a good alternative for wireless communications for its robustness to the effects of multipath and its low computational complexity. This work proposes an adaptive wavelet coding whose parameters of code rate and signal constellation can vary according to the fading level and evaluates the use of this transmission system in a control loop implemented by wireless sensor nodes. The performance of the adaptive system was evaluated in terms of bit error rate (BER) versus Eb/N0 and spectral efficiency, considering a time-varying channel with flat Rayleigh fading, and in terms of processing overhead on a control system with wireless communication. The results obtained through computational simulations and experimental tests show performance gains obtained by insertion of the adaptive wavelet coding in a control loop with nodes interconnected by wireless link. These results enable the use of this technique in a wireless link control loop. PMID:29236048

  2. Adaptive Wavelet Coding Applied in a Wireless Control System

    Directory of Open Access Journals (Sweden)

    Felipe O. S. Gama

    2017-12-01

    Full Text Available Wireless control systems can sense, control and act on the information exchanged between the wireless sensor nodes in a control loop. However, the exchanged information becomes susceptible to the degenerative effects produced by the multipath propagation. In order to minimize the destructive effects characteristic of wireless channels, several techniques have been investigated recently. Among them, wavelet coding is a good alternative for wireless communications for its robustness to the effects of multipath and its low computational complexity. This work proposes an adaptive wavelet coding whose parameters of code rate and signal constellation can vary according to the fading level and evaluates the use of this transmission system in a control loop implemented by wireless sensor nodes. The performance of the adaptive system was evaluated in terms of bit error rate (BER versus E b / N 0 and spectral efficiency, considering a time-varying channel with flat Rayleigh fading, and in terms of processing overhead on a control system with wireless communication. The results obtained through computational simulations and experimental tests show performance gains obtained by insertion of the adaptive wavelet coding in a control loop with nodes interconnected by wireless link. These results enable the use of this technique in a wireless link control loop.

  3. Wireless security in mobile health.

    Science.gov (United States)

    Osunmuyiwa, Olufolabi; Ulusoy, Ali Hakan

    2012-12-01

    Mobile health (m-health) is an extremely broad term that embraces mobile communication in the health sector and data packaging. The four broad categories of wireless networks are wireless personal area network, wireless metropolitan area network, wireless wide area network, and wireless local area network. Wireless local area network is the most notable of the wireless networking tools obtainable in the health sector. Transfer of delicate and critical information on radio frequencies should be secure, and the right to use must be meticulous. This article covers the business opportunities in m-health, threats faced by wireless networks in hospitals, and methods of mitigating these threats.

  4. Wireless Emulation Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Wireless Emulation Laboratory (WEL) is a researchtest bed used to investigate fundamental issues in networkscience. It is a research infrastructure that emulates...

  5. Adaptive Wireless Transceiver Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Wireless technologies are an increasingly attractive means for spatial data, input, manipulation, and distribution. Mobitrum is proposing an innovative Adaptive...

  6. Ubiquitous Wireless Sensor Networks and future “Internet of Things""

    OpenAIRE

    Vermesan, Ovidiu

    2009-01-01

    Overview of heterogeneous networks of embedded devices that can range from RFID, to smart identifiable systems with sensing and actuating capabilitie. Presentation of wireless sensor networks protocols and Internet of Things future technology. Bridging the real, virtual and digital worlds by using wireless connectivity. Application examples in automotive, aeronautics, healthcare, building, oil and gas industries. Ubiquitous Wireless Sensor Networks and future “Internet ...

  7. Comparison of Different Scenarios for Path Diversity Packet Wireless Networks

    Directory of Open Access Journals (Sweden)

    Petr Chlumsky

    2012-01-01

    Full Text Available This article discusses the use of the principles of network coding in wireless networks to increase the overall robustness of the transmission. Path diversity on the packet level is investigated as a software alternative to classical diversity techniques commonly used to improve wireless devices communication. The article describes the initial stage of the research of network coding in elementary form with network traffic duplication. Objects of investigation are two different types of transmission in two scenarios, where the resulting transmission loss is evaluated with dependency on the packet length.

  8. Cooperative networking in a heterogeneous wireless medium

    CERN Document Server

    Ismail, Muhammad

    2013-01-01

    This brief focuses on radio resource allocation in a heterogeneous wireless medium. It presents radio resource allocation algorithms with decentralized implementation, which support both single-network and multi-homing services. The brief provides a set of cooperative networking algorithms, which rely on the concepts of short-term call traffic load prediction, network cooperation, convex optimization, and decomposition theory. In the proposed solutions, mobile terminals play an active role in the resource allocation operation, instead of their traditional role as passive service recipients in the networking environment.

  9. Infrastructure sensing.

    Science.gov (United States)

    Soga, Kenichi; Schooling, Jennifer

    2016-08-06

    Design, construction, maintenance and upgrading of civil engineering infrastructure requires fresh thinking to minimize use of materials, energy and labour. This can only be achieved by understanding the performance of the infrastructure, both during its construction and throughout its design life, through innovative monitoring. Advances in sensor systems offer intriguing possibilities to radically alter methods of condition assessment and monitoring of infrastructure. In this paper, it is hypothesized that the future of infrastructure relies on smarter information; the rich information obtained from embedded sensors within infrastructure will act as a catalyst for new design, construction, operation and maintenance processes for integrated infrastructure systems linked directly with user behaviour patterns. Some examples of emerging sensor technologies for infrastructure sensing are given. They include distributed fibre-optics sensors, computer vision, wireless sensor networks, low-power micro-electromechanical systems, energy harvesting and citizens as sensors.

  10. Infrastructure sensing

    Science.gov (United States)

    Soga, Kenichi; Schooling, Jennifer

    2016-01-01

    Design, construction, maintenance and upgrading of civil engineering infrastructure requires fresh thinking to minimize use of materials, energy and labour. This can only be achieved by understanding the performance of the infrastructure, both during its construction and throughout its design life, through innovative monitoring. Advances in sensor systems offer intriguing possibilities to radically alter methods of condition assessment and monitoring of infrastructure. In this paper, it is hypothesized that the future of infrastructure relies on smarter information; the rich information obtained from embedded sensors within infrastructure will act as a catalyst for new design, construction, operation and maintenance processes for integrated infrastructure systems linked directly with user behaviour patterns. Some examples of emerging sensor technologies for infrastructure sensing are given. They include distributed fibre-optics sensors, computer vision, wireless sensor networks, low-power micro-electromechanical systems, energy harvesting and citizens as sensors. PMID:27499845

  11. Embedded Diagnostics & Prognostics Wireless Sensing Platforms

    National Research Council Canada - National Science Library

    Ousachi, Mark; Scott, Andrew; Yee, David; Hosmer, Thomas; Daniszewski, Dave

    2004-01-01

    An embedded diagnostics and prognostics architecture affects several aspects associated with military ground vehicles such as improved safety, reduction in maintenance times, weapon system readiness...

  12. SYMBIOTIC SENSING: Exploring and Exploiting Cooperative Sensing in Heterogeneous Sensor Networks

    NARCIS (Netherlands)

    Le Viet Duc, L Duc

    2016-01-01

    During the last several years we have witnessed the emergence of smartphone-based sensing applications that include activity recognition, urban sensing, social sensing, and health monitoring. In fact, most smartphones have various sensors, wireless communication interfaces, a large memory capacity,

  13. Queueing and traffic

    NARCIS (Netherlands)

    Baër, Niek

    2015-01-01

    Traffic jams are everywhere, some are caused by constructions or accidents but a large portion occurs naturally. These "natural" traffic jams are a result of variable driving speeds combined with a high number of vehicles. To prevent these traffic jams, we must understand traffic in general, and to

  14. Jamitons: Phantom Traffic Jams

    Science.gov (United States)

    Kowszun, Jorj

    2013-01-01

    Traffic on motorways can slow down for no apparent reason. Sudden changes in speed by one or two drivers can create a chain reaction that causes a traffic jam for the vehicles that are following. This kind of phantom traffic jam is called a "jamiton" and the article discusses some of the ways in which traffic engineers produce…

  15. A Piezoelectric Passive Wireless Sensor for Monitoring Strain

    Science.gov (United States)

    Zou, Xiyue; Ferri, Paul N.; Hogan, Ben; Mazzeo, Aaron D.; Hull. Patrick V.

    2017-01-01

    Interest in passive wireless sensing has grown over the past few decades to meet demands in structural health monitoring.(Deivasigamani et al., 2013; Wilson and Juarez, 2014) This work describes a passive wireless sensor for monitoring strain, which does not have an embedded battery or chip. Without an embedded battery, the passive wireless sensor has the potential to maintain its functionality over long periods in remote/harsh environments. This work also focuses on monitoring small strain (less than 1000 micro-?). The wireless sensing system includes a reader unit, a coil-like transponder, and a sensing unit. It operates in the Megahertz (MHz) frequency range, which allows for a few centimeters of separation between the reader and sensing unit during measurements. The sensing unit is a strain-sensitive piezoelectric resonator that maximizes the energy efficiency at the resonance frequency, so it converts nanoscale mechanical variations to detectable differences in electrical signal. In response to an external loading, the piezoelectric sensor breaks from its original electromechanical equilibrium, and the resonant frequency shifts as the system reaches a new balanced equilibrium. In this work, the fixture of the sensing unit is a small, sticker-like package that converts the surface strain of a test material to measurable shifts in resonant frequencies. Furthermore, electromechanical modeling provides a lumped-parameter model of the system to describe and predict the measured wireless signals of the sensor. Detailed characterization demonstrates how this wireless sensor has resolution comparable to that of conventional wired strain sensors for monitoring small strain.

  16. Why General Outlier Detection Techniques Do Not Suffice For Wireless Sensor Networks?

    NARCIS (Netherlands)

    Zhang, Y.; Meratnia, Nirvana; Havinga, Paul J.M.

    2009-01-01

    Raw data collected in wireless sensor networks are often unreliable and inaccurate due to noise, faulty sensors and harsh environmental effects. Sensor data that significantly deviate from normal pattern of sensed data are often called outliers. Outlier detection in wireless sensor networks aims at

  17. Wireless mobile Internet security

    CERN Document Server

    Rhee, Man Young

    2013-01-01

      The mobile industry for wireless cellular services has grown at a rapid pace over the past decade. Similarly, Internet service technology has also made dramatic growth through the World Wide Web with a wire line infrastructure. Realization for complete wired/wireless mobile Internet technologies will become the future objectives for convergence of these technologies thr

  18. In Traffic Jam ITS Using Bluetooth

    Science.gov (United States)

    Sugiura, Akihiko; Dermawan, Candra

    At present, in the Intelligent Transport Systems (ITS) field, research continues In-Vehicle Communication (VC), Inter-Vehicle Communication (IVC), Road-to-Vehicle Communication (RVC), etc. All information communications technology, especially radio-communications technology, was applied. For example, wireless 1394 is used in VC, millimeter-wave communication is used in IVC, and Radio on Fiber (ROF) communication technology is used in RVC. However, it is actually very difficult to design for and accommodate all of these systems. This research, to simplify a design, equipment, structure, cost down of production of VC, IVC, and RVC, utilizes a wireless Bluetooth technology system. In this paper, since the whole system is connected to the Internet backbone, provided some access point area, the Internet can be accessed from inside the vehicle and information, such as news and weather information, can be downloaded. It is also possible to know traffic information for each access point area by accessing a home memory (data base server.

  19. Performance Evaluation of IEEE 802.11ah Networks With High-Throughput Bidirectional Traffic.

    Science.gov (United States)

    Šljivo, Amina; Kerkhove, Dwight; Tian, Le; Famaey, Jeroen; Munteanu, Adrian; Moerman, Ingrid; Hoebeke, Jeroen; De Poorter, Eli

    2018-01-23

    So far, existing sub-GHz wireless communication technologies focused on low-bandwidth, long-range communication with large numbers of constrained devices. Although these characteristics are fine for many Internet of Things (IoT) applications, more demanding application requirements could not be met and legacy Internet technologies such as Transmission Control Protocol/Internet Protocol (TCP/IP) could not be used. This has changed with the advent of the new IEEE 802.11ah Wi-Fi standard, which is much more suitable for reliable bidirectional communication and high-throughput applications over a wide area (up to 1 km). The standard offers great possibilities for network performance optimization through a number of physical- and link-layer configurable features. However, given that the optimal configuration parameters depend on traffic patterns, the standard does not dictate how to determine them. Such a large number of configuration options can lead to sub-optimal or even incorrect configurations. Therefore, we investigated how two key mechanisms, Restricted Access Window (RAW) grouping and Traffic Indication Map (TIM) segmentation, influence scalability, throughput, latency and energy efficiency in the presence of bidirectional TCP/IP traffic. We considered both high-throughput video streaming traffic and large-scale reliable sensing traffic and investigated TCP behavior in both scenarios when the link layer introduces long delays. This article presents the relations between attainable throughput per station and attainable number of stations, as well as the influence of RAW, TIM and TCP parameters on both. We found that up to 20 continuously streaming IP-cameras can be reliably connected via IEEE 802.11ah with a maximum average data rate of 160 kbps, whereas 10 IP-cameras can achieve average data rates of up to 255 kbps over 200 m. Up to 6960 stations transmitting every 60 s can be connected over 1 km with no lost packets. The presented results enable the fine tuning

  20. Wireless sensor networks distributed consensus estimation

    CERN Document Server

    Chen, Cailian; Guan, Xinping

    2014-01-01

    This SpringerBrief evaluates the cooperative effort of sensor nodes to accomplish high-level tasks with sensing, data processing and communication. The metrics of network-wide convergence, unbiasedness, consistency and optimality are discussed through network topology, distributed estimation algorithms and consensus strategy. Systematic analysis reveals that proper deployment of sensor nodes and a small number of low-cost relays (without sensing function) can speed up the information fusion and thus improve the estimation capability of wireless sensor networks (WSNs). This brief also investiga

  1. Mitigating gas emissions at signalised intersections using wireless vehicle detectors

    Directory of Open Access Journals (Sweden)

    Moses Kwasi Torkudzor

    2015-09-01

    Full Text Available Traffic congestion on roads wastes travel times and increases fuel consumption as well as gas emissions which are dangerous to human health. This has led to growing concern about environmental protection and energy conservation and a number of studies to increase fuel economy and reduce gas emissions. To increase travel times so as to reduce fuel consumption and gas emissions, traffic signals at intersections must be well implemented. It is therefore necessary to employ the current technology of wireless sensor networks to enhance the optimisation of the signalised intersections so as to address such a concern. In this study, a vehicular traffic control model was developed to optimise a signalised intersection, using wireless vehicle detectors. Real-time traffic volume gathered were analysed to obtain the peak hour traffic volume causing congestion. The intersection was modelled and simulated in Synchro7 as an actuated signalised model using results from the analysed data. The model for morning peak and evening peak periods gave optimal cycle lengths which result in the reduction of gas emissions, fuel consumption and delay at the intersection.

  2. Knowledge-Based Multiple Access Protocol in Broadband Wireless ATM Networks

    DEFF Research Database (Denmark)

    Liu, Hong; Gliese, Ulrik Bo; Dittmann, Lars

    1999-01-01

    In this paper, we propose a knowledge-based multiple access protocol for the extension of wireline ATM to wireless networks. The objective is to enable effecient transmission of all kinds of ATM traffic in the wireless channel with guaranteed QoS.The proposed protocol utilixes knowledge of the main...... characteristics of the traffic for allocating bandwidth effeciently to CBR, VBR and ABR/UBR connections by a compromise of assignment, contetion, reservation and polling access techniques. Simulation results show that the proposed protocol can achieve a very high channel utilization of 90 % while providing...

  3. Wireless Luminescence Integrated Sensors (WLIS)

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, M.L.; Sayler, G.S. (Univ. Tennessee)

    2003-11-10

    The goal of this project was the development of a family of wireless, single-chip, luminescence-sensing devices to solve a number of difficult distributed measurement problems in areas ranging from environmental monitoring and assessment to high-throughput screening of combinatorial chemistry libraries. These wireless luminescence integrated sensors (WLIS) consist of a microluminometer, wireless data transmitter, and RF power input circuit all realized in a standard integrated circuit (IC) process with genetically engineered, whole-cell, bioluminescent bioreporters encapsulated and deposited on the IC. The end product is a family of compact, low-power, rugged, low-cost sensors. As part of this program they developed an integrated photodiode/signal-processing scheme with an rms noise level of 175 electrons/second for a 13-minute integration time, and a quantum efficiency of 66% at the 490-nm bioluminescent wavelength. this performance provided a detection limit of < 1000 photons/second. Although sol-gel has previously been used to encapsulate yeast cells, the reaction conditions necessary for polymerization (primarily low pH) have beforehand proven too harsh for bacterial cell immobilizations. Utilizing sonication methods, they have were able to initiate polymerization under pH conditions conductive to cell survival. both a toluene bioreporter (Pseudomonas putida TVA8) and a naphthalene bioreporter (Pseudomonas fluorescens HK44) were successfully encapsulated in sol-gel and shown to produce a fairly significant bioluminescent response. In addition to the previously developed naphthalene- and toluene-sensitive bioreporters, they developed a yeast-based xenoestrogen reporter. This technology has been licensed by Micro Systems Technologies, a startup company in Dayton, Ohio for applications in environmental containments monitoring, and for detecting weapons of mass destruction (i.e. homeland security).

  4. Low cost structural health monitoring of bridges using wireless SenSpot sensors.

    Science.gov (United States)

    2012-05-01

    Deterioration of highway bridges is a common, yet complex problem. To protect highway bridges, this : project combines a number of recent and emerging technologies microstructured sensing, ultra-lowpower : wireless communication, and advanced mic...

  5. Detecting Anomaly in Traffic Flow from Road Similarity Analysis

    KAUST Repository

    Liu, Xinran

    2016-06-02

    Taxies equipped with GPS devices are considered as 24-hour moving sensors widely distributed in urban road networks. Plenty of accurate and realtime trajectories of taxi are recorded by GPS devices and are commonly studied for understanding traffic dynamics. This paper focuses on anomaly detection in traffic volume, especially the non-recurrent traffic anomaly caused by unexpected or transient incidents, such as traffic accidents, celebrations and disasters. It is important to detect such sharp changes of traffic status for sensing abnormal events and planning their impact on the smooth volume of traffic. Unlike existing anomaly detection approaches that mainly monitor the derivation of current traffic status from history in the past, the proposed method in this paper evaluates the abnormal score of traffic on one road by comparing its current traffic volume with not only its historical data but also its neighbors. We define the neighbors as the roads that are close in sense of both geo-location and traffic patterns, which are extracted by matrix factorization. The evaluation results on trajectories data of 12,286 taxies over four weeks in Beijing show that our approach outperforms other baseline methods with higher precision and recall.

  6. Packets with deadlines a framework for real-time wireless networks

    CERN Document Server

    Hou, I-Hong

    2013-01-01

    With the explosive increase in the number of mobile devices and applications, it is anticipated that wireless traffic will increase exponentially in the coming years. Moreover, future wireless networks all carry a wide variety of flows, such as video streaming, online gaming, and VoIP, which have various quality of service (QoS) requirements. Therefore, a new mechanism that can provide satisfactory performance to the complete variety of all kinds of flows, in a coherent and unified framework, is needed.In this book, we introduce a framework for real-time wireless networks. This consists of a m

  7. A New Mechanism for Network Monitoring and Shielding in Wireless LAN

    Directory of Open Access Journals (Sweden)

    Jiujun Cheng

    2014-01-01

    Full Text Available Wireless LAN (WLAN technology is developing rapidly with the help of wireless communication technology and social demand. During the development of WLAN, the security is more and more important, and wireless monitoring and shielding are of prime importance for network security. In this paper, we have explored various security issues of IEEE 802.11 based wireless network and analyzed numerous problems in implementing the wireless monitoring and shielding system. We identify the challenges which monitoring and shielding system needs to be aware of, and then provide a feasible mechanism to avoid those challenges. We implemented an actual wireless LAN monitoring and shielding system on Maemo operating system to monitor wireless network data stream efficiently and solve the security problems of mobile users. More importantly, the system analyzes wireless network protocols efficiently and flexibly, reveals rich information of the IEEE 802.11 protocol such as traffic distribution and different IP connections, and graphically displays later. Moreover, the system running results show that the system has the capability to work stably, and accurately and analyze the wireless protocols efficiently.

  8. Security for multihop wireless networks

    CERN Document Server

    Khan, Shafiullah

    2014-01-01

    Security for Multihop Wireless Networks provides broad coverage of the security issues facing multihop wireless networks. Presenting the work of a different group of expert contributors in each chapter, it explores security in mobile ad hoc networks, wireless sensor networks, wireless mesh networks, and personal area networks.Detailing technologies and processes that can help you secure your wireless networks, the book covers cryptographic coprocessors, encryption, authentication, key management, attacks and countermeasures, secure routing, secure medium access control, intrusion detection, ep

  9. A Bi-directional Energy Splitable Model for Energy Optimization in Wireless Sensor Networks

    OpenAIRE

    Rajeswari, A; Kalaivaani, P.T

    2011-01-01

    Wireless Sensor Networks is a budding  prototype of networking and computing, where a node may be self powered and individual node have the capability to sense and compute and communicate. Wireless Sensor Networks have been proposed for variety of applications such as Industrial control and monitoring and home automation and consumer electronics and security andMilitary sensing, Asset tracking and supply chain management, Intelligent Agriculture, Missile directing, Fire alarming, Landslide Wa...

  10. The wireless internet explained

    CERN Document Server

    Rhoton, John

    2001-01-01

    The Wireless Internet Explained covers the full spectrum of wireless technologies from a wide range of vendors, including initiatives by Microsoft and Compaq. The Wireless Internet Explained takes a practical look at wireless technology. Rhoton explains the concepts behind the physics, and provides an overview that clarifies the convoluted set of standards heaped together under the umbrella of wireless. It then expands on these technical foundations to give a panorama of the increasingly crowded landscape of wireless product offerings. When it comes to actual implementation the book gives abundant down-to-earth advice on topics ranging from the selection and deployment of mobile devices to the extremely sensitive subject of security.Written by an expert on Internet messaging, the author of Digital Press''s successful Programmer''s Guide to Internet Mail and X.400 and SMTP: Battle of the E-mail Protocols, The Wireless Internet Explained describes and evaluates the current state of the fast-growing and crucial...

  11. Quantifying and Mitigating Privacy Threats in Wireless Protocols and Services

    Science.gov (United States)

    2009-07-01

    tunneling all traffic through a trusted VPN or mix network. SlyFi is an optimization to these solutions when both ends of the wireless link trust each...these techniques have been extremely successful (despite occasional problems [30, 34]) and protocols that use these techniques, such as IPSEC , SSL...through VPNs , the case for several users in the sigcomm trace, the IP addresses of the VPN servers would be revealing. No application or network level

  12. Overlapping coalition formation games in wireless communication networks

    CERN Document Server

    Wang, Tianyu; Saad, Walid; Han, Zhu

    2017-01-01

    This brief introduces overlapping coalition formation games (OCF games), a novel mathematical framework from cooperative game theory that can be used to model, design and analyze cooperative scenarios in future wireless communication networks. The concepts of OCF games are explained, and several algorithmic aspects are studied. In addition, several major application scenarios are discussed. These applications are drawn from a variety of fields that include radio resource allocation in dense wireless networks, cooperative spectrum sensing for cognitive radio networks, and resource management for crowd sourcing. For each application, the use of OCF games is discussed in detail in order to show how this framework can be used to solve relevant wireless networking problems. Overlapping Coalition Formation Games in Wireless Communication Networks provides researchers, students and practitioners with a concise overview of existing works in this emerging area, exploring the relevant fundamental theories, key techniqu...

  13. Development of fast wireless detection system for fixed offshore platform

    Science.gov (United States)

    Li, Zhigang; Yu, Yan; Jiao, Dong; Wang, Jie; Li, Zhirui; Ou, Jinping

    2011-04-01

    Offshore platforms' security is concerned since in 1950s and 1960s, and in the early 1980s some important specifications and standards are built, and all these provide technical basis of fixed platform design, construction, installation and evaluation. With the condition that more and more platforms are in serving over age, the research about the evaluation and detection technology of offshore platform has been a hotspot, especially underwater detection, and assessment method based on the finite element calculation. For fixed platform structure detection, conventional NDT methods, such as eddy current, magnetic powder, permeate, X-ray and ultrasonic, etc, are generally used. These techniques are more mature, intuitive, but underwater detection needs underwater robot, the necessary supporting tools of auxiliary equipment, and trained professional team, thus resources and cost used are considerable, installation time of test equipment is long. This project presents a new kind of fast wireless detection and damage diagnosis system for fixed offshore platform using wireless sensor networks, that is, wireless sensor nodes can be put quickly on the offshore platform, detect offshore platform structure global status by wireless communication, and then make diagnosis. This system is operated simply, suitable for offshore platform integrity states rapid assessment. The designed system consists in intelligence acquisition equipment and 8 wireless collection nodes, the whole system has 64 collection channels, namely every wireless collection node has eight 16-bit accuracy of A/D channels. Wireless collection node, integrated with vibration sensing unit, embedded low-power micro-processing unit, wireless transceiver unit, large-capacity power unit, and GPS time synchronization unit, can finish the functions such as vibration data collection, initial analysis, data storage, data wireless transmission. Intelligence acquisition equipment, integrated with high

  14. A First Look at Modern Enterprise Traffic

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Ruoming; Mark Allman, Mark; Bennett, Mike; Lee, Jason; Paxson, Vern; Tierney, Brian

    2005-06-01

    While wide-area Internet traffic has been heavily studied for many years, the characteristics of traffic inside Internet enterprises remain almost wholly unexplored. Nearly all of the studies of enterprise traffic available in the literature are well over a decade old and focus on individual LANs rather than whole sites. In this paper we present a broad overview of internal enterprise traffic recorded at a medium-sized site. The packet traces span more than 100 hours, over which activity from a total of several thousand internal hosts appears. This wealth of data--which we are publicly releasing in anonymized form--spans a wide range of dimensions. While we cannot form general conclusions using data from a single site, and clearly this sort of data merits additional in-depth study in a number of ways, in this work we endeavor to characterize a number of the most salient aspects of the traffic. Our goal is to provide a first sense of ways in which modern enterprise traffic is similar to wide-area Internet traffic, and ways in which it is quite different.

  15. Development of a wireless MEMS multifunction sensor system and field demonstration of embedded sensors for monitoring concrete pavements : tech transfer summary.

    Science.gov (United States)

    2016-08-01

    Micro-electromechanical sensors and systems- (MEMS)-based and : wireless-based smart-sensing technologies have, until now, rarely : been used for monitoring pavement response in the field, and the : requirements for using such smart sensing technolog...

  16. Wireless network pricing

    CERN Document Server

    Huang, Jianwei

    2013-01-01

    Today's wireless communications and networking practices are tightly coupled with economic considerations, to the extent that it is almost impossible to make a sound technology choice without understanding the corresponding economic implications. This book aims at providing a foundational introduction on how microeconomics, and pricing theory in particular, can help us to understand and build better wireless networks. The book can be used as lecture notes for a course in the field of network economics, or a reference book for wireless engineers and applied economists to understand how pricing

  17. Wireless mesh networks

    CERN Document Server

    Held, Gilbert

    2005-01-01

    Wireless mesh networking is a new technology that has the potential to revolutionize how we access the Internet and communicate with co-workers and friends. Wireless Mesh Networks examines the concept and explores its advantages over existing technologies. This book explores existing and future applications, and examines how some of the networking protocols operate.The text offers a detailed analysis of the significant problems affecting wireless mesh networking, including network scale issues, security, and radio frequency interference, and suggests actual and potential solutions for each pro

  18. Optical and wireless technologies

    CERN Document Server

    Tiwari, Manish; Singh, Ghanshyam; Minzioni, Paolo

    2018-01-01

    This book presents selected papers from 1st International Conference on Optical and Wireless Technologies, providing insights into the analytical, experimental, and developmental aspects of systems, techniques, and devices in these spheres. It explores the combined use of various optical and wireless technologies in next-generation networking applications, and discusses the latest developments in applications such as photonics, high-speed communication systems and networks, visible light communication, nanophotonics, and wireless and multiple-input-multiple-output (MIMO) systems. The book will serve as a valuable reference resource for academics and researchers across the globe.

  19. Resource optimization scheme for multimedia-enabled wireless mesh networks.

    Science.gov (United States)

    Ali, Amjad; Ahmed, Muhammad Ejaz; Piran, Md Jalil; Suh, Doug Young

    2014-08-08

    Wireless mesh networking is a promising technology that can support numerous multimedia applications. Multimedia applications have stringent quality of service (QoS) requirements, i.e., bandwidth, delay, jitter, and packet loss ratio. Enabling such QoS-demanding applications over wireless mesh networks (WMNs) require QoS provisioning routing protocols that lead to the network resource underutilization problem. Moreover, random topology deployment leads to have some unused network resources. Therefore, resource optimization is one of the most critical design issues in multi-hop, multi-radio WMNs enabled with multimedia applications. Resource optimization has been studied extensively in the literature for wireless Ad Hoc and sensor networks, but existing studies have not considered resource underutilization issues caused by QoS provisioning routing and random topology deployment. Finding a QoS-provisioned path in wireless mesh networks is an NP complete problem. In this paper, we propose a novel Integer Linear Programming (ILP) optimization model to reconstruct the optimal connected mesh backbone topology with a minimum number of links and relay nodes which satisfies the given end-to-end QoS demands for multimedia traffic and identification of extra resources, while maintaining redundancy. We further propose a polynomial time heuristic algorithm called Link and Node Removal Considering Residual Capacity and Traffic Demands (LNR-RCTD). Simulation studies prove that our heuristic algorithm provides near-optimal results and saves about 20% of resources from being wasted by QoS provisioning routing and random topology deployment.

  20. Analysis Of Packets Delay In Wireless Data Networks

    Directory of Open Access Journals (Sweden)

    Krivchenkov Aleksandr

    2015-12-01

    Full Text Available The networks with wireless links for automation control applications traffic transmission when packets have small size and application payload is predictable are under consideration. Analytical model for packets delay on their propagation path through the network is proposed. Estimations for network architectures based on WiFi and Bluetooth wireless technologies are made. The specifications for physical layer 802.11 a/b/g/n and 802.15.1 are under consideration. Analytical and experimental results for delivered network bandwidth for different network architecture, traffic structure and wireless technologies were compared to validate that basic mechanisms are correctly taken into account in the model. It is shown that basic effects are taken into account and further accuracy “improvement” of the model will give not more than 5%. As a result that is important for automation control applications we have reliably received the lowest possible level for packets delay in one wireless link. For 802.11 it is of order of 0.2 ms, for 802.15.1 it is 1.25 ms and is true when application packet can be transferred by one data frame.

  1. An extended lattice model accounting for traffic jerk

    Science.gov (United States)

    Redhu, Poonam; Siwach, Vikash

    2018-02-01

    In this paper, a flux difference lattice hydrodynamics model is extended by considering the traffic jerk effect which comes due to vehicular motion of non-motor automobiles. The effect of traffic jerk has been examined through linear stability analysis and shown that it can significantly enlarge the unstable region on the phase diagram. To describe the phase transition of traffic flow, mKdV equation near the critical point is derived through nonlinear stability analysis. The theoretical findings have been verified using numerical simulation which confirms that the jerk parameter plays an important role in stabilizing the traffic jam efficiently in sensing the flux difference of leading sites.

  2. Battery-free Wireless Sensor Network For Advanced Fossil-Fuel Based Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Yi Jia

    2011-02-28

    This report summarizes technical progress achieved during the project supported by the Department of Energy under Award Number DE-FG26-07NT4306. The aim of the project was to conduct basic research into battery-free wireless sensing mechanism in order to develop novel wireless sensors and sensor network for physical and chemical parameter monitoring in a harsh environment. Passive wireless sensing platform and five wireless sensors including temperature sensor, pressure sensor, humidity sensor, crack sensor and networked sensors developed and demonstrated in our laboratory setup have achieved the objective for the monitoring of various physical and chemical parameters in a harsh environment through remote power and wireless sensor communication, which is critical to intelligent control of advanced power generation system. This report is organized by the sensors developed as detailed in each progress report.

  3. Energy Aware Routing Schemes in Solar PoweredWireless Sensor Networks

    KAUST Repository

    Dehwah, Ahmad H.

    2016-10-01

    Wireless sensor networks enable inexpensive distributed monitoring systems that are the backbone of smart cities. In this dissertation, we are interested in wireless sensor networks for traffic monitoring and an emergency flood detection to improve the safety of future cities. To achieve real-time traffic monitoring and emergency flood detection, the system has to be continually operational. Accordingly, an energy source is needed to ensure energy availability at all times. The sun provides for the most inexpensive source of energy, and therefore the energy is provided here by a solar panel working in conjunction with a rechargeable battery. Unlike batteries, solar energy fluctuates spatially and temporally due to the panel orientation, seasonal variation and node location, particularly in cities where buildings cast shadows. Especially, it becomes scarce whenever floods are likely to occur, as the weather tends to be cloudy at such times when the emergency detection system is most needed. These considerations lead to the need for the optimization of the energy of the sensor network, to maximize its sensing performance. In this dissertation, we address the challenges associated with long term outdoor deployments along with providing some solutions to overcome part of these challenges. We then introduce the energy optimization problem, as a distributed greedy approach. Motivated by the flood sensing application, our objective is to maximize the energy margin in the solar powered network at the onset of the high rain event, to maximize the network lifetime. The decentralized scheme will achieve this by optimizing the energy over a time horizon T, taking into account the available and predicted energy over the entire routing path. Having a good energy forecasting scheme can significantly enhance the energy optimization in WSN. Thus, this dissertation proposes a new energy forecasting scheme that is compatible with the platform’s capabilities. This proposed

  4. Emerging Needs for Pervasive Passive Wireless Sensor Networks on Aerospace Vehicles

    Science.gov (United States)

    Wilson, William C.; Juarez, Peter D.

    2014-01-01

    NASA is investigating passive wireless sensor technology to reduce instrumentation mass and volume in ground testing, air flight, and space exploration applications. Vehicle health monitoring systems (VHMS) are desired on all aerospace programs to ensure the safety of the crew and the vehicles. Pervasive passive wireless sensor networks facilitate VHMS on aerospace vehicles. Future wireless sensor networks on board aerospace vehicles will be heterogeneous and will require active and passive network systems. Since much has been published on active wireless sensor networks, this work will focus on the need for passive wireless sensor networks on aerospace vehicles. Several passive wireless technologies such as microelectromechanical systems MEMS, SAW, backscatter, and chipless RFID techniques, have all shown potential to meet the pervasive sensing needs for aerospace VHMS applications. A SAW VHMS application will be presented. In addition, application areas including ground testing, hypersonic aircraft and spacecraft will be explored along with some of the harsh environments found in aerospace applications.

  5. Wireless ZigBee home automation system

    Science.gov (United States)

    Craciunescu, Razvan; Halunga, Simona; Fratu, Octavian

    2015-02-01

    The home automation system concept existed for many years but in the last decade, due to the rapid development of sensors and wireless technologies, a large number of various such "intelligent homes" have been developed. The purpose of the present paper is to demonstrate the flexibility, reliability and affordability of home automation projects, based on a simple and affordable implementation. A wireless sensing and control system have been developed and tested, having a number of basic functionalities such as switching on/off the light according to ambient lighting and turning on/off the central heating. The system has been built around low power microcontrollers and ZigBee modems for wireless communication, using a set of Vishay 640 thermistor sensors for temperature measurements and Vishay LDR07 photo-resistor for humidity measurements. A trigger is activated when the temperature or light measurements are above/below a given threshold and a command is transmitted to the central unit through the ZigBee radio module. All the data processing is performed by a low power microcontroller both at the sensing device and at the control unit.

  6. IDC Based Battery-free Wireless Pressure Sensor

    Directory of Open Access Journals (Sweden)

    Jose G. Villalobos

    2010-10-01

    Full Text Available In this paper a battery-free wireless pressure sensor is presented with design of two major parts: a interdigital capacitor (IDC that serves as a pressure sensing element and an inductor which works as a passive power source and data communication element. These two components work together as an LC resonator to realize the wireless pressure sensing and remote power to eliminate the need for wire connection in conventional pressure sensor. The sensing element is comprised of a set of linear parallel electrodes coated with Polyvinylidene Fluoride (PVDF pressure sensing material on the top. The change of capacitance in the IDC is a function of the geometry of the electrodes and the electric properties of the sensitive layer. The sensor prototype has been made and experiment demonstrated that the sensor prototype performs well in a range of 0 psi to 60 psi with an average pressure sensitivity of 25 kHz/psi.

  7. Wireless capsule endoscopy

    Science.gov (United States)

    Iddan, Gavriel; Meron, Gavriel; Glukhovsky, Arkady; Swain, Paul

    2000-05-01

    We have developed a new type of endoscopy, which for the first time allows painless endoscopic imaging of the whole of the small bowel. This procedure involves a wireless capsule endoscope and we describe here its successful testing in humans.

  8. Green heterogeneous wireless networks

    CERN Document Server

    Ismail, Muhammad; Nee, Hans-Peter; Qaraqe, Khalid A; Serpedin, Erchin

    2016-01-01

    This book focuses on the emerging research topic "green (energy efficient) wireless networks" which has drawn huge attention recently from both academia and industry. This topic is highly motivated due to important environmental, financial, and quality-of-experience (QoE) considerations. Specifically, the high energy consumption of the wireless networks manifests in approximately 2% of all CO2 emissions worldwide. This book presents the authors’ visions and solutions for deployment of energy efficient (green) heterogeneous wireless communication networks. The book consists of three major parts. The first part provides an introduction to the "green networks" concept, the second part targets the green multi-homing resource allocation problem, and the third chapter presents a novel deployment of device-to-device (D2D) communications and its successful integration in Heterogeneous Networks (HetNets). The book is novel in that it specifically targets green networking in a heterogeneous wireless medium, which re...

  9. Traffic management simulation development : summary.

    Science.gov (United States)

    2011-01-01

    Increasingly, Florida traffic is monitored electronically by components of the Intelligent Traffic System (ITS), which send data to regional traffic management centers and assist management of traffic flows and incident response using software called...

  10. National guidelines for traffic calming

    CSIR Research Space (South Africa)

    Schermers, G

    1998-03-01

    Full Text Available This document serves as a comprehensive national traffic calming guideline, compiled to assist traffic engineering practitioners and road authorities with the implementation of traffic calming. It outlines the different objectives of traffic calming...

  11. Traffic management simulation development.

    Science.gov (United States)

    2011-01-03

    Microscopic simulation can provide significant support to traffic management center (TMC) operations. However, traffic simulation applications require data that are expensive and time-consuming to collect. Data collected by TMCs can be used as a prim...

  12. Traffic signal timing manual

    Science.gov (United States)

    2008-06-01

    This report serves as a comprehensive guide to traffic signal timing and documents the tasks completed in association with its development. The focus of this document is on traffic signal control principles, practices, and procedures. It describes th...

  13. An intelligent traffic controller

    Science.gov (United States)

    1995-11-01

    Advances in computing sciences have not been applied to traffic control. This paper describes the development of an intelligent controller. A controller with advanced control logic can significantly improve traffic flows at intersections. In this vei...

  14. Wireless radio a history

    CERN Document Server

    Coe, Lewis

    2006-01-01

    ""Informative...recommended""--Choice; ""interesting...a good read...well worth reading""--Contact Magazine. This history first looks at Marconi's wireless communications system and then explores its many applications, including marine radio, cellular telephones, police and military uses, television and radar. Radio collecting is also discussed, and brief biographies are provided for the major figures in the development and use of the wireless.

  15. Wireless Networks Security

    OpenAIRE

    Jenko, Marko

    2016-01-01

    In this thesis we deal with security, penetration testing and different types of attacks on wireless networks. We theoretically familiarize with the field of wireless networks, security mechanisms and the most used security standards. Then we systematically overview the field of penetration testing. We divide the penetration testing on types and different methodologies. We explain the tasks of the provider and the subscriber in penetration testing. Description of the process of conducting the...

  16. Interference in wireless ad hoc networks with smart antennas

    KAUST Repository

    Alabdulmohsin, Ibrahim

    2014-08-01

    In this paper, we show that the use of directional antennas in wireless ad hoc networks can actually increase interference due to limitations of virtual carrier sensing. We derive a simple mathematical expression for interference in both physical and virtual carrier sense networks, which reveals counter-intuitively that receivers in large dense networks with directional antennas can experience larger interference than in omnidirectional networks unless the beamwidth is sufficiently small. Validity of mathematical analysis is confirmed using simulations.

  17. Outlier Detection Techniques For Wireless Sensor Networks: A Survey

    NARCIS (Netherlands)

    Zhang, Y.; Meratnia, Nirvana; Havinga, Paul J.M.

    2008-01-01

    In the field of wireless sensor networks, measurements that significantly deviate from the normal pattern of sensed data are considered as outliers. The potential sources of outliers include noise and errors, events, and malicious attacks on the network. Traditional outlier detection techniques are

  18. Outlier detection techniques for wireless sensor networks: A survey

    NARCIS (Netherlands)

    Zhang, Y.; Meratnia, Nirvana; Havinga, Paul J.M.

    2010-01-01

    In the field of wireless sensor networks, those measurements that significantly deviate from the normal pattern of sensed data are considered as outliers. The potential sources of outliers include noise and errors, events, and malicious attacks on the network. Traditional outlier detection

  19. Strategic Vision on Convergence of Wired and Wireless Networks

    DEFF Research Database (Denmark)

    Prasad, Ramjee; Olsen, Rasmus Løvenstein; Saarnio, Juha

    2006-01-01

    less structure within wireless communication. Furthermore we discuss some of the important aspects in personalisation of future network paradigms with focus on how networks and network services will be able to sense the user’s environment and adapt to this. Finally we discuss one of the most important...... aspect, namely security and privacy issues within future generationnetworks....

  20. Wireless Networks: New Meaning to Ubiquitous Computing.

    Science.gov (United States)

    Drew, Wilfred, Jr.

    2003-01-01

    Discusses the use of wireless technology in academic libraries. Topics include wireless networks; standards (IEEE 802.11); wired versus wireless; why libraries implement wireless technology; wireless local area networks (WLANs); WLAN security; examples of wireless use at Indiana State University and Morrisville College (New York); and useful…

  1. SDN Based User-Centric Framework for Heterogeneous Wireless Networks

    Directory of Open Access Journals (Sweden)

    Zhaoming Lu

    2016-01-01

    Full Text Available Due to the rapid growth of mobile data traffic, more and more basestations and access points (APs have been densely deployed to provide users with ubiquitous network access, which make current wireless network a complex heterogeneous network (HetNet. However, traditional wireless networks are designed with network-centric approaches where different networks have different quality of service (QoS strategies and cannot easily cooperate with each other to serve network users. Massive network infrastructures could not assure users perceived network and service quality, which is an indisputable fact. To address this issue, we design a new framework for heterogeneous wireless networks with the principle of user-centricity, refactoring the network from users’ perspective to suffice their requirements and preferences. Different from network-centric approaches, the proposed framework takes advantage of Software Defined Networking (SDN and virtualization technology, which will bring better perceived services quality for wireless network users. In the proposed user-centric framework, control plane and data plane are decoupled to manage the HetNets in a flexible and coadjutant way, and resource virtualization technology is introduced to abstract physical resources of HetNets into unified virtualized resources. Hence, ubiquitous and undifferentiated network connectivity and QoE (quality of experience driven fine-grained resource management could be achieved for wireless network users.

  2. Improving Spectral Capacity and Wireless Network Coverage by Cognitive Radio Technology and Relay Nodes in Cellular Systems

    DEFF Research Database (Denmark)

    Frederiksen, Flemming Bjerge

    2008-01-01

    Methods to enhance the use of the frequency spectrum by automatical spectrum sensing plus spectrum sharing in a cognitive radio technology context have been presented and discussed in this paper. Ideas to improve the wireless transmission by orthogonal OFDM-based communication and to increase...... the coverage of cellular systems by future wireless networks, relay channels, relay stations and collaborate radio have been presented as well. A revised hierarchical deployment of the future wireless and wired networks are shortly discussed....

  3. Traffic Light Options

    DEFF Research Database (Denmark)

    Jørgensen, Peter Løchte

    This paper introduces, prices, and analyzes traffic light options. The traffic light option is an innovative structured OTC derivative developed independently by several London-based investment banks to suit the needs of Danish life and pension (L&P) companies, which must comply with the traffic...... 2006, and supervisory authorities in many other European countries have implemented similar regulation. Traffic light options are therefore likely to attract the attention of a wider audience of pension fund managers in the future. Focusing on the valuation of the traffic light option we set up a Black...... light scenarios. These stress scenarios entail drops in interest rates as well as in stock prices, and traffic light options are thus designed to pay off and preserve sufficient capital when interest rates and stock prices fall simultaneously. Sweden's FSA implemented a traffic light system in January...

  4. Wireless Networks Speed Depending on the Encryption using Windows 8.1 x64 Operating System

    Directory of Open Access Journals (Sweden)

    Tamás Krausz

    2014-12-01

    Full Text Available We can use variety of encryption standards to encrypt data traffic to ensure the safety of wireless networks. The question is to what extent the security of the network affects network performance. For answering this question, experiments were performed without data encryption, and the use of various encryption standards.

  5. RF MEMS capacitors and Variable Capacitors – The Future of Wireless Communication

    KAUST Repository

    Elshurafa, Amro M.

    2014-07-15

    The most recent 4G devices are designed with specific emphasis on the data traffic challenge. Because there is an increasing number of bands, all the circuits and devices related to the design of wireless systems need to be enhanced including the power am

  6. Energy efficient networking via dynamic relay node selection in wireless networks

    NARCIS (Netherlands)

    de Graaf, Maurits

    Mobile wireless ad-hoc networks need to maximize their network lifetime (defined as the time until the first node runs out of energy). In the broadcast network lifetime problem, all nodes are sending broadcast traffic, and one asks for an assignment of transmit powers to nodes, and for sets of relay

  7. Low-Feedback Opportunistic Scheduling Schemes for Wireless Networks with Heterogenous Users

    KAUST Repository

    Rashid, Faraan

    2012-07-01

    Efficient implementation of resource sharing strategies in a multi-user wireless environment can improve the performance of a network significantly. In this thesis we study various scheduling strategies for wireless networks and handle the problem of opportunistically scheduling transmissions using channel aware schemes. First we propose a scheme that can handle users with asymmetric channel conditions and is opportunistic in the sense that it exploits the multi-user diversity of the network. The scheme requires the users to have a priori knowledge of their channel distributions. The associated overhead is limited meaning it offers reduced feedback load, that does not scale with the increasing number of users. The main technique used to shrink the feedback load is the contention based distributed implementation of a splitting algorithm that does not require explicit feedback to the scheduler from every user. The users find the best among themselves, in a distributed manner, while requiring just a ternary broadcast feedback from the scheduler at the end of each mini-slot. In addition, it can also handle fairness constraints in time and throughput to various degrees. Next we propose another opportunistic scheduler that offers most of the benefits of the previously proposed scheme but is more practical because it can also handle heterogenous users whose channel distributions are unknown. This new scheme actually reduces the complexity and is also more robust for changing traffic patterns. Finally we extend both these schemes to the scenario where there are fixed thresholds, this enables us to handle opportunistic scheduling in practical systems that can only transmit over finite number of discrete rates with the additional benefit that full feedback session, even from the selected user, is never required.

  8. 5G wireless technologies

    CERN Document Server

    Alexiou, Angeliki

    2017-01-01

    Mobile data traffic is expected to exceed traffic from wired devices in the next couple of years. This book presents a roadmap of 5G, from advanced radio technologies to innovative resource management approaches and novel network architectures and system concepts.

  9. Traffic flow wide-area surveillance system

    Science.gov (United States)

    Allgood, Glenn O.; Ferrell, Regina K.; Kercel, Stephen W.; Abston, Ruth A.

    1995-01-01

    Traffic management can be thought of as a stochastic queuing process where the serving time at one of its control points is dynamically linked to the global traffic pattern, which is, in turn, dynamically linked to the control point. For this closed-loop system to be effective, the traffic management system must sense and interpret a large spatial projection of data originating from multiple sensor suites. This concept is the basis for the development of a traffic flow wide-area surveillance (TFWAS) system. This paper presents the results of a study by Oak Ridge National Laboratory to define the operational specifications and characteristics, to determine the constraints, and to examine the state of technology of a TFWAS system in terms of traffic management and control. In doing so, the functions and attributes of a TFWAS system are mapped into an operational structure consistent with the Intelligent Vehicle Highway System (IVHS) concept and the existing highway infrastructure. This mapping includes identifying candidate sensor suites and establishing criteria, requirements, and performance measures by which these systems can be graded in their ability and practicality to meet the operational requirements of a TFWAS system. In light of this, issues such as system integration, applicable technologies, impact on traffic management and control, and public acceptance are addressed.

  10. A Marine Traffic Flow Model

    Directory of Open Access Journals (Sweden)

    Tsz Leung Yip

    2013-03-01

    Full Text Available A model is developed for studying marine traffic flow through classical traffic flow theories, which can provide us with a better understanding of the phenomenon of traffic flow of ships. On one hand, marine traffic has its special features and is fundamentally different from highway, air and pedestrian traffic. The existing traffic models cannot be simply extended to marine traffic without addressing marine traffic features. On the other hand, existing literature on marine traffic focuses on one ship or two ships but does not address the issues in marine traffic flow.

  11. Implementation of WirelessHART in the NS-2 simulator and validation of its correctness.

    Science.gov (United States)

    Zand, Pouria; Mathews, Emi; Havinga, Paul; Stojanovski, Spase; Sisinni, Emiliano; Ferrari, Paolo

    2014-05-16

    One of the first standards in the wireless sensor networks domain,WirelessHART (HART (Highway Addressable Remote Transducer)), was introduced to address industrial process automation and control requirements. This standard can be used as a reference point to evaluate other wireless protocols in the domain of industrial monitoring and control. This makes it worthwhile to set up a reliable WirelessHART simulator in order to achieve that reference point in a relatively easy manner. Moreover, it offers an alternative to expensive testbeds for testing and evaluating the performance of WirelessHART. This paper explains our implementation of WirelessHART in the NS-2 network simulator. According to our knowledge, this is the first implementation that supports the WirelessHART network manager, as well as the whole stack (all OSI (Open Systems Interconnection model) layers) of the WirelessHART standard. It also explains our effort to validate the correctness of our implementation, namely through the validation of the implementation of the WirelessHART stack protocol and of the network manager. We use sniffed traffic from a real WirelessHART testbed installed in the Idrolab plant for these validations. This confirms the validity of our simulator. Empirical analysis shows that the simulated results are nearly comparable to the results obtained from real networks. We also demonstrate the versatility and usability of our implementation by providing some further evaluation results in diverse scenarios. For example, we evaluate the performance of the WirelessHART network by applying incremental interference in a multi-hop network.

  12. Implementation of WirelessHART in the NS-2 Simulator and Validation of Its Correctness

    Directory of Open Access Journals (Sweden)

    Pouria Zand

    2014-05-01

    Full Text Available One of the first standards in the wireless sensor networks domain,WirelessHART (HART (Highway Addressable Remote Transducer, was introduced to address industrial process automation and control requirements. This standard can be used as a reference point to evaluate other wireless protocols in the domain of industrial monitoring and control. This makes it worthwhile to set up a reliable WirelessHART simulator in order to achieve that reference point in a relatively easy manner. Moreover, it offers an alternative to expensive testbeds for testing and evaluating the performance of WirelessHART. This paper explains our implementation of WirelessHART in the NS-2 network simulator. According to our knowledge, this is the first implementation that supports the WirelessHART network manager, as well as the whole stack (all OSI (Open Systems Interconnection model layers of the WirelessHART standard. It also explains our effort to validate the correctness of our implementation, namely through the validation of the implementation of the WirelessHART stack protocol and of the network manager. We use sniffed traffic from a realWirelessHART testbed installed in the Idrolab plant for these validations. This confirms the validity of our simulator. Empirical analysis shows that the simulated results are nearly comparable to the results obtained from real networks. We also demonstrate the versatility and usability of our implementation by providing some further evaluation results in diverse scenarios. For example, we evaluate the performance of the WirelessHART network by applying incremental interference in a multi-hop network.

  13. OPTICAL WIRELESS COMMUNICATION SYSTEM

    Directory of Open Access Journals (Sweden)

    JOSHUA L.Y. CHIENG

    2016-02-01

    Full Text Available The growing demand of bandwidth in this modern internet age has been testing the existing telecommunication infrastructures around the world. With broadband speeds moving towards the region of Gbps and Tbps, many researches have begun on the development of using optical wireless technology as feasible and future methods to the current wireless technology. Unlike the existing radio frequency wireless applications, optical wireless uses electromagnetic spectrums that are unlicensed and free. With that, this project aim to understand and gain better understanding of optical wireless communication system by building an experimental and simulated model. The quality of service and system performance will be investigated and reviewed. This project employs laser diode as the propagation medium and successfully transferred audio signals as far as 15 meters. On its quality of service, results of the project model reveal that the bit error rate increases, signal-to-noise ratio and quality factor decreases as the link distance between the transmitter and receiver increases. OptiSystem was used to build the simulated model and MATLAB was used to assist signal-to-noise ratio calculations. By comparing the simulated and experimental receiver’s power output, the experimental model’s efficiency is at 66.3%. Other than the system’s performance, challenges and factors affecting the system have been investigated and discussed. Such challenges include beam divergence, misalignment and particle absorption.

  14. Sensor for a traffic response system and traffic control system using a sensor

    NARCIS (Netherlands)

    Heijningen, A.W.P. van; Kleijweg, J.C.M.

    2007-01-01

    Traffic is sensed using a signal from a wave reflection detection device to classify road users into different types. Classification is performed dependent on statistical properties of reflections. Preferably reflections are resolved into reflections for different combinations of position and speed,

  15. EXPERIMENTAL PERFORMANCE ANALYSIS OF WIRELESS ...

    African Journals Online (AJOL)

    ABSTRACT. Wireless networking is currently being deployed for various applications. However, the application of wireless networking in healthcare remains a challenge mainly because of security and reliability concerns. This paper presents experimental results of performance analysis of a wireless network for healthcare ...

  16. Fiber wireless networks

    Science.gov (United States)

    Nirmalathas, A.; Bakaul, M.; Lim, C.; Novak, D.; Waterhouse, R.

    2005-11-01

    Broadband wireless networks based on a number of new frequency windows at higher microwave and millimeter-wave frequencies have been actively pursued to provide ultra-high bandwidth services over a wireless networks. These networks will have a large number of antenna base-stations with high throughput. Significant reductions in antenna base-station complexity can be achieved if most of the signal routing and switching functions centralized at a central office in the network. In such a network, fiber feed networks can be effectively deployed to provide high bandwidth interconnections between multiple antenna base-stations and the central office. With wavelength division multiplexing, efficient optical fiber feed network architectures could be realised to provide interconnection to a large number of antenna base-stations. In this paper, we present an over view of our recent research into system technologies for fiber wireless networks.

  17. Wireless physical layer security

    Science.gov (United States)

    Poor, H. Vincent; Schaefer, Rafael F.

    2017-01-01

    Security in wireless networks has traditionally been considered to be an issue to be addressed separately from the physical radio transmission aspects of wireless systems. However, with the emergence of new networking architectures that are not amenable to traditional methods of secure communication such as data encryption, there has been an increase in interest in the potential of the physical properties of the radio channel itself to provide communications security. Information theory provides a natural framework for the study of this issue, and there has been considerable recent research devoted to using this framework to develop a greater understanding of the fundamental ability of the so-called physical layer to provide security in wireless networks. Moreover, this approach is also suggestive in many cases of coding techniques that can approach fundamental limits in practice and of techniques for other security tasks such as authentication. This paper provides an overview of these developments.

  18. Hybrid algorithm: A cost efficient solution for ONU placement in Fiber-Wireless (FiWi) network

    Science.gov (United States)

    Bhatt, Uma Rathore; Chouhan, Nitin; Upadhyay, Raksha

    2015-03-01

    Fiber-Wireless (FiWi) network is a promising access technology as it integrates the technical merits of optical and wireless access networks. FiWi provides large bandwidth and high stability of optical network and lower cost of wireless network respectively. Therefore, FiWi gives users to access broadband services in an "anywhere-anytime" way. One of the key issues in FiWi network is its deployment cost, which depends on the number of ONUs in the network. Therefore optimal placement of ONUs is desirable to design a cost effective network. In this paper, we propose an algorithm for optimal placement of ONUs. First we place an ONU in the center of each grid then we form a set of wireless routers associated with each ONU according to wireless hop number. The number of ONUs are minimized in such a way, that all the wireless routers can communicate to at least one of the ONUs. The number of ONUs in the network further reduced by using genetic algorithm. The effectiveness of the proposed algorithm is tested by considering Internet traffic as well as peer-to-peer (p2p) traffic in the network, which is a current need. Simulation results show that the proposed algorithm is better than existing algorithms in minimizing number of ONUs in the network for both types of traffics. Hence proposed algorithm offers cost effective solution to design the FiWi network.

  19. A Novel Intelligent Transportation Control Supported by Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Zhe Qian

    2013-05-01

    Full Text Available With the development of wireless sensor unit, and improvement of real-time and quality of wireless communication, the intelligent transportation control system employ these technologies to realize sensing, positioning, computing, and communication for voiding collisions. This paper discusses the framework of transportation control system, and emphases TDOA positioning algorithm and the new weighted least square optimization method. The simulation result shows that, our method achieves high-accuracy of positioning, which can satisfy the need of transportation control. Finally, we outline the urgent work need to address in the future.

  20. A survey of routing protocols in wireless body sensor networks.

    Science.gov (United States)

    Bangash, Javed Iqbal; Abdullah, Abdul Hanan; Anisi, Mohammad Hossein; Khan, Abdul Waheed

    2014-01-13

    Wireless Body Sensor Networks (WBSNs) constitute a subset of Wireless Sensor Networks (WSNs) responsible for monitoring vital sign-related data of patients and accordingly route this data towards a sink. In routing sensed data towards sinks, WBSNs face some of the same routing challenges as general WSNs, but the unique requirements of WBSNs impose some more constraints that need to be addressed by the routing mechanisms. This paper identifies various issues and challenges in pursuit of effective routing in WBSNs. Furthermore, it provides a detailed literature review of the various existing routing protocols used in the WBSN domain by discussing their strengths and weaknesses.

  1. Time synchronization in ad-hoc wireless sensor networks

    Science.gov (United States)

    Sharma, Nishant

    2013-06-01

    Advances in micro-electronics and developments in the various technologies have given birth to this era of wireless sensor networks. A sensor network is the one which provides information about the surrounding environment by sensing it and clock synchronization in wireless sensor networks plays a vital role to maintain the integrity of entire network. In this paper two major low energy consumption clock synchronization algorithms, Reference Broadcast Synchronization (RBS) and Timing-Sync Protocol for Sensor Networks (TPSN) are simulated, which result in high level of accuracy, reliability, handles substantially greater node densities, supports mobility, and hence perform well under all possible conditions.

  2. Simultaneous wireless electrophysiological and neurochemical monitoring

    Science.gov (United States)

    Murari, Kartikeya; Mollazadeh, Mohsen; Thakor, Nitish; Cauwenberghs, Gert

    2008-08-01

    Information processing and propagation in the central nervous system is mostly electrical in nature. At synapses, electrical signals cause the release of neurotransmitters like dopamine, glutamate etc., that are sensed by post-synaptic neurons resulting in signal propagation or inhibition. It can be very informative to monitor electrical and neurochemical signals simultaneously to understand the mechanisms underlying normal or abnormal brain function. We present an integrated system for the simultaneous wireless acquisition of neurophysiological and neurochemical activity. Applications of the system to neuroscience include monitoring EEG and glutamate in rat somatosensory cortex following global ischemia.

  3. Wireless sensor networks and ecological monitoring

    CERN Document Server

    Jiang, Joe-Air

    2013-01-01

    This book presents the state of the art technologies and solutions to tackle the critical challenges faced by the building and development of the WSN and ecological monitoring system but also potential impact on society at social, medical and technological level. This book is dedicated to Sensing systems for Sensors, Wireless Sensor Networks and Ecological Monitoring. The book aims at Master and PhD degree students, researchers, practitioners, especially WSN engineers involved with ecological monitoring. The book will provide an opportunity of a dedicated and a deep approach in order to improve their knowledge in this specific field.  

  4. Wireless communications algorithmic techniques

    CERN Document Server

    Vitetta, Giorgio; Colavolpe, Giulio; Pancaldi, Fabrizio; Martin, Philippa A

    2013-01-01

    This book introduces the theoretical elements at the basis of various classes of algorithms commonly employed in the physical layer (and, in part, in MAC layer) of wireless communications systems. It focuses on single user systems, so ignoring multiple access techniques. Moreover, emphasis is put on single-input single-output (SISO) systems, although some relevant topics about multiple-input multiple-output (MIMO) systems are also illustrated.Comprehensive wireless specific guide to algorithmic techniquesProvides a detailed analysis of channel equalization and channel coding for wi

  5. Pervasive wireless environments

    CERN Document Server

    Yang, Jie; Trappe, Wade; Cheng, Jerry

    2014-01-01

    This Springer Brief provides a new approach to prevent user spoofing by using the physical properties associated with wireless transmissions to detect the presence of user spoofing. The most common method, applying cryptographic authentication, requires additional management and computational power that cannot be deployed consistently. The authors present the new approach by offering a summary of the recent research and exploring the benefits and potential challenges of this method. This brief discusses the feasibility of launching user spoofing attacks and their impact on the wireless and sen

  6. Wireless optical telecommunications

    CERN Document Server

    Bouchet, Olivier

    2013-01-01

    Wireless optical communication refers to communication based on the unguided propagation of optical waves. The past 30 years have seen significant improvements in this technique - a wireless communication solution for the current millennium - that offers an alternative to radio systems; a technique that could gain attractiveness due to recent concerns regarding the potential effects of radiofrequency waves on human health.The aim of this book is to look at the free space optics that are already used for the exchange of current information; its many benefits, such as incorporating chan

  7. Wireless telecommunication systems

    CERN Document Server

    Terré, Michel; Vivier, Emmanuelle

    2013-01-01

    Wireless telecommunication systems generate a huge amount of interest. In the last two decades, these systems have experienced at least three major technological leaps, and it has become impossible to imagine how society was organized without them. In this book, we propose a macroscopic approach on wireless systems, and aim at answering key questions about power, data rates, multiple access, cellular engineering and access networks architectures.We present a series of solved problems, whose objective is to establish the main elements of a global link budget in several radiocommunicati

  8. Data converters for wireless standards

    CERN Document Server

    Shi, Chunlei

    2002-01-01

    Wireless communication is witnessing tremendous growth with proliferation of different standards covering wide, local and personal area networks (WAN, LAN and PAN). The trends call for designs that allow 1) smooth migration to future generations of wireless standards with higher data rates for multimedia applications, 2) convergence of wireless services allowing access to different standards from the same wireless device, 3) inter-continental roaming. This requires designs that work across multiple wireless standards, can easily be reused, achieve maximum hardware share at a minimum power consumption levels particularly for mobile battery-operated devices.

  9. A real-time traffic scheduling algorithm in CDMA packet networks

    NARCIS (Netherlands)

    Zan, Lei; Heijenk, Geert; El Zarki, Magda; Gong, K.; Niu, Z.

    2003-01-01

    The demands for multimedia and packet data services over wireless devices have increased over the past few years. The direct impact on performance makes scheduling for real-time traffic important. This paper presents a novel scheduling algorithm called fair channel-dependent scheduling which

  10. An implementation of traffic light system using multi-hop Ad hoc networks

    KAUST Repository

    Ansari, Imran Shafique

    2009-08-01

    In ad hoc networks nodes cooperate with each other to form a temporary network without the aid of any centralized administration. No wired base station or infrastructure is supported, and each host communicates via radio packets. Each host must act as a router, since routes are mostly multi-hop, due to the limited power transmission set by government agencies, (e.g. the Federal Communication Commission (FCC), which is 1 Watt in Industrial Scientific and Medical (ISM) band. The natures of wireless mobile ad hoc networks depend on batteries or other fatiguing means for their energy. A limited energy capacity may be the most significant performance constraint. Therefore, radio resource and power management is an important issue of any wireless network. In this paper, a design for traffic light system employing ad hoc networks is proposed. The traffic light system runs automatically based on signals sent through a multi-hop ad hoc network of \\'n\\' number of nodes utilizing the Token Ring protocol, which is efficient for this application from the energy prospective. The experiment consists of a graphical user interface that simulates the traffic lights and laptops (which have wireless network adapters) are used to run the graphical user interface and are responsible for setting up the ad hoc network between them. The traffic light system has been implemented utilizing A Mesh Driver (which allows for more than one wireless device to be connected simultaneously) and Java-based client-server programs. © 2009 IEEE.

  11. Mobile Phone Data from GSM Networks for Traffic Parameter and Urban Spatial Pattern Assessment

    NARCIS (Netherlands)

    Steenbruggen, J.G.M.; Borzacchiello, M.T.; Nijkamp, P.; Scholten, H.J.

    2013-01-01

    The use of wireless location technology and mobile phone data appears to offer a broad range of new opportunities for sophisticated applications in traffic management and monitoring, particularly in the field of incident management. Indeed, due to the high market penetration of mobile phones, it

  12. Costs of traffic injuries

    DEFF Research Database (Denmark)

    Kruse, Marie

    2015-01-01

    OBJECTIVE: The aim of this study was to analyse the socioeconomic costs of traffic injuries in Denmark, notably the healthcare costs and the productivity costs related to traffic injuries, in a bottom-up, register-based perspective. METHOD: Traffic injury victims were identified using national...... emergency room data and police records. Victims were matched with five controls per case by means of propensity score, nearest-neighbour matching. In the cohort, consisting of the 52 526 individuals that experienced a traffic injury in 2000 and 262 630 matched controls, attributable healthcare costs were...... assessed using Danish national healthcare registers. Productivity costs were computed using duration analysis (Cox regression models). In a subanalysis, cost per severe traffic injury was computed for the 12 995 individuals that experienced a severe injury. RESULTS: The socioeconomic cost of a traffic...

  13. Attacks on IEEE 802.11 wireless networks

    Directory of Open Access Journals (Sweden)

    Dejan Milan Tepšić

    2013-06-01

    user on the network. The Simple Network Management Protocol (SNMP is used to monitor and manage network devices. SNMP versions 1 and 2 do not possess security mechanisms when managing clients. Denial of service attack sends a bunch of malicious network requests which overlap radio waves on a wireless network system with unnecessary traffic, preventing addressing of the legitimate demands. Denial of service attack may be aimed to deny legitimate network services and to allow an attacker further penetration into the network. Conclusion In this paper, modern methods of attacks on IEEE 802.11 wireless networks are analyzed and processed. The most important tools for the attacks are presented as well as their effective usage for intrusion into wireless networks and discovery of useful information. The usage of wireless computer networks in environments where security and network availability are imperative is not recommended.

  14. A Multi-Vehicles, Wireless Testbed for Networked Control, Communications and Computing

    Science.gov (United States)

    Murray, Richard; Doyle, John; Effros, Michelle; Hickey, Jason; Low, Steven

    2002-03-01

    We have constructed a testbed consisting of 4 mobile vehicles (with 4 additional vehicles being completed), each with embedded computing and communications capability for use in testing new approaches for command and control across dynamic networks. The system is being used or is planned to be used for testing of a variety of communications-related technologies, including distributed command and control algorithms, dynamically reconfigurable network topologies, source coding for real-time transmission of data in lossy environments, and multi-network communications. A unique feature of the testbed is the use of vehicles that have second order dynamics. Requiring real-time feedback algorithms to stabilize the system while performing cooperative tasks. The testbed was constructed in the Caltech Vehicles Laboratory and consists of individual vehicles with PC-based computation and controls, and multiple communications devices (802.11 wireless Ethernet, Bluetooth, and infrared). The vehicles are freely moving, wheeled platforms propelled by high performance dotted fairs. The room contains an access points for an 802.11 network, overhead visual sensing (to allow emulation of CI'S signal processing), a centralized computer for emulating certain distributed computations, and network gateways to control and manipulate communications traffic.

  15. 75 FR 8400 - In the Matter of Certain Wireless Communications System Server Software, Wireless Handheld...

    Science.gov (United States)

    2010-02-24

    ... Communications System Server Software, Wireless Handheld Devices and Battery Packs; Notice of Investigation... within the United States after importation of certain wireless communications system server software... certain wireless communications system server software, wireless handheld devices or battery packs that...

  16. 75 FR 43206 - In the Matter of Certain Wireless Communications System Server Software, Wireless Handheld...

    Science.gov (United States)

    2010-07-23

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-706] In the Matter of Certain Wireless Communications System Server Software, Wireless Handheld Devices and Battery Packs: Notice of Commission... United States after importation of certain wireless communications system server software, wireless...

  17. Traffic Signs Inventory System

    Directory of Open Access Journals (Sweden)

    J. Ružbarský

    2013-06-01

    Full Text Available The paper is focused on practical application of Cambridge Correlator. The goal is to propose a traffic signs inventory system by using excellent characteristics of correlator in the rapid optical correlation. The proposal of this inventory system includes obtaining of traffic signs to create the database either collecting the GPS coordinates. It is necessary to know the traffic signs position and also to document the entire surface route for later evaluation in offline mode.

  18. Qualitative and Quantitative Security Analyses for ZigBee Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Yuksel, Ender

    applications, home automation, and traffic control. The challenges for research in this area are due to the unique features of wireless sensor devices such as low processing power and associated low energy. On top of this, wireless sensor networks need secure communication as they operate in open fields...... of the main challenges arise in dealing with the security needs of such systems where it is less likely that absolute security guarantees can be sustained - because of the need to balance security against energy consumption in wireless sensor network standards like ZigBee. This dissertation builds on existing...... low level security protocol s in a qualitative manner and guarantees absolute security, and then takes these verified protocols as actions of scenarios to be verified in a quantitative manner. Working on the emerging ZigBee wireless sensor networks, we used probabilistic verification that can return...

  19. QoS Provisioning Techniques for Future Fiber-Wireless (FiWi Access Networks

    Directory of Open Access Journals (Sweden)

    Martin Maier

    2010-04-01

    Full Text Available A plethora of enabling optical and wireless access-metro network technologies have been emerging that can be used to build future-proof bimodal fiber-wireless (FiWi networks. Hybrid FiWi networks aim at providing wired and wireless quad-play services over the same infrastructure simultaneously and hold great promise to mitigate the digital divide and change the way we live and work by replacing commuting with teleworking. After overviewing enabling optical and wireless network technologies and their QoS provisioning techniques, we elaborate on enabling radio-over-fiber (RoF and radio-and-fiber (R&F technologies. We describe and investigate new QoS provisioning techniques for future FiWi networks, ranging from traffic class mapping, scheduling, and resource management to advanced aggregation techniques, congestion control, and layer-2 path selection algorithms.

  20. Ultra-miniature wireless temperature sensor for thermal medicine applications.

    Science.gov (United States)

    Khairi, Ahmad; Hung, Shih-Chang; Paramesh, Jeyanandh; Fedder, Gary; Rabin, Yoed

    2011-01-01

    This study presents a prototype design of an ultra-miniature, wireless, battery-less, and implantable temperature-sensor, with applications to thermal medicine such as cryosurgery, hyperthermia, and thermal ablation. The design aims at a sensory device smaller than 1.5 mm in diameter and 3 mm in length, to enable minimally invasive deployment through a hypodermic needle. While the new device may be used for local temperature monitoring, simultaneous data collection from an array of such sensors can be used to reconstruct the 3D temperature field in the treated area, offering a unique capability in thermal medicine. The new sensory device consists of three major subsystems: a temperature-sensing core, a wireless data-communication unit, and a wireless power reception and management unit. Power is delivered wirelessly to the implant from an external source using an inductive link. To meet size requirements while enhancing reliability and minimizing cost, the implant is fully integrated in a regular foundry CMOS technology (0.15 μm in the current study), including the implant-side inductor of the power link. A temperature-sensing core that consists of a proportional-to-absolute-temperature (PTAT) circuit has been designed and characterized. It employs a microwatt chopper stabilized op-amp and dynamic element-matched current sources to achieve high absolute accuracy. A second order sigma-delta (Σ-Δ) analog-to-digital converter (ADC) is designed to convert the temperature reading to a digital code, which is transmitted by backscatter through the same antenna used for receiving power. A high-efficiency multi-stage differential CMOS rectifier has been designed to provide a DC supply to the sensing and communication subsystems. This paper focuses on the development of the all-CMOS temperature sensing core circuitry part of the device, and briefly reviews the wireless power delivery and communication subsystems.

  1. Resource management in wireless networking

    CERN Document Server

    Cardei, Mihaela; Du, Ding-Zhu

    2005-01-01

    This is the first book that provides readers with a deep technical overview of recent advances in resource management for wireless networks at different layers of the protocol stack. The subject is explored in various wireless networks, such as ad hoc wireless networks, 3G/4G cellular, IEEE 802.11, and Bluetooth personal area networks.Survey chapters give an excellent introduction to key topics in resource management for wireless networks, while experts will be satisfied by the technical depth of the knowledge imparted in chapters exploring hot research topics.The subject area discussed in this book is very relevant today, considering the recent remarkable growth of wireless networking and the convergence of wireless personal communications, internet technologies and real-time multimedia.This volume is a very good companion for practitioners working on implementing solutions for multimedia and Quality of Service - sensitive applications over wireless networks.Written for:Researchers, faculty members, students...

  2. Smart Traffic Management Protocol Based on VANET architecture

    Directory of Open Access Journals (Sweden)

    Amilcare Francesco Santamaria

    2014-01-01

    Full Text Available Nowadays one of the hottest theme in wireless environments research is the application of the newest technologies to road safety problems and traffic management exploiting the (VANET architecture. In this work, a novel protocol that aims to achieve a better traffic management is proposed. The overal system is able to reduce traffic level inside the city exploiting inter-communication among vehicles and support infrastructures also known as (V2V and (V2I communications. We design a network protocol called (STMP that takes advantages of IEEE 802.11p standard. On each road several sensors system are placed and they are responsible of monitoring. Gathered data are spread in the network exploiting ad-hoc protocol messages. The increasing knowledge about environment conditions make possible to take preventive actions. Moreover, having a realtime monitoring of the lanes it is possible to reveal roads and city blocks congestions in a shorter time. An external entity to the (VANET is responsible to manage traffic and rearrange traffic along the lanes of the city avoiding huge traffic levels.

  3. Reducing OR Traffic Using Education, Policy Development, and Communication Technology.

    Science.gov (United States)

    Esser, Jennifer; Shrinski, Keonemana; Cady, Rhonda; Belew, John

    2016-01-01

    A bundled approach to surgical site infection (SSI) prevention strategies includes reducing OR traffic. A nurse-led quality improvement (QI) team sought to reduce OR traffic through education and a process change that included wireless communication technology and policy development. The team measured OR traffic by counting the frequency of door openings per hour in seven surgical suites during 305 surgical procedures conducted during similar 22-week periods before and after the QI project intervention. Door openings decreased significantly (P < 0.05) from an average of 37.8 per hour to 32.8 per hour after the QI project intervention. This suggests that our multifaceted approach reduces OR traffic. The next steps of this project include analyzing automatically captured video to understand OR traffic patterns and expanding education to departments and external personnel frequently present in our surgical suites. Future research evaluating the effectiveness of this OR traffic initiative on SSI incidence is recommended. Copyright © 2016 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  4. modified traffic s modified traffic signal phasing at traffic warden ...

    African Journals Online (AJOL)

    eobe

    obtained as being adequate for the critical approach. A 5 tained as being adequate for the critical approach. A 5 tained as being adequate for the critical approach. A 5-phase scheme is proposed with the fifth phase being an phase scheme is .... Other examples include traffic light signalized crossing with or without ...

  5. Wireless Distributed Antenna MIMO

    DEFF Research Database (Denmark)

    2015-01-01

    The present disclosure relates to system applications of multicore optical fibers. One embodiment relates to a base transceiver station for a wireless telecommunication system comprising a plurality of antenna units arranged in a MIMO configuration and adapted for transmission and/or reception...

  6. Networking wireless sensors

    National Research Council Canada - National Science Library

    Krishnamachari, Bhaskar

    2005-01-01

    ... by networking techniques across multiple layers. The topics covered include network deployment, localization, time synchronization, wireless radio characteristics, medium-access, topology control, routing, data-centric techniques, and transport protocols. Ideal for researchers and designers seeking to create new algorithms and protocols and enginee...

  7. Wireless Remote Control System

    Directory of Open Access Journals (Sweden)

    Adrian Tigauan

    2012-06-01

    Full Text Available This paper presents the design of a wireless remote control system based on the ZigBee communication protocol. Gathering data from sensors or performing control tasks through wireless communication is advantageous in situations in which the use of cables is impractical. An Atmega328 microcontroller (from slave device is used for gathering data from the sensors and transmitting it to a coordinator device with the help of the XBee modules. The ZigBee standard is suitable for low-cost, low-data-rate and low-power wireless networks implementations. The XBee-PRO module, designed to meet ZigBee standards, requires minimal power for reliable data exchange between devices over a distance of up to 1600m outdoors. A key component of the ZigBee protocol is the ability to support networking and this can be used in a wireless remote control system. This system may be employed e.g. to control temperature and humidity (SHT11 sensor and light intensity (TSL230 sensor levels inside a commercial greenhouse.

  8. Subsurface Wireless Sensor Networks

    Science.gov (United States)

    Niemeier, J. J.; Davies, J. L.; Kruger, A.

    2008-12-01

    Conventional thinking holds that underground- and underwater radio communication is not possible, except at very low frequencies employing very long antennas and high transmit power. However, researchers at The University of Iowa have demonstrated that using inexpensive, low-power radios, it is in fact possible to achieve reliable underground radio communication over distances of several meters. This allows for creating underground wireless sensor networks. A proof-of-concept network was established at The University of Iowa, where nodes that measure soil moisture content are buried over a 20×20 m area (up to 1 m deep). The nodes organize themselves into a wireless sensor network, reconfigure routes as radio link quality waxes and wanes, cooperate in routing data packets to a surface base station, and so on. In an agricultural research setting, an advantage of such buried wireless sensor networks is that, if nodes were buried deep enough, they may be left in place during agricultural field work. Power consumption is an important issue in wireless sensor networks. This is especially true in a buried network where battery replacement is a major undertaking. The focus of continuing research is developing methods of inductively recharging buried sensor batteries.

  9. Wireless networked music performance

    CERN Document Server

    Gabrielli, Leonardo

    2016-01-01

    This book presents a comprehensive overview of the state of the art in Networked Music Performance (NMP) and a historical survey of computer music networking. It introduces current technical trends in NMP and technical issues yet to be addressed. It also lists wireless communication protocols and compares these to the requirements of NMP. Practical use cases and advancements are also discussed.

  10. Principles in wireless building health monitoring systems.

    Science.gov (United States)

    Pentaris, F. P.; Makris, J. P.; Stonham, J.; Vallianatos, F.

    2012-04-01

    Monitoring the structural state of a building is essential for the safety of the people who work, live, visit or just use it as well as for the civil protection of urban areas. Many factors can affect the state of the health of a structure, namely man made, like mistakes in the construction, traffic, heavy loads on the structures, explosions, environmental impacts like wind loads, humidity, chemical reactions, temperature changes and saltiness, and natural hazards like earthquakes and landslides. Monitoring the health of a structure provides the ability to anticipate structural failures and secure the safe use of buildings especially those of public services. This work reviews the state of the art and the challenges of a wireless Structural Health Monitoring (WiSHM). Literature review reveals that although there is significant evolution in wireless structural health monitoring, in many cases, monitoring by itself is not enough to predict when a structure becomes inappropriate and/or unsafe for use, and the damage or low durability of a structure cannot be revealed (Chintalapudi, et al., 2006; Ramos, Aguilar, & Lourenço, 2011). Several features and specifications of WiSHM like wireless sensor networking, reliability and autonomy of sensors, algorithms of data transmission and analysis should still be evolved and improved in order to increase the predictive effectiveness of the SHM (Jinping Ou & Hui Li, 2010; Lu & Loh, 2010) . Acknowledgments This work was supported in part by the ARCHEMEDES III Program of the Ministry of Education of Greece and the European Union in the framework of the project entitled «Interdisciplinary Multi-Scale Research of Earthquake Physics and Seismotectonics at the front of the Hellenic Arc (IMPACT-ARC) ».

  11. An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network

    Science.gov (United States)

    Brennan, Robert W.

    2017-01-01

    With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network. PMID:28906452

  12. An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network.

    Science.gov (United States)

    Taboun, Mohammed S; Brennan, Robert W

    2017-09-14

    With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network.

  13. An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Mohammed S. Taboun

    2017-09-01

    Full Text Available With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network.

  14. Optimum wireless sensor deployment scheme for structural health monitoring: a simulation study

    Science.gov (United States)

    Liu, Chengyin; Fang, Kun; Teng, Jun

    2015-11-01

    With the rapid advancements in smart sensing technology and wireless communication technology, the wireless sensor network (WSN) offers an alternative solution to structural health monitoring (SHM). In WSNs, dense deployment of wireless nodes aids the identification of structural dynamic characteristics, while data transmission is a significant issue since wireless channels typically have a lower bandwidth and a limited power supply. This paper provides a wireless sensor deployment optimization scheme for SHM, in terms of both energy consumption and modal identification accuracy. A spherical energy model is established to formulate the energy consumption within a WSN. The optimal number of sensors and their locations are obtained through solving a multi-objective function with weighting factors on energy consumption and modal identification accuracy using a genetic algorithm (GA). Simulation and comparison results with traditional sensor deployment methods demonstrate the efficiency of the proposed optimization scheme.

  15. NASA Bluetooth Wireless Communications

    Science.gov (United States)

    Miller, Robert D.

    2007-01-01

    NASA has been interested in wireless communications for many years, especially when the crew size of the International Space Station (ISS) was reduced to two members. NASA began a study to find ways to improve crew efficiency to make sure the ISS could be maintained with limited crew capacity and still be a valuable research testbed in Low-Earth Orbit (LEO). Currently the ISS audio system requires astronauts to be tethered to the audio system, specifically a device called the Audio Terminal Unit (ATU). Wireless communications would remove the tether and allow astronauts to freely float from experiment to experiment without having to worry about moving and reconnecting the associated cabling or finding the space equivalent of an extension cord. A wireless communication system would also improve safety and reduce system susceptibility to Electromagnetic Interference (EMI). Safety would be improved because a crewmember could quickly escape a fire while maintaining communications with the ground and other crewmembers at any location. In addition, it would allow the crew to overcome the volume limitations of the ISS ATU. This is especially important to the Portable Breathing Apparatus (PBA). The next generation of space vehicles and habitats also demand wireless attention. Orion will carry up to six crewmembers in a relatively small cabin. Yet, wireless could become a driving factor to reduce launch weight and increase habitable volume. Six crewmembers, each tethered to a panel, could result in a wiring mess even in nominal operations. In addition to Orion, research is being conducted to determine if Bluetooth is appropriate for Lunar Habitat applications.

  16. Energy parameter estimation in solar powered wireless sensor networks

    KAUST Repository

    Mousa, Mustafa

    2014-02-24

    The operation of solar powered wireless sensor networks is associated with numerous challenges. One of the main challenges is the high variability of solar power input and battery capacity, due to factors such as weather, humidity, dust and temperature. In this article, we propose a set of tools that can be implemented onboard high power wireless sensor networks to estimate the battery condition and capacity as well as solar power availability. These parameters are very important to optimize sensing and communications operations and maximize the reliability of the complete system. Experimental results show that the performance of typical Lithium Ion batteries severely degrades outdoors in a matter of weeks or months, and that the availability of solar energy in an urban solar powered wireless sensor network is highly variable, which underlines the need for such power and energy estimation algorithms.

  17. Road Traffic in China

    NARCIS (Netherlands)

    Jie, L.; Van Zuylen, H.J.

    2014-01-01

    Traffic is tightly related to the social and economic development in a country. In China the development of the economy has been very fast in the past 30 years and this is still continuing. The transport infrastructure shows a similar pattern, while traffic is also rapidly growing. In urban areas

  18. Traffic Light Options

    DEFF Research Database (Denmark)

    Jørgensen, Peter Løchte

    2007-01-01

    This paper introduces, prices, and analyzes traffic light options. The traffic light option is an innovative structured OTC derivative developed independently by several London-based investment banks to suit the needs of Danish life and pension (L&P) companies, which must comply with the traffic...... light solvency stress test system introduced by the Danish Financial Supervisory Authority (DFSA) in June 2001. This monitoring system requires L&P companies to submit regular reports documenting the sensitivity of the companies' base capital to certain pre-defined market shocks - the red and yellow...... light scenarios. These stress scenarios entail drops in interest rates as well as in stock prices, and traffic light options are thus designed to pay off and preserve sufficient capital when interest rates and stock prices fall simultaneously. Sweden's FSA implemented a traffic light system in January...

  19. Delay Bound: Fractal Traffic Passes through Network Servers

    Directory of Open Access Journals (Sweden)

    Ming Li

    2013-01-01

    Full Text Available Delay analysis plays a role in real-time systems in computer communication networks. This paper gives our results in the aspect of delay analysis of fractal traffic passing through servers. There are three contributions presented in this paper. First, we will explain the reasons why conventional theory of queuing systems ceases in the general sense when arrival traffic is fractal. Then, we will propose a concise method of delay computation for hard real-time systems as shown in this paper. Finally, the delay computation of fractal traffic passing through severs is presented.

  20. Evaluation of Deployment Challenges of Wireless Sensor Networks at Signalized Intersections

    Directory of Open Access Journals (Sweden)

    Leyre Azpilicueta

    2016-07-01

    Full Text Available With the growing demand of Intelligent Transportation Systems (ITS for safer and more efficient transportation, research on and development of such vehicular communication systems have increased considerably in the last years. The use of wireless networks in vehicular environments has grown exponentially. However, it is highly important to analyze radio propagation prior to the deployment of a wireless sensor network in such complex scenarios. In this work, the radio wave characterization for ISM 2.4 GHz and 5 GHz Wireless Sensor Networks (WSNs deployed taking advantage of the existence of traffic light infrastructure has been assessed. By means of an in-house developed 3D ray launching algorithm, the impact of topology as well as urban morphology of the environment has been analyzed, emulating the realistic operation in the framework of the scenario. The complexity of the scenario, which is an intersection city area with traffic lights, vehicles, people, buildings, vegetation and urban environment, makes necessary the channel characterization with accurate models before the deployment of wireless networks. A measurement campaign has been conducted emulating the interaction of the system, in the vicinity of pedestrians as well as nearby vehicles. A real time interactive application has been developed and tested in order to visualize and monitor traffic as well as pedestrian user location and behavior. Results show that the use of deterministic tools in WSN deployment can aid in providing optimal layouts in terms of coverage, capacity and energy efficiency of the network.

  1. Evaluation of Deployment Challenges of Wireless Sensor Networks at Signalized Intersections

    Science.gov (United States)

    Azpilicueta, Leyre; López-Iturri, Peio; Aguirre, Erik; Martínez, Carlos; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco

    2016-01-01

    With the growing demand of Intelligent Transportation Systems (ITS) for safer and more efficient transportation, research on and development of such vehicular communication systems have increased considerably in the last years. The use of wireless networks in vehicular environments has grown exponentially. However, it is highly important to analyze radio propagation prior to the deployment of a wireless sensor network in such complex scenarios. In this work, the radio wave characterization for ISM 2.4 GHz and 5 GHz Wireless Sensor Networks (WSNs) deployed taking advantage of the existence of traffic light infrastructure has been assessed. By means of an in-house developed 3D ray launching algorithm, the impact of topology as well as urban morphology of the environment has been analyzed, emulating the realistic operation in the framework of the scenario. The complexity of the scenario, which is an intersection city area with traffic lights, vehicles, people, buildings, vegetation and urban environment, makes necessary the channel characterization with accurate models before the deployment of wireless networks. A measurement campaign has been conducted emulating the interaction of the system, in the vicinity of pedestrians as well as nearby vehicles. A real time interactive application has been developed and tested in order to visualize and monitor traffic as well as pedestrian user location and behavior. Results show that the use of deterministic tools in WSN deployment can aid in providing optimal layouts in terms of coverage, capacity and energy efficiency of the network. PMID:27455270

  2. A Survey on Wireless Transmitter Localization Using Signal Strength Measurements

    Directory of Open Access Journals (Sweden)

    Henri Nurminen

    2017-01-01

    Full Text Available Knowledge of deployed transmitters’ (Tx locations in a wireless network improves many aspects of network management. Operators and building administrators are interested in locating unknown Txs for optimizing new Tx placement, detecting and removing unauthorized Txs, selecting the nearest Tx to offload traffic onto it, and constructing radio maps for indoor and outdoor navigation. This survey provides a comprehensive review of existing algorithms that estimate the location of a wireless Tx given a set of observations with the received signal strength indication. Algorithms that require the observations to be location-tagged are suitable for outdoor mapping or small-scale indoor mapping, while algorithms that allow most observations to be unlocated trade off some accuracy to enable large-scale crowdsourcing. This article presents empirical evaluation of the algorithms using numerical simulations and real-world Bluetooth Low Energy data.

  3. Vehicle motion-state-estimation using distributed sensing

    NARCIS (Netherlands)

    Sijs, J.; Papp, Z.; Bosch, P.P.J. van den

    2008-01-01

    Knowing the position and speed of the vehicles on the road network in real-time is one of the major challenges that vehicle control and traffic management applications are facing. Wireless sensor networks received significant attention in the last decade and successful research put them in the

  4. Wireless passive polymer-derived SiCN ceramic sensor with integrated resonator/antenna

    Science.gov (United States)

    Li, Yan; Yu, Yuxi; San, Haisheng; Wang, Yansong; An, Linan

    2013-10-01

    This paper presents a passive wireless polymer-derived silicon carbonitride (SiCN) ceramic sensor based on cavity radio frequency resonator together with integrated slot antenna. The effect of the cavity sensor dimensions on the Q-factor and resonant frequency is investigated by numerical simulation. A sensor with optimal dimensions is designed and fabricated. It is demonstrated that the sensor signal can be wirelessly detected at distances up to 20 mm. Given the high-temperature stability of the SiCN, the sensor is very promising for high-temperature wireless sensing applications.

  5. Effects of wireless packet loss in industrial process control systems.

    Science.gov (United States)

    Liu, Yongkang; Candell, Richard; Moayeri, Nader

    2017-05-01

    Timely and reliable sensing and actuation control are essential in networked control. This depends on not only the precision/quality of the sensors and actuators used but also on how well the communications links between the field instruments and the controller have been designed. Wireless networking offers simple deployment, reconfigurability, scalability, and reduced operational expenditure, and is easier to upgrade than wired solutions. However, the adoption of wireless networking has been slow in industrial process control due to the stochastic and less than 100% reliable nature of wireless communications and lack of a model to evaluate the effects of such communications imperfections on the overall control performance. In this paper, we study how control performance is affected by wireless link quality, which in turn is adversely affected by severe propagation loss in harsh industrial environments, co-channel interference, and unintended interference from other devices. We select the Tennessee Eastman Challenge Model (TE) for our study. A decentralized process control system, first proposed by N. Ricker, is adopted that employs 41 sensors and 12 actuators to manage the production process in the TE plant. We consider the scenario where wireless links are used to periodically transmit essential sensor measurement data, such as pressure, temperature and chemical composition to the controller as well as control commands to manipulate the actuators according to predetermined setpoints. We consider two models for packet loss in the wireless links, namely, an independent and identically distributed (IID) packet loss model and the two-state Gilbert-Elliot (GE) channel model. While the former is a random loss model, the latter can model bursty losses. With each channel model, the performance of the simulated decentralized controller using wireless links is compared with the one using wired links providing instant and 100% reliable communications. The sensitivity of the

  6. Wireless Sensor Network Optimization: Multi-Objective Paradigm.

    Science.gov (United States)

    Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad

    2015-07-20

    Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks.

  7. Wireless Sensor Network Optimization: Multi-Objective Paradigm

    Science.gov (United States)

    Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad

    2015-01-01

    Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks. PMID:26205271

  8. The Lure of Wireless Encryption

    CERN Multimedia

    Computer Security Team

    2013-01-01

    Following our article entitled “Jekyll or Hyde? Better browse securely” in the last issue of the Bulletin, some people wondered why the CERN wireless network is not encrypted…   There are many arguments why it is not. The simplest is usability: the communication and management of the corresponding access keys would be challenging given the sheer number of wireless devices the CERN network hosts. Keys would quickly become public, e.g. at conferences, and might be shared, written on whiteboards, etc. Then there are all the devices which cannot be easily configured to use encryption protocols - a fact which would create plenty of calls to the CERN Service Desk… But our main argument is that wireless encryption is DECEPTIVE. Wireless encryption is deceptive as it only protects the wireless network against unauthorised access (and the CERN network already has other means to protect against that). Wireless encryption however, does not really help you. You ...

  9. Subsurface Event Detection and Classification Using Wireless Signal Networks

    Science.gov (United States)

    Yoon, Suk-Un; Ghazanfari, Ehsan; Cheng, Liang; Pamukcu, Sibel; Suleiman, Muhannad T.

    2012-01-01

    Subsurface environment sensing and monitoring applications such as detection of water intrusion or a landslide, which could significantly change the physical properties of the host soil, can be accomplished using a novel concept, Wireless Signal Networks (WSiNs). The wireless signal networks take advantage of the variations of radio signal strength on the distributed underground sensor nodes of WSiNs to monitor and characterize the sensed area. To characterize subsurface environments for event detection and classification, this paper provides a detailed list and experimental data of soil properties on how radio propagation is affected by soil properties in subsurface communication environments. Experiments demonstrated that calibrated wireless signal strength variations can be used as indicators to sense changes in the subsurface environment. The concept of WSiNs for the subsurface event detection is evaluated with applications such as detection of water intrusion, relative density change, and relative motion using actual underground sensor nodes. To classify geo-events using the measured signal strength as a main indicator of geo-events, we propose a window-based minimum distance classifier based on Bayesian decision theory. The window-based classifier for wireless signal networks has two steps: event detection and event classification. With the event detection, the window-based classifier classifies geo-events on the event occurring regions that are called a classification window. The proposed window-based classification method is evaluated with a water leakage experiment in which the data has been measured in laboratory experiments. In these experiments, the proposed detection and classification method based on wireless signal network can detect and classify subsurface events. PMID:23202191

  10. Traffic planning for non-homogeneous traffic

    Indian Academy of Sciences (India)

    Transport professionals can use these PCU values for accurate capacity, safety, and operational ... Most transportation engineering work depends on the use of continuity equations and pas- senger car units ...... of a service lane can serve slow and local traffic, as a capacity enhancement strategy would have higher benefit ...

  11. Active Wireless System for Structural Health Monitoring Applications

    Directory of Open Access Journals (Sweden)

    Ricardo Perera

    2017-12-01

    Full Text Available The use of wireless sensors in Structural Health Monitoring (SHM has increased significantly in the last years. Piezoelectric-based lead zirconium titanate (PZT sensors have been on the rise in SHM due to their superior sensing abilities. They are applicable in different technologies such as electromechanical impedance (EMI-based SHM. This work develops a flexible wireless smart sensor (WSS framework based on the EMI method using active sensors for full-scale and autonomous SHM. In contrast to passive sensors, the self-sensing properties of the PZTs allow interrogating with or exciting a structure when desired. The system integrates the necessary software and hardware within a service-oriented architecture approach able to provide in a modular way the services suitable to satisfy the key requirements of a WSS. The framework developed in this work has been validated on different experimental applications. Initially, the reliability of the EMI method when carried out with the proposed wireless sensor system is evaluated by comparison with the wireless counterpart. Afterwards, the performance of the system is evaluated in terms of software stability and reliability of functioning.

  12. Matching theory for wireless networks

    CERN Document Server

    Han, Zhu; Saad, Walid

    2017-01-01

    This book provides the fundamental knowledge of the classical matching theory problems. It builds up the bridge between the matching theory and the 5G wireless communication resource allocation problems. The potentials and challenges of implementing the semi-distributive matching theory framework into the wireless resource allocations are analyzed both theoretically and through implementation examples. Academics, researchers, engineers, and so on, who are interested in efficient distributive wireless resource allocation solutions, will find this book to be an exceptional resource. .

  13. HAIR Based Sensing and Actuation

    Science.gov (United States)

    2012-08-01

    Small single gap boss capacitance electrodes hair boss capacitance electrodes 22 Single capacitor flow sensors force trade-off between...profilometer; volume change confirmed by LEXT confocal microscopy • Non-uniform deflection and asymmetric bulging due to edge pull-in 100V 200V... capacitor < 0.3 cm3 IEDM’10, ISSCC’11, Transducers’11 Funded by DARPA HI-MEMS 31 Center for Wireless Integrated MicroSensing & Systems Galchev

  14. An Assessment of Emerging Wireless Broadband Technologies

    National Research Council Canada - National Science Library

    Fountanas, Leonidas

    2001-01-01

    ... technologies in providing broadband services today, emerging wireless broadband technologies are expected to significantly increase their market share over the next years, Deploying a wireless network...

  15. Wireless Sensor Portal Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Recognizing the needs and challenges facing NASA Earth Science for data input, manipulation and distribution, Mobitrum is proposing a ? Wireless Sensor Portal...

  16. Adaptive Wireless Transceiver, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Wireless technologies are an increasingly attractive means for spatial data, input, manipulation, and distribution. Mobitrum is proposing an innovative Adaptive...

  17. Smart Home Wireless Sensor Nodes

    DEFF Research Database (Denmark)

    Lynggaard, Per

    Smart homes are further development of intelligent buildings and home automation, where context awareness and autonomous behaviour are added. They are based on a combination of the Internet and emerging technologies like wireless sensor nodes. These wireless sensor nodes are challenging because....... This paper introduces an approach that considerably lowers the wireless sensor node power consumption and the amount of transmitted sensor events. It uses smart objects that include artificial intelligence to efficiently process the sensor event on location and thereby saves the costly wireless...

  18. Some Challenges in Wireless Security

    National Research Council Canada - National Science Library

    Banerjee, Suman

    2007-01-01

    Wireless communication technologies provide users with significant flexibility and portability and hence is being widely adopted as a preferred mode of communication in many military and civilian applications...

  19. Smart Home Wireless Sensor Nodes

    DEFF Research Database (Denmark)

    Lynggaard, Per

    . This paper introduces an approach that considerably lowers the wireless sensor node power consumption and the amount of transmitted sensor events. It uses smart objects that include artificial intelligence to efficiently process the sensor event on location and thereby saves the costly wireless......Smart homes are further development of intelligent buildings and home automation, where context awareness and autonomous behaviour are added. They are based on a combination of the Internet and emerging technologies like wireless sensor nodes. These wireless sensor nodes are challenging because...

  20. Low-Cost Wireless Temperature Measurement: Design, Manufacture, and Testing of a PCB-Based Wireless Passive Temperature Sensor.

    Science.gov (United States)

    Yan, Dan; Yang, Yong; Hong, Yingping; Liang, Ting; Yao, Zong; Chen, Xiaoyong; Xiong, Jijun

    2018-02-10

    Low-cost wireless temperature measurement has significant value in the food industry, logistics, agriculture, portable medical equipment, intelligent wireless health monitoring, and many areas in everyday life. A wireless passive temperature sensor based on PCB (Printed Circuit Board) materials is reported in this paper. The advantages of the sensor include simple mechanical structure, convenient processing, low-cost, and easiness in integration. The temperature-sensitive structure of the sensor is a dielectric-loaded resonant cavity, consisting of the PCB substrate. The sensitive structure also integrates a patch antenna for the transmission of temperature signals. The temperature sensing mechanism of the sensor is the dielectric constant of the PCB substrate changes with temperature, which causes the resonant frequency variation of the resonator. Then the temperature can be measured by detecting the changes in the sensor's working frequency. The PCB-based wireless passive temperature sensor prototype is prepared through theoretical design, parameter analysis, software simulation, and experimental testing. The high- and low-temperature sensing performance of the sensor is tested, respectively. The resonant frequency decreases from 2.434 GHz to 2.379 GHz as the temperature increases from -40 °C to 125 °C. The fitting curve proves that the experimental data have good linearity. Three repetitive tests proved that the sensor possess well repeatability. The average sensitivity is 347.45 KHz / ℃ from repetitive measurements conducted three times. This study demonstrates the feasibility of the PCB-based wireless passive sensor, which provides a low-cost temperature sensing solution for everyday life, modern agriculture, thriving intelligent health devices, and so on, and also enriches PCB product lines and applications.

  1. Cognitive wireless networks

    CERN Document Server

    Feng, Zhiyong; Zhang, Ping

    2015-01-01

    This brief examines the current research in cognitive wireless networks (CWNs). Along with a review of challenges in CWNs, this brief presents novel theoretical studies and architecture models for CWNs, advances in the cognitive information awareness and delivery, and intelligent resource management technologies. The brief presents the motivations and concepts of CWNs, including theoretical studies of temporal and geographic distribution entropy as well as cognitive information metrics. A new architecture model of CWNs is proposed with theoretical, functional and deployment architectures suppo

  2. The Combined Effect of Signal Strength and Background Traffic Load on Speech Quality in IEEE 802.11 WLAN

    Directory of Open Access Journals (Sweden)

    P. Pocta

    2011-04-01

    Full Text Available This paper deals with measurements of the combined effect of signal strength and background traffic load on speech quality in IEEE 802.11 WLAN. The ITU-T G.729AB encoding scheme is deployed in this study and the Distributed Internet Traffic Generator (D-ITG is used for the purpose of background traffic generation. The speech quality and background traffic load are assessed by means of the accomplished PESQ algorithm and Wireshark network analyzer, respectively. The results show that background traffic load has a bit higher impact on speech quality than signal strength when both effects are available together. Moreover, background traffic load also partially masks the impact of signal strength. The reasons for those findings are particularly discussed. The results also suggest some implications for designers of wireless networks providing VoIP service.

  3. Wireless Inductive Power Device Suppresses Blade Vibrations

    Science.gov (United States)

    Morrison, Carlos R.; Provenza, Andrew J.; Choi, Benjamin B.; Bakhle, Milind A.; Min, James B.; Stefko, George L.; Duffy, Kirsten P.; Fougers, Alan J.

    2011-01-01

    possible to moderate vibration on or in turbomachinery blades by providing 100 W of wireless electrical power and actuation control to thin, lightweight vibration-suppressing piezoelectric patches (eight actuation and eight sensor patches in this prototype, for a total of 16 channels) positioned strategically on the surface of, or within, titanium fan blades, or embedded in composite fan blades. This approach moves significantly closer to the ultimate integration of "active" vibration suppression technology into jet engines and other turbomachinery devices such as turbine electrical generators used in the power industry. The novel feature of this device is in its utilization of wireless technology to simultaneously sense and actively control vibration in rotating or stationary turbomachinery blades using piezoelectric patches. In the past, wireless technology was used solely for sensing and diagnostics. This technology, however, will accomplish much more, in terms of simultaneously sensing, suppressing blade vibration, and making it possible for detailed study of vibration impact in turbomachinery blades.

  4. VBR video traffic models

    CERN Document Server

    Tanwir, Savera

    2014-01-01

    There has been a phenomenal growth in video applications over the past few years. An accurate traffic model of Variable Bit Rate (VBR) video is necessary for performance evaluation of a network design and for generating synthetic traffic that can be used for benchmarking a network. A large number of models for VBR video traffic have been proposed in the literature for different types of video in the past 20 years. Here, the authors have classified and surveyed these models and have also evaluated the models for H.264 AVC and MVC encoded video and discussed their findings.

  5. Comsat's TDMA traffic terminal

    Science.gov (United States)

    Benjamin, M. C.; Bogaert, W. M.

    1985-06-01

    Comsat has installed two traffic terminals in the Etam earth-station and is currently installing a third in the new Roaring Creek earth-station to access the Intelsat TDMA network. This paper describes the Comsat TDMA traffic terminal equipment from the supergroup interface to the antenna. Comsat's 1: N redundancy approach for terrestrial interface equipment and DSI unit back-up is described as well as electrical path length, amplitude and group delay equalization techniques, special on-line RF monitoring and failure reporting facilities and the operation and maintenance center which can operate and perform diagnostic testing on up to four traffic terminals from a central location.

  6. Fluid-flow modeling of a relay node in an IEEE 802.11 wireless ad-hoc network

    NARCIS (Netherlands)

    Roijers, F.; Berg, J.L. van den; Mandjes, M.

    2007-01-01

    Wireless ad-hoc networks are based on shared medium technology where the nodes arrange access to the medium in a distributed way independent of their current traffic demand. This has the inherent drawback that a node that serves as a relay node for transmissions of multiple neighboring nodes is

  7. Scheduling High-Rate Unpredictable Traffic in IEEE 802.15.4 TSCH Networks

    OpenAIRE

    Elsts, Atis; Fafoutis, Xenofon; Pope, James; Oikonomou, George; Piechocki, Robert; Craddock, Ian

    2018-01-01

    The upcoming Internet of Things (IoT) applications include real-time human activity monitoring with wearable sensors. Compared to the traditional environmental sensing with low-power wireless nodes, these new applicationsgenerate a constant stream of a much higher rate. Nevertheless, the wearable devices remain battery powered and therefore restricted to low-power wireless standards such as IEEE 802.15.4 or Bluetooth Low Energy (BLE). Our work tacklesthe problem of building a reliable autonom...

  8. Wirelessly powered sensor networks and computational RFID

    CERN Document Server

    2013-01-01

    The Wireless Identification and Sensing Platform (WISP) is the first of a new class of RF-powered sensing and computing systems.  Rather than being powered by batteries, these sensor systems are powered by radio waves that are either deliberately broadcast or ambient.  Enabled by ongoing exponential improvements in the energy efficiency of microelectronics, RF-powered sensing and computing is rapidly moving along a trajectory from impossible (in the recent past), to feasible (today), toward practical and commonplace (in the near future). This book is a collection of key papers on RF-powered sensing and computing systems including the WISP.  Several of the papers grew out of the WISP Challenge, a program in which Intel Corporation donated WISPs to academic applicants who proposed compelling WISP-based projects.  The book also includes papers presented at the first WISP Summit, a workshop held in Berkeley, CA in association with the ACM Sensys conference, as well as other relevant papers. The book provides ...

  9. From early wireless to Everest.

    Science.gov (United States)

    Allen, A

    1998-01-01

    Medical information has been transmitted using wireless technologies for almost 80 years. A "wired wireless" electronic stethoscope was developed by the U.S. Army Signal Corps in the early 1920's, for potential use in ship-to-shore transmission of cardiac sounds. [Winters SR. Diagnosis by wireless. Scientific American June 11, 1921, p. 465] Today, wireless is used in a wide range of medical applications and at sites from transoceanic air flights to offshore oil platforms to Mt. Everest. 'Wireless LANs' are often used in medical environments. Typically, nurses and physicians in a hospital or clinic use hand-held "wireless thin client" pen computers that exchange patient information and images with the hospital server. Numerous companies, such as Fujitsu (article below) and Cruise Technologies (www.cruisetech.com) manufacture handheld pen-entry computers. One company, LXE, integrates radio-frequency (RF) enhanced hand-held computers specifically designed for production use within a wireless LAN (www.lxe.com). Other companies (Proxim, Symbol, and others) supply the wireless RF LAN infrastructure for the enterprise. Unfortunately, there have been problems with widespread deployment of wireless LANs. Perhaps the biggest impediment has been the lack of standards. Although an international standard (IEEE 802.11) was adopted in 1997, most wireless LAN products still are not compatible with the equipment of competing companies. A problem with the current standard for LAN adapters is that throughput is limited to 3 Mbps--compared to at least 10 Mbps, and often 100 Mbps, in a hard-wired Ethernet LAN. An II Mbps standard is due out in the next year or so, but it will be at least 2 years before standards-compliant products are available. This story profiles some of the ways that wireless is being used to overcome gaps in terrestrial and within-enterprise communication.

  10. Tourism Traffic Management

    OpenAIRE

    Ioan Cosmescu

    2001-01-01

    Tourism traffic must be quantified through four observing units’ categories: custom houses; quartering units; internal and external travel agencies on home teritory; familiy budgets. These observing units allow to quantify the statistical observation’s object and its cyclicity.

  11. Driver behavior in traffic.

    Science.gov (United States)

    2012-02-01

    Existing traffic analysis and management tools do not model the ability of drivers to recognize their environment and respond to it with behaviors that vary according to the encountered driving situation. The small body of literature on characterizin...

  12. Non-Traffic Citations

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Non-traffic citations (NTCs, also known as "summary offenses") document low-level criminal offenses where a law enforcement officer or other authorized official...

  13. Allegheny County Traffic Counts

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Traffic sensors at over 1,200 locations in Allegheny County collect vehicle counts for the Pennsylvania Department of Transportation. Data included in the Health...

  14. Traffic Signal Cycle Lengths

    Data.gov (United States)

    Town of Chapel Hill, North Carolina — Traffic signal location list for the town of Chapel Hill. This data set includes light cycle information as well as as intersection information.The Town of Chapel...

  15. Compressive Sensing for Spread Spectrum Receivers

    DEFF Research Database (Denmark)

    Fyhn, Karsten; Jensen, Tobias Lindstrøm; Larsen, Torben

    2013-01-01

    With the advent of ubiquitous computing there are two design parameters of wireless communication devices that become very important: power efficiency and production cost. Compressive sensing enables the receiver in such devices to sample below the Shannon-Nyquist sampling rate, which may lead...

  16. The Ex Hoc Infrastructure - Enhancing Traffic Safety through LIfe WArning Systems

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius; Kristensen, Lars Michael; Eskildsen, Toke

    2004-01-01

    New pervasive computing technologies for sensing and communication open up novel possibilities for enhancing traffic safety. We are currently designing and implementing the Ex Hoc infrastructure framework for communication among mobile and stationary units including vehicles. The infrastructure w...

  17. Fabrication of Wireless Micro Pressure Sensor Using the CMOS Process

    Directory of Open Access Journals (Sweden)

    Chienliu Chang

    2009-10-01

    Full Text Available In this study, we fabricated a wireless micro FET (field effect transistor pressure sensor based on the commercial CMOS (complementary metal oxide semiconductor process and a post-process. The wireless micro pressure sensor is composed of a FET pressure sensor, an oscillator, an amplifier and an antenna. The oscillator is adopted to generate an ac signal, and the amplifier is used to amplify the sensing signal of the pressure sensor. The antenna is utilized to transmit the output voltage of the pressure sensor to a receiver. The pressure sensor is constructed by 16 sensing cells in parallel. Each sensing cell contains an MOS (metal oxide semiconductor and a suspended membrane, which the gate of the MOS is the suspended membrane. The postprocess employs etchants to etch the sacrificial layers in the pressure sensor for releasing the suspended membranes, and a LPCVD (low pressure chemical vapor deposition parylene is adopted to seal the etch holes in the pressure. Experimental results show that the pressure sensor has a sensitivity of 0.08 mV/kPa in the pressure range of 0–500 kPa and a wireless transmission distance of 10 cm.

  18. Green Wireless Power Transfer Networks

    NARCIS (Netherlands)

    Liu, Q.; Golinnski, M.; Pawelczak, P.; Warnier, M.

    2016-01-01

    wireless power transfer network (WPTN) aims to support devices with cable-less energy on-demand. Unfortunately, wireless power transfer itself-especially through radio frequency radiation rectification-is fairly inefficient due to decaying power with distance, antenna polarization, etc.

  19. Wireless Networks: a brief introduction

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Wireless Networks: a brief introduction. Wireless communication: What? Why? How many types? What is cell? Is it different from fixed landline structure? 1G systems: FDMA/FDD and Analog FM [voice comm]. (Introduced in 1983 in Chicago by AMPS). 2G systems: 3 ...

  20. An Analysis Of Wireless Security

    OpenAIRE

    Salendra Prasad

    2017-01-01

    The WLAN security includes Wired Equivalent Primary WEP and WI-FI protected Access WPA. Today WEP is regarded as very poor security standard. WEP was regarded as very old security standard and has many security issues which users need to be addressed. In this Paper we will discuss Wireless Security and ways to improve on wireless security.

  1. Compressive Sensing in Communication Systems

    DEFF Research Database (Denmark)

    Fyhn, Karsten

    2013-01-01

    . The need for cheaper, smarter and more energy efficient wireless devices is greater now than ever. This thesis addresses this problem and concerns the application of the recently developed sampling theory of compressive sensing in communication systems. Compressive sensing is the merging of signal...... acquisition and compression. It allows for sampling a signal with a rate below the bound dictated by the celebrated Shannon-Nyquist sampling theorem. In some communication systems this necessary minimum sample rate, dictated by the Shannon-Nyquist sampling theorem, is so high it is at the limit of what...... with using compressive sensing in communication systems. The main contribution of this thesis is two-fold: 1) a new compressive sensing hardware structure for spread spectrum signals, which is simpler than the current state-of-the-art, and 2) a range of algorithms for parameter estimation for the class...

  2. Application of AN Automated Wireless Structural Monitoring System for Long-Span Suspension Bridges

    Science.gov (United States)

    Kurata, M.; Lynch, J. P.; van der Linden, G. W.; Hipley, P.; Sheng, L.-H.

    2011-06-01

    This paper describes an automated wireless structural monitoring system installed at the New Carquinez Bridge (NCB). The designed system utilizes a dense network of wireless sensors installed in the bridge but remotely controlled by a hierarchically designed cyber-environment. The early efforts have included performance verification of a dense network of wireless sensors installed on the bridge and the establishment of a cellular gateway to the system for remote access from the internet. Acceleration of the main bridge span was the primary focus of the initial field deployment of the wireless monitoring system. An additional focus of the study is on ensuring wireless sensors can survive for long periods without human intervention. Toward this end, the life-expectancy of the wireless sensors has been enhanced by embedding efficient power management schemes in the sensors while integrating solar panels for power harvesting. The dynamic characteristics of the NCB under daily traffic and wind loads were extracted from the vibration response of the bridge deck and towers. These results have been compared to a high-fidelity finite element model of the bridge.

  3. Data Collection using Miniature Aerial Vehicles in Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Mathur, Prateek; Nielsen, Rasmus Hjorth; Prasad, Neeli R.

    2016-01-01

    Energy constraints of sensor nodes in wireless sensor networks (WSNs) is a major challenge and minimising the overall data transmitted across a network using data aggregation, distributed source coding, and compressive sensing have been proposed as mechanisms for energy saving. Similarly, use...... of mobile nodes capable of relocating within the network has been widely explored for energy saving. In this paper, we propose a novel method for using miniature aerial vehicles (MAVs) for data collection instead of actively sensing from a deployed network. The proposed mechanism is referred as Data...

  4. Traffic jam driving with NMV avoidance

    Science.gov (United States)

    Milanés, Vicente; Alonso, Luciano; Villagrá, Jorge; Godoy, Jorge; de Pedro, Teresa; Oria, Juan P.

    2012-08-01

    In recent years, the development of advanced driver assistance systems (ADAS) - mainly based on lidar and cameras - has considerably improved the safety of driving in urban environments. These systems provide warning signals for the driver in the case that any unexpected traffic circumstance is detected. The next step is to develop systems capable not only of warning the driver but also of taking over control of the car to avoid a potential collision. In the present communication, a system capable of autonomously avoiding collisions in traffic jam situations is presented. First, a perception system was developed for urban situations—in which not only vehicles have to be considered, but also pedestrians and other non-motor-vehicles (NMV). It comprises a differential global positioning system (DGPS) and wireless communication for vehicle detection, and an ultrasound sensor for NMV detection. Then, the vehicle's actuators - brake and throttle pedals - were modified to permit autonomous control. Finally, a fuzzy logic controller was implemented capable of analyzing the information provided by the perception system and of sending control commands to the vehicle's actuators so as to avoid accidents. The feasibility of the integrated system was tested by mounting it in a commercial vehicle, with the results being encouraging.

  5. Wireless sensors and sensor networks for homeland security applications.

    Science.gov (United States)

    Potyrailo, Radislav A; Nagraj, Nandini; Surman, Cheryl; Boudries, Hacene; Lai, Hanh; Slocik, Joseph M; Kelley-Loughnane, Nancy; Naik, Rajesh R

    2012-11-01

    New sensor technologies for homeland security applications must meet the key requirements of sensitivity to detect agents below risk levels, selectivity to provide minimal false-alarm rates, and response speed to operate in high throughput environments, such as airports, sea ports, and other public places. Chemical detection using existing sensor systems is facing a major challenge of selectivity. In this review, we provide a brief summary of chemical threats of homeland security importance; focus in detail on modern concepts in chemical sensing; examine the origins of the most significant unmet needs in existing chemical sensors; and, analyze opportunities, specific requirements, and challenges for wireless chemical sensors and wireless sensor networks (WSNs). We further review a new approach for selective chemical sensing that involves the combination of a sensing material that has different response mechanisms to different species of interest, with a transducer that has a multi-variable signal-transduction ability. This new selective chemical-sensing approach was realized using an attractive ubiquitous platform of battery-free passive radio-frequency identification (RFID) tags adapted for chemical sensing. We illustrate the performance of RFID sensors developed in measurements of toxic industrial materials, humidity-independent detection of toxic vapors, and detection of chemical-agent simulants, explosives, and strong oxidizers.

  6. Wireless Technologies Bridging the Digital Divide in Education

    Directory of Open Access Journals (Sweden)

    Gerard Smyth

    2006-06-01

    Full Text Available The objective of this paper is to demonstrate how the latest wireless standards and technologies may overcome the digital divide in education in the developed and developing worlds. The concept of the digital divide is discussed in the traditional socio-economic sense and expanded in terms of the learner's location, age, culture and background. It is important that we understand the full extent and complexities of this division if we are to effectively bridge it. Why and how the digital divide may be bridged is examined. Apart from the inherent inequalities that need to be addressed from an ethical perspective, it is very much in the interests of governments and citizens globally that Information and Communications Technology (ICT is made available to all as quickly and cost-effectively as possible. New forms of wireless protocols are overcoming challenges of terrain, infrastructure and finance. It is proposed that, by leveraging open broadband wireless standards, like Wireless Fidelity (Wi-Fi* and Worldwide Interoperability for Microwave Access (WiMAX*, and implementing Mobile Computing architecture, it is now possible to make dramatic strides in this direction. The paper continues with a general overview of these wireless standards and technologies followed by an in-depth look at Wi-Fi and WiMAX. The paper goes on to give examples of the Innovation Centre's involvement in delivering solutions and new usage models for eLearning that utilize the latest wireless standards and technologies. The challenges and successes of these projects are outlined and metrics are presented where available.

  7. Traffic pollution and countermeasures of urban traffic environment

    Science.gov (United States)

    He, Yuhong; Zheng, Chaocheng

    2018-01-01

    Background: Traffic environment has become a serious social problem in China currently, therefore, urban traffic environment governance is the requirement to solve this issue because as an important place in people's social life, urban traffic environment shows a strong city's energy. Objective: Based on analysis on social function of city traffic environment and its influence of traffic on urban environment in this paper, the goal to establish a healthy urban traffic environment must be included under the aim of sustainable development eternally and feasible measures were put forward afterwards. Method, result, conclusion and possible applications.

  8. On balancing between minimum energy and minimum delay with radio diversity for wireless sensor networks

    DEFF Research Database (Denmark)

    Moad, Sofiane; Hansen, Morten Tranberg; Jurdak, RajA

    2012-01-01

    to improve the delivery rate but at the cost of increases in energy for wireless sensor networks. In this paper, we propose a scheme for radio diversity that can balance, depending on the traffic nature in the network, between minimizing the energy consumption or minimizing the end-to-end delay. The proposed...... scheme combines the benefit of two metrics, which aim separately to minimize the energy consumption, and to minimize delay when delivering packets to the end-user. We show by both analysis and simulation that our proposed scheme can adapt to the type of traffic that can occur in a network so...

  9. A TDMA based media access control protocol for wireless ad hoc networks

    Science.gov (United States)

    Yang, Qi; Tang, Biyu

    2013-03-01

    This paper presents a novel Time Division Multiplex Access (TDMA) based Media Access Control (MAC) protocol of wireless Ad Hoc network. To achieve collision free transmission, time slots in a MAC frame are cataloged into three types, that is access slot, control slot and traffic slot. Nodes in the network access to the network in the access slot, and an exclusive control is allocated subsequently. Data packets are transmission by dynamic schedule the traffic slots. Throughput and transmission delay are also analyzed by simulation experiment. The proposed protocol is capable of providing collision free transmission and achieves high throughput.

  10. Wireless Headset Communication System

    Science.gov (United States)

    Lau, Wilfred K.; Swanson, Richard; Christensen, Kurt K.

    1995-01-01

    System combines features of pagers, walkie-talkies, and cordless telephones. Wireless headset communication system uses digital modulation on spread spectrum to avoid interference among units. Consists of base station, 4 radio/antenna modules, and as many as 16 remote units with headsets. Base station serves as network controller, audio-mixing network, and interface to such outside services as computers, telephone networks, and other base stations. Developed for use at Kennedy Space Center, system also useful in industrial maintenance, emergency operations, construction, and airport operations. Also, digital capabilities exploited; by adding bar-code readers for use in taking inventories.

  11. Investigating wireless power transfer

    Science.gov (United States)

    St John, Stuart A.

    2017-09-01

    Understanding Physics is a great end in itself, but is also crucial to keep pace with developments in modern technology. Wireless power transfer, known to many only as a means to charge electric toothbrushes, will soon be commonplace in charging phones, electric cars and implanted medical devices. This article outlines how to produce and use a simple set of equipment to both demonstrate and investigate this phenomenon. It presents some initial findings and aims to encourage Physics educators and their students to conduct further research, pushing the bounds of their understanding.

  12. Dynamic wireless sensor networks

    CERN Document Server

    Oteafy, Sharief M A

    2014-01-01

    In this title, the authors leap into a novel paradigm of scalability and cost-effectiveness, on the basis of resource reuse. In a world with much abundance of wirelessly accessible devices, WSN deployments should capitalize on the resources already available in the region of deployment, and only augment it with the components required to meet new application requirements. However, if the required resources already exist in that region, WSN deployment converges to an assignment and scheduling scheme to accommodate for the new application given the existing resources. Such resources are polled

  13. Wired or Wireless Internet?

    DEFF Research Database (Denmark)

    Gimpel, Gregory

    2010-01-01

    This paper finds that network externalities play a minimal role in the choice of internet access technology. Potential adopters of mobile laptop internet view broadband technology as a black box, the technological details of which donot matter. The study uses qualitative techniques to explore how...... the speed of technological obsolescence, market share dominance, and the black boxing of technology influence consumer intention to adopt WiMax and 3G wireless internet for their laptop computers. The results, implications for industry, and areas for further research are discussed....

  14. Wireless installation standard

    International Nuclear Information System (INIS)

    Lim, Hwang Bin

    2007-12-01

    This is divided six parts which are radio regulation law on securing of radio resource, use of radio resource, protection of radio resource, radio regulation enforcement ordinance with securing, distribution and assignment of radio regulation, radio regulation enforcement regulation on utility of radio resource and technical qualification examination, a wireless installation regulation of technique standard and safety facility standard, radio regulation such as certification regulation of information communicative machines and regulation of radio station on compliance of signal security, radio equipment in radio station, standard frequency station and emergency communication.

  15. Design of Cyberwar Laboratory Exercises to Implement Common Security Attacks against IEEE 802.11 Wireless Networks

    Directory of Open Access Journals (Sweden)

    Mina Malekzadeh

    2010-01-01

    Full Text Available In wireless network communications, radio waves travel through free space; hence, the information reaches any receiving point with appropriate radio receivers. This aspect makes the wireless networks vulnerable to various types of attacks. A true understanding of these attacks provides better ability to defend the network against the attacks, thus eliminating potential threats from the wireless systems. This work presents a series of cyberwar laboratory exercises that are designed for IEEE 802.11 wireless networks security courses. The exercises expose different aspects of violations in security such as confidentiality, privacy, availability, and integrity. The types of attacks include traffic analysis, rogue access point, MAC filtering, replay, man-in-the-middle, and denial of service attacks. For each exercise, the materials are presented as open-source tools along with descriptions of the respective methods, procedures, and penetration techniques.

  16. Multiple access protocol for supporting multimedia services in wireless ATM networks

    DEFF Research Database (Denmark)

    Liu, Hong; Dittmann, Lars; Gliese, Ulrik Bo

    1999-01-01

    The furture broadband wireless asynchronous transfer mode (ATM) networks must provide seamless extension of multimedia services from the wireline ATM networks. This requires an effecient wireless access protocol to fulfill varying Quality-og-Service (QoS) requirements for multimedia applications....... In this paper, we propose a multiple access protocol using centralized and distributed channel access control techniques to provide QoS guarantees for multimedia services by taking advantage of the characteristics of different kinds of ATM traffics. Multimedia traffic, including constant bit rate (CBR......), variable bit rate (VBR) and available bit rate (ABR) with different kinds of applications, such as voice, video-conferening, MPEG video and Web-browising, is considered to evaluate the proposed protocol. Simulation results show that the proposed multiple access protocol can support a wide range...

  17. A cost-effective WDM-PON architecture simultaneously supporting wired, wireless and optical VPN services

    Science.gov (United States)

    Wu, Yanzhi; Ye, Tong; Zhang, Liang; Hu, Xiaofeng; Li, Xinwan; Su, Yikai

    2011-03-01

    It is believed that next-generation passive optical networks (PONs) are required to provide flexible and various services to users in a cost-effective way. To address this issue, for the first time, this paper proposes and demonstrates a novel wavelength-division-multiplexed PON (WDM-PON) architecture to simultaneously support three types of services: 1) wireless access traffic, 2) optical virtual passive network (VPN) communications, and 3) conventional wired services. In the optical line terminal (OLT), we use two cascaded Mach-Zehnder modulators (MZMs) on each wavelength channel to generate an optical carrier, and produce the wireless and the downstream traffic using the orthogonal modulation technique. In each optical network unit (ONU), the obtained optical carrier is modulated by a single MZM to provide the VPN and upstream communications. Consequently, the light sources in the ONUs are saved and the system cost is reduced. The feasibility of our proposal is experimentally and numerically verified.

  18. Joint Channel Assignment and Routing in Multiradio Multichannel Wireless Mesh Networks: Design Considerations and Approaches

    Directory of Open Access Journals (Sweden)

    Omar M. Zakaria

    2016-01-01

    Full Text Available Multiradio wireless mesh network is a promising architecture that improves the network capacity by exploiting multiple radio channels concurrently. Channel assignment and routing are underlying challenges in multiradio architectures since both determine the traffic distribution over links and channels. The interdependency between channel assignments and routing promotes toward the joint solutions for efficient configurations. This paper presents an in-depth review of the joint approaches of channel assignment and routing in multiradio wireless mesh networks. First, the key design issues, modeling, and approaches are identified and discussed. Second, existing algorithms for joint channel assignment and routing are presented and classified based on the channel assignment types. Furthermore, the set of reconfiguration algorithms to adapt the network traffic dynamics is also discussed. Finally, the paper presents some multiradio practical implementations and test-beds and points out the future research directions.

  19. Loss Performance Modeling for Hierarchical Heterogeneous Wireless Networks With Speed-Sensitive Call Admission Control

    DEFF Research Database (Denmark)

    Huang, Qian; Huang, Yue-Cai; Ko, King-Tim

    2011-01-01

    A hierarchical overlay structure is an alternative solution that integrates existing and future heterogeneous wireless networks to provide subscribers with better mobile broadband services. Traffic loss performance in such integrated heterogeneous networks is necessary for an operator's network...... dimensioning and planning. This paper investigates the computationally efficient loss performance modeling for multiservice in hierarchical heterogeneous wireless networks. A speed-sensitive call admission control (CAC) scheme is considered in our model to assign overflowed calls to appropriate tiers....... This approach avoids unnecessary and frequent handoff between cells and reduces signaling overheads. An approximation model with guaranteed accuracy and low computational complexity is presented for the loss performance of multiservice traffic. The accuracy of numerical results is validated by comparing...

  20. Wireless network security theories and applications

    CERN Document Server

    Chen, Lei; Zhang, Zihong

    2013-01-01

    Wireless Network Security Theories and Applications discusses the relevant security technologies, vulnerabilities, and potential threats, and introduces the corresponding security standards and protocols, as well as provides solutions to security concerns. Authors of each chapter in this book, mostly top researchers in relevant research fields in the U.S. and China, presented their research findings and results about the security of the following types of wireless networks: Wireless Cellular Networks, Wireless Local Area Networks (WLANs), Wireless Metropolitan Area Networks (WMANs), Bluetooth

  1. A Study of Application Layer Paradigm for Lower Layer Energy Saving Potentials in Cloud-Edge Social User Wireless Image Sharing

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2015-08-01

    Full Text Available Energy saving becomes critical in modern cloud wireless multimedia and mobile communication systems. In this paper we propose to study a new paradigm named application layer Position-Value diversity for wireless image sharing for cloud-edge communications, which has significant energy saving potentials for modern wireless networking systems. In this new paradigm, saving energy is achieved by looking into application layer imaging traffic, in stead of MAC-PHY protocols at lower layers, and partitioning it into important positions and unimportant values. This paradigm could be integrated to existing wavelet-based tree compression, and truncation of image bit streams could be performed with regards to wireless communication energy budget estimation. Simulation results demonstrated that there are significant potentials of communication energy efficiency gain and Quality of Experience (QoE enhancement in wireless image communication systems.

  2. Wireless Sensor Network Based Smart Parking System

    Directory of Open Access Journals (Sweden)

    Jeffrey JOSEPH

    2014-01-01

    Full Text Available Ambient Intelligence is a vision in which various devices come together and process information from multiple sources in order to exert control on the physical environment. In addition to computation and control, communication plays a crucial role in the overall functionality of such a system. Wireless Sensor Networks are one such class of networks, which meet these criteria. These networks consist of spatially distributed sensor motes which work in a co-operative manner to sense and control the environment. In this work, an implementation of an energy-efficient and cost-effective, wireless sensor networks based vehicle parking system for a multi-floor indoor parking facility has been introduced. The system monitors the availability of free parking slots and guides the vehicle to the nearest free slot. The amount of time the vehicle has been parked is monitored for billing purposes. The status of the motes (dead/alive is also recorded. Information like slot allocated, directions to the slot and billing data is sent as a message to customer’s mobile phones. This paper extends our previous work 1 with the development of a low cost sensor mote, about one tenth the cost of a commercially available mote, keeping in mind the price sensitive markets of the developing countries.

  3. Wireless Mesh Networks to Support Video Surveillance: Architecture, Protocol, and Implementation Issues

    Directory of Open Access Journals (Sweden)

    Francesco Licandro

    2007-03-01

    Full Text Available Current video-surveillance systems typically consist of many video sources distributed over a wide area, transmitting live video streams to a central location for processing and monitoring. The target of this paper is to present an experience of implementation of a large-scale video-surveillance system based on a wireless mesh network infrastructure, discussing architecture, protocol, and implementation issues. More specifically, the paper proposes an architecture for a video-surveillance system, and mainly centers its focus on the routing protocol to be used in the wireless mesh network, evaluating its impact on performance at the receiver side. A wireless mesh network was chosen to support a video-surveillance application in order to reduce the overall system costs and increase scalability and performance. The paper analyzes the performance of the network in order to choose design parameters that will achieve the best trade-off between video encoding quality and the network traffic generated.

  4. Wireless Mesh Networks to Support Video Surveillance: Architecture, Protocol, and Implementation Issues

    Directory of Open Access Journals (Sweden)

    Licandro Francesco

    2007-01-01

    Full Text Available Current video-surveillance systems typically consist of many video sources distributed over a wide area, transmitting live video streams to a central location for processing and monitoring. The target of this paper is to present an experience of implementation of a large-scale video-surveillance system based on a wireless mesh network infrastructure, discussing architecture, protocol, and implementation issues. More specifically, the paper proposes an architecture for a video-surveillance system, and mainly centers its focus on the routing protocol to be used in the wireless mesh network, evaluating its impact on performance at the receiver side. A wireless mesh network was chosen to support a video-surveillance application in order to reduce the overall system costs and increase scalability and performance. The paper analyzes the performance of the network in order to choose design parameters that will achieve the best trade-off between video encoding quality and the network traffic generated.

  5. Performance considerations for efficient multimedia streaming in wireless local area networks

    Science.gov (United States)

    Krishnaswamy, Dilip; Stacey, Robert J.; van Alstine, Ryan; Chimitt, William J.

    2004-11-01

    This paper presents investigates multimedia streaming over wireless local area networks. Physical layer sigmoid analytical models are presented for 802.11a/g and for 2x3 MIMO 802.11n MIMO-based systems are presented. Performance results in a wireless LAN environment are presented for traffic using UDP and TCP transport mechanisms. Packet losses are observed in WLAN environments which affects the overall throughput available. Possibilities for performance improvements with the use of 802.11e and MIMO technologies are discussed. System platform architecture performance issues for wireless video conferencing between Intel« PXA27x processor-based handheld platforms are presented and results with retry-limit adaptation are also presented.

  6. Living on the Edge: The Role of Proactive Caching in 5G Wireless Networks

    OpenAIRE

    Baştuğ, Ejder; Bennis, Mehdi; Debbah, Mérouane

    2014-01-01

    International audience; This article explores one of the key enablers of beyond 4G wireless networks leveraging small cell network deployments, namely proactive caching. Endowed with predictive capabilities and harnessing recent developments in storage, context-awareness and social networks, peak traffic demands can be substantially reduced by proactively serving predictable user demands, via caching at base stations and users' devices. In order to show the effectiveness of proactive caching,...

  7. Multipath Routing Protocol Using Basic Reconstruction Routing (BRR) Algorithm in Wireless Sensor Network

    OpenAIRE

    K. Rajasekaran; Kannan Balasubramanian

    2015-01-01

    A sensory network consists of multiple detection locations called sensor nodes, each of which is tiny, featherweight and portable. A single path routing protocols in wireless sensor network can lead to holes in the network, since only the nodes present in the single path is used for the data transmission. Apart from the advantages like reduced computation, complexity and resource utilization, there are some drawbacks like throughput, increased traffic load and delay in da...

  8. Review of Radio Frequency Identification and Wireless Technology for Structural Health Monitoring

    International Nuclear Information System (INIS)

    Dhital, Dipesh; Chia, Chen Ciang; Lee, Jung Ryul; Park, Chan Yik

    2010-01-01

    Radio frequency identification(RFID) combined with wireless technology has good potential for structural health monitoring(SHM). We describe several advantages of RFID and wireless technologies for SHM, and review SHM examples with working principles, design and technical details for damage detection, heat exposure monitoring, force/strain sensing, and corrosion detection in concrete, steel, carbon fiber reinforced polymer(CFRP), and other materials. Various sensors combined with wireless communication are also discussed. These methodologies can be readily developed, implemented, and customized. There are some technical difficulties, but solutions are being addressed. Lastly, a surface acoustic wave-based RFID system is presented, and possible future trends of SHM based on RFID and wireless technology are presented

  9. A vibration powered wireless mote on the Forth Road Bridge

    International Nuclear Information System (INIS)

    Jia, Yu; Yan, Jize; Feng, Tao; Du, Sijun; Fidler, Paul; Soga, Kenichi; Middleton, Campbell; Seshia, Ashwin A

    2015-01-01

    The conventional resonant-approaches to scavenge kinetic energy are typically confined to narrow and single-band frequencies. The vibration energy harvester device reported here combines both direct resonance and parametric resonance in order to enhance the power responsiveness towards more efficient harnessing of real-world ambient vibration. A packaged electromagnetic harvester designed to operate in both of these resonant regimes was tested in situ on the Forth Road Bridge. In the field-site, the harvester, with an operational volume of ∼126 cm 3 , was capable of recovering in excess of 1 mW average raw AC power from the traffic-induced vibrations in the lateral bracing structures underneath the bridge deck. The harvester was integrated off-board with a power conditioning circuit and a wireless mote. Duty- cycled wireless transmissions from the vibration-powered mote was successfully sustained by the recovered ambient energy. This limited duration field test provides the initial validation for realising vibration-powered wireless structural health monitoring systems in real world infrastructure, where the vibration profile is both broadband and intermittent. (paper)

  10. A vibration powered wireless mote on the Forth Road Bridge

    Science.gov (United States)

    Jia, Yu; Yan, Jize; Feng, Tao; Du, Sijun; Fidler, Paul; Soga, Kenichi; Middleton, Campbell; Seshia, Ashwin A.

    2015-12-01

    The conventional resonant-approaches to scavenge kinetic energy are typically confined to narrow and single-band frequencies. The vibration energy harvester device reported here combines both direct resonance and parametric resonance in order to enhance the power responsiveness towards more efficient harnessing of real-world ambient vibration. A packaged electromagnetic harvester designed to operate in both of these resonant regimes was tested in situ on the Forth Road Bridge. In the field-site, the harvester, with an operational volume of ∼126 cm3, was capable of recovering in excess of 1 mW average raw AC power from the traffic-induced vibrations in the lateral bracing structures underneath the bridge deck. The harvester was integrated off-board with a power conditioning circuit and a wireless mote. Duty- cycled wireless transmissions from the vibration-powered mote was successfully sustained by the recovered ambient energy. This limited duration field test provides the initial validation for realising vibration-powered wireless structural health monitoring systems in real world infrastructure, where the vibration profile is both broadband and intermittent.

  11. MWAHCA: A Multimedia Wireless Ad Hoc Cluster Architecture

    Directory of Open Access Journals (Sweden)

    Juan R. Diaz

    2014-01-01

    Full Text Available Wireless Ad hoc networks provide a flexible and adaptable infrastructure to transport data over a great variety of environments. Recently, real-time audio and video data transmission has been increased due to the appearance of many multimedia applications. One of the major challenges is to ensure the quality of multimedia streams when they have passed through a wireless ad hoc network. It requires adapting the network architecture to the multimedia QoS requirements. In this paper we propose a new architecture to organize and manage cluster-based ad hoc networks in order to provide multimedia streams. Proposed architecture adapts the network wireless topology in order to improve the quality of audio and video transmissions. In order to achieve this goal, the architecture uses some information such as each node’s capacity and the QoS parameters (bandwidth, delay, jitter, and packet loss. The architecture splits the network into clusters which are specialized in specific multimedia traffic. The real system performance study provided at the end of the paper will demonstrate the feasibility of the proposal.

  12. MWAHCA: a multimedia wireless ad hoc cluster architecture.

    Science.gov (United States)

    Diaz, Juan R; Lloret, Jaime; Jimenez, Jose M; Sendra, Sandra

    2014-01-01

    Wireless Ad hoc networks provide a flexible and adaptable infrastructure to transport data over a great variety of environments. Recently, real-time audio and video data transmission has been increased due to the appearance of many multimedia applications. One of the major challenges is to ensure the quality of multimedia streams when they have passed through a wireless ad hoc network. It requires adapting the network architecture to the multimedia QoS requirements. In this paper we propose a new architecture to organize and manage cluster-based ad hoc networks in order to provide multimedia streams. Proposed architecture adapts the network wireless topology in order to improve the quality of audio and video transmissions. In order to achieve this goal, the architecture uses some information such as each node's capacity and the QoS parameters (bandwidth, delay, jitter, and packet loss). The architecture splits the network into clusters which are specialized in specific multimedia traffic. The real system performance study provided at the end of the paper will demonstrate the feasibility of the proposal.

  13. Automated mode shape estimation in agent-based wireless sensor networks

    Science.gov (United States)

    Zimmerman, Andrew T.; Lynch, Jerome P.

    2010-04-01

    Recent advances in wireless sensing technology have made it possible to deploy dense networks of sensing transducers within large structural systems. Because these networks leverage the embedded computing power and agent-based abilities integral to many wireless sensing devices, it is possible to analyze sensor data autonomously and in-network. In this study, market-based techniques are used to autonomously estimate mode shapes within a network of agent-based wireless sensors. Specifically, recent work in both decentralized Frequency Domain Decomposition and market-based resource allocation is leveraged to create a mode shape estimation algorithm derived from free-market principles. This algorithm allows an agent-based wireless sensor network to autonomously shift emphasis between improving mode shape accuracy and limiting the consumption of certain scarce network resources: processing time, storage capacity, and power consumption. The developed algorithm is validated by successfully estimating mode shapes using a network of wireless sensor prototypes deployed on the mezzanine balcony of Hill Auditorium, located on the University of Michigan campus.

  14. IEEE 802.11-Based Wireless Sensor System for Vibration Measurement

    Directory of Open Access Journals (Sweden)

    Yutaka Uchimura

    2010-01-01

    Full Text Available Network-based wireless sensing has become an important area of research and various new applications for remote sensing are expected to emerge. One of the promising applications is structural health monitoring of building or civil engineering structure and it often requires vibration measurement. For the vibration measurement via wireless network, time synchronization is indispensable. In this paper, we introduce a newly developed time synchronized wireless sensor network system. The system employs IEEE 802.11 standard-based TSF-counter and sends the measured data with the counter value. TSF based synchronization enables consistency on common clock among different wireless nodes. We consider the scale effect on synchronization accuracy and evaluated the effect by taking beacon collisions into account. The scalability issue by numerical simulations is also studied. This paper also introduces a newly developed wireless sensing system and the hardware and software specifications are introduced. The experiments were conducted in a reinforced concrete building to evaluate synchronization accuracy. The developed system was also applied for a vibration measurement of a 22-story steel structured high rise building. The experimental results showed that the system performed more than sufficiently.

  15. Structural processing for wireless communications

    CERN Document Server

    Lu, Jianhua; Ge, Ning

    2015-01-01

    This brief presents an alternative viewpoint on processing technology for wireless communications based on recent research advances. As a lever in emerging processing technology, the structure perspective addresses the complexity and uncertainty issues found in current wireless applications. Likewise, this brief aims at providing a new prospective to the development of communication technology and information science, while stimulating new theories and technologies for wireless systems with ever-increasing complexity. Readers of this brief may range from graduate students to researchers in related fields.

  16. Radio Relays Improve Wireless Products

    Science.gov (United States)

    2009-01-01

    Signal Hill, California-based XCOM Wireless Inc. developed radio frequency micromachine (RF MEMS) relays with a Phase II Small Business Innovation Research (SBIR) contract through NASA?s Jet Propulsion Laboratory. In order to improve satellite communication systems, XCOM produced wireless RF MEMS relays and tunable capacitors that use metal-to-metal contact and have the potential to outperform most semiconductor technologies while using less power. These relays are used in high-frequency test equipment and instrumentation, where increased speed can mean significant cost savings. Applications now also include mainstream wireless applications and greatly improved tactical radios.

  17. Wireless Communications in Smart Grid

    Science.gov (United States)

    Bojkovic, Zoran; Bakmaz, Bojan

    Communication networks play a crucial role in smart grid, as the intelligence of this complex system is built based on information exchange across the power grid. Wireless communications and networking are among the most economical ways to build the essential part of the scalable communication infrastructure for smart grid. In particular, wireless networks will be deployed widely in the smart grid for automatic meter reading, remote system and customer site monitoring, as well as equipment fault diagnosing. With an increasing interest from both the academic and industrial communities, this chapter systematically investigates recent advances in wireless communication technology for the smart grid.

  18. Wireless home networking for dummies

    CERN Document Server

    Briere, Danny; Ferris, Edward

    2010-01-01

    The perennial bestseller shows you how share your files and Internet connection across a wireless network. Fully updated for Windows 7 and Mac OS X Snow Leopard, this new edition of this bestseller returns with all the latest in wireless standards and security. This fun and friendly guide shows you how to integrate your iPhone, iPod touch, smartphone, or gaming system into your home network. Veteran authors escort you through the various financial and logisitical considerations that you need to take into account before building a wireless network at home.: Covers the basics of planning, instal

  19. Microwave materials for wireless applications

    CERN Document Server

    Cruickshank, David B

    2011-01-01

    This practical resource offers you an in-depth, up-to-date understanding of the use of microwave magnetic materials for cutting-edge wireless applications. The book discusses device applications used in wireless infrastructure base stations, point-to-point radio links, and a range of more specialized microwave systems. You find detailed discussions on the attributes of each family of magnetic materials with respect to specific wireless applications. Moreover, the book addresses two of the hottest topics in the field today - insertion loss and intermodulation. This comprehensive reference also

  20. 3D inkjet printed disposable environmental monitoring wireless sensor node

    KAUST Repository

    Farooqui, Muhammad Fahad

    2017-10-24

    We propose a disposable, miniaturized, moveable, fully integrated 3D inkjet-printed wireless sensor node for large area environmental monitoring applications. As a proof of concept, we show the wireless sensing of temperature, humidity and H2S levels which are important for early warnings of two critical environmental conditions namely forest fires and industrial gas leaks. The temperature sensor has TCR of -0.018/°, the highest of any inkjet-printed sensor and the H2S sensor can detect as low as 3 ppm of gas. These sensors and an antenna have been realized on the walls of a 3D-printed cubic package which encloses the microelectronics developed on a 3D-printed circuit board. Hence, 3D printing and inkjet printing have been combined in order to realize a unique low-cost, fully integrated wireless sensor node. Field tests show that these sensor nodes can wirelessly communicate up to a distance of over 100m. Our proposed sensor node can be a part of internet of things with the aim of providing a better and safe living.