WorldWideScience

Sample records for wipe measurement technology

  1. BERYLLIUM MEASUREMENT IN COMMERCIALLY AVAILABLE WET WIPES

    Energy Technology Data Exchange (ETDEWEB)

    Youmans-Mcdonald, L.

    2011-02-18

    Analysis for beryllium by fluorescence is now an established method which is used in many government-run laboratories and commercial facilities. This study investigates the use of this technique using commercially available wet wipes. The fluorescence method is widely documented and has been approved as a standard test method by ASTM International and the National Institute for Occupational Safety and Health (NIOSH). The procedure involves dissolution of samples in aqueous ammonium bifluoride solution and then adding a small aliquot to a basic hydroxybenzoquinoline sulfonate fluorescent dye (Berylliant{trademark} Inc. Detection Solution Part No. CH-2) , and measuring the fluorescence. This method is specific to beryllium. This work explores the use of three different commercial wipes spiked with beryllium, as beryllium acetate or as beryllium oxide and subsequent analysis by optical fluorescence. The effect of possible interfering metals such as Fe, Ti and Pu in the wipe medium is also examined.

  2. Beryllium Measurement In Commercially Available Wet Wipes

    International Nuclear Information System (INIS)

    Youmans-Mcdonald, L.

    2011-01-01

    Analysis for beryllium by fluorescence is now an established method which is used in many government-run laboratories and commercial facilities. This study investigates the use of this technique using commercially available wet wipes. The fluorescence method is widely documented and has been approved as a standard test method by ASTM International and the National Institute for Occupational Safety and Health (NIOSH). The procedure involves dissolution of samples in aqueous ammonium bifluoride solution and then adding a small aliquot to a basic hydroxybenzoquinoline sulfonate fluorescent dye (Berylliant(trademark) Inc. Detection Solution Part No. CH-2) , and measuring the fluorescence. This method is specific to beryllium. This work explores the use of three different commercial wipes spiked with beryllium, as beryllium acetate or as beryllium oxide and subsequent analysis by optical fluorescence. The effect of possible interfering metals such as Fe, Ti and Pu in the wipe medium is also examined.

  3. A rapid alpha dosimeter for measuring nasal cavity wipe matter

    International Nuclear Information System (INIS)

    Tuo, Xianguo; Mu, Keliang; Zhong, Hongmei; Yang, Guoshan; Yuan, Yong

    2008-01-01

    Full text: It is necessary for people who work in the special condition to know whether the alpha radiation is inhaled through detecting quickly nasal cavity wipe matter. This measure method requires that the dosimeter must be portable and easy to operate, and be able to overcome some disadvantages, such as high environment background, few sample quantity, short measure time, and so on. Based on the above requests, a new intelligent portable system is developed for measuring alpha radiated degree, which is suitable for solid wiping matter detected of which diameter is smaller than 20 mm. This system is mainly made up of the detector, self- circumrotating sample shelf, I/A converter, signal gathering and processing system, power supply etc. The system chooses PIPS (Planar Implanted Passivated Silicon) detector which is a designed logical signal gathering hardware. The detector is with small volume, high efficiency and good resolution. PIPS detector doesn't need working gas and is easy to use compared with gas ionization chamber detector. The self-circumrotating sample shelf carries on measuring samples cubically and this improves the accuracy. The system uses compensating adjustment technology to remove background, automatically identify and compensate for radon, thoron and progeny interference, and is able to obtain the reliable measurement result. And the power for this system is supplied simultaneously by 220 V AV power and rechargeable Li-battery supply; it also has a mobile storage for more environments. The dosimeter is used to measure the samples of which diameters are 10∼20 mm , the result of tests shows that: detection efficiency ≥ 30%, background count ≤ 0.2 cpm, stability ≤ 0.3% / h, working temperature -10∼40 C degrees. The parameters of the system basically meet the rapid measurement in a special environment, so it has valuable application prospect in the field of environment, laboratories, and nuclear facilities etc. (author)

  4. Standardized Method for Measuring Collection Efficiency from Wipe-sampling of Trace Explosives.

    Science.gov (United States)

    Verkouteren, Jennifer R; Lawrence, Jeffrey A; Staymates, Matthew E; Sisco, Edward

    2017-04-10

    One of the limiting steps to detecting traces of explosives at screening venues is effective collection of the sample. Wipe-sampling is the most common procedure for collecting traces of explosives, and standardized measurements of collection efficiency are needed to evaluate and optimize sampling protocols. The approach described here is designed to provide this measurement infrastructure, and controls most of the factors known to be relevant to wipe-sampling. Three critical factors (the applied force, travel distance, and travel speed) are controlled using an automated device. Test surfaces are chosen based on similarity to the screening environment, and the wipes can be made from any material considered for use in wipe-sampling. Particle samples of the explosive 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) are applied in a fixed location on the surface using a dry-transfer technique. The particle samples, recently developed to simulate residues made after handling explosives, are produced by inkjet printing of RDX solutions onto polytetrafluoroethylene (PTFE) substrates. Collection efficiency is measured by extracting collected explosive from the wipe, and then related to critical sampling factors and the selection of wipe material and test surface. These measurements are meant to guide the development of sampling protocols at screening venues, where speed and throughput are primary considerations.

  5. Measuring PM2.5, Ultrafine Particles, Nicotine Air and Wipe Samples Following the Use of Electronic Cigarettes.

    Science.gov (United States)

    Melstrom, Paul; Koszowski, Bartosz; Thanner, Meridith Hill; Hoh, Eunha; King, Brian; Bunnell, Rebecca; McAfee, Tim

    2017-09-01

    Few studies have examined the extent of inhalation or dermal contact among bystanders following short-term, secondhand e-cigarette exposure. Measure PM2.5 (particles e-cigarette exposure. E-cigarettes were used ad libitum by three experienced users for 2 hours during two separate sessions (disposable e-cigarettes, then tank-style e-cigarettes, or "tanks") in a 1858 ft3 room. We recorded: uncorrected PM2.5 (using SidePak); UF (using P-Trak); air nicotine concentrations (using air samplers; SKC XAD-4 canisters); ambient air exchange rate (using an air capture hood). Wipe samples were taken by wiping 100 cm2 room surfaces pre- and post- both sessions, and clean cloth wipes were worn during the exposure and collected at the end. Uncorrected PM2.5 and UF were higher (p e-cigarette use can produce: elevated PM2.5; elevated UF; nicotine in the air; and accumulation of nicotine on surfaces and clothing. Short-term indoor e-cigarette use produced accumulation of nicotine on surfaces and clothing, which could lead to dermal exposure to nicotine. Short-term e-cigarette use produced elevated PM2.5 and ultrafine particles, which could lead to secondhand inhalation of these particles and any chemicals associated with them by bystanders. We measured significant differences in PM2.5 and ultrafine particles between disposable e-cigarettes and tank-style e-cigarettes, suggesting a difference in the exposure profiles of e-cigarette products. Published by Oxford University Press on behalf of Society for Research on Nicotine and Tobacco 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  6. Reducing health care-associated infections by implementing separated environmental cleaning management measures by using disposable wipes of four colors.

    Science.gov (United States)

    Wong, Swee Siang; Huang, Cheng Hua; Yang, Chiu Chu; Hsieh, Yi Pei; Kuo, Chen Ni; Chen, Yi Ru; Chen, Li Ching

    2018-01-01

    Environmental cleaning is a fundamental principle of infection control in health care settings. We determined whether implementing separated environmental cleaning management measures in MICU reduced the density of HAI. We performed a 4-month prospective cohort intervention study between August and December 2013, at the MICU of Cathay General hospital. We arranged a training program for all the cleaning staff regarding separated environmental cleaning management measures by using disposable wipes of four colors to clean the patients' bedside areas, areas at a high risk of contamination, paperwork areas, and public areas. Fifteen high-touch surfaces were selected for cleanliness evaluation by using the adenosine triphosphate (ATP) bioluminescence test. Then data regarding HAI densities in the MICU were collected during the baseline, intervention, and late periods. A total of 120 ATP readings were obtained. The total number of clean high-touch surfaces increased from 13% to 53%, whereas that of unclean high-touch surface decreased from 47% to 20%. The densities of HAI were 14.32‰ and 14.90‰ during the baseline and intervention periods, respectively. The HAI density did not decrease after the intervention period, but it decreased to 9.07‰ during the late period. Implementing separated environmental cleaning management measures by using disposable wipes of four colors effectively improves cleanliness in MICU environments. However, no decrease in HAI density was observed within the study period. Considering that achieving high levels of hand-hygiene adherence is difficult, improving environmental cleaning is a crucial adjunctive measure for reducing the incidence of HAIs.

  7. wait and wipe

    African Journals Online (AJOL)

    and wipe strategy” as an alternative to circumcision for HIV prevention. In this paper, we argue that waiting for ten minutes and wiping with a dry cloth does not prevent men from becoming infected by HIV. We ... HIV infected despite having reported no sex or 100% condom .... In a qualitative study conducted in Kenya, men.

  8. Wipe sampling - review of the literature

    International Nuclear Information System (INIS)

    Souza, Daiane Cristini Barbosa de; Vicente, Roberto

    2011-01-01

    Methods for characterization of solid, non-compactable radioactive wastes contaminated in the surface are developed aiming at estimating the waste radioisotopic inventory for regulatory compliance and operational purposes. The wastes of interest here are mainly composed of plastic, metallic, or other materials parts originated in the decommissioning and maintenance operations of nuclear facilities. One way of measuring surface contamination is the indirect method of wiping the contaminated surface and counting the wipe, a common method of detecting non-fixed contamination in the radiation protection routine. The wipe sampling is an important tool in controlling the quality of the workplace in nuclear and radioactive facilities. Although radioprotection regulations establish quantitative limits, the practice in the radiation protection routine is to use wipe sampling as a qualitative measurement. To product useful quantitative results for inventorying radioactive wastes, a quantitative approach must be adopted. A previous paper presented by the authors in the last INAC Conference discussed alternative wipe materials and protocols. The method of wipe sampling underwent small changes since it started to be used but still is the object of study, as it is attested by many recent papers and patents on the subject. This article consists of a literature review. Results of a survey in the literature about wipe sampling techniques that can be applied to waste characterization are presented. (author)

  9. New approaches to wipe sampling methods for antineoplastic and other hazardous drugs in healthcare settings.

    Science.gov (United States)

    Connor, Thomas H; Smith, Jerome P

    2016-09-01

    At the present time, the method of choice to determine surface contamination of the workplace with antineoplastic and other hazardous drugs is surface wipe sampling and subsequent sample analysis with a variety of analytical techniques. The purpose of this article is to review current methodology for determining the level of surface contamination with hazardous drugs in healthcare settings and to discuss recent advances in this area. In addition it will provide some guidance for conducting surface wipe sampling and sample analysis for these drugs in healthcare settings. Published studies on the use of wipe sampling to measure hazardous drugs on surfaces in healthcare settings drugs were reviewed. These studies include the use of well-documented chromatographic techniques for sample analysis in addition to newly evolving technology that provides rapid analysis of specific antineoplastic. Methodology for the analysis of surface wipe samples for hazardous drugs are reviewed, including the purposes, technical factors, sampling strategy, materials required, and limitations. The use of lateral flow immunoassay (LFIA) and fluorescence covalent microbead immunosorbent assay (FCMIA) for surface wipe sample evaluation is also discussed. Current recommendations are that all healthc a re settings where antineoplastic and other hazardous drugs are handled include surface wipe sampling as part of a comprehensive hazardous drug-safe handling program. Surface wipe sampling may be used as a method to characterize potential occupational dermal exposure risk and to evaluate the effectiveness of implemented controls and the overall safety program. New technology, although currently limited in scope, may make wipe sampling for hazardous drugs more routine, less costly, and provide a shorter response time than classical analytical techniques now in use.

  10. False negative rate and other performance measures of a sponge-wipe surface sampling method for low contaminant concentrations.

    Energy Technology Data Exchange (ETDEWEB)

    Einfeld, Wayne; Krauter, Paula A.; Boucher, Raymond M.; Tezak, Mathew; Amidan, Brett G. (Pacific Northwest National Laboratory, Richland, WA); Piepel, Greg F. (Pacific Northwest National Laboratory, Richland, WA)

    2011-05-01

    Recovery of spores from environmental surfaces is known to vary due to sampling methodology, techniques, spore size and characteristics, surface materials, and environmental conditions. A series of tests were performed to evaluate a new, validated sponge-wipe method. Specific factors evaluated were the effects of contaminant concentrations and surface materials on recovery efficiency (RE), false negative rate (FNR), limit of detection (LOD) - and the uncertainties of these quantities. Ceramic tile and stainless steel had the highest mean RE values (48.9 and 48.1%, respectively). Faux leather, vinyl tile, and painted wood had mean RE values of 30.3, 25.6, and 25.5, respectively, while plastic had the lowest mean RE (9.8%). Results show a roughly linear dependence of surface roughness on RE, where the smoothest surfaces have the highest mean RE values. REs were not influenced by the low spore concentrations tested (3 x 10{sup -3} to 1.86 CFU/cm{sup 2}). The FNR data were consistent with RE data, showing a trend of smoother surfaces resulting in higher REs and lower FNRs. Stainless steel generally had the lowest mean FNR (0.123) and plastic had the highest mean FNR (0.479). The LOD{sub 90} varied with surface material, from 0.015 CFU/cm{sup 2} on stainless steel up to 0.039 on plastic. Selecting sampling locations on the basis of surface roughness and using roughness to interpret spore recovery data can improve sampling. Further, FNR values, calculated as a function of concentration and surface material, can be used pre-sampling to calculate the numbers of samples for statistical sampling plans with desired performance, and post-sampling to calculate the confidence in characterization and clearance decisions.

  11. Valuation of cloths for decontamination by wiping

    International Nuclear Information System (INIS)

    Rankin, W.N.; Reif, D.J.; Fink, S.D.; Luckenbach, R.L.

    1990-01-01

    Treated polyester cloth was evaluated in laboratory-scale and larger-scale tests as an alternative to atomic wipes and cotton cloth for use in decontamination by wiping. The advantages of the treated polyester are as follows: Does not react with nitric acid to form unstable product, More fire resistant, Less volume of radioactive waste generated (versus atomic wipes), and Product can be recovered by soaking the polyester cloths in nitric acid. Results are that even though treated polyester wiping cloths are slightly less effective than atomic wipes and cotton cloth, its many other benefits greatly outweigh this slight disadvantage. 1 ref., 5 figs

  12. Lessons learned from surface wipe sampling for lead in three workplaces.

    Science.gov (United States)

    Beaucham, Catherine; Ceballos, Diana; King, Bradley

    2017-08-01

    Surface wipe sampling in the occupational environment is a technique widely used by industrial hygienists. Although several organizations have promulgated standards for sampling lead and other metals, uncertainty still exists when trying to determine an appropriate wipe sampling strategy and how to interpret sampling results. Investigators from the National Institute for Occupational Safety and Health (NIOSH) Health Hazard Evaluation Program have used surface wipe sampling as part of their exposure assessment sampling strategies in a wide range of workplaces. This article discusses wipe sampling for measuring lead on surfaces in three facilities: (1) a battery recycling facility; (2) a firing range and gun store; and (3) an electronic scrap recycling facility. We summarize our findings from the facilities and what we learned by integrating wipe sampling into our sampling plan. Wiping sampling demonstrated lead in non-production surfaces in all three workplaces and that the potential that employees were taking lead home to their families existed. We also found that the presence of metals such as tin can interfere with the colorimetric results. We also discuss the advantages and disadvantages of colorimetric analysis of surface wipe samples and the challenges we faced when interpreting wipe sampling results.

  13. Sampling for Beryllium Surface Contamination using Wet, Dry and Alcohol Wipe Sampling

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, Kent [Central Missouri State Univ., Warrensburg, MO (United States)

    2004-12-01

    This research project was conducted at the National Nuclear Security Administration's Kansas City Plant, operated by Honeywell Federal Manufacturing and Technologies, in conjunction with the Safety Sciences Department of Central Missouri State University, to compare relative removal efficiencies of three wipe sampling techniques currently used at Department of Energy facilities. Efficiencies of removal of beryllium contamination from typical painted surfaces were tested by wipe sampling with dry Whatman 42 filter paper, with water-moistened (Ghost Wipe) materials, and by methanol-moistened wipes. Test plates were prepared using 100 mm X 15 mm Pyrex Petri dishes with interior surfaces spray painted with a bond coat primer. To achieve uniform deposition over the test plate surface, 10 ml aliquots of solution containing 1 beryllium and 0.1 ml of metal working fluid were transferred to the test plates and subsequently evaporated. Metal working fluid was added to simulate the slight oiliness common on surfaces in metal working shops where fugitive oil mist accumulates over time. Sixteen test plates for each wipe method (dry, water, and methanol) were processed and sampled using a modification of wiping patterns recommended by OSHA Method 125G. Laboratory and statistical analysis showed that methanol-moistened wipe sampling removed significantly more (about twice as much) beryllium/oil-film surface contamination as water-moistened wipes (p< 0.001), which removed significantly more (about twice as much) residue as dry wipes (p <0.001). Evidence for beryllium sensitization via skin exposure argues in favor of wipe sampling with wetting agents that provide enhanced residue removal efficiency.

  14. Allergenic Ingredients in Personal Hygiene Wet Wipes.

    Science.gov (United States)

    Aschenbeck, Kelly A; Warshaw, Erin M

    Wet wipes are a significant allergen source for anogenital allergic contact dermatitis. The aim of the study was to calculate the frequency of potentially allergenic ingredients in personal hygiene wet wipes. Ingredient lists from brand name and generic personal hygiene wet wipes from 4 large retailers were compiled. In the 54 personal hygiene wet wipes evaluated, a total of 132 ingredients were identified (average of 11.9 ingredients per wipe). The most common ingredients were Aloe barbadensis (77.8%), citric acid (77.8%), fragrance (72.2%), sorbic acid derivatives (63.0%), tocopherol derivatives (63.0%), glycerin (59.3%), phenoxyethanol (55.6%), disodium cocoamphodiacetate (53.7%), disodium ethylenediaminetetraacetic acid (EDTA) (42.6%), propylene glycol (42.6%), iodopropynyl butylcarbamate (40.7%), chamomile extracts (38.9%), sodium benzoate (35.2%), bronopol (22.2%), sodium citrate (22.2%), lanolin derivatives (20.4%), parabens (20.4%), polyethylene glycol derivatives (18.5%), disodium phosphate (16.7%), dimethylol dimethyl hydantoin (DMDM) (14.8%), and cocamidopropyl propylene glycol (PG)-dimonium chloride phosphate (11.1%). Of note, methylisothiazolinone (5.6%) was uncommon; methylchloroisothiazolinone was not identified in the personal hygiene wet wipes examined. There are many potential allergens in personal hygiene wet wipes, especially fragrance and preservatives.

  15. The development of a new three-step protocol to determine the efficacy of disinfectant wipes on surfaces contaminated with Staphylococcus aureus.

    Science.gov (United States)

    Williams, G J; Denyer, S P; Hosein, I K; Hill, D W; Maillard, J-Y

    2007-12-01

    We developed a three-step protocol to quantify the efficacy of disinfectant wipes, their ability to remove and prevent microbial transfer from surfaces and their overall antimicrobial activity. Meticillin-resistant (MRSA) or -susceptible (MSSA) Staphylococcus aureus (6-7 log(10)cfu) were inoculated onto stainless steel discs with or without organic load and dried. Grapefruit extract-containing test wipes and unmedicated control wipes were used. In step 1, wipes were mechanically rotated against surfaces for 10s at 60rpm, exerting a weight of 100+/-5g. Bacterial removal was assessed by transferring the steel discs to neutraliser, resuspending and counting remaining bacteria. In step 2, bacterial transfer from wipes was assessed by eight consecutive mechanical adpression transfers to agar/neutraliser plates. Step 3 was the measurement of antimicrobial activity by direct inoculation of the wipes for 10s followed by neutralisation and enumeration. Test wipes achieved a significantly higher bacterial cell removal than control wipes on all surfaces (P<0.05). The low bactericidal activity of the wipes (<1 log(10) reduction when directly inoculated) and the subsequent survival of bacteria on the wipes, however, led to repeated microbial transfer when initially high contamination levels were present. There were no differences between MRSA and MSSA in removal, transfer or antimicrobial activity. The three-step method is a useful tool for developing future guidelines to assess the ability of wipes to disinfect surfaces.

  16. Wipe sampling for characterization of noncompactable radioactive waste

    International Nuclear Information System (INIS)

    Barbieri, Aline E.O.; Ferreira, Robson J.; Vicente, Roberto

    2009-01-01

    Wipe sampling is a method of monitoring radioactive surface contamination on working area and on radioactive, non-compactable wastes, constituted of large pieces of replaced parts of equipment in nuclear and radioactive installations. In this method, sampling is executed by rubbing a disc of filter paper on the contaminated surface in such a way as to collect entirely or partially the deposited material. The target radioisotopes are subsequently measured directly on the wipe or extracted by appropriate radio analytical methods and then qualitatively and quantitatively determined. The collection factor, or the efficiency with which the material is removed from the surface and deposited on the smear, is the main source of error in quantitative measurements. The determination of the collection efficiency is the object of this communication. (author)

  17. Do new wipe materials outperform traditional lead dust cleaning methods?

    Science.gov (United States)

    Lewis, Roger D; Ong, Kee Hean; Emo, Brett; Kennedy, Jason; Brown, Christopher A; Condoor, Sridhar; Thummalakunta, Laxmi

    2012-01-01

    Government guidelines have traditionally recommended the use of wet mopping, sponging, or vacuuming for removal of lead-contaminated dust from hard surfaces in homes. The emergence of new technologies, such as the electrostatic dry cloth and wet disposable clothes used on mopheads, for removal of dust provides an opportunity to evaluate their ability to remove lead compared with more established methods. The purpose of this study was to determine if relative differences exist between two new and two older methods for removal of lead-contaminated dust (LCD) from three wood surfaces that were characterized by different roughness or texture. Standard leaded dust, coefficient of friction was performed for each wipe material. Analysis of variance was used to evaluate the surface and cleaning methods. There were significant interactions between cleaning method and surface types, p = 0.007. Cleaning method was found be a significant factor in removal of lead, p coefficient of friction, significantly different among the three wipes, is likely to influence the cleaning action. Cleaning method appears to be more important than texture in LCD removal from hard surfaces. There are some small but important factors in cleaning LCD from hard surfaces, including the limits of a Swiffer mop to conform to curved surfaces and the efficiency of the wetted shop towel and vacuuming for cleaning all surface textures. The mean percentage reduction in lead dust achieved by the traditional methods (vacuuming and wet wiping) was greater and more consistent compared to the new methods (electrostatic dry cloth and wet Swiffer mop). Vacuuming and wet wiping achieved lead reductions of 92% ± 4% and 91%, ± 4%, respectively, while the electrostatic dry cloth and wet Swiffer mops achieved lead reductions of only 89 ± 8% and  81 ± 17%, respectively.

  18. Mathematical modeling of wiped-film evaporators

    International Nuclear Information System (INIS)

    Sommerfeld, J.T.

    1976-05-01

    A mathematical model and associated computer program were developed to simulate the steady-state operation of wiped-film evaporators for the concentration of typical waste solutions produced at the Savannah River Plant. In this model, which treats either a horizontal or a vertical wiped-film evaporator as a plug-flow device with no backmixing, three fundamental phenomena are described: sensible heating of the waste solution, vaporization of water, and crystallization of solids from solution. Physical property data were coded into the computer program, which performs the calculations of this model. Physical properties of typical waste solutions and of the heating steam, generally as analytical functions of temperature, were obtained from published data or derived by regression analysis of tabulated or graphical data. Preliminary results from tests of the Savannah River Laboratory semiworks wiped-film evaporators were used to select a correlation for the inside film heat transfer coefficient. This model should be a useful aid in the specification, operation, and control of the full-scale wiped-film evaporators proposed for application under plant conditions. In particular, it should be of value in the development and analysis of feed-forward control schemes for the plant units. Also, this model can be readily adapted, with only minor changes, to simulate the operation of wiped-film evaporators for other conceivable applications, such as the concentration of acid wastes

  19. Quantitative Analysis of Organophosphate and Pyrethroid Insecticides, PyrethroidTransformation Products, Polybrominated Diphenyl Ethers and Bisphenol A in Residential Surface Wipe Samples

    Science.gov (United States)

    Surface wipe sampling is a frequently used technique for measuring persistent pollutants in residential environments. One characteristic of this form of sampling is the need to extract the entire wipe sample to achieve adequate sensitivity and to ensure representativeness. Most s...

  20. Fission gas measuring technology

    International Nuclear Information System (INIS)

    Lee, Hyung Kwon; Kim, Eun Ka; Hwang, Yong Hwa; Lee, Eun Pyo; Chun, Yong Bum; Seo, Ki Seog; Park, Dea Gyu; Chu, Yong Sun; Ahn, Sang Bok.

    1998-02-01

    Safety and economy of nuclear plant are greatly affected by the integrity of nuclear fuels during irradiation reactor core. A series of post-irradiation examination (PIE) including non-destructive and destructive test is to be conducted to evaluate and characterize the nuclear performance. In this report, a principle of the examination equipment to measure and analyse fission gases existing nuclear fuels were described and features of the component and device consisting the fission gas measuring equipment are investigated. (author). 4 refs., 2 tabs., 6 figs

  1. Fission gas measuring technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyung Kwon; Kim, Eun Ka; Hwang, Yong Hwa; Lee, Eun Pyo; Chun, Yong Bum; Seo, Ki Seog; Park, Dea Gyu; Chu, Yong Sun; Ahn, Sang Bok

    1998-02-01

    Safety and economy of nuclear plant are greatly affected by the integrity of nuclear fuels during irradiation reactor core. A series of post-irradiation examination (PIE) including non-destructive and destructive test is to be conducted to evaluate and characterize the nuclear performance. In this report, a principle of the examination equipment to measure and analyse fission gases existing nuclear fuels were described and features of the component and device consisting the fission gas measuring equipment are investigated. (author). 4 refs., 2 tabs., 6 figs.

  2. Ultrasonic measurements and technologies

    CERN Document Server

    Kočiš, Štefan

    1996-01-01

    An impulse for writing this book has originated from the effort to sum­ marize and publicise the acquired results of a research team at the De­ partment of Automation of the Faculty of Electrical Engineering and In­ formatics, Slovak Technical University in Bratislava. The research team has been involved for a long time with control problems for machine production mechanisms and, in recent (approximately 15) years, its effort was aimed mostly at the control of electrical servosystems of robots. Within this scope, the members of the authors' staff solved the State Re­ search Task Ultrasonic sensing of the position of a robot hand, which was coordinated by the Institute of Technical Cybernetics of the Slovak Academy of Sciences in Bratislava. The problem was solved in a complex way, i.e. from a conceptual de­ sign of the measurement, through the measurement and evaluation sys­ tem, up to connection to the control system of a robot. Compensation of the atmospheric influence on the precision of measurement,...

  3. Laboratory Validation and Field Assessment of Petroleum Laboratory Technicians' Dermal Exposure to Crude Oil Using a Wipe Sampling Method.

    Science.gov (United States)

    Galea, Karen S; Mueller, Will; Arfaj, Ayman M; Llamas, Jose L; Buick, Jennifer; Todd, David; McGonagle, Carolyn

    2018-05-21

    Crude oil may cause adverse dermal effects therefore dermal exposure is an exposure route of concern. Galea et al. (2014b) reported on a study comparing recovery (wipe) and interception (cotton glove) dermal sampling methods. The authors concluded that both methods were suitable for assessing dermal exposure to oil-based drilling fluids and crude oil but that glove samplers may overestimate the amount of fluid transferred to the skin. We describe a study which aimed to further evaluate the wipe sampling method to assess dermal exposure to crude oil, with this assessment including extended sample storage periods and sampling efficiency tests being undertaken at environmental conditions to mimic those typical of outdoor conditions in Saudi Arabia. The wipe sampling method was then used to assess the laboratory technicians' actual exposure to crude oil during typical petroleum laboratory tasks. Overall, acceptable storage efficiencies up to 54 days were reported with results suggesting storage stability over time. Sampling efficiencies were also reported to be satisfactory at both ambient and elevated temperature and relative humidity environmental conditions for surrogate skin spiked with known masses of crude oil and left up to 4 h prior to wiping, though there was an indication of reduced sampling efficiency over time. Nineteen petroleum laboratory technicians provided a total of 35 pre- and 35 post-activity paired hand wipe samples. Ninety-three percent of the pre-exposure paired hand wipes were less than the analytical limit of detection (LOD), whereas 46% of the post-activity paired hand wipes were less than the LOD. The geometric mean paired post-activity wipe sample measurement was 3.09 µg cm-2 (range 1.76-35.4 µg cm-2). It was considered that dermal exposure most frequently occurred through direct contact with the crude oil (emission) or via deposition. The findings of this study suggest that the wipe sampling method is satisfactory in quantifying

  4. Basics of identification measurement technology

    Science.gov (United States)

    Klikushin, Yu N.; Kobenko, V. Yu; Stepanov, P. P.

    2018-01-01

    All available algorithms and suitable for pattern recognition do not give 100% guarantee, therefore there is a field of scientific night activity in this direction, studies are relevant. It is proposed to develop existing technologies for pattern recognition in the form of application of identification measurements. The purpose of the study is to identify the possibility of recognizing images using identification measurement technologies. In solving problems of pattern recognition, neural networks and hidden Markov models are mainly used. A fundamentally new approach to the solution of problems of pattern recognition based on the technology of identification signal measurements (IIS) is proposed. The essence of IIS technology is the quantitative evaluation of the shape of images using special tools and algorithms.

  5. Broad Spectrum Sanitizing Wipes with Food Additives, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcide proposes to develop novel multipurpose non-toxic sanitizing wipes that are aqueous based, have shelf life of 3-5 years, have broad spectrum microbicidal...

  6. Representation of hysteresis with wipe-out memory

    International Nuclear Information System (INIS)

    Friedman, G.; Cha, K.

    2001-01-01

    A model representing scalar hysteretic systems with wipe-out memory is proposed. In this model a hysteresis operator is represented as a power series expansion containing an infinite number of terms in general. It is shown that this representation converges to any given hysteresis relation having wipe-out memory as long as the output of the given hysteresis varies sufficiently smoothly with input history. [copyright] 2001 American Institute of Physics

  7. Study on the wiping gas jet in continuous galvanizing line

    Science.gov (United States)

    Kweon, Yong-Hun; Kim, Heuy-Dong

    2011-09-01

    In the continuous hot-dip galvanizing process, the gas-jet wiping is used to control the coating thickness of moving steel strip. The high speed gas-jet discharged from the nozzle slot impinges on the strip, and at this moment, wipes the liquid coating layer dragged by a moving strip. The coating thickness is generally influenced on the flow characteristics of wiping gas-jet such as the impinging pressure distribution, pressure gradient and shear stress distribution on the surface of strip. The flow characteristics of wiping gas-jet mentioned above depends upon considerably both the process operating conditions such as the nozzle pressure, nozzle-to-strip distance and line speed, and the geometry of gas-jet wiping apparatus such as the height of nozzle slot. In the present study, the effect of the geometry of nozzle on the coating thickness is investigated with the help of a computational fluid dynamics method. The height of nozzle slot is varied in the range of 0.6mm to 1.7mm. A finite volume method (FVM) is employed to solve two-dimensional, steady, compressible Navier-Stokes equations. Based upon the results obtained, the effect of the height of nozzle slot in the gas-jet wiping process is discussed in detail. The computational results show that for a given standoff distance between the nozzle to the strip, the effective height of nozzle slot exists in achieving thinner coating thickness.

  8. In vitro prediction of in vivo skin damage associated with the wiping of dry tissue against skin.

    Science.gov (United States)

    Koenig, David W; Dvoracek, Barb; Vongsa, Rebecca

    2013-02-01

    The ideal gentle cleansing product is one that effectively removes soils while minimizing damage to the skin. Thus, measuring physical abrasion caused by cleansing tissues is critical to the continued development of gentle cleansing products. Current analysis of cleansing materials for skin gentleness is time consuming and requires expensive human subject testing. This report describes the development of a rapid and inexpensive bench assay for the assessment of skin abrasion caused by wiping. Coefficient of friction (COF) evaluations using bench methods were compared with results from clinical studies of repeated wiping and with confocal visualizations of excised skin. A Monitor/Slip and Friction instrument (model 32-06; TMI, Amityville, NY, USA) was used to measure tissue friction on simulated skin (Vitro-Skin, N19-5X; IMS, Milford, CT, USA). Clinical data from a 4-day repetitive forearm wiping study measuring transepidermal water loss (TEWL) in 30 subjects was compared with results from the bench top assay. In addition, excised skin samples were also treated using the COF bench assay and examined using confocal microscopy to visualize stratum corneum damage caused by wiping. Using the bench COF assay, we were able to distinguish between bath tissue codes by comparing average static friction value (ASFV) for the test codes, where lower ASFV indicated less abrasive tissue. The ASFV followed the same gentleness trend observed in the clinical study. Confocal microscopy of excised skin wiped with the same materials indicated stratum corneum damage consistent with the bench COF and clinical TEWL observations. We observed significant correlation between bench and clinical methods for measuring skin damage caused by wiping of skin with tissue. The bench method will facilitate rapid and inexpensive skin gentleness assessment of cleansing materials. © 2012 John Wiley & Sons A/S.

  9. Disinfectant wipes are appropriate to control microbial bioburden from surfaces: use of a new ASTM standard test protocol to demonstrate efficacy.

    Science.gov (United States)

    Sattar, S A; Bradley, C; Kibbee, R; Wesgate, R; Wilkinson, M A C; Sharpe, T; Maillard, J-Y

    2015-12-01

    The use of disinfectant pre-soaked wipes (DPW) to decontaminate high-touch environmental surfaces (HTES) by wiping is becoming increasingly widespread in the healthcare environment. However, DPW are rarely tested using conditions simulating their field use, and the label claims of environmental surface disinfectants seldom include wiping action. To evaluate the new E2967-15 standard test specific to wipes, particularly their ability to decontaminate surfaces and to transfer acquired contamination to clean surfaces. ASTM Standard E2967-15 was used by three independent laboratories to test the efficacy of five types of commercially available wipe products. All data generated were pulled together, and reproducibility and repeatability of the standard were measured. All the commercial DPW tested achieved a >4log10 (>99.99%) reduction in colony-forming units (CFU) of Staphylococcus aureus and Acinetobacter baumanii with 10s of wiping, but only one DPW containing 0.5% accelerated H2O2 prevented the transfer of bacteria to another surface. This newly introduced standard method represents a significant advance in assessing DPW for microbial decontamination of HTES, and should greatly assist research and development, and in making more relevant and reliable claims on marketed DPW. Copyright © 2015. Published by Elsevier Ltd.

  10. A LITERATURE REVIEW OF WIPE SAMPLING METHODS FOR CHEMICAL WARFARE AGENTS AND TOXIC INDUSTRIAL CHEMICALS

    Science.gov (United States)

    Wipe sampling is an important technique for the estimation of contaminant deposition in buildings, homes, or outdoor surfaces as a source of possible human exposure. Numerousmethods of wipe sampling exist, and each method has its own specification for the type of wipe, we...

  11. Next Generation Air Measurement Technologies Fact Sheet

    Science.gov (United States)

    EPA is advancing lower cost and portable air measurement technology to enhance monitoring capabilities for complying with the National Ambient Air Quality Standards. The technology is providing mobile and stationary real-time measurement capabilities.

  12. Impact of antimicrobial wipes compared with hypochlorite solution on environmental surface contamination in a health care setting: A double-crossover study.

    Science.gov (United States)

    Siani, Harsha; Wesgate, Rebecca; Maillard, Jean-Yves

    2018-05-11

    Antimicrobial wipes are increasingly used in health care settings. This study evaluates, in a clinical setting, the efficacy of sporicidal wipes versus a cloth soaked in a 1,000 ppm chlorine solution. A double-crossover study was performed on 2 different surgical and cardiovascular wards in a 1,000-bed teaching hospital over 29 weeks. The intervention period that consisted of surface decontamination with the preimpregnated wipe or cloth soaked in chlorine followed a 5-week baseline assessment of microbial bioburden on surfaces. Environmental samples from 11 surfaces were analyzed weekly for their microbial content. A total of 1,566 environmental samples and 1,591 ATP swabs were analyzed during the trial. Overall, there were significant differences in the recovery of total aerobic bacteria (P < .001), total anaerobic bacteria (P < .001), and ATP measurement (P < .001) between wards and between the different parts of the crossover study. Generally, the use of wipes produced the largest reduction in the total aerobic and anaerobic counts when compared with the baseline data or the use of 1,000 ppm chlorine. Collectively, the introduction of training plus daily wipe disinfection significantly reduced multidrug-resistant organisms recovered from surfaces. Reversion to using 1,000 ppm chlorine resulted in the number of sites positive for multidrug-resistant organisms rising again. This double-crossover study is the first controlled field trial comparison of using preimpregnated wipes versus cotton cloth dipped into a bucket of hypochlorite to decrease surface microbial bioburden. The results demonstrate the superiority of the preimpregnated wipes in significantly decreasing microbial bioburden from high-touch surfaces. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  13. Status of radiation-based measurement technology

    International Nuclear Information System (INIS)

    Moon, B. S.; Lee, J. W.; Chung, C. E.; Hong, S. B.; Kim, J. T.; Park, W. M.; Kim, J. Y.

    1999-03-01

    This report describes the status of measurement equipment using radiation source and new technologies in this field. This report includes the development status in Korea together with a brief description of the technology development and application status in ten countries including France, America, and Japan. Also this report describes technical factors related to radiation-based measurement and trends of new technologies. Measurement principles are also described for the equipment that is widely used among radiation-based measurement, such as level measurement, density measurement, basis weight measurement, moisture measurement, and thickness measurement. (author). 7 refs., 2 tabs., 21 figs

  14. Measuring transformers in energy measurement technology

    International Nuclear Information System (INIS)

    Vock, E.

    2009-01-01

    This article takes a look at the use of measurement transformers in energy measurement installations in the light of electricity market liberalisation. Such equipment is quoted as being long living and capital-intensive. Increasing requirements on the installation of measurement equipment between partners in a liberalised market are examined. The requirements placed by electricity market legislation on the systems for the various grid voltage levels are discussed. Both current and voltage measurement transformers are looked at and the requirements placed on their accuracy are discussed in detail.

  15. Effectiveness of cleaning-disinfection wipes and sprays against multidrug-resistant outbreak strains.

    Science.gov (United States)

    Kenters, Nikki; Huijskens, Elisabeth G W; de Wit, Sophie C J; van Rosmalen, Joost; Voss, Andreas

    2017-08-01

    Hospital rooms play an important role in the transmission of several health care-associated pathogens. During the last few years, a number of innovative cleaning-disinfecting products have been brought to market. In this study, commercially available products combining cleaning and disinfection were compared, using 2 different application methods. The aim was to determine which product was most effective in simultaneous cleaning and disinfection of surfaces. Seven cleaning-disinfecting wipes and sprays based on different active ingredients were tested for their efficacy in removal of microbial burden and proteins. Efficacy was tested with known Dutch outbreak strains: vancomycin-resistant enterococci (VRE), Klebsiella pneumoniae OXA-48, or Acinetobacter baumannii. For all bacteria, ready-to-use cleaning-disinfecting products reduced the microbial count with a log 10 reduction >5 with a 5-minute exposure time, with the exception of a spray based on hydrogen peroxide. Omitting the aforementioned hydrogen peroxide spray, there were no significant differences between use of a wipe or spray in bacterial load reduction. Using adenosine triphosphate (ATP) measurements, a significant difference in log 10 relative light units (RLU) reduction between various bacteria (P ≤ .001) was observed. In general, a >5 log 10 reduction of colony forming units (CFU) for tested wipes and sprays was obtained for all tested bacteria strains, with exception of hydrogen peroxide spray and VRE. Although ATP may show a difference between pre- and postcleaning, RLU reduction does not correlate with actual CFU reductions. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  16. Remote Wiping and Secure Deletion on Mobile Devices: A Review.

    Science.gov (United States)

    Leom, Ming Di; Choo, Kim-Kwang Raymond; Hunt, Ray

    2016-11-01

    Mobile devices have become ubiquitous in almost every sector of both private and commercial endeavors. As a result of such widespread use in everyday life, many users knowingly and unknowingly save significant amounts of personal and/or commercial data on these mobile devices. Thus, loss of mobile devices through accident or theft can expose users-and their businesses-to significant personal and corporate cost. To mitigate this data leakage issue, remote wiping features have been introduced to modern mobile devices. Given the destructive nature of such a feature, however, it may be subject to criminal exploitation (e.g., a criminal exploiting one or more vulnerabilities to issue a remote wiping command to the victim's device). To obtain a better understanding of remote wiping, we survey the literature, focusing on existing approaches to secure flash storage deletion and provide a critical analysis and comparison of a variety of published research in this area. In support of our analysis, we further provide prototype experimental results for three Android devices, thus providing both a theoretical and applied focus to this article as well as providing directions for further research. © 2016 American Academy of Forensic Sciences.

  17. Laser measurement technology fundamentals and applications

    CERN Document Server

    Donges, Axel

    2015-01-01

    Laser measurement technology has evolved in the last years in a versatile and reflationary way. Today, its methods are indispensable for research and development activities as well as for production technology. Every physicist and engineer should therefore gain a working knowledge of laser measurement technology. This book closes the gap of existing textbooks. It introduces in a comprehensible presentation laser measurement technology in all its aspects. Numerous figures, graphs and tables allow for a fast access into the matter. In the first part of the book the important physical and optical basics are described being necessary to understand laser measurement technology. In the second part technically significant measuring methods are explained and application examples are presented. Target groups of this textbook are students of natural and engineering sciences as well as working physicists and engineers, who are interested to make themselves familiar with laser measurement technology and its fascinating p...

  18. Technology on precision measurement of mass

    International Nuclear Information System (INIS)

    2005-10-01

    This book mentions mass and scales about technology for precision measurement, which deal with how to measure mass with scale. So it describes the basic things of mass and scales. It includes translated book of international standard OIML with demand of measurement and technology and form for test report and international original standard OIML with metrological and technical requirements and test report format.

  19. Air, hand wipe, and surface wipe sampling for Bisphenol A (BPA) among workers in industries that manufacture and use BPA in the United States.

    Science.gov (United States)

    Hines, Cynthia J; Jackson, Matthew V; Christianson, Annette L; Clark, John C; Arnold, James E; Pretty, Jack R; Deddens, James A

    2017-11-01

    For decades, bisphenol A (BPA) has been used in making polycarbonate, epoxy, and phenolic resins and certain investment casting waxes, yet published exposure data are lacking for U.S. manufacturing workers. In 2013-2014, BPA air and hand exposures were quantified for 78 workers at six U.S. companies making BPA or BPA-based products. Exposure measures included an inhalable-fraction personal air sample on each of two consecutive work days (n = 146), pre- and end-shift hand wipe samples on the second day (n = 74 each), and surface wipe samples (n = 88). Potential determinants of BPA air and end-shift hand exposures (after natural log transformation) were assessed in univariate and multiple regression mixed models. The geometric mean (GM) BPA air concentration was 4.0 µg/m 3 (maximum 920 µg/m 3 ). The end-shift GM BPA hand level (26 µg/sample) was 10-times higher than the pre-shift level (2.6 µg/sample). BPA air and hand exposures differed significantly by industry and job. BPA air concentrations and end-shift hand levels were highest in the BPA-filled wax manufacturing/reclaim industry (GM Air = 48 µg/m 3 , GM Hand-End = 130 µg/sample) and in the job of working with molten BPA-filled wax (GM Air = 43 µg/m 3 , GM Hand-End = 180 µg/sample), and lowest in the phenolic resins industry (GM Air = 0.85 µg/m 3 , GM Hand-End = 0.43 µg/sample) and in the job of flaking phenolic resins (GM AIR = 0.62 µg/m 3 , GM Hand-End = 0.38 µg/sample). Determinants of increased BPA air concentration were industry, handling BPA containers, spilling BPA, and spending ≥50% of the shift in production areas; increasing age was associated with lower air concentrations. BPA hand exposure determinants were influenced by high values for two workers; for all other workers, tasks involving contact with BPA-containing materials and spending ≥50% of the shift in production areas were associated with increased BPA hand levels. Surface wipe BPA levels were significantly lower in

  20. Disruptive Innovation in Air Measurement Technology: Reality ...

    Science.gov (United States)

    This presentation is a big picture overview on the changing state of air measurement technology in the world, with a focus on the introduction of low-cost sensors into the market place. The presentation discusses how these new technologies may be a case study in disruptive innovation for the air pollution measurement field. The intended audience is primarily those with experience in air pollution measurement methods, but much of the talk is accessible to the general public. This is a keynote presentation on emerging air monitoring technology, to be provided at the AWMA measurements conference in March, 2016.

  1. Wipe sampling for nicotine as a marker of thirdhand tobacco smoke contamination on surfaces in homes, cars, and hotels.

    Science.gov (United States)

    Quintana, Penelope J E; Matt, Georg E; Chatfield, Dale; Zakarian, Joy M; Fortmann, Addie L; Hoh, Eunha

    2013-09-01

    Secondhand smoke contains a mixture of pollutants that can persist in air, dust, and on surfaces for months or longer. This persistent residue is known as thirdhand smoke (THS). Here, we detail a simple method of wipe sampling for nicotine as a marker of accumulated THS on surfaces. We analyzed findings from 5 real-world studies to investigate the performance of wipe sampling for nicotine on surfaces in homes, cars, and hotels in relation to smoking behavior and smoking restrictions. The intraclass correlation coefficient for side-by-side samples was 0.91 (95% CI: 0.87-0.94). Wipe sampling for nicotine reliably distinguished between private homes, private cars, rental cars, and hotels with and without smoking bans and was significantly positively correlated with other measures of tobacco smoke contamination such as air and dust nicotine. The sensitivity and specificity of possible threshold values (0.1, 1, and 10 μg/m(2)) were evaluated for distinguishing between nonsmoking and smoking environments. Sensitivity was highest at a threshold of 0.1 μg/m(2), with 74%-100% of smoker environments showing nicotine levels above threshold. Specificity was highest at a threshold of 10 μg/m(2), with 81%-100% of nonsmoker environments showing nicotine levels below threshold. The optimal threshold will depend on the desired balance of sensitivity and specificity and on the types of smoking and nonsmoking environments. Surface wipe sampling for nicotine is a reliable, valid, and relatively simple collection method to quantify THS contamination on surfaces across a wide range of field settings and to distinguish between nonsmoking and smoking environments.

  2. Advanced ultrasonic technology for natural gas measurement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    In recent years, due to rising environmental and safety concerns, increasing commodity prices, and operational inefficiencies, a paradigm shift has been taking place with respect to gas measurement. The price of natural gas depends on the location, time of the year, and type of consumer. There is wide uncertainty associated with an orifice meter. This paper presents the use of advanced ultrasonic technology for the measurement of natural gas. For many years, multi-path ultrasonic meters with intelligent sensor technology have been used for gas measurement. This paper gives the various applications of ultrasonic technology along with their advantages and a draws a comparison with orifice meters. From the study it can be concluded that extensive advances in the use of ultrasonic technology for gas measurement have widened the areas of application and that varying frequencies combined with sealed transducer designs make it possible to measure atmospheric and sour gas in custody transfer process control and flaring accurately.

  3. Technological measures to improve automotive product quality

    OpenAIRE

    Gladkov, V.; Kruglov, S.

    2010-01-01

    The paper examines the basic technological measures aimed at improving product quality in automotive industry. While paying due attention to solving organizational and technological problems, including the development of certification systems for production processes, it is also necessary to improve the technical standards of specific technologies, equipment and materials as they largely determine product quality. Special emphasis is given to the importance of improving the production of auto...

  4. Identifying trace evidence in data wiping application software

    Directory of Open Access Journals (Sweden)

    Gregory H. Carlton

    2012-06-01

    Full Text Available One area of particular concern for computer forensics examiners involves situations in which someone utilized software applications to destroy evidence. There are products available in the marketplace that are relatively inexpensive and advertised as being able to destroy targeted portions of data stored within a computer system. This study was undertaken to identify these tools and analyze them to determine the extent to which each of the evaluated data wiping applications perform their tasks and to identify trace evidence, if any, left behind on disk media after executing these applications. We evaluated five Windows 7 compatible software products whose advertised features include the ability for users to wipe targeted files, folders, or evidence of selected activities. We conducted a series of experiments that involved executing each application on systems with identical data, and we then analyzed the results and compared the before and after images for each application. We identified information for each application that is beneficial to forensics examiners when faced with similar situations. This paper describes our application selection process, our application evaluation methodology, and our findings. Following this, we describe limitations of this study and suggest areas of additional research that will benefit the study of digital forensics.

  5. Surface dust wipes are the best predictors of blood leads in young children with elevated blood lead levels

    Energy Technology Data Exchange (ETDEWEB)

    Gulson, Brian, E-mail: brian.gulson@mq.edu.au [Graduate School of the Environment, Macquarie University, North Ryde NSW 2109 (Australia); CSIRO Earth Science and Resource Engineering, North Ryde NSW 2113 (Australia); Anderson, Phil [Information and Statistics Group, Australian Institute of Health and Welfare, Canberra ACT 2601 (Australia); Faculty of Health, University of Canberra, Canberra ACT 2601 (Australia); Taylor, Alan [Department of Psychology, Macquarie University, Sydney NSW 2109 (Australia)

    2013-10-15

    Background: As part of the only national survey of lead in Australian children, which was undertaken in 1996, lead isotopic and lead concentration measurements were obtained from children from 24 dwellings whose blood lead levels were ≥15 µg/dL in an attempt to determine the source(s) of their elevated blood lead. Comparisons were made with data for six children with lower blood lead levels (<10 µg/dL). Methods: Thermal ionisation and isotope dilution mass spectrometry were used to determine high precision lead isotopic ratios ({sup 208}Pb/{sup 206}Pb, {sup 207}Pb/{sup 206}Pb and {sup 206}Pb/{sup 204}Pb) and lead concentrations in blood, dust from floor wipes, soil, drinking water and paint (where available). Evaluation of associations between blood and the environmental samples was based on the analysis of individual cases, and Pearson correlations and multiple regression analyses based on the whole dataset. Results and discussion: The correlations showed an association for isotopic ratios in blood and wipes (r=0.52, 95% CI 0.19–0.74), blood and soil (r=0.33, 95% CI −0.05–0.62), and blood and paint (r=0.56, 95% CI 0.09–0.83). The regression analyses indicated that the only statistically significant relationship for blood isotopic ratios was with dust wipes (B=0.65, 95% CI 0.35–0.95); there were no significant associations for lead concentrations in blood and environmental samples. There is a strong isotopic correlation of soils and house dust (r=0.53, 95% CI 0.20–0.75) indicative of a common source(s) for lead in soil and house dust. In contrast, as with the regression analyses, no such association is present for bulk lead concentrations (r=−0.003, 95% CI −0.37–0.36), the most common approach employed in source investigations. In evaluation of the isotopic results on a case by case basis, the strongest associations were for dust wipes and blood. -- Highlights: • Children with elevated blood lead ≥15 µg/dL compared with a group with <10

  6. Political measures for promoting environmental technology

    International Nuclear Information System (INIS)

    2006-01-01

    Environmental technology can contribute to solving many environmental challenges and to industrial development. Measures to support the development and use of such technologies can be regulatory, economic or administrative, and usually one needs to use a combination of different measures in order to reach both a better environment and industrial development. For industrial development other measures than those administered by environmental authorities will be of importance. The environmental authorities therefore need to acquire knowledge about these measures and the bodies administering them, and develop an operative cooperation with these actors

  7. The Impact of Feet Callosities, Arm Posture, and Usage of Electrolyte Wipes on Body Composition by Bioelectrical Impedance Analysis in Morbidly Obese Adults.

    Science.gov (United States)

    Roekenes, Jessica; Strømmen, Magnus; Kulseng, Bård; Martins, Catia

    2015-01-01

    This study evaluated the impact of feet callosities, arm posture, and use of electrolyte wipes on body composition measurements by bioelectrical impedance analysis (BIA) in morbidly obese adults. 36 morbidly obese patients (13 males, aged 28-70 years, BMI 41.6 ± 4.3 kg/m2) with moderate/severe feet callosities participated in this study. Body composition (percent body fat (%BF)) was measured while fasting using multi-frequency BIA (InBody 720®), before and after removal of callosities, with and without InBody® electrolyte wipes and custom-built auxiliary pads (to assess arm posture impact). Results from BIA were compared to air displacement plethysmography (ADP, BodPod®). Median %BF was significantly higher with auxiliary pads than without (50.1 (interquartile range 8.2) vs. 49.3 (interquartile range 9.1); p interquartile range 9.1) vs. 50.0 (interquartile range 7.9); NS) or use of wipes (49.6 (interquartile range 8.5) vs. 49.3 (interquartile range 9.1); NS). No differences in %BF were found between BIA and ADP (49.1 (IQR: 8.9) vs. 49.3 (IQR: 9.1); NS). Arm posture has a significant impact on %BF assessed by BIA, contrary to the presence of feet callosities and use of electrolyte wipes. Arm posture standardization during BIA for body composition assessment is, therefore, recommended. © 2015 S. Karger GmbH, Freiburg.

  8. On measuring technological possibilities by hypervolumes

    DEFF Research Database (Denmark)

    Asmild, Mette; Hougaard, Jens Leth

    2016-01-01

    Measuring technological possibilities is a somewhat neglected topic in the productivity analysis literature. We discuss existing methods as well as an obvious alternative measure based on hypervolumes. We illustrate the use of a volume-based measure on an empirical case of demolition projects fro...... two different companies and suggest ways of overcoming some issues related to the practical implementation. Finally, we discuss pros and cons of the various approaches.......Measuring technological possibilities is a somewhat neglected topic in the productivity analysis literature. We discuss existing methods as well as an obvious alternative measure based on hypervolumes. We illustrate the use of a volume-based measure on an empirical case of demolition projects from...

  9. Final Rule: 2013 Conditional Exclusions From Solid Waste and Hazardous Waste for Solvent-Contaminated Wipes

    Science.gov (United States)

    This is a regulation page for the final rule EPA issued on July 31, 2013 that modifies the hazardous waste management regulations for solvent-contaminated wipes under the Resource Conservation and Recovery Act (RCRA).

  10. Simultaneous Determination of Alkoxyalcohols in Wet Wipes Using Static Headspace Gas Chromatography and Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So Jin; Pyo, Hee Soo; Chung, Bong Chul; Lee, Jeon Gae [KIST, Seoul (Korea, Republic of); Kim, Hai Dong [Kyung Hee University, Seoul (Korea, Republic of)

    2014-09-15

    Alkoxyalcohols are used as solvents or preservatives in various consumer products such as wet wipes. The metabolites of alkoxyalcohols are known to be chronically toxic and carcinogenic to animals. Thus, an analytical method is needed to monitor alkoxyalcohols in wet wipes. The aim of this study was to develop a simultaneous analytical method for 14 alkoxyalcohols using headspace gas chromatography coupled with mass spectrometry to analyze the wet wipes. This method was developed by comparing with various headspace extraction parameters. The linear calibration curves were obtained for the method (r2 > 0.995). The limit of detection of alkoxyalcohols ranged from 2 to 200 ng mL-1. The precision of the determinative method was less than 18.20% coefficient of variation both intra and inter days. The accuracy of the method ranged from 82.86% to 119.83%. (2-Methoxymethylethoxy)propanol, 2-phenoxyethanol, and 1-phenoxy-2-propanol were mainly detected in wet wipes.

  11. The Technology of Measurement Feedback Systems.

    Science.gov (United States)

    Bickman, Leonard; Kelley, Susan Douglas; Athay, Michele

    2012-12-01

    Usual care in the community is far from optimal. Sufficient evidence exists that dropout rates are significant, treatment is effective for only a small proportion of clients, and that the translation of evidence-based treatments to the real world is problematic. Technology has been shown to be helpful in health care in improving the effectiveness of treatment. A relatively new technology being used in mental health is measurement feedback systems (MFSs). MFSs are particularly applicable to couple and family psychology (CFP) because of its ability to provide information on the multiple perspectives involved in treatment. The Contextualized Feedback Systems tm (CFS®), developed at Vanderbilt University is used as an example of what can be accomplished with an MFS. The advantages and limitations of this technology are described as well as the anticipated reimbursement requirements that mental health services will need.

  12. A Cultural Look at Moral Purity: Wiping the Face Clean

    Directory of Open Access Journals (Sweden)

    Spike W. S. eLee

    2015-05-01

    Full Text Available Morality is associated with bodily purity in the custom of many societies. Does that imply moral purity is a universal psychological phenomenon? Empirically, it has never been examined, as all prior experimental data came from Western samples. Theoretically, we suggest the answer is not so straightforward—it depends on the kind of universality under consideration. Combining perspectives from cultural psychology and embodiment, we predict a culture-specific form of moral purification. Specifically, given East Asians’ emphasis on the face as a representation of public self-image, we hypothesize that facial purification should have particularly potent moral effects in a face culture. Data show that face-cleaning (but not hands-cleaning reduces guilt and regret most effectively against a salient East Asian cultural background. It frees East Asians from guilt-driven prosocial behavior. In the wake of their immorality, they find a face-cleaning product especially appealing and spontaneously choose to wipe their face clean. These patterns highlight both culturally variable and universal aspects of moral purification. They further suggest an organizing principle that informs the vigorous debate between embodied and amodal perspectives.

  13. Wet Wipe Allergens: Retrospective Analysis From the North American Contact Dermatitis Group 2011-2014.

    Science.gov (United States)

    Warshaw, Erin M; Aschenbeck, Kelly A; Zug, Kathryn A; Belsito, Donald V; Zirwas, Matthew J; Fowler, Joseph F; Taylor, James S; Sasseville, Denis; Fransway, Anthony F; DeLeo, Vincent A; Marks, James G; Pratt, Melanie D; Maibach, Howard I; Mathias, C G Toby; DeKoven, Joel G

    Although there are several case reports of wet wipe-associated contact dermatitis, the prevalence of wipes as a source of allergic contact dermatitis in larger populations and the responsible allergens are largely unknown. The aim of the study was to determine the prevalence of wet wipes as a source of contact allergy and the most commonly associated allergens in a North American tertiary referral patch test population. Data collected from 2011 to 2014 by the North American Contact Dermatitis Group was used to conduct a retrospective cross-sectional analysis of patient demographics and patch test results associated with the triple-digit source code for "wet wipe." Of the 9037 patients patch tested during the study period, 79 (0.9%) had a positive patch test reaction to an allergen identified with a wet wipe source. The most commonly associated allergens were preservatives, including the following: methylisothiazolinone (MI) (59.0%), methylchloroisothiazolinone (MCI)/MI (35.6%), bronopol (2-bromo-2-nitropropane-1,3-diol) (27.4%), and iodopropynyl butylcarbamate (12.3%). Fragrance (combined) represented 12.3%. Anal/genital dermatitis was 15 times more likely (P contact allergy had their contact allergens detected by the North American Contact Dermatitis Group screening series. Wet wipes are an important source of contact allergy. Preservatives are the main allergens, especially isothiazolinones.

  14. Reactor Coolant Temperature Measurement using Ultrasonic Technology

    Energy Technology Data Exchange (ETDEWEB)

    Jung, JaeCheon [KEPCO International Nuclear graduate School, Ulsan (Korea, Republic of); Seo, YongSun; Bechue, Nicholas [Krohne Messtechnik GmbH, Duisburg (Germany)

    2016-10-15

    In NPP, the primary piping temperature is detected by four redundant RTDs (Resistance Temperature Detectors) installed 90 degrees apart on the RCS (Reactor Coolant System) piping circumferentially. Such outputs however, if applied to I and C systems would not give balanced results. The discrepancy can be explained by either thermal stratification or improper arrangement of thermo-wells and RTDs. This phenomenon has become more pronounced in the hot-leg piping than in the cold-leg. Normally, the temperature difference among channels is in the range of 1°F in Korean nuclear power Plants. Consequently, a more accurate pipe average temperate measurement technique is required. Ultrasonic methods can be used to measure average temperatures with relatively higher accuracy than RTDs because the sound wave propagation in the RCS pipe is proportional to the average temperature around pipe area. The inaccuracy of RCS temperature measurement worsens the safety margin for both DNBR and LPD. The possibility of this discrepancy has been reported with thermal stratification effect. Proposed RCS temperature measurement system based on ultrasonic technology offers a countermeasure to cope with thermal stratification effect on hot-leg piping that has been an unresolved issue in NPPs. By introducing ultrasonic technology, the average internal piping temperature can be measured with high accuracy. The inaccuracy can be decreased less than ±1℉ by this method.

  15. Fluid Flow Technology that Measures Up

    Science.gov (United States)

    2004-01-01

    From 1994 to 1996, NASA s Marshall Space Flight Center conducted a Center Director's Discretionary Fund research effort to apply artificial intelligence technologies to the health management of plant equipment and space propulsion systems. Through this effort, NASA established a business relationship with Quality Monitoring and Control (QMC), of Kingwood, Texas, to provide hardware modeling and artificial intelligence tools. Very detailed and accurate Space Shuttle Main Engine (SSME) analysis and algorithms were jointly created, which identified several missing, critical instrumentation needs for adequately evaluating the engine health status. One of the missing instruments was a liquid oxygen (LOX) flow measurement. This instrument was missing since the original SSME included a LOX turbine flow meter that failed during a ground test, resulting in considerable damage for NASA. New balanced flow meter technology addresses this need with robust, safe, and accurate flow metering hardware.

  16. Experimental estimation of migration and transfer of organic substances from consumer articles to cotton wipes: Evaluation of underlying mechanisms.

    Science.gov (United States)

    Clausen, Per Axel; Spaan, Suzanne; Brouwer, Derk H; Marquart, Hans; le Feber, Maaike; Engel, Roel; Geerts, Lieve; Jensen, Keld Alstrup; Kofoed-Sørensen, Vivi; Hansen, Brian; De Brouwere, Katleen

    2016-01-01

    The aim of this work was to identify the key mechanisms governing transport of organic chemical substances from consumer articles to cotton wipes. The results were used to establish a mechanistic model to improve assessment of dermal contact exposure. Four types of PVC flooring, 10 types of textiles and one type of inkjet printed paper were used to establish the mechanisms and model. Kinetic extraction studies in methanol demonstrated existence of matrix diffusion and indicated the presence of a substance surface layer on some articles. Consequently, the proposed substance transfer model considers mechanical transport from a surface film and matrix diffusion in an article with a known initial total substance concentration. The estimated chemical substance transfer values to cotton wipes were comparable to the literature data (relative transfer ∼ 2%), whereas relative transfer efficiencies from spiked substrates were high (∼ 50%). For consumer articles, high correlation (r(2)=0.92) was observed between predicted and measured transfer efficiencies, but concentrations were overpredicted by a factor of 10. Adjusting the relative transfer from about 50% used in the model to about 2.5% removed overprediction. Further studies are required to confirm the model for generic use.

  17. Measurement Science and Technology at 2013

    Science.gov (United States)

    Birch, David J. S.

    2013-01-01

    Dear authors, reviewers and readers of Measurement Science and Technology, As a New Year dawns I would like to thank all those who have published papers with us in 2012, and offer a special thanks go to those of you who have given up much of your precious time and kindly reviewed articles for the journal. I would also like to take this opportunity to update you all on some of the developments on the journal as we look ahead to a 2013 that will be a very special year for MST. Something that many readers may not be aware of is that Measurement Science and Technology was the world's first scientific instrument journal, and in 2013 we will be celebrating 90 years since the journal was first published. In 1923 the Institute of Physics launched the Journal of Scientific Instruments in order to capture the essential information regarding the design and performance of instruments, which was then often unobtainable from books or articles focused on results. The journal has moved with the times over the 90 years since its first publication, changing its name and scope to ensure it reflects the community it serves, but the dissemination of useful measurement knowledge has always been its core purpose. In 2013 we will be celebrating the sustained success of the journal with a series of articles and events throughout the year. These include a one-day 'Frontiers of Measurement' meeting to be held at the Institute of Physics, London, on 21 March. We do hope you can join us and leading speakers for this exciting event. We also think you will enjoy reading the articles in this special reviews issue which will showcase some of the best research in the journal's scope as well as look back over the past 90 years with a historical perspective by Richard Dewhurst and a historical review of the measurement of dielectric properties of materials by Udo Kaatze. Regular readers will already be familiar with our special issue programme, collecting original research papers in areas of interest

  18. Measuring Technology and Mechatronics Automation in Electrical Engineering

    CERN Document Server

    2012-01-01

    Measuring Technology and Mechatronics Automation in Electrical Engineering includes select presentations on measuring technology and mechatronics automation related to electrical engineering, originally presented during the International Conference on Measuring Technology and Mechanatronics Automation (ICMTMA2012). This Fourth ICMTMA, held at Sanya, China, offered a prestigious, international forum for scientists, engineers, and educators to present the state of the art of measuring technology and mechatronics automation research.

  19. Scale to Measure Attitudes toward Information Technology

    Science.gov (United States)

    Gokhale, Anu A.; Paul E. Brauchle; Kenton F. Machina

    2013-01-01

    The current post-secondary graduation rates in computing disciplines suggest American universities are only training enough students to fill one third of the projected 1.4 million technology and computing jobs available (National Center for Women and Information Technology, 2011). Pursuit of information technology (IT) majors depends, to a great…

  20. Wipes coated with a singlet-oxygen-producing photosensitizer are effective against human influenza virus but not against norovirus

    NARCIS (Netherlands)

    Verhaelen, Katharina; Bouwknegt, Martijn; Rutjes, Saskia; de Roda Husman, Ana Maria; Duizer, Erwin

    2014-01-01

    Transmission of enteric and respiratory viruses, including human norovirus (hNoV) and human influenza virus, may involve surfaces. In food preparation and health care settings, surfaces are cleaned with wipes; however, wiping may not efficiently reduce contamination or may even spread viruses,

  1. Next-generation air measurement technologies | Science ...

    Science.gov (United States)

    This is a presentation at a workshop in Chicago on emerging air monitoring technologies, hosted by a local nonprofit. The audience is composed of a mixture of technical backgrounds. This presentation will be part of an opening panel and the goal is to give an overview of the state of science on emerging air sensor technology. This is a presentation at a workshop in Chicago on emerging air monitoring technologies, hosted by a local nonprofit. The audience is composed of a mixture of technical backgrounds. This presentation will be part of an opening panel and the goal is to give an overview of the state of science on emerging air sensor technology.

  2. Wiping Out Disadvantages: The Programs and Services Needed To Supplement Regular Education for Poor School Children.

    Science.gov (United States)

    Education Law Center, Inc., Newark, NJ.

    In "Abbott v. Burke" the New Jersey Supreme Court determined that the state constitutional guarantee to a thorough and efficient education must include a supplemental program designed to wipe out the deficits poor children bring with them to school. In this report, the Education Law Center draws on educational research to identify the…

  3. Patient and environmental service employee satisfaction of using germicidal bleach wipes for patient room cleaning.

    Science.gov (United States)

    Aronhalt, Kimberly C; McManus, James; Orenstein, Robert; Faller, Rebecca; Link, Mary

    2013-01-01

    More healthcare institutions are using bleach products which are sporicidal to reduce Clostridium difficile infection (CDI). There may be patient and employee concerns about the appearance of bleach residue left on surfaces, odors, and respiratory tract irritation. The intervention used bleach wipes for daily and terminal patient room cleaning to reduce transmission of CDI and was implemented on patient care units with a relatively high incidence of CDI. Both patients and Environmental Services (ES) staff were surveyed to assess their satisfaction of the bleach wipe product used during room cleaning. Patients (n = 94) (91%) continued to be very satisfied with how well their rooms were cleaned every day. Bleach wipes were well tolerated by patients (n = 44) (100%) surveyed on the medical units and less tolerated by patients (n = 50) (22%) on the hematology-oncology units. ES staff (6) reported less satisfaction and more respiratory irritation from using the bleach wipes; however, later their satisfaction improved. © 2012 National Association for Healthcare Quality.

  4. 78 FR 46447 - Conditional Exclusions From Solid Waste and Hazardous Waste for Solvent-Contaminated Wipes

    Science.gov (United States)

    2013-07-31

    ... section 307 of the Clean Water Act (CWA)); A municipal solid waste landfill that is regulated under 40 CFR... laundries and dry cleaners could dispose of sludge from cleaning solvent-contaminated wipes in solid waste landfills if the sludge does not exhibit a hazardous waste characteristic. \\8\\ The Agency stated in the...

  5. Putting evaporators to work: wiped film evaporator for high level wastes

    International Nuclear Information System (INIS)

    Dierks, R.D.; Bonner, W.F.

    1976-01-01

    At Battelle, Pacific Northwest Laboratories, a pilot scale, wiped film evaporator was tested for concentrating high level liquid wastes from Purex-type nuclear fuel recovery processes. The concentrates produced up to 60 wt-percent total solids; and the simplicity of operation and design of the evaporator gave promise for low maintenance and high reliability

  6. How to measure technology assessment: an introduction

    NARCIS (Netherlands)

    Hasman, Arie

    2014-01-01

    This contribution introduces the Technology Acceptance model. Since information systems are still underutilized, application of models of user acceptance can provide important clues about what can be done to increase system usage

  7. Effectiveness of disinfectant wipes for decontamination of bacteria on patients' environmental and medical equipment surfaces at Siriraj Hospital.

    Science.gov (United States)

    Seenama, Chakkraphong; Tachasirinugune, Peenithi; Jintanothaitavorn, Duangporn; Kachintorn, Kanchana; Thamlikitkul, Visanu

    2013-02-01

    To determine the effectiveness of Virusolve+ disinfectant wipes and PAL disinfectant wipes for decontamination of inoculated bacteria on patients' environmental and medical equipment surfaces at Siriraj Hospital. Tryptic soy broths containing MRSA and XDR A. baumannii were painted onto the surfaces of patient's stainless steel bed rail, patient's fiber footboard, control panel of infusion pump machine and control panel of respirator. The contaminated surfaces were cleaned by either tap water, tap water containing detergent, Virusolve+ disinfectant wipes or PAL disinfectant wipes. The surfaces without any cleaning procedures served as the control surface. The contaminated surfaces cleaned with the aforementioned procedures and control surfaces were swabbed with cotton swabs. The swabs were streaked on agar plates to determine the presence of MRSA and XDR A. baumannii. MRSA and XDR A. baumannii were recovered from all control surfaces. All surfaces cleaned with tap water or tap water containing detergent revealed presence of both MRSA and XDR A. baumannii. However the amounts of bacteria on the surfaces cleaned with tap water containing detergent were less than those cleaned with tap water alone. All surfaces cleaned with PAL disinfectant wipes also revealed presence of both MRSA and XDR A. baumannii. However the amounts of bacteria on the surfaces cleaned with PAL disinfectant wipes were less than those cleaned with tap water containing detergent. No bacteria were recovered from all surfaces cleaned with Virusolve+ disinfectant wipes. Virusolve+ disinfectant wipes were more effective than tap water; tap water containing detergent and PAL disinfectant wipes for decontamination of bacteria inoculated on patients environmental and medical equipment surfaces at Siriraj Hospital.

  8. Mapping public regulation measures for photovoltaic technologies

    DEFF Research Database (Denmark)

    Sperling, Karl; Mathiesen, Brian Vad; Hvelplund, Frede

    2011-01-01

    There is a relatively large potential for the use of photovoltaic (PV) technologies in the Nordic countries, including Denmark. Optimally designed PV support policies are a main prerequisite for the utilisation of this potential. The paper provides an overview of the main (financial) public...

  9. Lower cost air measurement technology – what is on the ...

    Science.gov (United States)

    This presentation is to the MARAMA 2014 annual monitoring meeting and is an invited talk to provide an overview on lower cost air measurement technology. This presentation is to the MARAMA 2014 annual monitoring meeting and is an invited talk to provide an overview on lower cost air measurement technology.

  10. Immersed in media telepresence theory, measurement & technology

    CERN Document Server

    Lombard, Matthew; Freeman, Jonathan; IJsselsteijn, Wijnand; Schaevitz, Rachel J

    2015-01-01

    Highlights key research currently being undertaken within the field of telepresence, providing the most detailed account of the field to date, advancing our understanding of a fundamental property of all media - the illusion of presence; the sense of "being there" inside a virtual environment, with actual or virtual others. This collection has been put together by leading international scholars from America, Europe, and Asia. Together, they describe the state-of-the-art in presence theory, research and technology design for an advanced academic audience. Immersed in Media provides research t

  11. Optical Measurement Technology For Aluminium Extrusions

    International Nuclear Information System (INIS)

    Moe, Per Thomas; Willa-Hansen, Arnfinn; Stoeren, Sigurd

    2007-01-01

    Optical measurement techniques such as laser scanning, structured light scanning and photogrammetry can be used for accurate shape control for aluminum extrusion and downstream processes. The paper presents the fundamentals of optical shape measurement. Furthermore, it focuses on how full-field in- and off-line shape measurement during pure-bending of aluminum extrusions has been performed with stripe projection (structured light) using white light. Full field shape measurement is difficult to implement industrially, but is very useful as a laboratory tool. For example, it has been clearly shown how moderate internal air pressure (less than 5 bars) can significantly reduce undesirable cross-sectional shape distortions during pure bending, and how buckling of the compressive flange occurs at an early stage. Finally, a stretch-bending set-up with adaptive shape control using internal gas pressure and optical techniques is presented

  12. Radioactivity measurements using storage phosphor technology

    International Nuclear Information System (INIS)

    Cheng, Y.T.; Hwang, J.; Hutchinson, M.R.

    1995-01-01

    We propose to apply a recently developed charged particle radiation imaging concept in bio-medical research for fast, cost-effective characterization of radionuclides in contaminated sites and environmental samples. This concept utilizes sensors with storage photostimulable phosphor (SPP) technology as radiation detectors. They exhibit high sensitivity for all types of radiation and the response is linear over a wide dynamic range (>10 5 ), essential for quantitative analysis. These new sensors have an active area of up to 35 cm x 43 cm in size and a spatial resolution as fine as 50 μm. They offer considerable promise as large area detectors for fast characterization of radionuclides with an added ability to locate and identify hot spots

  13. Optical technologies for measurement and inspection

    International Nuclear Information System (INIS)

    Mader, D.L.

    1997-01-01

    Ontario Hydro has benefited from specialized optical measurement techniques such as FRILS (fret replica inspection laser system), which permits in-house inspections of pressure tube replicas and has been estimated to save $2M per year. This paper presents a brief overview of (1) FRILS, (2) OPIT (in-reactor Optical Profilometry Inspection Tool), (3) miniature optical probe for steam generator tubes, (4) laser vibrometer used for end-fitting vibration, and (5) computer vision to recognize the ends of fuel bundles and automatically measure their lengths. (author)

  14. On wiping the interior walls of 37-mm closed-face cassettes: an OSHA perspective.

    Science.gov (United States)

    Hendricks, Warren; Stones, Fern; Lillquist, Dean

    2009-12-01

    As early as 1976, Occupational Safety and Health Administration (OSHA) methods for analyzing metal samples collected using 37-mm polystyrene closed-face cassettes specified that any loose dust be transferred from the cassette to the digestion vessel, that the cassette be rinsed, and that, if necessary, the cassette be wiped out to help ensure that all particles that enter the cassette are included along with the filter as part of the sample for analysis. OSHA analytical methods for metal analysis were recently revised to explicitly require cassette wiping for all metal samples. This change was based on policy that any material entering the collection device constitutes part of the sample and on OSHA Salt Lake Technical Center research showing that invisible residue on the cassette walls can significantly contribute to the total sample results reported. OSHA procedures are consistent with guidance given in the NIOSH Manual of Analytical Methods. This guidance concludes that internal deposits in sampling cassettes should be included in the analysis and that one way to accomplish this would be to wipe or wash the internal surfaces of the cassette and include the material along with the filter for analysis.

  15. Linear thermal expansion coefficient measurement technology in hot cell

    International Nuclear Information System (INIS)

    Park, Dae Gyu; Choo, Yong Sun; Ahn, Sang Bok; Hong, Kwon Pyo; Lee, K. S.

    1998-06-01

    To establish linear thermal expansion coefficient measurement technology in hot cell, we reviewed and evaluated various measuring technology by paper and these were compared with the data produced with pre-installed dilatometer in hot cell. Detailed contents are as follows; - The theory of test. - Review of characteristics for various measurement technology and compatibility with hot cell. - Review of standard testing regulations(ASTM). - System calibration of pre-installed dilatometer. - Performance test of pre-installed dilatometer. (author). 12 refs., 15 tabs., 8 figs

  16. Precision Spectroscopy, Diode Lasers, and Optical Frequency Measurement Technology

    Science.gov (United States)

    Hollberg, Leo (Editor); Fox, Richard (Editor); Waltman, Steve (Editor); Robinson, Hugh

    1998-01-01

    This compilation is a selected set of reprints from the Optical Frequency Measurement Group of the Time and Frequency Division of the National Institute of Standards and Technology, and consists of work published between 1987 and 1997. The two main programs represented here are (1) development of tunable diode-laser technology for scientific applications and precision measurements, and (2) research toward the goal of realizing optical-frequency measurements and synthesis. The papers are organized chronologically in five, somewhat arbitrarily chosen categories: Diode Laser Technology, Tunable Laser Systems, Laser Spectroscopy, Optical Synthesis and Extended Wavelength Coverage, and Multi-Photon Interactions and Optical Coherences.

  17. Measurement uncertainties in science and technology

    CERN Document Server

    Grabe, Michael

    2014-01-01

    This book recasts the classical Gaussian error calculus from scratch, the inducements concerning both random and unknown systematic errors. The idea of this book is to create a formalism being fit to localize the true values of physical quantities considered – true with respect to the set of predefined physical units. Remarkably enough, the prevailingly practiced forms of error calculus do not feature this property which however proves in every respect, to be physically indispensable. The amended formalism, termed Generalized Gaussian Error Calculus by the author, treats unknown systematic errors as biases and brings random errors to bear via enhanced confidence intervals as laid down by students. The significantly extended second edition thoroughly restructures and systematizes the text as a whole and illustrates the formalism by numerous numerical examples. They demonstrate the basic principles of how to understand uncertainties to localize the true values of measured values - a perspective decisive in vi...

  18. Disruptive Innovation in Air Measurement Technology: Reality or Hype?

    Science.gov (United States)

    This presentation is a big picture overview on the changing state of air measurement technology in the world, with a focus on the introduction of low-cost sensors into the market place. The presentation discusses how these new technologies may be a case study in disruptive innov...

  19. Digital image technology and a measurement tool in physical models

    CSIR Research Space (South Africa)

    Phelp, David

    2006-05-01

    Full Text Available Advances in digital image technology has allowed us to use accurate, but relatively cost effective technology to measure a number of varied activities in physical models. The capturing and manipulation of high resolution digital images can be used...

  20. Development of radiation protection and measurement technology

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Si Young; Lee, T. Y.; Kim, J. L.; Kim, B. H.; Lee, B. J.; Chung, K. K.; Lee, K. C.; Chung, R. I.; Han, Y. D.; Kim, J. S.; Lee, H. S.; Kim, C. K.; Yoon, K. S.; Jeong, D. Y.; Yoon, S. C.; Yoon, Y. C.; Lee, S. Y.; Kim, J. S.; Seo, K. W. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Kim, J. K.; Lee, J. K. [Hanyang Univ., Seoul (Korea, Republic of)

    1997-07-01

    Reference X-, gamma, beta and neutron radiation fields complying with the ISO and ANSI standards have been established and evaluated to provide a basic technical support in national radiation protection dosimetry program and to provide calibration measurement devices. Personal dose evaluation algorithm has been developed with these reference radiation fields, which comply well with both domestic and the new ANSI N13.11, to evaluate accurate personal dose equivalents. A personal internal dosimetry algorithm which can estimate the intakes of radionuclides from the results of in vivo bioassay and the resulting internal doses has been developed and verified its performance. It was also evaluated to be equality excellent compared with those being used in foreign countries and used to make a computer code for internal dose evaluation which can be run with PC under the Windows environment. A BOMAB phantom for precise calibration of in vivo system has been also designed, fabricated and test-evaluated. Based on the ALARA concept of the optimization principle of radiation protection, a method for estimating the cost for radiation protection has been studied and an objective monetary cost of detriment due to radiation exposure, called {alpha} value ($/man-Sv) has been derived and proposed based on the Korean socio-economic situation and human risk factors to provide basic data for the radiation protection optimization study in Korea. (author). 100 refs., 104 tabs., 69 figs.

  1. Assessment of Progressive Product Innovation on Key Environmental Indicators: Pampers® Baby Wipes from 2007–2013

    Directory of Open Access Journals (Sweden)

    Gert Van Hoof

    2014-08-01

    Full Text Available Companies are increasingly conducting life cycle assessments (LCA of their products to understand potential product impacts on the environment, prioritize areas of innovation to create more sustainable products, and determine valid claims. This case study shows the results of product innovation by comparing an older (2007 and new (2013 version of a common hygiene product in Europe and the U.S. The standard methodology follows the ISO 14040/44 Guidelines for LCA. Results are reported for the impact indicators with high relevance for the product category: primary energy, global warming, particulates, agricultural land occupation, fossil fuel depletion, and solid waste generation. Generally, raw material supply chains for product and packaging contribute most (up to 82% to the calculated environmental impact indicators. Improvements vs. the 2007 baby wipe range between 4% and 14% in Europe and between 15% and 36% in the U.S. The improvement is driven by a new substrate technology that provides more surface area for cleaning, which results in lower use of resources. This case study illustrates three key environmental drivers behind this innovation: the corporate focus on R&D capability to design for environmentally improved products, the increased interest from retailers and consumers requiring accurate and relevant information on the performance and sustainability of products, and the company’s interest in deeper technical understanding of contributions from upstream material and process innovations on a product’s environmental profile.

  2. Effect on skin hydration of using baby wipes to clean the napkin area of newborn babies: assessor-blinded randomised controlled equivalence trial

    OpenAIRE

    Lavender, Tina; Furber, Christine; Campbell, Malcolm; Victor, Suresh; Roberts, Ian; Bedwell, Carol; Cork, Michael J

    2012-01-01

    Abstract Background Some national guidelines recommend the use of water alone for napkin cleansing. Yet, there is a readiness, amongst many parents, to use baby wipes. Evidence from randomised controlled trials, of the effect of baby wipes on newborn skin integrity is lacking. We conducted a study to examine the hypothesis that the use of a specifically formulated cleansing wipe on the napkin area of newborn infants (

  3. Telemetry Measurement of Selected Biological Signal Using Bluetooth Technology

    Directory of Open Access Journals (Sweden)

    Martin Cerny

    2005-01-01

    Full Text Available This work treats of using the Bluetooth technology in biomedical engineering. The Bluetooth is used for transmission of measured data from pulse oximeter, ECG and monitor of blood pressure. OEM modules realize the devices for pulse oximetry and ECG. Both these realized devices can communicate with computer by Bluetooth technology and standard serial link too. The realized system of measuring devices is very flexible and mobile, because the Bluetooth technology is used and accumulators can supply the realized devices. It is possible to measure other physical values converted to voltage, because the used OEM module for pulse oximetry include A/D converter. The part of this work is software visualisation of measured values to.

  4. Development of floor smear sampler (floor radioactive contamination measuring instrument) for nuclear facilities

    International Nuclear Information System (INIS)

    Miyagawa, Minoru; Ito, Haruo; Nozawa, Katsuro; Shinohara, Yotaro; Hashimoto, Hiroshi.

    1980-01-01

    The control of the floor contamination with radioactive substances in nuclear facilities is strictly carried out by smear method, in which the contaminants on floor surfaces are wiped off with filter papers or cloths, and the contamination density on the floor surfaces is measured through their intensity of radioactivity. This wiping work is laborious since it is carried out in leaning-over posture when many samples must be taken in wide floor area. Therefore, to achieve labor saving in this work, an automatic sampler was developed. In the floor smear sampler developed, samples are taken on long band type wiping cloths only by handle operation, and the sample numbers are printed. When many samples are taken in wide floor area, this is especially effective, and the labor saving by 1/3 to 1/2 can be achieved. At present, this sampler is put in practical use in Hamaoka Nuclear Power Station. At the time of trial manufacture, the method of wiping, the mechanisms of wiping, cloth feeding and running, the contact pressure and the number of times of wiping affecting wiping efficiency and the required torque of a motor were examined. The developed sampler is that of constant contact pressure, vibration wiping type, and the rate of sampling is 10 sec per one sample. 100 samples can be taken on one roll of wiping cloth. The results of performance test are reported. (Kako, I.)

  5. Technological measures of protection in the copyright system

    Directory of Open Access Journals (Sweden)

    Radovanović Sanja

    2011-01-01

    Full Text Available Digital exploitation of works often exceed the limit to which the holder can control the exploitation of their intellectual creations, and the protection provided by legal norms are, in the era of a fast exchange of information, may prove to be insufficiently effective. For these reasons, the rights holders are increasingly opting for preventive care through placement of physical obstacles to the exploitation of copyright works, generic called technological protection measures (known as digital right management (DRM. Simultaneously with the development of the application of these measures flows the process of finding ways to circumvent them. Therefore, the effectiveness of technological measures depends on exactly the question of their legal protection, which now exists in most of modern legal systems. However, in the normative solutions there are differences, which reflect the problems in finding adequate forms of protection. They mostly stem from the fact that the sanctioning of circumvention (or preparatory actions of technological measures put into the question the purpose of copyright protection in general. Hence, in this paper we tried to point out the normative solutions accepted in modern legal systems and practical implications of what they have. Conclusion that arises is that the legal shaping of technological measures is not completed and that further technological developments open new dilemmas.

  6. Biomedical sensor for transcutaneous oxygen measurements using thick film technology

    OpenAIRE

    Lam, Yu-Zhi (Liza)

    2003-01-01

    The measurement of the partial pressure of oxygen in arterial blood is essential for the analysis of a patient's respiratory condition. There are several commercially available methods and systems to measure this parameter transcutaneously. However, they tend to be cumbersome and costly. To overcome the disadvantages presented, a new type of sensor for transcutaneous blood gas measurement was investigated, employing thick film technology, which is an excellent technique to produce sensors in ...

  7. Organophosphate flame retardants and plasticizers in indoor dust, air and window wipes in newly built low-energy preschools.

    Science.gov (United States)

    Persson, Josefin; Wang, Thanh; Hagberg, Jessika

    2018-07-01

    The construction of extremely airtight and energy efficient low-energy buildings is achieved by using functional building materials, such as age-resistant plastics, insulation, adhesives, and sealants. Additives such as organophosphate flame retardants (OPFRs) can be added to some of these building materials as flame retardants and plasticizers. Some OPFRs are considered persistent, bioaccumulative and toxic. Therefore, in this pilot study, the occurrence and distribution of nine OPFRs were determined for dust, air, and window wipe samples collected in newly built low-energy preschools with and without environmental certifications. Tris(1,3-dichloroisopropyl) phosphate (TDCIPP) and triphenyl phosphate (TPHP) were detected in all indoor dust samples at concentrations ranging from 0.014 to 10μg/g and 0.0069 to 79μg/g, respectively. Only six OPFRs (predominantly chlorinated OPFRs) were detected in the indoor air. All nine OPFRs were found on the window surfaces and the highest concentrations, which occurred in the reference preschool, were measured for 2-ethylhexyl diphenyl phosphate (EHDPP) (maximum concentration: 1500ng/m 2 ). Interestingly, the OPFR levels in the environmental certified low-energy preschools were lower than those in the reference preschool and the non-certified low-energy preschool, probably attributed to the usage of environmental friendly and low-emitting building materials, interior decorations, and consumer products. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Role of surface energy and nano-roughness in the removal efficiency of bacterial contamination by nonwoven wipes from frequently touched surfaces

    Science.gov (United States)

    Edwards, Nicholas W. M.; Best, Emma L.; Connell, Simon D.; Goswami, Parikshit; Carr, Chris M.; Wilcox, Mark H.; Russell, Stephen J.

    2017-12-01

    Healthcare associated infections (HCAIs) are responsible for substantial patient morbidity, mortality and economic cost. Infection control strategies for reducing rates of transmission include the use of nonwoven wipes to remove pathogenic bacteria from frequently touched surfaces. Wiping is a dynamic process that involves physicochemical mechanisms to detach and transfer bacteria to fibre surfaces within the wipe. The purpose of this study was to determine the extent to which systematic changes in fibre surface energy and nano-roughness influence removal of bacteria from an abiotic polymer surface in dry wiping conditions, without liquid detergents or disinfectants. Nonwoven wipe substrates composed of two commonly used fibre types, lyocell (cellulosic) and polypropylene, with different surface energies and nano-roughnesses, were manufactured using pilot-scale nonwoven facilities to produce samples of comparable structure and dimensional properties. The surface energy and nano-roughness of some lyocell substrates were further adjusted by either oxygen (O2) or hexafluoroethane (C2F6) gas plasma treatment. Static adpression wiping of an inoculated surface under dry conditions produced removal efficiencies of between 9.4% and 15.7%, with no significant difference (p < 0.05) in the relative removal efficiencies of Escherichia coli, Staphylococcus aureus or Enterococcus faecalis. However, dynamic wiping markedly increased peak wiping efficiencies to over 50%, with a minimum increase in removal efficiency of 12.5% and a maximum increase in removal efficiency of 37.9% (all significant at p < 0.05) compared with static wiping, depending on fibre type and bacterium. In dry, dynamic wiping conditions, nonwoven wipe substrates with a surface energy closest to that of the contaminated surface produced the highest E. coli removal efficiency, while the associated increase in fibre nano-roughness abrogated this trend with S. aureus and E. faecalis.

  9. Measurement and monitoring technologies are important SITE program component

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    An ongoing component of the Superfund Innovative Technologies Evaluation (SITE) Program, managed by the US EPA at its Hazardous Waste Engineering Research Laboratory in Cincinnati, is the development and demonstration of new and innovative measurement and monitoring technologies that will be applicable to Superfund site characterization. There are four important roles for monitoring and measurement technologies at Superfund sites: (1) to assess the extent of contamination at a site, (2) to supply data and information to determine impacts to human health and the environment, (3) to supply data to select the appropriate remedial action, and (4) to monitor the success or effectiveness of the selected remedy. The Environmental Monitoring Systems Laboratory in Las Vegas, Nevada (EMSL-LV) has been supporting the development of improved measurement and monitoring techniques in conjunction with the SITE Program with a focus on two areas: Immunoassay for toxic substances and fiber optic sensing for in-situ analysis at Superfund sites

  10. Measures of International Manufacturing and Trade of Clean Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Engel-Cox, Jill; Sandor, Debbie; Keyser, David; Mann, Margaret

    2017-05-25

    The technologies that produce clean energy, such as solar photovoltaic panels and lithium ion batteries for electric vehicles, are globally manufactured and traded. As demand and deployment of these technologies grows exponentially, the innovation to reach significant economies of scale and drive down energy production costs becomes less in the technology and more in the manufacturing of the technology. Manufacturing innovations and other manufacturing decisions can reduce costs of labor, materials, equipment, operating costs, and transportation, across all the links in the supply chain. To better understand the manufacturing aspect of the clean energy economy, we have developed key metrics for systematically measuring and benchmarking international manufacturing of clean energy technologies. The metrics are: trade, market size, manufacturing value-added, and manufacturing capacity and production. These metrics were applied to twelve global economies and four representative technologies: wind turbine components, crystalline silicon solar photovoltaic modules, vehicle lithium ion battery cells, and light emitting diode packages for efficient lighting and other consumer products. The results indicated that clean energy technologies are being developed via complex, dynamic, and global supply chains, with individual economies benefiting from different technologies and links in the supply chain, through both domestic manufacturing and global trade.

  11. Evaluation and Prediction present of radionuclide for surface wipe sample in Emergency Related with Fukushima Nuclear Accident

    International Nuclear Information System (INIS)

    Zalina Laili; Muhamat Omar; Woo, Y.M.

    2011-01-01

    Surface wipe samples of aircraft and container from Japan that were exposed to radioactive dust fallout due to Fukushima nuclear accident has been analysed using gamma spectrometry systems. The samples were analysed to determine their contamination levels. The surface of aircraft and container might be exposed to short and long lived fission and activation products. Thus, good evaluations, as well as a reliable and reasonable judgment were needed in order to determine the presence of fission and activation products. A work procedure has been developed to evaluate and predict the presence of fission and activation products in surface wipe samples. Good references, skilled and experienced level in analysis, a well calibrated and validated detector system were the important factors in determining the presence of fission and activation products in surface wipe samples. (author)

  12. Recent Investments by NASA's National Force Measurement Technology Capability

    Science.gov (United States)

    Commo, Sean A.; Ponder, Jonathan D.

    2016-01-01

    The National Force Measurement Technology Capability (NFMTC) is a nationwide partnership established in 2008 and sponsored by NASA's Aeronautics Evaluation and Test Capabilities (AETC) project to maintain and further develop force measurement capabilities. The NFMTC focuses on force measurement in wind tunnels and provides operational support in addition to conducting balance research. Based on force measurement capability challenges, strategic investments into research tasks are designed to meet the experimental requirements of current and future aerospace research programs and projects. This paper highlights recent and force measurement investments into several areas including recapitalizing the strain-gage balance inventory, developing balance best practices, improving calibration and facility capabilities, and researching potential technologies to advance balance capabilities.

  13. Development of alpha radioactivity measurement using ionized air transportation technology

    International Nuclear Information System (INIS)

    Kanemoto, Shigeru; Naito, Susumu; Sano, Akira; Sato, Mitsuyoshi; Fukumoto, Masahiko; Miyamoto, Yasuaki; Nanbu, Kenichi; Takahashi, Hiroyuki

    2005-01-01

    Alpha radioactivity Measurement using ionized Air Transportation technology (AMAT) is developed to measure alpha contaminated wastes with large and complex surfaces. An outline of this project was described in this text. A major problem of AMAT technology is that the theoretical relation between alpha radioactivity and observed ion current is unclear because of the complicated behavior of ionized air molecules. An ion current prediction model covering from ionization of air molecules to ion detection was developed based on atmospheric electrodynamics. This model was described in this text, too. (author)

  14. Surveillance and Measurement System (SAMS). Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    2001-01-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for the decontamination and decommissioning (D and D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology sponsors large-scale demonstration and deployment projects (LSDDPs) to identify and demonstrate technologies that will be safer and more cost-effective. At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects as well as others in the D and D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased cost of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) LSDDP generated a list of need statements defining specific needs or problems where improved technologies could be incorporated into ongoing D and D tasks. Advances in characterization technologies are continuously being sought to decrease the cost of sampling and increase the speed of obtaining results. Currently it can take as long as 90 days to receive isotopic analysis of radioactive samples from laboratories on soil, liquid, and paint samples. The cost to analyze these types of samples for radionuclides is about $150 per sample. This demonstration investigated the feasibility of using the Surveillance and Measurement System (SAMS) (innovative technology) to make in situ isotopic radiation measurements in paint and soil. Sample collection and on-site laboratory analysis (baseline technology) is currently being used on D and D sampling activities. Benefits expected from using the innovative technology include: Significant decrease in time to receive results on radiological samples; Decrease in cost associated with sample collection, preparation, analysis, and disposal; Equivalent data quality to laboratory analysis; and Fewer

  15. Results of Testing the Relative Oxidizing Hazard of Wipes and KMI Zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Ams, Bridget Elaine [Los Alamos National Laboratory

    2017-05-09

    This report includes the results from testing performed on the relative oxidizing hazard of a number of organic sorbing wipe materials, as well as KMI zeolite. These studies were undertaken to address a need by the Los Alamos National Laboratory (LANL) Hazardous Materials Management group, which requires a material that can sorb small spills in a glovebox without creating a disposal hazard due to the potential for oxidation reactions, as requested in Request for Testing of Wipes and Zeolite for Los Alamos National Laboratory Hazardous Materials Group (NPl-7) (NPl-7-17-002) and Request for Testing of Chamois Material for Los Alamos National Laboratory Hazardous Materials Group (NPl-7) (NPl-7-17-005). This set oftests is a continuation of previous testing described in Results from Preparation and Testing of Sorbents Mixed with (DWT-RPT-003), which provided data for the Waste Isolation Pilot Plant's Basis of Knowledge. The Basis of Knowledge establishes criteria for evaluating transuranic (TRU) waste that contains oxidizing chemicals.

  16. International workshop on greenhouse gas mitigation technologies and measures: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    More than 150 countries are now Party to the United Nations Framework Convention on Climate Change (FCCC), which seeks to stabilize atmospheric concentrations of greenhouse gases at a level that would prevent dangerous human interference with the global climate system. Climate change country studies are a significant step for developing countries and countries with economies in transition to meet their national reporting commitments to the FCCC. These studies also provide the basis for preparation of National Climate Change Action Plans and implementation of technologies and practices which reduce greenhouse gas emissions or enhance carbon sinks. The broad goals of the workshop were to: (1) present results of country study mitigation assessments, (2) identify promising no-regrets greenhouse gas mitigation options in land-use and energy sectors, (3) share information on development of mitigation technologies and measures which contribute to improved National Climate Change Actions Plans, and (4) begin the process of synthesizing mitigation assessments for use by FCCC subsidiary bodies. The 59 papers are arranged into the following topical sections: (1) national mitigation assessments, technology priorities, and measures; (2) sector-specific mitigation assessment results, subdivided further into: energy sector; non-energy sector; renewable energy; energy efficiency in industry and buildings; transportation; electricity supply; forestry; and methane mitigation; (3) support for mitigation technologies and measures; and (4) activities implemented jointly. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  17. A pilot study to assess the effectiveness and cost of routine universal use of peracetic acid sporicidal wipes in a real clinical environment.

    Science.gov (United States)

    Saha, Avinandan; Botha, Stefan Louis; Weaving, Paul; Satta, Giovanni

    2016-11-01

    Peracetic acid sporicidal wipes have been shown to be an effective disinfectant, but in controlled test environments. Their high cost may restrict use. This pilot study investigated the efficacy and compared the costs of routine universal use of peracetic acid sporicidal wipes versus sporicidal quaternary ammonium compound and alcohol wipes in the disinfection of a hospital environment. The routine universal use of peracetic acid wipes (Clinell Sporicidal; GAMA Healthcare Ltd, London, UK) was allocated to a study ward, whereas the control ward continued with the use of quaternary ammonium compound wipes (Tuffie 5; Vernacare, Bolton, UK) and alcohol wipes (PDI Sani-Cloth 70; PDI, Flint, UK). Twenty high-touch areas in the 2 wards were sampled for the presence of indicator organisms. The weekly detection rates of indicator organisms and weekly healthcare associated infection (HCAI) rates in the 2 wards were compared and examined for decreasing trends over the trial period. The detection rates of indicator organisms and HCAI rates were not significantly different in the 2 wards, and did not decrease significantly over the trial period. However, the peracetic acid wipes seem to be more effective against gram-negative organisms but at a significantly higher cost. Further prospective studies are needed to assess the cost-effectiveness of peracetic acid wipes. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  18. GHG emission mitigation measures and technologies in the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Tichy, M. [Energy Efficiency Center, Prague (Czech Republic)

    1996-12-31

    The paper presents a short overview of main results in two fields: projection of GHG emission from energy sector in the Czech Republic and assessment of technologies and options for GHG mitigation. The last part presents an overview of measures that were prepared for potential inclusion to the Czech Climate Change Action Plan.

  19. Measuring Profitability Impacts of Information Technology: Use of Risk Adjusted Measures.

    Science.gov (United States)

    Singh, Anil; Harmon, Glynn

    2003-01-01

    Focuses on understanding how investments in information technology are reflected in the income statements and balance sheets of firms. Shows that the relationship between information technology investments and corporate profitability is much better explained by using risk-adjusted measures of corporate profitability than using the same measures…

  20. Measuring process performance within healthcare logistics - a decision tool for selecting measuring technologies

    DEFF Research Database (Denmark)

    Feibert, Diana Cordes; Jacobsen, Peter

    2015-01-01

    Performance measurement can support the organization in improving the efficiency and effectiveness of logistical healthcare processes. Selecting the most suitable technologies is important to ensure data validity. A case study of the hospital cleaning process at a public Danish hospital...... was conducted. Monitoring tasks and ascertaining quality of work is difficult in such a process. Based on principal-agent theory, a set of decision indicator has been developed, and a decision framework for assessing technologies to enable performance measurement has been proposed....

  1. Application of smart transmitter technology in nuclear engineering measurements

    International Nuclear Information System (INIS)

    Kang, Hyun Gook; Seong, Poong Hyun

    1993-01-01

    By making use of the microprocessor technology, instrumentation system becomes intelligent. In this study a programmable smart transmitter is designed and applied to the nuclear engineering measurements. In order to apply the smart transmitter technology to nuclear engineering measurements, the digital time delay compensation function and water level change detection function are developed and applied in this work. The time compensation function compensates effectively the time delay of the measured signal, but it is found that the characteristics of the compensation function should be considered through its application. It is also found that the water level change detection function reduces the detection time to about 7 seconds by the signal processing which has the time constant of over 250 seconds and which has the heavy noise. (Author)

  2. THE USAGE OF TECHNOLOGIES IN TERRESTRIAL MEASUREMENTS FOR HAZARD MAPS

    Directory of Open Access Journals (Sweden)

    VELE Dan

    2015-06-01

    Full Text Available In the context of natural phenomena (earthquakes, floods, landslides etc. bring economical and social prejudices year by year, watching on them and taking decisions becomes mandatory for reducing the material and human lives loss. Making hazard maps represents a tool used on wide global scale but also particularly in our country. This paper work has the purpose to reveal the interests of certain authors related to the usage of the new technologies of terrestrial measurements (GPS technologies, photogrammetry, cartography and of remote sensing in order to make these hazard maps.

  3. Potential Allergens in Disposable Diaper Wipes, Topical Diaper Preparations, and Disposable Diapers: Under-recognized Etiology of Pediatric Perineal Dermatitis.

    Science.gov (United States)

    Yu, JiaDe; Treat, James; Chaney, Keri; Brod, Bruce

    2016-01-01

    Allergic contact dermatitis in young children may be an under-recognized cause of perineal dermatitis. The diapered infant skin is uniquely susceptible to allergic contact dermatitis because of more permeable neonatal skin, a moist environment, frequent contact with irritants and resultant skin barrier breakdown, and exposure to topical products such as diaper wipes, diaper preparations, and disposable diapers. To our knowledge, potential allergens in these products have not been thoroughly catalogued or studied. We explore and review potential allergenic ingredients in diaper wipes, topical diaper preparations, and disposable diapers. We analyzed 63 diaper wipes, 41 topical diaper preparations, and the 3 top selling diaper brands available from two of the largest retailers in the United States. Each potential allergen is discussed, and epidemiologic studies of rates of sensitization to potential allergens in children are also reported. Botanical extracts, including members of the Compositae family, were the most commonly represented potential allergen in both diaper wipes and topical preparations. Other potential allergens identified with high frequency include α-tocopherol, fragrances, propylene glycol, parabens, iodopropynyl butylcarbamate, and lanolin. Frequent culprits such as formaldehyde releasers and methylchloroisothiazolinone/methylisothiazolinone were not prevalent in our analyzed products.

  4. Experimental estimation of migration and transfer of organic substances from consumer articles to cotton wipes: Evaluation of underlying mechanisms

    NARCIS (Netherlands)

    Clausen, P.A.; Spaan, S.; Brouwer, D.H.; Marquart, H.; Feber, M. le; Engel, R.; Geerts, L.; Jensen, K.A.; Kofoed-Sørensen, V.; Hansen, B.; Brouwere, K. de

    2016-01-01

    The aim of this work was to identify the key mechanisms governing transport of organic chemical substances from consumer articles to cotton wipes. The results were used to establish a mechanistic model to improve assessment of dermal contact exposure. Four types of PVC flooring, 10 types of textiles

  5. Optical Measuring Technologies for Industrial and Scientific Applications

    International Nuclear Information System (INIS)

    Chugui, Yu V; Plotnikov, S V; Potashnikov, A K; Verkhogliad, A G

    2006-01-01

    The novel results of the R and D activity of TDI SIE SB RAS in the field of the optical measuring technologies, as well as laser technologies for solving safety problems are presented. For permanent noncontact bearing position inspection of oil-drilling platforms on Sakhalin coast (Russia) we have developed optical-electronic method and system SAKHALIN with cumulative traveled distance (3 km) measurement error less than 0.03%. To measure the rocks stress and to prevent the mountain impact, as well as for basic investigations, a set of optical-electronic deformers and systems was developed and produced. Multifunctional laser technological system LSP-2000 equipped by two Nd-YAG lasers was developed for cutting, welding and surface micro profiling with ablation process (working range of 3 x 2 x 0.6 m 3 , positioning error less than 10 mkm). Safety of Russian nuclear reactors takes 100% noncontact 3D dimensional inspection of all parts of fuel assemblies, including grid spacers. Results of development and testing the specialized high productive laser measuring machine, based on structured illumination, for 3D inspection of grid spacers with micron resolution are presented. Ensuring the safety of running trains is the actual task for railways. Using high-speed laser noncontact method on the base of triangulation position sensors, TDI SIE has developed and produced automatic laser diagnostic system COMPLEX for inspection of geometric parameters of wheel pairs (train speed up to 60 km/hr.), which is used successfully on Russian railways. Experimental results on measuring and laser technological systems testing are presented

  6. Radiometric measurement techniques in metallurgy and foundry technology

    International Nuclear Information System (INIS)

    1990-01-01

    The contributions contain informations concerning the present state and development of radiometric measurement techniques in metallurgy and foundry technology as well as their application to the solution of various problems. The development of isotope techniques is briefly described. Major applications of radiometric equipment in industrial measurement are presented together with the use of isotopes to monitor processes of industrial production. This is followed by a short description of numerous laboratory-scale applications. Another contribution deals with fundamental problems and methods of moisture measurement by neutrons. A complex moisture/density measurement device the practical applicability of which has been tested is described here. Possibilities for clay determination in used-up moulding materials are discussed in a further contribution. The clay content can be determined by real-time radiometric density measurement so that the necessary moisture or addition of fresh sand can be controlled. (orig.) With 20 figs., 9 tabs., 178 refs [de

  7. Wipe-rinse technique for quantitating microbial contamination on large surfaces

    Science.gov (United States)

    Kirschner, L. E.; Puleo, J. R.

    1979-01-01

    The evaluation of an improved wipe-rinse technique for the bioassay of large areas was undertaken due to inherent inadequacies in the cotton swab-rinse technique to which assay of spacecraft is currently restricted. Four types of contamination control cloths were initially tested. A polyester-bonded cloth (PBC) was selected for further evaluation because of its superior efficiency and handling characteristics. Results from comparative tests with PBC and cotton swabs on simulated spacecraft surfaces indicated a significantly higher recovery efficiency for the PBC than for the cotton (90.4 versus 75.2%). Of the sampling area sites studied, PBC was found to be most effective on surface areas not exceeding 0.74 sq m (8.0 sq ft).

  8. Concentration of Melton Valley Storage Tank surrogates with a wiped film evaporator

    International Nuclear Information System (INIS)

    Boring, M.D.; Farr, L.L.; Fowler, V.L.; Hewitt, J.D.

    1994-08-01

    This report describes experiments to determine whether a wiped film evaporator (WFE) might be used to concentrate low-level liquid radioactive waste (LLLW). Solutions used in these studies were surrogates that contain no radionuclides. The compositions of the surrogates were based on one of Oak Ridge National Laboratory's (ORNL's) Melton Valley Storage Tanks (MVSTs). It was found that a WFE could be used to concentrate LLLW to varying degrees by manipulating various parameters. The parameters studied were rotor speed, process fluid feed temperature and feed rate, and evaporator temperature. Product consistency varied from an unsaturated liquid to a dry powder. Volume reductions up to 68% were achieved. System decontamination factors were consistently in the range of 10 4

  9. Prospective technologies and equipment for sanitary hygienic measures for life support systems

    Science.gov (United States)

    Shumilina, I. V.

    Creation of optimal sanitary hygienic conditions is a prerequisite for good health and performance of crews on extended space missions. There is a rich assortment of associated means, methods and equipment developed and experimentally tested in orbital flights. However, over a one-year period a crew of three uses up about 800 kg of ground-supplied wet wipes and towels for personal needs. The degree of closure of life support systems for long-duration orbital flights should be maximized, particularly for interplanetary missions, which exclude any possibility of re-supply. Washing with regenerated water is the ultimate sanitary hygienic goal. That is why it is so important to design devices for crew bathing during long-term space missions. Investigations showed that regeneration of wash water (WW) using membrane processes (reverse osmosis, nanofiltration etc.), unlike sorption, would not require much additional expendables. A two-stage membrane recovery unit eliminated >85% of permeate from real WW with organic and inorganic selectivity of 82 95%. The two-stage WW recovery unit was tested with artificial and real WW containing detergents available for space crews. Investigations into the ways of doing laundry and drying along with which detergents will be the best fit for space flight are also planned. Testing of a technology for water extraction from used textiles using a conventional period of contact of 1 s or more, showed that the humidity of the outgoing air flow neared 100%. Issues related to designing the next generation of space life support systems should consider the benefits of integrating new sanitary hygienic technologies, equipment, and methods.

  10. Performance of a wiped film evaporator with simulated high level waste slurries

    International Nuclear Information System (INIS)

    Dierks, R.D.; Bonner, W.F.

    1975-01-01

    The horizontal, reverse taper, wiped film evaporator that was evaluated demonstrated a number of positive characteristics with respect to its applicability in the solidification of nuclear fuel recovery process wastes. Foremost among these is its ability to remove the bulk (80 to 90 percent) of the liquid associated with any of the purex-type high level, intermediate level, or mixed waste slurries. The major disadvantage of the evaporator is its current inability to discharge a product that is low enough in liquid content to avoid sticking to the evaporator discharge nozzle. Also, while the indirect indications of the torque required to turn the rotor and the power drawn by the drive motor are indicative of the liquid content of the discharged product, no reliable correlation has been found to cover all of the possible flow rates and feed stock compositions that the evaporator may be required to handle. In addition, no reliable means has been found to indicate the presence or absence of product flow through the discharge nozzle. The lack of a positive means of moving the product concentrate out of the evaporator and into a high temperature receiver is an undesirable feature of the evaporator. Pulverized glass former, or frit, was added to the evaporator feedstock in a ratio of frit to metal oxides of 2 to 1, and the resulting mixture successfully evaporated to a concentrate containing about 50 percent solids. In general, the performance of the wiped film evaporator evaluated was favorable for its use in a nuclear waste fixation process, however further development of the rotor design, power input, and operating techniques will be required to produce a free flowing solid product

  11. Measuring Public Acceptance of Nuclear Technology with Big data

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Seugkook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Surveys can be conducted only on people in specific region and time interval, and it may be misleading to generalize the results to represent the attitude of the public. For example, opinions of a person living in metropolitan area, far from the dangers of nuclear reactors and enjoying cheap electricity produced by the reactors, and a person living in proximity of nuclear power plants, subject to tremendous damage should nuclear meltdown occur, certainly differs for the topic of nuclear generation. To conclude, big data is a useful tool to measure the public acceptance of nuclear technology efficiently (i.e., saves cost, time, and effort of measurement and analysis) and this research was able to provide a case for using big data to analyze public acceptance of nuclear technology. Finally, the analysis identified opinion leaders, which allows target-marketing when policy is executed.

  12. Measuring Public Acceptance of Nuclear Technology with Big data

    International Nuclear Information System (INIS)

    Roh, Seugkook

    2015-01-01

    Surveys can be conducted only on people in specific region and time interval, and it may be misleading to generalize the results to represent the attitude of the public. For example, opinions of a person living in metropolitan area, far from the dangers of nuclear reactors and enjoying cheap electricity produced by the reactors, and a person living in proximity of nuclear power plants, subject to tremendous damage should nuclear meltdown occur, certainly differs for the topic of nuclear generation. To conclude, big data is a useful tool to measure the public acceptance of nuclear technology efficiently (i.e., saves cost, time, and effort of measurement and analysis) and this research was able to provide a case for using big data to analyze public acceptance of nuclear technology. Finally, the analysis identified opinion leaders, which allows target-marketing when policy is executed

  13. Satisfaction and convenience of using terpenoid-impregnated eyelid wipes and teaching method in people without blepharitis.

    Science.gov (United States)

    Qiu, Tian Yu; Yeo, Sharon; Tong, Louis

    2018-01-01

    Demodex infestations cause blepharitis and are difficult to treat. Recently, a new type of eyelid wipes with terpenoids has been found effective. We aim to evaluate patient satisfaction after short-term use and compare two teaching modalities on the techniques of use. Eligible participants were taught to use eyelid wipes (Cliradex ® ) by either live or online video demonstration based on random allocation. Participants used the wipes twice daily for a week. All participants had prior evaluation of socioeconomic status, dry eye symptoms, and meibomian gland features. After 1 week, competence of use was assessed by participants showing their technique to the investigator, and a questionnaire on comfort, ease, and convenience of use was administered. Higher scores indicate greater satisfaction, and these levels are compared among the two teaching modalities using chi square. A total of 50 participants were recruited, with a mean age of 42±16 years, and 88% of the participants were females. Overall, median comfort level was 4.0 (range: 1-6), ease level was 5.0 (3-6), and convenience level was 5.0 (2-6). Median stinging was 2.0 (1-4), which corresponded to some but mild stinging. The median competence level was 4.0 (2-4), which corresponded to excellent competence. These satisfactory levels (ease, comfort, and convenience) experienced were not significantly associated with different socioeconomic indicators, that is, housing type, income, highest education level, and were not different between teaching methods ( p >0.05). Short-term use of Cliradex eyelid wipes seems to be acceptable to most people. The teaching instructions before using these wipes were equally effective - whether live or online video demonstration was used.

  14. Measuring Diagnostic Stand for Experimental Researches in Technology Machining

    Directory of Open Access Journals (Sweden)

    A. E. Dreval'

    2014-01-01

    Full Text Available The paper reviews applied techniques, methods, and structure of the control and measuring means to conduct experimental and scientific researches of cutting processes. Existing research methods in cutting the metals are divided by features, such as essence of methods, the number of records of physical indicators, the number of studied factors, duration of tests. The groups of methods are briefly characterized.The chair "Tool Engineering and Technologies" of BMSTU developed and made a diagnostic stand of control and measurements for conducting research activities in the field of materials processing technology by cutting to define rational technological decisions, when machining, and carry out an analysis of efficiency and economic feasibility of made decisions. The diagnostic stand contains modern the electronic equipment. Record of measuring parameters is made in real time with a possibility for visual representation of read results and mathematical and statistical processing of measurement results. The stand can be used in research laboratories of machine-building enterprises, laboratories of higher education institutions, and other scientific divisions.The paper presents a justification that the stand is reasonable to use for the following: completion and choice of rational cutting modes, workability assessment of new constructional materials, technical and operational characteristics of the processed surfaces, and operational properties of the cutting tools of various producers, choice of optimum geometrical parameters of the cutting tools and brands of the lubricant cooling technological means, as well as the energy consumption for the chosen machining process. The stand allows us to make an assessment of wear resistance and tribology-technical characteristics of tool materials, as well as an accuracy, rigidity, vibration stability of machines, both new and being in operation.

  15. Arsenic levels in wipe samples collected from play structures constructed with CCA-treated wood: Impact on exposure estimates

    Energy Technology Data Exchange (ETDEWEB)

    Barraj, Leila M. [Chemical Regulation and Food Safety, Exponent, Inc., Suite 1100, 1150 Connecticut Ave., NW, Washington, DC 20036 (United States)], E-mail: lbarraj@exponent.com; Scrafford, Carolyn G. [Chemical Regulation and Food Safety, Exponent, Inc., Suite 1100, 1150 Connecticut Ave., NW, Washington, DC 20036 (United States); Eaton, W. Cary [RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709 (United States); Rogers, Robert E.; Jeng, Chwen-Jyh [Toxcon Health Sciences Research Centre Inc., 9607 - 41 Avenue, Edmonton, Alberta, T6E 5X7 (Canada)

    2009-04-01

    Lumber treated with chromated copper arsenate (CCA) has been used in residential outdoor wood structures and playgrounds. The U.S. EPA has conducted a probabilistic assessment of children's exposure to arsenic from CCA-treated structures using the Stochastic Human Exposure and Dose Simulation model for the wood preservative scenario (SHEDS-Wood). The EPA assessment relied on data from an experimental study using adult volunteers and designed to measure arsenic in maximum hand and wipe loadings. Analyses using arsenic handloading data from a study of children playing on CCA-treated play structures in Edmonton, Canada, indicate that the maximum handloading values significantly overestimate the exposure that occurs during actual play. The objective of our paper is to assess whether the dislodgeable arsenic residues from structures in the Edmonton study are comparable to those observed in other studies and whether they support the conclusion that the values derived by EPA using modeled maximum loading values overestimate hand exposures. We compared dislodgeable arsenic residue data from structures in the playgrounds in the Edmonton study to levels observed in studies used in EPA's assessment. Our analysis showed that the dislodgeable arsenic levels in the Edmonton playground structures are similar to those in the studies used by EPA. Hence, the exposure estimates derived using the handloading data from children playing on CCA-treated structures are more representative of children's actual exposures than the overestimates derived by EPA using modeled maximum values. Handloading data from children playing on CCA-treated structures should be used to reduce the uncertainty of modeled estimates derived using the SHEDS-Wood model.

  16. Wipe selection for the analysis of surface materials containing chemical warfare agent nitrogen mustard degradation products by ultra-high pressure liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Willison, Stuart A

    2012-12-28

    Degradation products arising from nitrogen mustard chemical warfare agent were deposited on common urban surfaces and determined via surface wiping, wipe extraction, and liquid chromatography–tandem mass spectrometry detection. Wipes investigated included cotton gauze, glass fiber filter, non-woven polyester fiber and filter paper, and surfaces included several porous (vinyl tile, painted drywall, wood) and mostly non-porous (laminate, galvanized steel, glass) surfaces. Wipe extracts were analyzed by ultra-high pressure liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) and compared with high performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) results. An evaluation of both techniques suggests UPLC–MS/MS provides a quick and sensitive analysis of targeted degradation products in addition to being nearly four times faster than a single HPLC run, allowing for greater throughput during a wide-spread release concerning large-scale contamination and subsequent remediation events. Based on the overall performance of all tested wipes, filter paper wipes were selected over other wipes because they did not contain interferences or native species (TEA and DEA) associated with the target analytes, resulting in high percent recoveries and low background levels during sample analysis. Other wipes, including cotton gauze, would require a pre-cleaning step due to the presence of large quantities of native species or interferences of the targeted analytes. Percent recoveries obtained from a laminate surface were 47–99% for all nitrogen mustard degradation products. The resulting detection limits achieved from wipes were 0.2 ng/cm(2) for triethanolamine (TEA), 0.03 ng/cm(2) for N-ethyldiethanolamine (EDEA), 0.1 ng/cm(2) for N-methyldiethanolamine (MDEA), and 0.1 ng/cm(2) for diethanolamine (DEA).

  17. Evaluation of technological measures to cope with climate change

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Hiroshi; Moriguchi, Yulchi [National Inst. for Environmental Studies, Onogawa Tsukuba (Japan)

    1993-12-31

    Because the global warming (climate change) is recognized as a highly probable phenomenon in the next century, the countermeasures to cope with this issue is really Important. International discussion Is progressing towards the conclusion of the treaty to stabilize global warming. Therefore, now is the time to take concrete action to reduce the emission to the greenhouse gases (GHG). To find the way to reduce the emission of the GHG, the procedure as next should be taken. (1) Systematic estimation of GHG emission (GHG analysis), (2) Identification of conventional and Innovative technologies, (3) Assessment of individual sectoral technologies, (4) Comprehensive evaluation of countermeasures as a whole. Both in the U.S.A. and Japan, this kind of research have been made independently. Among these processes, the standard methodologies should be established on the GHG analysis, the assessment of individual technologies and the comprehensive evaluation. From such a background, it is important to discuss the way to evaluate technological measures to cope with climate change between the specialist from the U.S.A. and Japan. And still required to search the possibility to establish a joint project between both countries.

  18. Measuring the strategic value of information technology investments

    International Nuclear Information System (INIS)

    Conrad, K.W.

    1994-08-01

    Value is often perceived differently by the proponents of new information technologies and those who allocate resources and define priorities. Such differences often become a roadblock to meeting true business needs. Project justifications regularly rely on calculated cost savings, which rarely measure the full benefit of new technologies. In fact, if cost savings provide a complete picture, then the organization is probably just automating routine clerical operations and has abandoned efforts that would provide significant strategic value. Strategic value is not limited to financial calculations, but includes quality, time and risk criteria. This paper describes approaches for measuring strategic value that can provide organizations with proven techniques to improve performance, reengineer processes, benchmark performance against other suppliers, identify outsourcing opportunities, or defend themselves from pressures to outsource. Many organizations respond to tightening budgets by cutting overhead. These measurement approaches can demonstrate how overhead is critical to organizational effectiveness and how cost savings can be found, instead, by measurably improving performance throughout the organization. Finally, the paper describes efforts underway within the Department of Energy and at the Hanford Site to implement the approaches described in this paper

  19. Measuring the strategic value of information technology investments

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, K.W. [Boeing Computer Services Co., Richland, WA (United States)

    1994-08-01

    Value is often perceived differently by the proponents of new information technologies and those who allocate resources and define priorities. Such differences often become a roadblock to meeting true business needs. Project justifications regularly rely on calculated cost savings, which rarely measure the full benefit of new technologies. In fact, if cost savings provide a complete picture, then the organization is probably just automating routine clerical operations and has abandoned efforts that would provide significant strategic value. Strategic value is not limited to financial calculations, but includes quality, time and risk criteria. This paper describes approaches for measuring strategic value that can provide organizations with proven techniques to improve performance, reengineer processes, benchmark performance against other suppliers, identify outsourcing opportunities, or defend themselves from pressures to outsource. Many organizations respond to tightening budgets by cutting overhead. These measurement approaches can demonstrate how overhead is critical to organizational effectiveness and how cost savings can be found, instead, by measurably improving performance throughout the organization. Finally, the paper describes efforts underway within the Department of Energy and at the Hanford Site to implement the approaches described in this paper.

  20. Mitigation technologies and measures in energy sector of Kazakstan

    Energy Technology Data Exchange (ETDEWEB)

    Pilifosova, O.; Danchuk, D.; Temertekov, T. [and others

    1996-12-31

    An important commitment in the UN Framework Convention on Climate Change is to conduct mitigation analysis and to communicate climate change measures and policies. In major part reducing CO{sub 2} as well as the other greenhouse gas emissions in Kazakstan, can be a side-product of measures addressed to increasing energy efficiency. Since such measures are very important for the national economy, mitigation strategies in the energy sector of Kazakstan are directly connected with the general national strategy of the energy sector development. This paper outlines the main measures and technologies in energy sector of Kazakstan which can lead to GHG emissions reduction and presents the results of current mitigation assessment. The mitigation analysis is addressed to energy production sector. A baseline and six mitigation scenarios were developed to evaluate the most attractive mitigation options, focusing on specific technologies which have been already included in sustainable energy programs. According to the baseline projection, Kazakstan`s CO{sub 2} emissions will not exceed their 1990 level until 2005. The potential for CO{sub 2} emission reduction is estimated to be about 11 % of the base line emission level by the end of considered period (in 2020). The main mitigation options in the energy production sector in terms of mitigation potential and technical and economical feasibility include rehabilitation of thermal power plants aimed to increasing efficiency, use of nuclear energy and further expansion in the use of hydro energy based on small hydroelectric power plants.

  1. Sustainable Phosphorus Measures: Strategies and Technologies for Achieving Phosphorus Security

    Directory of Open Access Journals (Sweden)

    Stuart White

    2013-01-01

    Full Text Available Phosphorus underpins the world’s food systems by ensuring soil fertility, maximising crop yields, supporting farmer livelihoods and ultimately food security. Yet increasing concerns around long-term availability and accessibility of the world’s main source of phosphorus—phosphate rock, means there is a need to investigate sustainable measures to buffer the world’s food systems against the long and short-term impacts of global phosphorus scarcity. While the timeline of phosphorus scarcity is contested, there is consensus that more efficient use and recycling of phosphorus is required. While the agricultural sector will be crucial in achieving this, sustainable phosphorus measures in sectors upstream and downstream of agriculture from mine to fork will also need to be addressed. This paper presents a comprehensive classification of all potential phosphorus supply- and demand-side measures to meet long-term phosphorus needs for food production. Examples range from increasing efficiency in the agricultural and mining sector, to technologies for recovering phosphorus from urine and food waste. Such measures are often undertaken in isolation from one another rather than linked in an integrated strategy. This integrated approach will enable scientists and policy-makers to take a systematic approach when identifying potential sustainable phosphorus measures. If a systematic approach is not taken, there is a risk of inappropriate investment in research and implementation of technologies and that will not ultimately ensure sufficient access to phosphorus to produce food in the future. The paper concludes by introducing a framework to assess and compare sustainable phosphorus measures and to determine the least cost options in a given context.

  2. Technology and education: First approach for measuring temperature with Arduino

    Science.gov (United States)

    Carrillo, Alejandro

    2017-04-01

    This poster session presents some ideas and approaches to understand concepts of thermal equilibrium, temperature and heat in order to bulid a man-nature relationship in a harmonious and responsible manner, emphasizing the interaction between science and technology, without neglecting the relationship of the environment and society, an approach to sustainability. It is proposed the development of practices that involve the use of modern technology, of easy access and low cost to measure temperature. We believe that the Arduino microcontroller and some temperature sensors can open the doors of innovation to carry out such practices. In this work we present some results of simple practices presented to a population of students between the ages of 16 and 17 years old. The practices in this proposal are: Zero law of thermodynamics and the concept of temperature, calibration of thermometers and measurement of temperature for heating and cooling of three different substances under the same physical conditions. Finally the student is asked to make an application that involves measuring of temperature and other physical parameters. Some suggestions are: to determine the temperature at which we take some food, measure the temperature difference at different rooms of a house, housing constructions that favour optimal condition, measure the temperature of different regions, measure of temperature trough different colour filters, solar activity and UV, propose applications to understand current problems such as global warming, etc. It is concluded that the Arduino practices and electrical sensors increase the cultural horizon of the students while awaking their interest to understand their operation, basic physics and its application from a modern perspective.

  3. Instrument maintenance of ultrasonic influences parameters measurement in technological processes

    Directory of Open Access Journals (Sweden)

    Tomal V. S.

    2008-04-01

    Full Text Available The contact and non-contact vibration meters for intermittent and continuous control of the vibration amplitude in the ultrasonic technological equipment have been developed. And in order to estimate the cavitation intensity in liquids the authors have developed cavitation activity indicators and cavitation sensitivity meters, allowing to measure the magnitude of the signal level in the range of maximum spectral density of cavitation noise. The developed instruments allow to improve the quality of products, reduce the defect rate and power consumption of equipment by maintaining optimum conditions of the process.

  4. 3D optical measuring technologies for dimensional inspection

    International Nuclear Information System (INIS)

    Chugui, Yu V

    2005-01-01

    The results of the R and D activity of TDI SIE SB RAS in the field of the 3D optical measuring technologies and systems for noncontact 3D optical dimensional inspection applied to atomic and railway industry safety problems are presented. This activity includes investigations of diffraction phenomena on some 3D objects, using the original constructive calculation method, development of hole inspection method on the base of diffractive optical elements. Ensuring the safety of nuclear reactors and running trains as well as their high exploitation reliability takes a noncontact inspection of geometrical parameters of their components. For this tasks we have developed methods and produced the technical vision measuring systems LMM, CONTROL, PROFILE, and technologies for non-contact 3D dimensional inspection of grid spacers and fuel elements for the nuclear reactor VVER-1000 and VVER-440, as well as automatic laser diagnostic system COMPLEX for noncontact inspection of geometrical parameters of running freight car wheel pairs. The performances of these systems and the results of the industrial testing at atomic and railway companies are presented

  5. Ultra-filtration measurement using CT imaging technology

    International Nuclear Information System (INIS)

    Lu Junfeng; Lu Wenqiang

    2009-01-01

    As a functional unit in the hemodialysis process, dialyzer captured quite a few medical research interests since 1980s. In the design of dialyzer or in the ongoing hemodialysis process, to estimate the ultra-filtration amount of a dialyzer, the sideway loss of the running blood flow through hollow fibers or filtration channels should be measured. This further leads to the measurement of the blood flow inside the dialyzer. For this measurement, a non-invasive method is highly desired because of the high-dense bundled hollow fibers or packed channels inside the dialyzer. As non-invasive measurement tools, CT (Computed Tomography) technologies were widely used for tissue, bone, and cancerous clinical analyses etc .... Thus, in this paper, a CT system is adopted to predict the blood flow inside a hollow fiber dialyzer. In view of symmetric property of the hollow fiber dialyzer, the largest cutting plane that parallels to the cylindrical dialyzer was analyzed by the CT system dynamically. And then, a noninvasive image analysis method used to predict the ultra-filtration amount is proposed.

  6. Open Loop Heat Pipe Radiator Having a Free-Piston for Wiping Condensed Working Fluid

    Science.gov (United States)

    Weinstein, Leonard M. (Inventor)

    2015-01-01

    An open loop heat pipe radiator comprises a radiator tube and a free-piston. The radiator tube has a first end, a second end, and a tube wall, and the tube wall has an inner surface and an outer surface. The free-piston is enclosed within the radiator tube and is capable of movement within the radiator tube between the first and second ends. The free-piston defines a first space between the free-piston, the first end, and the tube wall, and further defines a second space between the free-piston, the second end, and the tube wall. A gaseous-state working fluid, which was evaporated to remove waste heat, alternately enters the first and second spaces, and the free-piston wipes condensed working fluid from the inner surface of the tube wall as the free-piston alternately moves between the first and second ends. The condensed working fluid is then pumped back to the heat source.

  7. Low pH levels wipe out salmon and trout populations in southernmost Norway

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, K W; Snekvik, E

    1972-01-01

    A gradual decrease in pH has been documented for many Scandinavian rivers and lakes and there is little doubt that the main cause is acid precipitation (1-4). Eggs, fry, and alevins of salmon and brown trout are more susceptible to acid water than are the older fish. A gradually increasing acidity of trout biotopes will cause a reduction in the natural reproduction rate of trout, because eggs and fry succumb, while the older individuals in the population survive, at least until the pH level sinks low enough to affect them, as well. A study of the present situation and examination of the available data show that the salmon populations in a number of rivers in southernmost Norway have been nearly wiped out by low pH values. During the last twenty to thirty years, low pH levels have eliminated the brown trout populations in a great number of lakes and rivers in Norway's southernmost districts. This alarming development is continuing.

  8. Concentration of a sodium nitrate-based waste with a wiped film evaporation

    International Nuclear Information System (INIS)

    Farr, L.L.; Boring, M.D.; Fowler, V.L.; Hewitt, J.D.

    1995-01-01

    Oak Ridge National Laboratory (ORNL) currently has an inventory of 500,000 gallons of sodium nitrate-based radioactive liquid waste which is currently stored in the Melton Valley Storage Tanks (MVST). This waste needs to be treated and one option being considered is concentration of the wastes using evaporation. Testing is underway to determine whether a Wiped Film Evaporator (WFE) can be used to concentrate these wastes in an economical and reliable manner. The capability of the evaporator to process a non-radioactive simulant of the MVST wastes over a range of operating conditions is being studied. The equipment has to be checked for reliability, potential corrosion problems, and the effects of the waste on the efficiency of heat transfer due to scaling. Physical and chemical characteristics of the product and distillate are being investigated. Heat transfer coefficients and volume reductions are being determined under different operating conditions. Decontamination factors are being calculated to determine the necessity for further treatment of the distillate and off-gas

  9. Semiconductor measurement technology: reliability technology for cardiac pacemakers 2: a workshop report, 1976

    International Nuclear Information System (INIS)

    Schafft, H.A.

    1977-01-01

    Summaries are presented of 12 invited talks on the following topics: the procurement and assurance of high reliability electronic parts, leak rate and moisture measurements, pacemaker batteries, and pacemaker leads. The workshop, second in a series, was held in response to strong interest expressed by the pacemaker community to address technical questions relevant to the enhancement and assurance of cardiac pacemaker reliability. Discussed at the workshop were a process validation wafer concept for assuring process uniformity in device chips; screen tests for assuring reliable electronic parts; reliability prediction; reliability comparison of semiconductor technologies; mechanisms of short-circuiting dendritic growths; details of helium and radioisotope leak test methods; a study to correlate package leak rates, as measured with test gasses, and actual moisture infusion; battery life prediction; microcalorimetric measurements to nondestructively evaluate batteries for pacemakers; and an engineer's and a physician's view of the present status of pacemaker leads. References are included with most of the reports

  10. Measuring and test equipment control through bar-code technology

    International Nuclear Information System (INIS)

    Crockett, J.D.; Carr, C.C.

    1993-01-01

    Over the past several years, the use, tracking, and documentation of measuring and test equipment (M ampersand TE) has become a major issue. New regulations are forcing companies to develop new policies for providing use history, traceability, and accountability of M ampersand TE. This paper discusses how the Fast Flux Test Facility (FFTF), operated by Westinghouse Hanford Company and located at the Hanford site in Rich- land, Washington, overcame these obstacles by using a computerized system exercising bar-code technology. A data base was developed to identify M ampersand TE containing 33 separate fields, such as manufacturer, model, range, bar-code number, and other pertinent information. A bar-code label was attached to each piece of M ampersand TE. A second data base was created to identify the employee using the M ampersand TE. The fields contained pertinent user information such as name, location, and payroll number. Each employee's payroll number was bar coded and attached to the back of their identification badge. A computer program was developed to automate certain tasks previously performed and tracked by hand. Bar-code technology was combined with this computer program to control the input and distribution of information, eliminate common mistakes, electronically store information, and reduce the time required to check out the M ampersand TE for use

  11. Development of Industrial Process Diagnosis and Measurement Technology

    International Nuclear Information System (INIS)

    Jung, Sung Hee; Kim, Jong Bum; Moon, Jin Ho

    2010-04-01

    Section 1. Industrial Gamma CT Technology for Process Diagnosis: The project is aimed to develop industrial process gamma tomography system for investigation on structural and physical malfunctioning and process media distribution by means of sealed gamma source and radioactive materials. Section 2. Development of RI Hydraulic Detection Technology for Industrial Application: The objectives in this study are to develop the evaluation technology of the hydrological characteristics and the hydraulic detection technology using radioisotope, and to analyze the hydrodynamics and pollutant transport in water environment like surface and subsurface. Section 3. Development of RT-PAT System for Powder Process Diagnosis: The objective of this project is the development of a new radiation technology to improve the accuracy of the determination of moisture content in a powder sample by using radiation source through the so-called RT-PAT (Radiation Technology-Process Analytical Technology), which is a new concept of converging technology between the radiation technology and the process analytical technology

  12. Development of industrial process diagnosis and measurement technology

    International Nuclear Information System (INIS)

    Jung, Sunghee; Kim, Jongbum; Moon, Jinho; Suh, Kyungsuk; Kim, Jongyun

    2012-04-01

    Section1. Industrial Gamma CT Technology for Process Diagnosis The project is aimed to develop industrial process gamma tomography system for investigation on structural and physical malfunctioning and process media distribution by means of sealed gamma source and radioactive materials. Section2. Development of RI Hydraulic Detection Technology for Industrial Application The objectives in this study are to develop the evaluation technology of the hydrological characteristics and the hydraulic detection technology using radioisotope, and to analyze the hydrodynamics and pollutant transport in water environment like surface and subsurface. Section3. Development of RT-PAT System for Powder Process Diagnosis The objective of this project is the development of a new radiation technology to improve the accuracy of the determination of moisture content in a powder sample by using radiation source through the so-called RT-PAT (Radiation Technology-Process Analytical Technology), which is a new concept of converging technology between the radiation technology and the process analytical technology

  13. Applying dual-laser spot positions measurement technology on a two-dimensional tracking measurement system

    International Nuclear Information System (INIS)

    Lee, Hau-Wei; Chen, Chieh-Li

    2009-01-01

    This paper presents a two-dimensional tracking measurement system with a tracking module, which consists of two stepping motors, two laser diodes and a four separated active areas segmented position sensitive detector (PSD). The PSD was placed on a two-dimensional moving stage and used as a tracking target. The two laser diodes in the tracking module were directly rotated to keep the laser spots on the origin of the PSD. The two-dimensional position of the target PSD on the moving stage is determined from the distance between the two motors and the tracking angles of the two laser diodes, which are rotated by the two stepping motors, respectively. In order to separate the four positional values of the two laser spots on one PSD, the laser diodes were modulated by two distinct frequencies. Multiple-laser spot position measurement technology was used to separate the four positional values of the two laser spots on the PSD. The experimental results show that the steady-state voltage shift rate is about 0.2% and dynamic cross-talk rate is smaller than 2% when the two laser spots are projected on one PSD at the same time. The measurement errors of the x and y axial positions of the two-dimensional tracking system were less than 1% in the measuring range of 20 mm. The results demonstrate that multiple-laser spot position measurement technology can be employed in a two-dimensional tracking measurement system

  14. Precision gravity measurement utilizing Accelerex vibrating beam accelerometer technology

    Science.gov (United States)

    Norling, Brian L.

    Tests run using Sundstrand vibrating beam accelerometers to sense microgravity are described. Lunar-solar tidal effects were used as a highly predictable signal which varies by approximately 200 billionths of the full-scale gravitation level. Test runs of 48-h duration were used to evaluate stability, resolution, and noise. Test results on the Accelerex accelerometer show accuracies suitable for precision applications such as gravity mapping and gravity density logging. The test results indicate that Accelerex technology, even with an instrument design and signal processing approach not optimized for microgravity measurement, can achieve 48-nano-g (1 sigma) or better accuracy over a 48-h period. This value includes contributions from instrument noise and random walk, combined bias and scale factor drift, and thermal modeling errors as well as external contributions from sampling noise, test equipment inaccuracies, electrical noise, and cultural noise induced acceleration.

  15. Measuring Consumer Innovativeness: Identifying Innovators among Consumers of Modern Technologies

    Directory of Open Access Journals (Sweden)

    Jana Filová

    2015-12-01

    Full Text Available The methods currently used in innovation marketing research are focused on the late phases of the innovation process and are usually methodologically complex. This limits their practical impact. The presented work aims to create a simple self-report scale applicable in the initial and late phases of the innovation process, highly modular and suitable for a wide range of research. The main battery of questions was inspired by the adopter categorization by Rogers. The questions determine both (1 general characteristics of innovation adopters and (2 their relationship to a specific innovation. The scale was tested during robust longitudinal online research, thematically focused on users of modern technologies. A representative sample of 4,000 Internet users in the Czech Republic took part in the survey from 2013 to 2015. The result is a new self-report scale measuring consumer innovativeness applicable for prototyping, strategic decisions and effective communication of innovations to consumers.

  16. INFLUENCE OF HEALTH TECHNOLOGY ASSESSMENT AND ITS MEASUREMENT.

    Science.gov (United States)

    Hailey, David; Werkö, Sophie; Rosén, Måns; Macpherson, Karen; Myles, Susan; Gallegos Rivero, Verónica; Hipólito-Olivares, Cecilia; Sihvo, Sinikka; Pwu, Jasmine; Yang, Wen-Wen; Chen, Yong-Chen; Perez Galán, Ana; Aleman, Alicia; Villamil, Elena

    2016-01-01

    The aim of this study was to obtain information on methods used to measure health technology assessment (HTA) influence, decisions that were influenced, and outcomes linked to HTA. Electronic databases were used to locate studies in which HTA influence had been demonstrated. Inclusion criteria were studies that reliably reported consideration by decision makers of HTA findings; comparative studies of technology use before and after HTA; and details of changes in policy, health outcomes, or research that could be credibly linked to an HTA. Fifty-one studies were selected for review. Settings were national (24), regional (12), both national and regional (3) hospitals (9), and multinational (3). The most common approach to appraisal of influence was review of policy or administrative decisions following HTA recommendations (51 percent). Eighteen studies (35 percent) reported interview or survey findings, thirteen (26 percent) reviewed administrative data, and six considered the influence of primary studies. Of 142 decisions informed by HTA, the most common types were on routine clinical practice (67 percent of studies), coverage (63 percent), and program operation (37 percent). The most frequent indications of HTA influence were on decisions related to resource allocation (59 percent), change in practice pattern (31 percent), and incorporation of HTA details in reference material (18 percent). Few publications assessed the contribution of HTA to changing patient outcomes. The literature on HTA influence remains limited, with little on longer term effects on practice and outcomes. The reviewed publications indicated how HTA is being used in different settings and approaches to measuring its influence that might be more widely applied, such as surveys and monitoring administrative data.

  17. Effect on skin hydration of using baby wipes to clean the napkin area of newborn babies: assessor-blinded randomised controlled equivalence trial

    Directory of Open Access Journals (Sweden)

    Lavender Tina

    2012-06-01

    Full Text Available Abstract Background Some national guidelines recommend the use of water alone for napkin cleansing. Yet, there is a readiness, amongst many parents, to use baby wipes. Evidence from randomised controlled trials, of the effect of baby wipes on newborn skin integrity is lacking. We conducted a study to examine the hypothesis that the use of a specifically formulated cleansing wipe on the napkin area of newborn infants ( Methods A prospective, assessor-blinded, randomised controlled equivalence trial was conducted during 2010. Healthy, term babies (n = 280, recruited within 48 hours of birth, were randomly assigned to have their napkin area cleansed with an alcohol-free baby wipe (140 babies or cotton wool and water (140 babies. Primary outcome was change in hydration from within 48 hours of birth to 4 weeks post-birth. Secondary outcomes comprised changes in trans-epidermal water loss, skin surface pH and erythema, presence of microbial skin contaminants/irritants at 4 weeks and napkin dermatitis reported by midwife at 4 weeks and mother during the 4 weeks. Results Complete hydration data were obtained for 254 (90.7 % babies. Wipes were shown to be equivalent to water and cotton wool in terms of skin hydration (intention-to-treat analysis: wipes 65.4 (SD 12.4 vs. water 63.5 (14.2, p = 0.47, 95 % CI -2.5 to 4.2; per protocol analysis: wipes 64.6 (12.4 vs. water 63.6 (14.3, p = 0.53, 95 % CI -2.4 to 4.2. No significant differences were found in the secondary outcomes, except for maternal-reported napkin dermatitis, which was higher in the water group (p = 0.025 for complete responses. Conclusions Baby wipes had an equivalent effect on skin hydration when compared with cotton wool and water. We found no evidence of any adverse effects of using these wipes. These findings offer reassurance to parents who choose to use baby wipes and to health professionals who support their use. Trial registration Current Controlled

  18. Effect on skin hydration of using baby wipes to clean the napkin area of newborn babies: assessor-blinded randomised controlled equivalence trial.

    Science.gov (United States)

    Lavender, Tina; Furber, Christine; Campbell, Malcolm; Victor, Suresh; Roberts, Ian; Bedwell, Carol; Cork, Michael J

    2012-06-01

    Some national guidelines recommend the use of water alone for napkin cleansing. Yet, there is a readiness, amongst many parents, to use baby wipes. Evidence from randomised controlled trials, of the effect of baby wipes on newborn skin integrity is lacking. We conducted a study to examine the hypothesis that the use of a specifically formulated cleansing wipe on the napkin area of newborn infants (skin hydration when compared with using cotton wool and water (usual care). A prospective, assessor-blinded, randomised controlled equivalence trial was conducted during 2010. Healthy, term babies (n=280), recruited within 48 hours of birth, were randomly assigned to have their napkin area cleansed with an alcohol-free baby wipe (140 babies) or cotton wool and water (140 babies). Primary outcome was change in hydration from within 48 hours of birth to 4 weeks post-birth. Secondary outcomes comprised changes in trans-epidermal water loss, skin surface pH and erythema, presence of microbial skin contaminants/irritants at 4 weeks and napkin dermatitis reported by midwife at 4 weeks and mother during the 4 weeks. Complete hydration data were obtained for 254 (90.7 %) babies. Wipes were shown to be equivalent to water and cotton wool in terms of skin hydration (intention-to-treat analysis: wipes 65.4 (SD 12.4) vs. water 63.5 (14.2), p=0.47, 95% CI -2.5 to 4.2; per protocol analysis: wipes 64.6 (12.4) vs. water 63.6 (14.3), p=0.53, 95% CI -2.4 to 4.2). No significant differences were found in the secondary outcomes, except for maternal-reported napkin dermatitis, which was higher in the water group (p=0.025 for complete responses). Baby wipes had an equivalent effect on skin hydration when compared with cotton wool and water. We found no evidence of any adverse effects of using these wipes. These findings offer reassurance to parents who choose to use baby wipes and to health professionals who support their use. Current Controlled Trials ISRCTN86207019.

  19. Measurement technology of RF interference current in high current system

    Science.gov (United States)

    Zhao, Zhihua; Li, Jianxuan; Zhang, Xiangming; Zhang, Lei

    2018-06-01

    Current probe is a detection method commonly used in electromagnetic compatibility. With the development of power electronics technology, the power level of power conversion devices is constantly increasing, and the power current of the electric energy conversion device in the electromagnetic launch system can reach 10kA. Current probe conventionally used in EMC (electromagnetic compatibility) detection cannot meet the test requirements on high current system due to the magnetic saturation problem. The conventional high current sensor is also not suitable for the RF (Radio Frequency) interference current measurement in high current power device due to the high noise level in the output of active amplifier. In this paper, a passive flexible current probe based on Rogowski coil and matching resistance is proposed that can withstand high current and has low noise level, to solve the measurement problems of interference current in high current power converter. And both differential mode and common mode current detection can be easily carried out with the proposed probe because of the probe's flexible structure.

  20. Cleaner Technology in Denmark - support measures and regulatory efforts

    DEFF Research Database (Denmark)

    Jørgensen, Ulrik

    2005-01-01

    Danish cleaner technology support policies have been successful in fostering innovations that reduce the invironmental impact of products and production. But the lack of enforcement support for cleaner technology in environmental permits has limited the overall impact....

  1. Short Report: New use of current technology to measure rectal ...

    African Journals Online (AJOL)

    The technology necessary to log data remotely and independently has been available for some years. This technology has been applied mostly to environmental and natural sciences, however, and not in life sciences. This was due primarily to the cost of the technology and the small demand for it in the life sciences, ...

  2. Announcing the 2013 Measurement Science and Technology Outstanding Paper Awards

    Science.gov (United States)

    Foss, John; Dewhurst, Richard; Yacoot, Andrew; Tadigadapa, Srinivas; Peters, Kara

    2014-07-01

    Since 1991, Measurement Science and Technology has awarded a Best Paper prize. The Editorial Board of this journal believe that such a prize is an opportunity to thank authors for submitting their work, and serves as an integral part of the on-going quality review of the journal. The current breadth of topical areas that are covered by MST has made it advisable to expand the recognition of excellent publications. Hence, since 2005 the Editorial Board have presented 'Outstanding Paper Awards'. This year awards were presented in the areas of Fluid Mechanics, Measurement Science, Precision Measurement, Sensors and Sensing Systems, and Optical and Laser-based Techniques. Although the categories mirror subject sections in the journal, the Editorial Board consider articles from all categories in the selection process. 2013 Award Winner—Fluid Mechanics Extraction of skin-friction fields from surface flow visualizations Tianshu Liu Department of Mechanical and Aerospace Engineering, Western Michigan University, Kalamazoo, MI 49008, USA The skin friction or wall shear stress, τ w, for a wall bounded turbulent flow is a quantity of fundamental importance. It is the basis for the wall unit, ν/u τ (kinematic viscosity/friction velocity: [τ w/ρ ]1/2), which establishes the intrinsic length scale in the flow. The selected paper [1] provides a comprehensive review of—and builds upon—prior techniques to obtain τ w values over an area of interest for flow past complex geometries. The quantities that can be measured by optical imaging are shown to be related to the skin friction by the optical flow equation, which in turn is solved numerically as an inverse problem via the variational approach. The paper provides a well defined set of guidelines for other investigators. Detailed examples of skin-friction measurements using luminescent oil films as well as temperature- and pressure-sensitive paints are presented. Quantitative uncertainty estimates are included in the

  3. EDITORIAL: Precision Measurement Technology at the 56th International Scientific Colloquium in Ilmenau Precision Measurement Technology at the 56th International Scientific Colloquium in Ilmenau

    Science.gov (United States)

    Manske, E.; Froehlich, T.

    2012-07-01

    The 56th International Scientific Colloquium was held from 12th to 16th September 2011 at the Ilmenau University of Technology in Germany. This event was organized by the Faculty of Mechanical Engineering under the title: 'Innovation in Mechanical Engineering—Shaping the Future' and was intended to reflect the entire scope of modern mechanical engineering. In three main topics many research areas, all involving innovative mechanical engineering, were addressed, especially in the fields of Precision Engineering and Precision Measurement Technology, Mechatronics and Ambient-Assisted Living and Systems Technology. The participants were scientists from 21 countries, and 166 presentations were given. This special issue of Measurement Science and Technology presents selected contributions on 'Precision Engineering and Precision Measurement Technology'. Over three days the conference participants discussed novel scientific results in two sessions. The main topics of these sessions were: Measurement and Sensor Technology Process measurement Laser measurement Force measurement Weighing technology Temperature measurement Measurement dynamics and Nanopositioning and Nanomeasuring Technology Nanopositioning and nanomeasuring machines Nanometrology Probes and tools Mechanical design Signal processing Control and visualization in NPM devices Significant research results from the Collaborative Research Centre SFB 622 'Nanopositioning and Nanomeasuring Machines' funded by the German Research Foundation (DFG) were presented as part of this topic. As the Chairmen, our special thanks are due to the International Programme Committee, the Organization Committee and the conference speakers as well as colleagues from the Institute of Process Measurement and Sensor Technology who helped make the conference a success. We would like to thank all the authors for their contributions, the referees for their time spent reviewing the contributions and their valuable comments, and the whole

  4. Alpha radioactivity measurement technology with ionized air type measurement. Applicability evaluation to verification of the clearance level

    International Nuclear Information System (INIS)

    Mita, Yutaka; Matsumura, Toshihiro; Yokoyama, Kaoru; Sugitsue, Noritake

    2008-10-01

    The purpose of this test is to evaluate the applicability of the clearance level measuring system by Ionized Air Type Measurement after decontaminated by sulfuric acid sample. In Ningyo-toge Environmental Engineering Center. The equipment and radioactive waste which were contaminated with uranium are generated so much in future dismantling stage. In our plan, some of equipments and radioactive waste are contaminated to a clearance level, and cut down on decommission and disposal expense. This plan needs the alpha-rays measurement technology of the very low level. We think that ionized Air transfer measurement technology is promising as of clearance verification technology. The ionized Air transfer measurement technology applied to the Ionized Air Type Measurement can measure plan radioactivity of a very low level. Moreover, as compared with a direct survey, there is the merit which can be measured in a short time. However ionized Air transfer measurement technology is new technology. Therefore, there is almost no measurement track record. Furthermore, the date about the influence of a background, a detection limit, measurement performance, and reliability is insufficient. So, this measurement test estimated applicability as clearance level verification of an Ionized Air Type Measurement. (author)

  5. Academic Technology Transfer: Tracking, Measuring and Enhancing Its Impact

    Science.gov (United States)

    Fraser, John

    2010-01-01

    Since the 1980 passage of the US Bayh-Dole Act, academic technology transfer has gained profile globally as a key component of knowledge-driven economic development. Research universities are seen as key contributors. In this article, focusing on the USA and drawing on over twenty years of experience in the field of academic technology transfer in…

  6. Technological change and the timing of mitigation measures

    International Nuclear Information System (INIS)

    Gruebler, A.; Messner, S.

    1998-01-01

    We use a coupled carbon-cycle and energy systems engineering model to analyze the future time path of carbon emissions under an illustrative CO 2 concentration stabilization limit of 550 ppm. Our findings confirm the emission pattern as found by WRE: global emissions rise initially, pass through stabilization, in order to decline in the second half of the 21st century. We show that for a given CO 2 concentration target, emission trajectories within an intertemporal optimization framework depend mainly on two factors: the discount rate, and the representation of technological change as either static or dynamic. We obtain a similar near-term emission time path as WRE when using a model with static technology and a discount rate of 7%. We obtain a trajectory with lower emissions in the near-term when using a lower discount rate and/or treating technology dynamics endogenously in the model. We briefly outline a model that endogenizes technological change through learning curves. We then compare differences in emission trajectories between alternative model formulations of technological change. They are sufficiently small as to be of secondary importance when compared to treating CO 2 concentration stabilization as an inter-temporal optimization problem or not. Whereas our results confirm the computational results of WRE, we arrive nonetheless at different policy conclusions. If long-term emission reduction is the goal, we cannot follow 'business as usual' even in the short-term. Action needs to start now. Action does not necessarily mean aggressive short-term emission reductions but rather enhanced R and D and technology demonstration efforts that stimulate technological learning. These are the necessary preconditions that long-term reduction targets can be met with improved technology and at costs lower than today. We close by pointing out two further critical issues: uncertainty, and the possible mismatch between the world of economic models and that of climate

  7. Errors in practical measurement in surveying, engineering, and technology

    International Nuclear Information System (INIS)

    Barry, B.A.; Morris, M.D.

    1991-01-01

    This book discusses statistical measurement, error theory, and statistical error analysis. The topics of the book include an introduction to measurement, measurement errors, the reliability of measurements, probability theory of errors, measures of reliability, reliability of repeated measurements, propagation of errors in computing, errors and weights, practical application of the theory of errors in measurement, two-dimensional errors and includes a bibliography. Appendices are included which address significant figures in measurement, basic concepts of probability and the normal probability curve, writing a sample specification for a procedure, classification, standards of accuracy, and general specifications of geodetic control surveys, the geoid, the frequency distribution curve and the computer and calculator solution of problems

  8. Grid Based Integration Technologies of Virtual Measurement System

    International Nuclear Information System (INIS)

    Zhang, D P; He, L S; Yang, H

    2006-01-01

    This paper presents a novel integrated architecture of measurement system for the new requirements of measurement collaboration, measurement resource interconnection and transparent access etc in the wide-area and across organization in the context of a grid. The complexity of integration on a grid arises from the scale, dynamism, autonomy, and distribution of the measurement resources. The main argument of this paper is that these complexities should be made transparent to the collaborative measurement, via flexible reconfigurable mechanisms and dynamic virtualization services. The paper is started by discussing the integration-oriented measurement architecture which provides collaborative measurement services to distributed measurement resources and then the measurement mechanisms are discussed which implements the transparent access and collaboration of measurement resources by providing protocols, measurement schedule and global data driven model

  9. Bridge continuous deformation measurement technology based on fiber optic gyro

    Science.gov (United States)

    Gan, Weibing; Hu, Wenbin; Liu, Fang; Tang, Jianguang; Li, Sheng; Yang, Yan

    2016-03-01

    Bridge is an important part of modern transportation systems and deformation is a key index for bridge's safety evaluation. To achieve the long span bridge curve measurement rapidly and timely and accurately locate the bridge maximum deformation, the continuous deformation measurement system (CDMS) based on inertial platform is presented and validated in this paper. Firstly, based on various bridge deformation measurement methods, the method of deformation measurement based on the fiber optic gyro (FOG) is introduced. Secondly, the basic measurement principle based on FOG is presented and the continuous curve trajectory is derived by the formula. Then the measurement accuracy is analyzed in theory and the relevant factors are presented to ensure the measurement accuracy. Finally, the deformation measurement experiments are conducted on a bridge across the Yangtze River. Experimental results show that the presented deformation measurement method is feasible, practical, and reliable; the system can accurately and quickly locate the maximum deformation and has extensive and broad application prospects.

  10. Measuring Technology Acceptance Level of Turkish Pre-Service English Teachers by Using Technology Acceptance Model

    Science.gov (United States)

    Kirmizi, Özkan

    2014-01-01

    The aim of this study is to investigate technology acceptance of prospective English teachers by using Technology Acceptance Model (TAM) in Turkish context. The study is based on Structural Equation Model (SEM). The participants of the study from English Language Teaching Departments of Hacettepe, Gazi and Baskent Universities. The participants…

  11. Validation of an Instrument to Measure Students' Motivation and Self-Regulation towards Technology Learning

    Science.gov (United States)

    Liou, Pey-Yan; Kuo, Pei-Jung

    2014-01-01

    Background: Few studies have examined students' attitudinal perceptions of technology. There is no appropriate instrument to measure senior high school students' motivation and self-regulation toward technology learning among the current existing instruments in the field of technology education. Purpose: The present study is to validate an…

  12. Performance Measurement of Information Technology Governance: a Case Study

    OpenAIRE

    Andry, Johanes Fernandes

    2016-01-01

    Established in 2001, XYZ Cargo is a Freight Forwarder Service Company specialized in the logistic transportation located in Jakarta. XYZ Cargo has broad experiences in both ocean freight and air freight service and has more than sixty agents of partnership around the world. XYZ Cargo has implemented Information Technology (IT) that covers all key aspects of business processes of the enterprise. It has an impact on the strategic and competitive advantages of its success. Many organizations hav...

  13. Detection and Measurement of Sales Cannibalization in Information Technology Markets

    OpenAIRE

    Novelli, Francesco

    2015-01-01

    Characteristic features of Information Technology (IT), such as its intrinsic modularity and distinctive cost structure, incentivize IT vendors to implement growth strategies based on launching variants of a basic offering. These variants are by design substitutable to some degree and may contend for the same customers instead of winning new ones from competitors or from an expansion of the market. They may thus generate intra-organizational sales diversion – i.e., sales cannibalization. T...

  14. Relativistic quantum metrology: exploiting relativity to improve quantum measurement technologies.

    Science.gov (United States)

    Ahmadi, Mehdi; Bruschi, David Edward; Sabín, Carlos; Adesso, Gerardo; Fuentes, Ivette

    2014-05-22

    We present a framework for relativistic quantum metrology that is useful for both Earth-based and space-based technologies. Quantum metrology has been so far successfully applied to design precision instruments such as clocks and sensors which outperform classical devices by exploiting quantum properties. There are advanced plans to implement these and other quantum technologies in space, for instance Space-QUEST and Space Optical Clock projects intend to implement quantum communications and quantum clocks at regimes where relativity starts to kick in. However, typical setups do not take into account the effects of relativity on quantum properties. To include and exploit these effects, we introduce techniques for the application of metrology to quantum field theory. Quantum field theory properly incorporates quantum theory and relativity, in particular, at regimes where space-based experiments take place. This framework allows for high precision estimation of parameters that appear in quantum field theory including proper times and accelerations. Indeed, the techniques can be applied to develop a novel generation of relativistic quantum technologies for gravimeters, clocks and sensors. As an example, we present a high precision device which in principle improves the state-of-the-art in quantum accelerometers by exploiting relativistic effects.

  15. Atmospheric Turbulence Measurements in Support of Adaptive Optics Technology

    Science.gov (United States)

    1989-03-01

    microthermal 2 Cn measurements is also included. In the near future we anticipate completion of the in-depth study of the radar Cn2 applications in the form...temperature fluctuations necessary to use (2) are measured using standard microthermal temperature-resistance sensors and very sensitive - 12...panel is optical Cn computed from microthermal 2measurements of CT assuming negligible water vapor contribution. The middle panel depicts the

  16. Technology on precision measurement of torque and force

    International Nuclear Information System (INIS)

    2005-12-01

    This book gives a descriptions on force standards system about movement of object, direction and structure. Next, it deals with torque standards, torque measuring instrument and torque wrench with how to use, explanations, unit and test. This book written by Korea Association of standards and testing organizations is for exact measurement and test of force and torque.

  17. Hand hygiene with soap and water is superior to alcohol rub and antiseptic wipes for removal of Clostridium difficile.

    Science.gov (United States)

    Oughton, Matthew T; Loo, Vivian G; Dendukuri, Nandini; Fenn, Susan; Libman, Michael D

    2009-10-01

    To evaluate common hand hygiene methods for efficacy in removing Clostridium difficile. Randomized crossover comparison among 10 volunteers with hands experimentally contaminated by nontoxigenic C. difficile. Interventions included warm water with plain soap, cold water with plain soap, warm water with antibacterial soap, antiseptic hand wipes, alcohol-based handrub, and a control involving no intervention. All interventions were evaluated for mean reduction in colony-forming units (CFUs) under 2 contamination protocols: "whole hand" and "palmar surface." Results were analyzed according to a Bayesian approach, by using hierarchical models adjusted for multiple observations. Under the whole-hand protocol, the greatest adjusted mean reductions were achieved by warm water with plain soap (2.14 log(10) CFU/mL [95% credible interval (CrI), 1.74-2.54 log(10) CFU/mL]), cold water with plain soap (1.88 log(10) CFU/mL [95% CrI, 1.48-2.28 log(10) CFU/mL), and warm water with antibacterial soap (1.51 log(10) CFU/mL [95% CrI, 1.12-1.91 log(10) CFU/mL]), followed by antiseptic hand wipes (0.57 log(10) CFU/mL [95% CrI, 0.17-0.96 log(10) CFU/mL]). Alcohol-based handrub (0.06 log(10) CFU/mL [95% CrI, -0.34 to 0.45 log(10) CFU/mL]) was equivalent to no intervention. Under the palmar surface protocol, warm water with plain soap, cold water with plain soap, and warm water with antibacterial soap again yielded the greatest mean reductions, followed by antiseptic hand wipes (26.6, 26.6, 26.6, and 21.9 CFUs per plate, respectively), when compared with alcohol-based handrub. Hypothenar (odds ratio, 10.98 [95% CrI, 1.96-37.65]) and thenar (odds ratio, 6.99 [95% CrI, 1.25-23.41]) surfaces were more likely than fingertips to remain heavily contaminated after handwashing. Handwashing with soap and water showed the greatest efficacy in removing C. difficile and should be performed preferentially over the use of alcohol-based handrubs when contact with C. difficile is suspected or likely.

  18. Pressurized liquid extraction-gas chromatography-mass spectrometry analysis of fragrance allergens, musks, phthalates and preservatives in baby wipes.

    Science.gov (United States)

    Celeiro, Maria; Lamas, J Pablo; Garcia-Jares, Carmen; Llompart, Maria

    2015-03-06

    Baby wipes and wet toilet paper are specific hygiene care daily products used on newborn and children skin. These products may contain complexes mixtures of harmful chemicals. A method based on pressurized liquid extraction (PLE) followed by gas chromatography-mass spectrometry (GC-MS) has been developed for the simultaneous determination of sixty-five chemical compounds (fragrance allergens, preservatives, musks, and phthalates) in wipes and wet toilet paper for children. These compounds are legislated in Europe according Regulation EC No 1223/2009, being twelve of them banned for their use in cosmetics, and one of them, 3-iodo-2-propynyl butylcarbamate (IPBC), is banned in products intended for children under 3 years. Also, propyl-, and butylparaben will be prohibited in leave-on cosmetic products designed for application on the nappy area of children under 3 years from April 2015. PLE is a fast, simple, easily automated technique, which permits to integrate a clean-up step during the extraction process reducing analysis time and stages. The proposed PLE-based procedure was optimized on real non-spiked baby wipe samples by means of experimental design to study the influence on extraction of parameters such as extraction solvent, temperature, extraction time, and sorbent type. Under the selected conditions, the method was validated showing satisfactory linearity, and intra-day, and inter-day precision. Recoveries were between 80-115% for most of the compounds with relative standard deviations (RSD) lower than 15%. Finally, twenty real samples were analyzed. Thirty-six of the target analytes were detected, highlighting the presence of phenoxyethanol in all analyzed samples at high concentration levels (up to 0.8%, 800μgg(-1)). Methyl paraben (MeP), and ethyl paraben (EtP) were found in 40-50% of the samples, and the recently banned isobutyl paraben (iBuP) and isopropyl paraben (iPrP), were detected in one and seven samples, respectively, at concentrations between

  19. Sound exposure measurements using hearing-aid technology

    DEFF Research Database (Denmark)

    Jensen, Simon Boelt; Drastrup, Mads; Morales, Esteban Chávez

    2016-01-01

    scenarios. The purpose of this work is to document the use of a modified behind-the-ear (BTE) hearing-aid as a portable sound pressure level (SPL) meter. In order to obtain sound level measurements with a BTE device comparable to sound field values that can be used with existing risk assessment strategies...... levels of sound exposures are experienced in modern society in many different situations such as attending concerts, sport events and others. This leads to an interest in measurement devices which are discreet and simple to use, in order to assess sound exposures encountered in typical daily life......, differences due to microphone positions and the presence of a person in the measurement must be taken into account. The present study presents measurements carried out to document the characteristics of the BTE device, using the same framework presented in the ISO 11904 standard series. The responses...

  20. High-altitude wind prediction and measurement technology assessment

    Science.gov (United States)

    2009-06-30

    The principles and operational characteristics of balloon and radar-based techniques for measuring upper air winds in support of launches and recoveries are presented. Though either a balloon or radar system could serve as a standalone system, the sa...

  1. Measurement and evaluation of alpha radioactivity using ionized air transport technology

    International Nuclear Information System (INIS)

    Maekawa, Tatsuyuki; Yamaguchi, Hiromi

    2009-01-01

    A novel alpha radioactivity monitor using ionized air transport technology has been developed for future constitution of 'clearance level' for uranium and TRU radioactive waste. This technology will bring paradigm shift on alpha-ray measurement, such as converting 'closely contacting and scanning measurement' to 'remotely contacting measurement in the block', and drastically improve the efficiency of measurement operation. In this article, the origin and chronicle of this technology were simply explained and our newest accomplishment was described. Furthermore, using measurement data obtained in our development process, measurement and evaluation examples of alpha radioactivity were shown for practical operations as informative guides. We hope that this technology will be widely endorsed as a practical method for alpha clearance measurement in the near future. (author)

  2. METEV: Measurement Technologies for Emissions from Ethanol Fuelled Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Sandtroem-Dahl, Charlotte

    2009-11-15

    The interest of using alcohols, and especially ethanol, as vehicle fuel is high in Sweden. The advantages are many, such as; being renewable, the ethanol can be produced locally and it is easily mixed with gasoline. Alcohol fuels are considered to be a substantial part of the alternative fuel market, especially in Brazil, USA and Sweden. With this growing interest it is of most importance to investigate the emission performance of vehicles fuelled with alcohols. The focus in this study is on measurement and calculation of hydrocarbon emissions. The emission regulations in different countries have different ways to treat alcohol fuelled vehicles. When alcohols are used as blending components in gasoline, uncombusted alcohols from the fuel are emitted in the exhaust in various amounts. If a Flame Ionization Detector (FID) is used to measure hydrocarbons, the uncombusted alcohol will be included in the measurement. The alcohol is, per definition, however not a hydrocarbon (hydrocarbons contains only hydrogen and carbon). In the US regulations, the alcohol content is measured separately, and the FID measurement is adjusted for the alcohol part. This is not performed in the European regulations. The aim of this project is to highlight the need for a discussion regarding the methodology for measuring hydrocarbon and alcohol emissions from flexible fuelled vehicles operating on alcohol fuel blends.

  3. Technological measures for controlling the use of copyrighted works of authorship in the information society

    Directory of Open Access Journals (Sweden)

    Spasić Vidoje

    2016-01-01

    Full Text Available Information technology has given rise to the problem of controlling the use of copyrighted works of authorship from their unauthorized use. In this context, one of the effective solutions is the application of technological protection measures, which are aimed at a more efficient application of the protection measures prescribed by the law. Technological protection measures imply the use of any technology, device or component which may be aimed at preventing or restricting an unauthorized use of a protected work of authorship, which has not been approved by the author or holder of some related right. Generally, all these measures may be classified into three basic groups: technological measures aimed at controlling access, technological measured aimed at controlling exploitation, and technological measures aimed at protecting the integrity of the work of authorship. Considering their technical characteristics and mode of application, they may be hardware-based measures, software-based measures, or a combination thereof. Modern technology has enabled the development of digital systems which entail a controlled use of copyrighted works and facilitate obtaining licences for their exploitation. They are commonly known as digital rights management (DRM. The DRM system should provide for a compromise between safeguarding the intellectual property rights of the copyright holder, the end user privacy, and system costs. The envisaged goals are achieved by employing various cryptographic measures. The process of developing technological protection measures is accompanied by concurrent attempts to circumvent the application of these measures. Thus, the effectiveness of these measures primarily depends on their legal protection, which has been recognized by a vast majority of legal systems, we now know the most modern legal system. However, the normative solutions are not uniform. The observed differences actually reflect problems in finding adequate forms

  4. Processing horizontal networks measured by integrated terrestrial and GPS technologies

    Directory of Open Access Journals (Sweden)

    Vincent Jakub

    2003-09-01

    Full Text Available Local horizontal networks in which GPS and terrestrial measurements (TER are done are often established at present. Iin other networks, the previous terrestrial measurements can be completed with quantities from contemporary GPS observations (tunnel nets, mining nets with surface and underground parts and other long-shaped nets.The processing of such heterobeneous (GPS, TER networks whose terrestrial measurements are performed as point coordinate measurements (∆X, ∆Y using (geodetic total stationIn is presented in this paper. In such network structures it is then available:- the values ∆X, ∆Y from TER observations which are transformed in the plane of S-JTSK for adjustement,- the values ∆X, ∆Y in the plane S-JTSK that can be obtained by 3D transformation of WGS84 netpoint coordinates from GPS observations to corresponding coordinates S-JTSK.For common adjusting all the ∆X, ∆Y, some elements of the network geometry (e.g. distances should be measured by both methods (GPS, TER. This approach makes possible an effective homogenisation of both network parts what is equivalent to saying that an expressive influence reduction on local frame realizations of S-JTSK in the whole network can be made.Results of network processing obtained in proposed manner are acceptable in general and they are equivalent (accuracy, reliability to results of another processing methods.

  5. Sensible organizations: technology and methodology for automatically measuring organizational behavior.

    Science.gov (United States)

    Olguin Olguin, Daniel; Waber, Benjamin N; Kim, Taemie; Mohan, Akshay; Ara, Koji; Pentland, Alex

    2009-02-01

    We present the design, implementation, and deployment of a wearable computing platform for measuring and analyzing human behavior in organizational settings. We propose the use of wearable electronic badges capable of automatically measuring the amount of face-to-face interaction, conversational time, physical proximity to other people, and physical activity levels in order to capture individual and collective patterns of behavior. Our goal is to be able to understand how patterns of behavior shape individuals and organizations. By using on-body sensors in large groups of people for extended periods of time in naturalistic settings, we have been able to identify, measure, and quantify social interactions, group behavior, and organizational dynamics. We deployed this wearable computing platform in a group of 22 employees working in a real organization over a period of one month. Using these automatic measurements, we were able to predict employees' self-assessments of job satisfaction and their own perceptions of group interaction quality by combining data collected with our platform and e-mail communication data. In particular, the total amount of communication was predictive of both of these assessments, and betweenness in the social network exhibited a high negative correlation with group interaction satisfaction. We also found that physical proximity and e-mail exchange had a negative correlation of r = -0.55 (p 0.01), which has far-reaching implications for past and future research on social networks.

  6. Review : Hydraulic head measurements - New technologies, classic pitfalls

    NARCIS (Netherlands)

    Post, E.A.P.; Von Asmuth, J.R.

    2013-01-01

    The hydraulic head is one of the most important metrics in hydrogeology as it underlies the interpretation of groundwater flow, the quantification of aquifer properties and the calibration of flow models. Heads are determined based on water-level measurements in wells and piezometers. Despite the

  7. LIDAR technology for measuring trace gases on Mars and Earth

    Science.gov (United States)

    Riris, H.; Abshire, J. B.; Graham, Allan; Hasselbrack, William; Rodriguez, Mike; Sun, Xiaoli; Weaver, Clark; Mao, Jianping; Kawa, Randy; Li, Steve; Numata, Kenji; Wu, Stewart

    2017-11-01

    Trace gases and their isotopic ratios in planetary atmospheres offer important but subtle clues as to the origins of a planet's atmosphere, hydrology, geology, and potential for biology. An orbiting laser remote sensing instrument is capable of measuring trace gases on a global scale with unprecedented accuracy, and higher spatial resolution that can be obtained by passive instruments. For Earth we have developed laser technique for the remote measurement of the tropospheric CO2, O2, and CH4 concentrations from space. Our goal is to develop a space instrument and mission approach for active CO2 measurements. Our technique uses several on and off-line wavelengths tuned to the CO2 and O2 absorption lines. This exploits the atmospheric pressure broadening of the gas lines to weigh the measurement sensitivity to the atmospheric column below 5 km and maximizes sensitivity to CO2 changes in the boundary layer where variations caused by surface sources and sinks are largest. Simultaneous measurements of O2 column use a selected region in the Oxygen A-band. Laser altimetry and atmospheric backscatter can also be measured simultaneously, which permits determining the surface height and measurements made to thick cloud tops and through aerosol layers. We use the same technique but with a different transmitter at 1.65 um to measure methane concentrations. Methane is also a very important trace gas on earth, and a stronger greenhouse gas than CO2 on a per molecule basis. Accurate, global observations are needed in order to better understand climate change and reduce the uncertainty in the carbon budget. Although carbon dioxide is currently the primary greenhouse gas of interest, methane can have a much larger impact on climate change. Methane levels have remained relatively constant over the last decade but recent observations in the Arctic have indicated that levels may be on the rise due to permafrost thawing. NASA's Decadal Survey underscored the importance of Methane as a

  8. Arms Control and nonproliferation technologies: Technology options and associated measures for monitoring a Comprehensive Test Ban, Second quarter

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A.

    1994-01-01

    This newsletter contains reprinted papers discussing technology options and associated measures for monitoring a Comprehensive Test Ban Treaty (CTBT). These papers were presented to the Conference on Disarmament (CD) in May and June 1994. An interagency Verification Monitoring Task Force developed the papers. The task force included participants from the Arms Control and Disarmament Agency, the Department of Defense, the Department of Energy, the Intelligence Community, the Department of Interior, and the Department of State. The purpose of this edition of Arms Control and Nonproliferation Technologies is to share these papers with the broad base of stakeholders in a CTBT and to facilitate future technology discussions. The papers in the first group discuss possible technology options for monitoring a CTBT in all environments (underground, underwater, atmosphere, and space). These technologies, along with on-site inspections, would facilitate CTBT monitoring by treaty participants. The papers in the second group present possible associated measures, e.g., information exchanges and transparency measures, that would build confidence among states participating in a CTBT.

  9. Evaluation of long term performance measurements of PV modules with different technologies

    OpenAIRE

    Degner, T.; Ries, M.

    2004-01-01

    PV modules of six different technologies (m-Si, mc-Si, EFG, CIS, CdTe, a-Si) have been monitored concerning the performance under external conditions for a period of more than 2 years. In addition to the standard solar radiation measurements with pyranometer solar sensors with corresponding cell technology have been used to supplement the measurements. This allows in principle to consider spectral effects. The solar radiation measured with the sensor and the pyranometer is analysed on monthly...

  10. Technology development for nuclear material measurement and accountability

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jong Sook; Lee, Byung Doo; Cha, Hong Ryul; Lee, Yong Duk; Choi, Hyung Nae; Nah, Won Woo; Park, Hoh Joon; Lee, Yung Kil [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-12-01

    The measurement techniques for Pu samples and spent fuel assembly were developed in support of the implementation of national inspection responsibility under the Atomic Energy Act promulgated in 1994 and a computer program was also developed to assess the total nuclear material balance by facility declared records. The results of plutonium isotopic determination by gamma-ray spectrometry with high resolution germanium detector with peak analysis codes (FRAM and MGA codes) were approached to within 1% {approx} 2% of error from chemical analysis values by mass spectrometry. A gamma-ray measurement system for underwater spent nuclear fuels was developed and tested successfully. The falsification of facility and state records can be traced with the help of the developed computer code against declared reports submitted by the concerned state. This activity eventually resulted in finding the discrepancy of accountability records. 18 figs, 20 tabs, 27 refs. (Author).

  11. Technology development for nuclear material measurement and accountability

    International Nuclear Information System (INIS)

    Hong, Jong Sook; Lee, Byung Doo; Cha, Hong Ryul; Lee, Yong Duk; Choi, Hyung Nae; Nah, Won Woo; Park, Hoh Joon; Lee, Yung Kil

    1994-12-01

    The measurement techniques for Pu samples and spent fuel assembly were developed in support of the implementation of national inspection responsibility under the Atomic Energy Act promulgated in 1994 and a computer program was also developed to assess the total nuclear material balance by facility declared records. The results of plutonium isotopic determination by gamma-ray spectrometry with high resolution germanium detector with peak analysis codes (FRAM and MGA codes) were approached to within 1% ∼ 2% of error from chemical analysis values by mass spectrometry. A gamma-ray measurement system for underwater spent nuclear fuels was developed and tested successfully. The falsification of facility and state records can be traced with the help of the developed computer code against declared reports submitted by the concerned state. This activity eventually resulted in finding the discrepancy of accountability records. 18 figs, 20 tabs, 27 refs. (Author)

  12. Use of Ultrasonic Technology for Soil Moisture Measurement

    Science.gov (United States)

    Choi, J.; Metzl, R.; Aggarwal, M. D.; Belisle, W.; Coleman, T.

    1997-01-01

    In an effort to improve existing soil moisture measurement techniques or find new techniques using physics principles, a new technique is presented in this paper using ultrasonic techniques. It has been found that ultrasonic velocity changes as the moisture content changes. Preliminary values of velocities are 676.1 m/s in dry soil and 356.8 m/s in 100% moist soils. Intermediate values can be calibrated to give exact values for the moisture content in an unknown sample.

  13. Non-destructive measurement technologies for nuclear safeguards

    International Nuclear Information System (INIS)

    Gavron, A.

    1998-04-01

    There are three aspects that need to be in place in order to maintain a valid safeguards system: (1) Physical protection; guarding the access to nuclear materials using physical protection and surveillance. (2) Accounting systems; computer based accounting systems that provide the current location of nuclear materials, quantities, and the uncertainty in the assayed values. (3) Measurement systems; detectors, data acquisition systems and data analysis methods that provide accurate assays of nuclear material quantities for the accounting system. The authors expand on this third aspect, measurement systems, by discussing nondestructive assay (NDA) techniques. NDA is defined as the quantitative or qualitative determination of the kind and/or amount of nuclear material in an item without alteration or invasion of the item. This is contrasted with destructive analysis which is the process of taking small samples from the item in question, analyzing those samples by chemical analysis, destroying the original nature of the samples in the process (hence the term destructive), and applying the results to the entire item. Over the past 30 years, numerous techniques, using the atomic and nuclear properties of the actinides, have been developed for reliable, rapid, accurate, and tamper-proof NDA of nuclear materials. The authors distinguish between two types of measurements: the first involving the detection of spontaneously emitted radiation, produced by the natural radioactive decay processes; the second involving the detection of induced radiation, produced by irradiating the sample with an external radiation source

  14. Technology Development for Radiation Dose Measurement and Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Hwan; Chang, S. Y.; Lee, T. Y. (and others)

    2007-06-15

    The correction factors essential for the operation of In-Vivo counting system were produced and implemented into a field operation for the improvement of accuracy in measurement of the radioactivity inside a human body. The BiDAS2007 code which calculate an internal dose was developed by upgrading the former code prepared in the previous stage of this project. The method of using the multibioassy data, the maximum likelihood function and the Bayesian statistics were established to an internal dose based on the measurement data of radioactivity, intakes and retention of radioactivity in a human body and it can improve the accuracy in estimation of the intakes of radioactivity and the committed effective dose equivalent. In order to solve the problem of low detection efficiency of the conventional Bonner Sphere (BS) to a high energy neutron, the extended BS's were manufactured and the technique for neutron field spectrometry was established. The fast neutron and gamma spectrometry system with a BC501A scintillation detector was also prepared. Several neutron fluence spectra at several nuclear facilities were measured and collected by using the extended BS. The spectrum weighted responses of some neutron monitoring instruments were also derived by using these spectra and the detector response functions. A high efficient TL material for the neutron personal dosimeter was developed. It solved the main problem of low thermal stability and high residual dose of the commercial TLDs and has the sensitivity to neutron and to gamma radiation with 40 and 10 times higher respectively than them.

  15. Automated Measurement and Verification and Innovative Occupancy Detection Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Price, Phillip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bruce, Nordman [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Piette, Mary Ann [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brown, Rich [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Page, Janie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lanzisera, Steven [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Granderson, Jessica [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-06-27

    In support of DOE’s sensors and controls research, the goal of this project is to move toward integrated building to grid systems by building on previous work to develop and demonstrate a set of load characterization measurement and evaluation tools that are envisioned to be part of a suite of applications for transactive efficient buildings, built upon data-driven load characterization and prediction models. This will include the ability to include occupancy data in the models, plus data collection and archival methods to include different types of occupancy data with existing networks and a taxonomy for naming these data within a Volttron agent platform.

  16. Seat pressure measurement technologies: considerations for their evaluation.

    Science.gov (United States)

    Gyi, D E; Porter, J M; Robertson, N K

    1998-04-01

    Interface pressure measurement has generated interest in the automotive industry as a technique which could be used in the prediction of driver discomfort for various car seat designs, and provide designers and manufacturers with rapid information early on in the design process. It is therefore essential that the data obtained are of the highest quality, relevant and have some quantitative meaning. Exploratory experimental work carried out with the commercially available Talley Pressure Monitor is outlined. This led to a better understanding of the strengths and weaknesses of this system and the re-design of the sensor matrix. Such evaluation, in the context of the actual experimental environment, is considered essential.

  17. Objectively measuring pain using facial expression: is the technology finally ready?

    Science.gov (United States)

    Dawes, Thomas Richard; Eden-Green, Ben; Rosten, Claire; Giles, Julian; Governo, Ricardo; Marcelline, Francesca; Nduka, Charles

    2018-03-01

    Currently, clinicians observe pain-related behaviors and use patient self-report measures in order to determine pain severity. This paper reviews the evidence when facial expression is used as a measure of pain. We review the literature reporting the relevance of facial expression as a diagnostic measure, which facial movements are indicative of pain, and whether such movements can be reliably used to measure pain. We conclude that although the technology for objective pain measurement is not yet ready for use in clinical settings, the potential benefits to patients in improved pain management, combined with the advances being made in sensor technology and artificial intelligence, provide opportunities for research and innovation.

  18. Planning for, and measuring, the business value of technology projects in the oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Sayed, M. [Northern Alberta Inst. of Technology, Edmonton, AB (Canada); Burgess, A. [Telus Energy Sector Organization, Calgary, AB (Canada)

    2007-07-01

    This presentation discussed new communications technology options developed for oil sands industry operators. Technology options included broadband access for data, video and voice requirements, as well as new options for video, audio, and web conferencing. Recent technology options for inter-camp communications were presented, as well as new software developments for distance education, video surveillance, and data security. Various entertainment technologies for oil sands camp employees included in-room telephones, internet and gaming access, radio, television, and family web-cams. New electronic permitting equipment was described, and details of security and verification cards and tickets were provided. The economic benefits and social advantages of adopting the technologies were discussed. A research project and assessment tool designed to predict and measure the business value of information technology (IT) and communications technologies and projects was outlined. A case study of the Schlumberger heavy equipment program was used to demonstrate the assessment tool. refs., tabs., figs.

  19. Application of PLC technology in measurement of beam profile on 100 MeV accelerator

    International Nuclear Information System (INIS)

    Yu Luyang; Chinese Academy of Sciences, Beijing; Chen Yongzhong; Chen Yongzhong; Liu Dekang; Chinese Academy of Sciences, Beijing

    2005-01-01

    A comprehensive introduction is given to the real-time measuring method, which is based on the Programmable Logic Controller (PLC) technology and can measure intensity and profile of the beam by a scintillator screen. The whole system has many advantages, such as good reliability, high precision, intuitional measurement, etc. due to the use of the PLC and Labview software. (authors)

  20. The Beast of Aggregating Cognitive Load Measures in Technology-Based Learning

    Science.gov (United States)

    Leppink, Jimmie; van Merriënboer, Jeroen J. G.

    2015-01-01

    An increasing part of cognitive load research in technology-based learning includes a component of repeated measurements, that is: participants are measured two or more times on the same performance, mental effort or other variable of interest. In many cases, researchers aggregate scores obtained from repeated measurements to one single sum or…

  1. Technology Readiness of School Teachers: An Empirical Study of Measurement and Segmentation

    Science.gov (United States)

    Badri, Masood; Al Rashedi, Asma; Yang, Guang; Mohaidat, Jihad; Al Hammadi, Arif

    2014-01-01

    The Technology Readiness Index (TRI) developed by Parasuraman (2000) was adapted to measure the technology readiness of public school teachers in Abu Dhabi, United Arab Emirates. The study aims at better understanding the factors (mostly demographics) that affect such readiness levels. In addition, Abu Dhabi teachers are segmented into five main…

  2. Optical sensor technology for simultaneous measurement of particle speed and concentration of micro sized particles

    DEFF Research Database (Denmark)

    Clausen, Casper; Han, Anpan; Kristensen, Martin

    2013-01-01

    Experimental characterization of a sensor technology that can measure particle speed and concentration simultaneously in liquids and gases is presented here. The basic sensor principle is based on an optical element that shapes a light beam into well-defined fringes. The technology can be described...

  3. Research on the Scientific and Technological Innovation of Research University and Its Strategic Measures

    Science.gov (United States)

    Cheng, Yongbo; Ge, Shaowei

    2005-01-01

    This paper illustrates the important role that the scientific and technological innovation plays in the research university. Technological innovation is one of the main functions that the research university serves and contributes for the development of economy and society, which is the essential measure for Research University to promote…

  4. SERVQUAL-Based Measurement of Student Satisfaction with Classroom Instructional Technologies: A 2001 Update.

    Science.gov (United States)

    Kleen, Betty; Shell, L. Wayne

    The researchers, using a variation of the SERVQUAL instrument, repeated a 1999 study to measure students' satisfaction with instructional technology tools used in their classrooms. Student satisfaction varied by course discipline, by instructional technology, by anticipated grade, and by frequency of use. Female respondents were less satisfied…

  5. Using a management perspective to define and measure changes in nursing technology.

    Science.gov (United States)

    Alexander, J W; Kroposki, M

    2001-09-01

    The aims of this paper are to discuss the uses of the concept of technology from the medical science and the management perspectives; to propose a clear definition of nursing technology; and to present a study applying the use of the concept of nursing technology on nursing units. Nurse managers must use management terms correctly and the term technology may be misleading for some. A review of the nursing literature shows varied uses of the concept of technology. Thus a discussion of the dimensions, attributes, consequences, and definitions of nursing technology from the management perspective are given. A longitudinal study to measure the dimensions of nursing technology on nursing units 10 years apart. The findings suggest that the dimensions of nursing technology change over time and support the need for nurse managers to periodically assess nursing technology before making management changes at the level of the nursing unit. This study helps health care providers understand the unique role of nurses as healthcare professionals by identifying and measuring nursing technology on the nursing unit.

  6. Assessment of GHG mitigation technology measures in Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Raptsoun, N.; Parasiouk, N.

    1996-12-31

    In June 1992 the representatives of 176 countries including Ukraine met in Rio de Janeiro at the UN Conference to coordinate its efforts in protecting and guarding the environment. Signature of the UN Framework Convention on Climate Change by around 150 countries indicates that climate change is potentially a major threat to the world`s environment and economic development. The project {open_quotes}Country Study on Climate Change in Ukraine{close_quotes} coordinated by the Agency for Rational Energy Use and Ecology (ARENIA-ECO) and supported by the US Country Studies Program Support for Climate Change Studies. The aim of the project is to make the information related to climate change in Ukraine available for the world community by using the potential of Ukrainian research institutes for further concerted actions to solve the problem of climate change on the global scale. The project consists of four elements: (1) the development of the GHG Inventory in Ukraine; (2) assessments of ecosystems-vulnerability to climate change and adaptation options; and (3) mitigation options analysis; (4) public education and outreach activities. This paper contains the main results of the third element for the energy and non-energy sectors. Main tasks of the third element were: (1) to select, test and describe or develop the methodology for mitigation options assessment; (2) to analyze the main sources of GHG emissions in Ukraine; (3) to give the macro economic analysis of Ukrainian development and the development of main economical sectors industry, energy, transport, residential, forestry and agriculture; (4) to forecast GHG emissions for different scenarios of the economic development; and (5) to analyze the main measures to mitigate climate change.

  7. Algorithms for diagnostics of the measuring channels and technological equipment at NPP with WWER-1000

    International Nuclear Information System (INIS)

    Vysotskij, V.G.

    1997-01-01

    An algorithm for diagnostics of the state of measuring channels of an information computer system with usage of analysis of statistical channel characteristics is presented. An algorithm for testing the generalized state of the NPP technological equipment is proposed

  8. A three-dimensional laser vibration measurement technology realized on five laser beam and its calibration

    Science.gov (United States)

    Li, Lu-Ke; Zhang, Shen-Feng

    2018-03-01

    Put forward a kind of three-dimensional vibration information technology of vibrating object by the mean of five laser beam of He-Ne laser, and with the help of three-way sensor, measure the three-dimensional laser vibration developed by above mentioned technology. The technology based on the Doppler principle of interference and signal demodulation technology, get the vibration information of the object, through the algorithm processing, extract the three-dimensional vibration information of space objects, and can achieve the function of angle calibration of five beam in the space, which avoid the effects of the mechanical installation error, greatly improve the accuracy of measurement. With the help of a & B K4527 contact three axis sensor, measure and calibrate three-dimensional laser vibrometer, which ensure the accuracy of the measurement data. Summarize the advantages and disadvantages of contact and non-contact sensor, and analysis the future development trends of the sensor industry.

  9. Optimising gas pipeline operation - factors to consider in selecting flow measurement technology; Gas flow measurement

    Energy Technology Data Exchange (ETDEWEB)

    Fromm, Frank

    2010-07-01

    Multipath ultrasonic transit-time flow meters (UFM) have been employed in the gas industries for many years. Since their inception in the early seventies, advancements in the technology have been made with regard to available configurations, electronics offered and sensor design. Today, UFMs have proven to be reliable, versatile and capable of meeting the demands of the gas markets. It is clear that various UFM technologies have different advantages with regards to design and application use, which ultimately makes one more appropriate than the other. (Author)

  10. Validation of an instrument to measure students' motivation and self-regulation towards technology learning

    Science.gov (United States)

    Liou, Pey-Yan; Kuo, Pei-Jung

    2014-05-01

    Background:Few studies have examined students' attitudinal perceptions of technology. There is no appropriate instrument to measure senior high school students' motivation and self-regulation toward technology learning among the current existing instruments in the field of technology education. Purpose:The present study is to validate an instrument for assessing senior high school students' motivation and self-regulation towards technology learning. Sample:A total of 1822 Taiwanese senior high school students (1020 males and 802 females) responded to the newly developed instrument. Design and method:The Motivation and Self-regulation towards Technology Learning (MSRTL) instrument was developed based on the previous instruments measuring students' motivation and self-regulation towards science learning. Exploratory and confirmatory factor analyses were utilized to investigate the structure of the items. Cronbach's alpha was applied for measuring the internal consistency of each scale. Furthermore, multivariate analysis of variance was used to examine gender differences. Results:Seven scales, including 'Technology learning self-efficacy,' 'Technology learning value,' 'Technology active learning strategies,' 'Technology learning environment stimulation,' 'Technology learning goal-orientation,' 'Technology learning self-regulation-triggering,' and 'Technology learning self-regulation-implementing' were confirmed for the MSRTL instrument. Moreover, the results also showed that male and female students did not present the same degree of preference in all of the scales. Conclusions:The MSRTL instrument composed of seven scales corresponding to 39 items was shown to be valid based on validity and reliability analyses. While male students tended to express more positive and active performance in the motivation scales, no gender differences were found in the self-regulation scales.

  11. Political measures for promoting environmental technology; Virkemidler for aa fremme miljoeteknologi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Environmental technology can contribute to solving many environmental challenges and to industrial development. Measures to support the development and use of such technologies can be regulatory, economic or administrative, and usually one needs to use a combination of different measures in order to reach both a better environment and industrial development. For industrial development other measures than those administered by environmental authorities will be of importance. The environmental authorities therefore need to acquire knowledge about these measures and the bodies administering them, and develop an operative cooperation with these actors.

  12. Purification of liquid products of cotton wipes biotransformation with the aid of Trichoderma viridae in orbital flight

    Science.gov (United States)

    Viacheslav, Ilyin; Korshunov, Denis

    Recovery of various organic wastes in space flight is an actual problem of modern astronautics and future interplanetary missions. Currently, organic waste are incinerated in the dense layers of the Earth's atmosphere in cargo containers. However, this method of anthropogenic waste treatment is not environmentally compatible with future interplanetary missions, and is not suitable due to planetary quarantine requirements. Furthermore, the maintaining of a closed ecosystem in spaceship is considered as one of the main ways of ensuring the food and air crew in the long term fully autonomous space expedition. Such isolated ecosystem is not conceivable without biotransformation of organic waste. In this regard, currently new ways of recycling organic waste are currently developed. The most promising method is a method for processing organic waste using thermophilic anaerobic microbial communities.However, the products of anaerobic fermentation of solid organic materials contain significant amounts of organic impurities, which often give them sour pH. This presents a significant problem because it does not allow to use this fluid as process water without pretreatment. Fermentation products - alcohols, volatile fatty acids other carbonaceous substances must be withdrawn.One way to solve this problem may be the use of microorganisms biodestructors for recycling organic impurities in the products of anaerobic biodegradation Under the proposed approach, the metabolic products (having acidic pH) of primary biotransformation of solid organic materials are used as media for the cultivation of fungi. Thus, cellulosic wastes are recycled in two successive stages. The aim of this work was to test the effectiveness of post-treatment liquid products of biodegradation of hygienic cotton wipes (common type of waste on the ISS) by the fungus Trichoderma viridae under orbital flight. The study was conducted onboard biosatellite Bion -M1, where was placed a bioreactor, designed to carry

  13. Experimental Design for Evaluating Selected Nondestructive Measurement Technologies - Advanced Reactor Technology Milestone: M3AT-16PN2301043

    Energy Technology Data Exchange (ETDEWEB)

    Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hirt, Evelyn H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pitman, Stan G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dib, Gerges [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Roy, Surajit [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Good, Morris S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Walker, Cody M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-07-16

    The harsh environments in advanced reactors (AdvRx) increase the possibility of degradation of safety-critical passive components, and therefore pose a particular challenge for deployment and extended operation of these concepts. Nondestructive evaluation technologies are an essential element for obtaining information on passive component condition in AdvRx, with the development of sensor technologies for nondestructively inspecting AdvRx passive components identified as a key need. Given the challenges posed by AdvRx environments and the potential needs for reducing the burden posed by periodic in-service inspection of hard-to-access and hard-to-replace components, a viable solution may be provided by online condition monitoring of components. This report identifies the key challenges that will need to be overcome for sensor development in this context, and documents an experimental plan for sensor development, test, and evaluation. The focus of initial research and development is on sodium fast reactors, with the eventual goal of the research being developing the necessary sensor technology, quantifying sensor survivability and long-term measurement reliability for nondestructively inspecting critical components. Materials for sensor development that are likely to withstand the harsh environments are described, along with a status on the fabrication of reference specimens, and the planned approach for design and evaluation of the sensor and measurement technology.

  14. Measuring process performance within healthcare logistics - a decision tool for selecting track and trace technologies

    DEFF Research Database (Denmark)

    Feibert, Diana Cordes; Jacobsen, Peter

    2015-01-01

    quality of work. Data validity is essential for enabling performance measurement, and selecting the right technologies is important to achieve this. A case study of the hospital cleaning process was conducted at a public Danish hospital to develop a framework for assessing technologies in healthcare......Monitoring tasks and ascertaining quality of work is difficult in a logistical healthcare process due to cleaning personnel being dispersed throughout the hospital. Performance measurement can support the organization in improving the efficiency and effectiveness of processes and in ensuring...... logistics. A set of decision indicators was identified in the case study to assess technologies based on expected process performance. Two aspects of performance measurement were investigated for the hospital cleaning process: what to measure and how to measure it....

  15. The research of new type stratified water injection process intelligent measurement technology

    Science.gov (United States)

    Zhao, Xin

    2017-10-01

    To meet the needs of injection and development of Daqing Oilfield, the injection of oil from the early stage of general water injection to the subdivision of water is the purpose of improving the utilization degree and the qualified rate of water injection, improving the performance of water injection column and the matching process. Sets of suitable for high water content of the effective water injection technology supporting technology. New layered water injection technology intelligent measurement technology will be more information testing and flow control combined into a unified whole, long-term automatic monitoring of the work of the various sections, in the custom The process has the characteristics of "multi-layer synchronous measurement, continuous monitoring of process parameters, centralized admission data", which can meet the requirement of subdivision water injection, but also realize the automatic synchronization measurement of each interval, greatly improve the efficiency of tiered injection wells to provide a new means for the remaining oil potential.

  16. Wiping frictional properties of electrospun hydrophobic/hydrophilic polyurethane nanofiber-webs on soda-lime glass and silicon-wafer.

    Science.gov (United States)

    Watanabe, Kei; Wei, Kai; Nakashima, Ryu; Kim, Ick Soo; Enomoto, Yuji

    2013-04-01

    In the present work, we conducted the frictional tests of hydrophobic and hydrophilic polyurethane (PUo and PUi) nanofiber webs against engineering materials; soda-lime glass and silicon wafer. PUi/glass combination, with highest hydrophilicity, showed the highest friction coefficient which decrease with the increase of the applied load. Furthermore, the effects of fluorine coating are also investigated. The friction coefficient of fluorine coated hydrophobic PU nanofiber (PUof) shows great decrease against the silicon wafer. Finally, wiping ability and friction property are investigated when the substrate surface is contaminated. Nano-particle dusts are effectively collected into the pores by wiping with PUo and PUi nanofiber webs both on glass and silicon wafer. The friction coefficient gradually increased with the increase of the applied load.

  17. Organizational technologies for transforming care: measures and strategies for pursuit of IOM quality aims.

    Science.gov (United States)

    Gamm, Larry; Kash, Bita; Bolin, Jane

    2007-01-01

    Progress on the Institute of Medicine's (IOM's) 6 aims to bridge the "quality chasm" requires both measurement and the concerting of multiple organizational technologies. The basic thesis of this article is that rapid progress on the IOM's multiple aims calls for transformative change within and among healthcare organizations. The promise of a number of types of transformative approaches is closely linked to their ability to simultaneously build upon several organizational technologies: clinical, social, information, and administrative technologies. To encourage and advance such efforts, this article identifies illustrative measures of attainment of the IOM's 6 aims or targeted areas for improvement that reflect the contributions of the 4 organizational technologies. It discusses examples of relationships between the IOM aims and the organizational technologies considered. Finally, the article offers illustrations of the interplay of these organizational technologies and IOM aims-across an array of organizational innovations with transformative potential. Included among such innovations are information technology in the form of electronic medical records, computer-based physician order entry, and patient health records; organization-wide patient-centered cultural change such as Studer's Hardwiring Excellence; Six Sigma and Toyota Production Management/LEAN; major clinical technology change, for example, minimally invasive cardiac surgery and broader treatment innovations such as disease management.

  18. Analysis of alcohol-based hand sanitizer delivery systems: efficacy of foam, gel, and wipes against influenza A (H1N1) virus on hands.

    Science.gov (United States)

    Larson, Elaine L; Cohen, Bevin; Baxter, Kathleen A

    2012-11-01

    Minimal research has been published evaluating the effectiveness of hand hygiene delivery systems (ie, rubs, foams, or wipes) at removing viruses from hands. The purposes of this study were to determine the effect of several alcohol-based hand sanitizers in removing influenza A (H1N1) virus, and to compare the effectiveness of foam, gel, and hand wipe products. Hands of 30 volunteers were inoculated with H1N1 and randomized to treatment with foam, gel, or hand wipe applied to half of each volunteer's finger pads. The log(10) count of each subject's treated and untreated finger pads were averaged. Log(10) reductions were calculated from these differences and averaged within treatment group. Between-treatment analysis compared changes from the untreated finger pads using analysis of covariance with treatment as a factor and the average log(10) untreated finger pads as the covariate. Log(10) counts on control finger pads were 2.7-5.3 log(10) of the 50% infectious dose for tissue culture (TCID(50)/0.1 mL) (mean, 3.8 ± 0.5 log(10) TCID(50)/0.1 mL), and treated finger pad counts for all test products were 0.5-1.9 log(10) TCID(50)/0.1 mL (mean, 0.53 ± 0.17 log(10) TCID(50)/0.1 mL). Treatments with all products resulted in a significant reduction in viral titers (>3 logs) at their respective exposure times that were statistically comparable. All 3 delivery systems (foam, gel, and wipe) produced significantly reduced viral counts on hands. Copyright © 2012 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  19. Computer-based measurement and automatizatio aplication research in nuclear technology fields

    International Nuclear Information System (INIS)

    Jiang Hongfei; Zhang Xiangyang

    2003-01-01

    This paper introduces computer-based measurement and automatization application research in nuclear technology fields. The emphasis of narration are the role of software in the development of system, and the network measurement and control software model which has optimistic application foreground. And presents the application examples of research and development. (authors)

  20. Creativity in the Age of Technology: Measuring the Digital Creativity of Millennials

    Science.gov (United States)

    Hoffmann, Jessica; Ivcevic, Zorana; Brackett, Marc

    2016-01-01

    Digital technology and its many uses form an emerging domain of creative expression for adolescents and young adults. To date, measures of self-reported creative behavior cover more traditional forms of creativity, including visual art, music, or writing, but do not include creativity in the digital domain. This article introduces a new measure,…

  1. Measuring the Impact of Technology on Nurse Workflow: A Mixed Methods Approach

    Science.gov (United States)

    Cady, Rhonda Guse

    2012-01-01

    Background. Investment in health information technology (HIT) is rapidly accelerating. The absence of contextual or situational analysis of the environment in which HIT is incorporated makes it difficult to measure success or failure. The methodology introduced in this paper combines observational research with time-motion study to measure the…

  2. Field Measurements of Perceived Air Quality in the Test-Bed for Innovative Climate Conditioning Technologies

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Toftum, Jørn; Kabrhel, Michal

    the potential influence of aforementioned technologies on the perceived air quality. Additionally, the effect of Demand Controlled Ventilation (DCV) on the perceived air quality was tested. Measurements comprised of the assessments of perceived air quality and objective measurements of operative temperature...

  3. Natural radioactivity (40K) measurement in common food grains using indigenous technology

    International Nuclear Information System (INIS)

    Narayan, Pradeep; Sahani, R.M.; Damor, S.L.; D'Souza, P.M.

    2018-01-01

    Ingestion of contaminated food is one of the major causes of internal doses received in various human organs. As there being no material free from radioactivity on this globe; knowledge of natural radioactivity concentration in common food items is very important for judging the origin of contamination due to nuclear emergency or other man-made activities. An indigenous technology for radioactivity measurement in food/bulk items has been developed and tested using live radioactive sources. This has also been explored for natural radioactivity measurement in common food grains consumed by Indian population. This paper reports the measured natural radioactivity ( 40 K) in common Indian food grains using the developed technology

  4. Wireless Sensor for Measuring Pump Efficiency: Small Business Voucher Project with KCF Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Gehl, Anthony C [ORNL; Liu, Xiaobing [ORNL; Koopman, Gary [KCF Technologies; Fugate, David L [ORNL

    2017-01-23

    This document is to fulfill the final report requirements for the Small Business Voucher (SBV) CRADA project with ORNL and KCF Technologies (CRADA/NFE-16-06133). Pumping systems account for nearly 20% of the world’s electrical energy demand and range from 25-50% of the energy usage in many industrial and building power plants. The energy cost is the largest element in the total cost of owning a pump (~40%). In response to a recent DOE mandate for improved pump efficiency pump manufacturers are preparing for the changes that the impending regulations will bring, including design improvements. This mandate also establishes a need for new low cost pump efficiency measurement systems. The standard industry definition of pump efficiency is the mechanical water horsepower delivered divided by the electrical horsepower input to the motor. KCF Technologies has developed a new sensor measurement technique to estimate fluid pump efficiency using a thermodynamic approach. KCF Technologies applied for a SBV grant with ORNL as the research partner. KCF needed a research partner with the proper facilities to demonstrate the efficacy of its wireless sensor unit for measuring pump efficiency. The ORNL Building Technologies Research and Integration Center (BTRIC) test resources were used to test and demonstrate the successful measurement of pump efficiency with the KCF sensor technology. KCF is now working on next steps to commercialize this sensing technology.

  5. Contamination monitoring of Na 131 I levels in therapy unit of Research Institute for Nuclear Medicine, Tehran University of Medical Sciences by indirect method (Wipe test)

    International Nuclear Information System (INIS)

    Beiki, D.; Shahhosseini, S.; Eftekhari, M.; Takavar, A.; Fard-Esfahani, A.

    2003-01-01

    Contamination with radiopharmaceuticals in nuclear medicine centres in addition to being a health concern requires time consuming decontamination efforts. According to Nuclear Regulatory Commission Contamination should be monitored in nuclear medicine centers where radiopharmaceuticals are prepared and administrated at the end of each working session; otherwise, contamination spread to other areas not only equipment but also personnel and other people will be expected. The wipe test for the presence of radioactivity is accomplished by wiping the surface over an area approximately 100 cm 2 with an absorbent paper, then counting it in an appropriate radiation detector. In this study, contamination monitoring of patient's rooms (4 rooms), entrance corridor, patient's corridor, waiting room, control room (nursing station), radiopharmaceutical storage room in therapy unit of Research Institute for Nuclear Medicine, Shariati hospital was performed by indirect method. Based on the results, some areas including storage room were contaminated. There was also a direct relationship between dose administrated and levels of contamination in patient's rooms. Regarding high uptake of iodine by thyroid gland and damaging effects of Na 131 I, weekly wipe tests are required to determine the level of contamination. Patient's rooms after discharging the patients and before re hospitalization specially should be checked. If these tests reveal contamination over standard levels, appropriate decontamination procedures should be carried out immediately

  6. Detection of Nonvolatile Inorganic Oxidizer-Based Explosives from Wipe Collections by Infrared Thermal Desorption-Direct Analysis in Real Time Mass Spectrometry.

    Science.gov (United States)

    Forbes, Thomas P; Sisco, Edward; Staymates, Matthew

    2018-05-07

    Infrared thermal desorption (IRTD) was coupled with direct analysis in real time mass spectrometry (DART-MS) for the detection of both inorganic and organic explosives from wipe collected samples. This platform generated discrete and rapid heating rates that allowed volatile and semivolatile organic explosives to thermally desorb at relatively lower temperatures, while still achieving elevated temperatures required to desorb nonvolatile inorganic oxidizer-based explosives. IRTD-DART-MS demonstrated the thermal desorption and detection of refractory potassium chlorate and potassium perchlorate oxidizers, compounds difficult to desorb with traditional moderate-temperature resistance-based thermal desorbers. Nanogram to sub-nanogram sensitivities were established for analysis of a range of organic and inorganic oxidizer-based explosive compounds, with further enhancement limited by the thermal properties of the most common commercial wipe materials. Detailed investigations and high-speed visualization revealed conduction from the heated glass-mica base plate as the dominant process for heating of the wipe and analyte materials, resulting in thermal desorption through boiling, aerosolization, and vaporization of samples. The thermal desorption and ionization characteristics of the IRTD-DART technique resulted in optimal sensitivity for the formation of nitrate adducts with both organic and inorganic species. The IRTD-DART-MS coupling and IRTD in general offer promising explosive detection capabilities to the defense, security, and law enforcement arenas.

  7. Automatic Measurement in Large-Scale Space with the Laser Theodolite and Vision Guiding Technology

    Directory of Open Access Journals (Sweden)

    Bin Wu

    2013-01-01

    Full Text Available The multitheodolite intersection measurement is a traditional approach to the coordinate measurement in large-scale space. However, the procedure of manual labeling and aiming results in the low automation level and the low measuring efficiency, and the measurement accuracy is affected easily by the manual aiming error. Based on the traditional theodolite measuring methods, this paper introduces the mechanism of vision measurement principle and presents a novel automatic measurement method for large-scale space and large workpieces (equipment combined with the laser theodolite measuring and vision guiding technologies. The measuring mark is established on the surface of the measured workpiece by the collimating laser which is coaxial with the sight-axis of theodolite, so the cooperation targets or manual marks are no longer needed. With the theoretical model data and the multiresolution visual imaging and tracking technology, it can realize the automatic, quick, and accurate measurement of large workpieces in large-scale space. Meanwhile, the impact of artificial error is reduced and the measuring efficiency is improved. Therefore, this method has significant ramification for the measurement of large workpieces, such as the geometry appearance characteristics measuring of ships, large aircraft, and spacecraft, and deformation monitoring for large building, dams.

  8. Efficiency measurement with a non-convex free disposal hull technology

    DEFF Research Database (Denmark)

    Fukuyama, Hirofumi; Hougaard, Jens Leth; Sekitani, Kazuyuki

    2016-01-01

    We investigate the basic monotonicity properties of least-distance (in)efficiency measures on the class of non-convex FDH (free disposable hull) technologies. We show that any known FDH least-distance measure violates strong monotonicity over the strongly (Pareto-Koopmans) efficient frontier. Tak....... Taking this result into account, we develop a new class of FDH least-distance measures that satisfy strong monotonicity and show that the developed (in)efficiency measurement framework has a natural profit interpretation.......We investigate the basic monotonicity properties of least-distance (in)efficiency measures on the class of non-convex FDH (free disposable hull) technologies. We show that any known FDH least-distance measure violates strong monotonicity over the strongly (Pareto-Koopmans) efficient frontier...

  9. The development of human factors experimental evaluation technology - 3-dimensional measurement system for motion analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Soo; Pan, Young Hwan; Lee, Ahn Jae; Lee, Kyung Tae; Lim, Chi Hwan; Chang, Pil Sik; Lee, Seok Woo; Han, Sung Wook; Park, Chul Wook [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1996-07-01

    Measurement of human motion is important in the application of ergonomics. We developed a system which can measure body movement, especially= hand movement using advanced direct video measurement technology. This system has as dynamic accuracy with 1% error and the sampling rate to 6 - 10 Hz, and can analyse the trajectory and speed of the marker. The use of passive marker obviates the need for a marker telemetry system and minimize motion disruption. 18 refs., 4 tabs., 6 figs. (author)

  10. Technology-driven online marketing performance measurement: lessons from affiliate marketing

    OpenAIRE

    Bowie, David; Paraskevas, Alexandros; Mariussen, Anastasia

    2014-01-01

    Although the measurement of offline and online marketing is extensively researched, the literature on online performance measurement still has a number of limitations such as slow theory advancement and predominance of technology- and practitioner-driven measurement approaches. By focusing on the widely employed but under-researched affiliate marketing channel, this study addresses these limitations and evaluates the effectiveness of practitioner-led online performance assessment. The paper o...

  11. Research on the Implementation of Technological Measures for Controlling Indoor Environmental Quality in Green Residential Buildings

    Science.gov (United States)

    Wang, Ruozhu; Liu, Pengda; Qian, Yongmei

    2018-02-01

    This paper analyzes the design technology of controlling indoor quality in engineering practice, it is proposed that, in framework system of green residential building design, how to realize the design idea of controlling the indoor environment quality, and the design technology with feasibility, including the sunshine and lighting, indoor air quality and thermal environment, sound insulation and noise reduction measures, etc.. The results of all will provide a good theoretical supportting for the design of green residential building.

  12. Development of controlled drilling technology and measurement method in the borehole (Phase 1)

    International Nuclear Information System (INIS)

    Kiho, Kenzo; Shin, Koichi; Suzuki, Koichi; Miyakawa, Kimio; Okada, Tetsuji; Masuhara, Yasunobu; Igeta, Noriyuki; Kobayakawa, Hiroaki; Yamamoto, Shinya

    2006-01-01

    In Japan, the soft sedimentary rock of the Neogene tertiary is being focused as a host rock for High Level Waste (HLW) disposal. Especially, the soft sedimentary rock at the coastal area is thought to be one of the best candidates, since there is little driving force of the underground water. The measurement and logging of the bore hole in order to investigate the hydro-geological and geo-mechanical conditions of the host rock is a very important way to examine the potential of the disposal candidates. Central Research Institute of Electric Power Industry (CRIEPI) has been conducting the project on controlled drilling and the logging/measurement technologies in its boreholes. The key technologies of the project were defined as follows; (1) Drilling technology to bent the hole as intend. (2) Locality detection technology of the drill bit (MWD). (3) Core sampling technology to obtain the undisturbed rock core. (4) Logging and measurement technology during drilling. The drilling system and measuring system were integrated and systemized after each apparatus was manufactured and its performance was checked. The performance of the drilling system was checked to drill the artificial rock mass to the depth of 80 m before conducting in-situ drilling. The performance of the drilling and measurement systems were investigated to drill the mudstone of the Neogene Tertiary to the length of 547 m and to conduct the downhole measurement and logging in its borehole at the Horonobe site. Considering these performance testing, the flow diagram of the controlled drilling and measurement system was established. (author)

  13. Performance planning and measurement for DOE EM-International Technology Integration Program. A report on a performance measurement development workshop for DOE's environmental management international technology integration program

    International Nuclear Information System (INIS)

    Jordan, G.B.; Reed, J.H.; Wyler, L.D.

    1997-03-01

    This report describes the process and results from an effort to develop metrics for program accomplishments for the FY 1997 budget submission of the U.S. Department of Energy Environmental Management International Technology Integration Program (EM-ITI). The four-step process included interviews with key EM-ITI staff, the development of a strawman program logic chart, and all day facilitated workshop with EM-ITI staff during which preliminary performance plans and measures were developed and refined, and a series of follow-on discussions and activities including a cross-organizational project data base. The effort helped EM-ITI to crystallize and develop a unified vision of their future which they can effectively communicate to their own management and their internal and external customers. The effort sets the stage for responding to the Government Performance and Results Act. The metrics developed may be applicable to other international technology integration programs. Metrics were chosen in areas of eight general performance goals for 1997-1998: (1) number of forums provided for the exchange of information, (2) formal agreements signed, (3) new partners identified, (4) customers reached and satisfied, (5, 6) dollars leveraged by EM technology focus area and from foreign research, (7) number of foreign technologies identified for potential use in remediation of DOE sites, and (8) projects advanced through the pipeline

  14. Incorporating spectroscopy and measurement technology into the high school chemistry laboratory

    Science.gov (United States)

    Harbert, Emily Ann

    Science and technology are becoming increasingly important in maintaining a healthy economy at home and a competitive edge on the world stage, though that is just one facet affected by inadequate science education in the United States. Engaging students in the pursuit of knowledge and giving them the skills to think critically are paramount. One small way to assist in achieving these goals is to increase the quality and variety of technology-rich activities conducted in high school classrooms. Incorporating more laboratory measurement technology into high schools may incite more student interest in the processes and practices of science and may allow students to learn to think more critically about their data and what it represents. The first objective of the work described herein was to determine what measurement technology is being used in schools and to what extent, as well as to determine other teacher needs and preferences. Second, the objective was to develop a new program to provide incoming freshmen (or rising seniors) with measurement technology training they did not receive in high school, and expose them to new research and career opportunities in science. The final objective was to create a technology-rich classroom laboratory activity for use in high schools.

  15. Measurement of cAMP in an undergraduate teaching laboratory, using ALPHAscreen technology.

    Science.gov (United States)

    Bartho, Joseph D; Ly, Kien; Hay, Debbie L

    2012-02-14

    Adenosine 3',5'-monophosphate (cAMP) is a cellular second messenger with central relevance to pharmacology, cell biology, and biochemistry teaching programs. cAMP is produced from adenosine triphosphate by adenylate cyclase, and its production is reduced or enhanced upon activation of many G protein-coupled receptors. Therefore, the measurement of cAMP serves as an indicator of receptor activity. Although there are many assays available for measuring cAMP, few are suitable for large class teaching, and even fewer seem to have been adapted for this purpose. Here, we describe the use of bead-based ALPHAscreen (Amplified Luminescent Proximity Homogenous Assay) technology for teaching a class of more than 300 students the practical aspects of detecting signal transduction. This technology is applicable to the measurement of many different signaling pathways. This resource is designed to provide a practical guide for instructors and a useful model for developing other classes using similar technologies.

  16. Comparison Study of Three Common Technologies for Freezing-Thawing Measurement

    Directory of Open Access Journals (Sweden)

    Xinbao Yu

    2010-01-01

    Full Text Available This paper describes a comparison study on three different technologies (i.e., thermocouple, electrical resistivity probe and Time Domain Reflectometry (TDR that are commonly used for frost measurement. Specially, the paper developed an analyses procedure to estimate the freezing-thawing status based on the dielectric properties of freezing soil. Experiments were conducted where the data of temperature, electrical resistivity, and dielectric constant were simultaneously monitored during the freezing/thawing process. The comparison uncovered the advantages and limitations of these technologies for frost measurement. The experimental results indicated that TDR measured soil dielectric constant clearly indicates the different stages of the freezing/thawing process. Analyses method was developed to determine not only the onset of freezing or thawing, but also the extent of their development. This is a major advantage of TDR over other technologies.

  17. Quantifying the physical demands of collision sports: does microsensor technology measure what it claims to measure?

    Science.gov (United States)

    Gabbett, Tim J

    2013-08-01

    The physical demands of rugby league, rugby union, and American football are significantly increased through the large number of collisions players are required to perform during match play. Because of the labor-intensive nature of coding collisions from video recordings, manufacturers of wearable microsensor (e.g., global positioning system [GPS]) units have refined the technology to automatically detect collisions, with several sport scientists attempting to use these microsensors to quantify the physical demands of collision sports. However, a question remains over the validity of these microtechnology units to quantify the contact demands of collision sports. Indeed, recent evidence has shown significant differences in the number of "impacts" recorded by microtechnology units (GPSports) and the actual number of collisions coded from video. However, a separate study investigated the validity of a different microtechnology unit (minimaxX; Catapult Sports) that included GPS and triaxial accelerometers, and also a gyroscope and magnetometer, to quantify collisions. Collisions detected by the minimaxX unit were compared with video-based coding of the actual events. No significant differences were detected in the number of mild, moderate, and heavy collisions detected via the minimaxX units and those coded from video recordings of the actual event. Furthermore, a strong correlation (r = 0.96, p sports. Until such validation research is completed, sport scientists should be circumspect of the ability of other units to perform similar functions.

  18. Evaluation of Radioactive Contamination in Hamadan Nuclear Medicine Centers Using Wipe Technique

    Directory of Open Access Journals (Sweden)

    N. Rostampour

    2014-02-01

    .Conclusion: In centers 1 and 2, most of the radioactive contamination occurred under the hood due to labeling of radiopharmaceuticals activity. Also, in center 3, the highest contamination rate belonged to patients’ corridor that could be due to frequent the area. According to this subject, necessary measures in this regard should be considered by the department responsible for health physics.

  19. Business Performance Measurements in Asset Management with the Support of Big Data Technologies

    Science.gov (United States)

    Campos, Jaime; Sharma, Pankaj; Jantunen, Erkki; Baglee, David; Fumagalli, Luca

    2017-09-01

    The paper reviews the performance measurement in the domain of interest. Important data in asset management are further, discussed. The importance and the characteristics of today's ICTs capabilities are also mentioned in the paper. The role of new concepts such as big data and data mining analytical technologies in managing the performance measurements in asset management are discussed in detail. The authors consequently suggest the use of the modified Balanced Scorecard methodology highlighting both quantitative and qualitative aspects, which is crucial for optimal use of the big data approach and technologies.

  20. Measuring originality: common patterns of invention in research and technology organizations

    Energy Technology Data Exchange (ETDEWEB)

    Tang, D.L.; Wiseman, E.; Keating, T.; Archambeault, J.

    2016-07-01

    The National Research Council of Canada (NRC) co-chairs an international working group on performance benchmarking and impact assessment of Research and Technology Organizations (RTO). The Knowledge Management branch of the NRC conducted the patent analysis portion of the benchmarking study. In this paper, we present a Weighted Originality index that can more accurately measure the spread of technological combinations in terms of hierarchical patent classifications. Using this patent indicator, we revealed a common pattern of distribution of invention originality in RTOs. Our work contributes to the methodological advancement of patent measures for the scientometric community. (Author)

  1. Agricultural and residential pesticides in wipe samples from farmworker family residences in North Carolina and Virginia.

    OpenAIRE

    Quandt, Sara A; Arcury, Thomas A; Rao, Pamela; Snively, Beverly M; Camann, David E; Doran, Alicia M; Yau, Alice Y; Hoppin, Jane A; Jackson, David S

    2004-01-01

    Children of farmworkers can be exposed to pesticides through multiple pathways, including agricultural take-home and drift as well as residential applications. Because farmworker families often live in poor-quality housing, the exposure from residential pesticide use may be substantial. We measured eight locally reported agricultural pesticides and 13 pesticides commonly found in U.S. houses in residences of 41 farmworker families with at least one child < 7 years of age in western North Caro...

  2. Cyclophosphamide identification in wipe test by GC-MS and solid phase extraction Identificação de ciclofosfamida em wipe teste por CG-EM com prévia extração em fase sólida

    Directory of Open Access Journals (Sweden)

    Isarita Martins

    2004-03-01

    Full Text Available In this study cyclophosphamide was quantified after adapting a prior analytical method using gas chromatography-mass spectrometry after solid phase purification and derivatization with trifluoroacetic anhydride. The analyte was measured by analysis in wipe test from infusion bags, which may be contaminated by contact with the gloves used during preparation of the drugs. Surface of bag contaminated may be an important source of contamination for workers in the others chemoterapy handling areas, such as administration rooms. This drug, in fact, is one of the most frequently used alkylating antineoplastic agents for different types of tumors and it is furthermore classified as a human carcinogen by IARC. Ifosfamide was used as internal standard and the quantification was carried out by reference to calibration curves within a range from 1 to 100 ng/mL. The limit of detection was 0.4 ng/mL. The values of the variation coefficient varied from 0.5 to 10% (intra-assay and from 0 to 19% (interassay. Frozen reference wipe samples containing cyclophosphamide were analysed over one month and no significant loss was observed. The range obtained for bias assay was 83-116% and the recovery was 98.9%. Cyclophosphamide was measured in 36 of 42 infusion bags collected from different hospitals with values ranging from 90 to 41874 ng (median= 607.5 ng. The results, well related to those reported in the literature, suggest that this method can be used to identify cyclophosphamide from wipe samples and can be considered useful in exposure assessment to this drug.A ciclofosfamida é uma agente alquilante freqüentemente utilizado na prática clínica para diferentes tipos de tumores e, é classificado como carcinógeno para humanos pelo IARC. Neste estudo, o fármaco foi quantificado, após adaptação de um método analítico, utilizando a cromatografia gasosa acoplada à espectrometria de massa com prévia extração em fase sólida e derivação com anidrido

  3. A Firm Level Study of Information Technology Productivity in Europe Using Financial and Market Based Measures

    Directory of Open Access Journals (Sweden)

    Alan Peslak

    2004-05-01

    Full Text Available For many years, business has invested significant resources in information technology, hardware, software, and manpower. The Productivity Paradox is the seeming lack of productivity gains despite the increased investment in IT. For many years the existence of a Productivity Paradox has been the subject of research interest. Conflicting results have been obtained from a variety of data sets. Until this time however there has been no study that has investigated European companies’ use of information technology and its impact on productivity. The objective of this study was to investigate information technology productivity with a new data set from a European published source, and measuring productivity using both market and financial based measures. Results of the study indicated that information technology did have a consistent positive impact on firm level productivity in Europe for the years 1996, 1997, and 1998. Both market and financial based productivity measures provided consistent positive significant returns with regard to IT productivity. The major contribution of the study is that it provides an analysis of the impact of European information technology on firm and economic productivity.

  4. Environmental measurements and technology for non-proliferation objectives. Final report

    International Nuclear Information System (INIS)

    Broadway, J.A.

    1998-01-01

    The purpose of this study is to identify multi-disciplinary and single focus laboratories from the environmental and public health communities that can serve as technical center of opportunity for nuclear, inorganic and organic analyses. The objectives of the Office of Research and Development effort are twofold: (1) to identify the technology shortcomings and technologies gaps (thus requirements) within these communities that could benefit from state-of-the-art infield analysis technologies currently under development and (2) to promote scientist-to-scientist dialog and technical exchange under such existing US government internship programs (eg SABIT/USDOC) to improve skills and work relationships. Although the data analysis will focus on environmentally sensitive signatures and materials, the office of Research and Development wishes to further its nuclear non-proliferation objectives by assessing the current technical skill and ingenious analytical tools in less-developed countries so as to broaden the base of capability for multi-species measurement technology development

  5. The application of computer and automatic technology in dose measurement of neutron radiation

    International Nuclear Information System (INIS)

    Zhou Yu; Li Chenglin; Luo Yisheng; Guo Yong; Chen Di; Xiaojiang

    1999-01-01

    Generally the dose measurement of neutron radiation requires three electrometers, two bias, three workers in the same time. To improve the accuracy and efficiency of measurement, a Model 6517A electrometer that accommodate Model 6521 scanner cards and a portable computer are used to make up of a automatic measurement system. Corresponding software is developed and used to control it. Because of the application of computer and automatic technology, this system can not only measure dose rate automatically, but also make data's calculating, saving, querying, printing and comparing ease

  6. High-speed railway bridge dynamic measurement based on GB-InSAR technology

    Science.gov (United States)

    Liu, Miao; Ding, Ke-liang; Liu, Xianglei; Song, Zichao

    2015-12-01

    It is an important task to evaluate the safety during the life of bridges using the corresponding vibration parameters. With the advantages of non-contact and high accuracy, the new remote measurement technology of GB-InSAR is suitable to make dynamic measurement for bridges to acquire the vibration parameters. Three key technologies, including stepped frequency-continuous wave technique, synthetic aperture radar and interferometric measurement technique, are introduced in this paper. The GB-InSAR is applied for a high-speed railway bridge to measure of dynamic characteristics with the train passing which can be used to analyze the safety of the monitored bridge. The test results shown that it is an reliable non-contact technique for GB-InSAR to acquire the dynamic vibration parameter for the high-speed railway bridges.

  7. On-Orbit Measurement of Next Generation Space Solar Cell Technology on the International Space Station

    Science.gov (United States)

    Wolford, David S.; Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies, William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; McNatt, Jeremiah S.

    2015-01-01

    Measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. NASA Glenn Research Center (GRC) is in the process of measuring several solar cells in a supplemental experiment on NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4). Four industry and government partners have provided advanced PV devices for measurement and orbital environment testing. The experiment will be on-orbit for approximately 18 months. It is completely self-contained and will provide its own power and internal data storage. Several new cell technologies including four- junction (4J) Inverted Metamorphic Multijunction (IMM) cells will be evaluated and the results compared to ground-based measurements.

  8. Emerging technologies to measure neighborhood conditions in public health: implications for interventions and next steps.

    Science.gov (United States)

    Schootman, M; Nelson, E J; Werner, K; Shacham, E; Elliott, M; Ratnapradipa, K; Lian, M; McVay, A

    2016-06-23

    Adverse neighborhood conditions play an important role beyond individual characteristics. There is increasing interest in identifying specific characteristics of the social and built environments adversely affecting health outcomes. Most research has assessed aspects of such exposures via self-reported instruments or census data. Potential threats in the local environment may be subject to short-term changes that can only be measured with more nimble technology. The advent of new technologies may offer new opportunities to obtain geospatial data about neighborhoods that may circumvent the limitations of traditional data sources. This overview describes the utility, validity and reliability of selected emerging technologies to measure neighborhood conditions for public health applications. It also describes next steps for future research and opportunities for interventions. The paper presents an overview of the literature on measurement of the built and social environment in public health (Google Street View, webcams, crowdsourcing, remote sensing, social media, unmanned aerial vehicles, and lifespace) and location-based interventions. Emerging technologies such as Google Street View, social media, drones, webcams, and crowdsourcing may serve as effective and inexpensive tools to measure the ever-changing environment. Georeferenced social media responses may help identify where to target intervention activities, but also to passively evaluate their effectiveness. Future studies should measure exposure across key time points during the life-course as part of the exposome paradigm and integrate various types of data sources to measure environmental contexts. By harnessing these technologies, public health research can not only monitor populations and the environment, but intervene using novel strategies to improve the public health.

  9. Determining the feasibility of objective adherence measurement with blister packaging smart technology

    NARCIS (Netherlands)

    Onzenoort, H.A. van; Neef, C.; Verberk, W.W.; van Iperen, H.P.; Leeuw, P.W. de; van der Kuy, P.H.

    2012-01-01

    PURPOSE: The results of a feasibility study of blister-pack smart technology for monitoring medication adherence are reported. METHODS: Research in the area of objective therapy compliance measurement has led to the development of microprocessor-driven systems that record the time a unit dose is

  10. Measuring Integration of Information and Communication Technology in Education: An Item Response Modeling Approach

    Science.gov (United States)

    Peeraer, Jef; Van Petegem, Peter

    2012-01-01

    This research describes the development and validation of an instrument to measure integration of Information and Communication Technology (ICT) in education. After literature research on definitions of integration of ICT in education, a comparison is made between the classical test theory and the item response modeling approach for the…

  11. Use of Clinical Health Information Technology in Nursing Homes: Nursing Home Characteristics and Quality Measures

    Science.gov (United States)

    Spinelli-Moraski, Carla

    2014-01-01

    This study compares quality measures among nursing homes that have adopted different levels of clinical health information technology (HIT) and examines the perceived barriers and benefits of the adoption of electronic health records as reported by Nursing Home Administrators and Directors of Nursing. A cross-sectional survey distributed online to…

  12. Constructing a multiple choice test to measure elementary school teachers' Pedagogical Content Knowledge of technology education.

    NARCIS (Netherlands)

    Rohaan, E.J.; Taconis, R.; Jochems, W.M.G.

    2009-01-01

    This paper describes the construction and validation of a multiple choice test to measure elementary school teachers' Pedagogical Content Knowledge of technology education. Pedagogical Content Knowledge is generally accepted to be a crucial domain of teacher knowledge and is, therefore, an important

  13. Measuring Job Content: Skills, Technology, and Management Practices. Discussion Paper No. 1357-08

    Science.gov (United States)

    Handel, Michael J.

    2008-01-01

    The conceptualization and measurement of key job characteristics has not changed greatly for most social scientists since the Dictionary of Occupational Titles and Quality of Employment surveys were created, despite their recognized limitations. However, debates over the roles of job skill requirements, technology, and new management practices in…

  14. Measuring and Supporting Pre-Service Teachers' Self-Efficacy towards Computers, Teaching, and Technology Integration

    Science.gov (United States)

    Killi, Carita; Kauppinen, Merja; Coiro, Julie; Utriainen, Jukka

    2016-01-01

    This paper reports on two studies designed to examine pre-service teachers' self-efficacy beliefs. Study I investigated the measurement properties of a self-efficacy beliefs questionnaire comprising scales for computer self-efficacy, teacher self-efficacy, and self-efficacy towards technology integration. In Study I, 200 pre-service teachers…

  15. Interdisciplinary measurements in a spectrum of applications related to frontier technologies

    International Nuclear Information System (INIS)

    Raj, Baldev

    2016-01-01

    Measurements are fascinating and valuable pursuits made visible by Galileo Faraday, Michelson, etc. Galileo inspires to do relevant well designed measurements to get insights of phenomena and mechanisms. The judicious choice of measurements in technology is based on usefulness, time required for measurements, cost and effectiveness in correlations with relevant properties and performance criteria. A single measurement technique and methodology is rarely adequate for the purpose and thus multi-measurement techniques and correlations through breaking the silos of techniques and disciplines is practiced for challenging problems posed to experts for solutions. Science, innovation and laboratory measurements with correlations pursued by the author in electromagnetic and acoustic domains are described with illustrative examples. In the laboratory, non-destructive measurements research problems were chosen based on commitment to enhance sensitivity, selectivity and establishing correlations. The sensors and equipment developed by the author, signal analysis and imaging approaches, and new correlations are the focus of the presentation. Author highlights but does not restrict the presentation to research works in advanced steels and zirconium based alloys for nuclear energy. Microstructures (grain size, texture, precipitates, etc.) defects (dislocation cracks, etc.) and residual stresses were characterized and measured to enable high value performance assessments. The author gained expertise for solutions through collaboration with experts in design, manufacturing, mechanics and mechanical metallurgy, physical metallurgy, corrosion, science and technology, end-users and regulatory bodies, etc.

  16. HISTORY AND ACCOMPLISHMENTS OF THE US EPA'S SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION (SITE) MONITORING AND MEASUREMENT (MMT) PROGRAM

    Science.gov (United States)

    This manuscript presents the history and evolution of the U.S. Environmental Protection Agency's (EPA) Superfund Innovative Technology Evaluation (SITE) Monitoring and Measurement Technology (MMT) Program. This includes a discussion of how the fundamental concepts of a performanc...

  17. EDITORIAL: Announcing the 2012 Measurement Science and Technology Outstanding Paper Awards Announcing the 2012 Measurement Science and Technology Outstanding Paper Awards

    Science.gov (United States)

    Foss, John; Dewhurst, Richard; Yacoot, Andrew; Regtien, Paul; Peters, Kara

    2013-07-01

    Since 1991, Measurement Science and Technology has awarded a Best Paper prize. The Editorial Board of this journal believes that such a prize is an opportunity to thank authors for submitting their work, and serves as an integral part of the on-going quality review of the journal. The current breadth of topical areas that are covered by MST has made it advisable to expand the recognition of excellent publications. Hence, since 2005 the Editorial Board have presented 'Outstanding Paper Awards'. This year awards were presented in the areas of 'Measurement Science' and 'Fluid Mechanics'. Although the categories mirror subject sections in the journal, the Editorial Board consider articles from all categories in the selection process. 2012 Award Winners—Measurement Science Physical characterization and performance evaluation of an x-ray micro-computed tomography system for dimensional metrology applications J Hiller1, M Maisl2 and L M Reindl3 1 Department of Mechanical Engineering, Technical University of Denmark (DTU), Produktionstorvet, Building 425, 2800 Kgs Lyngby, Denmark 2 Development Center for X-Ray Technology (EZRT), Fraunhofer Institute for Non-Destructive Testing (IZFP), Campus E3 1, 66123 Saarbrücken, Germany 3 Laboratory for Electrical Instrumentation, Institute for Microsystem Technology (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany This year's award goes to another paper [1] dealing with micro-measurements, using a scientific measurement technique that is both old and traditional. However, it is the advent of modern technology with computational techniques that have offered new insights into the capability of the measurement method. The paper describes an x-ray computed tomography (CT) system. Such systems are increasingly used in production engineering, where non-destructive measurements of the internal geometries of workpieces can be made with high information density. CT offers important alternatives to tactile

  18. Conceptualizing Student Affect for Science and Technology at the Middle School Level: Development and Implementation of a Measure of Affect in Science and Technology (MAST)

    Science.gov (United States)

    Romine, William L.; Sadler, Troy D.; Wulff, Eric P.

    2017-01-01

    We describe the development of the Measure of Affect in Science and Technology (MAST), and study its usefulness for measuring science affect in middle school students via both classical and Rasch measurement perspectives. We then proceed to utilize the measurement structure of the MAST to understand how middle school students at varying levels of…

  19. Non-Contact Plant Growth Measurement Method and System Based on Ubiquitous Sensor Network Technologies

    Directory of Open Access Journals (Sweden)

    Intae Ryoo

    2011-04-01

    Full Text Available This paper proposes a non-contact plant growth measurement system using infrared sensors based on the ubiquitous sensor network (USN technology. The proposed system measures plant growth parameters such as the stem radius of plants using real-time non-contact methods, and generates diameter, cross-sectional area and thickening form of plant stems using this measured data. Non-contact sensors have been used not to cause any damage to plants during measurement of the growth parameters. Once the growth parameters are measured, they are transmitted to a remote server using the sensor network technology and analyzed in the application program server. The analyzed data are then provided for administrators and a group of interested users. The proposed plant growth measurement system has been designed and implemented using fixed-type and rotary-type infrared sensor based measurement methods and devices. Finally, the system performance is compared and verified with the measurement data that have been obtained by practical field experiments.

  20. [Meta-analyses on measurement precision of non-invasive hemodynamic monitoring technologies in adults].

    Science.gov (United States)

    Pestel, G; Fukui, K; Higashi, M; Schmidtmann, I; Werner, C

    2018-06-01

    An ideal non-invasive monitoring system should provide accurate and reproducible measurements of clinically relevant variables that enables clinicians to guide therapy accordingly. The monitor should be rapid, easy to use, readily available at the bedside, operator-independent, cost-effective and should have a minimal risk and side effect profile for patients. An example is the introduction of pulse oximetry, which has become established for non-invasive monitoring of oxygenation worldwide. A corresponding non-invasive monitoring of hemodynamics and perfusion could optimize the anesthesiological treatment to the needs in individual cases. In recent years several non-invasive technologies to monitor hemodynamics in the perioperative setting have been introduced: suprasternal Doppler ultrasound, modified windkessel function, pulse wave transit time, radial artery tonometry, thoracic bioimpedance, endotracheal bioimpedance, bioreactance, and partial CO 2 rebreathing have been tested for monitoring cardiac output or stroke volume. The photoelectric finger blood volume clamp technique and respiratory variation of the plethysmography curve have been assessed for monitoring fluid responsiveness. In this manuscript meta-analyses of non-invasive monitoring technologies were performed when non-invasive monitoring technology and reference technology were comparable. The primary evaluation criterion for all studies screened was a Bland-Altman analysis. Experimental and pediatric studies were excluded, as were all studies without a non-invasive monitoring technique or studies without evaluation of cardiac output/stroke volume or fluid responsiveness. Most studies found an acceptable bias with wide limits of agreement. Thus, most non-invasive hemodynamic monitoring technologies cannot be considered to be equivalent to the respective reference method. Studies testing the impact of non-invasive hemodynamic monitoring technologies as a trend evaluation on outcome, as well as

  1. Mid-term evaluation of the Climate Change Action Fund: Technology Early Action Measures (TEAM) block

    International Nuclear Information System (INIS)

    2001-11-01

    To assist Canada in meeting its commitments under the Kyoto Protocol for the reduction of greenhouse gas emissions, the Government of Canada established the Climate Change Action Fund (CCAF) in 1998. Under the CCAF umbrella, the Technology Early Action Measures (TEAM) Block was initially allocated 60 million dollars over a three-year period for the provision of cost-shared support to speed up the development and deployment of cost-effective near market-ready greenhouse gases emission reducing technologies. The main avenues adopted by TEAM in its mandate were: supporting technology development and deployment, overcoming obstacles to technology development and deployment, and piloting technology transfer to developing countries and countries in transition. A mid-term evaluation of its performance to date was conducted. It proved to be too early for an adequate assessment of the extent to which the projects sponsored by TEAM demonstrated technical success in reducing greenhouse gases emissions, considering the time-consuming tasks required for the development and negotiation of technology projects. Most projects to date have not moved beyond the early stages benchmark. It was determined that the expected outcomes will be achieved. The innovative approach selected by TEAM, building on existing programs, appeared to be very effective. Findings and recommendations were discussed in this report

  2. Advanced Soil Moisture Network Technologies; Developments in Collecting in situ Measurements for Remote Sensing Missions

    Science.gov (United States)

    Moghaddam, M.; Silva, A. R. D.; Akbar, R.; Clewley, D.

    2015-12-01

    The Soil moisture Sensing Controller And oPtimal Estimator (SoilSCAPE) wireless sensor network has been developed to support Calibration and Validation activities (Cal/Val) for large scale soil moisture remote sensing missions (SMAP and AirMOSS). The technology developed here also readily supports small scale hydrological studies by providing sub-kilometer widespread soil moisture observations. An extensive collection of semi-sparse sensor clusters deployed throughout north-central California and southern Arizona provide near real time soil moisture measurements. Such a wireless network architecture, compared to conventional single points measurement profiles, allows for significant and expanded soil moisture sampling. The work presented here aims at discussing and highlighting novel and new technology developments which increase in situ soil moisture measurements' accuracy, reliability, and robustness with reduced data delivery latency. High efficiency and low maintenance custom hardware have been developed and in-field performance has been demonstrated for a period of three years. The SoilSCAPE technology incorporates (a) intelligent sensing to prevent erroneous measurement reporting, (b) on-board short term memory for data redundancy, (c) adaptive scheduling and sampling capabilities to enhance energy efficiency. A rapid streamlined data delivery architecture openly provides distribution of in situ measurements to SMAP and AirMOSS cal/val activities and other interested parties.

  3. Evaluation of OiW Measurement Technologies for Deoiling Hydrocyclone Efficiency Estimation and Control

    DEFF Research Database (Denmark)

    Løhndorf, Petar Durdevic; Pedersen, Simon; Yang, Zhenyu

    2016-01-01

    Offshore oil and gas industry has been active in the North Sea for more than half a century, contributing to the economy and facilitating a low oil import rate in the producing countries. The peak production was reached in the early 2000s, and since then the oil production has been decreasing while...... to reach the desired oil production capacity, consequently the discharged amount of oil increases.This leads to oceanic pollution, which has been linked to various negative effects in the marine life. The current legislation requires a maximum oil discharge of 30 parts per million (PPM). The oil in water...... a novel control technology which is based on online and dynamic OiW measurements. This article evaluates some currently available on- line measuring technologies to measure OiW, and the possibility to use these techniques for hydrocyclone efficiency evaluation, model development and as a feedback...

  4. Instrumentation for beam radiation and luminosity measurement in the CMS experiment using novel detector technologies

    CERN Document Server

    Guthoff, Moritz

    2017-01-01

    The higher energy and luminosity of the LHC initiated the development of dedicated technologies for radiation monitoring and luminosity measurement. A pixelated luminosity detector counts coincidences in several three layer telescopes of silicon pixel detectors to measure the luminosity for each colliding LHC bunch pair. In addition, charged particle tracking allows to monitor the location of the collision point.The upgraded fast beam conditions monitor measures the particle flux using 24 two pad single crystalline diamond sensors, equipped with a fast front-end ASIC produced in 130 nm CMOS technology. The excellent time resolution is used to separate collision products from machine induced background.A new beam-halo monitor at larger radius exploits Cerenkov light produced by relativistic charged particles in fused quartz crystals to provide direction sensitivity and time resolution to separate incoming and outgoing particles. The back-end electronics of the beam monitoring systems includes dedicated modules...

  5. Current Options for Measuring the Surface Temperature of Dairy Cattle in a Stable Technology: Review

    Directory of Open Access Journals (Sweden)

    Kateřina Švejdová

    2016-05-01

    Full Text Available Regular measurement of the body surface temperature can help to assess the health status of animals. There are many technological possibilities of contactless temperature measurement of body surface. The important thing is to find the right part of the body whose temperature will point to the first possible symptoms and immediately react to the first signs of the disease. Disagreements about how to measure body surface temperature and accuracy of the method can occur when different measures are used. We review work showing possibilities of contactless surface temperature measurements using 1 thermography, 2 electronic transponders and 3 other possibilities of measuring the body surface temperature of dairy cattle. For example, when we scan the surface temperature with the thermal imager there can operate in individual animals confounding factors such as the nature or degree of muscular coat, which may significantly affect the results.

  6. Design and test of 4πβ-γ coincidence measurement device based on DSP technology

    International Nuclear Information System (INIS)

    Zeng Herong; Feng Qijie; Leng Jun; Qian Dazhi; Bai Lixin; Zhang Yiyun

    2012-01-01

    The paper illustrates the hardware and software of the 4πβ-γ coincidence measurement device based on DSP technology in detail. In such device, the single-channel analyzer, gate generator, coincidence circuit and scalar in the traditional coincidence measurement device are replaced by the digital coincidence acquirer which is researched and manufactured by ourselves. Doing so, the measurement efficiency will be respectively improved, and the hardware cost will be lowered. The comparison experiment shows that the design of such device is a success. (authors)

  7. Nuclear instrument engineering - the measuring and informative basis of nuclear science and technology

    International Nuclear Information System (INIS)

    Matveev, V.V.; Krasheninnikov, I.S.; Murin, I.D.; Stas', K.N.

    1977-01-01

    The cornerstones of developing nuclear instrument engineering in the USSR are shortly discussed. The industry is based on a well developed theory. A system approach is a characteristic feature of the present-day measuring and control systems engineering. Major functions of reactor instruments measuring different types of ionizing radiation are discussed at greater length. Nuclear measuring and control instruments and methods are widely used in different fields of science and technoloay and in different industries in the USSR. The efficient and safe operation of a nuclear facility is underlined to depend strongly upon a correlation between a technological process and the information and control system of the facility

  8. Update: Partnership for the Revitalization of National Wind Tunnel Force Measurement Technology Capability

    Science.gov (United States)

    Rhew, Ray D.

    2010-01-01

    NASA's Aeronautics Test Program (ATP) chartered a team to examine the issues and risks associated with the lack of funding and focus on force measurement over the past several years, focusing specifically on strain-gage balances. NASA partnered with the U.S. Air Force's Arnold Engineering Development Center (AEDC) to exploit their combined capabilities and take a national level government view of the problem and established the National Force Measurement Technology Capability (NFMTC) project. This paper provides an update on the team's status for revitalizing the government's balance capability with respect to designing, fabricating, calibrating, and using the these critical measurement devices.

  9. Controlled drilling technology for HLW management. Directional drilling and mechanics/stress measurements in the borehole

    International Nuclear Information System (INIS)

    Kiho, Kenzo; Shin, Koichi; Okada, Tetsuji; Obuchi, Yasuyoshi; Sunaga, Takayuki; Hase, Kazunori

    2013-01-01

    Since 2000, Central Research Institute of Electric Power Industry (CRIEPI) has been conducting the project on controlled drilling and the logging/measurement technologies in its boreholes. Especially borehole pressure meter and bore hole stress measurement apparatus which can apply to the controlled drilling system was developed. The bore hole was drilled to the 1000 m long in order to intersect the Omagari fault located at Horonobe town in Hokkaido and its core recovery was 99.8% as of FY. 2011. Using borehole logging/measurement/survey, the geological, hydrological, geo-mechanical, geophysical and geochemical data were collected and the Omagari fault was characterized. (author)

  10. Space Communications and Data Systems Technologies for Next Generation Earth Science Measurements

    Science.gov (United States)

    Bauer, Robert A.; Reinhart, Richard C.; Hilderman, Don R.; Paulsen, Phillip E.

    2003-01-01

    The next generation of Earth observing satellites and sensor networks will face challenges in supporting robust high rate communications links from the increasingly sophisticated onboard instruments. Emerging applications will need data rates forecast to be in the 100's to 1000's of Mbps. As mission designers seek smaller spacecraft, challenges exist in reducing the size and power requirements while increasing the capacity of the spacecraft's communications technologies. To meet these challenges, this work looks at three areas of selected space communications and data services technologies, specifically in the development of reflectarray antennas, demonstration of space Internet concepts, and measurement of atmospheric propagation effects on Ka-band signal transmitted from LEO.

  11. Preliminary assessment on exposure of four typical populations to potentially toxic metals by means of skin wipes under the influence of haze pollution.

    Science.gov (United States)

    Cao, Zhiguo; Wang, Mengmeng; Chen, Qiaoying; Zhang, Yajie; Dong, Wenjing; Yang, Tianfang; Yan, Guangxuan; Zhang, Xin; Pi, Yunqing; Xi, Benye; Bu, Qingwei

    2018-02-01

    To investigate the exposure risk of human beings to nine potentially toxic metals (PTMs), namely, Cu, Cr, Zn, As, Cd, Pb, Ni, Mn, and Co, skin wipe samples were collected from four types of populations, namely, children, undergraduates, security guards, and professional drivers, under different haze pollution levels in Xinxiang, China by using Ghost wipes. The Ghost wipes were quantitatively analyzed by inductively coupled plasma mass spectrometry (ICP-MS) after microwave digestion. Generally, Zn (ND-1350μg/m 2 for undergraduates, ND-2660μg/m 2 for security guards, ND-2460μg/m 2 for children, and ND-2530μg/m 2 for professional drivers) showed the highest concentration among the four populations, followed by Cu (0.02-83.4μg/m 2 for undergraduates, ND-70.2μg/m 2 for security guards, 23.2-487μg/m 2 for children, and ND-116μg/m 2 for professional drivers). As (ND-5.7μg/m 2 for undergraduates, ND-2.3μg/m 2 for security guards, ND-21.1μg/m 2 for children, and ND-11.0μg/m 2 for professional drivers) and Co (ND-6.0μg/m 2 for undergraduates, ND-7.9μg/m 2 for security guards, ND-13.4μg/m 2 for children, and ND-2.1μg/m 2 for professional drivers) showed the lowest concentrations in all populations. Remarkable differences were found among the four populations and PTM levels decreased in the following order: children, professional drivers, security guards, and undergraduates. Gender variation was discovered for undergraduates and children. Generally, PTM contamination in skin wipes collected during a light haze pollution level was generally higher than that during a heavy haze pollution level, but PTM contamination was comparable between the two haze pollution levels for children. Non-carcinogenic exposure risks to As, Cd, and Pb for all populations were higher than those for the other six elements but all of them were within the acceptable safety threshold, indicating no apparent non-carcinogenic risk. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Measuring a Country's Product Ladder and Technology Level based on Trade Flow

    Directory of Open Access Journals (Sweden)

    Jong-il Kim

    2006-06-01

    Full Text Available This study tries to quantify the technology level of products based on the concept of product ladder. While many studies on country technology competitiveness use the aggregate indices such as total factor productivity and revealed comparative advantage, this study estimates the ranking of about 2000 products in product ladder by using SITC 5 digit level export data. Based on the product ladder, this study measures the country and industry ranking and explores the characteristics of the ranking. It provides the international comparison of inter-industry and intra-industry ranking differences in product ladder. The statistical relationships between the ranking in product ladder and the determinants of technology level such as R&D and physical capital investment and wage, confirms that the measured ranking in product ladder could be regarded as an indirect indicator of technology level. The product ladder is applied to the estimation of production function to see the effect of the product differentiation on labor productivity.

  13. Adequate Measuring Technology and System of Fission Gas release Behavior from Voloxidation Process

    International Nuclear Information System (INIS)

    Park, Geun Il; Park, J. J.; Jung, I. H.; Shin, J. M.; Yang, M. S.; Song, K. C.

    2006-09-01

    Based on the published literature and an understanding of available hot cell technologies, more accurate measuring methods for each volatile fission product released from voloxidation process were reviewed and selected. The conceptual design of an apparatus for measuring volatile and/or semi-volatile fission products released from spent fuel was prepared. It was identified that on-line measurement techniques can be applied for gamma-emitting fission products, and off-line measurement such as chemical/or neutron activation analysis can applied for analyzing beta-emitting fission gases. Collection methods using appropriate material or solutions were selected to measure the release fraction of beta-emitting gaseous fission products at IMEF M6 hot cell. Especially, the on-line gamma-ray counting system for monitoring of 85Kr and the off-line measuring system of 14C was established. On-line measuring system for obtaining removal ratios of the semi-volatile fission products, mainly gamma-emitting fission products such as Cs, Ru etc., was also developed at IMEF M6 hot cell which was based on by measuring fuel inventory before and after the voloxidation test through gamma measuring technique. The development of this measurement system may enable basic information to be obtained to support design of the off-gas treatment system for the voloxidation process at INL, USA

  14. Conceptualizing Student Affect for Science and Technology at the Middle School Level: Development and Implementation of a Measure of Affect in Science and Technology (MAST)

    Science.gov (United States)

    Romine, William L.; Sadler, Troy D.; Wulff, Eric P.

    2017-10-01

    We describe the development of the Measure of Affect in Science and Technology (MAST), and study its usefulness for measuring science affect in middle school students via both classical and Rasch measurement perspectives. We then proceed to utilize the measurement structure of the MAST to understand how middle school students at varying levels of affect express their interest and attitudes toward science and technology and gender differences in how students express their affect. We found that affect in science and technology comprises a main dimension, science interest, and four peripheral dimensions: interest in careers in science and technology, attitudes toward science, and interest in attending science class. Of these, careers in science and technology carry the highest affective demand. While males showed higher levels of personal and situational interest in science, a greater interest in careers in science and technology was the biggest contributor to males' higher affect toward science and technology. We argue that whether the MAST is used as a measure of a single construct or multiple subconstructs depends upon specific research or evaluation goals; however, both uses of the MAST yield measures which produce valid inferences for student affect.

  15. Fluid Vessel Quantity using Non-Invasive PZT Technology Flight Volume Measurements Under Zero G Analysis

    Science.gov (United States)

    Garofalo, Anthony A.

    2013-01-01

    The purpose of the project is to perform analysis of data using the Systems Engineering Educational Discovery (SEED) program data from 2011 and 2012 Fluid Vessel Quantity using Non-Invasive PZT Technology flight volume measurements under Zero G conditions (parabolic Plane flight data). Also experimental planning and lab work for future sub-orbital experiments to use the NASA PZT technology for fluid volume measurement. Along with conducting data analysis of flight data, I also did a variety of other tasks. I provided the lab with detailed technical drawings, experimented with 3d printers, made changes to the liquid nitrogen skid schematics, and learned how to weld. I also programmed microcontrollers to interact with various sensors and helped with other things going on around the lab.

  16. Methods and Technologies of XML Data Modeling for IP Mode Intelligent Measuring and Controlling System

    International Nuclear Information System (INIS)

    Liu, G X; Hong, X B; Liu, J G

    2006-01-01

    This paper presents the IP mode intelligent measuring and controlling system (IMIMCS). Based on object-oriented modeling technology of UML and XML Schema, the innovative methods and technologies of some key problems for XML data modeling in the IMIMCS were especially discussed, including refinement for systemic business by means of use-case diagram of UML, the confirmation of the content of XML data model and logic relationship of the objects of XML Schema with the aid of class diagram of UML, the mapping rules from the UML object model to XML Schema. Finally, the application of the IMIMCS based on XML for a modern greenhouse was presented. The results show that the modeling methods of the measuring and controlling data in the IMIMCS involving the multi-layer structure and many operating systems process strong reliability and flexibility, guarantee uniformity of complex XML documents and meet the requirement of data communication across platform

  17. EDITORIAL: Advances in Measurement Technology and Intelligent Instruments for Production Engineering

    Science.gov (United States)

    Gao, Wei; Takaya, Yasuhiro; Gao, Yongsheng; Krystek, Michael

    2008-08-01

    Measurement and instrumentation have long played an important role in Production Engineering, through supporting both the traditional field of manufacturing and the new field of micro/nano-technology. Papers published in this special feature were selected and updated from those presented at The 8th International Symposium on Measurement Technology and Intelligent Instruments (ISMTII 2007) held at Tohoku University, Sendai, Japan, on 24-27 September 2007. ISMTII 2007 was organized by ICMI (The International Committee on Measurements and Instrumentation), Japan Society for Precision Engineering (JSPE, Technical Committee of Intelligent Measurement with Nanoscale), Korean Society for Precision Engineering (KSPE), Chinese Society for Measurement (CSM) and Tohoku University. The conference was also supported by Center for Precision Metrology of UNC Charlotte and Singapore Institute of Manufacturing Technology. A total of 220 papers, including four keynote papers, were presented at ISMTII 2007, covering a wide range of topics, including micro/nano-metrology, precision measurement, online & in-process measurement, surface metrology, optical metrology & image processing, biomeasurement, sensor technology, intelligent measurement & instrumentation, uncertainty, traceability & calibration, and signal processing algorithms. The guest editors recommended publication of updated versions of some of the best ISMTII 2007 papers in this special feature of Measurement Science and Technology. The first two papers were presented in ISMTII 2007 as keynote papers. Takamasu et al from The University of Tokyo report uncertainty estimation for coordinate metrology, in which methods of estimating uncertainties using the coordinate measuring system after calibration are formulated. Haitjema, from Mitutoyo Research Center Europe, treats the most often used interferometric measurement techniques (displacement interferometry and surface interferometry) and their major sources of errors. Among

  18. Measuring patent quality and national technological capacity in cross-country comparison

    OpenAIRE

    Boeing, Philipp; Müller, Elisabeth

    2016-01-01

    China recently surpassed the USA as the greatest global source of patent applications. However, without internationally comparable measures of patent quality it remains questionable whether China's patent expansion constitutes the rise of a new technological superpower. Our novel quality index is based on citations from international search reports and provides internationally comparable, quality-adjusted figures for applications made under the Patent Cooperation Treaty (PCT). We show that Ch...

  19. Electronic Nose Technology to Measure Soil Microbial Activity and Classify Soil Metabolic Status

    OpenAIRE

    Fabrizio De Cesare; Elena Di Mattia; Simone Pantalei; Emiliano Zampetti; Vittorio Vinciguerra; Antonella Macagnano

    2011-01-01

    The electronic nose (E-nose) is a sensing technology that has been widely used to monitor environments in the last decade. In the present study, the capability of an E-nose, in combination with biochemical and microbiological techniques, of both detecting the microbial activity and estimating the metabolic status of soil ecosystems, was tested by measuring on one side respiration, enzyme activities and growth of bacteria in natural but simplified soil ecosystems over 23 days of incubation thr...

  20. EDITORIAL: Announcing the 2011 Measurement Science and Technology Outstanding Paper Awards Announcing the 2011 Measurement Science and Technology Outstanding Paper Awards

    Science.gov (United States)

    Foss, John; Dewhurst, Richard; Fujii, Kenichi; Regtien, Paul; Tatam, Ralph

    2012-06-01

    Since 1991, Measurement Science and Technology has awarded a Best Paper prize. The Editorial Board of this journal believe that such a prize is an opportunity to thank authors for submitting their work, and serves as an integral part of the on-going quality review of the journal. The current breadth of topical areas that are covered by MST has made it advisable to expand the recognition of excellent publications. Hence, since 2005 the Editorial Board have presented 'Outstanding Paper Awards'. This year awards were presented in the areas of 'Measurement Science', 'Fluid Mechanics' and 'Precision Measurement'. Although the categories mirror subject sections in the journal, the Editorial Board consider articles from all categories in the selection process. 2011 Award Winners—Measurement Science Simultaneous measurement of internal and surrounding flows of a moving droplet using multicolour confocal micro-particle image velocimetry (micro-PIV) M Oishi, H Kinoshita, T Fujii and M Oshima Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo 153-8505, Japan Interfaculty Initiative in Information Studies, The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo 153-8505, Japan Whilst the award last year [1] was concerned with the application of microscopy to ultra-high vacuum dynamic force measurements, this year's award [2] goes to another micro-measurement technique, one concerned with measurements related to particle image velocimetry. The technique relates to multiphase flow in microfluidic devices, and offers a non-contact methodology for examining simultaneous dynamic interactions between flows having different phases. There are several features which make this an excellent paper. It introduces its subject with a clear and concise description of previous advances in related measurement methods, before introducing the additional feature of two-colour fluorescent monitoring of flow in two independent optical channels. By adapting a

  1. Emerging Technologies and Synergies for Airborne and Space-Based Measurements of Water Vapor Profiles

    Science.gov (United States)

    Nehrir, Amin R.; Kiemle, Christoph; Lebsock, Mathew D.; Kirchengast, Gottfried; Buehler, Stefan A.; Löhnert, Ulrich; Liu, Cong-Liang; Hargrave, Peter C.; Barrera-Verdejo, Maria; Winker, David M.

    2017-11-01

    A deeper understanding of how clouds will respond to a warming climate is one of the outstanding challenges in climate science. Uncertainties in the response of clouds, and particularly shallow clouds, have been identified as the dominant source of the discrepancy in model estimates of equilibrium climate sensitivity. As the community gains a deeper understanding of the many processes involved, there is a growing appreciation of the critical role played by fluctuations in water vapor and the coupling of water vapor and atmospheric circulations. Reduction of uncertainties in cloud-climate feedbacks and convection initiation as well as improved understanding of processes governing these effects will result from profiling of water vapor in the lower troposphere with improved accuracy and vertical resolution compared to existing airborne and space-based measurements. This paper highlights new technologies and improved measurement approaches for measuring lower tropospheric water vapor and their expected added value to current observations. Those include differential absorption lidar and radar, microwave occultation between low-Earth orbiters, and hyperspectral microwave remote sensing. Each methodology is briefly explained, and measurement capabilities as well as the current technological readiness for aircraft and satellite implementation are specified. Potential synergies between the technologies are discussed, actual examples hereof are given, and future perspectives are explored. Based on technical maturity and the foreseen near-mid-term development path of the various discussed measurement approaches, we find that improved measurements of water vapor throughout the troposphere would greatly benefit from the combination of differential absorption lidar focusing on the lower troposphere with passive remote sensors constraining the upper-tropospheric humidity.

  2. Experience with novel technologies for direct measurement of atmospheric NO2

    Science.gov (United States)

    Hueglin, Christoph; Hundt, Morten; Mueller, Michael; Schwarzenbach, Beat; Tuzson, Bela; Emmenegger, Lukas

    2017-04-01

    Nitrogen dioxide (NO2) is an air pollutant that has a large impact on human health and ecosystems, and it plays a key role in the formation of ozone and secondary particulate matter. Consequently, legal limit values for NO2 are set in the EU and elsewhere, and atmospheric observation networks typically include NO2 in their measurement programmes. Atmospheric NO2 is principally measured by chemiluminescence detection, an indirect measurement technique that requires conversion of NO2 into nitrogen monoxide (NO) and finally calculation of NO2 from the difference between total nitrogen oxides (NOx) and NO. Consequently, NO2 measurements with the chemiluminescence method have a relatively high measurement uncertainty and can be biased depending on the selectivity of the applied NO2 conversion method. In the past years, technologies for direct and selective measurement of NO2 have become available, e.g. cavity attenuated phase shift spectroscopy (CAPS), cavity enhanced laser absorption spectroscopy and quantum cascade laser absorption spectrometry (QCLAS). These technologies offer clear advantages over the indirect chemiluminescence method. We tested the above mentioned direct measurement techniques for NO2 over extended time periods at atmospheric measurement stations and report on our experience including comparisons with co-located chemiluminescence instruments equipped with molybdenum as well as photolytic NO2 converters. A still open issue related to the direct measurement of NO2 is instrument calibration. Accurate and traceable reference standards and NO2 calibration gases are needed. We present results from the application of different calibration strategies based on the use of static NO2 calibration gases as well as dynamic NO2 calibration gases produced by permeation and by gas-phase titration (GPT).

  3. Engineering Related Technology: A Laboratory and Curriculum Design for the Newly Emerging Technology of Pollution-Corrosion Measurement and Control. Final Report.

    Science.gov (United States)

    Shields, F. K.; And Others

    In order to meet the educational needs for a separate curriculum at the secondary level for technological training related to pollution and corrosion measurement and control, a 3-year, 1080-hour vocational program was developed for use in an area vocational high school. As one of four programs in the technology careers area, this curriculum design…

  4. The online tourist fraud: the new measures of technological investigation in Spain

    Directory of Open Access Journals (Sweden)

    M.ª Belén AIGE

    2017-07-01

    Full Text Available The present article is about an examination of the new technological measures for the investigation, created by the Organic Act (Ley Orgánica 13/2015, of 5th of October. These measures will serve us to improve de criminal investigation, especially on those crimes that are done by technological means, but also for the traditional crimes. Specifically, we are going to make an especial reference to the tourist fraud, which affects both consumers and entrepreneurs. This fraud is especially notable in the online contracts, as we will see above, because those contracts have increased the number of online frauds in the last years; in the tourism I am referring to the stealing of personal data and the creation of ghost companies or non-existent offers. In first place, we are going to talk about the advantages and disadvantages of the online contracts, and also about the real necessity of new investigation means that finally have been satisfied with the introduction of the new technological measures of investigation, which we are going to analyse: the computerized undercover agent, the interception of the telematics and telephone communications, the recording of oral communications by electronic devices, the tracking, localization and recording images devices, the registry of mass storage devices and the remote registry of computer equipment. 

  5. A Flexible Sensor Technology for the Distributed Measurement of Interaction Pressure

    Science.gov (United States)

    Donati, Marco; Vitiello, Nicola; De Rossi, Stefano Marco Maria; Lenzi, Tommaso; Crea, Simona; Persichetti, Alessandro; Giovacchini, Francesco; Koopman, Bram; Podobnik, Janez; Munih, Marko; Carrozza, Maria Chiara

    2013-01-01

    We present a sensor technology for the measure of the physical human-robot interaction pressure developed in the last years at Scuola Superiore Sant'Anna. The system is composed of flexible matrices of opto-electronic sensors covered by a soft silicone cover. This sensory system is completely modular and scalable, allowing one to cover areas of any sizes and shapes, and to measure different pressure ranges. In this work we present the main application areas for this technology. A first generation of the system was used to monitor human-robot interaction in upper- (NEUROExos; Scuola Superiore Sant'Anna) and lower-limb (LOPES; University of Twente) exoskeletons for rehabilitation. A second generation, with increased resolution and wireless connection, was used to develop a pressure-sensitive foot insole and an improved human-robot interaction measurement systems. The experimental characterization of the latter system along with its validation on three healthy subjects is presented here for the first time. A perspective on future uses and development of the technology is finally drafted. PMID:23322104

  6. Development of position measuring technology by GPS; GPS ni yoru sokui gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ishizaki, T [Ministry of Transportation, Tokyo (Japan)

    1994-07-25

    With regard to the GPS (global positioning system) which uses the satellites launched and administered by the U.S.A. and has been utilized worldwide for ships, automobiles and geodetic surveys in recent years, Ministry of Transport started investigation and research on the application of its position measuring system from FY 1989. In this fiscal year, a study on position measuring methods and selection of the position measuring system to be developed were made, in FY 1991, the real-time functioning and track display were developed, in FY 1992, the initialization aboard the ship, the measure to prevent cycle slip, and the radio data communication technology were developed, and in FY 1993, a long term demonstration experiment presuming its practical use was conducted attaining the expected purpose. In this article, the developed real-time kinematic position measuring system is introduced. Regarding the position measuring methods by the GPS, there are the one point position measuring method and the relative position measuring method. Regarding this newly developed position measuring device, its application to work ships and structures can be considered in various ways. 4 figs.

  7. Accuracy, reproducibility, and time efficiency of dental measurements using different technologies.

    Science.gov (United States)

    Grünheid, Thorsten; Patel, Nishant; De Felippe, Nanci L; Wey, Andrew; Gaillard, Philippe R; Larson, Brent E

    2014-02-01

    Historically, orthodontists have taken dental measurements on plaster models. Technological advances now allow orthodontists to take these measurements on digital models. In this study, we aimed to assess the accuracy, reproducibility, and time efficiency of dental measurements taken on 3 types of digital models. emodels (GeoDigm, Falcon Heights, Minn), SureSmile models (OraMetrix, Richardson, Tex), and AnatoModels (Anatomage, San Jose, Calif) were made for 30 patients. Mesiodistal tooth-width measurements taken on these digital models were timed and compared with those on the corresponding plaster models, which were used as the gold standard. Accuracy and reproducibility were assessed using the Bland-Altman method. Differences in time efficiency were tested for statistical significance with 1-way analysis of variance. Measurements on SureSmile models were the most accurate, followed by those on emodels and AnatoModels. Measurements taken on SureSmile models were also the most reproducible. Measurements taken on SureSmile models and emodels were significantly faster than those taken on AnatoModels and plaster models. Tooth-width measurements on digital models can be as accurate as, and might be more reproducible and significantly faster than, those taken on plaster models. Of the models studied, the SureSmile models provided the best combination of accuracy, reproducibility, and time efficiency of measurement. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  8. Status of corrective measures technology for shallow land burial at arid sites

    International Nuclear Information System (INIS)

    Abeele, W.V.; Nyhan, J.W.; Drennon, B.J.; Lopez, E.A.; Herrera, W.J.; Langhorst, G.J.

    1985-01-01

    The field research program involving corrective measure technologies for arid shallow land burial sites is described. Soil erosion and infiltration of water into a simulated trench cap with various surface treatments was measured and compared with similar data from agricultural systems across the United States. Report of field testing of biointrusion barriers continues at a closed-out waste disposal site at Los Alamos. Final results of an experiment designed to determine the effects of subsidence on the performance of a cobble-gravel biobarrier system are reported, as well as the results of hydrologic modeling activities involving biobarrier systems. 11 refs., 10 figs

  9. Review and evaluation of innovative technologies for measuring diet in nutritional epidemiology.

    Science.gov (United States)

    Illner, A-K; Freisling, H; Boeing, H; Huybrechts, I; Crispim, S P; Slimani, N

    2012-08-01

    The use of innovative technologies is deemed to improve dietary assessment in various research settings. However, their relative merits in nutritional epidemiological studies, which require accurate quantitative estimates of the usual intake at individual level, still need to be evaluated. To report on the inventory of available innovative technologies for dietary assessment and to critically evaluate their strengths and weaknesses as compared with the conventional methodologies (i.e. Food Frequency Questionnaires, food records, 24-hour dietary recalls) used in epidemiological studies. A list of currently available technologies was identified from English-language journals, using PubMed and Web of Science. The search criteria were principally based on the date of publication (between 1995 and 2011) and pre-defined search keywords. Six main groups of innovative technologies were identified ('Personal Digital Assistant-', 'Mobile-phone-', 'Interactive computer-', 'Web-', 'Camera- and tape-recorder-' and 'Scan- and sensor-based' technologies). Compared with the conventional food records, Personal Digital Assistant and mobile phone devices seem to improve the recording through the possibility for 'real-time' recording at eating events, but their validity to estimate individual dietary intakes was low to moderate. In 24-hour dietary recalls, there is still limited knowledge regarding the accuracy of fully automated approaches; and methodological problems, such as the inaccuracy in self-reported portion sizes might be more critical than in interview-based applications. In contrast, measurement errors in innovative web-based and in conventional paper-based Food Frequency Questionnaires are most likely similar, suggesting that the underlying methodology is unchanged by the technology. Most of the new technologies in dietary assessment were seen to have overlapping methodological features with the conventional methods predominantly used for nutritional epidemiology. Their

  10. Some problems of neutron source multiplication method for site measurement technology in nuclear critical safety

    International Nuclear Information System (INIS)

    Shi Yongqian; Zhu Qingfu; Hu Dingsheng; He Tao; Yao Shigui; Lin Shenghuo

    2004-01-01

    The paper gives experiment theory and experiment method of neutron source multiplication method for site measurement technology in the nuclear critical safety. The measured parameter by source multiplication method actually is a sub-critical with source neutron effective multiplication factor k s , but not the neutron effective multiplication factor k eff . The experiment research has been done on the uranium solution nuclear critical safety experiment assembly. The k s of different sub-criticality is measured by neutron source multiplication experiment method, and k eff of different sub-criticality, the reactivity coefficient of unit solution level, is first measured by period method, and then multiplied by difference of critical solution level and sub-critical solution level and obtained the reactivity of sub-critical solution level. The k eff finally can be extracted from reactivity formula. The effect on the nuclear critical safety and different between k eff and k s are discussed

  11. EDITORIAL: Announcing the 2010 Measurement Science and Technology Outstanding Paper Awards Announcing the 2010 Measurement Science and Technology Outstanding Paper Awards

    Science.gov (United States)

    Foss, John; Dewhurst, Richard; Fujii, Kenichi; Regtien, Paul

    2011-06-01

    Since 1991, Measurement Science and Technology has awarded a Best Paper prize. The Editorial Board of this journal believes that such a prize is an opportunity to thank authors for submitting their work, and serves as an integral part of the on-going quality review of the journal. The current breadth of topical areas that are covered by MST has made it advisable to expand the recognition of excellent publications. Hence, since 2005 the Editorial Board have presented 'Outstanding Paper Awards' in four subject categories: Fluid Mechanics; Measurement Science; Precision Measurements; and Sensors and Sensing Systems. Although the categories mirror subject sections in the journal, the Editorial Board consider articles from all categories in the selection process. This year, for example, the winning article of the Outstanding Paper Award in Sensors and Sensing Systems was an article published in the 'Novel Instrumentation' section. 2010 Award Winners—Fluid Mechanics Assessment of pressure field calculations from particle image velocimetry measurements John J Charonko, Cameron V King, Barton L Smith and Pavlos P Vlachos Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24060, USA VT-WFU School of Biomedical Engineering & Sciences, Virginia Tech, Blacksburg, VA 24060, USA Mechanical and Aerospace Engineering Department, Utah State University, UMC4130, Logan, UT 84322, USA Measuring p(t) in the interior of a flow field is one of the most challenging measurements in our field of study. An accurate knowledge of these interior pressures is of considerable value for fundamental studies. Since the gradient of the pressure appears in the Navier-Stokes equations, a knowledge of the pressure at a bounding surface followed by operations on the measured velocity components within the flow field can be analytically related to the pressure at an interior location. Bringing this long-recognized possibility to operational status has been greatly aided by the advent of

  12. Presentation of a methodology for measuring social acceptance of three hydrogen storage technologies and preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Noirot, I.; Bigay, C. N.

    2005-07-01

    Technologies (MASIT). This methodology takes into account the following points of view : technical, economical, environmental, social and industrial/technological risks. MASIT is the methodology chosen to assess the hydrogen storage technologies developed during the StorHy project. With respect to the methodology, each point of view is defined by several criteria selected with car manufacturers and experts of each domain. Then, each criterion is quantified with the contribution of all partners involved in the project. While technical, economical and environmental criteria are quite objectives (easy to define and measure), the social dimension is subjective and has also a large variability as it depends on perception and measurement at an individual human level. So, the methodological work consists in the improvement of the MASIT methodology from the social point of view. This methodology is applicable for comparison of any other technologies and it has been implemented here to compare the storage technologies developed in the StorHy project for each application selected in the study (light vehicles, fleet vehicles, buses). (Author)

  13. EDITORIAL: Announcing the 2009 Measurement Science and Technology Outstanding Paper Awards Announcing the 2009 Measurement Science and Technology Outstanding Paper Awards

    Science.gov (United States)

    Foss, John; Dewhurst, Richard; Fujii, Kenichi; Regtien, Paul

    2010-06-01

    Since 1991, Measurement Science and Technology has awarded a Best Paper prize. The Editorial Board of this journal believes that such a prize is an opportunity to thank authors for submitting their work, and serves as an integral part of the on-going quality review of the journal. The current breadth of topical areas that are covered by MST has made it advisable to expand the recognition of excellent publications. Hence, since 2005 the Editorial Board have presented 'Outstanding Paper Awards' in four subject categories: Fluid Mechanics; Measurement Science; Precision Measurements; and Sensors and Sensing Systems. This year also saw the introduction of a new category—Optical and Laser-based Techniques. 2009 Award Winners—Fluid Mechanics Digital particle image velocimetry (DPIV) robust phase correlation Adric Eckstein and Pavlos P Vlachos Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, USA This paper [1] represents a valuable improvement to the phase-only correlation technique (first proposed by Wernet in this journal in 2005 (Wernet M 2005 Symmetric phase-only filtering: a new paradigm for DPIV data processing Meas. Sci. Technol. 16 601-18) for particle-image-velocimetry (PIV) measurements of fluid flow. The authors establish a sound theoretical foundation and clearly describe the working principle of their robust phase correlation method. The methodology for assessing performance is excellent. Detailed results on several internationally recognized PIV test cases are presented. The robust phase correlation method is of general applicability and therefore can be expected to have substantial impact in this very active area of fluid-mechanics measurements. 2009 Award Winner—Precision Measurement A nanonewton force facility and a novel method for measurements of the air and vacuum permittivity at zero frequencies V Nesterov Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, D-38116 Braunschweig, Germany This paper [2] describes a

  14. Environmental Measurement-While-Drilling System and Horizontal Directional Drilling Technology Demonstration, Hanford Site

    International Nuclear Information System (INIS)

    Williams, C.V.; Lockwood, G.J.; Normann, R.A.; Myers, D.A.; Gardner, M.G.; Williamson, T.; Huffman, J.

    1999-01-01

    The Environmental Measurement-While-Drilling (EMWD) system and Horizontal Directional Drilling (HDD) were successfully demonstrated at the Mock Tank Leak Simulation Site and the Drilling Technology Test Site, Hanford, Washington. The use of directional drilling offers an alternative to vertical drilling site characterization. Directional drilling can develop a borehole under a structure, such as a waste tank, from an angled entry and leveling off to horizontal at the desired depth. The EMWD system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drill bit data during drilling operations. The technology demonstration consisted of the development of one borehole under a mock waste tank at a depth of approximately minus8 m (minus27 ft.), following a predetermined drill path, tracking the drill path to within a radius of approximately1.5 m (5 ft.), and monitoring for zones of radiological activity using the EMWD system. The purpose of the second borehole was to demonstrate the capability of drilling to a depth of ∼ -21 m (-70 ft.), the depth needed to obtain access under the Hanford waste tanks, and continue drilling horizontally. This report presents information on the HDD and EMWD technologies, demonstration design, results of the demonstrations, and lessons learned

  15. [Research progress of Terahertz wave technology in quality measurement of food and agricultural products].

    Science.gov (United States)

    Yan, Zhan-Ke; Zhang, Hong-Jian; Ying, Yi-Bin

    2007-11-01

    The quality concern of food and agricultural products has become more and more significant. The related technologies for nondestructive measurement or quality control of food products have been the focus of many researches. Terahertz (THz) radiation, or THz wave, the least explored region of the spectrum, is the electromagnetic wave that lies between mid-infrared and microwave radiation, which has very important research and application values. THz spectroscopy and THz imaging technique are the two main applications of THz wave. During the past decade, THz waves have been used to characterize the electronic, vibrational and compositional properties of solid, liquid and gas phase materials. Recently, THz technology has gained a lot of attention of researchers in various fields from biological spectral analysis to bio-medical imaging due to its unique features compared with microwave and optical waves. In the present paper, the properties of THz wave and its uniqueness in sensing and imaging applications were discussed. The most recent researches on THz technology used in food quality control and agricultural products inspection were summarized. The prospect of this novel technology in agriculture and food industry was also discussed.

  16. Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Musial, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lawson, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rooney, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-02-01

    The Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop was hosted by the National Renewable Energy Laboratory (NREL) in Broomfield, Colorado, July 9–10, 2012. The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy community, and to collect information to help identify ways in which the development of a commercially viable marine energy industry can be accelerated. The workshop was comprised of plenary sessions that reviewed the state of the marine energy industry and technical sessions that covered specific topics of relevance. Each session consisted of presentations, followed by facilitated discussions. During the facilitated discussions, the session chairs posed several prepared questions to the presenters and audience to encourage communication and the exchange of ideas between technical experts. Following the workshop, attendees were asked to provide written feedback on their takeaways from the workshop and their best ideas on how to accelerate the pace of marine energy technology development. The first four sections of this document give a general overview of the workshop format, provide presentation abstracts, supply discussion session notes, and list responses to the post-workshop questions. The final section presents key findings and conclusions from the workshop that suggest what the most pressing MHK technology needs are and how the U.S. Department of Energy (DOE) and national laboratory resources can be utilized to assist the marine energy industry in the most effective manner.

  17. Instrumentation for beam radiation and luminosity measurement in the CMS experiment using novel detector technologies

    Energy Technology Data Exchange (ETDEWEB)

    Guthoff, Moritz

    2017-02-11

    The higher energy and luminosity of the LHC initiated the development of dedicated technologies for radiation monitoring and luminosity measurement. A dedicated pixelated luminosity detector measures coincidences in several three-layer telescopes of silicon pixel detectors to arrive at a luminosity for each colliding LHC bunch pair. In addition, charged particle tracking allows to monitor the location of the collision point. The upgraded fast beam conditions monitor measures the particle flux using 24 two-pad single crystalline diamond sensors, equipped with a fast front-end ASIC produced in 130 nm CMOS technology. The excellent time resolution is used to separate collision products from machine induced background. A new beam-halo monitor at larger radius exploits Cherenkov light produced by relativistic charged particles in fuzed quartz crystals to provide direction sensitivity and time resolution to separate incoming and outgoing particles. The back-end electronics of the beam monitoring systems includes dedicated modules with high bandwidth digitizers developed in both VME and microTCA standards for per bunch beam measurements and gain monitoring. All new and upgraded sub-detectors have been taking data from the first day of LHC operation in April 2015. Results on their commissioning and essential characteristics using data since the start-up of LHC will be presented.

  18. The rapid measurement of soil carbon stock using near-infrared technology

    Science.gov (United States)

    Kusumo, B. H.; Sukartono; Bustan

    2018-03-01

    As a soil pool stores carbon (C) three times higher than an atmospheric pool, the depletion of C stock in the soil will significantly increase the concentration of CO2 in the atmosphere, causing global warming. However, the monitoring or measurement of soil C stock using conventional procedures is time-consuming and expensive. So it requires a rapid and non-destructive technique that is simple and does not need chemical substances. This research is aimed at testing whether near-infrared (NIR) technology is able to rapidly measure C stock in the soil. Soil samples were collected from an agricultural land at the sub-district of Kayangan, North Lombok, Indonesia. The coordinates of the samples were recorded. Parts of the samples were analyzed using conventional procedure (Walkley and Black) and some other parts were scanned using near-infrared spectroscopy (NIRS) for soil spectral collection. Partial Least Square Regression (PLSR) was used to develop models from soil C data measured by conventional analysis and from spectral data scanned by NIRS. The best model was moderately successful to measure soil C stock in the study area in North Lombok. This indicates that the NIR technology can be further used to monitor the change of soil C stock in the soil.

  19. Advancements in Root Growth Measurement Technologies and Observation Capabilities for Container-Grown Plants

    Directory of Open Access Journals (Sweden)

    Lesley A. Judd

    2015-07-01

    Full Text Available The study, characterization, observation, and quantification of plant root growth and root systems (Rhizometrics has been and remains an important area of research in all disciplines of plant science. In the horticultural industry, a large portion of the crops grown annually are grown in pot culture. Root growth is a critical component in overall plant performance during production in containers, and therefore it is important to understand the factors that influence and/or possible enhance it. Quantifying root growth has varied over the last several decades with each method of quantification changing in its reliability of measurement and variation among the results. Methods such as root drawings, pin boards, rhizotrons, and minirhizotrons initiated the aptitude to measure roots with field crops, and have been expanded to container-grown plants. However, many of the published research methods are monotonous and time-consuming. More recently, computer programs have increased in use as technology advances and measuring characteristics of root growth becomes easier. These programs are instrumental in analyzing various root growth characteristics, from root diameter and length of individual roots to branching angle and topological depth of the root architecture. This review delves into the expanding technologies involved with expertly measuring root growth of plants in containers, and the advantages and disadvantages that remain.

  20. Advancements in Root Growth Measurement Technologies and Observation Capabilities for Container-Grown Plants.

    Science.gov (United States)

    Judd, Lesley A; Jackson, Brian E; Fonteno, William C

    2015-07-03

    The study, characterization, observation, and quantification of plant root growth and root systems (Rhizometrics) has been and remains an important area of research in all disciplines of plant science. In the horticultural industry, a large portion of the crops grown annually are grown in pot culture. Root growth is a critical component in overall plant performance during production in containers, and therefore it is important to understand the factors that influence and/or possible enhance it. Quantifying root growth has varied over the last several decades with each method of quantification changing in its reliability of measurement and variation among the results. Methods such as root drawings, pin boards, rhizotrons, and minirhizotrons initiated the aptitude to measure roots with field crops, and have been expanded to container-grown plants. However, many of the published research methods are monotonous and time-consuming. More recently, computer programs have increased in use as technology advances and measuring characteristics of root growth becomes easier. These programs are instrumental in analyzing various root growth characteristics, from root diameter and length of individual roots to branching angle and topological depth of the root architecture. This review delves into the expanding technologies involved with expertly measuring root growth of plants in containers, and the advantages and disadvantages that remain.

  1. Dictionary of electrical engineering. Power engineering, automation technology, measurement and control technology, mechatronics. English - German; Fachwoerterbuch Elektrotechnik. Energietechnik, Automatisierungstechnik, Mess-, Steuer- und Regelungstechnik, Mechatronik. Englisch - Deutsch

    Energy Technology Data Exchange (ETDEWEB)

    Heckler, H.

    2007-07-01

    The foreign-language vocabulary taught at school usually does not cover terms needed during professional life in electrical engineering. This comprehensive dictionary contains more than 60,000 electrotechnical and engineering terms - used in textbooks, manuals, data sheets, whitepapers and international standards. British English and American English spelling differences are identified. Terms used in IEC standards of the International Electrotechnical Commission are marked, allowing the reader to have easy access to the multilingual glossary of the IEC. This book contains the in-house dictionaries of the internationally operating companies Festo, KEB, Phoenix Contact, and Rittal. Topics: - Basic of electrical engineering, - Electrical power engineering, - Mechatronics, - Electrical drive engineering, - Electrical connection technology, - Automation technology, - Safety-related technology, - Information technology, - Measurement and control technology, - Explosion protection - Power plant technology, - Lightning and overvoltage protection. (orig.)

  2. Mobile Measurements of Methane Using High-Speed Open-Path Technology

    Science.gov (United States)

    Burba, G. G.; Anderson, T.; Ediger, K.; von Fischer, J.; Gioli, B.; Ham, J. M.; Hupp, J. R.; Kohnert, K.; Levy, P. E.; Polidori, A.; Pikelnaya, O.; Price, E.; Sachs, T.; Serafimovich, A.; Zondlo, M. A.; Zulueta, R. C.

    2016-12-01

    Methane plays a critical role in the radiation balance, chemistry of the atmosphere, and air quality. The major anthropogenic sources of CH4 include oil and gas development sites, natural gas distribution networks, landfill emissions, and agricultural production. The majority of oil and gas and urban CH4 emission occurs via variable-rate point sources or diffused spots in topographically challenging terrains (e.g., street tunnels, elevated locations at water treatment plants, vents, etc.). Locating and measuring such CH4 emissions is challenging when using traditional micrometeorological techniques, and requires development of novel approaches. Landfill CH4 emissions traditionally assessed at monthly or longer time intervals are subject to large uncertainties because of the snapshot nature of the measurements and the barometric pumping phenomenon. The majority of agricultural and natural CH4 production occurs in areas with little infrastructure or easily available grid power (e.g., rice fields, arctic and boreal wetlands, tropical mangroves, etc.). A lightweight, high-speed, high-resolution, open-path technology was recently developed for eddy covariance measurements of CH4 flux, with power consumption 30-150 times below other available technologies. It was designed to run on solar panels or a small generator and be placed in the middle of the methane-producing ecosystem without a need for grid power. Lately, this instrumentation has been utilized increasingly more frequently outside of the traditional use on stationary flux towers. These novel approaches include measurements from various moving platforms, such as cars, aircraft, and ships. Projects included mapping of concentrations and vertical profiles, leak detection and quantification, mobile emission detection from natural gas-powered cars, soil CH4 flux surveys, etc. This presentation will describe key projects utilizing the novel lightweight low-power high-resolution open-path technology, and will highlight

  3. Measuring attitudes towards nuclear and technological risks (computer programs in SPSS language)

    International Nuclear Information System (INIS)

    Leonin, T.V. Jr.

    1981-04-01

    A number of methodologies have been developed for measuring public attitudes towards nuclear and other technological risks. The Fishbein model, as modified by the IAEA Risk Assessment group, and which was found to be applicable for Philippine public attitude measurements, is briefly explained together with two other models which are utilized for comparative correlations. A step by step guide on the procedures involved and the calculations required in measuring and analyzing attitude using these models is likewise described, with special emphasis on the computer processing aspect. The use of the Statistical Package for the Social Sciences (SPSS) in the analysis is also described and a number of computer programs in SPSS for the various statistical calculations required in the analysis is presented. (author)

  4. New developments in measurements technology relevant to the studies of deep geological repositories in bedded salt

    International Nuclear Information System (INIS)

    Mao, N.; Ramirez, A.L.

    1980-01-01

    This report presents new developments in measurement technology relevant to the studies of deep geological repositories for nuclear waste disposal during all phases of development, i.e., site selection, site characterization, construction, operation, and decommission. Emphasis has been placed on geophysics and geotechnics with special attention to those techniques applicable to bedded salt. The techniques are grouped into sections as follows: tectonic environment, state of stress, subsurface structures, fractures, stress changes, deformation, thermal properties, fluid transport properties, and other approaches. Several areas that merit further research and developments are identified. These areas are: in situ thermal measurement techniques, fracture detection and characterization, in situ stress measurements, and creep behavior. The available instrumentations should generally be improved to have better resolution and accuracy, enhanced instrument survivability, and reliability for extended time periods in a hostile environment

  5. Development of system technology for routine 10Be measurement in the JAEA-AMS-TONO

    International Nuclear Information System (INIS)

    Matsubara, Akihiro; Saito-Kokubu, Yoko; Ishimaru, Tsuneari; Nishizawa, A.; Miyake, M.

    2013-01-01

    We have completed the development of system technology for routine 10 Be measurement with the 5 MV Pelletron system in the Tono Geoscience Center of Japan Atomic Energy Agency (JAEA). The function of separating 10 Be and 10 B provided in the gas cell set in the front of an ionization chamber was experimentally confirmed through observation of variation of ΔE 1 -E Res spectrum with the gas pressure of the gas cell. The test measurement with beryllium samples of an ice core shows that measured 10 Be/ 9 Be ratios were consistent with the values obtained by the group of the Micro Analysis Laboratory, Tandem accelerator (MALT) in the University of Tokyo. (author)

  6. Results of the PEP`93 intercomparison of reference cell calibrations and newer technology performance measurements

    Energy Technology Data Exchange (ETDEWEB)

    Osterwald, C.R.; Emery, K. [National Renewable Energy Lab., Golden, CO (United States); Anevsky, S. [All-Union Research Inst. for Optophysical Measurements, Moscow (Russian Federation)] [and others

    1996-05-01

    This paper presents the results of an international intercomparison of photovoltaic (PV) performance measurements and calibrations. The intercomparison, which was organized and operated by a group of experts representing national laboratories from across the globe (i.e., the authors of this paper), was accomplished by circulating two sample sets. One set consisted of twenty silicon reference cells that would, hopefully, form the basis of an international PV reference scale. A qualification procedure applied to the calibration results gave average calibration numbers with an overall standard deviation of less than 2% for the entire set. The second set was assembled from a wide range of newer technologies that present unique problems for PV measurements. As might be expected, these results showed much larger differences among laboratories. Methods were then identified that should be used to measure such devices, along with problems to avoid.

  7. RFID technology for reading of electricity measurements; RFID-lukumoduli saehkoeenergiamittaustietojen luentaan

    Energy Technology Data Exchange (ETDEWEB)

    Vehvilaeinen, T [MX Electrix Oy, Paelkaene (Finland)

    2006-12-19

    In the project is developed a reading module for electricity energy meters. The module saves and transmits the meter's energy measurement and power quality data. The project is based on RFID technology, which is a new application in reading of electricity measurements. The reading module of the meter is read via the customers GSM-telephone, which has a RFID- interface. The reading data is transmitted automatically from the module to the GSM hone, when the customer visits the meter. The utility sends the reading request and needed identifier to the customers GSM. After the reading the measured data is transferred to the utility's data base automatically. The utility can send information to the customer of used energy, pricing, make offers etc. The customer can transfer the data to his/hers own computer or get the information via the internet. (orig.)

  8. Development of corrective measures technology for shallow land burial facilities at arid sites

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Abeele, W.V.; Perkins, B.A.; Lane, L.J.

    1984-01-01

    The field research program involving corrective measure technologies for arid shallow land burial (SLB) sites is described. Soil erosion and infiltration of water into a simulated trench cap with various surface treatments was measured and compared with similar data from agricultural systems across the United States. Field testing of biointrustion barriers at closed-out waste disposal sites at Los Alamos and in the experimental clusters are reported. The final results of an experiment designed to measure the extent of contaminant transport to the surface of a SLB facility, and the influence of plants on this relationship, are presented. An experiment designed to determine the effects of subsidence on the performance of a cobble-gravel biobarrier system is described and current field data are presented. 11 references, 11 figures, 5 tables

  9. Emulsion stability measurements by single electrode capacitance probe (SeCaP) technology

    International Nuclear Information System (INIS)

    Schüller, R B; Løkra, S; Egelandsdal, B; Salas-Bringas, C; Engebretsen, B

    2008-01-01

    This paper describes a new and novel method for the determination of the stability of emulsions. The method is based on the single electrode capacitance technology (SeCaP). A measuring system consisting of eight individual measuring cells, each with a volume of approximately 10 ml, is described in detail. The system has been tested on an emulsion system based on whey proteins (WPC80), oil and water. Xanthan was added to modify the emulsion stability. The results show that the new measuring system is able to quantify the stability of the emulsion in terms of a differential variable. The whole separation process is observed much faster in the SeCaP system than in a conventional separation column. The complete separation process observed visually over 30 h is seen in less than 1.4 h in the SeCaP system

  10. Measuring organizational effectiveness in information and communication technology companies using item response theory.

    Science.gov (United States)

    Trierweiller, Andréa Cristina; Peixe, Blênio César Severo; Tezza, Rafael; Pereira, Vera Lúcia Duarte do Valle; Pacheco, Waldemar; Bornia, Antonio Cezar; de Andrade, Dalton Francisco

    2012-01-01

    The aim of this paper is to measure the effectiveness of the organizations Information and Communication Technology (ICT) from the point of view of the manager, using Item Response Theory (IRT). There is a need to verify the effectiveness of these organizations which are normally associated to complex, dynamic, and competitive environments. In academic literature, there is disagreement surrounding the concept of organizational effectiveness and its measurement. A construct was elaborated based on dimensions of effectiveness towards the construction of the items of the questionnaire which submitted to specialists for evaluation. It demonstrated itself to be viable in measuring organizational effectiveness of ICT companies under the point of view of a manager through using Two-Parameter Logistic Model (2PLM) of the IRT. This modeling permits us to evaluate the quality and property of each item placed within a single scale: items and respondents, which is not possible when using other similar tools.

  11. New developments in measurements technology relevant to the studies of deep geological repositories in bedded salt

    Science.gov (United States)

    Mao, N. H.; Ramirez, A. L.

    1980-10-01

    Developments in measurement technology are presented which are relevant to the studies of deep geological repositories for nuclear waste disposal during all phases of development, i.e., site selection, site characterization, construction, operation, and decommission. Emphasis was placed on geophysics and geotechnics with special attention to those techniques applicable to bedded salt. The techniques are grouped into sections as follows: tectonic environment, state of stress, subsurface structures, fractures, stress changes, deformation, thermal properties, fluid transport properties, and other approaches. Several areas that merit further research and developments are identified. These areas are: in situ thermal measurement techniques, fracture detection and characterization, in situ stress measurements, and creep behavior. The available instrumentations should generally be improved to have better resolution and accuracy, enhanced instrument survivability, and reliability for extended time periods in a hostile environment.

  12. The ``Micro'' Aethalometer - an enabling technology for new applications in the measurement of Aerosol Black Carbon

    Science.gov (United States)

    Hansen, A. D.; Močnik, G.

    2010-12-01

    Aerosol Black Carbon (BC) is a tracer for combustion emissions; a primary indicator of adverse health effects; and the second leading contributor to Global Climate Change. The “Micro” Aethalometer is a recently-developed miniature instrument that makes a real-time measurement of BC on a very short timebase in a self-contained, battery-powered package that is lightweight and pocket sized. This technological development critically enables new areas of research: Measurements of the vertical profile of BC, by carrying the sampler aloft on a balloon (tethered or released) or aircraft (piloted or UAV); Estimates of the concentration of BC in the troposphere and lower stratosphere in the 8 - 12 km. altitude range, by measurements in the passenger cabin during commercial air travel; Epidemiological studies of personal exposure to BC, by carrying the sampler on a subject person in health studies; Measurements of the concentration of BC in rural and remote regions, by means of a small, battery-powered instrument that is convenient to deploy; measurements of high concentrations of “smoke” in indoor and outdoor environments in developing countries; Unobtrusive monitoring of BC infiltration into indoor environments, by means of a small, quiet instrument that can be placed in publicly-used spaces, school classrooms, museums, and other potentially-impacted locations; Adaptation of the technology to the direct source measurement of BC concentrations in emissions from diesel exhausts, combustion plumes, and other sources. We will show examples of data from various recent projects to illustrate the capabilities and applications of this new instrument.

  13. Political factors in the development and implementation of technology-based confidence-building measures

    International Nuclear Information System (INIS)

    Steinberg, G.M.

    1989-01-01

    The second half of the 20th century has been characterized by the continuous development and improvement of weapons of mass destruction, including strategic bombers, missiles, chemical and biological agents, and of course, a variety of nuclear weapons. In contrast to the massive change in military capabilities brought about by the rapid development of science and technology, international relations is still dominated by relations between sovereign nation states and characterized by distrust and narrow interests. At the same time that scientific developments created the foundation for the nuclear arms race, however the scientific and technical community has also sought some antidotes. Technology-based confidence building measures (TBCBMS), designed to reduce international conflict and to prevent nuclear war, have been proposed by scientists from the US and the USSR. These TBCBMS have taken a number of forms such as cooperative research and development programs, joint panels and meetings of professional societies, and specially dedicated international forums. These have provided a meeting ground for the exchange of views among scientists from many different countries. In addition, a number of more direct forms of TBCBMS, such as satellite-based observation systems and IAEA nuclear safeguards, have national technical means of verification. More recently, there have been a number of proposals to apply many of these technologies to verification of conventional force reduction, arms control, and other confidence-building measures in context of regional conflicts in the Third World. An International Satellite Monitoring Agency has bee proposed to develop space-based technologies such as observation satellites to increase stability and prevent the outbreak of accidental war in regional contexts such as the Middle East

  14. Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures

    Energy Technology Data Exchange (ETDEWEB)

    Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.; Rondorf, Neil, E.

    2009-12-10

    On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation from the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies, as summarized herein. The contract also required cooperation with the U.S. Coast Guard (USCG) and two recipients of awards (Pacific Energy Ventures and reVision) in a sub-topic area to develop a protocol to identify streamlined, best-siting practices. Over the period of this contract, PCCI and our sub-consultants, David Basco, Ph.D., and Neil Rondorf of Science Applications International Corporation, met with USCG headquarters personnel, with U.S. Army Corps of Engineers headquarters and regional personnel, with U.S. Navy regional personnel and other ocean users in order to develop an understanding of existing practices for the identification of navigational impacts that might occur during construction, operation, maintenance, and decommissioning. At these same meetings, “standard” and potential mitigation measures were discussed so that guidance could be prepared for project developers. Concurrently, PCCI reviewed navigation guidance published by the USCG and international community. This report summarizes the results of this effort, provides guidance in the form of a

  15. Development and validation of a highly sensitive gas chromatographic-mass spectrometric screening method for the simultaneous determination of nanogram levels of fentanyl, sufentanil and alfentanil in air and surface contamination wipes.

    Science.gov (United States)

    Van Nimmen, Nadine F J; Veulemans, Hendrik A F

    2004-05-07

    A highly sensitive gas chromatographic-mass spectrometric (GC-MS) analytical method for the determination of the opioid narcotics fentanyl, alfentanil, and sufentanil in industrial hygiene personal air samples and surface contamination wipes was developed and comprehensively validated. Sample preparation involved a single step extraction of the samples with methanol, fortified with a fixed amount of the penta-deuterated analogues of the opioid narcotics as internal standard. The GC-MS analytical procedure using selected ion monitoring (SIM) was shown to be highly selective. Linearity was shown for levels of extracted wipe and air samples corresponding to at least 0.1-2 times their surface contamination limit (SCL) and accordingly to 0.1-2 times their time weighted average occupational exposure limit (OEL-TWA) based on a full shift 9601 air sample. Extraction recoveries were determined for spiked air samples and surface wipes and were found to be quantitative for both sampling media in the entire range studied. The air sampling method's limit of detection (LOD) was determined to be 0.4 ng per sample for fentanyl and sufentanil and 1.6 ng per sample for alfentanil, corresponding to less than 1% of their individual OEL for a full shift air sample (9601). The limit of quantification (LOQ) was found to be 1.4, 1.2, and 5.0 ng per filter for fentanyl, sufentanil, and alfentanil, respectively. The wipe sampling method had LODs of 4 ng per wipe for fentanyl and sufentanil and 16 ng per wipe for alfentanil and LOQs of respectively, 14, 12, and 50 ng per wipe. The analytical intra-assay precision of the air sampling and wipe sampling method, defined as the coefficient of variation on the analytical result of six replicate spiked media was below 10 and 5%, respectively, for all opioids at all spike levels. Accuracy expressed as relative error was determined to be below 10%, except for alfentanil at the lowest spike level (-13.1%). The stability of the opioids during simulated

  16. Integration of technology-based outcome measures in clinical trials of Parkinson and other neurodegenerative diseases.

    Science.gov (United States)

    Artusi, Carlo Alberto; Mishra, Murli; Latimer, Patricia; Vizcarra, Joaquin A; Lopiano, Leonardo; Maetzler, Walter; Merola, Aristide; Espay, Alberto J

    2018-01-01

    We sought to review the landscape of past, present, and future use of technology-based outcome measures (TOMs) in clinical trials of neurodegenerative disorders. We systematically reviewed PubMed and ClinicalTrials.gov for published and ongoing clinical trials in neurodegenerative disorders employing TOMs. In addition, medical directors of selected pharmaceutical companies were surveyed on their companies' ongoing efforts and future plans to integrate TOMs in clinical trials as primary, secondary, or exploratory endpoints. We identified 164 published clinical trials indexed in PubMed that used TOMs as outcome measures in Parkinson disease (n = 132) or other neurodegenerative disorders (n = 32). The ClinicalTrials.gov search yielded 42 clinical trials using TOMs, representing 2.7% of ongoing trials. Sensor-based technology accounted for over 75% of TOMs applied. Gait and physical activity were the most common targeted domains. Within the next 5 years, 83% of surveyed pharmaceutical companies engaged in neurodegenerative disorders plan to deploy TOMs in clinical trials. Although promising, TOMs are underutilized in clinical trials of neurodegenerative disorders. Validating relevant endpoints, standardizing measures and procedures, establishing a single platform for integration of data and algorithms from different devices, and facilitating regulatory approvals should advance TOMs integration into clinical trials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. High-precision pose measurement method in wind tunnels based on laser-aided vision technology

    Directory of Open Access Journals (Sweden)

    Liu Wei

    2015-08-01

    Full Text Available The measurement of position and attitude parameters for the isolated target from a high-speed aircraft is a great challenge in the field of wind tunnel simulation technology. In this paper, firstly, an image acquisition method for small high-speed targets with multi-dimensional movement in wind tunnel environment is proposed based on laser-aided vision technology. Combining with the trajectory simulation of the isolated model, the reasonably distributed laser stripes and self-luminous markers are utilized to capture clear images of the object. Then, after image processing, feature extraction, stereo correspondence and reconstruction, three-dimensional information of laser stripes and self-luminous markers are calculated. Besides, a pose solution method based on projected laser stripes and self-luminous markers is proposed. Finally, simulation experiments on measuring the position and attitude of high-speed rolling targets are conducted, as well as accuracy verification experiments. Experimental results indicate that the proposed method is feasible and efficient for measuring the pose parameters of rolling targets in wind tunnels.

  18. The effect of split pixel HDR image sensor technology on MTF measurements

    Science.gov (United States)

    Deegan, Brian M.

    2014-03-01

    Split-pixel HDR sensor technology is particularly advantageous in automotive applications, because the images are captured simultaneously rather than sequentially, thereby reducing motion blur. However, split pixel technology introduces artifacts in MTF measurement. To achieve a HDR image, raw images are captured from both large and small sub-pixels, and combined to make the HDR output. In some cases, a large sub-pixel is used for long exposure captures, and a small sub-pixel for short exposures, to extend the dynamic range. The relative size of the photosensitive area of the pixel (fill factor) plays a very significant role in the output MTF measurement. Given an identical scene, the MTF will be significantly different, depending on whether you use the large or small sub-pixels i.e. a smaller fill factor (e.g. in the short exposure sub-pixel) will result in higher MTF scores, but significantly greater aliasing. Simulations of split-pixel sensors revealed that, when raw images from both sub-pixels are combined, there is a significant difference in rising edge (i.e. black-to-white transition) and falling edge (white-to-black) reproduction. Experimental results showed a difference of ~50% in measured MTF50 between the falling and rising edges of a slanted edge test chart.

  19. Measurement of the Dynamic Displacements of Railway Bridges Using Video Technology

    Directory of Open Access Journals (Sweden)

    Ribeiro Diogo

    2015-01-01

    Full Text Available This article describes the development of a non-contact dynamic displacement measurement system for railway bridges based on video technology. The system, consisting of a high speed video camera, an optical lens, lighting lamps and a precision target, can perform measurements with high precision for distances from the camera to the target up to 25 m, with acquisition frame rates ranging from 64 fps to 500 fps, and be articulated with other measurement systems, which promotes its integration in structural health monitoring systems. The system’s performance was evaluated based on two tests, one in the laboratory and other on the field. The laboratory test evaluated the performance of the system in measuring the displacement of a steel beam, subjected to a point load applied dynamically, for distances from the camera to the target between 3 m and 15 m. The field test allowed evaluating the system’s performance in the dynamic measurement of the displacement of a point on the deck of a railway bridge, induced by passing trains at speeds between 160 km/h and 180 km/h, for distances from the camera to the target up to 25 m. The results of both tests show a very good agreement between the displacement measurement obtained with the video system and with a LVDT.

  20. Technology transfer from biomedical research to clinical practice: measuring innovation performance.

    Science.gov (United States)

    Balas, E Andrew; Elkin, Peter L

    2013-12-01

    Studies documented 17 years of transfer time from clinical trials to practice of care. Launched in 2002, the National Institutes of Health (NIH) translational research initiative needs to develop metrics for impact assessment. A recent White House report highlighted that research and development productivity is declining as a result of increased research spending while the new drugs output is flat. The goal of this study was to develop an expanded model of research-based innovation and performance thresholds of transfer from research to practice. Models for transfer of research to practice have been collected and reviewed. Subsequently, innovation pathways have been specified based on common characteristics. An integrated, intellectual property transfer model is described. The central but often disregarded role of research innovation disclosure is highlighted. Measures of research transfer and milestones of progress have been identified based on the Association of University Technology Managers 2012 performance reports. Numeric milestones of technology transfer are recommended at threshold (top 50%), target (top 25%), and stretch goal (top 10%) performance levels. Transfer measures and corresponding target levels include research spending to disclosure (0.81), patents to start-up (>0.1), patents to licenses (>2.25), and average per license income (>$48,000). Several limitations of measurement are described. Academic institutions should take strategic steps to bring innovation to the center of scholarly discussions. Research on research, particularly on pathways to disclosures, is needed to improve R&D productivity. Researchers should be informed about the technology transfer performance of their institution and regulations should better support innovators.

  1. DEVELOPMENT OF INFORMATION-MEASURING SYSTEM OF DIAGNOSTICS OF ONCOLOGICAL DISEASES WITH APPLICATION OF TECHNOLOGIES OF MACHINE TRAINING

    Directory of Open Access Journals (Sweden)

    Vsevolod Novikov

    2017-12-01

    Full Text Available The purpose of the work is to create an information and measurement system of cancer with the use of machine learning technology. In this work, the object of research is the information and measuring system for diagnosing cancer, and the subject of the study is the machine learning technology based on Microsoft Azure. They are based on methods of empirical level such as: calculations, measurements, comparisons. Experimental-theoretical level methods: experiment, analysis and modeling.

  2. Fiscal 1999 technological survey report. Part 2. Applied technology for measuring human sense (Human sense measuring manual - basic technology for sense evaluation); Ningen kankaku keisoku manual. 2. Kankaku hyoka kiban gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    A method of measuring/evaluating a mental and physical state by means of physiological information developed by a project was compiled into a 'guide book', as was a method of evaluating adaptability to the environment or products; and, this manual was prepared for the purpose of improving the adaptability of human beings to products by making use of the guide book widely in the field of industrial manufacturing. The part 2 explains a hard measuring instrument, evaluation device, simulation system, method of data analysis, etc., as 'basic technology for sense evaluation'. The chapter 1 is a new measuring and evaluation device (device for measuring physiological signals on the surface of the body, device for measuring visual characteristics, measuring device of in vivo substance, measuring device of thermal response, and system for evaluating adaptability of practical form), the chapter 2 is a new simulator (model of human body temperature with clothes on, human comfort meter, perspiring thermal manikin, and autonomic nerve control model in cardiac blood vessel/respiratory system), and the chapter 3 is new experimental/analytical method (new data analysis method and subjective evaluation questionnaire for stress assessment). (NEDO)

  3. Optical waveguiding and applied photonics technological aspects, experimental issue approaches and measurements

    CERN Document Server

    Massaro, Alessandro

    2012-01-01

    Optoelectronics--technology based on applications light such as micro/nano quantum electronics, photonic devices, laser for measurements and detection--has become an important field of research. Many applications and physical problems concerning optoelectronics are analyzed in Optical Waveguiding and Applied Photonics.The book is organized in order to explain how to implement innovative sensors starting from basic physical principles. Applications such as cavity resonance, filtering, tactile sensors, robotic sensor, oil spill detection, small antennas and experimental setups using lasers are a

  4. Measuring and improving patient safety through health information technology: The Health IT Safety Framework.

    Science.gov (United States)

    Singh, Hardeep; Sittig, Dean F

    2016-04-01

    Health information technology (health IT) has potential to improve patient safety but its implementation and use has led to unintended consequences and new safety concerns. A key challenge to improving safety in health IT-enabled healthcare systems is to develop valid, feasible strategies to measure safety concerns at the intersection of health IT and patient safety. In response to the fundamental conceptual and methodological gaps related to both defining and measuring health IT-related patient safety, we propose a new framework, the Health IT Safety (HITS) measurement framework, to provide a conceptual foundation for health IT-related patient safety measurement, monitoring, and improvement. The HITS framework follows both Continuous Quality Improvement (CQI) and sociotechnical approaches and calls for new measures and measurement activities to address safety concerns in three related domains: 1) concerns that are unique and specific to technology (e.g., to address unsafe health IT related to unavailable or malfunctioning hardware or software); 2) concerns created by the failure to use health IT appropriately or by misuse of health IT (e.g. to reduce nuisance alerts in the electronic health record (EHR)), and 3) the use of health IT to monitor risks, health care processes and outcomes and identify potential safety concerns before they can harm patients (e.g. use EHR-based algorithms to identify patients at risk for medication errors or care delays). The framework proposes to integrate both retrospective and prospective measurement of HIT safety with an organization's existing clinical risk management and safety programs. It aims to facilitate organizational learning, comprehensive 360 degree assessment of HIT safety that includes vendor involvement, refinement of measurement tools and strategies, and shared responsibility to identify problems and implement solutions. A long term framework goal is to enable rigorous measurement that helps achieve the safety

  5. Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Musial, W.; Lawson, M.; Rooney, S.

    2013-02-01

    The Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop was hosted by the National Renewable Energy Laboratory (NREL) in Broomfield, Colorado, July 9-10, 2012. The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy community and collect information to help identify ways in which the development of a commercially viable marine energy industry can be accelerated. The workshop was comprised of plenary sessions that reviewed the state of the marine energy industry and technical sessions that covered specific topics of relevance. Each session consisted of presentations, followed by facilitated discussions. During the facilitated discussions, the session chairs posed several prepared questions to the presenters and audience to encourage communication and the exchange of ideas between technical experts. Following the workshop, attendees were asked to provide written feedback on their takeaways and their best ideas on how to accelerate the pace of marine energy technology development. The first four sections of this document give a general overview of the workshop format, provide presentation abstracts and discussion session notes, and list responses to the post-workshop questions. The final section presents key findings and conclusions from the workshop that suggest how the U.S. Department of Energy and national laboratory resources can be utilized to most effectively assist the marine energy industry.

  6. Requirements and Technology Advances for Global Wind Measurement with a Coherent Lidar: A Shrinking Gap

    Science.gov (United States)

    Kavaya, Michael J.; Kavaya, Michael J.; Yu, Jirong; Koch, Grady J.; Amzajerdian, Farzin; Singh, Upendra N.; Emmitt, G. David

    2007-01-01

    Early concepts to globally measure vertical profiles of vector horizontal wind from space planned on an orbit height of 525 km, a single pulsed coherent Doppler lidar system to cover the full troposphere, and a continuously rotating telescope/scanner that mandated a vertical line of sight wind profile from each laser shot. Under these conditions system studies found that laser pulse energies of approximately 20 J at 10 Hz pulse repetition rate with a rotating telescope diameter of approximately 1.5 m was required. Further requirements to use solid state laser technology and an eyesafe wavelength led to the relatively new 2-micron solid state laser. With demonstrated pulse energies near 20 mJ at 5 Hz, and no demonstration of a rotating telescope maintaining diffraction limited performance in space, the technology gap between requirements and demonstration was formidable. Fortunately the involved scientists and engineers set out to reduce the gap, and through a combination of clever ideas and technology advances over the last 15 years, they have succeeded. This paper will detail the gap reducing factors and will present the current status.

  7. EDITORIAL: Announcing the 2008 Measurement Science and Technology Outstanding Paper Awards Announcing the 2008 Measurement Science and Technology Outstanding Paper Awards

    Science.gov (United States)

    Foss, John; Dewhurst, Richard; Fujii, Kenichi; Regtien, Paul

    2009-05-01

    From 1991 to 2004, Measurement Science and Technology had awarded a Best Paper prize. The Editorial Board of this journal believed that such a prize was an opportunity to thank authors for submitting their work, and that it served as an integral part of the on-going quality review of the journal. The current breadth of topical areas that are covered by MST has made it advisable to expand the recognition of excellent publications. Hence, since 2005 the Editorial Board Members have presented 'Outstanding Paper Awards' in four subject categories: Measurement Science; Fluid Mechanics; Precision Measurements; and Sensors and Sensing Systems. 2008 Award Winners—Measurement Science Noise level estimation in weakly nonlinear slowly time-varying systems J R M Aerts, J Lataire, R Pintelon and J J J Dirckx Laboratory of Biomedical Physics, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerp, Belgium and Department of Fundamental Electricity and Instrumentation (ELEC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium This paper [1] examines new methods to perform noise estimation in weakly nonlinear time-varying systems. In a clear presentation that describes the problem, the paper concentrates on weakly nonlinear phenomena in the acoustic regime. However, both the concepts and theory developed have wide applicability in other fields within measurement science wherever there is a time-varying nonlinear response. The theory uses two methods to estimate noise. The first is called the background frequency method, and the second is a periodic difference method. Both methods have their advantages, and disadvantages, which the authors highlight in a balanced account. They also spend some effort in validating the two approaches. Just as importantly, applications of the theory are presented as two experimental case histories. The first is a study of a vibrating membrane from a high quality microphone. This is an example of a time-invariant system, and the

  8. Comprehensive Study of Human External Exposure to Organophosphate Flame Retardants via Air, Dust, and Hand Wipes: The Importance of Sampling and Assessment Strategy.

    Science.gov (United States)

    Xu, Fuchao; Giovanoulis, Georgios; van Waes, Sofie; Padilla-Sanchez, Juan Antonio; Papadopoulou, Eleni; Magnér, Jorgen; Haug, Line Småstuen; Neels, Hugo; Covaci, Adrian

    2016-07-19

    We compared the human exposure to organophosphate flame retardants (PFRs) via inhalation, dust ingestion, and dermal absorption using different sampling and assessment strategies. Air (indoor stationary air and personal ambient air), dust (floor dust and surface dust), and hand wipes were sampled from 61 participants and their houses. We found that stationary air contains higher levels of ΣPFRs (median = 163 ng/m(3), IQR = 161 ng/m(3)) than personal air (median = 44 ng/m(3), IQR = 55 ng/m(3)), suggesting that the stationary air sample could generate a larger bias for inhalation exposure assessment. Tris(chloropropyl) phosphate isomers (ΣTCPP) accounted for over 80% of ΣPFRs in both stationary and personal air. PFRs were frequently detected in both surface dust (ΣPFRs median = 33 100 ng/g, IQR = 62 300 ng/g) and floor dust (ΣPFRs median = 20 500 ng/g, IQR = 30 300 ng/g). Tris(2-butoxylethyl) phosphate (TBOEP) accounted for 40% and 60% of ΣPFRs in surface and floor dust, respectively, followed by ΣTCPP (30% and 20%, respectively). TBOEP (median = 46 ng, IQR = 69 ng) and ΣTCPP (median = 37 ng, IQR = 49 ng) were also frequently detected in hand wipe samples. For the first time, a comprehensive assessment of human exposure to PFRs via inhalation, dust ingestion, and dermal absorption was conducted with individual personal data rather than reference factors of the general population. Inhalation seems to be the major exposure pathway for ΣTCPP and tris(2-chloroethyl) phosphate (TCEP), while participants had higher exposure to TBOEP and triphenyl phosphate (TPHP) via dust ingestion. Estimated exposure to ΣPFRs was the highest with stationary air inhalation (median =34 ng·kg bw(-1)·day(-1), IQR = 38 ng·kg bw(-1)·day(-1)), followed by surface dust ingestion (median = 13 ng·kg bw(-1)·day(-1), IQR = 28 ng·kg bw(-1)·day(-1)), floor dust ingestion and personal air inhalation. The median dermal exposure on hand wipes was 0.32 ng·kg bw(-1)·day(-1) (IQR

  9. Validating a measure to assess factors that affect assistive technology use by students with disabilities in elementary and secondary education.

    Science.gov (United States)

    Zapf, Susan A; Scherer, Marcia J; Baxter, Mary F; H Rintala, Diana

    2016-01-01

    The purpose of this study was to measure the predictive validity, internal consistency and clinical utility of the Matching Assistive Technology to Child & Augmentative Communication Evaluation Simplified (MATCH-ACES) assessment. Twenty-three assistive technology team evaluators assessed 35 children using the MATCH-ACES assessment. This quasi-experimental study examined the internal consistency, predictive validity and clinical utility of the MATCH-ACES assessment. The MATCH-ACES assessment predisposition scales had good internal consistency across all three scales. A significant relationship was found between (a) high student perseverance and need for assistive technology and (b) high teacher comfort and interest in technology use (p = (0).002). Study results indicate that the MATCH-ACES assessment has good internal consistency and validity. Predisposition characteristics of student and teacher combined can influence the level of assistive technology use; therefore, assistive technology teams should assess predisposition factors of the user when recommending assistive technology. Implications for Rehabilitation Educational and medical professionals should be educated on evidence-based assistive technology assessments. Personal experience and psychosocial factors can influence the outcome use of assistive technology. Assistive technology assessments must include an intervention plan for assistive technology service delivery to measure effective outcome use.

  10. The Role of Condition-Specific Preference-Based Measures in Health Technology Assessment.

    Science.gov (United States)

    Rowen, Donna; Brazier, John; Ara, Roberta; Azzabi Zouraq, Ismail

    2017-12-01

    A condition-specific preference-based measure (CSPBM) is a measure of health-related quality of life (HRQOL) that is specific to a certain condition or disease and that can be used to obtain the quality adjustment weight of the quality-adjusted life-year (QALY) for use in economic models. This article provides an overview of the role and the development of CSPBMs, and presents a description of existing CSPBMs in the literature. The article also provides an overview of the psychometric properties of CSPBMs in comparison with generic preference-based measures (generic PBMs), and considers the advantages and disadvantages of CSPBMs in comparison with generic PBMs. CSPBMs typically include dimensions that are important for that condition but may not be important across all patient groups. There are a large number of CSPBMs across a wide range of conditions, and these vary from covering a wide range of dimensions to more symptomatic or uni-dimensional measures. Psychometric evidence is limited but suggests that CSPBMs offer an advantage in more accurate measurement of milder health states. The mean change and standard deviation can differ for CSPBMs and generic PBMs, and this may impact on incremental cost-effectiveness ratios. CSPBMs have a useful role in HTA where a generic PBM is not appropriate, sensitive or responsive. However, due to issues of comparability across different patient groups and interventions, their usage in health technology assessment is often limited to conditions where it is inappropriate to use a generic PBM or sensitivity analyses.

  11. 3D Measurement Technology by Structured Light Using Stripe-Edge-Based Gray Code

    International Nuclear Information System (INIS)

    Wu, H B; Chen, Y; Wu, M Y; Guan, C R; Yu, X Y

    2006-01-01

    The key problem of 3D vision measurement using triangle method based on structured light is to acquiring projecting angle of projecting light accurately. In order to acquire projecting angle thereby determine the corresponding relationship between sampling point and image point, method for encoding and decoding structured light based on stripe edge of Gray code is presented. The method encoded with Gray code stripe and decoded with stripe edge acquired by sub-pixel technology instead of pixel centre, so latter one-bit decoding error was removed. Accuracy of image sampling point location and correspondence between image sampling point and object sampling point achieved sub-pixel degree. In addition, measurement error caused by dividing projecting angle irregularly by even-width encoding stripe was analysed and corrected. Encoding and decoding principle and decoding equations were described. Finally, 3dsmax and Matlab software were used to simulate measurement system and reconstruct measured surface. Indicated by experimental results, measurement error is about 0.05%

  12. Using the coolant temperature noise for measuring the flow rate in the RBMK technological channels

    International Nuclear Information System (INIS)

    Selivanov, V.M.; Karlov, N.P.; Martynov, A.D.; Prostyakov, V.V.; Lysikov, B.V.; Kuznetsov, B.A.; Pallagi, D.; Khorani, Sh.; Khargitai, T.; Tezher, Sh.

    1983-01-01

    The problems are considered connected with the possibility of using thermometric correlation method to measure the coolant flow rate in the RBMK reactor technological channels. The main attention is paid to the study of the physical nature of the coolant temperature pulsations and to estimation of the effect of parameters of the primary thermaelectrical converter (TEC) on the results of measurements. In the process of reactor inspections made using the thermometric correlation flowmeter of a special design, the temperature noise distribution in the points of flow rate measurement is studied, the noise intensity and physical nature are determined, as well as the effect of different TEC parameters (TEC inertia and base distance between them) on the measurement accuracy. On the basis of the analysis of the effect on the results of the TEC thermal inertia measured value divergence, tausub(α) and transport time, tau sub(T), a conclusion is made on the necessity of choosing the base distance between TEC with tausub(T)>tausub(d)

  13. A measurement method for micro 3D shape based on grids-processing and stereovision technology

    International Nuclear Information System (INIS)

    Li, Chuanwei; Xie, Huimin; Liu, Zhanwei

    2013-01-01

    An integrated measurement method for micro 3D surface shape by a combination of stereovision technology in a scanning electron microscope (SEM) and grids-processing methodology is proposed. The principle of the proposed method is introduced in detail. By capturing two images of the tested specimen with grids on the surface at different tilt angles in an SEM, the 3D surface shape of the specimen can be obtained. Numerical simulation is applied to analyze the feasibility of the proposed method. A validation experiment is performed here. The surface shape of the metal-wire/polymer-membrane structures with thermal deformation is reconstructed. By processing the surface grids of the specimen, the out-of-plane displacement field of the specimen surface is also obtained. Compared with the measurement results obtained by a 3D digital microscope, the experimental error of the proposed method is discussed (paper)

  14. Evaluation of a novel ultra small target technology supporting on-product overlay measurements

    Science.gov (United States)

    Smilde, Henk-Jan H.; den Boef, Arie; Kubis, Michael; Jak, Martin; van Schijndel, Mark; Fuchs, Andreas; van der Schaar, Maurits; Meyer, Steffen; Morgan, Stephen; Wu, Jon; Tsai, Vincent; Wang, Cathy; Bhattacharyya, Kaustuve; Chen, Kai-Hsiung; Huang, Guo-Tsai; Ke, Chih-Ming; Huang, Jacky

    2012-03-01

    Reducing the size of metrology targets is essential for in-die overlay metrology in advanced semiconductor manufacturing. In this paper, μ-diffraction-based overlay (μDBO) measurements with a YieldStar metrology tool are presented for target-sizes down to 10 × 10 μm2. The μDBO technology enables selection of only the diffraction efficiency information from the grating by efficiently separating it from product structure reflections. Therefore, μDBO targets -even when located adjacent to product environment- give excellent correlation with 40 × 160 μm2 reference targets. Although significantly smaller than standard scribe-line targets, they can achieve total-measurement-uncertainty values of below 0.5 nm on a wide range of product layers. This shows that the new μDBO technique allows for accurate metrology on ultra small in-die targets, while retaining the excellent TMU performance of diffraction-based overlay metrology.

  15. Application of smart transmitter technology in nuclear engineering measurements with level detection algorithm

    International Nuclear Information System (INIS)

    Kang, Hyun Gook; Seong, Poong Hyun

    1994-01-01

    In this study a programmable smart transmitter is designed and applied to the nuclear engineering measurements. In order to apply the smart transmitter technology to nuclear engineering measurements, the water level detection function is developed and applied in this work. In the real time system, the application of level detection algorithm can make the operator of the nuclear power plant sense the water level more rapidly. Furthermore this work can simplify the data communication between the level-sensing thermocouples and the main signal processor because the level signal is determined at field. The water level detection function reduces the detection time to about 8.3 seconds by processing the signal which has the time constant 250 seconds and the heavy noise signal

  16. Development of neutron fluence measurement and evaluation technology for the test materials in the capsule

    Energy Technology Data Exchange (ETDEWEB)

    Hong, U.; Choi, S. H.; Kang, H. D. [Kyungsan University, Kyungsan (Korea)

    2000-03-01

    The four kinds of the fluence monitor considered by self-shielding are design and fabricated for evaluation of neutron irradiation fluence. They are equipped with dosimeters consisting of Ni, Fe and Ti wires and so forth. The nuclear reaction rate is obtained by measurement on dosimeter using the spectroscopic analysis of induced {gamma}-ray. We established the nuetron fluence evaluating technology that is based on the measurement of the reaction rate considering reactor's irradiation history, burn-out, self-shielding in fluence monitor, and the influence of impurity in dosimeter. The distribution of high energy neutron flux on the vertical axis of the capsule shows fifth order polynomial equation and is good agree with theoretical value in the error range of 30% by MCNP/4A code. 22 refs., 50 figs., 27 tabs. (Author)

  17. Implantable optogenetic device with CMOS IC technology for simultaneous optical measurement and stimulation

    Science.gov (United States)

    Haruta, Makito; Kamiyama, Naoya; Nakajima, Shun; Motoyama, Mayumi; Kawahara, Mamiko; Ohta, Yasumi; Yamasaki, Atsushi; Takehara, Hiroaki; Noda, Toshihiko; Sasagawa, Kiyotaka; Ishikawa, Yasuyuki; Tokuda, Takashi; Hashimoto, Hitoshi; Ohta, Jun

    2017-05-01

    In this study, we have developed an implantable optogenetic device that can measure and stimulate neurons by an optical method based on CMOS IC technology. The device consist of a blue LED array for optically patterned stimulation, a CMOS image sensor for acquiring brain surface image, and eight green LEDs surrounding the CMOS image sensor for illumination. The blue LED array is placed on the CMOS image sensor. We implanted the device in the brain of a genetically modified mouse and successfully demonstrated the stimulation of neurons optically and simultaneously acquire intrinsic optical images of the brain surface using the image sensor. The integrated device can be used for simultaneously measuring and controlling neuronal activities in a living animal, which is important for the artificial control of brain functions.

  18. Nuclear Measurement Technologies and Solutions Implemented during Nuclear Accident at Fukushima

    International Nuclear Information System (INIS)

    Morichi, M.; Toubon, H.; Bronson, Frazier; Venkataraman, Ram; Beaujoin, J.; Dubart, P.

    2013-06-01

    Fukushima accident imposed a stretch to nuclear measurement operational approach requiring in such emergency situation: fast concept development, fast system integration, deployment and start-up in a very short time frame. This paper is describing the Nuclear Measurement that AREVA-BUNM (CANBERRA) has realized and foresight at Fukushima accident site describing the technical solution conceived developed and deployed at Fukushima NPP for the process control of the treatment system of contaminated water. A detailed description of all levels design choices, from detection technologies to system architecture is offer in the paper as well as the read-out and global data management system. This paper describes also the technical choices executed and put in place to overcome the challenges related to the high radiological contamination on site. (authors)

  19. EDITORIAL: Announcing the 2005 Measurement Science and Technology Outstanding Paper Awards

    Science.gov (United States)

    Foss, John; Dewhurst, Richard; Fujii, Kenichi; Regtien, Paul

    2006-06-01

    Since 1991, Measurement Science and Technology has awarded a Best Paper prize. The Editorial Board of this journal believes that such a prize is an opportunity to thank authors for submitting their work, and serves as an integral part of the on-going quality review of the journal. The current breadth of topical areas that are covered by MST has made it advisable to expand the recognition of excellent publications. Hence, in 2005 the Editorial Board decided to present 'Outstanding Paper Awards' in four subject categories: Fluid Mechanics; Measurement Science; Precision Measurements; and Sensors and Sensing Systems. 2005 Award Winners—Fluid Mechanics The Fluid Mechanics working group, chaired by Professor John Foss, was unanimous in its recommendation for the paper authored by J Chen and J Katz (Johns Hopkins University, USA) 'Elimination of peak-locking error in PIV analysis using the correlation mapping method', published in volume 16, issue 8, pp 1605 1618. The essence of the following citation was provided by Board Member Dr Mark Wernet: The paper of Chen and Katz describes a technique for eliminating the 'peak locking' bias error endemic to estimating the PIV correlation peak location. Particle image velocimetry (PIV) is used widely in both fundamental and applied fluid mechanics. In essence, a two-dimensional velocity map is extracted from two successive high-resolution images of light scattered by minute tracer particles. The incident light is derived from two laser beams which have been expanded into sheets. A precise time delay is imposed between the two laser light sheets. The cross-correlation of the scattered light intensity within corresponding small interrogation regions in the two images gives the displacement of the particles and hence the local velocity. Typically, in PIV processing, the correlation peak location is determined by fitting a curve through the correlation peak. This process is known to suffer from a bias error where the estimated

  20. A Measurement Management Technology for Improving Energy Efficiency in Data Centers and Telecommunication Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Hendrik Hamann, Levente Klein

    2012-06-28

    Data center (DC) electricity use is increasing at an annual rate of over 20% and presents a concern for the Information Technology (IT) industry, governments, and the society. A large fraction of the energy use is consumed by the compressor cooling to maintain the recommended operating conditions for IT equipment. The most common way to improve the DC efficiency is achieved by optimally provisioning the cooling power to match the global heat dissipation in the DC. However, at a more granular level, the large range of heat densities of today's IT equipment makes the task of provisioning cooling power optimized to the level of individual computer room air conditioning (CRAC) units much more challenging. Distributed sensing within a DC enables the development of new strategies to improve energy efficiency, such as hot spot elimination through targeted cooling, matching power consumption at rack level with workload schedule, and minimizing power losses. The scope of Measurement and Management Technologies (MMT) is to develop a software tool and the underlying sensing technology to provide critical decision support and control for DC and telecommunication facilities (TF) operations. A key aspect of MMT technology is integration of modeling tools to understand how changes in one operational parameter affect the overall DC response. It is demonstrated that reduced ordered models for DC can generate, in less than 2 seconds computational time, a three dimensional thermal model in a 50 kft{sup 2} DC. This rapid modeling enables real time visualization of the DC conditions and enables 'what if' scenarios simulations to characterize response to 'disturbances'. One such example is thermal zone modeling that matches the cooling power to the heat generated at a local level by identifying DC zones cooled by a specific CRAC. Turning off a CRAC unit can be simulated to understand how the other CRAC utilization changes and how server temperature responds

  1. Development programs of cutting-edge technologies for measurement and detection of nuclear material for safeguards and security

    International Nuclear Information System (INIS)

    Seya, Michio; Wakabayashi, Shuji; Naoi, Yosuke; Ohkubo, Michiaki; Senzaki, Masao

    2011-01-01

    The Integrated Support Center for Nuclear Nonproliferation and Nuclear Security ('ISCN', hereafter) of Japan Atomic Energy Agency (JAEA) has development programs of cutting-edge technologies for measurement and detection of nuclear materials for nuclear safeguards and security, under the sponsorship of Japanese government (MEXT: Ministry of Education, Culture, Sports, Science and Technology). ISCN started development programs of the following technologies this year. (1) NRF (Nuclear Resonance Fluorescence) NDA technology using laser Compton scattering (LCS) gamma-rays, (2) Alternative to 3 He neutron detection technology using inorganic solid scintillator. ISCN is also going to conduct a demonstration test of a spent fuel Pu-NDA system that is to be developed by LANL (Los Alamos National Laboratory) using very sophisticated neutron measurement technologies, under JAEA/USDOE cooperation agreement. This presentation shows the above programs of ISCN. (author)

  2. Measuring advertising effectiveness in Travel 2.0 websites through eye-tracking technology.

    Science.gov (United States)

    Muñoz-Leiva, Francisco; Hernández-Méndez, Janet; Gómez-Carmona, Diego

    2018-03-06

    The advent of Web 2.0 is changing tourists' behaviors, prompting them to take on a more active role in preparing their travel plans. It is also leading tourism companies to have to adapt their marketing strategies to different online social media. The present study analyzes advertising effectiveness in social media in terms of customers' visual attention and self-reported memory (recall). Data were collected through a within-subjects and between-groups design based on eye-tracking technology, followed by a self-administered questionnaire. Participants were instructed to visit three Travel 2.0 websites (T2W), including a hotel's blog, social network profile (Facebook), and virtual community profile (Tripadvisor). Overall, the results revealed greater advertising effectiveness in the case of the hotel social network; and visual attention measures based on eye-tracking data differed from measures of self-reported recall. Visual attention to the ad banner was paid at a low level of awareness, which explains why the associations with the ad did not activate its subsequent recall. The paper offers a pioneering attempt in the application of eye-tracking technology, and examines the possible impact of visual marketing stimuli on user T2W-related behavior. The practical implications identified in this research, along with its limitations and future research opportunities, are of interest both for further theoretical development and practical application. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Development of corrective measures and site stabilization technologies for shallow land burial facilities at semiarid sites

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Abeele, W.V.

    1986-01-01

    The overall purpose of the corrective measures task performed for the National Low-Level Waste Management Program has been to develop and test methods that can be used to correct any actual or anticipated problems with new and existing shallow land burial (SLB) sites in a semiarid environment. These field tests have not only evaluated remedial actions, but have also investigated phenomena suspected of being a possible problem at semiarid SLB sites. The approach we have taken in developing remedial action and site closure technologies for low-level waste sites is to recognize that physical and biological processes affecting site integrity are interdependent, and therefore, cannot be treated as separate problems. The field experiments performed for this task were to identify, evaluate, and model erosion control technologies, field test second generation biointrusion barriers, determine by field experiments the extent of upward radionuclide migration due to moisture cycling, and measure the effects of subsidence on remedial action of other system components. Progress made in each of these research areas is described

  4. Measuring and influencing physical activity with smartphone technology: a systematic review.

    Science.gov (United States)

    Bort-Roig, Judit; Gilson, Nicholas D; Puig-Ribera, Anna; Contreras, Ruth S; Trost, Stewart G

    2014-05-01

    Rapid developments in technology have encouraged the use of smartphones in physical activity research, although little is known regarding their effectiveness as measurement and intervention tools. This study systematically reviewed evidence on smartphones and their viability for measuring and influencing physical activity. Research articles were identified in September 2013 by literature searches in Web of Knowledge, PubMed, PsycINFO, EBSCO, and ScienceDirect. The search was restricted using the terms (physical activity OR exercise OR fitness) AND (smartphone* OR mobile phone* OR cell phone*) AND (measurement OR intervention). Reviewed articles were required to be published in international academic peer-reviewed journals, or in full text from international scientific conferences, and focused on measuring physical activity through smartphone processing data and influencing people to be more active through smartphone applications. Two reviewers independently performed the selection of articles and examined titles and abstracts to exclude those out of scope. Data on study characteristics, technologies used to objectively measure physical activity, strategies applied to influence activity; and the main study findings were extracted and reported. A total of 26 articles (with the first published in 2007) met inclusion criteria. All studies were conducted in highly economically advantaged countries; 12 articles focused on special populations (e.g. obese patients). Studies measured physical activity using native mobile features, and/or an external device linked to an application. Measurement accuracy ranged from 52 to 100% (n = 10 studies). A total of 17 articles implemented and evaluated an intervention. Smartphone strategies to influence physical activity tended to be ad hoc, rather than theory-based approaches; physical activity profiles, goal setting, real-time feedback, social support networking, and online expert consultation were identified as the most useful

  5. Design of Stress-Strain Measuring System for Bulldozing Plate Based on Virtual Instrument Technology

    International Nuclear Information System (INIS)

    Xu, S C; Li, J Q; Zhang, R

    2006-01-01

    Soil is a kind of discrete, multiphase compound that is composed of soil particles, liquid and air. When soil is disturbed by bulldozing plate, the mechanical behavior of the soil will become very complex. Based on the law of action and reaction, the dynamic mechanical behavior of disturbed soil was indirectly analyzed by measuring and studying the forces on the bulldozing plate by soil currently, so a stress-strain virtual measuring system for bulldozing plate, which was designed by the graphical programming language DASYLab, was used to measure the horizontal force Fz acting on the bulldozing plate. In addition, during the course of design, the experimental complexities and the interferential factors influencing on signal logging were analyzed when bulldozing plate worked, so the anti-jamming methods of hardware and software technology were adopted correlatively. In the end, the horizontal force Fz was analyzed with Error Theory, the result shown that the quantificational analysis of Fz were identical to the qualitative results of soil well, and the error of the whole test system is under 5 percent, so the tress-strain virtual measuring system was stable and credible

  6. New technologies for acceleration and vibration measurements inside operating nuclear power reactors

    International Nuclear Information System (INIS)

    Runkel, J.; Stegemann, D.; Fiedler, J.; Heidemann, P.; Blaser, R.; Schmid, F.; Trobitz, M.; Hirsch, L.; Thoma, K.

    2000-01-01

    A miniature bi-axial in-core accelerometer has been inserted temporarily inside the travelling in-core probe (TIP) systems of operating 1300 MW el boiling water reactors (BWR) during full power operation. In-core acceleration measurements can be performed in any position of the TIP system. This provides new features of control technologies to preserve the integrity of reactor internals. The radial and axial position where fretting or impacting of instrumentation string tubes or other structures might occur can be localised inside the reactor pressure vessel. The efficiency and long-term performance of subsequent improvements of the mechanical or operating conditions can be controlled with high local resolution and sensitivity. Low frequency vibrations of the instrumentation tubes were measured inside the core. Neutron-mechanical scale factors were determined from neutron noise, measured by the standard in-core neutron instrumentation and from displacements of the TIP tubes, calculated by integration of the measured in-core acceleration signals. The scale factors contribute to qualitative and quantitative monitoring of BWR internals' vibrations only by the use of neutron signals. (authors)

  7. Space Technology 5 Multi-point Measurements of Near-Earth Magnetic Fields: Initial Results

    Science.gov (United States)

    Slavin, James A.; Le, G.; Strangeway, R. L.; Wang, Y.; Boardsen, S.A.; Moldwin, M. B.; Spence, H. E.

    2007-01-01

    The Space Technology 5 (ST-5) mission successfully placed three micro-satellites in a 300 x 4500 km dawn-dusk orbit on 22 March 2006. Each spacecraft carried a boom-mounted vector fluxgate magnetometer that returned highly sensitive and accurate measurements of the geomagnetic field. These data allow, for the first time, the separation of temporal and spatial variations in field-aligned current (FAC) perturbations measured in low-Earth orbit on time scales of approximately 10 sec to 10 min. The constellation measurements are used to directly determine field-aligned current sheet motion, thickness and current density. In doing so, we demonstrate two multi-point methods for the inference of FAC current density that have not previously been possible in low-Earth orbit; 1) the "standard method," based upon s/c velocity, but corrected for FAC current sheet motion, and 2) the "gradiometer method" which uses simultaneous magnetic field measurements at two points with known separation. Future studies will apply these methods to the entire ST-5 data set and expand to include geomagnetic field gradient analyses as well as field-aligned and ionospheric currents.

  8. Differences in blood pressure by measurement technique in neurocritically ill patients: A technological assessment.

    Science.gov (United States)

    Lele, Abhijit V; Wilson, Daren; Chalise, Prabhakar; Nazzaro, Jules; Krishnamoorthy, Vijay; Vavilala, Monica S

    2018-01-01

    Blood pressure data may vary by measurement technique. We performed a technological assessment of differences in blood pressure measurement between non-invasive blood pressure (NIBP) and invasive arterial blood pressure (ABP) in neurocritically ill patients. After IRB approval, a prospective observational study was performed to study differences in systolic blood pressure (SBP), mean arterial pressure (MAP), and cerebral perfusion pressure (CPP) values measured by NIBP arm, ABP at level of the phlebostatic axis (ABP heart) and ABP at level of the external auditory meatus (ABP brain) at 30 and 45-degree head of bed elevation (HOB) using repeated measure analysis of covariance and correlation coefficients. Overall, 168 patients were studied with median age of 57 ± 15 years, were mostly female (57%), with body mass index ≤30 (66%). Twenty-three percent (n = 39) had indwelling intracranial pressure monitors, and 19.7% (n = 33) received vasoactive agents. ABP heart overestimated ABP brain for SBP (11.5 ± 2.7 mmHg, p ABP heart overestimated NIBP arm for SBP (8 ± 1.5 mmHg, p ABP heart overestimates MAP compared to ABP brain and NIBP arm. Using ABP heart data overestimates CPP and may be responsible for not achieving SBP, MAP or CPP targets aimed at the brain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Pilot Results - The use of Real-time Preference Measurement Technology to Support the Retention of Enlisted Personnel

    Science.gov (United States)

    2010-03-01

    Preference Measurement Technology (the “Pilot” project). Since 2001, TCS has provided its web-based product to companies looking to generate...technology (laptops, cameras, LCD TVs, digital services), telecommunications (service plans, handsets) and business-to-business ( B2B ) and supply

  10. "Measuring Operational Effectiveness of Information Technology Infrastructure Library (IIL) and the Impact of Critical Facilities Inclusion in the Process."

    Science.gov (United States)

    Woodell, Eric A.

    2013-01-01

    Information Technology (IT) professionals use the Information Technology Infrastructure Library (ITIL) process to better manage their business operations, measure performance, improve reliability and lower costs. This study examined the operational results of those data centers using ITIL against those that do not, and whether the results change…

  11. Method for screening prevention and control measures and technologies based on groundwater pollution intensity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Juan, E-mail: lijuan@craes.org.cn [College of Water Sciences, Beijing Normal University, Beijing 100875 (China); Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012 (China); Yang, Yang [College of Environment, Beijing Normal University, Beijing 100875 (China); Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012 (China); Huan, Huan; Li, Mingxiao [Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012 (China); Xi, Beidou, E-mail: xibd413@yeah.net [Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012 (China); Lanzhou Jiaotong University, Lanzhou 730070 (China); Lv, Ningqing [Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012 (China); Wu, Yi [Guizhou Academy of Environmental Science and Designing, Guizhou 550000 (China); Xie, Yiwen, E-mail: qin3201@126.com [School of Chemical and Environmental Engineering, Dongguan University of Technology, Dongguan, 523808 (China); Li, Xiang; Yang, Jinjin [Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012 (China)

    2016-05-01

    This paper presents a system for determining the evaluation and gradation indices of groundwater pollution intensity (GPI). Considering the characteristics of the vadose zone and pollution sources, the system decides which anti-seepage measures should be implemented at the contaminated site. The pollution sources hazards (PSH) and groundwater intrinsic vulnerability (GIV) are graded by the revised Nemerow Pollution Index and an improved DRTAS model, respectively. GPI is evaluated and graded by a double-sided multi-factor coupling model, which is constructed by the matrix method. The contaminated sites are categorized as prior, ordinary, or common sites. From the GPI results, we develop guiding principles for preventing and removing pollution sources, procedural interruption and remediation, and end treatment and monitoring. Thus, we can select appropriate prevention and control technologies (PCT). To screen the technological schemes and optimize the traditional analytical hierarchy process (AHP), we adopt the technique for order preference by the similarity to ideal solution (TOPSIS) method. Our GPI approach and PCT screening are applied to three types of pollution sites: the refuse dump of a rare earth mine development project (a potential pollution source), a chromium slag dump, and a landfill (existing pollution sources). These three sites are identified as ordinary, prior, and ordinary sites, respectively. The anti-seepage materials at the refuse dump should perform as effectively as a 1.5-m-thick clay bed. The chromium slag dump should be preferentially treated by soil flushing and in situ chemical remediation. The landfill should be treated by natural attenuation technology. The proposed PCT screening approach was compared with conventional screening methods results at the three sites and proved feasible and effective. The proposed method can provide technical support for the monitoring and management of groundwater pollution in China. - Highlights: • An

  12. Method for screening prevention and control measures and technologies based on groundwater pollution intensity assessment

    International Nuclear Information System (INIS)

    Li, Juan; Yang, Yang; Huan, Huan; Li, Mingxiao; Xi, Beidou; Lv, Ningqing; Wu, Yi; Xie, Yiwen; Li, Xiang; Yang, Jinjin

    2016-01-01

    This paper presents a system for determining the evaluation and gradation indices of groundwater pollution intensity (GPI). Considering the characteristics of the vadose zone and pollution sources, the system decides which anti-seepage measures should be implemented at the contaminated site. The pollution sources hazards (PSH) and groundwater intrinsic vulnerability (GIV) are graded by the revised Nemerow Pollution Index and an improved DRTAS model, respectively. GPI is evaluated and graded by a double-sided multi-factor coupling model, which is constructed by the matrix method. The contaminated sites are categorized as prior, ordinary, or common sites. From the GPI results, we develop guiding principles for preventing and removing pollution sources, procedural interruption and remediation, and end treatment and monitoring. Thus, we can select appropriate prevention and control technologies (PCT). To screen the technological schemes and optimize the traditional analytical hierarchy process (AHP), we adopt the technique for order preference by the similarity to ideal solution (TOPSIS) method. Our GPI approach and PCT screening are applied to three types of pollution sites: the refuse dump of a rare earth mine development project (a potential pollution source), a chromium slag dump, and a landfill (existing pollution sources). These three sites are identified as ordinary, prior, and ordinary sites, respectively. The anti-seepage materials at the refuse dump should perform as effectively as a 1.5-m-thick clay bed. The chromium slag dump should be preferentially treated by soil flushing and in situ chemical remediation. The landfill should be treated by natural attenuation technology. The proposed PCT screening approach was compared with conventional screening methods results at the three sites and proved feasible and effective. The proposed method can provide technical support for the monitoring and management of groundwater pollution in China. - Highlights: • An

  13. Latest on Mobile Methane Measurements with Fast Open-Path Technology: Experiences, Opportunities & Perspectives

    Science.gov (United States)

    Burba, George; Anderson, Tyler; Ediger, Kevin; von Fischer, Joseph; Gioli, Beniamino; Ham, Jay; Hupp, Jason; Kohnert, Katrin; Larmanou, Eric; Levy, Peter; Polidori, Andrea; Pikelnaya, Olga; Price, Eric; Sachs, Torsten; Serafimovich, Andrei; Zondlo, Mark; Zulueta, Rommel

    2016-04-01

    Methane plays a critical role in the radiation balance, chemistry of the atmosphere, and air quality. The major sources of methane include agricultural and natural production, landfill emissions, oil and gas development sites, and natural gas distribution networks in rural and urban environments. The majority of agricultural and natural methane production occurs in areas with little infrastructure or easily available grid power (e.g., rice fields, arctic and boreal wetlands, tropical mangroves, etc.) Past approaches for direct measurements of methane fluxes relied on fast closed-path analyzers, which typically require powerful pumps and grid power. Power and labor demands may be among the key reasons why such methane fluxes were often measured at locations with good infrastructure and grid power, and not necessarily with high methane production. Landfill methane emissions were traditionally assessed via point-in-time measurements taken at monthly or longer time intervals using techniques such as the trace plume method, the mass balance method, etc. These are subject to large uncertainties because of the snapshot nature of the measurements, while the changes in emission rates are continuous due to ongoing landfill development, changes in management practices, and the barometric pumping phenomenon. Installing a continuously operating flux station in the middle of an active landfill requires a low-power approach with no cables stretching across the landfill. The majority of oil and gas and urban methane emission happens via variable-rate point sources or diffused spots in topographically challenging terrains, such as street tunnels, elevated locations at water treatment plants, vents, etc. Locating and measuring methane emissions from such sources is challenging when using traditional micrometeorological techniques, and requires development of novel approaches. In 2010, a new lightweight high-speed high-resolution open-path technology was developed with the goal of

  14. Review: Michael Crandall & Karen E. Fisher (Eds) Digital Inclusion: Measuring the Impact of Information and Community Technology

    DEFF Research Database (Denmark)

    Pors, Niels Ole

    2010-01-01

    Review: Michael Crandall & Karen E. Fisher (Eds) Digital Inclusion: Measuring the Impact of Information and Community Technology. Medford. Information Today. ASIS&T Monographs, 2009. 185 pages. $ 59.50. ISBN 978-1-57387-373-4......Review: Michael Crandall & Karen E. Fisher (Eds) Digital Inclusion: Measuring the Impact of Information and Community Technology. Medford. Information Today. ASIS&T Monographs, 2009. 185 pages. $ 59.50. ISBN 978-1-57387-373-4...

  15. Development of a measure of knowledge use by stakeholders in rehabilitation technology

    Directory of Open Access Journals (Sweden)

    Vathsala I Stone

    2014-11-01

    Full Text Available Objectives: Uptake of new knowledge by diverse and diffuse stakeholders of health-care technology innovations has been a persistent challenge, as has been measurement of this uptake. This article describes the development of the Level of Knowledge Use Survey instrument, a web-based measure of self-reported knowledge use. Methods: The Level of Knowledge Use Survey instrument was developed in the context of assessing effectiveness of knowledge communication strategies in rehabilitation technology. It was validated on samples representing five stakeholder types: researchers, manufacturers, clinician–practitioners, knowledge brokers, and consumers. Its structure is broadly based on Rogers’ stages of innovation adoption. Its item generation was initially guided by Hall et al’s Levels of Use framework. Item selection was based on content validity indices computed from expert ratings (n1 = 4; n2 = 3. Five representative stakeholders established usability of the web version. The version included 47 items (content validity index for individual items >0.78; content validity index for a scale or set of items >0.90 in self-reporting format. Psychometrics were then established for the version. Results: Analyses of data from small (n = 69 and large (n = 215 samples using the Level of Knowledge Use Survey instrument suggested a conceptual model of four levels of knowledge use—Non-awareness, Awareness, Interest, and Use. The levels covered eight dimensions and six user action categories. The sequential nature of levels was inconclusive due to low cell frequencies. The Level of Knowledge Use Survey instrument showed adequate content validity (≈ 0.88; n = 3 and excellent test–retest reliability (1.0; n = 69. It also demonstrated good construct validity (n = 215 for differentiating among new knowledge outputs (p < 0.001 and among stakeholder types (0.001 < p ≤ 0.013. It showed strong responsiveness to change

  16. Broad frequency band full field measurements for advanced applications: Point-wise comparisons between optical technologies

    Science.gov (United States)

    Zanarini, Alessandro

    2018-01-01

    The progress of optical systems gives nowadays at disposal on lightweight structures complex dynamic measurements and modal tests, each with its own advantages, drawbacks and preferred usage domains. It is thus more easy than before to obtain highly spatially defined vibration patterns for many applications in vibration engineering, testing and general product development. The potential of three completely different technologies is here benchmarked on a common test rig and advanced applications. SLDV, dynamic ESPI and hi-speed DIC are here first deployed in a complex and unique test on the estimation of FRFs with high spatial accuracy from a thin vibrating plate. The latter exhibits a broad band dynamics and high modal density in the common frequency domain where the techniques can find an operative intersection. A peculiar point-wise comparison is here addressed by means of discrete geometry transforms to put all the three technologies on trial at each physical point of the surface. Full field measurement technologies cannot estimate only displacement fields on a refined grid, but can exploit the spatial consistency of the results through neighbouring locations by means of numerical differentiation operators in the spatial domain to obtain rotational degrees of freedom and superficial dynamic strain distributions, with enhanced quality, compared to other technologies in literature. Approaching the task with the aid of superior quality receptance maps from the three different full field gears, this work calculates and compares rotational and dynamic strain FRFs. Dynamic stress FRFs can be modelled directly from the latter, by means of a constitutive model, avoiding the costly and time-consuming steps of building and tuning a numerical dynamic model of a flexible component or a structure in real life conditions. Once dynamic stress FRFs are obtained, spectral fatigue approaches can try to predict the life of a component in many excitation conditions. Different

  17. Capturing the True Value of Assistive Technologies to Consumers in Routine Outcome Measurement

    Directory of Open Access Journals (Sweden)

    Desleigh de Jonge

    2016-10-01

    Full Text Available (1 Background: Recent reforms in Australia, providing people with disability and older people with choice and control over allocated funding, have altered consumer expectations and transformed the landscape of assistive technology (AT service provision. The purpose of this study is to report on the routine AT outcomes of people who accessed an AT consultation service and examine how well these capture the impact of AT on their lives; (2 Methods: This study, which uses mixed methods for concurrent triangulation of the data, reports on the outcomes for 127 people who acquired a range of assistive technology in 2015 and examines the adequacy of an existing service outcome framework in capturing the true value of these technologies to AT users. Outcome data was routinely collected by a community service 2–4 months following an AT consultation. A telephone or face-to-face interview gathered demographic information as well as AT outcomes, using two standardized tools, the Individualized Prioritised Problem Assessment (IPPA and the EATS 6D. Qualitative comments relating to the impact of the AT on the person’s life were also documented; (3 Results: The acquired AT generally met or exceeded expectations of the person using the AT and the attending health professional. Overall, people experienced decreased difficulty and increased feelings of autonomy, with most of the reported improvements identified in mobility and usual activities; (4 Conclusion: Routine outcome data provide some evidence of the value of AT in addressing concerns as identified by clients. Qualitative data, which captured the impact of AT on people’s lives, suggest that the empowering and transformative aspects of AT are not currently being captured by existing measures.

  18. Technical fact sheets on the impacts of new energy efficiency technologies and measures in ice rinks

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This paper presents energy efficiency facts on ice rinks and arenas to advise and inform refrigeration and building professionals. The aim of the paper was to facilitate estimation and compare impacts of various energy efficiency measures and new technologies on the consumption of energy and the reduction of greenhouse gas (GHG) emissions. A computer-based tool modelling ice rink energy consumption was constructed based on DOE-2.1E software. The simulation tool was developed to study the sensitivity of various eco-energetic technologies applied to arenas. Results of the simulations have made it possible to construct 8 facts sheets, including information on simulated heat exchange; calculation of energy consumption for heating and refrigeration; the incorporation of several types of Heating Ventilation and Air Conditioning (HVAC) systems; and to show various strategies of operation. To account for the effects of ice within a building, calculation routines in the form of functional values were added. The model addressed the following parameters: climate; characteristics of the envelope; lighting power and intensity; temperature of the resurfacing water; ice sheet temperature; humidity level of the ice rink; fresh air intake; emissivity index of the ceiling above the ice sheet; refrigeration systems according to type, capacity, output and operation mode; capacity output and operation mode of the air heating system, including heat recovery from the refrigeration system; and capacity, output and operation mode of the domestic and resurfacing hot water heating system, including heat recovery from the refrigeration system. Fact sheets were presented for the type of technology; description; direct or indirect benefits; energy-savings potential; environmental impacts; specific comments from specialists; and a set of charts to facilitate comprehension. tabs., figs.

  19. The technology gap and efficiency measure in WEC countries: Application of the hybrid meta frontier model

    International Nuclear Information System (INIS)

    Chiu, Yung-Ho; Lee, Jen-Hui; Lu, Ching-Cheng; Shyu, Ming-Kuang; Luo, Zhengying

    2012-01-01

    This study develops the hybrid meta frontier DEA model for which inputs are distinguished into radial inputs that change proportionally and non-radial inputs that change non-proportionally, in order to measure the technical efficiency and technology gap ratios (TGR) of four different regions: Asia, Africa, America, and Europe. This paper selects 87 countries that are members of the World Energy Council from 2005 to 2007. The input variables are industry and population, while the output variances are gross domestic product (GDP) and the amount of fossil-fuel CO 2 emissions. The result shows that countries’ efficiency ranking among their own region presents more implied volatility. In view of the Technology Gap Ratio, Europe is the most efficient of any region, but during the same period, Asia has a lower efficiency than other regions. Finally, regions with higher industry (or GDP) might not have higher efficiency from 2005 to 2007. And higher CO 2 emissions or population also might not mean lower efficiency for other regions. In addition, Brazil is not OECD member, but it is higher efficiency than other OECD members in emerging countries case. OECD countries are better efficiency than non-OECD countries and Europe is higher than Asia to control CO 2 emissions. If non-OECD countries or Asia countries could reach the best efficiency score, they should try to control CO 2 emissions. - Highlights: ► The new meta frontier Model for evaluating the efficiency and technology gap ratios. ► Higher CO 2 emissions might not lower efficiency than any other regions, like Europe. ► Asia’s output and CO 2 emissions simultaneously increased and lower of its efficiency. ► Non-OECD or Asia countries should control CO 2 emissions to reach best efficiency score.

  20. Method for screening prevention and control measures and technologies based on groundwater pollution intensity assessment.

    Science.gov (United States)

    Li, Juan; Yang, Yang; Huan, Huan; Li, Mingxiao; Xi, Beidou; Lv, Ningqing; Wu, Yi; Xie, Yiwen; Li, Xiang; Yang, Jinjin

    2016-05-01

    This paper presents a system for determining the evaluation and gradation indices of groundwater pollution intensity (GPI). Considering the characteristics of the vadose zone and pollution sources, the system decides which anti-seepage measures should be implemented at the contaminated site. The pollution sources hazards (PSH) and groundwater intrinsic vulnerability (GIV) are graded by the revised Nemerow Pollution Index and an improved DRTAS model, respectively. GPI is evaluated and graded by a double-sided multi-factor coupling model, which is constructed by the matrix method. The contaminated sites are categorized as prior, ordinary, or common sites. From the GPI results, we develop guiding principles for preventing and removing pollution sources, procedural interruption and remediation, and end treatment and monitoring. Thus, we can select appropriate prevention and control technologies (PCT). To screen the technological schemes and optimize the traditional analytical hierarchy process (AHP), we adopt the technique for order preference by the similarity to ideal solution (TOPSIS) method. Our GPI approach and PCT screening are applied to three types of pollution sites: the refuse dump of a rare earth mine development project (a potential pollution source), a chromium slag dump, and a landfill (existing pollution sources). These three sites are identified as ordinary, prior, and ordinary sites, respectively. The anti-seepage materials at the refuse dump should perform as effectively as a 1.5-m-thick clay bed. The chromium slag dump should be preferentially treated by soil flushing and in situ chemical remediation. The landfill should be treated by natural attenuation technology. The proposed PCT screening approach was compared with conventional screening methods results at the three sites and proved feasible and effective. The proposed method can provide technical support for the monitoring and management of groundwater pollution in China. Copyright © 2015

  1. Technology.

    Science.gov (United States)

    Online-Offline, 1998

    1998-01-01

    Focuses on technology, on advances in such areas as aeronautics, electronics, physics, the space sciences, as well as computers and the attendant progress in medicine, robotics, and artificial intelligence. Describes educational resources for elementary and middle school students, including Web sites, CD-ROMs and software, videotapes, books,…

  2. Sensors 4.0 – smart sensors and measurement technology enable Industry 4.0

    Directory of Open Access Journals (Sweden)

    A. Schütze

    2018-05-01

    Full Text Available Industrie 4.0 or the Industrial Internet of Things (IIoT are two terms for the current (revolution seen in industrial automation and control. Everything is getting smarter and data generated at all levels of the production process are used to improve product quality, flexibility, and productivity. This would not be possible without smart sensors, which generate the data and allow further functionality from self-monitoring and self-configuration to condition monitoring of complex processes. In analogy to Industry 4.0, the development of sensors has undergone distinctive stages culminating in today's smart sensors or Sensor 4.0. This paper briefly reviews the development of sensor technology over the last 2 centuries, highlights some of the potential that can be achieved with smart sensors and data evaluation, and discusses success requirements for future developments. In addition to magnetic sensor technologies which allow self-test and self-calibration and can contribute to many applications due to their wide spectrum of measured quantities, the paper discusses condition monitoring as a primary paradigm for introducing smart sensors and data analysis in manufacturing processes based on two projects performed in our group.

  3. New technology development for radiation dose measurement and evaluation based on the operational quantity

    International Nuclear Information System (INIS)

    Kim, Jang Lyul; Kim, B. H.; Lee, J. I.; Lim, K. S.; Song, M. Y.; Joo, G. S.; Kim, S. I.; Chang, I. S.

    2012-04-01

    · Development of optically stimulated luminescence (OSL) technique for multi-purpose radiation dosimetry - Development of a semi-automatic type OSL measurement system · Number of sample holders: 10 ea · Development of a built-in type reference radiation irradiation system using 50 kV-1 mA X-rays of the maximum dose rate of 230 mGy/s - Development of an automatic diameter control system and crystal growth system for making a new OSL material: LiMgF 3 : X, LiAlO 2 : C - Development of a procedure of retrospective accident dosimetry · Establishment of Practical Technology for Internal Dose Assessment - Development of the technology to the internal dose assessment for an injection of radionuclides and intercomparison on the evaluation results of the committed effective dose between the estimators of Korea · Construction of workplace monitoring technique by quantification of neutron fields - Preparation of the neutron spectra DB of various neutron fields and production of those dosimetric data: 29 kinds of neutron fields using a thermal neutron irradiator, a proton accelerator and a neutron generator - Neutron monitoring procedure at workplace using neutron fluence spectra

  4. Measuring patrons' technology habits: an evidence-based approach to tailoring library services.

    Science.gov (United States)

    Wu, Jin; Chatfield, Amy J; Hughes, Annie M; Kysh, Lynn; Rosenbloom, Megan Curran

    2014-04-01

    Librarians continually integrate new technologies into library services for health sciences students. Recently published data are lacking about student ownership of technological devices, awareness of new technologies, and interest in using devices and technologies to interact with the library. A survey was implemented at seven health sciences libraries to help answer these questions. Results show that librarian assumptions about awareness of technologies are not supported, and student interest in using new technologies to interact with the library varies widely. Collecting this evidence provides useful information for successfully integrating technologies into library services.

  5. The development of the neutron flux measurement technology using SPNDs during nuclear fuel irradiation test

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B. G.; Kang, Y. H.; Cho, M. S.; Joo, K. N.; Choi, M. H.; Park, S. J.; Shin, Y. T.; Oh, J. M.; Kim, Y. J

    2004-03-01

    As a part of the development of instrumentation technologies for a nuclear fuel irradiation test in HANARO(High-flux Advanced Nuclear Application Reactor), a study is performed to measure and evaluate the neutron flux at the same position as the nuclear fuel during irradiation test using the SPND(Self Powered Neutron Detector). To perform this study, rhodium type SPNDs and amplifier are selected suitable to irradiation test, and the selected SPNDs are installed in instrumented fuel capsule(02F-11K). The irradiation test using a instrumented fuel capsule are performed in the OR5 vertical hole of HANARO for about 54 days, and SPND output signals are acquired successfully during irradiation test. Acquired SPND signals are analyzed and evaluated as a reliable data by COSMOS Code. This will be utilized for the fuel related research together with fuel center temperature and reactor operation data.

  6. Measurement and Assessment of Physical Activity by Information and Communication Technology.

    Science.gov (United States)

    Zhang, Qun; Yang, Xi; Liu, Dan; Zhao, Wen Hua

    2017-06-01

    This study provides explorative insights into the information and communication technology (ICT) for promoting the physical activity level. ICT has provided innovative ideas and perspectives for PA measurement, assessment, evaluation and health intervention. ICT that aims to increase exercise for the entire population should be of a well-oriented and easy-to-use design with the options of tailored and personalized feedback, coaching, and ranking and supporting; it should be capable of setting goals and working with a schedule and be accompanied by a website to provide overviews of the users' exercise results and progress. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  7. Development of an instrument to measure Faculty's information and communication technology access (FICTA).

    Science.gov (United States)

    Soomro, Kamal Ahmed; Kale, Ugur; Curtis, Reagan; Akcaoglu, Mete; Bernstein, Malayna

    2018-01-01

    The phenomenon of "digital divide" is complex and multidimensional, extending beyond issues of physical access. The purpose of this study was to develop a scale to measure a range of factors related to digital divide among higher education faculty and to evaluate its reliability and validity. Faculty's Information and Communication Technology Access (FICTA) scale was tested and validated with 322 faculty teaching in public and private sector universities. Principal components analysis with varimax rotation confirmed an 8-factor solution corresponding to various dimensions of ICT access. The 57-item FICTA scale demonstrated good psychometric properties and offers researchers a tool to examine faculty's access to ICT at four levels - motivational, physical, skills, and usage access.

  8. Reducing measurement uncertainty drives the use of multiple technologies for supporting metrology

    Science.gov (United States)

    Banke, Bill, Jr.; Archie, Charles N.; Sendelbach, Matthew; Robert, Jim; Slinkman, James A.; Kaszuba, Phil; Kontra, Rick; DeVries, Mick; Solecky, Eric P.

    2004-05-01

    bring together formerly unlinked technology fields requiring new measurement science. The emphasis on accuracy will increase the importance and role of NIST and similar metrology organizations in supporting the semiconductor industry in this effort.

  9. The influence of institutional measures and technological proficiency on university teaching through digital platforms

    Directory of Open Access Journals (Sweden)

    Tirado, Ramón

    2012-06-01

    Full Text Available The objective of this study is to empirically test the theoretical model that explains the influence of primary and secondary factors on the integration of digital platforms in university teaching. A sample of 495 teachers from universities in Andalusia completed an online questionnaire that analysed the functions of usage, the digital materials used, the didactic and technological competence of the teaching staff, the support measures adopted by the institutions and the effect on teaching of platform use. Prior factor analysis and the application of the Amos program enabled us to develop a structural equation model to corroborate the indirect influence of the support measures and institutional recognition on teachers in their use of the platforms, and the direct influence of the teachers’ technological proficiency. Este estudio tiene como objetivo poner a prueba empíricamente el modelo teórico que explica la influencia de los factores de primer y segundo orden sobre la integración de las plataformas digitales en la docencia universitaria. Para ello, sobre una muestra de 495 profesores universitarios andaluces, se aplica un cuestionario online que analiza las funciones de uso, materiales digitales utilizados, competencia didáctica y tecnológica del profesorado, medidas de impulso institucionales, y efectos didácticos del uso. El análisis factorial previo y la aplicación del programa Amos permite la elaboración un modelo de ecuación estructural que corrobora la influencia indirecta de las medidas de apoyo y el reconocimiento institucional sobre los efectos didácticos del uso de plataformas, así como la influencia directa de la competencia tecnológica del profesorado.

  10. Real-time positioning technology in horizontal directional drilling based on magnetic gradient tensor measurement

    Science.gov (United States)

    Deng, Guoqing; Yao, Aiguo

    2017-04-01

    Horizontal directional drilling (HDD) technology has been widely used in Civil Engineering. The dynamic position of the drill bit during construction is one of significant facts determining the accuracy of the trajectory of HDD. A new method now has been proposed to detecting the position of drill bit by measuring the magnetic gradient tensor of the ground solenoid magnetic beacon. Compared with traditional HDD positioning technologies, this new model is much easier to apply with lower request for construction sites and higher positioning efficiency. A direct current (DC) solenoid as a magnetic dipole is placed on ground near the drill bit, and related sensors array which contains four Micro-electromechanical Systems (MEMS ) tri-axial magnetometers, one MEMS tri-axial accelerometer and one MEMS tri-axial gyroscope is set up for measuring the magnetic gradient tensor of the magnetic dipole. The related HDD positioning model has been established and simulation experiments have been carried out to verify the feasibility and reliability of the proposed method. The experiments show that this method has good positioning accuracy in horizontal and vertical direction, and totally avoid the impact of the environmental magnetic field. It can be found that the posture of the magnetic beacon will impact the remote positioning precision within valid positioning range, and the positioning accuracy is higher with longer baseline for limited space in drilling tools. The results prove that the relative error can be limited in 2% by adjusting position of the magnetic beacon, the layers of the enameled coil, the sensitive of magnetometers and the baseline distance. Conclusion can be made that this new method can be applied in HDD positioning with better effect and wider application range than traditional method.

  11. Technological Literacy for Students Aged 6-18: A New Method for Holistic Measuring of Knowledge, Capabilities, Critical Thinking and Decision-Making

    Science.gov (United States)

    Avsec, Stanislav; Jamšek, Janez

    2016-01-01

    Technological literacy is identified as a vital achievement of technology- and engineering-intensive education. It guides the design of technology and technical components of educational systems and defines competitive employment in technological society. Existing methods for measuring technological literacy are incomplete or complicated,…

  12. EDITORIAL: Announcing the 2006 Measurement Science and Technology Outstanding Paper Awards

    Science.gov (United States)

    Foss, John; Dewhurst, Richard; Fujii, Kenichi; Regtien, Paul

    2007-07-01

    Since 1991, Measurement Science and Technology has awarded a Best Paper prize. The Editorial Board of this journal believes that such a prize is an opportunity to thank authors for submitting their work, and serves as an integral part of the on-going quality review of the journal. The current breadth of topical areas that are covered by MST has made it advisable to expand the recognition of excellent publications. Hence, since 2005 the Editorial Board have presented 'Outstanding Paper Awards' in four subject categories: Fluid Mechanics; Measurement Science; Precision Measurements; and Sensors and Sensing Systems. 2006 Award Winners—Fluid Mechanics The article 'Molecular tagging velocimetry and thermometry and its application to the wake of a heated circular cylinder' by Hui Hu and Manoochehr Koochesfahani, published in volume 17, issue 6, pp 1269-1281, was selected by the cognizant Editorial Board Members as the Outstanding Paper in Fluid Mechanics for 2006. This consensus selection was accompanied by the collective judgment that a number of other very strong contributions were published in 2006. These other papers have been added to the 2006 Highlights in the electronic version of the journal. The paper by Hu and Koochesfahani is recognized for its contribution to the use of molecular tagging techniques in the service of velocity and temperature measurements. The paper clearly articulates the prior state-of-the-art in this area and it communicates the required equipment and procedures to utilize this experimental tool. The capabilities of their technique are made apparent by the simultaneous (u,v,T) observations in the wake of a circular cylinder. The normalized heat flux vectors, (\\overline{u_j'T'})/U\\Delta T, demonstrate one of the beneficial results of obtaining a whole-field view of the velocity and temperature distributions. The authors also have carefully noted the intrinsic limitations of their technique. 2006 Award Winners—Measurement Science The

  13. SPECTRAN - a highly sensitive process photometer for selective measurements of gases and liquids in environment and process technology

    International Nuclear Information System (INIS)

    Breton, H.; Krieg, G.

    1984-01-01

    The SPECTRAN process photometer uses the wavelength-dependent attenuation of optical radiation for the selective measurement of molecular compounds in gases and liquids. The system which originally has been designed for UF 6 measurements has been developed to serve various applications, as e.g. in chemical and thermal engineering, for monitoring measurements of emissions and MAC, explosion protection, purity measurements, in environmental and bioengineering, nuclear and energy technology, pharmaceutical and medical engineering, as well as in the food industries. (DG) [de

  14. The Study on the Measurement and Testing Technology of the HMCVT Hydraulic Pressure Based on the Data Fusion Technology

    International Nuclear Information System (INIS)

    Cheng, G W; Zhou, Z L; Men, Q Y; Deng, C N

    2006-01-01

    The pressure of the hydro-mechanical continuously variable transmission (HMCVT) is not only one of the major factors affecting the performance of the power train but also the major control parameter of the HMCVT control system. So how to improve the high accuracy hydraulic pressure parameter for the HMCVT control system will be one of the key technologies in system development. Based on the HMCVT test system for a certain tracked vehicle, the hydraulic pressure is studied, and multi-sensor data fusion technology based on Taylor polynomial regression equation is put forward, which turn out to improve the performance of the pressure sensor. Utilizing the above-mentioned method, the ability of antijamming of the hydraulic screen pressure system of the HMCVT is effectively improved, and the validity of the test data in the test system is improved too

  15. MEASUREMENT FOR ACCEPTANCE OF SUPPLY CHAIN SIMULATOR APPLICATION USING TECHNOLOGY ACCEPTANCE MODEL

    Directory of Open Access Journals (Sweden)

    Mulyati E.

    2018-03-01

    Full Text Available The aim of this research for was to measure the user acceptance of simulator application which was built as a tool for student in learning of supply chain, particularly in bullwhip effect problem. The measurements used for the acceptance of supply chain simulator application in this research was the Technology Acceptance Model from 162 samples which were analyzed with Confirmatory Factor Analysis and Structural Equation Modelling. The result of this research indicated that the user acceptance (shown by customer participation of supply chain simulator was directly influence by perceived usefulness of supply chain simulator application used (positive and significant; the user acceptance of supply chain simulator was indirectly influenced by perceived ease of use in using supply chain simulator application (positive but not significant; the user acceptance of supply chain simulator was indirectly influenced by perceived enjoyment when the supply chain simulator application was used. The research would give a better understanding about a bullwhip effect and better experience for students, which would not be obtained through conventional learning, when the tools were not used.

  16. Extraction of indirectly captured information for use in a comparison of offline pH measurement technologies.

    Science.gov (United States)

    Ritchie, Elspeth K; Martin, Elaine B; Racher, Andy; Jaques, Colin

    2017-06-10

    Understanding the causes of discrepancies in pH readings of a sample can allow more robust pH control strategies to be implemented. It was found that 59.4% of differences between two offline pH measurement technologies for an historical dataset lay outside an expected instrument error range of ±0.02pH. A new variable, Osmo Res , was created using multiple linear regression (MLR) to extract information indirectly captured in the recorded measurements for osmolality. Principal component analysis and time series analysis were used to validate the expansion of the historical dataset with the new variable Osmo Res . MLR was used to identify variables strongly correlated (p<0.05) with differences in pH readings by the two offline pH measurement technologies. These included concentrations of specific chemicals (e.g. glucose) and Osmo Res, indicating culture medium and bolus feed additions as possible causes of discrepancies between the offline pH measurement technologies. Temperature was also identified as statistically significant. It is suggested that this was a result of differences in pH-temperature compensations employed by the pH measurement technologies. In summary, a method for extracting indirectly captured information has been demonstrated, and it has been shown that competing pH measurement technologies were not necessarily interchangeable at the desired level of control (±0.02pH). Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Technology

    Directory of Open Access Journals (Sweden)

    Xu Jing

    2016-01-01

    Full Text Available The traditional answer card reading method using OMR (Optical Mark Reader, most commonly, OMR special card special use, less versatile, high cost, aiming at the existing problems proposed a method based on pattern recognition of the answer card identification method. Using the method based on Line Segment Detector to detect the tilt of the image, the existence of tilt image rotation correction, and eventually achieve positioning and detection of answers to the answer sheet .Pattern recognition technology for automatic reading, high accuracy, detect faster

  18. Application of fluorescent tracer agent technology to point-of-care gastrointestinal permeability measurement

    Science.gov (United States)

    Dorshow, Richard B.; Shieh, Jeng-Jong; Rogers, Thomas E.; Hall-Moore, Carla; Shaikh, Nurmohammad; Talcott, Michael; Tarr, Phillip I.

    2016-03-01

    Gut dysfunction, often accompanied by increased mucosal permeability to gut contents, frequently accompanies a variety of human intestinal inflammatory conditions. These disorders include inflammatory bowel diseases (e.g., Crohn's Disease) and environmental enteropathy and enteric dysfunction, a condition strongly associated with childhood malnutrition and stunting in resource poor areas of the world. The most widely used diagnostic assay for gastrointestinal permeability is the lactulose to mannitol ratio (L:M) measurement. These sugars are administered orally, differentially absorbed by the gut, and then cleared from the body by glomerular filtration in the kidney. The amount of each sugar excreted in the urine is measured. The larger sugar, lactulose, is minimally absorbed through a healthy gut. The smaller sugar, mannitol, in contrast, is readily absorbed through both a healthy and injured gut. Thus a higher ratio of lactulose to mannitol reflects increased intestinal permeability. However, several issues prevent widespread use of the L:M ratio in clinical practice. Urine needs to be collected over time intervals of several hours, the specimen then needs to be transported to an analytical laboratory, and sophisticated equipment is required to measure the concentration of each sugar in the urine. In this presentation we show that fluorescent tracer agents with molecular weights similar to those of the sugars, selected from our portfolio of biocompatible renally cleared fluorophores, mimic the L:M ratio test for gut permeability. This fluorescent tracer agent detection technology can be used to overcome the limitations of the L:M assay, and is amenable to point-of-care clinical use.

  19. Measuring the Influences That Affect Technological Literacy in Rhode Island High Schools

    Science.gov (United States)

    Walach, Michael

    2015-01-01

    This study sampled the current state of technological literacy in Rhode Island high schools using a new instrument, the Technological Literacy Assessment, which was developed for this study. Gender inequalities in technological literacy were discovered, and possible causes and solutions are presented. This study suggests possible next steps for…

  20. Performance Refactoring of Instrumentation, Measurement, and Analysis Technologies for Petascale Computing. The PRIMA Project

    Energy Technology Data Exchange (ETDEWEB)

    Malony, Allen D. [Univ. of Oregon, Eugene, OR (United States). Dept. of Computer and Information Science; Wolf, Felix G. [Wilhelm-Johnen-Strasse, Julich (Germany). Forschungszentrum Julich GmbH

    2014-01-31

    The growing number of cores provided by today’s high-­end computing systems present substantial challenges to application developers in their pursuit of parallel efficiency. To find the most effective optimization strategy, application developers need insight into the runtime behavior of their code. The University of Oregon (UO) and the Juelich Supercomputing Centre of Forschungszentrum Juelich (FZJ) develop the performance analysis tools TAU and Scalasca, respectively, which allow high-­performance computing (HPC) users to collect and analyze relevant performance data – even at very large scales. TAU and Scalasca are considered among the most advanced parallel performance systems available, and are used extensively across HPC centers in the U.S., Germany, and around the world. The TAU and Scalasca groups share a heritage of parallel performance tool research and partnership throughout the past fifteen years. Indeed, the close interactions of the two groups resulted in a cross-­fertilization of tool ideas and technologies that pushed TAU and Scalasca to what they are today. It also produced two performance systems with an increasing degree of functional overlap. While each tool has its specific analysis focus, the tools were implementing measurement infrastructures that were substantially similar. Because each tool provides complementary performance analysis, sharing of measurement results is valuable to provide the user with more facets to understand performance behavior. However, each measurement system was producing performance data in different formats, requiring data interoperability tools to be created. A common measurement and instrumentation system was needed to more closely integrate TAU and Scalasca and to avoid the duplication of development and maintenance effort. The PRIMA (Performance Refactoring of Instrumentation, Measurement, and Analysis) project was proposed over three years ago as a joint international effort between UO and FZJ to

  1. Performance Refactoring of Instrumentation, Measurement, and Analysis Technologies for Petascale Computing: the PRIMA Project

    Energy Technology Data Exchange (ETDEWEB)

    Malony, Allen D. [Department of Computer and Information Science, University of Oregon; Wolf, Felix G. [Juelich Supercomputing Centre, Forschungszentrum Juelich

    2014-01-31

    The growing number of cores provided by today’s high-end computing systems present substantial challenges to application developers in their pursuit of parallel efficiency. To find the most effective optimization strategy, application developers need insight into the runtime behavior of their code. The University of Oregon (UO) and the Juelich Supercomputing Centre of Forschungszentrum Juelich (FZJ) develop the performance analysis tools TAU and Scalasca, respectively, which allow high-performance computing (HPC) users to collect and analyze relevant performance data – even at very large scales. TAU and Scalasca are considered among the most advanced parallel performance systems available, and are used extensively across HPC centers in the U.S., Germany, and around the world. The TAU and Scalasca groups share a heritage of parallel performance tool research and partnership throughout the past fifteen years. Indeed, the close interactions of the two groups resulted in a cross-fertilization of tool ideas and technologies that pushed TAU and Scalasca to what they are today. It also produced two performance systems with an increasing degree of functional overlap. While each tool has its specific analysis focus, the tools were implementing measurement infrastructures that were substantially similar. Because each tool provides complementary performance analysis, sharing of measurement results is valuable to provide the user with more facets to understand performance behavior. However, each measurement system was producing performance data in different formats, requiring data interoperability tools to be created. A common measurement and instrumentation system was needed to more closely integrate TAU and Scalasca and to avoid the duplication of development and maintenance effort. The PRIMA (Performance Refactoring of Instrumentation, Measurement, and Analysis) project was proposed over three years ago as a joint international effort between UO and FZJ to accomplish

  2. Rapid and accurate biofuel moisture content gauging using magnetic resonance measurement technology

    Energy Technology Data Exchange (ETDEWEB)

    Jaervinen, T.

    2013-04-15

    Biomass is extensively utilised in energy production and as a raw material, such as for the production of liquid biofuels. All those processes will benefit if the moisture content of bio material is known in advance as accurately as possible under transient circumstances. Biofuel trade is increasingly based on the calorific value of fuels. In the first step, this also increases the need for rapid and accurate moisture content determination. During the last few years, large biofuel standardisation has been implemented, emphasising biofuel quality control at all stages of the utilisation chain. In principle, the moisture instrumental measurement can be utilised by many technologies and procedures. Typical techniques are infrared, radiofrequency, microwave, radiometric, electrical conductivity, capacitance, and impedance. Nuclear magnetic resonance (MR) and thermal neutron absorption are also applied. The MR measurement principle has been known and utilised already since the early 1950s. It has become the basic instrumental analysis tool in chemistry. It is also well-known as a very accurate method for analysing most compounds, especially substances containing hydrogen. The utilisation of MR metering is expanded extensively to medical diagnostics as a form of magnetic resonance imaging (MRI). Because of the precision of the MR principle, there have for a long time been efforts to apply it in new and different areas, and to make more user-friendly, smaller, and even portable devices. Such a device was designed by Vaisala a few years ago. VTT has utilised Vaisala's MR prototype for approximately one year for moisture content measurement of different biofuels. The first step in the use of an MR device for moisture determination was the definition of its measurement accuracy compared to the standard method (EN 14774). Those tests proved that the absolute precision seems to be comparable to the standard moisture content measurement method. It was also found out that

  3. EDITORIAL: Announcing the 2007 Measurement Science and Technology Outstanding Paper Awards

    Science.gov (United States)

    Foss, John; Dewhurst, Richard; Fujii, Kenichi; Regtien, Paul

    2008-05-01

    Since 1991, Measurement Science and Technology has awarded a Best Paper prize. The Editorial Board of this journal believes that such a prize is an opportunity to thank authors for submitting their work, and serves as an integral part of the on-going quality review of the journal. The current breadth of topical areas that are covered by MST has made it advisable to expand the recognition of excellent publications. Hence, since 2005 the Editorial Board have presented 'Outstanding Paper Awards' in four subject categories: Fluid Mechanics; Measurement Science; Precision Measurements; and Sensors and Sensing Systems. 2007 Award Winners—Fluid Mechanics An adaptive sampling and windowing interrogation method in PIV R Theunissen, F Scarano and M L Riethmuller von Karman Institute for Fluid Dynamics, Chaussée de Waterloo 72, 1640 Sint-Genesius Rode, Belgium and Department of Aerospace Engineering, Delft University of Technology, Delft, PO Box 5058, 2600 GB Delft, The Netherlands The co-authored paper [1] has been selected as the Outstanding Paper in Fluid Mechanics for 2007. This paper provides a strategy whereby the placement and the size of the interrogation regions are adapted to the image signal strength (seeding density) and the spatial variations of the velocity magnitudes. Two, quite distinct, test cases demonstrate the efficacy of their method: a shockwave- boundary layer interaction and an aircraft vortex wake. The Selection Committee—Drs T Fansler, J Foss, I Marusic, S Morris, K Okamoto and M Wernet—selected this paper from a strongly competitive shortlist of four candidates. Their selection process was influenced by the perceived utility of the contribution to the numerous investigators who utilize PIV methods. 2007 Award Winners—Measurement Science Broadband single cell impedance spectroscopy using maximum length sequences: theoretical analysis and practical considerations Tao Sun, Shady Gawad, Catia Bernabini, Nicolas G Green and Hywel Morgan

  4. Measurement of Self-Monitoring Web Technology Acceptance and Use in an e-Health Weight-Loss Trial

    OpenAIRE

    Ma, Jun; Xiao, Lan; Blonstein, Andrea C.

    2013-01-01

    Background: Research on technology acceptance and use in e-health weight-loss interventions is limited. Using data from a randomized controlled trial of two e-health interventions, we evaluated the acceptance and use of a self-monitoring Web site for weight loss. Materials and Methods: We examined eight theoretical constructs about technology acceptance using adapted 5-point Likert scales and the association of measured Web site usage and weight loss. Results: All scales had hi...

  5. Measures to restore metallurgical mine wasteland using ecological restoration technologies: A case study at Longnan Rare Earth Mine

    Science.gov (United States)

    Rao, Yunzhang; Gu, Ruizhi; Guo, Ruikai; Zhang, Xueyan

    2017-01-01

    Whereas mining activities produce the raw materials that are crucial to economic growth, such activities leave extensive scarring on the land, contributing to the waste of valuable land resources and upsetting the ecological environment. The aim of this study is therefore to investigate various ecological technologies to restore metallurgical mine wastelands. These technologies include measures such as soil amelioration, vegetation restoration, different vegetation planting patterns, and engineering technologies. The Longnan Rare Earth Mine in the Jiangxi Province of China is used as the case study. The ecological restoration process provides a favourable reference for the restoration of a metallurgical mine wasteland.

  6. Measuring the Efficiency of Education and Technology via DEA approach: Implications on National Development

    Directory of Open Access Journals (Sweden)

    Huan Xu

    2017-11-01

    Full Text Available The aim of this paper is to provide a new approach for assessing the input–output efficiency of education and technology for national science and education department. We used the Data Envelopment Analysis (DEA method to analyze the efficiency sharing activities in education and technology sector, and classify input variables and output variables accordingly. Using the panel data in the education and technology sector of 53 countries, we found that the countries with significant progress in educational efficiency and technological efficiency mainly concentrated in East Asia, especially in Japan, Korea, Taiwan and some other developing countries. We further evaluate the effect of educational and technological efficiencies on national competitiveness, balanced development of the country, national energy efficiency, export, and employment. We found that the efficiency of science and technology has an effect on the balanced development of the country, but that of education has played a counter-productive role; Educational efficiency has a large role and related the country’s educational development. In addition, using the panel data analysis, we showed that educational and technological efficiency has different degrees of contributions to the development from 2000 to 2014. It mainly depends on the economic development progress and the push for the education and technological policy. The proposed approach in this paper provides the decision-making support for the education and technological policy formulation, specially the selection of the appropriate education and technological strategies for resource allocation and process evaluation.

  7. Using High-Altitude Pseudo Satellites as an innovative technology platform for climate measurements

    Science.gov (United States)

    Coulon, A.; Johnson, S.

    2017-12-01

    Climate scientists have been using for decades either remotely observed data, mainly from (un)manned aircraft and satellites, or ground-based measurements. High-Altitude Pseudo Satellites (HAPS) are emerging as a disruptive technology that will be used for various "Near Space" applications at altitudes between 15 and 23 km (i.e. above commercial airlines). This new generation of electric solar-powered unmanned aerial vehicles flying in the stratosphere aim to persistently monitor regional areas (with high temporal, spatial and spectral resolution) as well as perform in-situ Near Space observations. The two case studies presented will highlight the advantages of using such an innovative platform. First, calculations were performed to compare the use of a constellation of Low Earth Orbit satellites and a fleet of HAPS for surface monitoring. Using stratospheric drones has a clear advantage for revisiting a large zone (10'000km2 per day) with higher predictability and accuracy. User is free to set time over a location, avoid cloud coverage and obtain Ground Sampling Distance of 30cm using commercially of the shelf sensors. The other impact study focuses on in-situ measurements. Using HAPS will indeed help to closely observe stratospheric compounds, such as aerosols or volcano plumes. Simulations were performed to show how such a drone could collect samples and provide high-accuracy evaluations of compounds that, so far, are only remotely observed. The performed impact studies emphasize the substantial advantages of using HAPS for future stratospheric campaigns. Deploying month-long unmanned missions for monitoring stratospheric aerosols will be beneficial for future research projects such as climate engineering.

  8. Technological problems and counter-measures on equipment materials for reprocessing of high burnup fuels

    International Nuclear Information System (INIS)

    Kiuchi, K.; Kato, T.; Motooka, H.; Hamada, S.

    2002-01-01

    The reliability of structural materials is considered as one of the most important technological issues on the commercial reprocessing of high burnup fuels. The durability prediction study of equipment materials used in commercial purex process has been conducted in the JAERI. From the experimental results obtained by scaled mock-up tests and laboratory tests, the stress corrosion cracking (SCC) for a dissolvor made of zirconium and the trans-passive corrosion of heat transfer tubes for evaporators made of austenitic stainless steels have been clarified as critical issues on the reliability. The susceptibility to these failures increases with the amount of TRU and FP elements included in spent fuels, because Np, Pu, Ru, Pd act as strong oxidizers. As counter-measures against these problems, the development of the modified alloys is going on in the JAERI. It has been found that the intergranular corrosion resistance of stainless steels is possible to be completely improved by purifying the electron beam melting process and by modifying the metallographic structure. The other counter measure is to inhibit the trans-passive corrosion by addition of oxide film former elements such as W and Si. It has also been found that the susceptibility to SCC of Zr can be improved by addition of titanium. However, the addition of titanium decreases the corrosion resistance of Zr. We selected niobium alloys as alternative materials to zirconium. By addition of tungsten to the niobium, the corrosion resistance and the mechanical strength have been improved. This niobium alloy can be used in heavily corrosive nitric acid contaminated with fluorine. It is considered that the difference between corrosion resistance of Zr and Nb-alloys is attributed to the chemical stability of the oxide films (MO 2 on Zr and M 2 O 5 on Nb). (author)

  9. Precise turnaround time measurement of laboratory processes using radiofrequency identification technology.

    Science.gov (United States)

    Mayer, Horst; Brümmer, Jens; Brinkmann, Thomas

    2011-01-01

    To implement Lean Six Sigma in our central laboratory we conducted a project to measure single pre-analytical steps influencing turnaround time (TAT) of emergency department (ED) serum samples. The traditional approach of extracting data from the Laboratory Information System (LIS) for a retrospective calculation of a mean TAT is not suitable. Therefore, we used radiofrequency identification (RFID) chips for real time tracking of individual samples at any pre-analytical step. 1,200 serum tubes were labelled with RFID chips and were provided to the emergency department. 3 RFID receivers were installed in the laboratory: at the outlet of the pneumatic tube system, at the centrifuge, and in the analyser area. In addition, time stamps of sample entry at the automated sample distributor and communication of results from the analyser were collected from LIS. 1,023 labelled serum tubes arrived at our laboratory. 899 RFID tags were used for TAT calculation. The following transfer times were determined (median 95th percentile in min:sec): pneumatic tube system --> centrifuge (01:25/04:48), centrifuge --> sample distributor (14:06/5:33), sample distributor --> analysis system zone (02:39/15:07), analysis system zone --> result communication (12:42/22:21). Total TAT was calculated at 33:19/57:40 min:sec. Manual processes around centrifugation were identified as a major part of TAT with 44%/60% (median/95th percentile). RFID is a robust, easy to use, and error-free technology and not susceptible to interferences in the laboratory environment. With this study design we were able to measure significant variations in a single manual sample transfer process. We showed that TAT is mainly influenced by manual steps around the centrifugation process and we concluded that centrifugation should be integrated in solutions for total laboratory automation.

  10. Low-level radioactive waste management handbook series: corrective measures technology for shallow land burial

    International Nuclear Information System (INIS)

    1984-10-01

    The purpose of this document is to serve as a handbook to operators of low-level waste burial sites for dealing with conditions which can cause problems in waste isolation. This handbook contains information on planning and applying corrective actions, and is organized in such a way as to assist the operator in associating problems or potential problems with causative conditions. Thus, the operator is encouraged to direct actions at those conditions, rather than the possible temporary expedient of treating symptoms. In Chapter 2 of this handbook, corrective action planning is briefly presented. Chapter 3 discusses the application of corrective measures by addressing, in separate sections, the following conditions which can occur at burial sites: eroding trench cover; permeable trench cover; subsidence of trench; groundwater entering trenches; trench intrusion by deep-rooted plants; and trench intrusion by burrowing animals. In each of these sections, a condition is introduced and related to burial-site problems. It is followed by a discussion of alternative methods for correcting the condition. This discussion includes descriptive information, application considerations for these alternatives, a listing of potential advantages and disadvantages, presentation of generalized cost information, and in conclusion, a statement of recommendations regarding application of corrective action technologies. 66 references, 21 figures, 24 tables

  11. A study on new method of noninvasive esophageal venous pressure measurement based on the airflow and laser detection technology.

    Science.gov (United States)

    Hu, Chenghuan; Huang, Feizhou; Zhang, Rui; Zhu, Shaihong; Nie, Wanpin; Liu, Xunyang; Liu, Yinglong; Li, Peng

    2015-01-01

    Using optics combined with automatic control and computer real-time image detection technology, a novel noninvasive method of noncontact pressure manometry was developed based on the airflow and laser detection technology in this study. The new esophageal venous pressure measurement system was tested in-vitro experiments. A stable and adjustable pulse stream was produced from a self-developed pump and a laser emitting apparatus could generate optical signals which can be captured by image acquisition and analysis system program. A synchronization system simultaneous measured the changes of air pressure and the deformation of the vein wall to capture the vascular deformation while simultaneously record the current pressure value. The results of this study indicated that the pressure values tested by the new method have good correlation with the actual pressure value in animal experiments. The new method of noninvasive pressure measurement based on the airflow and laser detection technology is accurate, feasible, repeatable and has a good application prospects.

  12. Measuring Changes in Interest in Science and Technology at the College Level in Response to Two Instructional Interventions

    Science.gov (United States)

    Romine, William L.; Sadler, Troy D.

    2016-06-01

    Improving interest in science, technology, engineering, and mathematics (STEM) is crucial to widening participation and success in STEM studies at the college level. To understand how classroom and extracurricular interventions affect interest, it is necessary to have appropriate measurement tools. We describe the adaptation and revalidation of a previously existing multidimensional instrument to the end of measuring interest in environmental science and technology in college nonscience majors. We demonstrate the revised instrument's ability to detect change in this group over an 8-week time period. While collection of demographic information was not part of the study design, participating students were similar in that they hailed from three environmental science nonmajor classes sharing a common syllabus and instructional delivery method. Change in interest was measured in response to two types of scientific literature-based learning approaches: a scientific practice approach and a traditional, quiz-driven approach. We found that both approaches led to moderate gains in interest in learning environmental science and careers in environmental science across an 8-week time period. Interest in using technology for learning increased among students using the scientific practice approach; in contrast, the same measure decreased among students using the reading/quiz approach. This result invites the possibility that interest in using technology as a learning tool may relate to technological literacy, which must be taught explicitly in the context of authentic inquiry experiences.

  13. Technology transfer metrics: Measurement and verification of data/reusable launch vehicle business analysis

    Science.gov (United States)

    Trivoli, George W.

    1996-01-01

    Congress and the Executive Branch have mandated that all branches of the Federal Government exert a concentrated effort to transfer appropriate government and government contractor-developed technology to the industrial use in the U.S. economy. For many years, NASA has had a formal technology transfer program to transmit information about new technologies developed for space applications into the industrial or commercial sector. Marshall Space Flight Center (MSFC) has been in the forefront of the development of U.S. industrial assistance programs using technologies developed at the Center. During 1992-93, MSFC initiated a technology transfer metrics study. The MSFC study was the first of its kind among the various NASA centers. The metrics study is a continuing process, with periodic updates that reflect on-going technology transfer activities.

  14. Calibration Uncertainties in the Droplet Measurement Technologies Cloud Condensation Nuclei Counter

    Science.gov (United States)

    Hibert, Kurt James

    Cloud condensation nuclei (CCN) serve as the nucleation sites for the condensation of water vapor in Earth's atmosphere and are important for their effect on climate and weather. The influence of CCN on cloud radiative properties (aerosol indirect effect) is the most uncertain of quantified radiative forcing changes that have occurred since pre-industrial times. CCN influence the weather because intrinsic and extrinsic aerosol properties affect cloud formation and precipitation development. To quantify these effects, it is necessary to accurately measure CCN, which requires accurate calibrations using a consistent methodology. Furthermore, the calibration uncertainties are required to compare measurements from different field projects. CCN uncertainties also aid the integration of CCN measurements with atmospheric models. The commercially available Droplet Measurement Technologies (DMT) CCN Counter is used by many research groups, so it is important to quantify its calibration uncertainty. Uncertainties in the calibration of the DMT CCN counter exist in the flow rate and supersaturation values. The concentration depends on the accuracy of the flow rate calibration, which does not have a large (4.3 %) uncertainty. The supersaturation depends on chamber pressure, temperature, and flow rate. The supersaturation calibration is a complex process since the chamber's supersaturation must be inferred from a temperature difference measurement. Additionally, calibration errors can result from the Kohler theory assumptions, fitting methods utilized, the influence of multiply-charged particles, and calibration points used. In order to determine the calibration uncertainties and the pressure dependence of the supersaturation calibration, three calibrations are done at each pressure level: 700, 840, and 980 hPa. Typically 700 hPa is the pressure used for aircraft measurements in the boundary layer, 840 hPa is the calibration pressure at DMT in Boulder, CO, and 980 hPa is the

  15. Towards a questionnaire for measuring affective benefits and costs of communication technologies

    NARCIS (Netherlands)

    Markopoulos, P.; Yarosh, S.; Abowd, G.

    2014-01-01

    As CSCW creates and investigates technologies for social communication, it is important to understand the emotional benefits and costs of these systems. We propose the Affec-tive Benefits and Costs of Communication Technologies (ABCCT) questionnaire to supplement traditional qualita-tive methods of

  16. STEM Career Cluster Engineering and Technology Education pathway in Georgia: Perceptions of Georgia engineering and technology education high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education survey

    Science.gov (United States)

    Crenshaw, Mark VanBuren

    This study examined the perceptions held by Georgia Science, Technology, Engineering, and Mathematics (STEM) Career Cluster Engineering and Technology Education (ETE) high school pathway teachers and Georgia's Career, Technical and Agriculture Education (CTAE) administrators regarding the ETE pathway and its effect on implementation within their district and schools. It provides strategies for ETE teaching methods, curriculum content, STEM integration, and how to improve the ETE pathway program of study. Current teaching and curricular trends were examined in ETE as well as the role ETE should play as related to STEM education. The study, using the Characteristics of Engineering and Technology Education Survey, was conducted to answer the following research questions: (a) Is there a significant difference in the perception of ETE teaching methodology between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? (b) Is there a significant difference in the perception of ETE curriculum content between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? (c) Is there a significant difference in the perception of STEM integration in the ETE high school pathway between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? and (d) Is there a significant difference in the perception of how to improve the ETE high school pathway between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? Suggestions for further research also were offered.

  17. The measurement of childbearing motivation in couples considering the use of assisted reproductive technology.

    Science.gov (United States)

    Miller, Warren B; Millstein, Susan G; Pasta, David J

    2008-01-01

    Relatively little is known about the motivational antecedents to the use of assisted reproductive technology (ART). In this paper we measure the fertility motivations of infertile couples who are considering the use of ART, using an established instrument, the Childbearing Questionnaire (CBQ). Our sample consists of 214 men and 216 women who were interviewed at home after an initial screening for ART but before making a final decision. We conducted two sets of analyses with the obtained data. In one set, we compared the scores on scales and subscales of the CBQ for the males and females in our sample with the scores for males and females from a comparable normative sample. For these analyses we first examined sample and gender differences with a four-group analysis of variance. We then conducted a series of linear models that included background characteristics as covariates and interactions between sample, gender, and age and between those three variables and the background characteristics. The results showed the expected higher positive and lower negative motivations in the ART sample and a significant effect on positive motivations of the interaction between sample and age. In the second set of analyses, we developed several new subscales relevant to facets of the desire for a child that appear to be important in ART decision-making. These facets include the desire to be genetically related to the child and the desire to experience pregnancy and childbirth. A third facet, the desire for parenthood, is already well covered by the existing subscales. The results showed the new subscales to have satisfactory reliability and validity. The results also showed that the original and new subscales predicted the three facets of the desire for a child in a multivariate context. We conclude with a general discussion of the way our findings relate both to ART decision-making and to further research on the motivations that drive it.

  18. Address to the international workshop on greenhouse gas mitigation, technologies and measures

    Energy Technology Data Exchange (ETDEWEB)

    Kant, A.

    1996-12-31

    The Netherlands has a long history in combatting natural forces for it`s mere survival and even creation. Around half of the country was not Yet existent around 2000 years ago: it was still below sea level that time. Building dikes and the discovery of eolic energy applied in windmills, allowing to pump water from one side of the dike to the other, are technologies that gradually shaped the country into its current form, a process that continues to materialize till the present day. Water has not always been an enemy of the country. In the Hundred Year War with Spain, during which the country was occupied territory for most of the time, the water was used to drive the Spanish armies from the country. As large parts are well below sea level breaking the dikes resulted in flooding the country which made the armoury of the Spanish army useless. In this way they had to give up the siege of several major Dutch cities that time. These events marked the gradual liberation of the Dutch territory. Consequently, in the discussion on adaption and prevention of the greenhouse effect the Netherlands has a clear stand. The greenhouse effect will occur anyway, even if countries deploy all possible counter measures at once. So their aim is to prevent the occurrence of the greenhouse effect to the highest extent possible, and to protect the most vulnerable areas meanwhile, especially the coastal zones. In order to reach these goals the Dutch government has established a Joint Implementation Experimental Programme in accordance with the provisions made by the Conference of Parties in Berlin (1995).

  19. Determining the feasibility of objective adherence measurement with blister packaging smart technology.

    Science.gov (United States)

    van Onzenoort, Hein A; Neef, Cees; Verberk, Willem W; van Iperen, H Peter; de Leeuw, Peter W; van der Kuy, Paul-Hugo M

    2012-05-15

    The results of a feasibility study of blister-pack smart technology for monitoring medication adherence are reported. Research in the area of objective therapy compliance measurement has led to the development of microprocessor-driven systems that record the time a unit dose is removed from blister packaging. One device under development is the Smart Blister-a label imprinted with event-detection circuitry that can be affixed to standard commercial blister cards. In the first trial of the device in actual clinical practice, 115 community-dwelling Dutch patients receiving valsartan maintenance therapy (160 mg once daily) were given 14-day blister packages equipped with the Smart Blister. On the return of empty blister cards to the 20 participating community pharmacies, the stored information was scanned and downloaded for data analysis and patient counseling purposes. A total of 245 Smart Blister-equipped packages were used by valsartan recipients during the eight-month study. The device was largely effective in recording patient and blister-card identification data and other desired information. However, in 17% of cases, the Smart Blister system registered multiple tablet-removal events at the same time, presumably indicating unintentional breakage of nearby conductive circuits and the need for design refinements. The Smart Blister-equipped medication cards were generally well received by patients and pharmacies. An evaluation of the functionality and robustness of the Smart Blister in a real-world clinical practice situation yielded some promising results, but the findings also indicated a need for design refinements and additional performance testing of the device.

  20. Seventy Years of Radio Science, Technology, Standards, and Measurement at the National Bureau of Standards

    Science.gov (United States)

    Gillmor, C. Stewart

    This large volume describes all the forms of radio research done at the National Bureau of Standards (now, National Institute of Standards and Technology) from its founding in 1901 until about 1980. The volume truly reflects its subtitle; it describes in great detail research in radio propagation and all its connections with geophysics and geospace, but also radio as instrument for discovery and application in meteorology, navigation, and in standards of measurement and testing in electronics.The book is a bit unwieldy and some of its chapters will be of most interest to former NBS employees. For example, there is a lengthy chapter on the transfer of radio research work from Washington, D.C, to Boulder, Colo., in the early 1950s, complete with photostat of the quit claim deed to NBS from the Boulder Chamber of Commerce. On the other hand, radio research developed and flourished in this country in the early days at industrial (Bell Telephone, General Electric, Westinghouse) and government (NBS, Naval Research Laboratory) labs more than in academia, and it is very interesting to learn how the labs interacted and to read details of the organizational structure. I can attest personally to the great difficulties in locating materials concerning radio history. While we have numerous volumes devoted to certain popular radio heroes, little is available concerning government radio pioneers such as L. W. Austin, who directed the U.S. Navy's radio research for many years while situated physically at the Bureau of Standards, or J. H. Dellinger, long-time chief of the Radio Section and head spokesman on radio for the U.S. government until the 1930s.

  1. Measures for the Diffusion of Solar PV are Aligned in Technology Action Plans for Six Countries in Africa

    DEFF Research Database (Denmark)

    Nygaard, Ivan; Hansen, Ulrich Elmer; Pedersen, Mathilde Brix

    2014-01-01

    African countries from 2010 to 2013, dedicated government committees have prioritized climate change mitigation technologies and developed action plans for the diffusion of the selected technologies. The project results show that solar PV is high on the agenda in Africa. Six out of ten countries...... in the region prioritized solar PV, and action plans for the diffusion of solar home systems were put forward in Cote d’Ivoire, Kenya, Mali and Senegal, while the implementation of grid-connected systems was proposed in Rwanda, Mali and Senegal. The project reports and technology action plans prepared...... in these six countries are used as the basis for comparing how solar PV is perceived in these countries and how policy measures enabling environmental adjustments and investment programmes are being planned to promote diffusion of the technology in these different contexts....

  2. Measuring risk/benefit perceptions of emerging technologies and their potential impact on communication of public opinion toward science.

    Science.gov (United States)

    Binder, Andrew R; Cacciatore, Michael A; Scheufele, Dietram A; Shaw, Bret R; Corley, Elizabeth A

    2012-10-01

    This study presents a systematic comparison of two alternative measures of citizens' perceptions of risks and benefits of emerging technologies. By focusing on two specific issues (nanotechnology and biofuels), we derive several insights for the measurement of public views of science. Most importantly, our analyses reveal that relying on global, single-item measures may lead to invalid inferences regarding external influences on public perceptions, particularly those related to cognitive schema and media use. Beyond these methodological implications, this analysis suggests several reasons why researchers in the area of public attitudes toward science must revisit notions of measurement in order to accurately inform the general public, policymakers, scientists, and journalists about trends in public opinion toward emerging technologies.

  3. FY 1998 achievement report on the photon measuring/processing technology (R and D of the photon measuring/processing technology); 1998 nendo foton keisoku kako gijutsu seika hokokusho. Foton keisoku kako gijutsu no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    In this project, the survey/arrangement were made of the trend of the recent technology such as photon (laser) measuring/processing/generation and a possibility of adopting the photon technology to the field except measuring/processing, to clarify technical subjects for establishing/commercializing the photon technology. Also for the purpose of reducing the energy cost by improving the performance of laser processing device, prolonging the life and reducing the operational cost, the development of the following were carried out: (1) high efficiency laser processing device. (2) high conversion efficiency laser diode. In (1), a laser generating device with Yb:YAG crystal as oscillating medium was trially manufactured, and the power of 35W and optical-optical conversion efficiency of 7.1% were obtained. A comparison was also made between Yb:YAG laser and Nd:YAG laser, and made it clear that as the industrial use high power laser, Nd:YAG laser has the advantage over the other. In (2), the development was made of technology for simultaneous uniform growth of more than one LD crystal wafers with high conversion efficiency and technology for evaluation. Namely, the high uniformity crystal wafer with variations among wafers of {+-}4% was obtained using the introduced high efficiency crystal growth device and high efficiency thin film evaluation device. (NEDO)

  4. Choosing scientific-technological priorities with a potential for creating new industries: a system of measurable indicators

    Directory of Open Access Journals (Sweden)

    N. G. Kurakova

    2017-01-01

    Full Text Available The challenge of building a robust technological base to ensure an advancing growth of the economy and global competitiveness of domestic companies can be achieved only by target-focused channeling of state funds and private resources into a limited number of priority areas. The purpose of the research is to develop a system with measurable indicators of scientific-technological areas, which will allow one to compare, range, and insightfully validate scientific-technological areas, which have a maximum potential for creating new industries in Russia with minimal risks and barriers. The article shares results of this system’s approbation. It is expected that using a system of such measurable indicators will help to rationalize management decisions, leading to the concentration of intellectual, financial, organizational and infrastructure resources on priority areas, which need to be developed for Russia it to meet its challenges.

  5. Optimization and Validation of a Surface Wipe Method to Determine Cyanide and Cyanate: Application to the Emergency Destruction System

    Science.gov (United States)

    2012-08-01

    NJ b WC-7 Grade 42, 55 mm filter paper Whatman, Piscataway, NJ b WC-8 Cellulose nitrate membrane filter, 47 mm Whatman, Piscataway, NJ b WC-9...density polypropylene plastic bottle. 2.5 Standards Sodium cyanide (NaCN, ≥97.0%, CAS no. 143-33-9) and potassium cyanate (KOCN, ≥97.0...Agilent Technologies model 3D CE system, with an ultraviolet (deuterium lamp) diode array detector, was used to determine the quantities of CN and OCN

  6. Corrective measures technology for shallow land burial at arid sites: field studies of biointrusion barriers and erosion control

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Hakonson, T.E.; Lopez, E.A.

    1986-03-01

    The field research program involving corrective measures technologies for arid shallow land burial (SLB) sites is described. Results of field testing of a biointrusion barrier installed at a close-out waste disposal site (Area B) at Los Alamos are presented. Soil erosion and infiltration of water into a simulated trench cap with various surface treatments were measured, and the interaction between erosion control and subsurface water dynamics is discussed relative to waste management

  7. Technology of Measuring equipment for Air Pollution. Development of Mobile Air Pollution monitoring system (LIDAR)

    International Nuclear Information System (INIS)

    Cha, Hyung Ki; Song, Ky Seok; Rhee, Young Joo; Kim, Duck Hyun; Yang, Ki Ho; Lee, Jong Min; Cha, Byung Heon; Lee, Kang Soo

    1999-01-01

    Most air pollution monitoring technologies accompany a time-consuming sample treatment process and provides pollution information only for a local area. Thus, they have a critical restriction in monitoring time-dependent pollution variation effectively over the wide range of area both in height and in width. LIDAR (Light detection and ranging) is a new technology to overcome such drawbacks of the existing pollution monitoring technologies and has long been investigated in the advanced countries. The goal of this project is to develop the mobile air pollution monitoring system and to apply the system to the detection of various pollutants, such as ozone, nitrogen dioxide, sulfur dioxide and aerosols

  8. Technology of Measuring equipment for Air Pollution. Development of Mobile Air Pollution monitoring system (LIDAR)

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Hyung Ki; Song, Ky Seok; Rhee, Young Joo; Kim, Duck Hyun; Yang, Ki Ho; Lee, Jong Min; Cha, Byung Heon; Lee, Kang Soo

    1999-01-01

    Most air pollution monitoring technologies accompany a time-consuming sample treatment process and provides pollution information only for a local area. Thus, they have a critical restriction in monitoring time-dependent pollution variation effectively over the wide range of area both in height and in width. LIDAR (Light detection and ranging) is a new technology to overcome such drawbacks of the existing pollution monitoring technologies and has long been investigated in the advanced countries. The goal of this project is to develop the mobile air pollution monitoring system and to apply the system to the detection of various pollutants, such as ozone, nitrogen dioxide, sulfur dioxide and aerosols.

  9. Fiscal 1999 research report. Research on photonic measurement and processing technology (Development of high- efficiency production process technology); 1999 nendo foton keisoku kako gijutsu seika hokokusho. Kokoritsu seisan process gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This report summarizes the fiscal 1999 research result on R and D of laser processing technology, in-situ measurement technology, and generation and control technology of photon as laser beam source, for energy saving and efficiency improvement of energy-consumptive production processes such as welding, jointing, surface treatment and fine particle fabrication. The research was carried out by a technical center, 9 companies and a university as contract research. The research themes are as follows: (1) Processing technology: simulation technology for laser welding phenomena, synthesis technology for quantum dot functional structures, and fabrication technology for functional composite materials, (2) In-situ measurement technology: fine particle element and size measurement technology, (3) All- solid state laser technology: efficient rod type LD-pumping laser module, pumping chamber of slab type laser, improvement of E/O efficiency of laser diode, high-quality nonlinear crystal growth technology, fabrication technology for nonlinear crystals, and high-efficiency harmonic generation technology. Comprehensive survey was also made on high- efficiency photon generation technologies. (NEDO)

  10. The importance of quantitative measurement methods for uveitis: laser flare photometry endorsed in Europe while neglected in Japan where the technology measuring quantitatively intraocular inflammation was developed.

    Science.gov (United States)

    Herbort, Carl P; Tugal-Tutkun, Ilknur

    2017-06-01

    Laser flare photometry (LFP) is an objective and quantitative method to measure intraocular inflammation. The LFP technology was developed in Japan and has been commercially available since 1990. The aim of this work was to review the application of LFP in uveitis practice in Europe compared to Japan where the technology was born. We reviewed PubMed articles published on LFP and uveitis. Although LFP has been largely integrated in routine uveitis practice in Europe, it has been comparatively neglected in Japan and still has not received FDA approval in the USA. As LFP is the only method that provides a precise measure of intraocular inflammation, it should be used as a gold standard in uveitis centres worldwide.

  11. Source technology as the foundation for modern infra-red counter measures (IRCM)

    Science.gov (United States)

    Grasso, Robert J.

    2010-10-01

    Protection of military aircraft from IR guided threats is paramount to ensure the survivability of aircrews, platforms, and to ensure mission success. At the foundation of all IRCM systems is the source; that component that provides the in-band radiant energy required for threat defeat. As such, source technology has evolved with IRCM technology to encompass the evolving systems architectures that encompass IRCM: 1) "Hot Brick" omni-directional sources; 2) arc lamps, and; 3) lasers. Lasers, as IRCM sources continue to evolve to meet the challenges of ever-evolving threats, superior techniques, economy of installation, and superior source technology. Lasers represent the single greatest advance in IRCM source technology and continue to evolve to meet ever more sophisticated threats. And have been used with great effect in all modern IRCM systems; evolving from frequency doubled CO2 lasers, to solid state lasers with OPOs, to semiconductor lasers including Quantum Cascade Lasers (QCLs); these last devices represent the latest advance in IRCM source technology offering all-band coverage, architectural simplicity, and economy of scale. While QCLs represent the latest advance in IRCM laser technology, fiber lasers show much promise in addressing multi-band operation as well as the ability to be coherently combined to achieve even greater output capability. Also, ultra-short pulse lasers are evolving to become practical for IRCM applications. Stay tuned ......

  12. Development of controlled drilling technology and measurement method in the borehole. Phase 2. Upgrading of drilling and measurement system and its application to the fault

    International Nuclear Information System (INIS)

    Kiho, Kenzo; Shin, Koichi; Ohtsu, Masashi

    2009-01-01

    In Japan, the soft sedimentary rock of the Neogene tertiary is being focused as a host rock for High Level Waste (HLW) disposal. Especially, the soft sedimentary rock at the coastal area is thought to be one of the best candidates, since there is little driving force of the underground water. The measurement and logging of the bore hole in order to investigate the hydro-geological and geo-mechanical conditions of the host rock is a very important way to examine the potential of the disposal candidates. Since 2000, CRIEPI (Central Research Institute of Electric Power Industry) has been conducting the project on controlled drilling and the logging/measurement technologies in its boreholes. Based on the results of phase 1(2000-2004), CRIEPI has been developing the drilling and logging/measurement technologies for fault zone during phase 2 (2005-2007). The drilling technology such as drilling for fault zone, horizontal drilling, long hole drilling, coring and locality detection was developed and these applicability was confirmed while drilling. The permeability/water-sampling/imaging tool was revised to apply wider borehole and longer measuring section. The WL-LWD was improved to be tougher in the hole. The borehole pressure meter and stress measurement tools were unified. Each tools necessary for the monitoring system is manufactured. The applicability of these tools and systems were verified in the borehole. After conducting surveys for the Omagari fault distributing at the Kami-horonobe area, the drilling site and borehole trace was decided in 2005. Considering the planned trace, the bore hole was drilled to the 683.5m long and its core recovery was 99.8%. Using borehole logging/measurement/survey, the geological, hydrological, geo-mechanical, geophysical and geochemical data were collected and the Omagari fault was characterized. (author)

  13. Residual DNA analysis in biologics development: review of measurement and quantitation technologies and future directions.

    Science.gov (United States)

    Wang, Xing; Morgan, Donna M; Wang, Gan; Mozier, Ned M

    2012-02-01

    Residual DNA (rDNA) is comprised of deoxyribonucleic acid (DNA) fragments and longer length molecules originating from the host organism that may be present in samples from recombinant biological processes. Although similar in basic structural base pair units, rDNA may exist in different sizes and physical forms. Interest in measuring rDNA in recombinant products is based primarily on demonstration of effective purification during manufacturing, but also on some hypothetical concerns that, in rare cases, depending on the host expression system, some DNA sequences may be potentially infectious or oncogenic (e.g., HIV virus and the Ras oncogene, respectively). Recent studies suggest that a sequence known as long interspersed nucleotide element-1 (LINE-1), widely distributed in the mammalian genome, is active as a retrotransposon that can be transcribed to RNA, reverse-transcribed into DNA and inserts into a new site in genome. This integration process could potentially disrupt critical gene functions or induce tumorigenesis in mammals. Genomic DNA from microbial sources, on the other hand, could add to risk of immunogenicity to the target recombinant protein being expressed, due to the high CpG content and unmethylated DNA sequence. For these and other reasons, it is necessary for manufacturers to show clearance of DNA throughout production processes and to confirm low levels in the final drug substance using an appropriately specific and quantitative analytical method. The heterogeneity of potential rDNA sequences that might be makes the testing of all potential analytes challenging. The most common methodology for rDNA quantitation used currently is real-time polymerase chain reaction (RT-PCR), a robust and proven technology. Like most rDNA quantitation methods, the specificity of RT-PCR is limited by the sequences to which the primers are directed. To address this, primase-based whole genome amplification is introduced herein. This paper will review the recent

  14. Polymedication Electronic Monitoring System (POEMS) - a new technology for measuring adherence.

    Science.gov (United States)

    Arnet, Isabelle; Walter, Philipp N; Hersberger, Kurt E

    2013-01-01

    Reliable and precise measurement of patient adherence to medications is feasible by incorporating a microcircuitry into pharmaceutical packages of various designs, such that the maneuvers needed to remove a dose of drug are detected, time-stamped, and stored. The principle is called "electronic medication event monitoring" but is currently limited to the monitoring of a single drug therapy. Our aims were introducing a new technology; a clear, self-adhesive polymer film, with printed loops of conductive wires that can be affixed to multidrug punch cards for the electronic adherence monitoring of multiple medication regimens (Polymedication Electronic Monitoring System, POEMS), and illustrating potential benefits for patient care. We present a preliminary report with one patient experience. Our illustrative case was supplied with a pre-filled 7-day multiple medication punch card with unit-of-use doses for specific times of the day (six pills in the morning cavity, two pills in the evening cavity, and one pill in case of insomnia in the bedtime cavity), with the new electronic film affixed on it. The intake times over 1 week were extremely skewed (median intake hours at 2:00 pm for the morning doses and at 6:40 pm for the evening doses). After an intervention aimed at optimizing the timing adherence, the morning and evening intake hours became more balanced, with 42.3% of correct dosing intervals (±3 h) for drugs with twice daily intake (vs. 0% before the intervention). The electronic monitoring of the entire therapy revealed an intake pattern that would have remained undiscovered with any other device and allowed a personalized intervention to correct an inadequate medication intake behavior. POEMS may guide health professionals when they need to optimize a pharmacotherapy because of suspected insufficient adherence. Further, knowing the intake pattern of the entire pharmacotherapy can elucidate unreached clinical outcome, drug-drug interactions, and drug resistance

  15. Measurement of Walking Ground Reactions in Real-Life Environments: A Systematic Review of Techniques and Technologies.

    Science.gov (United States)

    Shahabpoor, Erfan; Pavic, Aleksandar

    2017-09-12

    Monitoring natural human gait in real-life environments is essential in many applications, including quantification of disease progression, monitoring the effects of treatment, and monitoring alteration of performance biomarkers in professional sports. Nevertheless, developing reliable and practical techniques and technologies necessary for continuous real-life monitoring of gait is still an open challenge. A systematic review of English-language articles from scientific databases including Scopus, ScienceDirect, Pubmed, IEEE Xplore, EBSCO and MEDLINE were carried out to analyse the 'accuracy' and 'practicality' of the current techniques and technologies for quantitative measurement of the tri-axial walking ground reactions outside the laboratory environment, and to highlight their strengths and shortcomings. In total, 679 relevant abstracts were identified, 54 full-text papers were included in the paper and the quantitative results of 17 papers were used for meta-analysis and comparison. Three classes of methods were reviewed: (1) methods based on measured kinematic data; (2) methods based on measured plantar pressure; and (3) methods based on direct measurement of ground reactions. It was found that all three classes of methods have competitive accuracy levels with methods based on direct measurement of the ground reactions showing highest accuracy while being least practical for long-term real-life measurement. On the other hand, methods that estimate ground reactions using measured body kinematics show highest practicality of the three classes of methods reviewed. Among the most prominent technical and technological challenges are: (1) reducing the size and price of tri-axial load-cells; (2) improving the accuracy of orientation measurement using IMUs; (3) minimizing the number and optimizing the location of required IMUs for kinematic measurement; (4) increasing the durability of pressure insole sensors, and (5) enhancing the robustness and versatility of the

  16. Measurement of Walking Ground Reactions in Real-Life Environments: A Systematic Review of Techniques and Technologies

    Directory of Open Access Journals (Sweden)

    Erfan Shahabpoor

    2017-09-01

    Full Text Available Monitoring natural human gait in real-life environments is essential in many applications, including quantification of disease progression, monitoring the effects of treatment, and monitoring alteration of performance biomarkers in professional sports. Nevertheless, developing reliable and practical techniques and technologies necessary for continuous real-life monitoring of gait is still an open challenge. A systematic review of English-language articles from scientific databases including Scopus, ScienceDirect, Pubmed, IEEE Xplore, EBSCO and MEDLINE were carried out to analyse the ‘accuracy’ and ‘practicality’ of the current techniques and technologies for quantitative measurement of the tri-axial walking ground reactions outside the laboratory environment, and to highlight their strengths and shortcomings. In total, 679 relevant abstracts were identified, 54 full-text papers were included in the paper and the quantitative results of 17 papers were used for meta-analysis and comparison. Three classes of methods were reviewed: (1 methods based on measured kinematic data; (2 methods based on measured plantar pressure; and (3 methods based on direct measurement of ground reactions. It was found that all three classes of methods have competitive accuracy levels with methods based on direct measurement of the ground reactions showing highest accuracy while being least practical for long-term real-life measurement. On the other hand, methods that estimate ground reactions using measured body kinematics show highest practicality of the three classes of methods reviewed. Among the most prominent technical and technological challenges are: (1 reducing the size and price of tri-axial load-cells; (2 improving the accuracy of orientation measurement using IMUs; (3 minimizing the number and optimizing the location of required IMUs for kinematic measurement; (4 increasing the durability of pressure insole sensors, and (5 enhancing the robustness and

  17. Development of Gravity Acceleration Measurement Using Simple Harmonic Motion Pendulum Method Based on Digital Technology and Photogate Sensor

    Science.gov (United States)

    Yulkifli; Afandi, Zurian; Yohandri

    2018-04-01

    Development of gravitation acceleration measurement using simple harmonic motion pendulum method, digital technology and photogate sensor has been done. Digital technology is more practical and optimizes the time of experimentation. The pendulum method is a method of calculating the acceleration of gravity using a solid ball that connected to a rope attached to a stative pole. The pendulum is swung at a small angle resulted a simple harmonic motion. The measurement system consists of a power supply, Photogate sensors, Arduino pro mini and seven segments. The Arduino pro mini receives digital data from the photogate sensor and processes the digital data into the timing data of the pendulum oscillation. The calculation result of the pendulum oscillation time is displayed on seven segments. Based on measured data, the accuracy and precision of the experiment system are 98.76% and 99.81%, respectively. Based on experiment data, the system can be operated in physics experiment especially in determination of the gravity acceleration.

  18. Phase-chronometric measuring systems for the provision of technological processes and diagnostics of the production of electromechanical engineering systems

    Directory of Open Access Journals (Sweden)

    Tumakova Ekaterina

    2017-01-01

    Full Text Available In paper the main problems and objectives assessment of the current technical condition of the machine-building equipment are considered. Modern measuring systems used in engineering analysis. The paper considers a phase-chronometric information technology-metrological support for the evaluation of the technical condition of the synchronous electromechanical systems on the example of turbine CHP. Analysis of the main problems in the diagnosis of electromechanical systems is given. Phase-chronometric method as a basis for building a new system of diagnosis of electromechanical systems reviewed. The paper describes the main elements of technology, assessment of the economic effects of its introduction in the industry.

  19. Use of Remote Technology in the Surface Water Environmental Monitoring Program at SRS Reducing Measurements in the Field - 13336

    International Nuclear Information System (INIS)

    Eddy, T.; Terry, B.; Meyer, A.; Hall, J.; Allen, P.; Hughey, D.; Hartley, T.

    2013-01-01

    There are a wide range of sensor and remote technology applications available for use in environmental monitoring programs. Each application has its own set of limitations and can be challenging when attempting to utilize it under diverse environmental field conditions. The Savannah River Site Environmental Monitoring Program has implemented several remote sensing and surface water flow technologies that have increased the quality of the data while reducing the number of field measurements. Implementation of this technology reduced the field time for personnel that commute across the Savannah River Site (SRS) over a span of 310 square miles. The wireless surface water flow technology allows for immediate notification of changing field conditions or equipment failure thus reducing data-loss or erroneous field data and improving data-quality. This wireless flow technology uses the stage-to-flow methodology coupled with implementation of a robust highly accurate Acoustic Doppler Profiler system for measuring discharge under various field conditions. Savings for implementation of the wireless flow application and Flowlink R technology equates to approximately 1175 hours annually for the radiological liquid effluent and surveillance programs. The SonTek River Suveyor and Flowtracker technologies are utilized for calibration of the wireless flow monitoring devices in the site streams and validation of effluent flows at the SRS. Implementation of similar wireless devices is also planned in the National Pollutant Discharge Elimination System (NPDES) Storm-water Monitoring Program. SRS personnel have been developing a unique flow actuator device. This device activates an ISCO TM automated sampler under flowing conditions at storm-water outfall locations across the site. This technology is unique in that it was designed to be used under field conditions with rapid changes in flow and sedimentation where traditional actuators have been unsuccessful in tripping the automated

  20. Using information technology to measure, monitor and report on environmental performance

    Energy Technology Data Exchange (ETDEWEB)

    Ford, G.

    1999-07-01

    This article provides an overview of the process of environmental performance evaluation (EPE), including a discussion of the rationale and context for EPE as a key component of environmental management and sustainability metrics for businesses around the world. New and emerging developments, such as environmental performance benchmarking and standardized reporting, are highlighted. The ISO 14000 model for EPE and its environmental performance indicators is described. The article then discusses the need for new technology, including the Internet, to meet these new demands, and examines the important role of information technology in creating an efficient and effective system for the EPE process. In this regard, issues such as scaleability, data identification, data collection, reporting, user interface, integration and data warehousing are explored, and examples of the application of information technology to address these issues are provided. The article concludes with a discussion of the need to use emerging information technology to integrate various key types of performance information, including environmental, according to the balanced scorecard model for integrated business sustainability metrics. It concludes that such technology should be used now, even in the absence of global standards for performance metrics, and in spite of the theoretical and practical challenges in doing so, in order to move toward the important goal of achieving comprehensive sustainability metrics.

  1. Lessons from patents. Using patents to measure technological change in environmental models

    International Nuclear Information System (INIS)

    Popp, David

    2005-01-01

    When studying solutions to long-term environmental problems such as climate change, it is important to consider the role that technological change may play. Nonetheless, to date few economic models of environmental policy explicitly model the link between policy and technological change. There is a growing body of evidence that the incentives offered by prices and environmental regulations have a strong influence on both the creation and adoption of new technologies. In several recent papers, I have used patent data to examine the links between environmental policy and technological change. In addition, I have used the results of this research to calibrate the ENTICE model (for ENdogenous Technological change) of climate change, which links energy-related R and D to changes in the price of carbon. Drawing on my experiences from empirical studies on innovation and from modeling the climate change problem, in this paper I review some of the key lessons from recent empirical work using patents to study environmental innovation and diffusion, and discuss its implications for modeling climate change policy. I conclude by offering suggestions for future research

  2. Measurement of casting parameters in ZnAlCu3 molds created by additive technology

    Directory of Open Access Journals (Sweden)

    S. Medić

    2016-10-01

    Full Text Available This paper examines the parameters of casting ZnAl4Cu3 alloy (volume, castability, density and occupancy of the mold in mold made additive technology. Molds made by additive technology are: cheaper in production of a small number of castings, geometrically more accurate and faster made. From obtained results of this paper it is clearly seen that printed mold must be protected with thermal coating because liquid adhesive of powder otherwise evaporates during casting and creates additional moisture in the mold, as it was noted.

  3. The thin-walled abnormity measurement technology research based on CCD

    International Nuclear Information System (INIS)

    Wang Bin

    2014-01-01

    The character of the thin-walled irregular parts is: the measured parameters for spatial structure size, need to design special measurement positioning fixture to complete detection, the wall thickness is very thin, and the processing is composite, its size is small and shape is complex, it is difficulty to collect image edge by using the optical measurement method. In this paper, a special measurement method of CCD that based on the image measurement technique was advanced, this kind of parts was measured quickly, accurately and automaticly through design the high precision positioning fixture and image acquisition method. At the same time, the comprehensive evaluation standard was given to assess the measurement accuracy method, and the reliability of measurement method was ensured. (author)

  4. Measuring primary school teachers' pedagogical content knowledge in technology education with a multiple choice test

    NARCIS (Netherlands)

    Rohaan, E.J.; Taconis, R.; Jochems, W.M.G.; Fatih Tasar, M.; Cakankci, G.; Akgul, E.

    2009-01-01

    Pedagogical content knowledge (PCK) is a crucial part of a teacher’s knowledge base for teaching. Studies in the field of technology education for primary schools showed that this domain of teacher knowledge is related to pupils’ increased learning, motivation, and interest. The common methods to

  5. Multimodal Learning Analytics and Education Data Mining: Using Computational Technologies to Measure Complex Learning Tasks

    Science.gov (United States)

    Blikstein, Paulo; Worsley, Marcelo

    2016-01-01

    New high-frequency multimodal data collection technologies and machine learning analysis techniques could offer new insights into learning, especially when students have the opportunity to generate unique, personalized artifacts, such as computer programs, robots, and solutions engineering challenges. To date most of the work on learning analytics…

  6. Measurement of Oil and Natural Gas Well Pad Enclosed Combustor Emissions Using Optical Remote Sensing Technologies

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD) and EPA Region 8 are collaborating under the EPA’s Regional Applied Research Effort (RARE) program to evaluate ground-based remote sensing technologies that could be used to characterize emis...

  7. Education Administrators' Evaluation of Precautionary Measures Taken against Technology-Based Anger and Aggression in Students

    Science.gov (United States)

    Gerçel, Emete; Dagli, Gökmen

    2017-01-01

    Technology is thought to affect people's behaviors and trigger feelings of anger and aggression, which in turn manifest into other problems. It is more important to develop strategies in order to avoid these behavioral problems than to concentrate on the anger and aggression demonstrated by individuals. This study aimed to develop strategies to…

  8. Development of the neutron technology for measuring the moisture content in China

    International Nuclear Information System (INIS)

    Zhao Jingwu; Liu Shengkang; Zhang Zhiping

    2011-01-01

    According to measuring mode (in-hopper, surface, sampling neutron moisture gauge), the development and application of neutron moisture gauge in china were introduced, which include the following course from only measuring moisture content of soil to monitoring moisture content of farmland and saving water for irrigating farmland, from measuring moisture content of pellet to coke and coal material, from only measuring moisture content to computerized neutron moisture gauges with density compensation and o f high precision. (authors)

  9. The application of image acquisition and processing technology in measurement of beam profile on particle accelerator

    International Nuclear Information System (INIS)

    Nie Zhenpeng; Zheng Yong; Shen Zhiqing; Wang Shaoming

    2000-01-01

    An introduction is given to the real-time measuring method which can measure the intensity and profile of the beam by a scintillator screen on HIRFL (Heavy Ion Research Facility of Lanzhou). Hardware structure is described briefly, methods of the software design are mainly presented. The system can make a dynamic analysis on the faculae image and has many advantages, such as good reliability, high precision, intuitional measurement, friendly interface of the application software etc. Finally some results of measurement are given

  10. Risk analysis and protective measures for occupationally workers with technologically enhanced naturally occurring radioactive materials

    International Nuclear Information System (INIS)

    Hegazy, R.A.M.

    2011-01-01

    Naturally occurring radionuclides are present in many natural resources. Elevated concentrations of these radionuclides are often found in certain geological materials, namely igneous rocks and ores. Human activities that exploit these resources may lead to enhanced concentrations of radionuclides (often referred to as technologically enhanced naturally occurring radioactive material (TE-NORM). Enhanced levels of natural background radiation are encountered in many occupational industrial activities involving a large number of workers. Uncontrolled activities associated with TE-NORM can contaminate the environment and pose a risk to human health. This risk can be alleviated by the adoption of controls to identify where NORM is present; and cleaning the NORM-contaminated equipment and waste management while protecting workers. The main objective of this study is to investigate the natural radioactivity and the hazard parameters in the TE-NORM samples from different industrial activities. Also to describe the models and develop the computer codes that allow one to estimate the risk of cancer resulting from any specified dose of ionizing radiation for occupationally workers in different industrial activities. The present study deals with 50 different samples. This waste generated from petroleum fields, phosphate fertilizers samples, consumer product samples from China, ceramic and zircon samples. The radon exhalation rates calculated using solid state nuclear track detector (CR-39). The value of radon exhalation rate 58.82±5.3 x10 3 , 4.28±0.49 x10 3 and 0.306±0.025 x10 3 Bq/m 2 h for scale, sludge and sand, respectively. The value of radon exhalation rate 82.67±7.98, 62.58 ±5.7, 46.16 ±3.91 and 198.51±18.68 Bq/m 2 h for phosphate fertilizers samples, consumer product samples from China, ceramic and zircon samples, respectively. The 226 Ra activity concentrations were 301.4±771.5, 52.1±438 and 2.56±55.37 kBq/kg for scale, sludge and sand, respectively. The

  11. Portfolio and diversity analysis of energy technologies using full-spectrum risk measures

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, J.C.; Beurskens, L.W.M. [ECN Policy Studies, Petten (Netherlands); Awerbuch, S.; Stirling, A.C. [Science and Technology Policy Research SPRU, University of Sussex, Brighton, East Sussex (United Kingdom)

    2005-01-01

    Energy diversity and security have been evaluated using the multi-criteria diversity analysis (MDA) of A. C. Stirling as well as more classical Markowitz mean-variance portfolio (MVP) theory. Each of these approaches is capable of producing an efficient frontier that shows optimal generating portfolio mixes, those that maximize performance (i.e. minimize cost) while minimizing risk or uncertainty (i.e. maximizing diversity). MDA covers the full-spectrum of uncertainty, reaching into areas where little is known about the range of possible outcomes, let alone their probabilities. However, MDA does not exploit statistical information that is available in certain parts of the risk-spectrum where historic means, variances and co-variances of outcomes are known and can be used to make inferences about the future. MVP operates precisely in this space. However, like other capital market models, its prescriptive value rests on the idea that the past is the best guide to the future. As such MVP can be blind to unforeseen events that create future structural change. Used in isolation, therefore, neither model offers a fully satisfying result. An MVP analysis of energy technologies tells us how to create generating portfolios with minimum cost and risk (cost-variance), assuming historic ranges predict the future well enough. If policy makers are confident that past expected values, ranges and variances will continue, then the solutions are fine. But what about so-called unknown risks? Possible future events that may produce outcomes with unknown consequences? This is where MDA becomes a potentially powerful tool. This project seeks to merge the two approaches and to map the space between optimal MVP and MDA solutions using a combined MVP+MDA optimization and weighting scheme. Placing 100% of the emphasis on MVP, for example, produces results based purely on historical trends. These may serve for short planning horizons. On the other hand, giving MDA a 100% weighting produces

  12. Measuring and factors influencing mathematics teachers' technological pedagogical and content knowledge (TPACK) in three southernmost provinces, Thailand

    Science.gov (United States)

    Adulyasas, Lilla

    2017-08-01

    Technology becomes an important role in teaching and learning mathematics nowadays. Integrating technology in the classroom helps students have better understanding in many of mathematics concepts. One of the major framework for assessing the knowledge of integrating technology with the pedagogy and content in the classroom is Technological Pedagogical and Content Knowledge (TPACK) framework. This study aimed to measure mathematics teachers' TPACK in three southernmost provinces, Thailand and to study on factors influencing their TPACK. A quantitative study was carried out with 210 secondary level mathematics teachers in the three southernmost provinces, Thailand which were random by two stage sampling technique. Data were collected by using a questionnaire to identify the level of mathematics teachers' TPACK and the factors influencing their TPACK. Descriptive statistics, Pearson product moment correlation and multiple regression analysis were used for analysing data. Findings reveal that the mean score of mathematics teachers' TPACK is 3.33 which is in the medium level and the three factors which have positive correlation at .05 level of significant with the level of TPACK are teaching experience factor, individual specialization factor and personal & organization factor. However, there are only two factors influencing mathematics teachers' TPACK. The two factors are individual specialization factor and personal & organization factors. These give better understanding on mathematics teachers' knowledge in integrating technology with the pedagogy and content which will be the important information for improving mathematics teachers' TPACK.

  13. Rapid exchange ultra-thin microcatheter using fibre-optic sensing technology for measurement of intracoronary fractional flow reserve.

    Science.gov (United States)

    Diletti, Roberto; Van Mieghem, Nicolas M; Valgimigli, Marco; Karanasos, Antonis; Everaert, Bert R C; Daemen, Joost; van Geuns, Robert-Jan; de Jaegere, Peter P; Zijlstra, Felix; Regar, Evelyn

    2015-08-01

    The present report describes a novel coronary fractional flow reserve (FFR) system which allows FFR assessment using a rapid exchange microcatheter (RXi). The RXi microcatheter is compatible with standard 0.014" coronary guidewires facilitating lesion negotiation and FFR assessment in a wide range of coronary anatomies. In case of serial lesions, a microcatheter would have the important advantage of allowing multiple pullbacks while maintaining wire access to the vessel. The RXi is a fibre-optic sensor technology-based device. This technology might allow reduction in signal drift. The RXi microcatheter's fibre-optic sensor is located 5 mm from the distal tip. The microcatheter profile at the sensor site is 0.027"0.036". The segment of the catheter which is intended to reside within the target lesion is proximal to the sensor and has dimensions decreased to 0.020"0.025"; these dimensions are comparable to a 0.022" circular-shaped wire. The RXi microcatheter FFR system represents a novel technology that could allow easier lesion negotiation, maintaining guidewire position, facilitating pullbacks for assessment of serial lesions and simplifying the obtainment of post-intervention FFR measurements. The optical sensing technology could additionally result in less signal drift. Further investigations are required to evaluate the clinical value of this technology fully.

  14. Organization of measurements of nonelectric quantities in the T-15 tokamak technological data acquisition system

    International Nuclear Information System (INIS)

    Gerasimov, V.P.; Grachev, V.F.; Komina, V.F.; Skosarev, V.A.

    1982-01-01

    Equipment for and organization of measurements of signals of the T-15 tokamak cryogenic and vacuum subsystems including temperature measurements of surfaces of the device units and structures are considered. TVO type resistors are used as transducers for low-temperature measurements. High-temperature measurements are performed by thermocouple transducers. The signal conversion apparatus for transducers includes low-level signal commutators and analog-to-digital converters of integrating type. The constitutuent errors of measurement conversions are considered. It is shown that, to decrease the effect of magnetic field, twisted wires with an additional armoured screen of zinc-plated iron should be used

  15. Reliability and efficiency upgrades of power systems operation by implementing intelligent electronic devices with synchrophasor measurement technology support

    Directory of Open Access Journals (Sweden)

    Mokeev Alexey

    2017-01-01

    Full Text Available This paper reviews issues of reliability and efficiency upgrades of power systems functions by means of a widespread implementation of intelligent electronic devices (IED in various purposes supporting synchrophasor measurement technology. Thus, such issues as IED’s operational analysis in the conditions of electromagnetic and electromechanical transient processes and synthesis of digital filters that improve static and dynamic responses of these devices play an important role in their development.

  16. Reliability and efficiency upgrades of power systems operation by implementing intelligent electronic devices with synchrophasor measurement technology support

    OpenAIRE

    Mokeev Alexey

    2017-01-01

    This paper reviews issues of reliability and efficiency upgrades of power systems functions by means of a widespread implementation of intelligent electronic devices (IED) in various purposes supporting synchrophasor measurement technology. Thus, such issues as IED’s operational analysis in the conditions of electromagnetic and electromechanical transient processes and synthesis of digital filters that improve static and dynamic responses of these devices play an important role in their devel...

  17. Rapid Measurement of Soil Carbon in Rice Paddy Field of Lombok Island Indonesia Using Near Infrared Technology

    Science.gov (United States)

    Kusumo, B. H.; Sukartono, S.; Bustan, B.

    2018-02-01

    Measuring soil organic carbon (C) using conventional analysis is tedious procedure, time consuming and expensive. It is needed simple procedure which is cheap and saves time. Near infrared technology offers rapid procedure as it works based on the soil spectral reflectance and without any chemicals. The aim of this research is to test whether this technology able to rapidly measure soil organic C in rice paddy field. Soil samples were collected from rice paddy field of Lombok Island Indonesia, and the coordinates of the samples were recorded. Parts of the samples were analysed using conventional analysis (Walkley and Black) and some other parts were scanned using near infrared spectroscopy (NIRS) for soil spectral collection. Partial Least Square Regression (PLSR) Models were developed using data of soil C analysed using conventional analysis and data from soil spectral reflectance. The models were moderately successful to measure soil C in rice paddy field of Lombok Island. This shows that the NIR technology can be further used to monitor the C change in rice paddy soil.

  18. Study on highly reliable digital communication technology of reactor nuclear measuring equipment

    International Nuclear Information System (INIS)

    Gu Pengfei; Huang Xiaojin

    2007-01-01

    To meet the need of highly reliable of reactor nuclear measuring equipment, in allusion to the idiographic request of nuclear measuring equipment, the actual technical development and the application in industrial field, we design a kind of redundancy communication net based on PROFIBUS, and a kind of communication interface module based on redundancy PROFIBUS communication, which link the nuclear measuring equipment and PROFIBUS communication net, and also lay a foundation for advanced research. (authors)

  19. Leading research in fiscal 1996. Research study on advanced measurement/analysis technology; 1996 nendo sendo kenkyu. Kodo keisoku bunseki gijutsu ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For development of production technologies suitable for environment, safety and advanced information-oriented society by improving the flexibility of production lines, some new measurement technologies were researched. Problem solution was attempted by combining the in-situ multi-dimensional measurement technology capable of easily obtaining various 3-D information with the non-contact photon measurement technology superior in operability and sensitivity under any environment conditions. This solution requires a compact radiation source with higher brightness and wider spectral range, and a high-sensitive detector. The technology concentrating photon onto minute regions, high-efficiency transmission, and control technology of photon wave front are also necessary. Development and international standardization of a common interface is unavoidable. In addition, its network is essential for advanced use of multimedia,. In the future, the comfortable life surrounded by advanced products and multimedia, comfortable social environment, safety and resource saving will be achieved by this technology. 94 refs., 75 figs., 15 tabs.

  20. Assessment of Student Performance for Course Examination Using Rasch Measurement Model: A Case Study of Information Technology Fundamentals Course

    Directory of Open Access Journals (Sweden)

    Amir Mohamed Talib

    2018-01-01

    Full Text Available This paper describes a measurement model that is used to measure the student performance in the final examination of Information Technology (IT Fundamentals (IT280 course in the Information Technology (IT Department, College of Computer & Information Sciences (CCIS, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU. The assessment model is developed based on students’ mark entries of final exam results for the second year IT students, which are compiled and tabulated for evaluation using Rasch Measurement Model, and it can be used to measure the students’ performance towards the final examination of the course. A study on 150 second year students (male = 52; female = 98 was conducted to measure students’ knowledge and understanding for IT280 course according to the three level of Bloom’s Taxonomy. The results concluded that students can be categorized as poor (10%, moderate (42%, good (18%, and successful (24% to achieve Level 3 of Bloom’s Taxonomy. This study shows that the students’ performance for the set of IT280 final exam questions was comparatively good. The result generated from this study can be used to guide us to determine the appropriate improvement of teaching method and the quality of question prepared.

  1. A Mixed WLS Power System State Estimation Method Integrating a Wide-Area Measurement System and SCADA Technology

    Directory of Open Access Journals (Sweden)

    Tao Jin

    2018-02-01

    Full Text Available To address the issue that the phasor measurement units (PMUs of wide area measurement system (WAMS are not sufficient for static state estimation in most existing power systems, this paper proposes a mixed power system weighted least squares (WLS state estimation method integrating a wide-area measurement system and supervisory control and data acquisition (SCADA technology. The hybrid calculation model is established by incorporating phasor measurements (including the node voltage phasors and branch current phasors and the results of the traditional state estimator in a post-processing estimator. The performance assessment is discussed through setting up mathematical models of the distribution network. Based on PMU placement optimization and bias analysis, the effectiveness of the proposed method was proved to be accurate and reliable by simulations of different cases. Furthermore, emulating calculation shows this method greatly improves the accuracy and stability of the state estimation solution, compared with the traditional WLS state estimation.

  2. On the Application of Replica Molding Technology for the Indirect Measurement of Surface and Geometry of Micromilled Components

    DEFF Research Database (Denmark)

    Baruffi, Federico; Parenti, Paolo; Cacciatore, Francesco

    2017-01-01

    the replica molding technology. The method consists of obtaining a replica of the feature that is inaccessible for standard measurement devices and performing its indirect measurement. This paper examines the performance of a commercial replication media applied to the indirect measurement of micromilled...... components. Two specifically designed micromilled benchmark samples were used to assess the accuracy in replicating both surface texture and geometry. A 3D confocal microscope and a focus variation instrument were employed and the associated uncertainties were evaluated. The replication method proved...... to be suitable for characterizing micromilled surface texture even though an average overestimation in the nano-metric level of the Sa parameter was observed. On the other hand, the replicated geometry generally underestimated that of the master, often leading to a different measurement output considering...

  3. Measurement and evaluation of fuels and technologies for passenger rail service in North Carolina.

    Science.gov (United States)

    2012-08-01

    The purpose of this project is to measure a baseline for fuel use and emission rates on the rebuilt or replaced engines on each locomotive in the NCDOT Rail Division fleet, using ultra-low sulfur diesel (ULSD) fuel; measure real-world, in-use over...

  4. [Exploration of three-dimensional biometric measurement of emmetropic adult eye-ball by using magnetic resonance imaging technology].

    Science.gov (United States)

    Xu, Hai-Ming; Zhou, Yun-Xin; Shi, Ming-Guang

    2008-11-01

    To study biometric measurements of emmetropic adult eyes with magnetic resonance imaging technology (MRI). MRI technology, with super-resolution, hyper-speed imaging and the integration of the thin-scanning layer, is applied to measure the three-dimensional biometric parameters of the eyeball. From January to December, 2003, emmetropic eyes from 31 normal Chinese adults (16 males and 15 females) aged from 18 to 32 years old (23.32 +/- 3.32) were successfully measured to obtain the volume of the eyeball and vitreous cavity; inner dimensions of the eye, including the anterior-posterior, vertical and horizontal diameters. The length of ocular axis was measured by A-echo too. Data was analyzed by SPSS 11.0 statistical software. The volume of the eyeball, anterior chamber, lens and the vitreous cavity is (6.013 +/- 0.449) ml, (0.348 +/- 0.020) ml, (0.183 +/- 0.015) ml, and (5.482 +/- 0.440) ml, respectively. The length of anterior-posterior diameter of the vitreous cavity is (16.008 +/- 0.707) mm. The ocular inner dimensions of horizontal, vertical and anterior-posterior planes were (22.455 +/- 0.983) mm, (23.290 +/- 0.815) mm and (22.619 +/- 0.912) mm, respectively. The length of the ocular axis is (23.10 +/- 0.92) mm (with MRI & Orbscan II) and (23.67 +/- 0.82) mm (with A-echo). The value of the ocular length in emmetropic eye measured with both MRI + Orbscan II and the (A-echo) in the present study is very close to the value of the Bennett-Rabbitts schematic eye (24.09 mm). MRI technology is valuable for obtaining more reliable and precise data in the study of ocular physiology and clinical ophthalmology.

  5. Report on the survey in fiscal 1998. Systematic arrangement of environment technologies. 5 (Application of advanced technologies to environmental measures); 1998 nendo chosa hokokusho. Kankyo gijutsu ni kansuru taikeiteki seiri. 5 (sentan gijutsu no kankyo taisaku eno oyo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Global environment handling technologies were investigated and put into order. Universities often make research and development on themes that can be handled at laboratory levels or by simulations. Development at a practical application level is few. Technological seeds may include manufacture of hydrogen by water and steam decomposition using solar energy, and new synthesizing reactions utilizing solar energy. Included may also be urban type wind power generation, superconductive energy storage systems, biomass utilization, and natural energy utilization. Furthermore, CO2 recovery and utilization by liquefaction, alkaline metal heat power generation, and pulse power technologies can also be found. Studies on applying advanced technologies to environmental measures include composite materials, membrane separation, photo-catalysts, optical elements, porous bodies, functional polymers, bio-reactors, electron beams, and aeration. Private corporations are working noticeably on prevention of fluorocarbon and dioxin emission, PCB treatment and waste water treatment technologies, catalyst application technologies, recycling technologies, and incineration ash treatment and utilization technologies. (NEDO)

  6. Evaluation of Heat Flux Measurement as a New Process Analytical Technology Monitoring Tool in Freeze Drying.

    Science.gov (United States)

    Vollrath, Ilona; Pauli, Victoria; Friess, Wolfgang; Freitag, Angelika; Hawe, Andrea; Winter, Gerhard

    2017-05-01

    This study investigates the suitability of heat flux measurement as a new technique for monitoring product temperature and critical end points during freeze drying. The heat flux sensor is tightly mounted on the shelf and measures non-invasively (no contact with the product) the heat transferred from shelf to vial. Heat flux data were compared to comparative pressure measurement, thermocouple readings, and Karl Fischer titration as current state of the art monitoring techniques. The whole freeze drying process including freezing (both by ramp freezing and controlled nucleation) and primary and secondary drying was considered. We found that direct measurement of the transferred heat enables more insights into thermodynamics of the freezing process. Furthermore, a vial heat transfer coefficient can be calculated from heat flux data, which ultimately provides a non-invasive method to monitor product temperature throughout primary drying. The end point of primary drying determined by heat flux measurements was in accordance with the one defined by thermocouples. During secondary drying, heat flux measurements could not indicate the progress of drying as monitoring the residual moisture content. In conclusion, heat flux measurements are a promising new non-invasive tool for lyophilization process monitoring and development using energy transfer as a control parameter. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  7. Height measurement of transparent objects by adopting differential interference contrast technology

    International Nuclear Information System (INIS)

    Yu, Sheng-Kang; Liu, Ting-Kun; Lin, Shih-Chieh

    2010-01-01

    In this study, the differential interference contrast (DIC) approach originally used for image enhancement to increase the contrast between a transparent object and the background is adopted for the dimension measurement of transparent structures. With the phase difference image retrieved using the DIC technique, the phase map of the examined object can be approximated by integrating the phase difference. The need of integration accuracy is much higher for measurement than for image enhancement. In this study, a modified Fourier phase integration is proposed to reduce the effects of noise on surface profile reconstruction. The simulation results show that the proposed approach can effectively reduce the effects of noise. Experimental results are also conducted to study the feasibility of using the transmitted DIC with the proposed integration method for transparent object measurement. The results show that the height of a transparent structure measured using the DIC method is quite close to those measured using an atomic force microscope, while those measured using the white-light interference method result in a much larger measurement than all others.

  8. Success Continues: NASA-Developed Plant Health Measurement Technology is Becoming Big Business for Illinois Company

    Science.gov (United States)

    2003-01-01

    Originally produced in 2001, sales of Spectrum Technologies' CM 1000 chlorophyll meter have now topped $290,000 on 140 units. Up-to-date sales figures for 2003 have shown an almost 50% increase over the combined sales totals of 2001 and 2002. The CM 1000 chlorophyll meter identifies the failing health of a plant based on the chlorophyll content of the plant up to 16 days before it is physically detectable by the human eye. Poor health, 'stress' in a plant, is a result of unfavorable growing conditions; lack of nutrients, insufficient water, disease or insect damage.

  9. Communications satellite business ventures - Measuring the impact of technology programmes and related policies

    Science.gov (United States)

    Greenberg, J. S.

    1986-01-01

    An economic evaluation and planning procedure which assesses the effects of various policies on fixed satellite business ventures is described. The procedure is based on a stochastic financial simulation model, the Domsat II, which evaluates spacecraft reliability, market performance, and cost uncertainties. The application of the Domsat II model to the assessment of NASA's ion thrusters for on-orbit propulsion and GaAs solar cell technology is discussed. The effects of insurance rates and the self-insurance option on the financial performance of communication satellite business ventures are investigated. The selection of a transportation system for placing the satellites into GEO is analyzed.

  10. Application of proving-ring technology to measure thermally induced displacements in large boreholes in rock

    International Nuclear Information System (INIS)

    Patrick, W.C.; Reactor, N.L.; Butkovich, T.R.

    1984-03-01

    A strain-gauged proving-ring transducer was designed and deployed to measure small diametral displacements in 0.61-m diameter boreholes in rock. The rock surrounding the boreholes was previously heated by storage of spent nuclear fuel assemblies and measurements during post-retrieval cooling of the rock were made. To accomplish this, a transducer was designed to measure displacements in the range of 10 to 100 μm, to function in a time-varying temperature regime of 30 0 to 60 0 C at a relative humidity of 100%, to be of low stiffness, and to be easily and quickly installed. 7 references, 6 figures, 1 table

  11. Modelling of energy / technology actions and measures for reducing greenhouse gas emissions in the industrial sector (the industry challenge)

    International Nuclear Information System (INIS)

    Nyboer, J.; Bailie, A.J.; Sadownik, B.

    2001-01-01

    The potential in Canadian industry for the reduction of greenhouse gas emissions is assessed in this report. The analysis is aimed at providing a comprehensive and integrated evaluation of a wide spectrum of technology and energy actions available to the industrial sector in Canada, providing estimates of greenhouse gas emissions reductions, costs and cost effectiveness for different actions by 2010, and simulating industry response to defined measures approved by representatives of the industry sector sub-table. The impacts of a set of measures was determined using in-house models. Four measures were tested against several actions including primary fossil and electricity consumption, using regionally specific energy prices, a discount rate approximating 40 per cent and growth rates derived from the Analysis and Modelling Group. Enhancement of voluntary initiatives, enhanced cogeneration, financial incentives for capital investment to improve efficiency and carbon dioxide emissions reduction, and a set of cost-of-carbon-dioxide simulations were the measures tested. Total energy consumption and carbon dioxide emissions by sector and in aggregate are provided as well as the costs. An indication of the total cost of reduction per tonne, some sense of the cost of the permit and the quantity of a subsidy required to induce decision-makers to purchase the more efficient technology are also provided. 9 refs., tabs

  12. Radiofrequency identification: exploiting an old technology for measuring nurse time and motion.

    Science.gov (United States)

    Jones, Terry L

    2012-09-01

    A national campaign is underway to increase the amount of time staff nurses spend at the bedside of hospitalized patients through redesign of the work environment. This kind of work redesign requires robust data depicting what nurses do and how they spend their time. Historically, these kinds of data have been difficult, costly, and time consuming to collect. Wireless capture of data on the movement of humans within the work environment (ie, time and motion) is now possible through radiofrequency identification technology. When small tracking devices the size of a quarter are affixed to their clothing, the movement of nurses throughout a patient care unit can be monitored. The duration and frequency of patient interaction are captured along with the duration of time spent in other locations of interest to include nurses' station, supply room, medication room, doctors' station, electronic documentation stations, family waiting rooms, and the hallway. Patterns of nurse movement and time allocation can be efficiently identified, and the effects of staffing practices, workflows, and unit layout evaluated. Integration of radiofrequency identification time and motion data with other databases enables nurse leaders to link nursing time to important cost and quality outcomes. Nurse leaders should explore the usefulness of radiofrequency identification technology in addressing data needs for nurse time and motion.

  13. A whole process quality control system for energy measuring instruments inspection based on IOT technology

    Science.gov (United States)

    Yin, Bo; Liu, Li; Wang, Jiahan; Li, Xiran; Liu, Zhenbo; Li, Dewei; Wang, Jun; Liu, Lu; Wu, Jun; Xu, Tingting; Cui, He

    2017-10-01

    Electric energy measurement as a basic work, an accurate measurements play a vital role for the economic interests of both parties of power supply, the standardized management of the measurement laboratory at all levels is a direct factor that directly affects the fairness of measurement. Currently, the management of metering laboratories generally uses one-dimensional bar code as the recognition object, advances the testing process by manual management, most of the test data requires human input to generate reports. There are many problems and potential risks in this process: Data cannot be saved completely, cannot trace the status of inspection, the inspection process isn't completely controllable and so on. For the provincial metrology center's actual requirements of the whole process management for the performance test of the power measuring appliances, using of large-capacity RF tags as a process management information media, we developed a set of general measurement experiment management system, formulated a standardized full performance test process, improved the raw data recording mode of experimental process, developed a storehouse automatic inventory device, established a strict test sample transfer and storage system, ensured that all the raw data of the inspection can be traced back, achieved full life-cycle control of the sample, significantly improved the quality control level and the effectiveness of inspection work.

  14. Development of electrical conductivity measurement technology for key plant physiological information using microneedle sensor

    International Nuclear Information System (INIS)

    Jeon, Eunyong; Lee, Junghoon; Choi, Seungyul; Yeo, Kyung-Hwan; Park, Kyoung Sub; Rathod, Mitesh L

    2017-01-01

    Impedance measurement is a widely used technique for monitoring ion species in various applications. In plant cultivation, the impedance system is used to measure the electrical conductivity (EC) of nutrient solutions. Recent research has shown that the quality and quantity of horticultural crops, e.g. tomato, can be optimized by controlling the salinity of nutrient solutions. However, understanding the detailed response of a plant to a nutrient solution is not possible until the fruit is fully grown or by sacrificing the stem. To overcome this issue, horticultural crop cultivation requires real-time monitoring of the EC inside the stem. Using this data, the growth model of a plant could be constructed, and the response of the plant to external environment determined. In this paper, we propose an implantable microneedle device equipped with a micro-patterned impedance measurement system for direct measurement of the EC inside the tomato stem. The fabrication process includes silicon-based steps such as microscale deposition, photolithography, and a deep etching process. Further, microscale fabrication enables all functional elements to fulfill the area budget and be very accurate with minimal plant invasion. A two-electrode geometry is used to match the measurement condition of the tomato stem. Real-time measurement of local sap condition inside the plant in which real-time data for tomato sap EC is obtained after calibration at various concentrations of standard solution demonstrate the efficacy of the proposed device. (paper)

  15. Development of electrical conductivity measurement technology for key plant physiological information using microneedle sensor

    Science.gov (United States)

    Jeon, Eunyong; Choi, Seungyul; Yeo, Kyung-Hwan; Park, Kyoung Sub; Rathod, Mitesh L.; Lee, Junghoon

    2017-08-01

    Impedance measurement is a widely used technique for monitoring ion species in various applications. In plant cultivation, the impedance system is used to measure the electrical conductivity (EC) of nutrient solutions. Recent research has shown that the quality and quantity of horticultural crops, e.g. tomato, can be optimized by controlling the salinity of nutrient solutions. However, understanding the detailed response of a plant to a nutrient solution is not possible until the fruit is fully grown or by sacrificing the stem. To overcome this issue, horticultural crop cultivation requires real-time monitoring of the EC inside the stem. Using this data, the growth model of a plant could be constructed, and the response of the plant to external environment determined. In this paper, we propose an implantable microneedle device equipped with a micro-patterned impedance measurement system for direct measurement of the EC inside the tomato stem. The fabrication process includes silicon-based steps such as microscale deposition, photolithography, and a deep etching process. Further, microscale fabrication enables all functional elements to fulfill the area budget and be very accurate with minimal plant invasion. A two-electrode geometry is used to match the measurement condition of the tomato stem. Real-time measurement of local sap condition inside the plant in which real-time data for tomato sap EC is obtained after calibration at various concentrations of standard solution demonstrate the efficacy of the proposed device.

  16. Measuring energy efficiency under heterogeneous technologies using a latent class stochastic frontier approach: An application to Chinese energy economy

    International Nuclear Information System (INIS)

    Lin, Boqiang; Du, Kerui

    2014-01-01

    The importance of technology heterogeneity in estimating economy-wide energy efficiency has been emphasized by recent literature. Some studies use the metafrontier analysis approach to estimate energy efficiency. However, for such studies, some reliable priori information is needed to divide the sample observations properly, which causes a difficulty in unbiased estimation of energy efficiency. Moreover, separately estimating group-specific frontiers might lose some common information across different groups. In order to overcome these weaknesses, this paper introduces a latent class stochastic frontier approach to measure energy efficiency under heterogeneous technologies. An application of the proposed model to Chinese energy economy is presented. Results show that the overall energy efficiency of China's provinces is not high, with an average score of 0.632 during the period from 1997 to 2010. - Highlights: • We introduce a latent class stochastic frontier approach to measure energy efficiency. • Ignoring technological heterogeneity would cause biased estimates of energy efficiency. • An application of the proposed model to Chinese energy economy is presented. • There is still a long way for China to develop an energy efficient regime

  17. Measuring technology using holography and interferometry. HOLOMETEC. Pamphlet for the concluding presentation; Holografisch-interferometrische Messtechnik. HOLOMETEC. Broschuere zur Abschlusspraesentation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The German Federal Ministry of Education, Science, Research and Technology (BMBF) provided funds to the focal item of research, `Laser science and laser technology`, for the development of measuring and testing methods based on holography and interferometry, for applications such as quality assurance and experimental stress analysis. The main objective of research activities with collaborators from science and industry was to develop the holographic and interferometric techniques to a contactless measuring technology fit for applications in industry. The BMBF contributed for the R and D programme financial support amounting to DM 6.6 million, in a total budget of DM 9.6 million. The concluding presentation was intended to summarize and demonstrate the work performed and results achieved. (orig./MM) [Deutsch] Das Bundesministerium fuer Bildung, Wissenschaft, Forschung und Technologie foerderte im Foerderschwerpunkt ``Laserforschung und Lasertechnik`` die Erarbeitung von Verfahrensgrundlagen zur holografisch-interferometrischen Messtechnik fuer die Qualitaetssicherung und experimentelle Spannungsanalyse. Wesentliches Ziel der Forschungsarbeiten, an denen sich Partner aus Wissenschaft und Wirtschaft beteiligten, war es, die holografisch-interferometrische Messtechnik als beruehrungsloses Mess- und Pruefverfahren fuer die industrielle Anwendung tauglich zu machen. Das BMBF unterstuetzte die F und E-Arbeiten mit insgesamt 6.6 Mio DM bei einem Gesamtaufwand von 9.6 Mio DM. Mit der Abschlusspraesentation sollen der Fachoeffentlichkeit die nun vorliegenden Ergebnisse der Forschungsarbeiten vorgestellt werden. (orig./MM)

  18. The impact of European legislative and technology measures to reduce air pollutants on air quality, human health and climate

    International Nuclear Information System (INIS)

    Turnock, S T; Butt, E W; Richardson, T B; Mann, G W; Reddington, C L; Forster, P M; Carslaw, K S; Spracklen, D V; Haywood, J; Johnson, C E; Crippa, M; Janssens-Maenhout, G; Bellouin, N

    2016-01-01

    European air quality legislation has reduced emissions of air pollutants across Europe since the 1970s, affecting air quality, human health and regional climate. We used a coupled composition-climate model to simulate the impacts of European air quality legislation and technology measures implemented between 1970 and 2010. We contrast simulations using two emission scenarios; one with actual emissions in 2010 and the other with emissions that would have occurred in 2010 in the absence of technological improvements and end-of-pipe treatment measures in the energy, industrial and road transport sectors. European emissions of sulphur dioxide, black carbon (BC) and organic carbon in 2010 are 53%, 59% and 32% lower respectively compared to emissions that would have occurred in 2010 in the absence of legislative and technology measures. These emission reductions decreased simulated European annual mean concentrations of fine particulate matter (PM 2.5 ) by 35%, sulphate by 44%, BC by 56% and particulate organic matter by 23%. The reduction in PM 2.5 concentrations is calculated to have prevented 80 000 (37 000–116 000, at 95% confidence intervals) premature deaths annually across the European Union, resulting in a perceived financial benefit to society of US$232 billion annually (1.4% of 2010 EU GDP). The reduction in aerosol concentrations due to legislative and technology measures caused a positive change in the aerosol radiative effect at the top of atmosphere, reduced atmospheric absorption and also increased the amount of solar radiation incident at the surface over Europe. We used an energy budget approximation to estimate that these changes in the radiative balance have increased European annual mean surface temperatures and precipitation by 0.45 ± 0.11 °C and by 13 ± 0.8 mm yr −1 respectively. Our results show that the implementation of European legislation and technological improvements to reduce the emission of air pollutants has improved air quality

  19. Measuring Methane from Cars, Ships, Airplanes, Helicopters and Drones Using High-Speed Open-Path Technology

    Science.gov (United States)

    Burba, George; Anderson, Tyler; Biraud, Sebastien; Caulton, Dana; von Fischer, Joe; Gioli, Beniamino; Hanson, Chad; Ham, Jay; Kohnert, Katrin; Larmanou, Eric; Levy, Peter; Polidori, Andrea; Pikelnaya, Olga; Sachs, Torsten; Serafimovich, Andrei; Zaldei, Alessandro; Zondlo, Mark; Zulueta, Rommel

    2017-04-01

    Methane plays a critical role in the radiation balance, chemistry of the atmosphere, and air quality. The major anthropogenic sources of methane include oil and gas development sites, natural gas distribution networks, landfill emissions, and agricultural production. The majority of oil and gas and urban methane emission occurs via variable-rate point sources or diffused spots in topographically challenging terrains (e.g., street tunnels, elevated locations at water treatment plants, vents, etc.). Locating and measuring such methane emissions is challenging when using traditional micrometeorological techniques, and requires development of novel approaches. Landfill methane emissions traditionally assessed at monthly or longer time intervals are subject to large uncertainties because of the snapshot nature of the measurements and the barometric pumping phenomenon. The majority of agricultural and natural methane production occurs in areas with little infrastructure or easily available grid power (e.g., rice fields, arctic and boreal wetlands, tropical mangroves, etc.). A lightweight, high-speed, high-resolution, open-path technology was recently developed for eddy covariance measurements of methane flux, with power consumption 30-150 times below other available technologies. It was designed to run on solar panels or a small generator and be placed in the middle of the methane-producing ecosystem without a need for grid power. Lately, this instrumentation has been utilized increasingly more frequently outside of the traditional use on stationary flux towers. These novel approaches include measurements from various moving platforms, such as cars, aircraft, and ships. Projects included mapping of concentrations and vertical profiles, leak detection and quantification, mobile emission detection from natural gas-powered cars, soil methane flux surveys, etc. This presentation will describe the latest state of the key projects utilizing the novel lightweight low-power high

  20. [Research on the range of motion measurement system for spine based on LabVIEW image processing technology].

    Science.gov (United States)

    Li, Xiaofang; Deng, Linhong; Lu, Hu; He, Bin

    2014-08-01

    A measurement system based on the image processing technology and developed by LabVIEW was designed to quickly obtain the range of motion (ROM) of spine. NI-Vision module was used to pre-process the original images and calculate the angles of marked needles in order to get ROM data. Six human cadaveric thoracic spine segments T7-T10 were selected to carry out 6 kinds of loads, including left/right lateral bending, flexion, extension, cis/counterclockwise torsion. The system was used to measure the ROM of segment T8-T9 under the loads from 1 Nm to 5 Nm. The experimental results showed that the system is able to measure the ROM of the spine accurately and quickly, which provides a simple and reliable tool for spine biomechanics investigators.

  1. The Commtech Methodology: A Demand-Driven Approach to Efficient, Productive, and Measurable Technology Transfer and Commercialization

    Science.gov (United States)

    Horsham, Gary A. P.

    1999-01-01

    This paper presents a comprehensive review and assessment of a demonstration technology transfer and commercialization prouram called "CommTech". The pro-ram was conceived and initiated in early to mid-fiscal year 1995, and extended roughly three years into the future. Market research sources were used to initially gather primary technological problems and needs data from non-aerospace companies in three targeted industry sectors: environmental, surface transportation, and bioengineering. Company-supplied information served as input data to activate or start-up an internal, phased matchmaking process. This process was based on technical-level relationship exploration followed by business-level agreement negotiations. and culminated with project management and execution. Space Act Agreements represented near-term outputs. Company product or process commercialization derived from NASA Glenn support and measurable economic effects represented far-term outputs.

  2. Optical metrology alignment and impact on the measurement performance of the LISA Technology Package

    Energy Technology Data Exchange (ETDEWEB)

    Hirth, M; Fichter, W; Brandt, N; Gerardi, D [iFR, Universitaet Stuttgart, Pfaffenwaldring 7a, 70569 Stuttgart (Germany); Schleicher, A [Astrium GmbH, 88039 Friedrichshafen (Germany); Wanner, G, E-mail: marc.hirth@ifr.uni-stuttgart.d [Albert Einstein Institut, Callinstrasse 38, 30167 Hannover (Germany)

    2009-03-01

    Aside from LISA Pathfinder's top-level acceleration requirement, there is a stringent independent requirement for the accuracy of the optical metrology system. In case of a perfectly aligned metrology system (optical bench and test masses) it should rather be independent of residual displacement jitter due to control. However, this ideal case will not be achieved as mechanical tolerances and uncertainties lead to a direct impact of test mass and spacecraft displacement jitter on the optical measurement accuracy. In this paper, we present a strategy how to cover these effects for a systematic requirement breakdown. We use a simplified nonlinear geometrical model for the differential distance measurement of the test masses which is linearized and linked to the equations of motion for both the spacecraft and the two test masses. This leads from test mass relative displacement to a formulation in terms of applied force/torque and thus allows to distinguish the absolute motion of each of the three bodies. It further shows how motions in each degree of freedom couple linearly into the optical measurement via DC misalignments of the laser beam and the test masses. This finally allows for deriving requirements on the alignment accuracy of components and on permittable closed-loop acceleration noise. In the last part a budget for the expected measurement performance is compiled from simulations as no measurement data is available yet.

  3. Optical metrology alignment and impact on the measurement performance of the LISA Technology Package

    International Nuclear Information System (INIS)

    Hirth, M; Fichter, W; Brandt, N; Gerardi, D; Schleicher, A; Wanner, G

    2009-01-01

    Aside from LISA Pathfinder's top-level acceleration requirement, there is a stringent independent requirement for the accuracy of the optical metrology system. In case of a perfectly aligned metrology system (optical bench and test masses) it should rather be independent of residual displacement jitter due to control. However, this ideal case will not be achieved as mechanical tolerances and uncertainties lead to a direct impact of test mass and spacecraft displacement jitter on the optical measurement accuracy. In this paper, we present a strategy how to cover these effects for a systematic requirement breakdown. We use a simplified nonlinear geometrical model for the differential distance measurement of the test masses which is linearized and linked to the equations of motion for both the spacecraft and the two test masses. This leads from test mass relative displacement to a formulation in terms of applied force/torque and thus allows to distinguish the absolute motion of each of the three bodies. It further shows how motions in each degree of freedom couple linearly into the optical measurement via DC misalignments of the laser beam and the test masses. This finally allows for deriving requirements on the alignment accuracy of components and on permittable closed-loop acceleration noise. In the last part a budget for the expected measurement performance is compiled from simulations as no measurement data is available yet.

  4. Process Analytical Technology and On-Line Spectroscopic Measurements of Chemical Meat Quality

    DEFF Research Database (Denmark)

    Sørensen, Klavs Martin

    This thesis deals with process analytical technology and how it can be implemented in the meat industry through on-line grading of chemical meat quality. The focus will be on two applications, namely the rapid quality control of fat quality and the development of a method for on-line detection...... of nano-molar quantification in few seconds, in addition to an accelerated extraction-free GC-MS method that through automation can deliver results much faster than other similar methods. The implementation of these high tech methods will provide the meat industry with a leading edge not only with product...... of boar taint. The chemical makeup of fat has a large effect on meat cut quality. Fat quality has traditionally been determined by methylation of a tissue sample followed by chromatography on a GC-MS system, elucidating the composition of the individual fatty acids. As this procedure typically takes far...

  5. Concrete Crack Measurement and Analysis Based on Terrestrial Laser Scanning Technology

    Directory of Open Access Journals (Sweden)

    Xiangyang Xu

    2015-03-01

    Full Text Available Terrestrial laser scanning (TLS has become one of the potential technologies for an object three-dimensional (3D information acquisition. The using vibration analysis for early detection of cracks has gained popularity over the years and in the last decade substantial progress has been made in that direction. However, the crack detection using TLS is also a good method. In the experimental part of this study, the effect of crack width and location on modal properties of the beam was investigated. The recent paper provides a method for automatic concrete cracks detection from the data that was obtained by TLS. The method of cracks detection is achieved by six steps. The objective of this study is to analyze the crack of concrete beams both experimentally and using MATLAB analysis. Besides this, information about the width, location and percentage of cracks in cracked concrete beams can be obtained using this technique.

  6. Nuclear technology in the measurement and control of industrial processes: Pt. 1

    International Nuclear Information System (INIS)

    De Jesus, A.S.M.

    1987-01-01

    The industrial sector was amongst the first to exploit the use of radioisotopes as production and research tools when they became available in significant quantities for industrial use during the early fifties. The following three decades have seen, throughout the world and in South Africa as well, a large and continuing growth in the application of radioisotopes and related technology. In parallel with their nuclear energy research program, the Atomic Energy Corporation of South Africa (AEC), have laid heavy emphasis on developing a considerable pool of expertise specifically oriented to satisfying South African industrial needs. In this article some of the investigations conducted for industry are briefly described: assessment of gold purity, boron distribution in steel, casting-powder inclusions in steel, behaviour of potassium in a blast furnace and fast determination of fluorspar in tailings

  7. Superresolution confocal technology for displacement measurements based on total internal reflection.

    Science.gov (United States)

    Kuang, Cuifang; Ali, M Yakut; Hao, Xiang; Wang, Tingting; Liu, Xu

    2010-10-01

    In order to achieve a higher axial resolution for displacement measurement, a novel method is proposed based on total internal reflection filter and confocal microscope principle. A theoretical analysis of the basic measurement principles is presented. The analysis reveals that the proposed confocal detection scheme is effective in enhancing the resolution of nonlinearity of the reflectance curve greatly. In addition, a simple prototype system has been developed based on the theoretical analysis and a series of experiments have been performed under laboratory conditions to verify the system feasibility, accuracy, and stability. The experimental results demonstrate that the axial resolution in displacement measurements is better than 1 nm in a range of 200 nm which is threefold better than that can be achieved using the plane reflector.

  8. Superresolution confocal technology for displacement measurements based on total internal reflection

    International Nuclear Information System (INIS)

    Kuang Cuifang; Hao Xiang; Wang Tingting; Liu Xu; Ali, M. Yakut

    2010-01-01

    In order to achieve a higher axial resolution for displacement measurement, a novel method is proposed based on total internal reflection filter and confocal microscope principle. A theoretical analysis of the basic measurement principles is presented. The analysis reveals that the proposed confocal detection scheme is effective in enhancing the resolution of nonlinearity of the reflectance curve greatly. In addition, a simple prototype system has been developed based on the theoretical analysis and a series of experiments have been performed under laboratory conditions to verify the system feasibility, accuracy, and stability. The experimental results demonstrate that the axial resolution in displacement measurements is better than 1 nm in a range of 200 nm which is threefold better than that can be achieved using the plane reflector.

  9. Uniformity index measurement technology using thermocouples to improve performance in urea-selective catalytic reduction systems

    Science.gov (United States)

    Park, Sangki; Oh, Jungmo

    2018-05-01

    The current commonly used nitrogen oxides (NOx) emission reduction techniques employ hydrocarbons (HCs), urea solutions, and exhaust gas emissions as the reductants. Two of the primary denitrification NOx (DeNOx) catalyst systems are the HC-lean NOx trap (HC-LNT) catalyst and urea-selective catalytic reduction (urea-SCR) catalyst. The secondary injection method depends on the type of injector, injection pressure, atomization, and spraying technique. In addition, the catalyst reaction efficiency is directly affected by the distribution of injectors; hence, the uniformity index (UI) of the reductant is very important and is the basis for system optimization. The UI of the reductant is an indicator of the NOx conversion efficiency (NCE), and good UI values can reduce the need for a catalyst. Therefore, improving the UI can reduce the cost of producing a catalytic converter, which are expensive due to the high prices of the precious metals contained therein. Accordingly, measurement of the UI is an important process in the development of catalytic systems. Two of the commonly used methods for measuring the reductant UI are (i) measuring the exhaust emissions at many points located upstream/downstream of the catalytic converter and (ii) acquisition of a reductant distribution image on a section of the exhaust pipe upstream of the catalytic converter. The purpose of this study is to develop a system and measurement algorithms to measure the exothermic response distribution in the exhaust gas as the reductant passes through the catalytic converter of the SCR catalyst system using a set of thermocouples downstream of the SCR catalyst. The system is used to measure the reductant UI, which is applied in real-time to the actual SCR system, and the results are compared for various types of mixtures for various engine operating conditions and mixer types in terms of NCE.

  10. The use of operant technology to measure behavioral priorities in captive animals.

    Science.gov (United States)

    Cooper, J J; Mason, G J

    2001-08-01

    Addressing the behavioral priorities of captive animals and the development of practical, objective measures of the value of environmental resources is a principal objective of animal welfare science. In theory, consumer demand approaches derived from human microeconomics should provide valid measures of the value of environmental resources. In practice, however, a number of empirical and theoretical problems have rendered these measures difficult to interpret in studies with animals. A common approach has been to impose a cost on access to resources and to use time with each resource as a measure of consumption to construct demand curves. This can be recorded easily by automatic means, but in a number of studies, it has been found that animals compensate for increased cost of access with longer visit time. Furthermore, direct observation of the test animals' behavior has shown that resource interaction is more intense once the animals have overcome higher costs. As a consequence, measures based on time with the resource may underestimate resource consumption at higher access costs, and demand curves derived from these measures may not be a true reflection of the value of different resources. An alternative approach to demand curves is reservation price, which is the maximum price individual animals are prepared to pay to gain access to resources. In studies using this approach, farmed mink (Mustela vison) paid higher prices for food and swimming water than for resources such as tunnels, water bowls, pet toys, and empty compartments. This indicates that the mink placed a higher value on food and swimming water than on other resources.

  11. Application of eye movement measuring system OBER 2 to medicine and technology

    Science.gov (United States)

    Ober, Jozef; Hajda, Janusz; Loska, Jacek; Jamicki, Michal

    1997-08-01

    The OBER 2 is an infrared light eye movement measuring system and it works with IBM PC compatible computers. As one of the safest systems for measuring of eye movement it uses a very short period of infrared light flashing time (80 microsecond for each measure point). System has an advanced analog-digital controller, which includes background suppression and prediction mechanisms guaranteeing elimination of slow changes and fluctuations of external illumination frequency up to 100 Hz, with effectiveness better than 40 dB. Setting from PC the active measure axis, sampling rate (25 - 4000 Hz) and making start and stop the measure, make it possible to control the outside environment in real-time. By proper controlling of gain it is possible to get high time and position resolution of 0.5 minute of arc even for big amplitude of eye movement (plus or minus 20 degree of visual angle). The whole communication system can also be driven directly by eye movement in real time. The possibility of automatic selection of the most essential elements of eye movement, individual for each person and those that take place for each person in determined situations of life independently from personal features, is a key to practical application. Hence one of conducted research topic is a personal identification based on personal features. Another task is a research project of falling asleep detection, which can be applied to warn the drivers before falling asleep while driving. This measuring system with a proper expert system can also be used to detect a dyslexia and other disabilities of the optic system.

  12. Reducing Carbon Dioxide Emissions from the EU Power and Industry Sectors. An assessment of key technologies and measures

    Energy Technology Data Exchange (ETDEWEB)

    Rootzen, Johan

    2012-11-01

    In February 2011, the European Council reconfirmed the goal of reducing EU greenhouse gas emissions by at least 80 % by 2050, as compared to the levels in 1990. The power and industrial sectors currently account for almost half of the total GHG emissions in the EU. The overall objective of the work presented in this thesis is to provide a technology-based perspective on the feasibility of significant reductions in CO{sub 2} emissions in the EU power and industrial sectors, with the emphasis on expected turnover in the capital stock of the existing infrastructure. Three sectors of industry are included: petroleum refining; iron and steel production; and cement manufacturing. The analysis is based on a thorough description and characterization of the current industry infrastructure and of the key mitigation technologies and measures in each sector. The analysis comprises investigations of how specific factors, such as the age structure of the capital stock, technology and fuel mix, and spatial distribution of the plant stock, contribute to facilitating or hindering the shift towards less-emission-intensive production processes. The results presented here are the synthesis of the results described in the following three papers: Paper I investigates the potential for CCS in industrial applications in the EU by considering branch- and plant-specific conditions; Paper II assesses strategies for CO{sub 2} abatement in the European petroleum refining industry; and Paper III explores in a scenario analysis the limits for CO{sub 2} emission abatement within current production processes in the power and industrial sectors. Together, the three papers provide a comprehensive assessment of the roles of technologies and measures that are commercially available today, as well as those of emerging technologies that are still in their early phases of development. The results presented in Paper III show that the EU goal for emissions reductions in the sectors covered by the EU ETS, i

  13. Applying an intelligent and automated emissions measurement system to characterize the RF environment for supporting wireless technologies

    International Nuclear Information System (INIS)

    Keebler, P. F.; Phipps, K. O.

    2006-01-01

    The use of wireless technologies in commercial and industrial facilities has grown significantly in the past several years. New applications of wireless technologies with increasing frequency and varying radiated power are being developed everyday. Wireless application specialists and end users have already identified several sources of electromagnetic interference (EMI) in these facilities. Interference has been reported between wireless devices and between these devices and other types of electronic equipment either using frequencies in the unlicensed wireless spectrum or equipment that may generate undesired man-made noise in this spectrum. Facilities that are not using the wireless band should verify the spectral quality of that band and the electromagnetic compatibility (EMC) integrity of safety-related power and signal cables before installing wireless technologies. With the introduction of new wireless devices in the same electromagnetic space where analog and digital I and C systems and cables must co-exist, the ability of facility managers to manage their spectra will dictate the degree of interference between wireless devices and other electronic equipment. Because of the unknowns associated with interference with analog and digital I and C systems in the wireless band, nuclear power plants have been slow to introduce wireless technologies in plant areas. With the application of newly developed advanced radiated emissions measurement systems that can record, process, and analyze radiated and conducted emissions in a cost-effective manner, facility managers can more reliably characterize potential locations for wireless technologies, including potential coupling effects with safety-related power and signal cables, with increased confidence that the risks associated with creating an interference can be significantly reduced. This paper will present an effective philosophy already being used in other mission-critical applications for managing EMC, an

  14. Assessment of the influence on vehicle emissions of driving style, vehicle technology and traffic measures

    NARCIS (Netherlands)

    Burgwal, H.C. van de; Gense, N.L.J.; Mierlo, J. van; Maggetto, G.

    2002-01-01

    The influence of traffic measures and driving style on different vehicle emissions and on primary energy consumption, and the definition of vehicle parameters influencing the relation between them, is an interesting issue to be assessed in order to allow more realistic estimations of the impact of

  15. CSP-IEEE Instrumentation and Measurement Technology Conference 2016 (IEEE 12MTC 2016)

    Science.gov (United States)

    2016-08-22

    theme, the "pulse" means the signal (message) from industries, nature and humans after excited by the economic activities of humans; "measuring" is to...Items Amount Remakes Conference Venue Expense 2,098,850.00 1. Conference Room 1,374,850.00 All purchases were obeyed 2. Projector and Audio

  16. Measuring Cognitive Load and Cognition: Metrics for Technology-Enhanced Learning

    Science.gov (United States)

    Martin, Stewart

    2014-01-01

    This critical and reflective literature review examines international research published over the last decade to summarise the different kinds of measures that have been used to explore cognitive load and critiques the strengths and limitations of those focussed on the development of direct empirical approaches. Over the last 40 years, cognitive…

  17. Measuring Japanese EFL Student Perceptions of Internet-Based Tests with the Technology Acceptance Model

    Science.gov (United States)

    Dizon, Gilbert

    2016-01-01

    The Internet has made it possible for teachers to administer online assessments with affordability and ease. However, little is known about Japanese English as a Foreign Language (EFL) students' attitudes of internet-based tests (IBTs). Therefore, this study aimed to measure the perceptions of IBTs among Japanese English language learners with the…

  18. Development of an Instrument to Measure Faculty's Information and Communication Technology Access (FICTA)

    Science.gov (United States)

    Soomro, Kamal Ahmed; Kale, Ugur; Curtis, Reagan; Akcaoglu, Mete; Bernstein, Malayna

    2018-01-01

    The phenomenon of "digital divide" is complex and multidimensional, extending beyond issues of physical access. The purpose of this study was to develop a scale to measure a range of factors related to digital divide among higher education faculty and to evaluate its reliability and validity. Faculty's Information and Communication…

  19. Use of multiple sensor technologies for quality control of in situ biogeochemical measurements: A SeaCycler case study

    Science.gov (United States)

    Atamanchuk, Dariia; Koelling, Jannes; Lai, Jeremy; Send, Uwe; Wallace, Douglas

    2017-04-01

    Over the last two decades observing capacity for the global ocean has increased dramatically. Emerging sensor technologies for dissolved gases, nutrients and bio-optical properties in seawater are allowing extension of in situ observations beyond the traditionally measured salinity, temperature and pressure (CTD). However the effort to extend observations using autonomous instruments and platforms carries the risk of losing the level of data quality achievable through conventional water sampling techniques. We will present results from a case study with the SeaCycler profiling winch focusing on quality control of the in-situ measurements. A total of 13 sensors were deployed from May 2016 to early 2017 on SeaCycler's profiling sensor float, including CTD, dissolved oxygen (O2, 3 sensors), carbon dioxide (pCO2, 2 sensors), nutrients, velocity sensors, fluorometer, transmissometer, single channel PAR sensor, and others. We will highlight how multiple measurement technologies (e.g. for O2 and CO2) complement each other and result in a high quality data product. We will also present an initial assessment of the bio-optical data, their implications for seasonal phytoplankton dynamics and comparisons to climatologies and ocean-color data products obtained from the MODIS satellite.

  20. Study on dynamic deformation synchronized measurement technology of double-layer liquid surfaces

    Science.gov (United States)

    Tang, Huiying; Dong, Huimin; Liu, Zhanwei

    2017-11-01

    Accurate measurement of the dynamic deformation of double-layer liquid surfaces plays an important role in many fields, such as fluid mechanics, biomechanics, petrochemical industry and aerospace engineering. It is difficult to measure dynamic deformation of double-layer liquid surfaces synchronously for traditional methods. In this paper, a novel and effective method for full-field static and dynamic deformation measurement of double-layer liquid surfaces has been developed, that is wavefront distortion of double-wavelength transmission light with geometric phase analysis (GPA) method. Double wavelength lattice patterns used here are produced by two techniques, one is by double wavelength laser, and the other is by liquid crystal display (LCD). The techniques combine the characteristics such as high transparency, low reflectivity and fluidity of liquid. Two color lattice patterns produced by laser and LCD were adjusted at a certain angle through the tested double-layer liquid surfaces simultaneously. On the basis of the refractive indexes difference of two transmitted lights, the double-layer liquid surfaces were decoupled with GPA method. Combined with the derived relationship between phase variation of transmission-lattice patterns and out-of plane heights of two surfaces, as well as considering the height curves of the liquid level, the double-layer liquid surfaces can be reconstructed successfully. Compared with the traditional measurement method, the developed method not only has the common advantages of the optical measurement methods, such as high-precision, full-field and non-contact, but also simple, low cost and easy to set up.

  1. Integrated Model of Balanced Score Card and Technology Component Measurement: A Strategic Perspective in Indonesia Biofuel Engineering Development

    Directory of Open Access Journals (Sweden)

    Sukardi Sukardi

    2010-08-01

    Full Text Available The development of biofuel as an ecofriendly energy alternative has a value chain problem in alignment policies between related parties. Identifiying its alignment, we make a strategic mapping by building integrated base scorecard, so the strategic target in the subsequent perspective layer can be developed more realistically. Structural Equation Modeling (SEM modeling was used to examine horizontal connection validity to show strong relation between objectives strategy, and it will be measured of constructed component on the internal process by Technology Coefficient Contribution indexes.

  2. The 'CommTech' Methodology: A Demand-Driven Approach to Efficient, Productive and Measurable Technology Transfer

    Science.gov (United States)

    Horsham, Gray A. P.

    1998-01-01

    Market research sources were used to initially gather primary technological problems and needs data from non-aerospace companies in targeted industry sectors. The company-supplied information served as input data to activate or start-up an internal, phased match-making process. This process was based on technical-level relationship exploration followed by business-level agreement negotiations, and culminated with project management and execution. Space Act Agreements represented near-term outputs. Company product or process commercialization derived from Lewis support and measurable economic effects represented far-term outputs.

  3. THE OPTIMIZATION OF TECHNOLOGICAL MINING PARAMETERS IN QUARRY FOR DIMENSION STONE BLOCKS QUALITY IMPROVEMENT BASED ON PHOTOGRAMMETRIC TECHNIQUES OF MEASUREMENT

    Directory of Open Access Journals (Sweden)

    Ruslan Sobolevskyi

    2018-01-01

    Full Text Available This research focuses on patterns of change in the dimension stone commodity blocks quality production on previously identifi ed and measured geometrical parameters of natural cracks, modelling and planning out the fi nal dimension of stone products and fi nished products based on the proposed digital photogrammetric techniques. The optimal parameters of surveying are investigated and the infl uence of surveying distance to length and crack area is estimated. Rational technological parameters of dimension stone blocks production are taken into account.

  4. How technological potentials are undermined by economic and behavioural responses. The treatment effect of endogenous energy efficiency measures

    International Nuclear Information System (INIS)

    Meier, Helena; Tode, Christian; Koeln Univ.

    2015-01-01

    Governments worldwide spend increasing amounts of money on policy schemes to reduce energy consumption and related carbon emissions. We investigate the actual treatment effect of energy efficiency measures and therein compare actual demand responses to technological potentials. Based on a demand system analysis of household data and by approximating unobserved energy awareness, we find economic and behavioural responses that counteract expected savings from energy efficiency. Results show strong rebound and even back ring effects but also suggest heterogeneity of the effectiveness driven by behavioural concepts, such as sunk cost fallacy or habit formation. Understanding these can contribute to target-oriented policy designs and increased effectiveness and efficiency of policies.

  5. How technological potentials are undermined by economic and behavioural responses. The treatment effect of endogenous energy efficiency measures

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Helena; Tode, Christian [Koeln Univ. (Germany). Energiewirtschaftliches Inst.; Koeln Univ. (Germany). Dept. of Economics

    2015-06-15

    Governments worldwide spend increasing amounts of money on policy schemes to reduce energy consumption and related carbon emissions. We investigate the actual treatment effect of energy efficiency measures and therein compare actual demand responses to technological potentials. Based on a demand system analysis of household data and by approximating unobserved energy awareness, we find economic and behavioural responses that counteract expected savings from energy efficiency. Results show strong rebound and even back ring effects but also suggest heterogeneity of the effectiveness driven by behavioural concepts, such as sunk cost fallacy or habit formation. Understanding these can contribute to target-oriented policy designs and increased effectiveness and efficiency of policies.

  6. Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology

    Science.gov (United States)

    Krimi, Soufiene; Klier, Jens; Jonuscheit, Joachim; von Freymann, Georg; Urbansky, Ralph; Beigang, René

    2016-07-01

    In this contribution, we present a highly accurate approach for thickness measurements of multi-layered automotive paints using terahertz time domain spectroscopy in reflection geometry. The proposed method combines the benefits of a model-based material parameters extraction method to calibrate the paint coatings, a generalized Rouard's method to simulate the terahertz radiation behavior within arbitrary thin films, and the robustness of a powerful evolutionary optimization algorithm to increase the sensitivity of the minimum thickness measurement limit. Within the framework of this work, a self-calibration model is introduced, which takes into consideration the real industrial challenges such as the effect of wet-on-wet spray in the painting process.

  7. Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology

    International Nuclear Information System (INIS)

    Krimi, Soufiene; Beigang, René; Klier, Jens; Jonuscheit, Joachim; Freymann, Georg von; Urbansky, Ralph

    2016-01-01

    In this contribution, we present a highly accurate approach for thickness measurements of multi-layered automotive paints using terahertz time domain spectroscopy in reflection geometry. The proposed method combines the benefits of a model-based material parameters extraction method to calibrate the paint coatings, a generalized Rouard's method to simulate the terahertz radiation behavior within arbitrary thin films, and the robustness of a powerful evolutionary optimization algorithm to increase the sensitivity of the minimum thickness measurement limit. Within the framework of this work, a self-calibration model is introduced, which takes into consideration the real industrial challenges such as the effect of wet-on-wet spray in the painting process.

  8. Measurement methods updating for tandem-generator EGP-10K with using of digital technology

    Directory of Open Access Journals (Sweden)

    I. P. Dryapachenko

    2012-06-01

    Full Text Available During the last 10 years a number of fundamental and applied research at the electrostatic charge-exchange accelerator EGP-10K INR NAS with the proton and deuteron beams were performed. Currently, the program of optimization of the accelerator parameters, especially – the energy and intensity of the beam has being implemented. At the same time the possibilities of the transport and use of the accelerator beam through the creation of additional sections of beam tube and reaction chambers, as well as the possibilities of the measurements and data processing particularly, in the reconstructed measuring center of the previous single-stage accelerator EG-5, were improved. This paper presents the results of modernization of infrastructure of the experimental studies with the beams of the accelerator EGP-10K using the latest equipment and modern digital technique for beam diagnostics, registration of the reaction products and visualization of the obtained data.

  9. Research on the measurement technology and evaluation method of photobiological safety

    Science.gov (United States)

    Dai, Cai-hong; Wu, Zhi-feng; Chen, Bin-hua; Wang, Yan-fei; Li, Xiang-zhao; Fu, Lei

    2013-12-01

    Lamps and lamp system are widely used in large quantities in an era. The evaluation and control of optical radiation hazards of lamps and lamp systems is far more complicated. A special measurement and traceability facility was set up at NIM (National Institute of Metrology, China) to evaluate the optical radiation safety of lamp and lamp system, which includes a double grating spectroradiometer OL750D with two different entrance systems of spectral radiance and spectral irradiance traceable to the national primary standard of spectral irradiance by a 1000W spectral irradiance standard lamp, 40W deuterium lamp and a standard diffuser plate. The technical requirements of the measurement instrumentation used for optical radiation safety evaluation including monochromator type, wavelength accuracy, input optics, spectral scan interval and calibration sources are recommended also in this paper. Spectral radiance of a series of LED electric torches and infrared sources were measured by using the new developed system, and potential radiation hazards of retinal blue light hazard and retinal thermal hazard are calculated and evaluated. The optical radiation hazards of some samples are listed in Risk Group 2 (Moderate-Risk).

  10. Moving Object Tracking and Avoidance Algorithm for Differential Driving AGV Based on Laser Measurement Technology

    Directory of Open Access Journals (Sweden)

    Pandu Sandi Pratama

    2012-12-01

    Full Text Available This paper proposed an algorithm to track the obstacle position and avoid the moving objects for differential driving Automatic Guided Vehicles (AGV system in industrial environment. This algorithm has several abilities such as: to detect the moving objects, to predict the velocity and direction of moving objects, to predict the collision possibility and to plan the avoidance maneuver. For sensing the local environment and positioning, the laser measurement system LMS-151 and laser navigation system NAV-200 are applied. Based on the measurement results of the sensors, the stationary and moving obstacles are detected and the collision possibility is calculated. The velocity and direction of the obstacle are predicted using Kalman filter algorithm. Collision possibility, time, and position can be calculated by comparing the AGV movement and obstacle prediction result obtained by Kalman filter. Finally the avoidance maneuver using the well known tangent Bug algorithm is decided based on the calculation data. The effectiveness of proposed algorithm is verified using simulation and experiment. Several examples of experiment conditions are presented using stationary obstacle, and moving obstacles. The simulation and experiment results show that the AGV can detect and avoid the obstacles successfully in all experimental condition. [Keywords— Obstacle avoidance, AGV, differential drive, laser measurement system, laser navigation system].

  11. Measurements of activation cross sections for some long-lived nuclides important in fusion reactor technology

    International Nuclear Information System (INIS)

    Blinov, M.V.; Filatenkov, A.A.; Chuvaev, S.V.

    1992-01-01

    The Ag-109(n,2n)Ag-108m, Eu-151(n,2n)Eu-150 and Eu-153(n,2n)Eu-152 cross sections have been measured in the neutron energy interval of 13.7-14.9 MeV. The measurements were performed at the neutron generator NG-400 of the Radium Institute using (D-T) neutrons. At the same facility the upper limit has been obtained for the W-182(n,n'a)Hf-178m 2 cross section. Neutron capture of the Mo-98 that lead ultimately to the production of the long-lived Tc-99 has been studied at neutron energies 0.7-2.0 MeV. For these purposes, the Van de Graaf accelerator (EG-5) was employed that produced monochromatic neutrons in the (p-T) reaction. Both at EG-5 and NG-400 measurements, special efforts were made to minimize neutron spectrum impurities which unavoidably arise in irradiation environments. (author). 15 refs, 6 figs, 1 tab

  12. 2D temperature field measurement in a direct-injection engine using LIF technology

    Science.gov (United States)

    Liu, Yongfeng; Tian, Hongsen; Yang, Jianwei; Sun, Jianmin; Zhu, Aihua

    2011-12-01

    A new multi-spectral detection strategy for temperature laser- induced- fluorescence (LIF) 2-D imaging measurements is reported for high pressure flames in high-speed diesel engine. Schematic of the experimental set-up is outlined and the experimental data on the diesel engine is summarized. Experiment injection system is a third generation Bosch high-pressure common rail featuring a maximum pressure of 160MPa. The injector is equipped with a six-hole nozzle, where each hole has a diameter of 0.124 mm. and slightly offset to the center of the cylinder axis to allow a better cooling of the narrow bridge between the exhaust valves. The measurement system includes a blower, which supplied the intake flow rate, and a prototype single-valve direct injection diesel engine head modified to lay down the swirled-type injector. 14-bit digital CCD cameras are employed to achieve a greater level of accuracy in comparison to the results of previous measurements. The temperature field spatial distributions in the cylinder for different crank angle degrees are carried out in a single direct-injection diesel engine.

  13. Temperature field measurement research in high-speed diesel engine using laser induced fluorescence technology

    Science.gov (United States)

    Liu, Yongfeng; Zhang, You-tong; Gou, Chenhua; Tian, Hongsen

    2008-12-01

    Temperature laser- induced- fluorescence (LIF) 2-D imaging measurements using a new multi-spectral detection strategy are reported for high pressure flames in high-speed diesel engine. Schematic of the experimental set-up is outlined and the experimental data on the diesel engine is summarized. Experiment injection system is a third generation Bosch high-pressure common rail featuring a maximum pressure of 160 MPa. The injector is equipped with a six-hole nozzle, where each hole has a diameter of 0.124 mm. and slightly offset (by 1.0 mm) to the center of the cylinder axis to allow a better cooling of the narrow bridge between the exhaust valves. The measurement system includes a blower, which supplied the intake flow rate, and a prototype single-valve direct injection diesel engine head modified to lay down the swirled-type injector. 14-bit digital CCD cameras are employed to achieve a greater level of accuracy in comparison to the results of previous measurements. The temperature field spatial distributions in the cylinder for different crank angle degrees are carried out in a single direct-injection diesel engine.

  14. EU PVSEC: New products: Cells and modules, production technology, monitoring and communication, measuring technology, inverters, tracking systems etc.; EU PVSEC: Produktneuheiten. Zellen und Module, Produktionstechnik, Monitoring und Kommunikation, Messtechnik, Wechselrichter, Nachfuehrsysteme, Was man sonst noch braucht

    Energy Technology Data Exchange (ETDEWEB)

    Ossenbrink, Ralf; Augsten, Eva; Gesthuizen, Jan; Maeuler, Desiree; Buddensiek, Volker; Garus, Katharina

    2010-09-01

    The contribution takes a look back at the EU PVSEC trade fair and presents some of the innovations that were shown. There was news in many areas, e.g. cells and modules, production technology, monitoring and communication, measuring technology, inverters, tracking systems etc. (orig./AKB)

  15. Measuring relative efficiency of applied science and technology universities in province of Semnan, Iran and providing suggestions for merging units

    Directory of Open Access Journals (Sweden)

    Abolfazl Danaei

    2013-03-01

    Full Text Available University of applied science and technology has been designed to create a platform for multilateral activities such as industrial, military and academic in developing countries to promote science and scientific research applications. These universities are responsible to promote practical training in quantitative and qualitative indicators and they provide appropriate infrastructure to implement theoretical graduates to solve practical problems to build necessary infrastructure to transfer modern technology into developing countries. During the past few years, there have been tremendous development on these units but some of them have not been efficient. In this paper, we present an empirical study to measure the relative efficiencies of various units of applied science and technology universities using data envelopment analysis. The proposed model of this paper uses two inputs including human resources as well as total assets and two outputs including the number of graduate students as well as operating profit. The results of the study have indicated that some of the units are inefficient and need to be merged with other units to increase the relative efficiency of these universities.

  16. Integrating different tracking systems in football: multiple camera semi-automatic system, local position measurement and GPS technologies.

    Science.gov (United States)

    Buchheit, Martin; Allen, Adam; Poon, Tsz Kit; Modonutti, Mattia; Gregson, Warren; Di Salvo, Valter

    2014-12-01

    Abstract During the past decade substantial development of computer-aided tracking technology has occurred. Therefore, we aimed to provide calibration equations to allow the interchangeability of different tracking technologies used in soccer. Eighty-two highly trained soccer players (U14-U17) were monitored during training and one match. Player activity was collected simultaneously with a semi-automatic multiple-camera (Prozone), local position measurement (LPM) technology (Inmotio) and two global positioning systems (GPSports and VX). Data were analysed with respect to three different field dimensions (small, systems were compared, and calibration equations (linear regression models) between each system were calculated for each field dimension. Most metrics differed between the 4 systems with the magnitude of the differences dependant on both pitch size and the variable of interest. Trivial-to-small between-system differences in total distance were noted. However, high-intensity running distance (>14.4 km · h -1 ) was slightly-to-moderately greater when tracked with Prozone, and accelerations, small-to-very largely greater with LPM. For most of the equations, the typical error of the estimate was of a moderate magnitude. Interchangeability of the different tracking systems is possible with the provided equations, but care is required given their moderate typical error of the estimate.

  17. TAKE, development of the refractive index measurement technology for industrial needs; TAKE, taitekerroinmittaustekniikan kehittaeminen teollisuuden tarpeisiin - MPKT 12

    Energy Technology Data Exchange (ETDEWEB)

    Raety, J [Oulu Univ. (Finland)

    1999-12-31

    Refractive index is one of the basic physical phenomena of materials. Traditional refractive index measurement has been widely used e.g. In research, in quality inspection of products and raw materials. It is also used for follow up of the different industrial processes. A measuring and research environment, by which it is possible to determine the complex refractive index of liquid samples, was developed in 1996 at the Measuring Instrument laboratory of the University of Oulu. This equipment, based on the reflectance of light measures both the refractive index and absorption factor of liquids simultaneously. While the commercial refractometers are best suitable for research of clear liquids, by the developed equipment it is possible to investigate by the side of clear fluids also dark strongly light absorbing samples. The measuring wave length can be chosen continuously inside the UV-Visual range. The knowing of the wave-length dependence of the complex refractive index gives additional information on the state of the fluid under inspection. The main objective of the task is to solve measuring problems of biotechnology, food industry and forest industry by a new type of refractometric method. This means the simultaneous measurement of refractive index and absorption, and the utilisation of this knowledge in wide spectral region. A refractometer, based on the technology, suitable for applied research of new measuring targets will be designed and constructed in the research. The above mentioned goals also require the survey of the present situation of the refractometry. This one and a half year project will be started in spring 1998. (orig.)

  18. TAKE, development of the refractive index measurement technology for industrial needs; TAKE, taitekerroinmittaustekniikan kehittaeminen teollisuuden tarpeisiin - MPKT 12

    Energy Technology Data Exchange (ETDEWEB)

    Raety, J. [Oulu Univ. (Finland)

    1998-12-31

    Refractive index is one of the basic physical phenomena of materials. Traditional refractive index measurement has been widely used e.g. In research, in quality inspection of products and raw materials. It is also used for follow up of the different industrial processes. A measuring and research environment, by which it is possible to determine the complex refractive index of liquid samples, was developed in 1996 at the Measuring Instrument laboratory of the University of Oulu. This equipment, based on the reflectance of light measures both the refractive index and absorption factor of liquids simultaneously. While the commercial refractometers are best suitable for research of clear liquids, by the developed equipment it is possible to investigate by the side of clear fluids also dark strongly light absorbing samples. The measuring wave length can be chosen continuously inside the UV-Visual range. The knowing of the wave-length dependence of the complex refractive index gives additional information on the state of the fluid under inspection. The main objective of the task is to solve measuring problems of biotechnology, food industry and forest industry by a new type of refractometric method. This means the simultaneous measurement of refractive index and absorption, and the utilisation of this knowledge in wide spectral region. A refractometer, based on the technology, suitable for applied research of new measuring targets will be designed and constructed in the research. The above mentioned goals also require the survey of the present situation of the refractometry. This one and a half year project will be started in spring 1998. (orig.)

  19. High resolution deformation measurements at active volcanoes: a new remote sensing technology

    Science.gov (United States)

    Hort, M. K.; Scharff, L.; Gerst, A.; Meier, K.; Falk, S.; Peters, G.; Ripepe, M.

    2013-12-01

    It is known from observations at different volcanoes using ULP seismic observations that the volcanic edifice deforms slightly prior to an eruption. It can be expected that immediately prior to an eruption the largest deformation should occur in the vicinity of the vent. However, placing instruments at the vent is impossible as they will be destroyed during an eruption. Here we present new, high temporal resolution (up to 300Hz) deformation measurement that utilizes the phase information of a frequency modulated Doppler radar system. We decompose the Doppler signal into two parts, one part which allows us to measure speeds significantly above 0.5m/s (i.e. the movement of volcanic ash and clasts). The other part utilizes the slow phase changes of the signal reflected from non-moving objects, i.e. the volcanic edifice. This signal is used to measure very slow and longer term deformations, which are the main subject of this study. The method has been tested measuring the displacement of high rise buildings during strong winds. It can be shown that displacements down to 50 μm can be resolved without a problem. We apply this method to different data sets collected at Stromboli volcano, Italy, as well as Santiaguito volcano, Guatemala. At Stromboli we observed the NE crater once in 2008 and once in 2011. During both campaigns we observe on average a displacement between 1 and 5mm before different eruptions. This displacement can be interpreted as a widening of the conduit prior to an eruption. In a couple of cases even an oscillatory movement is observed with frequencies of about 0.5Hz. Finite element modeling of the rise of a pressurized slug indicates that deformations at the crater rim on the order of a 1mm or less are certainly reasonable. In the case of Santiaguito volcano prior to an eruption we observe a pre eruptive displacement 5-15mm and after the end of an eruption a displacement of up to 1m before the next eruption occurs. This can be interpreted as in

  20. Measurement of chloride-ion concentration with long-period grating technology

    Science.gov (United States)

    Tang, Jaw-Luen; Wang, Jian-Neng

    2007-06-01

    A simple and low-cost long-period fiber grating (LPG) sensor suited for chloride-ion concentration measurement is presented. The LPG sensor is found to be sensitive to the refractive index of the medium around the cladding surface of the sensing grating, thus offering the prospect of development of practical sensors such as an ambient index sensor or a chemical concentration indicator with high stability and reliability. We measured chloride ions in a typical concrete sample immersed in salt water solutions with different weight concentrations ranging from 0% to 25%. Results show that the LPG sensor exhibited a linear decrease in the transmission loss and resonance wavelength shift when the concentration increased. The measurement accuracy for the concentration of salt in water solution is estimated to be 0.6% and the limit of detection for chloride ions is about 0.04%. To further enhance its sensitivity for chloride concentrations, we coated a monolayer of colloidal gold nanoparticles as the active material on the grating surface of the LPG sensor. The operating principle of sensing is based on the sensitivity of localized surface plasmon resonance of self-assembled gold colloids on the grating section of the LPG. With this method, a factor of two increase in the sensitivity of detecting chemical solution concentrations was obtained. The advantages of this type of fiber-optic sensor are that it is compact, relatively simple to construct and easy to use. Moreover, the sensor has the potential capability for on-site, in vivo and remote sensing, and it has potential use as a disposable sensor.

  1. Mapping and Measuring the Microrelief of Slope Deformations Using Modern Contactless Technologies and Practical Application in Territorial Planning

    Science.gov (United States)

    Chudý, František; Slámová, Martina; Tomaštík, Julián; Kardoš, Miroslav; Tunák, Daniel; Saloň, Šimon

    2017-04-01

    Slope deformations are risks limiting economic land use potential. A national database system keeps records of slope disturbances and deformations, however, it is important to update the information mainly from the point of view of practical territorial planning, especially in the high-risk areas presented in the study. The paper explains the possibilities of applying modern methods of mapping the microrelief of slope deformations of a lower extent (up to several hundreds of m2) and using not very well known contactless technologies, which could be applied in practice due to their low-cost and low-time consuming nature. In order to create a digital model of the microrelief used to carry out the measurements we applied the method of terrestrial photogrammetry, terrestrial scanning using Lenovo Phab 2Pro. It is the first device available for users that uses the Google Tango technology. So far there have been only prototypes of devices available for the developers only. The Tango technology consists of 3 partial technologies - "depth perception" (measuring the distance to objects, nowadays it uses mainly infrared radiation), "motion tracking" (tracking the position and motion of the device using embedded sensors) and "area learning" (simply learning the area, where the device looks for same objects within already existing 3D models and real space). Even though the technology utilisation is nowadays presented mainly in the field of augmented reality and navigation in the interior, there are already some applications for collecting the point clouds in real time, which can be used in a wide spectrum of applications in exterior, which was also applied in our research. Data acquired this way can be processed in readily available software products, what enabled a high degree of automation also in our case. After comparing with the reference point field that was measured using GNSS and electronic tachymeter, we reached accuracy of point position determination from a digital

  2. A new system using NMR technology for measurement of body composition in experimental animals

    International Nuclear Information System (INIS)

    Suzuki, Jun; Nishikibe, Masaru

    2004-01-01

    Measurement of body composition (fat mass) is an important item in pathophysiological and pharmacological studies using small animals (mice) in the fields of obesity and diabetes. The existing methods are, however, difficult, time consuming, and require a shielding facility. Now a novel system using nuclear magnetic resonance (NMR) technique was developed for measurement of body composition in small animals (mice) that provides noninvasive and rapid measurement without anesthetics; we introduced and evaluated this system and tried another application of this system. First, we validated this system using canola oil, soft tissues (adipose and skeletal muscle), and various kinds of rodent chows. Accuracy, precision, and reproducibility of this system were demonstrated to be equal to those in standard chemical methods. A strong positive correlation (y=x) between the results of NMR and chemical methods was found. Secondly, we evaluated accuracy and assay range of the NMR method using live mice that were fasted overnight or fed high fat diet (HFD). In fasted mice, a small but quantitative decrease of fat mass (5.1% from 9.1%) was detected. Total decrease of fat and lean mass (5.0 g) in fasted mice was equivalent to the decrease of body weight (5.0 g). In mice fed the HFD, increase of fat mass with relative decrease of lean mass were qualitatively detected in a time-dependent manner. We would like to emphasize that operation of the system was actually easy and measurements were accomplished in a short time (1 minute). Thirdly, we tried to use the NMR system for determination of hepatic fat contents using mice fasted or treated with a peroxisome proliferator-activated receptor (PPAR)γ agonist; our results showed a quantitative increase in fat by fasting or in decrease in fat by the drug treatment. The changes of fat contents determined by the NMR method were well correlated with the changes in triglyceride and total cholesterol values obtained by the biochemical assays

  3. Technological advances in cosmogenic neutron detectors for measuring soil water content

    Science.gov (United States)

    Zreda, M. G.; Schrön, M.; Köhli, M.

    2017-12-01

    The cosmic-ray neutron probe is used for measuring area-average soil water content at the hectometer scale. Early work showed a simple exponential decrease with distance of the instrument's sensitivity and a footprint 300 m in radius. Recent research suggested a much higher sensitivity to local neutrons and reduced footprint. We show results confirming the high sensitivity to local neutrons, describe two ways to reduce local and increase far-field effects, and propose ways of measuring neutrons at different spatial scales. Measurements with moderated detectors across a 10-m-wide creek and a 2-m-wide water tank show a decrease by 30% and 20%, respectively, of neutron intensity over water compared to that over land nearby. These results mean that the detector is sensitive to meter-scale heterogeneities of water content. This sensitivity can be reduced by rising the detector or by shielding it from local neutrons. The effect of local water distributions on the measured neutron intensity decreases with height. In the water tank experiment it disappeared almost completely at the height of 2 m, leading to the conjecture that the height roughly equal to the horizontal scale of heterogeneity would eliminate the sensitivity. This may or may not be practical. Shielding the detector below by a hydrogenous material removes a substantial fraction of the local neutrons. The shielded detector has a reduced count rate, reduced sensitivity to local neutrons and increased sensitivity to neutrons farther afield, and a larger footprint. Such a detector could be preferable to the current cosmogenic-neutron probe under heterogeneous soil water conditions. The shielding experiments also inspired the development of a local-area neutron detector. It has hydrogenous neutron shields on all sides except the bottom, substantially blocking the neutrons coming from afar, while allowing the neutrons coming directly from below. Its footprint is equal to its physical dimension when the detector is

  4. Mobile System for the Measurement of Dose Rates with locations determined by means of satellite positioning technology

    International Nuclear Information System (INIS)

    Baeza, A.; Rio, L.M. del; Macias, J.A.; Vasco, J.

    1998-01-01

    Our laboratory has been developing and implementing a Real Time Radiological Warning Network around the Almaraz Nuclear Power Plant since 1990. It consists of six gamma dosimetry stations, two devices for the detection of radio-iodines and alpha, beta, and gamma emissions in air, a monitor for the continuous measurement of gamma radiation in water, and two basic meteorological stations. In this context, we have developed a mobile station endowed with a device for the measurement of dose rates which uses satellite positioning technology (GPS) so that it can be located remotely. The information gathered is sent back to our central laboratory in real/or deferred time through the digital mobile telephone network. A twofold utility is foreseen for this station: (a) action in the case of a radiological alert situation detected by our network, and (b) the performance of radiological-dosimetric studies of distant geographical zones. (Author)

  5. Measurements and Evaluation of Nuclear Reaction Cross Sections Leading to Various Practical Applications in Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Khandaker, Mayeen Uddin; Lee, Young Ouk; Cho, Young Sik

    2008-07-15

    This report contains the measurements and evaluation of production cross sections of some medically and technologically important radionuclides over the energy range 1-40 MeV by using a conventional stacked-foil activation technique combined with high purity germanium (HPGe) -ray spectrometry. The irradiations were done by using the external beam line of the MC-50 cyclotron at the Korea Institute of Radiological and Medical Sciences (KIRAMS). The standard cross sections for monitor reactions were taken from IAEA web site. Integral yields for the investigated radionuclides were deduced using the measured cross-sections. Reported data were compared with the available literature data, theoretical calculations by the codes TALYS and ALICE-IPPE, and a good overall agreement among them was found.

  6. Simultaneous measurement of 25 inflammatory markers and neurotrophins in neonatal dried blood spots by immunoassay with xMAP technology

    DEFF Research Database (Denmark)

    Skogstrand, Kristin; Thorsen, Poul; Nørgaard-Pedersen, Bent

    2005-01-01

    BACKGROUND: Inflammatory reactions and other events in early life may be part of the etiology of late-onset diseases, including cerebral palsy, autism, and type 1 diabetes. Most neonatal screening programs for congenital disorders are based on analysis of dried blood spot samples (DBSS), and stored...... on flowmetric Luminex xMAP technology to measure inflammatory markers and neutrophins in DBSS. RESULTS: The high-capacity 25-plex multianalyte method measured 23 inflammatory and trophic cytokines, triggering receptor expressed on myeloid cells-1 (TREM-1), and C-reactive protein in two 3.2-mm punches from DBSS...... potential for high-capacity analysis of DBSS in epidemiologic case-control studies and, with further refinements, in neonatal screening....

  7. Measurements and Evaluation of Nuclear Reaction Cross Sections Leading to Various Practical Applications in Science and Technology

    International Nuclear Information System (INIS)

    Khandaker, Mayeen Uddin; Lee, Young Ouk; Cho, Young Sik

    2008-07-01

    This report contains the measurements and evaluation of production cross sections of some medically and technologically important radionuclides over the energy range 1-40 MeV by using a conventional stacked-foil activation technique combined with high purity germanium (HPGe) -ray spectrometry. The irradiations were done by using the external beam line of the MC-50 cyclotron at the Korea Institute of Radiological and Medical Sciences (KIRAMS). The standard cross sections for monitor reactions were taken from IAEA web site. Integral yields for the investigated radionuclides were deduced using the measured cross-sections. Reported data were compared with the available literature data, theoretical calculations by the codes TALYS and ALICE-IPPE, and a good overall agreement among them was found

  8. Pipeline Bending Strain Measurement and Compensation Technology Based on Wavelet Neural Network

    Directory of Open Access Journals (Sweden)

    Rui Li

    2016-01-01

    Full Text Available The bending strain of long distance oil and gas pipelines may lead to instability of the pipeline and failure of materials, which seriously deteriorates the transportation security of oil and gas. To locate the position of the bending strain for maintenance, an Inertial Measurement Unit (IMU is usually adopted in a Pipeline Inspection Gauge (PIG. The attitude data of the IMU is usually acquired to calculate the bending strain in the pipe. However, because of the vibrations in the pipeline and other system noises, the resulting bending strain calculations may be incorrect. To improve the measurement precision, a method, based on wavelet neural network, was proposed. To test the proposed method experimentally, a PIG with the proposed method is used to detect a straight pipeline. It can be obtained that the proposed method has a better repeatability and convergence than the original method. Furthermore, the new method is more accurate than the original method and the accuracy of bending strain is raised by about 23% compared to original method. This paper provides a novel method for precisely inspecting bending strain of long distance oil and gas pipelines and lays a foundation for improving the precision of inspection of bending strain of long distance oil and gas pipelines.

  9. Technology development for evaluation of operational quantities and measurement standard in radiation protection

    International Nuclear Information System (INIS)

    Chang, Si Young; Lee, T. Y.; Kim, J. L.; Kim, B. H.; Chung, K. K.; Lee, J. I.; Park, T. S.; Ha, S. H.; Oh, P. J.; Jun, K. J.

    1999-03-01

    A study on the fabrication of a new personal thermo-luminescence dosimeter, which can evaluate the personal dose equivalent H p (d), has been performed. Optimum conditions for fabrications of a LiF:Mg, Cu, Na, Si TL phosphor powder has been determined and a disc type TL pellet has been fabricated from this TL powder. Another type of CaSO 4 :Dy, Mo TL material has been also fabricated. These two TL materials have shown greater TL sensitivity than the foreign-made commercial TL materials. Mono-energetic florescence X-rays from 8.6 response have been constructed and evaluated for the performance of the purity, air kerma, beam uniformity and distribution,and scattered fraction of X-rays. A free-air ionization chamber for the absolute measurement of air kerma in medium X-ray has been designed and constructed. Experimental results showed that the homemade chamber leaves nothing to be desired, compared with the national standard chambers in other advanced countries. Gas proportional counting system has been designed and constructed for absolute activity measurements of gaseous radionuclides. Unattached fractions of radon progeny were evaluated in the characteristic study on the detection of radon progeny

  10. Technology development for evaluation of operational quantities and measurement standard in radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Si Young; Lee, T. Y.; Kim, J. L.; Kim, B. H.; Chung, K. K.; Lee, J. I.; Park, T. S.; Ha, S. H.; Oh, P. J.; Jun, K. J

    1999-03-01

    A study on the fabrication of a new personal thermo-luminescence dosimeter, which can evaluate the personal dose equivalent H{sub p}(d), has been performed. Optimum conditions for fabrications of a LiF:Mg, Cu, Na, Si TL phosphor powder has been determined and a disc type TL pellet has been fabricated from this TL powder. Another type of CaSO{sub 4}:Dy, Mo TL material has been also fabricated. These two TL materials have shown greater TL sensitivity than the foreign-made commercial TL materials. Mono-energetic florescence X-rays from 8.6 response have been constructed and evaluated for the performance of the purity, air kerma, beam uniformity and distribution,and scattered fraction of X-rays.A free-air ionization chamber for the absolute measurement of air kerma in medium X-ray has been designed and constructed. Experimental results showed that the homemade chamber leaves nothing to be desired, compared with the national standard chambers in other advanced countries. Gas proportional counting system has been designed and constructed for absolute activity measurements of gaseous radionuclides. Unattached fractions of radon progeny were evaluated in the characteristic study on the detection of radon progeny.

  11. Development of radiation protection and measurement technology -A study on the radiation and environmental safety-

    International Nuclear Information System (INIS)

    Chang, Si Young; Seo, Kyeong Won; Yoon, Seok Cheol; Lee, Tae Yeong; Kim, Bong Hwan; Chung, Deok Yeon; Lee, Ki Chang; Kim, Jong Soo; Yoon, Yeo Chang; Kim, Jang Ryeol; Lee, Sang Yoon

    1994-07-01

    Reference radiation fields which can meet the national and international standard and criteria such as the ANSI N13.11 have been designed, produced and evaluated to maintain the national traceability and reliability of the radiation measurement and to provide precise calibration of the various radiation measuring instruments as well as standard irradiation of the personal dosimeters for the performance evaluation. Existing dose calculation algorithm has been improved to correctly evaluate the shallow dose from the β(Ti-204) + γ(Cs-137) mixed radiation exposure by applying the TLD response correction function newly derived in this study. A mathematical algorithm to calculate the internal dose from inhalation of the uranium isotopes has been developed on the basis of the ICRP-30 respiratory tract model. Detailed performance analysis of the KAERI lung counter has been carried out to participate in the intercomparison of lung dosimetry. A preliminary and basic study on the quantitative method of optimal dose reduction based on the ALARA concept has been performed to technically support and strengthen the national radiation protection infrastructure. (Author)

  12. Development of electret technology to measure indoor radon-daughter concentrations: Final report (Phase 1)

    International Nuclear Information System (INIS)

    Kotrappa, P.; Dempsey, J.C.; Stieff, L.R.

    1989-05-01

    A new type of radon progeny monitor called an electret radon progeny integrating sampling unit (E-RPISU) was developed and demonstrated which uses an electret ion chamber to measure the progeny concentration. A conventional 1 LPM particulate air sampling system is used to collect the progeny on a 35 cm 2 filter which is mounted on the side of the electret ion chamber such that the collected progeny are exposed to the inside of the chamber. The alpha radiation emitted by the progeny collected on the filter ionizes the air in the 220 ml chamber. The ions of opposite polarity collect on the surface of the 127 μm thick electret and reduce its surface voltage. A specially built surface voltmeter is used to measure the electret voltage before and after sampling. The electret voltage drop which occurs during the sampling period is shown to be proportional to the time integrated progeny concentration. Two prototype systems were fabricated and tested in homes and in calibrated radon chambers. The resulting data are presented and analyzed. The calibration factor for the E-RPISU ranged from 1.5 to 2.0 V/mWL-day depending on the electret voltage. Two of the E-RPISUs were delivered to UNC Geotech for further testing. 32 refs., 11 figs., 5 tabs

  13. Experimental technologies comparison for strain measurement of a composite main landing gear bay specimen

    Science.gov (United States)

    Viscardi, Massimo; Arena, Maurizio; Ciminello, Monica; Guida, Michele; Meola, Carosena; Cerreta, Pietro

    2018-03-01

    The development of advanced monitoring system for strain measurements on aeronautical components remain an important target both when related to the optimization of the lead-time and cost for part validation, allowing earlier entry into service, and when related to the implementation of advanced health monitoring systems dedicated to the in-service parameters verification and early stage detection of structural problems. The paper deals with the experimental testing of a composite samples set of the main landing gear bay for a CS-25 category aircraft, realized through an innovative design and production process. The test have represented a good opportunity for direct comparison of different strain measurement techniques: Strain Gauges (SG) and Fibers Bragg Grating (FBG) have been used as well as non-contact techniques, specifically the Digital Image Correlation (DIC) and Infrared (IR) thermography applied where possible in order to highlight possible hot-spot during the tests. The crucial points identification on the specimens has been supported by means of advanced finite element simulations, aimed to assessment of the structural strength and deformation as well as to ensure the best performance and the global safety of the whole experimental campaign.

  14. Fiscal 2000 pioneering research on the research on high-sensitivity passive measurement/analysis technologies; 2000 nendo kokando passive keisoku bunseki gijutsu no chosa sendo kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The above-named research was brought over from the preceding fiscal year. Needs for passive measurement were investigated, and it was found that what are named below were interested in passive measurement. Wanting passive measurement technology were the analysis of organic matters on semiconductor wafers, analysis of dangerous substances in wastes, measurement of substances in the life space causing allergy to chemical substances, measurement of constituents of gas emitted by organisms for example through expiration, measurement for automatic sorting of plastic wastes, 2-dimensional spectrometry for medical treatment of organisms, and so forth. In the survey of seeds, various novel technologies were investigated in the fields of optical systems, sensors, and signal processing. The outcomes of the survey indicated that high-sensitivity measurement and analysis of spectral images, measurement and analysis of trace quantities in he fields of medical treatment, environmental matters, and semiconductors would be feasible by the use of newly developed technologies involving the interference array type 2-dimensional modulation/demodulation device, 2-dimensional high-sensitivity infrared sensor, high-sensitivity systematization technology, mixed signal separation technology capable of suppressing noise and background light, and technology for increasing processing speeds. (NEDO)

  15. Development of a Short-Form Measure of Science and Technology Self-efficacy Using Rasch Analysis

    Science.gov (United States)

    Lamb, Richard L.; Vallett, David; Annetta, Leonard

    2014-10-01

    Despite an increased focus on science, technology, engineering, and mathematics (STEM) in U.S. schools, today's students often struggle to maintain adequate performance in these fields compared with students in other countries (Cheek in Thinking constructively about science, technology, and society education. State University of New York, Albany, 1992; Enyedy and Goldberg 2004; Mandinach and Lewis 2006). In addition, despite considerable pressure to promote the placement of students into STEM career fields, U.S. placement is relatively low (Sadler et al. in Sci Educ 96(3):411-427, 2012; Subotnik et al. in Identifying and developing talent in science, technology, engineering, and mathematics (STEM): an agenda for research, policy and practice. International handbook, part XII, pp 1313-1326, 2009). One explanation for the decline of STEM career placement in the U.S. rests with low student affect concerning STEM concepts and related content, especially in terms of self-efficacy. Researchers define self-efficacy as the internal belief that a student can succeed in learning, and that understanding student success lies in students' externalized actions or behaviors (Bandura in Psychol Rev 84(2):191-215, 1977). Evidence suggests that high self-efficacy in STEM can result in student selection of STEM in later educational endeavors, culminating in STEM career selection (Zeldin et al. in J Res Sci Teach 45(9):1036-1058, 2007). However, other factors such as proficiency play a role as well. The lack of appropriate measures of self-efficacy can greatly affect STEM career selection due to inadequate targeting of this affective trait and loss of opportunity for early intervention by educators. Lack of early intervention decreases selection of STEM courses and careers (Valla and Williams in J Women Minor Sci Eng 18(1), 2012; Lent et al. in J Couns Psychol 38(4), 1991). Therefore, this study developed a short-form measure of self-efficacy to help identify students in need of

  16. Development of corrective measures and site stabilization technologies for shallow land burial facilities at semiarid sites: summary paper

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Abeele, W.V.

    1987-01-01

    The overall purpose of the corrective measures task performed for the national Low-Level Waste Management Program (NLLWMP) has been to develop and test methods that can be used to correct any actual or anticipated problems with new and existing shallow land burial (SLB) sites in a semiarid environment. These field tests have not only evaluated remedial actions, but have also investigated phenomena suspected of being a possible problem at semiarid SLB sites. The approach the authors have taken in developing remedial action and site closure technologies for low-level waste sites is to recognize the physical and biological processes affecting site integrity are interdependent, and therefore, cannot be treated as separate problems. More specifically the field experiments performed for this task were to identify, evaluate, and model erosion control technologies, field test second generation biointrusion barriers, determine by field experiments the extent of upward radionuclide migration due to moisture cycling, and measure the effects of subsidence on remedial action of other system components. In the following sections of this final task summary report, the authors describe the progress made in establishing the facility in which many of these field experiments were performed, the Los Alamos Experimental Engineered Test Facility (EETF), as well as a brief description of the four research areas encompassed by this task. 45 references, 4 figures

  17. Corneal biomechanical properties in healthy children measured by corneal visualization scheimpflug technology.

    Science.gov (United States)

    He, Miao; Ding, Hui; He, Hong; Zhang, Chi; Liu, Liangping; Zhong, Xingwu

    2017-05-17

    The aim of this study was to evaluate corneal biomechanical properties in a population of healthy children in China using corneal visualization Scheimpflug technology (CST). All children underwent complete bi-ocular examinations. CST provided intraocular pressure (IOP) and corneal biomechanical parameters, including time, velocity, length and deformation amplitude at first applanation (A1T, A1V, A1L, A1DA), at second applanation (A2T, A2V, A2L, A2DA), highest concavity time (HCT), maximum deformation amplitude (MDA), peak distance (PD), and radius of curvature (RoC). Pearson correlation analysis was used to assess the impacts of demographic factors, central corneal thickness (CCT), spherical equivalent (SE), and IOP on corneal biomechanics. One hundred eight subjects (32 girls and 76 boys) with the mean age of 10.80 ± 4.13 years (range 4 to18 years) were included in the final analyses. The right and left eyes were highly symmetrical in SE (p = 0.082), IOP (p = 0.235), or CCT (p = 0.210). Mean A1T of the right eyes was 7.424 ± 0.340 ms; the left eyes 7.451 ± 0.365 ms. MDA was 0.993 ± 0.102 mm in the right eyes and 0.982 ± 0.100 mm in the left eyes. Mean HCT of the right eyes was 16.675 ± 0.502 ms; the left eyes 16.735 ± 0.555 ms. All CST parameters of both eye were remarkably symmetrical with the exception of A2L (p = 0.006), A1DA (p = 0.025). The majority of CST parameters of both eyes were significantly correlated with CCT and IOP (p children eyes. Several CST biomechanical parameters in children are modified by CCT and IOP.

  18. Measurement of sound velocity made easy using harmonic resonant frequencies with everyday mobile technology

    Science.gov (United States)

    Hirth, Michael; Kuhn, Jochen; Müller, Andreas

    2015-02-01

    Recent articles about smartphone experiments have described their applications as experimental tools in different physical contexts.1-4 They have established that smartphones facilitate experimental setups, thanks to the small size and diverse functions of mobile devices, in comparison to setups with computer-based measurements. In the experiment described in this article, the experimental setup is reduced to a minimum. The objective of the experiment is to determine the speed of sound with a high degree of accuracy using everyday tools. An article published recently proposes a time-of-flight method where sound or acoustic pulses are reflected at the ends of an open tube.5 In contrast, the following experiment idea is based on the harmonic resonant frequencies of such a tube, simultaneously triggered by a noise signal.

  19. High Speed and High Spatial Density Parameter Measurement Using Fiber Optic Sensing Technology

    Science.gov (United States)

    Parker, Allen R. Jr. (Inventor); Chan, Hon Man (Inventor); Richards, William Lance (Inventor); Piazza, Anthony (Inventor); Hamory, Philip J (Inventor)

    2017-01-01

    The present invention is an improved fiber optic sensing system (FOSS) having the ability to provide both high spatial resolution and high frequency strain measurements. The inventive hybrid FOSS fiber combines sensors from high acquisition speed and low spatial resolution Wavelength-Division Multiplexing (WDM) systems and from low acquisition speed and high spatial resolution Optical Frequency Domain Reflection (OFDR) systems. Two unique light sources utilizing different wavelengths are coupled with the hybrid FOSS fiber to generate reflected data from both the WDM sensors and OFDR sensors operating on a single fiber optic cable without incurring interference from one another. The two data sets are then de-multiplexed for analysis, optionally with conventionally-available WDM and OFDR system analyzers.

  20. Research on key technology of the verification system of steel rule based on vision measurement

    Science.gov (United States)

    Jia, Siyuan; Wang, Zhong; Liu, Changjie; Fu, Luhua; Li, Yiming; Lu, Ruijun

    2018-01-01

    The steel rule plays an important role in quantity transmission. However, the traditional verification method of steel rule based on manual operation and reading brings about low precision and low efficiency. A machine vison based verification system of steel rule is designed referring to JJG1-1999-Verificaiton Regulation of Steel Rule [1]. What differentiates this system is that it uses a new calibration method of pixel equivalent and decontaminates the surface of steel rule. Experiments show that these two methods fully meet the requirements of the verification system. Measuring results strongly prove that these methods not only meet the precision of verification regulation, but also improve the reliability and efficiency of the verification system.