WorldWideScience

Sample records for wire-wrapped hastelloy-clad thorium

  1. COBRA-IV wire wrap data comparisons

    International Nuclear Information System (INIS)

    Donovan, T.E.; George, T.L.; Wheeler, C.L.

    1979-02-01

    Thermal hydraulic analyses of hexagonally packed wire-wrapped fuel assemblies are complicated by the induced crossflow between adjacent subchannels. The COBRA-IV computer code simultaneously solves the hydrodynamics and thermodynamics of fuel assemblies. The modifications and the results are presented which are predicted by the COBRA-IV calculation. Comparisons are made with data measured in five experimental models of a wire-wrapped fuel assembly

  2. Subchannel Analysis of Wire Wrapped SCWR Assembly

    Directory of Open Access Journals (Sweden)

    Jianqiang Shan

    2014-01-01

    Full Text Available Application of wire wrap spacers in SCWR can reduce pressure drop and obtain better mixing capability. As a consequence, the required coolant pumping power is decreased and the coolant temperature profile inside the fuel bundle is flattened which will obviously decrease the peak cladding temperature. The distributed resistance model for wire wrap was developed and implemented in ATHAS subchannel analysis code. The HPLWR wire wrapped assembly was analyzed. The results show that: (1 the assembly with wire wrap can obtain a more uniform coolant temperature profile than the grid spaced assembly, which will result in a lower peak cladding temperature; (2 the pressure drop in a wire wrapped assembly is less than that in a grid spaced assembly, which can reduce the operating power of pump effectively; (3 the wire wrap pitch has significant effect on the flow in the assembly. Smaller Hwire/Drod will result in stronger cross flow a more uniform coolant temperature profile, and also a higher pressure drop.

  3. Assessment of SFR Wire Wrap Simulation Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Delchini, Marc-Olivier G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Popov, Emilian L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Pointer, William David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Swiler, Laura P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-30

    Predictive modeling and simulation of nuclear reactor performance and fuel are challenging due to the large number of coupled physical phenomena that must be addressed. Models that will be used for design or operational decisions must be analyzed for uncertainty to ascertain impacts to safety or performance. Rigorous, structured uncertainty analyses are performed by characterizing the model’s input uncertainties and then propagating the uncertainties through the model to estimate output uncertainty. This project is part of the ongoing effort to assess modeling uncertainty in Nek5000 simulations of flow configurations relevant to the advanced reactor applications of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. Three geometries are under investigation in these preliminary assessments: a 3-D pipe, a 3-D 7-pin bundle, and a single pin from the Thermal-Hydraulic Out-of-Reactor Safety (THORS) facility. Initial efforts have focused on gaining an understanding of Nek5000 modeling options and integrating Nek5000 with Dakota. These tasks are being accomplished by demonstrating the use of Dakota to assess parametric uncertainties in a simple pipe flow problem. This problem is used to optimize performance of the uncertainty quantification strategy and to estimate computational requirements for assessments of complex geometries. A sensitivity analysis to three turbulent models was conducted for a turbulent flow in a single wire wrapped pin (THOR) geometry. Section 2 briefly describes the software tools used in this study and provides appropriate references. Section 3 presents the coupling interface between Dakota and a computational fluid dynamic (CFD) code (Nek5000 or STARCCM+), with details on the workflow, the scripts used for setting up the run, and the scripts used for post-processing the output files. In Section 4, the meshing methods used to generate the THORS and 7-pin bundle meshes are explained. Sections 5, 6 and 7 present numerical results

  4. Fabrication details for wire wrapped fuel assembly components

    International Nuclear Information System (INIS)

    Bosy, B.J.

    1978-09-01

    Extensive hydraulic testing of simulated LMFBR blanket and fuel assemblies is being carried out under this MIT program. The fabrication of these test assemblies has involved development of manufacturing procedures involving the wire wrapped pins and the flow housing. The procedures are described in detail in the report

  5. Thermal analysis methods for LMFBR wire wrapped bundles

    International Nuclear Information System (INIS)

    Todreas, N.E.

    1976-11-01

    A note is presented which was written to stimulate an awareness and discussion of the fundamental differences in the formulation of certain existing analysis codes for LMFBR wire wrap bundles. The contention of the note is that for those array types where data exists (one wire per pin, equal start angles), the ENERGY method results for coolant temperature under forced convection conditions provide benchmarks of reliability equal to the results of codes COBRA and TH1-3D

  6. Pressure drop measurements in LMFBR wire wrapped blanket assemblies

    International Nuclear Information System (INIS)

    Chiu, C.; Hawley, J.; Rohsenow, W.M.; Todreas, N.E.

    1977-07-01

    In this experiment, measurements of subchannel static pressure for an interior and edge subchannel were taken at two elevations in two wire-wrapped 61-pin bundles. One of the bundles has geometric characteristics of P/D = 1.067 and H/D = 8.0 (4 inch lead length and 0.501 inch rod diameter) and the other bundle has geometric characteristics of P/D = 1.067 and H/D = 4.0 (2 inch lead length and 0.501 inch rod diameter). The bundle average friction factors as well as the local subchannel friction factors for both interior and edge subchannels were determined from the experimental static pressure data. The average subchannel flow rates for both edge and interior subchannels were determined in a separate experiment. Results show that two correlations suggested by Rehme and Novendstern for the bundle average friction factor cannot predict the data within the range of experimental error. The bundle average friction factors for both bundles under test were underestimated by Rehme's correlation and overestimated by Novendstern's correlation. The results of the local subchannel friction factors indicate the effect of the wire lead length is more pronounced in the interior subchannel friction factor than in the edge subchannel friction factor. As the wire wrap lead length decreases, both interior and edge subchannel friction factors increase

  7. Upon local blockage formations in LMFBR fuel rod bundles with wire-wrapped spacers

    International Nuclear Information System (INIS)

    Minden, C. v.; Schultheiss, G.F.

    1982-01-01

    A theoretical and experimental study, to improve understanding of local particle depositions in a wire-wrapped LMFBR fuel bundle, has been performed. Theoretical considerations show, that a preferentially axial process of particle depositions occurs. The experiments confirm this and clarify that the blockages arise near the particle source and settle at the spatially arranged minimum gaps in the bundle. The results suggest that, considering flow reduction, cooling and DND-detection, such fuel particle blockages are less dangerous. With reference to these safety-relevant factors, wire-wrapped LMFBR fuel bundles seem to gain advantages compared to the grid design. (orig.) [de

  8. Test Specifications and the Design of the Wire Wrapped 37-Pin Fuel Assembly for Hydrodynamic Experiments

    International Nuclear Information System (INIS)

    Chang, S. K.; Euh, D. J.; Bae, H.; Lee, H. Y.; Choi, S. R.

    2013-01-01

    Most influencing parameters on uncertainties and sensitivities of the CFD analyses are the friction coefficient and the mixing coefficient. The friction coefficient is related to the flow distribution in reactor sub-channels. The mixing coefficient is defined with the cross flow between neighboring sub-channels. The eventual purpose of the thermal hydraulic design considering these parameters is to guarantee the fuel cladding integrity as the design limit parameter. At the moment, the experimental program is being undertaken to quantify these friction and mixing parameters which characterize the flow distribution in sub-channels, and the wire wrapped 37-pin rod assembly and its hexagonal test rig have been designed and fabricated. The quantified thermal hydraulic experimental data from this program are utilized primarily to estimate the accuracy of the safety analysis codes and their thermal hydraulic model. A wire wrapped 37 pin fuel assembly has been designed for the measurements of the flow distribution, where the measurements are utilized to quantify the friction coefficient and the mixing coefficient. The test rig of the wire wrapped 37 pin fuel assembly has been fabricated considering the geometric and flow dynamic similarities. It comprises four components i. e., the upper plenum, the fuel housing, the lower plenum, and the wire wrapped 37 pin fuel assembly. At further works, the quantified friction and mixing coefficients through the experiments are going to be utilized for insuring the reliability of the CFD analysis results

  9. Input parameters to codes which analyze LMFBR wire wrapped bundles. Revision 1

    International Nuclear Information System (INIS)

    Wang, S.F.; Todreas, N.E.

    1979-05-01

    This report provides a current summary of recommended values of key input parameters required for ENERGY code analysis of LMFBR wire wrapped bundles. This data is based on the interpretation of experimental results from the MIT and other available laboratory programs

  10. Wire-wrapped rod-bundle heat-transfer analysis for LMFBR

    International Nuclear Information System (INIS)

    Wong, C.N.C.; Todreas, N.E.

    1982-07-01

    Helical wire wraps are widely used in the LMFBR fuel and blanket assemblies to provide coolant mixing and maintain proper spacing between fuel pins. The presence of the helical wire, however, may possibly induce heat transfer problems, such as the uncertainty of the maximum clad temperature as a result of the contact between the wires and the pins. In this study, the detailed transient three dimensional velocity and temperature distributions for the coolant around the pin will be determined by solving the governing momentum and energy equation numerically. A computer code HEATRAN has been developed to perform this calculation. Before the computer code HEATRAN is applied to the wire wrapped rod bundle problem, it is used to analyze a wide range of fluid and heat transfer problem to verify its capabilities

  11. Fluid mixing studies in a hexagonal 61-pin, wire-wrapped rod bundle

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, A S; Todreas, N

    1977-08-01

    Two wire-wrapped rod bundles with different leads (6 in. and 12 in.) were constructed with geometric parameters similar to proposed LMFBR fuel assemblies. Rod diameter was 0.25 in. and pitch-to-diameter ratio was 1.26. These two bundles were tested in a flow loop which was designed and built for mixing experiments. Fluid mixing was studied by means of salt tracer dispersion. Salt was injected at various radial and axial locations in the bundle via injection rods, and then the dispersed distribution was measured at the bundle exit by means of 126 specially designed electrical conductivity probes inserted into the bundle subchannels. The data collected showed a strong swirl flow around the bundle circumference and periodic variation with axial injection location. Data from turbulent runs was generally good with mass balances averaging 90% and having a spread of +- 25%. The laminar data collected was generally poor because of a ''striping'' phenomena and injection instabilities. Data were compared with calculations using the ENERGY computer code. The comparison between ENERGY calculations and the data was not good for laminar flow and was only fair in the turbulent cases. It was found that turbulent data could be best characterized by the ENERGY parameters C/sub 1/ = 0.19 and epsilon/sub 1/* = 0.025 when the lead was 6 inches; for a 12-inch lead the parameters were C/sub 1/ = 0.16 and epsilon/sub 1/* = 0.012. Pressure drop data was also taken from the two bundles and it too showed a periodic variation with axial location. Friction factors derived from the data were generally higher than predicted by available correlations. These data suggested that traditional flow split calculations could be in error and that the laminar-turbulent transition occurs over a broad Reynolds number range in wire-wrapped rod bundles.

  12. Large Eddy Simulation of turbulent flow in wire wrapped fuel pin bundles cooled by sodium

    International Nuclear Information System (INIS)

    Saxena, Aakanksha; Cadiou, Thierry; Bieder, Ulrich; Viazzo, Stephane

    2013-06-01

    The objective of the study is to understand the thermal hydraulics in a core sub-assembly with liquid sodium as coolant by performing detailed numerical simulations. The passage for the coolant flow between the fuel rods is maintained by thin wires wrapped around the rods. The contact point between the fuel pin and the spacer wire is the region of creation of hot spots and a cyclic variation of temperature in hot spots can adversely affect the mechanical properties of the clad due to the phenomena like thermal stripping. The current status quo provides two different models to perform the numerical simulations, namely Reynolds Averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES). The two models differ in the extent of modelling used to close the Navier-Stokes equations. LES is a filtered approach where the large scale of motions are explicitly resolved while the small scale motions are modelled whereas RANS is a time averaging approach where all scale of motions are modelled. Thus LES involves less modelling as compared to RANS and so the results are comparatively more accurate. An attempt has been made to use the LES model. The simulations have been performed using the code Trio-U (developed by CEA). The turbulent statistics of the flow and thermal quantities are calculated. Finally the goal is to obtain the frequency of temperature oscillations at the region of hot spots near the spacer wire. (authors)

  13. Three dimensional conjugated heat transfer analysis in sodium fast reactor wire-wrapped fuel assembly

    International Nuclear Information System (INIS)

    Peniguel, C.; Rupp, I.; Juhel, JP.; Rolfo, S.; Guillaud, M.; Gervais, N.

    2009-01-01

    Fast reactors with liquid metal coolant have recently received a renewed interest owing to a more efficient usage of the primary uranium resources, and they are one of the proposal for the next Generation IV. In order to evaluate nuclear power plant design and safety, 3D analysis of the flow and heat transfer in a wire spacer fuel assembly are ongoing at EDF. The introduction of the wire wrapped spacers, helically wound along the pin axis, enhances the mixing of the coolant between sub-channels and prevents contact between the fuel pins. The mesh generation step constitutes a challenging task if a reasonable amount of cells in conjunction with a suitable spatial discretization is wanted. Several approaches have been investigated and will be presented. Quite complex global flow patterns are found using either k-ε or preferably Reynolds Stress turbulent models. Preliminary conjugated heat transfer calculations using a coupling between the finite element thermal code SYRTHES and the finite volume CFD code Code Saturne are also shown. (author)

  14. Assessment of the wire-wrap models and improvement of the MATRA-LMR for subchannel blockage analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ha, K. S.; Jeong, H. Y.; Chang, W. P.; Lee, Y. B

    2003-06-01

    The distributed resistance model has been newly implemented into MATRA-LMR to improve its prediction capability over the wire-wrap model for the flow blockage analysis in LMR. The code capability has been investigated using the experimental data observed in FFM(Fuel Failure Mock-up)-2A and 5B for the two typical flow conditions in a blocked channel. The predicted results by MATRA-LMR with the distributed resistance model have agreed well with the experimental data for the wire-wrapped subchannels. However, it has been suggested that the parameter n in the distributed resistance model needs to be calibrated accurately for the reasonable prediction of the temperature field under a low flow condition.

  15. Experimental measurements of static pressure and pressure drop in a duct enclosing a seven wire-wrapped rod bundle

    International Nuclear Information System (INIS)

    Graca, M.C.; Ballve, H.; Fernandez y Fernandez, E.; Carajilescov, P.

    1981-01-01

    The friction factor and the static pressure distributions, in the axial and transversal directions, in the wall of the hexagonal duct, enclosing a seven wire-wrapped rod bundle, were experimentally measured, using an air opened loop. The Reynolds numbers are the range 10 3 - 5x10 4 . The friction factors are compared to existing correlations. The static pressure distributions show that the static pressure is not hydrostatic in the cross section of the flow. (Author) [pt

  16. Semi-empirical model for the calculation of flow friction factors in wire-wrapped rod bundles

    International Nuclear Information System (INIS)

    Carajilescov, P.; Fernandez y Fernandez, E.

    1981-08-01

    LMFBR fuel elements consist of wire-wrapped rod bundles, with triangular array, with the fluid flowing parallel to the rods. A semi-empirical model is developed in order to obtain the average bundle friction factor, as well as the friction factor for each subchannel. The model also calculates the flow distribution factors. The results are compared to experimental data for geometrical parameters in the range: P(div)D = 1.063 - 1.417, H(div)D = 4 - 50, and are considered satisfactory. (Author) [pt

  17. Measurements of peripherical static pressure and pressure drop in a rod bundle with helical wire wrap spacers

    International Nuclear Information System (INIS)

    Ballve, H.; Graca, M.C.; Fernandez y Fernandez, E.; Carajilescov, P.

    1981-07-01

    The fuel element of a LMFBR nuclear reactor consists of a wire wrapped rod bundle with triangular array with the coolant flowing parallel to the rods. Using this type of element with seven rods conected to an air open loop. The hydrodinamics behavior of the flow for p/d = 1.20 and l/d = 15.0, was simulated. Several measurements were performed in order to obtain the static pressure distribution at the walls of the hexagonal duct, for Reynolds number from 4.4x10 3 to 48.49x10 3 and for different axial and transverse positions, in a wire wrap lead. The axial pressure drop was obtained and determined the friction factor dependence with the Reynolds number. From the obtained results, it was observed the non-dependency of the non-dimensionalized axial and transverse local static pressure distribution at the wall of the hexagonal duct, with the Reynolds number. The obtained friction factor is compared to the results of previous works. (Author) [pt

  18. Measurements of the effects of a wire-wrap spacer on the thermalhydraulics of heated annular upward flow of supercritical R134a in steady and transient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Reinink, S.; Copping, A.; Kedare, S.; Hovell, K.; Yaras, M.I. [Carleton University, Ottawa (Canada)

    2014-07-01

    Experiments were conducted at supercritical pressures and temperatures on a vertically-oriented annular heating rod with a wire-wrap spacer using upward-flowing R134a to determine the effect of a wire-wrap spacer on heat transfer in proximity of the pseudocritical point. Measurements were taken at quasi-steady-state and pressure-transient conditions. During each instance of deteriorated heat transfer, the Nusselt number is greater than values predicted by the Dittus-Boelter correlation. Heat transfer during the pressure transients is observed to be insensitive to the time rate of change of the fluid pressure, which implies that the transience does not affect the instantaneous state of the heat-transfer process. (author)

  19. Evaluation of existing correlations for the prediction of pressure drop in wire-wrapped hexagonal array pin bundles

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.K., E-mail: shihkueichen@hotmail.com [Institute of Nuclear Energy Research (retired), Longtan 32546, Taiwan (China); Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Todreas, N.E.; Nguyen, N.T. [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2014-02-15

    Highlights: • Wire-wrapped bundle friction factor data and correlations thoroughly collected. • Three methodologies proposed for identifying the best fit correlation. • 80 out of 141 bundles selected as database for evaluation. • The detailed Cheng and Todreas correlation identified to fit the data best. - Abstract: Existing wire-wrapped fuel bundle friction factor correlations were evaluated to identify their comparative fit to the available pressure drop experimental data. Five published correlations, those of Rehme (REH), Baxi and Dalle Donne (BDD, which used the correlations of Novendstern in the turbulent regime and Engel et al. in the laminar and transition regimes), detailed Cheng and Todreas (CTD), simplified Cheng and Todreas (CTS), and Kirillov (KIR, developed by Russian scientists) were studied. Other correlations applicable to a specific case were also evaluated but only for that case. Among all 132 available bundle data, an 80 bundle data set was judged to be appropriate for this evaluation. Three methodologies, i.e., the Prediction Error Distribution, Agreement Index and Credit Score were principally used for investigating the goodness of each correlation in fitting the data. Evaluations have been performed in two categories: 4 cases of general user interest and 3 cases of designer specific interest. The four general user interest cases analyzed bundle data sets in four flow regimes – i.e., all regimes, the transition and/or turbulent regimes, the turbulent regime, and the laminar regime. The three designer interest cases analyzed bundles in the fuel group, the blanket and control group and those with P/D > 1.06, for the transition/turbulent regimes. For all these cases, the detailed Cheng and Todreas correlation is identified as yielding the best fit. Specifically for the all flow regimes evaluation, the best fit correlation in descending order is CTD, BDD/CTS (tie), REH and KIR. For the combined transition/turbulent regime, the order is

  20. Subchannel and bundle friction factors and flow split parameters for laminar transition and turbulent longitudinal flows in wire wrap spaced hexagonal arrays

    International Nuclear Information System (INIS)

    Hawley, J.T.; Chiu, C.; Todreas, N.E.; Rohsenow, W.M.

    1980-01-01

    Correlations are presented for subchannel and bundle friction factors and flowsplit parameters for laminar, transition and turbulent longitudinal flows in wire wrap spaced hexagonal arrays. These results are obtained from pressure drop models of flow in individual subchannels. For turbulent flow, an existing pressure drop model for flow in edge subchannels is extended, and the resulting edge subchannel friction factor is identified. Using the expressions for flowsplit parameters and the equal pressure drops assumption, the interior subchannel and bundle friction factors are obtained. For laminar flow, models are developed for pressure drops of individual subchannels. From these models, expressions for the subchannel friction factors are identified and expressions for the flowsplit parameters are derived

  1. The thermalhydraulics of a pin bundle with a helical wire wrap spacer. Modeling and qualification for a new sub-assembly concept

    International Nuclear Information System (INIS)

    Valentin, B.

    2000-01-01

    For the sub-assembly composed by an hexcan and a pin bundle with an helical wire wrap spacer, the calculation of the maximum clad temperatures, with the design code CADET, imposed to correctly evaluate the heat and mass transfers due to the helical wire. The models use theoretical and experimental arguments which are presented after a brief description of the hydraulic behavior of a such bundle. The design of a new sub-assembly concept, in the framework of high plutonium consumption in fast reactor projects needs to qualify tile models from RAPSODIE, PHENIX and SUPER-PHENIX programs. The qualification program, which could be used, is described. the approach is notably comparative for the hydraulic fields and the past experimental results will be useful. Another approach is briefly presented. It uses a multidimensional code (TRIO) which solves Navier-Stokes equations. The utility and the limits of a such method are described. (author)

  2. Development of multi-dimensional thermal hydraulic modeling using mixing factors for wire wrapped fuel pin bundles with inter-subassembly heat transfer in fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, M.; Kamide, H.; Ohshima, H. [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1996-10-01

    Temperature distributions in fuel subassemblies of fast reactors interactively affect heat transfer from center to outer region of the core (inter-subassembly heat transfer) and cooling capability of an inter-wrapper flow, as well as maximum cladding temperature. The prediction of temperature distribution in the sub-assembly is, therefore one of the important issues for the reactor safety assessment. To treat the complex phenomena in the core, a multi-dimensional thermal hydraulic analysis is the most promising method. From the studies on the multi-dimensional thermal hydraulic modeling for the fuel sub-assemblies, the modeling have been recommended through the analysis of sodium experiments using driver subassembly test rig PLANDTL-DHX and blanket subassembly test rig CCTL-CFR. Computations of steady states experiments in the test rigs using the above modeling showed quite good agreement to the experimental data. In the present study, the use of this modeling was extended to transient analyses, and its applicability was examined. Firstly, non-dimensional parameters used to determine the mixing factors were modified from the ones based on bundle-averaged values to the ones by local values. Secondly, a new threshold function was derived and introduced to cut off the mixing factor of thermal plumes under inertia force dominant conditions. In the results of this validation, the accuracy was comparable between the modeling and the experimental instrumentation. Thus the present modeling is capable of predicting the thermal hydraulic fields of the wire wrapped fuel pin bundles with inter-subassembly heat transfer under the conditions from rated steady operations to transitions toward natural circulation decay heat removal modes. (J.P.N.)

  3. Thorium fuel cycle management

    International Nuclear Information System (INIS)

    Zajac, R.; Darilek, P.; Breza, J.; Necas, V.

    2010-01-01

    In this presentation author deals with the thorium fuel cycle management. Description of the thorium fuels and thorium fuel cycle benefits and challenges as well as thorium fuel calculations performed by the computer code HELIOS are presented.

  4. Thorium fueled reactor

    Science.gov (United States)

    Sipaun, S.

    2017-01-01

    Current development in thorium fueled reactors shows that they can be designed to operate in the fast or thermal spectrum. The thorium/uranium fuel cycle converts fertile thorium-232 into fissile uranium-233, which fissions and releases energy. This paper analyses the characteristics of thorium fueled reactors and discusses the thermal reactor option. It is found that thorium fuel can be utilized in molten salt reactors through many configurations and designs. A balanced assessment on the feasibility of adopting one reactor technology versus another could lead to optimized benefits of having thorium resource.

  5. Radionuclide Basics: Thorium

    Science.gov (United States)

    Thorium is a naturally occurring radioactive metal found at trace levels in soil, rocks, plants and animals. Thorium is used very little in industry, but can be found in heat-resistant alloys and paints and optical lenses.

  6. Status of thorium technology

    International Nuclear Information System (INIS)

    Garg, R.K.; Raghavan, R.V.; Karve, V.M.; Narayandas, G.R.

    1977-01-01

    Although a number of studies have been conducted in various countries to evolve reactor systems based on thorium fuel cycle, its use, so far, is limited to only a few reactors. However, for countries having large reserves of thorium, its utilization is of great significance for their nuclear power programmes. Reasonably assured world resources of thorium in the lower price range have been estimated at more than 500,000 tons of ThO 2 . While most of these resources are in placer deposits in various parts of the world, some vein deposits and uranium ores are other important sources of thorium. Monazite, the most important mineral of thorium, is found in the beach sand deposits along with other heavy minerals like ilmenite, rutile, zircon, and sillimanite etc. Mining of these deposits is usually carried out by suction dredging and separation of monazite from other minerals is effected by a combination of magnetic, electrostatic and gravity separation techniques. Chemical processing of monazite is carried out either by sulphuric acid or caustic treatment, followed by separation of the rare earths and thorium by partial precipitation or leaching. The thorium concentrate is further processed to obtain mantle grade thorium nitrate by chemical purification steps whereas solvent extraction using TBP is adopted for making nuclear-grade material. The purified thorium nitrate is converted to the oxide usually by precipitation as oxalate followed by calcination. The oxide is reduced directly with calcium or converted to the chloride or fluoride and then reduced by calcium or magnesium to obtain thorium metal. Various fuel designs based on the metal or its alloys, mixed oxides or carbides, and dispersed type fuel elements have been developed and accordingly, different fabrication techniques have been employed. Work on irradiation of thorium containing fuel elements and separation of U 233 is being carried out. This paper reviews the status of thorium technology in the world with

  7. THORIUM DISPERSION IN BISMUTH

    Science.gov (United States)

    Bryner, J.S.

    1961-07-01

    The growth of thorium bismutaide particles, which are formed when thorium is suspended in liquid bismuth, is inhibited when the liquid metal suspension is being flowed through a reactor and through a heat exchanger in sequence. It involves the addition of as little as 1 part by weight of tellurium to 100 parts of thorium. This addition is sufficient to inhibit particle growth and agglomeration.

  8. Thorium Energy Futures

    Energy Technology Data Exchange (ETDEWEB)

    Peggs, Stephen; Roser, Thomas; Parks, G; Lindroos, Mats; Seviour, Rebecca; Henderson, Stuart; Barlow, R; Cywinski, R; Biarrote, J -L; Norlin, A; Ashley, V; Ashworth, R; Hutton, Andrew; Owen, H; McIntyre, Peter

    2012-07-01

    The potential for thorium as an alternative or supplement to uranium in fission power generation has long been recognised, and several reactors, of various types, have already operated using thorium-based fuels. Accelerator Driven Subcritical (ADS) systems have benefits and drawbacks when compared to conventional critical thorium reactors, for both solid and molten salt fuels. None of the four options - liquid or solid, with or without an accelerator - can yet be rated as better or worse than the other three, given today's knowledge. We outline the research that will be necessary to lead to an informed choice.

  9. Minerals yearbook, 1988: Thorium

    International Nuclear Information System (INIS)

    Hedrick, J.B.

    1988-01-01

    Mine production of monazite, the principal source of thorium, decreased slightly in 1988. Associated Minerals (USA) Inc. was the only domestic monazite producer. Monazite produced in the United States was exported, and the thorium products used domestically were derived from imported materials, existing company stocks, and thorium nitrate released from the National Defense Stockpile. Major nonenergy uses were in refractory applications, ceramics, and mantles for incandescent lanterns. The only energy use of thorium in the United States was in the high-temperature gas-cooled (HTGC) nuclear reactor at Fort St. Vrain, CO. Topics discussed in the report include domestic data coverage, legislation and government programs, domestic production, consumption and uses, stocks, prices, foreign trade, world capacity, and world review--(Australia, Brazil, Madagascar, Mozambique)

  10. Thorium ore deposits

    International Nuclear Information System (INIS)

    Angelelli, Victorio.

    1984-01-01

    The main occurences of the thorium minerals of the Argentine Republic which have not been exploited, due to their reduced volume, are described. The thoriferous deposits have three genetic types: pegmatitic, hydrothermal and detritic, being the most common minerals: monazite, thorite and thorogummite. The most important thorium accumulations are located in Salta, being of less importance those of Cordoba, Jujuy and San Juan. (M.E.L.) [es

  11. Utilisation of thorium in reactors

    Science.gov (United States)

    Anantharaman, K.; Shivakumar, V.; Saha, D.

    2008-12-01

    India's nuclear programme envisages a large-scale utilisation of thorium, as it has limited deposits of uranium but vast deposits of thorium. The large-scale utilisation of thorium requires the adoption of closed fuel cycle. The stable nature of thoria and the radiological issues associated with thoria poses challenges in the adoption of a closed fuel cycle. A thorium fuel based Advanced Heavy Water Reactor (AHWR) is being planned to provide impetus to development of technologies for the closed thorium fuel cycle. Thoria fuel has been loaded in Indian reactors and test irradiations have been carried out with (Th-Pu) MOX fuel. Irradiated thorium assemblies have been reprocessed and the separated 233U fuel has been used for test reactor KAMINI. The paper highlights the Indian experience with the use of thorium and brings out various issues associated with the thorium cycle.

  12. Thorium in nuclear fuel

    International Nuclear Information System (INIS)

    Stankevicius, Alejandro

    2012-01-01

    We revise the advantages and possible problems on the use of thorium as a nuclear fuel instead of uranium. The following aspects are considered: 1) In the world there are three times more thorium than uranium 2) In spite that thorium in his natural form it is not a fisil, under neutron irradiation, is possible to transform it to uranium 233, a fisil of a high quality. 3) His ceramic oxides properties are superior to uranium or plutonium oxides. 4) During the irradiation the U 233 due to n,2n reaction produce small quantities of U 232 and his decay daughters' bismuth 212 and thallium 208 witch are strong gamma source. In turn thorium 228 and uranium 232 became, in time anti-proliferate due to there radiation intensity. 5) As it is described in here and experiments done in several countries reactors PHWR can be adapted to the use of thorium as a fuel element 6) As a problem we should mentioned that the different steps in the process must be done under strong radiation shielding and using only automatized equipment s (author)

  13. Thorium utilization in power reactors

    International Nuclear Information System (INIS)

    Saraceno; Marcos.

    1978-10-01

    In this work the recent (prior to Aug, 1976) literature on thorium utilization is reviewed briefly and the available information is updated. After reviewing the nuclear properties relevant to the thorium fuel cycle we describe briefly the reactor systems that have been proposed using thorium as a fertile material. (author) [es

  14. Recovering of thorium contained in wastes from Thorium Purification Plant

    International Nuclear Information System (INIS)

    Brandao Filho, D.; Hespanhol, E.C.B.; Baba, S.; Miranda, L.E.T.; Araujo, J.A. de.

    1992-08-01

    A study has been developed in order to establish a chemical process for recovering thorium from wastes produced at the Thorium Purification Plant of the Instituto de Pesquisas Energeticas e Nucleares. The recovery of thorium in this process will be made by means of solvent extraction technique. Solutions of TBP/Varsol were employed as extracting agent during the runs. The influence of thorium concentration in the solution, aqueous phase acidity, volume ratio of the phases, percentage of TBP/Varsol and the contact time of the phases on the extraction of thorium and lanthanides was determined. (author)

  15. The thorium fuel cycle

    International Nuclear Information System (INIS)

    Merz, E.R.

    1977-01-01

    The utilization of the thorium fuel cycle has long since been considered attractive due to the excellent neutronic characteristics of 233 U, and the widespread and cheap thorium resources. Although the uranium ore as well as the separative work requirements are usually lower for any thorium-based fuel cycle in comparison to present uranium-plutonium fuel cycles of thermal water reactors, interest by nuclear industry has hitherto been marginal. Fast increasing uranium prices, public reluctance against widespread Pu-recycling and expected retardations for the market penetration of fast breeders have led to a reconsideration of the thorium fuel cycle merits. In addition, it could be learned in the meantime that problems associated with reprocessing and waste handling, but particularly with a remote refabrication of 233 U are certainly not appreciably more difficult than for Pu-recycling. This may not only be due to psychological constraints but be based upon technological as well as economical facts, which have been mostly neglected up till now. In order to diversify from uranium as a nuclear energy source it seems to be worthwhile to greatly intensify efforts in the future for closing the Th/ 233 U fuel cycle. HTGR's are particularly promising for economic application. However, further R and D activites should not be solely focussed on this reactor type alone. Light and heavy-water moderated reactors, as well as even fast breeders later on, may just as well take advantage of a demonstrated thorium fuel cycle. A summary is presented of the state-of-the-art of Th/ 233 U-recycling technology and the efforts still necessary to demonstrate this technology all the way through to its industrial application

  16. ELECTROLYSIS OF THORIUM AND URANIUM

    Science.gov (United States)

    Hansen, W.N.

    1960-09-01

    An electrolytic method is given for obtaining pure thorium, uranium, and thorium-uranium alloys. The electrolytic cell comprises a cathode composed of a metal selected from the class consisting of zinc, cadmium, tin, lead, antimony, and bismuth, an anode composed of at least one of the metals selected from the group consisting of thorium and uranium in an impure state, and an electrolyte composed of a fused salt containing at least one of the salts of the metals selected from the class consisting of thorium, uranium. zinc, cadmium, tin, lead, antimony, and bismuth. Electrolysis of the fused salt while the cathode is maintained in the molten condition deposits thorium, uranium, or thorium-uranium alloys in pure form in the molten cathode which thereafter may be separated from the molten cathode product by distillation.

  17. Resources and processing of thorium raw material

    International Nuclear Information System (INIS)

    Smirnov, Yu.V.; Efimova, Z.I.

    1981-01-01

    Results of the estimation of thorium raw material resources, methods of thorium raw material processing as well as possibilities for thorium production and its compounds of nuclear purity making in a number of countries are considered. It is shown that thorium global resources available are sufficient to be a base for uranium-thorium fuel cycle. Technological processes of thorium raw material processing and production of thorium compounds-oxide and metal out of different forms of thorium raw material have been developed, all flowsheets permit the complex use of thorium raw material and decrease thorium production costs. Prospects for thorium use as a fuel in heavy-water and high-temperature reactors are noted [ru

  18. Thorium utilisation in thermal reactors

    International Nuclear Information System (INIS)

    Balakrishnan, K.

    1997-01-01

    It is now more or less accepted that the best way to use thorium is in thermal reactors. This is due to the fact that U233 is a good material in the thermal spectrum. Studies of different thorium cycles in various reactor concepts had been carried out in the early days of nuclear power. After three decades of neglect, the world is once again looking at thorium with some interest. We in India have been studying thorium cycles in most of the existing thermal reactor concepts, with greater emphasis on heavy water reactors. In this paper, we report some of the work done in India on different thorium cycles in the Indian pressurized heavy water reactor (PHWR), and also give a description of the design of the advanced heavy water reactor (AHWR). (author). 1 ref., 2 tabs., 5 figs

  19. Systematic study on Thorium fuel

    International Nuclear Information System (INIS)

    Shibata, Toshikazu; Kimura, Itsuro; Iwata, Shiro; Furuya, Hirotaka; Suzuki, Susumu.

    1988-01-01

    Introduced is the activities of the Joint Research Project Team on Thorium Fuel organized by mainly university researchers in Japan and supported by the Ministry of Education, Science and Culture for seven years since 1980. Four major groups were organized; (1) nuclear data, reactor physics and design, (2) nuclear fuel, (3) down stream and (4) biological effects of thorium. The first group covered measurements and analysis on nuclear data of thorium related nuclides, experiment and analysis on nuclear characteristics of thorium containing cores, basic engineering on a thorium molten salt reactor, and designs of several types of reactors. Fabrication and irradiation tests of thorium oxide fuel, and basic studies on new type thorium fuels (e.g. carbide and nitride) were studied by the second group. The third group covered the use of solutions in reprocessing of spent fuel, behavior of fission products, immobilization of high level radioactive waste, and continuous reprocessing for a molten salt reactor. The fourth group performed the trace study for patients who had been intravascularly injected with thorotrast for diagnosis of war injuries during the Second World War. (author)

  20. Thorium oxalate solubility and morphology

    International Nuclear Information System (INIS)

    Monson, P.R. Jr.; Hall, R.

    1981-10-01

    Thorium was used as a stand-in for studying the solubility and precipitation of neptunium and plutonium oxalates. Thorium oxalate solubility was determined over a range of 0.001 to 10.0 in the concentration parameter [H 2 C 2 O 4 ]/[HNO 3 ] 2 . Morphology of thorium oxide made from the oxalate precipitates was characterized by scanning electron microscopy. The different morphologies found for oxalate-lean and oxalate-rich precipitations were in agreement with predictions based on precipitation theory

  1. Sustainability: role of thorium

    International Nuclear Information System (INIS)

    Stigson, Bjorn Roland

    2015-01-01

    The task to renew the world's energy infrastructure, where fossil fuels account for 80% of supply, is enormous. The two carbon neutral energy sources - renewable and nuclear - should be the base of the world's future energy mix. Nuclear, however, suffers from a bad public opinion and lack of government support in many parts of the world. We can conclude that the world needs an 'on demand' energy source that is affordable, clean, safe and scalable. Thorium energy could be that energy source. It is the most energy dense solution we know, fitting well to the modular and size-constrained requirements of an urbanizing world. No part of society can create a sustainable world on their own and markets are too slow to drive transformational changes. We need new partnerships between governments, business, civil society and academia where each part is delivering on their specific responsibilities and roles

  2. Physical properties of thorium fluoride

    International Nuclear Information System (INIS)

    Van Uitert, L.G.; Guggenheim, H.J.; O'Bryan, H.M.; Warner, A.W. Jr.; Brownlow, D.; Bernstein, J.L.; Pasteur, G.A.; Johnson, L.F.

    1976-01-01

    Thorium fluoride has many properties that make it of interest for infrared windows. It is transparent to about eleven microns, is unaffected by moisture, has a moderate hardness, and suffers little dimensional change upon heating

  3. Thorium. Suppl. Vol. A2

    International Nuclear Information System (INIS)

    Kirby, H.W.; Moebius, S.; Muenzel, H.; Ritcey, G.M.; Molnar, R.; Pouskouleli, G.

    1986-01-01

    The present volume ''Thorium'' Suppl. Vol. A2 of the Gmelin Handbook covers the history of thorium and the preparation of its scientifically and technologically important isotopes, as well as the nuclear properties (including fission properties) of all its isotopes. The thorium isotopes range from 212 Th to 236 Th. The different types of production of all of these isotopes have been described and, in the following chapter, the decay data and fission characteristics. On the other hand, chemical isolation procedures have been outlined only for the more important isotopes 227 Th to 234 Th. Special emphasis, however, was devoted to 232 Th, the only naturally occurring very long-lived isotope. Despite some other applications the specific importance of 232 Th comes from the fact that its neutron capture reaction product 233 U is a fissile nuclide, which makes 232 Th an important isotope in nuclear technology, especially for the so-called ''Thorium High Temperature Reactor'' (THTR). The other longer-lived isotopes are either used in the laboratory for tracer studies (e.g. 234 Th) or for the production of nuclides for isotope batteries (e.g. 230 Th), whereas 233 Th is the nuclide measured for the neutron activation determination of thorium. In the chapters for the isolation and purification of thorium isotopes only those extraction and other separation procedures were mentioned which are relevant to the given process. Detailed information on these topics has been given in specific volumes of this Handbook, e.g. Volume D2 for ''Extraction of Thorium''. The literature is covered to the end of 1984. In some cases, more recent data have been considered. (orig./RB)

  4. Drying characteristics of thorium fuel corrosion products

    Science.gov (United States)

    Smith, R.-E. Lords

    2004-07-01

    The open literature and accessible US Department of Energy-sponsored reports were reviewed for the dehydration and rehydration characteristics of potential corrosion products from thorium metal and thorium oxide nuclear fuels. Mixed oxides were not specifically examined unless data were given for performance of mixed thorium-uranium fuels. Thorium metal generally corrodes to thorium oxide. Physisorbed water is readily removed by heating to approximately 200 °C. Complete removal of chemisorbed water requires heating above 1000 °C. Thorium oxide adsorbs water well in excess of the amount needed to cover the oxide surface by chemisorption. The adsorption of water appears to be a surface phenomenon; it does not lead to bulk conversion of the solid oxide to the hydroxide. Adsorptive capacity depends on both the specific surface area and the porosity of the thorium oxide. Heat treatment by calcination or sintering reduces the adsorption capacity substantially from the thorium oxide produced by metal corrosion.

  5. Thorium Energy for the World

    CERN Document Server

    Revol, Jean-Pierre; Bourquin, Maurice; Kadi, Yacine; Lillestol, Egil; De Mestral, Jean-Christophe; Samec, Karel

    2016-01-01

    The Thorium Energy Conference (ThEC13) gathered some of the world’s leading experts on thorium technologies to review the possibility of destroying nuclear waste in the short term, and replacing the uranium fuel cycle in nuclear systems with the thorium fuel cycle in the long term. The latter would provide abundant, reliable and safe energy with no CO2 production, no air pollution, and minimal waste production. The participants, representatives of 30 countries, included Carlo Rubbia, Nobel Prize Laureate in physics and inventor of the Energy Amplifier; Jack Steinberger, Nobel Prize Laureate in physics; Hans Blix, former Director General of the International Atomic Energy Agency (IAEA); Rolf Heuer, Director General of CERN; Pascal Couchepin, former President of the Swiss Confederation; and Claude Haegi, President of the FEDRE, to name just a few. The ThEC13 proceedings are a source of reference on the use of thorium for energy generation. They offer detailed technical reviews of the status of thorium energy ...

  6. Advanced thorium cycles in LWRs and HWRs

    International Nuclear Information System (INIS)

    Radkowsky, A.

    The main aspects of advanced thorium cycles in LWRs and HWRs are reviewed. New concepts include the seed blanket close packed heavy water breeder, the light water seed blanket thorium burner and self-induced thorium cycle in CANDU type reactors. (author)

  7. Extractive spectrophotometric determination of thorium

    International Nuclear Information System (INIS)

    Venkatesan, M.; Gopalakrishnan, V.; Ramanujam, A.; Nadkarni, M.N.

    1981-01-01

    An extractive spectrophotometric method has been standardized for the analysis of 0.2 to 1.6 milligrams of thorium present in nitric acid solutions. The method involves the extraction of thorium from nitric acid solutions into 0.5 M thenoyl trifluoro acetone (HTTA) in benzene and its direct estimation from the organic extract by spectrophotometry as Thoron colour complex. In this method, interference due to iron upto 5 milligrams can be suppressed by adding ascorbic acid in the ratio of 1:2 prior to HTTA extraction. Uranium(VI) does not interefere even when present in 2000 times the amount of thorium. Plutonium and cerium do not interfere at one milligram level whereas zirconium interferes in this method. The overall error variation and precision of this method has been determined to be +- 3.5%. (author)

  8. Radiochemical separation of thorium acetylacetonate from other thorium species

    Energy Technology Data Exchange (ETDEWEB)

    Solache Rios, M.; Tenorio, D.

    1987-01-16

    A solvent extraction technique to separate different chemical species of thorium is presented. The products formed by the chemical effects of the (n,el) reaction on the Th(acac)/sub 4/ were separated by this method and the retention value was measured. 6 refs.

  9. Thorium in occupationally exposed men

    International Nuclear Information System (INIS)

    Stehney, A. F.

    1999-01-01

    Higher than environmental levels of 232 Th have been found in autopsy samples of lungs and other organs from four former employees of a thorium refinery. Working periods of the subjects ranged from 3 to 24 years, and times from end of work to death ranged from 6 to 31 years. Examination of the distribution of thorium among the organs revealed poor agreement with the distribution calculated from the dosimetric models in Publication 30 of the International Commission on Radioprotection (ICRP). Concentrations in the lungs relative to pulmonary lymph nodes, bone or liver were much higher than calculated from the model for class Y thorium and the exposure histories of the workers. Much better agreement was found with more recently proposed models in Publications 68 and 69 of the ICRP. Radiation doses estimated from the amounts of thorium in the autopsy samples were compatible with health studies that found no significant difference in mortality from that of the general population of men in the US

  10. Assessment of Thorium Analysis Methods

    International Nuclear Information System (INIS)

    Putra, Sugili

    1994-01-01

    The Assessment of thorium analytical methods for mixture power fuel consisting of titrimetry, X-ray flouresence spectrometry, UV-VIS spectrometry, alpha spectrometry, emission spectrography, polarography, chromatography (HPLC) and neutron activation were carried out. It can be concluded that analytical methods which have high accuracy (deviation standard < 3%) were; titrimetry neutron activation analysis and UV-VIS spectrometry; whereas with low accuracy method (deviation standard 3-10%) were; alpha spectrometry and emission spectrography. Ore samples can be analyzed by X-ray flourescnce spectrometry, neutron activation analysis, UV-VIS spectrometry, emission spectrography, chromatography and alpha spectometry. Concentrated samples can be analyzed by X-ray flourescence spectrometry; simulation samples can be analyzed by titrimetry, polarography and UV-VIS spectrometry, and samples of thorium as minor constituent can be analyzed by neutron activation analysis and alpha spectrometry. Thorium purity (impurities element in thorium samples) can be analyzed by emission spectography. Considering interference aspects, in general analytical methods without molecule reaction are better than those involving molecule reactions (author). 19 refs., 1 tabs

  11. Recovery of thorium from monazite

    International Nuclear Information System (INIS)

    Karve, V.M.; Mukherjee, T.K.

    1997-01-01

    The process practised in the monazite processing plant involves caustic soda digestion of finely ground monazite followed by aqueous processing to recover mixed rare earth chloride solution, thorium and uranium values in the form of hydroxide cake and tri sodium phosphate as a byproduct

  12. Thorium: Issues and prospects in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman; Bahri, Che Nor Aniza Che Zainul [Nuclear Science Programme, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia. walareqi@yahoo.com (Malaysia)

    2015-04-29

    In Malaysia, thorium exists in minerals and rare earth elements production residue. The average range of thorium content in Malaysian monazite and xenotime minerals was found about 70,000 and 15,000 ppm respectively. About 2,636 tonnes of Malaysian monazite was produced for a period of 5 years (2006-2010) and based on the above data, it can be estimated that Malaysian monazite contains about 184.5 tonnes of thorium. Although thorium can become a major radiological problem to our environment, but with the significant deposit of thorium in Malaysian monazite, it has a prospect as a future alternative fuel in nuclear technology. This paper will discuss the thorium issues in Malaysia especially its long term radiological risks to public health and environment at storage and disposal stages, the prospect of exploring and producing high purity thorium from our rare earth elements minerals for future thorium based reactor. This paper also highlights the holistic approach in thorium recovery from Malaysian rare earth element production residue to reduce its radioactivity and extraction of thorium and rare earth elements from the minerals with minimum radiological impact to health and environment.

  13. Abundant thorium as an alternative nuclear fuel

    International Nuclear Information System (INIS)

    Baker Schaffer, Marvin

    2013-01-01

    It has long been known that thorium-232 is a fertile radioactive material that can produce energy in nuclear reactors for conversion to electricity. Thorium-232 is well suited to a variety of reactor types including molten fluoride salt designs, heavy water CANDU configurations, and helium-cooled TRISO-fueled systems. Among contentious commercial nuclear power issues are the questions of what to do with long-lived radioactive waste and how to minimize weapon proliferation dangers. The substitution of thorium for uranium as fuel in nuclear reactors has significant potential for minimizing both problems. Thorium is three times more abundant in nature than uranium. Whereas uranium has to be imported, there is enough thorium in the United States alone to provide adequate grid power for many centuries. A well-designed thorium reactor could produce electricity less expensively than a next-generation coal-fired plant or a current-generation uranium-fueled nuclear reactor. Importantly, thorium reactors produce substantially less long-lived radioactive waste than uranium reactors. Thorium-fueled reactors with molten salt configurations and very high temperature thorium-based TRISO-fueled reactors are both recommended for priority Generation IV funding in the 2030 time frame. - Highlights: • Thorium is an abundant nuclear fuel that is well suited to three advanced reactor configurations. • Important thorium reactor configurations include molten salt, CANDU, and TRISO systems. • Thorium has important nuclear waste disposal advantages relative to pressurized water reactors. • Thorium as a nuclear fuel has important advantages relative to weapon non-proliferation

  14. Thorium impact on tobacco root transcriptome.

    Science.gov (United States)

    Mazari, Kateřina; Landa, Přemysl; Přerostová, Sylva; Müller, Karel; Vaňková, Radomíra; Soudek, Petr; Vaněk, Tomáš

    2017-03-05

    Thorium is natural actinide metal with potential use in nuclear energetics. Contamination by thorium, originated from mining activities or spills, represents environmental risk due to its radioactivity and chemical toxicity. A promising approach for cleaning of contaminated areas is phytoremediation, which need to be based, however, on detail understanding of the thorium effects on plants. In this study we investigated transcriptomic response of tobacco roots exposed to 200μM thorium for one week. Thorium application resulted in up-regulation of 152 and down-regulation of 100 genes (p-value plant cadmium resistance PCR2, and ABC transporter ABCG40. This study provides the first insight at the processes in plants exposed to thorium. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Equipment for the handling of thorium materials

    International Nuclear Information System (INIS)

    Heisler, S.W. Jr.; Mihalovich, G.S.

    1988-01-01

    The Feed Materials Production Center (FMPC) is the United States Department of Energy's storage facility for thorium. FMPC thorium handling and overpacking projects ensure the continued safe handling and storage of the thorium inventory until final disposition of the materials is determined and implemented. The handling and overpacking of the thorium materials requires the design of a system that utilizes remote handling and overpacking equipment not currently utilized at the FMPC in the handling of uranium materials. The use of remote equipment significantly reduces radiation exposure to personnel during the handling and overpacking efforts. The design system combines existing technologies from the nuclear industry, the materials processing and handling industry and the mining industry. The designed system consists of a modified fork lift truck for the transport of thorium containers, automated equipment for material identification and inventory control, and remote handling and overpacking equipment for material identification and inventory control, and remote handling and overpacking equipment for repackaging of the thorium materials

  16. Thorium fuel cycle - Potential benefits and challenges

    International Nuclear Information System (INIS)

    2005-05-01

    There has been significant interest among Member States in developing advanced and innovative technologies for safe, proliferation resistant and economically efficient nuclear fuel cycles, while minimizing waste and environmental impacts. This publication provides an insight into the reasons for renewed interest in the thorium fuel cycle, different implementation scenarios and options for the thorium cycle and an update of the information base on thorium fuels and fuel cycles. The present TECDOC focuses on the upcoming thorium based reactors, current information base, front and back end issues, including manufacturing and reprocessing of thorium fuels and waste management, proliferation-resistance and economic issues. The concluding chapter summarizes future prospects and recommendations pertaining to thorium fuels and fuel cycles

  17. Minerals yearbook, 1991: Thorium. Annual report

    International Nuclear Information System (INIS)

    Hedrick, J.B.

    1992-10-01

    Domestic mine production data for thorium-bearing monazite are developed by the U.S. Bureau of Mines from a voluntary survey of U.S. operations entitled, 'Rare Earths, Thorium, and Scandium.' The one mine to which a survey form was sent responded, representing 100% of domestic production. Mine production data for thorium are withheld to avoid disclosing company proprietary data. Statistics on domestic thorium consumption are developed by surveying various processors and end users, evaluating import-export data, and analyzing Government stockpile shipments

  18. Thorium-U Recycle Facility (7930)

    Data.gov (United States)

    Federal Laboratory Consortium — The Thorium-U Recycle Facility (7930), along with the Transuranic Processing Facility (7920). comprise the Radiochemical Engineering Development Complex. 7930 is a...

  19. Neutron irradiation effects on the mechanical properties of thorium and thorium--carbon alloy

    International Nuclear Information System (INIS)

    Wang, S.C.P.

    1978-04-01

    The effects of neutron exposure to 3.0 x 10 18 neutrons/cm 2 on the mechanical properties of thorium and thorium-carbon alloy are described. Tensile measurements were done at six different test temperatures from 4 0 K to 503 0 K and at two strain rates. Thorium and thorium-carbon alloy are shown to display typical radiation hardening like other face-centered cubic metals. The yield drop phenomenon of the thorium-carbon alloy is unchanged after irradiation. The variation of shear stress and effective shear stress with test temperature was fitted to Seeger's and Fleischer's equations for irradiated and unirradiated thorium and thorium-carbon alloy. Neutron irradiation apparently contributes an athermal component to the yield strength. However, some thermal component is detected in the low temperature range. Strain-rate parameter is increased and activation volume is decreased slightly for both kinds of metal after irradiation

  20. Production of thorium nitrate from uranothorianite ores

    International Nuclear Information System (INIS)

    Brodsky, M.; Sartorius, R.; Sousseuer, Y.

    1959-01-01

    The separation of thorium and uranium from uranothorianite ores, either by precipitation or solvent-extraction methods, are discussed, and an industrial process for the manufacture of thorium nitrate is described. Reprint of a paper published in 'Progress in Nuclear Energy' Series III, Vol. 2 - Process Chemistry, 1959, p. 68-76 [fr

  1. Thorium and health: state of the art

    International Nuclear Information System (INIS)

    Leiterer, A.; Berard, Ph.; Menetrier, F.

    2010-01-01

    This report reviews data available in the literature on the subject: 'thorium and health'. Thorium is a natural radioactive element of the actinide series. It is widely distributed in the earth's crust and 99% is found as isotope thorium-232. Its various uses are explained by its chemical, physical, and nuclear properties. As a potential nuclear fuel, thorium is still in demonstration in pilot scale reactors. But thorium has already multiple and sometimes unknown industrial uses. Some mass market products are concerned like light bulb. This raises the issue of wastes, and of exposures of workers and public. Environmental exposure via food and drink of the general population is low, where as workers can be exposed to significant doses, especially during ore extraction. Data on bio-monitoring of workers and biokinetic of thorium, in particular those provided by ICRP, are gathered here. Studies on health effects and toxicity of thorium are scarce and mostly old, except outcomes of its previous medical use. Studies on other forms of thorium should be undertaken to provide substantial data on its toxicity. Concerning treatment, Ca-DTPA is the recommended drug even if its efficacy is moderate. LiHOPO molecule shows interesting results in animals, and further research on chelating agents is needed. (authors)

  2. Homogeneous Thorium Fuel Cycles in Candu Reactors

    International Nuclear Information System (INIS)

    Hyland, B.; Dyck, G.R.; Edwards, G.W.R.; Magill, M.

    2009-01-01

    The CANDU R reactor has an unsurpassed degree of fuel-cycle flexibility, as a consequence of its fuel-channel design, excellent neutron economy, on-power refueling, and simple fuel bundle [1]. These features facilitate the introduction and full exploitation of thorium fuel cycles in Candu reactors in an evolutionary fashion. Because thorium itself does not contain a fissile isotope, neutrons must be provided by adding a fissile material, either within or outside of the thorium-based fuel. Those same Candu features that provide fuel-cycle flexibility also make possible many thorium fuel-cycle options. Various thorium fuel cycles can be categorized by the type and geometry of the added fissile material. The simplest of these fuel cycles are based on homogeneous thorium fuel designs, where the fissile material is mixed uniformly with the fertile thorium. These fuel cycles can be competitive in resource utilization with the best uranium-based fuel cycles, while building up a 'mine' of U-233 in the spent fuel, for possible recycle in thermal reactors. When U-233 is recycled from the spent fuel, thorium-based fuel cycles in Candu reactors can provide substantial improvements in the efficiency of energy production from existing fissile resources. The fissile component driving the initial fuel could be enriched uranium, plutonium, or uranium-233. Many different thorium fuel cycle options have been studied at AECL [2,3]. This paper presents the results of recent homogeneous thorium fuel cycle calculations using plutonium and enriched uranium as driver fuels, with and without U-233 recycle. High and low burnup cases have been investigated for both the once-through and U-233 recycle cases. CANDU R is a registered trademark of Atomic Energy of Canada Limited (AECL). 1. Boczar, P.G. 'Candu Fuel-Cycle Vision', Presented at IAEA Technical Committee Meeting on 'Fuel Cycle Options for LWRs and HWRs', 1998 April 28 - May 01, also Atomic Energy of Canada Report, AECL-11937. 2. P

  3. Model Matematik Reduksi Thorium dalam Proses Elektrokoagulasi

    Directory of Open Access Journals (Sweden)

    Prayitno

    2017-11-01

    Full Text Available Thorium reduction by electrocoagulation has been conducted on radioactive waste with thorium contaminant grade of 5x10-4Kg/l through a batch system using aluminium electrodes. This study aims to determine a mathematical model of thorium reduction through speed reaction, constante reaction rate and reaction order which are affected by electrocoagulation process parameters like voltage, time, electrode distance, and pH. The research results the optimum voltage condition at 12.5 V at 1 cm electrode spacing, pH 7, and 30 minutes of processing time with 99.6 % efficiency. Prediction on thorium decline rate constante is obtained through mathematic integral method calculation. The research results thorium decline rate is following second order constante with its value at 5x10-3KgL-1min-1.

  4. Review of thorium fuel reprocessing experience

    International Nuclear Information System (INIS)

    Brooksbank, R.E.; McDuffee, W.T.; Rainey, R.H.

    1978-01-01

    The review reveals that experience in the reprocessing of irradiated thorium materials is limited. Plants that have processed thorium-based fuels were not optimized for the operations. Previous demonstrations of several viable flowsheets provide a sound technological base for the development of optimum reprocessing methods and facilities. In addition to the resource benefit by using thorium, recent nonproliferation thrusts have rejuvenated an interest in thorium reprocessing. Extensive radiation is generated as the result of 232 U-contamination produced in the 233 U, resulting in the remote operation and fabrication operations and increased fuel cycle costs. Development of the denatured thorium flowsheet, which is currently of interest because of nonproliferation concerns, represents a difficult technological challenge

  5. Thorium isotopes in human tissues

    Energy Technology Data Exchange (ETDEWEB)

    Stehney, A.F.; Lucas, H.F.

    1991-12-31

    Concentrations of {sup 232}Th and activity ratios of {sup 228}Th to {sup 232}Th and {sup 230}Th to {sup 232}Th were determined in autopsy samples from five former employees of a thorium refinery. The ranges of {sup 232}Th activity concentrations (mBq g{sup {minus}1}) were 0.17--94 in lungs, 3.9--1210 in pulmonary lymph nodes, 0.14--1.19 in bones, 0.015--0.68 in liver, 0.97--5.8 in spleen, and 0.009--0.068 in kidneys. These concentrations are 10 to 1000 times greater than have been reported for persons not occupationally exposed to Th. In most of the samples, the ratios of {sup 230}Th to {sup 232}Th and {sup 228}Th to {sup 232}Th activity at death of the subject were 0.1--0.2 and 0.2--0.4, respectively. Thorium-228 to {sup 228}Ra activity ratios ({plus_minus} standard errors) of 0.86 {plus_minus} 0.11 in lungs and 1.18 {plus_minus} 0.13 in lymph nodes of one subject were obtained by calculation from ratios of {sup 228}Th to {sup 232}Th.

  6. Pressurized water reactor thorium fuel cycle studies

    International Nuclear Information System (INIS)

    Aktogu, Ali.

    1981-06-01

    The use of a thorium fuel cycle in a PWR is studied. The thorium has no fissile isotope and a fissile nuclide must be added to the thorium fuel. This nuclide can be uranium 235, plutonium 239 or uranium 233. In this work we have kept the fuel assembly geometry and the control rod system of an usual PWR. Cell calculations showed that the moderation ratio of an usual PWR can be used with uranium 235 and plutonium 239 fuels. But this moderation ratio must be decreased and accordingly the pumping power must be increased in the case of a uranium 233 fuel. The three fuels can be controlled with soluble boron. The power distribution inside an assembly agrees with the safety rules and the worth of the control rods is sufficient. To be interesting the thorium fuels must be recycled. Because the activity and the residual power are higher for a thorium fuel than for a uranium fuel the shielding of the shipping casks and storage pools must be increased. The Uranium 235-Thorium fuel is the best even if it needs expensive enrichment work. With this type of fuel more natural uranium is saved. The thorium fuel would become very interesting if we observe again in the future an increase of the uranium cost [fr

  7. Denatured thorium cycle: an overview

    International Nuclear Information System (INIS)

    Sege, C.A.; Strauch, S.; Omberg, R.P.; Spiewak, I.

    1979-01-01

    We performed a scenario evaluation that delineates the potential role of denatured uranium/thorium-fueled reactors, including breeders, in symbiotic systems. In this study, reactors fueled with plutonium were built in secure centers, while reactors at dispersed sites were fueled with natural, low-enriched, or denatured uranium (12% 233 U or 20% 235 U in 238 U). The installed nuclear capacity is assumed to be 350 MW(electric) in the year 2000, with a net increase of 15 GW(electric)/y permitted through the year 2050. The U.S. Department of Energy Division of Uranium Resources and Enrichment projected the two bounding cases of uranium recoverable at a marginal cost of $160/lb U 3 O 8 or less used in this study. The marginal cost of $160/lb U 3 O 8 occurs at 3 million short tons (ST) for the high-cost supply and at 6 million ST for the intermediate-cost supply. For the assumed high-cost U 3 O 8 supply (3 million ST U 3 O 8 ), thermal recycle with denatured light water reactors (LWRs) will achieve the same incremental increase in maximum achievable nuclear capacity as U/Pu recycle in LWRs [approx. 200 GW(electric) more than once-through cycles]. Introduction of a breeder is required for the system to achieve the projected nuclear demand [1100 GW(clectric) in 2049]. For all denatured systems, including those with breeders, a significantly larger fraction of the installed capacity can be located at dispersed sites, compared with U/Pu systems. For the assumed intermediate-cost U 3 O 8 supply (6 million ST U 3 O 8 ), thermal recycle with advanced converters will permit projected nuclear demand to be met for both the Pu/U and denatured uranium--thorium cycles

  8. Parametric study of a thorium model

    International Nuclear Information System (INIS)

    Lourenco, M.C.; Lipsztein, J.L.; Szwarcwald, C.L.

    2002-01-01

    Models for radionuclides distribution in the human body and dosimetry involve assumptions on the biokinetic behavior of the material among compartments representing organs and tissues in the body. One of the most important problem in biokinetic modeling is the assignment of transfer coefficients and biological half-lives to body compartments. In Brazil there are many areas of high natural radioactivity, where the population is chronically exposed to radionuclides of the thorium series. The uncertainties of the thorium biokinetic model are a major cause of uncertainty in the estimates of the committed dose equivalent of the population living in high background areas. The purpose of this study is to discuss the variability in the thorium activities accumulated in the body compartments in relation to the variations in the transfer coefficients and compartments biological half-lives of a thorium-recycling model for continuous exposure. Multiple regression analysis methods were applied to analyze the results. (author)

  9. New development of spectrophotometric analysis of thorium

    International Nuclear Information System (INIS)

    Yang Xiangzhen

    1992-01-01

    This review covers new development of spectrophotometric determination of thorium since 1980's. The methods include general spectrophotometry, double wavelength spectrophotometry, catalytic spectrophotometry, total differential spectrophotometry, derivative spectrophotometry and fluorescent spectrophotometry, etc

  10. Extraction of thorium from solution using tribenzylamine

    International Nuclear Information System (INIS)

    Whitehead, N.E.; Ditchburn, R.G.

    1975-01-01

    A method is described for isolating thorium from solutions in a state sufficiently pure for alpha spectroscopy. It parallels the method described by Moore and Thern (Radiochemical Radioanalytical Letters 19(2), 117-125, 1974), but uses tribenzylamine instead of Adogen 364. The method involves extracting thorium from a solution in 8M nitric acid, into a 6% w/v solution of tribenzylamine in toluene. The thorium is concentrated in a third, interfacial layer which forms. This layer is isolated, diluted with chloroform, and back extracted with 10M HC1. Overall yields range between 83 and 90% for one extraction. The acidic solution is taken down to near dryness, diluted until the pH is 2 and extracted into 1.2 ml of thenoyltrifluoroacetone in toluene. This solution is evaporated onto a stainless steel disk, flamed, and the disk may be used for alpha spectroscopy of thorium isotopes. (auth.)

  11. Equipment for the handling of thorium materials

    International Nuclear Information System (INIS)

    Heisler, S.W. Jr.; Mihalovich, G.S.

    1988-01-01

    The Feed Materials Production Center (FMPC) is the United States Department of Energy's storage facility for thorium. FMPC thorium handling and overpacking projects ensure the continued safe handling and storge of the thorium inventory until final dispositio n of the materials is determined and implemented. The handling and overpacking of the thorium materials requires the design of a system that utilizes remote handling and overpacking equipment not currently utilized at the FMPC in the handling of uranium materials. The use of remote equipment significantly reduces radiation exposure to pesonnel during the handling and overpacking efforts. The designed system combines existing technologies from the nuclear industry, the materials processing and handling industry and the mining industry. The designed system consists of modified fork lift truck for the transport of thorium containers, automated equipment for material identification and inventory control, and remote handling and overpacking equipemnt for repackaging of the thorium materials. The radiation exposure to operations personnel using the remote handling and overpacking equipment is expected to be reduced by 98% over conventional direct durm handling practices with no dose reduction controls. 1 ref., 5 figs., 1 tab

  12. Transformation of thorium sulfate in thorium nitrate by ion exchange resin

    International Nuclear Information System (INIS)

    Pereira, W.

    1991-01-01

    A procedure for transforming thorium sulfate into thorium nitrate by means of a strong cationic ion exchanger is presented. The thorium sulfate solution (approximately 15 g/L Th (SO 4 ) 2 ) is percolate through the resin and the column is washed first with water, with a 0,2 M N H 4 OH solution and then with a 0.2 M N H 4 NO 3 solution in order to eliminate sulfate ion. Thorium is eluted with a 2 M solution of (N H 4 ) 2 CO 3 . This eluate is treated with a solution of nitric acid in order to obtain the complete transformation into Th (NO 3 ) 4 . The proposed procedure leads to good quality thorium nitrate with high uranium decontamination. (author)

  13. New properties of thorium tetrabromide

    International Nuclear Information System (INIS)

    Genet, M.; Carlier, R.; Hussonnois, M.; Krupa, J.C.; Delamoye, P.; Guillaumont, R.

    1977-01-01

    Most of already known chemical and physical properties of ThBr 4 have been reviewed and a survey of new properties investigated at I.P.N. and dealing more with nuclear and spectroscopy field is presented. ThBr 4 preparation, single crystal production as well as fluorescent properties are described. Then, nuclear aspect is studied mainly for ThBr 4 response to various charged particles versus energy. Attention is drawn on ThBr 4 performances and limits in heavy ion detection. Self-excited α spectrum of ThBr 4 induced by natural thorium radioactivity is reported. Specific properties of ThBr 4 as a matrix for spectroscopic studies are discussed. Preliminary results about absorption and emission spectra at 4K of ThBr 4 crystal doped with U +4 (1 per mille) are presented. The projects in spectroscopy field using ThBr 4 and other tetravalent actinide dopants (Pa +4 , Np +4 , Pu +4 , etc) are described. Then, theoretical support needed for spectrum interpretation is briefly given. Finally, bibliography about 5 f element spectroscopy in various matrixes is included [fr

  14. Vil løyse global energikrise med thorium

    CERN Multimedia

    Aure, Gyri

    2007-01-01

    A professor from Bergen claims thorium can contribute to save the world from a global energy crisis. He wants Norway to construct the first accelerator driven reactor in the world powered by thorium. (5 pages)

  15. Determination of boron spectrophotometry in thorium sulfate

    International Nuclear Information System (INIS)

    Federgrun, L.; Abrao, A.

    1976-01-01

    A procedure for the determination of microquantities of boron in nuclear grade thorium sulfate is described. The method is based on the extraction of BF - 4 ion associated to monomethylthionine (MMT) in 1,2 - dichloroethane. The extraction of the colored BF - 4 -MMT complex does not allow the presence of sulfuric and phosphoric acids; other anions interfere seriously. This fact makes the dissolution of the thorium sulfate impracticable, since it is insoluble in both acids. On the other hand, the quantitative separation of thorium is mandatory, to avoid the precipitation of ThF 4 . To overcome this difficulty, the thorium sulfate is dissolved using a strong cationic ion exchanger, Th 4+ being totally retained into the resin. Boron is then analysed in the effluent. The procedure allows the determination of 0.2 to 10.0 microgramas of B, with a maximum error of 10%. Thorium sulfate samples with contents of 0.2 to 2.0μg B/gTh have being analysed [pt

  16. Status and development of the thorium fuel cycle

    International Nuclear Information System (INIS)

    Yi Weijing; Wei Renjie

    2003-01-01

    A perspective view of the thorium fuel cycle is provided in this paper. The advantages and disadvantages of the thorium fuel cycle are given and the development of thorium fuel cycle in several types of reactors is introduced. The main difficulties in developing the thorium fuel cycle lie in the reprocessing and disposal of the waste and its economy, and the ways tried by foreign countries to solve the problems are presented in the paper

  17. A survey of thorium utilization in thermal power reactors

    International Nuclear Information System (INIS)

    Oosterkamp, W.J.

    1974-01-01

    The present status of thorium utilization in thermal reactors HTGR's, HWR's and LWR's has been reviewed. Physics considerations are made to obtain the optimum use of thorium. Existing information on reprocessing and refabrication is given together with the properties of thorium metal and thoria

  18. Determination of thorium and uranium contents in soil samples ...

    Indian Academy of Sciences (India)

    Vol. 67, No. 2. — journal of. August 2006 physics pp. 269–276. Determination of thorium and uranium contents in soil samples using SSNTD's passive method ... measure α-tracks activity [1], where SSNTDs have been used in geology [2–6] and ... thorium concentrations in ppm and activities of both uranium and thorium.

  19. Synthesis of uranyl acetylacetonate free of thorium 234

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Rendon, R.; Solache R, M.; Tenorio, D. (Instituto Nacional de Investigaciones Nucleares, Mexico City)

    1983-01-01

    A technique is described for synthesizing uranyl acetylacetonate free of thorium-234, and the method utilized in identifying it. The aim in the preparation of the thorium-234 free compound was to study the chemical effects produced by U-238 decay by means of detection only of the thorium-234 decay product.

  20. Alpha spectrometry and secondary ion mass spectrometry of thorium

    International Nuclear Information System (INIS)

    Strisovska, Jana; Kuruc, Jozef; Galanda, Dusan; Matel, Lubomir; Velic, Dusan; Aranyosiova, Monika

    2009-01-01

    A sample of thorium content on steel discs was prepared by electrodeposition with a view to determining the natural thorium isotope. Thorium was determined by alpha spectrometry and by secondary ion mass spectrometry and the results of the two methods were compared

  1. SEPARATION OF URANIUM FROM THORIUM AND PROTACTINIUM

    Science.gov (United States)

    Musgrave, W.K.R.

    1959-06-30

    This patent relates to the separation of uranium from thorium and protactinium; such mixtures of elements usually being obtained by neutron irradiation of thorium. The method of separating the constituents has been first to dissolve the mixture of elements in concertrated nitric acid and then to remove the protactinium by absorption on manganese dioxide and the uranium by solvent extraction with ether. Prior to now, comparatively large amounts of thorium were extracted with the uranium. According to the invention this is completely prevented by adding sodium diethyldithiocarbamate to the mixture of soluble nitrate salts. The organic salt has the effect of reacting only with the uranyl nitrate to form the corresponding uranyl salt which can then be selectively extracted from the mixture with amyl acetate.

  2. Determination of thorium 230Th in soils

    International Nuclear Information System (INIS)

    Alvarez, A.; Palomares, J.

    1988-01-01

    A method for the determination of 230 Th in environmental soils is described. Hydroxides formed, previous fusion with sodium peroxide are dissolved with HNO 3 8N. The thorium is coprecipitated with F 3 La and purified by anion exchange (AG 1x8 50-100 mesh). Thorium is electroplated onto a stainless steel disc, 230 Th is counted by alpha spectrometry and 234 Th used as a tracer by beta counting. The chemical yield for 1g of soil sample is 60-80%. Minimum detectable activities are about 2 mBq/g. (Author)

  3. Reprocessing in the thorium fuel cycle

    International Nuclear Information System (INIS)

    Merz, E.

    1984-01-01

    An overview of the authors personal view is presented on open questions in regard to still required research and development work for the thorium fuel cycle before its application in a technical-industrial scale may be tackled. For a better understanding, all stations of the back-end of the thorium fuel cycle are briefly illustrated and their special features discussed. They include storage and transportation measures, all steps of reprocessing, as well as the entire radioactive waste treatment. Knowledge gaps are, as far as they are obvious, identified and proposals put forward for additional worthwile investigations. (orig.) [de

  4. Future perspective of thorium based nuclear fuels and thorium potential of Turkey

    International Nuclear Information System (INIS)

    Unak, T.; Yildirim, Y.

    2001-01-01

    Today's nuclear technology has principally been based on the use of fissile U-235 and Pu-239. he existence of thorium in the nature and its potential use in the nuclear technology were not unfortunately into account with a sufficient importance. The global distributions of thorium and uranium reserves indicate that in general some developed countries such as the USA, Canada, Australia, France have considerable uranium reserves, and contrarily only some developing countries such as Turkey, Brazil, India, Egypt have considerable thorium reserves. The studies carried out on the thorium during the last 50 years have clearly showed that the thorium based nuclear fuels have the potential easily use in most of reactor types actually operated with the classical uranium based nuclear fuels without any considerable modification. In the case of the use of thorium based nuclear fuels in future nuclear energy production systems, the serious problems such as the excess of Pu-239, the proliferation potential of nuclear weapons, and also the anxious of nuclear terrorism will probably be resolved, and sustainable nuclear energy production will be realized in the next new century. (authors)

  5. Future perspective of thorium based nuclear fuels and thorium potential of Turkey

    International Nuclear Information System (INIS)

    Unak, T.; Yildirim, Y.

    2000-01-01

    Today's nuclear technology has principally been based on the use of fissile U-235 and Pu-239. The existence of thorium in the nature and its potential use in the nuclear technology were not unfortunately into account with a sufficient importance. The global distributions of thorium and uranium reserves indicate that in general some developed countries such as the USA, Canada, Australia, France have considerable uranium reserves, and contrarily only some developing countries such as Turkey, Brazil, India, Egypt have considerable thorium reserves. The studies carried out on the thorium during the last 50 years have clearly showed that the thorium based nuclear fuels have the potential easily use in most of reactor types actually operated with the classical uranium based nuclear fuels without any considerable modification. In the case of the use of thorium based nuclear fuels in future nuclear energy production systems, the serious problems such as the excess of Pu-239, the proliferation potential of nuclear weapons, and also the anxious of nuclear terrorism will probably be resolved, and sustainable nuclear energy production will be realized in the next new century. (authors)

  6. Utilization of thorium in PWR type reactors

    International Nuclear Information System (INIS)

    Correa, F.

    1977-01-01

    Uranium 235 consumption is comparatively evaluated with thorium cycle for a PWR type reactor. Modifications are only made in fuels components. U-235 consumption is pratically unchanged in both cycles. Some good results are promised to the mixed U-238/Th-232 fuel cycle in 1/1 proportion [pt

  7. Candu reactors with thorium fuel cycles

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Fehrenbach, P.; Duffey, R.; Kuran, S.; Ivanco, M.; Dyck, G.R.; Chan, P.S.W.; Tyagi, A.K.; Mancuso, C.

    2006-01-01

    Over the last decade and a half AECL has established a strong record of delivering CANDU 6 nuclear power plants on time and at budget. Inherently flexible features of the CANDU type reactors, such as on-power fuelling, high neutron economy, fuel channel based heat transport system, simple fuel bundle configuration, two independent shut down systems, a cool moderator and a defence-in-depth based safety philosophy provides an evolutionary path to further improvements in design. The immediate milestone on this path is the Advanced CANDU ReactorTM** (ACRTM**), in the form of the ACR-1000TM**. This effort is being followed by the Super Critical Water Reactor (SCWR) design that will allow water-cooled reactors to attain high efficiencies by increasing the coolant temperature above 550 0 C. Adaptability of the CANDU design to different fuel cycles is another technology advantage that offers an additional avenue for design evolution. Thorium is one of the potential fuels for future reactors due to relative abundance, neutronics advantage as a fertile material in thermal reactors and proliferation resistance. The Thorium fuel cycle is also of interest to China, India, and Turkey due to local abundance that can ensure sustainable energy independence over the long term. AECL has performed an assessment of both CANDU 6 and ACR-1000 designs to identify systems, components, safety features and operational processes that may need to be modified to replace the NU or SEU fuel cycles with one based on Thorium. The paper reviews some of these requirements and the associated practical design solutions. These modifications can either be incorporated into the design prior to construction or, for currently operational reactors, during a refurbishment outage. In parallel with reactor modifications, various Thorium fuel cycles, either based on mixed bundles (homogeneous) or mixed channels (heterogeneous) have been assessed for technical and economic viability. Potential applications of a

  8. Prospective thorium fuels for future nuclear energy generation

    International Nuclear Information System (INIS)

    Lainetti, Paulo E.O.

    2017-01-01

    In the beginning of the Nuclear Era, many countries were interested on thorium, particularly during the 1950 1970 periods. Nevertheless, since its discovery almost two centuries ago, the use of thorium has been restricted to gas mantles employed in gas lighting. The future world energy needs will increase and, even if we assumed a conservative contribution of nuclear generation, it will be occur a significant increasing in the uranium prices, taking into account that uranium, as used in the present thermal reactors, is a finite resource. Nowadays approximately the worldwide yearly requirement of uranium for about 435 nuclear reactors in operation is 65,000 metric t. Therefore, alternative solutions for future must be developed. Thorium is nearly three times more abundant than uranium in The Earth's crust. Despite thorium is not a fissile material, 232 Th can be converted to 233 U (fissile) more efficiently than 238 U to 239 Pu. Besides this, thorium is an environment alternative energy source and also inherently resistant to proliferation.. Many countries had initiated research on thorium in the past, Nevertheless, the interest evanesced due new uranium resources discoveries and availability of enriched uranium at low prices from obsolete weapons. Some papers evaluate the thorium resources in Brazil over 1.200.000 metric t. Then, the thorium alternative must be seriously considered in Brazil for strategic reasons. A brief history of thorium and its utilization are presented, besides a very short discussion about prospective thorium nuclear fuels for the next generation of nuclear reactors. (author)

  9. Thorium and its future importance for nuclear energy generation

    International Nuclear Information System (INIS)

    Lainetti, Paulo E.O.

    2015-01-01

    Thorium was discovered in 1828 by the Swedish chemist Jons J. Berzelius. Despite some advantages over uranium for use in nuclear reactors, its main use, in the almost two centuries since its discovery, the use of thorium was restricted to use for gas mantles, especially in the early twentieth century. In the beginning of the Nuclear Era, many countries had interested on thorium, particularly during the 1950-1970 period. There are about 435 nuclear reactors in the world nowadays. They need more than 65.000 tons of uranium yearly. The future world energy needs will increase and, even if we assumed a conservative contribution of nuclear generation, it will be occur a significant increasing in the uranium prices, taking into account that uranium, as used in the present thermal reactors, is a finite resource. Thorium is nearly three times more abundant than uranium in the Earth's crust. Despite thorium is not a fissile material, 232 Th can be converted to 233 U (fissile) more efficiently than 238 U to 239 Pu. Besides this, since it is possible to convert thorium waste into nonradioactive elements, thorium is an environment-friendly alternative energy source. Thorium fuel cycle is also inherently resistant to proliferation. Some papers evaluate the thorium resources in Brazil over 1.200.000 metric t. Then, the thorium alternative must be seriously considered in Brazil for strategic reasons. In this paper a brief history of thorium is presented, besides a review of the world thorium utilization and a discussion about advantages and restrictions of thorium use. (author)

  10. Safety and Regulatory Issues of the Thorium Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ade, Brian [ORNL; Worrall, Andrew [ORNL; Powers, Jeffrey [ORNL; Bowman, Steve [ORNL; Flanagan, George [ORNL; Gehin, Jess [ORNL

    2014-02-01

    Thorium has been widely considered an alternative to uranium fuel because of its relatively large natural abundance and its ability to breed fissile fuel (233U) from natural thorium (232Th). Possible scenarios for using thorium in the nuclear fuel cycle include use in different nuclear reactor types (light water, high temperature gas cooled, fast spectrum sodium, molten salt, etc.), advanced accelerator-driven systems, or even fission-fusion hybrid systems. The most likely near-term application of thorium in the United States is in currently operating light water reactors (LWRs). This use is primarily based on concepts that mix thorium with uranium (UO2 + ThO2), add fertile thorium (ThO2) fuel pins to LWR fuel assemblies, or use mixed plutonium and thorium (PuO2 + ThO2) fuel assemblies. The addition of thorium to currently operating LWRs would result in a number of different phenomenological impacts on the nuclear fuel. Thorium and its irradiation products have nuclear characteristics that are different from those of uranium. In addition, ThO2, alone or mixed with UO2 fuel, leads to different chemical and physical properties of the fuel. These aspects are key to reactor safety-related issues. The primary objectives of this report are to summarize historical, current, and proposed uses of thorium in nuclear reactors; provide some important properties of thorium fuel; perform qualitative and quantitative evaluations of both in-reactor and out-of-reactor safety issues and requirements specific to a thorium-based fuel cycle for current LWR reactor designs; and identify key knowledge gaps and technical issues that need to be addressed for the licensing of thorium LWR fuel in the United States.

  11. Fluid-mixing studies in a hexagonal 217-pin wire-wrapped rod bundle

    International Nuclear Information System (INIS)

    Symolon, P.D.; Todreas, N.E.

    1981-02-01

    Mixing, pressure drop, and flow split experiments were performed on a 217 pin LMFBR fuel bundle with a pitch to diameter ratio of 1.25 and a lead length of 12 inches. It was found that the turbulent flow data could best be characterized by the energy parameter C/sub 1L/=.106, which is 9% higher than the value from the correlation of Chiu et al. Chiu's correlation was developed on a data base of 61 and 91 pins. The spread of existing data about the correlation is +- 25%, but the error band on our data is expected to be less (approx. +- 10% since injection depth effects were not previously considered). This result is consistent with the concept of increased swirl flow in larger bundles

  12. Leadless Chip Carrier Packaging and CAD/CAM-Supported Wire Wrap Interconnect Technology for Subnanosecond ECL.

    Science.gov (United States)

    1981-11-01

    Invar , and alloy 42 in a sandwich configuration. These developments will be monitored by the Mayo group; such a material could provide a substrate with...Points of Various . . . . 124 Solders 4. Composition of Alloys Employed in Dual-In-Line . . . . 128 Package Pins and Plating by Mass Spectrographic...of hardened alloy steel to allow minimum wall thickness; it appeared unlikely that bits with even thinner barrels could be manufactured at acceptable

  13. Recovery of thorium and rare earths by their peroxides precipitation from a residue produced in the thorium purification facility

    International Nuclear Information System (INIS)

    Freitas, Antonio Alves de

    2008-01-01

    As consequence of the operation of a Thorium purification facility, for pure Thorium Nitrate production, the IPEN (Instituto de Pesquisas Energeticas e Nucleares) has stored away a solid residue called RETOTER (REsiduo de TOrio e TErras Raras). The RETOTER is rich in Rare-Earth Elements and significant amount of Thorium-232 and minor amount of Uranium. Furthermore it contains several radionuclides from the natural decay series. Significant radioactivity contribution is generated by the Thorium descendent, mainly the Radium-228(T 1/2 =5.7y), known as meso thorium and Thorium-228(T 1/2 1.90y). An important thorium daughter is the Lead-208, a stable isotope present with an expressive quantity. After the enclosure of the operation of the Thorium purification facility, many researches have been developed for the establishment of methodologies for recovery of Thorium, Rare-Earth Elements and Lead-208 from the RETOTER. This work presents a method for RETOTER decontamination, separating and bordering upon some radioactive isotopes. The residue was digested with nitric acid and the Radium-228 was separated by the Barium Sulphate co-precipitation procedure. Finally, the Thorium was separated by the peroxide precipitation and the Rare-Earth Elements were also recovered by the Rare-Earth peroxide precipitation in the filtrate solution.(author)

  14. Thorium: An energy source for the world of tomorrow

    Directory of Open Access Journals (Sweden)

    Revol J.-P.

    2015-01-01

    Full Text Available To meet the tremendous world energy needs, systematic R&D has to be pursued to replace fossil fuels. Nuclear energy, which produces no green house gases and no air pollution, should be a leading candidate. How nuclear energy, based on thorium rather than uranium, could be an acceptable solution is discussed. Thorium can be used both to produce energy and to destroy nuclear waste. The thorium conference, organized by iThEC at CERN in October 2013, has shown that thorium is seriously considered by some major developing countries as a key element of their energy strategy. However, developed countries do not seem to move fast enough in that direction, while global cooperation is highly desirable in this domain. Thorium is not fissile. Various possible ways of using thorium will be reviewed. However, an elegant option is to drive an “Accelerator Driven System (ADS” with a proton accelerator, as suggested by Nobel Prize laureate Carlo Rubbia .

  15. Thorium: An energy source for the world of tomorrow ?

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    To meet the tremendous world energy needs, systematic R&D has to be pursued to replace fossil fuels. The ThEC13 conference organized by iThEC at CERN last October has shown that thorium is seriously considered by developing countries as a key element of their energy strategy. Developed countries are also starting to move in the same direction. How thorium could make nuclear energy (based on thorium) acceptable to society will be discussed. Thorium can be used both to produce energy and to destroy nuclear waste. As thorium is not fissile, one elegant option is to use an accelerator, in so-called “Accelerator Driven Systems (ADS)”, as suggested by Carlo Rubbia. CERN’s important contributions to R&D on thorium related issues will be mentioned as well as the main areas where CERN could contribute to this field in the future.

  16. Computer simulations for thorium doped tungsten crystals

    Energy Technology Data Exchange (ETDEWEB)

    Eberhard, Bernd

    2009-07-17

    Tungsten has the highest melting point among all metals in the periodic table of elements. Furthermore, its equilibrium vapor pressure is by far the lowest at the temperature given. Thoria, ThO{sub 2}, as a particle dopant, results in a high temperature creep resistant material. Moreover, thorium covered tungsten surfaces show a drastically reduced electronic work function. This results in a tremendous reduction of tip temperatures of cathodes in discharge lamps, and, therefore, in dramatically reduced tungsten vapor pressures. Thorium sublimates at temperatures below those of a typical operating cathode. For proper operation, a diffusional flow of thorium atoms towards the surface has to be maintained. This atomic flux responds very sensitively on the local microstructure, as grain boundaries as well as dislocation cores offer ''short circuit paths'' for thorium atoms. In this work, we address some open issues of thoriated tungsten. A molecular dynamics scheme (MD) is used to derive static as well as dynamic material properties which have their common origin in the atomistic behavior of tungsten and thorium atoms. The interatomic interactions between thorium and tungsten atoms are described within the embedded atom model (EAM). So far, in literature no W-Th interaction potentials on this basis are described. As there is no alloying system known between thorium and tungsten, we have determined material data for the fitting of these potentials using ab-initio methods. This is accomplished using the full potential augmented plane wave method (FLAPW), to get hypothetical, i.e. not occurring in nature, ''alloy'' data of W-Th. In order to circumvent the limitations of classical (NVE) MD schemes, we eventually couple our model systems to external heat baths or volume reservoirs (NVT, NPT). For the NPT ensemble, we implemented a generalization of the variable cell method in combination with the Langevin piston, which results in a

  17. High precision spectrophotometric analysis of thorium

    International Nuclear Information System (INIS)

    Palmieri, H.E.L.

    1984-01-01

    An accurate and precise determination of thorium is proposed. Precision of about 0,1% is required for the determination of macroquantities of thorium when processed. After an extensive literature search concerning this subject, spectrophotometric titration has been chosen, using dissodium ethylenediaminetetraacetate (EDTA) solution and alizarin-S as indicator. In order to obtain such a precision, an amount of 0,025 M EDTA solution precisely measured has been added and the titration was completed with less than 5 ml of 0,0025 M EDTA solution. It is usual to locate the end-point graphically, by plotting added titrant versus absorbance. The non-linear minimum square fit, using the Fletcher e Powell's minimization process and a computer programme. Besides the equivalence point, other parameters of titration were determined: the indicator concentration, the absorbance of the metal-indicator complex, and the stability constants of the metal-indicator and the metal-EDTA complexes. (Author) [pt

  18. Uranium and thorium deposits of Northern Ontario

    International Nuclear Information System (INIS)

    Robertson, J.A.; Gould, K.L.

    1983-01-01

    This, the second edition of the uranium-thorium deposit inventory, describes briefly the deposits of uranium and/or thorium in northern Ontario, which for the purposes of this circular is defined as that part of Ontario lying north and west of the Grenville Front. The most significant of the deposits described are fossil placers lying at or near the base of the Middle Precambrian Huronian Supergroup. These include the producing and past-producing mines of the Elliot Lake - Agnew Lake area. Also included are the pitchblende veins spatially associated with Late Precambrian (Keweenawan) diabase dikes of the Theano Point - Montreal River area. Miscellaneous Early Precambrian pegmatite, pitchblende-coffinite-sulphide occurrences near the Middle-Early Precambrian unconformity fringing the Lake Superior basin, and disseminations in diabase, granitic rocks, alkalic complexes and breccias scattered throughout northern Ontario make up the rest of the occurrences

  19. Computer simulations for thorium doped tungsten crystals

    International Nuclear Information System (INIS)

    Eberhard, Bernd

    2009-01-01

    Tungsten has the highest melting point among all metals in the periodic table of elements. Furthermore, its equilibrium vapor pressure is by far the lowest at the temperature given. Thoria, ThO 2 , as a particle dopant, results in a high temperature creep resistant material. Moreover, thorium covered tungsten surfaces show a drastically reduced electronic work function. This results in a tremendous reduction of tip temperatures of cathodes in discharge lamps, and, therefore, in dramatically reduced tungsten vapor pressures. Thorium sublimates at temperatures below those of a typical operating cathode. For proper operation, a diffusional flow of thorium atoms towards the surface has to be maintained. This atomic flux responds very sensitively on the local microstructure, as grain boundaries as well as dislocation cores offer ''short circuit paths'' for thorium atoms. In this work, we address some open issues of thoriated tungsten. A molecular dynamics scheme (MD) is used to derive static as well as dynamic material properties which have their common origin in the atomistic behavior of tungsten and thorium atoms. The interatomic interactions between thorium and tungsten atoms are described within the embedded atom model (EAM). So far, in literature no W-Th interaction potentials on this basis are described. As there is no alloying system known between thorium and tungsten, we have determined material data for the fitting of these potentials using ab-initio methods. This is accomplished using the full potential augmented plane wave method (FLAPW), to get hypothetical, i.e. not occurring in nature, ''alloy'' data of W-Th. In order to circumvent the limitations of classical (NVE) MD schemes, we eventually couple our model systems to external heat baths or volume reservoirs (NVT, NPT). For the NPT ensemble, we implemented a generalization of the variable cell method in combination with the Langevin piston, which results in a set of Langevin equations, i.e. stochastic

  20. Thorium spectrophotometric analysis with high precision

    International Nuclear Information System (INIS)

    Palmieri, H.E.L.

    1983-06-01

    An accurate and precise determination of thorium is proposed. Precision of about 0,1% is required for the determination of macroquantities of thorium processed. After an extensive literature search concerning this subject, spectrophotometric titration has been chosen, using disodium ethylenediaminetetraacetate (EDTA) solution and alizarin S as indicator. In order to obtain such a precision, an amount of 0,025 M EDTA solution precisely measured has been added and the titration was completed with less than 5 ml of 0,0025 M EDTA solution. It is usual to locate the end-point graphically, by plotting added titrant versus absorbance. The non-linear minimum square fit, using the Fletcher e Powell's minimization process and a computer program. (author)

  1. Long term radiological impact of thorium extraction

    International Nuclear Information System (INIS)

    Menard, S.; Schapira, J.P.

    1995-01-01

    Thorium extraction produces a certain amount of radioactive wastes. Potential long term radiological impact of these residues has been calculated using the recent ICRP-68 ingestion dose factors in connection with the computing code DECAY, developed at Orsay and described in this work. This code solves the well known Bateman's equations which govern the time dependence of a set of coupled radioactive nuclei. Monazites will be very likely the minerals to be exploited first, in case of an extensive use of thorium as nuclear fuel. Because monazites contain uranium as well, mining residues will contain not only the descendants of 232 Th and a certain proportion of non-extracted thorium (taken here to be 5%), but also this uranium, if left in the wastes for economical reasons. If no uranium would be present at all in the mineral, the potential radiotoxicity would strongly decrease in approximately 60 years, at the pace of the 5.8 years period of 228 Ra, which becomes the longest-lived radionuclide of the 4n radioactive family in the residues. Moreover, there is no risk due to radon exhalation, because of the very short period of 220 Rn. These significant differences between uranium and thorium mining have to be considered in view of some estimated long term real radiological impacts due to uranium residues, which could reach a value of the order of 1 mSv/year, the dose limit recommended for the public by the recent ICRP-60. (authors). 15 refs., 4 figs., 3 tabs., 43 appendices

  2. Thorium dioxide: properties and nuclear applications

    International Nuclear Information System (INIS)

    Belle, J.; Berman, R.M.

    1984-01-01

    This is the sixth book on reactor materials published under sponsorship of the Naval Reactors Office of the United States Department of Energy, formerly the United States Atomic Energy Commission. This book presents a comprehensive compilation of the most significant properties of thorium dioxide, much like the book Uranium Dioxide: Properties and Nuclear Applications presented information on the fuel material used in the Shippingport Pressurized Water Reactor core

  3. Thorium dioxide: properties and nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Belle, J.; Berman, R.M. (eds.)

    1984-01-01

    This is the sixth book on reactor materials published under sponsorship of the Naval Reactors Office of the United States Department of Energy, formerly the United States Atomic Energy Commission. This book presents a comprehensive compilation of the most significant properties of thorium dioxide, much like the book Uranium Dioxide: Properties and Nuclear Applications presented information on the fuel material used in the Shippingport Pressurized Water Reactor core.

  4. SALICYLATE PROCESS FOR THORIUM SEPARATION FROM RARE EARTHS

    Science.gov (United States)

    Cowan, G.A.

    1959-08-25

    The separation of thorium from rare earths is accomplished by forming an aqueous solution of salts of thorium and rare earths and sufficient acetate buffer to provide a pH of between 2 and 5, adding an ammonium salicylate to the aqueous buffered solution, contacting the resultant solution with a substantially water-immiscible organic solvent mixture of an ether and an ester, and separating the solvent extract phase containing thorium salicylate from the aqueous phase containing the rare earths.

  5. Gastrointestinal absorption and distribution of thorium in the mouse

    International Nuclear Information System (INIS)

    Larsen, R.P.; Oldham, R.D.; Bhattacharyya, M.H.; Moretti, E.S.

    1984-01-01

    The retention of thorium in liver, bone, and other tissues subsequent to its gastrointestinal absorption has been determined in fasted mice. The value obtained for fractional retention was 1.0 x 10 -3 , which is about a factor of two lower than the values for plutonium and neptunium. The tissue distribution and the value for fractional excretion of absorbed thorium were the same as those for intravenously injected thorium. 5 references, 1 table

  6. Self-Sustaining Thorium Boiling Water Reactors

    International Nuclear Information System (INIS)

    Greenspan, Ehud; Gorman, Phillip M.; Bogetic, Sandra; Seifried, Jeffrey E.; Zhang, Guanheng; Varela, Christopher R.; Fratoni, Massimiliano; Vijic, Jasmina J.; Downar, Thomas; Hall, Andrew; Ward, Andrew; Jarrett, Michael; Wysocki, Aaron; Xu, Yunlin; Kazimi, Mujid; Shirvan, Koroush; Mieloszyk, Alexander; Todosow, Michael; Brown, Nicolas; Cheng, Lap

    2015-01-01

    The primary objectives of this project are to: Perform a pre-conceptual design of a core for an alternative to the Hitachi proposed fuel-self- sustaining RBWR-AC, to be referred to as a RBWR-Th. The use of thorium fuel is expected to assure negative void coefficient of reactivity (versus positive of the RBWR-AC) and improve reactor safety; Perform a pre-conceptual design of an alternative core to the Hitachi proposed LWR TRU transmuting RBWR-TB2, to be referred to as the RBWR-TR. In addition to improved safety, use of thorium for the fertile fuel is expected to improve the TRU transmutation effectiveness; Compare the RBWR-Th and RBWR-TR performance against that of the Hitachi RBWR core designs and sodium cooled fast reactor counterparts - the ARR and ABR; and, Perform a viability assessment of the thorium-based RBWR design concepts to be identified along with their associated fuel cycle, a technology gap analysis, and a technology development roadmap. A description of the work performed and of the results obtained is provided in this Overview Report and, in more detail, in the Attachments. The major findings of the study are summarized.

  7. Thorium: in search of a global solution

    CERN Multimedia

    Antonella Del Rosso

    2013-01-01

    Last week, an international conference held at CERN brought together the world’s main experts in the field of alternative nuclear technology for the first time to discuss the use of thorium for the production of energy and the destruction of nuclear waste. Among the different technologies presented and discussed at the conference was ADS (Accelerator-Driven Systems) which relies primarily on particle accelerators.   The conference Chair (far left), the organisers and some of the distinguished participants of the ThEC13 conference held at CERN from 27 to 31 October 2013. “CERN has always been interested in finding ways in which fundamental research can help to resolve the problems of society,” says Jean-Pierre Revol, a physicist at the ALICE experiment who recently retired from CERN and is President of iThEC, the international not-for-profit organisation which promotes research and development in the field of thorium and which organised the Thorium Energy 2013 (Th...

  8. A PWR Thorium Pin Cell Burnup Benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Kevan Dean; Zhao, X.; Pilat, E. E; Hejzlar, P.

    2000-05-01

    As part of work to evaluate the potential benefits of using thorium in LWR fuel, a thorium fueled benchmark comparison was made in this study between state-of-the-art codes, MOCUP (MCNP4B + ORIGEN2), and CASMO-4 for burnup calculations. The MOCUP runs were done individually at MIT and INEEL, using the same model but with some differences in techniques and cross section libraries. Eigenvalue and isotope concentrations were compared on a PWR pin cell model up to high burnup. The eigenvalue comparison as a function of burnup is good: the maximum difference is within 2% and the average absolute difference less than 1%. The isotope concentration comparisons are better than a set of MOX fuel benchmarks and comparable to a set of uranium fuel benchmarks reported in the literature. The actinide and fission product data sources used in the MOCUP burnup calculations for a typical thorium fuel are documented. Reasons for code vs code differences are analyzed and discussed.

  9. Self-Sustaining Thorium Boiling Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud [Univ. of California, Berkeley, CA (United States); Gorman, Phillip M. [Univ. of California, Berkeley, CA (United States); Bogetic, Sandra [Univ. of California, Berkeley, CA (United States); Seifried, Jeffrey E. [Univ. of California, Berkeley, CA (United States); Zhang, Guanheng [Univ. of California, Berkeley, CA (United States); Varela, Christopher R. [Univ. of California, Berkeley, CA (United States); Fratoni, Massimiliano [Univ. of California, Berkeley, CA (United States); Vijic, Jasmina J. [Univ. of California, Berkeley, CA (United States); Downar, Thomas [Univ. of Michigan, Ann Arbor, MI (United States); Hall, Andrew [Univ. of Michigan, Ann Arbor, MI (United States); Ward, Andrew [Univ. of Michigan, Ann Arbor, MI (United States); Jarrett, Michael [Univ. of Michigan, Ann Arbor, MI (United States); Wysocki, Aaron [Univ. of Michigan, Ann Arbor, MI (United States); Xu, Yunlin [Univ. of Michigan, Ann Arbor, MI (United States); Kazimi, Mujid [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Shirvan, Koroush [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Mieloszyk, Alexander [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Todosow, Michael [Brookhaven National Lab. (BNL), Upton, NY (United States); Brown, Nicolas [Brookhaven National Lab. (BNL), Upton, NY (United States); Cheng, Lap [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-03-15

    The primary objectives of this project are to: Perform a pre-conceptual design of a core for an alternative to the Hitachi proposed fuel-self- sustaining RBWR-AC, to be referred to as a RBWR-Th. The use of thorium fuel is expected to assure negative void coefficient of reactivity (versus positive of the RBWR-AC) and improve reactor safety; Perform a pre-conceptual design of an alternative core to the Hitachi proposed LWR TRU transmuting RBWR-TB2, to be referred to as the RBWR-TR. In addition to improved safety, use of thorium for the fertile fuel is expected to improve the TRU transmutation effectiveness; Compare the RBWR-Th and RBWR-TR performance against that of the Hitachi RBWR core designs and sodium cooled fast reactor counterparts - the ARR and ABR; and, Perform a viability assessment of the thorium-based RBWR design concepts to be identified along with their associated fuel cycle, a technology gap analysis, and a technology development roadmap. A description of the work performed and of the results obtained is provided in this Overview Report and, in more detail, in the Attachments. The major findings of the study are summarized.

  10. Nuclear and materials aspects of the thorium fuel cycle

    Science.gov (United States)

    Rodriguez, P.; Sundaram, C. V.

    1981-09-01

    This paper is an attempt to assess and review the materials aspects of the thorium fuel cycle. It starts with an examination of the nuclear aspects of the thorium fuel cycle, meant as an introduction for materials scientists and engineers who may not normally be familiar with the concepts and terms involved. After defining and describing the thorium and uranium fuel cycles, the reasons for the resurgence of interest in the thorium fuel cycle and the technical and economic considerations that support its early adoption are examined. The reactor physics and fissile economics aspects of the thorium and uranium cycles are then compared. The specific reactor types suitable for the adoption of the thorium cycle are briefly examined and described. Subsequent sections of the paper are devoted to a detailed discussion of the materials aspects of the thorium fuel cycle. Available information on fabrication, refabrication and irradiation performance of thorium-based fuels for light water reactors, heavy water reactors, high temperature gas-cooled reactors, molten salt breeder reactors and fast breeder reactors is critically reviewed and analysed. Materials problems related to cladding and structural materials are also discussed whenever these are unique to the thorium cycle.

  11. Health status and body radioactivity of former thorium workers

    International Nuclear Information System (INIS)

    Stehney, A.F.; Polednak, A.P.; Rundo, J.; Brues, A.M.; Lucas, H.F. Jr.; Patten, B.C.; Rowland, R.E.

    1981-01-01

    The objectives of the study are: (1) to assess possible health effects of employment in the thorium milling industry by comparison of mortality and morbidity characteristics of former thorium workers with those of suitable general populations; (2) to examine disease outcomes by estimated exposure levels of thorium and thoron daughter products for possible radiation-related effects; and (3) to determine the body distribution of inhaled thorium (and daughters) and rare earths in humans by radioactivity measurements in vivo and by analysis of autopsy samples. The principal end points for investigation are respiratory disease and cancers of lung, liver, bone, and bone marrow

  12. A newly developed accelerator to convert thorium to uranium-233

    International Nuclear Information System (INIS)

    Kamei, T.

    2014-01-01

    For constructing a sustainable society, low-carbon energy sources and low-carbon automobiles are required. In addition to the use of nuclear power, renewable energy such as wind-mills and solar power are used as low-carbon energy sources. Electric vehicle (EV) and hybrid vehicle (HV) are expected to be used as low-carbon automobiles. Essential raw material in order to fabricate these machineries is rare-earth elements (REE). In these few years, rare-earth supply has been unstable due to China’s monopoly in its production. China’s monopoly of rare-earth production was caused by loss of market competitiveness of other countries that needed to spend cost for taking care of “thorium” which occurred as by-product of rare-earth refining. Thorium can be used as nuclear fuel but thorium is merely fertile. Therefore, additional supply of fissile material is necessary to use thorium. As a result, there are no countries that separate and store thorium as valuable except India. The authors have studied (1) molten-salt reactor (MSR) as a utilizing technology of thorium, (2) implementation capacity of thorium MSR supported by a supply of plutonium from spent uranium fuel and (3) international framework to protect environment from thorium which occurs as by-product of rare-earth refining. Available implementation capacity of thorium MSR by using all plutonium based on the prediction of IEA’s uranium fuel cycle is only 392 GW at 2050. This capacity of thorium MSR requires 76 thousand tonnes of thorium but total amount of thorium occurring as by-product of rare-earth reaches to 444 thousand tonnes. If there is no use of thorium, it could be abandoned to environment illegally. The authors are considering a new framework to protect environment by giving an incentive of storing thorium by adding value to these excess thorium. A newly developed accelerator neutron source is a method to add value to thorium. Spallation reaction has been known as neutron source which uses high

  13. Review of Brazilian activities related to the thorium fuel cycle and production of thorium compounds at IPEN-CNEN/SP

    International Nuclear Information System (INIS)

    Lainetti, Paulo E.O.; Freitas, Antonio A.; Mindrisz, Ana C.

    2013-01-01

    The Brazilian's interest in the nuclear utilization of thorium has started in the 50's as a consequence of the abundant occurrence of monazite sands. Since the sixties, IPEN-CNEN/SP has performed some developments related to the thorium fuel cycle. The production and purification of thorium compounds was carried out at IPEN for about 18 years and the main product was the thorium nitrate with high purity, having been produced over 170 metric tons of this material in the period, obtained through solvent extraction. The thorium nitrate was supplied to the domestic industry and used for gas portable lamps (Welsbach mantle). Although the thorium compounds produced have not been employed in the nuclear area, several studies were conducted. Therefore, those activities and the accumulated experience are of strategic importance, on one hand due to huge Brazilian thorium reserves, on the other hand by the resurgence of the interest of thorium for the Generation IV Advanced Reactors. This paper presents a review of the Brazilian research and development activities related to thorium technology. (author)

  14. A study on the structure of thorium salt solutions

    International Nuclear Information System (INIS)

    Magini, M.; Cabrini, A.; Di Bartolomeo, A.

    1975-01-01

    The structure of highly hydrolyzed thorium salt solutions has been investigated by large and small angle X-ray scattering techniques. The diffraction data obtained with large angle measurements show the presence in solution of microcrystalline particles with the thorium oxide structure. Particles larger than those were discovered by small angle measurements. A possible shape of these colloidal particles has been discussed

  15. Automated methods for thorium determination in liquids, solids and aerosols

    International Nuclear Information System (INIS)

    Robertson, R.; Stuart, J.E.

    1984-01-01

    Methodology for determining trace thorium levels in a variety of sample types for compliance purposes was developed. Thorium in filtered water samples is concentrated by ferric hydroxide co-precipitation. Aerosols on glass-fibre, cellulose ester or teflon filters are acid digested and thorium is concentrated by lanthanum fluoride co-precipitation. Chemical separation and measurement are then done on a Technicon AAII-C auto-analyzer via TTA-solvent extraction and colorimetry using the thorium-arsenazo III colour complex. Solid samples are acid digested and thorium is concentrated and separated using lanthanum fluoride co-precipitation followed by anion-exchange chromatography. Measurement is then carried out on the autoanalyzer by direct development of the thorium-arsenazo III colour complex. Chemical yields are determined through the addition of thorium-234 tracer with assay by gamma-ray spectrometry. The sensitivities of the methods for liquids, aerosols and solids are approximately 1μg/L,0.5μg and 0.5 μg/g respectively. At thorium levels about ten times the detection limits, accuracy and reproducibility are typically +-10 percent for liquids and aerosols and +- 15 percent for solid samples

  16. Rays Emitted by Compounds of Uranium and of Thorium

    Indian Academy of Sciences (India)

    glass, and paper of slight thickness. Here are the fractions of radiation transmitted through a sheet of aluminum of thickness 0.01 mm: mm [sic]. 0.2. 0.33. 0.4. 0.7 for uranium, ammonium uranate, uranous oxide, artificial chalcolite for pitchblende and natural chalcolite for thorium oxide and thorium sulfate in a O.S-mm layer.

  17. Evaluation of thorium based nuclear fuel. Chemical aspects

    International Nuclear Information System (INIS)

    Konings, R.J.M.; Blankenvoorde, P.J.A.M.; Cordfunke, E.H.P.; Bakker, K.

    1995-07-01

    This report describes the chemical aspects of a thorium-based fuel cycle. It is part of a series devoted to the study of thorium-based fuel as a means to achieve a considerable reduction of the radiotoxicity of the waste from nuclear power production. Therefore special emphasis is placed on fuel (re-)fabrication and fuel reprocessing in the present work. (orig.)

  18. Economics and utilization of thorium in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    1978-05-01

    Information on thorium utilization in power reactors is presented concerning the potential demand for nuclear power, the potential supply for nuclear power, economic performance of thorium under different recycle policies, ease of commercialization of the economically preferred cases, policy options to overcome institutional barriers, and policy options to overcome technological and regulatory barriers.

  19. Present state and perspective of research on thorium cycle

    International Nuclear Information System (INIS)

    Kimura, Itsuro

    1994-01-01

    For the prosperity of Japan and the welfare of mankind in the world, enormous quantity of energy is required in 21st century, and the general circumstances of energy and nuclear power are described. In addition to the present nuclear power using mostly 235 U and the plutonium produced from 238 U, it is the thorium cycle that 233 U produced from the third nuclear fuel, thorium, is used for electric power generation as an energy source. In this report, the 'General research on thorium cycle as a promising energy source in and after 21st century' is outlined, which has been advanced by accepting the subsidy of scientific research expense of the Ministry of Education. The features of the thorium cycle and the nuclear data and the nuclear characteristics in comparison with uranium-plutonium reactors are described. The trend of the research and development in the world and in Japan is reported. Two general researches were carried out for five years from fiscal year 1988 to 1992 on the thorium cycle. The results of the research on the nuclear data, the design of thorium reactors, the criticality experiment and analysis, thorium hybrid, thorium fuel, molten salt, fuel reprocessing and radiation safety are reported. (K.I.)

  20. Economics and utilization of thorium in nuclear reactors

    International Nuclear Information System (INIS)

    1978-05-01

    Information on thorium utilization in power reactors is presented concerning the potential demand for nuclear power, the potential supply for nuclear power, economic performance of thorium under different recycle policies, ease of commercialization of the economically preferred cases, policy options to overcome institutional barriers, and policy options to overcome technological and regulatory barriers

  1. REGENERATION OF FISSION-PRODUCT-CONTAINING MAGNESIUM-THORIUM ALLOYS

    Science.gov (United States)

    Chiotti, P.

    1964-02-01

    A process of regenerating a magnesium-thorium alloy contaminated with fission products, protactinium, and uranium is presented. A molten mixture of KCl--LiCl-MgCl/sub 2/ is added to the molten alloy whereby the alkali, alkaline parth, and rare earth fission products (including yttrium) and some of the thorium and uranium are chlorinated and

  2. Determination of microquantities of zirconium and thorium in uranium dioxide

    International Nuclear Information System (INIS)

    Weber de D'Alessio, Ana; Zucal, Raquel.

    1975-07-01

    A method for the determination of 10 to 50 ppm of zirconium and thorium in uranium IV oxide of nuclear purity is established. Zirconium and thorium are retained in a strong cation-exchange resin Dowex 50 WX8 in 1 M HCl. Zirconium is eluted with 0,5% oxalic acid solution and thorium with 4% ammonium oxalate. The colorimetric determination of zirconium with xilenol orange is done in perchloric acid after destructtion of oxalic acid and thorium is determined with arsenazo III in 5 M HCl. 10 μg of each element were determined with a standard deviation of 2,1% for thorium and 3,4% for zirconium. (author) [es

  3. Simulation an Accelerator driven Subcritical Reactor core with thorium fuel

    International Nuclear Information System (INIS)

    Shirmohammadi, L.; Pazirandeh, A.

    2011-01-01

    The main purpose of this work is simulation An Accelerator driven Subcritical core with Thorium as a new generation nuclear fuel. In this design core , A subcritical core coupled to an accelerator with proton beam (E p =1 GeV) is simulated by MCNPX code .Although the main purpose of ADS systems are transmutation and use MA (Minor Actinides) as a nuclear fuel but another use of these systems are use thorium fuel. This simulated core has two fuel assembly type : (Th-U) and (U-Pu) . Consequence , Neutronic parameters related to ADS core are calculated. It has shown that Thorium fuel is use able in this core and less nuclear waste ,Although Iran has not Thorium reserves but study on Thorium fuel cycle can open a new horizontal in use nuclear energy as a clean energy and without nuclear waste

  4. Light water reactors with a denatured thorium fuel cycle

    International Nuclear Information System (INIS)

    1978-05-01

    Discussed in this paper is the performance of denatured thorium fuel cycles in PWR plants of conventional design, such as those currently in operation or under construction. Although some improvement in U 3 O 8 utilization is anticipated in PWRs optimized explicitly for the denatured thorium fuel cycle, this paper is limited to a discussion of the performance of denatured thorium fuels in conventional PWRs and consequently the data presented is representative of the use of thorium fuel in existing PWRs or those presently under construction. In subsequent sections of this paper, the design of the PWR, its performance on the denatured thorium fuel cycle, safety, accident and environmental considerations, and technological status and R and D requirements are discussed

  5. Study Of Thorium As A Nuclear Fuel.

    Directory of Open Access Journals (Sweden)

    Prakash Humane

    2017-10-01

    Full Text Available Conventional fuel sources for power generation are to be replacing by nuclear power sources like nuclear fuel Uranium. But Uranium-235 is the only fissile fuel which is in 0.72 found in nature as an isotope of Uranium-238. U-238 is abundant in nature which is not fissile while U-239 by alpha decay naturally converted to Uranium- 235. For accompanying this nuclear fuel there is another nuclear fuel Thorium is present in nature is abundant can be used as nuclear fuel and is as much as safe and portable like U-235.

  6. Electronic States in Thorium under Pressure

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Jan, J. P.

    1980-01-01

    We have used the local-density formalism and the atomic-sphere approximation to calculate self-consistently the electronic properties of thorium at pressures up to 400 kbar. The derived equation of state agrees very well with static pressure experiments and shock data. Below the Fermi level (EF......) the electronic band structure is formed by 7s and 6d states while the bottom of a relatively broad 5f band is positioned 0.07 Ry above EF. The calculated extremal areas of the Fermi surface and their calculated pressure dependence agree with earlier calculations and with de Haas-van Alphen measurements...

  7. Thorium impact on tobacco root transcriptome

    Czech Academy of Sciences Publication Activity Database

    Mazari, Kateřina; Landa, Přemysl; Přerostová, Sylva; Müller, Karel; Vaňková, Radomíra; Soudek, Petr; Vaněk, Tomáš

    2017-01-01

    Roč. 325, MAR 5 (2017), s. 163-169 ISSN 0304-3894 R&D Projects: GA MŠk(CZ) LD11073; GA MŠk(CZ) LD13029 Institutional support: RVO:61389030 Keywords : arabidopsis-thaliana roots * juncea var. foliosa * cadmium accumulation * deficiency responses * mineral-nutrition * gene-expression * plant transfer * iron uptake * uranium * soil * Microarray * Thorium * Gene expression * Toxicity * Nicotiana tabacum Subject RIV: ED - Physiology OBOR OECD: Plant sciences, botany Impact factor: 6.065, year: 2016

  8. Prospective thorium fuels for future nuclear energy generation

    Energy Technology Data Exchange (ETDEWEB)

    Lainetti, Paulo E.O., E-mail: lainetti@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    In the beginning of the Nuclear Era, many countries were interested on thorium, particularly during the 1950 1970 periods. Nevertheless, since its discovery almost two centuries ago, the use of thorium has been restricted to gas mantles employed in gas lighting. The future world energy needs will increase and, even if we assumed a conservative contribution of nuclear generation, it will be occur a significant increasing in the uranium prices, taking into account that uranium, as used in the present thermal reactors, is a finite resource. Nowadays approximately the worldwide yearly requirement of uranium for about 435 nuclear reactors in operation is 65,000 metric t. Therefore, alternative solutions for future must be developed. Thorium is nearly three times more abundant than uranium in The Earth's crust. Despite thorium is not a fissile material, {sup 232}Th can be converted to {sup 233}U (fissile) more efficiently than {sup 238}U to {sup 239}Pu. Besides this, thorium is an environment alternative energy source and also inherently resistant to proliferation.. Many countries had initiated research on thorium in the past, Nevertheless, the interest evanesced due new uranium resources discoveries and availability of enriched uranium at low prices from obsolete weapons. Some papers evaluate the thorium resources in Brazil over 1.200.000 metric t. Then, the thorium alternative must be seriously considered in Brazil for strategic reasons. A brief history of thorium and its utilization are presented, besides a very short discussion about prospective thorium nuclear fuels for the next generation of nuclear reactors. (author)

  9. Phthalocyaninato complexes of thorium, protactinium and uranium

    International Nuclear Information System (INIS)

    Beck, O.F.

    1985-01-01

    For the preparation of Bis(phthalocyaninato)-actinoid(IV) complexes, AnPc 2 , a new optimizing synthesis procedure was developed, with which it was possible to prepare spectrally pure, that is, H 2 Pc-free, ThPc 2 , UPc 2 and the isostructurally similar 231 PaPc 2 .PaPc 2 . This was verified with the help of electron spectra, which were compared to preparations which were synthesized in another manner. The corresponding perfluorinated compounds were also produced for thorium and uranium by use of tetrafluorophthalic acid nitrile instead of phthalic acid nitrile as initial product. Electron and infrared spectra show the typical bands of the non-substituted complexes. By the attempt to produce a mono(phthalocyaninato)-thorium complex with the use of ThI 4 as initial material a pyridine-extracted pure ThPcI 2 (py) 2 was obtained with a typical mono(phthalocyaninato) complex electron spectrum, an extremely moisture sensitive compound which in water or acids decomposes and produces H 2 Pc. (orig./RB) [de

  10. An evaluation of once-through homogeneous thorium fuel cycle for light water reactors

    International Nuclear Information System (INIS)

    Joo, H. K.; Noh, J. M.; Yoo, J. W.

    2002-01-01

    The other ways enhancing the economic potential of thorium fuel has been assessed ; the utilization of lower enriched uranium in thorium-uranium fuel, duplex thorium fuel concept, thorium utilization in the mixed core with uranium fuel assembly and thorium blanket utilization in the uranium core. The fuel economics of the proposed ways of thorium fuel increased compared to the previous homogeneous thorium fuel cycle. Compared to uranium fuel cycle, however, they do not show any economic incentives. From the view of proliferation resistance potential, thorium fuel option has the advantage to reduce the inventory of plutonium production. Any of proposed thorium options are less economical than uranium fuel option, the thorium fuel option has the potential to be utilized in the future for the sake of the effective consumption of excessive plutonium and the preparation against the using up of uranium resource

  11. Thorium-based nuclear fuel: current status and perspectives

    International Nuclear Information System (INIS)

    1987-03-01

    Until the present time considerable efforts have already been made in the area of fabrication, utilization and reprocessing of Th-based fuels for different types of reactors, namely: by FRG and USA - for HTRs; FRG and Brazil, Italy - for LWRs; India - for HWRs and FBRs. Basic research of thorium fuels and thorium fuel cycles are also being undertaken by Australia, Canada, China, France, FRG, Romania, USSR and other countries. Main emphasis has been given to the utilization of thorium fuels in once-through nuclear fuel cycles, but in some projects closed thorium-uranium or thorium-plutonium fuel cycles are also considered. The purpose of the Technical Committee on the Utilization of Thorium-Based Nuclear Fuel: Current Status and Perspective was to review the world thorium resources, incentives for further exploration, obtained experience in the utilization of Th-based fuels in different types of reactors, basic research, fabrication and reprocessing of Th-based fuels. As a result of the panel discussion the recommendations on future Agency activities and list of major worldwide activities in the area of Th-based fuel were developed. A separate abstract was prepared for each of the 9 papers in this proceedings series

  12. Immobilization of thorium over fibroin by polyacrylonitrile (PAN)

    International Nuclear Information System (INIS)

    Aslani, M.A.A.; Akyil, S.; Eral, M.

    1997-01-01

    This report describes a process for immobilization of thorium over fibroin, which was used as a bio-adsorbant, by polyacrylonitrile. The amounts of thorium in aqueous solutions which may be leached in various aqueous ambients were detected by a spectrophotometer. The results show that polyacrylonitrile processes are feasible to immobilize spent fibroins. The leachability of the materials immobilized with polyacrylonitrile can meet the requirements of storage and final disposal. The leachability of thorium ions from immobilized spent fibroin was rather low for 8 months

  13. On the radiology of thorium-uranium electro breeding

    International Nuclear Information System (INIS)

    Gai, E.V.; Rabotnov, N.S.; Shubin, Y.N.

    1995-01-01

    Radiological problems arising in thorium-uranium electro-breeding with thorium accelerator target are discussed. Following radiological problems are discussed and evaluated in simplified model calculations: U-232 formation, accumulation of light Th isotopes in (n, xn) reactions on thorium target: accumulation of the same nuclides in final repository after alpha-decay of uranium isotopes. The qualitative comparison of U-Pu and U-Th fuel cycles is performed. The problems seem to be serious enough to justify detailed quantitative investigation. (authors)

  14. Spectrophotometric Determination of Thorium in Low Grade Minerals and Ores

    International Nuclear Information System (INIS)

    Arnfelt, A.L.; Edmundsson, I.

    1960-08-01

    The following method is intended for the determination of microgram quantities of thorium in samples of minerals and ores. The mineral sample is decomposed by repeated sintering with sodium peroxide. After digestion with water thorium peroxide hydrate is recovered by centrifugation and dissolved in hydrochloric acid. Thorium is determined spectrophotometrically with naphtarson after its separation from metals forming chloro complexes which are adsorbed on a strongly basic anion exchange resin. Interferences from a few different ions have been studied. The time required for the analysis of one sample is about 4 hours, when analysing 12 samples simultaneously

  15. Heavy water reactors on the denatured thorium cycles

    International Nuclear Information System (INIS)

    1978-05-01

    This paper presents preliminary technical and economic data to INFCE on the denatured U-233/Thorium fuel cycle for use in early comparisons of alternate nuclear systems. The once-through uranium fuel cycle is discussed in a companion paper. In presenting this preliminary information at this time, it is recognized that there are several other denatured thorium fuel cycles of potential interest, such as the U-235/thorium cycle which could be implemented at an earlier date. Information on these alternate cycles is currently being developed, and will be provided to INFCE when available

  16. Thorium Molten Salt Nuclear Energy Synergetic System (THORIMS-NES)

    International Nuclear Information System (INIS)

    Yoshioka, Ritsuo; Mitachi, Koshi

    2013-01-01

    The authors have been promoting nuclear energy technology based on thorium molten salt as Thorium Molten Salt Nuclear Energy Synergetic System (THORIMS-NES). This system is a combination of fission power reactor of Molten Salt Reactor (MSR), and Accelerator Molten Salt Breeder (AMSB) for production of fissile 233 U with connecting chemical processing facility. In this paper, concept of THORIMS-NES, advantages of thorium and molten salt recent MSR design results such as FUJI-U3 using 233 U fuel, FUJI-Pu, large sized super-FUJI, pilot plant miniFUJI, AMSB, and chemical processing facility are described. (author)

  17. Bioaccumulation of uranium and thorium from the solution containing both elements using various microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Tsuruta, T. [Department of Applied Chemistry, Tohwa University, 1-1-1 Chikushigaoka, Fukuoka 815-8510 (Japan)]. E-mail: ttsuruta@tohwa-u.ac.jp

    2006-02-09

    The effects of proton, thorium and uranium on the bioaccumulation of thorium and uranium from the solution (pH 3.5) containing uranium and thorium using Streptomyces levoris cells were examined. The amount of thorium accumulated using the cells decreased by the pre-contact between the cells and the solution (pH 3.5) containing no metals, whereas that of uranium was almost unaffected by the treatment. The amount of thorium was almost unaffected by the existence of uranium. On the other hand, the amount of uranium accumulated was strongly affected by the thorium, especially thorium addition after uranium accumulation. The decrease of uranium accumulated by the addition of thorium after the accumulation of uranium was higher than that from the solution containing both elements. Therefore, the contribution of uranium-thorium exchange reaction was higher than that of competition reaction. Accordingly, proton-uranium-thorium exchange reaction was occurred in the accumulation of thorium from the solution containing thorium and uranium. The gram-positive bacteria, such as Micrococcus luteus, Arthrobacter nicotianae, Bacillus subtilis and B. megaterium, has a much higher separation factor as thorium/uranium than that of actinomycetes. These gram-positive bacterial strains can be used for the accumulation of thorium from the solution containing uranium and thorium.

  18. Thorium valency in molten alkali halides in equilibrium with metallic thorium

    International Nuclear Information System (INIS)

    Smirnov, M.V.; Kudyakov, V.Ya.

    1983-01-01

    Metallic thorium is shown to corrode in molten alkali halides even in the absence of external oxidizing agents, alkali cations acting as oxidizing agents. Its corrosion rate grows in the series of alkali chlorides from LiCl to CsCl at constant temperature. Substituting halide anions for one another exerts a smaller influence, the rate rising slightly in going from chlorides to bromides and iodides, having the same alkali cations. Thorium valency is determined coulometrically, the metal being dissolved anodically in molten alkali halides and their mixtures. In fluoride melts it is equal to 4 but in chloride, bromide and iodide ones, as a rule, it has non-integral values between 4 and 2 which diminish as the temperature is raised, as the thorium concentration is lowered, as the radii of alkali cations decrease and those of halide anions increase. The emf of cells Th/N ThHlsub(n) + (1-N) MHl/MHl/C, Hlsub(2(g)) where Hl is Cl, Br or I, M is Li, Na, K, Cs or Na + K, and N < 0.05, is measured as a function of concentration at several temperatures. Expressions are obtained for its concentration dependence. The emf grows in the series of alkali chlorides from LiCl to CsCl, other conditions being equal. (author)

  19. Thorium Occurrences, Geological Deposits and Resources

    International Nuclear Information System (INIS)

    Barthel, F.H.; Tulsidas, H.

    2014-01-01

    Availability of Thorium: • Monazite production can be used as a measure for Th availability. • Without commercial rare earth requirements recovery of Th from monazite is not economic. • Extraction of Th from deposits containing e.g. Nb,Ta, may become economic by-product once commercial Th requirements progress.• Monazite is extracted in India, Brazil, Malaysia. • Annually 6 300 to 7 400 t monazite between 2004 and 2008. • Largest producer: India, ~5 000 t monazite /a. • Later figures are not available (Chinese competition on the rare earth market?). • Other monazite producers (unknown amounts): China, Indonesia, Nigeria, North and South Korea, CIS. • Theoretical content of Th in the above reported monazite: 300 to 600 t Th. • Th production reported: Brazil, Canada, India and others, details are not available.

  20. Thorium Molten-Salt Nuclear Energy Synergetics

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Lecocq, A.; Kato, Yoshio; Mitachi, Kohshi.

    1990-01-01

    In the next century, the 'fission breeder' concept will not be practical to solve the global energy problems, including environmental and North-South problems. As a new measure, a simple rational Th molten salt breeding fuel cycle system, named 'Thorium Molten-Salt Nuclear Energy Synergetics (THORIMS-NES)', which composed of simple power stations and fissile producers, is proposed. This is effective to establish the essential improvement in issues of resources, safety, power-size flexibility, anti-nuclear proliferation and terrorism, radiowaste, economy, etc. securing the simple operation, maintenance, chemical processing, and rational breeding fuel cycle. As examples, 155 MWe fuel self-sustaining power station 'FUJI-II', 7 MWe pilot-plant 'miniFUJI-II', 1 GeV-300 mA proton Accelerator Molten-Salt Breeder 'AMSB', and their combined fuel cycle system are explained. (author)

  1. Thorium oxide dissolution: kinetics and mechanism

    International Nuclear Information System (INIS)

    Simonnet, Marie

    2015-01-01

    Studies of new energy sources are necessary to meet the rising global demand. In the nuclear area, Th-U cycle has been reinvestigated to supplement or replace the currently used U-Pu cycle. This project though needs further improvement to be operated in an industrial plant, especially on the reprocessing process, which consists in fuel dissolution in nitric acid medium, followed by liquid-liquid extraction. Still, unlike uranium, thorium oxide does not dissolve in concentrated nitric acid. Small amounts of fluoride are required to achieve the dissolution. The dissolution is rather slow and HNO 3 -HF mixture is very corrosive. The aim of this project is thus to find an efficient dissolution method which both decreases corrosion and improves dissolution rate. The synthesized thorium oxide powder has been dissolved in chosen conditions. Effects of solid parameters, dissolution method and dissolution medium have been studied. Results show a strong dependence on oxide crystallinity. No improvement on dissolution rate was observed with power ultrasounds, except for the temperature increase, which greatly enhances dissolution rate. No other complexing agents than fluoride allows total dissolution. Rising HNO 3 and HF concentrations increases dissolution rate until the amount of fluorides is so high that a precipitate forms at the surface. This study led to the proposal of a dissolution mechanism whose limiting step is the formation of an activated complex. Based on kinetics and equilibrium equations, initial dissolution rate was then written as a function of the different studied parameters. Experimental results were finally fitted by this relation to find kinetics and thermodynamics constants, proving the accuracy of the proposed mechanism. (author)

  2. Spectrographic analysis of thorium and its compounds

    International Nuclear Information System (INIS)

    Grampurohit, S.V.; Saksena, M.D.; Kaimal, V.N.P.; Kapoor, S.K.; Murty, P.S.

    1980-01-01

    A spectrographic method, which employs the principle of carrier-distillation technique, is described for the analysis of high purity thoria. Two carriers, AgCl and NaF were used in determining 27 trace elements in ThO 2 . The elements were divided into three groups, A, B and C. In group A, 15 elements, viz. Al, B, Be, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Sb, Si and Sn were included since it was possible to choose sensitive lines of these elements in one spectral region, 220 - 285 nm. Group B covered 8 elements, viz. Ag, Bi, Ca, Ga, Mo, Ti, V and Zn, which could be determined in the spectral region 290 - 352.5 nm. Group C consisted 4 elements, viz. Ba, K, Li and Na which could be determined in the spectral region 440 - 820 nm. 5% AgCl was used as the carrier for the determination of groups A and C elements and 4% NaF was used as the carrier for the estimation of group B elements. One hundred milligrammes of the sample (in the form of ThO 2 ) containing the carrier were taken in a carrier-distillation electrode and excited in a d.c. arc (10 amps for groups A and C; 15 amps for group B). The spectra of sample and synthetic standards were photographed on Hilger's large quartz, JACO 3.4 m Ebert plane grating and Higler's large glass spectrographs respectively for determining group A, B and C elements. The detection limit obtained for B and Cd was 0.1 ppm. Thorium metal and thorium nitrate samples were converted to ThO 2 prior to analysis. (auth.)

  3. Thorium, UNFC (3,3,3) In Brasil

    International Nuclear Information System (INIS)

    Villas-Bôas, Roberto C.

    2014-01-01

    Types of thorium UNFC (3,3,3) in Brasil: • Placer, shoreline; • Placer, alluvial; • Carbonatite with residual enrichment (Barreiro,Catalao); • Carbonatite (Salitre, MG); • Pitinga granites (AM); • Alkalic Igneous

  4. Investigation of colourless complexes of thorium, hafnium and zirconium

    International Nuclear Information System (INIS)

    Kiciak, S.; Stefanowicz, T.; Gontarz, H.; Swit, Z.

    1980-01-01

    The investigations conducted in the Institute of General Chemistry of Poznan Technical University in partial cooperation with Kharkhof Technical University related with thorium, hafnium and zirconium complexes are reviewed. (author)

  5. Thorium fuel cycle: a nuclear strategy and fuel recycle technology

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.; Dahlberg, R.C.; Wymer, R.G.

    1978-01-01

    Use of thorium fuel cycles in thermal reactors appears to permit a moderate rate of introduction of fast breeder reactors into the nuclear economy and helps maintain a relatively low ratio of FBRs to thermal reactors in the future. To implement the benefits of thorium fuel cycles, however, will require fuel recycle research and development. Fuel recycle technology developed for uranium and plutonium cycles will be beneficial to thorium fuel cycle development; however, significant additional R and D is required to implement either the HEUTH or the DUTH cycles. The metal-clad reactors in general have relatively common generic technology development requirements, although there are significant differences between fast and thermal reactor fuel recycle needs. The thorium fuel recycle R and D requirements of HTGRs are more reactor-specific than of the other reactor types; however, some specific efforts will be required for all the different reactor types.

  6. Spectral shift controlled reactors, denatured U-233/thorium cycle

    International Nuclear Information System (INIS)

    1978-05-01

    This paper presents technical and economic data on the SSCR which may be of use in the International Fuel Cycle Evaluation Program to intercompare alternative nuclear systems. Included in this paper are data on the denatured U-233/thorium cycle. This cycle shows a proliferation advantage over more classical thorium fuel cycle (e.g., highly-enriched U-235/thorium or plutonium/thorium) due to the elimination of chemically-separable, concentrated fissile material from unirradiated nuclear fuel. The U-233 is denatured by mixing with depleted uranium to a concentration no greater than 12 w/o. An exogenous source of U-233 is assumed in this paper, since U-233 does not occur in nature and only a limited supply has been produced to date for research and development work

  7. Implementation of thorium fuel cycle in Indian nuclear programme

    International Nuclear Information System (INIS)

    Krishnani, P.D.; Srivenkatesan, R.

    2004-01-01

    To ensure long term availability of nuclear energy in a sustainable manner, taking cognisance of its resource position, India has followed a closed fuel cycle option and chalked out a three-stage nuclear power programme based on uranium and thorium. The three stages of this programme comprise: - Natural uranium fuelled Pressurized Heavy Water Reactors - Fast Breeder Reactors utilising plutonium based fuel - Advanced nuclear power systems for utilization of thorium The technology for the first stage has already reached a level of maturity, and a commercial fast breeder reactor programme, comprising of the second stage, is due to start soon with the construction of Prototype Fast Breeder Reactor (Pbr). A large amount of research and development is going on for utilizing thorium. In this respect, an Advanced Heavy Water Reactor (A HWR) is being designed in India. The R and D work on thorium fuel cycle is discussed

  8. Separation of Protactinium from Neutron Irradiated Thorium Oxide

    International Nuclear Information System (INIS)

    Dominguez, G.; Gutierrez, L.; Ropero, M.

    1983-01-01

    The chemical separation of thorium and protactinium can be carried out by leaching most of the last one, about 95%, with aqueous HF from neutron irradiated thorium oxide. This leaching reaction la highly favored by the transformation reaction of the ThO 2 material into ThF 4 . For both reactions, leaching and transformation, the reagents concentration, agitation speed and temperature influences were studied and the activation energies were found. (Author) 18 refs

  9. The use of thorium as an alternative nuclear fuel

    International Nuclear Information System (INIS)

    Wilson, D.J.

    1982-04-01

    The use of thorium as an alternative or supplementary nuclear fuel is examined and compared with uranium. A description of various reactor types and their suitability to thorium fuel, and a description of various aspects of the fuel cycle from mining to waste disposal, are included. Comments are made on the safety and economics of each aspect of the fuel cycle and the extension of the lifetime of nuclear fuel

  10. Assessment of the thorium fuel cycle in power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.; Homan, F.J.; Allen, E.J.

    1977-01-01

    A study was conducted at Oak Ridge National Laboratory to evaluate the role of thorium fuel cycles in power reactors. Three thermal reactor systems were considered: Light Water Reactors (LWRs); High-Temperature Gas-Cooled Reactors (HTGRs); and Heavy Water Reactors (HWRs) of the Canadian Deuterium Uranium Reactor (CANDU) type; most of the effort was on these systems. A summary comparing thorium and uranium fuel cycles in Fast Breeder Reactors (FBRs) was also compiled.

  11. Thermodynamics of dehydration process of uranyl nitrate pentahydrate of thorium

    International Nuclear Information System (INIS)

    Khamidov, F.A.; Mirsaidov, I.U.; Nazarov, K.M.; Nasriddinov, S.K.; Badalov, A.B.

    2010-01-01

    Present article is devoted to thermodynamics of dehydration process of uranyl nitrate pentahydrate of thorium. The results of researches of dehydration process of uranyl nitrate pentahydrate of thorium Th(NO 3 ) 4 ·5H 2 O were considered. The researches were carried out by means of tensimeter method with membrane zero-manometer under equilibrium conditions and at 300-450 K temperature ranges. The thermodynamic characteristics of dehydration process of initial crystalline hydrate was defined.

  12. The comparative distribution of thorium and plutonium in human tissues

    International Nuclear Information System (INIS)

    Singh, Narayani P.; Shawki Amin Ibrahim; Cohen, Norman; Wrenn, McDonald E.

    1978-01-01

    Thorium is the most chemically and biologically similar natural element to the manmade element plutonium. Both are actinides, and for both the most stable valency state is +4, and solubility in natural body fluids is low. They are classified together in ICRP Lung Model. The present paper deals with the question of whether or not the analogy between the two actinides in terms of deposition and retention in human tissues is a good one. Preliminary results on the thorium contents ( 228,230 Th and 232 Th) of three sets of human tissues from a western U.S. town containing a uranium tailings pile are compared with the reported values of plutonium content of human tissues from the general populations who are exposed to environmental plutonium from fallout of nuclear detonations. Samples were taken at autopsy where sudden death had occurred. For the three isotopes of thorium, the ratio of the content of each (pCi/organ, normalized by organ weight to ICRP Reference Man) in lung to lymph nodes varies from 2-25 for individuals with a mean of 8; this is similar to that we infer from the literature for 239 , 240 Pu which suggests a ratio of lung to lymph nodes with a mean of approximately 7. However, the relative thorium contents of lung and liver are dissimilar, lung/liver for thorium being 3.5 and for plutonium 0.2 to 0.1. Similarly, the ratios of thorium and plutonium content of liver and bone vary significantly; the ratio for thorium is 0.1 and for plutonium 0.8 to 0.5. The most significant observation at this stage is that the relative accumulation of thorium in human liver is much less than that of plutonium. Some of the plausible reasons will be discussed. (author)

  13. An assessment of once-through homogeneous thorium fuel economics for light water reactors

    International Nuclear Information System (INIS)

    Joo, Hyung Kook; Noh, Jae Man; Yoo, Jae Woon

    2001-01-01

    The fuel economics of an once-through homogeneous thorium fuel concept for PWR was assessed by doing a detailed core analysis. In addition to this, the fuel economics assessment was also performed for two other ways enhancing the economic potential of thorium fuel; thorium utilization in the mixed core with uranium fuel assembly and Duplex thorium fuel concepts. As a results of fuel economics assessment, the thorium fuel cycle does not show any economic incentives in preference to uranium fuel cycle under the 18-months fuel cycle for PWR. However, the utilization of thorium is the mixed core with uranium fuel assembly and Duplex thorium fuel cycle and show superior fuel economics to uranium fuel under the longer fuel cycle scheme. The economic potential of once-through thorium fuel cycle is expected to be increased further by utilizing the Duplex thorium fuel in the mixed core with uranium fuel assembly

  14. Evaluation of thorium based nuclear fuel. Extended summary

    International Nuclear Information System (INIS)

    Franken, W.M.P.; Bultman, J.H.; Konings, R.J.M.; Wichers, V.A.

    1995-04-01

    Application of thorium based nuclear fuels has been evaluated with emphasis on possible reduction of the actinide waste. As a result three ECN-reports are published, discussing in detail: - The reactor physics aspects, by comparing the operation characteristics of the cores of Pressurized Water Reactors and Heavy Water Reactors with different fuel types, including equilibrium thorium/uranium free, once-through uranium fuel and equilibrium uranium/plutonium fuel, - the chemical aspects of thorium based fuel cycles with emphasis on fuel (re)fabrication and fuel reprocessing, - the possible reduction in actinide waste as analysed for Heavy Water Reactors with various types of thorium based fuels in once-through operation and with reprocessing. These results are summarized in this report together with a short discussion on non-proliferation and uranium resource utilization. It has been concluded that a substantial reduction of actinide radiotoxicity of the disposed waste may be achieved by using thorium based fuels, if very efficient partitioning and multiple recycling of uranium and thorium can be realized. This will, however, require large efforts to develop the technology to the necessary industrial scale of operation. (orig.)

  15. Dynamic Analysis of the Thorium Fuel Cycle in CANDU Reactors

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Park, Chang Je

    2006-02-01

    The thorium fuel recycle scenarios through the Canada deuterium uranium (CANDU) reactor have been analyzed for two types of thorium fuel: homogeneous ThO 2 UO 2 and ThO 2 UO 2 -DUPIC fuels. The recycling is performed through the dry process fuel technology which has a proliferation resistance. For the once-through fuel cycle model, the existing nuclear power plant construction plan was considered up to 2016, while the nuclear demand growth rate from the year 2016 was assumed to be 0%. After setting up the once-through fuel cycle model, the thorium fuel CANDU reactor was modeled to investigate the fuel cycle parameters. In this analysis, the spent fuel inventory as well as the amount of plutonium, minor actinides and fission products of the multiple recycling fuel cycle were estimated and compared to those of the once-through fuel cycle. From the analysis results, it was found that the closed or partially closed thorium fuel cycle can be constructed through the dry process technology. Also, it is known that both the homogeneous and heterogeneous thorium fuel cycles can reduce the SF accumulation and save the natural uranium resource compared with the once-through cycle. From the material balance view point, the heterogeneous thorium fuel cycle seems to be more feasible. It is recommended, however, the economic analysis should be performed in future

  16. Uranium and Thorium precipitation from solution of slag II

    International Nuclear Information System (INIS)

    Mutia Anggraini; Budi Sarono; Sugeng Waluyo; Rusydi; Sujono

    2015-01-01

    Tin smelting process produces waste in the form of large amount of slag II. Slag II still consist of major elements such as 0.0619% uranium, 0.530% thorium, 0.179% P 2 O 5 and 6.194% RE total oxide. Based on that fact, the processing of slag II is interesting to be researched, particularly in separating uranium and thorium which contained in slag II. Uranium and thorium dissolved using acid reagent (H 2 SO 4 ). Percentage recovery of uranium, thorium, phosphate and RE oxides by dissolution method are 98.52%, 83.16%, 97.22%, and 69.62% respectively. Dissolved uranium, thorium, phosphate, and RE were each precipitated. The factors which considerable affect the precipitation process are reagent, pH, temperature, and time. NH 4 OH is used as precipitation reagent, optimum condition are pH 4. Temperature and time reaction did not influence this reaction. Percentage recovery of this precipitation process at optimum condition are 93.84% uranium and 84.33% thorium. (author)

  17. Survey of thorium utilization in power reactor systems

    International Nuclear Information System (INIS)

    Schwartz, M.H.; Schleifer, P.; Dahlberg, R.C.

    1976-01-01

    It is clear that thorium-fueled thermal power reactor systems based on current technology can play a vital role in serving present and long-term energy needs. Advanced thorium converters and thermal breeders can provide an expanded resource base from which the world's growing energy demands can be met. Utilization of a symbiotic system of fast breeders and thorium-fueled thermal reactors can be particularly effective in providing low cost power while conserving uranium resources. Breeder reactors are characterized by high capital costs and very low fuel costs since they produce more fuel than they consume. This excess fuel can be used to fuel thermal converter reactors whose capital costs are low. This symbiosis is optimized when 233 U is bred in the fast breeders and then used to fuel high-conversion-ratio thermal converter reactors operating on the thorium-uranium fuel cycle. The thorium-cycle HTGR, after undergoing more than fifteen years of development in both the United States and Europe, provides for the optimum utilization of our limited uranium resources. Other thermal reactor systems, previously operating on the uranium cycle, also show potential in their capability to utilize the thorium cycle effectively

  18. Neutronics assessment of thorium-based fuel assembly in SCWR

    International Nuclear Information System (INIS)

    Liu, Shichang; Cai, Jiejin

    2013-01-01

    Highlights: • A novel thorium-based fuel assembly for SCWR has been introduced and investigated. • Neutronic properties of three thorium fuels have been studied, compared with UO 2 fuel. • The thorium-based fuel has advantages on fuel utilization and lower MAs generation. -- Abstract: Aiming to take advantage of neutron spectrum of SCWR, a novel thorium-based fuel assembly for SCWR is introduced in this paper. The neutronic characteristics of the introduced fuel assembly with three different thorium fuel types have been investigated using the “dragon” codes. The parameters in different working conditions, such as infinite multiplication factors, radial power peaking factor, temperature coefficient of reactivity and their relation with the operation period have been assessed by comparing with conventional uranium assembly. Moreover, the moderator-to-fuel ratio (MFR) was changed in order to investigate its influence on the neutronic characteristics of fuel assembly. Results show that the thorium-based fuel has advantages on both efficient fuel utilization and lower minor actinide generation, with some similar neutronic properties to the uranium fuel

  19. Determination of the total nitrate content of thorium nitrate solution with a selective electrode

    International Nuclear Information System (INIS)

    Wirkner, F.M.

    1979-01-01

    The nitrate content of thorium nitrate solutions is determined with a liquid membrane nitrate selective electrode utilizing the known addition method in 0.1 M potassium fluoride medium as ionic strength adjustor. It is studied the influence of pH and the presence of chloride, sulphate, phosphate, meta-silicate, thorium, rare earths, iron, titanium, uranium and zirconium at the same concentrations as for the aqueous feed solutions in the thorium purification process. The method is tested in synthetic samples and in samples proceeding from nitric dissolutions of thorium hidroxide and thorium oxicarbonate utilized as thorium concentrates to be purified [pt

  20. Thorium as an energy source. Opportunities for Norway

    International Nuclear Information System (INIS)

    2008-01-01

    Final Recommendations of the Thorium Report Committee: 1) No technology should be idolized or demonized. All carbon-dioxide (Co2) emission-free energy production technologies should be considered. The potential contribution of nuclear energy to a sustainable energy future should be recognized. 2) An investigation into the resources in the Fen Complex and other sites in Norway should be performed. It is essential to assess whether thorium in Norwegian rocks can be defined as an economical asset for the benefit of future generations. Furthermore, the application of new technologies for the extraction of thorium from the available mineral sources should be studied. 3) Testing of thorium fuel in the Halden Reactor should be encouraged, taking benefit of the well recognized nuclear fuel competence in Halden. 4) Norway should strengthen its participation in international collaborations by joining the EURATOM fission program and the GIF program on Generation IV reactors suitable for the use of thorium. 5) The development of an Accelerator Driven System (ADS) using thorium is not within the capability of Norway working alone. Joining the European effort in this field should be considered. Norwegian research groups should be encouraged to participate in relevant international projects, although these are currently focused on waste management. 6) Norway should bring its competence in waste management up to an international standard and collaboration with Sweden and Finland could be beneficial. 7) Norway should bring its competence with respect to dose assessment related to the thorium cycle up to an international standard. 8) Since the proliferation resistance of uranium-233 depends on the reactor and reprocessing technologies, this aspect will be of key concern should any thorium reactor be built in Norway. 9) Any new nuclear activities in Norway, e.g. thorium fuel cycles, would need strong international pooling of human resources, and in the case of thorium, a strong long

  1. Thorium as an energy source. Opportunities for Norway

    Energy Technology Data Exchange (ETDEWEB)

    2008-01-15

    Final Recommendations of the Thorium Report Committee: 1) No technology should be idolized or demonized. All carbon-dioxide (Co2) emission-free energy production technologies should be considered. The potential contribution of nuclear energy to a sustainable energy future should be recognized. 2) An investigation into the resources in the Fen Complex and other sites in Norway should be performed. It is essential to assess whether thorium in Norwegian rocks can be defined as an economical asset for the benefit of future generations. Furthermore, the application of new technologies for the extraction of thorium from the available mineral sources should be studied. 3) Testing of thorium fuel in the Halden Reactor should be encouraged, taking benefit of the well recognized nuclear fuel competence in Halden. 4) Norway should strengthen its participation in international collaborations by joining the EURATOM fission program and the GIF program on Generation IV reactors suitable for the use of thorium. 5) The development of an Accelerator Driven System (ADS) using thorium is not within the capability of Norway working alone. Joining the European effort in this field should be considered. Norwegian research groups should be encouraged to participate in relevant international projects, although these are currently focused on waste management. 6) Norway should bring its competence in waste management up to an international standard and collaboration with Sweden and Finland could be beneficial. 7) Norway should bring its competence with respect to dose assessment related to the thorium cycle up to an international standard. 8) Since the proliferation resistance of uranium-233 depends on the reactor and reprocessing technologies, this aspect will be of key concern should any thorium reactor be built in Norway. 9) Any new nuclear activities in Norway, e.g. thorium fuel cycles, would need strong international pooling of human resources, and in the case of thorium, a strong long

  2. The influence of different hydroponic conditions on thorium uptake by Brassica juncea var. foliosa.

    Science.gov (United States)

    Wang, Dingna; Zhou, Sai; Liu, Li; Du, Liang; Wang, Jianmei; Huang, Zhenling; Ma, Lijian; Ding, Songdong; Zhang, Dong; Wang, Ruibing; Jin, Yongdong; Xia, Chuanqin

    2015-05-01

    The effects of different hydroponic conditions (such as concentration of thorium (Th), pH, carbonate, phosphate, organic acids, and cations) on thorium uptake by Brassica juncea var. foliosa were evaluated. The results showed that acidic cultivation solutions enhanced thorium accumulation in the plants. Phosphate and carbonate inhibited thorium accumulation in plants, possibly due to the formation of Th(HPO4)(2+), Th(HPO4)2, or Th(OH)3CO3 (-) with Th(4+), which was disadvantageous for thorium uptake in the plants. Organic aids (citric acid, oxalic acid, lactic acid) inhibited thorium accumulation in roots and increased thorium content in the shoots, which suggested that the thorium-organic complexes did not remain in the roots and were beneficial for thorium transfer from the roots to the shoots. Among three cations (such as calcium ion (Ca(2+)), ferrous ion (Fe(2+)), and zinc ion (Zn(2+))) in hydroponic media, Zn(2+) had no significant influence on thorium accumulation in the roots, Fe(2+) inhibited thorium accumulation in the roots, and Ca(2+) was found to facilitate thorium accumulation in the roots to a certain extent. This research will help to further understand the mechanism of thorium uptake in plants.

  3. Electrochemical and Microscopic Study of Thorium in a Molten Fluoride System

    Czech Academy of Sciences Publication Activity Database

    Straka, M.; Szatmary, L.; Šubrt, Jan

    2015-01-01

    Roč. 162, č. 9 (2015), "D449"-"D456" ISSN 0013-4651 Institutional support: RVO:61388980 Keywords : cyclic voltametry * electrolysis * thorium fluoride * thorium separation Subject RIV: CA - Inorganic Chemistry Impact factor: 3.014, year: 2015

  4. Thorium based fuel options for the generation of electricity: Developments in the 1990s

    International Nuclear Information System (INIS)

    2000-05-01

    The IAEA has maintained an interest in the thorium fuel cycle and its worldwide utilization within its framework of activities. Periodic reviews have assessed the current status of this fuel cycle, worldwide applications, economic benefits, and perceived advantages with respect to other nuclear fuel cycles. Since 1994, the IAEA convened a number of technical meetings on the thorium fuel cycle and related issues. Between 1995 and 1997 individual contributions on the thorium fuel cycle were elicited from experts from France, Germany, India, Japan, the Russian Federation and the USA. These contributions included evaluations of the status of the thorium fuel cycle worldwide; the new incentives to use thorium due to large stockpiles of plutonium produced in nuclear reactors; new reactor concepts utilizing thorium; strategies for thorium use; and an evaluation of toxicity of the thorium fuel cycle waste compared to that from other fuel cycles. The results of this updated evaluation are summarized in this publication

  5. Potential Radon-222 Emissions from the Thorium Nitrate Stockpile

    Energy Technology Data Exchange (ETDEWEB)

    Terry, J.W.

    2003-09-04

    The Defense National Stockpile Center (DNSC), a field level activity of the Defense Logistics Agency, has stewardship of a stockpile of thorium nitrate that has been in storage for decades. The thorium nitrate stockpile was produced from 1959 to 1964 for the Atomic Energy Commission and previously has been under the control of several federal agencies. The stockpile consists of approximately 7 million pounds of thorium nitrate crystals (hydrate form) stored at two depot locations in the United States (75% by weight at Curtis Bay, Maryland, and 25% by weight at Hammond, Indiana). The material is stored in several configurations in over 21,000 drums. The U.S. Congress has declared the entire DNSC thorium nitrate stockpile to be in excess of the needs of the Department of Defense. Part of DNSC's mission is to safely manage the continued storage, future sales, and/or disposition of the thorium nitrate stockpile. Historically, DNSC has sold surplus thorium nitrate to domestic and foreign companies, but there is no demand currently for this material. Analyses conducted by Oak Ridge National Laboratory (ORNL) in 2001 demonstrated that disposition of the thorium nitrate inventory as a containerized waste, without processing, is the least complex and lowest-cost option for disposition. A characterization study was conducted in 2002 by ORNL, and it was determined that the thorium nitrate stockpile may be disposed of as low-level waste. The Nevada Test Site (NTS) was used as a case study for the disposal alternative, and special radiological analyses and waste acceptance requirements were documented. Among the special radiological considerations is the emission of {sup 220}Rn and {sup 222}Rn from buried material. NTS has a performance objective on the emissions of radon: 20 pCi m{sup -2} sec{sup -1} at the surface of the disposal facility. The radon emissions from the buried thorium nitrate stockpile have been modeled. This paper presents background information and

  6. Uranium and thorium recovery in thorianite ore-preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Gaiotte, Joao V.M. [Universidade Federal de Alfenas, Pocos de Caldas, MG (Brazil); Villegas, Raul A.S.; Fukuma, Henrique T., E-mail: rvillegas@cnen.gov.br, E-mail: htfukuma@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Pocos de Caldas, MG (Brazil). Lab. de Pocos de Caldas

    2011-07-01

    This work presents the preliminary results of the studies aiming to develop a hydrometallurgical process to produce uranium and thorium concentrates from thorianite ore from Amapa State, Brazil. This process comprises two major parts: acid leaching and Th/U recovery using solvent extraction strategies. Thorianite ore has a typical composition of 60 - 70% of thorium, 8 - 10% lead and 7 - 10% uranium. Sulfuric acid leaching operational conditions were defined as follows: acid/ore ratio 7.5 t/t, ore size below 65 mesh (Tyler), 2 hours leaching time and temperature of 100 deg C. Leaching tests results showed that uranium and thorium recovery exceeded 95%, whereas 97% of lead ore content remained in the solid form. Uranium and thorium simultaneous solvent extraction is necessary due to high sulfate concentration in the liquor obtained from leaching, so the Primene JM-T primary anime was used for this extraction step. Aqueous raffinate from extraction containing sulfuric acid was recycled to the leaching step, reducing acid uptake around 60%, to achieve a net sulfuric acid consumption of 3 t/t of ore. Uranium and thorium simultaneous stripping was performed using sodium carbonate solution. In the aqueous stripped it was added sulfuric acid at pH 1.5, followed by a second solvent extraction step using the tertiary amine Alamine 336. The following stripping step was done with a solution of sodium chloride, resulting in a final solution of 23 g L-1 uranium. (author)

  7. Spectrophotometric simultaneous determination of uranium and thorium using partial least squares regression and orthogonal signal correction

    OpenAIRE

    Niazi, Ali

    2006-01-01

    A simple, novel and sensitive spectrophotometric method was described for simultaneous determination of uranium and thorium. The method is based on the complex formation of uranium and thorium with Arsenazo III at pH 3.0. All factors affecting the sensitivity were optimized and the linear dynamic range for determination of uranium and thorium found. The simultaneous determination of uranium and thorium mixtures by using spectrophotometric methods is a difficult problem, due to spectral interf...

  8. Uranium, thorium and rare earth extraction and separation process by processing their chloride aqueous solutions

    International Nuclear Information System (INIS)

    Sabot, J.L.; Leveque, A.

    1983-01-01

    The different steps of the process are the following: uranium and iron extraction by a neutral organic phosphorus compound and thorium and rare earth recovery in an aqueous solution, iron recovery in acid aqueous phase, concentration of the thorium and rare earth aqueous solution followed by thorium extraction with a organic phosphorus compound and rare earth recovery in the aqueous phase, thorium recovery in acid aqueous phase [fr

  9. Technology of thorium concentrates purification and their transformation in pure nuclear products

    International Nuclear Information System (INIS)

    Ikuta, A.

    1977-01-01

    An experimental study for the purification of thorium concentrates by solvent extraction is presented. The product of purification is appropriate for utilization in the fabrication of nuclear reactor fuel elements. The experiments are carried out in a laboratory scale and the following operations are studied: dissolution, extraction-scrubbing, stripping-scrubbing, thorium oxalate precipitation, and thorium nitrate coagulation [pt

  10. 49 CFR 173.426 - Excepted packages for articles containing natural uranium or thorium.

    Science.gov (United States)

    2010-10-01

    ... outer surface of the uranium or thorium is enclosed in an inactive sheath made of metal or other durable... uranium or thorium. 173.426 Section 173.426 Transportation Other Regulations Relating to Transportation....426 Excepted packages for articles containing natural uranium or thorium. A manufactured article in...

  11. Verification study of thorium cross section in MVP calculation of thorium based fuel core using experimental data

    International Nuclear Information System (INIS)

    Mai, V. T.; Fujii, T.; Wada, K.; Kitada, T.; Takaki, N.; Yamaguchi, A.; Watanabe, H.; Unesaki, H.

    2012-01-01

    Considering the importance of thorium data and concerning about the accuracy of Th-232 cross section library, a series of experiments of thorium critical core carried out at KUCA facility of Kyoto Univ. Research Reactor Inst. have been analyzed. The core was composed of pure thorium plates and 93% enriched uranium plates, solid polyethylene moderator with hydro to U-235 ratio of 140 and Th-232 to U-235 ratio of 15.2. Calculations of the effective multiplication factor, control rod worth, reactivity worth of Th plates have been conducted by MVP code using JENDL-4.0 library [1]. At the experiment site, after achieving the critical state with 51 fuel rods inserted inside the reactor, the measurements of the reactivity worth of control rod and thorium sample are carried out. By comparing with the experimental data, the calculation overestimates the effective multiplication factor about 0.90%. Reactivity worth of the control rods evaluation using MVP is acceptable with the maximum discrepancy about the statistical error of the measured data. The calculated results agree to the measurement ones within the difference range of 3.1% for the reactivity worth of one Th plate. From this investigation, further experiments and research on Th-232 cross section library need to be conducted to provide more reliable data for thorium based fuel core design and safety calculation. (authors)

  12. Gold, uranium and thorium in zones of greenschist displacement metamorphism

    International Nuclear Information System (INIS)

    Gavrilenko, B.V.; Savitskij, A.V.; Titov, V.V.

    1987-01-01

    Distribution of gold, uranium (bar and mobile) and thorium in 15 zones of greenschist dislocated metamorphism in different structures of the Karelo-Kola region carried out by geologic formations of the Early-Archean-Late-Proterozoic age has been studied. More than 200 samples of well core from 0-200 m depths have been analyzed. The results obtained testify to the increase of gold, uranium and less thorium content in zones of green-schist dislocated metamorphism in comparison with the enclosing rocks 1.4-3.1 times. The variation coefficient of gold, uranium and thorium content in green-schist dislocated tectonites increases 1.5-2.9 times. The correlation coefficient of Au/U mob. pair is +0.69, and Au/U bar pair -+0.87. Essential correlation between concentrations of all three elements in enclosing rocks is absent

  13. Atomization of thorium in a hollow-cathode type discharge

    International Nuclear Information System (INIS)

    Pianarosa, P.; Demers, Y.; Gagne, J.M.

    1984-01-01

    The atomization of thorium metal in a hollow-cathode electrical discharge has been investigated. Laser absorption spectroscopy with the laser tuned on the 5760.55 A (0-17355 1 cm -1 ) transition of Th I was used to evaluate the density of atoms in the 3 F 2 ground state. The results obtained (densities up to 10 13 atoms cm -3 ) show that our discharge tube is a suitable source of thorium metal atoms for laser assisted spectroscopic analysis of this element. (author)

  14. Thorium determination in water and biological materials by fission track

    International Nuclear Information System (INIS)

    Melo Ferreira, A.C. de.

    1989-01-01

    As a segment of a research programme on the study of bioaccumulation of radionuclides, in animals and vegetables from Morro do Ferro, Pocos de Caldas, MG, a fission track method for the determination of low levels of thorium in environmental samples was developed as an alternative for alpha spectroscopy. The study was carried out in early alpha spectroscopy samples, containing high levels of 228 Th activity, which makes difficult the 232 Th determination. A dry way method for thorium evaluation was developed. Pieces of membrane filters, containing La F 3 (Th), coupled to Makrofol detectors, were irradiated in the core of a research reactor, IEA-R1 (IPEN). (author)

  15. Once-through thorium cycles in Candu reactors

    International Nuclear Information System (INIS)

    Milgram, M.S.

    1982-01-01

    In once-through thorium cycles pure thorium fuel bundles can be irradiated conjointly with uranium fuel bundles in a CANDU reactor with parameters judiciously chosen such that the overall fuel cycle cost is competitive with other possibilities - notably low-enriched uranium. Uranium 233 can be created and stockpiled for possible future use with no imperative that it be used unless future conditions warrant, and a stockpile can be begun independently of the state of reprocessing technology. The existence and general properties of these cycles are discussed

  16. The uranium and thorium separation in the chemical reprocessing of the irradiated fuel of thorium and uranium mixed oxides

    International Nuclear Information System (INIS)

    Oliveira, E.F. de.

    1984-09-01

    A bibliographic research has been carried out for reprocessing techniques of irradiated thorium fuel from nuclear reactors. The Thorex/Hoechst process has been specially considered to establish a method for reprocessing thorium-uranium fuel from PWR. After a series of cold tests performed in laboratory it was possible to set the behavior of several parameters affecting the Thorex/Hoechst process. Some comments and suggestions are presented for modifications in the process flosheet conditions. A discussion is carried out for operational conditions such as the aqueous to organic flow ratio the acidity of strip and scrub solutions in the process steps for thorium and uranium recovery. The operation diagrams have been constructed using equilibrium experimental data which correspond to conditions observed in laboratory. (Author) [pt

  17. A thorium breeder reactor concept for optimal energy extraction from uranium and thorium

    International Nuclear Information System (INIS)

    Jagannnathan, V.; Lawande, S.V.

    1999-01-01

    An attractive thorium breeder reactor concept has been evolved from simple physics based guidelines for induction of thorium in a major way in an otherwise enriched uranium reactor. D 2 O moderator helps to maximise reactivity for a given enrichment. A relatively higher flux level compared to LWRs offers the advantage of higher rate of 233 U production in thoria rods. Thus fresh thoria clusters consider no feed enrichment. In an equilibrium core, a full batch of pure thoria clusters are loaded during each fuel cycle. They undergo irradiation for about one year duration. By this time they accumulate nearly 70% of the asymptotic stable concentration of 233 U, if they face a flux level of the order of 10 14 n/cm 2 /sec. In the next fuel cycle, these thoria rods in ring cluster form are juxtaposed with the fresh enriched fuel rods, also in ring cluster form. Such integrated fuel assemblies are then irradiated for four or five fuel cycles, at the end of which U as well as Th rods attain a reasonably high burnup of about 30-32 MWD/kg. The core characteristics are quite attractive. The core excess reactivity remains low due to large thoria inventory which makes the net burnup reactivity load to be below 1%. The core is capable of being operated in an annual batch mode of operation like a LWR. The control requirement during power operation is negligible. Xenon over-ride requirement is low and can be managed by partial withdrawal of a few thoria clusters. Void reactivity is nearly zero or negative by the optimum design of the fuel cluster. Reactivity changes due to temperatures of fuel, coolant and moderator are also small. (author)

  18. Introduction of Thorium in the Nuclear Fuel Cycle. Short- to long-term considerations

    International Nuclear Information System (INIS)

    Allibert, M.; Merle-Lucotte, E.; Ghetta, V.; Ault, T.; Krahn, S.; Wymer, R.; Croff, A.; Baron, P.; Chauvin, N.; Eschbach, R.; Rimpault, G.; Serp, J.; Bergeron, A.; Bromley, B.; Floyd, M.; Hamilton, H.; Hyland, B.; Wojtaszek, D.; McDonald, M.; Collins, E.; Cornet, S.; Michel-Sendis, F.; ); Feinberg, O.; Ignatiev, V.; Hesketh, K.; Kelly, J.F.; Porsch, D.; Vidal, J.; Taiwo, T.; Uhlir, J.; Van Den Durpel, L.; Van Den Eynde, G.; Vitanza, C.; Butler, Gregg; Cornet, Stephanie; Dujardin, Thierry; Greneche, Dominique; Nordborg, Claes; Rimpault, Gerald; Van Den Durpel, Luc; Michel-Sendis, Franco

    2015-01-01

    Since the beginning of the nuclear era, significant scientific attention has been given to thorium's potential as a nuclear fuel. Although the thorium fuel cycle has never been fully developed, the opportunities and challenges that might arise from the use of thorium in the nuclear fuel cycle are still being studied in many countries and in the context of diverse international programmes around the world. This report provides a scientific assessment of thorium's potential role in nuclear energy both in the short to longer term, addressing diverse options, potential drivers and current impediments to be considered if thorium fuel cycles are to be pursued. (authors)

  19. Analytical Characterization of the Thorium Nitrate Stockpile

    Energy Technology Data Exchange (ETDEWEB)

    Mattus, CH

    2003-12-30

    For several years, Oak Ridge National Laboratory (ORNL) has been supporting the Defense Logistics Agency-Defense National Stockpile Center with stewardship of a thorium nitrate (ThN) stockpile. The effort for fiscal year 2002 was to prepare a sampling and analysis plan and to use the activities developed in the plan to characterize the ThN stockpile. The sampling was performed in June and July 2002 by RWE NUKEM with oversight by ORNL personnel. The analysis was performed by Southwest Research Institute of San Antonio, Texas, and data validation was performed by NFT, Inc., of Oak Ridge, Tennessee. Of the {approx} 21,000 drums in the stockpile, 99 were sampled and 53 were analyzed for total metals composition, radiological constituents (using alpha and gamma spectrometry), and oxidizing characteristics. Each lot at the Curtis Bay Depot was sampled. Several of the samples were also analyzed for density. The average density of the domestic ThN was found to be 1.89 {+-} 0.08 g/cm{sup 3}. The oxidizer test was performed following procedures issued by the United Nations in 1999. Test results indicated that none of the samples tested was a Division 5.1 oxidizer per Department of Transportation definition. The samples were analyzed for total metals following the U.S. Environmental Protection Agency methods SW-846-6010B and 6020 (EPA 2003) using a combination of inductively coupled plasma--atomic emission spectroscopy and inductively coupled plasma--mass spectroscopy techniques. The results were used to compare the composition of the eight Resource Conservation and Recovery Act metals present in the sample (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver) to regulatory limits. None of the samples was found to be hazardous for toxicity characteristics. The radiological analyses confirmed, when possible, the results obtained by the inductively coupled plasma analyses. These results--combined with the historical process knowledge acquired on the material

  20. Selective Precipitation of Thorium lodate from a Tartaric Acid-Hydrogen Peroxide Medium Application to Rapid Spectrophotometric Determination of Thorium in Silicate Rocks and in Ores

    Science.gov (United States)

    Grimaldi, F.S.

    1957-01-01

    This paper presents a selective iodate separation of thorium from nitric acid medium containing d-tartaric acid and hydrogen peroxide. The catalytic decomposition of hydrogen peroxide is prevented by the use of 8quinolinol. A few micrograms of thorium are separated sufficiently clean from 30 mg. of such oxides as cerium, zirconium, titanium, niobium, tantalum, scandium, or iron with one iodate precipitation to allow an accurate determination of thorium with the thoronmesotartaric acid spectrophotometric method. The method is successful for the determination of 0.001% or more of thorium dioxide in silicate rocks and for 0.01% or more in black sand, monazite, thorite, thorianite, eschynite, euxenite, and zircon.

  1. A review on the status of development in thorium-based nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Woo; Na, S. H.; Lee, Y. W.; Kim, H. S.; Kim, S. H.; Joung, C.Y

    2000-02-01

    Thorium as an alternative nuclear energy source had been widely investigated in the 1950s-1960s because it is more abundant than uranium, but the studies of thorium nuclear fuel cycle were discontinued by political and economic reasons in the 1970s. Recently, however, renewed interest was vested in thorium-based nuclear fuel cycle because it may generate less long-lived minor actinides and has a lower radiotoxicity of high level wastes after reprocessing compared with the thorium fuel cycle. In this state-of the art report, thorium-based nuclear cycle. In this state-of the art report, thorium-based nuclear fuel cycle and fuel fabrication processes developed so far with different reactor types are reviewed and analyzed to establish basic technologies of thorium fuel fabrication which could meet our situation. (author)

  2. Fabrication of thorium nitrate at the factory at the Bouchet

    International Nuclear Information System (INIS)

    Braun, C.; Lorrain, Ch.; Mahut, R.; Mariette, R.; Muller, J.; Prugnard, J.

    1958-01-01

    A urano-thorianite mineral from Madagascar is industrially treated at the factory of the Bouchet in order to obtain pure thorium in the form of the nitrate and a uranium concentrate in the form of uranate. The required factory was designed and constructed in 1955 and 1956 by the firm Potasse et Engrais Chimiques (P.E.C.) on behalf of the French Atomic Energy authority. The mineral which has previously undergone a gravimetric sorting and enrichment at the mine, is in the form of a heavy rock (the density can be as high as 10), having a cubic structure. It consists principally of a mixture of thorium oxide and uranium oxide and contains between 50 and 75 per cent thorium and between 5 and 20 per cent of uranium. On the same sample a high content in either thorium or uranium in general corresponds to a low content in the other of the two metals; this rule is not however always obeyed absolutely. Among other elements present we shall only mention the Pb, Fe, Ce, Ra and other radioactive elements, since their presence influences the treatment of the mineral. We shall first briefly describe the process, which has already been described in previous publications, we consider to be worthy of attention. (author) [fr

  3. Comparative Study of Uranium and Thorium Content of Some ...

    African Journals Online (AJOL)

    ... of INAA on related cereals. Quality control and Quality Assurance of the method was tested by analyzing an analytical quality control service (AQCS) reference material (lichen) from International Atomic Energy Agency (IAEA). Keywords: Key words: Uranium, Thorium, neutron activation analysis, Cereals, Katsina, Maradi.

  4. Decontamination of liquid radioactive waste by thorium phosphate

    International Nuclear Information System (INIS)

    Rousselle, J.; Grandjean, S.; Dacheux, N.; Genet, M.

    2004-01-01

    In the field of the complete reexamination of the chemistry of thorium phosphate and of the improvement of the homogeneity of Thorium Phosphate Diphosphate (TPD, Th 4 (PO 4 ) 4 P 2 O 7 ) prepared at high temperature, several crystallized compounds were prepared as initial powdered precursors. Due to the very low solubility products associated to these phases, their use in the field of the efficient decontamination of high-level radioactive liquid waste containing actinides (An) was carefully considered. Two main processes (called 'oxalate' and 'hydrothermal' chemical routes) were developed through a new concept combining the decontamination of liquid waste and the immobilization of the actinides in a ceramic matrix (TPD). In phosphoric media ('hydrothermal route'), the key-precursor was the Thorium Phosphate Hydrogen Phosphate hydrate (Th 2 (PO 4 ) 2 (HPO 4 ). H 2 O, TPHP, solubility product log(K S,0 0 ) ∼ - 67). The replacement of thorium by other tetravalent actinides (U, Np, Pu) in the structure, leading to the preparation of Th 2-x/2 An x/2 (PO 4 ) 2 (HPO 4 ). H 2 O solid solutions, was examined. A second method was also considered in parallel to illustrate this concept using the more well-known precipitation of oxalate as the initial decontamination step. For this method, the final transformation to single phase TPD containing actinides was purchased by heating a mixture of phosphate ions with the oxalate precipitate at high temperature. (authors)

  5. Radiochemical separation of thorium 234 from uranile acetylacetonate

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Rendon, R.M.; Solache, R.M.; Tenorio, D. (Instituto Nacional de Investigaciones Nucleares, Mexico City)

    1984-03-15

    The optimum conditions for the chemical separation of thorium compounds obtained by the chemical effects of ..cap alpha.. decay of uranium 238, in uranile acetylacetonate were established. The separation technique used was solvent extraction; the retention value obtained was 9.8+-2.1%.

  6. Role of thorium in the industry advantage of atomic energy

    International Nuclear Information System (INIS)

    Souza Santos, M.D. de; Goldemberg, J.; Lopes, J.L.

    1985-01-01

    Based in the utilization of others fossil substances, such as plutonium and uranium 233, produzed through the thorium and natural uranium (238), it is discussed the relative merits of alternative processes: to produce U233 on Pu 239 to substitute the initial load of U235. (M.C.K.) [pt

  7. Uranium, thorium and potassium in Indian rocks and ores

    Indian Academy of Sciences (India)

    Abstract. Usinglsodiurn iodide gamma-ray spectrometer, the radioactivity content of the crustal material from various places in India has been estimated. “Sedi- mentary and metamorphic rocks contain more uranium and. thorium than igneous rocks. PhoSphate rocks and ores from Kerala region contain higher nranir m and.

  8. Controlled synthesis of thorium and uranium oxide nano-crystals

    International Nuclear Information System (INIS)

    Hudry, Damien; Apostolidis, Christos; Walter, Olaf; Gouder, Thomas; Courtois, Eglantine; Kubel, Christian; Meyer, Daniel

    2013-01-01

    Very little is known about the size and shape effects on the properties of actinide compounds. As a consequence, the controlled synthesis of well-defined actinide-based nano-crystals constitutes a fundamental step before studying their corresponding properties. In this paper, we report on the non-aqueous surfactant-assisted synthesis of thorium and uranium oxide nano-crystals. The final characteristics of thorium and uranium oxide nano-crystals can be easily tuned by controlling a few experimental parameters such as the nature of the actinide precursor and the composition of the organic system (e.g., the chemical nature of the surfactants and their relative concentrations). Additionally, the influence of these parameters on the outcome of the synthesis is highly dependent on the nature of the actinide element (thorium versus uranium). By using optimised experimental conditions, monodisperse isotropic uranium oxide nano-crystals with different sizes (4.5 and 10.7 nm) as well as branched nano-crystals (overall size ca. 5 nm), nano-dots (ca. 4 nm) and nano-rods (with ultra-small diameters of 1 nm) of thorium oxide were synthesised. (authors)

  9. Use of thorium for high temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Guimarães, Cláudio Q., E-mail: claudio_guimaraes@usp.br [Universidade de São Paulo (USP), SP (Brazil). Instituto de Física; Stefani, Giovanni L. de, E-mail: giovanni.stefani@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Santos, Thiago A. dos, E-mail: thiago.santos@ufabc.edu.br [Universidade Federal do ABC (UFABC), Santo André, SP (Brazil)

    2017-07-01

    The HTGR ( High Temperature Gas-cooled Reactor) is a 4{sup th} generation nuclear reactor and is fuelled by a mixture of graphite and fuel-bearing microspheres. There are two competitive designs of this reactor type: The German “pebble bed” mode, which is a system that uses spherical fuel elements, containing a graphite-and-fuel mixture coated in a graphite shell; and the American version, whose fuel is loaded into precisely located graphite hexagonal prisms that interlock to create the core of the vessel. In both variants, the coolant consists of helium pressurised. The HTGR system operates most efficiently with the thorium fuel cycle, however, so relatively little development has been carried out in this country on that cycle for HTGRs. In the Nuclear Engineering Centre of IPEN (Instituto de Pesquisas Energéticas e Nucleares), a study group is being formed linked to thorium reactors, whose proposal is to investigate reactors using thorium for {sup 233}U production and rejects burning. The present work intends to show the use of thorium in HTGRs, their advantages and disadvantages and its feasibility. (author)

  10. Kinetics of thermal dehydration of zirconium and thorium hydroxide hydrogels

    International Nuclear Information System (INIS)

    Mitra, N.K.; Sinhamahapatra, S.

    1983-01-01

    Kinetics of thermal dehydration of synthetic zirconium and thorium hydroxide hydrogels have been studied by thermogravimetric method. Dehydration followed first order kinetics upto a certain stage. The rate constants for the initial and final stages of dehydration were related to the water content of the gels. Textural change on heat treatment also contributes to it. (author)

  11. The thorium fuel cycle in water-moderated reactor systems

    International Nuclear Information System (INIS)

    Critoph, E.

    1977-05-01

    Thorium and uranium cycles are compared with regard to reactor characteristics and technology, fuel-cycle technology, economic parameters, fuel-cycle costs, and system characteristics. In heavy-water reactors (HWRs) thorium cycles having uranium requirements at equilibrium ranging from zero to a quarter of those for the natural-uranium once-through cycle appear feasible. An 'inventory' of uranium of between 1 and 2 Mg/MW(e) is required for the transition to equilibrium. The cycles with the lowest uranium requirements compete with the others only at high uranium prices. Using thorium in light-water reactors, uranium requirements can be reduced by a factor of between two and three from the once-through uranium cycle. The light-water breeder reactor, promising zero uranium requirements at equilibrium, is being developed. Larger uranium inventories are required than for the HWRs. The lead time, from a decision to use thorium to significant impact on uranium utilization (compared to uranium cycle, recycling plutonium) is some two decades

  12. Types of nuclear fuels: the importance of thorium

    International Nuclear Information System (INIS)

    Hashemi-Nezhad, R.

    2006-01-01

    Thorium-powered nuclear reactors driven by a particle accelerator could become a source of energy that avoids the dangers of weapons proliferation, waste and accidents. This type of reactor can incinerate its own nuclear waste as well as those produced by uranium-burning nuclear reactors.

  13. CATALYTIC RECOMBINATION OF RADIOLYTIC GASES IN THORIUM OXIDE SLURRIES

    Science.gov (United States)

    Morse, L.E.

    1962-08-01

    A method for the coinbination of hydrogen and oxygen in aqueous thorium oxide-uranium oxide slurries is described. A small amount of molybdenum oxide catalyst is provided in the slurry. This catalyst is applicable to the recombination of hydrogen and/or deuterium and oxygen produced by irradiation of the slurries in nuclear reactors. (AEC)

  14. Pollution of agricultural crops with lanthanides, thorium and uranium studied

    Czech Academy of Sciences Publication Activity Database

    Kučera, Jan; Mizera, Jiří; Řanda, Zdeněk; Vávrová, M.

    2007-01-01

    Roč. 271, č. 3 (2007), s. 581-587 ISSN 0236-5731 Institutional research plan: CEZ:AV0Z10480505 Keywords : thorium, uranium * agricultural crops * neutron activation analysis Subject RIV: BE - Theoretical Physics Impact factor: 0.499, year: 2007

  15. Synergistic extraction of thorium in presence of neutral donors

    International Nuclear Information System (INIS)

    Biswas, S.; Basu, S.

    1999-01-01

    The effects of neutral organophosphorous compounds on the extraction of thorium by β-hydroxy naphthaldoxime in xylene are reported. Enhancement of extraction is explained in terms of formation of a complex adduct in organic phase. Synergistic coefficients and apparent formation constants of complex adducts are calculated. (author)

  16. Uranium- and thorium-bearing pegmatites of the United States

    International Nuclear Information System (INIS)

    Adams, J.W.; Arengi, J.T.; Parrish, I.S.

    1980-04-01

    This report is part of the National Uranium Resource Evaluation (NURE) Program designed to identify criteria favorable for the occurrence of the world's significant uranium deposits. This project deals specifically with uranium- and thorium-bearing pegmatites in the United States and, in particular, their distribution and origin. From an extensive literature survey and field examination of 44 pegmatite localities in the United States and Canada, the authors have compiled an index to about 300 uranium- and thorium-bearing pegmatites in the United States, maps giving location of these deposits, and an annotated bibliography to some of the most pertinent literature on the geology of pegmatites. Pegmatites form from late-state magma differentiates rich in volatile constituents with an attendant aqueous vapor phase. It is the presence of an aqueous phase which results in the development of the variable grain size which characterizes pegmatites. All pegmatites occur in areas of tectonic mobility involving crustal material usually along plate margins. Those pegmatites containing radioactive mineral species show, essentially, a similar distribution to those without radioactive minerals. Criteria such as tectonic setting, magma composition, host rock, and elemental indicators among others, all serve to help delineate areas more favorable for uranium- and thorium-bearing pegmatites. The most useful guide remains the radioactivity exhibited by uranium- and thorium-bearing pegmatites. Although pegmatites are frequently noted as favorable hosts for radioactive minerals, the general paucity and sporadic distribution of these minerals and inherent mining and milling difficulties negate the resource potential of pegmatites for uranium and thorium

  17. Uranium- and thorium-bearing pegmatites of the United States

    Energy Technology Data Exchange (ETDEWEB)

    Adams, J.W.; Arengi, J.T.; Parrish, I.S.

    1980-04-01

    This report is part of the National Uranium Resource Evaluation (NURE) Program designed to identify criteria favorable for the occurrence of the world's significant uranium deposits. This project deals specifically with uranium- and thorium-bearing pegmatites in the United States and, in particular, their distribution and origin. From an extensive literature survey and field examination of 44 pegmatite localities in the United States and Canada, the authors have compiled an index to about 300 uranium- and thorium-bearing pegmatites in the United States, maps giving location of these deposits, and an annotated bibliography to some of the most pertinent literature on the geology of pegmatites. Pegmatites form from late-state magma differentiates rich in volatile constituents with an attendant aqueous vapor phase. It is the presence of an aqueous phase which results in the development of the variable grain size which characterizes pegmatites. All pegmatites occur in areas of tectonic mobility involving crustal material usually along plate margins. Those pegmatites containing radioactive mineral species show, essentially, a similar distribution to those without radioactive minerals. Criteria such as tectonic setting, magma composition, host rock, and elemental indicators among others, all serve to help delineate areas more favorable for uranium- and thorium-bearing pegmatites. The most useful guide remains the radioactivity exhibited by uranium- and thorium-bearing pegmatites. Although pegmatites are frequently noted as favorable hosts for radioactive minerals, the general paucity and sporadic distribution of these minerals and inherent mining and milling difficulties negate the resource potential of pegmatites for uranium and thorium.

  18. Thorium silicate compound as a solid-state target for production of isomeric thorium-229 nuclei by electron beam irradiation

    Directory of Open Access Journals (Sweden)

    P. V. Borisyuk

    2016-09-01

    Full Text Available In this paper, we discuss an idea of the experiment for excitation of the isomeric transition in thorium-229 nuclei by irradiating with electron beam targets with necessary physical characteristics. The chemical composition and bandgap of ThSi10O22 were determined by X-ray photoelectron spectroscopy and reflection electron energy loss spectroscopy. It was found that the energy gap is equal to 7.7 eV and does not change when the target is exposed to a medium energy electron beam for a long time. This indicates that the compound possesses high electron-beam resistance. A quantitative estimation of the output function of isomeric thorium-229 nuclei generated by interaction of nuclei with the secondary electron flow formed by irradiating the solid-state ThSi10O22-based target is given. The estimation shows that ThSi10O22 is a promising thorium-containing target for investigating excitation of the nuclear low-lying isomeric transition in the thorium-229 isotope using medium-energy electrons.

  19. Local flow blockage analysis with checkerboard configuration in a wire wrapped fuel subassembly using the ASFRE code

    International Nuclear Information System (INIS)

    Nishimura, Masahiro; Fukano, Yoshitaka

    2014-01-01

    Local fault (LF) has been historically considered as one of the possible causes of severe accidents in sodium-cooled fast reactors because fuel pins are generally densely arranged in the fuel subassemblies (FSAs) in this type of reactors. Local flow blockage (LB) has been one of the dominant initiators of LFs. Therefore evaluations were performed on LBs in the past safety licensing assuming a planar and impermeable blockage of 66% of the total flow area at an FSA for the Japanese prototype fast breeder reactor. A conservative evaluation revealed that fuel pin damage propagation would be limited within a restricted area of the reactor core, even assuming such a hypothetical initiating event. In the newly formulated regulatory requirements, however, after the accident at the Fukushima Dai-ichi nuclear power plant, best estimate (BE) safety analyses on the basis of state-of-the-art knowledge are being required for beyond design basis accidents. A deterministic and BE evaluation therefore based on the most-recent knowledge was newly performed in this study for revalidation of the above-mentioned historical background using the ASFRE code, whereas the LF accidents would not be identified as a representative accident sequence from a viewpoint of both its frequencies and consequences. Nominal power and flow rate without safety margins were assumed for the analyses in order to make the accidental conditions to be realistic. A most likely and realistic blockage configuration was newly proposed and employed based on the existing experimental data in accordance with the BE concept mentioned above. The aforementioned blockage configuration was excessively conservative on a state-of-the-art knowledge basis. The most-recent experimental studies clarified that LBs due to foreign substances would be formed by accumulating the steel fragments of certain sizes trapped along the wrapping wires. This leads to an LB in a checkerboard configuration for an FSA of wire spacer type, which was newly employed in this study. As a result, it was found out that the temperature increase in the downstream of this type of LB is smaller than that in the past safety licensing analyses by an order of magnitude due to the availability of flow paths around the blockages. And it was concluded that LBs would never lead to significant core damage under most likely and realistic conditions. (author)

  20. Characterization of velocity and temperature fields in a 217 pin wire wrapped fuel bundle of sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Naveen Raj, M.; Velusamy, K.

    2016-01-01

    Highlights: • We simulate flow and temperature fields in fuel subassembly of fast reactor. • We perform high fidelity computations for 217 pin bundle of 7 axial pitch lengths. • We investigate transverse and axial flows in different types of subchannels. • Correlations are proposed for transverse flow, which form input for subchannel analysis. • Periodic variations of large magnitude are observed in subchannel flow rates. - Abstract: RANS based computational fluid dynamic (CFD) simulation of flow and temperature fields in a fast reactor fuel subassembly has been carried out. The sodium cooled prototype subassembly consists of 217 pins with helical wire spacers. An axial length of seven helical wire pitches has been considered for the study adopting a structured mesh having 36 million points and 84 processors in parallel. The computational model has been validated against in-house and published experimental data for friction factor and Nusselt number. Also, the transverse flow in the central subchannel and swirl flow in the peripheral subchannel are compared against reported experimental data and those computed by subchannel models. The focus of the study is investigation of transverse and axial flows in different types of subchannels. Based on the 3-dimensional CFD study, correlations have been proposed for calculation of transverse flow, which forms an important input for development of subchannel analysis codes. Periodic variations have been observed in the subchannel axial flow rates. For the subchannels located in the central region, the peak to peak variation in the axial flow rate is ∼21% and it is found to be contributed by the changes in the flow area and hydraulic resistance due to frequent passage of helical wires through the subchannel. For the subchannels located in the periphery, this variation is as high as 50%. The transverse flow in the central subchannels follows a cosine profile, for all the faces. However, there is a phase lag of 120° among the three faces that bound the subchannel. In the peripheral subchannels, a strong unidirectional transverse flow prevails in the faces perpendicular to the hexcan wall. On the other hand, the transverse flow in the face parallel to the hexcan follows a square wave pattern. The CFD results indicate that the swirl velocity in the peripheral subchannel is non-uniform, contrary to that considered in the traditional subchannel models. The mean clad temperature is seen to exhibit a non-monotonic increase along the flow direction. This phenomenon is more dominant in the peripheral pins due to large gradient in subchannel temperature and the square wave profile of the transverse flow.

  1. Thorium content of a mineral ore from Morro do Ferro by fission track technique

    International Nuclear Information System (INIS)

    Oliveira, C.A.N. de.

    1980-10-01

    The feasibility to determine thorium concentrations by fission track technique in samples of mineral ore has been demonstrated. The literature registers only the application of the fission track technique to mineral ore in the case where the fissionable element is uranium. The technique was applied to determine the thorium concentration of an ore sample from Morro do Ferro, taking advantage of the high thorium to uranium ratio in that mineral. The sample analysed presented a thorium concentration of 2467 +- 400 mg Th/Kg ore. The so called wet method was adopted by using the Bayer made Makrofol KG 10μm thick, as the detector foil, immersed in the thorium solution. The technique is also useful to determine thorium concentrations in environmental samples because of the following aspects: high sensitivity; fast chemical separation of interfering elements; low cost; and operational simplicity. (Author) [pt

  2. First-principles study of point defects in thorium carbide

    Energy Technology Data Exchange (ETDEWEB)

    Pérez Daroca, D., E-mail: pdaroca@tandar.cnea.gov.ar [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, (1033) Buenos Aires (Argentina); Jaroszewicz, S. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM-CNEA, Av. General Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Llois, A.M. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, (1033) Buenos Aires (Argentina); Mosca, H.O. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM-CNEA, Av. General Paz 1499, (1650) San Martin, Buenos Aires (Argentina)

    2014-11-15

    Thorium-based materials are currently being investigated in relation with their potential utilization in Generation-IV reactors as nuclear fuels. One of the most important issues to be studied is their behavior under irradiation. A first approach to this goal is the study of point defects. By means of first-principles calculations within the framework of density functional theory, we study the stability and formation energies of vacancies, interstitials and Frenkel pairs in thorium carbide. We find that C isolated vacancies are the most likely defects, while C interstitials are energetically favored as compared to Th ones. These kind of results for ThC, to the best authors’ knowledge, have not been obtained previously, neither experimentally, nor theoretically. For this reason, we compare with results on other compounds with the same NaCl-type structure.

  3. Point defects in thorium nitride: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Pérez Daroca, D., E-mail: pdaroca@tandar.cnea.gov.ar [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina); Llois, A.M. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina); Mosca, H.O. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM-CNEA (Argentina)

    2016-11-15

    Thorium and its compounds (carbides and nitrides) are being investigated as possible materials to be used as nuclear fuels for Generation-IV reactors. As a first step in the research of these materials under irradiation, we study the formation energies and stability of point defects in thorium nitride by means of first-principles calculations within the framework of density functional theory. We focus on vacancies, interstitials, Frenkel pairs and Schottky defects. We found that N and Th vacancies have almost the same formation energy and that the most energetically favorable defects of all studied in this work are N interstitials. These kind of results for ThN, to the best authors' knowledge, have not been obtained previously, neither experimentally, nor theoretically.

  4. Coordination compounds of titanium, zirconium, tin, thorium and uranium

    International Nuclear Information System (INIS)

    Deshpande, S.G.; Jain, S.C.

    1990-01-01

    Reactions of isatin, furoic acid and picolinic acid have been carried out with titanium tetrachloride, tin tetrachloride, thorium tetrachloride, zirconyl chloride and uranyl nitrate. While 2:3(metal:ligand) type compounds of isatin have been obtained with Ti(IV) and Sn(IV), zirconium(IV), thorium(IV), and uranium(VI) do not react with the ligand under similar experimental conditions. Furoic acid (FAH) and picolinic acid(PicH) form various chloro furoates and picolinates when reacted with TiCl 4 , ZrOCl 2 and ThCl 4 , but do not react with SnCl 4 . The various compounds synthesised have been characterised on the basis of elemental analysis, infrared studies, conductivity and thermogravimetric measurements. (author). 1 tab., 10 refs

  5. Determination of dose equivalent and risk in thorium cycle

    International Nuclear Information System (INIS)

    Ney, C.L.V.N.

    1988-01-01

    In these report are presented the calculations of dose equivalent and risk, utilizing the dosimetric model described in publication 30 of the International Comission on Radiological Protection. This information was obtained by the workers of the thorium cycle, employed at the Praia and Santo Amaro Facilities, by assessing the quantity and concentration of thorium in the air. The samples and the number of measurements were established through design of experiments techniques, and the results were evaluated with the aid of variance analysis. The estimater of dose equivalent for internal and external radiation exposure and risk associated were compared with the maximum recommended limits. The results indicate the existence of operation areas whose values were above those limits, requiring so an improvement in the procedures and services in order to meet the requirements of the radiological protetion. (author) [pt

  6. Plutonium(IV) and thorium(IV) hydrous polymer chemistry

    International Nuclear Information System (INIS)

    Johnson, G.L.; Toth, L.M.

    1978-05-01

    The recent attention given to Pu(IV) polymers has warranted a review of plutonium and thorium hydrolysis chemistry with respect to the various experimental approaches and insights gained therein. Differing terminologies used in the experimental procedures have often confused the understanding of the chemical processes which occur between the first hydrolysis reaction of the tetravalent actinide and its final dehydration to form the crystalline oxide. This report focuses on the polymer aging reaction which is defined here in terms of A. W. Thomas' ol to oxo conversion reaction and involves simply the conversion of hydroxyl-bridged polymer links to oxygen-bridged linkages. Thorium(IV) hydrolytic reactions are included because they are analogous in many respects to those of Pu(IV) and offer a simpler chemical system for experimental study. Future work using spectroscopic techniques should significantly improve the description of this aging phenomenon

  7. Study of temperature programmed decomposition of thorium nitrate pentahydrate

    International Nuclear Information System (INIS)

    Khan, F.A.; Awasthi, K.K.; Mahanty, B.N.; Karande, A.; Prakash, Amrit; Afzal, Md.; Panakkal, J.P.

    2010-01-01

    Full text: Thorium based fast reactor nuclear fuel cycle envisages thorex process flow sheet operation at the back end. The product consolidation at this stage would require denitration of thorium solution. Mixed oxides like (U,Th)O 2+x can be prepared through co-denitration of respective nitrate salt solution followed by calcinations at high temperature. Various derivatives of Th(NO 3 ) 4 .5H 2 O are likely to encountered in the denitration as well as calcinations steps. Thermal decomposition of thorium nitrate pentahydrate has been studied in thermo gravimetric analyser (TGA) coupled with evolved gas analyser (EGA). TGA system has a vertical graphite furnace with PID temperature control and a microbalance of sensitivity 0.04 microgram. High-resolution quadrupole mass spectrometer has been used as a evolved gas analyser. 22.2 mg sample was taken in alumina crucible with the microbalance such that the crucible remained in the middle of the vertical tubular furnace. The sample was heated up to 700 deg C with heating rate 3 deg C/min in the ultra pure argon atmosphere. The flow rate of argon was maintained at 50ml/min.Thermogram and mass spectrum of the sample were simultaneously recorded. Thermogram of the thorium nitrate pentahydrate showed that the dehydration was started at 97 deg C and continued up to 212 deg C. The dehydration of the sample occurred in the three distinct steps, but with the help of mass spectrum of water vapour (m/e=18) it could be shown that two more steps might be involved in the dehydration. The mass spectrum of thorium nitrate pentahydrate showed that the evolution of nitric oxide (m/e=30) started at 132 deg C. It indicated that the denitration of the thorium nitrate started well before the completion of its dehydration. Nitric oxide showed three sharp peaks in the mass spectrum of the sample and the position of the peaks was at 166 deg C, 203 deg C and 333 deg C respectively. The mass spectrum of oxygen (m/e=32) and nitrogen dioxide (m

  8. Coprecipitation of thorium and uranium peroxides from acid solutions

    Energy Technology Data Exchange (ETDEWEB)

    McTaggart, D.R.; Mailen, J.C.

    1981-01-01

    The factors affecting successful coprecipitation of thorium and uranium peroxides from acid media were studied. Variables considered in this work were H/sup +/ concentration, H/sub 2/O/sub 2/ concentration, duration of contact, and rate of feed solution addition. In all experiments, stock solutions of Th(NO/sub 3/)/sub 4/ and UO/sub 2/(NO/sub 3/)/sub 2/ were fed at a controlled rate into H/sub 2/O/sub 2/ solutions with constant stirring. Samples were taken as a function of time to follow the H/sup +/ concentration of the solution, uranium precipitation, thorium precipitation, precipitant weight/volume of solution, and crystalline structure and growth. The optimum conditions for maximum coprecipitation are low H/sup +/ concentration, high H/sub 2/O/sub 2/ concentration, and extended contact time between the solutions.

  9. Phonon spectrum, mechanical and thermophysical properties of thorium carbide

    Energy Technology Data Exchange (ETDEWEB)

    Pérez Daroca, D., E-mail: pdaroca@tandar.cnea.gov.ar [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Consejo Nacional de Investigaciones Cientı´ficas y Técnicas (Argentina); Jaroszewicz, S. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM-CNEA (Argentina); Llois, A.M. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Consejo Nacional de Investigaciones Cientı´ficas y Técnicas (Argentina); Mosca, H.O. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM-CNEA (Argentina)

    2013-06-15

    In this work, we study, by means of density functional perturbation theory and the pseudopotential method, mechanical and thermophysical properties of thorium carbide. These properties are derived from the lattice dynamics in the quasi-harmonic approximation. The phonon spectrum of ThC presented in this article, to the best authors’ knowledge, have not been studied, neither experimentally, nor theoretically. We compare mechanical properties, volume thermal expansion and molar specific capacities with previous results and find a very good agreement.

  10. Thorium utilization: conversion ratio and fuel needs in thermal reactors

    International Nuclear Information System (INIS)

    Oosterkamp, W.J.

    1975-01-01

    As a preparatory study for thorium utilization in thermal reactors a study has been made of the fuel comsumption in existing reactor types. A quantitative description is given of the influence of enrichment, burnup, amount of structural material, choise of coolant and control requirements on the convertion ratio. The enrichment is an important factor and a low fuel comsumption can be achieved by increasing the enrichment

  11. Composition of hydroponic medium affects thorium uptake by tobacco plants

    Czech Academy of Sciences Publication Activity Database

    Soudek, Petr; Kufner, Daniel; Petrová, Šárka; Mihaljevič, M.; Vaněk, Tomáš

    2013-01-01

    Roč. 92, č. 9 (2013), s. 1090-1098 ISSN 0045-6535 R&D Projects: GA MŠk LH12162; GA MŠk(CZ) LD13029; GA MPO FR-TI3/778 Institutional research plan: CEZ:AV0Z50380511 Keywords : Thorium * Plant uptake * Polyamines Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 3.499, year: 2013

  12. Mitogenic stimulation of peripheral lymphocytes of thorium workers

    International Nuclear Information System (INIS)

    Serio, C.S.; Henning, C.B.; Lloyd, E.L.

    1979-01-01

    Mitogenic stimulation of lymphocyte cultures from 30 thorium workers was studied to determine whether their immunocompetence was affected by their occupational exposure to radiation. A decrease in lymphocyte responsiveness was seen in these workers when compared with age-matched normal control subjects. The mean decrease relative to the normal controls for three different mitogens tested was 26% with phytohemagglutinin, 40% with concanavalin A, and 30% with poke week mitogen

  13. Spectrophotometric determination of thorium using arsenazo III in water

    International Nuclear Information System (INIS)

    Rio, M.A.P. do; Godoy, J.M. de.

    1985-01-01

    A spectrophotometric determination of thorium with arsenazo III (1,8 dihidroxynaphtaline - 3,6 sulfanic acid - 2,7 bis (azo-2) - phenil argonic acid) was carried out aiming to analyse this element in water. In order to eliminate possible interferences, a coprecipitation with lantanium fluoride was used followed by an extration with 0,2 M TTA (tenoil-trifluor - aceton) / Benzen. The results showed a good agreement with the ones obtained by alfa-spectrometry. (Author) [pt

  14. Chlorine gas processing of oxide nuclear fuel particles containing thorium

    International Nuclear Information System (INIS)

    Knotik, K.; Bildstein, H.; Falta, G.; Wagner, H.

    Experimental studies on the chloride extraction and separation of U and Th from coated Th--U oxide particles are reported. After a description of the chlorination equipment and the experimental procedures, the results are discussed. The yield of U is determined as a function of the reaction temperature. The results of a thermogravimetric analysis of the chlorination of uranium carbide and thorium carbides are reported and used to establish the reaction mechanism for the chlorination

  15. Global recovery process of thorium and rare earths in a nitrate medium

    International Nuclear Information System (INIS)

    Cailly, F.; Mottot, Y.

    1993-01-01

    The aqueous solution of thorium and rare earth nitrates, obtained by leaching the ore with nitric acid, is extracted by an organic phosphorous compound (phosphate, phosphonate, phosphinate or phosphine oxide) and a cationic extractant chosen among phosphoric acid di-esters. Extraction of thorium and rare earths is possible even in presence of phosphate ions in the aqueous solution. Thorium and rare earths are separated by liquid-liquid extraction of the organic phase

  16. 3.4. Research and Development of Thorium in Nuclear Fuel -European Commission

    OpenAIRE

    TSIGE-TAMIRAT Haileyesus

    2012-01-01

    Thorium fuel cycles (ThFCs) have been investigated with varying intensity for many different reactor types in the past.This was motivated by the vast abundance of thorium and its ability to be used as a fertile material in most reactor types. Thorium oxide fuel possesses favorable neutronic, thermal and chemical properties that could enable higher fuel utilization, lower minor actinide production, and improved proliferation resistance. Past studies in the European Union indicated that Th...

  17. Contributions to the thorium occupational exposure in Brazil

    International Nuclear Information System (INIS)

    Cunha, Kenya Moore de Almeida Dias da

    1997-01-01

    There are around 15.000 workers in Brazil involved in the mining and milling processes of thorium bearing minerals. It is necessary to estimate the exposure of workers to airborne particulate containing thorium to estimate the risk associated with the inhalation of aerosols. The aims of this study were: - to develop a national cascade impactor and - to characterize the exposure of workers to airborne particulate containing Th in two plants and one industry that were chosen. Plant A and Pant B process niobium ore and industry C uses thorium nitrate to manufacture gas mantle. The national cascade impactor - ICN was developed to collect particulate in the range of 0,64 up to 19,4 μm. Its advantage over commercially available cascade impactors is the selections of particulate in the respirable and inhalable fractions of aerosol. The experimental calibration of the ICN agreed with the theoretical calibration. The results obtained with the ICN were compared to the ones obtained with other selective air samplers, in 3 plants. The particle size distribution and the Th mass concentration were determined in those plants. The size distribution of particulate containing Nb. U Zr, Pb. Fe, Y and Sr, and the elemental mass concentration was determined. A group of workers in installations B and C were also monitored through bioassay analysis of Th excreted in urine and feces. Air and bioassay results have shown that the systemic incorporation of Th is not significant. (author)

  18. The future role of thorium in assuring CANDU fuel supplies

    International Nuclear Information System (INIS)

    Slater, J.B.

    1985-01-01

    Atomic Energy of Canada Limited (AECL), in partnership with Canadian industry and power utilities, has developed the CANDU reactor as a safe, reliable and economic means of transforming nuclear fuel into useable power. The use of thorium/uranium-233 recycle gives the possibility of a many-fold increase in energy yield over that which can be obtained from the use of uranium in once-through cycles. The neutronic properties of uranium-233 combine with the inherent neutron economy of the CANDU reactor to offer the possibility of near-breeder cycles in which there is no net consumption of fissile material under equilibrium fuelling conditions. Use of thorium cycles in CANDU will limit the impact of higher uranium prices. When combined with the potential for significant reductions in CANDU capital costs, then the long-term prospect is for generating costs near to current levels. Development of thorium cycles in CANDU will safeguard against possible uranium shortages in the next century, and will maintain and continue the commercial viability of CANDU as a long-term energy technology. (author)

  19. Spectrographic determination of some rare earths in thorium compounds

    International Nuclear Information System (INIS)

    Brito, J. de.

    1977-01-01

    A method for spectrographic determination of Gd, Sm, Dy, Eu, Y, Yb, Tm and Lu in thorium compounds has been developed. Sensibilities of 0.01 μg rare earths/g Th02 were achieved. The rare earth elements were chromatographycally separated in a nitric acid-ether-cellulose system. The solvent mixture was prepared by dissolving 11% of concentrated nitric acid in ether. The method is based upon the sorption of the rare earths on activated cellulose, the elements being eluted together with 0.01 M HNO 3 . The retention of the 152 , 154 Eu used as tracer was 99,4%. The other elements showed recoveries varying from 95 to 99%. A direct carrier destillation procedure for the spectrochemical determination of the mentioned elements was used. Several concentrations of silver chloride were used to study the volatility behavior of the rare earths. 2%AgCl was added to the matrix as definite carrier, being lantanum selected as internal standard. The average coefficient of variation for this method was +- -+ 7%. The method has been appleid to the analysis of rare earths in thorium coumpounds prepared by Thorium Purification Pilot Plant at Atomic Energy Institute, Sao Paulo [pt

  20. Solvent extraction method for determination of thorium in soft tissues

    International Nuclear Information System (INIS)

    Singh, N.P.; Ibrahim, S.A.; Cohen, N.; Wrenn, M.E.

    1979-01-01

    A simple, precise and accurate analytical technique has been developed for the determination of thorium isotopes in soft tissues. The method consists of preliminary nitric acid digestion of tissues after adding 229 Th tracer, followed by a mixture of nitric and sulfuric acid with occasional addition of hydrogen peroxide; thorium is then coprecipitated with iron carrier by ammonium hydroxide. The precipitate is washed until free of sulfate ions, dissolved in 1:1 HNO 3 and finally adjusted to 4 M HNO 3 . Thorium is extracted twice into 25% trilaurylamine (TLA) in xylene (pre-equilibrated with 4 M HNO 3 ) and backwashed twice with 10 M HCl. The aqueous phase is evaporated to almost dryness, treated with H 2 SO 4 with frequent addition of a few drops of HNO 3 , and electrodeposited onto a platinum planchet prior to α spectrometry with a surface-barrier silicon detector. The final total recovery ranged from 24 to 93% with a mean of 65% in 28 samples. Yield appeared to be independent of total iron when 10 to 100 mg Fe were added, and independent of total iron when 10 to 100 mg Fe were added, and independent of the amount of added tracer. The natural 228 Th content of three different beef liver samples was 1.3, 1.4, and 3.0 pCi/kg wet weight. 4 tables

  1. On the structure of thorium and americium adenosine triphosphate complexes

    International Nuclear Information System (INIS)

    Mostapha, Sarah; Berton, Laurence; Boubals, Nathalie; Zorz, Nicole; Charbonnel, Marie-Christine; Fontaine-Vive, Fabien; Den Auwer, Christophe; Solari, Pier Lorenzo

    2014-01-01

    The actinides are chemical poisons and radiological hazards. One challenge to better appraise their toxicity and develop countermeasures in case of exposure of living organisms is to better assess pathways of contamination. Because of the high chemical affinity of those actinide elements for phosphate groups and the ubiquity of such chemical functions in biochemistry, nucleotides and in particular adenosine triphosphate nucleotide (ATP) may be considered critical target building blocks for actinides. Combinations of spectroscopic techniques (Fourier transformed Infra Red [FTIR], Electro-spray Ionization Mass Spectrometry [ESI-MS], and Extended X-ray Absorption Fine Structure [EXAFS]) with quantum chemical calculations have been implemented in order to assess the actinides coordination arrangement with ATP. We describe and compare herein the interaction of ATP with thorium and americium; thorium(IV) as a representative of actinide(IV) like plutonium(IV) and americium(III) as a representative of all heavier actinides. In the case of thorium, an insoluble complex is readily formed. In the case of americium, a behavior identical to that described previously for lutetium has been observed with insoluble and soluble complexes. The comparative study of ATP complexation with Th(IV) and Am(III) shows their ability to form insoluble complexes for which a structural model has been proposed by analogy with previously described Lu(III) complexes. (authors)

  2. On the structure of thorium and americium adenosine triphosphate complexes.

    Science.gov (United States)

    Mostapha, Sarah; Fontaine-Vive, Fabien; Berthon, Laurence; Boubals, Nathalie; Zorz, Nicole; Solari, Pier Lorenzo; Charbonnel, Marie Christine; Den Auwer, Christophe

    2014-11-01

    The actinides are chemical poisons and radiological hazards. One challenge to better appraise their toxicity and develop countermeasures in case of exposure of living organisms is to better assess pathways of contamination. Because of the high chemical affinity of those actinide elements for phosphate groups and the ubiquity of such chemical functions in biochemistry, nucleotides and in particular adenosine triphosphate nucleotide (ATP) may be considered critical target building blocks for actinides. Combinations of spectroscopic techniques (Fourier transformed Infra Red [FTIR], Electrospray Ionization Mass Spectrometry [ESI-MS], and Extended X-ray Absorption Fine Structure [EXAFS]) with quantum chemical calculations have been implemented in order to assess the actinides coordination arrangement with ATP. We describe and compare herein the interaction of ATP with thorium and americium; thorium(IV) as a representative of actinide(IV) like plutonium(IV) and americium(III) as a representative of all heavier actinides. In the case of thorium, an insoluble complex is readily formed. In the case of americium, a behavior identical to that described previously for lutetium has been observed with insoluble and soluble complexes. The comparative study of ATP complexation with Th(IV) and Am(III) shows their ability to form insoluble complexes for which a structural model has been proposed by analogy with previously described Lu(III) complexes.

  3. Ultrasensitive analysis of thorium by resonance ionization mass spectroscopy (RIMS)

    International Nuclear Information System (INIS)

    Johnson, S.G.; Nogar, N.S.; Miller, C.M.; Murrell, M.T.; Fearey, B.L.

    1991-01-01

    This communication presents results on a RIMS analysis of thorium. Thorium is of interest for geochronological and geochemical purposes. The measurement of uranium series disequilibrium is a well established and valuable approach for geochronological studies: disequilibrium between 234/238 U and 230 Th can be used to date samples younger than 350,000 years. Both continuous wave (cw) and pulsed lasers were utilized in this study for resonantly exciting and subsequently ionizing thorium. In the case of the pulsed laser RIMS experiments, two excimer laser-pumped dye lasers were used in conjunction with a 0.4 m time-of-flight mass spectrometer. The cw RIMS experiments used an Ar + laser-pumped dye laser and a second Ar + in combination with a single magnetic sector mass spectrometer (NBS 12-90 design). Experiments performed with the pulsed RIMS apparatus were aimed at determining the autoionization state structure and re-determining the ionization potential (IP). By tuning one dye laser to a resonance and scanning the second laser such that the total energy was equal to or above the IP, over 150 autoionization states were determined. The IP was re-determined to be 6.211±.002 eV (50900 ± 20 cm -1 ). In addition, the typical cross section for ionization of an autoionizing state was determined to be 1 x 10 -15 cm 2

  4. Different periods of uranium and thorium occurrence in Madagascar (1960)

    International Nuclear Information System (INIS)

    Moreau, M.

    1960-01-01

    In Madagascar, the first typical occurrences of thorium and uranium are about 500 million years old. Previously thorium and uranium were rather concentrated in the granitic and charnockitic zones, chiefly in minerals such as monazite, apatite and zircon. At the end of the Precambrian period, metasomatic granites occur especially in the anticlinal series (Andriba orthite granite). The granitization is followed by the formation of the main pegmatitic areas in the Island with Th-U niobotantalates, uraninite and beryl. The pegmatites are well developed in the synclinal series with a poor migmatization or no migmatization at all. In the same time a large uranium and thorium province with uranothorianite deposits appears within the calcomagnesian series of the Southern part of Madagascar. Later, large amounts of monazite were carried down to the detritic Karroo sediments during tile erosion of the metamorphic precambrian rocks. Monazite has been concentrated again by frequent marine incursions, till the present time. In the medium Karroo, near Folakara, uranium minerals occur in direct relation with carbonaceous material. Finally we must note the uranium occurrence in the pleistocene carbonaceous shales of Antsirabe basin, in contact with crystalline rocks. (author) [fr

  5. Kinetic study of the thorium phosphate - diphosphate dissolution

    International Nuclear Information System (INIS)

    Dacheux, N.; Thomas, A.C.; Brandel, V.; Genet, M.

    2000-01-01

    The thorium phosphate-diphosphate Th 4 (PO 4 ) 4 P 2 O 7 (TPD) structure allows the replacement of large amounts of thorium by tetravalent actinides leading to the formation of solid solutions. This compound was obtained in powdered or sintered form after pressing at room temperature at 300-800 MPa then heating at 1250 deg. C for 10-30 hours. The resistance of this material to aqueous corrosion was determined by varying several parameters such as surface, leaching flow, acidity or temperature. It was thus possible to independently determine the influence of each parameter on the leaching rate provided that the saturation of the solution was not obtained. In acidic media, the partial order related to [H 3 O + ] was found to be in the 0.31-0.35 range while, in basic media, the partial order related to [OH - ] was almost the same (0.45). The activation energy (42 kJ/mol) was determined between 4 deg. C and 120 deg. C. Moreover, the addition of phosphate in the leachate slightly increased the TPD dissolution rate. When the saturation of the solution is reached, a gelatinous precipitate controls the thorium and phosphate concentrations. The complete characterization of this solid led to the proposed general formula Th 2 (PO 4 ) 2 (HPO 4 ). n H 2 O which conventional solubility product (at I = 0 M) is very low: K * S,0 10 -66.6±1.2 even in very acidic media. (authors)

  6. Thorium and Molten Salt Reactors: Essential Questions for Classroom Discussions

    Science.gov (United States)

    DiLisi, Gregory A.; Hirsch, Allison; Murray, Meredith; Rarick, Richard

    2018-04-01

    A little-known type of nuclear reactor called the "molten salt reactor" (MSR), in which nuclear fuel is dissolved in a liquid carrier salt, was proposed in the 1940s and developed at the Oak Ridge National Laboratory in the 1960s. Recently, the MSR has generated renewed interest as a remedy for the drawbacks associated with conventional uranium-fueled light-water reactors (LWRs) in use today. Particular attention has been given to the "thorium molten salt reactor" (TMSR), an MSR engineered specifically to use thorium as its fuel. The purpose of this article is to encourage the TPT community to incorporate discussions of MSRs and the thorium fuel cycle into courses such as "Physics and Society" or "Frontiers of Physics." With this in mind, we piloted a pedagogical approach with 27 teachers in which we described the underlying physics of the TMSR and posed five essential questions for classroom discussions. We assumed teachers had some preexisting knowledge of nuclear reactions, but such prior knowledge was not necessary for inclusion in the classroom discussions. Overall, our material was perceived as a real-world example of physics, fit into a standards-based curriculum, and filled a need in the teaching community for providing unbiased references of alternative energy technologies.

  7. Remeasurement of thorium-230 in the pore water of Lacnor tailings

    International Nuclear Information System (INIS)

    Snodgrass, W.J.; Hart, D.R.

    1990-02-01

    A resampling of the Lacnor tailings management area was undertaken under a comprehensive quality assurance programme to establish levels of thorium 230 in pore water. A quality assurance programme was established for field sampling, sample handling and transport, and laboratory procedures and reporting. The external audit was used to evaluate analytical bias (on synthetic and field samples) and precision (by comparison of duplicate-duplicate results). Accuracy was assessed using synthetic samples. The external audit indicates that thorium 230 measurements by the main laboratory are not significantly different from the interlaboratory average within standard statistical limits. The results of the audit are based on measurement of environmental samples and known synthetic samples. This shows that present and previous measurements of thorium 230 varying from 0,1 to 150 Bq/L are valid data. A qualitative interpretation of the controls on thorium 230 geochemistry is provided in terms of control by thorium 232 and thorium dioxide(c) solid phase. Generic dose estimates for consumption of water containing thorium 230 are made but require refinement ot account for the actual pH of the drinking water and the degree of dilution of the pore water. The results of this project indicate that the performance of the laboratory that will conduct future thorium 230 measurements can be assessed satisfactorily with a smaller scale external laboratory assurance programme. The programme should include replicate samples sent to each laboratory and interlaboratory comparison on samples having high and low values of thorium 230

  8. Thorium determination by X-ray Fluorescence Spectrometry in simulated thorex process solutions

    International Nuclear Information System (INIS)

    Yamaura, M.; Matsuda, H.T.

    1989-01-01

    The X-ray fluorescence method for thorium determination in aqueous and organic (TBP-n-dodecane) solutions is described. The thin film-technique for sample preparation and a suitable internal standard have been used. Some parameters as analytical line, internal standard, filter paper, paper geometry, sample volume and measurement conditions were studied. Uranium, fission products, corrosion products and thorex reagent components were studied as interfering elements in the thorium analysis, as well as the matrix effect by using the thorex process simulated solutions the method to thorium determination in irradiated thorium solutions was applied. (M.J.C.) [pt

  9. A ratio derivative spectrophotometric method for the simultaneous determination of thorium and uranium

    International Nuclear Information System (INIS)

    Relan, G.R.; Venugopal, V.

    1999-01-01

    This paper addresses the development of a ratio derivative spectrophotometric method for the simultaneous determination of thorium and uranium at trace levels in 5M HNO 3 with a view to find its applicability in some of reprocessed materials from thorium-uranium fuels. Arsenazo III was used a chromogenic reagent and the overlapping spectra of thorium and uranium Arsenazo III complexes are resolved by making use of the first derivative of the ratios of their direct absorption spectra. A relative error of about 1% and 2% is obtained for thorium and uranium respectively. The method is simple fast and does not require prior separation. (author)

  10. Sorption behaviour of uranium and thorium on cryptomelane-type hydrous manganese dioxide from aqueous solution

    International Nuclear Information System (INIS)

    El-Naggar, I.M.; El-Absy, M.A.; Abdel-Hamid, M.M.; Aly, H.F.

    1993-01-01

    The kinetics of sorption of uranium and thorium from aqueous nitrate solutions on cryptomelane-type hydrous manganese dioxide (CRYMO) was studied. The exchange of uranium is particle diffusion controlled while that of thorium is chemical reaction at the exchange sites. Sorption of uranium and thorium by CRYMO has been also studied as a function of metal concentrations and temperature. The sorption of both cations is found to be an endothermic process and increases markedly with temperature between 30 and 60 degree C. The sorption results have been analysed by the langmuir adsorption isotherm over the entire range of uranium and thorium concentrations investigated. 35 refs., 8 figs., 5 tabs

  11. Simultaneous determination of uranium and thorium with Arsenazo III by second-derivative spectrophotometry

    International Nuclear Information System (INIS)

    Kuroda, Rokuro; Kurosaki, Mayumi; Hayashibe, Yutaka; Ishimaru, Satomi

    1990-01-01

    A derivative spectrophotometric method has been developed for the simultaneous determination of microgram quantities of uranium and thorium with Arsenazo III in hydrochloric acid medium. The second-derivative absorbances of the uranium and thorium Arsenazo III complexes at 679.5 and 684.4 nm are used for their quantification. Uranium and thorium, both in the range 0.1-0.7 μg/ml have been determined simultaneously with good precision. The procedure does not require separation of uranium and thorium, and allows the determination of both metals in the presence of alkaline-earth metals and zirconium, but lanthanides interfere. (author)

  12. Recovery of radiogenic lead-208 from a residue of thorium and rare earths obtained during the operation of a thorium purification pilot plant

    International Nuclear Information System (INIS)

    Seneda, Jose Antonio

    2006-01-01

    Brazil has a long tradition in thorium technology, from mineral dressing (monazite) to the nuclear grade thorium compounds. The estimate reserves are 1200,000. ton of ThO 2 . As a consequence from the work of thorium purification pilot plant at Instituto de Pesquisas Energeticas e Nucleares-CNEN/IPEN-SP, about 25 ton of a sludge containing thorium and rare earths was accumulated. It comes as a raffinate and washing solutions from thorium solvent extraction. This sludge, a crude hydroxide named RETOTER contains thorium, rare earths and minor impurities including the radiogenic lead-208, with abundance 88.34 %. This work discusses the results of the studies and main parameters for its recovery by anionic ion exchange technique in the hydrochloric system. The isotope abundance of this lead was analyzed by high resolution mass spectrometer (ICPMS) and thermoionic mass spectrometer (TIMS) and the data was used to calculate the thermal neutron capture cross section. The value of σγ 0 = 14.6±0.7 mb was found, quite different from the σγ 0 = 174.2 ± 7.0 mb measure cross section for the natural lead. Preliminary study for the thorium and rare earths separation and recovery was discussed as well. (author)

  13. Methodology of simultaneous analysis of Uranium and Thorium by nuclear and atomic techniques. Application to the Uranium and Thorium dosing in mineralogic samples

    International Nuclear Information System (INIS)

    Fakhi, S.

    1988-01-01

    This work concerns essentially the potential applications of 100 kW nuclear reactor of Strasbourg Nuclear Research Centre to neutron activation analysis of Uranium and Thorium. The Uranium dosing has been made using: 239-U, 239-Np, fission products or delayed neutrons. Thorium has been showed up by means of 233-Th or 233-Pa. The 239-U and 233-Th detection leads to a rapid and non-destructive analysis of Uranium and Thorium. The maximum sensitivity is of 78 ng for Uranium and of 160 ng for Thorium. The Uranium and Thorium dosing based on 239-Np and 233-Pa detection needs chemical selective separations for each of these radionuclides. The liquid-liquid extraction has permitted to elaborate rapid and quantitative separation methods. The sensitivities of the analysis after extraction reach 30 ng for Uranium and 50 ng for Thorium. The fission products separation study has allowed to elaborate the La, Ce and Nd extractions and its application to the Uranium dosing gives satisfying results. A rapid dosing method with a sensitivity of 0.35 microgramme has been elaborated with the help of delayed neutrons measurement. These different methods have been applied to the Uranium and Thorium dosing in samples coming from Oklo mine in Gabon. The analyses of these samples by atomic absorption spectroscopy and by the proton induced X-ray emission (PIXE) method confirm that the neutron activation analysis methods are reliable. 37 figs., 14 tabs., 50 refs

  14. Recovery of radiogenic lead-208 from a residue of thorium and rare earths obtained during the operation of a thorium nitrate purification pilot plant

    International Nuclear Information System (INIS)

    Seneda, Jose Antonio

    2006-01-01

    Brazil has a long tradition in thorium technology, from mineral dressing (monazite) to the nuclear grade thorium compounds. The estimate reserves are 1200,000. ton of ThO 2 . As a consequence from the work of thorium purification pilot plant at Instituto de Pesquisas Energeticas e Nucleares-CNEN/SP, about 25 ton of a sludge containing thorium and rare earths was accumulated. It comes as a raffinate and washing solutions from thorium solvent extraction. This sludge, a crude hydroxide named RETOTER contains thorium, rare earths and minor impurities including the radiogenic lead-208, with abundance 88.34 %. This work discusses the results of the studies and main parameters for its recovery by anionic ion exchange technique in the hydrochloric system. The isotope abundance of this lead was analyzed by high resolution mass spectrometer (ICPMS) and thermoionic mass spectrometer (TIMS) and the data was used to calculate the thermal neutron capture cross section. The value of s ? o = 14.6 +/- 0.7 mb was found, quite different from the s ? o = 174.2 +/- 7.0 mb measure cross section for the natural lead. Preliminary study for the thorium and rare earths separation and recovery was discussed as well. (author)

  15. Operation of CANDU power reactor in thorium self-sufficient fuel cycle

    Indian Academy of Sciences (India)

    Cost of thorium mining is much less than that of uranium because the radiation danger in the process of thorium mining is. ∼100 times less than in the uranium mining. Possibilities of commercial production of 233U in nuclear reactors were discussed many times in publications in connection with thorium–uranium fuel cycle.

  16. Critical review of analytical techniques for safeguarding the thorium-uranium fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hakkila, E.A.

    1978-10-01

    Conventional analytical methods applicable to the determination of thorium, uranium, and plutonium in feed, product, and waste streams from reprocessing thorium-based nuclear reactor fuels are reviewed. Separations methods of interest for these analyses are discussed. Recommendations concerning the applicability of various techniques to reprocessing samples are included. 15 tables, 218 references.

  17. Critical review of analytical techniques for safeguarding the thorium-uranium fuel cycle

    International Nuclear Information System (INIS)

    Hakkila, E.A.

    1978-10-01

    Conventional analytical methods applicable to the determination of thorium, uranium, and plutonium in feed, product, and waste streams from reprocessing thorium-based nuclear reactor fuels are reviewed. Separations methods of interest for these analyses are discussed. Recommendations concerning the applicability of various techniques to reprocessing samples are included. 15 tables, 218 references

  18. Demonstration of iron and thorium in autopsy tissues by x-ray microanalysis

    International Nuclear Information System (INIS)

    Landas, S.; Turner, J.W.; Moore, K.C.; Mitros, F.A.

    1984-01-01

    We performed x-ray microanalysis of autopsy specimens using a scanning-transmission electron microscopy mode. Tissues were obtained at necropsy from a patient with history of angiography using thorium dioxide and from a patient with hemochromatosis. X-ray microanalysis confirmed the presence of thorium and iron in their respective tissues. Effects of staining reagents were examined

  19. Spectrophotometric simultaneous determination of uranium and thorium using partial least squares regression and orthogonal signal correction

    Energy Technology Data Exchange (ETDEWEB)

    Niazi, Ali [Azad University of Arak (Iran, Islamic Republic of). Faculty of Sciences. Dept. of Chemistry]. E-mail: ali.niazi@gmail.com

    2006-09-15

    A simple, novel and sensitive spectrophotometric method was described for simultaneous determination of uranium and thorium. The method is based on the complex formation of uranium and thorium with Arsenazo III at pH 3.0. All factors affecting the sensitivity were optimized and the linear dynamic range for determination of uranium and thorium found. The simultaneous determination of uranium and thorium mixtures by using spectrophotometric methods is a difficult problem, due to spectral interferences. By multivariate calibration methods such as partial least squares (PLS), it is possible to obtain a model adjusted to the concentration values of the mixtures used in the calibration range. Orthogonal signal correction (OSC) is a preprocessing technique used for removing the information unrelated to the target variables based on constrained principal component analysis. OSC is a suitable preprocessing method for PLS calibration of mixtures without loss of prediction capacity using spectrophotometric method. In this study, the calibration model is based on absorption spectra in the 600-760 nm range for 25 different mixtures of uranium and thorium. Calibration matrices contained 0.10- 21.00 and 0.25-18.50 {mu}g mL{sup -1} of uranium and thorium, respectively. The RMSEP for uranium and thorium with OSC and without OSC were 0.4362, 0.4183 and 1.5710, 1.0775, respectively. This procedure allows the simultaneous determination of uranium and thorium in synthetic and real matrix samples with good reliability of the determination. (author)

  20. Durability of adhesive bonds to uranium alloys, tungsten, tantalum, and thorium

    International Nuclear Information System (INIS)

    Childress, F.G.

    1975-01-01

    Long-term durability of epoxy bonds to alloys of uranium (U-Nb and Mulberry), nickel-plated uranium, thorium, tungsten, tantalum, tantalum--10 percent tungsten, and aluminum was evaluated. Significant strengths remain after ten years of aging; however, there is some evidence of bond deterioration with uranium alloys and thorium stored in ambient laboratory air

  1. An extraction method of uranium 233 from the thorium irradiates in a reactor core

    International Nuclear Information System (INIS)

    Chesne, A.; Regnaut, P.

    1955-01-01

    Description of the conditions of separation of the thorium, of the uranium 233 and of the protactinium 233 in hydrochloric solution by absorption then selective elution on anion exchange resin. A precipitation of the thorium by the oxalic acid permits the recuperation of the hydrochloric acid which is recycled, the main, raw material consumed being the oxalic acid. (authors) [fr

  2. Experiences in running solvent extraction plant for thorium compounds [Paper No. : V-5

    International Nuclear Information System (INIS)

    Gopalkrishnan, C.R.; Bhatt, J.P.; Kelkar, G.K.

    1979-01-01

    Indian Rare Earths Ltd. operates a Plant using thorium concentrates as raw material, employing hydrocarbonate route, for the manufacture of thorium compounds. A small demonstration solvent extraction plant designed by the Chemical Engineering Division, B.A.R.C. is also being operated for the same purpose using a partly purified thorium hydrocarbonate as raw material. In the solvent extraction process, separation of pure thorium is done in mixer settlers using 40% mixture of tri-butyl phosphate in kerosene. Though a comparatively purer raw material of hydrocarbonate than thorium concentrate is used, heavy muck formation is encountered in the extraction stage. Production of nuclear grade thorium oxide has been successful so far as quality is concerned. The quality of thorium nitrate suffers in the yellow colouration and high phosphate content, the former being only partly controlled through the use of pretreated kerosene. When a larger solvent extraction plant is to be designed to use thorium concentrates as raw material, some of the problems encountered will be considered. (author)

  3. On the development of fast breeder reactors and the use of thorium in Brazil

    International Nuclear Information System (INIS)

    Ishiguro, Y.

    1986-10-01

    This work presents a discussion on the possibility of construction of fast breeder reactors in Brazil. It is specially concerned with the use of thorium which is abundant in our country. The main advantages of this projects are: develop fuel and reactor technology in Brazil, increase thorium research, demonstrate the safety of LMFBR and promote its public acceptance. (A.C.A.S.)

  4. Operation of CANDU power reactor in thorium self-sufficient fuel cycle

    Indian Academy of Sciences (India)

    This paper presents the results of calculations for CANDU reactor operation in thorium fuel cycle. Calculations are performed to estimate the feasibility of operation of heavy-water thermal neutron power reactor in self-sufficient thorium cycle. Parameters of active core and scheme of fuel reloading were considered to be the ...

  5. Atomic Energy Control Board and its role in the regulation of uranium and thorium mines

    International Nuclear Information System (INIS)

    Dory, A.B.

    1980-05-01

    Laws governing the Atomic Energy Control Board (AECB), its structure and functions is described in the context of the Board's role in uranium and thorium mining. The licensing and compliance procedures are described as they pertain to the objectives of the AECB in protecting workers, the public and the environment during construction, operating and closure of uranium and thorium mining and milling facilities. (OT)

  6. Anticipated radiological impacts from the mining and milling of thorium for the nonproliferative fuels

    International Nuclear Information System (INIS)

    Meyer, H.R.; Till, J.E.

    1978-01-01

    Recent emphasis on proliferation-resistant fuel cycles utilizing thorium--uranium-233 fuels has necessitated evaluation of the potential radiological impact of mining and milling thorium ore. Therefore, an analysis has been completed of hypothetical mine-mill complexes using population and meteorological data representative of a thorium resource site in the Lemhi Pass area of Idaho/Montana, United States of America. Source terms for the site include thorium-232 decay chain radionuclides suspended as dusts and radon-220 and daughters initially released as gas. Fifty-year dose commitments to maximally exposed individuals of 2.4 mrem to total body, 9.5 mrem to bone, and 35 mrem to lungs are calculated to result from facility operation. Radium-228, thorium-228, thorium-232 and lead-212 (daughter of radon-220) are found to be the principal contributors to dose. General population doses for a 50-mile radius surrounding the facility are estimated to be 0.05 man-rem to total body, 0.1 man-rem to bone, and 0.7 man-rem to lungs. Generally speaking, the results of this study indicate that the radiological aspects of thorium mining and milling should pose no significant problems with regard to implementation of thorium fuel cycles

  7. Thermal diffusivity and conductivity of thorium- uranium mixed oxides

    Science.gov (United States)

    Saoudi, M.; Staicu, D.; Mouris, J.; Bergeron, A.; Hamilton, H.; Naji, M.; Freis, D.; Cologna, M.

    2018-03-01

    Thorium-uranium oxide pellets with high densities were prepared at the Canadian Nuclear Laboratories (CNL) by co-milling, pressing, and sintering at 2023 K, with UO2 mass contents of 0, 1.5, 3, 8, 13, 30, 60 and 100%. At the Joint Research Centre, Karlsruhe (JRC-Karlsruhe), thorium-uranium oxide pellets were prepared using the spark plasma sintering (SPS) technique with 79 and 93 wt. % UO2. The thermal diffusivity of (Th1-xUx)O2 (0 ≤ x ≤ 1) was measured at CNL and at JRC-Karlsruhe using the laser flash technique. ThO2 and (Th,U)O2 with 1.5, 3, 8 and 13 wt. % UO2 were found to be semi-transparent to the infrared wavelength of the laser and were coated with graphite for the thermal diffusivity measurements. This semi-transparency decreased with the addition of UO2 and was lost at about 30 wt. % of UO2 in ThO2. The thermal conductivity was deduced using the measured density and literature data for the specific heat capacity. The thermal conductivity for ThO2 is significantly higher than for UO2. The thermal conductivity of (Th,U)O2 decreases rapidly with increasing UO2 content, and for UO2 contents of 60% and higher, the conductivity of the thorium-uranium oxide fuel is close to UO2. As the mass difference between the Th and U atoms is small, the thermal conductivity decrease is attributed to the phonon scattering enhanced by lattice strain due to the introduction of uranium in ThO2 lattice. The new results were compared to the data available in the literature and were evaluated using the classical phonon transport model for oxide systems.

  8. Photon attenuation properties of some thorium, uranium and plutonium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Singh, V. P.; Badiger, N. M. [Karnatak University, Department of Physics, Dharwad-580003, Karnataka (India); Vega C, H. R., E-mail: kudphyvps@rediffmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)

    2015-10-15

    Mass attenuation coefficients, effective atomic numbers, effective electron densities for nuclear materials; thorium, uranium and plutonium compounds have been studied. The photon attenuation properties for the compounds have been investigated for partial photon interaction processes by photoelectric effect, Compton scattering and pair production. The values of these parameters have been found to change with photon energy and interaction process. The variations of mass attenuation coefficients, effective atomic number and electron density with energy are shown graphically. Moreover, results have shown that these compounds are better shielding and suggesting smaller dimensions. The study would be useful for applications of these materials for gamma ray shielding requirement. (Author)

  9. Conversion ratio in epithermal PWR, in thorium and uranium cycle

    International Nuclear Information System (INIS)

    Barroso, D.E.G.

    1982-01-01

    Results obtained for the conversion ratio in PWR reactors with close lattices, operating in thorium and uranium cycles, are presented. The study of those reactors is done in an unitary fuel cell of the lattices with several ratios V sub(M)/V sub(F), considering only the equilibrium cycles and adopting a non-spatial depletion calculation model, aiming to simulate mass flux of reactor heavy elements in the reactor. The neutronic analysis and the cross sections generation are done with Hammer computer code, with one critical apreciation about the application of this code in epithermal systems and with modifications introduced in the library of basic data. (E.G.) [pt

  10. A Simplified Supercritical Fast Reactor with Thorium Fuel

    OpenAIRE

    Peng Zhang; Kan Wang; Ganglin Yu

    2014-01-01

    Super-Critical water-cooled Fast Reactor (SCFR) is a feasible option for the Gen-IV SCWR designs, in which much less moderator and thus coolant are needed for transferring the fission heat from the core compared with the traditional LWRs. The fast spectrum of SCFR is useful for fuel breeding and thorium utilization, which is then beneficial for enhancing the sustainability of the nuclear fuel cycle. A SCFR core is constructed in this work, with the aim of simplifying the mechanical structure ...

  11. Solvent Extraction of Thorium(IV by Didodecylphoric Acid

    Directory of Open Access Journals (Sweden)

    Fawwaz I. Khalili

    2003-06-01

    Full Text Available Solvent extraction of Thorium (VI ion from perchlorate solution using didodecylphosphoric acid, DDPA, in chloroform diluent was studied. The effects of stripping hydrochloric acid concentration, stripping time, extraction time, DDPA concentration, pH, ionic strength, supporting electrolyte and temperature on the extraction processes have been studied. From the distribution coefficient values at different temperatures,the enthalpy, the free energy and the entropy changes associated with the extraction processes were determined. The composition of the complex formed was established to be Th(ClO44-nRn(HR5-n where, n=1 or 2 and (HR2 represents the dimer of DDPA.

  12. Determination of uranium and thorium during chemical treatment of monazite

    International Nuclear Information System (INIS)

    El-Nadi, Y.A.; Daoud, J.A.; Aly, H.F.; Kregsamer, P.

    2000-01-01

    Total reflection x-ray fluorescence (TXRF) is a very useful technique for both qualitative and quantitative analysis because of its high detection power and its needed to small sample volumes (less than 100 μl are sufficient). In this work TXRF was used to determine the initial concentrations of the elements included in monazite sand and following up the chemical steps for treatment of monazite with special attention to uranium and thorium concentration as well as lanthanides. The results were compared to those obtained from EDXRF and ICP-MS techniques. (author)

  13. Multifragmentation Fission in Neutron-rich Uranium and Thorium Nuclei

    Directory of Open Access Journals (Sweden)

    R. N. Panda

    2012-09-01

    Full Text Available The structural properties of the recently predicted thermally fissile neutron-rich Uranium and Thorium isotopes are studied using the relativistic mean field formalism. The investigation of the new phenomena of multifragmentation fission is analyzed. In addition to the fission properties, the total nuclear reaction cross section which is a measure of the probability of production of these nuclei is evaluated taking 6,11Li and 16,24O as projectiles. The possible use of nuclear fuel in an accelerator based reactor is discussed which may be the substitution of 233,235U and 239Pu for nuclear fuel in near future.

  14. Concentrations of Uranium,Thorium and Potassium in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Thunholm, Bo; Linden, Anders H.; Gustafsson, Bosse [Geological Survey of Sweden, Uppsala (Sweden)

    2005-04-01

    This report is largely a result of the Swedish contribution to an IAEA co-ordinated research programme (CRP) on the use of selected safety indicators in the assessment of radioactive waste disposal. The CRP was focusing on the assessment of the longterm safety of radioactive waste disposal by means of additional safety indicators based on data from natural systems with emphasis on description of existing data on radioactive elements and radionuclides. A major part of the work was focused on collecting data on geophysics as well as geochemistry and groundwater chemistry; mainly uranium (U), thorium (Th) and potassium (K). Data were interpreted resulting in maps and statistical description.

  15. The Spondylarthritis Ankylopoietica and its treatment with thorium X

    International Nuclear Information System (INIS)

    Liska, G.

    1980-01-01

    After a detailed and comprehensive survey over the history of the spondylarthritis ankylopoietica or 'Bechterew's disease' and over the thorium X therapy, own experiences with patients are described. The patients received a Th-X therapy, supplemented by prednison phenylbutazone administration, with a total dose of up to 1000 to 2400 e.s. E. Th X. In addition, an intensive physicobalneologic and physiotherapeutic treatment was carried out. More than two thirds of the patients expressed their satisfaction with the results achieved. (DG) [de

  16. On thorium and plutonium cocrystallization with calcium oxalate

    International Nuclear Information System (INIS)

    Basalaeva, L.N.; Bekyasheva, T.A.; Popov, D.K.

    1987-01-01

    Study of possibility of 239 Pu and 234 Th concentration from bone ashe (calcium phosphate) hydrochloric acid solutions by coprecipitation with nonisotopic medium (CaC 2 O 4 ) for their further radiometry or alpha-spectrometry is carried out. Thorium and plutonium distribution coefficients in calcium oxalate precipitate - solution system, as well as coefficients of Th and Pu cocrystallization with CaC 2 O 4 and cocrystallization type are determined. Possibility of Pu and Th concentration from bone tissue solutions is demonstrated on small oxalate amount containing 25% of Ca total amount in bone tissue

  17. Growth scenarios with thorium fuel cycles in pressurised heavy water reactors

    International Nuclear Information System (INIS)

    Balakrishnan, M.R.

    1991-01-01

    Since India has generous deposits of thorium, the availability of thorium will not be a limiting factor in any growth scenario. It is fairly well accepted that the best system for utilisation of thorium is the heavy water reactor. The growth scenarios possible using thorium in HWRs are considered. The base has been taken as 50,000 tons of natural uranium and practically unlimited thorium. The reference reactor has been assumed to be the PHWR, and all other growth scenarios are compared with the growth scenario provided by the once-through natural cycle in the PHWR. Two reactor types have been considered: the heavy water moderated, heavy water cooled, pressure tube reactor, known as the PHWR; and the heavy water moderated and cooled pressure vessel kind, similar to the ATUCHA reactor in Argentina. For each reactor, a number of different fuel cycles have been studied. All these cycles have been based on thorium. These are: the self-sustaining equilibrium thorium cycle (SSET); the high conversion ratio high burnup cycle; and the once through thorium cycle (OTT). The cycle have been initiated in two ways: one is by starting the cycle with natural uranium, reprocessing the spent fuel to obtain plutonium, and use that plutonium to initiate the thorium cycle; the other is to enrich the uranium to about 2-3% U-235 (the so-called Low Enriched Uranium or LEU), and use the LEU to initiate the thorium cycle. Both cases have been studied, and growth scenarios have been projected for every one of the possible combinations. (author). 1 tab

  18. Evaluating the Ability of the Thorium-232 and Thorium-230 Isotopic Couple to Quantify Lithogenic Fluxes to the Ocean

    Science.gov (United States)

    Plancherel, Y.; Henderson, G. M.; Deng, F.; Khatiwala, S.; Hsieh, Y. T.

    2016-02-01

    The transfer of lithogenic material from the land to the ocean plays a key role in the global cycles of many elements. In spite of their importance, these fluxes are still poorly known. Here, we present lithogenic fluxes estimated using a thorium-isotope technique. Thorium-232 (232Th) is supplied to the ocean uniquely by dust and rivers. On the other hand, the dominant source of 230Th is the in situ decay of dissolved 234U at a uniform and well-known rate. Assuming that both isotopes have similar chemistries, the scavenging-induced mixed-layer deficit of dissolved 230Th can in principle be used to infer the removal flux of 232Th if the mixed layer residence times of both isotopes are similar. Assuming a steady-state one-dimensional balance, the vertical lithogenic 232Th flux necessary to support observed 232Th profiles can be calculated and the corresponding lithogenic mass flux inferred if the lithogenic abundance and solubility of 232Th are known. We first present fluxes calculated from a global dataset of 232Th and 230Th measurements and contrast these results with values from other available model-based dust-deposition estimates. We then test the limitations of the thorium-based estimates using 3-d ocean model simulations of 232Th and 230Th. Since the "true" lithogenic fluxes are perfectly known in the simulations, they can be used to quantify the absolute and relative errors associated with the observational estimates and evaluate how the error changes under various scenarios. By modulating the strength of the various sources and the scavenging intensity of each isotope in the model, the regional contribution of river and dust fluxes can also be constrained. Overall, we find that thorium-based fluxes represent dust-fluxes relatively well away from the coasts, that the precision depends strongly on 232Th solubility and that while the accuracy of the fluxes varies spatially, the relative error is often better than a factor of 2.

  19. Thorium fuel-cycle development through plutonium incineration by THORIMS-NES (Thorium Molten-Salt nuclear energy synergetics)

    International Nuclear Information System (INIS)

    Furukawa, K.; Furuhashi, A.; Chigrinov, S.E.

    1996-01-01

    Thorium fuel-cycle has benefit on not-only trans-U element reduction but also their incineration. The disadvantage of high gamma activity of fuel, which is useful for improving the resistance to nuclear proliferation and terrorism, can overcome by molten fluorides fuel, and practically by THORIMS-NES, symbiotically coupled with fission Molten-Salt Reactor (FUJI) and fissile-producing Accelerator Molten-Salt Breeder (AMSB). This will have wide excellent advantages in global application, and will be deployed by incinerating Pu and Producing 233 U. Some details of this strategy including time schedule are presented. 14 refs, 2 figs, 4 tabs

  20. Monitoring for thorium intakes by means of thoron (RN-220) in breath measurement; Inkorporationsueberwachung auf Thorium mittels RN-220-Exhalationsanalyse

    Energy Technology Data Exchange (ETDEWEB)

    Eisenmenger, A.; Riedel, W. [Freie Univ. Berlin (Germany). Universitaetsklinikum Benjamin Franklin; Brose, J.; Scheler, R. [Bundesamt fuer Strahlenschutz, Berlin (Germany)

    1998-12-31

    Thoron (Rn-220) in Breath Measurement is a sensitive method for routine monitoring of inhaled thorium intakes. Decay products of exhaled thoron (Po-216 and Pb-212), emanating from Thorium body burdens, are collected electrostatically and their progeny (esp. Po-212) are measured subsequently by alpha-spectrometry. The method has been optimized in respect to chamber volume, collection head geometry and position, supplied high voltage, breathing rate, humidity and counting time. Actually the method is capable to detect Th-228 in the lungs at a level as high as 3% of an Annual Limit on Intake, corresponding to 6 Bq of inhaled Th-228 (class W), as required by the German radiation protection monitoring guidelines. First measurements at occupationally exposed subjects in germany showed burdens up to 7,4 Bq Thorium in lungs derived from an exhalation rate of 3,7%. The amount of Th-232 results from the ratio of Th-228/Th-232 of the handeled material. Corresponding urine excretion analysis showed similar results. With in-vivo measurements no result above detection limit was found at all. (orig.) [Deutsch] Rn-220 Exhalationsmessungen sind eine sensible Methode zur Routineueberwachung von (inhalativen) Thoriuminkorporationen. Zerfallsprodukte des aus Thoriumkoerperdepots abgeatmeten Rn-220 (Po-216 und Pb-212) werden elektrostatisch gesammelt und deren Folgeprodukte dann alpha-spektrometrisch gemessen (spez. Po-212). Die Methode wurde in bezug auf das Sammelkammervolumen, die Sammelkopfgeometrie und -position, die angelegte Hochspannung, die Atemrate, die Atemfeuchtigkeit und die Messzeit optimiert. Derzeit ist es moeglich, mit dieser Methode 3% einer Jahresaktivitaetszufuhr ueber Inhalation in Bezug auf Th-228, entsprechend 6 Bq (Klasse W), nachzuweisen. Erste Messungen an beruflich Exponierten der Thorium-verarbeitenden Industrie in Deutschland zeigten Ergebnisse von bis 7,4 Bq Th-228 Lungendepots bei einer zugrunde gelegten Abatemrate von 3.7%. Der Th-232 Anteil ergibt sich

  1. Thorium: one of the analytical techniques in neutronic activation and alpha spectrometry of the CDTN (Brazilian Nuclear Technology Development Center) in the last three decades

    International Nuclear Information System (INIS)

    Menezes, M.A.B.C.; Sabino, C.V.S.

    1994-01-01

    For long years, the CDTN (Brazilian Nuclear Technology Development Center ) has applied several analytical techniques in the thorium determination. This work is about the evolution of the neutronic activation in the thorium 232 analysis from the 1960's to now. The importance of the analysis request and alpha spectrometry for the thorium 228 and thorium 232 determination is emphasized. (J.A.M.M.)

  2. Thorium (IV) toxicity of green microalgae from Scenedesmus and Monoraphidium genera

    International Nuclear Information System (INIS)

    Queiroz, Juliana Cristina de

    2009-01-01

    The toxicity of thorium by two green microalgae species, Monoraphidium sp. and Scenedesmus sp was studied. During the toxicity tests, the microalgae cultures were inoculated in ASM-I culture medium in the presence and absence of thorium (cultures at pH 8.0 and 6.0 in the absence of thorium, - control - and at pH 6.0 for thorium concentrations ranging from 0.5 to 100.0 mg/L Th). Its effect was monitored by direct counting on Fuchs-Rosenthal chamber and with the help of software developed by the group during the experiments. The difference in pH value in the culture medium did not affect the growth of the microalgae, and pH 6.0 was chosen as a reference in order not to compromise solubility and speciation of thorium in solution. The toxicity of the metal over the species was observed just for thorium concentrations over 50.0 mg/L. A Monoraphidium sp. culture containing 6.25x10 5 microorganisms/mL reached a final concentration of 5.52x10 7 microorganisms/mL in the presence of thorium in the concentration of 10.0 mg/L. If we consider the 100.0 ppm thorium solution reached a final concentration of 8.57x10 6 microorganisms/mL. Control tests indicated a final concentration of 2.51x10 7 microorganisms/mL at the end of the growth. Scenedesmus sp. cells proved to be more resistant to the presence of thorium in solution. Low concentrations of the radionuclide favored the growth of these microalgae. A culture containing 7.65x10 5 microorganisms/mL reached a final concentration of 2.25x10 6 microorganisms/mL, in the absence of thorium in the medium. Toxicological tests indicated a final culture concentration of 5.87x10 6 microorganisms/mL in the presence of 0.5 mg/L thorium. The software used for comparison of direct count method proved to be very useful for the improvement of accuracy of the results obtained and a decrease in the uncertainty in counting. Beyond these advantages it also allowed recording of the data. From the present results one can conclude, that the presence

  3. Promises and Challenges of Thorium Implementation for Transuranic Transmutation - 13550

    Energy Technology Data Exchange (ETDEWEB)

    Franceschini, F.; Lahoda, E.; Wenner, M. [Westinghouse Electric Company LLC, Cranberry Township, PA (United States); Lindley, B. [University of Cambridge (United Kingdom); Fiorina, C. [Polytechnic of Milan (Italy); Phillips, C. [Energy Solutions, Richland, WA (United States)

    2013-07-01

    This paper focuses on the challenges of implementing a thorium fuel cycle for recycle and transmutation of long-lived actinide components from used nuclear fuel. A multi-stage reactor system is proposed; the first stage consists of current UO{sub 2} once-through LWRs supplying transuranic isotopes that are continuously recycled and burned in second stage reactors in either a uranium (U) or thorium (Th) carrier. The second stage reactors considered for the analysis are Reduced Moderation Pressurized Water Reactors (RMPWRs), reconfigured from current PWR core designs, and Fast Reactors (FRs) with a burner core design. While both RMPWRs and FRs can in principle be employed, each reactor and associated technology has pros and cons. FRs have unmatched flexibility and transmutation efficiency. RMPWRs have higher fuel manufacturing and reprocessing requirements, but may represent a cheaper solution and the opportunity for a shorter time to licensing and deployment. All options require substantial developments in manufacturing, due to the high radiation field, and reprocessing, due to the very high actinide recovery ratio to elicit the claimed radiotoxicity reduction. Th reduces the number of transmutation reactors, and is required to enable a viable RMPWR design, but presents additional challenges on manufacturing and reprocessing. The tradeoff between the various options does not make the choice obvious. Moreover, without an overarching supporting policy in place, the costly and challenging technologies required inherently discourage industrialization of any transmutation scheme, regardless of the adoption of U or Th. (authors)

  4. Mortality among male workers at a thorium-processing plant

    International Nuclear Information System (INIS)

    Polednak, A.P.; Stehney, A.F.; Lucas, H.F. Jr.

    1981-01-01

    Mortality is described in a cohort of 3039 men who were employed between 1940 and 1973 at a company involved in the production of thorium and rare earth chemicals from monazite sand. The standardized mortality ratio (SMR) for all causes was 1.05. SMR's were high for cancers of the lung (1,44), rectum (1.90), and pancreas (2.01), and for motor vehicle accidents (1.64). A subgroup of 592 men who worked for one year or longer in selected jobs (laborer, operator, maintenance) was followed up more intensively. SMR's were high for both lung cancer (1.62; 95% CL = 0.78 and 2.98) and pancreatic cancer (4.01; 95% CL = 1.30 and 9.34). The higher proportion of smokers in this subgroup relative to US males could have explained at least part of the excess mortality from lung cancer. Continued follow-up of the cohort in morbidity and mortality studies is needed to evaluate further these possible long-term effects of exposure to radioactivity and chemicals in the thorium extraction process

  5. A Simplified Supercritical Fast Reactor with Thorium Fuel

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2014-01-01

    Full Text Available Super-Critical water-cooled Fast Reactor (SCFR is a feasible option for the Gen-IV SCWR designs, in which much less moderator and thus coolant are needed for transferring the fission heat from the core compared with the traditional LWRs. The fast spectrum of SCFR is useful for fuel breeding and thorium utilization, which is then beneficial for enhancing the sustainability of the nuclear fuel cycle. A SCFR core is constructed in this work, with the aim of simplifying the mechanical structure and keeping negative coolant void reactivity during the whole core life. A core burnup simulation scheme based on Monte Carlo lattice homogenization is adopted in this study, and the reactor physics analysis has been performed with DU-MOX and Th-MOX fuel. The main issues discussed include the fuel conversion ratio and the coolant void reactivity. The analysis shows that thorium-based fuel can provide inherent safety for SCFR without use of blanket, which is favorable for the mechanical design of SCFR.

  6. Accelerator molten-salt breeding and thorium fuel cycle

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Nakahara, Yasuaki; Kato, Yoshio; Ohno, Hideo; Mitachi, Kohshi.

    1990-01-01

    The recent efforts at the development of fission energy utilization have not been successful in establishing fully rational technology. A new philosophy should be established on the basis of the following three principles: (1) thorium utilization, (2) molten-salt fuel concept, and (3) separation of fissile-breeding and power-generating functions. Such philosophy is called 'Thorium Molten-Salt Nuclear Energy Synergetics [THORIMS-NES]'. The present report first addresses the establishment of 233 U breeding fuel cycle, focusing on major features of the Breeding and Chemical Processing Centers and a small molten-salt power station (called FUJI-II). The development of fissile producing breeders is discussed in relation to accelerator molten-salt breeder (AMSB), impact fusion molten-salt breeder, and inertial-confined fusion hybrid molten-salt breeder. Features of the accelerator molten-salt breeder are described, focusing on technical problems with accelerator breeders (or spallators), design principle of the accelerator molten-salt breeder, selection of molten salt compositions, and nuclear- and reactor-chemical aspects of AMSB. Discussion is also made of further research and development efforts required in the future for AMSB. (N.K.)

  7. Mapping potassium and thorium concentrations in Belgian soils.

    Science.gov (United States)

    Cinelli, Giorgia; Tondeur, Francois; Dehandschutter, Boris

    2018-04-01

    The European Atlas of Natural Radiation developed by the Joint Research Centre (JRC) of the European Commission includes maps of potassium K and thorium Th. With several different databases available, including data (albeit not calibrated) from an airborne survey, Belgium is a favourable case for exploring the methodology of mapping for these natural radionuclides. Harmonized databases of potassium and thorium in soil were built by radiological (not airborne) and geochemical data. Using this harmonized database it was possible to calibrate the data from the airborne survey. Several methods were used to perform spatial interpolation and to smooth the data: moving average (MA) without constraint, or constrained by soil class and by geological unit. Overall, there was a reasonable agreement between the maps on a 1 × 1 km 2 grid obtained with the two datasets (airborne data and harmonized soil data) with all the methods. The agreement was better when the maps are reduced to a 10 km × 10 km grid used for the European Atlas of Natural Radiation. The best agreement was observed with the MA constrained by geological unit. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Promises and Challenges of Thorium Implementation for Transuranic Transmutation - 13550

    International Nuclear Information System (INIS)

    Franceschini, F.; Lahoda, E.; Wenner, M.; Lindley, B.; Fiorina, C.; Phillips, C.

    2013-01-01

    This paper focuses on the challenges of implementing a thorium fuel cycle for recycle and transmutation of long-lived actinide components from used nuclear fuel. A multi-stage reactor system is proposed; the first stage consists of current UO 2 once-through LWRs supplying transuranic isotopes that are continuously recycled and burned in second stage reactors in either a uranium (U) or thorium (Th) carrier. The second stage reactors considered for the analysis are Reduced Moderation Pressurized Water Reactors (RMPWRs), reconfigured from current PWR core designs, and Fast Reactors (FRs) with a burner core design. While both RMPWRs and FRs can in principle be employed, each reactor and associated technology has pros and cons. FRs have unmatched flexibility and transmutation efficiency. RMPWRs have higher fuel manufacturing and reprocessing requirements, but may represent a cheaper solution and the opportunity for a shorter time to licensing and deployment. All options require substantial developments in manufacturing, due to the high radiation field, and reprocessing, due to the very high actinide recovery ratio to elicit the claimed radiotoxicity reduction. Th reduces the number of transmutation reactors, and is required to enable a viable RMPWR design, but presents additional challenges on manufacturing and reprocessing. The tradeoff between the various options does not make the choice obvious. Moreover, without an overarching supporting policy in place, the costly and challenging technologies required inherently discourage industrialization of any transmutation scheme, regardless of the adoption of U or Th. (authors)

  9. Optimal thorium-fueled CANDU nuclear reactor fuel management

    International Nuclear Information System (INIS)

    Bonin, H.W.; Sesonske, A.

    1985-01-01

    The optimization of in-core fuel management for a thorium-fueled Canada deuterium uranium (CANDU) nuclear reactor was investigated by minimizing the total refueling rate at equilibrium with respect to criticality and power-peaking constraints. The computer code ASTERIX was written to solve the optimization problem, using a steepest descent technique with a moderate number of diffusion calculations required. Because of the presence of 233 Pa in the fuel, the diffusion calculations are nonlinear and are solved numerically by the specially written program CALYPSO. Simulation was performed on simple models of a CANDU 600-MW reactor, with the core divided into two or four refueling zones. Results indicated that the optimization method investigated did work out well and that potential savings of up to 14% in the feed rate are possible for the self-sufficient equilibrium thorium cycle fuel, with an optimum refueling rate of 1.372 X 10 -4 MgHE (heavy elements)/MWd. Sensitivity of the optimal discharge burnups to the value of the power-peaking constraint was significant

  10. Determination of thorium and uranium particles in monazite airborne

    International Nuclear Information System (INIS)

    Cunha, K.M. de A.D. da

    1988-01-01

    The work is the determination of the Mass Median Aerodynamic Diameter of Airborne particles of Th and U, produced during the milling of monazite in Monozite Sand Plants. The air samples was collected using a Cascade Impactor from Delron DCI-6 with a flux of 12,5 1/min and cut-off diametes of 0,5, 1,0, 4,0, 8,0 and 16,0 μm. Each stage of the cascate impactor was analysed by measuring the X rays induced in collision with 2 MeV protons acellereted by a 4 MV Van de Graaff acceletor located at University Catolic, PUC, RJ. The MMAD found for Th and U was of 1,15 μm with a geometric standard desviation of 2,0. Take in acount that there are more thorium than uranium in the brazilian monazite, and the 232 Th 238 U are thr principal isotopes at the Th and U natural radioative decay series, we considered the mass and the activity distribution as equal. The mean concentration of Th (17,0 Bq/m 3 ) record in the air was 42% above 3/10 of international limit for concentration of oxides of thorium in the air, while the concentration of U remaind below 1/10 of the limit for concentration of U 3 O 8 in the air. (author) [pt

  11. Neutron activation analysis of airborne thorium liberated during welding operations

    International Nuclear Information System (INIS)

    Typically, reactive metals such as aluminum are welded using a thoriated tungsten welding electrode which is attached to a source of argon gas such that the local atmosphere around the weld is inert. The metal is heated by the arc formed between the electrode and the grounded component to be welded. During this process, some of the electrode is vaporized in the arc and is potentially liberated to the surrounding air. This situation may result in a hazardous airborne thorium level. Because the electrode is consumed during welding, the electrode tip must be repeatedly dressed by grinding the tip to a fine point so that the optimal welding conditions are maintained. These grinding activities may also release thorium to the air. Data generated in the 1950s suggested that these electrodes posed no significant health hazard and seemed to justify their exemption from licensing requirements for source material. Since that time, other studies have been performed and present conflicting results as to the level of risk. Values both above and below the health protection limit in use in the United States, have been reported in the literature recently. This study is being undertaken to provide additional data which may be useful in evaluating both the chemical toxicity risk and radiological dose assessment criteria associated with thoriated tungsten welding operations

  12. Determination of 131I and thorium in urine

    International Nuclear Information System (INIS)

    Tomida, Rute Miwa

    1978-01-01

    Methods for the determination of 131 I and Thorium in urine have been developed taking into account the monitoring needs for people who handle with these radioisotopes. The method for determining 131 I is based in the use of silver chloride to separate iodine by precipitation from the sample; the detection was carried out in a Nal (Tl) well type scintillator connected to a single channel analyser. This method has the following advantages; it is easy and relatively fast as well as selective, showing a separation yield higher than 80%. Thorium in urine was determined by colorimetry after the mineralization of the sample using nitric acid, and sulphuric acid, and then oxygen peroxide. The chromophore reagent used was Thoron (disodium salt of 2-(2-hydroxy-3,6-disulfo-l-naphthylazo) benzenearsonic acid).The absorbance was measured in a spectro colorimeter at a fixed wavelength (530 nm). The method proved to be simple allowing a separation yield of about 80%. The most representative sample for a monitoring program in a 131 I production laboratory has been established. The 131 I concentration in urine of individuals with chronic contamination have also been measured; an interpretation of these results is discussed. (author)

  13. Comparative study using different resins to determine thorium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, Mychelle M.L.; Silva, Paulo S.C.; Maihara, Vera A., E-mail: my_linhares@yahoo.com.br, E-mail: pscsilva@ipen.br, E-mail: vmaihara@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Taddei, Maria Helena T., E-mail: mhtaddei@cnen.gov.br [Comissão Nacional de Energia Nuclear (LAPOC/CNEN), Poços de Caldas, MG (Brazil). Laboratório de Pocos de Caldas; Cheberle, Luan T.V., E-mail: luancheberle@gmail.com [Ambientis Radioproteção, Barueri, SP (Brazil)

    2017-07-01

    Thorium is a naturally occurring radioactive element that is widely distributed in the crust of the Earth. This element is very common in mineral formations in regions with high levels of natural radioactivity, therefore, its determination in environmental samples is important. Thorium isotopes ({sup 228}Th, {sup 230}Th, and {sup 232}Th) were determined in a reference material, the IAEA Soil 327 sample, to validate the two methods employed using different resins. The initial preparation with acid dissolution is the same to both, in the first is used anion exchange resin (DOWEX 1 x 2) and electrodeposition in silver planchets. And in the second method is used a specific chromatographic resin (TEVA) and cerium fluoride microprecipitation. At the end both analysis are quantified by alpha spectrometry. The two methods the results obtained were satisfactory for the reference material used, with relative error of less than 4% for {sup 228}Th, {sup 230}Th, and {sup 232}Th. The main differences found between them were spectrums resolutions, time and cost of analysis. (author)

  14. Conceptual design of a commercial accelerator driven thorium reactor

    International Nuclear Information System (INIS)

    Fuller, C. G.; Ashworth, R. W.

    2010-01-01

    This paper describes the substantial work done in underpinning and developing the concept design for a commercial 600 MWe, accelerator driven, thorium fuelled, lead cooled, power producing, fast reactor. The Accelerator Driven Thorium Reactor (ADTR TM) has been derived from original work by Carlo Rubbia. Over the period 2007 to 2009 Aker Solutions commissioned this concept design work and, in close collaboration with Rubbia, developed the physics, engineering and business model. Much has been published about the Energy Amplifier concept and accelerator driven systems. This paper concentrates on the unique physics developed during the concept study of the ADTR TM power station and the progress made in engineering and design of the system. Particular attention is paid to where the concept design has moved significantly beyond published material. Description of challenges presented for the engineering and safety of a commercial system and how they will be addressed is included. This covers the defining system parameters, accelerator sizing, core and fuel design issues and, perhaps most importantly, reactivity control. The paper concludes that the work undertaken supports the technical viability of the ADTR TM power station. Several unique features of the reactor mean that it can be deployed in countries with aspirations to gain benefit from nuclear power and, at 600 MWe, it fits a size gap for less mature grid systems. It can provide a useful complement to Generation III, III+ and IV systems through its ability to consume actinides whilst at the same time providing useful power. (authors)

  15. Current extraction and separation of uranium, thorium and rare earths elements from monazite leach solution using organophosphorous extractants

    International Nuclear Information System (INIS)

    Biswas, Sujoy; Rupawate, V.H.; Hareendran, K.N.; Roy, S.B.

    2014-01-01

    A new process based on solvent extraction has been developed for separation of uranium, thorium and rare earths from monazite leach solution using organophosphorous extractants. The Thorium cake coming from monazite source was dissolved in HNO 3 medium in presence of trace amount of HF for feed preparation. The separation of U(VI) was carried out by liquid-liquid extraction using tris-2-ethyl hexyl phosphoric acid (TEHP) in dodecane leaving thorium and rare earths elements in the raffinate. The thorium from raffinate was selectively extracted using 1M tri iso amyl phosphate (TiAP) in dodecane in organic phase leaving all rare earths elements in aqueous solution. The uranium and thorium from organic medium was quantitatively stripped using 0.05 M HNO 3 counter current mode. Results indicate the quantitative separation of uranium, thorium and rare earths from thorium cake (monazite source) using organophosphorous extractant in counter current mode

  16. Thorium determination by x-ray fluorescence spectrometry in simulated thorex process solutions

    International Nuclear Information System (INIS)

    Yamaura, M.; Matsuda, H.T.

    1991-11-01

    The X-ray fluorescence method for thorium determination in aqueous and organic (TBP/n-dodecane) solutions is described. The thin film technique for sample preparation and a suitable internal standard had been used. The best conditions for Thorium determination had been established studying some parameters as analytical line, internal standard, filter paper, paper geometry, sample volume and measurement conditions. With the established conditions, thorium was concentration range of to 200 g Th/L and in organic solutions (2-63g Th/L) with 1,5% of precision. The accuracy of the proposed method was 3% in aqueous and organic phases. The detection limit was 1,2μg thorium for aqueous solutions and 1,4μg for organic solutions. Uranium, fission products, corrosion products and Thorex reagent components were studied as interfering elements in the thorium analysis. The matrix effect was also studied using the Thorex process simulated solutions. Finally, the method was applied to thorium determination in irradiated thorium solutions with satisfactory results. (author)

  17. Effect of Thorium on Growth and Uptake of Some Elements by Maize Plant

    International Nuclear Information System (INIS)

    Al-Shobaki, M.E.E.

    2012-01-01

    A pot experiment (sand culture) was carried out to investigate the effect of thorium on maize dry matter yield, contents and uptake of N,P ,K, Na and Fe and thorium accumulation in maize plant.The pots were contaminated by thorium as Thorium Nitrate(Th (NO 3 ) 4 ,H 2 O)at concentrations 0,5,10,11,12,13,14,15 and 50 ppm. Pots irrigated by 1/10 Hogland solution for 15 days, increased tol/4 Hogland solution after that.The results show that the dry matter (shoot, root and whole plant)decreased with increasing thorium concentration in soil up to 12 ppm and slightly increased with increasing Th to 13 ppm . The Nitrogen content and its uptake decreased with increasing thorium concentration in media growth up to 11 ppm .They were slightly increased at Th concentration between 11-14 ppm in maize shoot and root. The shoots always contained N-content and uptake more than that found in roots . P- uptake decreased in both shoots and roots with increasing in thorium concentration in media growth.

  18. Effectiveness of intragastric administration of 8102 for removal of thorium-234 in rats

    International Nuclear Information System (INIS)

    Luo Meichu; Li Landi; Sun Meizhen; Ye Qian; Liu Yi

    1992-01-01

    8102, a 1,2-dihydroxy-3,6-bismethylamino diacetic derivative, is a new chelating agent for decorporation of radionuclides. The effectiveness of intragastric administration of this drug at different doses (50-1000 mg/kg of body) and at different times before or after giving thorium-234 in rats was reported. The results show that for rats given intragastricly 1000 mg/kg of 8102, the excretion of thorium-234 in urine for first two days is 4.5 times more than that for control rats and accumulations of thorium-234 in liver, skeleton and kidney for these rats were 30%, 62% and 68% as those for control rats, respectively. The effectiveness was reduced with decrease in dosage of 8102. Administration of 8102 at 1 or 2 h before injection of thorium-234 can improve the effectiveness for decorporation of thorium-234: accumulation of thorium-234 in liver was markedly less than that for rats given 8102 immediately after injection of thorium-234. Delayed administration of 9102 resulted in reduction of the effectiveness. The practicality of oral administration of 8102 in clinic for decorporation of radionuclides was discussed

  19. Chromatographic behavior of carbonate complexes of lanthanides and of thorium in alumina

    International Nuclear Information System (INIS)

    Tomida, E.K.

    1977-01-01

    The chromatographic behavior of some rare earth elements and thorium on alumina is studied in order to evaluate the possibility of separation from concentration of trace rare earths from high-purity thorium compounds. The effect of some factors on complex thorium carbonate formation and the extent of thorium solubility in sodium and potassium carbonate solutions investigated. The sorption of rare earth elements and thoriuum on alumina from alkali carbonate solution is observed, despite the reports that alumina acts as a cation exchanger in alkali media and that thorium and rare earths form stable anionic carbonate complexes. The formation of these elements between alumina and potassium carbonate solutions is studied as a function of pH, carbonate concentration and metal ion concentration. Also the elution of rare earths from alumina is studied and the best results are obtained with mineral acids and EDTA plus alkali carbonate solutions. The effect of some parameters as column aging, mixed solvents, column treatment with organic solvents, temperature, aluant concentration is investigated. Attempting to understand this sorption mechanism, some experiments with strongly basic anion exchanger and cation exchangers of strongly acid and weakly acid type are accomplished. It is observed that there are significant differences, in some conditions, between the behavior of rare earths and of thorium, pointing our the possibility of separation of one lanthanide from others and of these from thorium [pt

  20. Thorium cycle and molten salt reactors: field parameters and field constraints investigations toward 'thorium molten salt reactor' definition

    International Nuclear Information System (INIS)

    Mathieu, L.

    2005-09-01

    Producing nuclear energy in order to reduce the anthropic CO 2 emission requires major technological advances. Nuclear plants of 4. generation have to respond to several constraints, as safety improvements, fuel breeding and radioactive waste minimization. For this purpose, it seems promising to use Thorium Cycle in Molten Salt Reactors. Studies on this domain have already been carried out. However, the final concept suffered from serious issues and was discontinued. A new reflection on this topic is being led in order to find acceptable solutions, and to design the Thorium Molten Salt Reactor concept. A nuclear reactor is simulated by the coupling of a neutron transport code with a materials evolution code. This allows us to reproduce the reactor behavior and its evolution all along its operation. Thanks to this method, we have studied a large number of reactor configurations. We have evaluated their efficiency through a group of constraints they have to satisfy. This work leads us to a better understanding of many physical phenomena controlling the reactor behavior. As a consequence, several efficient configurations have been discovered, allowing the emergence of new points of view in the research of Molten Salt Reactors. (author)

  1. Transmutation of minor actinides in a Candu thorium borner

    International Nuclear Information System (INIS)

    Sahin, S.; Sahin, H. M.; Acir, A.; Yalcin, S.; Yildiz, K.; Sahin, N.; Altinok, T.; Alkan, M.

    2007-01-01

    The paper investigates the prospects of exploitation of rich world thorium reserves in CANDU reactors. Large quantities of plutonium have been accumulated in the nuclear waste of civilian LWRs and CANDU reactors. Reactor grade plutonium can be used as a booster fissile fuel material in form of mixed ThO 2 /PuO 2 fuel in a CANDU fuel bundle in order to assure reactor criticality. Two different fuel compositions have been selected for investigations: 1) 96% thoria (ThO 2 ) + 4% PuO 2 and 2) 91% ThO 2 + 5% UO 2 + 4 PuO 2 . The latter is used for the purpose of denaturing the new 2 33U fuel with 2 38U. The behavior of the criticality k ∞ and the burn-up values of the reactor have been pursued by full power operation for > ∼ 8 years. The reactor starts with k ∞ = ∼ 1.39 and the criticality drops down asymptotically to values k ∞ > 1.06, still tolerable and usable in a CANDU reactor. Reactor criticality k ∞ remains nearly constant between the 4th year and 7th year of plant operation and then a slight increase is observed thereafter, along with a continuous depletion of thorium fuel. After the 2nd year, the CANDU reactor begins to operate practically as a thorium burner. Very high burn up can be achieved with the same fuel (> 160 000 MW.D/MT). The reactor criticality would be sufficient until a great fraction of the thorium fuel is burnt up, provided that the fuel rods could be fabricated to withstand such high burn up levels. Fuel fabrication costs and nuclear waste mass for final disposal per unit energy could be reduced drastically. There is a great quantity of weapon grade plutonium accumulated in nuclear stockpiles. In the second phase of investigations, weapon grade plutonium is used as a booster fissile fuel material in form of mixed ThO 2 /PuO 2 fuel in a CANDU fuel bundle in order to assure the initial criticality at startup. Two different fuel compositions have been used: 1) 97% thoria (ThO 2 ) + 3% PuO 2 and 2) 92% ThO 2 + 5% UO 2 + 3% PuO 2 . The

  2. Equilibrium distribution of lanthanum, neodymium, and thorium between lithium chloride melt and liquid bismuth

    Science.gov (United States)

    Zagnit'ko, A. V.; Ignat'ev, V. V.

    2013-04-01

    The distribution of lanthanum, neodymium, and thorium between a lithium chloride melt and liquid bismuth with additions of lithium as a reducing agent are investigated at 650°C. Equilibrium values of their distribution constants are measured. It is shown that in contrast to neodymium and lanthanum, thorium cannot be extracted from bismuth into lithium chloride. This allows us to propose an efficient scheme for separating lanthanides and thorium in a system for the extraction of fuel salts in molten-salt nuclear reactors.

  3. Complexation of thorium with pyridine monocarboxylates: A thermodynamic study by experiment and theory

    International Nuclear Information System (INIS)

    Rama Mohana Rao, D.; Rawat, Neetika; Manna, D.; Sawant, R.M.; Ghanty, T.K.; Tomar, B.S.

    2013-01-01

    Highlights: ► The thermodynamic parameters have been determined for the first time. ► The Th-picolinate complexation was exothermic in nature. ► The complexation of Th(IV) with the other two isomers was endothermic process. ► Isonicotinate forms stronger complexes than nicotinate with Th(IV). ► The theoretically calculated values are in line with the experimental results. -- Abstract: Complexation of thorium with pyridine monocarboxylates namely picolinic acid (pyridine-2-carboxylic acid), nicotinic acid (pyridine-3-carboxylic acid) and isonicotinic acid (pyridine-4-carboxylic acid) has been studied by potentiometry and calorimetry to determine the thermodynamic parameters (log K, ΔG, ΔH and ΔS) of complexation. All the studies were carried out at 1.0 M ionic strength adjusted by NaClO 4 and at a temperature of 298 K. The detailed analysis of potentiometric data by Hyperquad confirmed the formation of four complexes, ML i (i = 1–4) in case of picolinate but only one complex (ML) in case of nicotinate and isonicotinate. The stepwise formation constant for ML complex (log K ML ) of thorium-picolinate is higher than those of thorium-nicotinate and thorium-isonicotinate complexes. Further the changes in enthalpy during formation of thorium-picolinate complexes are negative whereas the same for the complexes of thorium with the other two isomers was positive. This difference in the complexation process is attributed to chelate formation in case of thorium-picolinate complexes in which the thorium ion is bound to the picolinate through both the nitrogen in the pyridyl ring and one of the carboxylate oxygen atoms. The complexation process of thorium-nicotinate and thorium-isonicotinate are found to be endothermic in nature and are entropy driven confirming the similar binding nature as in simple carboxylate complexes of thorium. The complexation energies, bond lengths and charges on each atom in the complexes of various possible geometries were calculated

  4. Study of the thorium incorporation by inhalation in individuals occupationally exposed

    International Nuclear Information System (INIS)

    Holanda e Vasconcellos Carvalho, B. de.

    1983-01-01

    A mathematical model describing the metabolism of inhaled thorium in the human body was developed. Through this model theoretical limits of excretion were calculated for workers of a monazite plant (Usina Santo Amaro). This limits were based on International Commission on Radiological Protection publication 30, 1979. Excreta samples from twelve workers of Usina Santo Amaro were collected and analysed for thorium. All samples were bellow the theoretical limits of excretion indicating that Usina Santo Amaro workers are exposed to thorium levels bellow the Annual Limits of Intake recommended by ICRP, publication 30. (author)

  5. Analysis of thorium in thorotrast patient's organs; Colorimetric determination with arsenazo III

    Energy Technology Data Exchange (ETDEWEB)

    Watari, Kazuo; Imai, Kiyoko; Kato, Yoshio; Mori, Takesaburo (National Inst. of Radiological Sciences, Chiba (Japan)); Morimoto, Takao; Ishikawa, Yuichi

    1992-09-01

    The formerly used X-ray contrast medium, Thorotrast- a colloidal thorium dioxide- causes a chronic exposure to [alpha]-particles. In this paper, a method for the colorimetric determination of thorium content in thorotrast patient's organs is described. The sequential chemical separation of thorium has been studied on the basis of coprecipitation, ion exchange, and solvent extraction methods, followed by colorimetric analysis using Arsenazo III. The experimental values were compared with those obtained by radiation measurement or neutron activation analysis of patient's organs. (author).

  6. Role of thorium in ensuring long term energy security to India

    International Nuclear Information System (INIS)

    Malhotra, S.K.

    2013-01-01

    Role of nuclear power in ensuring energy security to the world is inevitable due to a) dwindling fossil fuel resources and b) need for minimising green house gas emission that poses the risk of global climate change. India, keeping in mind its limited uranium and vast thorium resources, is pursuing a three stage nuclear power programme. The first stage is based on reactors that use uranium as fuel. It comprises of the indigenous Pressurised Heavy Water Reactors using natural uranium as fuel and light water reactors that employ enriched uranium as fuel and are to be set up in technical collaboration with other countries. The second stage is based on fast breeder reactors that employ plutonium derived from reprocessing of spent fuel from the first stage reactors. The third stage envisages reactors which will employ thorium based fuel after its irradiation in the second stage reactors. This programme is sequential in nature and has an ultimate objective of securing long term energy security to India through judicial use of its thorium resources. Thorium based reactors offer advantages in terms of better neutronic characteristics of thorium, it being better fertile host for plutonium disposition and better thermo-mechanical properties and slower fuel deterioration of thorium oxide. It is planned to introduce thorium in the Indian Nuclear Power Programme after sufficient (about 200 GWe) capacity build-up in the second stage. DAE is a global leader in the development of the entire thorium fuel cycle. It has a mature technology for extraction of thorium and preparation of thoria pellets. It has long back carried out irradiation of thoria pellets in its research reactors and also in PHWRs, post irradiation examination and reprocessing of irradiated thoria, fabrication of 233 U based fuel. It has KAMINI - the world's only operating reactor employing 233 U as fuel. An Advanced Heavy Water Reactor (AHWR) has been designed as a technology demonstrator for large scale

  7. Packed-fluidized-bed blanket concept for a thorium-fueled commercial tokamak hybrid reactor

    International Nuclear Information System (INIS)

    Chi, J.W.H.; Miller, J.W.; Karbowski, J.S.; Chapin, D.L.; Kelly, J.L.

    1980-09-01

    A preliminary design of a thorium blanket was carried out as a part of the Commercial Tokamak Hybrid Reactor (CTHR) study. A fixed fuel blanket concept was developed as the reference CTHR blanket with uranium carbide fuel and helium coolant. A fixed fuel blanket was initially evaluated for the thorium blanket study. Subsequently, a new type of hybrid blanket, a packed-fluidized bed (PFB), was conceived. The PFB blanket concept has a number of unique features that may solve some of the problems encountered in the design of tokamak hybrid reactor blankets. This report documents the thorium blanket study and describes the feasibility assessment of the PFB blanket concept

  8. Biosorption behavior and mechanism of thorium on Streptomyces sporoverrucosus dwc-3

    International Nuclear Information System (INIS)

    Congcong Ding; Sichuan University, Chengdu; Su Feng; Wencai Cheng; Jie Zhang; Xiaolong Li; Jiali Liao; Yuanyou Yang; Zhu An; Jijun Yang; Jun Tang

    2014-01-01

    To understand the impact of microorganisms on the fate of thorium in soils, we have investigated the thorium biosorption behavior and mechanism on the living and dead cells of Streptomyces sporoverrucosus dwc-3, isolated from soils in China. The living cells need more time (24 h) to reach equilibrium than dead cells (24 h). The biosorption is greatly dependent on pH and ionic strength for the two kinds of cells. SEM and TEM indicate that thorium initially bind with the cell surface which is probably controlled by ion-exchange, evidence by PIXE, and inner-sphere complexation mechanism and then accumulated in the cytoplasm. (author)

  9. The synthesis and characterization of crystalline phosphates of thorium, uranium and neptunium

    International Nuclear Information System (INIS)

    Bamberger, C.E.; Haire, R.G.; Begun, G.M.; Hellwege, H.E.

    1984-01-01

    The high temperature synthesis and stability of phosphates of thorium, uranium and neptunium have been studied by Raman spectroscopy, X-ray diffraction and chemical analyses. For these actinides, the only orthophosphate An 3 (PO 4 ) 4 (An = actinide) that could be prepared was thorium orthophosphate. The high temperature (α, cubic) forms of all three metal pyrophosphates were synthesized. For the oxypyrophosphate compounds (AnO) 2 P 2 O 7 , only the thorium compound was not obtained, and (NpO) 2 P 2 O 7 is reported here for the first time. The results of these studies are discussed and compared with published data on actinide phosphates. (Auth.)

  10. The Crystal Structure of Thorium and Zirconium Dihydrides by X-ray and Neutron Diffraction

    Science.gov (United States)

    Rundle, R.E.; Shull, C.G.; Wollan, E.O.

    1951-04-20

    Thorium forms a tetragonal lower hydride of composition ThH{sub 2}. The hydrides ThH{sub 2}, ThD{sub 2}, and ZrD{sub 2} have been studied by neutron diffraction in order that hydrogen positions could be determined. The hydrides are isomorphous, and have a deformed fluorite structure. Metal-hydrogen distances in thorium hydride are unusually large, as in UH{sub 3}. Thorium and zirconium scattering amplitudes and a revised scattering amplitude for deuterium are reported.

  11. Uranium and thorium occurrences in New Mexico: distribution, geology, production, and resources. Appendix 1

    International Nuclear Information System (INIS)

    McLemore, V.T.

    1983-09-01

    The following compilation of uranium and thorium occurrences, prospects, deposits, and mines and their descriptions is the most comprehensive tabulation of natural-occurring radioactive occurrences in New Mexico to date. It is possible that many additional occurrences will be discovered in the future. For the purposes of this compilation any locality where uranium or thorium mineralization is reported or produced, or where uranium or thorium concentration exceeds 0.001%, or where the radioactivity is twice background radioactivity or greater is considered an occurrence

  12. High-quality thorium TRISO fuel performance in HTGRs

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, Karl [Forschungszentrum Juelich GmbH (Germany); Allelein, Hans-Josef [Forschungszentrum Juelich GmbH (Germany); Technische Hochschule Aachen (Germany); Nabielek, Heinz; Kania, Michael J.

    2013-11-01

    Thorium as a nuclear fuel has received renewed interest, because of its widespread availability and the good irradiation performance of Th and mixed (Th,U) oxide compounds as fuels in nuclear power systems. Early HTGR development employed thorium together with high-enriched uranium (HEU). After 1980, HTGR fuel systems switched to low-enriched uranium (LEU). After completing fuel development for the AVR and the THTR with BISO coated particles, the German program expanded its efforts utilizing thorium and HEU TRISO coated particles in advanced HTGR concepts for process heat applications (PNP) and direct-cycle electricity production (HHT). The combination of a low-temperature isotropic (LTI) inner and outer pyrocarbon layers surrounding a strong, stable SiC layer greatly improved manufacturing conditions and the subsequent contamination and defective particle fractions in production fuel elements. In addition, this combination provided improved mechanical strength and a higher degree of solid fission product retention, not known previously with high-temperature isotropic (HTI) BISO coatings. The improved performance of the HEU (Th, U)O{sub 2} TRISO fuel system was successfully demonstrated in three primary areas of development: manufacturing, irradiation testing under normal operating conditions, and accident simulation testing. In terms of demonstrating performance for advanced HTGR applications, the experimental failure statistic from manufacture and irradiation testing are significantly below the coated particle requirements specified for PNP and HHT designs at the time. Covering a range to 1300 C in normal operations and 1600 C in accidents, with burnups to 13% FIMA and fast fluences to 8 x 10{sup 25} n/m{sup 2} (E> 16 fJ), the performance results exceed the design limits on manufacturing and operational requirements for the German HTR-Modul concept, which are 6.5 x 10{sup -5} for manufacturing, 2 x 10{sup -4} for normal operating conditions, and 5 x 10{sup -4

  13. High-quality thorium TRISO fuel performance in HTGRs

    International Nuclear Information System (INIS)

    Verfondern, Karl; Allelein, Hans-Josef; Nabielek, Heinz; Kania, Michael J.

    2013-01-01

    Thorium as a nuclear fuel has received renewed interest, because of its widespread availability and the good irradiation performance of Th and mixed (Th,U) oxide compounds as fuels in nuclear power systems. Early HTGR development employed thorium together with high-enriched uranium (HEU). After 1980, HTGR fuel systems switched to low-enriched uranium (LEU). After completing fuel development for the AVR and the THTR with BISO coated particles, the German program expanded its efforts utilizing thorium and HEU TRISO coated particles in advanced HTGR concepts for process heat applications (PNP) and direct-cycle electricity production (HHT). The combination of a low-temperature isotropic (LTI) inner and outer pyrocarbon layers surrounding a strong, stable SiC layer greatly improved manufacturing conditions and the subsequent contamination and defective particle fractions in production fuel elements. In addition, this combination provided improved mechanical strength and a higher degree of solid fission product retention, not known previously with high-temperature isotropic (HTI) BISO coatings. The improved performance of the HEU (Th, U)O 2 TRISO fuel system was successfully demonstrated in three primary areas of development: manufacturing, irradiation testing under normal operating conditions, and accident simulation testing. In terms of demonstrating performance for advanced HTGR applications, the experimental failure statistic from manufacture and irradiation testing are significantly below the coated particle requirements specified for PNP and HHT designs at the time. Covering a range to 1300 C in normal operations and 1600 C in accidents, with burnups to 13% FIMA and fast fluences to 8 x 10 25 n/m 2 (E> 16 fJ), the performance results exceed the design limits on manufacturing and operational requirements for the German HTR-Modul concept, which are 6.5 x 10 -5 for manufacturing, 2 x 10 -4 for normal operating conditions, and 5 x 10 -4 for accident conditions. These

  14. Recovery of thorium and rare earths by their peroxides precipitation from a residue produced in the thorium purification facility; Recuperacao de torio e terras raras via peroxido do residuo originado na unidade de purificacao de torio

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Antonio Alves de

    2008-07-01

    As consequence of the operation of a Thorium purification facility, for pure Thorium Nitrate production, the IPEN (Instituto de Pesquisas Energeticas e Nucleares) has stored away a solid residue called RETOTER (REsiduo de TOrio e TErras Raras). The RETOTER is rich in Rare-Earth Elements and significant amount of Thorium-232 and minor amount of Uranium. Furthermore it contains several radionuclides from the natural decay series. Significant radioactivity contribution is generated by the Thorium descendent, mainly the Radium-228(T{sub 1/2}=5.7y), known as meso thorium and Thorium-228(T{sub 1/2} 1.90y). An important thorium daughter is the Lead-208, a stable isotope present with an expressive quantity. After the enclosure of the operation of the Thorium purification facility, many researches have been developed for the establishment of methodologies for recovery of Thorium, Rare-Earth Elements and Lead-208 from the RETOTER. This work presents a method for RETOTER decontamination, separating and bordering upon some radioactive isotopes. The residue was digested with nitric acid and the Radium-228 was separated by the Barium Sulphate co-precipitation procedure. Finally, the Thorium was separated by the peroxide precipitation and the Rare-Earth Elements were also recovered by the Rare-Earth peroxide precipitation in the filtrate solution.(author)

  15. Diffusion in thorium carbide: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Pérez Daroca, D., E-mail: pdaroca@tandar.cnea.gov.ar [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, 1650, San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, 1025, Buenos Aires (Argentina); Llois, A.M. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, 1650, San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, 1025, Buenos Aires (Argentina); Mosca, H.O. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, 1650, San Martín, Buenos Aires (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM–CNEA, Av. General Paz 1499, 1650, San Martín, Buenos Aires (Argentina)

    2015-12-15

    The prediction of the behavior of Th compounds under irradiation is an important issue for the upcoming Generation-IV nuclear reactors. The study of self-diffusion and hetero-diffusion is a central key to fulfill this goal. As a first approach, we obtained, by means of first-principles methods, migration and activation energies of Th and C atoms self-diffusion and diffusion of He atoms in ThC. We also calculate diffusion coefficients as a function of temperature. - Highlights: • Diffusion in thorium carbide by means of first-principles calculations is studied. • The most favorable migration event is a C atom moving through a C-vacancy aided path. • Calculated C atoms diffusion coefficients agree very well with the experimental data. • For He, the energetically most favorable migration path is through Th-vacancies.

  16. The case for the thorium molten salt reactor

    Science.gov (United States)

    Greaves, E. D.; Furukawa, K.; Sajo-Bohus, L.; Barros, H.

    2012-02-01

    Shortcomings of current PWR and BWR, solid uranium-fuel, nuclear power reactors are summarized. It is shown how the Molten Salt Reactor (MSR) created and operated at Oak Ridge National Laboratory (ORNL), USA (1960s-1970s) and developed as FUJI reactor by Furukawa and collaborators (1980s-1990s), addresses all of these shortcomings. Relevant properties of the MSR regarding to simplicity, its impact on capital and operating costs, safety, waste product production, waste reprocessing, power efficiency and non proliferation properties are reviewed. The Thorium MSR within the THORIMS-NES fuel cycle system is described concluding that the superior properties of the MSR make this the technology of choice to provide the required future energy in the South American region.

  17. Sorption behavior of thorium onto montmorillonite and illite

    International Nuclear Information System (INIS)

    Iida, Yoshihisa; Barr, Logan; Yamaguchi, Tetsuji; Hemmi, Ko

    2016-01-01

    Thorium (Th)-229 is one of the important radionuclides for the performance assessment calculations for high-level radioactive waste repositories. The sorption behavior of Th onto montmorillonite and illite were investigated by batch sorption experiments. Experiments were carried out under variable pH and carbonate concentrations. The sorbability of montmorillonite was higher than that of illite. Distribution coefficients, K d (m 3 kg -1 ), decreased with increased carbonate concentrations and showed the minimal value at around pH 10. The sorption behaviors of Th were analyzed by the non-electrostatic surface complex model with PHREEQC computer program. The model calculations were able to explain the experimental results reasonably well. The decreases of K d was likely due to the stabilization of aqueous species by hydroxo-carbonate complexations in the solutions. (author) [ja

  18. Health physics experience during a uranium and thorium pond closure

    International Nuclear Information System (INIS)

    Cole, L.W.; Prewett, S.V.

    1986-01-01

    Aerojet Heavy Metals Company (AHMC) recently completed a pond decommissioning project which involved the movement and interment of approximately 600,000 cubic feet of uranium- and thorium-contaminated soil. This work was performed by a construction company using standard earth moving equipment and their general labor force. In addition to the construction company employees, geotechnical quality assurance was performed by a soils test engineer and overall construction management was performed by a resident project engineer. Certification of cleanup and inventory sampling were done by contract personnel also. In general, a large complicated project involving several different parties, a large amount of equipment and a large work area was completed with minimal exposure and no spread of contamination to uncontrolled areas. Detailed pre-planning with the project management staff and careful coordination with the actual construction contractor is required. Predictive methods of contamination and air activities can be valuable in assessing the program requirements

  19. Burnup calculations using serpent code in accelerator driven thorium reactors

    International Nuclear Information System (INIS)

    Korkmaz, M.E.; Agar, O.; Yigit, M.

    2013-01-01

    In this study, burnup calculations have been performed for a sodium cooled Accelerator Driven Thorium Reactor (ADTR) using the Serpent 1.1.16 Monte Carlo code. The ADTR has been designed for burning minor actinides, mixed 232 Th and mixed 233 U fuels. A solid Pb-Bi spallation target in the center of the core is used and sodium as coolant. The system is designed for a heating power of 2 000 MW and for an operation time of 600 days. For burnup calculations the Advanced Matrix Exponential Method CRAM (Chebyshev Rational Approximation Method) and different nuclear data libraries (ENDF7, JEF2.2, JEFF3.1.1) were used. The effective multiplication factor change from 0.93 to 0.97 for different nuclear data libraries during the reactor operation period. (orig.)

  20. Burnup calculations using serpent code in accelerator driven thorium reactors

    Energy Technology Data Exchange (ETDEWEB)

    Korkmaz, M.E.; Agar, O. [Karamanoglu Mehmetbey Univ., Karaman (Turkey). Physics Dept.; Yigit, M. [Aksaray Univ. (Turkey). Physics Dept.

    2013-07-15

    In this study, burnup calculations have been performed for a sodium cooled Accelerator Driven Thorium Reactor (ADTR) using the Serpent 1.1.16 Monte Carlo code. The ADTR has been designed for burning minor actinides, mixed {sup 232}Th and mixed {sup 233}U fuels. A solid Pb-Bi spallation target in the center of the core is used and sodium as coolant. The system is designed for a heating power of 2 000 MW and for an operation time of 600 days. For burnup calculations the Advanced Matrix Exponential Method CRAM (Chebyshev Rational Approximation Method) and different nuclear data libraries (ENDF7, JEF2.2, JEFF3.1.1) were used. The effective multiplication factor change from 0.93 to 0.97 for different nuclear data libraries during the reactor operation period. (orig.)

  1. Mortality among female workers at a thorium-processing plant

    International Nuclear Information System (INIS)

    Liu, Zhiyuan; Lee, Tze-San.

    1994-01-01

    The mortality patterns among a cohort of 677 female workers at a thorium-processing plant are reported for the period from 1940 to 1982. Of the 677 women, 165 were reported dead; 459 were still alive; and 53 (7.8%) were lost to follow-up. The standardized mortality ratios from all causes (0.74), all cancers (0.53), and circulatory diseases (0.66) were significantly below those for the general US population. In this cohort, 5 deaths due to lung cancer and 1 death from leukemia were observed, with 4.53 and 1.69 deaths expected, respectively. No deaths from cancer of the liver, pancreas, or bone were observed. Poisson regression analysis was used for an internal comparison within the cohort. The results of the Poisson regression analysis showed no significant effect on mortality rates of all causes and cancers from the study factors, including job classification, duration of employment, and time since first employment

  2. Asymmetrically deformed states of thorium isotopes during fission process

    International Nuclear Information System (INIS)

    Blons, J.

    1982-05-01

    Some theoretical considerations are recalled on fission barriers calculated from macroscopic, microscopic or macroscopic-microscopic and ''thorium anomaly'' problem is set. Experimental techniques used to measure fission cross sections in (n,f) reactions near the threshold are described. Fission dectector is described; stray resonance problems and retrodiffused neutrons are discussed. Results obtained in experimental study of 230 Th(n,f) and 232 Th(n,f) reactions are presented. They are compared with results obtained in other laboratories. The analysis model which allows to describe a (n,f) reaction is exposed. The compound nucleus formation cross section and transmission coefficients in neutron and gamma output channel are presented according to neutron energy for each value of angular moment and parity. Cross-section analysis and angular distribution obtained respectively in 230 Th(n,f) and 232 Th(n,f) reactions is exposed. Result interpretation show new aspects of nuclei rotational spectra and new nuclear forms [fr

  3. Behavior of radioactive elements (uranium and thorium) in Bayer process

    International Nuclear Information System (INIS)

    Sato, C.; Kazama, S.; Sakamoto, A.; Hirayanagi, K.

    1986-01-01

    It is essential that alumina used for manufacturing electronic devices should contain an extremely low level of alpha-radiation. The principal source of alpha-radiation in alumina is uranium, a minor source being thorium. Uranium in bauxite dissolves into the liquor in the digestion process and is fixed to the red mud as the desilication reaction progresses. A part of uranium remaining in the liquor precipitates together with aluminum hydroxide in the precipitation process. The uranium content of aluminum hydroxide becomes lower as the precipitation velocity per unit surface area of the seed becomes slower. Organic matters in the Bayer liquor has an extremely significant impact on the uranium content of aluminum hydroxide. Aluminum hydroxide free of uranium is obtainable from the liquor that does not contain organic matters

  4. Feasibility study on the thorium fueled boiling water breeder reactor

    International Nuclear Information System (INIS)

    PetrusTakaki, N.

    2012-01-01

    The feasibility of (Th,U)O 2 fueled, boiling water breeder reactor based on conventional BWR technology has been studied. In order to determine the potential use of water cooled thorium reactor as a competitive breeder, this study evaluated criticality, breeding and void reactivity coefficient in response to changes made in MFR and fissile enrichments. The result of the study shows that while using light water as moderator, low moderator to fuel volume ratio (MFR=0.5), it was possible to breed fissile fuel in negative void reactivity condition. However the burnup value was lower than the value of the current LWR. On the other hand, heavy water cooled reactor shows relatively wider feasible breeding region, which lead into possibility of designing a core having better neutronic and economic performance than light water with negative void reactivity coefficient. (authors)

  5. Once-through uranium thorium fuel cycle in CANDU reactors

    International Nuclear Information System (INIS)

    Ozdemir, S.; Cubukcu, E.

    2000-01-01

    In this study, the performance of the once-through uranium-thorium fuel cycle in CANDU reactors is investigated. (Th-U)O 2 is used as fuel in all fuel rod clusters where Th and U are mixed homogeneously. CANDU reactors have the advantage of being capable of employing various fuel cycle options because of its good neutron economy, continuous on line refueling ability and axial fuel replacement possibility. For lattice cell calculations transport code WIMS is used. WIMS cross-section library is modified to achieve precise lattice cell calculations. For various enrichments and Th-U mixtures, criticality, heavy element composition changes, diffusion coefficients and cross-sections are calculate. Reactor core is modeled by using the diffusion code CITATION. We conclude that an overall saving of 22% in natural uranium demand can be achieved with the use of Th cycle. However, slightly enriched U cycle still consumes less natural Uranium and is a lot less complicated. (author)

  6. Catalogue of data on Thorium intake, organ burden and excretion

    International Nuclear Information System (INIS)

    1989-05-01

    The Atomic Energy Control Board is initiating the critical evaluation of current biokinetic and dosimetric models applicable to estimating exposure to the common chemical and physical forms of thorium. The identification and location of the relevant sets of data are the first steps of this project. This report describes the collection methods used and presents catalogues of the data on human and animal studies that have resulted from exposures under controlled experimental conditions, chronic occupational or environmental situations and acute accidental conditions. The data was identified through the use of computerized literature searches of the Cancerlit, Chemical Exposure, Embase, BIOSIS, NTIS, INIS, MEDLINE and Occupational Safety and Health (NIOSH) data bases, library research and telephone contact with currently active researchers in the field. A table is presented which categorizes researchers in the field accordingly to affiliation and country

  7. A bipyridyl thorium metallocene: synthesis, structure and reactivity.

    Science.gov (United States)

    Ren, Wenshan; Song, Haibin; Zi, Guofu; Walter, Marc D

    2012-05-21

    The synthesis, structure and reactivity of a new bipy thorium metallocene have been studied. The reduction of the thorium chloride metallocene [η(5)-1,3-(Me(3)C)(2)C(5)H(3)](2)ThCl(2) (1) with potassium graphite in the presence of 2,2'-bipyridine gives the purple bipy metallocene [η(5)-1,3-(Me(3)C)(2)C(5)H(3)](2)Th(bipy) (2) in good yield. Complex 2 has been fully characterized by various spectroscopic techniques, elemental analysis and X-ray diffraction analysis. Complex 2 reacts cleanly with trityl chloride, silver halides and diphenyl diselenide, leading to the halide metallocenes [η(5)-1,3-(Me(3)C)(2)C(5)H(3)](2)ThX(2) (X = Cl (1), Br (3), I (4)) and [η(5)-1,3-(Me(3)C)(2)C(5)H(3)](2)Th(F)(μ-F)(3)Th[η(5)-1,3-(Me(3)C)(2)C(5)H(3)](F)(bipy) (5), and selenido metallocene [η(5)-1,3-(Me(3)C)(2)C(5)H(3)](2)Th(SePh)(2) (6), in good conversions. In addition, 2 cleaves the C[double bond, length as m-dash]S bond of CS(2) to give the sulfido complex, [η(5)-1,3-(Me(3)C)(2)C(5)H(3)](2)ThS (7), which further undergoes an irreversible dimerization or nucleophilic addition with CS(2), leading to the dimeric sulfido complex {[η(5)-1,3-(Me(3)C)(2)C(5)H(3)](2)Th}(μ-S)(2) (8) and dimeric trithiocarbonate complex {[η(5)-1,3-(Me(3)C)(2)C(5)H(3)](2)Th}(μ-CS(3))(2) (10) in good yields, respectively.

  8. Interaction of some thorium aquAatetraacido-compounds with gaseous nitrogen oxide

    International Nuclear Information System (INIS)

    Molodkin, A.K.; Ivanova, O.M.; Goeva, L.V.; Balakaeva, T.A.; Belyakova, Z.V.; Chaplya, T.A.

    1980-01-01

    Interaction of various thorium salts Th(OH) 4 xnH 2 O, ThCl 4 xnH 2 O and Th(NO 3 ) 4 xnH 2 O with gaseous nitrogen oxide has been studied, and a method for synthesizing nitrosyl thorium complexes has been developed. Nitrosation of thorium salts has been performed in various solvents (water, C 2 H 5 OH, CCl 4 , C 6 H 5 , CHCl 3 ) at different salt concentrations and with different duration of the nitrosation process. Concentration of the starting solution constitutes 5g in 100 ml of solution, nitrosation duration is 14-28 hours. Based on the data of infrared spectroscopy, the composition of compounds which form as a result of nitrosation is discussed. The thorium complexes formed have NO 3 - , NO - and N 2 O 2 -groups as ligands [ru

  9. Indirect complexometric determination of thorium(IV) using sodium fluoride as masking agent

    International Nuclear Information System (INIS)

    Sreekumar, N.V.; Nazareth, R.A.; Narayana, B.; Hegde, P.; Manjunatha, B.R.

    2002-01-01

    A complexometric method for the determination of thorium(IV) in presence of other metal ions based on the selective masking ability of sodium fluoride towards thorium is described. Thorium(IV) present in a given sample solution is first complexed with a known excess of EDTA and the surplus EDTA is titrated against bismuth nitrate solution at pH 2-3 using xylenol orange as indicator. A known excess of sodium fluoride (5 %) is then added and the EDTA released from the Th-EDTA complex is titrated against standard bismuth nitrate solution. Reproducible and accurate results are obtained for 5 mg to 280 mg of thorium with relative errors ±0.65 % and standard deviations /leq 0.75 mg. The interference of various ions was studied. (author)

  10. Heat capacity of metallic uranium and thorium from 80 to 1000 K

    International Nuclear Information System (INIS)

    Nakamura, J.; Takahashi, Y.; Izumi, S.; Kanno, M.

    1980-01-01

    The heat capacities of metallic uranium and thorium from 80 to 1000 K have been determined by laser-flash calorimetry. The results on uranium agree very well with those in the literature over the temperature range investigated. The results on thorium are several percent lower than the heat-capacity values hitherto reported, while the enthalpy data at high temperatures in the literature are in good agreement with the present results. Shomate's analysis showed that the present results are the most consistent through the temperature range from 80 to 1000 K. On this, a revised table of thermodynamic functions of thorium from 80 to 1000 K is presented. The excess heat capacity on thorium has been found to be not appreciable up to 1000 K, in contrast with the large excess heat capacity above 300 K for uranium. (orig.)

  11. Determination of low concentrations of thorium in granites using X-ray fluorescence technique

    International Nuclear Information System (INIS)

    Shigematsu, H.M.; Sato, I.M.; Iyer, S.S.

    1981-03-01

    An analytical method for the accurate determination of low concentrations of thorium in rocks using X-ray fluorescence technique, was developed. A tungsten tube was utilized for the production of X-rays. The samples were prepared in the form of double layer pressed pellets using boric acid as a binding agent. The concentration of thorium was determined by measuring the intensity of the characteristic first order Th L α line. The calibration was carried out with USGS rock standards AGV-1, GSP-1 and G-2. Seven granite rocks samples from Granite Mountains of Wyoming, USA, supplied by Dr. Stuckless. Also were analysed. The results obtained were compared with values obtained in others laboratories using different analytical methods. The analyses show that the thorium is concentrated in accessory minerals and presented a non-uniform distribution, making sampling an important factor in the analysis of thorium. A discussion of the precision and accuracy of the method is presented. (Author) [pt

  12. Flowchart evaluations of irradiated fuel treatment process of low burnup thorium

    International Nuclear Information System (INIS)

    Linardi, M.

    1987-01-01

    A literature survey has been carried out, on some versions of the acid-thorex process. Flowsheets of the different parts of the process were evaluated with mixer-settlers experiments. A low burnup thorium fuel (mass ratio Th/U∼100/1), proposed for Brazilian fast breeder reactor initial program, was considered. The behaviour of some fission products was studied by irradiated tracers techniques. Modifications in some of the process parameters were necessary to achieve low losses of 233 U and 232 U and 232 Th. A modified acid-thorex process flowsheet, evaluated in a complete operational cycle, for the treatment of low burnup thorium fuels, is presented. High decontamination factors of thorium in uranium, with reasonable decontamination of uranium in thorium, were achieved. (author) [pt

  13. Recovery of protactinium-231 and thorium-230 from cotter concentrate: pilot plant operatins and process development

    International Nuclear Information System (INIS)

    Hertz, M.R.; Figgins, P.E.; Deal, W.R.

    1983-01-01

    The equipment and methods used to recover and purify 339 g of thorium-230 and 890 mg of protactinium-231 from 22 of the 1251 drums of Cotter Concentrate are described. The process developed was (1) dissolution at 100 0 C in concentrated nitric acid and dilution to 2 to 3 molar acid, (2) filtration to remove undissolved solids (mostly silica filter aid), (3) extraction of uranium with di-sec-butyl-phenyl phophonate (DSBPP) in carbon tetrachloride, (4) extraction of both thorium and protactinium with tri-n-octylphosphine oxide (TOPO) in carbon tetrachloride followed by selective stripping of the thorium with dilute of sulfuric acid, (5) thorium purification using oxalic acid, (6) stripping protactinium from the TOPO with oxalic acid, and (7) protactinium purification through a sequence of steps. The development of the separation procedures, the design of the pilot plant, and the operating procedures are described in detail. Analytical procedures are given in an appendix. 8 figures, 4 tables

  14. Determination of natural alpha-emitting isotopes of uranium and thorium in environmental and geological samples

    International Nuclear Information System (INIS)

    Crespo, M.T.

    1996-01-01

    It is described the complete radiochemical procedure used for the determination of uranium and thorium isotopes in environmental and geological samples by alpha spectrometry. Source preparation methods, alpha-counting and spectral analysis are also included

  15. Use of thorium as tracer on study of groundwater of Botucatu sandstone

    Energy Technology Data Exchange (ETDEWEB)

    Porto, Paulo Augusto d' A.; Menezes, Maria Angela B.C. de; Moreira, Rubens Martins; Reis Junior, Aluisio Souza; Kastner, Geraldo Frederico, E-mail: paap@cdtn.br, E-mail: menezes@cdtn.br, E-mail: rubens@cdtn.br, E-mail: reisas@cdtn.br, E-mail: gfk@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    Thorium in some mineral compounds is very difficult to be dissolved in aqueous medium. To study the mobility of thorium in water, one alternative is to complex this element with EDTA, becoming possible to follow the behavior of thorium this medium. This way, in groundwater with low natural radioactivity and low {sup 232}Th activity, thorium can be used as a tracer. This paper describes the application of the complex Th-EDTA as a tracer applying the solution trough a sandstone sample made by rock from Botucatu Sandstone. The objective was to simulate the flow of groundwater inside the original rock aiming at future use of rare-earth elements complexed with EDTA as tracer. Alpha spectrometry technique was used to determine {sup 232}Th in the water samples with {sup 230}Th as inner-standard. (author)

  16. Spectrophotometric method for the determination of thorium in UO2 pellets

    International Nuclear Information System (INIS)

    Acosta L, E.

    1995-04-01

    This report presents a procedure with the description of the spectrophotometric method for the determination of the thorium element in uranium products including powders and pellets of uranium dioxide. Quantities can be determined starting from 1 ppm. (Author)

  17. Thorium, and the problems posed for incorporation monitoring. Applications, measurements, evaluation and interpretation

    International Nuclear Information System (INIS)

    Dalheimer, A.

    1993-09-01

    The natural element thorium is widespread due to its technical application. The extremely low annual limits of intakes (ALI-inhalation) laid down in the Radiation Protection Ordinance, the amended version of the related guidelines, and the draft basic standards of radiation protection from the European Communities make very high requirements on the monitoring of occupationally exposed workers. The detection of thorium within the body or excretions is extremely difficult and time-consuming. Additional problems are caused by lacking information on the biokinetics of thorium and its decay products. The new draft guidelines regarding the monitoring of incorporations were discussed during the seminar with ragard to the detection methods, the biokinetics of thorium and its decay products, and the estimate of exposures. The present report gives a summary of the discussions adn defines the need of research. The twelve papers and two annexes to the proceedings have been prepared for separate retrieval from the database. (orig./HP) [de

  18. Use of thorium in the generation IV Molten Salt reactors and perspectives for Brazil

    International Nuclear Information System (INIS)

    Seneda, Jose A.; Lainetti, Paulo E.O.

    2013-01-01

    Interest in thorium stems mainly from the fact that it is expected a substantial increase in uranium prices over the next fifty years. The reactors currently in operation consume 65,500 tons of uranium per year. Each electrical gigawatt (GWe) additional need about 200 tU mined per year. So advanced fuel cycles, which increase the reserves of nuclear materials are interesting, particularly the use of thorium to produce the fissile isotope 233 U. It is important to mention some thorium advantages. Thorium is three to five times more abundant than uranium in the earth's crust. Thorium has only one oxidation state. Additionally, thoria produces less radiotoxicity than the UO 2 because it produces fewer amounts of actinides, reducing the radiotoxicity of long life nuclear waste. ThO 2 has higher corrosion resistance than UO 2 , besides being chemically stable due to their low water solubility. The burning of Pu in a reactor based in thorium also decreases the inventories of Pu from the current fuel cycles, resulting in lower risks of material diversion for use in nuclear weapons. There are some ongoing projects in the world, taking into consideration the proposed goals for Generation IV reactors, namely: sustainability, economics, safety and reliability, proliferation resistance and physical protection. Some developments on the use of thorium in reactors are underway, with the support of the IAEA and some governs. Can be highlighted some reactor concepts using thorium as fuel: CANDU; ADTR -Accelerator Driven Thorium Reactor; AHWR -Advanced Heavy Water Reactor proposed by India (light water cooled and moderated by heavy water) and the MSR -Molten Salt Reactor. The latter is based on a reactor concept that has already been successfully tested in the U.S. in the 50s, for use in aircrafts. In this paper, we discuss the future importance of thorium, particularly for Brazil, which has large mineral reserves of this strategic element, the characteristics of the molten salt

  19. Electronic energy transfer between coumarin 460 and Eu3+ in thorium phosphate xerogel

    International Nuclear Information System (INIS)

    Genet, M.; Brandel, V.; Lahalle, M.P.; Simoni, E.

    1990-01-01

    Optical spectroscopy experiments performed on thorium phosphate xerogels, doped with both a laser dye (coumarin 460) and europium, have pointed out the existence of an electronic energy transfer from coumarin 460 to the 5 D 3 level of Eu 3+ . Indeed, the excitation spectrum of the red fluorescence of Eu 3+ in thorium phosphate xerogel doped simultaneously with coumarin 460 exhibits a broad band corresponding to the absorption of coumarin 460 in this optical region [fr

  20. Reducing uranium and thorium level in Zircon: effect of heat treatment on rate of leaching

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaiman

    2002-01-01

    Considerable amount of uranium and thorium are found in Malaysian zircon and the level is much higher than the minimum value adopted by many importing countries. Selective leaching had been applied as an important technique to reduce these elements. An initial study was carried out using hydrochloric acid leaching system but the result was not favourable. The rate of uranium and thorium leached can be further improved by introducing a heat pretreatment process prior to leaching (Author)

  1. X-Ray Fluorescence Spectrometry. I. Determination of thorium in ores

    International Nuclear Information System (INIS)

    Bermudez Polonio, J.; Crus Castillo, F. de la; Fernandez Cellini, R.

    1961-01-01

    A X-ray spectrometric method has been developed for analysis of thorium in ores in the range of concentration from 0.01 to 0.5 percent ThO 2 , using selenium as a internal standard. The concentration of thorium is determined in a working curve prepared by plotting the percentage of ThO 2 against the ratio intensity of the Th Lα 1 line to Sek β 1 line. (Author) 17 refs

  2. COMPARATIVE STUDY ON THORIUM (IV) SORPTION ONTO SODIC BENTONITE AND MAGNETIC BENTONITE

    OpenAIRE

    Didi, Mohamed A.; Miraoui, Abdelkader

    2017-01-01

    In thispaper, the liquid-solid extraction of Thorium (IV) is made by Sodic bentoniteand Magnetic bentonite. Magnetic adsorbent can be quickly separated from amedium by a simple magnetic process, in view of these properties; someparameters were studied to assess the performance of maghemite nanocompositeclay for the removal of Thorium ions. The operating variables studied areinitial La(III) concentration, pH, ionic strength, temperature and contacttime. The time needed for magnetic bentonite t...

  3. New twists and turns for actinide chemistry: organometallic infinite coordination polymers of thorium diazide

    International Nuclear Information System (INIS)

    Monreal, Marisa J.; Seaman, Lani A.; Goff, George S.; Michalczyk, Ryszard; Morris, David E.; Scott, Brian L.; Kiplinger, Jaqueline L.

    2016-01-01

    Two organometallic 1D infinite coordination polymers and two organometallic monometallic complexes of thorium diazide have been synthesized and characterized. Steric control of these self-assembled arrays, which are dense in thorium and nitrogen, has also been demonstrated: infinite chains can be circumvented by using steric bulk either at the metallocene or with a donor ligand in the wedge. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. The Growth of Monoraphidium sp. and Scenedesmus sp. Cells in the Presence of Thorium

    Directory of Open Access Journals (Sweden)

    Juliana Cristina de Queiroz

    2012-01-01

    Full Text Available Toxicity of thorium by Monoraphidium sp. and Scenedesmus sp. was studied. Microalgal cultures were inoculated in ASM-1 medium in presence and absence of thorium. Its effect was monitored by direct counting on Fuchs-Rosenthal chamber and with software. The toxicity of thorium over the species was observed for concentrations over 50.0 mg/L. After 30 days, Monoraphidium cells decreased their concentration from 4.23×106 to 4.27×105 and 8.57×105 cells/mL, in the presence of 50.0 and 100.0 mg/L of thorium, respectively. Scenedesmus sp. cells were more resistant to thorium: for an initial cell concentration of 7.65×104 cells/mL it was observed a change to 5.25×105 and 5.12×105 cells/mL, in the presence of thorium at 50.0 and 100.0 mg/L, respectively. This is an indication that low concentrations of the radionuclide favored the growth, and that Scenedesmus cells are more resistant to thorium than Monoraphidium cells. The software used for comparison with direct count method proved to be useful for the improvement of accuracy of the results obtained, a decrease in the uncertainty and allowed recording of the data. The presence of thorium suggests that low concentrations have a positive effect on the growth, due to the presence of the nitrate, indicating its potential for ecotoxicological studies.

  5. Thorium and uranium determinations in rock solutions by the induced fission track method

    International Nuclear Information System (INIS)

    Bajo, C.

    1979-01-01

    Thorium and uranium have been determined by counting induced fission tracks. While for uranium determinations no chemical separation was required, the thorium was first separated using the strongly basic anion-exchange resin, Dowex 1 x 8 in a mixed medium consisting of 5M HNO 3 and methanol. This was done by batch rather than column method. The feasibility of the method was established by analysing standard rocks. A precision of +- 5 to 10% and an accuracy of +- 10% were obtained. (author)

  6. Symbiotic energy demand and supply system based on collaboration between rare-earth and thorium utilization

    International Nuclear Information System (INIS)

    Kamei, Takashi

    2011-01-01

    Progressive economic growth as well as prodigious consumption of energy are expected among Asian countries. Nuclear power has myriad advantages, among them particularly being its status as a low carbon technology and therefore nuclear power would make a significant contribution to curtailing CO 2 emissions. However, the prospects for nuclear power are hindered by some unresolved problems: perceived adverse safety, environmental, and health effects; potential security risks stemming from proliferation; and unresolved challenges in long-term management of nuclear wastes. Thorium utilization as a nuclear fuel will serve as a cornerstone of circumventing such problems, because thorium produces less radioactive waste (i.e. less plutonium) and thus safety, which is of paramount concern, will be enhanced. The deployment of electric vehicles (EVs) as an alternative to supplant gasoline engine cars in the transportation network, will significantly contribute in the reduction of global CO 2 emissions. Rare-earth materials such as neodymium and dysprosium will be essential as a new material for electric automobiles. Thorium is often obtained as a by-product of rare-earth metals, but it is still not utilized as a nuclear fuel currently due to the lack of its own fissionable isotopes and as such, it cannot be employed in the production of nuclear weapons. Recent trends of nuclear disarmament and accumulation of plutonium from uranium fuel cycle can propel the deployment of thorium. The implementation capacity of thorium nuclear power is estimated to be about 392 GWe at 2050. The utilization of thorium will both help to provide clean energy and to supply rare-earth materials for clean automobiles. In order for us to effect the commercial deployment of thorium resources, establishment of an international framework to supply resources from developing countries as well as to supply technology from developed countries is indeed imperative. Herein, the author propose 'The Bank

  7. Feasibility Study of 1/3 Thorium-Plutonium Mixed Oxide Core

    OpenAIRE

    Cheuk Wah Lau; Henrik Nylén; Klara Insulander Björk; Urban Sandberg

    2014-01-01

    Thorium-plutonium mixed oxide (Th-MOX) fuel has become one of the most promising solutions to reduce a large and increasing plutonium stockpile. Compared with traditional uranium-plutonium mixed oxide (U-MOX) fuels, Th-MOX fuel has higher consumption rate of plutonium in LWRs. Besides, thorium based fuels have improved thermomechanical material properties compared with traditional U-MOX fuels. Previous studies on a full Th-MOX core have shown reduced efficiency in reactivity control mechanism...

  8. DE-NE0000735 - FINAL REPORT ON THORIUM FUEL CYCLE NEUP PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Krahn, Steven [Vanderbilt Univ., Nashville, TN (United States); Ault, Timothy [Vanderbilt Univ., Nashville, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-30

    The report is broken into six chapters, including this executive summary chapter. Following an introduction, this report discusses each of the project’s three major components (Fuel Cycle Data Package (FCDP) Development, Thorium Fuel Cycle Literature Analysis and Database Development, and the Thorium Fuel Cycle Technical Track and Proceedings). A final chapter is devoted to summarization. Various outcomes, publications, etc. originating from this project can be found in the Appendices at the end of the document.

  9. Feasibility assessment of the once-through thorium fuel cycle for the PTVM LWR concept

    International Nuclear Information System (INIS)

    Rachamin, R.; Fridman, E.; Galperin, A.

    2015-01-01

    Highlights: • The PTVM LWR is an innovation reactor concept operating in a “breed & burn” mode. • An advanced once-through thorium fuel cycle for the PTVM LWR concept is proposed. • The PTVM LWR concept makes use of a seed-blanket geometry. • A novel fuel management scheme based on two separate fuel flow routes is analyzed. • The analysis indicates a potential for utilizing the fuel in an efficient manner. - Abstract: This paper investigates the feasibility of a once-through thorium fuel cycle for the novel reactor-design concept named the pressure tube light water reactor with variable moderator control (PTVM LWR). The PTVM LWR operates in a “breed & burn” mode, which makes it an attractive system for utilizing thorium fuel in a once-through mode. The “breed & burn” mode can emphasize the in situ generation as well as incineration of 233 U, which are the basic foundations of the once-through thorium fuel cycle. The PTVM LWR concept makes use of a seed–blanket geometry, whereby the core is divided into separated regions of thorium-based fuel channel assemblies (blanket) and low-enriched uranium (LEU) based fuel channel assemblies (seed). A novel fuel in-core management scheme based on two separate fuel flow routes (i.e., seed route and blanket route) is proposed and analyzed. Neutronic performance analysis indicates that the proposed novel fuel in-core management scheme has the potential to utilize both LEU- and thorium-based fuel in an efficient manner. The once-through thorium cycle, presented and discussed in this paper, provide interesting research leads and can serve as a bridge between current LEU-based fuel cycles and a thorium fuel cycle based on recycling of 233 U

  10. Cations analysis by controlled potential coulometry. Pt. 2. Zirconium and thorium determination

    International Nuclear Information System (INIS)

    Harto Castano, A.; Sanchez Batanero, P.

    1982-01-01

    A controlled-potential coulometry method for determination of zirconium and thorium has been carried out. This method is based on the reduction of potassium ferricyanide in presence of zirconium and thorium ions in acidic media. Stoechiometric coefficients of the solid products have been determined by intensity-controlled coulometry and chemical analysis. Application range and accuracy of the coulometric method has been established and applied to determination of Zr(IV) and Th(IV) in ores [fr

  11. Thorium deposits in the commonwealth of independent states and their prospective characteristics

    International Nuclear Information System (INIS)

    Kotova, V.M.; Skorovarov, J.I.

    1997-01-01

    Since 1956, the All-Russian Research Institute of Chemical Technology has been engaged in the research of assessing thorium deposits and ore occurrence, as well as developing its production technology from various ore types. From the known CIS thorium and thorium-bearing deposits and occurrences (2500) only 241 sites have their resources estimated. They include 132 monazite placers of the Quarternary age, 6 complex Quarternary deposits of placer type (4 polarite, 1 uranium-thorianite and 1 thorium-platinum placers), 66 endogenous deposits and occurrences and 38 complex ones (including zircon-ilmenite Tertiary and older buried placers). This paper gives a summary of the author's attempt to classify thorium deposits according to their genetic types. The proposed classification scheme is based on formational principles and integrates geological-tectonic, magmatic and other criterions. The deposits is based on formation principles and integrates geological-tectonic, magmatic and other criterions. The deposits which are located in igneous, metamorphic and sedimentary rocks are further observed according to their geological setting and types of mother rocks. Thorium deposits are known in the numerous metallogenetic provinces of the CIS. (author). 1 tab

  12. Fluorescent BINOL-based sensor for thorium recognition and a density functional theory investigation

    International Nuclear Information System (INIS)

    Wen, Jun; Dong, Liang; Tian, Jie; Jiang, Tao; Yang, Yan-Qiu; Huang, Zeng; Yu, Xiao-Qi; Hu, Chang-Wei; Hu, Sheng; Yang, Tong-Zai; Wang, Xiao-Lin

    2013-01-01

    Graphical abstract: A novel BINOL fluorescence sensor L-1 for the recognition of thorium ion with high selectivity and sensitivity. -- Highlights: • The first case of one-to-one stoichiometric responding fluorescent sensor for thorium. • An easy preparation and novel BINOL-based chemical sensor. • This sensor for thorium ion recognition by fluorescence spectrophotometry with high selectivity and sensitivity. • This sensor shows good accuracy for analysis of thorium ions in river water. • DFT calculations indicate that a strong binding interaction exists between the L-1 and Th 4+ . -- Abstract: A novel 1,1′-bi-2-naphthol (BINOL) derivative fluorescence sensor L-1 for the recognition of thorium ion with a fluorescence quench response. This ligand showed high selectivity and sensitivity for thorium ion recognition. Coordination effects were investigated by DFT calculations, and the coordination modes and sites were confirmed. Moreover, the coordination abilities of the L-1 ligand with Th 4+ and UO 2 2+ were evaluated

  13. Solid solutions of uranium and thorium phosphates: synthesis, characterization and X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Dacheux, N.; Brandel, V.; Genet, M.; Bak, K.; Berthier, C.

    1996-01-01

    New solid solutions of uranium-thorium phosphates based on uranium-uranyl phosphate U(U O 2 )(P O 4 ) 2 and thorium phosphate-diphosphate Th 4 (P O 4 ) 4 (P 2 O 7 ) were synthesized in air or under an inert atmosphere via dry and wet chemical processes. The products were characterized by means of chemical analysis, X-ray diffraction and ultraviolet-visible and infrared absorption spectroscopies. Solid solutions of uranium-uranyl-thorium phosphates U 1-x Th x (U O 2 )(P O 4 ) 2 (with O≤ x ≤ 0.6) were obtained in air by substitution of uranium (IV) by thorium. Solid solutions of thorium-uranium phosphate-diphosphate (Th 1-y U y ) 4 (P O 4 ) 4 (P 2 O 7 ) (with Y ≤0.9) were prepared by substitution of thorium by uranium (IV) under an inert atmosphere. These new materials have been studied by XPS (X-ray photoelectron spectroscopy) in order to verify the oxidation states of uranium and to estimate the P/U, P/Th, P/O and U/Th ratios. (authors). 33 refs., 10 figs., 4 tabs

  14. The evolutionary adoption of thorium beginning with its application in niche LWR fuels

    International Nuclear Information System (INIS)

    Drera, Saleem

    2015-01-01

    Since the inception of nuclear energy, the use of thorium as a nuclear fuel has been envisioned. Thorium boasts benefits, however, drawbacks which are both economic and technical including its the lack of a naturally occurring fissile isotope implies that its utility is inherently more difficult. The implementation of thorium as a nuclear fuel requires that it must provide sound technical advantages in combination with attractive economics as compared to standard uranium fuel. Revolutionary thorium concepts such as molten salt reactors and accelerator driven systems may provide theoretical merit, however, their exotic nature and associated technical challenges label them as long-term solutions at best. A near-to-medium term solution for thorium must be based on an evolutionary approach utilizing light/heavy water reactor platforms. While thorium does not provide a near-to-medium term complete replacement of uranium, it does provide substantial benefit within niche applications. To license and bring to market these niche fuels, Thor Energy and an international consortium of entities (including: Fortum, KAERI, Westinghouse, NNL, ITU, IFE, and a few other minor entities) have initiated a fuel development and irradiation test program to characterize the performance of these thoria-containing fuels. (author)

  15. Development of an automated method for determination of thorium in soil samples and aerosols

    International Nuclear Information System (INIS)

    Stuart, J.E.; Robertson, R.

    1986-09-01

    Methodology for determining trace thorium levels in a variety of sample types was further developed. Thorium in filtered water samples is concentrated by ferric hydroxide precipitation followed by dissolution and co-precipitation with lanthanum fluoride. Aerosols on glass fibre, cellulose ester, or teflon filters and solid soil and sediment samples are acid digested. Subsequently thorium is concentrated by lanthanum fluoride co-precipitation. Chemical separation and measurement is then done on a Technicon AA11-C autoanalyzer, using solvent extraction into thenoyltrifuoroacetone in kerosene followed by back extraction into 2 N H NO 3 , and colourometric measurement of the thorium arsenazo III complex. Chemical yields are determined by the addition of thorium-234 tracer using gamma-ray spectrometry. The sensitivities of the methods for water, aerosol and solid samples are approximately 1.0 μg/L, 0.5 μg/g and 1.0 μg/g respectively. At thorium levels about ten times the detection limit, accuracy is estimated to be ± 10% for liquids and aerosols and ± 15% for solid samples, and precision ± 5% for all samples

  16. Performance Analysis Review of Thorium TRISO Coated Particles during Manufacture, Irradiation and Accident Condition Heating Tests

    International Nuclear Information System (INIS)

    2015-03-01

    Thorium, in combination with high enriched uranium, was used in all early high temperature reactors (HTRs). Initially, the fuel was contained in a kernel of coated particles. However, particle quality was low in the 1960s and early 1970s. Modern, high quality, tristructural isotropic (TRISO) fuel particles with thorium oxide and uranium dioxide (UO 2 ) had been manufactured since 1978 and were successfully demonstrated in irradiation and accident tests. In 1980, HTR fuels changed to low enriched uranium UO 2 TRISO fuels. The wide ranging development and demonstration programme was successful, and it established a worldwide standard that is still valid today. During the process, results of the thorium work with high quality TRISO fuel particles had not been fully evaluated or documented. This publication collects and presents the information and demonstrates the performance of thorium TRISO fuels.This publication is an outcome of the technical contract awarded under the IAEA Coordinated Research Project on Near Term and Promising Long Term Options for Deployment of Thorium Based Nuclear Energy, initiated in 2012. It is based on the compilation and analysis of available results on thorium TRISO coated particle performance in manufacturing and during irradiation and accident condition heating tests

  17. Analysis of Uranium and Thorium in Waste Water from Rare Earth Research and Development by ICP Spectrometry

    International Nuclear Information System (INIS)

    Pichestapong, Pipat; Injareon, Uthaiwan

    2007-08-01

    Full text: Waste water from Rare Earth Research and Development Center (RRDC) was analyzed to determine uranium and thorium concentration using ICP spectrometry. RRDC processes monazite ore to separate uranium, thorium and rare earth elements from the ore. Water samples from the ditch surrounding the center and from the canal nearby were also analyzed. Matrix spike technique was applied in this analysis. It was found that the highest concentration of uranium and thorium in the waste water samples were 3028±11 and 439±7 ppb, respectively. The concentration of uranium and thorium in the waste water samples were higher than those in water samples from the ditch and canal

  18. Accident analysis of heavy water cooled thorium breeder reactor

    Science.gov (United States)

    Yulianti, Yanti; Su'ud, Zaki; Takaki, Naoyuki

    2015-04-01

    Thorium has lately attracted considerable attention because it is accumulating as a by-product of large scale rare earth mining. The objective of research is to analyze transient behavior of a heavy water cooled thorium breeder that is designed by Tokai University and Tokyo Institute of Technology. That is oxide fueled, PWR type reactor with heavy water as primary coolant. An example of the optimized core has relatively small moderator to fuel volume ratio (MFR) of 0.6 and the characteristics of the core are burn-up of 67 GWd/t, breeding ratio of 1.08, burn-up reactivity loss during cycles of reactor accidents types examined here is Unprotected Transient over Power (UTOP) due to withdrawing of the control rod that result in the positive reactivity insertion so that the reactor power will increase rapidly. Another accident type is Unprotected Loss of Flow (ULOF) that caused by failure of coolant pumps. To analyze the reactor accidents, neutron distribution calculation in the nuclear reactor is the most important factor. The best expression for the neutron distribution is the Boltzmann transport equation. However, solving this equation is very difficult so that the space-time diffusion equation is commonly used. Usually, space-time diffusion equation is solved by employing a point kinetics approach. However, this approach is less accurate for a spatially heterogeneous nuclear reactor and the nuclear reactor with quite large reactivity input. Direct method is therefore used to solve space-time diffusion equation which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference method is solved by using iterative methods. The indication of UTOP accident is decreasing macroscopic absorption cross-section that results large external reactivity, and ULOF accident is indicated by decreasing coolant flow. The power reactor has a peak value before reactor has new balance condition. The

  19. Accident analysis of heavy water cooled thorium breeder reactor

    International Nuclear Information System (INIS)

    Yulianti, Yanti; Su’ud, Zaki; Takaki, Naoyuki

    2015-01-01

    Thorium has lately attracted considerable attention because it is accumulating as a by-product of large scale rare earth mining. The objective of research is to analyze transient behavior of a heavy water cooled thorium breeder that is designed by Tokai University and Tokyo Institute of Technology. That is oxide fueled, PWR type reactor with heavy water as primary coolant. An example of the optimized core has relatively small moderator to fuel volume ratio (MFR) of 0.6 and the characteristics of the core are burn-up of 67 GWd/t, breeding ratio of 1.08, burn-up reactivity loss during cycles of < 0.2% dk/k, and negative coolant reactivity coefficient. One of the nuclear reactor accidents types examined here is Unprotected Transient over Power (UTOP) due to withdrawing of the control rod that result in the positive reactivity insertion so that the reactor power will increase rapidly. Another accident type is Unprotected Loss of Flow (ULOF) that caused by failure of coolant pumps. To analyze the reactor accidents, neutron distribution calculation in the nuclear reactor is the most important factor. The best expression for the neutron distribution is the Boltzmann transport equation. However, solving this equation is very difficult so that the space-time diffusion equation is commonly used. Usually, space-time diffusion equation is solved by employing a point kinetics approach. However, this approach is less accurate for a spatially heterogeneous nuclear reactor and the nuclear reactor with quite large reactivity input. Direct method is therefore used to solve space-time diffusion equation which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference method is solved by using iterative methods. The indication of UTOP accident is decreasing macroscopic absorption cross-section that results large external reactivity, and ULOF accident is indicated by decreasing coolant flow. The

  20. Automated refueling simulations of a CANDU for the exploitation of thorium fuels

    Science.gov (United States)

    Holmes, Bradford

    CANDU nuclear reactors are in a unique circumstance where they are able to utilize and exploit a number of different fuel options to provide power as a utility. Thorium, a fertile isotope found naturally, is one option that should be explored. Thorium is more abundant than uranium, which is the typical fuel in the reactor and the availability of thorium makes nuclear energy desirable to more countries. This document contains the culmination of a project that explores, tests, and analyzes the feasibility of using thorium in a CANDU reactor. The project first develops a set of twodimensional lattice and three dimensional control rod simulations using the DRAGON Version 4 nuclear physics codes. This step is repeated for many concentrations of thorium. The data generated in these steps is then used to determine a functional enrichment of thorium. This is done via a procedural elimination and optimization of certain key parameters including but not limited to average exit burnup and reactivity evolution. For the purposes of this project, an enrichment of 1 % thorium was found viable. Full core calculations were done using the DONJON 4 code. CANFUEL, a program which simulates the refueling operations of a CANDU reactor for this fuel type was developed and ran for a simulation period of one hundred days. The program and the fuel selection met all selected requirements for the entirety of the simulation period. CANFUEL requires optimization for fuel selection before it can be used extensively. The fuel selection was further scrutinized when a reactivity insertion event was simulated. The adjuster rod 11 withdrawal from the core was analyzed and compared to classical CANDU results in order to ensure no significant deviations or unwanted evolutions were encountered. For this case, the simulation results were deemed acceptable with no significant deviations from the classical CANDU case.

  1. Feasibility study and economic analysis on thorium utilization in heavy water reactors

    International Nuclear Information System (INIS)

    1978-07-01

    Even though natural uranium is a more easily usable fuel in heavy water reactors, thorium fuel cycles have also been considered owing to certain attractive features of the thorium fuel cycle in heavy water reactors. The relatively higher fission neutron yield per thermal neutron absorption in 233 U combined with the very low neutron absorption cross section of heavy water make it possible to achieve breeding in a heavy water reactor operating on Th- 233 U fuel cycle. Even if the breeding ratio is very low, once a self-sustaining cycle is achieved, thereafter dependence on uranium can be completely eliminated. Thus, with a self-sustaining Th- 233 U fuel cycle in heavy water reactors, a given quantity of natural uranium will be capable of supporting a much larger installed generating capacity to significantly longer period of time. However, since thorium does not contain any fissile isotope, fissile material has to be added at the beginning. Concentrated fissile material is considerably more expensive than the 235 U contained in natural uranium. This makes the fuel cycle cost higher with thorium fuel cycle, at least during the initial stages. The situation is made worse by the fact that, because of its higher thermal neutron absorption cross section, thorium requires a higher concentration of fissile material than 238 U. Nevertheless, because of the superior nuclear characteristics of 233 U, once uranium becomes more expensive, thorium fuel cycle in heavy water reactors may become economically acceptable. Furthermore, the energy that can be made available from a given quantity of uranium is considerably increased with a self-sustaining thorium fuel cycle

  2. Combustion synthesis and characterization of uranium and thorium tellurides

    International Nuclear Information System (INIS)

    Czechowicz, D.G.

    1985-10-01

    This report describes an investigation of the chemical systems uranium-tellurium and thorium-tellurium. A novel synthesis technique, combustion synthesis, which uses the exothermic heat of reaction rather than externally supplied heat, was utilized to form the phases UTe, U 3 Te 4 , and UTe 2 in the U-Te system and the phases ThTe, Th 2 Te 3 , and ThTe 2 in the Th-Te system from reactions of the type U/sub x/ + Te/sub y/ = U/sub x/Te/sub y/. With this synthetic method, U-Te and Th-Te products could be formed in a matter of seconds, and the purity of the products was often greater than that of the starting materials used. Control over final product stoichiometry was found to be very difficult. The product phase distribution observed in combustion products, as determined by x-ray diffraction, electron microprobe, and optical metallographic methods, was found to be spatially complex. Lattice constants were calculated from x-ray diffraction patterns for the compounds UTe, U 3 Te 4 , and ThTe. SOLGASMIX thermodynamic equilibrium calculations were performed using available and estimated thermodynamic data on the system U-Te-O in an attempt to understand the products formed by combustion. Adiabatic combustion reaction temperatures for specific U-Te and Th-Te reactions were also calculated utilizing available and estimated thermodynamic data. 71 refs., 31 figs., 15 tabs

  3. Uranium, thorium and bismuth photofission cross sections at high energies

    International Nuclear Information System (INIS)

    Tavares, O.A.P.

    1973-01-01

    The U 238 , Th 232 and Bi 209 photofission using nuclear emulsion technique for fission fragments detection is presented. The photofission cross sections were measured using Bremsstrahlung photon which were produced irradiating thin tungsten radiators with electrons accelerated at the energy range from 1,0 to 5,5 GeV in the ''Deutsches Elektronen Synchrotron'' (Hamburg), and aluminium radiator with electrons accelarated at 16,0 GeV in Stanford Linear Accelerator Center. A special revelation technique for nuclear emulsion pellicles loaded with uranium and thorium, allowed the discrimination between alpha particles tracks and fission fragments tracks. The results show a decrease in the cross sections, which is in good agreement, within experimental errors, with the conclusions of other authors. The estimations from the two-step mechanism for high energy nuclear reactions (intranuclear cascade followed by fission-evaporation competition) show that, the primary interaction according to the photomesonic model and the quasi-deuteron photon interaction are sufficient to explain the general behavior exhibited by photofission cross sections for investigated nuclei. The calculations show a resonant structure around 300 MeV, with a width at half maximum of 200 MeV, and another not so pronounced, near to 700 MeV. (Author) [pt

  4. Thermodynamic investigations of oxyfluoride of thorium and uranium

    Science.gov (United States)

    Mukherjee, Sumanta; Dash, Smruti; Mukerjee, S. K.; Ramakumar, K. L.

    2015-10-01

    The standard molar Gibbs energy of formation of ThOF2(s) and UO2F2(s) has been determined using an e.m.f. technique. For this purpose, separate fluoride cell has been constructed using CaF2(s) as the solid electrolyte. From the measured e.m.f. values and required Gibbs energy data available in the literature, ΔfGom(T) for these oxyfluorides has been calculated. The enthalpy of formation of ThOF2(s) and UO2F2(s) at 298.15 K has been calculated from the experimentally measured Gibbs energy data using the second and the third law methods. To determine the stability domains of ThOF2(s) and UO2F2(s), the phase diagram and chemical potential diagrams of Th-F-O and U-F-O systems were calculated by the CALPHAD method and FactSage software. These calculations can be used to predict the oxygen partial pressures and the temperature domains in which thorium and uranium oxyfluorides might be formed in the molten salt medium.

  5. Ion Source Development for Ultratrace Detection of Uranium and Thorium

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuan [ORNL; Batchelder, Jon Charles [ORNL; Galindo-Uribarri, Alfredo {nmn} [ORNL; Stracener, Daniel W [ORNL

    2015-01-01

    A hot-cavity surface ionization source and a hot-cavity laser ion source are evaluated in terms of ionization efficiencies for generating ion beams of U and Th. The work is motivated by the need for more efficient ion sources for detecting ultratrace U and Th impurities in a copper matrix by mass spectrometry techniques such as accelerator mass spectrometry (AMS). The performances of the ion sources are characterized using uranyl nitrate and thorium nitrate sample materials and sample sizes of 20 - 40 g of U or Th. For the surface source, the dominant ion beams observed are UO+ or ThO+ and ionization efficiencies of 2-4% have been obtained with W and Re cavities. Three-step resonant photoionization of U atoms is studied and an ionization efficiency of 8.7% has been obtained with the laser ion source. The positive ion sources promise more than an order of magnitude more efficient than conventional Cs-sputter negative ion sources used for AMS. In addition, the laser ion source is highly selective and effective in suppressing interfering and ions. Work is in progress to improve the efficiencies of both positive ion sources.

  6. Irradiation performance of thorium oxide based coated particle fuels

    International Nuclear Information System (INIS)

    Shiratori, Tetsuo; Itoh, Akinori; Akabori, Mitsuo; Shiba, Koreyuki; Adachi, Mamoru

    1988-11-01

    BISO coated ThO 2 particles as fertile fuel and BISO or TRISO coated (Th, U)O 2 particles as fissile fuel for a High-temperature Gas-cooled Reactor (HTGR) were irradiated to investigate particle performances in loosely-packed condition of two capsules in JRR-2 and one capsule in JMTR. Irradiation of these coated particles was achieved to a maximum fast neutron fluence of 2.22 x 10 21 neutrons/cm 2 (E > 0.18 MeV) and a maximum thermal neutron fluence of 1.35 x 10 21 neutrons/cm 2 at temperatures of 770 to 1225 deg C. And a maximum burnup of fissile particles was 2.42 % FIMA. It was found in the post-irradiation examinations that the coated particles were intact except a little of the BISO coated fissile particles, and the thorium oxide based coated particles performed well under the irradiation conditions. The data were also taken on the fission product behavior released from the fuel kernels during the irradiation. And density of the outer LTIPyC (OPyC) increased as increasing the fluence of fast neutron. As a result of the densification of the OPyC, the crushing strength of the BISO coated particles increased, otherwise the TRISO coated particles decreased. (author)

  7. The TMSR as actinide burner and thorium breeder

    International Nuclear Information System (INIS)

    Merle-Lucotte, E.; Heuer, D.; Le Brun, C.; Allibert, M.; Ghetta, V.

    2007-01-01

    Molten Salt Reactors (MSRs) are one of the six systems retained by Generation IV as a candidate for the next generation of nuclear reactors. Molten Salt Reactor is a very attractive concept especially for the Thorium fuel cycle which allows nuclear energy production with a very low production of radio-toxic minor actinides. Studies have thus been done on the Molten Salt Breeder Reactor (MSBR) of Oak-Ridge to re-evaluate this concept. They have shown that the MSBR suffers from major drawbacks concerning for example safety and reprocessing, drawbacks incompatible with any industrial development. On the other hand, the advantages of the Thorium fuel cycle were too attractive not to look further into it. With these considerations, we have reassessed the whole concept to propose an innovative reactor called Thorium Molten Salt Reactor (TMSR). Many parametric studies of the TMSR have been carried out, correlating the core arrangement and composition, the reprocessing performances, and the salt composition. In particular, by changing the moderation ratio of the core the neutron spectrum can be modified and placed anywhere between a very thermalized neutron spectrum and a relatively fast spectrum. Even if the epithermal TMSR configurations have not been completely excluded by our calculations, our studies have shown that the reactor design where there is no graphite moderator inside the core appears to be the most promising in terms of safety coefficients, reprocessing requirements, and breeding and deployment capabilities. Larger fissile matter inventories are necessary in such a reactor configuration compared to the thermalized TMSR configurations, but the resulting deployment limitation could be solved by using transuranic elements as initial fissile load. This work is based on the coupling of a neutron transport code called MCNP with the materials evolution code REM. The former calculates the neutron flux and the reaction rates in all the cells while the latter solves

  8. Contribution to the study of thorium phosphate gels and xerogels

    International Nuclear Information System (INIS)

    Iroulart, M.G.

    1989-01-01

    The physico-chemical and optical properties of transparent thorium phosphate gels and xerogels are studied. The gels are obtained by mixing 3/4 or 1/1 parts of Th (NO 3 ) 4 (or Th Cl 4 ) and H 3 PO 4 (from 0.02 to 0.2 M) water solutions of 0.5 to 1 pH. Xerogels are obtained by a liquid phase drying at 50C. The 31 P and 1 H NMR, the Raman and EXAFS experiments are performed. The gel structural model is proposed: inorganic polymers from [Th (OH) 2 PO 4 H 2 (H 2 O 8 ] 2 2+ dimers. Xerogel is a transparent material having a wide optical window, which allows applications in ions detection. The X ray experiments on 4 hours heated xerogels, at different temperatures, showed the amorphe-crystal transition at 300C. A Th 3 (PO 4 ) 4 crystallized phase is obtained by xerogel heating at 850C, during 72 hours. It is a new synthesis method to obtain such a compound from an amorphous material [fr

  9. Process for electroforming nickel containing dispersed thorium oxide particles therein

    International Nuclear Information System (INIS)

    Malone, G.A.

    1975-01-01

    Nickel electroforming is effected by passing a direct current through a bath containing a dissolved nickel salt or a mixture of such salts, such as those present in sulfamate or Watts baths, and finely divided sol-derived thorium oxide particles of 75 to 300 angstroms, preferably 100 to 200 angstroms diameters therein, at a pH in the range of 0.4 to 1.9, preferably 0.8 to 1.3. The nickel so deposited, as on a pre-shaped stainless steel cathode, may be produced in desired shape and may be removed from the cathode and upon removal, without additional working, possesses desirable engineering properties at elevated temperatures, e.g., 1,500 to 2,200 0 F. Although the material produced is of improved high temperature stability, hardness, and ductility, compared with nickel alone, it is still ductile at room temperature and has properties equivalent or superior to nickel at room temperatures up to 1,500 0 F. Further improvements in mechanical properties of the material may be obtained by working. Also disclosed are electrodeposition baths, methods for their manufacture, and products resulting from the electrodeposition process. (U.S.)

  10. Study of an ADS Loaded with Thorium and Reprocessed Fuel

    Directory of Open Access Journals (Sweden)

    Graiciany de Paula Barros

    2012-01-01

    Full Text Available Accelerator-driven systems (ADSs are investigated for long-lived fission product transmutation and fuel regeneration. The aim of this paper is to investigate the nuclear fuel evolution and the neutronic parameters of a lead-cooled accelerator-driven system used for fuel breeding. The fuel used in some fuel rods was T232hO2 for U233 production. In the other fuel rods was used a mixture based upon Pu-MA, removed from PWR-spent fuel, reprocessed by GANEX, and finally spiked with thorium or depleted uranium. The use of reprocessed fuel ensured the use of T232hO2 without the initial requirement of U233 enrichment. In this paper was used the Monte Carlo code MCNPX 2.6.0 that presents the depletion/burnup capability, combining an ADS source and kcode-mode (for criticality calculations. The multiplication factor (keff evolution, the neutron energy spectra in the core at BOL, and the nuclear fuel evolution during the burnup were evaluated. The results indicated that the combined use of T232hO2 and reprocessed fuel allowed U233 production without the initial requirement of U233 enrichment.

  11. Infrared study of acid-base properties of thorium dioxide

    International Nuclear Information System (INIS)

    Lamotte, J.; Lavalley, J.C.; Druet, E.; Freund, E.

    1983-01-01

    Adsorption of CO 2 , C 5 H 5 N, CH 3 OCH 3 and CD 3 OCD 2 H on ThO 2 has been studied by Fourier-transform infrared spectroscopy. CO 2 adsorption gives rise to several types of species: polydentate carbonates, bidentate carboxylates, bidentate carbonates, hydrogenocarbonates, monodentate carbonates and linear CO 2 species. The carbonate species have been identified on the basis of the splitting of the ν 3 vibration and of thermal-stability considerations. These results show that thorium dioxide is a basic oxide. Considering the νsub(a)(CO 2 ) mode of linear CO 2 species, the νsub(8a) mode of pyridine, the ν(CH) band of CD 3 OCD 2 H and the ν(COC) modes of CH 3 OCH 3 , it is concluded that some Th 4+ ions are very weak Lewis-acid sites. The OH groups giving rise to the 3740 cm -1 band are basic (some are involved in the formation of hydrogenocarbonate species), while some of the OH groups corresponding to the 3655 cm -1 band are very weak proton donors. (author)

  12. Effects of solution pH and complexing reagents on uranium and thorium desorption under saturated equilibrium conditions

    International Nuclear Information System (INIS)

    Wang, Yug-Yea; Yu, C.

    1992-01-01

    Three contaminated bulk surface soils were used for investigating the effect of solution pH and complexing reagents on uranium and thorium desorption. At a low solution pH, the major chemical species of uranium and thorium, uranyl UO 2 +2 , thorium dihydroxide Th(OH) 2 +2 , and thorium hydroxide Th(OH) +3 , tend to form complexes with acetates in the solution phase, which increases the fractions of uranium and thorium desorbed into this phase. At a high solution pH, important uranium and thorium species such as uranyl tricarbonate complex UO 2 (CO) 33 -4 and thorium tetrahydroxide complex Th(OH) 4 tend to resist complexation with acetates. The presence of complexing reagents in solution can release radionuclides such as uranium and/or thorium from the soil to the solution by forming soluble complexes. Sodium bicarbonate (NaHCO 3 ) and diethylenetriaminepentaacetic acid (DTPA) are strong complex formers that released 38% to 62% of total uranium activity and 78% to 86% of total thorium activity, respectively, from the soil samples investigated. Solutions of 0.1 molar sodium nitrate (NaNO 3 ) and 0.1 molar sodium sulfate (Na 2 SO 4 ) were not effective complex formers with uranium and thorium under the experimental conditions. Fractions of uranium and thorium desorbed by 0.15g/200ml humic acid ranged from 4.62% to 6.17% and 1.59% to 7.09%, respectively. This work demonstrates the importance of a knowledge of solution chemistry in investigating the desorption of radionuclides

  13. Distribution of uranium and thorium in sediments and plants from a granitic fluvial area

    International Nuclear Information System (INIS)

    Vargas, M.J.; Tome, F.V.; Sanchez, A.M.; Vazquez, M.T.C.; Murillo, J.L.G.

    1997-01-01

    A study of the presence of natural uranium and thorium isotopes in sediments and plants belonging to a granitic fluvial region of the Ortigas river (west of Spain) has been carried out. The existence of two uranium mines in the neighbourhood of the sampled sites and the granitic characteristics of the zone produce significant concentrations of natural radionuclides. Temporal and spatial variations of uranium and thorium concentrations and the activity ratios 234 U/ 238 U, 228 Th/ 232 Th and Th/U were studied to better understand the mobilization mechanisms such as leaching and transport at play in the studied system. These determinations were made using alpha-particle spectrometry with silicon detectors. The measurements were also compared with the results previously found for waters of this fluvial area. Uranium in sediments showed variations due to changes in rainfall, but thorium content was nearly constant. Uranium and thorium concentrations in plants were lower after rainfall. Incorporation of uranium into the plants seemed to be mainly from water, whereas incorporation of thorium seemed to be from both sediments and water. (Author)

  14. Study of thorium uptake by inhabitants of a high background radiation area

    International Nuclear Information System (INIS)

    Melo, D.R.; Lipsztein, J.L.; Juliao, L.M.Q.C.; Lourenco, M.C.; Lauria, D.

    2002-01-01

    Buena, located in the North of Rio de Janeiro, is characterized by its high natural radiation background, due to large deposits of monazite sand. The foodstuffs consumed by the population are basically composed of local products, which contain significant amounts of thorium. The analysis of complete cooked meals have shown an average daily intake of 18 mBq.d -1 of 232 Th and 189 mBq.d -1 of 228 Th. The average urine to feces ratio of 232 Th from samples of volunteers was found equal to 7.5x10 -2 . The comparison of the experimental data with the predicted urine to feces ratios derived using the biokinetic model for thorium described by the ICRP publication 69 and simulating inhalation and ingestion separately, lead to the conclusion that the thorium intake is a combination of inhalation and ingestion. The clearance rate of thorium of monazite in lungs has apparently behaved as Type M compound. Inhalation is the biggest contributor for the committed effective dose due to thorium internal exposure. (author)

  15. Biomedical and environmental aspects of the thorium fuel cycle: a selected, annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Faust, R.A.; Fore, C.S.; Cone, M.V.; Meyer, H.R.; Till, J.E.

    1979-07-01

    This bibliography was compiled to assist in the evaluation of the health and environmental consequences of high specific activity thorium and related nuclides which could be released to the environment by activities related to the Thorium Fuel Cycle. The general scope covers studies regarding potential releases, environmental transport, metabolism, dosimetry, dose assessment, and overall risk assessment for radionuclides specific to the NASAP project. This publication of 740 abstracted references highlights the biological and medical aspects of thorium 228 and thorium 232 in man and animals. Similar studies on related nuclides such as radium 224, radium 226, radium 228, and thorium 230 are also emphasized. Additional categories relevant to these radionuclides are included as follows: chemical analysis; ecological aspects; energy; geological aspects; instrumentation; legal and political aspects; monitoring, measurement and analysis; physical aspects; production; radiation safety and control; and waste disposal and management. Environmental assessment and sources categories were used for entries which contain a multiple use of categories. Leading authors appear alphabetically within each category. Indexes are provided for : author(s), geographic location, keywords, title, and publication description. The bibliography contains literature dating from December 1925 to February 1978.

  16. Quantitative analysis of thorium in the presence of rare earth by X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Jesus, Camila S. de; Taam, Isabel; Vianna, Claudio A.

    2013-01-01

    The occurrence of Thorium in ores is normally associated to other elements such as Uranium and Cerium, as well as some Rare-Earths (RE). The separation of these elements by traditional analytic chemistry techniques is both time and reagent consuming, thus increasing the analysis cost. The hereby proposed method consists in the direct determination of Thorium in rare earths ores and compounds by X-ray fluorescence spectroscopy without any prior chemical separation from other matrix elements. This non-destructive technique is used to determine which elements are present in solid and liquid samples, as well as their concentrations. The studied matrix contains Lanthanum, Cerium, Praseodymium, Neodymium, Samarium, Gadolinium and Yttrium. This study evaluated the analytical lines of radiation emission for each rare earth contained in the matrix, comparing it to the Thorium main analytical line. The Thorium quantification was measured through the Th L line, where there is no influence or interference from the rare earths analytical lines. The studied samples are certified standards and the obtained results have been compared to Ethylenediaminetetraacetic acid (EDTA) titration results, an already well-established and widely trusted method. We also measured the matrix effect thus using complex rare earths liquor. This liquor contains also elements commonly found in monazites sands: phosphates, aluminum, iron. Obtained results state the efficiency of X-ray Fluorescence to determine Thorium in the presence of rare earths without any prior chemical separation. (author)

  17. Analysis of Uranium and Thorium in Radioactive Wastes from Nuclear Fuel Cycle Process

    International Nuclear Information System (INIS)

    Gunandjar

    2008-01-01

    The assessment of analysis method for uranium and thorium in radioactive wastes generated from nuclear fuel cycle process have been carried out. The uranium and thorium analysis methods in the assessment are consist of Titrimetry, UV-VIS Spectrophotometry, Fluorimetry, HPLC, Polarography, Emission Spectrograph, XRF, AAS, Alpha Spectrometry and Mass Spectrometry methods. From the assessment can be concluded that the analysis methods of uranium and thorium content in radioactive waste for low concentration level using UV-VIS Spectrometry is better than Titrimetry method. While for very low concentration level in part per billion (ppb) can be used by Neutron Activation Analysis (NAA), Alpha Spectrometry and Mass Spectrometry. Laser Fluorimetry is the best method of uranium analysis for very low concentration level. Alpha Spectrometry and ICP-MS (Inductively Coupled Plasma Mass Spectrometry) methods for isotopic analysis are favourable in the precision and accuracy aspects. Comparison of the ICP-MS and Alpha Spectrometry methods shows that the both of methods have capability to determining of uranium and thorium isotopes content in the waste samples with results comparable very well, but the time of its analysis using ICP-MS method is faster than the Alpha Spectrometry, and also the cost of analysis for ICP-MS method is cheaper. NAA method can also be used to analyze the uranium and thorium isotopes, but this method needs the reactor facility and also the time of its analysis is very long. (author)

  18. A rapid method of extraction of uranium and thorium from granite for alpha spectrometry

    International Nuclear Information System (INIS)

    Gascoyne, M.; Larocque, J.P.A.

    1984-01-01

    The lithium metaborate fusion technique for analysis of rock samples has been adapted for the alpha spectrometric determination of uranium and thorium isotope abundances in granite. Powdered granite is spiked with a solution of a uranium-thorium isotope tracer, mixed with LiBO 2 in a 1: 3 ratio and fused at 950 o C in a graphite crucible. The mixture is poured into 1 M HNO 3 and stirred until dissolved. Uranium and thorium are simultaneously extracted with 10% tributylphosphate(TBP) in amyl acetate using AI(NO 3 ) 3 as the salting agent, and then back-extracted into 1 M H 2 SO 4 . Uranium is separated from thorium using anion exchange resin and, after further purification, each is plated onto steel discs for alpha counting. Overall chemical yields are adequate at present (generally 20 to 60%). Preliminary tests show the TBP extraction step to be almost quantitative for both elements, in spite of the presence of silicon and high concentrations of aluminium. This procedure is much faster than the usual acid digestion technique, and uranium and thorium discs for counting can be prepared in approximately eight hours, starting from rock powder. (author)

  19. A rapid method of extraction of uranium and thorium from granite for alpha spectrometry

    International Nuclear Information System (INIS)

    Gascoyne, M.; Larocque, J.P.A.

    1984-01-01

    The lithium metaborate fusion technique for analysis of rock samples has been adapted for the alpha spectrometric determination of uranium and thorium isotope abundances in granite. Powdered granite is spiked with a solution of a uranium-thorium isotope tracer, mixed with LiBO 2 in a 1:3 ratio and fused at 950 0 C in a graphite crucible. The mixture is poured into 1 M HNO 3 and stirred until dissolved. Uranium and thorium are simultaneously extracted with 10% tributylphosphate (TBP) in amyl acetate using Al(NO 3 ) 3 as the salting agent, and then back-extracted into 1 M H 2 SO 4 . Uranium is separated from thorium using anion exchange resin and, after further purification, each is plated onto steel discs for alpha counting. Overall chemical yields are adequate at present (generally 20 to 60%). Preliminary tests show the TBP extraction step to be almost quantitative for both elements, in spite of the presence of silicon and high concentrations of aluminium. This procedure is much faster than the usual digestion technique, and uranium and thorium discs for counting can be prepared in approximately eight hours, starting from rock powder. (orig.)

  20. A rapid method of extraction of uranium and thorium from granite for alpha spectrometry

    Science.gov (United States)

    Gascoyne, M.; Larocque, J. P. A.

    1984-06-01

    The lithium metaborate fusion technique for analysis of rock samples has been adapted for the alpha spectrometric determination of uranium and thorium isotope abundances in granite. Powdered granite is spiked with a solution of a uranium-thorium isotope tracer, mixed with LiBO 2 in a 1:3 ratio and fused at 950°C in a graphite crucible. The mixture is poured into 1 M HNO 3 and stirred until dissolved. Uranium and thorium are simultaneously extracted with 10% tributylphosphate (TBP) in amyl acetate using Al(NO 3) 3 as the salting agent, and then back-extracted into 1 M H 2SO 4. Uranium is separated from thorium using anion exchange resin and, after further purification, each is plated onto steel discs for alpha counting. Overall chemical yields are adequate at present (generally 20 to 60%). Preliminary tests show the TBP extraction step to be almost quantitative for both elements, in spite of the presence of silicon and high concentrations of aluminium. This procedure is much faster than the usual acid digestion technique, and uranium and thorium discs for counting can be prepared in approximately eight hours, starting from rock powder.

  1. Synthesis of manganese oxides and antimony silicates and their applications to take up Thorium-234

    International Nuclear Information System (INIS)

    Al-Attar, L.; Budeir, Y.

    2009-07-01

    Birnessite, a layered manganese oxide, antimonysilicate and their corresponding cation-exchange derivatives were tested for their ability to take up thorium using a batch-type method. Sorption experiments were performed in different concentrations of acid, and sodium, potassium and calcium nitrate solutions in order to evaluate the influence of cations likely to be present in waste effluents. The results were expressed in terms of distribution coefficients. Linear regressions of the logarithmic plots enabled the elucidation of exchange mechanisms. Variation in the magnitude and mechanism of thorium sorption on the exchangers was ascribed to structural differences and the exchange properties of the materials, as well as the aqueous chemistry of the actinide element. The work expanded to included investigation of thorium solution' pH in controlling the sorption process. In nitric acid solutions, H-antimonysilicate proved to be the best sorbent. The hydrated layer structure of birnessite allows for facile mobility of the interlayer cations with fast kinetics and little structural rearrangement, making it of great importance for intercalation and ion exchange uses in salt conditions. Potassium had the most, and calcium the least, effect on thorium selectivity by birnessites, when they are present as macro components. Conversely, calcium ions did greatly inhibit the sorption behaviour of the actinide on Ca-doped antimonysilicate. Studying the effect of thorium solution' pH reflected the microcrystal modifications of birnessites occurred during experiments. (authors)

  2. Potential of Melastoma malabathricum as bio-accumulator for uranium and thorium from soil

    Energy Technology Data Exchange (ETDEWEB)

    Saat, Ahmad, E-mail: ahmad183@salam.uitm.edu.my [Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam (Malaysia); Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam (Malaysia); Kamsani, Ain Shaqina; Kamri, Wan Nur Aina Nadzira; Talib, Nur Hasyimah Mat; Wood, Ab Khalik; Hamzah, Zaini [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam (Malaysia)

    2015-04-29

    Uranium and Thorium are naturally occuring radionuclides. However, due to anthropogenic activities in some locations their concentrations in the soils could be elevated. This study explores the potential of Melastoma malabathricum (locally known as ‘pokok senduduk’) as bio-accumulator of uranium and thorium from soils of three different study areas, namely former tin mining, industrial and residential/commercial areas in Peninsular Malaysia. The study found elevated concentrations of uranium and thorium in former tin mining soils as compared to natural abundance. However in industral and residential/commercial areas the concentrations are within the range of natural abundance. In terms of transfer factor (TF), in ex-mining areas TF > 1 for uranium in the leaf, stem and roots, indicating accumulation of uranium from soil. However for thorium TF < 1, indicating the occurence of transfer from soil to root, stem and leaf, but no accumulation. For other areas only transfer of uranium and thorium were observed. The results indicated the potential of Melastoma malabathricum to be used as bio-accumulatior of uranium, especially in areas of elevated concentration.

  3. Potential of Melastoma malabathricum as bio-accumulator for uranium and thorium from soil

    International Nuclear Information System (INIS)

    Saat, Ahmad; Kamsani, Ain Shaqina; Kamri, Wan Nur Aina Nadzira; Talib, Nur Hasyimah Mat; Wood, Ab Khalik; Hamzah, Zaini

    2015-01-01

    Uranium and Thorium are naturally occuring radionuclides. However, due to anthropogenic activities in some locations their concentrations in the soils could be elevated. This study explores the potential of Melastoma malabathricum (locally known as ‘pokok senduduk’) as bio-accumulator of uranium and thorium from soils of three different study areas, namely former tin mining, industrial and residential/commercial areas in Peninsular Malaysia. The study found elevated concentrations of uranium and thorium in former tin mining soils as compared to natural abundance. However in industral and residential/commercial areas the concentrations are within the range of natural abundance. In terms of transfer factor (TF), in ex-mining areas TF > 1 for uranium in the leaf, stem and roots, indicating accumulation of uranium from soil. However for thorium TF < 1, indicating the occurence of transfer from soil to root, stem and leaf, but no accumulation. For other areas only transfer of uranium and thorium were observed. The results indicated the potential of Melastoma malabathricum to be used as bio-accumulatior of uranium, especially in areas of elevated concentration

  4. Effect of ecological conditions on migration of thorium isotopes isotopes in the soil-plant system

    International Nuclear Information System (INIS)

    Shuktomova, I.I.; Titaeva, N.A.; Kochan, I.G.

    1994-01-01

    Two territories (zones of central taiga and mountainous tundra) with a high natural content of thorium in soil forming rock and soil were examined in comparative analysis of fixed state and behavior of thorium isotopes ( 232 Th, 230 Th, 228 Th, 227 Th) in the soil layer and rock including evaluation and nature of distribution and forms of presence of isotopes in soil profiles; the extent of participance of isotopes in soil-forming processes is discussed and several conclusions are made regarding the role of genesis of isotopes and parameters of the migration medium for the direction and rate of migration processes. It was found that both climatic zones are characterized by the inclusion of all thorium isotopes in the biological cycle in the soil--plant systems. Characterizing as a whole the build up up thorium isotopes in all examined vegetation of the tundra, it may be noted that it is characterized by a slightly different dependence of mobility of these isotopes in comparison with the vegetation of the taiga zone. In addition, the intensity of inclusion of these thorium isotopes in the biological cycles of migration in the taiga zones is higher than in the tundra zone. 3 refs., 4 tabs

  5. Southern complex: geology, geochemistry, mineralogy, and mineral chemistry of selected uranium- and thorium-rich granites

    International Nuclear Information System (INIS)

    Hoffman, M.A.

    1987-01-01

    Four major rock groups are defined in the Southern Complex: the Bell Creek Granite (BCG), the Clotted Granitoids (CGR), the Albite Granite (AGR), and the Migmatite Complex. Metatexites of the Migmatite Complex are the oldest rocks and include paleosome of a metasedimentary and metavolcanic protolith represented by Banded Iron Formation, Banded Amphibolite, and Banded Gneisses, and interlayered or crosscutting leucogranites. The CGR span the range from metatexite to diatexite and represent in-situ partial melting of metapelitic layers in the protolith during intrusion of the BCG. The BCG cuts the migmatites, is locally cut by the CGR, and was derived by partial melting of a dominantly metasedimentary protolith at some depth below the presently exposed migmatites during a regional tectonothermal event. The Albite Granite is a 2km diameter, muscovite-fluorite-columbite-bearing intrusive stock that cuts all other major units. The thorium history of the BCG is a function of the history of monazite. The thorium history of the CGR is also dominated by monazite but the thorium content of this unit cannot be entirely accounted for by original restite monazite. The uranium history of the BCG and CGR was dominated by magmatic differentiation and post magmatic, metamorphic and supergene redistributions and is largely independent of the thorium history. The thorium and uranium history of the AGR was dominated by magmatic/deuteric processes unlike the BCG and CGR

  6. Study on removal technology for thorium in the waste gas-lamp mantle

    International Nuclear Information System (INIS)

    Shi Yucheng; Wang Chengbao; Zhang Ping; Xu Lingqi; Jiang Shangen

    1999-01-01

    The author describes thorium removal technology and its application in the handling of the waste gas-lamp mantle that produced during the production of gas-lamp process. After laboratory test, pilot test, trial run and engineering scale use, the thorium removal technology is mainly as follows: soak the waste gas-lamp mantle into the ceramic vat with the nitric acid solution twice and wash it with the tap water twice. The volume of the ceramic vat is 500 L and the concentration of the nitric acid solution is 2 mol/L. After handling, the thorium removal rate can reach 99.97% and the residual thorium will be less than 160 Bq/kg. The waste gas-lamp mantle can be buried under the ground or be handled in the other ways just as the harmless waste. The nitric acid solution, in which gas-lamp mantle has been soaked, should be extracted with TBP, then back extracted with diluted hydrochloric acid. After supplementing the thorium nitrate into the back extracted liquid, the liquid can be reused in the gas-lamp mantle production. The waste water from the handling process can be handled together with waste water from production process

  7. Biomedical and environmental aspects of the thorium fuel cycle: a selected, annotated bibliography

    International Nuclear Information System (INIS)

    Faust, R.A.; Fore, C.S.; Cone, M.V.; Meyer, H.R.; Till, J.E.

    1979-07-01

    This bibliography was compiled to assist in the evaluation of the health and environmental consequences of high specific activity thorium and related nuclides which could be released to the environment by activities related to the Thorium Fuel Cycle. The general scope covers studies regarding potential releases, environmental transport, metabolism, dosimetry, dose assessment, and overall risk assessment for radionuclides specific to the NASAP project. This publication of 740 abstracted references highlights the biological and medical aspects of thorium 228 and thorium 232 in man and animals. Similar studies on related nuclides such as radium 224, radium 226, radium 228, and thorium 230 are also emphasized. Additional categories relevant to these radionuclides are included as follows: chemical analysis; ecological aspects; energy; geological aspects; instrumentation; legal and political aspects; monitoring, measurement and analysis; physical aspects; production; radiation safety and control; and waste disposal and management. Environmental assessment and sources categories were used for entries which contain a multiple use of categories. Leading authors appear alphabetically within each category. Indexes are provided for : author(s), geographic location, keywords, title, and publication description. The bibliography contains literature dating from December 1925 to February 1978

  8. Durability of adhesive bonds to uranium alloys, tungsten, tantalum, and thorium. [U--Nb; Ta--10 percent W

    Energy Technology Data Exchange (ETDEWEB)

    Childress, F. G.

    1975-06-14

    Long-term durability of epoxy bonds to alloys of uranium (U-Nb and Mulberry), nickel-plated uranium, thorium, tungsten, tantalum, tantalum--10 percent tungsten, and aluminum was evaluated. Significant strengths remain after ten years of aging; however, there is some evidence of bond deterioration with uranium alloys and thorium stored in ambient laboratory air.

  9. Method for incorporation monitoring - Studies on measurement and interpretation of radionuclide excretion, particularly thorium decay products, via exhaled breath

    International Nuclear Information System (INIS)

    Anon

    1998-01-01

    The development and application of a measuring method is described for thorium incorporation monitoring by way of measuring Rn-220 (thoron) in exhaled breath. The method is intended for application to monitoring the incorporation of thorium by occupationally exposed persons in compliance with the regulatory guide on health physics monitoring for determination of whole-body dose. (orig./CB) [de

  10. Development of an in vitro bioassay method to determine the intake q natural thorium

    International Nuclear Information System (INIS)

    Gaburo, J.C.G.

    1989-01-01

    A simple and economic method for analytical determination of the Th-232 concentration in excreta samples (urine and feces) was developed, using Th-229 as a tracer. Solvent extraction followed by alpha spectrometry was employed. The minimum activity detectable for urine samples was (0,36 ± 0,05) mBq/dm3 and for fecal samples (0,52 ± 0,12) mBq/dm3. Two groups of persons were analyzed. The first one, A, contituted by persons non ocupationally exposed and the second one, B, by workers ocupationally exposed. The results of thorium concentration in excreta samples from group A were compared with the daily excretion due to alimentary diet of thorium and the results obtained from the second group were compared with the limits of excretion derived from the annual limits of intake recommended by the ICRP. All the samples analyzed showed thorium concentration levels bellow the limits recommended by the ICRP. (author) [pt

  11. Thorium(IV) and zirconium(IV) complexes of oxygen donor ligands. Pt. 12

    International Nuclear Information System (INIS)

    Agarwal, R.K.; Jain, P.C.; Kapur, V.; Sharma, S.; Srivastava, A.K.

    1980-01-01

    Crystalline thorium (IV) chelates with mono N-oxides of 2,2'-bipyridine (bipyNO) and 1,10-phenanthroline (phenNO), ThX 4 x 2L(X = Cl,Br,NO 3 or NCS) and ThX 4 x 3L(X = I or ClO 4 and L = bipyNO or phenNO) have been synthesised and characterized on the basis of i.r. spectra, molar conductance, molecular weights, t.g.a. and d.t.a. data. All the complexes are weakly diamagnetic and contain bipyNO and phenNO bonded to thorium(IV) through nitrogen and oxygen. The coordination number of thorium(IV) varies from six to twelve depending on the nature of the anions. (orig.) [de

  12. Process for selectively concentrating the radioactivity of thorium containing magnesium slag

    International Nuclear Information System (INIS)

    Wilson, D.A.; Christiansen, S.H.; Simon, J.; Morin, D.W.

    1993-01-01

    In a process for separating magnesium from a magnesium slag using water and carbon dioxide, the improvement described comprises: (a) forming an aqueous magnesium slurry from the magnesium slag, which slag contains radioactive thorium and its daughters, and water; (b) solubilizing magnesium from the magnesium slurry by reacting the aqueous magnesium slurry with carbon dioxide wherein the carbon dioxide is at a pressure from greater than ambient to about 1,000 psig (about 7,000 kPa); (c) selectively concentrating by filtering the radioactive thorium and its daughters such that the radioactive thorium and its daughters are separated from the solubilized magnesium filtrate; and (d) reducing volume and/or weight of radioactive solids for disposal as radioactive waste

  13. Trace determination of uranium and thorium in biological samples by radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    Benedik, Ljudmila; Repinc, Urska; Byrne, Anthony R.; Stegnar, Peter

    2002-01-01

    Radiochemical neutron activation analysis (RNAA) is an excellent method for determining uranium and thorium; it offers unique possibilities for their ultratrace analysis using selective radiochemical separations. Regarding the favourably sensitive nuclear characteristics of uranium and of thorium with respect to RNAA, but the different half-lives of their induced nuclides, two different approaches were used. In the first approach uranium and thorium were determined separately via 239 U, 239 Np and 233 Pa. In the second approach these elements were 239 239 233 determined simultaneously in a single sample using U and/or Np and Pa. Isolation of induced nuclides was based on separation by extraction and/or anion exchange chromatography. Chemical yields were measured in each sample aliquot using added 235 U, 238 Np and 231 Pa radioisotopic tracers. (author)

  14. Thorium and uranium separation from Rare Earth complex minerals in Turkey

    International Nuclear Information System (INIS)

    Uzmen, R.

    2014-01-01

    Conclusion: • Thorium and uranium separation from a REEs solution is possible in by using simple traditional methods. • Main advantage of this method is to separate with high recovery yield uraniumand almost completely thorium which is an undesirable element due to its radioactive property in the different REEs group or individual REE. • Separation of thorium before any other step of REE’s group or individual element separation is crucial. • By using this flowsheet it would be possible to obtain uranium and other valuable elements (Zr, Ti, etc.) as coproducts of REEs. • Another important point, during REEs production, it is avoided to accumalate U and Th contaminated process wastes. • Thus, in the contrary, radioactive elements are refined and contained for safe storage.

  15. A contribution to the study of thorium and neptunium (IV) complexes in acidic phosphoric media

    International Nuclear Information System (INIS)

    Ghafar, M.

    1995-01-01

    The thorium and neptunium (IV) phosphate complexes formation in acidic media has been investigated, essentially at the indicator's level with 227 Th, 234 Th, 235 Np and 239 Np. Solvent extraction, a commonly used method for determining stability constants in solutions, was used with HDEHP in toluene. In order to get a better understanding of inorganic transparent gels formation in phosphoric aqueous solutions, the effect of the thorium concentration is also studied. Specific experimental conditions have been chosen in order to avoid the formation of chelate and hydrolysis in the aqueous solution. The equilibrium constants and stability constants are calculated, and the results are compared with literature. The results show that increasing the thorium concentration does not lead to polymer forms. refs., 42 figs., 19 tabs

  16. Thermodynamic studies of thorium carbide fuel preparation and fuel-clad comptability

    International Nuclear Information System (INIS)

    Besmann, T.M.; Beahm, E.C.

    1979-01-01

    The carbothermic reduction of thorium and uranium-thorium dioxide to monocarbide has been assessed. Equilibrium calculations have yielded Th-C-O and U-Th-C-O phase equilibria and (CO) pressures generated during reduction. The (CO) pressures were found to be at least five orders of magnitude greater than any of the other 15 gaseous species considered. This confirms that the monocarbide can successfully be prepared by carbothermic reduction. The chemical compatibility of thorium carbides with the Cr-Fe-Ni content of clad alloys has been thermodynamically avaluated. Solid solutions of 5 > and 5 > and of 7 C 3 > and 7 C 3 > were the principal reaction products. The Cr-Fe-Ni content of 316 stainless steel showed much less reaction product than that for any of the other six alloys considered. (orig.) [de

  17. Long-term health effects of thorium compounds on exposed workers: the complete blood count

    International Nuclear Information System (INIS)

    Conibear, S.A.

    1981-01-01

    Two hundred seventy-three men exposed to thorium and other rare earths between 1940 and 1973 at a plant which refined monazite sand were studied at Argonne National Laboratory from 1976 to 1980. In vivo measurements of body burden were made by counting gamma rays emitted by daughter products of retained thorium and by measuring exhaled thoron. Health status was ascertained through questionnaire, physical examination, and clinical laboratory tests. Measured body burden was found to be higher in those with a history of longer exposure. All parameters of the complete blood count were examined for evidence of an effect due to thorium. Comparisons of high and low body burden groups showed that only age and cigarette smoking had an effect on complete blood count parameters

  18. The importance of thorium in the context of the generation in advanced reactors and the IPEN's experience

    International Nuclear Information System (INIS)

    Lainetti, Paulo E.O.; Mindrisz, Ana C.; Freitas, Antonio A.

    2011-01-01

    Globally, the 80's and 90's years were characterized by a significant reduction in the rate of growth of nuclear energy. However, from the 2000's, there has been a significant change in the international arena, with the 'renaissance' of interest in nuclear energy, even in countries that had abandoned nuclear power. To answer questions like security, reducing the generation of radioactive waste, control of proliferation risks and long-term sustainability, some initiatives have been adopted by some countries. In 2000, the Department of Energy - DOE - United States created the GIF - Generation IV International Forum for Nuclear Reactors. Six reactor concepts were selected based on criteria such as: reduction of radioactive wastes, safety and cost effective to meet the increasing energy demand on a sustainable basis, being resistant to diversion of materials for nuclear weapons proliferation and safer against terrorist attacks. In this context, it becomes important to use thorium as nuclear fuel for the Generation IV Advanced Reactors, with startup scheduled for 2030. Although the thorium does not present significant commercial value nowadays, in a not too distant future it will probably be an important commodity. Unfortunately, contrarily to what is happening in most developed countries in recent years, Brazil is paying little attention to the thorium, even less than in the past, despite its large reserves. Thorium is three to four times more abundant than uranium in the Earth's crust and, although not fissile, all thorium can be used to produce 233 U, by absorption of neutrons and subsequent radioactive decay. This uranium isotope is an excellent fuel for use in almost all types of nuclear reactors. It is possible that the thorium constitutes the largest Brazilian energy reserve, supplanting much oil (despite the findings of the pre-salt) and uranium. Brazil has a long tradition in the thorium technology, from mining of monazite until the obtainment of high purity

  19. Initiating Event Analysis of a Lithium Fluoride Thorium Reactor

    Science.gov (United States)

    Geraci, Nicholas Charles

    The primary purpose of this study is to perform an Initiating Event Analysis for a Lithium Fluoride Thorium Reactor (LFTR) as the first step of a Probabilistic Safety Assessment (PSA). The major objective of the research is to compile a list of key initiating events capable of resulting in failure of safety systems and release of radioactive material from the LFTR. Due to the complex interactions between engineering design, component reliability and human reliability, probabilistic safety assessments are most useful when the scope is limited to a single reactor plant. Thus, this thesis will study the LFTR design proposed by Flibe Energy. An October 2015 Electric Power Research Institute report on the Flibe Energy LFTR asked "what-if?" questions of subject matter experts and compiled a list of key hazards with the most significant consequences to the safety or integrity of the LFTR. The potential exists for unforeseen hazards to pose additional risk for the LFTR, but the scope of this thesis is limited to evaluation of those key hazards already identified by Flibe Energy. These key hazards are the starting point for the Initiating Event Analysis performed in this thesis. Engineering evaluation and technical study of the plant using a literature review and comparison to reference technology revealed four hazards with high potential to cause reactor core damage. To determine the initiating events resulting in realization of these four hazards, reference was made to previous PSAs and existing NRC and EPRI initiating event lists. Finally, fault tree and event tree analyses were conducted, completing the logical classification of initiating events. Results are qualitative as opposed to quantitative due to the early stages of system design descriptions and lack of operating experience or data for the LFTR. In summary, this thesis analyzes initiating events using previous research and inductive and deductive reasoning through traditional risk management techniques to

  20. Australia's Uranium and thorium resources and their global significance

    International Nuclear Information System (INIS)

    Lambert, I.B.; McKay, A.; Miezitis, Y.

    2006-01-01

    Full text: Full text: Australia's world-leading uranium endowment appears to result from the emplacement of uranium enriched felsic igneous rocks in three major periods during the geological evolution of the continent. Australia has over 27% of the world's total reasonably assured uranium resources (RAR) recoverable at < US$80/kgU (which approximates recent uranium spot prices). Olympic Dam is the largest known uranium deposit, containing approximately 19% of global RAR (and over 40% of global inferred resources) recoverable at < US$80/kg U; the uranium is present at low concentrations and the viability of its recovery is underpinned by co-production of copper and gold. Most of Australia's other identified resources are within Ranger, Jabiluka, Koongarra, Kintyre and Yeelirrie, the last four of which are not currently accessible for mining. In 2004, Australia's three operating uranium mines - Ranger, Olympic Dam, and Beverley -produced 22% of global production. Canada was the only country to produce more uranium (29%) and Kazakhstan (9%) ranked third. Considerably increased uranium production has been recently foreshadowed from Australia (through developing a large open pit at Olympic Dam), Canada (mainly through opening of the Cigar Lake mine), and Kazakhstan (developing several new in situ leach mines). These increases should go a long way towards satisfying demand from about 2010. Olympic Dam has sufficient resources to sustain such increased production over many decades. Thorium is expected to be used in some future generations of nuclear reactors. Australia also has major (but incompletely quantified) resources of this commodity, mainly in heavy mineral sands deposits and associated with alkaline igneous rocks. It is inevitable that the international community will be looking increasingly to Australia to sustain its vital role in providing fuels for future nuclear power generation, given its world-leading identified resources, considerable potential for new

  1. Thorium as a new commodity: Th resources in Brazil

    International Nuclear Information System (INIS)

    Villas-Bôas, R.

    2014-01-01

    President Eisenhower’s speech ''Atoms for Peace'' established in 1953 the basis for peaceful power generation via nuclear reactors, somewhat pursuing to ''counterbalance'' the moral effects of the Hiroshima and Nagasaki´s horrors. In his own words ''...this greatest of destructive force can be developed into a great constructive force for the benefit of all mankind.'' U based experimental power reactors came into play in earlier 1950s as a consequence and evolution of Fermi´s ''Chicago Pile-1''. However, it was sooner realized that no U mines were available for the building and expansion of such power plants and geological prospecting began for that purpose. Since Th mines were known and Th is more abundant than U, Th based reactors were also studied and developed during the 1960s and they had quite promising beginnings in those days. Such developments on Th based reactors, were, however, abandoned in favour of U-based power plants, but have resurged today due to several possible advantages on the safety and proliferation issues. Moreover, with the renewed interest on rare earth element (REE) production, due to the well-known Chinese moratorium on production, Th related issues came into play again, as a result of how to utilize or dispose of Th by-products. This paper presents and discusses the potential geological and mine resources and reserves of Th-containing ores and minerals in Brazil as gathered throughout the several discussions and meetings held on behalf of the IAEA Thorium Group during these last years. (author)

  2. Precipitation of thorium or uranium(VI) complex ion with cobalt(III) or chromium(III) complex cation, (2)

    International Nuclear Information System (INIS)

    Hoshi, Michio; Ueno, Kaoru

    1978-01-01

    The precipitations of thorium and uranium(VI) sulfito complex ions with hexammine cobalt(III) chloride as the precipitant have been studied. The orange-colored uranium(VI) precipitate obtained is [Co(NH 3 ) 6 ] 4 [UO 2 (SO 3 ) 3 ] 3 22H 2 O, which is in the form of square bipyramid, about 4 μm across in a cubic symmetry of the diamond type with a=10.40 A. It decomposes to an oxide mixture of Co 3 O 4 and U 3 O 8 about 850 0 C in the air through a sulfate mixture of CoSO 4 and UO 2 SO 4 . Composition of the thorium precipitate varies with the precipitation conditions. Therefore, it is considered that the thorium precipitate contains thorium hydroxide and basic thorium sulfite. (auth.)

  3. Accurate determination of trace amounts of thorium in silicate rocks by cation-exchange chromatography and spectrophotometry

    International Nuclear Information System (INIS)

    Victor, A.H.; Strelow, F.W.E.

    1982-01-01

    Thorium in four of the South African NIMROC standards and in four secondary standards is determined accurately by means of spectrophotometry with arsenazo-III after a selective cation-exchange separation on an AG50W-X4 resin column. All other elements are eluted with 6 M hydrobromic acid before the final elution of thorium with 5 M nitric acid. Small amounts of zirconium which may be present in the thorium eluate, are effectively complexed with oxalic acid which also eliminates the spectrophotometric interferences caused by organic material leached from the resin column. The accuracy and precision of the method are demonstrated by the analysis of synthetic mixtures containing various amounts of thorium. Amounts of 10 and 100 μg of thorium can finally be determined with coefficients of variation of 1% and 0.2%, respectively. (Auth.)

  4. Delineating the major KREEP-bearing terranes on the moon with global measurements of absolute thorium abundances

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, D.J.; Feldman, W.C.; Barraclough, B.L.; Elphic, R.C.; Prettyman, T.H. [Los Alamos National Lab., NM (United States); Binder, A.B. [Lunar Research Inst., Gilroy, CA (United States); Maurice, S. [Observatoire Midi-Pyrenees, Toulouse (France); Miller, M.C. [Lawrence Livermore National Lab., CA (United States)

    1999-03-01

    The Lunar Prospector (LP) Gamma-Ray Spectrometer (GRS) has been used to map the global composition of thorium on the lunar surface. Previous LP results of relative thorium abundances demonstrated that thorium is highly concentrated in and around the nearside western maria and less so in the South Pole Aitken (SPA) basin. Using new detector modeling results and a larger data set, the authors present here a global map of absolute thorium abundances on a 2{degree} by 2{degree} equal-area pixel scale. Because thorium is a tracer of KREEP-rich material, these data provide fundamental information regarding the locations and importance of terranes that are rich in KREEP bearing materials.

  5. Core Design and Deployment Strategy of Heavy Water Cooled Sustainable Thorium Reactor

    Directory of Open Access Journals (Sweden)

    Naoyuki Takaki

    2012-08-01

    Full Text Available Our previous studies on water cooled thorium breeder reactor based on matured pressurized water reactor (PWR plant technology concluded that reduced moderated core by arranging fuel pins in a triangular tight lattice array and using heavy water as coolant is appropriate for achieving better breeding performance and higher burn-up simultaneously [1–6]. One optimum core that produces 3.5 GW thermal energy using Th-233U oxide fuel shows a breeding ratio of 1.07 and averaged burn-up of about 80 GWd/t with long cycle length of 1300 days. The moderator to fuel volume ratio is 0.6 and required enrichment of 233U for the fresh fuel is about 7%. The coolant reactivity coefficient is negative during all cycles despite it being a large scale breeder reactor. In order to introduce this sustainable thorium reactor, three-step deployment scenario, with intermediate transition phase between current light water reactor (LWR phase and future sustainer phase, is proposed. Both in transition phase and sustainer phase, almost the same core design can be applicable only by changing fissile materials mixed with thorium from plutonium to 233U with slight modification in the fuel assembly design. Assuming total capacity of 60 GWe in current LWR phase and reprocessing capacity of 800 ton/y with further extensions to 1600 ton/y, all LWRs will be replaced by heavy water cooled thorium reactors within about one century then thorium reactors will be kept operational owing to its potential to sustain fissile fuels while reprocessing all spent fuels until exhaustion of massive thorium resource.

  6. Preliminary safety analysis of a thorium high-conversion pebble bed reactor

    International Nuclear Information System (INIS)

    Wols, F.J.; Kloosterman, J.L.; Lathouwers, D.; Hagen, T.H.J.J. van der

    2015-01-01

    An inherently safe thorium High-Conversion Pebble Bed Reactor would combine the inherent safety characteristics of the Pebble Bed Reactor with the favourable waste characteristics and resource availability of the thorium fuel cycle. Previous work by the authors showed that high conversion ratio's can be achieved within a thorium Pebble Bed Reactor (PBR) at a practical operating regime. The thorium PBR core design consists of a cylindrical core with a central driver zone surrounded by a breeder zone. The breeder pebbles have a 30 g heavy metal (HM) loading to enhance conversion of Th-232 into U-233, while the driver pebbles (10 w% U-233) contain a lower metal loading to enhance fission. In previous studies, thorium PBR designs were presented for three core diameters, using a 7.5 g heavy metal (HM) loading for the driver pebbles. The current paper investigates the safety of these thorium PBR designs in terms of reactivity coefficients and possible reactivity insertion due to water ingress. Early results indicated that the values of the reactivity coefficients for the three designs with 7.5 g HM loading per driver pebble were rather small and the possible reactivity insertion due to water ingress was very large. Therefore, also a lower HM loading per driver pebble (4 g) was investigated to reduce the impact of water ingress, since the core becomes less under-moderated. For the three core diameters investigated, it is shown that reducing the metal loading in the driver pebbles to 4 g is indeed advantageous in terms of safety, water ingress leads to a smaller reactivity increase but also the reactivity coefficients become stronger negative. Secondly, the breeding performance of the cores with a 4 g driver pebble HM loading improves. On the downside, the driver pebble residence times become shorter, which could increase fuel reprocessing costs. Fuel pebbles would have to be recycled at an increased rate, which might be more challenging from a practical perspective

  7. Some processes affecting the mobility of thorium in natural ground waters

    International Nuclear Information System (INIS)

    Oesthols, E.

    1994-04-01

    Thorium is a useful model element for tetravalent actinides such as U(IV), Pu(IV) and Np(IV) which are important constituents of spent nuclear fuel. Thorium is also an important tracer element for particle pathways in natural environments. In order to correctly model the transport of Th in the environment, it is important to have quantitative models for processes that effect its mobility. Some of these processes have been experimentally investigated in laboratory studies, and interpreted with quantitative models where possible. The carbonate complexation in aqueous solution of Th has been investigated through solubility studies of ThO 2 in carbonate media. It is shown, that thorium carbonate complexes are likely to be predominant in many natural waters. They also increase solubility of the oxide significantly, and hence the mobility of Th. Carbonate also increases the dissolution rate of thorium oxide. This effect will only be important in environments with a pH and total carbonate alkalinity higher than those of most natural aquatic environments. Solubility studies of thorium oxide in phosphate media show that phosphate does not significantly increase the mobility of Th in aqueous media. The presence of phosphate may cause the precipitation of sparingly soluble thorium phosphates which will decrease the mobility of Th. The pentahydroxo complex for Th is shown to be significant up to pH 13. Potentiometric studies of Th sorption on amorphous colloidal silica indicate, that pure aluminosilicates will probably not be efficient scavengers of tetravalent actinides above pH values of approximately 6. In neutral to alkaline solutions, iron (hydr)oxides are likely to be the predominant sorbents. Th binds to the silica surface through corner-sharing bonds, where Th and Si share one, but not more oxygen atoms. 72 refs

  8. Neutronic design of a plutonium-thorium burner small nuclear reactor

    International Nuclear Information System (INIS)

    Hartanto, Donny

    2010-02-01

    A small nuclear reactor using thorium and plutonium fuel has been designed from the neutronic point of view. The thermal power of the reactor is 150 MWth and it is proposed to be used to supply electricity in an island in Indonesia. Thorium and plutonium fuel was chosen because in recent years the thorium fuel cycle is one of the promising ways to deal with the increasing number of plutonium stockpiles, either from the utilization of uranium fuel cycle or from nuclear weapon dismantling. A mixed fuel of thorium and plutonium will not generate the second generation of plutonium which will be a better way to incinerate the excess plutonium compared with the MOX fuel. Three kinds of plutonium grades which are the reactor grade (RG), weapon grade (WG), and spent fuel grade (SFG) plutonium, were evaluated as the thorium fuel mixture in the 17x17 Westinghouse PWR Fuel assembly. The evaluated parameters were the multiplication factor, plutonium depletion, fissile buildup, neutron spectrum, and temperature reactivity feedback. An optimization was also done to increase the plutonium depletion by changing the Moderator to Fuel Ratio (MFR). The computer codes TRITON (coupled NEWT and ORIGEN-S) in SCALE version 6 were used as the calculation tool for this assembly level. From the evaluation and optimization of the fuel assembly, the whole core was designed. The core was consisted of 2 types of thorium fuel with different plutonium grade and it followed the checkerboard loading pattern. A new concept of enriched burnable poison was also introduced to the core. The core life is 6.4 EFPY or 75 GWd/MTHM. It can burn up to 58% of its total mass of initial plutonium. VENTURE was used as the calculation tool for the core level

  9. Determination of uranium, thorium and potassium contents of rock samples in Yemen

    International Nuclear Information System (INIS)

    Abdulrahman Abdul-Hadi; Wedad Al-Qadhi; Enayat El-Zeen

    2011-01-01

    Uranium, thorium and potassium contents in 16 different rock samples from various sites in Republic of Yemen were determined using three different techniques of analysis: γ-spectrometry, Instrumental neutron activation analyses (INAA) and X-ray fluorescence (XRF). The concentration range for thorium, uranium and potassium were found to be from 9,810 ± 272 to 3.6 ± 1.3 ppm, 1,072 ± 40 to 1.2 ± 0.7 ppm and 11 ± 1 to 0.26 ± 0.05%, respectively. (author)

  10. Solvent extraction of thorium from nitrate medium by TBP, Cyanex272 and their mixture

    International Nuclear Information System (INIS)

    Mostaan Shaeri; Ahmad Rahbar Kelishami; Meisam Torab-Mostaedi

    2015-01-01

    The extraction behavior of thorium(IV) has been investigated with tri-butyl phosphate (TBP) and bis(2,4,4-trimethylpentyl) phosphinic acid (Cyanex272) in kerosene from nitrate medium. The effect of operating variables including time, aqueous phase acidity (pH), extractant concentration and temperature were investigated. This study also examined the synergistic enhancement of the extraction of thorium(IV) from nitrate medium by mixtures of TBP and Cyanex272 for the first time. The optimum synergistic enhancement factor of 3.86 was obtained at a Cyanex272/TBP molar ratio of 1:4. (author)

  11. Study of the partitioning of uranium and thorium in moroccan black shale

    Science.gov (United States)

    Galindo, C.; Mougin, L.; Nourreddine, A.; Fakhi, S.

    2006-01-01

    Moroccan black shale was analysed for uranium and thorium isotopes using alpha-spectrometry. A sequential leaching procedure was used to define the speciation of isotopes of the actinides in the material. As in most other organic rich rocks, uranium is highly enriched in the black shale. This actinide is associated predominantly with humic acids. Thorium (232Th) is a less mobile radionuclide in this environment as was expected from its chemical properties, and in agreement with the most widely adopted views in the published literature. It is partitioned between silicate minerals, pyrite and kerogen.

  12. Thorium and Uranium in the Rock Raw Materials Used For the Production of Building Materials

    Science.gov (United States)

    Pękala, Agnieszka

    2017-10-01

    Thorium and uranium are constant components of all soils and most minerals thereby rock raw materials. They belong to the particularly dangerous elements because of their natural radioactivity. Evaluation of the content of the radioactive elements in the rock raw materials seems to be necessary in the early stage of the raw material evaluation. The rock formations operated from deposits often are accumulated in landfills and slag heaps where the concentration of the radioactive elements can be many times higher than under natural conditions. In addition, this phenomenon may refer to buildings where rock raw materials are often the main components of the construction materials. The global control system of construction products draws particular attention to the elimination of used construction products containing excessive quantities of the natural radioactive elements. In the presented study were determined the content of thorium and uranium in rock raw materials coming from the Bełachatów lignite deposit. The Bełchatów lignite deposit extracts mainly lignite and secondary numerous accompanying minerals with the raw material importance. In the course of the field works within the framework of the carried out work has been tested 92 samples of rocks of varied petrographic composition. There were carried out analyses of the content of the radioactive elements for 50 samples of limestone of the Jurassic age, 18 samples of kaolinite clays, and 24 samples of siliceous raw materials, represented by opoka-rocks, diatomites, gaizes and clastic rocks. The measurement of content of the natural radioactive elements thorium and uranium based on measuring the frequency counts of gamma quantum, recorded separately in measuring channels. At the same time performed measurements on volume patterns radioactive: thorium and uranium. The studies were carried out in Mazar spectrometer on the powdered material. Standardly performed ten measuring cycles, after which were calculated

  13. Safe management of wastes from the mining and milling of uranium and thorium ores

    International Nuclear Information System (INIS)

    1987-01-01

    Wastes from the mining and milling of uranium and thorium ores pose potential environmental and public health problems because of their radioactivity and chemical composition. This document consists of two parts: a Code of Practice (Part I) and a Guide to the Code (Part II). The Code sets forth the requirements for the safe and responsible handling of the wastes resulting from the mining and milling of uranium and thorium ores, while the Guide presents further guidance in the use of the Code together with some discussion of the technology and concepts involved

  14. Global Uranium And Thorium Resources: Are They Adequate To Satisfy Demand Over The Next Half Century?

    Science.gov (United States)

    Lambert, I. B.

    2012-04-01

    This presentation will consider the adequacy of global uranium and thorium resources to meet realistic nuclear power demand scenarios over the next half century. It is presented on behalf of, and based on evaluations by, the Uranium Group - a joint initiative of the OECD Nuclear Energy Agency and the International Atomic Energy Agency, of which the author is a Vice Chair. The Uranium Group produces a biennial report on Uranium Resources, Production and Demand based on information from some 40 countries involved in the nuclear fuel cycle, which also briefly reviews thorium resources. Uranium: In 2008, world production of uranium amounted to almost 44,000 tonnes (tU). This supplied approximately three-quarters of world reactor requirements (approx. 59,000 tU), the remainder being met by previously mined uranium (so-called secondary sources). Information on availability of secondary sources - which include uranium from excess inventories, dismantling nuclear warheads, tails and spent fuel reprocessing - is incomplete, but such sources are expected to decrease in market importance after 2013. In 2008, the total world Reasonably Assured plus Inferred Resources of uranium (recoverable at less than 130/kgU) amounted to 5.4 million tonnes. In addition, it is clear that there are vast amounts of uranium recoverable at higher costs in known deposits, plus many as yet undiscovered deposits. The Uranium Group has concluded that the uranium resource base is more than adequate to meet projected high-case requirements for nuclear power for at least half a century. This conclusion does not assume increasing replacement of uranium by fuels from reprocessing current reactor wastes, or by thorium, nor greater reactor efficiencies, which are likely to ameliorate future uranium demand. However, progressively increasing quantities of uranium will need to be mined, against a backdrop of the relatively small number of producing facilities around the world, geopolitical uncertainties and

  15. Construction and characterization of the TL/TH thorium calibration pads

    International Nuclear Information System (INIS)

    Steele, W.D.

    1987-09-01

    The Technical Measurements Center (TMC) was established and was tasked with developing and/or recommending measurement methods for use in support of remedial action programs. Since one aspect of this technical support is the provision of calibration facilities for standardization of field measurements, four sets of thorium-232 enriched pads (two pads per set) were constructed for use by remedial action contractors in calibrating portable field instruments that are used to make direct, in-situ measurements of radium-226, thorium-232, and potassium-40. This report presents the design, construction, and characterization data of the eight calibration pads. 17 refs., 8 figs., 15 tabs

  16. Gel and xerogel of thorium phosphate. I characteristics of evolution during drying

    International Nuclear Information System (INIS)

    Brandel, V.; Iroulart, G.; Simoni, E.; Genet, M.

    1990-01-01

    In order to obtain a transparent matrix for optical spectroscopy studies of doped ions, chemical conditions to get a gel and a xerogel of thorium phosphate have been investigated. Both are transparent for a long time. Transformation of the gel into xerogel under drying procedure has been followed by DTA, TGA, NMR and studied by a fluorescent probe UO 2 2+ . After thermal treatment of the amorphous xerogel we get the crystallized and opaque thorium orthophosphate. This amorphous → crystal transition was studied by far infrared spectroscopy and X rays [fr

  17. Creating a multi-national development platform: Thorium energy and rare earth value chain

    International Nuclear Information System (INIS)

    Kennedy, J.; Kutsch, J.

    2014-01-01

    Rare earths and thorium are linked at the mineralogical level. Changes in thorium regulations and liabilities resulted in the development of excessive market concentrations in the rare earth value chain. High value monazite rare earth resources, a by-product of heavy mineral sands mining, constituted a significant portion of global rare earth supply (and nearly 100% of heavy rare earths) until legislative changes, interpretation and enforcement regarding “source materials” in the early 1980s eliminated these materials from the supply chain.

  18. Determination of Uranium, Thorium and Radium 226 in Zircon containig sands by alpha spectrometry

    International Nuclear Information System (INIS)

    Spezzano, P.

    1985-01-01

    The industrial utilization of Zircon sands for the production of refractories presents radiological problems owing to the risk of inhalation of Uranium, Thorium and their decay products, present in high concentrations in such materials. A method of analysis was realized for the determination of Uranium, Thorium and Radium-226 in Zircon sands, including the total dissolution of the sample, radiochemical separation and final measurement by alpha spectrometry with surface barrier detector. The concentrations of the main alpha-emitting radionuclides presents in two samples of Zircon sands have been determined and the possibility of disequilibrium along the decay series has been pointed out

  19. Quantitative electrochromatography of uranium and platinum on papers impregnated with thorium and antimony based cation exchanger

    International Nuclear Information System (INIS)

    Misra, A.K.

    1992-01-01

    Electrochromatography of 32 metal ions have been studied on papers impregnated with thorium antimonate cation exchanger in aq. organic acids, aq. nitric acid as well as in EDTA buffers. On the basis of differential migration which depends on the ion exchange properties of thorium antimonate and nature of complexes formed with the electrolytes, some useful qualitative and quantitative separations of synthetic mixtures of metal ions have been achieved. The effect of some other physical parameter has also been discussed. Quantitative separation of platinum and uranium has been developed. (author). 13 refs., 2 figs., 5 tabs

  20. Is the bipyridyl thorium metallocene a low-valent thorium complex? A combined experimental and computational study

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Wenshan; Lukens, Wayne W.; Zi, Guofu; Maron, Laurent; Walter, Marc D.

    2012-01-12

    Bipyridyl thorium metallocenes [5-1,2,4-(Me3C)3C5H2]2Th(bipy) (1) and [5-1,3-(Me3C)2C5H3]2Th(bipy) (2) have been investigated by magnetic susceptibility and computational studies. The magnetic susceptibility data reveal that 1 and 2 are not diamagnetic, but they behave as temperature independent paramagnets (TIPs). To rationalize this observation, density functional theory (DFT) and complete active space SCF (CASSCF) calculations have been undertaken, which indicated that Cp2Th(bipy) has indeed a Th(IV)(bipy2-) ground state (f0d0 2, S = 0), but the open-shell singlet (f0d1 1, S = 0) (almost degenerate with its triplet congener) is lying only 9.2 kcal/mol higher in energy. Complexes 1 and 2 react cleanly with Ph2CS to give [ 5-1,2,4-(Me3C)3C5H2]2Th[(bipy)(SCPh2)] (3) and [ 5-1,3-(Me3C)2C5H3]2Th[(bipy)(SCPh2)] (4), respectively, in quantitative conversions. Since no intermediates were observed experimentally, this reaction was also studied computationally. Coordination of Ph2CS to 2 in its S = 0 ground state is not possible, but Ph2CS can coordinate to 2 in its triplet state (S = 1) upon which a single electron transfer (SET) from the (bipy2-) fragment to Ph2CS followed by C-C coupling takes place.

  1. Thorium Energy Resources and its Potential of Georgian Republic, The Caucasus

    Science.gov (United States)

    Gogoladze, Salome; Okrostsvaridze, Avtandil

    2017-04-01

    Energy resources, currently consumed by modern civilization, are represented by hydrocarbons - 78-80 %, however these reserves are exhausting. In light of these challenges, search of new energy resources is vital importance problem for the modern civilization. Based on the analysis of existing energy reserves and potential, as the main energy resources for the future of our civilization, the renewable and nuclear energy should be considered. However, thorium has a number of advantages compared to Uranium (Kazimi, 2003; et al.): It is concentrated in the earth crust 4-5 times more than uranium; extraction and enrichment of thorium is much cheaper than uranium's; It is less radioactive; complete destruction of its waste products is possible; thorium yields much more energy than uranium. Because of unique properties and currently existed difficult energetic situation thorium is considered as the main green energy resource in the 3rd millennium of the human civilization (Martin, 2009). Georgia republic, which is situated in the central part of Caucasus, poor of hydrocarbons, but has a thorium resource important potential. In general the Caucasus represents a collisional orogen, that formed along the Eurasian North continental margin and extends over 1200 km from Caspian to Black Sea. Three major units are distinguished in its construction: the Greater and Lesser Caucasian mobile belts and the Transcaucasus microplate. Currently it represents the Tethyan segment connecting the Mediterranean and Iran-Himalayan orogenic belts, between the Gondvana-derived Arabian plate and East European platform. Now in Georgian Republic are marked thorium four ore occurrences (Okrostsvaridze, 2014): 1- in the Sothern slope of the Greater Caucasus, in the quartz -plagioclases veins (Th concentrations vary between 51g/t - 3882 g/t); 2- in the Transcaucasus Dzirula massif hydrothermally altered rocks of the Precambrian quartz-diorite gneisses (Th concentrations vary between 117 g/t -266 g

  2. A preparation method of thorium nitrides and their oxidation behavior

    International Nuclear Information System (INIS)

    Miyake, M.; Katsura, M.; Uno, M.

    1991-01-01

    In the preparation of ThN, thermal decomposition of Th 3 N 4 has been performed under various conditions and the kind of products has been examined as a function of temperature and time. In the Th-N-O system there exist ThN, Th 3 N 4 , ThO 2 , and Th 2 N 2 O as solid phases. The thermodynamic stability of these solid compounds has been evaluated as a function of P(O 2 ) and P(N 2 ) and compared with the experimental results. One of the main aims in this work is to explore the oxidation behaviour of thorium nitrides. Preliminary oxidation experiments of ThN and Th 3 N 4 gave the same result. From the study of the air oxidation of Th 3 N 4 , it was found that the oxidation product obtained close to room temperature exhibited only one or more diffuse reflections in its diffraction pattern, suggesting that the product may be of a poor crystalline nature. In order to reveal the dependence of the crystallinity of the product on the oxidation temperature, powdered Th 3 N 4 was exposed to air for one week at 0, 50, and 100degC and the product was examined by X-ray diffraction. In order to prepare ThO 2 with a wide variety of degrees of crystallinity, poorly-crystallized ThO 2 , which is produced by the air oxidation of Th 3 N 4 at 50degC, was heat-treated at temperatures ranging from 200 to 1,400degC in air and vacuum. The degree of crystallinity of ThO 2 heat-treated at and below 1000degC is discussed in terms of the number of detected peaks in the X-ray diffraction patterns, and above 1100degC in terms of the Kα doublet resolution of detected peaks. (author). 11 refs., 7 figs., 6 tabs

  3. Uranium and thorium phosphate based matrices; syntheses, characterizations and lixiviation

    International Nuclear Information System (INIS)

    Dacheux, N.

    1995-03-01

    In the framework of the search for a ceramic material usable in the radioactive waste storage, uranium and thorium phosphates have been investigated. Their experimental synthesis conditions have been entirely reviewed, they lead to the preparation of four new compounds: U(UO 2 )(PO 4 ) 2 , U 2 O(PO 4 ) 2 , UC1PO 4 ,H 2 O, and Th 4 (PO 4 ) 4 , U 2 O 3 P 2 O 7 and Th 3 (PO 4 ) 4 . Characterization by several techniques (X-rays and neutron powder diffractions, UV-Visible and Infra-red spectroscopies, XPS,...) were performed. The ab initio structure determination of U(UO 2 )(PO 4 ) 2 has been achieved by X-rays and refined by neutron diffractions. Through its physico-chemical analysis, we found that this compound was a new mixed valence uranium phosphate in which U 4+ and UO 2 2+ ions are ordered in pairs along parallel chains according to a new type of arrangement. Reaction mechanism, starting from UC1PO 4 , 4H 2 O and based on redox processes of uranium in solid state was set up. From two main matrices U(UO 2 )(PO 4 ) 2 and Th 4 (PO 4 ) 4 P 2 O 7 , solid solutions were studied. They consist of replacement of U(IV) by Th(IV) and reversely. The leaching tests on pure, loaded and doped matrices were performed in terms of storage time, pH of solutions, and determined by the use of solids labelled with 230 U or by the measurement of uranyl concentration by Laser-Induced Time-Resolved Spectrofluorometry. Average concentration of uranium in the liquid phase is around 10 -4 M to 10 -6 M. Taking into account the very low solubilities of the studied phosphate ceramics, we estimated their chemical performances promising as an answer to the important nuclear waste problem, if we compare them to the glasses used at the present time. (author). 47 figs., 23 tabs., 6 appendixes

  4. Uranium and thorium based phosphate matrix: synthesis, characterizations and lixiviation

    International Nuclear Information System (INIS)

    Dacheux, N.

    1995-03-01

    In the framework of the search for a ceramic material usable in the radioactive waste storage, uranium and thorium phosphates have been investigated. Their experimental synthesis conditions have been entirely reviewed, they lead to the preparation of four new compounds: U(UO 2 )(PO 4 ) 2 , U 2 O(PO 4 ) 2 , UCIPO 4 , 4H 2 O, and Th 4 (PO 4 ) 4 P 2 O 7 . Experimental evidenced are advanced for non existent compounds such as: U 3 (PO 4 ) 4 , U 2 O 3 P 2 O 7 and Th 3 (PO 4 ) 4 . Characterization by several techniques (X-rays and neutron powder diffractions, UV-Visible and Infra-red spectroscopies, XPS,...) were performed. The ab initio structure determination of U(UO 2 )(PO 4 ) 2 has been achieved by X-rays and refined by neutron diffractions. Through its physico-chemical analysis, we found that this compound was a new mixed valence uranium phosphate in which U 4+ and UO 2 2+ ions are ordered in pairs along parallel chains according to a new type of arrangement. Reaction mechanism, starting from UCIPO 4 , 4H 2 O and based on redox processes of uranium in solid state was set up. From two main matrices U(UO 2 )(PO 4 ) 2 and Th 4 (PO 4 ) 4 P 2 O 7 , solid solutions were studied. They consist of replacement of U(IV) by Th(IV) and reversely. The leaching tests on pure, loaded and doped matrices were performed in terms of storage time, pH of solutions, and determined by the use of solids labelled with 230 U or by the measurement of uranyl concentration by Laser-Induced Time-Resolved Spectro-fluorimetry. Average concentration of uranium in the liquid phase is around 10 -4 M to 10 -6 M. Taking into account the very low solubilities of the studied phosphate ceramics, we estimated their chemical performances promising as an answer to the important nuclear waste problem, if we compare them to the glasses used at the present time. (author)

  5. Effects of duct configuration on flow and temperature structure in sodium-cooled 19-rod simulated LMFBR fuel bundles with helical wire-wrap spacers

    International Nuclear Information System (INIS)

    Wantland, J.L.; Fontana, M.H.; Gnadt, P.A.; Hanus, N.; MacPherson, R.E.; Smith, C.M.

    1976-01-01

    Thermal-hydrodynamic testing of sodium-cooled 19-rod simulated LMFBR fuel bundles is being conducted at the O ak Ridge National Laboratory in the Fuel Failure Mockup (FFM), an engineering-scale high-temperature sodium facility which provides prototypic flows, temperatures and power densities. Electrically heated bundles have been tested with two scalloped and two hexagonal duct configurations. Peripheral helical flows, attributed to the spacers, have been observed with strengths dependent upon the evenness and relative sizes of the peripheral flow areas. Diametral sodium temperature profiles are more uniform with smaller peripheral flow areas

  6. A comparative CFD investigation of helical wire-wrapped 7, 19 and 37 fuel pin bundles and its extendibility to 217 pin bundle

    International Nuclear Information System (INIS)

    Gajapathy, R.; Velusamy, K.; Selvaraj, P.; Chellapandi, P.; Chetal, S.C.

    2009-01-01

    Preliminary investigations of sodium flow and temperature distributions in heat generating fuel pin bundles with helical spacer wires have been carried out. Towards this, the 3D conservation equations of mass, momentum and energy have been solved using a commercial computational fluid dynamics (CFD) code. Turbulence has been accounted through the use of high Reynolds number version of standard k-ε model, with uniform mesh density respecting wall function requirements. The geometric details of the bundle and the heat flux in are similar to that of the Indian Prototype Fast Breeder Reactor (PFBR) that is currently under construction. The mixing characteristics of the flow among the peripheral and central zones are compared for 7, 19 and 37 fuel pin bundles and the characteristics are extended to a 217 pin bundle. The friction factors of the pin bundles obtained from the present study is seen to agree well with the values derived from experimental correlations. It is found that the normalized outlet velocities in the peripheral and central zones are nearly equal to 1.1-0.9, respectively which is in good agreement with the published hydraulic experimental measurements of 1.1-0.85 for a 91 pin bundle. The axial velocity is the maximum in the peripheral zone where spacer wires are located and minimum in the zones which are diametrically opposite to the respective zone of maximum velocity. The sodium temperature is higher in the zones where the flow area and mass flow rates are less due to the presence of the spacer wires though the axial velocity is higher there. It is the minimum in the peripheral zones where the circumferential flow is larger. Based on the flow and temperature distributions obtained for 19 and 37 pin bundles, a preliminary extrapolation procedure has been established for estimating the temperatures of peripheral and central zones of 217 pin bundle.

  7. A Review of Thorium Utilization as an option for Advanced Fuel Cycle-Potential Option for Brazil in the Future

    International Nuclear Information System (INIS)

    Maiorino, J.R.; Carluccio, T.

    2004-01-01

    Since the beginning of Nuclear Energy Development, Thorium was considered as a potential fuel, mainly due to the potential to produce fissile uranium 233. Several Th/U fuel cycles, using thermal and fast reactors were proposed, such as the Radkwoski once through fuel cycle for PWR and VVER, the thorium fuel cycles for CANDU Reactors, the utilization in Molten Salt Reactors, the utilization of thorium in thermal (AHWR), and fast reactors (FBTR) in India, and more recently in innovative reactors, mainly Accelerator Driven System, in a double strata fuel cycle. All these concepts besides the increase in natural nuclear resources are justified by non proliferation issues (plutonium constrain) and the waste radiological toxicity reduction. The paper intended to summarize these developments, with an emphasis in the Th/U double strata fuel cycle using ADS. Brazil has one of the biggest natural reserves of thorium, estimated in 1.2 millions of tons of ThO 2 , as will be reviewed in this paper, and therefore RandD programs would be of strategically national interest. In fact, in the past there was some projects to utilize Thorium in Reactors, as the ''Instinto/Toruna'' Project, in cooperation with France, to utilize Thorium in Pressurized Heavy Water Reactor, in the mid of sixties to mid of seventies, and the thorium utilization in PWR, in cooperation with German, from 1979-1988. The paper will review these initiatives in Brazil, and will propose to continue in Brazil activities related with Th/U fuel cycle

  8. Creating a Multi-National Platform: Thorium Energy & Rare Earth Value Chain. Assessing Rare Earths and Global Imbalance: Chinese Industrial Policy vs. Adverse NRC/IAEA Policy = Market Failure Will Thorium Energy Systems be next?

    International Nuclear Information System (INIS)

    Kennedy, James; Kutsch, John

    2014-01-01

    Full Spectrum Rare Earth Production & fully integrated Value Chain: Developing low value rare earth deposits with high direct cost is not economically viable. High value, low-cost, byproduct resources are abundant and available. Thorium bearing Rare Earth Phosphates could meet 50% or more of global demand if the Thorium issue could be resolved. There is no need to develop any new RE mining operations – just fix the Thorium Problem. Fully Integrated Value Chain Capabilities are Paramount: All efforts must focus on developing a fully integrated value chain.

  9. Evaluation of U-Zr hydride fuel for a thorium fuel cycle in an RTR concept

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Taek; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    In this paper, we performed a design study of a thorium fueled reactor according to the design concept of the Radkowsky Thorium Reactor (RTR) and evaluated its overall performance. To enhance its performance and alleviate its problems, we introduced a new metallic uranium fuel, uranium-zirconium hydride (U-ZrH{sub 1.6}), as a seed fuel. For comparison, typical ABB/CE-type PWR based on SYSTEM 80+and standard RTR-type thorium reactor were also studied. From the results of performance analysis, we could ascertain advantages of RTR-type thorium fueled reactor in proliferation resistance, fuel cycle economics, and back-end fuel cycle. Also, we found that enhancement of proliferation resistance and safer operating conditions may be achieved by using the U-ZrH{sub 1.6} fuel in the seed region without additional penalties in comparison with the standard RTR`s U-Zr fuel. 6 refs., 2 figs., 6 tabs. (Author)

  10. On the retention of uranyl and thorium ions from radioactive solution on peat moss.

    Science.gov (United States)

    Humelnicu, Doina; Bulgariu, Laura; Macoveanu, Matei

    2010-02-15

    The efficiency of the radioactive uranyl and thorium ions on the peat moss from aqueous solutions has been investigated under different experimental conditions. The sorption and desorption of uranyl and thorium ions on three types (unmodified peat moss, peat moss treated with HNO(3) and peat moss treated with NaOH) of peat moss were studied by the static method. Peat moss was selected as it is available in nature, in any amount, as a cheap and accessible sorbent. Study on desorption of such ions led to the conclusion that the most favourable desorptive reagent for the uranyl ions is Na(2)CO(3) 1M while, for the thorium ions is HCl 1M. The results obtained show that the parameters here under investigation exercise a significant effect on the sorption process of the two ions. Also, the investigations performed recommend the peat moss treated with a base as a potential sorbent for the uranyl and thorium ions from a radioactive aqueous solution.

  11. Lattice dynamics of aluminium, lead and thorium on modified Bhatia's model

    International Nuclear Information System (INIS)

    Bertolo, L.A.; Shukla, M.M.

    1975-01-01

    Phonon dispersion relations along the three principal symmetry directions as well as lattice heat capacities of aluminium, lead and thorium have been calculated on the basis of modified Bathia's model. The calculated results are found to show reasonable agreements with the experimental observations

  12. Operation of CANDU power reactor in thorium self-sufficient fuel cycle

    Indian Academy of Sciences (India)

    233U is a product of radioactive decay of 233Pa, which is formed by means of neutron capture by 232Th following the β-decay. Thus, thorium, existing in nature as a single stable ..... favourable for non-proliferation. We have not taken into account the possible losses of 233U in reprocessing and fabrication of new fuel and ...

  13. Technology assessment HTR. Part 5. Thorium fueled High Temperature gas cooled Reactors

    International Nuclear Information System (INIS)

    Bultman, J.H.

    1996-06-01

    Thorium as a fertile fuel component for the High Temperature Gas cooled Reactor (HTR) instead of uranium has been reviewed. The use of thorium is generally believed to be more in agreement with philosophies of sustainability, low actinide waste production, and non-proliferation. The HTR is considered because of the inherent safety features, which excludes fuel melting due to decay heat during loss of coolant accidents. It has been concluded that the use of thorium might be beneficial to reduce the actinide waste production. Preferably, uranium has to be recycled and extra fissile material has to be used in the form of highly-enriched uranium. This is in contradiction with the current doctrines of non-proliferation, although the safeguard ability of highly-enriched uranium is generally accepted to be possible. A self-sustaining fuel cycle might be possible in the HTR, but this could reduce the inherent safety features of the design and it could lead to higher proliferation risks and fuel cycle costs. To obtain breeding in an HTR, a larger core size is necessary, which will reduce the passive cooling capabilities. The higher proliferation risks are due to the occurrence of the fissile U-233 in the fuel cycle. This can be prevented by diluting this fissile material with U-238, but this will change the thorium fuel cycle slowly into a fuel cycle containing mainly U-238 instead of Th-232. 6 figs., 8 tabs., 16 refs

  14. Geochemistry of Thorium and Uranium in Soils of the Southern Urals

    Science.gov (United States)

    Asylbaev, I. G.; Khabirov, I. K.; Gabbasova, I. M.; Rafikov, B. V.; Lukmanov, N. A.

    2017-12-01

    Specific features of the horizontal and vertical distribution of uranium and thorium in soils and parent materials of the Southern Urals within the Bashkortostan Republic have been studied with the use of mass spectrometry with inductively coupled plasma. The dependence of distribution patterns of these elements on the local environmental conditions is shown. A scale for soil evaluation according to the concentrations of uranium and thorium (mg/kg) is suggested: the low level, up to 3; medium, up to 9; high, up to 15; and very high, above 15 mg/kg. On the basis of to this scale, the ecological state of the soils is evaluated, and the schematic geochemical map of the region is compiled. The territory of Bashkortostan is subdivided into two parts according to the contents of radioactive elements in soils: the western part with distinct accumulation of uranium and the eastern part with predominant thorium accumulation. This finding supports the charriage (thrust fault) nature of the fault zone of the Southern Urals. The vertical distribution patterns of uranium and thorium in soils of the region are of the same character. The dependence between the contents of these two elements and rare-earth elements has been established. The results of this study are applied for assessing the ecological state of soils in the region.

  15. Thorium fuel cycle development activities in India (a decade of progress: 1981-1990)

    International Nuclear Information System (INIS)

    Basu, T.K.; Srinivasan, M.

    1990-01-01

    The report comprises of 72 papers on various aspects of thorium fuel cycle. These papers report the research work carried out at the Bhabha Atomic Research Centre, Bombay and other units of the Department of Atomic Energy during the decade 1981-1990. figs., tabs

  16. Uranium and thorium sequential separation from norm samples by using a SIA system.

    Science.gov (United States)

    Mola, M; Nieto, A; Peñalver, A; Borrull, F; Aguilar, C

    2014-01-01

    This study presents a sequential radiochemical separation method for uranium and thorium isotopes using a novel Sequential Injection Analysis (SIA) system with an extraction chromatographic resin (UTEVA). After the separation, uranium and thorium isotopes have been quantified by using alpha-particle spectrometry. The developed method has been tested by analyzing an intercomparison sample (phosphogypsum sample) from International Atomic Energy Agency (IAEA) with better recoveries for uranium and thorium than the obtained by using a classical method (93% for uranium using the new methodology and 82% with the classical method, and in the case of thorium the recoveries were 70% for the semi-automated method and 60% for the classical strategy). Afterwards, the method was successfully applied to different Naturally Occurring Radioactive Material (NORM) samples, in particular sludge samples taken from a drinking water treatment plant (DWTP) and also sediment samples taken from an area of influence of the dicalcium phosphate (DCP) factory located close to the Ebro river reservoir in Flix (Catalonia). The obtained results have also been compared with the obtained by the classical method and from that comparison it has been demonstrated that the presented strategy is a good alternative to existing methods offering some advantages as minimization of sample handling, reduction of solvents volume and also an important reduction of the time per analysis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Comparison of the radiological impacts of thorium and uranium nuclear fuel cycles

    International Nuclear Information System (INIS)

    Meyer, H.R.; Witherspoon, J.P.; McBride, J.P.; Frederick, E.J.

    1982-03-01

    This report compares the radiological impacts of a fuel cycle in which only uranium is recycled, as presented in the Final Generic Environmental Statement on the Use of Recycle Plutonium in Mixed Oxide Fuel in Light Water Cooled Reactors (GESMO), with those of the light-water breeder reactor (LWBR) thorium/uranium fuel cycle in the Final Environmental Statement, Light Water Breeder Reactor Program. The significant offsite radiological impacts from routine operation of the fuel cycles result from the mining and milling of thorium and uranium ores, reprocessing spent fuel, and reactor operations. The major difference between the impacts from the two fuel cycles is the larger dose commitments associated with current uranium mining and milling operations as compared to thorium mining and milling. Estimated dose commitments from the reprocessing of either fuel type are small and show only moderate variations for specific doses. No significant differences in environmental radiological impact are anticipated for reactors using either of the fuel cycles. Radiological impacts associated with routine releases from the operation of either the thorium or uranium fuel cycles can be held to acceptably low levels by existing regulations

  18. Some applications of x-ray fluorescence spectrography to the determination of uranium and thorium

    International Nuclear Information System (INIS)

    Jones, R.W.

    1959-04-01

    Several methods for the determination of uranium and thorium by X-ray fluorescence spectrography are described. In pure solutions the sensitivity for these elements is 5-10 ppm. For solutions containing gross concentrations of impurities, strontium is added as an internal standard. Precision and accuracy of the determinations are about 1% when working in the optimum concentration range. (author)

  19. Two novel thorium organic frameworks constructed by bi- and tritopic ligands

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei [National Institute for Radiological Protection, Beijing (China). China CDC Key Lab. of Radiological Pretection and Nuclear Emergency; Chinese Academy of Sciences, Beijing (China). Inst. of High Energy Physics; Wang, Congzhi; Lan, Jianhui; Chai, Zhifang [Chinese Academy of Sciences, Beijing (China). Inst. of High Energy Physics; Ji, Yanqin [National Institute for Radiological Protection, Beijing (China). China CDC Key Lab. of Radiological Pretection and Nuclear Emergency

    2017-09-01

    Two thorium organic frameworks, Th(BDC){sub 2} and Th(OH)(BCPBA) have been hydrothermally synthesized using 1,4-benzenedicarboxylic acid (H{sub 2}BDC) and 3,5-bi(4-carboxyphenoxy)benzoic acid (H{sub 3}BCPBA), respectively. The obtained two compounds were determined by single-crystal XRD, and they exhibited two new topologies. Th(BDC){sub 2} shows a 3-dimensional (4,4,8)-connected framework with the Schlaefli symbol of (4{sup 14}.6{sup 12}.8{sup 2})(4{sup 2}.6{sup 3}.8)(4{sup 4}.6{sup 2}), and it is a mononuclear thorium(IV) complex. Th(OH)(BCPBA) possesses a (4,6)-connected topology with the Schlaefli symbol of (4{sup 15}){sup 2}(4{sup 6}){sup 3}, and it has a dinuclear thorium(IV) asymmetric unit with the shortest Th-Th distances. Viewing along suitable directions, channels with different shapes can be found in the obtained two frameworks. Based on calculation with PLATON, the amount of void space is 21.9% and 13.5% in Th(BDC){sub 2} and Th(OH)(BCPBA), respectively. Density functional theory (DFT) studies revealed that the metal-ligand interactions were mainly of ionic character in both compounds and the hydroxyl ions might play an important role in the stability of dinuclear thorium(IV) of Th(OH)(BCPBA).

  20. Preconceptual design of a packed fluidized bed blanket for a fission suppressed thorium-fueled CTHR

    International Nuclear Information System (INIS)

    Chi, J.W.H.; Karbowski, J.S.; Chapin, D.L.

    1981-01-01

    This paper describes a thorium-fueled PFB blanket concept for a Commercial Tokamak Hybrid Reactor. A preliminary mechanical concept is presented and the results of neutronics, thermal-hydraulics and economics analyses are discussed. Futher work needed to design and advance the concept is recommended

  1. Process for the separation of thorium and rare earths from a fluoride concentrate containing these elements

    International Nuclear Information System (INIS)

    Cailly, F.; Fabre, F.

    1989-01-01

    The concentrate is attacked by a solution of sodium hydroxide in a quantity of at least 1.4 times the stoichiometry and with a concentration between 1 and 40 wt%. A precipitate of thorium hydroxide and rare earth hydroxide is obtained with a solution of sodium fluoride. Th and RE are separated by acid dissolution and selective precipitation or solvent extraction [fr

  2. Uranium and thorium uptake by live and dead cells of Pseudomonas Sp

    International Nuclear Information System (INIS)

    Siva Prasath, C.S.; Manikandan, N.; Prakash, S.

    2010-01-01

    This study presents uptake of uranium (U) and thorium (Th) by live and dead cells of Pseudomonas Sp. Increasing concentration of U and Tb showed decrease in absorption by Pseudomonas Sp. Dead cells of Pseudomonas Sp. exhibited same or more uptake of U and Th than living cells. Increasing temperature promotes uptake of U and Th by Pseudomonas Sp. (author)

  3. Influence of nuclear data uncertainties on thorium fusion-fission hybrid blanket nucleonic performance

    International Nuclear Information System (INIS)

    Cheng, E.T.; Mathews, D.R.

    1979-09-01

    The fusion-fission hybrid blanket proposed for the Tandem Mirror Hybrid Reactor employs thorium metal as the fertile material. Based on the ENDF/B-IV nuclear data, the 233 U and tritium production rate and blanket energy multiplication averaged over the blanket lifetime of about 9 MW-yr/m 2 are 0.76 and 1.12 per D-T neutron and 4.8, respectively. At the time of the blanket discharge, the 233 U enrichment in the thorium metal is about 3%. The thorium cross sections given by the ENDF/B-IV and V were reviewed, and the important partial cross sections such as (n,2n), (n,3n), and (n,γ) were found to be known to +-10 to 20% in the respective energy range of interest. A sensitivity study showed that the 233 U and tritium production rate and blanket energy multiplication are relatively sensitive to the thorium capture and fission cross section uncertainties. In order to predict the above parameters within +-1%, the Th(n,γ) and Th(n,νf) cross sections must be measured within about +-2% in the energy range 3 to 3000 keV and 13.5 to 15 MeV, respectively

  4. Process specifications and standards for the 1970 thorium campaign in the Purex Plant

    International Nuclear Information System (INIS)

    Van der Cook, R.E.; Ritter, G.L.

    1970-01-01

    The process specifications and standards for thorium processing operations in the Purex Plant are presented. These specifications represent currently known limits within which plant processing conditions must be maintained to meet defined product requirements safely and with minimum effect on equipment service life. These specifications cover the general areas of feed, essential materials, and chemical hazards

  5. Study on treatment of industrial wastewater with thorium by the liquid membrane emulsion technology

    International Nuclear Information System (INIS)

    Che Liping; Yu Yongfu; Yuan Jizu

    2005-01-01

    The enrichment of thorium from industrial wastewater with Th 4+ is studied by the liquid membrane emulsion technology of CCl 4 -N205-P204+TBP-HNO 3 . The conditions of making emulsion and the technological factors such as the ratios of oil to inner and water to emulsion, the pH and the extraction time are investigated. (authors)

  6. Automatic photometric titration of fluoride with thorium nitrate and alizarin S as indicator

    International Nuclear Information System (INIS)

    Bliefert, C.; Sobek, M.

    1978-01-01

    The photometric titration of fluoride with thorium nitrate and Alizarin S as indicator has been automated and optimized for fluoride levels between 1 and 20mg/85ml solution. The interference of several ions has been investigated. This procedure is particularly useful for the determination of fluoride after fusion with peroxides as fluxing agents. (orig.) [de

  7. Synergistic extraction of thorium by β-hydroxy naphthaldoxime in presence of neutral donors

    International Nuclear Information System (INIS)

    Banerjee, S.; Biswas, S.; Basu, S.

    2001-01-01

    The effects of neutral organophosphorous compounds on the extraction of thorium by β-hydroxy naphthaldoxime in xylene are reported. Enhancement of the extraction is explained by a complex adduct formation in the organic phase. Synergistic coefficients and apparent formation constant of complex adducts are calculated. (author)

  8. Determination of ultratrace concentrations of uranium and thorium in natural waters by x-ray fluorescence

    International Nuclear Information System (INIS)

    Stewart, J.H. Jr.; Brooksbank, R.D.

    1981-01-01

    An x-ray fluorescence method for the simultaneous determination of uranium and thorium at the less than 1 ppM level in natural waters is described. Uranium and thorium are coprecipitated with an internal standard, yttrium, and incorporated into an iron-aluminum hydroxide carrier. The hydroxide precipitate is filtered, and the filter disk is analyzed by the energy-dispersive x-ray fluorescence technique. Matrix interferences caused by the presence of unpredictable anions and cations are compensated for by the internal standard. The U/Y and Th/Y ratios are linear over the 5- to 100-μg range of interest, and the detection limit of each element on the filter disk is 2 μg (3 sigma). Relative standard deviation was 17% at the 15-μg and 4% at the 100-μg level for thorium and 11% at the 11-μg and 2% at the 100-μg level for uranium. Analysis of spiked solutions showed a recovery of 19.6 +- 0.3 μg for uranium and 19.8 +- 0.3 μg for thorium at the 20-μg level, and the normal lower reporting limit is 5 μg. Fifty disks can be routinely measured during a normal working day

  9. Neutron activation analysis in geological samples containing rare earths, uranium and thorium

    International Nuclear Information System (INIS)

    Vasconcellos, M.B.A.; Figueiredo, A.M.G.; Berretta, J.R.; Soares, J.C.A.C.R.; Fratin, L.; Goncales, O.L.; Botelho, S.

    1990-01-01

    The neutron activation analysis method was used for determination of rare earths, uranium, thorium and other tracks in geological samples, under the geological standard JB-1 (Geological Survey of Japan) and S-8 and S-13 (IAEA). (L.C.J.A.)

  10. Synthesis and characterization of solid complex of thorium nitrate with dibenzo-24-crown-8

    International Nuclear Information System (INIS)

    Gan Xinmin; Tan Minyu

    1988-01-01

    The solid complex of thorium nitrate with dibenzo-24-crown-8 (DB24C8), having the composition Th(NO 3 ) 4 ·DB24C8·2H 2 O, has been synthesized in acetonitrile medium and characterized by elemental analysis, molar conductance, infrared spectra, differential thermal analyses(DTA)and thermogravimetry(TG)

  11. Synthesis and characterization of solid complexes of thorium, uranyl perchlorates with bis-quinolylmethylene

    International Nuclear Information System (INIS)

    He Liangyou; Tang Ning; Gan Xinmin; Tan Minyu

    1990-01-01

    The solid complexes of thorium, uranyl perchlorates with bis-quinolylmethylene (Biqm) having the composition Th(Biqm) 5 (ClO 4 ) 4 , UO 2 (Biqm) 2 (ClO 4 ) 2 have been synthesized in nonaqueous solvents. These two complexes have been characterized by elemental analysis, IR and UV spectra, differential thermal analysis (DTA) and thermogravimetry (TG), fluorescence spectra and molar conductances

  12. A novel concept of QUADRISO particles Part III : applications to the plutonium-thorium fuel cycle.

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, A. (Nuclear Engineering Division)

    2009-03-01

    In the present study, a plutonium-thorium fuel cycle is investigated including the {sup 233}U production and utilization. A prismatic thermal High Temperature Gas Reactor (HTGR) and the novel concept of quadruple isotropic (QUADRISO) coated particles, designed at the Argonne National Laboratory, have been used for the study. In absorbing QUADRISO particles, a burnable poison layer surrounds the central fuel kernel to flatten the reactivity curve as a function of time. At the beginning of life, the fuel in the QUADRISO particles is hidden from neutrons, since they get absorbed in the burnable poison before they reach the fuel kernel. Only when the burnable poison depletes, neutrons start streaming into the fuel kernel inducing fission reactions and compensating the fuel depletion of ordinary TRISO particles. In fertile QUADRISO particles, the absorber layer is replaced by natural thorium with the purpose of flattening the excess of reactivity by the thorium resonances and producing {sup 233}U. The above configuration has been compared with a configuration where fissile (neptunium-plutonium oxide from Light Water Reactors irradiated fuel) and fertile (natural thorium oxide) fuels are homogeneously mixed in the kernel of ordinary TRISO particles. For the {sup 233}U utilization, the core has been equipped with europium oxide absorbing QUADRISO particles.

  13. Qualitative microanalysis of rare earths (ceric and yttric), of thorium and uranium in minerals

    International Nuclear Information System (INIS)

    Agrinier, H.

    1955-01-01

    We propose in this study to give a general method of attack of the niobio-titanates, niobio-tantalates, oxides, phosphates or silicates containing rare earths (ceric or yttric), uranium or thorium, and to put in evidence these different elements by microchemical reactions giving crystallization or the characteristic colorations. (M.B.) [fr

  14. Thorium-based fuel cycles: Reassessment of fuel economics and proliferation risk

    Energy Technology Data Exchange (ETDEWEB)

    Serfontein, Dawid E., E-mail: Dawid.Serfontein@nwu.ac.za [Senior Lecturer at the School of Mechanical and Nuclear Engineering, North West University (PUK-Campus), PRIVATE BAG X6001, Internal Post Box 360, Potchefstroom 2520 (South Africa); Mulder, Eben J. [Professor at the School of Mechanical and Nuclear Engineering, North West University (South Africa)

    2014-05-01

    At current consumption and current prices, the proven reserves for natural uranium will last only about 100 years. However, the more abundant thorium, burned in breeder reactors, such as large High Temperature Gas-Cooled Reactors, and followed by chemical reprocessing of the spent fuel, could stretch the 100 years for uranium supply to 15,000 years. Thorium-based fuel cycles are also viewed as more proliferation resistant compared to uranium. However, several barriers to entry caused all countries, except India and Russia, to abandon their short term plans for thorium reactor projects, in favour of uranium/plutonium fuel cycles. In this article, based on the theory of resonance integrals and original analysis of fast fission cross sections, the breeding potential of {sup 232}Th is compared to that of {sup 238}U. From a review of the literature, the fuel economy of thorium-based fuel cycles is compared to that of natural uranium-based cycles. This is combined with a technical assessment of the proliferation resistance of thorium-based fuel cycles, based on a review of the literature. Natural uranium is currently so cheap that it contributes only about 10% of the cost of nuclear electricity. Chemical reprocessing is also very expensive. Therefore conservation of natural uranium by means of the introduction of thorium into the fuel is not yet cost effective and will only break even once the price of natural uranium were to increase from the current level of about $70/pound yellow cake to above about $200/pound. However, since fuel costs constitutes only a small fraction of the total cost of nuclear electricity, employing reprocessing in a thorium cycle, for the sake of its strategic benefits, may still be a financially viable option. The most important source of the proliferation resistance of {sup 232}Th/{sup 233}U fuel cycles is denaturisation of the {sup 233}U in the spent fuel by {sup 232}U, for which the highly radioactive decay chain potentially poses a large

  15. Determination of uranium and thorium isotopes by solid phase extraction and alpha spectrometry

    International Nuclear Information System (INIS)

    Kuruc, J.; Kovacova, M.; Strisovska, J.; Galanda, D.

    2013-01-01

    The aim of this work was to test the modified method suitable for the separation of isotopes of uranium and thorium samples of rocks, including gold ore and gold concentrate using of extraction chromatography method, after digestion of the sample, concentrating, separate the isotopes of uranium and thorium isotopes to prepare sources for the measurement of alpha spectra. Samples of rocks, gold ore and gold concentrate were digered in microwave decomposition in the environment of hydrogen peroxide and concentrated nitric acid. For the separation of uranium and thorium the vacuum box with cartridges DGA Resin and Resin(R) UTEVA (Triskem International, France) was used. Both sorbents allow separation of uranium from thorium. The results confirmed that the both sorbents give the same results within expanded uncertainty. The mass activity of monitored uranium and thorium radioisotopes was determined by alpha spectrometry method. The yields of separation were determined using uranium-232 as a tracer radionuclide; the activity of 232 U was 0.1438 Bq. Alpha spectra were measured on the Alpha spectrometer EG and G ORTEC 576A with the software MAESTRO, MCA Emulator and Gamma Vision-32 for Windows, USA. Mass activities of radionuclides were converted to mass concentration of isotopes 238 U, 234 U, 232 Th, 230 Th and 228 Th. The highest concentration of 238 U was sampled in granodiorite (Tunnel S-XIV-2, southwards, mining of Cu ore, not working there since 1990), where m( 238 U) = (0.81 ± 0.09) mg kg -1 (DGA Resin) and m( 238 U) = (0.90 ± 0.09) mg kg -1 (UTEVA(R) Resin), as well as m( 232 Th) = (18.8 ± 1.7) mg kg -1 (DGA Resin) and m( 232 Th) = (17.8 ± 1.5) mg kg -1 (UTEVA(R) Resin). In other samples of rocks, gold ore and gold concentrates have specific masses of isotopes of uranium and thorium two-to ten-folds lower. It can be concluded that the rocks, gold ores and concentrates of gold from the 'Rozalia' mine contain lower concentrations of uranium several times against

  16. Uranium and thorium mining and milling: material security and risk assessment

    International Nuclear Information System (INIS)

    Steinhaeusler, F.; Zaitseva, L.

    2005-01-01

    Full text: At present physical protection for the front end of the nuclear fuel cycle is typically at a significantly lower level than at any other part of the nuclear fuel cycle. In view of past experiences (Israel, South Africa, Pakistan, India) it is feasible to take into consideration some generic threat scenarios, potentially resulting in loss of control over uranium or thorium, respectively their concentrates, such as: illegal mining of an officially closed uranium- or thorium mine; covert diversion of uranium- or thorium ore whilst officially mining another ore; covert transport of radioactive ore or product, using means of public rail, road, ship, or air transport; covert en route diversion of an authorized uranium- or thorium transport; covert removal of uranium-or thorium ore or concentrate from an abandoned facility. The Stanford-Salzburg database on nuclear smuggling, theft, and orphan radiation sources (DSTO) contains information on trafficking incidents involving mostly uranium, but also some thorium, from 30 countries in five continents with altogether 113 incidents in the period 1991 to 2004. These activities range from uranium transported in backpacks by couriers in Afghanistan, to a terrorist organization purchasing land in order to mine covertly for uranium in Australia, and the clandestine shipment of almost two tons of uranium hexafluoride from Asia to Africa, using the services of a national airline. Potential participants in such illegal operations range from entrepreneurs to members of organized crime, depending on the level of sophistication of the operation. End-users and 'customers' of such illegal operations are suspected to be non-state actors, organizations or governments involved in a covert operation with the ultimate aim to acquire a sufficient amount of nuclear material for a nuclear device. The actual risk for these activities to succeed in the acquisition of an adequate amount of suitable radioactive material depends on one or

  17. LFTR: in search of the ideal pathway to thorium utilization-development program and current status

    International Nuclear Information System (INIS)

    Soon, Benjamin

    2015-01-01

    Thorium has gained substantial attention as a potential energy source that could rival and eventually replace fossil fuels as humanity's primary energy source. This could not have come at a more opportune time as concerns about global climate change from CO 2 emissions and the approaching spectre of finite fossil fuel resources create serious challenges for the continuation of our advanced industrial societies, which are reliant on readily available and affordable energy. Thorium also potentially represents the catalyst with which the nuclear industry could reinvent itself and finally gain widespread public acceptance. There are many opinions on how to utilize thorium as a fuel, but the question of what constitutes an 'ideal' pathway has mostly been under-emphasized. Many specific characteristics of the thorium fuel cycle can differ significantly depending on the conditions and methodologies of utilization; characteristics such as safety, efficiency, waste profile and volume, and fissile protection can vary greatly according to reactor design and utilization philosophy. With thorium, we have been given an opportunity to start over, a blank slate. Therefore, in imagining the 'Thorium Economy' to come, it behoves the scientific and engineering communities to consider the most 'elegant' solution physically possible-what constitutes the 'ideal' and is it possible to reconcile it with what is both economically and technically practical? The characteristics desired of an 'ideal' nuclear reactor, in the areas of safety, efficiency, economy, and sustainability, and the 5 key design choices that could enable such a reactor will be discussed. This will be followed by an overview of the Liquid Fluoride Thorium Reactor, a 2-fluid Molten Salt Reactor currently under development by Flibe Energy in the United States. LFTR is a direct descendant of the MSRE, which was developed at Oak Ridge National Laboratory (ORNL) in the

  18. Preconcentrate of thorium in solid phase and its direct determination by X-ray fluorescence in natural waters

    International Nuclear Information System (INIS)

    Carvalho, Marcelo S. de; Domingues, Maria de Lourdes F.; Mantovano, Jose Luiz; Cunha, Jose Waldemar S.D. da

    2000-01-01

    This paper describe a methodology to pre concentrate thorium from natural water samples by using solid phase extraction (SPE) before its direct determination by X-ray fluorescence. Polyurethane foam supporting 2- ethyl hexyl phosfonic acid was used as SPE. The extraction was maximum at 0.25 mol/L in hydrochloric acid, for 30 minutes of shaking time. At least 8 mg/L thorium could be determined what allowed us to apply this methodology successfully for determination of thorium in natural water reference samples. (author)

  19. Production of medical isotopes from a thorium target irradiated by light charged particles up to 70 MeV.

    Science.gov (United States)

    Duchemin, C; Guertin, A; Haddad, F; Michel, N; Métivier, V

    2015-02-07

    The irradiation of a thorium target by light charged particles (protons and deuterons) leads to the production of several isotopes of medical interest. Direct nuclear reaction allows the production of Protactinium-230 which decays to Uranium-230 the mother nucleus of Thorium-226, a promising isotope for alpha radionuclide therapy. The fission of Thorium-232 produces fragments of interest like Molybdenum-99, Iodine-131 and Cadmium-115g. We focus our study on the production of these isotopes, performing new cross section measurements and calculating production yields. Our new sets of data are compared with the literature and the last version of the TALYS code.

  20. Landscape control of uranium and thorium in boreal streams – spatiotemporal variability and the role of wetlands

    Directory of Open Access Journals (Sweden)

    F. Lidman

    2012-11-01

    Full Text Available The concentrations of uranium and thorium in ten partly nested streams in the boreal forest region were monitored over a two-year period. The investigated catchments ranged from small headwaters (0.1 km2 up to a fourth-order stream (67 km2. Considerable spatiotemporal variations were observed, with little or no correlation between streams. The fluxes of both uranium and thorium varied substantially between the subcatchments, ranging from 1.7 to 30 g km−2 a−1 for uranium and from 3.2 to 24 g km−2 a−1 for thorium. Airborne gamma spectrometry was used to measure the concentrations of uranium and thorium in surface soils throughout the catchment, suggesting that the concentrations of uranium and thorium in mineral soils are similar throughout the catchment. The fluxes of uranium and thorium were compared to a wide range of parameters characterising the investigated catchments and the chemistry of the stream water, e.g. soil concentrations of these elements, pH, TOC (total organic carbon, Al, Si and hydrogen carbonate, but it was concluded that the spatial variabilities in the fluxes of both uranium and thorium mainly were controlled by wetlands. The results indicate that there is a predictable and systematic accumulation of both uranium and thorium in boreal wetlands that is large enough to control the transport of these elements. On the landscape scale approximately 65–80% of uranium and 55–65% of thorium entering a wetland were estimated to be retained in the peat. Overall, accumulation in mires and other types of wetlands was estimated to decrease the fluxes of uranium and thorium from the boreal forest landscape by 30–40%, indicating that wetlands play an important role for the biogeochemical cycling of uranium and thorium in the boreal forest landscape. The atmospheric deposition of uranium and thorium was also quantified, and its contribution to boreal streams was

  1. Production of medical isotopes from a thorium target irradiated by light charged particles up to 70 MeV

    Science.gov (United States)

    Duchemin, C.; Guertin, A.; Haddad, F.; Michel, N.; Métivier, V.

    2015-02-01

    The irradiation of a thorium target by light charged particles (protons and deuterons) leads to the production of several isotopes of medical interest. Direct nuclear reaction allows the production of Protactinium-230 which decays to Uranium-230 the mother nucleus of Thorium-226, a promising isotope for alpha radionuclide therapy. The fission of Thorium-232 produces fragments of interest like Molybdenum-99, Iodine-131 and Cadmium-115g. We focus our study on the production of these isotopes, performing new cross section measurements and calculating production yields. Our new sets of data are compared with the literature and the last version of the TALYS code.

  2. Concentration of thorium and uranium in the ecosystem of Atlantic Forest (Mata Atlantica) of Pernambuco state

    International Nuclear Information System (INIS)

    Ferreira, Fabiano S.; Silva, Waldecy A.; Lira, Marcelo B.G.; Souza, Ebenezer M. de; França, Elvis de

    2017-01-01

    Thorium (Th) and Uranium (U) are distributed throughout the earth's crust. The mean thorium concentration ranges from 6 to 15 ppm, which makes it 3 times more abundant than uranium. These radionuclides in their natural form, and in low amounts, do not present a risk to the population because they have low activity, but the effects caused by the accumulation in living beings have not yet been fully elucidated. This work aims to evaluate the concentration of Th and U in the soils of an excerpt in the Atlantic Forest in the State of Pernambuco. Soil sampling (depth 0-20 cm) occurred in the projection of tree crowns of the predominant species in the studied areas. After drying and comminution, samples of 0.1 g of soil were submitted to chemical treatment to enable the analysis. This treatment consisted in the addition of 9 ml of HNO 3 (nitric acid) and 3 ml of HF (hydrofluoric acid) with subsequent heating of the sample and reference materials in a digester oven. The concentrations of Th and U were quantified by Inductively Coupled Plasma Mass Spectrometry - ICP-MS. The mean concentrations found were: 10.5 mg kg -1 for thorium and 2.18 mg.kg -1 for uranium, with values of 35 mg.kg -1 and 26 mg.kg -1 quantified in a thorium sample and uranium respectively. In this region, uranium and thorium hotspot were found, which reinforces the need for greater attention to these radionuclides in the Atlantic Forest of the State of Pernambuco

  3. Thorium/uranium mixed oxide nano-crystals: Synthesis, structural characterization and magnetic properties

    International Nuclear Information System (INIS)

    Hudry, Damien; Griveau, Jean-Christophe; Apostolidis, Christos; Colineau, Eric; Rasmussen, Gert; Walter, Olaf; Wang, Di; Venkata Sai Kiran Chakravadhaluna; Courtois, Eglantine; Kubel, Christian

    2014-01-01

    One of the primary aims of the actinide community within nano-science is to develop a good understanding similar to what is currently the case for stable elements. As a consequence, efficient, reliable and versatile synthesis techniques dedicated to the formation of new actinide-based nano-objects (e.g., nano-crystals) are necessary. Hence, a 'library' dedicated to the preparation of various actinide based nano-scale building blocks is currently being developed. Nano-scale building blocks with tunable sizes, shapes and compositions are of prime importance. So far, the non-aqueous synthesis method in highly coordinating organic media is the only approach which has demonstrated the capability to provide size and shape control of actinide-based nano-crystals (both for thorium and uranium, and recently extended to neptunium and plutonium). In this paper, we demonstrate that the non-aqueous approach is also well adapted to control the chemical composition of the nano-crystals obtained when mixing two different actinides. Indeed, the controlled hot co-injection of thorium acetylacetonate and uranyl acetate (together with additional capping agents) into benzyl ether can be used to synthesize thorium/uranium mixed oxide nano-crystals covering the full compositional spectrum. Additionally, we found that both size and shape are modified as a function of the thorium/uranium ratio. Finally, the magnetic properties of the different thorium/uranium mixed oxide nano-crystals were investigated. Contrary to several reports, we did not observe any ferromagnetic behavior. As a consequence, ferromagnetism cannot be described as a universal feature of nano-crystals of non-magnetic oxides as recently claimed in the literature. (authors)

  4. Thorium isotopes in colloidal fraction of water from San Marcos Dam, Chihuahua, Mexico

    Science.gov (United States)

    Cabral-Lares, M.; Melgoza, A.; Montero-Cabrera, M. E.; Renteria-Villalobos, M.

    2013-07-01

    The main interest of this stiidy is to assess the contents and distribution of Th-series isotopes in colloidal fraction of surface water from San Marcos dam, because the suspended particulate matter serves as transport medium for several pollutants. The aim of this work was to assess the distribution of thorium isotopes (232Th and 230Th) contained in suspended matter. Samples were taken from three surface points along the San Marcos dam: water input, midpoint, and near to dam wall. In this last point, a depth sampling was also carried out. Here, three depth points were taken at 0.4, 8 and 15 meters. To evaluate the thorium behavior in surface water, from every water sample the colloidal fraction was separated, between 1 and 0.1 μm. Thorium isotopes concentraron in samples were obtained by alpha spectrometry. Activity concentrations obtained of 232Th and 230Th in surface points ranged from 0.3 to 0.5 Bq ṡ L-1, whereas in depth points ranged from 0.4 to 3.2 Bq ṡ L-1, respectively. The results show that 230Th is in higher concentration than 232Th in colloidal fraction. This can be attributed to a preference of these colloids to adsorb uranium. Thus, the activity ratio 230Th/232Th in colloidal fraction showed values from 2.3 to 10.2. In surface points along the dam, 230Th activity concentration decreases while 232Th concentration remains constant. On the other hand, activity concentrations of both isotopes showed a pointed out enhancement with depth. The results have shown a possible lixiviation of uranium from geological substrate into the surface water and an important fractionation of thorium isotopes, which suggest that thorium is non-homogeneously distributed along San Marcos dam.

  5. Depletion Analysis of Modular High Temperature Gas-cooled Reactor Loaded with LEU/Thorium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sonat Sen; Gilles Youinou

    2013-02-01

    Thorium based fuel has been considered as an option to uranium-based fuel, based on considerations of resource utilization (Thorium is more widely available when compared to Uranium). The fertile isotope of Thorium (Th-232) can be converted to fissile isotope U-233 by neutron capture during the operation of a suitable nuclear reactor such as High Temperature Gas-cooled Reactor (HTGR). However, the fertile Thorium needs a fissile supporter to start and maintain the conversion process such as U-235 or Pu-239. This report presents the results of a study that analyzed the thorium utilization in a prismatic HTGR, namely Modular High Temperature Gas-Cooled Reactor (MHTGR) that was designed by General Atomics (GA). The collected for the modeling of this design come from Chapter 4 of MHTGR Preliminary Safety Information Document that GA sent to Department of Energy (DOE) on 1995. Both full core and unit cell models were used to perform this analysis using SCALE 6.1 and Serpent 1.1.18. Because of the long mean free paths (and migration lengths) of neutrons in HTRs, using a unit cell to represent a whole core can be non-trivial. The sizes of these cells were set to match the spectral index between unit cell and full core domains. It was found that for the purposes of this study an adjusted unit cell model is adequate. Discharge isotopics and one-group cross-sections were delivered to the transmutation analysis team. This report provides documentation for these calculations

  6. Quantitative analysis of thorium-containing materials using an Industrial XRF analyzer

    International Nuclear Information System (INIS)

    Hasikova, J.; Titov, V.; Sokolov, A.

    2014-01-01

    Thorium (Th) as nuclear fuel is clean and safe and offers significant advantages over uranium. The technology for several types of thorium reactors is proven but still must be developed on a commercial scale. In the case of commercialization of thorium nuclear reactor thorium raw materials will be on demand. With this, mining and processing companies producing Th and rare earth elements will require prompt and reliable methods and instrumentation for Th quantitative on-line analysis. Potential applicability of X-ray fluorescence conveyor analyzer CON-X series is discussed for Th quantitative or semi-quantitative on-line measurement in several types of Th-bearing materials. Laboratory study of several minerals (zircon sands and limestone as unconventional Th resources; monazite concentrate as Th associated resources and uranium ore residues after extraction as a waste product) was performed and analyzer was tested for on-line quantitative measurements of Th contents along with other major and minor components. Th concentration range in zircon sand is 50-350 ppm; its detection limit at this level is estimated at 25- 50 ppm in 5 minute measurements depending on the type of material. On-site test of the CON-X analyzer for continuous analysis of thorium traces along with other elements in zircon sand showed that accuracy of Th measurements is within 20% relative. When Th content is higher than 1% as in the concentrate of monazite ore (5-8% ThO 2 ) accuracy of Th determination is within 1% relative. Although preliminary on-site test is recommended in order to address system feasibility at a large scale, provided results show that industrial conveyor XRF analyzer CON-X series can be effectively used for analytical control of mining and processing streams of Th-bearing materials. (author)

  7. Comparison of the Environment, Health, And Safety Characteristics of Advanced Thorium- Uranium and Uranium-Plutonium Fuel Cycles

    Science.gov (United States)

    Ault, Timothy M.

    The environment, health, and safety properties of thorium-uranium-based (''thorium'') fuel cycles are estimated and compared to those of analogous uranium-plutonium-based (''uranium'') fuel cycle options. A structured assessment methodology for assessing and comparing fuel cycle is refined and applied to several reference fuel cycle options. Resource recovery as a measure of environmental sustainability for thorium is explored in depth in terms of resource availability, chemical processing requirements, and radiological impacts. A review of available experience and recent practices indicates that near-term thorium recovery will occur as a by-product of mining for other commodities, particularly titanium. The characterization of actively-mined global titanium, uranium, rare earth element, and iron deposits reveals that by-product thorium recovery would be sufficient to satisfy even the most intensive nuclear demand for thorium at least six times over. Chemical flowsheet analysis indicates that the consumption of strong acids and bases associated with thorium resource recovery is 3-4 times larger than for uranium recovery, with the comparison of other chemical types being less distinct. Radiologically, thorium recovery imparts about one order of magnitude larger of a collective occupational dose than uranium recovery. Moving to the entire fuel cycle, four fuel cycle options are compared: a limited-recycle (''modified-open'') uranium fuel cycle, a modified-open thorium fuel cycle, a full-recycle (''closed'') uranium fuel cycle, and a closed thorium fuel cycle. A combination of existing data and calculations using SCALE are used to develop material balances for the four fuel cycle options. The fuel cycle options are compared on the bases of resource sustainability, waste management (both low- and high-level waste, including used nuclear fuel), and occupational radiological impacts. At steady-state, occupational doses somewhat favor the closed thorium option while low

  8. PENENTUAN AKTIVITAS UNSUR RADIOAKTIF THORIUM YANG TERKANDUNG DALAM PROTOTIPE SUMBER RADIASI KAOS LAMPU PETROMAKS

    Directory of Open Access Journals (Sweden)

    A. Nugraheni

    2012-09-01

    Full Text Available Tujuan penelitian ini adalah menentukan jenis unsur radioaktif thorium yang terkandung dalam prototipe kaos lampu petromaks, mengetahui aktivitas jenis dan umur paruh unsur radioaktif thorium tersebut. Analisis data menggunakan metode spektrometri gamma dengan detektor Ge(Li. Data pencacahan berupa spektrum energi gamma, yang memberikan informasi energi gamma dan cacahnya. Jenis unsur radioaktif dan umur paruhnya diketahui dengan mencocokkan energi gamma pada tabel isotop. Sedangkan aktivitas jenisnya ditentukan dengan menganalisis spektrum energi gamma. Berdasarkan hasil penelitian, prototipe kaos lampu petromaks mengandung unsur radioaktif 212Pb (thorium B, 224Ra (thorium X, 228Ac (Mesothorium II, 208Tl (thorium C’’, 212Bi (thorium C dan 40K (kalium-40. Aktivitas jenis unsur 212Pb (Eγ = 238,90 keV dalam satuan Bq/gram pada prototipe berturut-turut A (2,301 ± 0,001102, B (1,351 ± 0,007103, C (1,068 ± 0,003103, D (6,343 ± 0,005102, dan E (6,637 ± 0,009102. Sedangkan aktivitas jenis unsur 40K (Eγ = 1460,91 keV dalam satuan Bq/gram pada prototipe berturut-turut A (1,29 ± 0,01101, B (1,818 ± 0,007102, C (1,362 ± 0,003102, D (7,85 ± 0,02101 dan E (7,93±  0,01101, Hal ini  terbukti  dengan teridentifikasinya unsur-unsur radioaktif anak luruh deret thorium. Aktivitas prototipe sumber radiasi kaos lampu petromaks sebagian besar berasal dari sumbangan aktivitas unsur radioaktif 212Pb (Eγ = 238,90 keV. Aktivitas prototipe sumber radiasi kaos lampu petromaks yang terbesar terdapat pada prototipe B. The purpose of this research is to determine type of radioactive element thorium contained in petromax light mantle prototype and find out the specific activity and half life of radioactive element thorium. The data was analyzed by using gamma spectrometry method with Ge(Li detector. The data enumeration is the spectrum of gamma energy which gives information of gamma energy and its enumeration

  9. Stepwise hydrochloric acid extraction of monazite hydroxides for the recovery of cerium lean rare earths, cerium, uranium and thorium

    International Nuclear Information System (INIS)

    Swaminathan, T.V.; Nair, V.R.; John, C.V.

    1988-01-01

    Monazite sand is normally processed by the caustic soda route to produce mixed rare earth chloride, thorium hydroxide and trisodium phosphate. Bulk of the mixed rare earth chloride is used for the preparation of FC catalysts. Recently some of the catalyst producers have shown preference to cerium depleted (lanthanum enriched) rare earth chloride rather than the natural rare earth chloride obtained from monazite. Therefore, a process for producing cerium depleted rare earth chloride, cerium, thorium and uranium from rare earth + thorium hydroxide obtained by treating monazite, based on stepwise hydrochloric acid extraction, was developed in the authors laboratory. The process involves drying of the mixed rare earth-thorium hydroxide cake obtained by monazite-caustic soda process followed by stepwise extraction of the dried cake with hydrochloric acid under specified conditions

  10. Uses of extraction and ion exchange chromatography in the thorium and rare earths separation from industrial residue generated in thorium purification unity at IPEN. Application of rare earths as catalysts for generation of hydrogen

    International Nuclear Information System (INIS)

    Zini, Josiane

    2010-01-01

    In the 70's a pilot plant for studies of different concentrates processing obtained from the chemical processing of monazite was operated at IPEN / CNEN-SP, with a view to obtaining thorium of nuclear purity. This unity was operated on an industrial scale since 1985, generating around 25 metric tons of residue and was closed in 2002. This waste containing thorium and rare earths was named Retoter (Rejeito de Torio e Terras Raras, in portuguese) and stored in the IPEN Safeguards shed. This paper studies the treatment of the waste, aimed at environmental, radiological and technology. Were studied two cases for the chromatographic separation of thorium from rare earths. One of them was the chromatographic extraction, where the extracting agent tributyl phosphate was supported on polymeric resins Amberlite XAD16. The other method is studied for comparison purposes, since the material used in chromatographic extraction is unprecedented with regard to the separation of thorium, was the ion-exchange chromatography using DOWEX 1-X8 strong cationic resin. Was studied also the chromatographic process of extraction with the extracting agent DEHPA supported on Amberlite XAD16 for the fractionation in groups of rare earths elements. Thorium was separated with high purity for strategic purposes and rare earths recovered free from thorium, were tested as a catalyst for ethanol reforming to hydrogen obtaining which is used in fuel cells for power generation. (author)

  11. Determination of uranium and thorium in complex samples using chromatographic separation, ICP-MS and spectrophotometric detection.

    Science.gov (United States)

    Rozmarić, Martina; Ivsić, Astrid Gojmerac; Grahek, Zeljko

    2009-11-15

    The paper describes a research of possible application of UTEVA and TRU resins and anion exchanger AMBERLITE CG-400 in nitrate form for the isolation of uranium and thorium from natural samples. The results of determination of distribution coefficient have shown that uranium and thorium bind on TRU and UTEVA resins from the solutions of nitric and hydrochloric acids, and binding strength increases proportionally to increase the concentration of acids. Uranium and thorium bind rather strongly to TRU resin from the nitric acid in concentration ranging from 0.5 to 5 mol L(-1), while large quantities of other ions present in the sample do not influence on the binding strength. Due to the difference in binding strength in HCl and HNO(3) respectively, uranium and thorium can be easily separated from each other on the columns filled with TRU resin. Furthermore, thorium binds to anion exchanger in nitrate form from alcohol solutions of nitric acid very strongly, while uranium does not, so they can be easily separated. Based on these results, we have created the procedures of preconcentration and separation of uranium and thorium from the soil, drinking water and seawater samples by using TRU and UTEVA resins and strong base anion exchangers in nitrate form. In one of the procedures, uranium and thorium bind directly from the samples of drinking water and seawater on the column filled with TRU resin from 0.5 mol L(-1) HNO(3) in a water sample. After binding, thorium is separated from uranium with 0.5 mol L(-1) HCl, and uranium is eluted with deionised water. By applying the described procedure, it is possible to achieve the concentration factor of over 1000 for the column filled with 1g of resin and splashed with 2L of the sample. Spectrophotometric determination with Arsenazo III, with this concentration factor results in detection limits below 1 microg L(-1) for uranium and thorium. In the second procedure, uranium and thorium are isolated from the soil samples with TRU

  12. Fabrication of thorium nitrate at the factory at the Bouchet; Fabrication du nitrate de thorium pur a l'usine du Bouchet

    Energy Technology Data Exchange (ETDEWEB)

    Braun, C.; Lorrain, Ch.; Mahut, R.; Mariette, R.; Muller, J.; Prugnard, J. [Commissariat a l' Energie Atomique, Usine du Bouchet, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    A urano-thorianite mineral from Madagascar is industrially treated at the factory of the Bouchet in order to obtain pure thorium in the form of the nitrate and a uranium concentrate in the form of uranate. The required factory was designed and constructed in 1955 and 1956 by the firm Potasse et Engrais Chimiques (P.E.C.) on behalf of the French Atomic Energy authority. The mineral which has previously undergone a gravimetric sorting and enrichment at the mine, is in the form of a heavy rock (the density can be as high as 10), having a cubic structure. It consists principally of a mixture of thorium oxide and uranium oxide and contains between 50 and 75 per cent thorium and between 5 and 20 per cent of uranium. On the same sample a high content in either thorium or uranium in general corresponds to a low content in the other of the two metals; this rule is not however always obeyed absolutely. Among other elements present we shall only mention the Pb, Fe, Ce, Ra and other radioactive elements, since their presence influences the treatment of the mineral. We shall first briefly describe the process, which has already been described in previous publications, we consider to be worthy of attention. (author)Fren. [French] Le minerai d'uranothorianite en provenance de Madagascar est traite industriellement a l'Usine du Bouchet en vue de l'obtentionn sel de thorium pur, le nitrate, et d'un concentre d'uranium, un uranate. L'etude et la construction de l'atelier destine a cet effet ont ete realisees en 1955 et 1956 par la Societe Potasse et Engrais chimiques pour le Commissariat a l'Energie atomique. Le minerai, scheide ou enrichi a la mine par voie gravimetrique, se presente comme une roche dense (la densite peut atteindre 10), de structure cubique. Il est constitue essentiellement d'un melange d'oxyde de thorium et d'oxyde d'uranium qui titre 50 a 75 pour cent de Th et 5 a 20 pour cent d'uranium. A une forte

  13. The thorium phosphate diphosphate as a ceramic for the actinides immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Dacheux, N.; Thomas, A.C.; Chassigneux, B.; Brandel, V.; Genet, M. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    1999-07-01

    Considering that phosphate matrices like apatites or monazites could be potential candidates for the immobilization of actinides, the thorium phosphates chemistry has been completely reexamined. Among the solids synthesized, the Thorium Phosphate Diphosphate (namely TPD) was obtained after heating at 1250 degrees Celsius for 10 hours whatever the chemical way of synthesis using dry or wet chemistry methods, whatever the thorium salt and the phosphating reagent used in the condition to respect the initial mole ratio Th/PO{sub 4}=2/3. The ab initio structure determination was achieved on powder and single crystal and led to an orthorhombic unit cell. In this structure, the thorium atoms are eightfold coordinated. The substitution of thorium atoms by tetravalent actinides leading to the formation of Th{sub 4-x}M{sub x}(PO{sub 4}){sub 4}P{sub 2}O{sub 7} (M=U, Np, Pu) solid solutions (respectively TUPD, TNPD, TPPD) was also investigated. For each actinide, several solid solutions were synthesized. The linear decrease of the unit cell parameters and volume refined as a function of the x value has been observed. It confirms that solid solutions are well formed. The equations obtained by linear regression are in very good agreement with the ionic radii reported in the literature for U{sup 4+}, Np{sup 4+} and Pu{sup 4+} in the eightfold coordination. The maximum substitution of Th{sup 4+} by each tetravalent actinide has been determined as well as the corresponding Maximum Mole Loading (MML) and Maximum Weight Loading (MWL). It appeared that the TPD structure allows the replacement of thorium by large amounts of tetravalent uranium, neptunium and plutonium. Pellets of TPD and TUPD solid solutions were prepared and the corresponding densities determined. They correspond to 95-99 % of the values calculated from crystallographic data. In order to study the resistance of these materials (TPD, TUPD, TPPD) to aqueous alteration, leaching tests were achieved in distilled water and

  14. Experimental studies of thorium ion implantation from pulse laser plasma into thin silicon oxide layers

    Science.gov (United States)

    Borisyuk, P. V.; Chubunova, E. V.; Lebedinskii, Yu Yu; Tkalya, E. V.; Vasilyev, O. S.; Yakovlev, V. P.; Strugovshchikov, E.; Mamedov, D.; Pishtshev, A.; Karazhanov, S. Zh

    2018-05-01

    We report the results of experimental studies related to implantation of thorium ions into thin silicon dioxide by pulsed plasma flux expansion. Thorium ions were generated by laser ablation from a metal target, and the ionic component of the laser plasma was accelerated in an electric field created by the potential difference (5, 10 and 15 kV) between the ablated target and a SiO2/Si (0 0 1) sample. The laser ablation system installed inside the vacuum chamber of the electron spectrometer was equipped with a YAG:Nd3  +  laser having a pulse energy of 100 mJ and time duration of 15 ns in the Q-switched regime. The depth profile of thorium atoms implanted into the 10 nm thick subsurface areas together with their chemical state as well as the band gap of the modified silicon oxide at different conditions of implantation processes were studied by means of x-ray photoelectron spectroscopy and reflected electron energy loss spectroscopy methods. Analysis of the chemical composition showed that the modified silicon oxide film contains complex thorium silicates. Depending on the local concentration of thorium atoms, the experimentally established band gaps were located in the range 6.0–9.0 eV. Theoretical studies of the optical properties of the SiO2 and ThO2 crystalline systems were performed by ab initio calculations within hybrid functional. The optical properties of the SiO2/ThO2 composite were interpreted on the basis of the Bruggeman effective medium approximation. A quantitative assessment of the yield of isomeric nuclei in ‘hot’ laser plasma at the early stages of expansion was performed. The estimates made with experimental results demonstrated that the laser implantation of thorium ions into the SiO2 matrix can be useful for further research of low-lying isomeric transitions in a 229Th isotope with energy of 7.8 +/- 0.5 eV.

  15. Distribution of uranium, thorium, and isotopic composition of uranium in soil samples of south Serbia: Evidence of depleted uranium

    OpenAIRE

    Sahoo Sarata Kumar; Fujimoto Kenzo; Čeliković Igor; Ujić Predrag; Žunić Zora S.

    2004-01-01

    Inductively coupled plasma mass spectrometry and thermal ionization mass spectrom - etry were used to measure concentration of uranium and thorium as well as isotopic composition of uranium respectively in soil samples collected around south Serbia. An analytical method was established for a routine sample preparation procedure for uranium and thorium. Uranium was chemically separated and purified from soil samples by anion exchange resin and UTEVA extraction chromatography and its isotopic c...

  16. Separation of Protactinium from Neutron Irradiated Thorium Oxide; Separacion de Protactinio de Oxido de Torio Irradiado con Neutrones

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, G.; Gutierrez, L.; Ropero, M.

    1983-07-01

    The chemical separation of thorium and protactinium can be carried out by leaching most of the last one, about 95%, with aqueous HF from neutron irradiated thorium oxide. This leaching reaction la highly favored by the transformation reaction of the ThO{sub 2} material into ThF{sub 4}. For both reactions, leaching and transformation, the reagents concentration, agitation speed and temperature influences were studied and the activation energies were found. (Author) 18 refs.

  17. Solid phase extraction of uranium and thorium on octadecyl bonded silica modified with Cyanex 302 from aqueous solutions

    International Nuclear Information System (INIS)

    Nilchi, A.; Shariati Dehaghan, T.; Rasouli Garmarodi, S.

    2013-01-01

    A simple and reliable method for rapid extraction and determination of uranium and thorium using octadecyl-bonded silica modified with Cyanex 302 is presented. Extraction efficiency and the influence of various parameters such as aqueous phase pH, flow rate of sample solution and amount of extractant has been investigated. The study showed that the extraction of uranium and thorium increase with increasing pH value and was found to be quantitative at pH 6; and the retention of ions was not affected significantly by the flow rate of sample solution. The extraction percent were found to be 89.55 and 86.27 % for uranium and thorium, respectively. The maximal capacity of the cartridges modified by 30 mg of Cyanex 302 was found to be 20 mg of uranium and thorium. The method was successfully applied to the extraction and determination of uranium and thorium in aqueous solutions. The percentage recovery of uranium and thorium in a number of natural as well as seawater samples of Iran were also investigated and found to be in the range of 85-95%. (author)

  18. A new method for determining the uranium and thorium distribution in volcanic rock samples using solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Misdaq, M.A.; Bakhchi, A.; Ktata, A.; Koutit, A.; Lamine, J.; Ait nouh, F.; Oufni, L.

    2000-01-01

    A method based on using solid state nuclear track detectors (SSNTD) CR- 39 and LR-115 type II and calculating the probabilities for the alpha particles emitted by the uranium and thorium series to reach and be registered on these films was utilized for uranium and thorium contents determination in various geological samples. The distribution of uranium and thorium in different volcanic rocks has been investigated using the track fission method. In this work, the uranium and thorium contents have been determined in different volcanic rock samples by using CR-39 and LR-115 type II solid state nuclear track detectors (SSNTD). The mean critical angles of etching of the solid state nuclear track detectors utilized have been calculated. A petrographical study of the volcanic rock thin layers studied has been conducted. The uranium and thorium distribution inside different rock thin layers has been studied. The mechanism of inclusion of the uranium and thorium nuclei inside the volcanic rock samples studied has been investigated. (author)

  19. A general overview of generation IV molten salt reactor (MSR) and the use of thorium as fuel

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Carlos H.; Stefani, Giovanni L.; Santos, Thiago A., E-mail: carlos.yamaguchi@usp.br, E-mail: giovanni.stefani@ipen.br, E-mail: thiago.santos@ufabc.edu.br [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica; Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Sociais Aplicadas

    2017-07-01

    The molten salt reactors (MSRs) make use of fluoride salt as primary cooler, at low pressure. Although considered a generation IV reactor, your concept isn't new, since in the 1960 years the Oak Ridge National Laboratory created a little prototype of 8MWt. Over the 20{sup th} century, other countries, like UK, Japan, Russia, China and France also did research in the area, especially with the use of thorium as fuel. This goes with the fact that Brazil possess the biggest reserve of thorium in the world. In the center of nuclear engineering at IPEN is being created a study group connected to thorium reactors, which purpose is to investigate reactors using thorium to produce {sup 233}U and tailing burn, thus making the MSR using thorium as fuel, an object of study. This present work searches to do a general summary about the researches of MSR's, having as focus the utilization of thorium with the goal being to show it's efficiency and utilization is doable. (author)

  20. Thorium mobilization in groundwaters from Aguas da Prata, Sao Paulo state; Mobilizacao de torio em aguas subterraneas de Aguas da Prata, estado de Sao Paulo

    Energy Technology Data Exchange (ETDEWEB)

    Tonetto, Erica Martini [Universidade Estadual Paulista (UNESP), Rio Claro, SP (Brazil). Area de Concentracao Geociencias e Meio Ambiente. Pos-Graduacao em Geociencias]. E-mail: etonetto@rc.unesp.br; Bonotto, Daniel Marcos [Universidade Estadual Paulista (UNESP), Rio Claro, SP (Brazil). Dept. de Petrologia e Metalogenia]. E-mail: dbonotto@rc.unesp.br

    2002-09-15

    The paper describes and discusses results of the determination, by alpha spectrometry, of the natural thorium isotopes in groundwaters associated with different rock types in Aguas da Prata spa, state of Sao Paulo. The dissolved Thorium is relatively low (0.003 to 1.72 mg.L{sup -1} for {sup 232}Th), while the {sup 22}'8Th/{sup 232}Th isotopic ratios for dissolved thorium were higher than unity (1.8 to 34). The thorium concentration in suspended solids of these waters ranged between 183 up and 3445 mug.g{sup -1} and indicates that significant thorium transport occurs under this condition. The obtained results allowed to calculate the factor for preferential mobilization of thorium in particulate matter relative to the liquid phase, an important parameter for understanding the geochemical behaviour of this element in hydrosphere. (author)

  1. Determination of thorium and uranium isotopes in the mining lixiviation liquor samples

    Energy Technology Data Exchange (ETDEWEB)

    Reis Júnior, Aluísio de Souza; Monteiro, Roberto Pellacani Guedes, E-mail: reisas@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The alpha spectrometric analysis refers to determination of thorium and uranium isotopes in the mining lixiviation liquor samples. The analytical procedure involves sample preparation steps for rare earth elements, thorium and uranium separation using selective etching with hydrofluoric acid and further radiochemical separation of these using TRU chromatographic resins (Eichrom Industries Inc. USA) besides electroplating of the isolated radionuclides. An isotopic tracer is used to determine the overall chemical yield and to ensure traceability to a national standard. The results are compared to results obtained for the same samples by Becquerel laboratory. We improved the method looking for reproducibility and isotopes isolation as required by alpha spectrometry and the method showing effective in analysis of mining liquor. (author)

  2. Waste arisings from a high-temperature reactor with a uranium-thorium fuel cycle

    International Nuclear Information System (INIS)

    1979-09-01

    This paper presents an equilibrium-recycle condition flow sheet for a high-temperature gas-cooled reactor (HTR) fuel cycle which uses thorium and high-enriched uranium (93% U-235) as makeup fuel. INFCE Working Group 7 defined percentage losses to various waste streams are used to adjust the heavy-element mass flows per gigawatt-year of electricity generated. Thorium and bred U-233 are recycled following Thorex reprocessing. Fissile U-235 is recycled one time following Purex reprocessing and then is discarded to waste. Plutonium and other transuranics are discarded to waste. Included are estimates of volume, radioactivity, and heavy-element content of wastes arising from HTR fuel element fabrication; HTR operation, maintenance, and decommissioning; and reprocessing spent fuel where the waste is unique to the HTR fuel cycle

  3. Advanced plutonium management in PWR - complementarity of thorium and uranium cycles

    International Nuclear Information System (INIS)

    Ernoult, Marc

    2014-01-01

    In order to study the possibility of advanced management of plutonium in existing reactors, 8 strategies for plutonium multi-recycling in PWRs are studied. Following equilibrium studies, it was shown that, by using homogeneous assemblies, the use of thorium cannot reduce the plutonium inventory of equilibrium cycle or production of americium. By distributing the different fuel types within the same assembly, some thoriated strategies allow however lower inventories and lower production americium best strategies using only the uranium cycle. However, in all cases, low fuel conversion theories in PWRs makes it impossible to lower resource consumption more than a few percent compared to strategies without thorium. To study the transition, active participation in development of the scenario code CLASS has been taken. It led to the two simulation scenarios among those studied in equilibrium with CLASS. These simulations have shown discrepancies with previously simulated scenarios. The major causes of these differences were identified and quantified. (author)

  4. Assessment of the insertion of reprocessed fuel spiked with thorium in a PWR core

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Victor F.; Monteiro, Fabiana B.A.; Pereira, Claubia, E-mail: victorfc@fis.grad.ufmg.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    Reprocessed fuel by UREX+ technique and spiked with thorium was inserted in a PWR core and neutronic parameters have been analyzed. Based on the Final Safety Analysis Report (FSAR) of the Angra-2 reactor, the core was modeled and simulated with SCALE6.0 package. The neutronic data evaluation was carried out by the analysis of the effective and infinite multiplication factors, and the fuel evolution during the burnup. The conversion ratio (CR) was also evaluated. The results show that, when inserting reprocessed fuel spiked with thorium, the insertion of burnable poison rods is not necessary, due to the amount of absorber isotopes present in the fuel. Besides, the conversion ratio obtained was greater than the presented by standard UO{sub 2} fuel, indicating the possibility of extending the burnup. (author)

  5. Optimization of small long-life PWR based on thorium fuel

    Science.gov (United States)

    Subkhi, Moh Nurul; Suud, Zaki; Waris, Abdul; Permana, Sidik

    2015-09-01

    A conceptual design of small long-life Pressurized Water Reactor (PWR) using thorium fuel has been investigated in neutronic aspect. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.2, while the multi-energy-group diffusion calculations were optimized in three-dimension X-Y-Z geometry of core by COREBN. The excess reactivity of thorium nitride with ZIRLO cladding is considered during 5 years of burnup without refueling. Optimization of 350 MWe long life PWR based on 5% 233U & 2.8% 231Pa, 6% 233U & 2.8% 231Pa and 7% 233U & 6% 231Pa give low excess reactivity.

  6. Validation of analytical protocol of proportioning of Uranium and Thorium in a sample ground

    International Nuclear Information System (INIS)

    Krifi, Anouar

    2007-01-01

    Throughout the period of our project of end of study, carried out in The National Center for Nuclear Sciences and Technologies (CNSTN), spectrometry alpha was used for the proportioning of uranium and thorium in a reference sample IAEA - 375 in order to identify the isotopes present of each radionuclide and to evaluate the output of handling. After the radiochemical and spectrometric analysis of sample IAEA - 375, we found the following results : The IAEA - 375 contains the following isotopes; Uranium 234, Uranium 238 and Thorium 228, the concentrations found in Bq/Kg of the Uranium 232, Uranium 234 and Uranium 238 are closed to the values published by the International Atomic Energy Agency. (Author). 19 refs

  7. Assessment of bioavailability of 232 Thorium and 238 Uranium following soil ingestion

    International Nuclear Information System (INIS)

    Werner, Eckhard; Roth, Paul; Hoellriegl, Vera; Schramel, Peter; Wendler, Iris

    2001-01-01

    The ingestion of soil contaminated by natural radioisotopes of increased concentrations may represent a hazard to human health, especially in young children. In this study the bioavailability of thorium and uranium in 14 soil specimens from German ore-mountains was investigated by means of HR-ICP-MS. Data obtained show a broad variation of bioaccessibility for 232 Th between 0.3% and 23% and for 238 U between 18% and 74%. Therefore, for calculations of the internal dose due to ingestion of uranium with contaminated soil by children no significant reduction of f1-values seems to be advisable as compared to figures currently recommended by ICRP. In contrast to uranium, the f1-values applied in the respective dose calculations for thorium may be reduced significantly as compared to the ICRP data. (author)

  8. Personal factors affecting thoron exhalation from occupationally acquired thorium body burdens

    International Nuclear Information System (INIS)

    Stebbings, J.H.

    1985-01-01

    Thorium workers with thorium body burdens (primarily thoracic) above 0.7 nCi 224 Ra equivalent are shown to exhale about 15% of thoron produced in vivo, compared to 5% exhaled by subjects with body burdens in the range of 0.4 to 0.7 nCi 224 Ra. There was a false negative correlation between average adult daily cigarettes smoked and thoron exhalation. White blood cell counts that were about 85% of expected were observed in seven subjects exhaling greater than or equal to 100 pCi of thoron above predicted; no other variable examined showed a clear pattern of association. These differences in fractional thoron exhalation, and their consequences, are discussed. 3 references, 4 figures, 8 tables

  9. A novel biamperometric methodology for thorium determination by EDTA complexometric titration

    International Nuclear Information System (INIS)

    Jayachandran, K.; Gamare, J.S.; Nair, P.R.; Xavier, M.; Aggarwal, S.K.

    2012-01-01

    A biamperometric methodology is described for the determination of thorium by EDTA complexometric titration, based on the observed electrochemical behaviour of EDTA when the applied potential was ≥ 200 mV between the twin Pt electrodes. Studies carried out showed that a pH range of 2.4-2.7 was optimum for the determination. Accuracy and precision of the method were evaluated using different amounts of thorium ranging from 50 μg to 5 mg. Studies on the interference of uranium were carried out with different amounts of uranium ranging from 20 to 80% using the presently developed approach of biamperometry as well as the conventional indicator method. The method was employed for the determination of Th in (Th,U)O 2 samples containing different amounts of Th and U. (orig.)

  10. A comparative study of thorium activity in NORM and high background radiation area

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, S.K.; Ishikawa, T.; Tokonami, S.; Sorimachi, A.; Kranrod, C.; Janik, M.; Hosoda, M.; Hassan, N.M.; Chanyotha, S.; Parami, V.K.; Yonehara, H.; Ramola, R.C. [National Institute of Radiological Science, Chiba (Japan)

    2010-07-01

    Several industrial processes are known to enrich naturally occurring radioactive materials (NORM). To assess such processes with respect to their radiological relevance, characteristic parameters describing this enrichment will lead to interesting information useful to UNSCEAR. In case of mineral treatment plants, the high temperatures used in smelting and refining processes lead to high concentrations of U-238 and Th-232. Also due to thermal power combustion, concentration of U and Th in the fly ash increases manifold. NORM samples were collected from a Thailand mineral treatment plant and Philippine coal-fired thermal power plants for investigation. Some studies are initiated from a high background radiation area near Gopalpur of Orissa state in India. These NORM samples were analysed by gamma-ray spectrometry as well as inductively coupled plasma mass spectrometry. The radioactivity in case of Orissa soil samples is found to be mainly contributed from thorium. This study attempts to evaluate levels of thorium activity in NORM samples.

  11. Sorption distribution coefficients of uranium, thorium and radium of selected Malaysian peat soils

    International Nuclear Information System (INIS)

    Mohd Zaidi Ibrahim; Zalina Laili; Muhamat Omar; Phillip, Esther

    2010-01-01

    A study on sorption of uranium, thorium and radium on Malaysian peat soils was conducted to determine their distribution coefficient (K d ) values. Batch studies were performed to investigate the influence of pH and the concentrations of radionuclides. Peat soil samples used in this study were collected from Bachok, Batu Pahat, Dalat, Hutan Melintang and Pekan. The peat samples from different location have different chemical characteristics and K d values. No correlation was found between chemical characteristics and the K d values for radium and thorium, but K d value for uranium was found correlated with humic and organic content. The K d value was found to be influenced by soluble humic substances or humic substances leach out from peat soils. (author)

  12. Simultaneous determination of uranium(VI) and thorium(IV) with carminic acid by derivative spectrophotometry

    International Nuclear Information System (INIS)

    Lopez-de-Alba, P.L.; Lopez-Martinez, L.

    1992-01-01

    The reactions of uranium(VI) and thorium(IV) ions with carminic acid have been investigated. These ions react with carminic acid in neutral medium, forming colored complexes. The dark purple or red wine complexes show a high absorption in the visible region (597 nm U(VI) and 616 nm Th(IV)). Chemical variables that affect the reaction have been optimized. The spectral overlapping of the color of complexes has been resolved by first-derivative spectrophotometry. The simultaneous determination of uranium(VI) and thorium(IV) mixtures is accomplished by taking the derivative signal ('zero crossing') at 597 nm for U(VI) determination and at 616 nm for Th(IV) determination, respectively. The method has been applied to Tyuyamonite ore, containing in the matrix both ions. (author) 11 refs.; 3 figs.; 3 tabs

  13. Recovery of valuable products in the raffinate of the uranium and thorium pilot-plant

    International Nuclear Information System (INIS)

    Jardim, E.A.; Abrao, A.

    1988-11-01

    IPEN-CNEN/SP has being very active in refining yellowcake to pure ammonium diuranate which is converted to uranium trioxide, uranium dioxide, tetra - and hexafluoride in a sequential way. The technology of the thorium purification and its conversion to nuclear grade products has been a practice since several years as well. For both elements the major to be worked is the raffinate from the solvent extraction colum where and thorium are purified via TBP-varsol in pulsed columns. In this paper the actual processing technology is reviewed with special emphasis on the recovery of valuable products, mainly nitric acid and ammonium nitrate. Distilled nitric acid and the final sulfuric acid as residue are recycle. Ammonium nitrate from the precipitation of uranium diuranate is of good quality, being radioactivity and uranium - free, and recommended to be applied as fertilizer. In conclusion the main effort is to maximize the recycle and reuse of the above mentioned chemicals. (author) [pt

  14. Recovery of valuable products in liquid effluents from uranium and thorium pilot units

    International Nuclear Information System (INIS)

    Jardim, E.A.; Abrao, A.

    1988-01-01

    IPEN-CNEN/SP has being very active in refining yellowcake to pure ammonium diuranate which is converted to uranium trioxide, uranium dioxide, uranium tetra- and hexafluoride in a sequential way. The technology of the thorium purification and its conversion to nuclear grade products has been a practice since several years as well. For both elements the major waste to be worked is the refinate from the solvent extraction column where uranium and thorium are purified via TBP-varsol in pulsed columns. In this paper the actual processing technology is reviewed with special emphasis on the recovery of valuable products, mainly nitric acid and ammonium nitrate. Distilled nitric acid and the final sulfuric acid as residue are recycle. Ammonium nitrate from the precipitation of uranium diuranate is of good quality, being radioactivity and uranium-free, and recommended to be applied as fertilizer. In conclusion the main effort is to maximise the recycle and reuse of the abovementioned chemicals. (author) [pt

  15. Recovery of valuable products from the raffinate of uranium and thorium pilot-plant

    International Nuclear Information System (INIS)

    Martins, E.A.J.

    1990-01-01

    IPEN-CNEN/SP has being very active in refining yellow cake to pure ammonium diuranate which is converted to uranium trioxide, uranium dioxide, uranium tetra-and hexa-fluoride in sequential way. The technology of the thorium purification and its conversion to nuclear grade products has been a practice since several years as well. For both elements the major waste to be worked is the raffinate from purification via TBP-varsol in pulsed columns. In this paper the actual processing technology is reviewed with special emphasis on the recovery of valuable products, mainly nitric acid, ammonium nitrate, uranium, thorium and rare earth elements. Ammonium nitrate from the precipitation of uranium diuranate is of good quality, being radioactivity and uranium-free, and recommended to be applied as fertilizer. In conclusion the main effort is to maximize the recycle and reuse of the above mentioned chemicals. (author)

  16. Design Feasible Area on Water Cooled Thorium Breeder Reactor in Equilibrium States

    International Nuclear Information System (INIS)

    Sidik Permana; Naoyuki Takaki; Hiroshi Sekimoto

    2006-01-01

    Thorium as supplied fuel has good candidate for fuel material if it is converted into fissile material 233 U which shows superior characteristics in the thermal region. The Shippingport reactor used 233 U-Th fuel system, and the molten salt breeder reactor (MSBR) project showed that breeding is possible in a thermal spectrum. In the present study, feasibility of water cooled thorium breeder reactor is investigated. The key properties such as flux, η value, criticality and breeding performances are evaluated for different moderator to fuel ratios (MFR) and burn-ups. The results show the feasibility of breeding for different MFR and burn-ups. The required 233 U enrichment is about 2% - 9% as charge fuel. The lower MFR and the higher enrichment of 233 U are preferable to improve the average burn-up; however the design feasible window is shrunk. This core shows the design feasible window especially in relation to MFR with negative void reactivity coefficient. (authors)

  17. Tetraphenylimidodiphosphinate as solid phase extractant for preconcentrative separation of thorium from aqueous solution

    International Nuclear Information System (INIS)

    Na Liu; Yanfei Wang; Chuhua He

    2016-01-01

    A simple and reliable method for solid phase extraction of thorium using tetraphenylimidodiphosphinate is presented. The solid phase extraction process was optimized at equilibrium time 3 h, pH = 4.5, initial concentration 30 mg L -1 and extractant dosage 0.01 g with 98.95 % of removal efficiency and 29.68 mg g -1 of adsorption capacity. The interfering ions experiments indicated that it had almost no effect on thorium adsorption. Kinetics data follow the pseudo-first-order model and equilibrium data agreed with the Langmuir isotherm model very well. FT-IR analysis indicated that imino group and phosphoryl acted as the significant roles in the solid phase extraction process. (author)

  18. Aspects of uranium/thorium series disequilibrium applications to radionuclide migration studies

    International Nuclear Information System (INIS)

    Ivanovich, M.

    1989-11-01

    The aim of this paper is to consider the contribution which the uranium/thorium series disequilibrium concept can make to understanding the retardation and transport of radionuclides in the far-field of a radioactive waste repository. In principle, naturally occurring isotopes of uranium, thorium and radium can be regarded as geochemical analogues of the divalent radionuclides and multivalent actinides expected to be present in the radioactive waste inventory. The study of their retardation and/or transport in real rock/water systems which have taken place over geological timescales, can make an important contribution to establishing a rational basis for long-term predictive modelling of radionuclide transport required for safety assessments. (author)

  19. 800-MeV proton irradiation of thorium and depleted uranium targets

    Energy Technology Data Exchange (ETDEWEB)

    Russell, G.J.; Brun, T.O.; Pitcher, E.J. [Los Alamos National Laboratory, NM (United States)] [and others

    1995-10-01

    As part of the Los Alamos Fertile-to-Fissile-Conversion (FERFICON) program in the late 1980`s, thick targets of the fertile materials thorium and depleted uranium were bombarded by 800-MeV protons to produce the fissile materials {sup 233}U and {sup 239}Pu, respectively. The amount of {sup 233}U made was determined by measuring the {sup 233}Pa activity, and the yield of {sup 239}Pu was deduced by measuring the activity of {sup 239}Np. For the thorium target, 4 spallation products and 34 fission products were also measured. For the depleted uranium target, 3 spallation products and 16 fission products were also measured. The number of fissions in each target was deduced from fission product mass-yield curves. In actuality, axial distributions of the products were measured, and the distributions were then integrated over the target volume to obtain the total number of products for each reaction.

  20. Review of thorium-U233 cycle thermal reactor benchmark studies (AWBA Development Program)

    International Nuclear Information System (INIS)

    Ullo, J.J.; Hardy, J. Jr.; Steen, N.M.

    1980-03-01

    A survey is made of existing integral experiments for U233 systems and thorium-uranium based fuel systems. The aim is to understand to what extent they give a consistent test of ENDF/B-IV nuclear data. A principal result is that ENDF/B-IV leads to an underprediction of neutron leakage. Results from testing alternate thorium data sets are presented. For one evaluation due to Leonard, the results depict a possible growing discrepancy between measured integral parameters such as rho 02 and I 232 and the differential data, which underpredicts these parameters. Sensitivities to other nuclear data components, notably the fission neutron spectrum, were determined. A new harder U233 spectrum significantly reduces a bias trend in K/sub eff/ vs leakage

  1. Chemical analysis used in nuclear fuels reprocessing of uranium and thorium

    International Nuclear Information System (INIS)

    Schvartzman, M.M.A.M.

    1986-01-01

    An overall review of the analytical chemistry in nuclear fuel reprocessing is done. In Purex and Thorex process flowsheets, the analyses required to the control of the process, balance and accountability of fissile and fertile materials, and final product specification are pointed out. Some analytical methods applied to the determination of uranium, plutonium, thorium, nitric acid, tributylphosphate and fission products are described. Specific features of the analytical laboratories are presented. The radioactivity level of the samples requires facilities as shielded cells and glove boxes, and handling by remote control. Finally it is reported an application of one analytical method to evaluate thorium content in organic and aqueous solutions, in cold tests of Thorex process. These tests were performed at CDTN/NUCLEBRAS. (author) [pt

  2. The Amster concept: a configuration generating its own uranium with a mixed thorium and uranium support

    International Nuclear Information System (INIS)

    Vergnes, J.; Garzenne, C.; Lecarpentier, D.; Mouney, H.; Delpech, M.

    2001-01-01

    AMSTER is a continuously reloaded, graphite-moderated molten salt critical reactor, using a 238 U or 232 Th fuel support, slightly enriched with 235 U if necessary. Using this concept, one can define a large number of configurations according to the products loaded and recycled. The choice of thorium fuel support leads to two configurations requiring no additional 235 U as fissile material: a configuration with one moderating zone, incinerating Transuranium elements (TRU); a configuration with 2 moderating zones self-consuming TRU and regenerating the fissile uranium ( 233 U). In this configuration, it is even possible to burn 238 U (from depleted uranium) by adding it to the thorium support. These configurations use a minimum amount of fuel (100 kg of 232 Th or 100 kg of a 232 Th- 238 U mix per TWh) and produce very little TRU (a few tens of grams per TWh). (author)

  3. De-agglomeration of thorium oxalate - a method for the synthesis of sinteractive thoria

    International Nuclear Information System (INIS)

    Ananthasivan, K.; Anthonysamy, S.; Singh, Alok; Vasudeva Rao, P.R.

    2002-01-01

    Thorium oxalate was obtained by precipitation in water and in non-aqueous solvents and de-agglomerated by ultrasonication in both aqueous as well as non-aqueous media. Sinteractive thoria (crystallite size 6-20 nm) obtained from the de-agglomerated thorium oxalate was characterised for residual carbon, crystallite size, specific surface area, particle size distribution and bulk density. Microstructure of the precursor and the product was studied using TEM and HRTEM. The morphology of the sintered pellets was studied using SEM. The reactivity of the calcined powders was determined by measuring the density of the sintered compacts. The solvent used for de-agglomeration was found to have significant influence on the microstructure of the powders. Thoria derived through aqueous precipitation route could be sintered to a density of 9.7 Mg m -3 at 1673 K. It was demonstrated that ultrasonic de-agglomeration could be a useful method for obtaining sinteractive thoria

  4. Safety Aspects of Thorium Fuel in Sodium-Cooled Fast Reactors

    International Nuclear Information System (INIS)

    Fiorina, C.; Franceschini, F.; Memmott, M.

    2013-01-01

    Conclusions: ● Thorium fuel significantly reduces void positive reactivity insertion − ~2$ reduction for the ARR burner design (oxide fuel); − ~6$ reduction for the ARR breakeven design (nitride Th vs. U metal). ● ~ 1m$/K more negative Doppler for the Th breakeven design. ● Effects on transients need to be assessed (underway). ● Larger blankets, higher fuel manufacturing/reprocessing and larger reactivity swing in Th-breakeven. ● Comparable long-term capability to withstand double-fault accidents. → Thorium can be appealing for TRU burning and/or decreasing void reactivity keeping a simple design (e.g. axially homogeneous). ● Very high sources requiring remote fuel manufacturing for all cases (U and Th). ● Long term options with substantial developments/additional costs when full actinide recycle is pursued in U and for all cases in Th

  5. Advantages of liquid fluoride thorium reactor in comparison with light water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bahri, Che Nor Aniza Che Zainul, E-mail: anizazainul@gmail.com; Majid, Amran Ab.; Al-Areqi, Wadeeah M. [Nuclear Science Program, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2015-04-29

    Liquid Fluoride Thorium Reactor (LFTR) is an innovative design for the thermal breeder reactor that has important potential benefits over the traditional reactor design. LFTR is fluoride based liquid fuel, that use the thorium dissolved in salt mixture of lithium fluoride and beryllium fluoride. Therefore, LFTR technology is fundamentally different from the solid fuel technology currently in use. Although the traditional nuclear reactor technology has been proven, it has perceptual problems with safety and nuclear waste products. The aim of this paper is to discuss the potential advantages of LFTR in three aspects such as safety, fuel efficiency and nuclear waste as an alternative energy generator in the future. Comparisons between LFTR and Light Water Reactor (LWR), on general principles of fuel cycle, resource availability, radiotoxicity and nuclear weapon proliferation shall be elaborated.

  6. Experiments for quick and accurate thorium assay by means of potentiometric end point determination

    International Nuclear Information System (INIS)

    Mainka, E.; Coerdt, W.

    1978-10-01

    Two methods are described which allow quick thorium assay easily to be automated. In the potentiometric titration with NaF the ion sensitive fluoride electrode is used as the indicator. The analysis can be performed for pH values 3 to 4. Th(OH) 4 precipitation must be avoided although the acidity of the solution must not be too high since otherwise erroneous measurements will be obtained. In the complexometric thorium assay EDTA is used for titration and the indicator is the copper sensitive electrode. This method offers the advantage that the analysis can be performed in the presence of large amounts of uranium, which is excluded under the NaF method. (orig.) [de

  7. Contribution of lead and thorium to the history of the Oklo reactors

    International Nuclear Information System (INIS)

    Devillers, C.; Menes, J.

    1978-01-01

    The authors report the results of measuring lead and thorium in a series of representative samples of the superconcentrations of uranium found in the Oklo mineralization. Interpretation of the data reveals the complexity of the history of lead in the deposit, but makes it possible to derive a number of important facts, namely early disturbance and recent, massive remobilization of lead. One is led to conclude that the date of the uranium emplacement may be greater than 1900 million years. The absence of high thorium contents in the ''normal'' rich ore confirms the importance of dating the nuclear reaction on the basis of the Th/U balance. This determination, which draws on the same set of data as for the Nd/U balance, gives a mean value close to 1930 million years. (author)

  8. Monitoring of thorium incorporation by thoron in breath measurement: technical design of a routine method

    Energy Technology Data Exchange (ETDEWEB)

    Eisenmenger, A.; Riedel, W.; Scheler, R.; Brose, J

    1998-07-01

    A method for measurement of thoron ({sup 220}Rn) in exhaled air is being developed for routine monitoring of inhaled thorium intakes. Decay products of thoron ({sup 216}Po and {sup 212}Pb) are collected electrostatically and their progeny are measured subsequently by alpha spectrometry. With the equipment presently used the influence of parameters such as chamber volume, collection head geometry and position, supplied high voltage, flow rate and subsequent counting time on the collection efficiency have been investigated. The overall efficiency is approximately 8% at the moment. This makes the method capable of detecting thorium in lungs at an amount of 3% of an ALI (Annual Limit on Intake), for example corresponding to 0.9 Bq of {sup 232}Th (class W), as required by the German radiation protection monitoring guidelines. (author)

  9. Economics and utilization of thorium in nuclear reactors. Technical annexes 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    1978-05-01

    An assessment of the impact of utilizing the /sup 233/U/thorium fuel cycle in the U.S. nuclear economy is strongly dependent upon several decisions involving nuclear energy policy. These decisions include: (1) to recycle or not recycle fissile material; (2) if fissile material is recycled, to recycle plutonium, /sup 233/U, or both; and (3) to deploy or not to deploy advanced reactor designs such as Fast Breeder Reactors (FBR's), High Temperature Gas Reactors (HTGR's), and Canadian Deuterium Uranium Reactors (CANDU's). This report examines the role of thorium in the context of the above policy decisions while focusing special attention on economics and resource utilization.

  10. Arbuscular mycorrhiza reduces phytoextraction of uranium, thorium and other elements from phosphate rock

    DEFF Research Database (Denmark)

    Roos, Per; Jakobsen, Iver

    2008-01-01

    Uptake of metals from uranium-rich phosphate rock was studied in Medicago truncatula plants grown in symbiosis with the arbuscular mycorrhizal fungus Glomus intraradices or in the absence of mycorrhizas. Shoot concentrations of uranium and thorium were lower in mycorrhizal than in non......-mycorrhizal plants and root-to-shoot ratio of most metals was increased by mycorrhizas. This protective role of mycorrhizas was observed even at very high supplies of phosphate rock. In contrast, phosphorus uptake was similar at all levels of phosphate rock, suggesting that the P was unavailable to the plant......-fungus uptake systems. The results support the role of arbuscular mycorrhiza as being an important component in phytostabilization of uranium. This is the first study to report on mycorrhizal effect and the uptake and root-to-shoot transfer of thorium from phosphate rock. (c) 2007 Elsevier Ltd. All rights...

  11. Determination of uranium and thorium contents inside different materials using track detectors and mean critical angles

    CERN Document Server

    Misdaq, M A; Ktata, A; Merzouki, A; Youbi, N

    1999-01-01

    The critical angles of the CR-39 (theta sub c) and LR-115 type II (theta sub c ') solid state nuclear track detectors (SSNTD) for detecting alpha-particles emitted by the uranium and thorium series have been evaluated by calculating the corresponding ranges of the emitted alpha-particles in different material samples and in the SSNTD studied. The influence of the emitted alpha-particles initial and residual energies on the critical angles of the SSNTD studied has been investigated. The uranium and thorium contents of different geological samples have been evaluated by exploiting data obtained for the critical angles of the CR-39 and LR-115 type II solid state nuclear track detectors and measuring the corresponding densities of tracks.

  12. A novel biamperometric methodology for thorium determination by EDTA complexometric titration

    Energy Technology Data Exchange (ETDEWEB)

    Jayachandran, K.; Gamare, J.S.; Nair, P.R.; Xavier, M.; Aggarwal, S.K. [Bhabha Atomic Reseach Centre, Mumbai (India). Fuel Chemistry Div.

    2012-07-01

    A biamperometric methodology is described for the determination of thorium by EDTA complexometric titration, based on the observed electrochemical behaviour of EDTA when the applied potential was {>=} 200 mV between the twin Pt electrodes. Studies carried out showed that a pH range of 2.4-2.7 was optimum for the determination. Accuracy and precision of the method were evaluated using different amounts of thorium ranging from 50 {mu}g to 5 mg. Studies on the interference of uranium were carried out with different amounts of uranium ranging from 20 to 80% using the presently developed approach of biamperometry as well as the conventional indicator method. The method was employed for the determination of Th in (Th,U)O{sub 2} samples containing different amounts of Th and U. (orig.)

  13. Determination of low concentrations of thorium in geological materials by X-ray fluorescence

    International Nuclear Information System (INIS)

    Roca, M.; Bayon, A.

    1981-01-01

    An X-ray fluorescence method for the determination of thorium in geological samples down to 2 ppm ThO 2 has been developed. To achieve this determination limit an exposed area of the sample 42.5 mm in diameter is used, working with a molybdenum target tube operated at 90 kV and 30 m A. Corrections for background and line interference of the Rb Kα radiation have been carefully considered and empirical correction coefficients calculated. (Author) 3 refs

  14. Gas-Cooled Thorium Reactor with Fuel Block of the Unified Design

    OpenAIRE

    Shamanin, Igor; Bedenko, Sergey; Chertkov, Yuriy; Gubaydulin, Ildar

    2015-01-01

    Scientific researches of new technological platform realization carried out in Russia are based on ideas of nuclear fuel breeding in closed fuel cycle and physical principles of fast neutron reactors. Innovative projects of low-power reactor systems correspond to the new technological platform. High-temperature gas-cooled thorium reactors with good transportability properties, small installation time, and operation without overloading for a long time are considered perspective. Such small mod...

  15. A thorium-based fuel cycle for VVERs a non proliferative solution to renew nuclear power

    International Nuclear Information System (INIS)

    Shirani, A. S.; Shahmiri, Y.

    2002-01-01

    For several reasons such as waste disposal, expenses, proliferation and safety, global growth of the commercial nuclear power production has been effectively stagnated, since the early 1970's. A new reactor fuel cycle has been proposed which removes the concerns about proliferation and disposal of nuclear wastes that are the major obstructions in development of nuclear power production. This innovation is known as the R adkowsky Thorium Fuel ( RTF)

  16. Properties of the Only Thorium Fullerene, Th@C-84, Uncovered

    Czech Academy of Sciences Publication Activity Database

    Kaminský, Jakub; Vícha, J.; Bouř, Petr; Straka, Michal

    2017-01-01

    Roč. 121, č. 16 (2017), s. 3128-3135 ISSN 1089-5639 R&D Projects: GA ČR(CZ) GA16-05935S; GA ČR(CZ) GA17-07091S Institutional support: RVO:61388963 Keywords : thorium fullerene * electronic structure * UV-vis Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 2.847, year: 2016

  17. Metallography of plutonium, uranium and thorium fuels: two decades of experience in Radiometallurgy Division

    International Nuclear Information System (INIS)

    Ghosh, J.K.; Pandey, V.D.; Rao, T.S.; Kutty, T.R.G.; Kurup, P.K.D.; Joseph, J.K.; Ganguly, C.

    1993-01-01

    Ever since the inception of Radiometallurgy Laboratory (RML) in its early seventies optical metallography has played a key role in development and fabrication of plutonium, uranium and thorium bearing nuclear fuels. In this report, an album of photomicrographs depicts the different types of metallic, ceramic and dispersion fuels and welded section that have been evaluated in RML during the last two decades. (author). 14 refs., 1 tab

  18. Biogeochemical aspects of the behavior of uranium and thorium in the environment

    International Nuclear Information System (INIS)

    Faust, R.A.; Bondietti, E.A.

    1976-09-01

    This bibliography contains 383 references on the environmental behavior of uranium and thorium. Most of the documents deal with the geochemical movement in soils and aquatic systems while biological aspects such as accumulations in plants and animals, transfer parameters between ecosystem components, and food chain dynamics are less extensively documented. The references are arranged by subject categories with first authors appearing alphabetically in each category. Indexes are provided for author, geographic location, keywords, taxons, permuted title and publication description

  19. Manual on radiological safety in uranium and thorium mines and mills

    International Nuclear Information System (INIS)

    1976-01-01

    The manual describes the personnel radiation hazards in uranium and thorium mines and mills. Measures which should be taken in order to protect the workers are outlined. The problems of air born radioactivity, external radiation, surface contamination and radioactive waste are treated. Safety standards in relation to the above mentioned subjects are given. An outline is given for monitoring programme. Monitoring methods, control methods and means of medical control are given

  20. A guide to the licensing of uranium and thorium mine and mill waste management systems

    International Nuclear Information System (INIS)

    1986-01-01

    This document is issued to assist industry and the public in understanding the licensing process used by the Canadian Atomic Energy Control Board (AECB), and do describe and consolidate the requirements, criteria and guidelines the AECB uses in the regulation of uranium and thorium mine and mill waste management systems. All phases of these systems are addressed, including pre-development activities, siting and construction, operation, and decommissioning and abandonment