WorldWideScience

Sample records for wintertime secondary organic

  1. Primary and secondary organic aerosol origin by combined gas-particle phase source apportionment

    Directory of Open Access Journals (Sweden)

    M. Crippa

    2013-08-01

    Full Text Available Secondary organic aerosol (SOA, a prominent fraction of particulate organic mass (OA, remains poorly constrained. Its formation involves several unknown precursors, formation and evolution pathways and multiple natural and anthropogenic sources. Here a combined gas-particle phase source apportionment is applied to wintertime and summertime data collected in the megacity of Paris in order to investigate SOA origin during both seasons. This was possible by combining the information provided by an aerosol mass spectrometer (AMS and a proton transfer reaction mass spectrometer (PTR-MS. A better constrained apportionment of primary OA (POA sources is also achieved using this methodology, making use of gas-phase tracers. These tracers made possible the discrimination between biogenic and continental/anthropogenic sources of SOA. We found that continental SOA was dominant during both seasons (24–50% of total OA, while contributions from photochemistry-driven SOA (9% of total OA and marine emissions (13% of total OA were also observed during summertime. A semi-volatile nighttime component was also identified (up to 18% of total OA during wintertime. This approach was successfully applied here and implemented in a new source apportionment toolkit.

  2. Dicarboxylic acids and levoglucosan in aerosols from Indo-Gangetic Plain: Inferences from day night variability during wintertime.

    Science.gov (United States)

    Sorathia, Fena; Rajput, Prashant; Gupta, Tarun

    2018-05-15

    This study assesses daytime and nighttime atmospheric abundance and molecular distribution of dicarboxylic acids (DCA: C 2 -C 10 ) and biomass burning tracers (levoglucosan and biomass burning derived potassium: K + BB ) in PM 10 (particulate matter with aerodynamic diameter≤10μm) from an urban location, Kanpur (in central Indo-Gangetic Plain: IGP) during wintertime (December 2015-February 2016). In this study, PM 10 varied from 130 to 242 and 175-388μgm -3 during daytime and nighttime, respectively. The average ratios of OC/EC (day: 12.3; night: 9.3) and WSOC/OC (day: 0.74; night: 0.48) were relatively high during daytime (OC: organic carbon; EC: elemental carbon; WSOC: water-soluble organic carbon). Strong linear correlations (R 2 ≥0.6; pformation involving aqueous-phase chemistry. Strong linear correlations of C 2 with C 3 and C 4 plausibly suggest that C 2 can have predominant formation pathways via decomposition of higher congeners of DCA. Overall, strong linear correlations of C 2 with levoglucosan and sulphate suggest that biomass burning emission and secondary transformations are predominant sources of DCA over IGP during wintertime. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Aircraft-based Observations and Modeling of Wintertime Submicron Aerosol Composition over the Northeastern U.S.

    Science.gov (United States)

    Shah, V.; Jaegle, L.; Schroder, J. C.; Campuzano-Jost, P.; Jimenez, J. L.; Guo, H.; Sullivan, A.; Weber, R. J.; Green, J. R.; Fiddler, M.; Bililign, S.; Lopez-Hilfiker, F.; Lee, B. H.; Thornton, J. A.

    2017-12-01

    Submicron aerosol particles (PM1) remain a major air pollution concern in the urban areas of northeastern U.S. While SO2 and NOx emission controls have been effective at reducing summertime PM1 concentrations, this has not been the case for wintertime sulfate and nitrate concentrations, suggesting a nonlinear response during winter. During winter, organic aerosol (OA) is also an important contributor to PM1 mass despite low biogenic emissions, suggesting the presence of important urban sources. We use aircraft-based observations collected during the Wintertime INvestigation of Transport, Emissions and Reactivity (WINTER) campaign (Feb-March 2015), together with the GEOS-Chem chemical transport model, to investigate the sources and chemical processes governing wintertime PM1 over the northeastern U.S. The mean observed concentration of PM1 between the surface and 1 km was 4 μg m-3, about 30% of which was composed of sulfate, 20% nitrate, 10% ammonium, and 40% OA. The model reproduces the observed sulfate, nitrate and ammonium concentrations after updates to HNO3 production and loss, SO2 oxidation, and NH3 emissions. We find that 65% of the sulfate formation occurs in the aqueous phase, and 55% of nitrate formation through N2O5 hydrolysis, highlighting the importance of multiphase and heterogeneous processes during winter. Aqueous-phase sulfate production and the gas-particle partitioning of nitrate and ammonium are affected by atmospheric acidity, which in turn depends on the concentration of these species. We examine these couplings with GEOS-Chem, and assess the response of wintertime PM1 concentrations to further emission reductions based on the U.S. EPA projections for the year 2023. For OA, we find that the standard GEOS-Chem simulation underestimates the observed concentrations, but a simple parameterization developed from previous summer field campaigns is able to reproduce the observations and the contribution of primary and secondary OA. We find that

  4. Regional modeling of carbonaceous aerosols over Europe-focus on secondary organic aerosols

    International Nuclear Information System (INIS)

    Bessagnet, B.; Menut, L.; Curci, G.; Hodzic, A.; Guillaume, B.; Liousse, C.; Moukhtar, S.; Pun, B.; Seigneur, C.; Schulz, M.

    2008-01-01

    In this study, an improved and complete secondary organic aerosols (SOA) chemistry scheme was implemented in the CHIMERE model. The implementation of isoprene chemistry for SOA significantly improves agreement between long series of simulated and observed particulate matter concentrations. While simulated organic carbon concentrations are clearly improved at elevated sites by adding the SOA scheme, time correlation are impaired at low level sites in Portugal, Italy and Slovakia. At several sites a clear underestimation by the CHIMERE model is noticed in wintertime possibly due to missing wood burning emissions as shown in previous modeling studies. In Europe, the CHIMERE model gives yearly average SOA concentrations ranging from 0.5 μg m -3 in the Northern Europe to 4 μg m -3 over forested regions in Spain, France, Germany and Italy. In addition, our work suggests that during the highest fire emission periods, fires can be the dominant source of primary organic carbon over the Mediterranean Basin, but the SOA contribution from fire emissions is low. Isoprene chemistry has a strong impact on SOA formation when using current available kinetic schemes. (authors)

  5. Regional modeling of carbonaceous aerosols over Europe-focus on secondary organic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Bessagnet, B. [INERIS, Inst Nat Env Indust Risques, F-60550 Verneuil en Halatte, (France); Menut, L. [Ecole Poltechnique, Inst Pierre Simon Laplace, Lab Meteorol Dyn, F-91128 Palaiseau, (France); Curci, G. [Univ degli Studi dell' Aquila, CETEMPS, 67010 Coppito - L' Aquila, (Italy); Hodzic, A. [NCAR, Nat Center for Atmosph Research, Boulder, 80301, CO, (United States); Guillaume, B.; Liousse, C. [LA/OMP, Lab Aerol/Observ Midi-Pyrenees, F-31400 Toulouse, (France); Moukhtar, S. [York Univ, Centre Atmosph Chem, Toronto, (Italy); Pun, B.; Seigneur, C. [Atmosph and Environ Research, San Ramon, CA 94583, (United States); Schulz, M. [CEA-CNRS-UVSQ, IPSL, Lab Sciences Climat et Environm, F-91191 Gif sur Yvette, (France)

    2008-07-01

    In this study, an improved and complete secondary organic aerosols (SOA) chemistry scheme was implemented in the CHIMERE model. The implementation of isoprene chemistry for SOA significantly improves agreement between long series of simulated and observed particulate matter concentrations. While simulated organic carbon concentrations are clearly improved at elevated sites by adding the SOA scheme, time correlation are impaired at low level sites in Portugal, Italy and Slovakia. At several sites a clear underestimation by the CHIMERE model is noticed in wintertime possibly due to missing wood burning emissions as shown in previous modeling studies. In Europe, the CHIMERE model gives yearly average SOA concentrations ranging from 0.5 {mu}g m{sup -3} in the Northern Europe to 4 {mu}g m{sup -3} over forested regions in Spain, France, Germany and Italy. In addition, our work suggests that during the highest fire emission periods, fires can be the dominant source of primary organic carbon over the Mediterranean Basin, but the SOA contribution from fire emissions is low. Isoprene chemistry has a strong impact on SOA formation when using current available kinetic schemes. (authors)

  6. California Wintertime Precipitation in Regional and Global Climate Models

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, P M

    2009-04-27

    In this paper, wintertime precipitation from a variety of observational datasets, regional climate models (RCMs), and general circulation models (GCMs) is averaged over the state of California (CA) and compared. Several averaging methodologies are considered and all are found to give similar values when model grid spacing is less than 3{sup o}. This suggests that CA is a reasonable size for regional intercomparisons using modern GCMs. Results show that reanalysis-forced RCMs tend to significantly overpredict CA precipitation. This appears to be due mainly to overprediction of extreme events; RCM precipitation frequency is generally underpredicted. Overprediction is also reflected in wintertime precipitation variability, which tends to be too high for RCMs on both daily and interannual scales. Wintertime precipitation in most (but not all) GCMs is underestimated. This is in contrast to previous studies based on global blended gauge/satellite observations which are shown here to underestimate precipitation relative to higher-resolution gauge-only datasets. Several GCMs provide reasonable daily precipitation distributions, a trait which doesn't seem tied to model resolution. GCM daily and interannual variability is generally underpredicted.

  7. Volatility of source apportioned wintertime organic aerosol in the city of Athens

    Science.gov (United States)

    Louvaris, Evangelos E.; Florou, Kalliopi; Karnezi, Eleni; Papanastasiou, Dimitrios K.; Gkatzelis, Georgios I.; Pandis, Spyros N.

    2017-06-01

    The volatility distribution of ambient organic aerosol (OA) and its components was measured during the winter of 2013 in the city of Athens combining a thermodenuder (TD) and a High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). Positive Matrix Factorization (PMF) analysis of both the ambient and the thermodenuder AMS-spectra resulted in a four-factor solution for the OA, namely: hydrocarbon-like OA (HOA), biomass burning OA (BBOA), cooking OA (COA), and oxygenated OA (OOA). The thermograms of the four factors were analyzed and the corresponding volatility distributions were estimated using the volatility basis set (VBS). All four factors included compounds with a wide range of effective volatilities from 10 to less than 10-4 μg m-3 at 298 K. Almost 40% of the HOA consisted of low-volatility organic compounds (LVOCs) with the semi-volatile compounds (SVOCs) representing roughly 30%, while the remaining 30% consisted of extremely low volatility organic compounds (ELVOCs). BBOA was more volatile than the HOA factor on average, with 10% ELVOCs, 40% LVOCs, and 50% SVOCs. 10% of the COA consisted of ELVOCs, another 65% LVOCs, and 50% SVOCs. Finally, the OOA was the least volatile factor and included 40% ELVOCs, 25% LVOCs, and 35% SVOCs. Combining the volatility distributions and the O:C ratios of the various factors, we placed our results in the 2D-VBS analysis framework of Donahue et al. (2012). HOA and BBOA are in the expected region but also include an ELVOC component. COA is in similar range as HOA, but on average is half an order of magnitude more volatile. The OOA in these wintertime conditions had a moderate O:C ratio and included both semi-volatile and extremely low volatility components. The above results are sensitive to the assumed values of the effective vaporization enthalpy and the accommodation coefficient. A reduction of the accommodation coefficient by an order of magnitude or the reduction of the vaporization enthalpy by 20 kJ mol-1

  8. Receptor model source attributions for Utah’s Salt Lake City airshed and the impacts of wintertime secondary ammonium nitrate and ammonium chloride aerosol.

    Science.gov (United States)

    Communities along Utah’s Wasatch Front are currently developing strategies to reduce daily average PM2.5 levels to below National Ambient Air Quality Standards during wintertime, persistent, multi-day stable atmospheric conditions or cold-air pools. Speciated PM2.5 data from the ...

  9. Chemical compositions, sources and evolution processes of the submicron aerosols in Nanjing, China during wintertime

    Science.gov (United States)

    Wu, Y.; He, Y.; Ge, X.; Wang, J.; Yu, H.; Chen, M.

    2016-12-01

    Elevated atmospheric particulate matter pollution is one of the most significant environmental issues in the Yangtze River Delta (YRD), China. Thus it is important to unravel the characteristics, sources and evolution processes of the ambient aerosols in order to improve the air quality. In this study, we report the real-time monitoring results on submicron aerosol particles (PM1) in suburban Nanjing during wintertime of 2015, using an Aerodyne soot particle aerosol mass spectrometer (SP-AMS). This instrument allows the fast measurement of refractory black carbon simultaneously with other aerosol components. Results show that organics was on average the most abundant species of PM1 (25.9%), but other inorganic species, such as nitrate (23.7%) and sulfate (23.3%) also comprised large mass fractions. As the sampling site is heavily influenced by various sources including industrial, traffic and other anthropogenic emissions, etc., six organic aerosol (OA) factors were identified from Positive matrix factorization (PMF) analysis of the SP-AMS OA mass spectra. These factors include three primary OA factors - a hydrocarbon-like OA, an industry-related OA (IOA) and a cooking OA (COA), and three secondary OA factors, i.e., a local OOA (LSOA), a semi-volatile OOA (SV-OOA) and a low-volatility OOA (LV-OOA). Overall, the primary organic aerosol (POA) (HOA, IOA and COA) dominated the total OA mass. Behaviors and evolution processes of these OA factors will be discussed in combining with the other supporting data.

  10. Wintertime organic and inorganic aerosols in Lanzhou, China: sources, processes, and comparison with the results during summer

    Directory of Open Access Journals (Sweden)

    J. Xu

    2016-12-01

    Full Text Available Lanzhou, which is located in a steep alpine valley in western China, is one of the most polluted cities in China during the wintertime. In this study, an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, a seven-wavelength aethalometer, and a scanning mobility particle sizer (SMPS were deployed during 10 January to 4 February 2014 to study the mass concentrations, chemical processes, and sources of submicrometer particulate matter (PM1. The average PM1 concentration during this study was 57.3 µg m−3 (ranging from 2.1 to 229.7 µg m−3 for hourly averages, with organic aerosol (OA accounting for 51.2 %, followed by nitrate (16.5 %, sulfate (12.5 %, ammonium (10.3 %, black carbon (BC, 6.4 %, and chloride (3.0 %. The mass concentration of PM1 during winter was more than twice the average value observed at the same site in summer 2012 (24.5 µg m−3, but the mass fraction of OA was similar in the two seasons. Nitrate contributed a significantly higher fraction to the PM1 mass in winter than summer (16.5 % vs. 10 %, largely due to more favored partitioning to the particle phase at low air temperature. The mass fractions of both OA and nitrate increased by  ∼  5 % (47 to 52 for OA and 13 to 18 % for nitrate with the increase of the total PM1 mass loading, while the average sulfate fraction decreased by 6 % (17 to 11 %, indicating the importance of OA and nitrate for the heavy air pollution events in Lanzhou. The size distributions of OA, nitrate, sulfate, ammonium, and chloride all peaked at  ∼  500 nm, with OA being slightly broader, suggesting that aerosol particles were internally mixed during winter, likely due to frequently calm and stagnant air conditions during wintertime in Lanzhou (average wind speed: 0.82 m s−1.The average mass spectrum of OA showed a medium oxidation degree (average O ∕ C ratio of 0.28, which was lower than that during summer

  11. Hydroxyl radical observations during the wintertime in Beijing and comparison with steady state model calculations.

    Science.gov (United States)

    Slater, E.; Whalley, L.; Woodward-Massey, R.; Ye, C.; Crilley, L.; Kramer, L. J.; Vu, T.; Bloss, W.; Squires, F. A.; Dunmore, R.; Lee, J. D.; Heard, D. E.

    2017-12-01

    In Beijing poor urban air quality has a demonstrable effect on human health. During the wintertime, anthropogenic emissions from fossil fuel combustion can lead to high aerosol loadings and haze events. A high oxidation capacity on hazy days has previously been inferred from the significant contribution secondary organic aerosol (SOA) make to total PM2.5 (Huang et al., 2014). The hydroxyl radical (OH) mediates virtually all of the oxidative chemistry in the atmosphere, being responsible for the transformation of primary emissions into secondary pollutants such as NO2, O3 and SOA. Understanding the sources and sinks of OH in the atmosphere is essential in improving predictions of the lifetimes and chemical processing of pollutants and their transport within urban areas. We will present OH and HO2 measurements made in central Beijing during the recent `An Integrated Study of AIR Pollution PROcesses in Beijing (AIRPRO)' project which took place in November and December 2016. OH measurements were made using the FAGE (Fluorescence Assay by Gas Expansion) technique, with the use of an inlet pre injector (IPI) which provides an alternative method to determine the background by injecting a scavenger (propane) to remove ambient OH. The OH measurements were made over a range of meteorological conditions including a number of haze days, with the average maximum OH concentration measured for the campaign being 2.5 x 106 cm-3 and for haze days the OH concentration reached levels of 3.5 x 106 cm-3 which is comparable to OH levels in non-haze days. We will compare the OH observations to steady state calculations constrained to the total OH reactivity and key OH precursors that were measured alongside OH. Through this comparison we will identify the major OH sources which sustain the wintertime oxidation capacity. The current understanding is that gas-phase oxidation via the OH radical becomes less important in haze events due to lower light and ozone levels, making photochemistry

  12. Chemical composition, sources and evolution processes of aerosol at an urban site in Yangtze River Delta, China during wintertime

    Science.gov (United States)

    Zhang, Yunjiang; Tang, Lili; Yu, Hongxia; Wang, Zhuang; Sun, Yele; Qin, Wei; Chen, Wentai; Chen, Changhong; Ding, Aijun; Wu, Jing; Ge, Shun; Chen, Cheng; Zhou, Hong-cang

    2015-12-01

    To investigate the composition, sources and evolution processes of submicron aerosol during wintertime, a field experiment was conducted during December 1-31, 2013 in urban Nanjing, a megacity in Yangtze River Delta of China. Non-refractory submicron aerosol (NR-PM1) species were measured with an Aerodyne Aerosol Chemical Speciation Monitor. NR-PM1 is dominated by secondary inorganic aerosol (55%) and organic aerosol (OA, 42%) during haze periods. Six OA components were identified by positive matrix factorization of the OA mass spectra. The hydrocarbon-like OA and cooking-related OA represent the local traffic and cooking sources, respectively. A highly oxidized factor related to biomass burning OA accounted for 15% of the total OA mass during haze periods. Three types of oxygenated OA (OOA), i.e., a less-oxidized OOA (LO-OOA), a more-oxidized OOA (MO-OOA), and a low-volatility OOA (LV-OOA), were identified. LO-OOA is likely associated with fresh urban secondary OA. MO-OOA likely represents photochemical products showing a similar diurnal cycle to nitrate with a pronounced noon peak. LV-OOA appears to be a more oxidized factor with a pronounced noon peak. The OA composition is dominated by secondary species, especially during haze events. LO-OOA, MO-OOA and LV-OOA on average account for 11%, (18%), 24% (21%) and 23% (18%) of the total OA mass for the haze (clean) periods respectively. Analysis of meteorological influence suggested that regional transport from the northern and southeastern areas of the city is responsible for large secondary and low-volatility aerosol formation.

  13. Emissions of Volatile Organic Compounds from Oil and Gas Operations in Northeastern Oklahoma - Wintertime Ambient Air Studies from Three Consecutive Years

    Science.gov (United States)

    Ghosh, B.

    2017-12-01

    Volatile organic compounds (VOCs) are emitted into the atmosphere from a variety of sources including oil and gas (O&G) operations, vehicle exhausts, industrial processes, and biogenic sources. Understanding of emission sources and their air quality impact is crucial for effective environmental policymaking and its implementation. Three consecutive wintertime campaigns to study ambient air were conducted in Northeastern Oklahoma during February-March of 2015, 2016, and 2017. The goals of these campaigns were to study ambient VOCs in the region, estimate their air quality impact, and understand how the impact changes over a span of three years. This presentation highlights results from the 2017 campaign. In-situ measurements of methane, ethane, and CO were conducted by an Aerodyne Dual QCL Analyzer while ozone and NOx were measured using Teledyne monitors. In addition, 392 whole air samples were collected and non-methane hydrocarbons (NMHCs) in the samples were analyzed using GC-MS (Agilent). High levels of methane (> 8 ppm) were observed during the study. Correlation with ethane indicated that methane primarily originated from O&G operations with little biogenic contributions. Among NMHCs, C2-C5 alkanes were the most dominant with mean mixing ratios ranging from 0.9 to 6.8 ppb. Chemical tracers (propane, ethyne, CO) and isomeric ratios (iC5/nC5, Figure 1) identified oil and gas activity as the primary source of NMHCs. Photochemical age was calculated to estimate emission source composition. Ozone showed strong diurnal variation characteristic of photochemical production with a maximum mixing ratio of 58 ppb. The results from the 2017 study will be compared with results from studies in 20151 and 20162 and their significance on local air quality will be discussed. References Ghosh, B.; Volatile Organic Compound Emissions from Oil and Gas Production Sources: A Pilot Study in Northeastern Oklahoma; Poster presentation at AGU Fall Meeting; 2015; A11M-0249; (Link) Ghosh

  14. Secondary organic aerosols: Formation potential and ambient data

    DEFF Research Database (Denmark)

    Barthelmie, R.J.; Pryor, S.C.

    1997-01-01

    Organic aerosols comprise a significant fraction of the total atmospheric particle loading and are associated with radiative forcing and health impacts. Ambient organic aerosol concentrations contain both a primary and secondary component. Herein, fractional aerosol coefficients (FAC) are used...... in conjunction with measurements of volatile organic compounds (VOC) to predict the formation potential of secondary organic aerosols (SOA) in the Lower Fraser Valley (LEV) of British Columbia. The predicted concentrations of SOA show reasonable accord with ambient aerosol measurements and indicate considerable...

  15. An Analysis of Wintertime Winds in Washington, D.C.

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Larry K.; Allwine, K Jerry

    2006-06-20

    This report consists of a description of the wintertime climatology of wind speed and wind direction around the National Mall in Washington, D.C. Meteorological data for this study were collected at Ronald Reagan Washington National Airport (Reagan National), Dulles International Airport (Dulles), and a set of surface meteorological stations that are located on a number of building tops around the National Mall. A five-year wintertime climatology of wind speed and wind direction measured at Reagan National and Dulles are presented. A more detailed analysis was completed for the period December 2003 through February 2004 using data gathered from stations located around the National Mall, Reagan National, and Dulles. Key findings of our study include the following: * There are systematic differences between the wind speed and wind direction observed at Reagan National and the wind speed and wind direction measured by building top weather stations located in the National Mall. Although Dulles is located much further from the National Mall than Reagan National, there is better agreement between the wind speed and wind direction measured at Dulles and the weather stations in the National Mall. * When the winds are light (less than 3 ms-1 or 7 mph), there are significant differences in the wind directions reported at the various weather stations within the Mall. * Although the mean characteristics of the wind are similar at the various locations, significant, short-term differences are found when the time series are compared. These differences have important implications for the dispersion of airborne contaminants. In support of wintertime special events in the area of the National Mall, we recommend placing four additional meteorological instruments: three additional surface stations, one on the east bank of the Potomac River, one south of the Reflecting Pool (to better define the flow within the Mall), and a surface station near the Herbert C. Hoover Building; and wind

  16. Wintertime Boundary Layer Structure in the Grand Canyon.

    Science.gov (United States)

    Whiteman, C. David; Zhong, Shiyuan; Bian, Xindi

    1999-08-01

    Wintertime temperature profiles in the Grand Canyon exhibit a neutral to isothermal stratification during both daytime and nighttime, with only rare instances of actual temperature inversions. The canyon warms during daytime and cools during nighttime more or less uniformly through the canyon's entire depth. This weak stability and temperature structure evolution differ from other Rocky Mountain valleys, which develop strong nocturnal inversions and exhibit convective and stable boundary layers that grow upward from the valley floor. Mechanisms that may be responsible for the different behavior of the Grand Canyon are discussed, including the possibility that the canyon atmosphere is frequently mixed to near-neutral stratification when cold air drains into the top of the canyon from the nearby snow-covered Kaibab Plateau. Another feature of canyon temperature profiles is the sharp inversions that often form near the canyon rims. These are generally produced when warm air is advected over the canyon in advance of passing synoptic-scale ridges.Wintertime winds in the main canyon are not classical diurnal along-valley wind systems. Rather, they are driven along the canyon axis by the horizontal synoptic-scale pressure gradient that is superimposed along the canyon's axis by passing synoptic-scale weather disturbances. They may thus bring winds into the canyon from either end at any time of day.The implications of the observed canyon boundary layer structure for air pollution dispersion are discussed.

  17. Observational Insights into N2O5 Heterogeneous Chemistry: Influencing Factors and Contribution to Wintertime Air Pollution

    Science.gov (United States)

    McDuffie, E. E.; Fibiger, D. L.; Womack, C.; Dube, W. P.; Lopez-Hilfiker, F.; Goldberger, L.; Thornton, J. A.; Shah, V.; Jaegle, L.; Guo, H.; Weber, R. J.; Schroder, J. C.; Campuzano Jost, P.; Jimenez, J. L.; Franchin, A.; Middlebrook, A. M.; Baasandorj, M.; Brown, S. S.

    2017-12-01

    Chemical mechanisms that underlie wintertime air pollution, including tropospheric ozone and aerosol nitrate, are poorly characterized. Due to colder temperatures and fewer hours of solar radiation, nocturnal heterogeneous uptake of N2O5 plays a relatively larger role during wintertime in controlling the oxidation of NOx (=NO+NO2) and its influence on ozone and soluble nitrate. After uptake to aerosol, N2O5 can act as both a nocturnal NOx reservoir and sink depending on the partitioning between its nitric acid and photo labile, ClNO2 reaction products. In addition, N2O5 itself can act as a NOx reservoir if the aerosol uptake coefficient is small. As a result, the nocturnal fate of N2O5 dictates the amount of NOx in an air parcel and the subsequent formation of aerosol nitrate and following-day ozone. Models of winter air pollution therefore require accurate parameterization of the N2O5 uptake coefficient, as well as factors that control its magnitude and N2O5 product partitioning. There are currently only a small number of ambient N2O5 and ClNO2 observations during the winter season concurrent with measurements of relevant variables such as aerosol size distributions and composition. The Wintertime INvestigation of Transport, Emissions, and Reactivity (WINTER) campaign conducted 10 nighttime research flights with the NCAR C-130 over the eastern U.S. during February and March, 2015. The more recent Utah Wintertime Fine Particulate Study (UWFPS) conducted over 20 research flights with the NOAA twin otter aircraft during January-February 2017 in three mountain basins near and including Salt Lake City, Utah. The two campaigns were similarly instrumented and have provided the first aircraft observations of N2O5, ClNO2, and aerosol composition in the wintertime boundary layer in these urban-influenced regions. Analysis of heterogeneous chemistry under a wide range of real environmental conditions provides insight into the factors controlling the N2O5 uptake coefficient

  18. High-Latitude Wintertime Urban Pollution: Particulate Matter Composition and Temporal Trends in Fairbanks, Alaska

    Science.gov (United States)

    Simpson, W. R.; Nattinger, K.; Hooper, M.

    2017-12-01

    High latitude cities often experience severe pollution episodes during wintertime exacerbated by thermal inversion trapping of pollutant emissions. Fairbanks, Alaska is an extreme example of this problem, currently being classified by the US Environmental Protection Agency (EPA) as a "serious" non-attainment area for fine particulate matter (PM2.5). For this reason, we have studied the chemical composition of PM2.5 at multiple EPA monitoring sites in the non-attainment area from 2006 to the present. The chemical composition is dominated by organic carbon with lesser amounts of black carbon and inorganic ionic species such as ammonium, sulfate, and nitrate. We find large spatial differences in composition and amount of PM2.5 that indicate a different mix of sources in residential areas as compared to the city center. Specifically, the difference in composition is consistent with increased wood smoke source in the residential areas. The extent to which organic matter could be secondary (formed through conversion of emitted gases) is also an area needing study. Ammonium sulfate is responsible for about a fifth to a quarter of the particles mass during the darkest months, possibly indicating a non-photochemical source of sulfate, but the chemical mechanism for this possible transformation is unclear. Therefore, we quantified the relationship between particulate sulfate concentrations and gas-phase sulfur dioxide concentrations along with particulate metals and inferred particulate acidity with the hopes that these data can assist in elucidation of the mechanism of particulate sulfate formation. We also analyze temporal trends in PM2.5 composition in an attempt to understand how the problem is changing over time and find most trends are small despite regulatory changes. Improving mechanistic understanding of particulate formation under cold and dark conditions could assist in reducing air-quality-related health effects.

  19. Observations of fine particulate nitrated phenols in four sites in northern China: concentrations, source apportionment, and secondary formation

    Science.gov (United States)

    Wang, Liwei; Wang, Xinfeng; Gu, Rongrong; Wang, Hao; Yao, Lan; Wen, Liang; Zhu, Fanping; Wang, Weihao; Xue, Likun; Yang, Lingxiao; Lu, Keding; Chen, Jianmin; Wang, Tao; Zhang, Yuanghang; Wang, Wenxing

    2018-03-01

    Filter samples of fine particulate matters were collected at four sites in northern China (urban, rural, and mountain) in summer and winter, and the contents of nine nitrated phenols were quantified in the laboratory with the use of ultra-high-performance liquid chromatography coupled with mass spectrometry. During the sampling periods, the concentrations of particulate nitrated phenols exhibited distinct temporal and spatial variation. On average, the total concentration of particulate nitrated phenols in urban Jinan in the wintertime reached 48.4 ng m-3, and those in the summertime were 9.8, 5.7, 5.9, and 2.5 ng m-3 in urban Jinan, rural Yucheng and Wangdu, and Mt. Tai, respectively. The elevated concentrations of nitrated phenols in wintertime and in urban areas demonstrate the apparent influences of anthropogenic sources. The positive matrix factorization receptor model was then applied to determine the origins of particulate nitrated phenols in northern China. The five major source factors were traffic, coal combustion, biomass burning, secondary formation, and aged coal combustion plume. Among them, coal combustion played a vital role, especially at the urban site in the wintertime, with a contribution of around 55 %. In the summertime, the observed nitrated phenols were highly influenced by aged coal combustion plumes at all of the sampling sites. Meanwhile, in remote areas, contributions from secondary formation were significant. Further correlation analysis indicates that nitrosalicylic acids were produced mostly from secondary formation that was dominated by NO2 nitration.

  20. Organic Horticulture in the Secondary School

    Science.gov (United States)

    Marrocco, Aldo

    2009-01-01

    This report is based on five years experience working with primary and secondary school teachers in Italy to develop organic farming as an activity for students. The tasks involved were intended to develop our students' environmental awareness, allow them to produce food organically and show that market gardening could be a productive hobby. In…

  1. Secondary biogeneous radiation of human organism

    International Nuclear Information System (INIS)

    Kuzin, A.M.; Surkenova, G.N.

    1999-01-01

    When studying samples of three types of tissues of alive healthy human organism (hands, surface of breast, hair) it is shown that hair permanently emit secondary biogeneous radiation (SBR) which may registered with biological detectors. The hypothesis is suggested that natural background radiation permanently exciting biopolymers (proteins, nuclei acids) being present in alive organism in condensed state induces permanently present electromagnetic field of SBR which is vitally important for human organism. The field partly extends beyond the organism, where it is registered with sensitive biological detectors [ru

  2. Overview of VOC emissions and chemistry from PTR-TOF-MS measurements during the SusKat-ABC campaign: high acetaldehyde, isoprene and isocyanic acid in wintertime air of the Kathmandu Valley

    Science.gov (United States)

    Sarkar, Chinmoy; Sinha, Vinayak; Kumar, Vinod; Rupakheti, Maheswar; Panday, Arnico; Mahata, Khadak S.; Rupakheti, Dipesh; Kathayat, Bhogendra; Lawrence, Mark G.

    2016-03-01

    = 60.051), which can photochemically produce isocyanic acid in the atmosphere, are reported in this study along with nitromethane (a tracer for diesel exhaust), which has only recently been detected in ambient studies. Two distinct periods were selected during the campaign for detailed analysis: the first was associated with high wintertime emissions of biogenic isoprene and the second with elevated levels of ambient acetonitrile, benzene and isocyanic acid from biomass burning activities. Emissions from biomass burning and biomass co-fired brick kilns were found to be the dominant sources for compounds such as propyne, propene, benzene and propanenitrile, which correlated strongly with acetonitrile (r2 > 0.7), a chemical tracer for biomass burning. The calculated total VOC OH reactivity was dominated by acetaldehyde (24.0 %), isoprene (20.2 %) and propene (18.7 %), while oxygenated VOCs and isoprene collectively contributed to more than 68 % of the total ozone production potential. Based on known secondary organic aerosol (SOA) yields and measured ambient concentrations in the Kathmandu Valley, the relative SOA production potential of VOCs were benzene > naphthalene > toluene > xylenes > monoterpenes > trimethylbenzenes > styrene > isoprene. The first ambient measurements from any site in South Asia of compounds with significant health effects such as isocyanic acid, formamide, acetamide, naphthalene and nitromethane have been reported in this study. Our results suggest that mitigation of intense wintertime biomass burning activities, in particular point sources such biomass co-fired brick kilns, would be important to reduce the emission and formation of toxic VOCs (such as benzene and isocyanic acid) in the Kathmandu Valley.

  3. Volatile organic compounds and secondary organic aerosol in the Earth's atmosphere

    International Nuclear Information System (INIS)

    Galbally, Ian

    2007-01-01

    Full text: Recent research, when considered as a whole, suggests that a substantial fraction of both gas-phase and aerosol atmospheric organics have not been, or have very rarely been, directly measured. A review of the global budget for organic gases shows that we cannot account for the loss of approximately half the non-methane organic carbon entering the atmosphere. We suggest that this unaccounted-for loss most likely occurs through formation of secondary organic aerosols (SOAs), indicating that the source for these aerosols is an order of magnitude larger than current estimates. There is evidence that aged secondary organic aerosol can participate in both direct and indirect (cloud modifying) radiative forcing and that this influence may change with other global climate change. Even though our knowledge of the organic composition of the atmosphere is limited, these compounds clearly influence the reactive chemistry of the atmosphere and the formation, composition, and climate impact of aerosols A major challenge in the coming decade of atmospheric chemistry research will be to elucidate the sources, structure, chemistry, fate and influences of these clearly ubiquitous yet poorly constrained organic atmospheric constituents

  4. Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris

    Directory of Open Access Journals (Sweden)

    M. Crippa

    2013-01-01

    Full Text Available The effect of a post-industrial megacity on local and regional air quality was assessed via a month-long field measurement campaign in the Paris metropolitan area during winter 2010. Here we present source apportionment results from three aerosol mass spectrometers and two aethalometers deployed at three measurement stations within the Paris region. Submicron aerosol composition is dominated by the organic fraction (30–36% and nitrate (28–29%, with lower contributions from sulfate (14–16%, ammonium (12–14% and black carbon (7–13%.

    Organic source apportionment was performed using positive matrix factorization, resulting in a set of organic factors corresponding both to primary emission sources and secondary production. The dominant primary sources are traffic (11–15% of organic mass, biomass burning (13–15% and cooking (up to 35% during meal hours. Secondary organic aerosol contributes more than 50% to the total organic mass and includes a highly oxidized factor from indeterminate and/or diverse sources and a less oxidized factor related to wood burning emissions. Black carbon was apportioned to traffic and wood burning sources using a model based on wavelength-dependent light absorption of these two combustion sources. The time series of organic and black carbon factors from related sources were strongly correlated. The similarities in aerosol composition, total mass and temporal variation between the three sites suggest that particulate pollution in Paris is dominated by regional factors, and that the emissions from Paris itself have a relatively low impact on its surroundings.

  5. Enhanced wintertime greenhouse effect reinforcing Arctic amplification and initial sea-ice melting.

    Science.gov (United States)

    Cao, Yunfeng; Liang, Shunlin; Chen, Xiaona; He, Tao; Wang, Dongdong; Cheng, Xiao

    2017-08-16

    The speeds of both Arctic surface warming and sea-ice shrinking have accelerated over recent decades. However, the causes of this unprecedented phenomenon remain unclear and are subjects of considerable debate. In this study, we report strong observational evidence, for the first time from long-term (1984-2014) spatially complete satellite records, that increased cloudiness and atmospheric water vapor in winter and spring have caused an extraordinary downward longwave radiative flux to the ice surface, which may then amplify the Arctic wintertime ice-surface warming. In addition, we also provide observed evidence that it is quite likely the enhancement of the wintertime greenhouse effect caused by water vapor and cloudiness has advanced the time of onset of ice melting in mid-May through inhibiting sea-ice refreezing in the winter and accelerating the pre-melting process in the spring, and in turn triggered the positive sea-ice albedo feedback process and accelerated the sea ice melting in the summer.

  6. Artificial engineering of secondary lymphoid organs.

    Science.gov (United States)

    Tan, Jonathan K H; Watanabe, Takeshi

    2010-01-01

    Secondary lymphoid organs such as spleen and lymph nodes are highly organized immune structures essential for the initiation of immune responses. They display distinct B cell and T cell compartments associated with specific stromal follicular dendritic cells and fibroblastic reticular cells, respectively. Interweaved through the parenchyma is a conduit system that distributes small antigens and chemokines directly to B and T cell zones. While most structural aspects between lymph nodes and spleen are common, the entry of lymphocytes, antigen-presenting cells, and antigen into lymphoid tissues is regulated differently, reflecting the specialized functions of each organ in filtering either lymph or blood. The overall organization of lymphoid tissue is vital for effective antigen screening and recognition, and is a feature which artificially constructed lymphoid organoids endeavor to replicate. Synthesis of artificial lymphoid tissues is an emerging field that aims to provide therapeutic application for the treatment of severe infection, cancer, and age-related involution of secondary lymphoid tissues. The development of murine artificial lymphoid tissues has benefited greatly from an understanding of organogenesis of lymphoid organs, which has delineated cellular and molecular elements essential for the recruitment and organization of lymphocytes into lymphoid structures. Here, the field of artificial lymphoid tissue engineering is considered including elements of lymphoid structure and development relevant to organoid synthesis. (c) 2010 Elsevier Inc. All rights reserved.

  7. Observations of fine particulate nitrated phenols in four sites in northern China: concentrations, source apportionment, and secondary formation

    Directory of Open Access Journals (Sweden)

    L. Wang

    2018-03-01

    Full Text Available Filter samples of fine particulate matters were collected at four sites in northern China (urban, rural, and mountain in summer and winter, and the contents of nine nitrated phenols were quantified in the laboratory with the use of ultra-high-performance liquid chromatography coupled with mass spectrometry. During the sampling periods, the concentrations of particulate nitrated phenols exhibited distinct temporal and spatial variation. On average, the total concentration of particulate nitrated phenols in urban Jinan in the wintertime reached 48.4 ng m−3, and those in the summertime were 9.8, 5.7, 5.9, and 2.5 ng m−3 in urban Jinan, rural Yucheng and Wangdu, and Mt. Tai, respectively. The elevated concentrations of nitrated phenols in wintertime and in urban areas demonstrate the apparent influences of anthropogenic sources. The positive matrix factorization receptor model was then applied to determine the origins of particulate nitrated phenols in northern China. The five major source factors were traffic, coal combustion, biomass burning, secondary formation, and aged coal combustion plume. Among them, coal combustion played a vital role, especially at the urban site in the wintertime, with a contribution of around 55 %. In the summertime, the observed nitrated phenols were highly influenced by aged coal combustion plumes at all of the sampling sites. Meanwhile, in remote areas, contributions from secondary formation were significant. Further correlation analysis indicates that nitrosalicylic acids were produced mostly from secondary formation that was dominated by NO2 nitration.

  8. SCIENTIFIC-RESEARCH WORK OF STUDENTS IN ORGANIZATIONS OF SECONDARY VOCATIONAL EDUCATION

    Directory of Open Access Journals (Sweden)

    Natalya O. Vaganova

    2016-01-01

    Full Text Available The aim of the study is to reveal features and possibilities of research work in the organizations of secondary professional education. Methods. Theoretical methods involve analysis of legislative, normative documents; comparison and generalization of the findings of scientists on research activities. Empirical methods: pedagogical observation, to study the experience of organization of research work. Results. The definition of «research ability» is proposed; the system of organization of research activity in the organization of secondary vocational education, including the identification of approaches to the concept of «research» is developed; development of a program of research skills formation is given; definition of subjective functional relationships for the implementation of the programmer of research; the development of training programs for teaching staff the organization of the secondary professional education to the organization and conduct of research activities with students; creation of innovative infrastructure as a set of resources and means to ensure the maintenance of research activities. Scientific novelty. An attempt to fill the gaps in the methodology of organization of research activity in organizations of secondary vocational education is taken. Peculiarities of the educational programs of secondary vocational education, defining the forms of research activities are disclosed. Approaches to the concept of «research», the formation of research skills and development of professional-pedagogical competences of teachers as subjects of research activities are proposed. Practical significance. The use of suggested approaches to conducting research in organizations of secondary vocational education can increase the level of students and extend the functionality of teachers. 

  9. Predicting Thermal Behavior of Secondary Organic Aerosols

    Data.gov (United States)

    U.S. Environmental Protection Agency — Volume concentrations of secondary organic aerosol (SOA) are measured in 139 steady-state, single precursor hydrocarbon oxidation experiments after passing through a...

  10. The Wintertime Covariation of CO2 and Criteria Pollutants in an Urban Valley of the Western United States

    Science.gov (United States)

    Bares, Ryan; Lin, John C.; Hoch, Sebastian W.; Baasandorj, Munkhbayar; Mendoza, Daniel L.; Fasoli, Ben; Mitchell, Logan; Catharine, Douglas; Stephens, Britton B.

    2018-03-01

    Numerous mountain valleys experience wintertime particulate pollution events, when persistent cold air pools (PCAPs) develop and inhibit atmospheric mixing, leading to the accumulation of pollutants. Here we examine the relationships between trace gases and criteria pollutants during winter in Utah's Salt Lake Valley, in an effort to better understand the roles of transport versus chemical processes during differing meteorological conditions as well as insights into how targeted reductions in greenhouse gases will impact local air quality in varying meteorological conditions. CO2 is a chemically inert gas that is coemitted during fossil fuel combustion with pollutants. Many of these coemitted pollutants are precursors that react chemically to form secondary particulate matter. Thus, CO2 can serve as a stable tracer and potentially help distinguish transport versus chemical influences on pollutants. During the winter of 2015-2016, we isolated enhancements in CO2 over baseline levels due to urban emissions ("CO2ex"). CO2ex was paired with similar excesses in other pollutant concentrations. These relationships were examined during different wintertime conditions and stages of pollution episodes: (a) Non-PCAP, (b) beginning, and (c) latter stages of an episode. We found that CO2ex is a good indicator of the presence of gaseous criteria pollutants and a reasonable indicator of PM2.5. Additionally, the relationships between CO2ex and criteria pollutants differ during different phases of PCAP events which provide insight into meteorological and transport processes. Lastly, we found a slight overestimation of CO:CO2 emission ratios and a considerable overestimation of NOx:CO2 by existing inventories for the Salt Lake Valley.

  11. An organic profile of a pressurised water reactor secondary plant

    International Nuclear Information System (INIS)

    Eeden, Nestor van; Stwayi, Mandisibuntu; Gericke, Gerhard

    2012-01-01

    Make-up water addition to the steam/water cycle at Koeberg Nuclear Power Station usually results in a corresponding increase of the chloride concentration in the steam generator blowdown system. During plant transients, when higher than normal make-up is required to the secondary plant, the concentration of chloride occasionally exceeds the limiting value for the station chemistry performance indicator. Irrespective of this, the demineralised water make-up supply tanks, which are routinely analysed for chloride, are within all recognised acceptable standards for secondary water make-up and therefore these tanks do not initially appear to be the source of chloride contamination. Water treatment at the plant relies essentially on ion exchange, which has been proven to be very effective in removing inorganic ionic species such as chloride. Organic compounds are less effectively removed by ion exchange and may pass through the treatment system, and these organics can reside undetected in the make-up water tanks. Historically, the elevated chloride concentration following high system make-up has been attributed to chlorinated organic compounds known as trihalomethanes being present in the make-up water tanks, but no rigorous study had been undertaken. As it has been assumed that the majority of chloride in the secondary system originates from the make-up water organic impurities, it was considered important to confirm this by compiling an organic profile of the secondary plant. The use of organic additives was also taken into account in the profile. This work has confirmed the contribution from trihalomethanes and has also found that other organochlorides contribute even more significantly to the overall chloride inventory of the secondary plant. (orig.)

  12. Snow bands over the Gulf of Finland in wintertime

    Directory of Open Access Journals (Sweden)

    Jordi Mazon

    2015-01-01

    Full Text Available Large shore-parallel, quasi-stationary snow bands are occasionally observed over the Gulf of Finland during wintertime when the sea is not frozen. On the basis of Weather Research and Forecasting mesoscale model experiments and radar observations of snow bands formed in January 2006 and February 2012, we show that their dynamics share common characteristics: (1 the sea gulf that produces the known lake effect, (2 cold easterly large-scale flow along the gulf and (3 a cold local flow from the two near and opposite coastlines of Estonia and Finland in the form of two land-breeze cells which collide offshore. The associated fronts, which have strong rising motions, are maintained by the convergence of the land-breeze cells. In addition to these factors, the concave shape of the coast in the eastern part of the Gulf of Finland promotes offshore convergence and the formation of several secondary bands of precipitation that are adjacent to the eastern part of the main band. When the easterlies turn to southerlies, horizontal convective rolls appear over the sea. The Estonian land breeze is enhanced while the cold air remains stagnant inland over the Finnish coast, acting as an orographic barrier lifting the marine air mass upwards. Consequently, a line of convective precipitation composed of several cells is formed along the Finnish coast. In both events, the simulations also show two low-level jets generated by the combined effects of the land-breeze cells and baroclinicity over the coast of Finland and Estonia.

  13. Predicting Thermal Behavior of Secondary Organic Aerosols

    Science.gov (United States)

    Volume concentrations of steady-state secondary organic aerosol (SOA) were measured in 139 steadystate single precursor hydrocarbon oxidation experiments after passing through a temperature controlled inlet tube. Higher temperatures resulted in greater loss of particle volume, wi...

  14. Coherent changes of wintertime surface air temperatures over North Asia and North America.

    Science.gov (United States)

    Yu, Bin; Lin, Hai

    2018-03-29

    The surface temperature variance and its potential change with global warming are most prominent in winter over Northern Hemisphere mid-high latitudes. Consistent wintertime surface temperature variability has been observed over large areas in Eurasia and North America on a broad range of time scales. However, it remains a challenge to quantify where and how the coherent change of temperature anomalies occur over the two continents. Here we demonstrate the coherent change of wintertime surface temperature anomalies over North Asia and the central-eastern parts of North America for the period from 1951 to 2015. This is supported by the results from the empirical orthogonal function analysis of surface temperature and temperature trend anomalies over the Northern Hemisphere extratropical lands and the timeseries analysis of the regional averaged temperature anomalies over North Asia and the Great Plains and Great Lakes. The Asian-Bering-North American (ABNA) teleconnection provides a pathway to connect the regional temperature anomalies over the two continents. The ABNA is also responsible for the decadal variation of the temperature relationship between North Asia and North America.

  15. Typical synoptic situations and their impacts on the wintertime air pollution in the Guanzhong basin, China

    Directory of Open Access Journals (Sweden)

    N. Bei

    2016-06-01

    Full Text Available Rapid industrialization and urbanization have caused severe air pollution in the Guanzhong basin, northwestern China, with heavy haze events occurring frequently in recent winters. Using the NCEP reanalysis data, the large-scale synoptic situations influencing the Guanzhong basin during wintertime of 2013 are categorized into six types to evaluate the contribution of synoptic situations to the air pollution, including “north-low”, “southwest-trough”, “southeast-high”, “transition”, “southeast-trough”, and “inland-high”. The FLEXPART model has been utilized to demonstrate the corresponding pollutant transport patterns for the typical synoptic situations in the basin. Except for “southwest-trough” and “southeast-high” (defined as favorable synoptic situations, the other four synoptic conditions (defined as unfavorable synoptic situations generally facilitate the accumulation of air pollutants, causing heavy air pollution in the basin. In association with the measurement of PM2.5 (particulate matter with aerodynamic diameter less than 2.5 µm in the basin, the unfavorable synoptic situations correspond to high PM2.5 mass concentrations or poor air quality and vice versa. The same analysis has also been applied to winters of 2008–2012, which shows that the basin was mainly influenced by the unfavorable synoptic situations during wintertime leading to poor air quality. The WRF-CHEM model has further been applied to simulate the selected 6 days representing the typical synoptic situations during the wintertime of 2013, and the results generally show a good agreement between the modeled distributions and variations of PM2.5 and the corresponding synoptic situations, demonstrating reasonable classification for the synoptic situations in the basin. Detailed meteorological conditions, such as temperature inversion, low-level horizontal wind speed, and planetary boundary layer, all contribute to heavy air pollution

  16. Secondary gravity waves from momentum deposition in the stratosphere, mesosphere, thermosphere and ionosphere

    Science.gov (United States)

    Vadas, S.

    2017-12-01

    In this paper, we investigate the generation, propagation and effectsof secondary gravity waves (GWs) from momentum deposition in the stratosphere, mesosphere, thermosphere and ionosphere in high-resolution GW-resolving models and in TEC/lidar/redline data. We show that secondary GWs generated from the dissipation of orographic GWs at McMurdo Station in Antarctica play a dominant role in the wave activity over McMurdo in the wintertime mesosphere. These secondary GWs are created in the stratosphere, and have been identified in models and data via their telltale "fishbone" appearance in z-t plots. We also show that secondary GWs from the dissipation of GWs excited by deep convectiongenerate concentric rings in the F-region ionosphere. These model results and data point to the importance of secondary GWs from momentumdeposition in the Earth's atmosphere and ionosphere.

  17. Minimizing the wintertime low bias of Northern Hemisphere carbon monoxide in global model simulations

    Science.gov (United States)

    Stein, Olaf; Schultz, Martin G.; Bouarar, Idir; Clark, Hannah; Huijnen, Vincent; Gaudel, Audrey; George, Maya; Clerbaux, Cathy

    2015-04-01

    Carbon monoxide (CO) is a product of incomplete combustion and is also produced from oxidation of volatile organic compounds (VOC) in the atmosphere. It is of interest as an indirect greenhouse gas and an air pollutant causing health effects and is thus subject to emission restrictions. CO acts as a major sink for the OH radical and as a precursor for tropospheric ozone and affects the oxidizing capacity of the atmosphere as well as regional air quality. Despite the developments in the global modelling of chemistry and of the parameterization of the physical processes, CO concentrations remain underestimated during NH winter by most state-of-the-art chemical transport models. The resulting model bias can in principle originate from either an underestimation of CO sources or an overestimation of its sinks. We address both the role of sources and sinks with a series of MOZART chemistry transport model sensitivity simulations for the year 2008 and compare our results to observational data from ground-based stations, satellite observations, and from MOZAIC tropospheric profile measurements on passenger aircraft. Our base case simulation using the MACCity emission inventory (Granier et al. 2011) underestimates the near-surface Northern Hemispheric CO mixing ratios by more than 20 ppb from December to April with a maximal bias of 40 ppb in January. The bias is strongest for the European region (up to 75 ppb in January). From our sensitivity studies the mismatch between observed and modelled atmospheric CO concentrations can be explained by a combination of the following emission inventory shortcuts: (i) missing anthropogenic wintertime CO emissions from traffic or other combustion processes, (ii) missing anthropogenic VOC emissions, (iii) an exaggerated downward trend in the RCP8.5 scenario underlying the MACCity inventory, (iv) a lack of knowledge about the seasonality of emissions. Deficiencies in the parameterization of the dry deposition velocities can also lead to

  18. The Siberian High and Arctic Sea Ice: Long-term Climate Change and Impacts on Air Pollution during Wintertime in China

    Science.gov (United States)

    Long, X.; Zhao, S.; Feng, T.; Tie, X.; Li, G.

    2017-12-01

    China has undergone severe air pollution during wintertime as national industrialization and urbanization have been increasingly developed in the past three decades. It has been suggested that high emission and adverse weather patterns contribute to wintertime air pollution. Recent studies propose that climate change and Arctic sea ice loss likely lead to extreme haze events in winter. Here we use two reanalysis and observational datasets to present the trends of Siberian High (SH) intensity over Eurasia, and Arctic temperature and sea ice. The results show the Arctic region of Asia is becoming warming accompanied by a rapid decline of sea ice while Eurasia is cooling and SH intensity is gradually enhancing. Wind patterns induced by these changes cause straight westerly prevailing over Eurasia at the year of weak SH while strengthened northerly winds at the year of strong SH. Therefore, we utilize regional dynamical and chemical WRF-Chem model to determine the impact of SH intensity difference on wintertime air pollution in China. As a result, enhancing northerly winds at the year of strong SH rapidly dilute and transport air pollution, causing a decline of 50 - 400 µg m-3 PM2.5 concentrations relative to that at the year of weak SH. We also assess the impact of emission reduction to half the current level on air pollution. The results show that emission reduction by 50% has an equivalent impact as the variability of SH intensity. This suggests that climate change over Eurasia has largely offset the negative impact of emission on air pollution and it is urgently needed to take measures to mitigate air pollution. In view of current high emission scenario in China, it will be a long way to effectively mitigate, or ultimately prevent wintertime air pollution.

  19. Structure and dynamics of a wave train along the wintertime Asian jet and its impact on East Asian climate

    Science.gov (United States)

    Hu, Kaiming; Huang, Gang; Wu, Renguang; Wang, Lin

    2017-04-01

    Based on observational and reanalysis datasets, this study investigates the structure and dynamics of a wave-like atmospheric teleconnection pattern along the wintertime Asian jet and its influence on East Asian climate. Along the jet, the leading empirical orthogonal function (EOF) mode of monthly meridional winds at 250-hPa in winter (December, January, and February) is organized as a wave train with maximum anomalies at upper troposphere. The wave train propagates northeastward from the North Atlantic to Europe, turns southeastward to the Middle East with amplifying amplitude, propagates along the jet to South China, and reaches Japan, which is partly induced by sea surface temperature (SST) anomalies in the equatorial eastern Pacific and the North Atlantic Oscillation. Over the sector from Europe to the Middle East, the anomalous vortices in the wave train tilt northwestward with height and tilt northeast/southwest in horizontal at 250 hPa, favoring for extracting available potential energy and kinetic energy from mean flows effectively. In addition, there exists a positive feedback between transient eddies and the wave train-related anomalous circulation over the North Atlantic and Europe. These processes help to maintain and amplify the wave train. Moreover, the wave train can exert significant influences on the wintertime climate in East Asia. When it is in the phase with a cyclone (anticyclone) over South China (Japan), rainfall tends to be above normal in South and East China and surface air temperature tends to be above normal around Japan and the Korea peninsula.

  20. Analysis of organic compounds by secondary neutral mass spectrometry (SNMS) and secondary ion mass spectrometry (SIMS)

    International Nuclear Information System (INIS)

    Ewinger, H.P.

    1993-05-01

    This study is about the use of secondary neutral mass spectrometry (SNMS) and secondary ion mass spectrometry (SIMS) as analytical techniques with depth resolution in determining organic components in environmental solid microparticles. The first application of plasma SNMS to organic compounds revealed the spectra to be composed mainly of signals from the atoms of all participating elements, such as C, H, O, N, S, P, and Cl. In addition, signals produced by multi-atomic clusters can be detected, such as CH, C 2 , CH 2 , C 2 H, and C 3 , as well as signals indicating the presence of organic compounds with hetero elements, such as OH, NH, and CN. Their intensity decreases very markedly with increasing numbers of atoms. Among the signals from bi-atomic clusters, those coming from elements with large mass differences are most intense. The use of plasma SNMS with organic compounds has shown that, except for spurious chemical reactions induced by ion bombardment and photodesorption by the photons of the plasma, it is possible to analyze with resolution in depth, elements of organic solids. A more detailed molecular characterization of organic compounds is possible by means of SIMS on the basis of multi-atomic fragments and by comparison with suitable signal patterns. (orig./BBR) [de

  1. Overview of VOC emissions and chemistry from PTR-TOF-MS measurements during the SusKat-ABC campaign: high acetaldehyde, isoprene and isocyanic acid in wintertime air of the Kathmandu Valley

    Directory of Open Access Journals (Sweden)

    C. Sarkar

    2016-03-01

    ( ∼  1 ppb to be among the highest reported to date. Two "new" ambient compounds, namely formamide (m ∕ z  =  46.029 and acetamide (m ∕ z  =  60.051, which can photochemically produce isocyanic acid in the atmosphere, are reported in this study along with nitromethane (a tracer for diesel exhaust, which has only recently been detected in ambient studies. Two distinct periods were selected during the campaign for detailed analysis: the first was associated with high wintertime emissions of biogenic isoprene and the second with elevated levels of ambient acetonitrile, benzene and isocyanic acid from biomass burning activities. Emissions from biomass burning and biomass co-fired brick kilns were found to be the dominant sources for compounds such as propyne, propene, benzene and propanenitrile, which correlated strongly with acetonitrile (r2 > 0.7, a chemical tracer for biomass burning. The calculated total VOC OH reactivity was dominated by acetaldehyde (24.0 %, isoprene (20.2 % and propene (18.7 %, while oxygenated VOCs and isoprene collectively contributed to more than 68 % of the total ozone production potential. Based on known secondary organic aerosol (SOA yields and measured ambient concentrations in the Kathmandu Valley, the relative SOA production potential of VOCs were benzene  >  naphthalene  >  toluene  >  xylenes  >  monoterpenes  >  trimethylbenzenes  >  styrene  >  isoprene. The first ambient measurements from any site in South Asia of compounds with significant health effects such as isocyanic acid, formamide, acetamide, naphthalene and nitromethane have been reported in this study. Our results suggest that mitigation of intense wintertime biomass burning activities, in particular point sources such biomass co-fired brick kilns, would be important to reduce the emission and formation of toxic VOCs (such as benzene and isocyanic acid in the Kathmandu Valley.

  2. Chemical composition and source-apportionment of sub-micron particles during wintertime over Northern India: New insights on influence of fog-processing.

    Science.gov (United States)

    Rajput, Prashant; Singh, Dharmendra Kumar; Singh, Amit Kumar; Gupta, Tarun

    2018-02-01

    A comprehensive study was carried out from central part of Indo-Gangetic Plain (IGP; at Kanpur) to understand abundance, temporal variability, processes (secondary formation and fog-processing) and source-apportionment of PM 1 -bound species (PM 1 : particulate matter of aerodynamic diameter ≤ 1.0 μm) during wintertime. A total of 50 PM 1 samples were collected of which 33 samples represent submicron aerosol characteristics under non-foggy condition whereas 17 samples represent characteristics under thick foggy condition. PM 1 mass concentration during non-foggy episodes varied from 24-393 (Avg.: 247) μg m -3 , whereas during foggy condition it ranged from 42-243 (Avg.: 107) μg m -3 . With respect to non-foggy condition, the foggy conditions were associated with higher contribution of PM 1 -bound organic matter (OM, by 23%). However, lower fractional contribution of SO 4 2- , NO 3 - and NH 4 + during foggy conditions is attributable to wet-scavenging owing to their high affinity to water. Significant influence of fog-processing on organic aerosols composition is also reflected by co-enhancement in OC/EC and WSOC/OC ratio during foggy condition. A reduction by 5% in mineral dust fraction under foggy condition is associated with a parallel decrease in PM 1 mass concentration. However, mass fraction of elemental carbon (EC) looks quite similar (≈3% of PM 1 ) but the mass absorption efficiency (MAE) of EC is higher by 30% during foggy episodes. Thus, it is evident from this study that fog-processing leads to quite significant enhancement in OM (23%) contribution (and MAE of EC) with nearly equal and parallel decrease in SO 4 2- , NO 3 - and NH 4 + and mineral dust fractions (totaling to 24%). Characteristic features of mineral dust remain similar under foggy and non-foggy conditions; inferred from similar ratios of Fe/Al (≈0.3), Ca/Al (0.35) and Mg/Al (0.22). Positive matrix factorization (PMF) resolves seven sources: biomass burning (19.4%), coal

  3. Cloud processing of organic compounds: Secondary organic aerosol and nitrosamine formation

    Science.gov (United States)

    Hutchings, James W., III

    Cloud processing of atmospheric organic compounds has been investigated through field studies, laboratory experiments, and numerical modeling. Observational cloud chemistry studies were performed in northern Arizona and fog studies in central Pennsylvania. At both locations, the cloud and fogs showed low acidity due to neutralization by soil dust components (Arizona) and ammonia (Pennsylvania). The field observations showed substantial concentrations (20-5500 ng•L -1) of volatile organic compounds (VOC) in the cloud droplets. The potential generation of secondary organic aerosol mass through the processing of these anthropogenic VOCs was investigated through laboratory and modeling studies. Under simulated atmospheric conditions, in idealized solutions, benzene, toluene, ethylbenzene, and xylene (BTEX) degraded quickly in the aqueous phase with half lives of approximately three hours. The degradation process yielded less volatile products which would contribute to new aerosol mass upon cloud evaporation. However, when realistic cloud solutions containing natural organic matter were used in the experiments, the reaction kinetics decreased with increasing organic carbon content, resulting in half lives of approximately 7 hours. The secondary organic aerosol (SUA) mass formation potential of cloud processing of BTEX was evaluated. SOA mass formation by cloud processing of BTEX, while strongly dependent on the atmospheric conditions, could contribute up to 9% of the ambient atmospheric aerosol mass, although typically ˜1% appears realistic. Field observations also showed the occurrence of N-nitrosodimethylamine (NDMA), a potent carcinogen, in fogs and clouds (100-340 ng•L -1). Laboratory studies were conducted to investigate the formation of NDMA from nitrous acid and dimethylamine in the homogeneous aqueous phase within cloud droplets. While NDMA was produced in the cloud droplets, the low yields (NDMA with partitioning to droplet must be the source of aqueous

  4. Secondary organic aerosol formation from fossil fuel sources contribute majority of summertime organic mass at Bakersfield

    Science.gov (United States)

    Secondary organic aerosols (SOA), known to form in the atmosphere from oxidation of volatile organic compounds (VOCs) emitted by anthropogenic and biogenic sources, are a poorly understood but substantial component of atmospheric particles. In this study, we examined the chemic...

  5. Observational Evidence for Enhanced Greenhouse Effect Reinforcing Wintertime Arctic Amplification and Sea Ice Melting Onset

    Science.gov (United States)

    Cao, Y.; Liang, S.

    2017-12-01

    Despite an apparent hiatus in global warming, the Arctic climate continues to experience unprecedented changes. Summer sea ice is retreating at an accelerated rate, and surface temperatures in this region are rising at a rate double that of the global average, a phenomenon known as Arctic amplification. Although a lot of efforts have been made, the causes this unprecedented phenomenon remain unclear and are subjects of considerable debate. In this study, we report strong observational evidence, for the first time from long-term (1984-2014) spatially complete satellite records, that increased cloudiness and atmospheric water vapor in winter and spring have caused an extraordinary downward longwave radiative flux to the ice surface, which may then amplify the Arctic wintertime ice-surface warming. In addition, we also provide observed evidence that it is quite likely the enhancement of the wintertime greenhouse effect caused by water vapor and cloudiness has advanced the time of onset of ice melting in mid-May through inhibiting sea-ice refreezing in the winter and accelerating the pre-melting process in the spring, and in turn triggered the positive sea-ice albedo feedback process and accelerated the sea ice melting in the summer.

  6. Secondary organic material formed by methylglyoxal in aqueous aerosol mimics

    Directory of Open Access Journals (Sweden)

    N. Sareen

    2010-02-01

    Full Text Available We show that methylglyoxal forms light-absorbing secondary organic material in aqueous ammonium sulfate and ammonium nitrate solutions mimicking tropospheric aerosol particles. The kinetics were characterized using UV-Vis spectrophotometry. The results suggest that the bimolecular reaction of methylglyoxal with an ammonium or hydronium ion is the rate-limiting step for the formation of light-absorbing species, with kNH4+II=5×10−6 M−1 min−1 and kH3O+II≤10−3 M−1 min−1. Evidence of aldol condensation products and oligomeric species up to 759 amu was found using chemical ionization mass spectrometry with a volatilization flow tube inlet (Aerosol-CIMS. Tentative identifications of carbon-nitrogen species and a sulfur-containing compound were also made using Aerosol-CIMS. Aqueous solutions of methylglyoxal, with and without inorganic salts, exhibit significant surface tension depression. These observations add to the growing body of evidence that dicarbonyl compounds may form secondary organic material in the aerosol aqueous phase, and that secondary organic aerosol formation via heterogeneous processes may affect seed aerosol properties.

  7. Secondary organic aerosol formation through cloud processing of aromatic VOCs

    Science.gov (United States)

    Herckes, P.; Hutchings, J. W.; Ervens, B.

    2010-12-01

    Field observations have shown substantial concentrations (20-5,500 ng L-1) of aromatic volatile organic compounds (VOC) in cloud droplets. The potential generation of secondary organic aerosol mass through the processing of these anthropogenic VOCs was investigated through laboratory and modeling studies. Under simulated atmospheric laboratory conditions, in idealized solutions, benzene, toluene, ethylbenzene, and xylene (BTEX) degraded quickly in the aqueous phase. The degradation process yielded less volatile products which would contribute to new aerosol mass upon cloud evaporation. However, when realistic cloud solutions containing natural organic matter were used in the experiments, the reaction rates decreased with increasing organic carbon content. Kinetic data derived from these experiments were used as input to a multiphase box model in order to evaluate the secondary organic aerosol (SOA) mass formation potential of cloud processing of BTEX. Model results will be presented that quantify the SOA amounts from these aqueous phase pathways. The efficiency of this multiphase SOA source will be compared to SOA yields from the same aromatics as treated in traditional SOA models that are restricted to gas phase oxidation and subsequent condensation on particles.

  8. Graphic Organizer in Action: Solving Secondary Mathematics Word Problems

    Directory of Open Access Journals (Sweden)

    Khoo Jia Sian

    2016-09-01

    Full Text Available Mathematics word problems are one of the most challenging topics to learn and teach in secondary schools. This is especially the case in countries where English is not the first language for the majority of the people, such as in Brunei Darussalam. Researchers proclaimed that limited language proficiency and limited Mathematics strategies are the possible causes to this problem. However, whatever the reason is behind difficulties students face in solving Mathematical word problems, it is perhaps the teaching and learning of the Mathematics that need to be modified. For example, the use of four-square-and-a-diamond graphic organizer that infuses model drawing skill; and Polya’s problem solving principles, to solve Mathematical word problems may be some of the strategies that can help in improving students’ word problem solving skills. This study, through quantitative analysis found that the use of graphic organizer improved students’ performance in terms of Mathematical knowledge, Mathematical strategy and Mathematical explanation in solving word problems. Further qualitative analysis revealed that the use of graphic organizer boosted students’ confidence level and positive attitudes towards solving word problems.Keywords: Word Problems, Graphic Organizer, Algebra, Action Research, Secondary School Mathematics DOI: http://dx.doi.org/10.22342/jme.7.2.3546.83-90

  9. Potential impacts of wintertime soil moisture anomalies from agricultural irrigation at low latitudes on regional and global climates

    Science.gov (United States)

    Wey, Hao-Wei; Lo, Min-Hui; Lee, Shih-Yu; Yu, Jin-Yi; Hsu, Huang-Hsiung

    2015-10-01

    Anthropogenic water management can change surface energy budgets and the water cycle. In this study, we focused on impacts of Asian low-latitude irrigation on regional and global climates during boreal wintertime. A state-of-the-art Earth system model is used to simulate the land-air interaction processes affected by irrigation and the consequent responses in atmospheric circulation. Perturbed experiments show that wet soil moisture anomalies at low latitudes can reduce the surface temperature on a continental scale through atmospheric feedback. The intensity of prevailing monsoon circulation becomes stronger because of larger land-sea thermal contrast. Furthermore, anomalous upper level convergence over South Asia and midlatitude climatic changes indicate tropical-extratropical teleconnections. The wintertime Aleutian low is deepened and an anomalous warm surface temperature is found in North America. Previous studies have noted this warming but left it unexplained, and we provide plausible mechanisms for these remote impacts coming from the irrigation over Asian low-latitude regions.

  10. Impact of meteorological conditions on airborne fine particle composition and secondary pollutant characteristics in urban area during winter-time

    Directory of Open Access Journals (Sweden)

    Klaus Schäfer

    2016-06-01

    Full Text Available The assessment of airborne fine particle composition and secondary pollutant characteristics in the case of Augsburg, Germany, during winter (31 January–12 March 2010 is studied on the basis of aerosol mass spectrometry (3 non-refractory components and organic matter, 3 positive matrix factorizations (PMF factors, particle size distributions (PSD, 5 size modes, 5 PMF factors, further air pollutant mass concentrations (7 gases and VOC, black carbon, PM10, PM2.5 and meteorological measurements, including mixing layer height (MLH, with one-hourly temporal resolution. Data were subjectively assigned to 10 temporal phases which are characterised by different meteorological influences and air pollutant concentrations. In each phase hierarchical clustering analysis with the Ward method was applied to the correlations of air pollutants, PM components, PM source contributions and PSD modes and correlations of these data with all meteorological parameters. This analysis resulted in different degrees of sensitivities of these air pollutant data to single meteorological parameters. It is generally found that wind speed (negatively, MLH (negatively, relative humidity (positively and wind direction influence primary pollutant and accumulation mode particle (size range 100–500 nm concentrations. Temperature (negatively, absolute humidity (negatively and also relative humidity (positively are relevant for secondary compounds of PM and particle (PM2.5, PM10 mass concentrations. NO, nucleation and Aitken mode particle and the fresh traffic aerosol concentrations are only weakly dependent on meteorological parameters and thus are driven by emissions. These daily variation data analyses provide new, detailed meteorological influences on air pollutant data with the focus on fine particle composition and secondary pollutant characteristics and can explain major parts of certain PM component and gaseous pollutant exposure.

  11. Modeling the impact of wintertime rain events on the thermal regime of permafrost

    Directory of Open Access Journals (Sweden)

    S. Westermann

    2011-10-01

    Full Text Available In this study, we present field measurements and numerical process modeling from western Svalbard showing that the ground surface temperature below the snow is impacted by strong wintertime rain events. During such events, rain water percolates to the bottom of the snow pack, where it freezes and releases latent heat. In the winter season 2005/2006, on the order of 20 to 50% of the wintertime precipitation fell as rain, thus confining the surface temperature to close to 0 °C for several weeks. The measured average ground surface temperature during the snow-covered period is −0.6 °C, despite of a snow surface temperature of on average −8.5 °C. For the considered period, the temperature threshold below which permafrost is sustainable on long timescales is exceeded. We present a simplified model of rain water infiltration in the snow coupled to a transient permafrost model. While small amounts of rain have only minor impact on the ground surface temperature, strong rain events have a long-lasting impact. We show that consecutively applying the conditions encountered in the winter season 2005/2006 results in the formation of an unfrozen zone in the soil after three to five years, depending on the prescribed soil properties. If water infiltration in the snow is disabled in the model, more time is required for the permafrost to reach a similar state of degradation.

  12. Mechanisms of Formation of Secondary Organic Aerosols and Implications for Global Radiative Forcing

    Energy Technology Data Exchange (ETDEWEB)

    Seinfeld, John H. [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2011-12-02

    Organic material constitutes about 50% of global atmospheric aerosol mass, and the dominant source of organic aerosol is the oxidation of volatile hydrocarbons, to produce secondary organic aerosol (SOA). Understanding the formation of SOA is crucial to predicting present and future climate effects of atmospheric aerosols. The goal of this program is to significantly increase our understanding of secondary organic aerosol (SOA) formation in the atmosphere. Ambient measurements indicate that the amount of SOA in the atmosphere exceeds that predicted in current models based on existing laboratory chamber data. This would suggest that either the SOA yields measured in laboratory chambers are understated or that all major organic precursors have not been identified. In this research program we are systematically exploring these possibilities.

  13. Secondary Professional Socialization through Professional Organizations: An Exploratory Study

    Science.gov (United States)

    Richards, K. Andrew; Eberline, Andrew D.; Templin, Thomas J.

    2016-01-01

    Secondary professional socialization is a phase of occupational socialization theory that focuses on graduate education in preparation for a career in academia. Due to the need to present and publish research and make professional contacts, professional organizations likely serve an important socializing function during graduate education. The…

  14. On-line analysis of ETA and organic acids in secondary systems of PWR plants

    International Nuclear Information System (INIS)

    Kurashina, Masahiko; Uzawa, Hideo; Utagawa, Koya; Takaku, Hiroshi

    2005-01-01

    To reduce the iron concentration in the secondary water of plants with pressurized water reactors (PWRs), ethanolamine (ETA) is used as an alkalizing agent in the secondary cycle. An on-line ion chromatography (IC) monitoring system for monitoring concentrations of ETA and anions of organic acids was developed, its performance was evaluated, and verification tests were conducted at an actual PWR plant. It was demonstrated that the concentration of both ETA and anions of organic acids may be successfully monitored by IC in PWR secondary cycle streams alkalized by ETA. (orig.)

  15. Wintertime sea surface temperature fronts in the Taiwan Strait

    Science.gov (United States)

    Chang, Yi; Shimada, Teruhisa; Lee, Ming-An; Lu, Hsueh-Jung; Sakaida, Futoki; Kawamura, Hiroshi

    2006-12-01

    We present wintertime variations and distributions of sea surface temperature (SST) fronts in the Taiwan Strait by applying an entropy-based edge detection method to 10-year (1996-2005) satellite SST images with grid size of 0.01°. From climatological monthly mean maps of SST gradient magnitude in winter, we identify four significant SST fronts in the Taiwan Strait. The Mainland China Coastal Front is a long frontal band along the 50-m isobath near the Chinese coast. The sharp Peng-Chang Front appears along the Peng-Hu Channel and extends northward around the Chang-Yuen Ridge. The Taiwan Bank Front evolves in early winter. As the winter progresses, the front becomes broad and moves toward the Chinese coast, connecting to the Mainland China Coastal Front. The Kuroshio Front extends northeastward from the northeastern tip of Taiwan with a semicircle-shape curving along the 100-m isobath.

  16. Dissection of Mammalian Organs and Opinions about It among Lower and Upper Secondary School Students

    Science.gov (United States)

    Špernjak, Andreja; Šorgo, Andrej

    2017-01-01

    This article describes the results of a study that investigated the use of the dissection of organs in anatomy and physiology classes in Slovenian lower and upper secondary schools. Based on a sample of 485 questionnaires collected from Slovenian lower and upper secondary school students, we can conclude that dissection of mammalian organs during…

  17. An integrated campaign for investigation of winter-time continental haze over Indo-Gangetic Basin and its radiative effects

    International Nuclear Information System (INIS)

    Das, Sanat Kumar; Chatterjee, Abhijit; Ghosh, Sanjay K.; Raha, Sibaji

    2015-01-01

    An outflow of continental haze occurs from Indo-Gangetic Basin (IGB) in the North to Bay of Bengal (BoB) in the South. An integrated campaign was organized to investigate this continental haze during December 2013–February 2014 at source and remote regions within IGB to quantify its radiative effects. Measurements were carried out at three locations in eastern India; 1) Kalas Island, Sundarban (21.68°N, 88.57°E) — an isolated island along the north-east coast of BoB, 2) Kolkata (22.57°N, 88.42°E) — an urban metropolis and 3) Siliguri (26.70°N, 88.35°E) — an urban region at the foothills of eastern Himalayas. Ground-based AOD (at 0.5 μm) is observed to be maximum (1.25 ± 0.18) over Kolkata followed by Siliguri (0.60 ± 0.17) and minimum over Sundarban (0.53 ± 0.18). Black carbon concentration is found to be maximum at Kolkata (21.6 ± 6.6 μg·m −3 ) with almost equal concentrations at Siliguri (12.6 ± 5.2 μg·m −3 ) and Sundarban (12.3 ± 3.0 μg·m −3 ). Combination of MODIS-AOD and back-trajectories analysis shows an outflow of winter-time continental haze originating from central IGB and venting out through Sundarban towards BoB. This continental haze with high extinction coefficient is identified up to central BoB using CALIPSO observations and is found to contribute ~ 75% to marine AOD over central BoB. This haze produces significantly high aerosol radiative forcing within the atmosphere over Kolkata (75.4 Wm −2 ) as well as over Siliguri and Sundarban (40 Wm −2 ) indicating large forcing over entire IGB, from foothills of the Himalayas to coastal region. This winter-time continental haze also causes about similar radiative heating (1.5 K·day −1 ) from Siliguri to Sundarban which is enhanced over Kolkata (3 K·day −1 ) due to large emission of local urban aerosols. This high aerosol heating over entire IGB and coastal region of BoB can have considerable impact on the monsoonal circulation and more importantly, such haze

  18. An integrated campaign for investigation of winter-time continental haze over Indo-Gangetic Basin and its radiative effects

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sanat Kumar, E-mail: sanatkrdas@gmail.com [Environmental Sciences Section, Bose Institute, Kolkata (India); Center for Astroparticle Physics and Space Science, Bose Institute, Kolkata (India); Chatterjee, Abhijit [Environmental Sciences Section, Bose Institute, Kolkata (India); Center for Astroparticle Physics and Space Science, Bose Institute, Kolkata (India); National Facility on Astroparticle Physics and Space Science, Darjeeling (India); Ghosh, Sanjay K. [Center for Astroparticle Physics and Space Science, Bose Institute, Kolkata (India); National Facility on Astroparticle Physics and Space Science, Darjeeling (India); Raha, Sibaji [Environmental Sciences Section, Bose Institute, Kolkata (India); Center for Astroparticle Physics and Space Science, Bose Institute, Kolkata (India); National Facility on Astroparticle Physics and Space Science, Darjeeling (India)

    2015-11-15

    An outflow of continental haze occurs from Indo-Gangetic Basin (IGB) in the North to Bay of Bengal (BoB) in the South. An integrated campaign was organized to investigate this continental haze during December 2013–February 2014 at source and remote regions within IGB to quantify its radiative effects. Measurements were carried out at three locations in eastern India; 1) Kalas Island, Sundarban (21.68°N, 88.57°E) — an isolated island along the north-east coast of BoB, 2) Kolkata (22.57°N, 88.42°E) — an urban metropolis and 3) Siliguri (26.70°N, 88.35°E) — an urban region at the foothills of eastern Himalayas. Ground-based AOD (at 0.5 μm) is observed to be maximum (1.25 ± 0.18) over Kolkata followed by Siliguri (0.60 ± 0.17) and minimum over Sundarban (0.53 ± 0.18). Black carbon concentration is found to be maximum at Kolkata (21.6 ± 6.6 μg·m{sup −3}) with almost equal concentrations at Siliguri (12.6 ± 5.2 μg·m{sup −3}) and Sundarban (12.3 ± 3.0 μg·m{sup −3}). Combination of MODIS-AOD and back-trajectories analysis shows an outflow of winter-time continental haze originating from central IGB and venting out through Sundarban towards BoB. This continental haze with high extinction coefficient is identified up to central BoB using CALIPSO observations and is found to contribute ~ 75% to marine AOD over central BoB. This haze produces significantly high aerosol radiative forcing within the atmosphere over Kolkata (75.4 Wm{sup −2}) as well as over Siliguri and Sundarban (40 Wm{sup −2}) indicating large forcing over entire IGB, from foothills of the Himalayas to coastal region. This winter-time continental haze also causes about similar radiative heating (1.5 K·day{sup −1}) from Siliguri to Sundarban which is enhanced over Kolkata (3 K·day{sup −1}) due to large emission of local urban aerosols. This high aerosol heating over entire IGB and coastal region of BoB can have considerable impact on the monsoonal circulation and more

  19. Unspeciated organic emissions from combustion sources and their influence on the secondary organic aerosol budget in the United States

    Science.gov (United States)

    Secondary organic aerosol (SOA) formed from the atmospheric oxidation of nonmethane organic gases (NMOG) is a major contributor to atmospheric aerosol mass. Emissions and smog chamber experiments were performed to investigate SOA formation from gasoline vehicles, diesel vehicles,...

  20. Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic ocean

    International Nuclear Information System (INIS)

    Peings, Yannick; Magnusdottir, Gudrun

    2014-01-01

    The North Atlantic sea surface temperature exhibits fluctuations on the multidecadal time scale, a phenomenon known as the Atlantic Multidecadal Oscillation (AMO). This letter demonstrates that the multidecadal fluctuations of the wintertime North Atlantic Oscillation (NAO) are tied to the AMO, with an opposite-signed relationship between the polarities of the AMO and the NAO. Our statistical analyses suggest that the AMO signal precedes the NAO by 10–15 years with an interesting predictability window for decadal forecasting. The AMO footprint is also detected in the multidecadal variability of the intraseasonal weather regimes of the North Atlantic sector. This observational evidence is robust over the entire 20th century and it is supported by numerical experiments with an atmospheric global climate model. The simulations suggest that the AMO-related SST anomalies induce the atmospheric anomalies by shifting the atmospheric baroclinic zone over the North Atlantic basin. As in observations, the positive phase of the AMO results in more frequent negative NAO—and blocking episodes in winter that promote the occurrence of cold extreme temperatures over the eastern United States and Europe. Thus, it is plausible that the AMO plays a role in the recent resurgence of severe winter weather in these regions and that wintertime cold extremes will be promoted as long as the AMO remains positive. (paper)

  1. Correlation of Secondary Organic Aerosol with Odd Oxygen in Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Herndon, Scott C.; Onasch, Timothy B.; Wood, Ezra C.; Kroll, Jesse H.; Canagaratna, M. R.; Jayne, John T.; Zavala, Miguel A.; Knighton, W. Berk; Mazzoleni, Claudio; Dubey, Manvendra K.; Ulbrich, Ingrid M.; Jimenez, Jose L.; Seila, Robert; de Gouw, Joost A.; de Foy, B.; Fast, Jerome D.; Molina, Luisa T.; Kolb, C. E.; Worsnop, Douglas R.

    2008-08-05

    Data collected from a mountain location within the Mexico City limits are used to demonstrate a correlation between secondary organic aerosol and odd-oxygen (O3 + NO2). Positive matrix factorization techniques are employed to separate organic aerosol components: hydrocarbon-like organic aerosol; oxidized-organic aerosol; and biomass burning organic aerosol. The measured hydrocarbon-like organic aerosol is correlated with urban CO (8±1) µg m-3 ppmv-1. The measured oxidized-organic aerosol is associated with photochemical oxidation products and correlates with odd-oxygen with an apparent slope of (70-120) µg m-3 ppmv-1. The dependence of the oxidized-organic aerosol to odd-oxygen correlation on the nature of the gas-phase hydrocarbon profile is discussed.

  2. Assessment of secondary sources of Persistent Organic Pollutants in the Arctic

    Science.gov (United States)

    Pisso, Ignacio; Eckhardt, Sabine; Breivik, Knut

    2014-05-01

    Persistent organic pollutants (POPs) including highly toxic pesticides and other chemicals accumulate in living tissues and magnify in food chains. POPs are subject to long-range transport and hence represent a serious public health issue even in regions where their production is regulated. Rational control strategies require an understanding of the overall relationship between environmental emissions of contaminants and environmental / human exposure. In this study, we assess the relationships between environmental emissions and potential human exposure of organic contaminants with emphasis on long-range atmospheric transport. We investigate whether atmospheric levels of POPs measured at Zeppelin observatory in Svalbard since the early '90s are controlled by primary or secondary emissions. We present statistical indications that the measurements are affected by secondary ocean emissions and discuss the applicability of different inverse modeling approaches.

  3. Recent advances in understanding secondary organic aerosol: Implications for global climate forcing: Advances in Secondary Organic Aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, Manish [Pacific Northwest National Laboratory, Richland Washington USA; Cappa, Christopher D. [Department of Civil and Environmental Engineering, University of California, Davis California USA; Fan, Jiwen [Pacific Northwest National Laboratory, Richland Washington USA; Goldstein, Allen H. [Department of Environmental Science, Policy and Management and Department of Civil and Environmental Engineering, University of California, Berkeley California USA; Guenther, Alex B. [Department of Earth System Science, University of California, Irvine California USA; Jimenez, Jose L. [Cooperative Institute for Research in Environmental Sciences and Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder Colorado USA; Kuang, Chongai [Brookhaven National Laboratory, Upton New York USA; Laskin, Alexander [Pacific Northwest National Laboratory, Richland Washington USA; Martin, Scot T. [School of Engineering and Applied Sciences and Department of Earth and Planetary Sciences, Harvard University, Cambridge Massachusetts USA; Ng, Nga Lee [School of Chemical and Biomolecular Engineering and School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta Georgia USA; Petaja, Tuukka [Department of Physics, University of Helsinki, Helsinki Finland; Pierce, Jeffrey R. [Department of Atmospheric Science, Colorado State University, Fort Collins Colorado USA; Rasch, Philip J. [Pacific Northwest National Laboratory, Richland Washington USA; Roldin, Pontus [Department of Physics, Lund University, Lund Sweden; Seinfeld, John H. [Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena California USA; Shilling, John [Pacific Northwest National Laboratory, Richland Washington USA; Smith, James N. [Department of Earth System Science, University of California, Irvine California USA; Thornton, Joel A. [Department of Atmospheric Sciences, University of Washington, Seattle Washington USA; Volkamer, Rainer [Cooperative Institute for Research in Environmental Sciences and Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder Colorado USA; Wang, Jian [Brookhaven National Laboratory, Upton New York USA; Worsnop, Douglas R. [Aerodyne Research, Inc., Billerica Massachusetts USA; Zaveri, Rahul A. [Pacific Northwest National Laboratory, Richland Washington USA; Zelenyuk, Alla [Pacific Northwest National Laboratory, Richland Washington USA; Zhang, Qi [Department of Environmental Toxicology, University of California, Davis California USA

    2017-06-01

    Anthropogenic emissions and land-use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding pre-industrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features 1) influence estimates of aerosol radiative forcing and 2) can confound estimates of the historical response of climate to increases in greenhouse gases (e.g. the ‘climate sensitivity’). Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, represents a major fraction of global submicron-sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through a combination of laboratory and field measurements, yet current climate models typically do not comprehensively include all important SOA-relevant processes. Therefore, major gaps exist at present between current measurement-based knowledge on the one hand and model implementation of organic aerosols on the other. The critical review herein summarizes some of the important developments in understanding SOA formation that could potentially have large impacts on our understanding of aerosol radiative forcing and climate. We highlight the importance of some recently discovered processes and properties that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including: formation of extremely low-volatility organics in the gas-phase; isoprene epoxydiols (IEPOX) multi-phase chemistry; particle-phase oligomerization; and physical properties such as viscosity. In addition, this review also highlights some of the important processes that involve interactions between natural biogenic emissions and anthropogenic emissions, such as the role of sulfate and oxides of nitrogen (NOx) on SOA formation from biogenic volatile organic compounds. Studies that relate the observed evolution of organic aerosol

  4. Increases in wintertime PM2.5 sodium and chloride linked to snowfall and road salt application

    Science.gov (United States)

    Kolesar, Katheryn R.; Mattson, Claire N.; Peterson, Peter K.; May, Nathaniel W.; Prendergast, Rashad K.; Pratt, Kerri A.

    2018-03-01

    The application of salts and salty brines to roads is common practice during the winter in many urban environments. Road salts can become aerosolized, thereby injecting sodium and chloride particulate matter (PM) into the atmosphere. Here, data from the United States Environmental Protection Agency Chemical Speciation Monitoring Network were used to assess temporal trends of sodium and chloride PM2.5 (PM road salt aerosols. Sodium and chloride PM2.5 concentrations were an average of three times higher in the winter, as compared to the summer, for locations with greater than 25 cm of average annual snowfall. Winter urban chloride PM2.5 concentrations attributed to road salt can even sometimes rival those of coastal sea spray aerosol-influenced sites. In most snow-influenced cities, chloride and sodium PM2.5 concentrations were positively correlated with snowfall; however, this relationship is complicated by differences in state and local winter maintenance practices. This study highlights the ubiquity of road salt aerosols in the United States and their potential impact on wintertime urban air quality, particularly due to the potential for multiphase reactions to liberate chlorine from the particle-phase. Since road salt application is a common practice in wintertime urban environments across the world, it is imperative that road salt application emissions, currently not included in inventories, and its impacts be investigated through measurements and modeling.

  5. Innate lymphoid cells in secondary lymphoid organs.

    Science.gov (United States)

    Bar-Ephraïm, Yotam E; Mebius, Reina E

    2016-05-01

    The family of innate lymphoid cells (ILCs) has attracted attention in recent years as its members are important regulators of immunity, while they can also cause pathology. In both mouse and man, ILCs were initially discovered in developing lymph nodes as lymphoid tissue inducer (LTi) cells. These cells form the prototypic members of the ILC family and play a central role in the formation of secondary lymphoid organs (SLOs). In the absence of LTi cells, lymph nodes (LN) and Peyer's Patches (PP) fail to form in mice, although the splenic white pulp can develop normally. Besides LTi cells, the ILC family encompasses helper-like ILCs with functional distinctions as seen by T-helper cells, as well as cytotoxic natural killer (NK) cells. ILCs are still present in adult SLOs where they have been shown to play a role in lymphoid tissue regeneration. Furthermore, ILCs were implicated to interact with adaptive lymphocytes and influence the adaptive immune response. Here, we review the recent literature on the role of ILCs in secondary lymphoid tissue from the formation of SLOs to mature SLOs in adults, during homeostasis and pathology. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Secondary organic aerosol formation from biomass burning intermediates: phenol and methoxyphenols

    Directory of Open Access Journals (Sweden)

    L. D. Yee

    2013-08-01

    Full Text Available The formation of secondary organic aerosol from oxidation of phenol, guaiacol (2-methoxyphenol, and syringol (2,6-dimethoxyphenol, major components of biomass burning, is described. Photooxidation experiments were conducted in the Caltech laboratory chambers under low-NOx (2O2 as the OH source. Secondary organic aerosol (SOA yields (ratio of mass of SOA formed to mass of primary organic reacted greater than 25% are observed. Aerosol growth is rapid and linear with the primary organic conversion, consistent with the formation of essentially non-volatile products. Gas- and aerosol-phase oxidation products from the guaiacol system provide insight into the chemical mechanisms responsible for SOA formation. Syringol SOA yields are lower than those of phenol and guaiacol, likely due to novel methoxy group chemistry that leads to early fragmentation in the gas-phase photooxidation. Atomic oxygen to carbon (O : C ratios calculated from high-resolution-time-of-flight Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS measurements of the SOA in all three systems are ~ 0.9, which represent among the highest such ratios achieved in laboratory chamber experiments and are similar to that of aged atmospheric organic aerosol. The global contribution of SOA from intermediate volatility and semivolatile organic compounds has been shown to be substantial (Pye and Seinfeld, 2010. An approach to representing SOA formation from biomass burning emissions in atmospheric models could involve one or more surrogate species for which aerosol formation under well-controlled conditions has been quantified. The present work provides data for such an approach.

  7. Genetically modified organisms (GMO in opinions completing secondary schools in Lublin

    Directory of Open Access Journals (Sweden)

    Lachowski Stanisław

    2016-09-01

    Full Text Available The objective of the conducted analysis is the opinion of adolescents completing secondary schools concerning genetically modified organisms (GMO and determination of the relationship between the level of knowledge concerning GMO, and evaluation of the safety of their use in industry and agriculture.

  8. Wintertime Ambient Ammonia Concentrations in Northern Utah's Urban Valleys

    Science.gov (United States)

    Hammond, I. A.; Martin, R. S.; Silva, P.; Baasandorj, M.

    2017-12-01

    Many of the population centers in northern Utah are currently classified as non-attainment or serious non-attainment, Wasatch Front, for PM2.5 and previous studies have shown ammonium nitrate to often be the largest contributor to the particulate mass. Furthermore, measurements have shown several of the Wasatch Front cities and Cache Valley (UT/ID) consistently recorded some of the highest ambient ammonia (NH3) concentrations in the continental United States. As a part of the multi-organization 2017 Utah Winter Fine Particulate Study real-time NH3 concentrations were monitored in the Cache Valley at the Logan, UT site, collocated at an EPA sampling trailer near the Utah State University (USU) campus. A Picarro model G2508 was to used collect 5-sec averaged concentrations of NH3, carbon dioxide (CO2), and methane (CH4) from January 16th to February 14th, 2017. Parts of three inversion events, wherein the PM2.5 concentrations approached or exceeded the National Ambient Air Quality Standards, were captured during the sampling period, including a 10-day event from January 25th to February 4th. Concentrations of all three of the observed species showed significant accumulation during the events, with NH3 concentrations ranging from below the detection limit (70 ppb. Preliminary analysis suggested the temporal NH3 changes tracked the increase in PM2.5 throughout the inversion events; however, a one-day period of NH3 depletion during the main inversion event was observed while PM2.5 continued to increase. Additionally, a network of passive NH3 samplers (Ogawa Model 3300) were arrayed at 25 sites throughout the Cache Valley and at 11 sites located along the Wasatch Front. These networks sampled for three 7-day periods, during the same study time frame. Ion chromatographic (IC) analyses of the sample pads are not yet finalized; however, preliminary results show concentrations in the tens of ppb and seemingly spatially correlate with previous studies showing elevated

  9. Modeled aerosol nitrate formation pathways during wintertime in the Great Lakes region of North America

    Science.gov (United States)

    Kim, Yoo Jung; Spak, Scott N.; Carmichael, Gregory R.; Riemer, Nicole; Stanier, Charles O.

    2014-11-01

    Episodic wintertime particle pollution by ammonium nitrate is an important air quality concern across the Midwest U.S. Understanding and accurately forecasting PM2.5 episodes are complicated by multiple pathways for aerosol nitrate formation, each with uncertain rate parameters. Here, the Community Multiscale Air Quality model (CMAQ) simulated regional atmospheric nitrate budgets during the 2009 LADCO Winter Nitrate Study, using integrated process rate (IPR) and integrated reaction rate (IRR) tools to quantify relevant processes. Total nitrate production contributing to PM2.5 episodes is a regional phenomenon, with peak production over the Ohio River Valley and southern Great Lakes. Total nitrate production in the lower troposphere is attributed to three pathways, with 57% from heterogeneous conversion of N2O5, 28% from the reaction of OH and NO2, and 15% from homogeneous conversion of N2O5. TNO3 formation rates varied day-to-day and on synoptic timescales. Rate-limited production does not follow urban-rural gradients and NOx emissions due, to counterbalancing of urban enhancement in daytime HNO3 production with nocturnal reductions. Concentrations of HNO3 and N2O5 and nighttime TNO3 formation rates have maxima aloft (100-500 m), leading to net total nitrate vertical flux during episodes, with substantial vertical gradients in nitrate partitioning. Uncertainties in all three pathways are relevant to wintertime aerosol modeling and highlight the importance of interacting transport and chemistry processes during ammonium nitrate episodes, as well as the need for additional constraint on the system through field and laboratory experiments.

  10. Comparison of wintertime CO to NOx ratios to MOVES and MOBILE6.2 on-road emissions inventories

    Science.gov (United States)

    Wallace, H. W.; Jobson, B. T.; Erickson, M. H.; McCoskey, J. K.; VanReken, T. M.; Lamb, B. K.; Vaughan, J. K.; Hardy, R. J.; Cole, J. L.; Strachan, S. M.; Zhang, W.

    2012-12-01

    The CO-to-NOx molar emission ratios from the US EPA vehicle emissions models MOVES and MOBILE6.2 were compared to urban wintertime measurements of CO and NOx. Measurements of CO, NOx, and volatile organic compounds were made at a regional air monitoring site in Boise, Idaho for 2 months from December 2008 to January 2009. The site is impacted by roadway emissions from a nearby busy urban arterial roads and highway. The measured CO-to-NOx ratio for morning rush hour periods was 4.2 ± 0.6. The average CO-to-NOx ratio during weekdays between the hours of 08:00 and 18:00 when vehicle miles travelled were highest was 5.2 ± 0.5. For this time period, MOVES yields an average hourly CO-to-NOx ratio of 9.1 compared to 20.2 for MOBILE6.2. Off-network emissions are a significant fraction of the CO and NOx emissions in MOVES, accounting for 65% of total CO emissions, and significantly increase the CO-to-NOx molar ratio. Observed ratios were more similar to the average hourly running emissions for urban roads determined by MOVES to be 4.3.

  11. Impacts of Four SO2 Oxidation Pathways on Wintertime Sulfate Concentrations

    Science.gov (United States)

    Sarwar, G.; Fahey, K.; Zhang, Y.; Kang, D.; Mathur, R.; Xing, J.; Wei, C.; Cheng, Y.

    2017-12-01

    Air quality models tend to under-estimate winter-time sulfate concentrations compared to observed data. Such under-estimations are particularly acute in China where very high concentrations of sulfate have been measured. Sulfate is produced by oxidation of sulfur dioxide (SO2) in gas-phase by hydroxyl radical and in aqueous-phase by hydrogen peroxide, ozone, etc. and most air quality models employ such typical reactions. Several additional SO2 oxidation pathways have recently been proposed. Heterogeneous reaction on dust has been suggested to be an important sink for SO2. Oxidation of SO2 on fine particles in presence of nitrogen dioxide (NO2) and ammonia (NH3) at high relative humidity has been implicated for sulfate formation in Chinese haze and London fog. Reactive nitrogen chemistry in aerosol water has also been suggested to produce winter-time sulfate in China. Specifically, high aerosol water can trap SO2 which can be subsequently oxidized by NO2 to form sulfate. Aqueous-phase (in-cloud) oxidation of SO2 by NO2 can also produce sulfate. Here, we use the hemispheric Community Multiscale Air Quality (CMAQ) modeling system to examine the potential impacts of these SO2 oxidation pathways on sulfate formation. We use anthropogenic emissions from the Emissions Database for Global Atmospheric Research and biogenic emissions from Global Emissions InitiAtive. We performed simulations without and with these SO2 oxidation pathways for October-December of 2014 using meteorological fields obtained from the Weather Research and Forecasting model. The standard CMAQ model contains one gas-phase chemical reaction and five aqueous-phase chemical reactions for SO2 oxidation. We implement four additional SO2 oxidation pathways into the CMAQ model. Our preliminary results suggest that the dust chemistry enhances mean sulfate over parts of China and Middle-East, the in-cloud SO2 oxidation by NO2 enhances sulfate over parts of western Europe, oxidation of SO2 by NO2 and NH3 on

  12. Knowledge of adolescents completing secondary schools concerning genetically modified organisms (GMO)

    OpenAIRE

    Florek-Łuszczki Magdalena; Lachowski Stanisław; Chmielewski Jarosław; Jurkiewicz Anna

    2016-01-01

    The objective of the conducted analyses is the evaluation of the level of knowledge concerning the scope of problems related with genetically modified organism (GMO) amongst adolescents completing secondary schools and the determination of the relationship between the level of this knowledge and the selected demographic traits of the adolescents examined.

  13. The composition of nucleation and Aitken modes particles during coastal nucleation events: evidence for marine secondary organic contribution

    Directory of Open Access Journals (Sweden)

    P. Vaattovaara

    2006-01-01

    Full Text Available Newly-formed nanometer-sized particles have been observed at coastal and marine environments world wide. Organic species have so far not been detected in those newly-formed nucleation mode particles. In this study, we applied the ultrafine organic tandem differential mobility analyzer method to study the possible existence of an organic fraction in recently formed coastal nucleation mode particles (d<20 nm at the Mace Head research station. Furthermore, effects of those nucleation events on potential cloud condensation nuclei were studied. The coastal events were typical for the Mace Head region and they occurred at low tide conditions during efficient solar radiation and enhanced biological activity in spring 2002. Additionally, a pulse height analyzer ultrafine condensation particle counter technique was used to study the composition of newly-formed particles formed in low tide conditions during a lower biological activity in October 2002. The overall results of the ultrafine organic tandem differential mobility analyzer and the pulse height analyzer ultrafine condensation particle counter measurements indicate that those coastally/marinely formed nucleation mode particles include a remarkable fraction of secondary organic products, beside iodine oxides, which are likely to be responsible for the nucleation. During clean marine air mass conditions, the origin of those secondary organic oxidation compounds can be related to marine coast and open ocean biota and thus a major fraction of the organics may originate from biosynthetic production of alkenes such as isoprene and their oxidation driven by iodine radicals, hydroxyl radicals, acid catalysis, and ozone during efficient solar radiation. During modified marine conditions, also anthropogenic secondary organic compounds may contribute to the nucleation mode organic mass, in addition to biogenic secondary organic compounds. Thus, the ultrafine organic tandem differential mobility analyzer

  14. The impact of monthly variation of the Pacific–North America (PNA teleconnection pattern on wintertime surface-layer aerosol concentrations in the United States

    Directory of Open Access Journals (Sweden)

    J. Feng

    2016-04-01

    Full Text Available The Pacific–North America teleconnection (PNA is the leading general circulation pattern in the troposphere over the region of North Pacific to North America during wintertime. This study examined the impacts of monthly variations of the PNA phase (positive or negative phase on wintertime surface-layer aerosol concentrations in the United States (US by analyzing observations during 1999–2013 from the Air Quality System of the Environmental Protection Agency (EPA-AQS and the model results for 1986–2006 from the global three-dimensional Goddard Earth Observing System (GEOS chemical transport model (GEOS-Chem. The composite analyses on the EPA-AQS observations over 1999–2013 showed that the average concentrations of PM2.5, sulfate, nitrate, ammonium, organic carbon, and black carbon aerosols over the US were higher in the PNA positive phases (25 % of the winter months examined, and this fraction of months had the highest positive PNA index values than in the PNA negative phases (25 % of the winter months examined, and this fraction of months had the highest negative PNA index values by 1.0 µg m−3 (8.7 %, 0.01 µg m−3 (0.5 %, 0.3 µg m−3 (29.1 %, 0.1 µg m−3 (11.9 %, 0.6 µg m−3 (13.5 %, and 0.2 µg m−3 (27.8 %, respectively. The simulated geographical patterns of the differences in concentrations of all aerosol species between the PNA positive and negative phases were similar to observations. Based on the GEOS-Chem simulation, the pattern correlation coefficients were calculated to show the impacts of PNA-induced variations in meteorological fields on aerosol concentrations. The PNA phase was found (i to influence sulfate concentrations mainly through changes in planetary boundary layer height (PBLH, precipitation (PR, and temperature; (ii to influence nitrate concentrations mainly through changes in temperature; and (iii to influence concentrations of ammonium, organic carbon, and black

  15. A large source of low-volatility secondary organic aerosol

    DEFF Research Database (Denmark)

    Ehn, Mikael; Thornton, Joel A.; Kleist, Einhard

    2014-01-01

    radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed...... particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate...... the oxidation of VOCs, in particular the terpene α-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours. These vapours form...

  16. Knowledge of adolescents completing secondary schools concerning genetically modified organisms (GMO

    Directory of Open Access Journals (Sweden)

    Florek-Łuszczki Magdalena

    2016-06-01

    Full Text Available The objective of the conducted analyses is the evaluation of the level of knowledge concerning the scope of problems related with genetically modified organism (GMO amongst adolescents completing secondary schools and the determination of the relationship between the level of this knowledge and the selected demographic traits of the adolescents examined.

  17. Secondary organic carbon quantification and source apportionment of PM10 in Kaifeng, China

    Institute of Scientific and Technical Information of China (English)

    WU Lin; FENG Yinchang; WU Jianhui; ZHU Tan; BI Xiaohui; HAN Bo; YANG Weihong; YANG Zhiqiang

    2009-01-01

    During 2005, the filter samples of ambient PM10 from five sites and the source samples of particulate matter were collected in Kaifeng, Henan province of China. Nineteen elements, water-soluble ions, total carbon (TC) and organic carbon (OC) contained in samples were analyzed. Seven contributive source types were identified and their contributions to ambient PM10 were estimated by chemical mass balance (CMB) receptor model. Weak associations between the concentrations of organic carbon and element carbon (EC) were observed during the sampling periods, indicating that there was secondary organic aerosol pollution in the urban atmosphere. An indirect method of "OC/EC minimum ratio" was applied to estimate the concentration of secondary organic carbon (SOC). The results showed that SOC contributed 26.2%, 32.4% and 18.0% of TC in spring, summer-fall and winter respectively, and the annual average SOC concentration was 7.07 μg/m3, accounting for 5.73% of the total mass in ambient PM10. The carbon species concentrations in ambient PM10 were recalculated by subtracting the SOC concentrations from measured concentrations of TC and OC to increase the compatibility of source and receptor measurements for CMB model.

  18. Primary and Secondary Organic Marine Aerosol and Oceanic Biological Activity: Recent Results and New Perspectives for Future Studies

    Directory of Open Access Journals (Sweden)

    Matteo Rinaldi

    2010-01-01

    Full Text Available One of the most important natural aerosol systems at the global level is marine aerosol that comprises both organic and inorganic components of primary and secondary origin. The present paper reviews some new results on primary and secondary organic marine aerosol, achieved during the EU project MAP (Marine Aerosol Production, comparing them with those reported in the recent literature. Marine aerosol samples collected at the coastal site of Mace Head, Ireland, show a chemical composition trend that is influenced by the oceanic biological activity cycle, in agreement with other observations. Laboratory experiments show that sea-spray aerosol from biologically active sea water can be highly enriched in organics, and the authors highlight the need for further studies on the atmospheric fate of such primary organics. With regard to the secondary fraction of organic aerosol, the average chemical composition and molecular tracer (methanesulfonic-acid, amines distribution could be successfully characterized by adopting a multitechnique analytical approach.

  19. Secondary organic aerosol origin in an urban environment: influence of biogenic and fuel combustion precursors.

    Science.gov (United States)

    Minguillón, M C; Pérez, N; Marchand, N; Bertrand, A; Temime-Roussel, B; Agrios, K; Szidat, S; van Drooge, B; Sylvestre, A; Alastuey, A; Reche, C; Ripoll, A; Marco, E; Grimalt, J O; Querol, X

    2016-07-18

    Source contributions of organic aerosol (OA) are still not fully understood, especially in terms of quantitative distinction between secondary OA formed from anthropogenic precursors vs. that formed from natural precursors. In order to investigate the OA origin, a field campaign was carried out in Barcelona in summer 2013, including two periods characterized by low and high traffic conditions. Volatile organic compound (VOC) concentrations were higher during the second period, especially aromatic hydrocarbons related to traffic emissions, which showed a marked daily cycle peaking during traffic rush hours, similarly to black carbon (BC) concentrations. Biogenic VOC (BVOC) concentrations showed only minor changes from the low to the high traffic period, and their intra-day variability was related to temperature and solar radiation cycles, although a decrease was observed for monoterpenes during the day. The organic carbon (OC) concentrations increased from the first to the second period, and the fraction of non-fossil OC as determined by (14)C analysis increased from 43% to 54% of the total OC. The combination of (14)C analysis and Aerosol Chemical Speciation Monitor (ACSM) OA source apportionment showed that the fossil OC was mainly secondary (>70%) except for the last sample, when the fossil secondary OC only represented 51% of the total fossil OC. The fraction of non-fossil secondary OC increased from 37% of total secondary OC for the first sample to 60% for the last sample. This enhanced formation of non-fossil secondary OA (SOA) could be attributed to the reaction of BVOC precursors with NOx emitted from road traffic (or from its nocturnal derivative nitrate that enhances night-time semi-volatile oxygenated OA (SV-OOA)), since NO2 concentrations increased from 19 to 42 μg m(-3) from the first to the last sample.

  20. Secondary organic aerosol formation from a large number of reactive man-made organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Derwent, Richard G., E-mail: r.derwent@btopenworld.com [rdscientific, Newbury, Berkshire (United Kingdom); Jenkin, Michael E. [Atmospheric Chemistry Services, Okehampton, Devon (United Kingdom); Utembe, Steven R.; Shallcross, Dudley E. [School of Chemistry, University of Bristol, Bristol (United Kingdom); Murrells, Tim P.; Passant, Neil R. [AEA Environment and Energy, Harwell International Business Centre, Oxon (United Kingdom)

    2010-07-15

    A photochemical trajectory model has been used to examine the relative propensities of a wide variety of volatile organic compounds (VOCs) emitted by human activities to form secondary organic aerosol (SOA) under one set of highly idealised conditions representing northwest Europe. This study applied a detailed speciated VOC emission inventory and the Master Chemical Mechanism version 3.1 (MCM v3.1) gas phase chemistry, coupled with an optimised representation of gas-aerosol absorptive partitioning of 365 oxygenated chemical reaction product species. In all, SOA formation was estimated from the atmospheric oxidation of 113 emitted VOCs. A number of aromatic compounds, together with some alkanes and terpenes, showed significant propensities to form SOA. When these propensities were folded into a detailed speciated emission inventory, 15 organic compounds together accounted for 97% of the SOA formation potential of UK man made VOC emissions and 30 emission source categories accounted for 87% of this potential. After road transport and the chemical industry, SOA formation was dominated by the solvents sector which accounted for 28% of the SOA formation potential.

  1. Laboratory Studies of the Reactive Chemistry and Changing CCN Properties of Secondary Organic Aerosol, Including Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Scot Martin

    2013-01-31

    The chemical evolution of secondary-organic-aerosol (SOA) particles and how this evolution alters their cloud-nucleating properties were studied. Simplified forms of full Koehler theory were targeted, specifically forms that contain only those aspects essential to describing the laboratory observations, because of the requirement to minimize computational burden for use in integrated climate and chemistry models. The associated data analysis and interpretation have therefore focused on model development in the framework of modified kappa-Koehler theory. Kappa is a single parameter describing effective hygroscopicity, grouping together several separate physicochemical parameters (e.g., molar volume, surface tension, and van't Hoff factor) that otherwise must be tracked and evaluated in an iterative full-Koehler equation in a large-scale model. A major finding of the project was that secondary organic materials produced by the oxidation of a range of biogenic volatile organic compounds for diverse conditions have kappa values bracketed in the range of 0.10 +/- 0.05. In these same experiments, somewhat incongruently there was significant chemical variation in the secondary organic material, especially oxidation state, as was indicated by changes in the particle mass spectra. Taken together, these findings then support the use of kappa as a simplified yet accurate general parameter to represent the CCN activation of secondary organic material in large-scale atmospheric and climate models, thereby greatly reducing the computational burden while simultaneously including the most recent mechanistic findings of laboratory studies.

  2. Molecular mechanisms controlling brain development: an overview of neuroepithelial secondary organizers.

    Science.gov (United States)

    Vieira, Claudia; Pombero, Ana; García-Lopez, Raquel; Gimeno, Lourdes; Echevarria, Diego; Martínez, Salvador

    2010-01-01

    The vertebrate Central Nervous System (CNS) originates from the embryonic dorsal ectoderm. Differentiation of the neural epithelium from the ectoderm and the formation of the neural plate constitute the first phase of a complex process called neurulation which culminates in the formation of the neural tube, the anlage of the CNS in sauropsids and mammals (for review see Smith and Schoenwolf, 1997; Colas and Schoenwolf, 2001). At neural plate and neural tube stages, local signaling centers in the neuroepithelium, known as secondary organizers, refine the antero-posterior specification of different neural territories (for review see Echevarria et al., 2003; Stern et al.,2006; Woltering and Durston, 2008). In this review, we will describe the principle aspects of CNS development in birds and mammals, starting from early stages of embryogenesis (gastrulation and neurulation) and culminating with the formation of a variety of different regions which contribute to the structural complexity of the brain (regionalization and morphogenesis). We will pay special attention to the cellular and molecular mechanisms involved in neural tube regionalization and the key role played by localized secondary organizers in the patterning of neural primordia.

  3. Light absorption of secondary organic aerosol: Composition and contribution of nitro-aromatic compounds

    Science.gov (United States)

    Secondary organic aerosol (SOA) might affect the atmospheric radiation balance through absorbing light at shorter visible and UV wavelengths. However, the composition and optical properties of light-absorbing SOA is poorly understood. In this work, SOA filter samples were collect...

  4. Assessing Bilingual Knowledge Organization in Secondary Science Classrooms =

    Science.gov (United States)

    Wu, Jason S.

    Improving outcomes for English language learners (ELLs) in secondary science remains an area of high need. The purpose of this study is to investigate bilingual knowledge organization in secondary science classrooms. This study involved thirty-nine bilingual students in three biology classes at a public high school in The Bronx, New York City. Methods included an in-class survey on language use, a science content and English proficiency exam, and bilingual free-recalls. Fourteen students participated in bilingual free-recalls which involved a semi-structured process of oral recall of information learned in science class. Free-recall was conducted in both English and Spanish and analyzed using flow-map methods. Novel methods were developed to quantify and visualize the elaboration and mobilization of ideas shared across languages. It was found that bilingual narratives displayed similar levels of organizational complexity across languages, though English recalls tended to be longer. English proficiency was correlated with narrative complexity in English. There was a high degree of elaboration on concepts shared across languages. Finally, higher Spanish proficiency correlated well with greater overlapping elaboration across languages. These findings are discussed in light of current cognitive theory before presenting the study's limitations and future directions of research.

  5. Mixing of secondary organic aerosols versus relative humidity

    Science.gov (United States)

    Ye, Qing; Robinson, Ellis Shipley; Ding, Xiang; Ye, Penglin

    2016-01-01

    Atmospheric aerosols exert a substantial influence on climate, ecosystems, visibility, and human health. Although secondary organic aerosols (SOA) dominate fine-particle mass, they comprise myriad compounds with uncertain sources, chemistry, and interactions. SOA formation involves absorption of vapors into particles, either because gas-phase chemistry produces low-volatility or semivolatile products that partition into particles or because more-volatile organics enter particles and react to form lower-volatility products. Thus, SOA formation involves both production of low-volatility compounds and their diffusion into particles. Most chemical transport models assume a single well-mixed phase of condensing organics and an instantaneous equilibrium between bulk gas and particle phases; however, direct observations constraining diffusion of semivolatile organics into particles containing SOA are scarce. Here we perform unique mixing experiments between SOA populations including semivolatile constituents using quantitative, single-particle mass spectrometry to probe any mass-transfer limitations in particles containing SOA. We show that, for several hours, particles containing SOA from toluene oxidation resist exchange of semivolatile constituents at low relative humidity (RH) but start to lose that resistance above 20% RH. Above 40% RH, the exchange of material remains constant up to 90% RH. We also show that dry particles containing SOA from α-pinene ozonolysis do not appear to resist exchange of semivolatile compounds. Our interpretation is that in-particle diffusion is not rate-limiting to mass transfer in these systems above 40% RH. To the extent that these systems are representative of ambient SOA, we conclude that diffusion limitations are likely not common under typical ambient boundary layer conditions. PMID:27791066

  6. Mixing of secondary organic aerosols versus relative humidity.

    Science.gov (United States)

    Ye, Qing; Robinson, Ellis Shipley; Ding, Xiang; Ye, Penglin; Sullivan, Ryan C; Donahue, Neil M

    2016-10-24

    Atmospheric aerosols exert a substantial influence on climate, ecosystems, visibility, and human health. Although secondary organic aerosols (SOA) dominate fine-particle mass, they comprise myriad compounds with uncertain sources, chemistry, and interactions. SOA formation involves absorption of vapors into particles, either because gas-phase chemistry produces low-volatility or semivolatile products that partition into particles or because more-volatile organics enter particles and react to form lower-volatility products. Thus, SOA formation involves both production of low-volatility compounds and their diffusion into particles. Most chemical transport models assume a single well-mixed phase of condensing organics and an instantaneous equilibrium between bulk gas and particle phases; however, direct observations constraining diffusion of semivolatile organics into particles containing SOA are scarce. Here we perform unique mixing experiments between SOA populations including semivolatile constituents using quantitative, single-particle mass spectrometry to probe any mass-transfer limitations in particles containing SOA. We show that, for several hours, particles containing SOA from toluene oxidation resist exchange of semivolatile constituents at low relative humidity (RH) but start to lose that resistance above 20% RH. Above 40% RH, the exchange of material remains constant up to 90% RH. We also show that dry particles containing SOA from α-pinene ozonolysis do not appear to resist exchange of semivolatile compounds. Our interpretation is that in-particle diffusion is not rate-limiting to mass transfer in these systems above 40% RH. To the extent that these systems are representative of ambient SOA, we conclude that diffusion limitations are likely not common under typical ambient boundary layer conditions.

  7. Quantitative evaluation of emission controls on primary and secondary organic aerosol sources during Beijing 2008 Olympics

    Directory of Open Access Journals (Sweden)

    S. Guo

    2013-08-01

    Full Text Available To assess the primary and secondary sources of fine organic aerosols after the aggressive implementation of air pollution controls during the 2008 Beijing Olympic Games, 12 h PM2.5 values were measured at an urban site at Peking University (PKU and an upwind rural site at Yufa during the CAREBEIJING-2008 (Campaigns of Air quality REsearch in BEIJING and surrounding region summer field campaign. The average PM2.5 concentrations were 72.5 ± 43.6 μg m−3 and 64.3 ± 36.2 μg m−3 (average ± standard deviation, below as the same at PKU and Yufa, respectively, showing the lowest concentrations in recent years. Combining the results from a CMB (chemical mass balance model and secondary organic aerosol (SOA tracer-yield model, five primary and four secondary fine organic aerosol sources were compared with the results from previous studies in Beijing. The relative contribution of mobile sources to PM2.5 concentrations was increased in 2008, with diesel engines contributing 16.2 ± 5.9% and 14.5 ± 4.1% and gasoline vehicles contributing 10.3 ± 8.7% and 7.9 ± 6.2% to organic carbon (OC at PKU and Yufa, respectively. Due to the implementation of emission controls, the absolute OC concentrations from primary sources were reduced during the Olympics, and the contributions from secondary formation of OC represented a larger relative source of fine organic aerosols. Compared with the non-controlled period prior to the Olympics, primary vehicle contributions were reduced by 30% at the urban site and 24% at the rural site. The reductions in coal combustion contributions were 57% at PKU and 7% at Yufa. Our results demonstrate that the emission control measures implemented in 2008 significantly alleviated the primary organic particle pollution in and around Beijing. However, additional studies are needed to provide a more comprehensive assessment of the emission control effectiveness on SOA formation.

  8. Chemical and isotopic composition of secondary organic aerosol generated by alpha-pinene ozonolysis

    NARCIS (Netherlands)

    Meusinger, Carl; Dusek, Ulrike; King, Stephanie M.; Holzinger, Rupert; Rosenorn, Thomas; Sperlich, Peter; Julien, Maxime; Remaud, Gerald S.; Bilde, Merete; Rockmann, Thomas; Johnson, Matthew S.

    2017-01-01

    Secondary organic aerosol (SOA) plays a central role in air pollution and climate. However, the description of the sources and mechanisms leading to SOA is elusive despite decades of research. While stable isotope analysis is increasingly used to constrain sources of ambient aerosol, in many cases

  9. Primary and secondary organic aerosols in summer 2016 in Beijing

    Science.gov (United States)

    Tang, Rongzhi; Wu, Zepeng; Li, Xiao; Wang, Yujue; Shang, Dongjie; Xiao, Yao; Li, Mengren; Zeng, Limin; Wu, Zhijun; Hallquist, Mattias; Hu, Min; Guo, Song

    2018-03-01

    To improve air quality, the Beijing government has employed several air pollution control measures since the 2008 Olympics. In order to investigate organic aerosol sources after the implementation of these measures, ambient fine particulate matter was collected at a regional site in Changping (CP) and an urban site at the Peking University Atmosphere Environment Monitoring Station (PKUERS) during the Photochemical Smog in China field campaign in summer 2016. Chemical mass balance (CMB) modeling and the tracer yield method were used to apportion primary and secondary organic sources. Our results showed that the particle concentration decreased significantly during the last few years. The apportioned primary and secondary sources explained 62.8 ± 18.3 and 80.9 ± 27.2 % of the measured OC at CP and PKUERS, respectively. Vehicular emissions served as the dominant source. Except for gasoline engine emissions, the contributions of all the other primary sources decreased. In addition, the anthropogenic SOC, i.e., toluene SOC, also decreased, implying that deducting primary emissions can reduce anthropogenic SOA. In contrast to the SOA from other regions in the world where biogenic SOA was dominant, anthropogenic SOA was the major contributor to SOA, implying that deducting anthropogenic VOC emissions is an efficient way to reduce SOA in Beijing. Back-trajectory cluster analysis results showed that high mass concentrations of OC were observed when the air mass was from the south. However, the contributions of different primary organic sources were similar, suggesting regional particle pollution. The ozone concentration and temperature correlated well with the SOA concentration. Different correlations between day and night samples suggested different SOA formation pathways. Significant enhancement of SOA with increasing particle water content and acidity was observed in our study, suggesting that aqueous-phase acid-catalyzed reactions may be the important SOA formation

  10. GAP junctional communication in brain secondary organizers.

    Science.gov (United States)

    Bosone, Camilla; Andreu, Abraham; Echevarria, Diego

    2016-06-01

    Gap junctions (GJs) are integral membrane proteins that enable the direct cytoplasmic exchange of ions and low molecular weight metabolites between adjacent cells. They are formed by the apposition of two connexons belonging to adjacent cells. Each connexon is formed by six proteins, named connexins (Cxs). Current evidence suggests that gap junctions play an important part in ensuring normal embryo development. Mutations in connexin genes have been linked to a variety of human diseases, although the precise role and the cell biological mechanisms of their action remain almost unknown. Among the big family of Cxs, several are expressed in nervous tissue but just a few are expressed in the anterior neural tube of vertebrates. Many efforts have been made to elucidate the molecular bases of Cxs cell biology and how they influence the morphogenetic signal activity produced by brain signaling centers. These centers, orchestrated by transcription factors and morphogenes determine the axial patterning of the mammalian brain during its specification and regionalization. The present review revisits the findings of GJ composed by Cx43 and Cx36 in neural tube patterning and discuss Cx43 putative enrollment in the control of Fgf8 signal activity coming from the well known secondary organizer, the isthmic organizer. © 2016 The Authors. Development, Growth & Differentiation published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Developmental Biologists.

  11. Nanomaterial translocation - the biokinetics, tissue accumulation, toxicity and fate of materials in secondary organs

    DEFF Research Database (Denmark)

    Kermanizadeh, Ali; Balharry, Dominique; Wallin, Håkan

    2015-01-01

    into the toxicity posed by the NMs in these secondary organs is expanding due to the realisation that some materials may reach and accumulate in these target sites. The translocation to secondary organs includes, but is not limited to, the hepatic, central nervous, cardiovascular and renal systems. Current data...... dioxide and quantum dots) or fast (e.g. zinc oxide) solubility. The translocation of NMs following intratracheal, intranasal and pharyngeal aspiration is higher (up to 10% of administered dose), however the relevance of these routes for risk assessment is questionable. Uptake of the materials from....... For toxicological and risk evaluation, further information on the toxicokinetics and persistence of NMs is crucial. The overall aim of this review is to outline the data currently available in the literature on the biokinetics, accumulation, toxicity and eventual fate of NMs in order to assess the potential risks...

  12. Comparing soil organic carbon dynamics in plantation and secondary forest in wet tropics in Puerto Rico

    Science.gov (United States)

    LI YIQING; MING XU; ZOU XIAOMING; PEIJUN SHI§; YAOQI ZHANG

    2005-01-01

    We compared the soil carbon dynamics between a pine plantation and a secondary forest, both of which originated from the same farmland abandoned in 1976 with the same cropping history and soil conditions, in the wet tropics in Puerto Rico from July 1996 to June 1997. We found that the secondary forest accumulated the heavy-fraction organic carbon (HF-OC) measured by...

  13. Ageing combines CD4 T cell lymphopenia in secondary lymphoid organs and T cell accumulation in gut associated lymphoid tissue.

    Science.gov (United States)

    Martinet, Kim Zita; Bloquet, Stéphane; Bourgeois, Christine

    2014-01-01

    CD4 T cell lymphopenia is an important T cell defect associated to ageing. Higher susceptibility to infections, cancer, or autoimmune pathologies described in aged individuals is thought to partly rely on T cell lymphopenia. We hypothesize that such diverse effects may reflect anatomical heterogeneity of age related T cell lymphopenia. Indeed, no data are currently available on the impact of ageing on T cell pool recovered from gut associated lymphoid tissue (GALT), a crucial site of CD4 T cell accumulation. Primary, secondary and tertiary lymphoid organs of C57BL/6 animals were analysed at three intervals of ages: 2 to 6 months (young), 10 to 14 months (middle-aged) and 22 to 26 months (old). We confirmed that ageing preferentially impacted CD4 T cell compartment in secondary lymphoid organs. Importantly, a different picture emerged from gut associated mucosal sites: during ageing, CD4 T cell accumulation was progressively developing in colon and small intestine lamina propria and Peyer's patches. Similar trend was also observed in middle-aged SJL/B6 F1 mice. Interestingly, an inverse correlation was detected between CD4 T cell numbers in secondary lymphoid organs and colonic lamina propria of C57BL/6 mice whereas no increase in proliferation rate of GALT CD4 T cells was detected. In contrast to GALT, no CD4 T cell accumulation was detected in lungs and liver in middle-aged animals. Finally, the concomitant accumulation of CD4 T cell in GALT and depletion in secondary lymphoid organs during ageing was detected both in male and female animals. Our data thus demonstrate that T cell lymphopenia in secondary lymphoid organs currently associated to ageing is not sustained in gut or lung mucosa associated lymphoid tissues or non-lymphoid sites such as the liver. The inverse correlation between CD4 T cell numbers in secondary lymphoid organs and colonic lamina propria and the absence of overt proliferation in GALT suggest that marked CD4 T cell decay in secondary

  14. Climatology and Spatio-Temporal Variability of Wintertime Total and Extreme Rainfall in Thailand during 1970-2012

    Directory of Open Access Journals (Sweden)

    Atsamon Limsakul

    2017-07-01

    Full Text Available This study aims at examining wintertime (December-January-February; DJF climatology and spatio-temporal variability of Thailand’s total and extreme rainfall during 1970-2012. Analysis showed that the area along the Gulf of Thailand’s eastern coast not only received much amount of rainfall but also underwent great extremes and variances during the northeast monsoon (NEM winters. Empirical Orthogonal Function (EOF analysis similarly revealed that the leading mode of each DJF total or extreme rainfall index was marked by maximum loadings concentrated at the stations located at the exposed area of the NEM flow. Correlation analysis indicated that the leading EOF mode of DJF total and extreme indices in Thailand tended to be higher (lower than normal during strong (weak East Asian Winter Monsoon (EAWM. On longer timescales, the recent decadal change observed in the leading EOF mode of all rainfall indices has been coincident with re-amplification of the EAWM taken place since the early/mid 2000. The leading EOF mode of DJF total and extreme rainfall indices in Thailand also exhibited strong correlations with the tropical-subtropical Pacific Ocean surface temperatures. It was characterized as the Pacific Decadal Oscillation (PDO/El Niño Southern Oscillation (ENSO-related boomerang-shaped spatial patterns, resembling the typical mature phases of the La Niña event and the PDO cool epoch. Based on our analysis, it is reasonable to believe that the anomalies of the NEM and other key EAWM-related circulations are likely to be the possible causes of DJF total and extreme rainfall variations in Thailand. In addition, the ENSO and PDO as the primary global atmospheric external forcing are likely to exert their influence on wintertime Thailand’s climate via modulating the EAWM/NEM-related circulations anomalies.

  15. The impact of building recirculation rates on secondary organic aerosols generated by indoor chemistry

    DEFF Research Database (Denmark)

    Zuraimi, M.S.; Weschler, Charles J.; Tham, K.W.

    2007-01-01

    Numerous investigators have documented increases in the concentrations of airborne particles as a consequence of ozone/terpene reactions in indoor environments. This study examines the effect of building recirculation rates on the concentrations of secondary organic aerosol (SOA) resulting from r...

  16. Organic secondary ion mass spectrometry: sensitivity enhancement by gold deposition.

    Science.gov (United States)

    Delcorte, A; Médard, N; Bertrand, P

    2002-10-01

    Hydrocarbon oligomers, high-molecular-weight polymers, and polymer additives have been covered with 2-60 nmol of gold/cm2 in order to enhance the ionization efficiency for static secondary ion mass spectrometry (s-SIMS) measurements. Au-cationized molecules (up to -3,000 Da) and fragments (up to the trimer) are observed in the positive mass spectra of metallized polystyrene (PS) oligomer films. Beyond 3,000 Da, the entanglement of polymer chains prevents the ejection of intact molecules from a "thick" organic film. This mass limit can be overcome by embedding the polymer chains in a low-molecular-weight matix. The diffusion of organic molecules over the metal surfaces is also demonstrated for short PS oligomers. In the case of high-molecular-weight polymers (polyethylene, polypropylene, PS) and polymer additives (Irganox 1010, Irgafos 168), the metallization procedure induces a dramatic increase of the fingerprint fragment ion yields as well as the formation of new Aucationized species that can be used for chemical diagnostics. In comparison with the deposition of submonolayers of organic molecules on metallic surfaces, metal evaporation onto organic samples provides a comparable sensitivity enhancement. The distinct advantage of the metal evaporation procedure is that it can be used for any kind of organic sample, irrespective of thickness, opening new perspectives for "real world" sample analysis and chemical imaging by s-SIMS.

  17. Impact of Climate Change on Siberian High and Wintertime Air Pollution in China in Past Two Decades

    Science.gov (United States)

    Zhao, Shuyu; Feng, Tian; Tie, Xuexi; Long, Xin; Li, Guohui; Cao, Junji; Zhou, Weijian; An, Zhisheng

    2018-02-01

    China has suffered severe air pollutions during wintertime as national industrialization and urbanization have been increasingly developed in the past decades. Recent studies suggest that climate change has important impacts on extreme haze events in northern China. This study uses reanalysis datasets to analyze the trend and variability of Siberian High (SiH) intensity, and its relationship with the Arctic temperature and sea ice cover (SIC) in past two decades. The results show that Arctic is warming accompanied by a rapid decline of SIC, while Eurasia is cooling and SiH intensity is gradually enhancing. The statistics illustrates that the SiH has a significantly positive correlation to the temperature (R = 0.70), and a significant anticorrelation to the SIC (R = -0.69), and this is because the warming Arctic and the reducing SIC enhanced the SiH. The enhanced SiH leads to strengthened northerly winds in the North China Plain (NCP). The WRF-Chem model calculation reveals the strengthened northerly winds during the stronger SiH period in January 2016 produce a significant decrease in PM2.5 (particulate matter with aerodynamic diameter less than 2.5 µm) concentrations by 100-200 µg m-3 than that during the weaker one in January 2013. A sensitivity calculation figures out the reduction of PM2.5 concentrations due to a decrease of 50% in emissions is comparable to changes from the weak SiH condition to the strong SiH condition, suggesting that extreme climate variability in the past few years could have an equivalent impact as a consequence of a large emission reduction on wintertime air pollution in the NCP.

  18. Characterization of a large biogenic secondary organic aerosol event from eastern Canadian forests

    Science.gov (United States)

    Slowik, J. G.; Stroud, C.; Bottenheim, J. W.; Brickell, P. C.; Chang, R. Y.-W.; Liggio, J.; Makar, P. A.; Martin, R. V.; Moran, M. D.; Shantz, N. C.; Sjostedt, S. J.; van Donkelaar, A.; Vlasenko, A.; Wiebe, H. A.; Xia, A. G.; Zhang, J.; Leaitch, W. R.; Abbatt, J. P. D.

    2010-03-01

    Measurements of aerosol composition, volatile organic compounds, and CO are used to determine biogenic secondary organic aerosol (SOA) concentrations at a rural site 70 km north of Toronto. These biogenic SOA levels are many times higher than past observations and occur during a period of increasing temperatures and outflow from Northern Ontario and Quebec forests in early summer. A regional chemical transport model approximately predicts the event timing and accurately predicts the aerosol loading, identifying the precursors as monoterpene emissions from the coniferous forest. The agreement between the measured and modeled biogenic aerosol concentrations contrasts with model underpredictions for polluted regions. Correlations of the oxygenated organic aerosol mass with tracers such as CO support a secondary aerosol source and distinguish biogenic, pollution, and biomass burning periods during the field campaign. Using the Master Chemical Mechanism, it is shown that the levels of CO observed during the biogenic event are consistent with a photochemical source arising from monoterpene oxidation. The biogenic aerosol mass correlates with satellite measurements of regional aerosol optical depth, indicating that the event extends across the eastern Canadian forest. This regional event correlates with increased temperatures, indicating that temperature-dependent forest emissions can significantly affect climate through enhanced direct optical scattering and higher cloud condensation nuclei numbers.

  19. Effect of TOC [total organic carbon] on a PWR secondary cooling water system

    International Nuclear Information System (INIS)

    Gau, J.Y.; Oung, J.C.; Wang, T.Y.

    1989-01-01

    Increasing the amount of total organic carbon (TOC) during the wet layup of the steam generator was a problem in PWR nuclear power plant in Taiwan. The results of surveys of TOC in PWR secondary cooling water systems had shown that the impurity of hydrazine and the bacteria were the main reasons that increase TOC. These do not have a corrosion effect on Inconel 600 and carbon steel when the secondary cooling water containing the TOC is below 200 ppb. But the anaerobic bacteria from the steam generator in wet layup will increase corrosion rate of carbon steel and crevice corrosion of Inconel 600. (author)

  20. Characterization of Organic Nitrate Formation in Limonene Secondary Organic Aerosol using High-Resolution Chemical Ionization Mass Spectrometry

    Science.gov (United States)

    Faxon, Cameron; Hammes, Julia; Peng, Jianfei; Hallquist, Mattias; Pathak, Ravi

    2016-04-01

    Previous work has shown that organic nitrates (RONO2) are prevalent in the boundary layer, and can contribute significantly to secondary organic aerosol formation. Monoterpenes, including limonene, have been shown to be precursors for the formation of these organic nitrates. Limonene has two double bonds, either of which may be oxidized by NO3 or O3. This leads to the generation of products that can subsequently condense or partition into the particle phase, producing secondary organic aerosol. In order to further elucidate the particle and gas phase product distribution of organic nitrates forming from the reactions of limonene and the nitrate radical (NO3), a series of experiments were performed in the Gothenburg Flow Reactor for Oxidation Studies at Low Temperatures (G-FROST), described by previous work. N2O5 was used as the source for NO3 and NO2, and a characterized diffusion source was used to introduce limonene into the flow reactor. All experiments were conducted in the absence of light, and the concentration of limonene was increased step-wise throughout each experiment to modify the ratio of N2O5to limonene. The experiments were conducted such that both limonene- and N2O5-limited regimes were present. Gas and particle phase products were measured using an iodide High-Resolution Time-of-Flight Mass Spectrometer (HR-ToF-CIMS) coupled to a Filter Inlet for Gases and AEROsols (FIGAERO, and particle size and SOA mass concentrations were derived using a Scanning Mobility Particle Sizer (SMPS). CIMS measurement techniques have previously been employed for the measurement of organic nitrate products of such compounds using multiple reagent ions. The use of this instrumentation allowed for the identification of chemical formulas for gas and particle phase species. The findings from the experiments will be presented in terms of the relative gas-particle partitioning of major products and the effects of N2O5/limonene ratios on product distributions. Additionally, a

  1. Organ transplant education: the way to form altruistic behaviors among secondary school students toward organ donation.

    Science.gov (United States)

    Milaniak, I; Przybylowski, P; Wierzbicki, K; Sadowski, J

    2010-01-01

    Organ shortage for transplantation is a crucial problem all over the world. Educational intervention may appeal to young people's altruism, increasing organ donation and decreasing the opposition. This study assessed the influence of an educational program, including organ donation and transplantation, to forming students' altruistic behaviors. A total 680 students of 25 secondary schools were asked about their attitudes, intentions, and knowledge about organ donation and transplantation from September 2008 to June 2009 during a 45-minute lesson. In this study, altruistic attitudes were measured through questions about the expression of will to give organs away after death; to give one kidney to relatives; to use the bone marrow from a foreign person; and to sign a donor card. Attitudes were assessed by questions about conversations with relatives, an evaluation of the educational project. More than 1500 donor card were distributed and more than 90% of students wanted to sign them; 73.6% agreed to sign a donor card with the ID card. Before the project, only 8% of students had a signed donor card. Almost everybody is ready to agree to give their organs after death (80.6% male; 92.2% female), or to relatives (100% male; 90.38% female), or bone marrow (80% male; 55.7% female). The students talked to their family, informing them about their decision (36.9% male; 45.9% female). The proposed educational project successfully encouraged teenagers to make well-considered choices with regard to organ donation and created altruistic behaviors.

  2. Formation of secondary organic aerosol coating on black carbon particles near vehicular emissions

    Science.gov (United States)

    Lee, Alex K. Y.; Chen, Chia-Li; Liu, Jun; Price, Derek J.; Betha, Raghu; Russell, Lynn M.; Zhang, Xiaolu; Cappa, Christopher D.

    2017-12-01

    Black carbon (BC) emitted from incomplete combustion can result in significant impacts on air quality and climate. Understanding the mixing state of ambient BC and the chemical characteristics of its associated coatings is particularly important to evaluate BC fate and environmental impacts. In this study, we investigate the formation of organic coatings on BC particles in an urban environment (Fontana, California) under hot and dry conditions using a soot-particle aerosol mass spectrometer (SP-AMS). The SP-AMS was operated in a configuration that can exclusively detect refractory BC (rBC) particles and their coatings. Using the -log(NOx / NOy) ratio as a proxy for photochemical age of air masses, substantial formation of secondary organic aerosol (SOA) coatings on rBC particles was observed due to active photochemistry in the afternoon, whereas primary organic aerosol (POA) components were strongly associated with rBC from fresh vehicular emissions in the morning rush hours. There is also evidence that cooking-related organic aerosols were externally mixed from rBC. Positive matrix factorization and elemental analysis illustrate that most of the observed SOA coatings were freshly formed, providing an opportunity to examine SOA coating formation on rBCs near vehicular emissions. Approximately 7-20 wt % of secondary organic and inorganic species were estimated to be internally mixed with rBC on average, implying that rBC is unlikely the major condensation sink of SOA in this study. Comparison of our results to a co-located standard high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) measurement suggests that at least a portion of SOA materials condensed on rBC surfaces were chemically different from oxygenated organic aerosol (OOA) particles that were externally mixed with rBC, although they could both be generated from local photochemistry.

  3. Wintertime pytoplankton bloom in the Subarctic Pacific supportedby continental margin iron

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Phoebe J.; Bishop, James K.B.; Henning, Cara C.; Marcus,Matthew A.; Waychunas, Glenn A.; Fung, Inez

    2004-06-08

    Heightened biological activity was observed in February 1996in the high-nutrient low-chlorophyll (HNLC) subarctic North PacificOcean, a region that is thought to beiron-limited. Here we provideevidence supporting the hypothesis that Ocean Station Papa (OSP) in thesubarctic Pacific received a lateral supply of particulate iron from thecontinental margin off the Aleutian Islands in the winter, coincidentwith the observed biological bloom. Synchrotron X-ray analysis was usedto describe the physical form, chemistry, and depth distributions of ironin size fractionated particulate matter samples. The analysis revealsthat discrete micron-sized iron-rich hotspots are ubiquitous in the upper200m at OSP, more than 900km from the closest coast. The specifics of thechemistry and depth profiles of the Fe hot spots trace them to thecontinental margins. We thus hypothesize that iron hotspots are a markerfor the delivery of iron from the continental margin. We confirm thedelivery of continental margin iron to the open ocean using an oceangeneral circulation model with an iron-like tracer source at thecontinental margin. We suggest that iron from the continental marginstimulated a wintertime phytoplankton bloom, partially relieving the HNLCcondition.

  4. High formation of secondary organic aerosol from the photo-oxidation of toluene

    OpenAIRE

    L. Hildebrandt; N. M. Donahue; S. N. Pandis

    2009-01-01

    Toluene and other aromatics have long been viewed as the dominant anthropogenic secondary organic aerosol (SOA) precursors, but the SOA mass yields from toluene reported in previous studies vary widely. Experiments conducted in the Carnegie Mellon University environmental chamber to study SOA formation from the photo-oxidation of toluene show significantly larger SOA production than parameterizations employed in current air-quality models. Aerosol mass yields depend on experimental co...

  5. Humidity influence on gas-particle phase partitioning of α-pinene + O3 secondary organic aerosol

    Science.gov (United States)

    Prisle, N. L.; Engelhart, G. J.; Bilde, M.; Donahue, N. M.

    2010-01-01

    Water vapor uptake to particles could potentially affect organic-aerosol mass in three ways: first, water in the organic phase could reduce organic (equilibrium) partial pressures according to Raoult's law; second, an aqueous phase could attract water soluble organics according to Henry's law; finally, deliquescence of inorganic particle cores could mix the organic and inorganic particle phases, significantly diluting the organics and again reducing organic partial pressures according to Raoult's law. We present experiments using initially dry α-pinene + ozone secondary organic aerosol (SOA) on ammonium sulfate (AS) seeds at atmospheric concentrations in a smog chamber. After SOA formation, the chamber relative humidity is increased steadily by addition of steam to near 100%. Little subsequent SOA mass growth is observed, suggesting that none of these potential effects play a strong role in this system.

  6. Secondary environmental impacts of remedial alternatives for sediment contaminated with hydrophobic organic contaminants.

    Science.gov (United States)

    Choi, Yongju; Thompson, Jay M; Lin, Diana; Cho, Yeo-Myoung; Ismail, Niveen S; Hsieh, Ching-Hong; Luthy, Richard G

    2016-03-05

    This study evaluates secondary environmental impacts of various remedial alternatives for sediment contaminated with hydrophobic organic contaminants using life cycle assessment (LCA). Three alternatives including two conventional methods, dredge-and-fill and capping, and an innovative sediment treatment technique, in-situ activated carbon (AC) amendment, are compared for secondary environmental impacts by a case study for a site at Hunters Point Shipyard, San Francisco, CA. The LCA results show that capping generates substantially smaller impacts than dredge-and-fill and in-situ amendment using coal-based virgin AC. The secondary impacts from in-situ AC amendment can be reduced effectively by using recycled or wood-based virgin AC as production of these materials causes much smaller impacts than coal-based virgin AC. The secondary environmental impacts are highly sensitive to the dredged amount and the distance to a disposal site for dredging, the capping thickness and the distance to the cap materials for capping, and the AC dose for in-situ AC amendment. Based on the analysis, this study identifies strategies to minimize secondary impacts caused by different remediation activities: optimize the dredged amount, the capping thickness, or the AC dose by extensive site assessments, obtain source materials from local sites, and use recycled or bio-based AC. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Primary and secondary organic aerosols in summer 2016 in Beijing

    Directory of Open Access Journals (Sweden)

    R. Tang

    2018-03-01

    Full Text Available To improve air quality, the Beijing government has employed several air pollution control measures since the 2008 Olympics. In order to investigate organic aerosol sources after the implementation of these measures, ambient fine particulate matter was collected at a regional site in Changping (CP and an urban site at the Peking University Atmosphere Environment Monitoring Station (PKUERS during the Photochemical Smog in China field campaign in summer 2016. Chemical mass balance (CMB modeling and the tracer yield method were used to apportion primary and secondary organic sources. Our results showed that the particle concentration decreased significantly during the last few years. The apportioned primary and secondary sources explained 62.8 ± 18.3 and 80.9 ± 27.2 % of the measured OC at CP and PKUERS, respectively. Vehicular emissions served as the dominant source. Except for gasoline engine emissions, the contributions of all the other primary sources decreased. In addition, the anthropogenic SOC, i.e., toluene SOC, also decreased, implying that deducting primary emissions can reduce anthropogenic SOA. In contrast to the SOA from other regions in the world where biogenic SOA was dominant, anthropogenic SOA was the major contributor to SOA, implying that deducting anthropogenic VOC emissions is an efficient way to reduce SOA in Beijing. Back-trajectory cluster analysis results showed that high mass concentrations of OC were observed when the air mass was from the south. However, the contributions of different primary organic sources were similar, suggesting regional particle pollution. The ozone concentration and temperature correlated well with the SOA concentration. Different correlations between day and night samples suggested different SOA formation pathways. Significant enhancement of SOA with increasing particle water content and acidity was observed in our study, suggesting that aqueous-phase acid-catalyzed reactions may be

  8. Global modelling of secondary organic aerosol in the troposphere: a sensitivity analysis

    Directory of Open Access Journals (Sweden)

    K. Tsigaridis

    2003-01-01

    Full Text Available A global 3-dimensional chemistry/transport model able to describe O3, NOx, Volatile Organic Compounds (VOC, sulphur and NH3 chemistry has been extended to simulate the temporal and spatial distribution of primary and secondary carbonaceous aerosols in the troposphere focusing on Secondary Organic Aerosol (SOA formation. A number of global simulations have been performed to determine a possible range of annual global SOA production and investigate uncertainties associated with the model results. The studied uncertainties in the SOA budget have been evaluated to be in decreasing importance: the potentially irreversible sticking of the semi-volatile compounds on aerosols, the enthalpy of vaporization of these compounds, the partitioning of SOA on non-carbonaceous aerosols, the conversion of aerosols from hydrophobic to hydrophilic, the emissions of primary carbonaceous aerosols, the chemical fate of the first generation products and finally the activity coefficient of the condensable species. The large uncertainties associated with the emissions of VOC and the adopted simplification of chemistry have not been investigated in this study. Although not all sources of uncertainties have been investigated, according to our calculations, the above factors within the experimental range of variations could result to an overall uncertainty of about a factor of 20 in the global SOA budget. The global annual SOA production from biogenic VOC might range from 2.5 to 44.5 Tg of organic matter per year, whereas that from anthropogenic VOC ranges from 0.05 to 2.62 Tg of organic matter per year. These estimates can be considered as a lower limit, since partitioning on coarse particles like nitrate, dust or sea-salt, together with the partitioning and the dissociation of the semi-volatile products in aerosol water has been neglected. Comparison of model results to observations, where available, shows a better agreement for the upper budget estimates than for the

  9. Roles of tropical SST patterns during two types of ENSO in modulating wintertime rainfall over southern China

    Science.gov (United States)

    Xu, Kang; Huang, Qing-Lan; Tam, Chi-Yung; Wang, Weiqiang; Chen, Sheng; Zhu, Congwen

    2018-03-01

    The impacts of the eastern-Pacific (EP) and central-Pacific (CP) El Niño-Southern Oscillation (ENSO) on the southern China wintertime rainfall (SCWR) have been investigated. Results show that wintertime rainfall over most stations in southern China is enhanced (suppressed) during the EP (CP) El Niño, which are attributed to different atmospheric responses in the western North Pacific (WNP) and South China Sea (SCS) during two types of ENSO. When EP El Niño occurs, an anomalous low-level anticyclone is present over WNP/the Philippines region, resulting in stronger-than-normal southwesterlies over SCS. Such a wind branch acts to suppress East Asian winter monsoon (EAWM) and enhance moisture supply, implying surplus SCWR. During CP El Niño, however, anomalous sinking and low-level anticyclonic flow are found to cover a broad region in SCS. These circulation features are associated with moisture divergence over the northern part of SCS and suppressed SCWR. General circulation model experiments have also been conducted to study influence of various tropical sea surface temperature (SST) patterns on the EAWM atmospheric circulation. For EP El Niño, formation of anomalous low-level WNP anticyclone is jointly attributed to positive/negative SST anomalies (SSTA) over the central-to-eastern/ western equatorial Pacific. However, both positive and negative CP Niño-related-SSTA, located respectively over the central Pacific and WNP/SCS, offset each other and contribute a weak but broad-scale anticyclone centered at SCS. These results suggest that, besides the vital role of SST warming, SST cooling over SCS/WNP during two types of El Niño should be considered carefully for understanding the El Niño-EAWM relationship.

  10. Fluctuations in the large-scale atmospheric circulation and ocean conditions associated with the dominant modes of wintertime precipitation variability for the contiguous United States

    International Nuclear Information System (INIS)

    Mitchell, T.P.; Blier, W.

    1994-01-01

    The historical Climatic Division record of monthly- and seasonal-mean wintertime precipitation totals are analyzed to document the dominant patterns of precipitation variability for the contiguous United States. The analysis technique employed is the Rotated Principal Component analysis. Time series for the leading patterns are related to global sea-surface temperatures (SSTs), and to gridded surface and upper-air analyses for the Northern Hemisphere

  11. Homeostatic migration and distribution of innate immune cells in primary and secondary lymphoid organs with ageing.

    Science.gov (United States)

    Nikolich-Žugich, J; Davies, J S

    2017-03-01

    Ageing of the innate and adaptive immune system, collectively termed immune senescence, is a complex process. One method to understand the components of ageing involves dissociating the effects of ageing on the cells of the immune system, on the microenvironment in lymphoid organs and tissues where immune cells reside and on the circulating factors that interact with both immune cells and their microenvironment. Heterochronic parabiosis, a surgical union of two organisms of disparate ages, is ideal for this type of study, as it has the power to dissociate the age of the cell and the age of the microenvironment into which the cell resides or is migrating. So far, however, it has been used sparingly to study immune ageing. Here we review the limited literature on homeostatic innate immune cell trafficking in ageing in the absence of chronic inflammation. We also review our own recent data on trafficking of innate immune subsets between primary and secondary lymphoid organs in heterochronic parabiosis. We found no systemic bias in retention or acceptance of neutrophils, macrophages, dendritic cells or natural killer cells with ageing in primary and secondary lymphoid organs. We conclude that these four innate immune cell types migrate to and populate lymphoid organs (peripheral lymph nodes, spleen and bone marrow), regardless of their own age and of the age of lymphoid organs. © 2017 British Society for Immunology.

  12. Estimated effects of temperature on secondary organic aerosol concentrations.

    Science.gov (United States)

    Sheehan, P E; Bowman, F M

    2001-06-01

    The temperature-dependence of secondary organic aerosol (SOA) concentrations is explored using an absorptive-partitioning model under a variety of simplified atmospheric conditions. Experimentally determined partitioning parameters for high yield aromatics are used. Variation of vapor pressures with temperature is assumed to be the main source of temperature effects. Known semivolatile products are used to define a modeling range of vaporization enthalpy of 10-25 kcal/mol-1. The effect of diurnal temperature variations on model predictions for various assumed vaporization enthalpies, precursor emission rates, and primary organic concentrations is explored. Results show that temperature is likely to have a significant influence on SOA partitioning and resulting SOA concentrations. A 10 degrees C decrease in temperature is estimated to increase SOA yields by 20-150%, depending on the assumed vaporization enthalpy. In model simulations, high daytime temperatures tend to reduce SOA concentrations by 16-24%, while cooler nighttime temperatures lead to a 22-34% increase, compared to constant temperature conditions. Results suggest that currently available constant temperature partitioning coefficients do not adequately represent atmospheric SOA partitioning behavior. Air quality models neglecting the temperature dependence of partitioning are expected to underpredict peak SOA concentrations as well as mistime their occurrence.

  13. Field performance evaluation during fog-dominated wintertime of a newly developed denuder-equipped PM1 sampler.

    Science.gov (United States)

    Singh, Dharmendra Kumar; Lakshay; Gupta, Tarun

    2014-03-01

    This study presents the performance evaluation of a novel denuder-equipped PM1 (particles having aerodynamic diameter less than 1 μm) sampler, tested during fog-dominated wintertime, in the city of Kanpur, India. One PM1 sampler and one denuder-equipped PM1 sampler were co-located to collect ambient PM1 for 25 days. The mean PM1 mass concentration measured on foggy days with the PM1 sampler and the denuder-equipped PM1 sampler was found to be 165.95 and 135.48 μg/m(3), respectively. The mean PM1 mass concentration measured on clear days with the PM1 sampler and the denuder-equipped PM1 sampler was observed to be 159.66 and 125.14 μg/m(3), respectively. The mass concentration with denuder-fitted PM1 sampler for both foggy and clear days was always found less than the PM1 sampler. The same drift was observed in the concentrations of water-soluble ions and water-soluble organic carbon (WSOC). Moreover, it was observed that the use of denuder leads to a significant reduction in the PM positive artifact. The difference in the concentration of chemical species obtained by two samplers indicates that the PM1 sampler without denuder had overestimated the concentrations of chemical species in a worst-case scenario by almost 40 %. Denuder-fitted PM1 sampler can serve as a useful sampling tool in estimating the true values for nitrate, ammonium, potassium, sodium and WSOC present in the ambient PM.

  14. Wintertime aerosol chemical composition and source apportionment of the organic fraction across Ireland

    Science.gov (United States)

    Ovadnevaite, J.; Lin, C.; Ceburnis, D.; Huang, R. J. J.; O'Dowd, C. D. D.

    2017-12-01

    A national wide characterization of PM1 was studied for the first time using a high-time resolution Aerosol Chemical Speciation Monitor (ACSM) and Aethalometer in Ireland during the heating season. Dublin, the capital of Ireland, is the most polluted area with an average PM1 of 7.6 μg/m3, with frequent occurrence of peak concentration over 200 μg/m3 primarily due to solid fuels burning, while Mace Head, in the west coast, is least polluted with an average PM1 of 0.8 μg/m3 due to the distance from the emission sources. The organic aerosol is the most dominant species across Ireland, contributing 65%, 58%, 32%, 33% to total PM1 mass in Dublin, Birr, Carnsore Point, and Mace Head, respectively. Birr, a small town in the midland of Ireland, has comparable PM1 levels (4.8 μg/m3) and similar chemical compositions with that in Dublin. Carnsore Point, on the southeast coast, has similar composition with that at Mace Head, but nearly 3 times the levels of PM1 mass due to its relative closeness to other European countries. Positive matrix factorization (PMF) with the multi-linear engine (ME-2) was performed on the organic matrix to quantify the contribution of factor candidates. Peat burning was found to be the dominant factor across Ireland, contributing more than 40% of the total organic mass in Dublin and Birr while OOA is dominant at rural Carnsore Point and Mace Head. Possible geographic origins of PM1 species and organic factors using polar plots were explored. The findings of solid fuels burning (primarily peat burning) driving the pollution episodes suggest an elimination or controlled emission of solid fuels burning would reduce PM1 by at least 50%.

  15. Investigation of the Correlation between Odd Oxygen and Secondary Organic Aerosol in Mexico City and Houston

    Science.gov (United States)

    Many recent models underpredict secondary organic aerosol (SOA) particulate matter(PM) concentrations in polluted regions, indicating serious deficiencies in the models' chemical mechanisms and/or missing SOA precursors. Since tropospheric photochemical ozone production is much b...

  16. Secondary organic aerosol formation from road vehicle emissions

    Science.gov (United States)

    Pieber, Simone M.; Platt, Stephen M.; El Haddad, Imad; Zardini, Alessandro A.; Suarez-Bertoa, Ricardo; Slowik, Jay G.; Huang, Ru-Jin; Hellebust, Stig; Temime-Roussel, Brice; Marchand, Nicolas; Drinovec, Luca; Mocnik, Grisa; Baltensperger, Urs; Astorga, Covadogna; Prévôt, André S. H.

    2014-05-01

    Organic aerosol particles (OA) are a major fraction of the submicron particulate matter. OA consists of directly emitted primary (POA) and secondary OA (SOA). SOA is formed in-situ in the atmosphere via the reaction of volatile organic precursors. The partitioning of SOA species depends not only on the exposure to oxidants, but for instance also on temperature, relative humidity (RH), and the absorptive mass chemical composition (presence of inorganics) and concentration. Vehicle exhaust is a known source of POA and likely contributes to SOA formation in urban areas [1;2]. This has recently been estimated by (i) analyzing ambient data from urban areas combined with fuel consumption data [3], (ii) by examining the chemical composition of raw fuels [4], or (iii) smog chamber studies [5, 6]. Contradictory and thus somewhat controversial results in the relative quantity of SOA from diesel vs. gasoline vehicle exhaust were observed. In order to elucidate the impact of variable ambient conditions on the potential SOA formation of vehicle exhaust, and its relation to the emitted gas phase species, we studied SOA formed from the exhaust of passenger cars and trucks as a function of fuel and engine type (gasoline, diesel) at different temperatures (T 22 vs. -7oC) and RH (40 vs. 90%), as well as with different levels of inorganic salt concentrations. The exhaust was sampled at the tailpipe during regulatory driving cycles on chassis dynamometers, diluted (200 - 400x) and introduced into the PSI mobile smog chamber [6], where the emissions were subjected to simulated atmospheric ageing. Particle phase instruments (HR-ToF-AMS, aethalometers, CPC, SMPS) and gas phase instruments (PTR-TOF-MS, CO, CO2, CH4, THC, NH3 and other gases) were used online during the experiments. We found that gasoline emissions, because of cold starts, were generally larger than diesel, especially during cold temperatures driving cycles. Gasoline vehicles also showed the highest SOA formation

  17. Identification of amines in wintertime ambient particulate material using high resolution aerosol mass spectrometry

    Science.gov (United States)

    Bottenus, Courtney L. H.; Massoli, Paola; Sueper, Donna; Canagaratna, Manjula R.; VanderSchelden, Graham; Jobson, B. Thomas; VanReken, Timothy M.

    2018-05-01

    Significant amounts of amines were detected in fine particulate matter (PM) during ambient wintertime conditions in Yakima, WA, using a high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Positive matrix factorization (PMF) of the organic aerosol (OA) signal resulted in a six-factor solution that included two previously unreported amine OA factors. The contributions of the amine factors were strongly episodic, but the concentration of the combined amine factors was as high as 10-15 μg m-3 (2-min average) during those episodes. In one occasion, the Amine-II component was 45% of total OA signal. The Amine-I factor was dominated by spectral peaks at m/z 86 (C5H12N+) and m/z 100 (C6H14N+), while the Amine-II factor was dominated by spectral peaks at m/z 58 (C3H8N+ and C2H6N2+) and m/z 72 (C4H10N+ and C3H8N2+). The ions dominating each amine factor showed distinct time traces, suggesting different sources or formation processes. Investigation into the chemistry of the amine factors suggests a correlation with inorganic anions for Amine-I, but no evidence that the Amine-II was being neutralized by the same inorganic ions. We also excluded the presence of organonitrates (ON) in the OA. The presence of C2H4O2+ at m/z 60 (a levoglucosan fragment) in the Amine-I spectrum suggests some influence of biomass burning emissions (more specifically residential wood combustion) in this PMF factor, but wind direction suggested that the most likely sources of these amines were agricultural activities and feedlots to the S-SW of the site.

  18. Constraining wintertime sources of inorganic chlorine over the northeast United States

    Science.gov (United States)

    Haskins, J.; Jaegle, L.; Shah, V.; Lopez-Hilfiker, F.; Lee, B. H.; Campuzano Jost, P.; Schroder, J. C.; Day, D. A.; Fiddler, M. N.; Holloway, J. S.; Sullivan, A.; Veres, P. R.; Weber, R. J.; Dibb, J. E.; Brown, S. S.; Jimenez, J. L.; Thornton, J. A.

    2017-12-01

    Wintertime multiphase chlorine chemistry is thought to play a significant role in the regional distribution of oxidants, the lifetime of VOCs, and the transport of NOx downwind of urban sources. However, the sources and chemistry of reactive chlorine remain highly uncertain. During the WINTER 2015 aircraft campaign, the inorganic chlorine budget was dominated by HCl (g) and total particulate chloride, accounting for greater than 85% of the total chlorine budget within the boundary layer. The total concentration of inorganic chlorine compounds found over marine regions was 1014 pptv and 609 pptv over continental regions with variability found to be driven by changes in meteorological conditions, particle liquid water content, particle pH, and proximity to large anthropogenic sources. However, displacement of particle chloride was often not a large enough source to fully explain the concentrations of gas phase Cly compounds. We use the GEOS-Chem global chemical transport model to simulate the emissions, gas-particle partitioning, and downwind transport and deposition of Cly during winter. Simulated concentrations of HCl, particle chloride, and other dominant Cly compounds are compared to measurements made during the WINTER aircraft campaign. The relative roles of Cly sources from sea-salt aerosol and anthropogenic sources such as power plants, biomass burning and road salt are explored.

  19. Gasoline emissions dominate over diesel in formation of secondary organic aerosol mass

    Science.gov (United States)

    Bahreini, R.; Middlebrook, A. M.; de Gouw, J. A.; Warneke, C.; Trainer, M.; Brock, C. A.; Stark, H.; Brown, S. S.; Dube, W. P.; Gilman, J. B.; Hall, K.; Holloway, J. S.; Kuster, W. C.; Perring, A. E.; Prevot, A. S. H.; Schwarz, J. P.; Spackman, J. R.; Szidat, S.; Wagner, N. L.; Weber, R. J.; Zotter, P.; Parrish, D. D.

    2012-03-01

    Although laboratory experiments have shown that organic compounds in both gasoline fuel and diesel engine exhaust can form secondary organic aerosol (SOA), the fractional contribution from gasoline and diesel exhaust emissions to ambient SOA in urban environments is poorly known. Here we use airborne and ground-based measurements of organic aerosol (OA) in the Los Angeles (LA) Basin, California made during May and June 2010 to assess the amount of SOA formed from diesel emissions. Diesel emissions in the LA Basin vary between weekdays and weekends, with 54% lower diesel emissions on weekends. Despite this difference in source contributions, in air masses with similar degrees of photochemical processing, formation of OA is the same on weekends and weekdays, within the measurement uncertainties. This result indicates that the contribution from diesel emissions to SOA formation is zero within our uncertainties. Therefore, substantial reductions of SOA mass on local to global scales will be achieved by reducing gasoline vehicle emissions.

  20. Characterization of the surface organization of nanostructured hybrid organic-inorganic materials by time-of-flight secondary ion mass spectrometry

    Science.gov (United States)

    Cerveau; Corriu; Dabosi; Fischmeister-Lepeytre; Combarieu

    1999-01-01

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) has been used to analyse the surface composition of organic-inorganic hybrid solids obtained by a sol-gel process. Gels of type O(1.5)Si-R-SiO(1. 5), obtained from bis-silylated precursors (R'O)(3)-R-Si(OR')(3) (R' = Me, Et and R = (-CH(2))(n)-, n = 1, 2, 6, 10, 12;--CH=CH-; (-CH(2))(3)NH(CH(2))(3)-; 1, 1'-ferrocenyl; (CH(2))(n)-Ph-(CH(2))(n)- with Ph = 1,4-phenylene and n = 0, 1, 2; Ph = 1,3,5-phenyl and n = 0) were analysed. The results were highly dependent on the nature of the organic group. When the organic group was small or 'rigid', the main peaks detected corresponded to SiOH and SiOR' residual groups. Fragment ions from the organic group were poorly detected in this case. When the organic group was larger and more 'flexible', characteristic mass fragment ions were detected at higher relative intensities, indicative of a different organization of the organic units in the solid. TOF-SIMS clearly showed the differences between the xerogels derived from mono- and bis-silylated organic precursors : the organic group is present at the surface of mono-silylated xerogels, whereas for bis-silylated ones, the organization is dependent on the length and the flexibility of the organic units. These TOF-SIMS results are in agreement with other features already reported. Copyright 1999 John Wiley & Sons, Ltd.

  1. Large contribution of fossil fuel derived secondary organic carbon to water soluble organic aerosols in winter haze in China

    Science.gov (United States)

    Zhang, Yan-Lin; El-Haddad, Imad; Huang, Ru-Jin; Ho, Kin-Fai; Cao, Jun-Ji; Han, Yongming; Zotter, Peter; Bozzetti, Carlo; Daellenbach, Kaspar R.; Slowik, Jay G.; Salazar, Gary; Prévôt, André S. H.; Szidat, Sönke

    2018-03-01

    Water-soluble organic carbon (WSOC) is a large fraction of organic aerosols (OA) globally and has significant impacts on climate and human health. The sources of WSOC remain very uncertain in polluted regions. Here we present a quantitative source apportionment of WSOC, isolated from aerosols in China using radiocarbon (14C) and offline high-resolution time-of-flight aerosol mass spectrometer measurements. Fossil emissions on average accounted for 32-47 % of WSOC. Secondary organic carbon (SOC) dominated both the non-fossil and fossil derived WSOC, highlighting the importance of secondary formation to WSOC in severe winter haze episodes. Contributions from fossil emissions to SOC were 61 ± 4 and 50 ± 9 % in Shanghai and Beijing, respectively, significantly larger than those in Guangzhou (36 ± 9 %) and Xi'an (26 ± 9 %). The most important primary sources were biomass burning emissions, contributing 17-26 % of WSOC. The remaining primary sources such as coal combustion, cooking and traffic were generally very small but not negligible contributors, as coal combustion contribution could exceed 10 %. Taken together with earlier 14C source apportionment studies in urban, rural, semi-urban and background regions in Asia, Europe and the USA, we demonstrated a dominant contribution of non-fossil emissions (i.e., 75 ± 11 %) to WSOC aerosols in the Northern Hemisphere; however, the fossil fraction is substantially larger in aerosols from East Asia and the eastern Asian pollution outflow, especially during winter, due to increasing coal combustion. Inclusion of our findings can improve a modelling of effects of WSOC aerosols on climate, atmospheric chemistry and public health.

  2. Assessment of organ dose reduction and secondary cancer risk associated with the use of proton beam therapy and intensity modulated radiation therapy in treatment of neuroblastomas

    International Nuclear Information System (INIS)

    Fuji, Hiroshi; Harada, Hideyuki; Asakura, Hirofumi; Nishimura, Tetsuo; Schneider, Uwe; Ishida, Yuji; Konno, Masahiro; Yamashita, Haruo; Kase, Yuki; Murayama, Shigeyuki; Onoe, Tsuyoshi; Ogawa, Hirofumi

    2013-01-01

    To compare proton beam therapy (PBT) and intensity-modulated radiation therapy (IMRT) with conformal radiation therapy (CRT) in terms of their organ doses and ability to cause secondary cancer in normal organs. Five patients (median age, 4 years; range, 2–11 years) who underwent PBT for retroperitoneal neuroblastoma were selected for treatment planning simulation. Four patients had stage 4 tumors and one had stage 2A tumor, according to the International Neuroblastoma Staging System. Two patients received 36 Gy, two received 21.6 Gy, and one received 41.4 Gy of radiation. The volume structures of these patients were used for simulations of CRT and IMRT treatment. Dose–volume analyses of liver, stomach, colon, small intestine, pancreas, and bone were performed for the simulations. Secondary cancer risks in these organs were calculated using the organ equivalent dose (OED) model, which took into account the rates of cell killing, repopulation, and the neutron dose from the treatment machine. In all evaluated organs, the mean dose in PBT was 20–80% of that in CRT. IMRT also showed lower mean doses than CRT for two organs (20% and 65%), but higher mean doses for the other four organs (110–120%). The risk of secondary cancer in PBT was 24–83% of that in CRT for five organs, but 121% of that in CRT for pancreas. The risk of secondary cancer in IMRT was equal to or higher than CRT for four organs (range 100–124%). Low radiation doses in normal organs are more frequently observed in PBT than in IMRT. Assessments of secondary cancer risk showed that PBT reduces the risk of secondary cancer in most organs, whereas IMRT is associated with a higher risk than CRT

  3. Contribution of carbonyl photochemistry to aging of atmospheric secondary organic aerosol

    DEFF Research Database (Denmark)

    Mang, Stephen A.; Henricksen, Dana K.; Bateman, Adam P.

    2008-01-01

    of freshly prepared SOA was estimated to be on the order of' 15 L mol(-1) cm(-1) at 300 rim, implying one carbonyl group in every SOA constituent. The absorption by the SOA material slowly increased in the visible and near-UV during storage of SOA in open air in the dark, presumably as a result......The photodegradation of secondary organic aerosol (SOA) material by actinic UV radiation was investigated. SOA was generated via the dark reaction of ozone and d-limonene, collected onto quartz-fiber filters, and exposed to wavelength-tunable radiation. Photochemical production of CO was monitored...

  4. Characterization of Halyomorpha halys (brown marmorated stink bug) biogenic volatile organic compound emissions and their role in secondary organic aerosol formation.

    Science.gov (United States)

    Solomon, Danielle; Dutcher, Dabrina; Raymond, Timothy

    2013-11-01

    The formation of aerosols is a key component in understanding cloud formation in the context of radiative forcings and global climate modeling. Biogenic volatile organic compounds (BVOCs) are a significant source of aerosols, yet there is still much to be learned about their structures, sources, and interactions. The aims of this project were to identify the BVOCs found in the defense chemicals of the brown marmorated stink bug Halymorpha halys and quantify them using gas chromatography-mass spectrometry (GC/MS) and test whether oxidation of these compounds by ozone-promoted aerosol and cloud seed formation. The bugs were tested under two conditions: agitation by asphyxiation and direct glandular exposure. Tridecane, 2(5H)-furanone 5-ethyl, and (E)-2-decenal were identified as the three most abundant compounds. H. halys were also tested in the agitated condition in a smog chamber. It was found that in the presence of 100-180 ppm ozone, secondary aerosols do form. A scanning mobility particle sizer (SMPS) and a cloud condensation nuclei counter (CCNC) were used to characterize the secondary aerosols that formed. This reaction resulted in 0.23 microg/ bug of particulate mass. It was also found that these secondary organic aerosol particles could act as cloud condensation nuclei. At a supersaturation of 1%, we found a kappa value of 0.09. Once regional populations of these stink bugs stablilize and the populations estimates can be made, the additional impacts of their contribution to regional air quality can be calculated.

  5. The secondary drying and the fate of organic solvents for spray dried dispersion drug product.

    Science.gov (United States)

    Hsieh, Daniel S; Yue, Hongfei; Nicholson, Sarah J; Roberts, Daniel; Schild, Richard; Gamble, John F; Lindrud, Mark

    2015-05-01

    To understand the mechanisms of secondary drying of spray-dried dispersion (SDD) drug product and establish a model to describe the fate of organic solvents in such a product. The experimental approach includes characterization of the SDD particles, drying studies of SDD using an integrated weighing balance and mass spectrometer, and the subsequent generation of the drying curve. The theoretical approach includes the establishment of a Fickian diffusion model. The kinetics of solvent removal during secondary drying from the lab scale to a bench scale follows Fickian diffusion model. Excellent agreement is obtained between the experimental data and the prediction from the modeling. The diffusion process is dependent upon temperature. The key to a successful scale up of the secondary drying is to control the drying temperature. The fate of primary solvents including methanol and acetone, and their potential impurity such as benzene can be described by the Fickian diffusion model. A mathematical relationship based upon the ratio of diffusion coefficient was established to predict the benzene concentration from the fate of the primary solvent during the secondary drying process.

  6. Global combustion sources of organic aerosols: model comparison with 84 AMS factor-analysis data sets

    Science.gov (United States)

    Tsimpidi, Alexandra P.; Karydis, Vlassis A.; Pandis, Spyros N.; Lelieveld, Jos

    2016-07-01

    Emissions of organic compounds from biomass, biofuel, and fossil fuel combustion strongly influence the global atmospheric aerosol load. Some of the organics are directly released as primary organic aerosol (POA). Most are emitted in the gas phase and undergo chemical transformations (i.e., oxidation by hydroxyl radical) and form secondary organic aerosol (SOA). In this work we use the global chemistry climate model ECHAM/MESSy Atmospheric Chemistry (EMAC) with a computationally efficient module for the description of organic aerosol (OA) composition and evolution in the atmosphere (ORACLE). The tropospheric burden of open biomass and anthropogenic (fossil and biofuel) combustion particles is estimated to be 0.59 and 0.63 Tg, respectively, accounting for about 30 and 32 % of the total tropospheric OA load. About 30 % of the open biomass burning and 10 % of the anthropogenic combustion aerosols originate from direct particle emissions, whereas the rest is formed in the atmosphere. A comprehensive data set of aerosol mass spectrometer (AMS) measurements along with factor-analysis results from 84 field campaigns across the Northern Hemisphere are used to evaluate the model results. Both the AMS observations and the model results suggest that over urban areas both POA (25-40 %) and SOA (60-75 %) contribute substantially to the overall OA mass, whereas further downwind and in rural areas the POA concentrations decrease substantially and SOA dominates (80-85 %). EMAC does a reasonable job in reproducing POA and SOA levels during most of the year. However, it tends to underpredict POA and SOA concentrations during winter indicating that the model misses wintertime sources of OA (e.g., residential biofuel use) and SOA formation pathways (e.g., multiphase oxidation).

  7. The SOA/VOC/NOx system: an explicit model of secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    S. Madronich

    2007-11-01

    Full Text Available Our current understanding of secondary organic aerosol (SOA formation is limited by our knowledge of gaseous secondary organics involved in gas/particle partitioning. The objective of this study is to explore (i the potential for products of multiple oxidation steps contributing to SOA, and (ii the evolution of the SOA/VOC/NOx system. We developed an explicit model based on the coupling of detailed gas-phase oxidation schemes with a thermodynamic condensation module. Such a model allows prediction of SOA mass and speciation on the basis of first principles. The SOA/VOC/NOx system is studied for the oxidation of 1-octene under atmospherically relevant concentrations. In this study, gaseous oxidation of octene is simulated to lead to SOA formation. Contributors to SOA formation are shown to be formed via multiple oxidation steps of the parent hydrocarbon. The behaviour of the SOA/VOC/NOx system simulated using the explicit model agrees with general tendencies observed during laboratory chamber experiments. This explicit modelling of SOA formation appears as a useful exploratory tool to (i support interpretations of SOA formation observed in laboratory chamber experiments, (ii give some insights on SOA formation under atmospherically relevant conditions and (iii investigate implications for the regional/global lifetimes of the SOA.

  8. Experiments probing the influence of air exchange rates on secondary organic aerosols derived from indoor chemistry

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Shields, H.C.

    2003-01-01

    Reactions between ozone and terpenes have been shown to increase the concentrations of submicron particles in indoor settings. The present study was designed to examine the influence of air exchange rates on the concentrations of these secondary organic aerosols as well as on the evolution...

  9. Wintertime aerosol chemical composition, volatility, and spatial variability in the greater London area

    Directory of Open Access Journals (Sweden)

    L. Xu

    2016-02-01

    Full Text Available The composition of PM1 (particulate matter with diameter less than 1 µm in the greater London area was characterized during the Clean Air for London (ClearfLo project in winter 2012. Two high-resolution time-of-flight aerosol mass spectrometers (HR-ToF-AMS were deployed at a rural site (Detling, Kent and an urban site (North Kensington, London. The simultaneous and high-temporal resolution measurements at the two sites provide a unique opportunity to investigate the spatial distribution of PM1. We find that the organic aerosol (OA concentration is comparable between the rural and urban sites, but the contribution from different sources is distinctly different between the two sites. The concentration of solid fuel OA at the urban site is about twice as high as at the rural site, due to elevated domestic heating in the urban area. While the concentrations of oxygenated OA (OOA are well-correlated between the two sites, the OOA concentration at the rural site is almost twice that of the urban site. At the rural site, more than 70 % of the carbon in OOA is estimated to be non-fossil, which suggests that OOA is likely related to aged biomass burning considering the small amount of biogenic SOA in winter. Thus, it is possible that the biomass burning OA contributes a larger fraction of ambient OA in wintertime than what previous field studies have suggested. A suite of instruments was deployed downstream of a thermal denuder (TD to investigate the volatility of PM1 species at the rural Detling site. After heating at 250 °C in the TD, 40 % of the residual mass is OA, indicating the presence of non-volatile organics in the aerosol. Although the OA associated with refractory black carbon (rBC; measured by a soot-particle aerosol mass spectrometer only accounts for < 10 % of the total OA (measured by a HR-ToF-AMS at 250 °C, the two measurements are well-correlated, suggesting that the non-volatile organics have similar sources or have

  10. Uptake of Alkylamines on Dicarboxylic Acids Relevant to Secondary Organic Aerosol Formation

    Science.gov (United States)

    Marrero-Ortiz, W.; Secrest, J.; Zhang, R.

    2017-12-01

    Aerosols play a critical role in climate directly by scattering and absorbing solar radiation, and indirectly by functioning as cloud condensation nuclei (CCN); both represent the largest uncertainties in climate predictions. New particle formation contributes significantly to CCN production; however, the mechanisms related to particle nucleation and growth processes are not well understood. Organic acids are atmospherically abundant, and their neutralization by low molecular weight amines may result in the formation of stable low volatility aminium salt products contributing to the growth of secondary organic aerosols and even the alteration of the aerosol properties. The acid-base neutralization of particle phase succinic acid and tartaric acid by low molecular weight aliphatic amines, i.e. methylamine, dimethylamine, and trimethylamine, has been investigated by employing a low-pressure fast flow reactor at 298K with an ion drift - chemical ionization mass spectrometer (ID-CIMS). The heterogeneous uptake is time dependent and influenced by organic acids functionality, alkylamines basicity, and steric effect. The implications of our results to atmospheric nanoparticle growth will be discussed.

  11. Organic molecular composition of marine aerosols over the Arctic Ocean in summer: contributions of primary emission and secondary aerosol formation

    Directory of Open Access Journals (Sweden)

    P. Q. Fu

    2013-02-01

    Full Text Available Organic molecular composition of marine aerosol samples collected during the MALINA cruise in the Arctic Ocean was investigated by gas chromatography/mass spectrometry. More than 110 individual organic compounds were determined in the samples and were grouped into different compound classes based on the functionality and sources. The concentrations of total quantified organics ranged from 7.3 to 185 ng m−3 (mean 47.6 ng m−3, accounting for 1.8–11.0% (4.8% of organic carbon in the marine aerosols. Primary saccharides were found to be dominant organic compound class, followed by secondary organic aerosol (SOA tracers formed from the oxidation of biogenic volatile organic compounds (VOCs such as isoprene, α-pinene and β-caryophyllene. Mannitol, the specific tracer for airborne fungal spores, was detected as the most abundant organic species in the samples with a concentration range of 0.052–53.3 ng m−3 (9.2 ng m−3, followed by glucose, arabitol, and the isoprene oxidation products of 2-methyltetrols. Biomass burning tracers such as levoglucosan are evident in all samples with trace levels. On the basis of the tracer-based method for the estimation of fungal-spore OC and biogenic secondary organic carbon (SOC, we estimate that an average of 10.7% (up to 26.2% of the OC in the marine aerosols was due to the contribution of fungal spores, followed by the contribution of isoprene SOC (mean 3.8% and α-pinene SOC (2.9%. In contrast, only 0.19% of the OC was due to the photooxidation of β-caryophyllene. This study indicates that primary organic aerosols from biogenic emissions, both from long-range transport of mid-latitude aerosols and from sea-to-air emission of marine organics, as well as secondary organic aerosols formed from the photooxidation of biogenic VOCs are important factors controlling the organic chemical composition of marine aerosols in the Arctic Ocean.

  12. Evaluation of secondary dose and cancer risk for out-of-field organ in esophageal cancer IMRT in a chinese hospital using atom phantom measurements

    International Nuclear Information System (INIS)

    Qi, Yaping; He, Lijuan; Liu, Yuanyuan; Liu, Hongdong; Huo, Wanli; Chen, Zhi; Wang, Zhi; Xu, X. George

    2017-01-01

    There have been few studies on the secondary cancer after radiation treatment in Chinese hospitals. This study has measured out-of-field absorbed organ doses from intensity-modulated radiation therapy (IMRT) radiotherapy for esophageal cancer in a Chinese hospital and evaluated the risks of secondary cancer. The dose measurements were based on the thermoluminescence dosemeter (TLD) and the ATOM phantom, which represents an adult male. Over 100 TLD chips were placed in 35 different organ sites and one group of the same TLDs was set as background contrast. All TLDs were calibrated against the same Linac accelerator performing an IMRT plan for esophageal cancer. The measured doses were used to calculate the secondary cancer risks according to biological effects of ionizing radiation (BEIR) VII methodology. The baseline risks and survival data were based on relevant statistics for the Chinese population. It is found that the out-of-field organ doses depended greatly on the distance between organ sites and the target isocenter. The organ doses decreased exponentially as the distance from the target isocenter increased, and, for distances <15 cm, the organ doses fell off more rapidly and almost decreased by 99.55%. When compared with the calculation results by the Pinnacle treatment planning system (TPS), most of the out-of-field organ doses were underestimated in the TPS and the percentage of underestimation reached 100% for distant organs such as the bladder, prostate and testis. These trends are due to a known fact that out-of-field organs received secondary radiation resulted from patients and collimator scattering as well as leakage in the gantry head. The higher lifetime attribute risks (LARs) per 100 000 population were in the lower esophagus (186) and lungs (93.2) near the target. But all LARs of considered organs were found to be less than the baseline cancer risks. Results in this article can help to provide a database about the effect of radiotherapy

  13. Experiments probing the influence of air exchange rates on secondary organic aerosols derived from indoor chemistry

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Shields, H.C.

    2003-01-01

    Reactions between ozone and terpenes have been shown to increase the concentrations of submicron particles in indoor settings. The present study was designed to examine the influence of air exchange rates on the concentrations of these secondary organic aerosols as well as on the evolution of the...

  14. Emotional attitudes of young people completing secondary schools towards genetic modification of organisms (GMO) and genetically modified foods (GMF).

    Science.gov (United States)

    Jurkiewicz, Anna; Zagórski, Jerzy; Bujak, Franciszek; Lachowski, Stanisław; Florek-Łuszczki, Magdalena

    2014-01-01

    The objective of the study was recognition of the opinions of adolescents completing secondary schools concerning genetically modified organisms and genetically modified food, especially the respondents' emotional attitude towards scientific achievements in the area of live genetically modified organisms. The study covered a group of 500 school adolescents completing secondary school at the level of maturity examination. The study was conducted by the method of a diagnostic survey using a self-designed questionnaire form. Knowledge concerning the possible health effects of consumption of food containing GMO among adolescents competing secondary schools is on a relatively low level; the adolescents examined 'know rather little' or 'very little know' about this problem. In respondents' opinions the results of reliable studies pertaining to the health effects of consumption of GMO 'rather do not exist'. The respondents are against the cultivation of GM plants and breeding of GM animals on own farm in the future. Secondary school adolescents considered that the production of genetically modified food means primarily the enrichment of biotechnological companies, higher income for food producers, and not the elimination of hunger in the world or elimination of many diseases haunting humans.

  15. Optical properties and aging of light-absorbing secondary organic aerosol

    Directory of Open Access Journals (Sweden)

    J. Liu

    2016-10-01

    Full Text Available The light-absorbing organic aerosol (OA commonly referred to as “brown carbon” (BrC has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various volatile organic carbon (VOC precursors, NOx concentrations, photolysis time, and relative humidity (RH on the light absorption of selected secondary organic aerosols (SOA. Light absorption of chamber-generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficient (MAC value is observed from toluene SOA products formed under high-NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light-absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organic nitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible (Vis and ultraviolet (UV light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.

  16. Secondary organic aerosol production from modern diesel engine emissions

    Directory of Open Access Journals (Sweden)

    S. Samy

    2010-01-01

    Full Text Available Secondary organic aerosol (SOA production was observed at significant levels in a series of modern diesel exhaust (DE aging experiments conducted at the European Outdoor Photoreactor/Simulation Chamber (EUPHORE. The greatest production occurred in DE with toluene addition experiments (>40%, followed by DE with HCHO (for OH radical generation experiments. A small amount of SOA (3% was observed for DE in dark with N2O5 (for NO3 radical production experiments. The analysis for a limited number (54 of polar organic compounds (POC was conducted to assess the composition of modern DE and the formation of photochemical transformation products. Distinct POC formation in light versus dark experiments suggests the role of OH initiated reactions in these chamber atmospheres. A trend of increasing concentrations of dicarboxylic acids in light versus dark experiments was observed when evaluated on a compound group basis. The four toluene addition experiments in this study were performed at different [tol]o/[NOx]o ratios and displayed an average SOA %yield (in relation to toluene of 5.3±1.6%, which is compared to past chamber studies that evaluated the impact of [tol]o/[NOx]o on SOA production in more simplified mixtures.

  17. Wintertime phytoplankton bloom in the Subarctic Pacific supported by continental margin iron

    International Nuclear Information System (INIS)

    Lam, Phoebe J.; Bishop, James K.B.; Henning, Cara C.; Marcus, Matthew A.; Waychunas, Glenn A.; Fung, Inez

    2004-01-01

    Heightened biological activity was observed in February 1996 in the high-nutrient low-chlorophyll (HNLC) subarctic North Pacific Ocean, a region that is thought to be iron-limited. Here we provide evidence supporting the hypothesis that Ocean Station Papa (OSP) in the subarctic Pacific received a lateral supply of particulate iron from the continental margin off the Aleutian Islands in the winter, coincident with the observed biological bloom. Synchrotron X-ray analysis was used to describe the physical form, chemistry, and depth distributions of iron in size fractionated particulate matter samples. The analysis reveals that discrete micron-sized iron-rich hotspots are ubiquitous in the upper 200m at OSP, more than 900km from the closest coast. The specifics of the chemistry and depth profiles of the Fe hot spots trace them to the continental margins. We thus hypothesize that iron hotspots are a marker for the delivery of iron from the continental margin. We confirm the delivery of continental margin iron to the open ocean using an ocean general circulation model with an iron-like tracer source at the continental margin. We suggest that iron from the continental margin stimulated a wintertime phytoplankton bloom, partially relieving the HNLC condition

  18. Large contribution of fossil fuel derived secondary organic carbon to water soluble organic aerosols in winter haze in China

    Directory of Open Access Journals (Sweden)

    Y.-L. Zhang

    2018-03-01

    Full Text Available Water-soluble organic carbon (WSOC is a large fraction of organic aerosols (OA globally and has significant impacts on climate and human health. The sources of WSOC remain very uncertain in polluted regions. Here we present a quantitative source apportionment of WSOC, isolated from aerosols in China using radiocarbon (14C and offline high-resolution time-of-flight aerosol mass spectrometer measurements. Fossil emissions on average accounted for 32–47 % of WSOC. Secondary organic carbon (SOC dominated both the non-fossil and fossil derived WSOC, highlighting the importance of secondary formation to WSOC in severe winter haze episodes. Contributions from fossil emissions to SOC were 61 ± 4 and 50 ± 9 % in Shanghai and Beijing, respectively, significantly larger than those in Guangzhou (36 ± 9 % and Xi'an (26 ± 9 %. The most important primary sources were biomass burning emissions, contributing 17–26 % of WSOC. The remaining primary sources such as coal combustion, cooking and traffic were generally very small but not negligible contributors, as coal combustion contribution could exceed 10 %. Taken together with earlier 14C source apportionment studies in urban, rural, semi-urban and background regions in Asia, Europe and the USA, we demonstrated a dominant contribution of non-fossil emissions (i.e., 75 ± 11 % to WSOC aerosols in the Northern Hemisphere; however, the fossil fraction is substantially larger in aerosols from East Asia and the eastern Asian pollution outflow, especially during winter, due to increasing coal combustion. Inclusion of our findings can improve a modelling of effects of WSOC aerosols on climate, atmospheric chemistry and public health.

  19. Soil organic matter chemistry changes upon secondary succession in Imperata Grasslands , Indonesia: A pyrolysis - GC/MS study

    NARCIS (Netherlands)

    Yassir, I.; Buurman, P.

    2012-01-01

    The chemical composition of soil organic matter (SOM) following secondary succession in Imperata grassland was investigated by Pyrolysis-Gas Chromatography/Mass Spectrometry (GC/MS). We studied 46 samples from different stages of succession using plots that last burned 3 and 9 years previously,

  20. Aqueous Oxidation of Green Leaf Volatiles as a Source of Secondary Organic Aerosol

    Science.gov (United States)

    Richards-Henderson, N. K.; Hansel, A.; Pham, A. T.; Vempati, H. S.; Valsaraj, K. T.; Anastasio, C.

    2013-12-01

    Vegetation emits volatile oxygenated hydrocarbons - the green leaf volatiles (GLVs) - which are formed from the biochemical conversion of linoleic and linolenic acids within plant cells. Stress or damage to vegetation can significantly elevate emission fluxes of these compounds, some of which are fairly water soluble. Aqueous-phase reactions of the GLVs with photochemically generated oxidants - such as hydroxyl radical (OH), singlet oxygen (1O2) and excited triplet states of organic compounds (3C*) _ might then form low-volatility products that can act as secondary organic aerosol (SOA). In order to determine if GLVs can be a significant source of secondary organic carbon in fogwater, studies of GLVs in laboratory solutions are needed to elucidate the oxidation kinetics and the corresponding SOA mass yields. In this study we are determining the second-order rate constants, and SOA mass yields, for five GLVs (cis-3-hexen-1-ol, cis-3-hexenylacetate, methyl salicylate, methyl jasmonate, and 2-methyl-3-butene-2-ol) reacting with OH,1O2 and 3C*. Experiments are performed at relevant fog water pHs, temperatures, and oxidant concentrations. Rate constants are determined using a relative rate approach in which the decay of GLVs and reference compounds are monitored as function of time by HPLC. The capacity of GLVs to form aqueous SOA was determined by following the formation of their decomposition products with HPLC-UV/DAD and HPLC-ESI/MS. SOA mass yields are measured gravimetrically from laboratory solutions containing atmospherically relevant concentrations of photooxidants and GLVs, and irradiated with simulated sunlight. We will use our results to assess the potential contribution of aqueous GLV reactions as a source of SOA in cloudy or foggy atmospheres.

  1. Emotional attitudes of young people completing secondary schools towards genetic modification of organisms (GMO and genetically modified foods (GMF

    Directory of Open Access Journals (Sweden)

    Anna Jurkiewicz

    2014-03-01

    Full Text Available Objective. The objective of the study was recognition of the opinions of adolescents completing secondary schools concerning genetically modified organisms and genetically modified food, especially the respondents’ emotional attitude towards scientific achievements in the area of live genetically modified organisms. Material and method. The study covered a group of 500 school adolescents completing secondary school at the level of maturity examination. The study was conducted by the method of a diagnostic survey using a self-designed questionnaire form. Results. Knowledge concerning the possible health effects of consumption of food containing GMO among adolescents competing secondary schools is on a relatively low level; the adolescents examined ‘know rather little’ or ‘very little know’ about this problem. In respondents’ opinions the results of reliable studies pertaining to the health effects of consumption of GMO ‘rather do not exist’. The respondents are against the cultivation of GM plants and breeding of GM animals on own farm in the future. Secondary school adolescents considered that the production of genetically modified food means primarily the enrichment of biotechnological companies, higher income for food producers, and not the elimination of hunger in the world or elimination of many diseases haunting humans.

  2. Evaluating Simulated Primary Anthropogenic and Biomass Burning Organic Aerosols during MILAGRO: Implications for Assessing Treatments of Secondary Organic Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Fast, Jerome D.; Aiken, Allison; Allan, James D.; Alexander, M. L.; Campos, Teresa; Canagaratna, Manjula R.; Chapman, Elaine G.; DeCarlo, Peter; de Foy, B.; Gaffney, Jeffrey; de Gouw, Joost A.; Doran, J. C.; Emmons, L.; Hodzic, Alma; Herndon, Scott C.; Huey, L. G.; Jayne, John T.; Jimenez, Jose L.; Kleinman, Lawrence I.; Kuster, W. C.; Marley, Nancy A.; Russell, Lynn M.; Ochoa, Carlos; Onasch, Timothy B.; Pekour, Mikhail S.; Song, Chen; Ulbrich, Ingrid M.; Warneke, Carsten; Welsh-Bon, Daniel; Wiedinmyer, Christine; Worsnop, Douglas R.; Yu, Xiao-Ying; Zaveri, Rahul A.

    2009-08-31

    Simulated primary organic aerosols (POA), as well as other particulates and trace gases, in the vicinity of Mexico City are evaluated using measurements collected during the 2006 Megacity Initiative: Local and Global Research Observations (MILAGRO) field campaigns. Since the emission inventories and dilution will affect predictions of total organic matter and consequently total particulate matter, our objective is to assess the uncertainties in predicted POA before testing and evaluating the performance of secondary organic aerosol (SOA) treatments. Carbon monoxide (CO) is well simulated on most days both over the city and downwind, indicating that transport and mixing processes were usually consistent with the meteorological conditions observed during MILAGRO. Predicted and observed elemental carbon (EC) in the city was similar, but larger errors occurred at remote locations since the CO/EC emission ratios in the national emission inventory were lower than in the metropolitan emission inventory. Components of organic aerosols derived from Positive Matrix Factorization and data from several Aerodyne Aerosol Mass Spectrometer instruments deployed both at ground sites and on research aircraft are used to evaluate the model. Predicted POA was consistently lower than the measured organic matter at the ground sites, which is consistent with the expectation that SOA should be a large fraction of the total organic matter mass. A much better agreement was found when predicted POA was compared with the sum of "primary anthropogenic" and "primary biomass burning" components on days with relatively low biomass burning, suggesting that the overall magnitude of primary organic particulates released was reasonable. The predicted POA was greater than the total observed organic matter when the aircraft flew directly downwind of large fires, suggesting that biomass burning emission estimates from some large fires may be too high. Predicted total observed organic carbon (TOOC) was

  3. Modeling of secondary organic aerosol yields from laboratory chamber data

    Directory of Open Access Journals (Sweden)

    M. N. Chan

    2009-08-01

    Full Text Available Laboratory chamber data serve as the basis for constraining models of secondary organic aerosol (SOA formation. Current models fall into three categories: empirical two-product (Odum, product-specific, and volatility basis set. The product-specific and volatility basis set models are applied here to represent laboratory data on the ozonolysis of α-pinene under dry, dark, and low-NOx conditions in the presence of ammonium sulfate seed aerosol. Using five major identified products, the model is fit to the chamber data. From the optimal fitting, SOA oxygen-to-carbon (O/C and hydrogen-to-carbon (H/C ratios are modeled. The discrepancy between measured H/C ratios and those based on the oxidation products used in the model fitting suggests the potential importance of particle-phase reactions. Data fitting is also carried out using the volatility basis set, wherein oxidation products are parsed into volatility bins. The product-specific model is most likely hindered by lack of explicit inclusion of particle-phase accretion compounds. While prospects for identification of the majority of SOA products for major volatile organic compounds (VOCs classes remain promising, for the near future empirical product or volatility basis set models remain the approaches of choice.

  4. Effect of acidic seed on biogenic secondary organic aerosol growth

    Science.gov (United States)

    Czoschke, Nadine M.; Jang, Myoseon; Kamens, Richard M.

    Secondary organic aerosol (SOA) growth in the presence of acid aerosols was studied in twin 500 l Teflon bags and in a 4 m flow reactor. In Teflon bags, isoprene, acrolein and α-pinene were all made to react individually with ozone and exposed to either acid or non-acid inorganic seed aerosols to determine the effect of acid-catalyzed heterogeneous reactions on SOA growth. α-Pinene and ozone were made to react in a flow reactor to assess the immediate effect of mixing an acid aerosol with SOA at high and low relative humidity levels. In all cases, exposure to acid seed aerosol increased the amount of SOA mass produced. Fourier transform infrared spectra of the SOA in acid systems confirmed the transformation of carbonyl functional groups through acid-catalyzed heterogeneous reactions when SOAs formed in acidic environments or were exposed to acidic aerosols. Organic products initially produced from ozonation in the gas phase partition onto the inorganic seed aerosol and react heterogeneously with an acid catalyst forming low vapor pressure products. These acid-catalyzed heterogeneous reactions are implicated in generating the increased SOA mass observed in acidic aerosol systems as they transform predominantly gas phase compounds of high volatility into low vapor pressure predominantly particle phase products.

  5. Heterogeneous ice nucleation and phase transition of viscous α-pinene secondary organic aerosol

    Science.gov (United States)

    Ignatius, Karoliina; Kristensen, Thomas B.; Järvinen, Emma; Nichman, Leonid; Fuchs, Claudia; Gordon, Hamish; Herenz, Paul; Hoyle, Christopher R.; Duplissy, Jonathan; Baltensperger, Urs; Curtius, Joachim; Donahue, Neil M.; Gallagher, Martin W.; Kirkby, Jasper; Kulmala, Markku; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Virtanen, Annele; Stratmann, Frank

    2016-04-01

    There are strong indications that particles containing secondary organic aerosol (SOA) exhibit amorphous solid or semi-solid phase states in the atmosphere. This may facilitate deposition ice nucleation and thus influence cirrus cloud properties. Global model simulations of monoterpene SOA particles suggest that viscous biogenic SOA are indeed present in regions where cirrus cloud formation takes place. Hence, they could make up an important contribution to the global ice nucleating particle (INP) budget. However, experimental ice nucleation studies of biogenic SOA are scarce. Here, we investigated the ice nucleation ability of viscous SOA particles at the CLOUD (Cosmics Leaving OUtdoor Droplets) experiment at CERN (Ignatius et al., 2015, Järvinen et al., 2015). In the CLOUD chamber, the SOA particles were produced from the ozone initiated oxidation of α-pinene at temperatures in the range from -38 to -10° C at 5-15 % relative humidity with respect to water (RHw) to ensure their formation in a highly viscous phase state, i.e. semi-solid or glassy. We found that particles formed and grown in the chamber developed an asymmetric shape through coagulation. As the RHw was increased to between 35 % at -10° C and 80 % at -38° C, a transition to spherical shape was observed with a new in-situ optical method. This transition confirms previous modelling of the viscosity transition conditions. The ice nucleation ability of SOA particles was investigated with a new continuous flow diffusion chamber SPIN (Spectrometer for Ice Nuclei) for different SOA particle sizes. For the first time, we observed heterogeneous ice nucleation of viscous α-pinene SOA in the deposition mode for ice saturation ratios between 1.3 and 1.4, significantly below the homogeneous freezing limit. The maximum frozen fractions found at temperatures between -36.5 and -38.3° C ranged from 6 to 20 % and did not depend on the particle surface area. References Ignatius, K. et al., Heterogeneous ice

  6. Secondary organic aerosol: a comparison between foggy and nonfoggy days.

    Science.gov (United States)

    Kaul, D S; Gupta, Tarun; Tripathi, S N; Tare, V; Collett, J L

    2011-09-01

    Carbonaceous species, meteorological parameters, trace gases, and fogwater chemistry were measured during winter in the Indian city of Kanpur to study secondary organic aerosol (SOA) during foggy and clear (nonfoggy) days. Enhanced SOA production was observed during fog episodes. It is hypothesized that aqueous phase chemistry in fog drops is responsible for increasing SOA production. SOA concentrations on foggy days exceeded those on clear days at all times of day; peak foggy day SOA concentrations were observed in the evening vs peak clear day SOA concentrations which occurred in the afternoon. Changes in biomass burning emissions on foggy days were examined because of their potential to confound estimates of SOA production based on analysis of organic to elemental carbon (OC/EC) ratios. No evidence of biomass burning influence on SOA during foggy days was found. Enhanced oxidation of SO(2) to sulfate during foggy days was observed, possibly causing the regional aerosol to become more acidic. No evidence was found in this study, either, for effects of temperature or relative humidity on SOA production. In addition to SOA production, fogs can also play an important role in cleaning the atmosphere of carbonaceous aerosols. Preferential scavenging of water-soluble organic carbon (WSOC) by fog droplets was observed. OC was found to be enriched in smaller droplets, limiting the rate of OC deposition by droplet sedimentation. Lower EC concentrations were observed on foggy days, despite greater stagnation and lower mixing heights, suggesting fog scavenging and removal of EC was active as well.

  7. CCN activity and volatility of β-caryophyllene secondary organic aerosol

    DEFF Research Database (Denmark)

    Frosch, M.; Bilde, Merete; Nenes, A.

    2013-01-01

    In a series of smog chamber experiments, the cloud condensation nuclei (CCN) activity of secondary organic aerosol (SOA) generated from ozonolysis of beta-caryophyllene was characterized by determining the CCN derived hygroscopicity parameter, kappa(CCN), from experimental data. Two types of CCN...... in experiments without an OH scavenger (i.e. where OH was produced during ozonolysis). In other experiments, lights were turned on, either without or with the addition of HONO (OH source). This led to the formation of more CCN active SOA. SOA was aged up to 30 h through exposure to ozone and (in experiments...... with no OH scavenger present) to OH. In all experiments, the derived kappa(CCN) consistently increased with time after initial injection of beta-caryophyllene, showing that chemical ageing increases the CCN activity of beta-caryophyllene SOA. kappa(CCN) was also observed to depend on supersaturation, which...

  8. Chemical composition, source, and process of urban aerosols during winter haze formation in Northeast China.

    Science.gov (United States)

    Zhang, Jian; Liu, Lei; Wang, Yuanyuan; Ren, Yong; Wang, Xin; Shi, Zongbo; Zhang, Daizhou; Che, Huizheng; Zhao, Hujia; Liu, Yanfei; Niu, Hongya; Chen, Jianmin; Zhang, Xiaoye; Lingaswamy, A P; Wang, Zifa; Li, Weijun

    2017-12-01

    The characteristics of aerosol particles have been poorly evaluated even though haze episodes frequently occur in winter in Northeast China. OC/EC analysis, ion chromatography, and transmission electron microscopy (TEM) were used to investigate the organic carbon (OC) and elemental carbon (EC), and soluble ions in PM 2.5 and the mixing state of individual particles during a severe wintertime haze episode in Northeast China. The organic matter (OM), NH 4 + , SO 4 2- , and NO 3 - concentrations in PM 2.5 were 89.5 μg/m 3 , 24.2 μg/m 3 , 28.1 μg/m 3 , and 32.8 μg/m 3 on the haze days, respectively. TEM observations further showed that over 80% of the haze particles contained primary organic aerosols (POAs). Based on a comparison of the data obtained during the haze formation, we generate the following synthetic model of the process: (1) Stable synoptic meteorological conditions drove the haze formation. (2) The early stage of haze formation (light or moderate haze) was mainly caused by the enrichment of POAs from coal burning for household heating and cooking. (3) High levels of secondary organic aerosols (SOAs), sulfates, and nitrates formation via heterogeneous reactions together with POAs accumulation promoted to the evolution from light or moderate to severe haze. Compared to the severe haze episodes over the North China Plain, the PM 2.5 in Northeast China analyzed in the present study contained similar sulfate, higher SOA, and lower nitrate contents. Our results suggest that most of the POAs and secondary particles were likely related to emissions from coal-burning residential stoves in rural outskirts and small boilers in urban areas. The inefficient burning of coal for household heating and cooking should be monitored during wintertime in Northeast China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Analysis of chemical reaction kinetics of depredating organic pollutants from secondary effluent of wastewater treatment plant in constructed wetlands.

    Science.gov (United States)

    Wang, Hao; Jiang, Dengling; Yang, Yong; Cao, Guoping

    2013-01-01

    Four subsurface constructed wetlands were built to treat the secondary effluent of a wastewater treatment plant in Tangshan, China. The chemical pollutant indexes of chemical oxygen demand (COD) were analyzed to evaluate the removal efficiency of organic pollutants from the secondary effluent of the wastewater treatment plant. In all cases, the subsurface constructed wetlands were efficient in treating organic pollutants. Under the same hydraulic loading condition, the horizontal flow wetlands exhibited better efficiency of COD removal than vertical flow wetlands: the removal rates in horizontal flow wetlands could be maintained at 68.4 ± 2.42% to 92.2 ± 1.61%, compared with 63.8 ± 1.19% to 85.0 ± 1.25% in the vertical flow wetlands. Meanwhile, the chemical reaction kinetics of organic pollutants was analyzed, and the results showed that the degradation courses of the four subsurface wetlands all corresponded with the first order reaction kinetics to a large extent.

  10. Effect of High-Dose vs Standard-Dose Wintertime Vitamin D Supplementation on Viral Upper Respiratory Tract Infections in Young Healthy Children.

    Science.gov (United States)

    Aglipay, Mary; Birken, Catherine S; Parkin, Patricia C; Loeb, Mark B; Thorpe, Kevin; Chen, Yang; Laupacis, Andreas; Mamdani, Muhammad; Macarthur, Colin; Hoch, Jeffrey S; Mazzulli, Tony; Maguire, Jonathon L

    2017-07-18

    Epidemiological studies support a link between low 25-hydroxyvitamin D levels and a higher risk of viral upper respiratory tract infections. However, whether winter supplementation of vitamin D reduces the risk among children is unknown. To determine whether high-dose vs standard-dose vitamin D supplementation reduces the incidence of wintertime upper respiratory tract infections in young children. A randomized clinical trial was conducted during the winter months between September 13, 2011, and June 30, 2015, among children aged 1 through 5 years enrolled in TARGet Kids!, a multisite primary care practice-based research network in Toronto, Ontario, Canada. Three hundred forty-nine participants were randomized to receive 2000 IU/d of vitamin D oral supplementation (high-dose group) vs 354 participants who were randomized to receive 400 IU/d (standard-dose group) for a minimum of 4 months between September and May. The primary outcome was the number of laboratory-confirmed viral upper respiratory tract infections based on parent-collected nasal swabs over the winter months. Secondary outcomes included the number of influenza infections, noninfluenza infections, parent-reported upper respiratory tract illnesses, time to first upper respiratory tract infection, and serum 25-hydroxyvitamin D levels at study termination. Among 703 participants who were randomized (mean age, 2.7 years, 57.7% boys), 699 (99.4%) completed the trial. The mean number of laboratory-confirmed upper respiratory tract infections per child was 1.05 (95% CI, 0.91-1.19) for the high-dose group and 1.03 (95% CI, 0.90-1.16) for the standard-dose group, for a between-group difference of 0.02 (95% CI, -0.17 to 0.21) per child. There was no statistically significant difference in number of laboratory-confirmed infections between groups (incidence rate ratio [RR], 0.97; 95% CI, 0.80-1.16). There was also no significant difference in the median time to the first laboratory-confirmed infection: 3.95 months

  11. Cementation of secondary wastes generated from carbonisation of spent organic ion exchange resins from nuclear power plants

    International Nuclear Information System (INIS)

    Sathi Sasidharan, N.; Deshingkar, D.S.; Wattal, P.K.

    2004-07-01

    The spent IX resins containing radioactive fission and activation products from power reactors are highly active solid wastes generated during operations of nuclear reactors. Process for carbonization of IX resins to achieve weight and volume reduction has been optimized on 50 dm 3 /batch pilot test rig. The process generates carbonaceous residue, organic liquid condensates (predominantly styrene) and aqueous alkaline scrubber solutions as secondary wastes. The report discusses laboratory tests on leaching of 137 Cs from cement matrix incorporating carbonaceous residues and extrapolation of results to 200 liter matrix block. The cumulative fraction of 137 Cs leached from 200 liter cement matrix was estimated to be 0.0021 in 200 days and 0.0418 over a period of 30 years. Incorporation of organic liquid condensates into cement matrix has been tried out successfully. Thus two types of secondary wastes generated during carbonization of spent IX resins can be immobilized in cement matrix. (author)

  12. Real-time, controlled OH-initiated oxidation of biogenic secondary organic aerosol

    Directory of Open Access Journals (Sweden)

    J. G. Slowik

    2012-10-01

    Full Text Available The chemical complexity of atmospheric organic aerosol (OA requires novel methods for characterization of its components and description of its atmospheric processing-induced transformations. We present the first field deployment of the Toronto Photooxidation Tube (TPOT, a field-deployable flow reactor for the controlled exposure of ambient aerosol to OH radicals. The system alternates between sampling of (1 (unreacted ambient aerosol, (2 aerosol exposed to UV light and subjected to a ~4 to 10 °C temperature increase, and (3 aerosol that is oxidized by OH (in addition to the aforementioned UV exposure/temperature increase. This allows both characterization of the aging process and classification of aerosol in terms of its volatility and reaction-based properties. Summertime measurements by an aerosol mass spectrometer coupled to the TPOT were performed in the remote forest of western Canada, resulting in aerosol dominated by biogenic secondary organic aerosol. Volatilization/UV exposure resulted in an approximately 10 to 25% decrease in organic mass and resulted in a slight increase in oxygenation. OH oxidation resulted in a further organic mass decrease (additional ~25% and yielded an aerosol with O:C values comparable to those characteristic of low volatility, highly oxygenated OA. Most OH-induced changes occurred within ~3 day-equivalents of atmospheric processing, with further reactions generally proceeding at a greatly reduced rate. Positive matrix factorization (PMF analysis of the TPOT data yielded five factors. One factor is related to primary biomass burning organic aerosol, while the others describe oxygenated organic aerosol (OOA components in terms of reactivity and volatility: (1 volatile and reactive; (2 non-volatile and reactive; (3 non-volatile and reactive early-generation product; (4 non-volatile and non-reactive product. This PMF classification of aerosol components directly in terms of reactivity and volatility is enabled by

  13. Substantial secondary organic aerosol formation in a coniferous forest: observations of both day- and nighttime chemistry

    OpenAIRE

    A. K. Y. Lee; J. P. D. Abbatt; W. R. Leaitch; S.-M. Li; S. J. Sjostedt; S. J. Sjostedt; J. J. B. Wentzell; J. Liggio; A. M. Macdonald

    2016-01-01

    Substantial biogenic secondary organic aerosol (BSOA) formation was investigated in a coniferous forest mountain region at Whistler, British Columbia. A largely biogenic aerosol growth episode was observed, providing a unique opportunity to investigate BSOA formation chemistry in a forested environment with limited influence from anthropogenic emissions. Positive matrix factorization of aerosol mass spectrometry (AMS) measurement identifie...

  14. Highly reproducible alkali metal doping system for organic crystals through enhanced diffusion of alkali metal by secondary thermal activation.

    Science.gov (United States)

    Lee, Jinho; Park, Chibeom; Song, Intek; Koo, Jin Young; Yoon, Taekyung; Kim, Jun Sung; Choi, Hee Cheul

    2018-05-16

    In this paper, we report an efficient alkali metal doping system for organic single crystals. Our system employs an enhanced diffusion method for the introduction of alkali metal into organic single crystals by controlling the sample temperature to induce secondary thermal activation. Using this system, we achieved intercalation of potassium into picene single crystals with closed packed crystal structures. Using optical microscopy and Raman spectroscopy, we confirmed that the resulting samples were uniformly doped and became K 2 picene single crystal, while only parts of the crystal are doped and transformed into K 2 picene without secondary thermal activation. Moreover, using a customized electrical measurement system, the insulator-to-semiconductor transition of picene single crystals upon doping was confirmed by in situ electrical conductivity and ex situ temperature-dependent resistivity measurements. X-ray diffraction studies showed that potassium atoms were intercalated between molecular layers of picene, and doped samples did not show any KH- nor KOH-related peaks, indicating that picene molecules are retained without structural decomposition. During recent decades, tremendous efforts have been exerted to develop high-performance organic semiconductors and superconductors, whereas as little attention has been devoted to doped organic crystals. Our method will enable efficient alkali metal doping of organic crystals and will be a resource for future systematic studies on the electrical property changes of these organic crystals upon doping.

  15. The levels, variation characteristics, and sources of atmospheric non-methane hydrocarbon compounds during wintertime in Beijing, China

    Science.gov (United States)

    Liu, Chengtang; Ma, Zhuobiao; Mu, Yujing; Liu, Junfeng; Zhang, Chenglong; Zhang, Yuanyuan; Liu, Pengfei; Zhang, Hongxing

    2017-09-01

    Atmospheric non-methane hydrocarbon compounds (NMHCs) were measured at a sampling site in Beijing city from 15 December 2015 to 14 January 2016 to recognize their pollution levels, variation characteristics, and sources. We quantified 53 NMHCs, and the proportions of alkanes, alkenes, acetylene, and aromatics to the total NMHCs were 49.8-55.8, 21.5-24.7, 13.5-15.9, and 9.3-10.7 %, respectively. The variation trends in the NMHC concentrations were basically identical and exhibited remarkable fluctuation, which was mainly ascribed to the variation in meteorological conditions, especially wind speed. The diurnal variations in NMHCs on clear days exhibited two peaks during the morning and evening rush hours, whereas the rush hours' peaks diminished or even disappeared on the haze days, implying that the relative contribution of the vehicular emissions to atmospheric NMHCs depended on the pollution status. Two evident peaks of the propane / propene ratios appeared in the early morning before sun rise and at noontime on clear days, whereas only one peak occurred in the afternoon during the haze days, which were attributed to the relatively fast reactions of propene with OH, NO3, and O3. Based on the chemical kinetic equations, the daytime OH concentrations were calculated to be in the range of 3. 47 × 105-1. 04 × 106 molecules cm-3 on clear days and 6. 42 × 105-2. 35 × 106 molecules cm-3 on haze days. The nighttime NO3 concentrations were calculated to be in the range of 2. 82 × 109-4. 86 × 109 molecules cm-3 on clear days. The correlation coefficients of typical hydrocarbon pairs (benzene / toluene, o-xylene / m,p-xylene, isopentane / n-pentane, etc.) revealed that vehicular emissions and coal combustion were important sources for atmospheric NMHCs in Beijing during the wintertime. Five major emission sources for atmospheric NMHCs in Beijing during the wintertime were further identified by positive matrix factorization (PMF), including gasoline-related emissions

  16. Recent advances in understanding secondary organic aerosol: Implications for global climate forcing

    Science.gov (United States)

    Shrivastava, Manish; Cappa, Christopher D.; Fan, Jiwen; Goldstein, Allen H.; Guenther, Alex B.; Jimenez, Jose L.; Kuang, Chongai; Laskin, Alexander; Martin, Scot T.; Ng, Nga Lee; Petaja, Tuukka; Pierce, Jeffrey R.; Rasch, Philip J.; Roldin, Pontus; Seinfeld, John H.; Shilling, John; Smith, James N.; Thornton, Joel A.; Volkamer, Rainer; Wang, Jian; Worsnop, Douglas R.; Zaveri, Rahul A.; Zelenyuk, Alla; Zhang, Qi

    2017-06-01

    Anthropogenic emissions and land use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding preindustrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features (1) influence estimates of aerosol radiative forcing and (2) can confound estimates of the historical response of climate to increases in greenhouse gases. Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, represents a major fraction of global submicron-sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through measurements, yet current climate models typically do not comprehensively include all important processes. This review summarizes some of the important developments during the past decade in understanding SOA formation. We highlight the importance of some processes that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including formation of extremely low volatility organics in the gas phase, acid-catalyzed multiphase chemistry of isoprene epoxydiols, particle-phase oligomerization, and physical properties such as volatility and viscosity. Several SOA processes highlighted in this review are complex and interdependent and have nonlinear effects on the properties, formation, and evolution of SOA. Current global models neglect this complexity and nonlinearity and thus are less likely to accurately predict the climate forcing of SOA and project future climate sensitivity to greenhouse gases. Efforts are also needed to rank the most influential processes and nonlinear process-related interactions, so that these processes can be accurately represented in atmospheric chemistry-climate models.

  17. Secondary organic aerosol importance in the future atmosphere

    International Nuclear Information System (INIS)

    Tsigaridis, K.; Kanakidou, M.

    2007-01-01

    In order to investigate the secondary organic aerosol (SOA) response to changes in biogenic volatile organic compounds (VOC) emissions in the future atmosphere and how important will SOA be relative to the major anthropogenic aerosol component (sulfate), the global three-dimensional chemistry/transport model TM3 has been used. Emission estimates of biogenic VOC (BVOC) and anthropogenic gases and particles from the literature for the year 2100 have been adopted. According to our present-day model simulations, isoprene oxidation produces 4.6 Tg SOA yr -1 , that is less than half of the 12.2 Tg SOA yr -1 formed by the oxidation of other BVOC. In the future, nitrate radicals and ozone become more important than nowadays, but remain minor oxidants for both isoprene and aromatics. SOA produced by isoprene is estimated to almost triple, whereas the production from other BVOC more than triples. The calculated future SOA burden change, from 0.8 Tg at present to 2.0 Tg in the future, is driven by changes in emissions, oxidant levels and pre-existing particles. The non-linearity in SOA formation and the involved chemical and physical feedbacks prohibit the quantitative attribution of the computed changes to the above-mentioned individual factors. In 2100, SOA burden is calculated to exceed that of sulfate, indicating that SOA might become more important than nowadays. These results critically depend on the biogenic emissions and thus are subject to the high uncertainty associated with these emissions estimated due to the insufficient knowledge on plant response to carbon dioxide changes. Nevertheless, they clearly indicate that the change in oxidants and primary aerosol caused by human activities can contribute as much as the change in BVOC emissions to the increase of the biogenic SOA production in the future atmosphere. (authors)

  18. Small molecules as tracers in atmospheric secondary organic aerosol

    Science.gov (United States)

    Yu, Ge

    Secondary organic aerosol (SOA), formed from in-air oxidation of volatile organic compounds, greatly affects human health and climate. Although substantial research has been devoted to SOA formation and evolution, the modeled and lab-generated SOA are still low in mass and degree of oxidation compared to ambient measurements. In order to compensate for these discrepancies, the aqueous processing pathway has been brought to attention. The atmospheric waters serve as aqueous reaction media for dissolved organics to undergo further oxidation, oligomerization, or other functionalization reactions, which decreases the vapor pressure while increasing the oxidation state of carbon atoms. Field evidence for aqueous processing requires the identification of tracer products such as organosulfates. We synthesized the standards for two organosulfates, glycolic acid sulfate and lactic acid sulfate, in order to measure their aerosol-state concentration from five distinct locations via filter samples. The water-extracted filter samples were analyzed by LC-MS. Lactic acid sulfate and glycolic acid sulfate were detected in urban locations in the United States, Mexico City, and Pakistan with varied concentrations, indicating their potential as tracers. We studied the aqueous processing reaction between glyoxal and nitrogen-containing species such as ammonium and amines exclusively by NMR spectrometry. The reaction products formic acid and several imidazoles along with the quantified kinetics were reported. The brown carbon generated from these reactions were quantified optically by UV-Vis spectroscopy. The organic-phase reaction between oxygen molecule and alkenes photosensitized by alpha-dicarbonyls were studied in the same manner. We observed the fast kinetics transferring alkenes to epoxides under simulated sunlight. Statistical estimations indicate a very effective conversion of aerosol-phase alkenes to epoxides, potentially forming organosulfates in a deliquescence event and

  19. Modeling reactive ammonia uptake by secondary organic aerosol in CMAQ: application to the continental US

    OpenAIRE

    S. Zhu; J. R. Horne; J. Montoya-Aguilera; M. L. Hinks; S. A. Nizkorodov; D. Dabdub

    2018-01-01

    Ammonium salts such as ammonium nitrate and ammonium sulfate constitute an important fraction of the total fine particulate matter (PM2.5) mass. While the conversion of inorganic gases into particulate-phase sulfate, nitrate, and ammonium is now well understood, there is considerable uncertainty over interactions between gas-phase ammonia and secondary organic aerosols (SOAs). Observations have confirmed that ammonia can react with carbonyl compounds in SOA, forming nitrogen...

  20. Growth Kinetics and Size Distribution Dynamics of Viscous Secondary Organic Aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Zaveri, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Science and Global Change Div. (ASGC); Shilling, John E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Science and Global Change Div. (ASGC); Zelenyuk, Alla [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical Sciences Div.; Liu, Jiumeng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Science and Global Change Div. (ASGC); Bell, David M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical Sciences Div.; Paul Scherrer Inst. (PSI), Villigen (Switzerland). Lab. of Atmospheric Chemistry; D’Ambro, Emma L. [Univ. of Washington, Seattle, WA (United States). Dept. of Atmospheric Sciences and Dept. of Chemistry; Gaston, Cassandra J. [Univ. of Washington, Seattle, WA (United States). Dept. of Atmospheric Sciences; Univ. of Miami, Miami, FL (United States). Rosenstiel School of Marine and Atmospheric Science; Thornton, Joel A. [Univ. of Washington, Seattle, WA (United States). Dept. of Atmospheric Sciences and Dept. of Chemistry; Laskin, Alexander [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Purdue Univ., West Lafayette, IN (United States). Dept. of Chemistry; Lin, Peng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Purdue Univ., West Lafayette, IN (United States). Dept. of Chemistry; Wilson, Jacqueline [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical Sciences Div.; Easter, Richard C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Science and Global Change Div. (ASGC); Wang, Jian [Brookhaven National Lab. (BNL), Upton, NY (United States). Environmental & Climate Sciences Dept.; Bertram, Allan K. [Univ. of British Columbia, Vancouver, BC (Canada). Dept. of Chemistry; Martin, Scot T. [Harvard Univ., Cambridge, MA (United States). School of Engineering and Applied Sciences (SEAS) and Dept. of Earth and Planetary Sciences; Seinfeld, John H. [California Inst. of Technology (CalTech), Pasadena, CA (United States). Div. of Chemistry and Chemical Engineering and Div. of Engineering and Applied Science; Worsnop, Douglas R. [Aerodyne Research, Billerica, MA (United States). Center for Aerosol and Cloud Chemistry

    2017-12-15

    Low bulk diffusivity inside viscous semisolid atmospheric secondary organic aerosol (SOA) can prolong equilibration time scale, but its broader impacts on aerosol growth and size distribution dynamics are poorly understood. In this article, we present quantitative insights into the effects of bulk diffusivity on the growth and evaporation kinetics of SOA formed under dry conditions from photooxidation of isoprene in the presence of a bimodal aerosol consisting of Aitken (ammonium sulfate) and accumulation (isoprene or α-pinene SOA) mode particles. Aerosol composition measurements and evaporation kinetics indicate that isoprene SOA is composed of several semivolatile organic compounds (SVOCs), with some reversibly reacting to form oligomers. Model analysis shows that liquid-like bulk diffusivities can be used to fit the observed evaporation kinetics of accumulation mode particles but fail to explain the growth kinetics of bimodal aerosol by significantly under-predicting the evolution of the Aitken mode. In contrast, the semisolid scenario successfully reproduces both evaporation and growth kinetics, with the interpretation that hindered partitioning of SVOCs into large viscous particles effectively promotes the growth of smaller particles that have shorter diffusion time scales. This effect has important implications for the growth of atmospheric ultrafine particles to climatically active sizes.

  1. Wintertime Overnight NOx Removal in a Southeastern United States Coal-fired Power Plant Plume: A Model for Understanding Winter NOx Processing and its Implications

    Science.gov (United States)

    Fibiger, Dorothy L.; McDuffie, Erin E.; Dubé, William P.; Aikin, Kenneth C.; Lopez-Hilfiker, Felipe D.; Lee, Ben H.; Green, Jaime R.; Fiddler, Marc N.; Holloway, John S.; Ebben, Carlena; Sparks, Tamara L.; Wooldridge, Paul; Weinheimer, Andrew J.; Montzka, Denise D.; Apel, Eric C.; Hornbrook, Rebecca S.; Hills, Alan J.; Blake, Nicola J.; DiGangi, Josh P.; Wolfe, Glenn M.; Bililign, Solomon; Cohen, Ronald C.; Thornton, Joel A.; Brown, Steven S.

    2018-01-01

    Nitric oxide (NO) is emitted in large quantities from coal-burning power plants. During the day, the plumes from these sources are efficiently mixed into the boundary layer, while at night, they may remain concentrated due to limited vertical mixing during which they undergo horizontal fanning. At night, the degree to which NO is converted to HNO3 and therefore unable to participate in next-day ozone (O3) formation depends on the mixing rate of the plume, the composition of power plant emissions, and the composition of the background atmosphere. In this study, we use observed plume intercepts from the Wintertime INvestigation of Transport, Emissions and Reactivity campaign to test sensitivity of overnight NOx removal to the N2O5 loss rate constant, plume mixing rate, background O3, and background levels of volatile organic compounds using a 2-D box model of power plant plume transport and chemistry. The factor that exerted the greatest control over NOx removal was the loss rate constant of N2O5. At the lowest observed N2O5 loss rate constant, no other combination of conditions converts more than 10% of the initial NOx to HNO3. The other factors did not influence NOx removal to the same degree.

  2. Wintertime Overnight NOx Removal in a Southeastern United States Coal-Fired Power Plant Plume: A Model for Understanding Winter NOx Processing and Its Implications

    Science.gov (United States)

    Fibiger, Dorothy L.; McDuffie, Erin E.; Dube, William P.; Aikin, Kenneth C.; Lopez-Hilifiker, Felipe D.; Lee, Ben H.; Green, Jaime R.; Fiddler, Marc N.; Holloway, John S.; Ebben, Carlena; hide

    2018-01-01

    Nitric oxide (NO) is emitted in large quantities from coal-�burning power plants. During the day, the plumes from these sources are efficiently mixed into the boundary layer, while at night, they may remain concentrated due to limited vertical mixing during which they undergo horizontal fanning. At night, the degree to which NO is converted to HNO3 and therefore unable to participate in next-�day ozone (O3) formation depends on the mixing rate of the plume, the composition of power plant emissions, and the composition of the background atmosphere. In this study, we use observed plume intercepts from the Wintertime INvestigation of Transport, Emissions and Reactivity (WINTER) campaign to test sensitivity of overnight NOx removal to the N2O5 loss rate constant, plume mixing rate, background O3, and background levels of volatile organic compounds using a 2-�D box model of power plant plume transport and chemistry. The factor that exerted the greatest control over NOx removal was the loss rate constant of N2O5. At the lowest observed N2O5 loss rate constant, no other combination of conditions converts more than 10 percent of the initial NOx to HNO3. The other factors did not influence NOx removal to the same degree.

  3. Evaporation kinetics and phase of laboratory and ambient secondary organic aerosol

    Science.gov (United States)

    Vaden, Timothy D.; Imre, Dan; Beránek, Josef; Shrivastava, Manish; Zelenyuk, Alla

    2011-01-01

    Field measurements of secondary organic aerosol (SOA) find significantly higher mass loads than predicted by models, sparking intense effort focused on finding additional SOA sources but leaving the fundamental assumptions used by models unchallenged. Current air-quality models use absorptive partitioning theory assuming SOA particles are liquid droplets, forming instantaneous reversible equilibrium with gas phase. Further, they ignore the effects of adsorption of spectator organic species during SOA formation on SOA properties and fate. Using accurate and highly sensitive experimental approach for studying evaporation kinetics of size-selected single SOA particles, we characterized room-temperature evaporation kinetics of laboratory-generated α-pinene SOA and ambient atmospheric SOA. We found that even when gas phase organics are removed, it takes ∼24 h for pure α-pinene SOA particles to evaporate 75% of their mass, which is in sharp contrast to the ∼10 min time scale predicted by current kinetic models. Adsorption of “spectator” organic vapors during SOA formation, and aging of these coated SOA particles, dramatically reduced the evaporation rate, and in some cases nearly stopped it. Ambient SOA was found to exhibit evaporation behavior very similar to that of laboratory-generated coated and aged SOA. For all cases studied in this work, SOA evaporation behavior is nearly size-independent and does not follow the evaporation kinetics of liquid droplets, in sharp contrast with model assumptions. The findings about SOA phase, evaporation rates, and the importance of spectator gases and aging all indicate that there is need to reformulate the way SOA formation and evaporation are treated by models. PMID:21262848

  4. Partitioning phase preference for secondary organic aerosol in an urban atmosphere

    Science.gov (United States)

    Chang, Wayne Li-Wen

    Secondary organic aerosol (SOA) comprises a significant portion of atmospheric particular matter (PM). The impact of PM on both human health and global climate has long been recognized. Despite its importance, there are still many unanswered questions regarding the formation and evolution of SOA in the atmosphere. This study uses a modeling approach to understand the preferred partitioning behavior of SOA species into aqueous or organic condensed phases. More specifically, this work uses statistical analyses of approximately 24,000 data values for each variable from a state-of-the-art 3-D airshed model. Spatial and temporal distributions of fractions of SOA residing in the aqueous phase (fAQ) in the South Coast Air Basin of California are presented. Typical values of fAQ within the basin near the surface range from 5 to 80%. Results show that the distribution of fAQ values is inversely proportional to the total SOA loading. Further analysis accounting for various meteorological parameters indicates that large fAQ values are the results of aqueous-phase SOA insensitivity to the ambient conditions; while organic-phase SOA concentrations are dramatically reduced under unfavorable SOA formation conditions, aqueous-phase SOA level remains relatively unchanged, thus increasing fAQ at low SOA loading. Diurnal variations of fAQ near the surface are also observed: it tends to be larger during daytime hours than nighttime hours. When examining the vertical gradient of fAQ, largest values are found at heights above the surface layer. In summary, one must consider SOA in both organic and aqueous phases for proper regional and global SOA budget estimation.

  5. New polymer lithium secondary batteries based on ORMOCER (R) electrolytes-inorganic-organic polymers

    DEFF Research Database (Denmark)

    Popall, M.; Buestrich, R.; Semrau, G.

    2001-01-01

    Based on new plasticized inorganic-organic polymer electrolytes CM. Popall, M. Andrei, J. Kappel, J. Kron, K. Olma, B. Olsowski,'ORMOCERs as Inorganic-organic Electrolytes for New Solid State Lithium Batteries and Supercapacitors', Electrochim. Acta 43 (1998) 1155] new flexible foil-batteries...... electrolyte, typical for polymer electrolytes. Cycling tests (more than 900 cycles) proved that the unplasticized electrolyte can act as binder in composite cathodes of lithium secondary batteries [2]. Charge/discharge cycles of complete batteries like (Cu/active carbon/ORMOCER(R)/LiCoO2/Al) with an ORMOCER......(R) as separator electrolyte were measured. The voltage drop of these batteries is very similar to cells with standard liquid electrolytes and the efficiency is close to 100%. Cycling the batteries with a current density of 0.25 mA cm(-2) between the voltage limits of 3.1 and 4.1 V results in a charge...

  6. Secondary organic aerosol from VOC mixtures in an oxidation flow reactor

    Science.gov (United States)

    Ahlberg, Erik; Falk, John; Eriksson, Axel; Holst, Thomas; Brune, William H.; Kristensson, Adam; Roldin, Pontus; Svenningsson, Birgitta

    2017-07-01

    The atmospheric organic aerosol is a tremendously complex system in terms of chemical content. Models generally treat the mixtures as ideal, something which has been questioned owing to model-measurement discrepancies. We used an oxidation flow reactor to produce secondary organic aerosol (SOA) mixtures containing oxidation products of biogenic (α-pinene, myrcene and isoprene) and anthropogenic (m-xylene) volatile organic compounds (VOCs). The resulting volume concentration and chemical composition was measured using a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), respectively. The SOA mass yield of the mixtures was compared to a partitioning model constructed from single VOC experiments. The single VOC SOA mass yields with no wall-loss correction applied are comparable to previous experiments. In the mixtures containing myrcene a higher yield than expected was produced. We attribute this to an increased condensation sink, arising from myrcene producing a significantly higher number of nucleation particles compared to the other precursors. Isoprene did not produce much mass in single VOC experiments but contributed to the mass of the mixtures. The effect of high concentrations of isoprene on the OH exposure was found to be small, even at OH reactivities that previously have been reported to significantly suppress OH exposures in oxidation flow reactors. Furthermore, isoprene shifted the particle size distribution of mixtures towards larger sizes, which could be due to a change in oxidant dynamics inside the reactor.

  7. Updated aerosol module and its application to simulate secondary organic aerosols during IMPACT campaign May 2008

    Directory of Open Access Journals (Sweden)

    Y. P. Li

    2013-07-01

    Full Text Available The formation of Secondary organic aerosol (SOA was simulated with the Secondary ORGanic Aerosol Model (SORGAM by a classical gas-particle partitioning concept, using the two-product model approach, which is widely used in chemical transport models. In this study, we extensively updated SORGAM including three major modifications: firstly, we derived temperature dependence functions of the SOA yields for aromatics and biogenic VOCs (volatile organic compounds, based on recent chamber studies within a sophisticated mathematic optimization framework; secondly, we implemented the SOA formation pathways from photo oxidation (OH initiated of isoprene; thirdly, we implemented the SOA formation channel from NO3-initiated oxidation of reactive biogenic hydrocarbons (isoprene and monoterpenes. The temperature dependence functions of the SOA yields were validated against available chamber experiments, and the updated SORGAM with temperature dependence functions was evaluated with the chamber data. Good performance was found with the normalized mean error of less than 30%. Moreover, the whole updated SORGAM module was validated against ambient SOA observations represented by the summed oxygenated organic aerosol (OOA concentrations abstracted from aerosol mass spectrometer (AMS measurements at a rural site near Rotterdam, the Netherlands, performed during the IMPACT campaign in May 2008. In this case, we embedded both the original and the updated SORGAM module into the EURopean Air pollution and Dispersion-Inverse Model (EURAD-IM, which showed general good agreements with the observed meteorological parameters and several secondary products such as O3, sulfate and nitrate. With the updated SORGAM module, the EURAD-IM model also captured the observed SOA concentrations reasonably well especially those during nighttime. In contrast, the EURAD-IM model before update underestimated the observations by a factor of up to 5. The large improvements of the modeled

  8. Impact of human presence on secondary organic aerosols derived from ozone-initiated chemistry in a simulated office environment

    DEFF Research Database (Denmark)

    Fadeyi, Moshood O.; Weschler, Charles J.; Tham, Kwok W.

    2013-01-01

    's reactions with various indoor pollutants. The present study examines this possibility for secondary organic aerosols (SOA) derived from ozone-initiated chemistry with limonene, a commonly occurring indoor terpene. The experiments were conducted at realistic ozone and limonene concentrations in a 240 m3...

  9. Isoprene oxidation by nitrate radical: alkyl nitrate and secondary organic aerosol yields

    Directory of Open Access Journals (Sweden)

    A. W. Rollins

    2009-09-01

    Full Text Available Alkyl nitrates and secondary organic aerosol (SOA produced during the oxidation of isoprene by nitrate radicals has been observed in the SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber chamber. A 16 h dark experiment was conducted with temperatures at 289–301 K, and maximum concentrations of 11 ppb isoprene, 62.4 ppb O3 and 31.1 ppb NOx. We find the yield of nitrates is 70±8% from the isoprene + NO3 reaction, and the yield for secondary dinitrates produced in the reaction of primary isoprene nitrates with NO3 is 40±20%. We find an effective rate constant for reaction of NO3 with the group of first generation oxidation products to be 7×10−14 molecule−1 cm3 s−1. At the low total organic aerosol concentration in the chamber (max=0.52 μg m−3 we observed a mass yield (ΔSOA mass/Δisoprene mass of 2% for the entire 16 h experiment. However a comparison of the timing of the observed SOA production to a box model simulation of first and second generation oxidation products shows that the yield from the first generation products was <0.7% while the further oxidation of the initial products leads to a yield of 14% (defined as ΔSOA/Δisoprene2x where Δisoprene2x is the mass of isoprene which reacted twice with NO3. The SOA yield of 14% is consistent with equilibrium partitioning of highly functionalized C5 products of isoprene oxidation.

  10. Anxiety, Self-Esteem and Coping with Stress in Secondary School Students in Relation to Involvement in Organized Sports.

    Science.gov (United States)

    Dolenc, Petra

    2015-09-01

    The objective of the study was to examine self-esteem, anxiety level and coping strategies among secondary school students in relation to their involvement in organized sports. The sample included 280 Slovenian male and female secondary school students aged between 15 and 19 years. The participants completed The Adolescent Coping Scale, the Spielberger State-Trait Anxiety Inventory, and the PSDQ Selfesteem Scale. Participants engaged in organized sports exhibited higher self-esteem scores and lower anxiety scores in comparison to non-sport participants. Differences between the two groups have also been identified with respect to the use of certain coping strategies. Sport participants reported more productive coping than non-sport participants, which represents an active and problem-focused approach to dealing with everyday problems. Gender differences in the referred variables have also been studied, with female athletes exhibiting higher levels of anxiety than male athletes. Female participants were also found to use more non-productive coping than males, focused mainly on reducing emotional effects of stress. Organized youth sports have an important role in improving and maintaining a favorable sense of self-worth, reducing anxiety, and promoting productive coping strategies in adolescents when dealing with everyday problems.

  11. SOIL ORGANIC MATTER DYNAMICS UPON SECONDARY SUCCESSION IN IMPERATA GRASSLAND, EAST KALIMANTAN, INDONESIA

    Directory of Open Access Journals (Sweden)

    Ishak Yassir

    2015-04-01

    Full Text Available Soil organic matter (SOM dynamics upon secondary succession in Imperata grassland was studied by stable carbon isotope analysis. The data of litter and soil samples of twenty plots in four different stages of succession were compared. These different stages were represented by plots that were; (1 last burned 3 years before sampling (Imperata grassland, (2 last burned 9 years before, (3 a secondary forest (≥15 years and (4 a primary forest. Result showed that isotopic signatures of all soil horizons of the regeneration stages were statistically different from those of the primary forest. The A-horizon under the 3-years Imperata plot still contained 23% forest (C3 carbon, and this fraction increased to 51% in the-B-horizon. In the 9-years plot and in the secondary forest, the C3 carbon on the A-horizon increased to 51% and 96%, respectively. In the topsoil, the loss of C4-C between the 3-years and the 9-years plot was significant, while it appeared negligible in the AB-horizon. The strong decay in the topsoil under Imperata grassland may be due to the rather high carbohydrate content of the SOM, which is considered easily decomposable. Further research is needed especially to explore the relation between carbon stocks and chemical of SOM composition. Such insight may help to better understand and predict soil carbon changes in relation to climate and vegetation change.

  12. Formation of secondary organic aerosol in the Paris pollution plume and its impact on surrounding regions

    Science.gov (United States)

    Zhang, Q. J.; Beekmann, M.; Freney, E.; Sellegri, K.; Pichon, J. M.; Schwarzenboeck, A.; Colomb, A.; Bourrianne, T.; Michoud, V.; Borbon, A.

    2015-12-01

    Secondary pollutants such as ozone, secondary inorganic aerosol, and secondary organic aerosol formed in the plumes of megacities can affect regional air quality. In the framework of the FP7/EU MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation) project, an intensive campaign was launched in the greater Paris region in July 2009. The major objective was to quantify different sources of organic aerosol (OA) within a megacity and in its plume. In this study, we use airborne measurements aboard the French ATR-42 aircraft to evaluate the regional chemistry-transport model CHIMERE within and downwind of the Paris region. Two mechanisms of secondary OA (SOA) formation are used, both including SOA formation from oxidation and chemical aging of primary semivolatile and intermediate volatility organic compounds (SI-SOA) in the volatility basis set (VBS) framework. As for SOA formed from traditional VOC (volatile organic compound) precursors (traditional SOA), one applies chemical aging in the VBS framework adopting different SOA yields for high- and low-NOx environments, while another applies a single-step oxidation scheme without chemical aging. Two emission inventories are used for discussion of emission uncertainties. The slopes of the airborne OA levels versus Ox (i.e., O3 + NO2) show SOA formation normalized with respect to photochemical activity and are used for specific evaluation of the OA scheme in the model. The simulated slopes were overestimated slightly by factors of 1.1, 1.7 and 1.3 with respect to those observed for the three airborne measurements, when the most realistic "high-NOx" yields for traditional SOA formation in the VBS scheme are used in the model. In addition, these slopes are relatively stable from one day to another, which suggests that they are characteristic for the given megacity plume environment. The configuration with increased primary

  13. Evidence of aqueous secondary organic aerosol formation from biogenic emissions in the North American Sonoran Desert.

    Science.gov (United States)

    Youn, Jong-Sang; Wang, Zhen; Wonaschütz, Anna; Arellano, Avelino; Betterton, Eric A; Sorooshian, Armin

    2013-07-16

    This study examines the role of aqueous secondary organic aerosol formation in the North American Sonoran Desert as a result of intense solar radiation, enhanced moisture, and biogenic volatile organic compounds (BVOCs). The ratio of water-soluble organic carbon (WSOC) to organic carbon (OC) nearly doubles during the monsoon season relative to other seasons of the year. When normalized by mixing height, the WSOC enhancement during monsoon months relative to preceding dry months (May-June) exceeds that of sulfate by nearly a factor of 10. WSOC:OC and WSOC are most strongly correlated with moisture parameters, temperature, and concentrations of O 3 and BVOCs. No positive relationship was identified between WSOC or WSOC:OC and anthropogenic tracers such as CO over a full year. This study points at the need for further work to understand the effect of BVOCs and moisture in altering aerosol properties in understudied desert regions.

  14. Static secondary ion mass spectrometry for organic and inorganic molecular analysis in solids

    International Nuclear Information System (INIS)

    Ham, Rita van; Vaeck, Luc van; Adriaens, Annemie; Adams, Freddy

    2003-01-01

    The use of mass spectra in secondary ion mass spectrometry (S-SIMS) to characterise the molecular composition of inorganic and organic analytes at the surface of solid samples is investigated. Methodological aspects such as mass resolution, mass accuracy, precision and accuracy of isotope abundance measurements, influence of electron flooding and sample morphology are addressed to assess the possibilities and limitations that the methodology can offer to support the structural assignment of the detected ions. The in-sample and between-sample reproducibility of relative peak intensities under optimised conditions is within 10%, but experimental conditions and local hydration, oxidation or contamination can drastically affect the mass spectra. As a result, the use of fingerprinting for identification becomes compromised. Therefore, the preferred way of interpretation becomes the deductive structural approach, based on the use of the empirical desorption-ionisation model. This approach is shown to allow the molecular composition of inorganic and organic components at the surface of solids to be characterised. Examples of inorganic speciation and identification of organic additives with unknown composition in inorganic salt mixtures are given. The methodology is discussed in terms of foreseen developments with respect to the use of polyatomic primary ions

  15. Molecular structure impacts on secondary organic aerosol formation from glycol ethers

    Science.gov (United States)

    Li, Lijie; Cocker, David R.

    2018-05-01

    Glycol ethers, a class of widely used solvents in consumer products, are often considered exempt as volatile organic compounds based on their vapor pressure or boiling points by regulatory agencies. However, recent studies found that glycol ethers volatilize at ambient conditions nearly as rapidly as the traditional high-volatility solvents indicating the potential of glycol ethers to form secondary organic aerosol (SOA). This is the first work on SOA formation from glycol ethers. The impact of molecular structure, specifically -OH, on SOA formation from glycol ethers and related ethers are investigated in the work. Ethers with and without -OH, with methyl group hindrance on -OH and with -OH at different location are studied in the presence of NOX and under "NOX free" conditions. Photooxidation experiments under different oxidation conditions confirm that the processing of ethers is a combination of carbonyl formation, cyclization and fragmentation. Bulk SOA chemical composition analysis and oxidation products identified in both gas and particle phase suggests that the presence and location of -OH in the carbon bond of ethers determine the occurrence of cyclization mechanism during ether oxidation. The cyclization is proposed as a critical SOA formation mechanism to prevent the formation of volatile compounds from fragmentation during the oxidation of ethers. Glycol ethers with -CH2-O-CH2CH2OH structure is found to readily form cyclization products, especially with the presence of NOx, which is more relevant to urban atmospheric conditions than without NOx. Glycol ethers are evaluated as dominating SOA precursors among all ethers studied. It is estimated that the contribution of glycol ethers to anthropogenic SOA is roughly 1% of the current organic aerosol from mobile sources. The contribution of glycol ethers to anthropogenic SOA is roughly 1% of the current organic aerosol from mobile sources and will play a more important role in future anthropogenic SOA

  16. The formation, properties and impact of secondary organic aerosol: current and emerging issues

    Directory of Open Access Journals (Sweden)

    J. Wildt

    2009-07-01

    Full Text Available Secondary organic aerosol (SOA accounts for a significant fraction of ambient tropospheric aerosol and a detailed knowledge of the formation, properties and transformation of SOA is therefore required to evaluate its impact on atmospheric processes, climate and human health. The chemical and physical processes associated with SOA formation are complex and varied, and, despite considerable progress in recent years, a quantitative and predictive understanding of SOA formation does not exist and therefore represents a major research challenge in atmospheric science. This review begins with an update on the current state of knowledge on the global SOA budget and is followed by an overview of the atmospheric degradation mechanisms for SOA precursors, gas-particle partitioning theory and the analytical techniques used to determine the chemical composition of SOA. A survey of recent laboratory, field and modeling studies is also presented. The following topical and emerging issues are highlighted and discussed in detail: molecular characterization of biogenic SOA constituents, condensed phase reactions and oligomerization, the interaction of atmospheric organic components with sulfuric acid, the chemical and photochemical processing of organics in the atmospheric aqueous phase, aerosol formation from real plant emissions, interaction of atmospheric organic components with water, thermodynamics and mixtures in atmospheric models. Finally, the major challenges ahead in laboratory, field and modeling studies of SOA are discussed and recommendations for future research directions are proposed.

  17. Barriers to outdoor physical activity in wintertime among Somali youth.

    Science.gov (United States)

    Rothe, Elizabeth; Holt, Christina; Kuhn, Celine; McAteer, Timothy; Askari, Isabella; O'Meara, Mary; Sharif, Abdimajid; Dexter, William

    2010-10-01

    To identify barriers to outdoor physical activity in winter among Somali youth in Maine. Despite the many proven health benefits of physical activity among children, such as cardiovascular fitness and health status as an adult, there has been a decrease in physical activity among children in recent years. Specifically, children who are of low socio-economic status or are from communities where many immigrants are at increased risk for developing obesity. Immigrants are also less likely to be physically active. There are many potential barriers to wintertime physical activity among Somali youth in Maine, such as lack of financial resources, transportation, proper winter clothing, and appropriate knowledge of winter safety, and language and cultural barriers. For females, different attire required for outdoor activity may be a barrier. Somali parents and children were recruited from Portland, Maine to participate in focus groups led by a trained facilitator with a Somali translator and cultural broker. Transcripts were coded using NVIVO software to identify barriers to physical activity among Somali youth outside in winter. Eight focus groups were conducted. Sixty-one Somali community members were recruited. Participants felt outdoor physical activity is important, but note that it is decreased in winter. Barriers to outdoor activity in winter cited by focus group participants were lack of resources, health concerns, gender barriers for females, and knowledge barriers. Concern over lack of supervision while children play outside was also cited. This study revealed many of the underlying beliefs, barriers and cultural issues that impact Somali families' intention to be active and ability to be active outdoors in winter. These findings can be used to generate research hypotheses and public health interventions regarding outdoor physical activity among Somali youth.

  18. Pedestrians in wintertime-effects of using anti-slip devices.

    Science.gov (United States)

    Berggård, Glenn; Johansson, Charlotta

    2010-07-01

    Pedestrians slipping and falling is a major safety problem around the world, not least in countries with long winters such as Sweden. About 25000-30000 people need medical care every year for treatment of fall injuries in Sweden. Use of appropriate shoes and anti-slip devices are examples of individual measures that have been suggested to prevent slipping and falling. An intervention study was performed during the period February to April 2008. The study, which focused on healthy adults in northern Sweden, examined the effect of using anti-slip devices on daily walking journeys and prevention of slip and falls. The respondents were divided into three groups: an Intervention Group, a Control Group, with similar distribution of gender and age, and a Comparison Group. Four questionnaires were distributed: (1) background, (2) daily diary of distance walked and occurrence of incidents or accidents reported weekly, (3) detailed incident or fall report and (4) experiences of using anti-slip devices for those who used these devices during the trial period. Half of the respondents stated that they had previous experience of using anti-slip devices. In this study, 52% of the respondents used anti-slip devices. Anti-slip devices improve the walking capability during wintertime. Among those using appropriate anti-slip devices, the average daily walking distance was found to be statistically significantly longer compared to people not using anti-slip devices. This study indicates that an increase in daily walking distance can be made without increasing the risk of slips/falls when using anti-slip devices. The study also indicates that by using appropriate anti-slip devices and having information about when and where to use them, based on their design, people avoid having slips and falls. The respondents experienced in using anti-slip devices in this study will continue to use them and will also recommend others to use anti-slip devises. Copyright 2010 Elsevier Ltd. All rights

  19. Racemization of enantiopure secondary alcohols by Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase

    KAUST Repository

    Musa, Musa M.

    2013-01-01

    Controlled racemization of enantiopure phenyl-ring-containing secondary alcohols is achieved in this study using W110A secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus (W110A TeSADH) and in the presence of the reduced and oxidized forms of its cofactor nicotinamide-adenine dinucleotide. Racemization of both enantiomers of alcohols accepted by W110A TeSADH, not only with low, but also with reasonably high, enantiomeric discrimination is achieved by this method. Furthermore, the high tolerance of TeSADH to organic solvents allows TeSADH-catalyzed racemization to be conducted in media containing up to 50% (v/v) of organic solvents. © 2013 The Royal Society of Chemistry.

  20. Temperature effects on multiphase reactions of organic molecular markers: A modeling study

    Science.gov (United States)

    Pratap, Vikram; Chen, Ying; Yao, Guangming; Nakao, Shunsuke

    2018-04-01

    Various molecular markers are used in source apportionment studies. In early studies, molecular markers were assumed to be inert. However, recent studies suggest that molecular markers can decay rapidly through multiphase reactions, which makes interpretation of marker measurements challenging. This study presents a simplified model to account for the effects of temperature and relative humidity on the lifetime of molecular markers through a shift in gas-particle partitioning as well as a change in viscosity of the condensed phase. As a model case, this study examines the stability of levoglucosan, a key marker species of biomass burning, over a wide temperature range relevant to summertime and wintertime. Despite the importance of wood combustion for space heating in winter, the lifetime of levoglucosan in wintertime is not well understood. The model predicts that in low-temperature conditions, levoglucosan predominantly remains in the particle phase, and therefore its loss due to gas-phase oxidation reactions is significantly reduced. Furthermore, the movement of the levoglucosan from the bulk of the particle to the particle surface is reduced due to low diffusivity in the semi-solid state. The simplified model developed in this study reasonably reproduces upper and lower bounds of the lifetime of levoglucosan investigated in previous studies. The model results show that the levoglucosan depletion after seven days reduces significantly from ∼98% at 25 °C to marker (lifetime > 1 week) even at 60% relative humidity irrespective of the assumed fragility parameter D that controls estimated diffusivity. The model shows that lifetime of an organic molecular marker strongly depends on assumed D especially when a semi-volatile marker is in semi-solid organic aerosol.

  1. Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: high- vs. low-yield pathways

    Directory of Open Access Journals (Sweden)

    D. K. Henze

    2008-05-01

    Full Text Available Formation of SOA from the aromatic species toluene, xylene, and, for the first time, benzene, is added to a global chemical transport model. A simple mechanism is presented that accounts for competition between low and high-yield pathways of SOA formation, wherein secondary gas-phase products react further with either nitric oxide (NO or hydroperoxy radical (HO2 to yield semi- or non-volatile products, respectively. Aromatic species yield more SOA when they react with OH in regions where the [NO]/[HO2] ratios are lower. The SOA yield thus depends upon the distribution of aromatic emissions, with biomass burning emissions being in areas with lower [NO]/[HO2] ratios, and the reactivity of the aromatic with respect to OH, as a lower initial reactivity allows transport away from industrial source regions, where [NO]/[HO2] ratios are higher, to more remote regions, where this ratio is lower and, hence, the ultimate yield of SOA is higher. As a result, benzene is estimated to be the most important aromatic species with regards to global formation of SOA, with a total production nearly equal that of toluene and xylene combined. Global production of SOA from aromatic sources via the mechanisms identified here is estimated at 3.5 Tg/yr, resulting in a global burden of 0.08 Tg, twice as large as previous estimates. The contribution of these largely anthropogenic sources to global SOA is still small relative to biogenic sources, which are estimated to comprise 90% of the global SOA burden, about half of which comes from isoprene. Uncertainty in these estimates owing to factors ranging from the atmospheric relevance of chamber conditions to model deficiencies result in an estimated range of SOA production from aromatics of 2–12 Tg/yr. Though this uncertainty range affords a significant anthropogenic contribution to global SOA, it is evident from comparisons to recent observations that additional pathways for

  2. Halogenation processes of secondary organic aerosol and implications on halogen release mechanisms

    Directory of Open Access Journals (Sweden)

    J. Ofner

    2012-07-01

    Full Text Available Reactive halogen species (RHS, such as X·, X2 and HOX containing X = chlorine and/or bromine, are released by various sources like photo-activated sea-salt aerosol or from salt pans, and salt lakes. Despite many studies of RHS reactions, the potential of RHS reacting with secondary organic aerosol (SOA and organic aerosol derived from biomass-burning (BBOA has been neglected. Such reactions can constitute sources of gaseous organohalogen compounds or halogenated organic matter in the tropospheric boundary layer and can influence physicochemical properties of atmospheric aerosols.

    Model SOA from α-pinene, catechol, and guaiacol was used to study heterogeneous interactions with RHS. Particles were exposed to molecular chlorine and bromine in an aerosol smog-chamber in the presence of UV/VIS irradiation and to RHS, released from simulated natural halogen sources like salt pans. Subsequently, the aerosol was characterized in detail using a variety of physicochemical and spectroscopic methods. Fundamental features were correlated with heterogeneous halogenation, which results in new functional groups (FTIR spectroscopy, changes UV/VIS absorption, chemical composition (ultrahigh resolution mass spectroscopy (ICR-FT/MS, or aerosol size distribution. However, the halogen release mechanisms were also found to be affected by the presence of organic aerosol. Those interaction processes, changing chemical and physical properties of the aerosol are likely to influence e.g. the ability of the aerosol to act as cloud condensation nuclei, its potential to adsorb other gases with low-volatility, or its contribution to radiative forcing and ultimately the Earth's radiation balance.

  3. [Estimate of the formation potential of secondary organic aerosol in Beijing summertime].

    Science.gov (United States)

    Lü, Zi-Feng; Hao, Ji-Ming; Duan, Jing-Chun; Li, Jun-Hua

    2009-04-15

    Fractional aerosol coefficients (FAC) are used in conjunction with measurements of volatile organic compounds (VOC) during ozone episodes to estimate the formation potential of secondary organic aerosols (SOA) in the summertime of Beijing. The estimation is based on the actual atmospheric conditions of Beijing, and benzene and isoprene are considered as the precursors of SOA. The results show that 31 out of 70 measured VOC species are SOA precursors, and the total potential SOA formation is predicted to be 8.48 microg/m3, which accounts for 30% of fine organic particle matter. Toluene, xylene, pinene, ethylbenzene and n-undecane are the 5 largest contributors to SOA production and account for 20%, 22%, 14%, 9% and 4% of total SOA production, respectively. The anthropogenic aromatic compounds, which yield 76% of the calculated SOA, are the major source of SOA. The biogenic alkenes, alkanes and carbonyls produce 16%, 7% and 1% of SOA formation, respectively. The major components of produced SOA are expected to be aromatic compounds, aliphatic acids, carbonyls and aliphatic nitrates, which contribute to 72%, 14%, 11% and 3% of SOA mass, respectively. The SOA precursors have relatively low atmospheric concentrations and low ozone formation potential. Hence, SOA formation potential of VOC species, in addition to their atmospheric concentrations and ozone formation potential, should be considered in policy making process of VOCs control.

  4. Lability of Secondary Organic Particulate Matter

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pengfei; Li, Yong Jie; Wang, Yan; Giles, Mary K.; Zaveri, Rahul A.; Bertram, Allan K.; Martin, Scot T.

    2016-10-24

    Accurate simulations of the consenctrations of atmospheric organic particulate matter (PM) are needed for predicting energy flow in the Earth’s climate system. In the past, simulations of organic PM widely assume equilibrium partitioning of semivolatile organic compounds (SVOCs) between the PM and surrounding vapor. Herein, we test this assumption by measuring evaporation rates and associated vapor mass concentration of organic films representative of atmospheric PM. For films representing anthropogenic PM, evaporation rates and vapor mass concentrations increased above a threshold relative humidity (RH), indicating equilibrium partitioning above a transition RH but not below. In contrast for films representing biogenic PM, no threshold was observed, indicating equilibrium partitioning at all RHs. The results suggest that the mass lability of atmospheric organic PM can differ in consequential ways among Earth’s natural biomes, polluted regions, and regions of land-use change, and these differences need to be considered when simulating atmospheric organic PM.

  5. SECONDARY ORGANIC AEROSOL FORMATION FROM THE OXIDATION OF AROMATIC HYDROCARBONS IN THE PRESENCE OF DRY SUBMICRON AMMONIUM SULFATE AEROSOL

    Science.gov (United States)

    A laboratory study was conducted to examine formation of secondary organic aerosols. A smog chamber system was developed for studying gas-aerosol interactions in a dynamic flow reactor. These experiments were conducted to investigate the fate of gas and aerosol phase compounds ...

  6. Computational design of metal-organic frameworks with paddlewheel-type secondary building units

    Science.gov (United States)

    Schwingenschlogl, Udo; Peskov, Maxim V.; Masghouni, Nejib

    We employ the TOPOS package to study 697 coordination polymers containing paddlewheel-type secondary building units. The underlying nets are analyzed and 3 novel nets are chosen as potential topologies for paddlewheel-type metal organic frameworks (MOFs). Dicarboxylate linkers are used to build basic structures for novel isoreticular MOF series, aiming at relatively compact structures with a low number of atoms per unit cell. The structures are optimized using density functional theory. Afterwards the Grand Canonical Monte Carlo approach is employed to generate adsorption isotherms for CO2, CO, and CH4 molecules. We utilize the universal forcefield for simulating the interaction between the molecules and hosting MOF. The diffusion behavior of the molecules inside the MOFs is analyzed by molecular dynamics simulations.

  7. Evaluation of the Volatility Basis-Set Approach for Modeling Primary and Secondary Organic Aerosol in the Mexico City Metropolitan Area

    Science.gov (United States)

    Tsimpidi, A. P.; Karydis, V. A.; Pandis, S. N.; Zavala, M.; Lei, W.; Molina, L. T.

    2007-12-01

    Anthropogenic air pollution is an increasingly serious problem for public health, agriculture, and global climate. Organic material (OM) contributes ~ 20-50% to the total fine aerosol mass at continental mid-latitudes. Although OM accounts for a large fraction of PM2.5 concentration worldwide, the contributions of primary and secondary organic aerosol have been difficult to quantify. In this study, new primary and secondary organic aerosol modules were added to PMCAMx, a three dimensional chemical transport model (Gaydos et al., 2007), for use with the SAPRC99 chemistry mechanism (Carter, 2000; ENVIRON, 2006) based on recent smog chamber studies (Robinson et al., 2007). The new modeling framework is based on the volatility basis-set approach (Lane et al., 2007): both primary and secondary organic components are assumed to be semivolatile and photochemically reactive and are distributed in logarithmically spaced volatility bins. The emission inventory, which uses as starting point the MCMA 2004 official inventory (CAM, 2006), is modified and the primary organic aerosol (POA) emissions are distributed by volatility based on dilution experiments (Robinson et al., 2007). Sensitivity tests where POA is considered as nonvolatile and POA and SOA as chemically reactive are also described. In all cases PMCAMx is applied in the Mexico City Metropolitan Area during March 2006. The modeling domain covers a 180x180x6 km region in the MCMA with 3x3 km grid resolution. The model predictions are compared with Aerodyne's Aerosol Mass Spectrometry (AMS) observations from the MILAGRO Campaign. References Robinson, A. L.; Donahue, N. M.; Shrivastava, M. K.; Weitkamp, E. A.; Sage, A. M.; Grieshop, A. P.; Lane, T. E.; Pandis, S. N.; Pierce, J. R., 2007. Rethinking organic aerosols: semivolatile emissions and photochemical aging. Science 315, 1259-1262. Gaydos, T. M.; Pinder, R. W.; Koo, B.; Fahey, K. M.; Pandis, S. N., 2007. Development and application of a three- dimensional aerosol

  8. Characterizing and sourcing ambient PM2.5 over key emission regions in China II: Organic molecular markers and CMB modeling

    Science.gov (United States)

    Zhou, Jiabin; Xiong, Ying; Xing, Zhenyu; Deng, Junjun; Du, Ke

    2017-08-01

    From November 2012 to July 2013, a sampling campaign was completed for comprehensive characterization of PM2.5 over four key emission regions in China: Beijing-Tianjin-Hebei (BTH), Yangzi River Delta (YRD), Pearl River Delta (PRD), and Sichuan Basin (SB). A multi-method approach, adopting different analytical and receptor modeling methods, was employed to determine the relative abundances of region-specific air pollution constituents and contributions of emission sources. This paper is focused on organic molecular marker based source apportionment using chemical mass balance (CMB) receptor modeling. Analyses of the organic molecular markers revealed that vehicle emission, coal combustion, biomass burning, meat cooking and natural gas combustion were the major contributors to organic carbon (OC) in PM2.5. The vehicle emission dominated the sources contributing to OC in spring at four sampling sites. During wintertime, the coal combustion had highest contribution to OC at BTH site, while the major source contributing to OC at YRD and PRD sites was vehicle emission. In addition, the relative contributions of different emission sources to PM2.5 mass at a specific location site and in a specific season revealed seasonal and spatial variations across all four sampling locations. The largest contributor to PM2.5 mass was secondary sulfate (14-17%) in winter at the four sites. The vehicle emission was found to be the major source (14-21%) for PM2.5 mass at PRD site. The secondary ammonium has minor variation (4-5%) across the sites, confirming the influences of regional emission sources on these sites. The distinct patterns of seasonal and spatial variations of source apportionment observed in this study were consistent with the findings in our previous paper based upon water-soluble ions and carbonaceous fractions. This makes it essential for the local government to make season- and region-specific mitigation strategies for abating PM2.5 pollution in China.

  9. Atmospheric oxidation of isoprene and 1,3-Butadiene: influence of aerosol acidity and Relative humidity on secondary organic aerosol

    Science.gov (United States)

    The effects of acidic seed aerosols on the formation of secondary organic aerosol (SOA)have been examined in a number of previous studies, several of which have observed strong linear correlations between the aerosol acidity (measured as nmol H+ per m3 air s...

  10. Organic nitrate and secondary organic aerosol yield from NO3 oxidation of β-pinene evaluated using a gas-phase kinetics/aerosol partitioning model

    Directory of Open Access Journals (Sweden)

    H.-P. Dorn

    2009-02-01

    Full Text Available The yields of organic nitrates and of secondary organic aerosol (SOA particle formation were measured for the reaction NO3+β-pinene under dry and humid conditions in the atmosphere simulation chamber SAPHIR at Research Center Jülich. These experiments were conducted at low concentrations of NO3 (NO3+N2O5pvap~5×10−6 Torr (6.67×10−4 Pa, which constrains speculation about the oxidation mechanism and chemical identity of the organic nitrate. Once formed the SOA in this system continues to evolve, resulting in measurable aerosol volume decrease with time. The observations of high aerosol yield from NOx-dependent oxidation of monoterpenes provide an example of a significant anthropogenic source of SOA from biogenic hydrocarbon precursors. Estimates of the NO3+β-pinene SOA source strength for California and the globe indicate that NO3 reactions with monoterpenes are likely an important source (0.5–8% of the global total of organic aerosol on regional and global scales.

  11. The fate of heterologous antigen (131I-HSA) in the organs of chickens exposed to total-body X-irradiation before a secondary antigenic stimulus

    International Nuclear Information System (INIS)

    Prohazka, Z.; Hampl, J.; Krejci, J.

    1975-01-01

    A study was made on the effect of ionizing radiation on the rate of elimination of 131 I-labelled human serum albumin from the blood and its organ deposition in chickens exposed to 1200 R (LD 50 ) at various intervals before secondary antigen injection. In unirradiated control chickens, the elimination of antigen after its secondary injection followed the typical three-phase pattern, characterized by an early onset and a rapid progress of the third phase. The elimination curve from irradiated birds paralleled rather closely that from the controls during the first and second phases while the phase of immune elimination was hardly perceptible. No major differences were found between the individual irrradiated groups. The irradiated birds also showed less formation of antibodies and antigen-antibody complexes and a lower antigen content of the organs than the unirradiated controls. From the results it appears that the specific antigen uptake from the blood of chickens during the first and second phases of elimination of a secondary dose of antigen is radioresistant; the temporal relation between X-irradiation and secondary antigen injection does not play a substantial role in impairment of the secondary antibody response to soluble antigens in chickens

  12. Wintertime westward-traveling planetary-scale perturbations over the Euro-Atlantic region

    Energy Technology Data Exchange (ETDEWEB)

    Doblas-Reyes, F.J. [Centro de Astrobiologia, INTA, Madrid (Spain); Pastor, M.A.; Casado, M.J. [Instituto Nacional de Meteorologia, Madrid (Spain); Deque, M. [CNRM, Meteo-France, Toulouse (France)

    2001-07-01

    The features of the wintertime westward-traveling planetary scale perturbations over the Euro-Atlantic region are examined through the use of space-time spectral analysis applied to the 500 hPa geopotential height field. The intention is to understand the nature of these phenomena and the performance of climate models. Data from both ECMWF re-analyses and a simulation from the ARPEGE general circulation model are used. Westward-traveling planetary scale transients are found over the region as local perturbations resembling Rossby normal modes, with a maximum power over the Eastern Atlantic. The westward-traveling planetary scale transients north of 40 {sup circle} N have periods larger than 20 days. South of this latitude, wave periods are shifted to a band around 10 days, so that they can be related to subtropical transient waves. The atmospheric model used, like other models which exhibit reasonable mean climatic properties, tend to have less overall intraseasonal variability than observed. Nevertheless, the model is able to capture most of the features of the westward-traveling low-frequency transients. The differences in basic state, partially produced by scale interactions, would lead to the generation of westward-traveling waves in the model distinct from the observed. However, it is suggested that the improvement of the present model version with regard to previous model versions is due to a better simulation of the time-mean state. The reasonable simulation of the synoptic-scale variability south of 50 {sup circle} N, and thus of its barotropic forcing on the basic state, may also help to explain the realistic westward-traveling transients in the model. (orig.)

  13. Reactive oxidation products promote secondary organic aerosol formation from green leaf volatiles

    Directory of Open Access Journals (Sweden)

    J. F. Hamilton

    2009-06-01

    Full Text Available Green leaf volatiles (GLVs are an important group of chemicals released by vegetation which have emission fluxes that can be significantly increased when plants are damaged or stressed. A series of simulation chamber experiments has been conducted at the European Photoreactor in Valencia, Spain, to investigate secondary organic aerosol (SOA formation from the atmospheric oxidation of the major GLVs cis-3-hexenylacetate and cis-3-hexen-1-ol. Liquid chromatography-ion trap mass spectrometry was used to identify chemical species present in the SOA. Cis-3-hexen-1-ol proved to be a more efficient SOA precursor due to the high reactivity of its first generation oxidation product, 3-hydroxypropanal, which can hydrate and undergo further reactions with other aldehydes resulting in SOA dominated by higher molecular weight oligomers. The lower SOA yields produced from cis-3-hexenylacetate are attributed to the acetate functionality, which inhibits oligomer formation in the particle phase. Based on observed SOA yields and best estimates of global emissions, these compounds may be calculated to be a substantial unidentified global source of SOA, contributing 1–5 TgC yr−1, equivalent to around a third of that predicted from isoprene. Molecular characterization of the SOA, combined with organic mechanistic information, has provided evidence that the formation of organic aerosols from GLVs is closely related to the reactivity of their first generation atmospheric oxidation products, and indicates that this may be a simple parameter that could be used in assessing the aerosol formation potential for other unstudied organic compounds in the atmosphere.

  14. Secondary School Results for the Fourth NAEP Mathematics Assessment: Discrete Mathematics, Data Organization and Interpretation, Measurement, Number and Operations.

    Science.gov (United States)

    Brown, Catherine A.; And Others

    1988-01-01

    Suggests that secondary school students seem to have reasonably good procedural knowledge in areas of mathematics as rational numbers, probability, measurement, and data organization and interpretation. It appears, however, that students are lacking the conceptual knowledge enabling them to successfully do the assessment items on applications,…

  15. Project Based Learning on Students' Performance in the Concept of Classification of Organisms among Secondary Schools in Kenya

    Science.gov (United States)

    Wekesa, Noah Wafula; Ongunya, Raphael Odhiambo

    2016-01-01

    The concept of classification of organisms in Biology seems to pose a problem to Secondary School students in Kenya. Though, the topic is important for understanding of the basic elements of the subject. The Examinations Council in Kenya has identified teacher centred pedagogical techniques as one of the main causes for this. Project based…

  16. On Surface Order and Disorder of α-Pinene-Derived Secondary Organic Material

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, Mona; Zhang, Yue; Upshur, Mary Alice; Liu, Pengfei; Blair, Sandra L.; Wang, Hongfei; Nizkorodov, Sergey; Thomson, Regan; Martin, Scot T.; Geiger, Franz M.

    2015-05-14

    The surfaces of secondary organic aerosol particles are notoriously difficult to access experimentally, even though they are the key location where exchange between the aerosol particle phase and its gas phase occurs. Here, we overcome this difficulty by applying standard and sub 1-cm-1 resolution vibrational sum frequency generation (SFG) spectroscopy to detect C–H oscillators at the surfaces of secondary organic material (SOM) prepared from the ozonolysis of α-pinene at Harvard University and at the University of California, Irvine that were subsequently collected on Teflon filters as well as CaF2 windows using electrostatic deposition. We find both samples yield comparable SFG spectra featuring an intense peak at 2940 cm-1 that are independent of spectral resolution and location or method of preparation. We hypothesize that the SFG spectra are due to surface-active C–H oscillators associated with the four-membered ring motif of α-pinene, which produces an unresolvable spectral continuum of approximately 50 cm-1 width reminiscent of the similar, albeit much broader, O–H stretching continuum observed in the SFG spectra of aqueous surfaces. Upon subjecting the SOM samples to cycles in relative humidity (RH) between <2% RH and 95% RH, we observe reversible changes in the SFG signal intensity across the entire spectral range surveyed for a polarization combination probing components of the vibrational transition dipole moments that are oriented parallel to the plane of incidence, but no signal intensity changes for any other polarization combination investigated. These results support the notion that the C–H oscillators at the surfaces of α-pinene-derived SOM deposited on CaF2 windows shift back and forth between two different molecular orientation distributions as the RH is lowered (more ordered) or raised (less ordered). The findings thus point towards the presence of a reversible surface switch for hindering (more ordered, <2%RH) and promoting (less

  17. Laboratory studies of monoterpene secondary organic aerosol formation and evolution

    Science.gov (United States)

    Thornton, J. A.; D'Ambro, E.; Zhao, Y.; Lee, B. H.; Pye, H. O. T.; Schobesberger, S.; Shilling, J.; Liu, J.

    2017-12-01

    We have conducted a series of chamber experiments to study the molecular composition and properties of secondary organic aerosol (SOA) formed from monoterpenes under a range of photochemical and dark conditions. We connect variations in the SOA mass yield to molecular composition and volatility, and use a detailed Master Chemical Mechanism (MCM) based chemical box model with dynamic gas-particle partitioning to examine the importance of various peroxy radical reaction mechanisms in setting the SOA yield and properties. We compare the volatility distribution predicted by the model to that inferred from isothermal room-temperature evaporation experiments using the FIGAERO-CIMS where SOA particles collected on a filter are allowed to evaporate under humidified pure nitrogen flow stream for up to 24 hours. We show that the combination of results requires prompt formation of low volatility SOA from predominantly gas-phase mechanisms, with important differences between monoterpenes (alpha-Pinene and delta-3-Carene) followed by slower non-radical particle phase chemistry that modulates both the chemical and physical properties of the SOA. Implications for the regional evolution of atmospheric monoterpene SOA are also discussed.

  18. Surgical Interventions for Organ and Limb Ischemia Associated With Primary and Secondary Antiphospholipid Antibody Syndrome With Arterial Involvement.

    Science.gov (United States)

    Hinojosa, Carlos A; Anaya-Ayala, Javier E; Bermudez-Serrato, Karla; García-Alva, Ramón; Laparra-Escareno, Hugo; Torres-Machorro, Adriana; Lizola, Rene

    2017-11-01

    The association of antiphospholipid antibody syndrome (APS) and hypercoagulability is well known. Arterial compromise leading to ischemia of organs and/or limbs in patients with APS is uncommon, frequently unrecognized, and rarely described. We evaluated our institutional experience. Retrospective review was conducted. From August 2007 to September 2016, 807 patients with diagnosis of APS were managed in our Institution. Patients with primary and secondary APS who required interventions were examined. Demographics, comorbidities, manifestations, procedures, complications, and other factors affecting outcomes were recorded. Fourteen patients (mean age 35 years old, standard deviation ±14) were evaluated and treated by our service. Six (43%) of them had primary APS and 8 (57%) had secondary APS; 11 (79%) were female. Two (14%) experienced distal aorta and iliac arteries involvement, 3 (21%) visceral vessels disease, 2 (14%) in upper and 7 (50%) in the lower extremity vasculatures. Thirteen (93%) patients underwent direct open revascularization and 1 with hand ischemia (Raynaud disease) underwent sympathectomy. During the mean follow-up period of 48 months, reinterventions included a revision of the proximal anastomosis of an aortobifemoral bypass graft, 1 (7%) abdominal exploration for bleeding, 1 (7%) graft thrombectomy, and 4 (29%) amputations (2 below the knee, 1 above the knee, and 1 transmetatarsal). One (7%) death occurred secondary to sepsis in a patient who had acute mesenteric ischemia. Significant differences in clinical manifestations and outcomes were not observed among patients with primary and secondary APS. All patients remained on systemic anticoagulation. APS is a prothrombotic disorder that may lead to arterial involvement with less frequency than the venous circulation but has significant morbidity and limb loss rate. Arterial reconstruction seems feasible in an attempt to salvage organs and limbs; however, research is necessary to establish the

  19. Optical Properties and Aging of Light Absorbing Secondary Organic Aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiumeng; Lin, Peng; Laskin, Alexander; Laskin, Julia; Kathmann, Shawn M.; Wise, Matthew E.; Caylor, Ryan; Imholt, Felisha; Selimovic, Vanessa; Shilling, John E.

    2016-10-14

    The light-absorbing organic aerosol (OA), commonly referred to as “brown carbon (BrC)”, has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various VOC precursors, NOx concentrations, photolysis time and relative humidity (RH) on the light absorption of selected secondary organic aerosols (SOA). Light absorption of chamber generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficients (MAC) value is observed from toluene SOA products formed under high NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organonitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible and UV light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed-SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.

  20. Gas phase precursors to anthropogenic secondary organic aerosol: detailed observations of 1,3,5-trimethylbenzene photooxidation

    Directory of Open Access Journals (Sweden)

    K. P. Wyche

    2009-01-01

    Full Text Available A series of photooxidation experiments were conducted in an atmospheric simulation chamber in order to investigate the oxidation mechanism and secondary organic aerosol (SOA formation potential of the model anthropogenic gas phase precursor, 1,3,5-trimethylbenzene. Alongside specific aerosol measurements, comprehensive gas phase measurements, primarily by Chemical Ionisation Reaction Time-of-Flight Mass Spectrometry (CIR-TOF-MS, were carried out to provide detailed insight into the composition and behaviour of the organic components of the gas phase matrix during SOA formation. An array of gas phase organic compounds was measured during the oxidation process, including several previously unmeasured primary bicyclic compounds possessing various functional groups. Analysis of results obtained during this study implies that these peroxide bicyclic species along with a series of ring opening products and organic acids contribute to SOA growth. The effect of varying the VOC/NOx ratio on SOA formation was explored, as was the effect of acid seeding. It was found that low NOx conditions favour more rapid aerosol formation and a higher aerosol yield, a result that implies a role for organic peroxides in the nucleation process and SOA growth.

  1. Potential of select intermediate-volatility organic compounds and consumer products for secondary organic aerosol and ozone formation under relevant urban conditions

    Science.gov (United States)

    Li, Weihua; Li, Lijie; Chen, Chia-li; Kacarab, Mary; Peng, Weihan; Price, Derek; Xu, Jin; Cocker, David R.

    2018-04-01

    Emissions of certain low vapor pressure-volatile organic compounds (LVP-VOCs) are considered exempt to volatile organic compounds (VOC) regulations due to their low evaporation rates. However, these compounds may still play a role in ambient secondary organic aerosol (SOA) and ozone formation. The LVP-VOCs selected for this work are categorized as intermediate-volatility organic compounds (IVOCs) according to their vapor pressures and molecular formulas. In this study, the evaporation rates of 14 select IVOCs are investigated with half of them losing more than 95% of their mass in less than one month. Further, SOA and ozone formation are presented from 11 select IVOCs and 5 IVOC-containing generic consumer products under atmospherically relevant conditions using varying radical sources (NOx and/or H2O2) and a surrogate reactive organic gas (ROG) mixture. Benzyl alcohol (0.41), n-heptadecane (0.38), and diethylene glycol monobutyl ether (0.16) are determined to have SOA yields greater than 0.1 in the presence of NOx and a surrogate urban hydrocarbon mixture. IVOCs also influence ozone formation from the surrogate urban mixture by impacting radical levels and NOx availability. The addition of lab created generic consumer products has a weak influence on ozone formation from the surrogate mixture but strongly affects SOA formation. The overall SOA and ozone formation of the generic consumer products could not be explained solely by the results of the pure IVOC experiments.

  2. submitter Observation of viscosity transition in α-pinene secondary organic aerosol

    CERN Document Server

    Järvinen, Emma; Nichman, Leonid; Kristensen, Thomas B; Fuchs, Claudia; Hoyle, Christopher R; Höppel, Niko; Corbin, Joel C; Craven, Jill; Duplissy, Jonathan; Ehrhart, Sebastian; El Haddad, Imad; Frege, Carla; Gordon, Hamish; Jokinen, Tuija; Kallinger, Peter; Kirkby, Jasper; Kiselev, Alexei; Naumann, Karl-Heinz; Petäjä, Tuukka; Pinterich, Tamara; Prevot, Andre S H; Saathoff, Harald; Schiebel, Thea; Sengupta, Kamalika; Simon, Mario; Slowik, Jay G; Tröstl, Jasmin; Virtanen, Annele; Vochezer, Paul; Vogt, Steffen; Wagner, Andrea C; Wagner, Robert; Williamson, Christina; Winkler, Paul M; Yan, Chao; Baltensperger, Urs; Donahue, Neil M; Flagan, Rick C; Gallagher, Martin; Hansel, Armin; Kulmala, Markku; Stratmann, Frank; Worsnop, Douglas R; Möhler, Ottmar; Leisner, Thomas; Schnaiter, Martin

    2016-01-01

    Under certain conditions, secondary organic aerosol (SOA) particles can exist in the atmosphere in an amorphous solid or semi-solid state. To determine their relevance to processes such as ice nucleation or chemistry occurring within particles requires knowledge of the temperature and relative humidity (RH) range for SOA to exist in these states. In the Cosmics Leaving Outdoor Droplets (CLOUD) experiment at The European Organisation for Nuclear Research (CERN), we deployed a new in situ optical method to detect the viscous state of α-pinene SOA particles and measured their transition from the amorphous highly viscous state to states of lower viscosity. The method is based on the depolarising properties of laboratory-produced non-spherical SOA particles and their transformation to non-depolarising spherical particles at relative humidities near the deliquescence point. We found that particles formed and grown in the chamber developed an asymmetric shape through coagulation. A transition to a spherical shape w...

  3. A fish-feeding laboratory bioassay to assess the antipredatory activity of secondary metabolites from the tissues of marine organisms.

    Science.gov (United States)

    Marty, Micah J; Pawlik, Joseph R

    2015-01-11

    Marine chemical ecology is a young discipline, having emerged from the collaboration of natural products chemists and marine ecologists in the 1980s with the goal of examining the ecological functions of secondary metabolites from the tissues of marine organisms. The result has been a progression of protocols that have increasingly refined the ecological relevance of the experimental approach. Here we present the most up-to-date version of a fish-feeding laboratory bioassay that enables investigators to assess the antipredatory activity of secondary metabolites from the tissues of marine organisms. Organic metabolites of all polarities are exhaustively extracted from the tissue of the target organism and reconstituted at natural concentrations in a nutritionally appropriate food matrix. Experimental food pellets are presented to a generalist predator in laboratory feeding assays to assess the antipredatory activity of the extract. The procedure described herein uses the bluehead, Thalassoma bifasciatum, to test the palatability of Caribbean marine invertebrates; however, the design may be readily adapted to other systems. Results obtained using this laboratory assay are an important prelude to field experiments that rely on the feeding responses of a full complement of potential predators. Additionally, this bioassay can be used to direct the isolation of feeding-deterrent metabolites through bioassay-guided fractionation. This feeding bioassay has advanced our understanding of the factors that control the distribution and abundance of marine invertebrates on Caribbean coral reefs and may inform investigations in diverse fields of inquiry, including pharmacology, biotechnology, and evolutionary ecology.

  4. Evaporation Kinetics of Laboratory Generated Secondary Organic Aerosols at Elevated Relative Humidity

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Jacqueline M.; Imre, D.; Beranek, Josef; Shrivastava, ManishKumar B.; Zelenyuk, Alla

    2015-01-06

    Secondary organic aerosols (SOA) dominate atmospheric organic aerosols that affect climate, air quality, and health. Recent studies indicate that, contrary to previously held assumptions, at low relative humidity (RH) these particles are semi-solid and evaporate orders of magnitude slower than expected. Elevated relative humidity has the potential to affect significantly formation, properties, and atmospheric evolution of SOA particles. Here we present a study of the effect of RH on the room-temperature evaporation kinetics of SOA particles formed by ozonolysis of α-pinene and limonene. Experiments were carried out on SOA particles generated, evaporated, and aged at 0%, 50% and 90% RH. We find that in all cases evaporation begins with a relatively fast phase, during which 30% to 70% of the particle mass evaporates in 2 hours, followed by a much slower evaporation rate. Evaporation kinetics at 0% and 50% RH are nearly the same, while at 90% RH a slightly larger fraction evaporates. In all cases, aging the particles prior to inducing evaporation reduces the evaporative losses, with aging at elevated RH leading to more significant effect. In all cases, SOA evaporation is nearly size-independent, providing direct evidence that oligomers play a crucial role in determining the evaporation kinetics.

  5. Secondary organic aerosol from sesquiterpene and monoterpene emissions in the United States.

    Science.gov (United States)

    Sakulyanontvittaya, Tanarit; Guenther, Alex; Helmig, Detlev; Milford, Jana; Wiedinmyer, Christine

    2008-12-01

    Emissions of volatile organic compounds (VOC) from vegetation are believed to be a major source of secondary organic aerosol (SOA), which in turn comprises a large fraction of fine particulate matter in many areas. Sesquiterpenes are a class of biogenic VOC with high chemical reactivity and SOA yields. Sesquiterpenes have only recently been quantified in emissions from a wide variety of plants. In this study, a new sesquiterpene emission inventory is used to provide input to the Models-3 Community Multiscale Air Quality (CMAQ) model. CMAQ is used to estimate the contribution of sesquiterpenes and monoterpenes to SOA concentrations over the contiguous United States. The gas-particle partitioning module of CMAQ was modified to include condensable products of sesquiterpene oxidation and to update values of the enthalpy of vaporization. The resulting model predicts July monthly average surface concentrations of total SOA in the eastern U.S. ranging from about 0.2-0.8 microg m(-3). This is roughly double the amount of SOA produced in this region when sesquiterpenes are not included. Even with sesquiterpenes included, however, the model significantly underpredicts surface concentrations of particle-phase organic matter compared to observed values. Treating all SOA as capable of undergoing polymerization increases predicted monthly average surface concentrations in July to 0.4-1.2 microg m(-3), in closer agreement with observations. Using the original enthalpy of vaporization value in CMAQ in place of the values estimated from the recent literature results in predicted SOA concentrations of about 0.3-1.3 microg m(-3).

  6. Heterogeneous conversion of NO2 on secondary organic aerosol surfaces: A possible source of nitrous acid (HONO in the atmosphere?

    Directory of Open Access Journals (Sweden)

    R. Bröske

    2003-01-01

    Full Text Available The heterogeneous conversion of NO2 on different secondary organic aerosols (SOA was investigated with the focus on a possible formation of nitrous acid (HONO. In one set of experiments different organic aerosols were produced in the reactions of O3 with alpha-pinene, limonene or catechol and OH radicals with toluene or limonene, respectively. The aerosols were sampled on filters and exposed to humidified NO2  mixtures under atmospheric conditions. The estimated upper limits for the uptake coefficients of NO2  and the reactive uptake coefficients NO2  -> HONO are in the range of 10-6 and 10-7, respectively. The integrated HONO formation for 1 h reaction time was 13 cm-2 geometrical surface and 17 g-1 particle mass. In a second set of experiments the conversion of NO2 into HONO in the presence of organic particles was carried out in an aerosol flow tube under atmospheric conditions. In this case the aerosols were produced in the reaction of O3 with beta-pinene, limonene or catechol, respectively. The upper limits for the reactive uptake coefficients NO2 -> HONO were in the range of 7 x 10-7 - 9 x 10-6. The results from the present study show that heterogeneous formation of nitrous acid on secondary organic aerosols (SOA is unimportant for the atmosphere.

  7. Cloud condensation nuclei activity of aliphatic amine secondary aerosol

    Science.gov (United States)

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g. hydroxyl radical and nitrate radical). The resulting particle composition can contain both secondary organic aerosol (SOA) and inorganic salts. The fraction of organic to inorganic materials in the particulate ...

  8. Modeling organic aerosols during MILAGRO: importance of biogenic secondary organic aerosols

    Directory of Open Access Journals (Sweden)

    A. Hodzic

    2009-09-01

    Full Text Available The meso-scale chemistry-transport model CHIMERE is used to assess our understanding of major sources and formation processes leading to a fairly large amount of organic aerosols – OA, including primary OA (POA and secondary OA (SOA – observed in Mexico City during the MILAGRO field project (March 2006. Chemical analyses of submicron aerosols from aerosol mass spectrometers (AMS indicate that organic particles found in the Mexico City basin contain a large fraction of oxygenated organic species (OOA which have strong correspondence with SOA, and that their production actively continues downwind of the city. The SOA formation is modeled here by the one-step oxidation of anthropogenic (i.e. aromatics, alkanes, biogenic (i.e. monoterpenes and isoprene, and biomass-burning SOA precursors and their partitioning into both organic and aqueous phases. Conservative assumptions are made for uncertain parameters to maximize the amount of SOA produced by the model. The near-surface model evaluation shows that predicted OA correlates reasonably well with measurements during the campaign, however it remains a factor of 2 lower than the measured total OA. Fairly good agreement is found between predicted and observed POA within the city suggesting that anthropogenic and biomass burning emissions are reasonably captured. Consistent with previous studies in Mexico City, large discrepancies are encountered for SOA, with a factor of 2–10 model underestimate. When only anthropogenic SOA precursors were considered, the model was able to reproduce within a factor of two the sharp increase in OOA concentrations during the late morning at both urban and near-urban locations but the discrepancy increases rapidly later in the day, consistent with previous results, and is especially obvious when the column-integrated SOA mass is considered instead of the surface concentration. The increase in the missing SOA mass in the afternoon coincides with the sharp drop in POA

  9. The Effect of Systemic Synthesis Questions [SSynQs] on Students' Performance and Meaningful Learning in Secondary Organic Chemistry Teaching

    Science.gov (United States)

    Hrin, Tamara N.; Milenkovic, Dušica D.; Segedinac, Mirjana D.

    2016-01-01

    Many studies in the field of chemical education have emphasized the fact that students at secondary level have considerable difficulties in mastering organic chemistry contents. As a result, they choose to learn these contents in a "rote" way. Taking this fact into consideration, the first aim of our study was to help students in…

  10. Ubiquitous influence of wildfire emissions and secondary organic aerosol on summertime atmospheric aerosol in the forested Great Lakes region

    Science.gov (United States)

    Gunsch, Matthew J.; May, Nathaniel W.; Wen, Miao; Bottenus, Courtney L. H.; Gardner, Daniel J.; VanReken, Timothy M.; Bertman, Steven B.; Hopke, Philip K.; Ault, Andrew P.; Pratt, Kerri A.

    2018-03-01

    Long-range aerosol transport affects locations hundreds of kilometers from the point of emission, leading to distant particle sources influencing rural environments that have few major local sources. Source apportionment was conducted using real-time aerosol chemistry measurements made in July 2014 at the forested University of Michigan Biological Station near Pellston, Michigan, a site representative of the remote forested Great Lakes region. Size-resolved chemical composition of individual 0.5-2.0 µm particles was measured using an aerosol time-of-flight mass spectrometer (ATOFMS), and non-refractory aerosol mass less than 1 µm (PM1) was measured with a high-resolution aerosol mass spectrometer (HR-AMS). The field site was influenced by air masses transporting Canadian wildfire emissions and urban pollution from Milwaukee and Chicago. During wildfire-influenced periods, 0.5-2.0 µm particles were primarily aged biomass burning particles (88 % by number). These particles were heavily coated with secondary organic aerosol (SOA) formed during transport, with organics (average O/C ratio of 0.8) contributing 89 % of the PM1 mass. During urban-influenced periods, organic carbon, elemental carbon-organic carbon, and aged biomass burning particles were identified, with inorganic secondary species (ammonium, sulfate, and nitrate) contributing 41 % of the PM1 mass, indicative of atmospheric processing. With current models underpredicting organic carbon in this region and biomass burning being the largest combustion contributor to SOA by mass, these results highlight the importance for regional chemical transport models to accurately predict the impact of long-range transported particles on air quality in the upper Midwest, United States, particularly considering increasing intensity and frequency of Canadian wildfires.

  11. The Organic Secondary Building Unit: Strong Intermolecular π Interactions Define Topology in MIT-25, a Mesoporous MOF with Proton-Replete Channels.

    Science.gov (United States)

    Park, Sarah S; Hendon, Christopher H; Fielding, Alistair J; Walsh, Aron; O'Keeffe, Michael; Dincă, Mircea

    2017-03-15

    The structure-directing role of the inorganic secondary building unit (SBU) is key for determining the topology of metal-organic frameworks (MOFs). Here we show that organic building units relying on strong π interactions that are energetically competitive with the formation of common inorganic SBUs can also play a role in defining the topology. We demonstrate the importance of the organic SBU in the formation of Mg 2 H 6 (H 3 O)(TTFTB) 3 (MIT-25), a mesoporous MOF with the new ssp topology. A delocalized electronic hole is critical in the stabilization of the TTF triad organic SBUs and exemplifies a design principle for future MOF synthesis.

  12. Evolutionary diversification of secondary mechanoreceptor cells in tunicata.

    Science.gov (United States)

    Rigon, Francesca; Stach, Thomas; Caicci, Federico; Gasparini, Fabio; Burighel, Paolo; Manni, Lucia

    2013-06-04

    Hair cells are vertebrate secondary sensory cells located in the ear and in the lateral line organ. Until recently, these cells were considered to be mechanoreceptors exclusively found in vertebrates that evolved within this group. Evidence of secondary mechanoreceptors in some tunicates, the proposed sister group of vertebrates, has recently led to the hypothesis that vertebrate and tunicate secondary sensory cells share a common origin. Secondary sensory cells were described in detail in two tunicate groups, ascidians and thaliaceans, in which they constitute an oral sensory structure called the coronal organ. Among thaliaceans, the organ is absent in salps and it has been hypothesised that this condition is due to a different feeding system adopted by this group of animals. No information is available as to whether a comparable structure exists in the third group of tunicates, the appendicularians, although different sensory structures are known to be present in these animals. We studied the detailed morphology of appendicularian oral mechanoreceptors. Using light and electron microscopy we could demonstrate that the mechanosensory organ called the circumoral ring is composed of secondary sensory cells. We described the ultrastructure of the circumoral organ in two appendicularian species, Oikopleura dioica and Oikopleura albicans, and thus taxonomically completed the data collection of tunicate secondary sensory cells. To understand the evolution of secondary sensory cells in tunicates, we performed a cladistic analysis using morphological data. We constructed a matrix consisting of 19 characters derived from detailed ultrastructural studies in 16 tunicate species and used a cephalochordate and three vertebrate species as outgroups. Our study clearly shows that the circumoral ring is the appendicularian homologue of the coronal organ of other tunicate taxa. The cladistic analysis enabled us to reconstruct the features of the putative ancestral hair cell in

  13. Fgf8-related secondary organizers exert different polarizing planar instructions along the mouse anterior neural tube.

    Science.gov (United States)

    Crespo-Enriquez, Ivan; Partanen, Juha; Martinez, Salvador; Echevarria, Diego

    2012-01-01

    Early brain patterning depends on proper arrangement of positional information. This information is given by gradients of secreted signaling molecules (morphogens) detected by individual cells within the responding tissue, leading to specific fate decisions. Here we report that the morphogen FGF8 exerts initially a differential signal activity along the E9.5 mouse neural tube. We demonstrate that this polarizing activity codes by RAS-regulated ERK1/2 signaling and depends on the topographical location of the secondary organizers: the isthmic organizer (IsO) and the anterior neural ridge (anr) but not on zona limitans intrathalamica (zli). Our results suggest that Sprouty2, a negative modulator of RAS/ERK pathway, is important for regulating Fgf8 morphogenetic signal activity by controlling Fgf8-induced signaling pathways and positional information during early brain development.

  14. The levels, variation characteristics, and sources of atmospheric non-methane hydrocarbon compounds during wintertime in Beijing, China

    Directory of Open Access Journals (Sweden)

    C. Liu

    2017-09-01

    Full Text Available Atmospheric non-methane hydrocarbon compounds (NMHCs were measured at a sampling site in Beijing city from 15 December 2015 to 14 January 2016 to recognize their pollution levels, variation characteristics, and sources. We quantified 53 NMHCs, and the proportions of alkanes, alkenes, acetylene, and aromatics to the total NMHCs were 49.8–55.8, 21.5–24.7, 13.5–15.9, and 9.3–10.7 %, respectively. The variation trends in the NMHC concentrations were basically identical and exhibited remarkable fluctuation, which was mainly ascribed to the variation in meteorological conditions, especially wind speed. The diurnal variations in NMHCs on clear days exhibited two peaks during the morning and evening rush hours, whereas the rush hours' peaks diminished or even disappeared on the haze days, implying that the relative contribution of the vehicular emissions to atmospheric NMHCs depended on the pollution status. Two evident peaks of the propane ∕ propene ratios appeared in the early morning before sun rise and at noontime on clear days, whereas only one peak occurred in the afternoon during the haze days, which were attributed to the relatively fast reactions of propene with OH, NO3, and O3. Based on the chemical kinetic equations, the daytime OH concentrations were calculated to be in the range of 3. 47 × 105–1. 04 × 106 molecules cm−3 on clear days and 6. 42 × 105–2. 35 × 106 molecules cm−3 on haze days. The nighttime NO3 concentrations were calculated to be in the range of 2. 82 × 109–4. 86 × 109 molecules cm−3 on clear days. The correlation coefficients of typical hydrocarbon pairs (benzene ∕ toluene, o-xylene ∕ m,p-xylene, isopentane ∕ n-pentane, etc. revealed that vehicular emissions and coal combustion were important sources for atmospheric NMHCs in Beijing during the wintertime. Five major emission sources for atmospheric NMHCs in Beijing during

  15. The impact of recirculation, ventilation and filters on secondary organic aerosols generated by indoor chemistry

    DEFF Research Database (Denmark)

    Fadeyi, M.O.; Weschler, Charles J.; Tham, K.W.

    2009-01-01

    This study examined the impact of recirculation rates (7 and 14 h(-1)), ventilation rates (1 and 2 h(-1)), and filtration on secondary organic aerosols (SOAs) generated by ozone of outdoor origin reacting with limonene of indoor origin. Experiments were conducted within a recirculating air handling......, but this was more than offset by the increased dilution of SOA derived from ozone-initiated chemistry. The presence of a particle filter (new or used) strikingly lowered SOA number and mass concentrations compared with conditions when no filter was present. Even though the particle filter in this study had only 35...

  16. Formation of secondary organic aerosols from gas-phase emissions of heated cooking oils

    Directory of Open Access Journals (Sweden)

    T. Liu

    2017-06-01

    Full Text Available Cooking emissions can potentially contribute to secondary organic aerosol (SOA but remain poorly understood. In this study, formation of SOA from gas-phase emissions of five heated vegetable oils (i.e., corn, canola, sunflower, peanut and olive oils was investigated in a potential aerosol mass (PAM chamber. Experiments were conducted at 19–20 °C and 65–70 % relative humidity (RH. The characterization instruments included a scanning mobility particle sizer (SMPS and a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS. The efficiency of SOA production, in ascending order, was peanut oil, olive oil, canola oil, corn oil and sunflower oil. The major SOA precursors from heated cooking oils were related to the content of monounsaturated fat and omega-6 fatty acids in cooking oils. The average production rate of SOA, after aging at an OH exposure of 1. 7 × 1011 molecules cm−3 s, was 1. 35 ± 0. 30 µg min−1, 3 orders of magnitude lower compared with emission rates of fine particulate matter (PM2. 5 from heated cooking oils in previous studies. The mass spectra of cooking SOA highly resemble field-derived COA (cooking-related organic aerosol in ambient air, with R2 ranging from 0.74 to 0.88. The average carbon oxidation state (OSc of SOA was −1.51 to −0.81, falling in the range between ambient hydrocarbon-like organic aerosol (HOA and semi-volatile oxygenated organic aerosol (SV-OOA, indicating that SOA in these experiments was lightly oxidized.

  17. [Correlation of codon biases and potential secondary structures with mRNA translation efficiency in unicellular organisms].

    Science.gov (United States)

    Vladimirov, N V; Likhoshvaĭ, V A; Matushkin, Iu G

    2007-01-01

    Gene expression is known to correlate with degree of codon bias in many unicellular organisms. However, such correlation is absent in some organisms. Recently we demonstrated that inverted complementary repeats within coding DNA sequence must be considered for proper estimation of translation efficiency, since they may form secondary structures that obstruct ribosome movement. We have developed a program for estimation of potential coding DNA sequence expression in defined unicellular organism using its genome sequence. The program computes elongation efficiency index. Computation is based on estimation of coding DNA sequence elongation efficiency, taking into account three key factors: codon bias, average number of inverted complementary repeats, and free energy of potential stem-loop structures formed by the repeats. The influence of these factors on translation is numerically estimated. An optimal proportion of these factors is computed for each organism individually. Quantitative translational characteristics of 384 unicellular organisms (351 bacteria, 28 archaea, 5 eukaryota) have been computed using their annotated genomes from NCBI GenBank. Five potential evolutionary strategies of translational optimization have been determined among studied organisms. A considerable difference of preferred translational strategies between Bacteria and Archaea has been revealed. Significant correlations between elongation efficiency index and gene expression levels have been shown for two organisms (S. cerevisiae and H. pylori) using available microarray data. The proposed method allows to estimate numerically the coding DNA sequence translation efficiency and to optimize nucleotide composition of heterologous genes in unicellular organisms. http://www.mgs.bionet.nsc.ru/mgs/programs/eei-calculator/.

  18. Membrane Fouling Potential of Secondary Effluent Organic Matter (EfOM) from Conventional Activated Sludge Process

    KAUST Repository

    Wei, Chunhai; Amy, Gary L.

    2012-01-01

    Secondary effluent organic matter (EfOM) from a conventional activated sludge process was filtered through constant-pressure dead-end filtration tests with a sequential ultrafiltration (UF, molecular weight cut-off (MWCO) of 10k Dalton) and nanofiltration (NF, MWCO of 200 Dalton) array to investigate its membrane fouling potential. Advanced analytical methods including liquid chromatography with online carbon detection (LC-OCD) and fluorescent excitation-emission matrix (F-EEM) were employed for EfOM characterization. EfOM consisted of humic substances and building blocks, low molecular weight (LMW) neutrals, biopolymers (mainly proteins) and hydrophobic organics according to the sequence of their organic carbon fractions. The UF rejected only biopolymers and the NF rejected most humics and building blocks and a significant part of LMW neutrals. Simultaneous occurrence of cake layer and standard blocking during the filtration process of both UF and NF was identified according to constant-pressure filtration equations, which was possibly caused by the heterogeneous nature of EfOM with a wide MW distribution (several ten to several million Dalton). Thus the corresponding two fouling indices (kc for cake layer and ks for standard blocking) from UF and NF could characterize the fouling potential of macromolecular biopolymers and low to intermediate MW organics (including humics, building blocks, LMW neutrals), respectively. Compared with macromolecular biopolymers, low to intermediate MW organics exhibited a much higher fouling potential due to their lower molecular weight and higher concentration.

  19. Secondary organic aerosols. Chemical aging, hygroscopicity, and cloud droplet activation

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Angela

    2011-07-06

    Atmospheric aerosols have an important impact on the radiation balance, and thus, on the climate of the Earth. Aerosol particles scatter and absorb incoming solar and terrestrial radiation. Apart from this direct effect, aerosol particles act as cloud condensation nuclei (CCN), thereby greatly influencing the microphysics of clouds. Secondary organic aerosols (SOA) are an important fraction of the total aerosol mass. In many environments these organic compounds are mainly products of the oxidation of biogenic volatile organic compounds (VOC). In this study the hygroscopic growth and CCN activation of biogenic SOA were investigated which was formed by the oxidation of VOC with O{sub 3} and photochemically formed OH radicals under low NO{sub x} conditions. For this purpose, a complex mixture of VOC emitted by boreal tree species as gas-phase precursors was used in the Juelich Plant Atmosphere Chamber (JPAC). In long-term studies in the atmosphere simulation chamber SAPHIR {alpha}-pinene or a defined mixture of {alpha}-pinene, {beta}-pinene, limonene, ocimene, {delta}-3-carene served as precursors. Initial precursor concentrations between 40 and 1000 ppbC were investigated. The observed SOA particles were slightly hygroscopic with an average hygroscopicity parameter {kappa}(CCN) = 0.10 {+-} 0.02 and {kappa}(90%RH) = 0.05 {+-} 0.01. Closure between hygroscopic growth and CCN activation data could be achieved allowing either surface tension reduction, limited solubility, or non-ideality of the solution in the droplet. The SOA solutions in equilibrium with RH <95% are possible highly non-ideal. Therefore the organic-water interaction were investigated by applying the UNIFAC model. Calculations for surrogate compounds exhibited the same strong concentration (i.e. RH) dependence of {kappa} at sub-saturation. The growth curves could be fitted and CCN activation predicted by assuming a binary mixture of water and one hypothetical organic compound. The occurrence of

  20. Effect of humidity on the composition of isoprene photooxidation secondary organic aerosol

    Directory of Open Access Journals (Sweden)

    T. B. Nguyen

    2011-07-01

    Full Text Available The effect of relative humidity (RH on the composition and concentrations of gas-phase products and secondary organic aerosol (SOA generated from the photooxidation of isoprene under high-NOx conditions was investigated. Experiments were performed with hydrogen peroxide as the OH precursor and in the absence of seed aerosol. The relative yields of most gas-phase products were the same regardless of initial water vapor concentration with exception of hydroxyacetone and glycolaldehyde, which were considerably affected by RH. A significant change was observed in the SOA composition, with many unique condensed-phase products formed under humid (90 % RH vs. dry (<2 % RH conditions, without any detectable effect on the rate and extent of the SOA mass growth. There is a 40 % reduction in the number and relative abundance of distinct particle-phase nitrogen-containing organic compounds (NOC detected by high resolution mass spectrometry. The suppression of condensation reactions, which produce water as a product, is the most important chemical effect of the increased RH. For example, the total signal from oligomeric esters of 2-methylglyceric acid was reduced by about 60 % under humid conditions and the maximum oligomer chain lengths were reduced by 7–11 carbons. Oligomers formed by addition mechanisms, without direct involvement of water, also decreased at elevated RH but to a much smaller extent. The observed reduction in the extent of condensation-type oligomerization at high RH may have substantial impact on the phase characteristics and hygroscopicity of the isoprene aerosol. The reduction in the amount of organic nitrates in the particle phase has implications for understanding the budget of NOC compounds.

  1. Formation of secondary organic aerosol from isoprene oxidation over Europe

    Directory of Open Access Journals (Sweden)

    M. Karl

    2009-09-01

    Full Text Available The role of isoprene as a precursor to secondary organic aerosol (SOA over Europe is studied with the two-way nested global chemistry transport model TM5. The inclusion of the formation of SOA from isoprene oxidation in our model almost doubles the atmospheric burden of SOA over Europe compared to SOA formation from terpenes and aromatics. The reference simulation, which considers SOA formation from isoprene, terpenes and aromatics, predicts a yearly European production rate of 1.0 Tg SOA yr−1 and an annual averaged atmospheric burden of about 50 Gg SOA over Europe. A fraction of 35% of the SOA produced in the boundary layer over Europe is transported to higher altitudes or to other world regions. Summertime measurements of organic matter (OM during the extensive EMEP OC/EC campaign 2002/2003 are better reproduced when SOA formation from isoprene is taken into account, reflecting also the strong seasonality of isoprene and other biogenic volatile organic compounds (BVOC emissions from vegetation. However, during winter, our model strongly underestimates OM, likely caused by missing wood burning in the emission inventories. Uncertainties in the parameterisation of isoprene SOA formation have been investigated. Maximum SOA production is found for irreversible sticking (non-equilibrium partitioning of condensable vapours on particles, with tropospheric SOA production over Europe increased by a factor of 4 in summer compared to the reference case. Completely neglecting SOA formation from isoprene results in the lowest estimate (0.51 Tg SOA yr−1. The amount and the nature of the absorbing matter are shown to be another key uncertainty when predicting SOA levels. Consequently, smog chamber experiments on SOA formation should be performed with different types of seed aerosols and without seed aerosols in order to derive an improved treatment of the absorption of SOA in the models. Consideration of a number of recent insights

  2. Particle size dependence of biogenic secondary organic aerosol molecular composition

    Science.gov (United States)

    Tu, Peijun; Johnston, Murray V.

    2017-06-01

    Formation of secondary organic aerosol (SOA) is initiated by the oxidation of volatile organic compounds (VOCs) in the gas phase whose products subsequently partition to the particle phase. Non-volatile molecules have a negligible evaporation rate and grow particles at their condensation rate. Semi-volatile molecules have a significant evaporation rate and grow particles at a much slower rate than their condensation rate. Particle phase chemistry may enhance particle growth if it transforms partitioned semi-volatile molecules into non-volatile products. In principle, changes in molecular composition as a function of particle size allow non-volatile molecules that have condensed from the gas phase (a surface-limited process) to be distinguished from those produced by particle phase reaction (a volume-limited process). In this work, SOA was produced by β-pinene ozonolysis in a flow tube reactor. Aerosol exiting the reactor was size-selected with a differential mobility analyzer, and individual particle sizes between 35 and 110 nm in diameter were characterized by on- and offline mass spectrometry. Both the average oxygen-to-carbon (O / C) ratio and carbon oxidation state (OSc) were found to decrease with increasing particle size, while the relative signal intensity of oligomers increased with increasing particle size. These results are consistent with oligomer formation primarily in the particle phase (accretion reactions, which become more favored as the volume-to-surface-area ratio of the particle increases). Analysis of a series of polydisperse SOA samples showed similar dependencies: as the mass loading increased (and average volume-to-surface-area ratio increased), the average O / C ratio and OSc decreased, while the relative intensity of oligomer ions increased. The results illustrate the potential impact that particle phase chemistry can have on biogenic SOA formation and the particle size range where this chemistry becomes important.

  3. Particle size dependence of biogenic secondary organic aerosol molecular composition

    Directory of Open Access Journals (Sweden)

    P. Tu

    2017-06-01

    Full Text Available Formation of secondary organic aerosol (SOA is initiated by the oxidation of volatile organic compounds (VOCs in the gas phase whose products subsequently partition to the particle phase. Non-volatile molecules have a negligible evaporation rate and grow particles at their condensation rate. Semi-volatile molecules have a significant evaporation rate and grow particles at a much slower rate than their condensation rate. Particle phase chemistry may enhance particle growth if it transforms partitioned semi-volatile molecules into non-volatile products. In principle, changes in molecular composition as a function of particle size allow non-volatile molecules that have condensed from the gas phase (a surface-limited process to be distinguished from those produced by particle phase reaction (a volume-limited process. In this work, SOA was produced by β-pinene ozonolysis in a flow tube reactor. Aerosol exiting the reactor was size-selected with a differential mobility analyzer, and individual particle sizes between 35 and 110 nm in diameter were characterized by on- and offline mass spectrometry. Both the average oxygen-to-carbon (O ∕ C ratio and carbon oxidation state (OSc were found to decrease with increasing particle size, while the relative signal intensity of oligomers increased with increasing particle size. These results are consistent with oligomer formation primarily in the particle phase (accretion reactions, which become more favored as the volume-to-surface-area ratio of the particle increases. Analysis of a series of polydisperse SOA samples showed similar dependencies: as the mass loading increased (and average volume-to-surface-area ratio increased, the average O ∕ C ratio and OSc decreased, while the relative intensity of oligomer ions increased. The results illustrate the potential impact that particle phase chemistry can have on biogenic SOA formation and the particle size range where this chemistry becomes

  4. Effect of NOx level on secondary organic aerosol (SOA formation from the photooxidation of terpenes

    Directory of Open Access Journals (Sweden)

    R. C. Flagan

    2007-10-01

    Full Text Available Secondary organic aerosol (SOA formation from the photooxidation of one monoterpene (α-pinene and two sesquiterpenes (longifolene and aromadendrene is investigated in the Caltech environmental chambers. The effect of NOx on SOA formation for these biogenic hydrocarbons is evaluated by performing photooxidation experiments under varying NOx conditions. The NOx dependence of α-pinene SOA formation follows the same trend as that observed previously for a number of SOA precursors, including isoprene, in which SOA yield (defined as the ratio of the mass of organic aerosol formed to the mass of parent hydrocarbon reacted decreases as NOx level increases. The NOx dependence of SOA yield for the sesquiterpenes, longifolene and aromadendrene, however, differs from that determined for isoprene and α-pinene; the aerosol yield under high-NOx conditions substantially exceeds that under low-NOx conditions. The reversal of the NOx dependence of SOA formation for the sesquiterpenes is consistent with formation of relatively low-volatility organic nitrates, and/or the isomerization of large alkoxy radicals leading to less volatile products. Analysis of the aerosol chemical composition for longifolene confirms the presence of organic nitrates under high-NOx conditions. Consequently the formation of SOA from certain biogenic hydrocarbons such as sesquiterpenes (and possibly large anthropogenic hydrocarbons as well may be more efficient in polluted air.

  5. Physical and chemical characterization of urban winter-time aerosols by mobile measurements in Helsinki, Finland

    Science.gov (United States)

    Pirjola, Liisa; Niemi, Jarkko V.; Saarikoski, Sanna; Aurela, Minna; Enroth, Joonas; Carbone, Samara; Saarnio, Karri; Kuuluvainen, Heino; Kousa, Anu; Rönkkö, Topi; Hillamo, Risto

    2017-06-01

    A two-week measurement campaign by a mobile laboratory van was performed in urban environments in the Helsinki metropolitan area, Finland, in winter 2012, to obtain a comprehensive view on aerosol properties and sources. The abundances and physico-chemical properties of particles varied strongly in time and space, depending on the main sources of aerosols. Four major types of winter aerosol were recognized: 1) clean background aerosol with low particle number (Ntot) and lung deposited surface area (LDSA) concentrations due to marine air flows from the Atlantic Ocean; 2) long-range transported (LRT) pollution aerosol due to air flows from eastern Europe where the particles were characterized by the high contribution of oxygenated organic aerosol (OOA) and inorganic species, particularly sulphate, but low BC contribution, and their size distribution possessed an additional accumulation mode; 3) fresh smoke plumes from residential wood combustion in suburban small houses, these particles were characterized by high biomass burning organic aerosol (BBOA) and black carbon (BC) concentrations; and 4) fresh emissions from traffic while driving on busy streets in the city centre and on the highways during morning rush hours. This aerosol was characterized by high concentration of Ntot, LDSA, small particles in the nucleation mode, as well as high hydrocarbon-like organic aerosol (HOA) and BC concentrations. In general, secondary components (OOA, NO3, NH4, and SO4) dominated the PM1 chemical composition during the LRT episode accounting for 70-80% of the PM1 mass, whereas fresh primary emissions (BC, HOA and BBOA) dominated the local traffic and wood burning emissions. The major individual particle types observed with electron microscopy analysis (TEM/EDX) were mainly related to residential wood combustion (K/S/C-rich, soot, other C-rich particles), traffic (soot, Si/Al-rich, Fe-rich), heavy fuel oil combustion in heat plants or ships (S with V-Ni-Fe), LRT pollutants (S

  6. Physical parameters effect on ozone-initiated formation of indoor secondary organic aerosols with emissions from cleaning products.

    Science.gov (United States)

    Huang, Yu; Ho, Kin Fai; Ho, Steven Sai Hang; Lee, Shun Cheng; Yau, P S; Cheng, Yan

    2011-09-15

    The effect of air exchange rate (ACH), temperature (T), and relative humidity (RH) on the formation of indoor secondary organic aerosols (SOAs) through ozonolysis of biogenic organic compounds (BVOCs) emitted from floor cleaner was investigated in this study. The total particle count (with D(p) of 6-225 nm) was up to 1.2 × 10(3)#cm(-3) with ACH of 1.08 h(-1), and it became much more significant with ACH of 0.36 h(-1) (1.1 × 10(4)#cm(-3)). This suggests that a higher ventilation rate can effectively dilute indoor BVOCs, resulting in a less ultrafine particle formation. The total particle count increased when temperature changed from 15 to 23 °C but it decreased when the temperature further increased to 30 °C. It could be explained that high temperature restrained the condensation of formed semi-volatile compounds resulting in low yields of SOAs. When the RH was at 50% and 80%, SOA formation (1.1-1.2 × 10(4)#cm(-3)) was the more efficient compared with that at RH of 30% (5.9 × 10(3)#cm(-3)), suggesting higher RH facilitating the initial nucleation processes. Oxidation generated secondary carbonyl compounds were also quantified. Acetone was the most abundant carbonyl compound. The formation mechanisms of formaldehyde and acetone were proposed. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Impact of organic fractions identified by SEC and fluorescence EEM on the hydraulic reversibility of ultrafiltration membrane fouling by secondary effluents

    KAUST Repository

    Haberkampa, Jens

    2011-05-01

    Loss of membrane filtration performance due to organic fouling is still a significant drawback for the application of low-pressure membranes in tertiary wastewater treatment. The present study investigates the relevance of different organic fractions present in secondary effluents in terms of hydraulically reversible and irreversible fouling of hollow-fibre ultrafiltration membranes. A good correlation between the hydraulically reversible filtration resistance and the total organic biopolymer concentration according to size exclusion chromatography (SEC) was observed. Qualitatively biopolymers consist mainly of polysaccharides as well as proteins with high molecular weight. Polysaccharides are retained by the membrane pores, but can be removed by simple UF backwashing. On the other hand, fluorescence excitation-emission matrix (EEM) analysis indicates that the extent of the hydraulically irreversible fouling correlates with the presence of protein-like substances. Removal of protein-like substances by biological slow sand filtration or chemical coagulation results in the significant reduction of the hydraulically irreversible fouling, which is presumably due to proteins in the molecular range of biopolymers. In contrast to the comparatively low sensitivity of colorimetric methods for the analysis of proteins and polysaccharides, the combined application of size exclusion chromatography and fluorescence EEM analysis is a promising tool for the determination of the organic fouling propensity of secondary effluents. ©2011 Desalination Publications. All rights reserved.

  8. Impact of organic fractions identified by SEC and fluorescence EEM on the hydraulic reversibility of ultrafiltration membrane fouling by secondary effluents

    KAUST Repository

    Haberkampa, Jens; Ernst, Mathias; Paar, Hendrik; Pallischeck, Daniela; Amy, Gary L.; Jekel, Martin R.

    2011-01-01

    Loss of membrane filtration performance due to organic fouling is still a significant drawback for the application of low-pressure membranes in tertiary wastewater treatment. The present study investigates the relevance of different organic fractions present in secondary effluents in terms of hydraulically reversible and irreversible fouling of hollow-fibre ultrafiltration membranes. A good correlation between the hydraulically reversible filtration resistance and the total organic biopolymer concentration according to size exclusion chromatography (SEC) was observed. Qualitatively biopolymers consist mainly of polysaccharides as well as proteins with high molecular weight. Polysaccharides are retained by the membrane pores, but can be removed by simple UF backwashing. On the other hand, fluorescence excitation-emission matrix (EEM) analysis indicates that the extent of the hydraulically irreversible fouling correlates with the presence of protein-like substances. Removal of protein-like substances by biological slow sand filtration or chemical coagulation results in the significant reduction of the hydraulically irreversible fouling, which is presumably due to proteins in the molecular range of biopolymers. In contrast to the comparatively low sensitivity of colorimetric methods for the analysis of proteins and polysaccharides, the combined application of size exclusion chromatography and fluorescence EEM analysis is a promising tool for the determination of the organic fouling propensity of secondary effluents. ©2011 Desalination Publications. All rights reserved.

  9. The ammonium nitrate particle equivalent of NOx emissions for wintertime conditions in Central California's San Joaquin Valley

    International Nuclear Information System (INIS)

    Stockwell, W.R.; Watson, J.G.; Robinson, N.F.; Sylte, W.W.

    2000-01-01

    A new method has been developed to assess the aerosol particle formation reactivity of nitrogen oxide (NO x ) emissions. The method involves using a photochemical box model with gas-phase photochemistry, aerosol production and deposition to calculate the ammonium nitrate particle equivalent of NO x emissions. The yields of ammonium nitrate particles used in the box model were determined from parametric simulations made with an equilibrium model that calculated the fraction of nitric acid that reacts to produce ammonium nitrate from the temperature, relative humidity and ammonium-to-nitrate ratios. For the wintertime conditions of emissions and meteorology in the San Joaquin Valley of central California, approximately 80% of the moles of nitric acid produced was found to be in the particulate nitrate phase and about 33% of the moles of emitted NO x was converted to particulate nitrate. The particle equivalent of NO x emissions was found to be on the order of 0.6 g of ammonium nitrate for each gram of NO x emitted (the mass of NO x calculated as NO 2 ). This estimate is in reasonable agreement with an analysis of field measurements made in central California. (author)

  10. The reduction of summer sulfate and switch from summertime to wintertime PM2.5 concentration maxima in the United States

    Science.gov (United States)

    Chan, Elizabeth A. W.; Gantt, Brett; McDow, Stephen

    2018-02-01

    Exposure to particulate matter air pollution with a nominal mean aerodynamic diameter less than or equal to 2.5 μm (PM2.5) has been associated with health effects including cardiovascular disease and death. Here, we add to the understanding of urban and rural PM2.5 concentrations over large spatial and temporal scales in recent years. We used high-quality, publicly-available air quality monitoring data to evaluate PM2.5 concentration patterns and changes during the years 2000-2015. Compiling and averaging measurements collected across the U.S. revealed that PM2.5 concentrations from urban sites experienced seasonal maxima in both winter and summer. Within each year from 2000 to 2008, the maxima of urban summer peaks were greater than winter peaks. However, from 2012 to 2015, the maxima of urban summertime PM2.5 peaks were smaller than the urban wintertime PM2.5 maxima, due to a decrease in the magnitude of summertime maxima with no corresponding decrease in the magnitude of winter maxima. PM2.5 measurements at rural sites displayed summer peaks with magnitudes relatively similar to those of urban sites, and negligible to no winter peaks through the time period analyzed. Seasonal variations of urban and rural PM2.5 sulfate, PM2.5 nitrate, and PM2.5 organic carbon (OC) were also assessed. Summer peaks in PM2.5 sulfate decreased dramatically between 2000 and 2015, whereas seasonal PM2.5 OC and winter PM2.5 nitrate concentration maxima remained fairly consistent. These findings demonstrate that PM2.5 concentrations, especially those occurring in the summertime, have declined in the U.S. from 2000 to 2015. In addition, reduction strategies targeting sulfate have been successful and the decrease in PM2.5 sulfate contributed to the decline in total PM2.5.

  11. Secondary Organic Aerosol Production over Seoul, South Korea, during KORUS-AQ

    Science.gov (United States)

    Nault, B.; Campuzano Jost, P.; Day, D. A.; Schroder, J. C.; Blake, D. R.; Brune, W. H.; Choi, Y.; DiGangi, J. P.; Fried, A.; Huey, L. G.; Knote, C. J.; Montzka, D. D.; Weinheimer, A. J.; Jimenez, J. L.; Armin, W.

    2017-12-01

    Secondary organic aerosol (SOA) is rapidly produced over and downwind of urban areas, causing important effects on health, visibility, and climate. However, multiple studies over different cities have shown that the production of SOA over urban areas cannot be accounted for when only using traditional volatile compounds (e.g., aromatics). Non-traditional anthropogenic volatile compounds—semi- and intermediate-volatile organic compounds (S/IVOC) are needed to account the observed urban SOA production. At this time, only a few megacities have been well characterized for urban SOA production; however, urban SOA production has not been well characterized in a megacity embedded in a region of rapid economic growth and energy consumption. In this study, we utilize observations from the NASA DC-8 over Seoul, South Korea, during the NASA/NIER 2016 KORean United States-Air Quality (KORUS-AQ) study to investigate the influence of transported OA and SOA precursors to Seoul versus the influence of local emissions of SOA precursors on the observed SOA production. We utilize the ambient gas-phase and OA observations over Seoul and the Western Sea along with Oxidation Flow Reactor (OFR) observations and FLEXPART tracer analysis to investigate the influence of transport versus local emissions. We find that the contribution of transported OA and SOA precursors to Seoul, during the campaign, was minor and had a small impact on the observed SOA production. Using the observed traditional volatile compounds, along with estimates of S/IVOC, brought near closure for the observed SOA production. We found that greater than 90% of the SOA production can be accounted for by reactive organic compounds with OH lifetimes less than 1 day, consistent with several previous megacity studies, further suggesting that local SOA precursor emissions are dominant. Our study highlights the need to further investigate and account for speciated S/IVOC measurements, as these represented an estimated 60

  12. Characterization of Secondary Organic Aerosol Precursors Using Two-Dimensional Gas-Chromatography

    Science.gov (United States)

    Roskamp, M.; Lou, W.; Pankow, J. F.; Harley, P. C.; Turnipseed, A.; Barsanti, K. C.

    2012-12-01

    The oxidation of volatile organic compounds (VOCs) plays a role in both regional and global air quality. However, field and laboratory research indicate that the body of knowledge around the identities, quantities and oxidation processes of these compounds in the ambient atmosphere is still incomplete (e.g., Goldstein & Galbally, 2007; Robinson et al., 2009). VOCs emitted to the atmosphere largely are of biogenic origin (Guenther et al., 2006), and many studies of ambient secondary organic aerosol (SOA) suggest that SOA is largely of biogenic origin (albeit closely connected to anthropogenic activities, e.g., de Gouw and Jimenez, 2009). Accurate modeling of SOA levels and properties will require a more complete understanding of biogenic VOCs (BOCs) and their atmospheric oxidation products. For example, satellite measurements indicate that biogenic VOC emissions are two to three times greater than levels currently included in models (Heald et al., 2010). Two-dimensional gas chromatography (GC×GC) is a powerful analytical technique that shows much promise in advancing the state-of-knowledge regarding BVOCs and their role in SOA formation. In this work, samples were collected during BEACHON-RoMBAS (Bio-hydro-atmosphere Interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Biogenic Aerosol Study) in July and August of 2011. The field site was a Ponderosa Pine forest near Woodland, CO, inside the Manitou Experimental Forest, which is operated by the US Forest Service. The area is characteristic of the central Rocky Mountains and trace gas monitoring indicates that little anthropogenic pollution is transported from the nearby urban areas (Kim et al. 2010 and references therein). Ambient and enclosure samples were collected on ATD (adsorption/thermal desorption) cartridges and analyzed for BVOCs using two-dimensional gas chromatography (GC×GC) with time of flight mass spectrometry (TOFMS) and flame ionized detection (FID). Measurements of

  13. Is the gas-particle partitioning in alpha-pinene secondary organic aerosol reversible?

    Science.gov (United States)

    Grieshop, Andrew P.; Donahue, Neil M.; Robinson, Allen L.

    2007-07-01

    This paper discusses the reversibility of gas-particle partitioning in secondary organic aerosol (SOA) formed from α-pinene ozonolysis in a smog chamber. Previously, phase partitioning has been studied quantitatively via SOA production experiments and qualitatively by perturbing temperature and observing particle evaporation. In this work, two methods were used to isothermally dilute the SOA: an external dilution sampler and an in-chamber technique. Dilution caused some evaporation of SOA, but repartitioning took place on a time scale of tens of minutes to hours-consistent with an uptake coefficient on the order of 0.001-0.01. However, given sufficient time, α-pinene SOA repartitions reversibly based on comparisons with data from conventional SOA yield experiments. Further, aerosol mass spectrometer (AMS) data indicate that the composition of SOA varies with partitioning. These results suggest that oligomerization observed in high-concentration laboratory experiments may be a reversible process and underscore the complexity of the kinetics of formation and evaporation of SOA.

  14. The Passy-2015 field experiment: wintertime atmospheric dynamics and air quality in a narrow alpine valley

    Science.gov (United States)

    Paci, Alexandre; Staquet, Chantal

    2016-04-01

    Wintertime anticyclonic conditions lead to the formation of persistent stable boundary layers which may induce severe air pollution episodes in urban or industrialized area, particularly in mountain regions. The Arve river valley in the Northern Alps is very sensitive to this phenomenon, in particular close to the city of Passy (Haute-Savoie), 20 km down valley past Chamonix. This place is indeed one of the worst place in France regarding air quality, the concentration of fine particles and Benzo(a)pyrene (a carcinogenic organic compound) regularly exceeding the EU legal admissible level during winter. Besides air quality measurements, such as the ones presently carried in the area by the local air quality agency Air Rhône-Alpes or in the DECOMBIO project led by LGGE, it is crucial to improve our knowledge of the atmospheric boundary layer dynamics and processes at the valley scale under these persistent stable conditions in order to improve our understanding on how it drives pollutant dispersion. These issues motivated the Passy-2015 field experiment which took place during the winter 2014-2015. A relatively large set-up of instruments was deployed on a main measurement site in the valley center and on four other satellite sites. It includes several remote sensing instruments, a surface flux station, a 10 m instrumented tower, a large aperture scintillometer, a fog monitoring station among others. Most of the instruments were present from early January to the end of February. During two intensive observation periods, 6-14 February and 17-20 February, the instrumental set-up was completed on the main site with high frequency radio-soundings (up to one per 1h30), a tethered balloon, a remote controlled drone quadcopter and a sodar. The field campaign, the instruments, the meteorological situations observed and preliminary results will be presented. This field experiment is part of the Passy project funded by ADEME through the French national programme LEFE/INSU and

  15. Removal of organic contaminants from secondary effluent by anodic oxidation with a boron-doped diamond anode as tertiary treatment

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Segura, Sergi, E-mail: sergigarcia@ub.edu [Advanced Water Management Centre, The University of Queensland, Level 4, Gehrmann Bld. (60), St Lucia, QLD 072 (Australia); Laboratori d’Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona (Spain); Keller, Jürg [Advanced Water Management Centre, The University of Queensland, Level 4, Gehrmann Bld. (60), St Lucia, QLD 072 (Australia); Brillas, Enric [Laboratori d’Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona (Spain); Radjenovic, Jelena, E-mail: j.radjenovic@awmc.uq.edu.au [Advanced Water Management Centre, The University of Queensland, Level 4, Gehrmann Bld. (60), St Lucia, QLD 072 (Australia)

    2015-02-11

    Graphical abstract: - Highlights: • Mineralization of secondary effluent by anodic oxidation with BDD anode. • Complete removal of 29 pharmaceuticals and pesticides at trace level concentrations. • Organochlorine and organobromine byproducts were formed at low μM concentrations. • Chlorine species evolution assessed to evaluate the anodic oxidation applicability. - Abstract: Electrochemical advanced oxidation processes (EAOPs) have been widely investigated as promising technologies to remove trace organic contaminants from water, but have rarely been used for the treatment of real waste streams. Anodic oxidation with a boron-doped diamond (BDD) anode was applied for the treatment of secondary effluent from a municipal sewage treatment plant containing 29 target pharmaceuticals and pesticides. The effectiveness of the treatment was assessed from the contaminants decay, dissolved organic carbon and chemical oxygen demand removal. The effect of applied current and pH was evaluated. Almost complete mineralization of effluent organic matter and trace contaminants can be obtained by this EAOP primarily due to the action of hydroxyl radicals formed at the BDD surface. The oxidation of Cl{sup −} ions present in the wastewater at the BDD anode gave rise to active chlorine species (Cl{sub 2}/HClO/ClO{sup −}), which are competitive oxidizing agents yielding chloramines and organohalogen byproducts, quantified as adsorbable organic halogen. However, further anodic oxidation of HClO/ClO{sup −} species led to the production of ClO{sub 3}{sup −} and ClO{sub 4}{sup −} ions. The formation of these species hampers the application as a single-stage tertiary treatment, but posterior cathodic reduction of chlorate and perchlorate species may reduce the risks associated to their presence in the environment.

  16. Wintertime particulate pollution episodes in an urban valley of the Western US: a case study

    Science.gov (United States)

    Chen, L.-W. A.; Watson, J. G.; Chow, J. C.; Green, M. C.; Inouye, D.; Dick, K.

    2012-11-01

    This study investigates the causes of elevated PM2.5 episodes and potential exceedences of the US National Ambient Air Quality Standards (NAAQS) in Truckee Meadows, Nevada, an urban valley of the Western US, during winter 2009/2010, an unusually cold and snowy winter. Continuous PM2.5 mass and time-integrated chemical speciation data were acquired from a central valley monitoring site, along with meteorological measurements from nearby sites. All nine days with PM2.5 > 35 μg m-3 showed 24-h average temperature inversion of 1.5-4.5 °C and snow cover of 8-18 cm. Stagnant atmospheric conditions limited wind ventilation while highly reflective snow cover reduced daytime surface heating creating persistent inversion. Elevated ammonium nitrate (NH4NO3) and water associated with it are found to be main reasons for the PM2.5 exceedances. An effective-variance chemical mass balance (EV-CMB) receptor model using locally-derived geological profiles and inorganic/organic markers confirmed secondary NH4NO3 (27-37%), residential wood combustion (RWC; 11-51%), and diesel engine exhaust (7-22%) as the dominant PM2.5 contributors. Paved road dust and de-icing materials were minor, but detectable contributors. RWC is a more important source than diesel for organic carbon (OC), but vice versa for elemental carbon (EC). A majority of secondary NH4NO3 is also attributed to RWC and diesel engines (including snow removal equipment) through oxides of nitrogen (NOx) emissions from these sources. Findings from this study may apply to similar situations experienced by other urban valleys.

  17. Emission of intermediate, semi and low volatile organic compounds from traffic and their impact on secondary organic aerosol concentrations over Greater Paris

    Science.gov (United States)

    Sartelet, K.; Zhu, S.; Moukhtar, S.; André, M.; André, J. M.; Gros, V.; Favez, O.; Brasseur, A.; Redaelli, M.

    2018-05-01

    Exhaust particle emissions are mostly made of black carbon and/or organic compounds, with some of these organic compounds existing in both the gas and particle phases. Although emissions of volatile organic compounds (VOC) are usually measured at the exhaust, emissions in the gas phase of lower volatility compounds (POAvapor) are not. However, these gas-phase emissions may be oxidised after emission and enhance the formation of secondary organic aerosols (SOA). They are shown here to contribute to most of the SOA formation in Central Paris. POAvapor emissions are usually estimated from primary organic aerosol emissions in the particle phase (POA). However, they could also be estimated from VOC emissions for both gasoline and diesel vehicles using previously published measurements from chamber measurements. Estimating POAvapor from VOC emissions and ageing exhaust emissions with a simple model included in the Polyphemus air-quality platform compare well to measurements of SOA formation performed in chamber experiments. Over Greater Paris, POAvapor emissions estimated using POA and VOC emissions are compared using the HEAVEN bottom-up traffic emissions model. The impact on the simulated atmospheric concentrations is then assessed using the Polyphemus/Polair3D chemistry-transport model. Estimating POAvapor emissions from VOC emissions rather than POA emissions lead to lower emissions along motorway axes (between -50% and -70%) and larger emissions in urban areas (up to between +120% and +140% in Central Paris). The impact on total organic aerosol concentrations (gas plus particle) is lower than the impact on emissions: between -8% and 25% along motorway axes and in urban areas respectively. Particle-phase organic concentrations are lower when POAvapor emissions are estimated from VOC than POA emissions, even in Central Paris where the total organic aerosol concentration is higher, because of different assumptions on the emission volatility distribution, stressing the

  18. Model study on acidifying wet deposition in East Asia during wintertime

    Science.gov (United States)

    Han, Zhiwei; Ueda, Hiromasa; Sakurai, Tatsuya

    A regional air quality model (RAQM) has been developed and applied together with an aerosol model to investigate the states and characteristics of wet deposition in East Asia in December 2001. Model simulation is performed with monthly based emission inventory [Streets, D.G., Bond, T.C., Carmichael, G.R., Fernandes, S.D., Fu, Q., He, D., Klimont, Z., Nelson, S. M., Tsai, N.Y., Wang, M.Q., Woo, J.-H., Yarber, K.F., 2003. An inventory of gaseous and primary emissions in Asia in the year 2000. Journal of Geophysical Research 108(D21), 8809] and meteorological fields derived from MM5. Model results are compared with extensive monitoring data including relevant gaseous species and ions in precipitation. The validation demonstrates that this model system is able to represent most of the major physical and chemical processes involved in acid deposition and reproduces concentrations reasonably well, within a factor of 2 of observations in general. The study shows that the regions with pH less than 4.5 are mainly located in southwestern China, parts of the Yangtze Delta, the Yellow Sea and the Korean peninsula, indicating wide regions of acid precipitation in East Asia in wintertime. Japan islands mainly exhibit pH values of 4.5-5.0, whereas over wide areas of northern China, pH values are relatively high (⩾5.0) due to neutralization by alkaline materials such as calcium-laden particles and ammonia, which are more abundant in northern China than that in southern China. While acid rain over most of China is still characterized by sulfur-induced type, considerable areas of eastern China and the western Pacific Rim are found to be more affected by nitric acid than sulfuric acid in acidification of precipitation, which is supposed to result from a combined effect of variations in photochemistry and emission, suggesting the increasing importance of NO x emission in these regions.

  19. Synthesis and Surface-Specific Analysis of Molecular Constituents Relevant to Biogenic Secondary Organic Aerosol Material

    Science.gov (United States)

    Be, A. G.; Upshur, M. A.; Chase, H. M.; Geiger, F.; Thomson, R. J.

    2017-12-01

    Secondary organic aerosol (SOA) particles formed from the oxidation of biogenic volatile organic compounds (BVOCs) remain a principal, yet elusive, class of airborne particulate matter that impacts the Earth's radiation budget. Given the characteristic molecular complexity comprising biogenic SOA particles, chemical information selective to the gas-aerosol interface may be valuable in the investigation of such systems, as surface considerations likely dictate the phenomena driving particle evolution mechanisms and climate effects. In particular, cloud activation processes may be parameterized using the surface tension depression that coincides with partitioning of surface-active organic species to the gas-droplet interface. However, the extent to which surface chemical processes, such as cloud droplet condensation, are influenced by the chemical structure and reactivity of individual surface-active molecules in SOA particles is largely unknown. We seek to study terpene-derived organic species relevant to the surfaces of biogenic SOA particles via synthesis of putative oxidation products followed by analysis using surface-selective physicochemical measurements. Using dynamic surface tension measurements, considerable differences are observed in the surface tension depression of aqueous pendant droplets that contain synthetically prepared ozonolysis products derived from abundant terpene precursors. Furthermore, sum frequency generation spectroscopy is utilized for comparison of the surface vibrational spectral responses of synthesized reference compounds with those observed for laboratory aerosol toward probing the surface composition of SOA material. Such ongoing findings highlight the underlying importance of molecular structure and reactivity when considering the surface chemistry of biogenic terpene-derived atmospheric aerosols.

  20. The MarsOrganiX experiment: Understanding the influence of the secondary X-Rays on the organic matter at Mars' near-surface.

    Science.gov (United States)

    Buch, A.; Szopa, C.; Freissinet, C.; Stalport, F.; Coscia, D.; Pavlov, A.; Gilbert, P.; Bonnet, J. Y.; Guerrini, V.; Navarro-Gonzalez, R.

    2017-12-01

    Mars may have harbored a prebiotic chemistry that could have led to the emergence of life. If such, traces of these could be preserved in the oldest (3.5 billion years and more) rocks at the surface of the planet. Because of the thin atmosphere of Mars and the absence of an active magnetic field, the harsh radiative environment at the near-surface consists of UV and X-ray radiation, galactic and solar cosmic rays (GCRs and SCRs), as well as secondary particles produced by the interaction of GCRs and SCRs with the atmosphere and soil (secondary X-rays). The majority of the X-rays at the martian surface are generated in the rocks by the penetrating GCR and SCR particles. The GCRs' secondary X-rays' absorbed dose, at the top centimeters of the surface of Mars, has been estimated at about 0.05 Gy per year. All these radiation (direct and indirect) are prone to induce extended degradation or transformation of organic matter that would be present at Mars' near-surface, down to the 3 m depth of the GCRs/SCRs penetration. The SAM experiment onboard Curiosity rover led to the first in situ detection of organic molecules in martian rocks and soils. Chlorobenzene was detected in Cumberland at a concentration of up to 300 parts per billion in weight. However, chlorobenzene was thought to be formed in the SAM oven, during the pyrolysis of the sample. Nevertheless, Cumberland sample has been exposed to GCRs and SCRs for about 80 million years, and thus, the undergone X-rays radiation may have processed the organic matter and chlorinated the organic molecules in presence of perchlorate. Therefore, this study aims at evaluating the possible precursor(s), that would lead to the formation of chlorobenzene (detected with SAM) when irradiated in presence of perchlorate. Using the PSICHE beam line at SOLEIL, a synchrotron facility in France, we studied the extend of degradation and transformation of two organic molecules of interest, a carboxylic acid (benzoic acid) and an amino acid

  1. Secondary organic aerosol formation from in-use motor vehicle emissions using a potential aerosol mass reactor.

    Science.gov (United States)

    Tkacik, Daniel S; Lambe, Andrew T; Jathar, Shantanu; Li, Xiang; Presto, Albert A; Zhao, Yunliang; Blake, Donald; Meinardi, Simone; Jayne, John T; Croteau, Philip L; Robinson, Allen L

    2014-10-07

    Secondary organic aerosol (SOA) formation from in-use vehicle emissions was investigated using a potential aerosol mass (PAM) flow reactor deployed in a highway tunnel in Pittsburgh, Pennsylvania. Experiments consisted of passing exhaust-dominated tunnel air through a PAM reactor over integrated hydroxyl radical (OH) exposures ranging from ∼ 0.3 to 9.3 days of equivalent atmospheric oxidation. Experiments were performed during heavy traffic periods when the fleet was at least 80% light-duty gasoline vehicles on a fuel-consumption basis. The peak SOA production occurred after 2-3 days of equivalent atmospheric oxidation. Additional OH exposure decreased the SOA production presumably due to a shift from functionalization to fragmentation dominated reaction mechanisms. Photo-oxidation also produced substantial ammonium nitrate, often exceeding the mass of SOA. Analysis with an SOA model highlight that unspeciated organics (i.e., unresolved complex mixture) are a very important class of precursors and that multigenerational processing of both gases and particles is important at longer time scales. The chemical evolution of the organic aerosol inside the PAM reactor appears to be similar to that observed in the atmosphere. The mass spectrum of the unoxidized primary organic aerosol closely resembles ambient hydrocarbon-like organic aerosol (HOA). After aging the exhaust equivalent to a few hours of atmospheric oxidation, the organic aerosol most closely resembles semivolatile oxygenated organic aerosol (SV-OOA) and then low-volatility organic aerosol (LV-OOA) at higher OH exposures. Scaling the data suggests that mobile sources contribute ∼ 2.9 ± 1.6 Tg SOA yr(-1) in the United States, which is a factor of 6 greater than all mobile source particulate matter emissions reported by the National Emissions Inventory. This highlights the important contribution of SOA formation from vehicle exhaust to ambient particulate matter concentrations in urban areas.

  2. Nitrate radical oxidation of γ-terpinene: hydroxy nitrate, total organic nitrate, and secondary organic aerosol yields

    Science.gov (United States)

    Slade, Jonathan H.; de Perre, Chloé; Lee, Linda; Shepson, Paul B.

    2017-07-01

    Polyolefinic monoterpenes represent a potentially important but understudied source of organic nitrates (ONs) and secondary organic aerosol (SOA) following oxidation due to their high reactivity and propensity for multi-stage chemistry. Recent modeling work suggests that the oxidation of polyolefinic γ-terpinene can be the dominant source of nighttime ON in a mixed forest environment. However, the ON yields, aerosol partitioning behavior, and SOA yields from γ-terpinene oxidation by the nitrate radical (NO3), an important nighttime oxidant, have not been determined experimentally. In this work, we present a comprehensive experimental investigation of the total (gas + particle) ON, hydroxy nitrate, and SOA yields following γ-terpinene oxidation by NO3. Under dry conditions, the hydroxy nitrate yield = 4(+1/-3) %, total ON yield = 14(+3/-2) %, and SOA yield ≤ 10 % under atmospherically relevant particle mass loadings, similar to those for α-pinene + NO3. Using a chemical box model, we show that the measured concentrations of NO2 and γ-terpinene hydroxy nitrates can be reliably simulated from α-pinene + NO3 chemistry. This suggests that NO3 addition to either of the two internal double bonds of γ-terpinene primarily decomposes forming a relatively volatile keto-aldehyde, reconciling the small SOA yield observed here and for other internal olefinic terpenes. Based on aerosol partitioning analysis and identification of speciated particle-phase ON applying high-resolution liquid chromatography-mass spectrometry, we estimate that a significant fraction of the particle-phase ON has the hydroxy nitrate moiety. This work greatly contributes to our understanding of ON and SOA formation from polyolefin monoterpene oxidation, which could be important in the northern continental US and the Midwest, where polyolefinic monoterpene emissions are greatest.

  3. Evidence for a significant proportion of Secondary Organic Aerosol from isoprene above a maritime tropical forest

    Directory of Open Access Journals (Sweden)

    N. H. Robinson

    2011-02-01

    Full Text Available Isoprene is the most abundant non-methane biogenic volatile organic compound (BVOC, but the processes governing secondary organic aerosol (SOA formation from isoprene oxidation are only beginning to become understood and selective quantification of the atmospheric particulate burden remains difficult. Organic aerosol above a tropical rainforest located in Danum Valley, Borneo, Malaysia, a high isoprene emission region, was studied during Summer 2008 using Aerosol Mass Spectrometry and offline detailed characterisation using comprehensive two dimensional gas chromatography. Observations indicate that a substantial fraction (up to 15% by mass of atmospheric sub-micron organic aerosol was observed as methylfuran (MF after thermal desorption. This observation was associated with the simultaneous measurements of established gas-phase isoprene oxidation products methylvinylketone (MVK and methacrolein (MACR. Observations of MF were also made during experimental chamber oxidation of isoprene. Positive matrix factorisation of the AMS organic mass spectral time series produced a robust factor which accounts for an average of 23% (0.18 μg m−3, reaching as much as 53% (0.50 μg m−3 of the total oraganic loading, identified by (and highly correlated with a strong MF signal. Assuming that this factor is generally representative of isoprene SOA, isoprene derived aerosol plays a significant role in the region. Comparisons with measurements from other studies suggest this type of isoprene SOA plays a role in other isoprene dominated environments, albeit with varying significance.

  4. Impacts of Siberian biomass burning on organic aerosols over the North Pacific Ocean and the Arctic: primary and secondary organic tracers.

    Science.gov (United States)

    Ding, Xiang; Wang, Xinming; Xie, Zhouqing; Zhang, Zhou; Sun, Liguang

    2013-04-02

    During the 2003 Chinese Arctic Research Expedition (CHINARE2003) from the Bohai Sea to the high Arctic (37°N-80°N), filter-based particle samples were collected and analyzed for tracers of primary and secondary organic aerosols (SOA) as well as water-soluble organic carbon (WSOC). Biomass burning (BB) tracer levoglucosan had comparatively much higher summertime average levels (476 ± 367 pg/m(3)) during our cruise due to the influence of intense forest fires then in Siberia. On the basis of 5-day back trajectories, samples with air masses passing through Siberia had organic tracers 1.3-4.4 times of those with air masses transporting only over the oceans, suggesting substantial contribution of continental emissions to organic aerosols in the marine atmosphere. SOA tracers from anthropogenic aromatics were negligible or not detected, while those from biogenic terpenenoids were ubiquitously observed with the sum of SOA tracers from isoprene (623 ± 414 pg/m(3)) 1 order of magnitude higher than that from monoterpenes (63 ± 49 pg/m(3)). 2-Methylglyceric acid as a product of isoprene oxidation under high-NOx conditions was dominant among SOA tracers, implying that these BSOA tracers were not formed over the oceans but mainly transported from the adjacent Siberia where a high-NOx environment could be induced by intense forest fires. The carbon fractions shared by biogenic SOA tracers and levoglucosan in WSOC in our ocean samples were 1-2 orders of magnitude lower than those previously reported in continental samples, BB emissions or chamber simulation samples, largely due to the chemical evolution of organic tracers during transport. As a result of the much faster decline in levels of organic tracers than that of WSOC during transport, the trace-based approach, which could well reconstruct WSOC using biogenic SOA and BB tracers for continental samples, only explained ∼4% of measured WSOC during our expedition if the same tracer-WSOC or tracer-SOC relationships were

  5. Secondary Electrons as an Energy Source for Life

    Science.gov (United States)

    Stelmach, Kamil B.; Neveu, Marc; Vick-Majors, Trista J.; Mickol, Rebecca L.; Chou, Luoth; Webster, Kevin D.; Tilley, Matt; Zacchei, Federica; Escudero, Cristina; Flores Martinez, Claudio L.; Labrado, Amanda; Fernández, Enrique J. G.

    2018-01-01

    Life on Earth is found in a wide range of environments as long as the basic requirements of a liquid solvent, a nutrient source, and free energy are met. Previous hypotheses have speculated how extraterrestrial microbial life may function, among them that particle radiation might power living cells indirectly through radiolytic products. On Earth, so-called electrophilic organisms can harness electron flow from an extracellular cathode to build biomolecules. Here, we describe two hypothetical mechanisms, termed "direct electrophy" and "indirect electrophy" or "fluorosynthesis," by which organisms could harness extracellular free electrons to synthesize organic matter, thus expanding the ensemble of potential habitats in which extraterrestrial organisms might be found in the Solar System and beyond. The first mechanism involves the direct flow of secondary electrons from particle radiation to a microbial cell to power the organism. The second involves the indirect utilization of impinging secondary electrons and a fluorescing molecule, either biotic or abiotic in origin, to drive photosynthesis. Both mechanisms involve the attenuation of an incoming particle's energy to create low-energy secondary electrons. The validity of the hypotheses is assessed through simple calculations showing the biomass density attainable from the energy supplied. Also discussed are potential survival strategies that could be used by organisms living in possible habitats with a plentiful supply of secondary electrons, such as near the surface of an icy moon. While we acknowledge that the only definitive test for the hypothesis is to collect specimens, we also describe experiments or terrestrial observations that could support or nullify the hypotheses.

  6. A new comprehensive approach to characterizing carbonaceous aerosol with an application to wintertime Fresno, California PM2.5

    Science.gov (United States)

    Herckes, P.; Leenheer, J.A.; Collett, J.L.

    2007-01-01

    Fine particulate matter (PM2.5) samples were collected during a three week winter period in Fresno (CA). A composite sample was characterized by isolating several distinct fractions and characterizing them by infrared and nuclear magnetic resonance (NMR) spectroscopy. More than 80% of the organic matter in the aerosol samples was recovered and characterized. Only 35% of the organic matter was water soluble with another third soluble in dichloromethane and the remainder insoluble. Within the isolated water soluble material, hydrophobic acid and hydrophilic acids plus neutrals fractions contained the largest amounts of carbon. The hydrophobic acids fraction appears to contain significant amounts of lignin type structures, spectra of the hydrophilic acids plus neutrals fraction are indicative of carbohydrates and secondary organic material. The dichloromethane soluble fraction contains a variety of organic compound families typical of many previous studies of organic aerosol speciation, including alkanes, alkanols, alkanals and alkanoic acids. Finally the water and solvent insoluble fraction exhibits a strong aromaticity as one would expect from black or elemental carbon like material; however, these spectra also show a substantial amount of aliphaticity consistent with linear side chains on the aromatic structures.

  7. Wintertime dynamics in the coastal northeastern Adriatic Sea: the NAdEx 2015 experiment

    Directory of Open Access Journals (Sweden)

    I. Vilibić

    2018-03-01

    Full Text Available The paper investigates the wintertime dynamics of the coastal northeastern Adriatic Sea and is based on numerical modelling and in situ data collected through field campaigns executed during the winter and spring of 2015. The data were collected with a variety of instruments and platforms (acoustic Doppler current profilers, conductivity–temperature–depth probes, glider, profiling float and are accompanied by the atmosphere–ocean ALADIN/ROMS modelling system. The research focused on the dense-water formation (DWF, thermal changes, circulation, and water exchange between the coastal and open Adriatic. According to both observations and modelling results, dense waters are formed in the northeastern coastal Adriatic during cold bora outbreaks. However, the dense water formed in this coastal region has lower densities than the dense water formed in the open Adriatic due to lower salinities. Since the coastal area is deeper than the open Adriatic, the observations indicate (i balanced inward–outward exchange at the deep connecting channels of denser waters coming from the open Adriatic DWF site and less-dense waters coming from the coastal region and (ii outward flow of less-dense waters dominating in the intermediate and surface layers. The latter phenomenon was confirmed by the model, even if it significantly underestimates the currents and transports in the connecting channels. The median residence time of the coastal area is estimated to be approximately 20 days, indicating that the coastal area may be renewed relatively quickly by the open Adriatic waters. The data that were obtained represent a comprehensive marine dataset that can be used to calibrate atmospheric and oceanic numerical models and point to several interesting phenomena to be investigated in the future.

  8. Wintertime dynamics in the coastal northeastern Adriatic Sea: the NAdEx 2015 experiment

    Science.gov (United States)

    Vilibić, Ivica; Mihanović, Hrvoje; Janeković, Ivica; Denamiel, Cléa; Poulain, Pierre-Marie; Orlić, Mirko; Dunić, Natalija; Dadić, Vlado; Pasarić, Mira; Muslim, Stipe; Gerin, Riccardo; Matić, Frano; Šepić, Jadranka; Mauri, Elena; Kokkini, Zoi; Tudor, Martina; Kovač, Žarko; Džoić, Tomislav

    2018-03-01

    The paper investigates the wintertime dynamics of the coastal northeastern Adriatic Sea and is based on numerical modelling and in situ data collected through field campaigns executed during the winter and spring of 2015. The data were collected with a variety of instruments and platforms (acoustic Doppler current profilers, conductivity-temperature-depth probes, glider, profiling float) and are accompanied by the atmosphere-ocean ALADIN/ROMS modelling system. The research focused on the dense-water formation (DWF), thermal changes, circulation, and water exchange between the coastal and open Adriatic. According to both observations and modelling results, dense waters are formed in the northeastern coastal Adriatic during cold bora outbreaks. However, the dense water formed in this coastal region has lower densities than the dense water formed in the open Adriatic due to lower salinities. Since the coastal area is deeper than the open Adriatic, the observations indicate (i) balanced inward-outward exchange at the deep connecting channels of denser waters coming from the open Adriatic DWF site and less-dense waters coming from the coastal region and (ii) outward flow of less-dense waters dominating in the intermediate and surface layers. The latter phenomenon was confirmed by the model, even if it significantly underestimates the currents and transports in the connecting channels. The median residence time of the coastal area is estimated to be approximately 20 days, indicating that the coastal area may be renewed relatively quickly by the open Adriatic waters. The data that were obtained represent a comprehensive marine dataset that can be used to calibrate atmospheric and oceanic numerical models and point to several interesting phenomena to be investigated in the future.

  9. Wintertime particulate pollution episodes in an urban valley of the Western US: a case study

    Directory of Open Access Journals (Sweden)

    L.-W. A. Chen

    2012-11-01

    Full Text Available This study investigates the causes of elevated PM2.5 episodes and potential exceedences of the US National Ambient Air Quality Standards (NAAQS in Truckee Meadows, Nevada, an urban valley of the Western US, during winter 2009/2010, an unusually cold and snowy winter. Continuous PM2.5 mass and time-integrated chemical speciation data were acquired from a central valley monitoring site, along with meteorological measurements from nearby sites. All nine days with PM2.5 > 35 μg m−3 showed 24-h average temperature inversion of 1.5–4.5 °C and snow cover of 8–18 cm. Stagnant atmospheric conditions limited wind ventilation while highly reflective snow cover reduced daytime surface heating creating persistent inversion. Elevated ammonium nitrate (NH4NO3 and water associated with it are found to be main reasons for the PM2.5 exceedances. An effective-variance chemical mass balance (EV-CMB receptor model using locally-derived geological profiles and inorganic/organic markers confirmed secondary NH4NO3 (27–37%, residential wood combustion (RWC; 11–51%, and diesel engine exhaust (7–22% as the dominant PM2.5 contributors. Paved road dust and de-icing materials were minor, but detectable contributors. RWC is a more important source than diesel for organic carbon (OC, but vice versa for elemental carbon (EC. A majority of secondary NH4NO3 is also attributed to RWC and diesel engines (including snow removal equipment through oxides of nitrogen (NOx emissions from these sources. Findings from this study may apply to similar situations experienced by other urban valleys.

  10. Photochemical aging of secondary organic aerosols: effects on hygroscopic growth and CCN activation

    Science.gov (United States)

    Buchholz, A.; Mentel, Th. F.; Tillmann, R.; Schlosser, E.; Mildenberger, K.; Clauss, T.; Henning, S.; Kiselev, A.; Stratmann, F.

    2009-04-01

    Plant emitted volatile organic carbons (VOCs) are a major precursor of secondary organic aerosols (SOA), an important constituent of atmospheric aerosols. The precursors are oxidized via ozonolysis, photooxidation, or by NO3 and form aerosol particles. Due to further oxidation of the organic matter the composition of the SOA may age with time. This will also change the hygroscopic growth (HG) and cloud condensation nuclei (CCN) activation of the particles. In this study we generated and aged SOA in the SAPHIR chamber at the Research Centre Juelich under near atmospheric conditions: natural sunlight, low precursor and O3 concentrations, and long reaction times. As precursor we used a mixture of 5 monoterpenes (MT) or 5 MT with 2 sesquiterpenes which had been identified as major constituents of plant emissions in previous experiments. Concentrations ranged between 4 and 100 ppb MT and the total reaction time was 36h. HG was measured at RH=10-97% by a Hygroscopic Tandem Differential Analyser (HTDMA, FZ Juelich) and at RH=97-99% by the Leipzig Aerosol Cloud Interaction Simulator (LACIS-mobile, IfT Leipzig). The agreement between HTDMA and LACIS-mobile data was generally good. CCN properties were measured with a continuous flow CCN Counter from DMT. SOA particles generated on a sunny day were more hygroscopic and had a lower activation diameter (Dcrit) than SOA formed under cloudy conditions. With aging it became more hygroscopic and Dcrit decreased. Sunlight enhanced this effect. But the change in HG and Dcrit due to aging was less than the difference between SOA generated under different conditions (i.e. sunny or cloudy). We did not observe a dependence of the HG on the precursor concentration.

  11. Hygroscopic influence on the semisolid-to-liquid transition of secondary organic materials.

    Science.gov (United States)

    Bateman, Adam P; Bertram, Allan K; Martin, Scot T

    2015-05-14

    The effect of relative humidity (RH) on the rebound of particles composed of isoprene, α-pinene, and toluene secondary organic materials (SOMs) was studied. A three-arm impaction apparatus was used to study rebound from 5 to 95% RH at 298 K. Calibration experiments using sucrose particles of variable but known viscosities showed that the transition from rebounding to adhering particles occurred for a change in viscosity from 100 to 1 Pa s, corresponding to a transition from semisolid to liquid material. The experimentally determined rebound fractions of the studied SOMs were compared with results from a model of the rebound processes of hard particles, taking into account the particle kinetic energy, van der Waals forces, and RH-dependent capillary forces. For low RH values, the hard-particle model explained the diameter-dependent rebound behavior for all studied SOMs. For elevated RH, however, the experimental observations deviated from the model predictions. On the basis of the calibration experiments using sucrose particles as well as a comparison between the observations and the predictions of the hard-particle model, the interpretation is made that a semisolid-to-liquid transition occurred at elevated RH. Material softening, increased adhesion, or a combination of the two implied the action of additional modes of energy relaxation that were not included in the hard-particle model. The RH threshold for the semisolid-to-liquid phase transition was 40% RH for isoprene SOM, 70% for toluene SOM, and 70% for α-pinene SOM. A correlation between the rebound fraction and the hygroscopic growth factor G was demonstrated, implying that absorbed water volume was a dominant governing factor of the semisolid-to-liquid transition for the studied classes of SOM. Simple heuristic rules based on G of 1.15 for the semisolid-to-liquid phase transition could be used for prognostication of the SOM phase in modeling applications at 298 K. With respect to atmospheric processes, the

  12. Secondary organic aerosol formation from semi- and intermediate-volatility organic compounds and glyoxal: Relevance of O/C as a tracer for aqueous multiphase chemistry

    Science.gov (United States)

    Waxman, Eleanor M.; Dzepina, Katja; Ervens, Barbara; Lee-Taylor, Julia; Aumont, Bernard; Jimenez, Jose L.; Madronich, Sasha; Volkamer, Rainer

    2013-03-01

    The role of aqueous multiphase chemistry in the formation of secondary organic aerosol (SOA) remains difficult to quantify. We investigate it here by testing the rapid formation of moderate oxygen-to-carbon (O/C) SOA during a case study in Mexico City. A novel laboratory-based glyoxal-SOA mechanism is applied to the field data, and explains why less gas-phase glyoxal mass is observed than predicted. Furthermore, we compare an explicit gas-phase chemical mechanism for SOA formation from semi- and intermediate-volatility organic compounds (S/IVOCs) with empirical parameterizations of S/IVOC aging. The mechanism representing our current understanding of chemical kinetics of S/IVOC oxidation combined with traditional SOA sources and mixing of background SOA underestimates the observed O/C by a factor of two at noon. Inclusion of glyoxal-SOA with O/C of 1.5 brings O/C predictions within measurement uncertainty, suggesting that field observations can be reconciled on reasonable time scales using laboratory-based empirical relationships for aqueous chemistry.

  13. High formation of secondary organic aerosol from the photo-oxidation of toluene

    Directory of Open Access Journals (Sweden)

    L. Hildebrandt

    2009-05-01

    Full Text Available Toluene and other aromatics have long been viewed as the dominant anthropogenic secondary organic aerosol (SOA precursors, but the SOA mass yields from toluene reported in previous studies vary widely. Experiments conducted in the Carnegie Mellon University environmental chamber to study SOA formation from the photo-oxidation of toluene show significantly larger SOA production than parameterizations employed in current air-quality models. Aerosol mass yields depend on experimental conditions: yields are higher under higher UV intensity, under low-NOx conditions and at lower temperatures. The extent of oxidation of the aerosol also varies with experimental conditions, consistent with ongoing, progressive photochemical aging of the toluene SOA. Measurements using a thermodenuder system suggest that the aerosol formed under high- and low-NOx conditions is semi-volatile. These results suggest that SOA formation from toluene depends strongly on ambient conditions. An approximate parameterization is proposed for use in air-quality models until a more thorough treatment accounting for the dynamic nature of this system becomes available.

  14. Influence of the sunspot cycle on the Northern Hemisphere wintertime circulation from long upper-air data sets

    Directory of Open Access Journals (Sweden)

    Y. Brugnara

    2013-07-01

    Full Text Available Here we present a study of the 11 yr sunspot cycle's imprint on the Northern Hemisphere atmospheric circulation, using three recently developed gridded upper-air data sets that extend back to the early twentieth century. We find a robust response of the tropospheric late-wintertime circulation to the sunspot cycle, independent from the data set. This response is particularly significant over Europe, although results show that it is not directly related to a North Atlantic Oscillation (NAO modulation; instead, it reveals a significant connection to the more meridional Eurasian pattern (EU. The magnitude of mean seasonal temperature changes over the European land areas locally exceeds 1 K in the lower troposphere over a sunspot cycle. We also analyse surface data to address the question whether the solar signal over Europe is temporally stable for a longer 250 yr period. The results increase our confidence in the existence of an influence of the 11 yr cycle on the European climate, but the signal is much weaker in the first half of the period compared to the second half. The last solar minimum (2005 to 2010, which was not included in our analysis, shows anomalies that are consistent with our statistical results for earlier solar minima.

  15. Secondary Electrons as an Energy Source for Life.

    Science.gov (United States)

    Stelmach, Kamil B; Neveu, Marc; Vick-Majors, Trista J; Mickol, Rebecca L; Chou, Luoth; Webster, Kevin D; Tilley, Matt; Zacchei, Federica; Escudero, Cristina; Flores Martinez, Claudio L; Labrado, Amanda; Fernández, Enrique J G

    2018-01-01

    Life on Earth is found in a wide range of environments as long as the basic requirements of a liquid solvent, a nutrient source, and free energy are met. Previous hypotheses have speculated how extraterrestrial microbial life may function, among them that particle radiation might power living cells indirectly through radiolytic products. On Earth, so-called electrophilic organisms can harness electron flow from an extracellular cathode to build biomolecules. Here, we describe two hypothetical mechanisms, termed "direct electrophy" and "indirect electrophy" or "fluorosynthesis," by which organisms could harness extracellular free electrons to synthesize organic matter, thus expanding the ensemble of potential habitats in which extraterrestrial organisms might be found in the Solar System and beyond. The first mechanism involves the direct flow of secondary electrons from particle radiation to a microbial cell to power the organism. The second involves the indirect utilization of impinging secondary electrons and a fluorescing molecule, either biotic or abiotic in origin, to drive photosynthesis. Both mechanisms involve the attenuation of an incoming particle's energy to create low-energy secondary electrons. The validity of the hypotheses is assessed through simple calculations showing the biomass density attainable from the energy supplied. Also discussed are potential survival strategies that could be used by organisms living in possible habitats with a plentiful supply of secondary electrons, such as near the surface of an icy moon. While we acknowledge that the only definitive test for the hypothesis is to collect specimens, we also describe experiments or terrestrial observations that could support or nullify the hypotheses. Key Words: Radiation-Electrophiles-Subsurface life. Astrobiology 18, 73-85.

  16. Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-benefit of SO2 emission controls

    Science.gov (United States)

    Isoprene emitted by vegetation is an important precursor of secondary organic aerosol (SOA), but the mechanism and yields are uncertain. Aerosol is prevailingly aqueous under the humid conditions typical of isoprene-emitting regions. Here we develop an aqueous-phase mechanism for...

  17. Liquid-liquid phase separation in particles containing secondary organic material free of inorganic salts

    Science.gov (United States)

    Song, Mijung; Liu, Pengfei; Martin, Scot T.; Bertram, Allan K.

    2017-09-01

    Particles containing secondary organic material (SOM) are ubiquitous in the atmosphere and play a role in climate and air quality. Recently, research has shown that liquid-liquid phase separation (LLPS) occurs at high relative humidity (RH) (greater than ˜ 95 %) in α-pinene-derived SOM particles free of inorganic salts, while LLPS does not occur in isoprene-derived SOM particles free of inorganic salts. We expand on these findings by investigating LLPS at 290 ± 1 K in SOM particles free of inorganic salts produced from ozonolysis of β-caryophyllene, ozonolysis of limonene, and photo-oxidation of toluene. LLPS was observed at greater than ˜ 95 % RH in the biogenic SOM particles derived from β-caryophyllene and limonene while LLPS was not observed in the anthropogenic SOM particles derived from toluene. This work combined with the earlier work on LLPS in SOM particles free of inorganic salts suggests that the occurrence of LLPS in SOM particles free of inorganic salts is related to the oxygen-to-carbon elemental ratio (O : C) of the organic material. These results help explain the difference between the hygroscopic parameter κ of SOM particles measured above and below water saturation in the laboratory and field, and have implications for predicting the cloud condensation nucleation properties of SOM particles.

  18. Photochemistry of limonene secondary organic aerosol studied with chemical ionization mass spectrometry

    Science.gov (United States)

    Pan, Xiang

    Limonene is one of the most abundant monoterpenes in the atmosphere. Limonene easily reacts with gas-phase oxidants in air such as NO3, ozone and OH. Secondary organic aerosol (SOA) is formed when low vapor pressure products condense into particles. Chemicals in SOA particles can undergo further reactions with oxidants and with solar radiation that significantly change SOA composition over the course of several days. The goal of this work was to characterize radiation induced reaction in SOA. To perform experiments, we have designed and constructed an Atmospheric Pressure Chemical Ionization Mass Spectrometer (APCIMS) coupled to a photochemical cell containing SOA samples. In APCIMS, (H2O)nH 3O+ clusters are generated in a 63Ni source and react with gaseous organic analytes. Most organic chemicals are not fragmented by the ionization process. We have focused our attention on limonene SOA prepared in two different ways. The first type of SOA is produced by oxidation of limonene by ozone; and the second type of SOA is formed by the NO3-induced oxidation of limonene. They model the SOA formed under daytime and nighttime conditions, respectively. Ozone initiated oxidation is the most important chemical sink for limonene both indoors, where it is used for cleaning purposes, and outdoors. Terpenes are primarily oxidized by reactions with NO3 at night time. We generated limonene SOA under different ozone and limonene concentrations. The resulting SOA samples were exposed to wavelength-tunable radiation in the UV-Visible range between 270 nm and 630 nm. The results show that the photodegradation rates strongly depend on radiation wavelengths. Gas phase photodegradation products such as acetone, formaldehyde, acetaldehyde, and acetic acid were shown to have different production rates for SOA formed in different concentration conditions. Even for SOA prepared under the lowest concentrations, the SOA photodegradation was efficient. The conclusion is that exposure of SOA to

  19. Organization dependent collective magnetic properties of secondary nanostructures with differential spatial ordering and magnetic easy axis orientation

    Energy Technology Data Exchange (ETDEWEB)

    Saikia, K. [Department of Physics, Tezpur University (Central University), Tezpur 784028 (India); Sarma, D.D. [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012 (India); Deb, P., E-mail: pdeb@tezu.ernet.in [Department of Physics, Tezpur University (Central University), Tezpur 784028 (India)

    2016-06-15

    Achieving control on the formation of different organization states of magnetic nanoparticles is crucial to harness their organization dependent physical properties in desired ways. In this study, three organization states of iron oxide nanoparticles (γ-Fe{sub 2}O{sub 3}), defining as (i) assembly (ii) network aggregate and (iii) cluster, have been developed by simply changing the solvent evaporation conditions. All three systems have retained the same phase and polydispersity of primary particles. Magnetic measurements show that the partial alignment of the easy axes of the particles in the network system due to the stacking aggregation morphology can result in significant enhancement of the coercivity and remanence values, while the opposite is obtained for the cluster system due to the random orientation of easy axes. Partial alignment in the aggregate system also results in noticeable non-monotonic field dependence of ZFC peak temperature (T{sub peak}). The lowest value of the blocking temperature (T{sub B}) for the cluster system is related to the lowering of the effective anisotropy due to the strongest demagnetizing effect. FC (Field cooled) memory effect was observed to be decreasing with the increasing strength of dipolar interaction of organization states. Therefore, the stacking aggregation and the cluster formation are two interesting ways of magnetic nanoparticles organization for modulating collective magnetic properties significantly, which can have renewed application potentials from recording devices to biomedicine. - Highlights: • Three organization states of magnetic nanoparticles were developed. • Aggregation enhances the H{sub c} and M{sub r}/M{sub s,} while spherical clustering shows opposite. • Organization morphology hardly effects on FC memory effect. • Developed secondary systems can have renewed application potentials in wide spectrum.

  20. Source Estimation of Wintertime Soot Particles for an Urban Site Varanasi (25.30 N, 83.00 E) in Central Indo-Gangetic Plain Region

    Science.gov (United States)

    Singh, A. K.; Srivastava, M. K.; Dumka, U. C.; Singh, R. K.; Singh, R. S.; Tiwari, S.; Mehrotra, B. J.; Srivastava, A. K.

    2017-12-01

    Black carbon particles (BC: also called Soot) are formed by incomplete combustion of hydrocarbon based fuels (fossil fuel: coal, diesel, petrol, etc.) as well as due to burning of biomass and bio-fuels (wood, shrubs, dry leaves, etc.). Soot particles are warming agent to the atmosphere that gained wide attention in recent years due to their direct and indirect impacts on local, regional as well as global climate. The climatic effects due to soot are not well understood as indicated by large uncertainties in their climate forcing estimation, particularly in South and East Asian region, possibly due to unavailability of adequate database and information about the source. Measurement of wintertime BC mass concentrations for urban site in central IGP, `Varanasi' (25.30 N, 83.00 E), using a seven wavelength Aethalometer is reported in this work. Delta-C (=BC370 - BC880), which is an indicator of biomass/bio-fuels or residential coal burning is used to understand the source. Aethalometer based source apportionment model "Aethalometer model" was used to apportion the fossil fuel/traffic and wood/biomass burning mass concentration to the total BC mass. The preliminary results for representative month (January-2015) show that daily-average BC mass ranged from 4.47 to 20.70 μg m-3 (Average: 9.45 ± 4.15 μg m-3). The daily Absorption Ångström Exponent (AAE) and the ratio of BCff/BC and BCff/BCwb varied between 1.09 - 1.32, 0.67 - 0.92 and 2 - 40, respectively, due to the changes in BC emissions rates. The total BC, BC from fossil fuel (BCff) and BC from wood/biomass burning (BCwb) behaved in the remarkable diurnal pattern, behaving opposite to the mixing layer heights (MLHs). During daytime, MLHs are higher due to surface based solar warming and causes more volume of atmosphere for the BC dispersion. This phenomenon causes the surface measurement of lower BC mass during the daytime. The data is, however, still being processed for multi-year wintertime observations and the

  1. A Meta-Analytic Review of Graphic Organizers and Science Instruction for Adolescents with Learning Disabilities: Implications for the Intermediate and Secondary Science Classroom

    Science.gov (United States)

    Dexter, Douglas D.; Park, Youn J.; Hughes, Charles A.

    2011-01-01

    This article presents a meta-analysis of experimental and quasi-experimental studies in which intermediate and secondary students with learning disabilities were taught science content through the use of graphic organizers (GOs). Following an exhaustive search for studies meeting specified selection criteria, 23 standardized mean effect sizes were…

  2. Bounce behavior of freshly nucleated biogenic secondary organic aerosol particles

    Directory of Open Access Journals (Sweden)

    A. Virtanen

    2011-08-01

    Full Text Available The assessment of the climatic impacts and adverse health effects of atmospheric aerosol particles requires detailed information on particle properties. However, very limited information is available on the morphology and phase state of secondary organic aerosol (SOA particles. The physical state of particles greatly affects particulate-phase chemical reactions, and thus the growth rates of newly formed atmospheric aerosol. Thus verifying the physical phase state of SOA particles gives new and important insight into their formation, subsequent growth, and consequently potential atmospheric impacts. According to our recent study, biogenic SOA particles produced in laboratory chambers from the oxidation of real plant emissions as well as in ambient boreal forest atmospheres can exist in a solid phase in size range >30 nm. In this paper, we extend previously published results to diameters in the range of 17–30 nm. The physical phase of the particles is studied by investigating particle bounce properties utilizing electrical low pressure impactor (ELPI. We also investigate the effect of estimates of particle density on the interpretation of our bounce observations. According to the results presented in this paper, particle bounce clearly decreases with decreasing particle size in sub 30 nm size range. The comparison measurements by ammonium sulphate and investigation of the particle impaction velocities strongly suggest that the decreasing bounce is caused by the differences in composition and phase of large (diameters greater than 30 nm and smaller (diameters between 17 and 30 nm particles.

  3. Observation of viscosity transition in α-pinene secondary organic aerosol

    Directory of Open Access Journals (Sweden)

    E. Järvinen

    2016-04-01

    Full Text Available Under certain conditions, secondary organic aerosol (SOA particles can exist in the atmosphere in an amorphous solid or semi-solid state. To determine their relevance to processes such as ice nucleation or chemistry occurring within particles requires knowledge of the temperature and relative humidity (RH range for SOA to exist in these states. In the Cosmics Leaving Outdoor Droplets (CLOUD experiment at The European Organisation for Nuclear Research (CERN, we deployed a new in situ optical method to detect the viscous state of α-pinene SOA particles and measured their transition from the amorphous highly viscous state to states of lower viscosity. The method is based on the depolarising properties of laboratory-produced non-spherical SOA particles and their transformation to non-depolarising spherical particles at relative humidities near the deliquescence point. We found that particles formed and grown in the chamber developed an asymmetric shape through coagulation. A transition to a spherical shape was observed as the RH was increased to between 35 % at −10 °C and 80 % at −38 °C, confirming previous calculations of the viscosity-transition conditions. Consequently, α-pinene SOA particles exist in a viscous state over a wide range of ambient conditions, including the cirrus region of the free troposphere. This has implications for the physical, chemical, and ice-nucleation properties of SOA and SOA-coated particles in the atmosphere.

  4. Patients with secondary amenorrhea due to tuberculosis ...

    African Journals Online (AJOL)

    Tuberculosis (TB) is a disease which can affect various organs, including human's genital organs such as the endometrium. Tuberculosis endometritis can cause clinical symptoms of secondary amenorrhea and infertility. Infertility in genital TB caused by the involvement of the endometrium. The case presentation is ...

  5. Novel pathway of SO2 oxidation in the atmosphere: reactions with monoterpene ozonolysis intermediates and secondary organic aerosol

    Science.gov (United States)

    Ye, Jianhuai; Abbatt, Jonathan P. D.; Chan, Arthur W. H.

    2018-04-01

    Ozonolysis of monoterpenes is an important source of atmospheric biogenic secondary organic aerosol (BSOA). While enhanced BSOA formation has been associated with sulfate-rich conditions, the underlying mechanisms remain poorly understood. In this work, the interactions between SO2 and reactive intermediates from monoterpene ozonolysis were investigated under different humidity conditions (10 % vs. 50 %). Chamber experiments were conducted with ozonolysis of α-pinene or limonene in the presence of SO2. Limonene SOA formation was enhanced in the presence of SO2, while no significant changes in SOA yields were observed during α-pinene ozonolysis. Under dry conditions, SO2 primarily reacted with stabilized Criegee intermediates (sCIs) produced from ozonolysis, but at 50 % RH heterogeneous uptake of SO2 onto organic aerosol was found to be the dominant sink of SO2, likely owing to reactions between SO2 and organic peroxides. This SO2 loss mechanism to organic peroxides in SOA has not previously been identified in experimental chamber studies. Organosulfates were detected and identified using an electrospray ionization-ion mobility spectrometry-high-resolution time-of-flight mass spectrometer (ESI-IMS-TOF) when SO2 was present in the experiments. Our results demonstrate the synergistic effects between BSOA formation and SO2 oxidation through sCI chemistry and SO2 uptake onto organic aerosol and illustrate the importance of considering the chemistry of organic and sulfur-containing compounds holistically to properly account for their reactive sinks.

  6. The dependence of wintertime Mediterranean precipitation on the atmospheric circulation response to climate change

    Science.gov (United States)

    Zappa, Giuseppe; Hoskins, Brian; Shepherd, Ted

    2016-04-01

    Climate models indicate a future wintertime precipitation reduction in the Mediterranean region which may have large socio-economic impacts. However, there is large uncertainty in the amplitude of the projected precipitation reduction and this limits the possibility to inform effective adaptation planning. We analyse CMIP5 climate model output to quantify the role of atmospheric circulation in the precipitation change and the time of emergence of the Mediterranean precipitation response. It is found that a simple circulation index, i.e. the 850 hPa zonal wind (U850) in North Africa, well describes the year to year fluctuations in the area-averaged Mediterranean precipitation, with positive (i.e. westerly) U850 anomalies in North Africa being associated with positive precipitation anomalies. Under climate change, U850 in North Africa and the Mediterranean precipitation are both projected to decrease consistently with the relationship found in the inter-annual variability. This enables us to estimate that about 85% of the CMIP5 mean precipitation response and 80% of the variance in the inter-model spread are related to changes in the atmospheric circulation. In contrast, there is no significant correlation between the mean precipitation response and the global-mean surface warming across the models. We also find that the precipitation response to climate change might already emerge from internal variability by 2025 relative to 1960-1990 according to the climate models with a large circulation response. This implies that it might soon be possible to test model projections using observations. Finally, some of the mechanisms which are important for the Mediterranean circulation response in the CMIP5 models are discussed.

  7. Formation and toxicological effect of secondary organic aerosols%二次有机气溶胶的形成及其毒理效应

    Institute of Scientific and Technical Information of China (English)

    曹军骥; 李建军

    2016-01-01

    Background, aim, and scope Along with the rapid development of Chinese economy, pollutants derived from increasing usage of fossil fuels and biofuels, as well as emissions from waste incineration and dust have been causing serious air pollution problems in many areas of China. Particular matter (PM), especially anthropogenic aerosols, emitted from various sources may alter regional atmospheric stability, and are of significant impact on climate change and human health. Comparing with PM10 (aerodynamic diameter≤10 μm), ifne particle (PM2.5, aerodynamic diameter≤2.5 μm) do more damage to human health. Organic matter (OM), an important chemical composition of ifne particle, takes 20%—90% of the ifne particles, has a signiifcant impact on air pollution and haze event which is happening in China, and has become a frontier of atmospheric chemistry research area. Consisting with many toxic compounds, such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organic amines and so on, organic aerosol is harmful for human health. Many in-vitro and in-vito studies of biological toxicity were focused on the primary particulate matters emitted directly from the pollution sources, however, attention for the formation and toxicity of secondary organic aerosols (SOA) are really scarce and therefore urgent.Materials and methods Taking PAHs, amines, and biogenic terpenes as examples, in order to improve the understanding on health damage of SOA pollution, this article brielfy reviewed the formation and bio-toxicity effects of speciifc group of SOA, and focused on the rising toxicity of the products comparing with their parent compounds.Results (1) Polycyclic aromatic hydrocarbons (PAHs). Because of the mutagenic, teratogenic and carcinogenic properties, PAHs has focused a great deal of attention from scientiifc researchers and is considered as one of the most important organic pollutants in the atmosphere. Parent PAHs in the aerosols can undergo a

  8. Direct Observations of Isoprene Secondary Organic Aerosol Formation in Ambient Cloud Droplets

    Science.gov (United States)

    Zelenyuk, A.; Bell, D.; Thornton, J. A.; Fast, J. D.; Shrivastava, M. B.; Berg, L. K.; Imre, D. G.; Mei, F.; Shilling, J.; Suski, K. J.; Liu, J.; Tomlinson, J. M.; Wang, J.

    2017-12-01

    Multiphase chemistry of isoprene photooxidation products has been shown to be one of the major sources of secondary organic aerosol (SOA) in the atmosphere. A number of recent studies indicate that aqueous aerosol phase provides a medium for reactive uptake of isoprene photooxidation products, and in particular, isomeric isoprene epoxydiols (IEPOX), with reaction rates and yields being dependent on aerosol acidity, water content, sulfate concentration, and organic coatings. However, very few studies focused on chemistry occurring within actual cloud droplets. We will present data acquired during recent Holistic Interactions of Shallow Clouds, Aerosols, and Land Ecosystems (HI-SCALE) Campaign, which provide direct evidence for IEPOX-SOA formation in cloud droplets. Single particle mass spectrometer, miniSPLAT, and a high-resolution, time-of-flight aerosol mass spectrometer were used to characterize the composition of aerosol particles and cloud droplet residuals, while a high-resolution, time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) was used to characterize gas-phase compounds. We find that the composition of cloud droplet residuals was markedly different than that of aerosol particles sampled outside the cloud. Cloud droplet residuals were comprised of individual particles with high relative fractions of sulfate and nitrate and significant fraction of particles with mass spectra that are nearly identical to those of laboratory-generated IEPOX-SOA particles. The observed cloud-induced formation of IEPOX-SOA was accompanied by simultaneous decrease in measured concentrations of IEPOX and other gas-phase isoprene photooxidation products. Ultimately, the combined cloud, aerosol, and gas-phase measurements conducted during HI-SCALE will be used to develop and evaluate model treatments of aqueous-phase isoprene SOA formation.

  9. Secondary ion mass spectrometry and environment. SIMS as applied to the detection of stable and radioactive isotopes in marine organisms

    International Nuclear Information System (INIS)

    Chassard-Bouchaud, C.; Escaig, F.; Hallegot, P.

    1984-01-01

    Several marine species of economical interest, Crustacea (crabs and prawns) and Molluscs (common mussels and oysters) were collected from coastal waters of France: English Channel, Atlantic Ocean and Mediterranean Sea and of Japan. Microanalyses which were performed at the tissue and cell levels, using Secondary Ion Mass Spectrometry, revealed many contaminants; stable isotopes as well as radioactive actinids such as uranium were detected. Uptake, storage and excretion target organs were identified [fr

  10. Molecular characterization of urban organic aerosol in tropical India: contributions of primary emissions and secondary photooxidation

    Directory of Open Access Journals (Sweden)

    P. Q. Fu

    2010-03-01

    Full Text Available Organic molecular composition of PM10 samples, collected at Chennai in tropical India, was studied using capillary gas chromatography/mass spectrometry. Fourteen organic compound classes were detected in the aerosols, including aliphatic lipids, sugar compounds, lignin products, terpenoid biomarkers, sterols, aromatic acids, hydroxy-/polyacids, phthalate esters, hopanes, Polycyclic Aromatic Hydrocarbons (PAHs, and photooxidation products from biogenic Volatile Organic Compounds (VOCs. At daytime, phthalate esters were found to be the most abundant compound class; however, at nighttime, fatty acids were the dominant one. Di-(2-ethylhexyl phthalate, C16 fatty acid, and levoglucosan were identified as the most abundant single compounds. The nighttime maxima of most organics in the aerosols indicate a land/sea breeze effect in tropical India, although some other factors such as local emissions and long-range transport may also influence the composition of organic aerosols. However, biogenic VOC oxidation products (e.g., 2-methyltetrols, pinic acid, 3-hydroxyglutaric acid and β-caryophyllinic acid showed diurnal patterns with daytime maxima. Interestingly, terephthalic acid was maximized at nighttime, which is different from those of phthalic and isophthalic acids. A positive relation was found between 1,3,5-triphenylbenzene (a tracer for plastic burning and terephthalic acid, suggesting that the field burning of municipal solid wastes including plastics is a significant source of terephthalic acid. Organic compounds were further categorized into several groups to clarify their sources. Fossil fuel combustion (24–43% was recognized as the most significant source for the total identified compounds, followed by plastic emission (16–33%, secondary oxidation (8.6–23%, and microbial/marine sources (7.2–17%. In contrast, the contributions of terrestrial plant waxes (5.9–11% and biomass burning (4.2–6.4% were relatively

  11. Modelling organic particles in the atmosphere

    International Nuclear Information System (INIS)

    Couvidat, Florian

    2012-01-01

    Organic aerosol formation in the atmosphere is investigated via the development of a new model named H 2 O (Hydrophilic/Hydrophobic Organics). First, a parameterization is developed to take into account secondary organic aerosol formation from isoprene oxidation. It takes into account the effect of nitrogen oxides on organic aerosol formation and the hydrophilic properties of the aerosols. This parameterization is then implemented in H 2 O along with some other developments and the results of the model are compared to organic carbon measurements over Europe. Model performance is greatly improved by taking into account emissions of primary semi-volatile compounds, which can form secondary organic aerosols after oxidation or can condense when temperature decreases. If those emissions are not taken into account, a significant underestimation of organic aerosol concentrations occurs in winter. The formation of organic aerosols over an urban area was also studied by simulating organic aerosols concentration over the Paris area during the summer campaign of Megapoli (July 2009). H 2 O gives satisfactory results over the Paris area, although a peak of organic aerosol concentrations from traffic, which does not appear in the measurements, appears in the model simulation during rush hours. It could be due to an underestimation of the volatility of organic aerosols. It is also possible that primary and secondary organic compounds do not mix well together and that primary semi volatile compounds do not condense on an organic aerosol that is mostly secondary and highly oxidized. Finally, the impact of aqueous-phase chemistry was studied. The mechanism for the formation of secondary organic aerosol includes in-cloud oxidation of glyoxal, methylglyoxal, methacrolein and methylvinylketone, formation of methyltetrols in the aqueous phase of particles and cloud droplets, and the in-cloud aging of organic aerosols. The impact of wet deposition is also studied to better estimate the

  12. Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model – Part 2: Assessing the influence of vapor wall losses

    OpenAIRE

    Cappa, Christopher D.; Jathar, Shantanu H.; Kleeman, Michael J.; Docherty, Kenneth S.; Jimenez, Jose L.; Seinfeld, John H.; Wexler, Anthony S.

    2016-01-01

    The influence of losses of organic vapors to chamber walls during secondary organic aerosol (SOA) formation experiments has recently been established. Here, the influence of such losses on simulated ambient SOA concentrations and properties is assessed in the UCD/CIT regional air quality model using the statistical oxidation model (SOM) for SOA. The SOM was fit to laboratory chamber data both with and without accounting for vapor wall losses following the approa...

  13. Wintertime water-soluble aerosol composition and particle water content in Fresno, California

    Science.gov (United States)

    Parworth, Caroline L.; Young, Dominique E.; Kim, Hwajin; Zhang, Xiaolu; Cappa, Christopher D.; Collier, Sonya; Zhang, Qi

    2017-03-01

    The composition and concentrations of water-soluble gases and ionic aerosol components were measured from January to February 2013 in Fresno, CA, with a particle-into-liquid sampler with ion chromatography and annular denuders. The average (±1σ) ionic aerosol mass concentration was 15.0 (±9.4) µg m-3, and dominated by nitrate (61%), followed by ammonium, sulfate, chloride, potassium, nitrite, and sodium. Aerosol-phase organic acids, including formate and glycolate, and amines including methylaminium, triethanolaminium, ethanolaminium, dimethylaminium, and ethylaminium were also detected. Although the dominant species all came from secondary aerosol formation, there were primary sources of ionic aerosols as well, including biomass burning for potassium and glycolate, sea spray for sodium, chloride, and dimethylamine, and vehicles for formate. Particulate methanesulfonic acid was also detected and mainly associated with terrestrial sources. On average, the molar concentration of ammonia was 49 times greater than nitric acid, indicating that ammonium nitrate formation was limited by nitric acid availability. Particle water was calculated based on the Extended Aerosol Inorganics Model (E-AIM) thermodynamic prediction of inorganic particle water and κ-Köhler theory approximation of organic particle water. The average (±1σ) particle water concentration was 19.2 (±18.6) µg m-3, of which 90% was attributed to inorganic species. The fractional contribution of particle water to total fine particle mass averaged at 36% during this study and was greatest during early morning and night and least during the day. Based on aqueous-phase concentrations of ions calculated by using E-AIM, the average (±1σ) pH of particles in Fresno during the winter was estimated to be 4.2 (±0.2).

  14. Liquid–liquid phase separation in particles containing secondary organic material free of inorganic salts

    Directory of Open Access Journals (Sweden)

    M. Song

    2017-09-01

    Full Text Available Particles containing secondary organic material (SOM are ubiquitous in the atmosphere and play a role in climate and air quality. Recently, research has shown that liquid–liquid phase separation (LLPS occurs at high relative humidity (RH (greater than  ∼  95 % in α-pinene-derived SOM particles free of inorganic salts, while LLPS does not occur in isoprene-derived SOM particles free of inorganic salts. We expand on these findings by investigating LLPS at 290 ± 1 K in SOM particles free of inorganic salts produced from ozonolysis of β-caryophyllene, ozonolysis of limonene, and photo-oxidation of toluene. LLPS was observed at greater than  ∼  95 % RH in the biogenic SOM particles derived from β-caryophyllene and limonene while LLPS was not observed in the anthropogenic SOM particles derived from toluene. This work combined with the earlier work on LLPS in SOM particles free of inorganic salts suggests that the occurrence of LLPS in SOM particles free of inorganic salts is related to the oxygen-to-carbon elemental ratio (O : C of the organic material. These results help explain the difference between the hygroscopic parameter κ of SOM particles measured above and below water saturation in the laboratory and field, and have implications for predicting the cloud condensation nucleation properties of SOM particles.

  15. Substantial secondary organic aerosol formation in a coniferous forest: observations of both day- and nighttime chemistry

    Directory of Open Access Journals (Sweden)

    A. K. Y. Lee

    2016-06-01

    Full Text Available Substantial biogenic secondary organic aerosol (BSOA formation was investigated in a coniferous forest mountain region in Whistler, British Columbia. A largely biogenic aerosol growth episode was observed, providing a unique opportunity to investigate BSOA formation chemistry in a forested environment with limited influence from anthropogenic emissions. Positive matrix factorization of aerosol mass spectrometry (AMS measurement identified two types of BSOA (BSOA-1 and BSOA-2, which were primarily generated by gas-phase oxidation of monoterpenes and perhaps sesquiterpenes. The temporal variations of BSOA-1 and BSOA-2 can be explained by gas–particle partitioning in response to ambient temperature and the relative importance of different oxidation mechanisms between day and night. While BSOA-1 arises from gas-phase ozonolysis and nitrate radical chemistry at night, BSOA-2 is likely less volatile than BSOA-1 and consists of products formed via gas-phase oxidation by OH radical and ozone during the day. Organic nitrates produced through nitrate radical chemistry can account for 22–33 % of BSOA-1 mass at night. The mass spectra of BSOA-1 and BSOA-2 have higher values of the mass fraction of m/z 91 (f91 compared to the background organic aerosol. Using f91 to evaluate BSOA formation pathways in this unpolluted, forested region, heterogeneous oxidation of BSOA-1 is a minor production pathway of BSOA-2.

  16. Single-particle investigation of summertime and wintertime Antarctic sea spray aerosols using low-Z particle EPMA, Raman microspectrometry, and ATR-FTIR imaging techniques

    Science.gov (United States)

    Eom, Hyo-Jin; Gupta, Dhrubajyoti; Cho, Hye-Rin; Hwang, Hee Jin; Do Hur, Soon; Gim, Yeontae; Ro, Chul-Un

    2016-11-01

    Two aerosol samples collected at King Sejong Korean scientific research station, Antarctica, on 9 December 2011 in the austral summer (sample S1) and 23 July 2012 in the austral winter (sample S2), when the oceanic chlorophyll a levels on the collection days of the samples were quite different, by ˜ 19 times (2.46 vs. 0.13 µg L-1, respectively), were investigated on a single-particle basis using quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), called low-Z particle EPMA, Raman microspectrometry (RMS), and attenuated total reflection Fourier transform infrared (ATR-FTIR) imaging techniques to obtain their characteristics based on the elemental chemical compositions, molecular species, and mixing state. X-ray analysis showed that the supermicron summertime and wintertime Antarctic aerosol samples have different elemental chemical compositions, even though all the individual particles analyzed were sea spray aerosols (SSAs); i.e., the contents of C, O, Ca, S, and Si were more elevated, whereas Cl was more depleted, for sample S1 than for sample S2. Based on qualitative analysis of the chemical species present in individual SSAs by the combined application of RMS and ATR-FTIR imaging, different organic species were observed in samples S1 and S2; i.e., Mg hydrate salts of alanine were predominant in samples S1 and S2, whereas Mg salts of fatty acids internally mixed with Mg hydrate salts of alanine were significant in sample S2. Although CaSO4 was observed significantly in both samples S1 and S2, other inorganic species, such as Na2SO4, NaNO3, Mg(NO3)2, SiO2, and CH3SO3Mg, were observed more significantly in sample S1, suggesting that those compounds may be related to the higher phytoplankton activity in summer.

  17. Different roles of water in secondary organic aerosol formation from toluene and isoprene

    Science.gov (United States)

    Jia, Long; Xu, YongFu

    2018-06-01

    Roles of water in the formation of secondary organic aerosol (SOA) from the irradiations of toluene-NO2 and isoprene-NO2 were investigated in a smog chamber. Experimental results show that the yield of SOA from toluene almost doubled as relative humidity increased from 5 to 85 %, whereas the yield of SOA from isoprene under humid conditions decreased by 2.6 times as compared to that under dry conditions. The distinct difference of RH effects on SOA formation from toluene and isoprene is well explained with our experiments and model simulations. The increased SOA from humid toluene-NO2 irradiations is mainly contributed by O-H-containing products such as polyalcohols formed from aqueous reactions. The major chemical components of SOA in isoprene-NO2 irradiations are oligomers formed from the gas phase. SOA formation from isoprene-NO2 irradiations is controlled by stable Criegee intermediates (SCIs) that are greatly influenced by water. As a result, high RH can obstruct the oligomerization reaction of SCIs to form SOA.

  18. Microphysical Properties of Single Secondary Organic Aerosol (SOA) Particles

    Science.gov (United States)

    Rovelli, Grazia; Song, Young-Chul; Pereira, Kelly; Hamilton, Jacqueline; Topping, David; Reid, Jonathan

    2017-04-01

    Secondary Organic Aerosols (SOA) deriving from the oxidation of volatile organic compounds (VOCs) can account for a substantial fraction of the overall atmospheric aerosol mass.[1] Therefore, the investigation of SOA microphysical properties is crucial to better comprehend their role in the atmospheric processes they are involved in. This works describes a single particle approach to accurately characterise the hygroscopic response, the optical properties and the gas-particle partitioning kinetics of water and semivolatile components for laboratory generated SOA. SOA was generated from the oxidation of different VOCs precursors (e.g. α-pinene, toluene) in a photo-chemical flow reactor, which consists of a temperature and relative humidity controlled 300 L polyvinyl fluoride bag. Known VOC, NOx and ozone concentrations are introduced in the chamber and UV irradiation is performed by means of a Hg pen-ray. SOA samples were collected with an electrical low pressure impactor, wrapped in aluminium foil and kept refrigerated at -20°C. SOA samples were extracted in a 1:1 water/methanol mixture. Single charged SOA particles were generated from the obtained solution using a microdispenser and confined within an electrodynamic balance (EDB), where they sit in a T (250-320 K) and RH (0-95%) controlled nitrogen flow. Suspended droplets are irradiated with a 532 nm laser and the evolving angularly resolved scattered light is used to keep track of changes in droplet size. One of the key features of this experimental approach is that very little SOA solution is required because of the small volumes needed to load the dispensers (evaporation kinetics experiments (CK-EDB) of suspended probe and sample droplets.[2] The variation of the refractive index of SOA droplets following to water or SVOCs evaporative loss was measured as a function of water activity by fitting the collected light scattering patterns with a generated Mie-Theory library of phase functions.[3] Long trapping

  19. Secondary organic aerosol production from pinanediol, a semi-volatile surrogate for first-generation oxidation products of monoterpenes

    Science.gov (United States)

    Ye, Penglin; Zhao, Yunliang; Chuang, Wayne K.; Robinson, Allen L.; Donahue, Neil M.

    2018-05-01

    We have investigated the production of secondary organic aerosol (SOA) from pinanediol (PD), a precursor chosen as a semi-volatile surrogate for first-generation oxidation products of monoterpenes. Observations at the CLOUD facility at CERN have shown that oxidation of organic compounds such as PD can be an important contributor to new-particle formation. Here we focus on SOA mass yields and chemical composition from PD photo-oxidation in the CMU smog chamber. To determine the SOA mass yields from this semi-volatile precursor, we had to address partitioning of both the PD and its oxidation products to the chamber walls. After correcting for these losses, we found OA loading dependent SOA mass yields from PD oxidation that ranged between 0.1 and 0.9 for SOA concentrations between 0.02 and 20 µg m-3, these mass yields are 2-3 times larger than typical of much more volatile monoterpenes. The average carbon oxidation state measured with an aerosol mass spectrometer was around -0.7. We modeled the chamber data using a dynamical two-dimensional volatility basis set and found that a significant fraction of the SOA comprises low-volatility organic compounds that could drive new-particle formation and growth, which is consistent with the CLOUD observations.

  20. Immunothrombotic Activity of Damage-Associated Molecular Patterns and Extracellular Vesicles in Secondary Organ Failure Induced by Trauma and Sterile Insults

    Directory of Open Access Journals (Sweden)

    John Eppensteiner

    2018-02-01

    Full Text Available Despite significant improvements in injury prevention and emergency response, injury-related death and morbidity continues to increase in the US and worldwide. Patients with trauma, invasive operations, anti-cancer treatment, and organ transplantation produce a host of danger signals and high levels of pro-inflammatory and pro-thrombotic mediators, such as damage-associated molecular patterns (DAMPs and extracellular vesicles (EVs. DAMPs (e.g., nucleic acids, histone, high-mobility group box 1 protein, and S100 are molecules released from injured, stressed, or activated cells that act as endogenous ligands of innate immune receptors, whereas EVs (e.g., microparticle and exosome are membranous vesicles budding off from plasma membranes and act as messengers between cells. DAMPs and EVs can stimulate multiple innate immune signaling pathways and coagulation cascades, and uncontrolled DAMP and EV production causes systemic inflammatory and thrombotic complications and secondary organ failure (SOF. Thus, DAMPs and EVs represent potential therapeutic targets and diagnostic biomarkers for SOF. High plasma levels of DAMPs and EVs have been positively correlated with mortality and morbidity of patients or animals with trauma or surgical insults. Blocking or neutralizing DAMPs using antibodies or small molecules has been demonstrated to ameliorate sepsis and SOF in animal models. Furthermore, a membrane immobilized with nucleic acid-binding polymers captured and removed multiple DAMPs and EVs from extracellular fluids, thereby preventing the onset of DAMP- and EV-induced inflammatory and thrombotic complications in vitro and in vivo. In this review, we will summarize the current state of knowledge of DAMPs, EVs, and SOF and discuss potential therapeutics and preventive intervention for organ failure secondary to trauma, surgery, anti-cancer therapy, and allogeneic transplantation.

  1. The Secondary Organic Aerosol Processor (SOAP v1.0) model: a unified model with different ranges of complexity based on the molecular surrogate approach

    Science.gov (United States)

    Couvidat, F.; Sartelet, K.

    2015-04-01

    In this paper the Secondary Organic Aerosol Processor (SOAP v1.0) model is presented. This model determines the partitioning of organic compounds between the gas and particle phases. It is designed to be modular with different user options depending on the computation time and the complexity required by the user. This model is based on the molecular surrogate approach, in which each surrogate compound is associated with a molecular structure to estimate some properties and parameters (hygroscopicity, absorption into the aqueous phase of particles, activity coefficients and phase separation). Each surrogate can be hydrophilic (condenses only into the aqueous phase of particles), hydrophobic (condenses only into the organic phases of particles) or both (condenses into both the aqueous and the organic phases of particles). Activity coefficients are computed with the UNIFAC (UNIversal Functional group Activity Coefficient; Fredenslund et al., 1975) thermodynamic model for short-range interactions and with the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) parameterization for medium- and long-range interactions between electrolytes and organic compounds. Phase separation is determined by Gibbs energy minimization. The user can choose between an equilibrium representation and a dynamic representation of organic aerosols (OAs). In the equilibrium representation, compounds in the particle phase are assumed to be at equilibrium with the gas phase. However, recent studies show that the organic aerosol is not at equilibrium with the gas phase because the organic phases could be semi-solid (very viscous liquid phase). The condensation-evaporation of organic compounds could then be limited by the diffusion in the organic phases due to the high viscosity. An implicit dynamic representation of secondary organic aerosols (SOAs) is available in SOAP with OAs divided into layers, the first layer being at the center of the particle (slowly

  2. Determination of the biogenic secondary organic aerosol fraction in the boreal forest by NMR spectroscopy

    Directory of Open Access Journals (Sweden)

    E. Finessi

    2012-01-01

    Full Text Available The study investigates the sources of fine organic aerosol (OA in the boreal forest, based on measurements including both filter sampling (PM1 and online methods and carried out during a one-month campaign held in Hyytiälä, Finland, in spring 2007. Two aerosol mass spectrometers (Q-AMS, ToF-AMS were employed to measure on-line concentrations of major non-refractory aerosol species, while the water extracts of the filter samples were analyzed by nuclear magnetic resonance (NMR spectroscopy for organic functional group characterization of the polar organic fraction of the aerosol. AMS and NMR spectra were processed separately by non-negative factorization algorithms, in order to apportion the main components underlying the submicrometer organic aerosol composition and depict them in terms of both mass fragmentation patterns and functional group compositions.

    The NMR results supported the AMS speciation of oxidized organic aerosol (OOA into two main fractions, which could be generally labelled as more and less oxidized organics. The more oxidized component was characterized by a mass spectrum dominated by the m/z 44 peak, and in parallel by a NMR spectrum showing aromatic and aliphatic backbones highly substituted with oxygenated functional groups (carbonyls/carboxyls and hydroxyls. Such component, contributing on average 50% of the OA mass throughout the observing period, was associated with pollution outbreaks from the Central Europe. The less oxidized component was enhanced in concomitance with air masses originating from the North-to-West sector, in agreement with previous investigations conducted at this site. NMR factor analysis was able to separate two distinct components under the less oxidized fraction of OA. One of these NMR-factors was associated with the formation of terrestrial biogenic secondary organic aerosol (BSOA, based on the comparison with spectral profiles obtained from laboratory experiments of

  3. Particle mass yield in secondary organic aerosol formed by the dark ozonolysis of α-pinene

    Directory of Open Access Journals (Sweden)

    J. E. Shilling

    2008-04-01

    Full Text Available The yield of particle mass in secondary organic aerosol (SOA formed by dark ozonolysis was measured for 0.3–22.8 ppbv of reacted α-pinene. Most experiments were conducted using a continuous-flow chamber, allowing nearly constant SOA concentration and chemical composition for several days. For comparison, some experiments were also conducted in batch mode. Reaction conditions were 25°C, 40% RH, dry (NH4SO4 seed particles, and excess 1-butanol. The organic particle loading was independently measured by an aerosol mass spectrometer and a scanning mobility particle sizer, and the two measurements agreed well. The observations showed that SOA formation occurred for even the lowest reacted α-pinene concentration of 0.3 ppbv. The particle mass yield was 0.09 at 0.15 μg m−3, increasing to 0.27 at 40 μg m−3. Compared to some results reported in the literature, the yields were 80 to 100% larger for loadings above 2 μg m−3. At lower loadings, the yields had an offset of approximately +0.07 from those reported in the literature. To as low as 0.15 μm−3, the yield curve had no inflection point toward null yield, implying the formation of one or several products having vapor pressures below this value. These observations of increased yields, especially for low loadings, are potentially important for accurate prediction by chemical transport models of organic particle concentrations in the ambient atmosphere.

  4. Relationship between chemical composition and oxidative potential of secondary organic aerosol from polycyclic aromatic hydrocarbons

    Science.gov (United States)

    Wang, Shunyao; Ye, Jianhuai; Soong, Ronald; Wu, Bing; Yu, Legeng; Simpson, André J.; Chan, Arthur W. H.

    2018-03-01

    Owing to the complex nature and dynamic behaviors of secondary organic aerosol (SOA), its ability to cause oxidative stress (known as oxidative potential, or OP) and adverse health outcomes remains poorly understood. In this work, we probed the linkages between the chemical composition of SOA and its OP, and investigated impacts from various SOA evolution pathways, including atmospheric oligomerization, heterogeneous oxidation, and mixing with metal. SOA formed from photooxidation of the two most common polycyclic aromatic hydrocarbons (naphthalene and phenanthrene) were studied as model systems. OP was evaluated using the dithiothreitol (DTT) assay. The oligomer-rich fraction separated by liquid chromatography dominates DTT activity in both SOA systems (52 ± 10 % for naphthalene SOA (NSOA), and 56 ± 5 % for phenanthrene SOA (PSOA)). Heterogeneous ozonolysis of NSOA was found to enhance its OP, which is consistent with the trend observed in selected individual oxidation products. DTT activities from redox-active organic compounds and metals were found to be not additive. When mixing with highly redox-active metal (Cu), OP of the mixture decreased significantly for 1,2-naphthoquinone (42 ± 7 %), 2,3-dihydroxynaphthalene (35 ± 1 %), NSOA (50 ± 6 %), and PSOA (43 ± 4 %). Evidence from proton nuclear magnetic resonance (1H NMR) spectroscopy illustrates that such OP reduction upon mixing can be ascribed to metal-organic binding interactions. Our results highlight the role of aerosol chemical composition under atmospheric aging processes in determining the OP of SOA, which is needed for more accurate and explicit prediction of the toxicological impacts from particulate matter.

  5. Reactivity of liquid and semisolid secondary organic carbon with chloride and nitrate in atmospheric aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bingbing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); O' Brien, Rachel E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of the Pacific, Stockton, CA (United States); Kelly, Stephen T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shilling, John E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moffet, Ryan C. [Univ. of the Pacific, Stockton, CA (United States); Gilles, Mary K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Laskin, Alexander [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-05-14

    Constituents of secondary organic carbon (SOC) in atmospheric aerosols are often mixed with inorganic components and compose a significant mass fraction of fine particulate matter in the atmosphere. Interactions between SOC and other condensed-phase species are not well understood. Here, we investigate the reactions of liquid-like and semi-solid SOC from ozonolysis of limonene (LSOC) and α-pinene (PSOC) with NaCl using a set of complementary micro-spectroscopic analyses. These reactions result in chloride depletion in the condensed phase, release of gaseous HCl, and formation of organic salts. The reactions attributed to acid displacement by SOC acidic components are driven by the high volatility of HCl. Similar reactions can take place in SOC/NaNO₃ particles. The results show that an increase in SOC mass fraction in the internally mixed SOC/NaCl particles leads to higher chloride depletion. Glass transition temperatures and viscosity of PSOC were estimated for atmospherically relevant conditions. Data show that the reaction extent depends on SOC composition, particle phase state and viscosity, mixing state, temperature, relative humidity (RH), and reaction time. LSOC shows slightly higher potential to deplete chloride than PSOC. Higher particle viscosity at low temperatures and RH can hinder these acid displacement reactions. Formation of organic salts from these overlooked reactions can alter particle physiochemical properties and may affect their reactivity and ability to act as cloud condensation and ice nuclei. The release and potential recycling of HCl and HNO₃ from reacted aerosol particles may have important implications for atmospheric chemistry.

  6. Cooperative Learning and the Organization of Secondary Schools.

    Science.gov (United States)

    Shachar, Hanna; Sharan, Shlomo

    1995-01-01

    Describes the interrelationship between school organization and classroom instructional style. Characterizes the bureaucratic and the open systems models of school organization in terms of three major dimensions of school life: administrator, teacher, and student behaviors; work design and tasks; and space-time allocations. The bureaucratic…

  7. Secondary organic aerosol formation and composition from the photo-oxidation of methyl chavicol (estragole)

    Science.gov (United States)

    Pereira, K. L.; Hamilton, J. F.; Rickard, A. R.; Bloss, W. J.; Alam, M. S.; Camredon, M.; Muñoz, A.; Vázquez, M.; Borrás, E.; Ródenas, M.

    2014-06-01

    The increasing demand for palm oil for uses in biofuel and food products is leading to rapid expansion of oil palm agriculture. Methyl chavicol (also known as estragole and 1-allyl-4-methoxybenzene) is an oxygenated biogenic volatile organic compound (VOC) that was recently identified as the main floral emission from an oil palm plantation in Malaysian Borneo. The emissions of methyl chavicol observed may impact regional atmospheric chemistry, but little is known of its ability to form secondary organic aerosol (SOA). The photo-oxidation of methyl chavicol was investigated at the European Photoreactor chamber as a part of the atmospheric chemistry of methyl chavicol (ATMECH) project. Aerosol samples were collected using a particle into liquid sampler (PILS) and analysed offline using an extensive range of instruments including; high-performance liquid chromatography mass spectrometry (HPLC-ITMS), high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-QTOFMS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The SOA yield was determined as 18 and 29% for an initial VOC mixing ratio of 212 and 460 ppbv (parts per billion by volume) respectively; using a VOC:NOx ratio of ~5:1. In total, 59 SOA compounds were observed and the structures of 10 compounds have been identified using high-resolution tandem mass spectrometry. The addition of hydroxyl and/or nitro-functional groups to the aromatic ring appears to be an important mechanistic pathway for aerosol formation. This results in the formation of compounds with both low volatility and high O:C ratios, where functionalisation rather than fragmentation is mainly observed as a result of the stability of the ring. The SOA species observed can be characterised as semi-volatile to low-volatility oxygenated organic aerosol (SVOOA and LVOOA) components and therefore may be important in aerosol formation and growth.

  8. Modeling Secondary Organic Aerosol Formation From Emissions of Combustion Sources

    Science.gov (United States)

    Jathar, Shantanu Hemant

    Atmospheric aerosols exert a large influence on the Earth's climate and cause adverse public health effects, reduced visibility and material degradation. Secondary organic aerosol (SOA), defined as the aerosol mass arising from the oxidation products of gas-phase organic species, accounts for a significant fraction of the submicron atmospheric aerosol mass. Yet, there are large uncertainties surrounding the sources, atmospheric evolution and properties of SOA. This thesis combines laboratory experiments, extensive data analysis and global modeling to investigate the contribution of semi-volatile and intermediate volatility organic compounds (SVOC and IVOC) from combustion sources to SOA formation. The goals are to quantify the contribution of these emissions to ambient PM and to evaluate and improve models to simulate its formation. To create a database for model development and evaluation, a series of smog chamber experiments were conducted on evaporated fuel, which served as surrogates for real-world combustion emissions. Diesel formed the most SOA followed by conventional jet fuel / jet fuel derived from natural gas, gasoline and jet fuel derived from coal. The variability in SOA formation from actual combustion emissions can be partially explained by the composition of the fuel. Several models were developed and tested along with existing models using SOA data from smog chamber experiments conducted using evaporated fuel (this work, gasoline, fischertropschs, jet fuel, diesels) and published data on dilute combustion emissions (aircraft, on- and off-road gasoline, on- and off-road diesel, wood burning, biomass burning). For all of the SOA data, existing models under-predicted SOA formation if SVOC/IVOC were not included. For the evaporated fuel experiments, when SVOC/IVOC were included predictions using the existing SOA model were brought to within a factor of two of measurements with minor adjustments to model parameterizations. Further, a volatility

  9. Effects of NOx and SO2 on the secondary organic aerosol formation from photooxidation of α-pinene and limonene

    Science.gov (United States)

    Zhao, Defeng; Schmitt, Sebastian H.; Wang, Mingjin; Acir, Ismail-Hakki; Tillmann, Ralf; Tan, Zhaofeng; Novelli, Anna; Fuchs, Hendrik; Pullinen, Iida; Wegener, Robert; Rohrer, Franz; Wildt, Jürgen; Kiendler-Scharr, Astrid; Wahner, Andreas; Mentel, Thomas F.

    2018-02-01

    Anthropogenic emissions such as NOx and SO2 influence the biogenic secondary organic aerosol (SOA) formation, but detailed mechanisms and effects are still elusive. We studied the effects of NOx and SO2 on the SOA formation from the photooxidation of α-pinene and limonene at ambient relevant NOx and SO2 concentrations (NOx: leading to a lack of particle surface for the organics to condense on and thus a significant influence of vapor wall loss on SOA mass yield. By compensating for the suppressing effect on nucleation of NOx, SO2 also compensated for the suppressing effect on SOA yield. Aerosol mass spectrometer data show that increasing NOx enhanced nitrate formation. The majority of the nitrate was organic nitrate (57-77 %), even in low-NOx conditions (nitrate contributed 7-26 % of total organics assuming a molecular weight of 200 g mol-1. SOA from α-pinene photooxidation at high NOx had a generally lower hydrogen to carbon ratio (H / C), compared to low NOx. The NOx dependence of the chemical composition can be attributed to the NOx dependence of the branching ratio of the RO2 loss reactions, leading to a lower fraction of organic hydroperoxides and higher fractions of organic nitrates at high NOx. While NOx suppressed new particle formation and SOA mass formation, SO2 can compensate for such effects, and the combining effect of SO2 and NOx may have an important influence on SOA formation affected by interactions of biogenic volatile organic compounds (VOCs) with anthropogenic emissions.

  10. [Multiple organ failure complicating a severe acute necrotising pancreatitis secondary of a severe hypertriglyceridemia: a case report].

    Science.gov (United States)

    Degardin, J; Pons, B; Ardisson, F; Gallego, J-P; Thiery, G

    2013-09-01

    We report the case of a 42-year-old man admitted for a multi-organ failure with a coma, a hemodynamic instability, a respiratory distress syndrome, an acute renal failure and a thrombocytopenia. The blood samples highlighted a milky serum and allowed to diagnose an acute pancreatitis associated with a major dyslipidemia: hypertriglyceridemia 11,800 mg/dL and hypercholesterolemia 1195 mg/dL. The CT-scans do not reveal any cerebral abnormalities but highlighted pancreatic lesions without biliary obstruction. A multi-organ failure complicating a severe acute pancreatitis secondary of a major hypertriglyceridemia was mentioned. Despite the absence of clear guidelines, a session of plasma exchange was started in emergency. Symptomatic treatment with protective ventilation, vasopressors, continuous heparin and insulin was continued. The clinical and biological course was good in parallel of the normalization of lipid abnormalities. The patient was discharged at day 17 with a lipid-lowering therapy. We discuss the various treatments available for the management of acute pancreatitis complicating a severe hypertriglyceridemia and their actual relevance in the absence of clear recommendations. Copyright © 2013. Published by Elsevier SAS.

  11. Identification of secondary aerosol precursors emitted by an aircraft turbofan

    Science.gov (United States)

    Kılıç, Doğuşhan; El Haddad, Imad; Brem, Benjamin T.; Bruns, Emily; Bozetti, Carlo; Corbin, Joel; Durdina, Lukas; Huang, Ru-Jin; Jiang, Jianhui; Klein, Felix; Lavi, Avi; Pieber, Simone M.; Rindlisbacher, Theo; Rudich, Yinon; Slowik, Jay G.; Wang, Jing; Baltensperger, Urs; Prévôt, Andre S. H.

    2018-05-01

    Oxidative processing of aircraft turbine-engine exhausts was studied using a potential aerosol mass (PAM) chamber at different engine loads corresponding to typical flight operations. Measurements were conducted at an engine test cell. Organic gases (OGs) and particle emissions pre- and post-PAM were measured. A suite of instruments, including a proton-transfer-reaction mass spectrometer (PTR-MS) for OGs, a multigas analyzer for CO, CO2, NOx, and an aerosol mass spectrometer (AMS) for nonrefractory particulate matter (NR-PM1) were used. Total aerosol mass was dominated by secondary aerosol formation, which was approximately 2 orders of magnitude higher than the primary aerosol. The chemical composition of both gaseous and particle emissions were also monitored at different engine loads and were thrust-dependent. At idling load (thrust 2.5-7 %), more than 90 % of the secondary particle mass was organic and could mostly be explained by the oxidation of gaseous aromatic species, e.g., benzene; toluene; xylenes; tri-, tetra-, and pentamethyl-benzene; and naphthalene. The oxygenated-aromatics, e.g., phenol, furans, were also included in this aromatic fraction and their oxidation could alone explain up to 25 % of the secondary organic particle mass at idling loads. The organic fraction decreased with thrust level, while the inorganic fraction increased. At an approximated cruise load sulfates comprised 85 % of the total secondary particle mass.

  12. Potential of secondary aerosol formation from Chinese gasoline engine exhaust.

    Science.gov (United States)

    Du, Zhuofei; Hu, Min; Peng, Jianfei; Guo, Song; Zheng, Rong; Zheng, Jing; Shang, Dongjie; Qin, Yanhong; Niu, He; Li, Mengren; Yang, Yudong; Lu, Sihua; Wu, Yusheng; Shao, Min; Shuai, Shijin

    2018-04-01

    Light-duty gasoline vehicles have drawn public attention in China due to their significant primary emissions of particulate matter and volatile organic compounds (VOCs). However, little information on secondary aerosol formation from exhaust for Chinese vehicles and fuel conditions is available. In this study, chamber experiments were conducted to quantify the potential of secondary aerosol formation from the exhaust of a port fuel injection gasoline engine. The engine and fuel used are common in the Chinese market, and the fuel satisfies the China V gasoline fuel standard. Substantial secondary aerosol formation was observed during a 4-5hr simulation, which was estimated to represent more than 10days of equivalent atmospheric photo-oxidation in Beijing. As a consequence, the extreme case secondary organic aerosol (SOA) production was 426±85mg/kg-fuel, with high levels of precursors and OH exposure. The low hygroscopicity of the aerosols formed inside the chamber suggests that SOA was the dominant chemical composition. Fourteen percent of SOA measured in the chamber experiments could be explained through the oxidation of speciated single-ring aromatics. Unspeciated precursors, such as intermediate-volatility organic compounds and semi-volatile organic compounds, might be significant for SOA formation from gasoline VOCs. We concluded that reductions of emissions of aerosol precursor gases from vehicles are essential to mediate pollution in China. Copyright © 2017. Published by Elsevier B.V.

  13. The matrix effect in secondary ion mass spectrometry

    Science.gov (United States)

    Seah, M. P.; Shard, A. G.

    2018-05-01

    Matrix effects in the secondary ion mass spectrometry (SIMS) of selected elemental systems have been analyzed to investigate the applicability of a mathematical description of the matrix effect, called here the charge transfer (CT) model. This model was originally derived for proton exchange and organic positive secondary ions, to characterise the enhancement or suppression of intensities in organic binary systems. In the systems considered in this paper protons are specifically excluded, which enables an assessment of whether the model applies for electrons as well. The present importance is in organic systems but, here we analyse simpler inorganic systems. Matrix effects in elemental systems cannot involve proton transfer if there are no protons present but may be caused by electron transfer and so electron transfer may also be involved in the matrix effects for organic systems. There are general similarities in both the magnitudes of the ion intensities as well as the matrix effects for both positive and negative secondary ions in both systems and so the CT model may be more widely applicable. Published SIMS analyses of binary elemental mixtures are analyzed. The data of Kim et al., for the Pt/Co system, provide, with good precision, data for such a system. This gives evidence for the applicability of the CT model, where electron, rather than proton, transfer is the matrix enhancing and suppressing mechanism. The published data of Prudon et al., for the important Si/Ge system, provides further evidence for the effects for both positive and negative secondary ions and allows rudimentary rules to be developed for the enhancing and suppressing species.

  14. Cross-Tissue Transcriptomic Analysis of Human Secondary Lymphoid Organ-Residing ILC3s Reveals a Quiescent State in the Absence of Inflammation

    Directory of Open Access Journals (Sweden)

    Yotam E. Bar-Ephraim

    2017-10-01

    Full Text Available A substantial number of human and mouse group 3 innate lymphoid cells (ILC3s reside in secondary lymphoid organs, yet the phenotype and function of these ILC3s is incompletely understood. Here, we employed an unbiased cross-tissue transcriptomic approach to compare human ILC3s from non-inflamed lymph nodes and spleen to their phenotypic counterparts in inflamed tonsils and from circulation. These analyses revealed that, in the absence of inflammation, lymphoid organ-residing ILC3s lack transcription of cytokines associated with classical ILC3 functions. This was independent of expression of the natural cytotoxicity receptor NKp44. However, and in contrast to ILC3s from peripheral blood, lymphoid organ-residing ILC3s express activating cytokine receptors and have acquired the ability to be recruited into immune responses by inflammatory cytokines. This comprehensive cross-tissue dataset will allow for identification of functional changes in human lymphoid organ ILC3s associated with human disease.

  15. ANALYSIS OF SECONDARY ORGANIC AEROSOL COMPOUNDS FROM THE PHOTOOXIDATION OF D-LIMONENE IN THE PRESENCE OF NO X AND THEIR DETECTION IN AMBIENT PM 2.5

    Science.gov (United States)

    Chemical analysis of secondary organic aerosol (SOA) from the photooxidation of a d-limonene/NOx/air mixture was carried out. SOA, generated in a smog chamber, was collected on Zefluor filters. To determine the structural characteristics of the compounds, the filter sample...

  16. Simulating secondary organic aerosol from missing diesel-related intermediate-volatility organic compound emissions during the Clean Air for London (ClearfLo campaign

    Directory of Open Access Journals (Sweden)

    R. Ots

    2016-05-01

    Full Text Available We present high-resolution (5 km  ×  5 km atmospheric chemical transport model (ACTM simulations of the impact of newly estimated traffic-related emissions on secondary organic aerosol (SOA formation over the UK for 2012. Our simulations include additional diesel-related intermediate-volatility organic compound (IVOC emissions derived directly from comprehensive field measurements at an urban background site in London during the 2012 Clean Air for London (ClearfLo campaign. Our IVOC emissions are added proportionally to VOC emissions, as opposed to proportionally to primary organic aerosol (POA as has been done by previous ACTM studies seeking to simulate the effects of these missing emissions. Modelled concentrations are evaluated against hourly and daily measurements of organic aerosol (OA components derived from aerosol mass spectrometer (AMS measurements also made during the ClearfLo campaign at three sites in the London area. According to the model simulations, diesel-related IVOCs can explain on average  ∼  30 % of the annual SOA in and around London. Furthermore, the 90th percentile of modelled daily SOA concentrations for the whole year is 3.8 µg m−3, constituting a notable addition to total particulate matter. More measurements of these precursors (currently not included in official emissions inventories is recommended. During the period of concurrent measurements, SOA concentrations at the Detling rural background location east of London were greater than at the central London location. The model shows that this was caused by an intense pollution plume with a strong gradient of imported SOA passing over the rural location. This demonstrates the value of modelling for supporting the interpretation of measurements taken at different sites or for short durations.

  17. Modeling a typical winter-time dust event over the Arabian Peninsula and the Red Sea

    KAUST Repository

    Kalenderski, Stoitchko

    2013-02-20

    We used WRF-Chem, a regional meteorological model coupled with an aerosol-chemistry component, to simulate various aspects of the dust phenomena over the Arabian Peninsula and Red Sea during a typical winter-time dust event that occurred in January 2009. The model predicted that the total amount of emitted dust was 18.3 Tg for the entire dust outburst period and that the two maximum daily rates were ?2.4 Tg day-1 and ?1.5 Tg day-1, corresponding to two periods with the highest aerosol optical depth that were well captured by ground-and satellite-based observations. The model predicted that the dust plume was thick, extensive, and mixed in a deep boundary layer at an altitude of 3-4 km. Its spatial distribution was modeled to be consistent with typical spatial patterns of dust emissions. We utilized MODIS-Aqua and Solar Village AERONET measurements of the aerosol optical depth (AOD) to evaluate the radiative impact of aerosols. Our results clearly indicated that the presence of dust particles in the atmosphere caused a significant reduction in the amount of solar radiation reaching the surface during the dust event. We also found that dust aerosols have significant impact on the energy and nutrient balances of the Red Sea. Our results showed that the simulated cooling under the dust plume reached 100 W m-2, which could have profound effects on both the sea surface temperature and circulation. Further analysis of dust generation and its spatial and temporal variability is extremely important for future projections and for better understanding of the climate and ecological history of the Red Sea.

  18. Effect of biological activated carbon pre-treatment to control organic fouling in the microfiltration of biologically treated secondary effluent.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Roddick, Felicity A; Fan, Linhua

    2014-10-15

    Biological activated carbon (BAC) filtration was investigated as a pre-treatment for reducing the organic fouling of a microfiltration membrane (0.1 μm polyvinylidene fluoride) in the treatment of a biologically treated secondary effluent (BTSE) from a municipal wastewater treatment plant. BAC treatment of the BTSE resulted in a marked improvement in permeate flux, which was attributed to the effective removal of organic foulants and particulates. Although the BAC removed significantly less dissolved organic carbon than the granular activated carbon (GAC) treatment which was used as a control for comparison, it led to a markedly greater flux. This was attributed to the effective removal of the very high molecular weight substances such as biopolymers by the BAC through biodegradation and adsorption of those molecules on the biofilm. Size exclusion chromatography showed the BAC treatment led to approximately 30% reduction in these substances, whereas the GAC did not greatly remove these molecules. The BAC treatment led to a greater reduction of loosely-attached and firmly-attached membrane surface foulant, and this was confirmed by attenuated total reflection-fourier transform infrared spectroscopy analysis. This study demonstrated the potential of BAC pre-treatment for reducing organic fouling and thus improving flux for the microfiltration of BTSE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ben H.; Mohr, Claudia; Lopez-Hilfiker, Felipe D.; Lutz, Anna; Hallquist, Mattias; Lee, Lance; Romer, Paul; Cohen, Ronald C.; Iyer, Siddharth; Kurtén, Theo; Hu, Weiwei; Day, Douglas A.; Campuzano-Jost, Pedro; Jimenez, Jose L.; Xu, Lu; Ng, Nga Lee; Guo, Hongyu; Weber, Rodney J.; Wild, Robert J.; Brown, Steven S.; Koss, Abigail; de Gouw, Joost; Olson, Kevin; Goldstein, Allen H.; Seco, Roger; Kim, Saewung; McAvey, Kevin; Shepson, Paul B.; Starn, Tim; Baumann, Karsten; Edgerton, Eric S.; Liu, Jiumeng; Shilling, John E.; Miller, David O.; Brune, William; Schobesberger, Siegfried; D' Ambro, Emma L.; Thornton, Joel A.

    2016-01-25

    Organic nitrates (ON = RONO2 + RO2NO2) are an important reservoir, if not sink, of atmospheric nitrogen oxides (NOx=NO+NO2). ON formed from isoprene oxidation alone are responsible for the export of 8 to 30% of anthropogenic NOx out of the U.S. continental boundary layer [Horowitz et al., 1998; Liang et al., 1998]. Regional NOx budgets and tropospheric ozone (O3) production, are therefore particularly sensitive to uncertainties in the yields and fates of ON [Beaver et al., 2012; Browne et al., 2013]. The yields implemented in modeling studies are determined from laboratory experiments in which only a few of the first generation gaseous ON or the total gas and particle-phase ON have been quantified [Perring et al., 2013 and references therein], while production of highly functionalized ON capable of strongly partitioning to the particle-phase have been inferred [Farmer et al., 2010; Ng et al., 2007; Nguyen et al., 2011; Perraud et al., 2012; Rollins et al., 2012], or directly measured [Ehn et al., 2014]. Addition of a nitrate (–ONO2) functional group to a hydrocarbon is estimated to lower the equilibrium saturation vapor pressure by 2.5 to 3 orders of magnitude [e.g. Capouet and Muller, 2006]. Thus, organic nitrate formation can potentially enhance particle-phase partitioning of hydrocarbons in regions with elevated levels of nitrogen oxides, contributing to secondary organic aerosol (SOA) formation [Ng et al., 2007]. There has, however, been no high time-resolved measurements of speciated ON in the particle-phase. We utilize a newly developed high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) using Iodide-adduct ionization [B H Lee et al., 2014a] with a filter inlet for gases and aerosols (FIGAERO) [Lopez-Hilfiker et al., 2014] that allows alternating in situ measurement of the molecular composition of gas and particle phases. We present observations of speciated ON in the particle-phase obtained during the 2013 Southern Oxidant

  20. Characterization of organic nitrate constituents of secondary organic aerosol (SOA) from nitrate-radical-initiated oxidation of limonene using high-resolution chemical ionization mass spectrometry

    Science.gov (United States)

    Faxon, Cameron; Hammes, Julia; Le Breton, Michael; Kant Pathak, Ravi; Hallquist, Mattias

    2018-04-01

    The gas-phase nitrate radical (NO3⚫) initiated oxidation of limonene can produce organic nitrate species with varying physical properties. Low-volatility products can contribute to secondary organic aerosol (SOA) formation and organic nitrates may serve as a NOx reservoir, which could be especially important in regions with high biogenic emissions. This work presents the measurement results from flow reactor studies on the reaction of NO3⚫ with limonene using a High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometer (HR-ToF-CIMS) combined with a Filter Inlet for Gases and AEROsols (FIGAERO). Major condensed-phase species were compared to those in the Master Chemical Mechanism (MCM) limonene mechanism, and many non-listed species were identified. The volatility properties of the most prevalent organic nitrates in the produced SOA were determined. Analysis of multiple experiments resulted in the identification of several dominant species (including C10H15NO6, C10H17NO6, C8H11NO6, C10H17NO7, and C9H13NO7) that occurred in the SOA under all conditions considered. Additionally, the formation of dimers was consistently observed and these species resided almost completely in the particle phase. The identities of these species are discussed, and formation mechanisms are proposed. Cluster analysis of the desorption temperatures corresponding to the analyzed particle-phase species yielded at least five distinct groupings based on a combination of molecular weight and desorption profile. Overall, the results indicate that the oxidation of limonene by NO3⚫ produces a complex mixture of highly oxygenated monomer and dimer products that contribute to SOA formation.

  1. Characterization of organic nitrate constituents of secondary organic aerosol (SOA from nitrate-radical-initiated oxidation of limonene using high-resolution chemical ionization mass spectrometry

    Directory of Open Access Journals (Sweden)

    C. Faxon

    2018-04-01

    Full Text Available The gas-phase nitrate radical (NO3⚫ initiated oxidation of limonene can produce organic nitrate species with varying physical properties. Low-volatility products can contribute to secondary organic aerosol (SOA formation and organic nitrates may serve as a NOx reservoir, which could be especially important in regions with high biogenic emissions. This work presents the measurement results from flow reactor studies on the reaction of NO3⚫ with limonene using a High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometer (HR-ToF-CIMS combined with a Filter Inlet for Gases and AEROsols (FIGAERO. Major condensed-phase species were compared to those in the Master Chemical Mechanism (MCM limonene mechanism, and many non-listed species were identified. The volatility properties of the most prevalent organic nitrates in the produced SOA were determined. Analysis of multiple experiments resulted in the identification of several dominant species (including C10H15NO6, C10H17NO6, C8H11NO6, C10H17NO7, and C9H13NO7 that occurred in the SOA under all conditions considered. Additionally, the formation of dimers was consistently observed and these species resided almost completely in the particle phase. The identities of these species are discussed, and formation mechanisms are proposed. Cluster analysis of the desorption temperatures corresponding to the analyzed particle-phase species yielded at least five distinct groupings based on a combination of molecular weight and desorption profile. Overall, the results indicate that the oxidation of limonene by NO3⚫ produces a complex mixture of highly oxygenated monomer and dimer products that contribute to SOA formation.

  2. Secondary organic aerosols over oceans via oxidation of isoprene and monoterpenes from Arctic to Antarctic.

    Science.gov (United States)

    Hu, Qi-Hou; Xie, Zhou-Qing; Wang, Xin-Ming; Kang, Hui; He, Quan-Fu; Zhang, Pengfei

    2013-01-01

    Isoprene and monoterpenes are important precursors of secondary organic aerosols (SOA) in continents. However, their contributions to aerosols over oceans are still inconclusive. Here we analyzed SOA tracers from isoprene and monoterpenes in aerosol samples collected over oceans during the Chinese Arctic and Antarctic Research Expeditions. Combined with literature reports elsewhere, we found that the dominant tracers are the oxidation products of isoprene. The concentrations of tracers varied considerably. The mean average values were approximately one order of magnitude higher in the Northern Hemisphere than in the Southern Hemisphere. High values were generally observed in coastal regions. This phenomenon was ascribed to the outflow influence from continental sources. High levels of isoprene could emit from oceans and consequently have a significant impact on marine SOA as inferred from isoprene SOA during phytoplankton blooms, which may abruptly increase up to 95 ng/m³ in the boundary layer over remote oceans.

  3. Secondary organic aerosol in the global aerosol – chemical transport model Oslo CTM2

    Directory of Open Access Journals (Sweden)

    I. S. A. Isaksen

    2007-11-01

    Full Text Available The global chemical transport model Oslo CTM2 has been extended to include the formation, transport and deposition of secondary organic aerosol (SOA. Precursor hydrocarbons which are oxidised to form condensible species include both biogenic species such as terpenes and isoprene, as well as species emitted predominantly by anthropogenic activities (toluene, m-xylene, methylbenzene and other aromatics. A model simulation for 2004 gives an annual global SOA production of approximately 55 Tg. Of this total, 2.5 Tg is found to consist of the oxidation products of anthropogenically emitted hydrocarbons, and about 15 Tg is formed by the oxidation products of isoprene. The global production of SOA is increased to about 69 Tg yr−1 by allowing semi-volatile species to partition to ammonium sulphate aerosol. This brings modelled organic aerosol values closer to those observed, however observations in Europe remain significantly underestimated. Allowing SOA to partition into ammonium sulphate aerosol increases the contribution of anthropogenic SOA from about 4.5% to 9.4% of the total production. Total modelled organic aerosol (OA values are found to represent a lower fraction of the measured values in winter (when primary organic aerosol (POA is the dominant OA component than in summer, which may be an indication that estimates of POA emissions are too low. Additionally, for measurement stations where the summer OA values are higher than in winter, the model generally underestimates the increase in summertime OA. In order to correctly model the observed increase in OA in summer, additional SOA sources or formation mechanisms may be necessary. The importance of NO3 as an oxidant of SOA precursors is found to vary regionally, causing up to 50%–60% of the total amount of SOA near the surface in polluted regions and less than 25% in more remote areas, if the yield of condensible oxidation products for β-pinene is used for NO3 oxidation of all terpenes

  4. Lung function after cold-water dives with a standard scuba regulator or full-face-mask during wintertime.

    Science.gov (United States)

    Uhlig, Florian; Muth, Claus-Martin; Tetzlaff, Kay; Koch, Andreas; Leberle, Richard; Georgieff, Michael; Winkler, Bernd E

    2014-06-01

    Full-face-masks (FFM) prevent the diver's face from cold and can support nasal breathing underwater. The aim of the study was to evaluate the effect of the use of FFMs on lung function and wellbeing. Twenty-one, healthy, non-asthmatic divers performed two cold-water dives (4⁰C, 25 min, 10 metres' depth) - one with a FFM and the other with a standard scuba regulator (SSR). Spirometry was performed before and after each dive and well-being and cold sensation were assessed after the dives. Significant decreases in forced vital capacity (FVC), forced expiratory volume in one second (FEV₁) and midexpiratory flow at 75% of FVC (MEF₇₅) occurred after both FFM and SSR dives. Changes in FVC and FEV₁ did not differ significantly between FFM and SSR dives. However, the mid-expiratory flows measured at 50% and 25% of FVC (MEF₅₀ and MEF₂₅) were significantly lower 10 minutes after the FFM dive compared to 10 minutes after the SSR dive. The wellbeing and cold sensation of the divers were significantly improved with FFM dives compared to SSR dives. Cold-water dives during wintertime can be associated with airway narrowing. During cold-water dives, the use of a FFM appears to reduce the cold sensation and enhance the well-being of the divers. However, a FFM does not appear to prevent airway narrowing in healthy, non-asthmatic subjects.

  5. In-situ Raman microprobe studies of plant cell walls: macromolecular organization and compositional variability in the secondary wall of Picea mariana (Mill.) B.S.P.

    Science.gov (United States)

    U.P. Agarwal; R.H. Atalla

    1986-01-01

    Native-state organization and distribution of cell-wall components in the secondary wall of woody tissue from P. mariana (Black Spruce) have been investigated using polarized Raman microspectroscopy. Evidence for orientation is detected through Raman intensity variations resulting from rotations of the exciting electric vector with respect to cell-wall geometry....

  6. Organic carbon and reducing conditions lead to cadmium immobilization by secondary Fe mineral formation in a pH-neutral soil.

    Science.gov (United States)

    Muehe, E Marie; Adaktylou, Irini J; Obst, Martin; Zeitvogel, Fabian; Behrens, Sebastian; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas

    2013-01-01

    Cadmium (Cd) is of environmental relevance as it enters soils via Cd-containing phosphate fertilizers and endangers human health when taken up by crops. Cd is known to associate with Fe(III) (oxyhydr)oxides in pH-neutral to slightly acidic soils, though it is not well understood how the interrelation of Fe and Cd changes under Fe(III)-reducing conditions. Therefore, we investigated how the mobility of Cd changes when a Cd-bearing soil is faced with organic carbon input and reducing conditions. Using fatty acid profiles and quantitative PCR, we found that both fermenting and Fe(III)-reducing bacteria were stimulated by organic carbon-rich conditions, leading to significant Fe(III) reduction. The reduction of Fe(III) minerals was accompanied by increasing soil pH, increasing dissolved inorganic carbon, and decreasing Cd mobility. SEM-EDX mapping of soil particles showed that a minor fraction of Cd was transferred to Ca- and S-bearing minerals, probably carbonates and sulfides. Most of the Cd, however, correlated with a secondary iron mineral phase that was formed during microbial Fe(III) mineral reduction and contained mostly Fe, suggesting an iron oxide mineral such as magnetite (Fe3O4). Our data thus provide evidence that secondary Fe(II) and Fe(II)/Fe(III) mixed minerals could be a sink for Cd in soils under reducing conditions, thus decreasing the mobility of Cd in the soil.

  7. ORGANIZATION OF ACTIVITIES IN THE COMPUTER LAB AT THE SECONDARY EDUCATIONAL ESTABLISHMENTS IN VIEW OF MEASURES OF INFORMATION SECURITY.

    Directory of Open Access Journals (Sweden)

    V.N. Kovalchuk

    2010-11-01

    Full Text Available The paper the organizational activities of informational security in the secondary school are considered In particular the planning of organizational activities on stages of the lifecycle of the system of information security of educational computer complex is proposed. There are purified the methods of unification for the software installed at the pupils’ workstations. There is developed the tentative calendar plan of regular activities and main approaches to the management of system of informational security of educational computer complex on the basis of hardware-software level and the organization of antivirus security in computer lab is described.

  8. Tracking fluorescent dissolved organic matter in multistage rivers using EEM-PARAFAC analysis: implications of the secondary tributary remediation for watershed management.

    Science.gov (United States)

    Nie, Zeyu; Wu, Xiaodong; Huang, Haomin; Fang, Xiaomin; Xu, Chen; Wu, Jianyu; Liang, Xinqiang; Shi, Jiyan

    2016-05-01

    Profound understanding of behaviors of organic matter from sources to multistage rivers assists watershed management for improving water quality of river networks in rural areas. Ninety-one water samples were collected from the three orders of receiving rivers in a typical combined polluted subcatchment (diffuse agricultural pollutants and domestic sewage) located in China. Then, the fluorescent dissolved organic matter (FDOM) information for these samples was determined by the excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC). Consequently, two typical humic-like (C1 and C2) and other two protein-like (C3 and C4) components were separated. Their fluorescence peaks were located at λ ex/em = 255(360)/455, 60 %). Principal component analysis (PCA) further demonstrated that, except for the autochthonous produced C4, the allochthonous components (C1 and C2) had the same terrestrial origins, but C3 might possess the separate anthropogenic and biological sources. Moreover, the spatial heterogeneity of contamination levels was noticeable in multistage rivers, and the allochthonous FDOM was gradually homogenized along the migration directions. Interestingly, the average content of the first three PARAFAC components in secondary tributaries and source pollutants had significantly higher levels than that in subsequent receiving rivers, thus suggesting that the supervision and remediation for secondary tributaries would play a prominent role in watershed management works.

  9. Identification of secondary aerosol precursors emitted by an aircraft turbofan

    Directory of Open Access Journals (Sweden)

    D. Kılıç

    2018-05-01

    Full Text Available Oxidative processing of aircraft turbine-engine exhausts was studied using a potential aerosol mass (PAM chamber at different engine loads corresponding to typical flight operations. Measurements were conducted at an engine test cell. Organic gases (OGs and particle emissions pre- and post-PAM were measured. A suite of instruments, including a proton-transfer-reaction mass spectrometer (PTR-MS for OGs, a multigas analyzer for CO, CO2, NOx, and an aerosol mass spectrometer (AMS for nonrefractory particulate matter (NR-PM1 were used. Total aerosol mass was dominated by secondary aerosol formation, which was approximately 2 orders of magnitude higher than the primary aerosol. The chemical composition of both gaseous and particle emissions were also monitored at different engine loads and were thrust-dependent. At idling load (thrust 2.5–7 %, more than 90 % of the secondary particle mass was organic and could mostly be explained by the oxidation of gaseous aromatic species, e.g., benzene; toluene; xylenes; tri-, tetra-, and pentamethyl-benzene; and naphthalene. The oxygenated-aromatics, e.g., phenol, furans, were also included in this aromatic fraction and their oxidation could alone explain up to 25 % of the secondary organic particle mass at idling loads. The organic fraction decreased with thrust level, while the inorganic fraction increased. At an approximated cruise load sulfates comprised 85 % of the total secondary particle mass.

  10. Effect of the tropical Pacific and Indian Ocean warming since the late 1970s on wintertime Northern Hemispheric atmospheric circulation and East Asian climate interdecadal changes

    Science.gov (United States)

    Chu, Cuijiao; Yang, Xiu-Qun; Sun, Xuguang; Yang, Dejian; Jiang, Yiquan; Feng, Tao; Liang, Jin

    2018-04-01

    Observation reveals that the tropical Pacific-Indian Ocean (TPIO) has experienced a pronounced interdecadal warming since the end of the 1970s. Meanwhile, the wintertime midlatitude Northern Hemispheric atmospheric circulation and East Asian climate have also undergone substantial interdecadal changes. The effect of the TPIO warming on these interdecadal changes are identified by a suite of AMIP-type atmospheric general circulation model experiments in which the model is integrated from September 1948 to December 1999 with prescribed historical, observed realistic sea surface temperature (SST) in a specific region and climatological SST elsewhere. Results show that the TPIO warming reproduces quite well the observed Northern Hemispheric wintertime interdecadal changes, suggesting that these interdecadal changes primarily originate from the TPIO warming. However, each sub-region of TPIO has its own distinct contribution. Comparatively, the tropical central-eastern Pacific (TCEP) and tropical western Pacific (TWP) warming makes dominant contributions to the observed positive-phase PNA-like interdecadal anomaly over the North Pacific sector, while the tropical Indian Ocean (TIO) warming tends to cancel these contributions. Meanwhile, the TIO and TWP warming makes dominant contributions to the observed positive NAO-like interdecadal anomaly over the North Atlantic sector as well as the interdecadal anomalies over the Eurasian sector, although the TWP warming's contribution is relatively small. These remote responses are directly attributed to the TPIO warming-induced tropical convection, rainfall and diabatic heating increases, in which the TIO warming has the most significant effect. Moreover, the TPIO warming excites a Gill-type pattern anomaly over the tropical western Pacific, with a low-level anticyclonic circulation anomaly over the Philippine Sea. Of three sub-regions, the TIO warming dominates such a pattern, although the TWP warming tends to cancel this effect

  11. Secondary Education in the European Union: Structures, Organisation and Administration.

    Science.gov (United States)

    EURYDICE European Unit, Brussels (Belgium).

    This study examines the existing secondary education structures of the European Union member nations, the organization of education, teacher training, and the way in which secondary education is managed in Europe today. The three European Free Trade Association/European Economic Area (EFTA/EEC) countries (Iceland, Liechtenstein, and Norway) also…

  12. submitter Heterogeneous ice nucleation of viscous secondary organic aerosol produced from ozonolysis of α-pinene

    CERN Document Server

    Ignatius, Karoliina; Järvinen, Emma; Nichman, Leonid; Fuchs, Claudia; Gordon, Hamish; Herenz, Paul; Hoyle, Christopher R; Duplissy, Jonathan; Garimella, Sarvesh; Dias, Antonio; Frege, Carla; Höppel, Niko; Tröstl, Jasmin; Wagner, Robert; Yan, Chao; Amorim, Antonio; Baltensperger, Urs; Curtius, Joachim; Donahue, Neil M; Gallagher, Martin W; Kirkby, Jasper; Kulmala, Markku; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Tomé, Antonio; Virtanen, Annele; Worsnop, Douglas; Stratmann, Frank

    2016-01-01

    There are strong indications that particles containing secondary organic aerosol (SOA) exhibit amorphous solid or semi-solid phase states in the atmosphere. This may facilitate heterogeneous ice nucleation and thus influence cloud properties. However, experimental ice nucleation studies of biogenic SOA are scarce. Here, we investigated the ice nucleation ability of viscous SOA particles. The SOA particles were produced from the ozone initiated oxidation of α-pinene in an aerosol chamber at temperatures in the range from −38 to −10 ◦C at 5–15 % relative humidity with respect to water to ensure their formation in a highly viscous phase state, i.e. semi-solid or glassy. The ice nucleation ability of SOA particles with different sizes was investigated with a new continuous flow diffusion chamber. For the first time, we observed heterogeneous ice nucleation of viscous α-pinene SOA for ice saturation ratios between 1.3 and 1.4 significantly below the homogeneous freezing limit. The maximum frozen fraction...

  13. Photodegradation of secondary organic aerosol generated from limonene oxidation by ozone studied with chemical ionization mass spectrometry

    Directory of Open Access Journals (Sweden)

    X. Pan

    2009-06-01

    Full Text Available Photodegradation of secondary organic aerosol (SOA prepared by ozone-initiated oxidation of D-limonene is studied with an action spectroscopy approach, which relies on detection of volatile photoproducts with chemical ionization mass-spectrometry as a function of the UV irradiation wavelength. Efficient photodegradation is observed for a broad range of ozone (0.1–300 ppm and D-limonene (0.02–3 ppm concentrations used in the preparation of SOA. The observed photoproducts are dominated by oxygenated C1-C3 compounds such as methanol, formic acid, acetaldehyde, acetic acid, and acetone. The irradiation wavelength dependence of the combined yield of the photoproducts closely tracks the absorption spectrum of the SOA material suggesting that photodegradation is not limited to the UV wavelengths. Kinetic simulations suggest that RO2+HO2/RO2 reactions represent the dominant route to photochemically active carbonyl and peroxide species in the limonene SOA prepared in these experiments. Similar photodegradation processes are likely to occur in realistic SOA produced by OH- or O3-initiated oxidation of biogenic volatile organic compounds in clean air.

  14. Studying volatility from composition, dilution, and heating measurements of secondary organic aerosols formed during α-pinene ozonolysis

    Science.gov (United States)

    Sato, Kei; Fujitani, Yuji; Inomata, Satoshi; Morino, Yu; Tanabe, Kiyoshi; Ramasamy, Sathiyamurthi; Hikida, Toshihide; Shimono, Akio; Takami, Akinori; Fushimi, Akihiro; Kondo, Yoshinori; Imamura, Takashi; Tanimoto, Hiroshi; Sugata, Seiji

    2018-04-01

    Traditional yield curve analysis shows that semi-volatile organic compounds are a major component of secondary organic aerosols (SOAs). We investigated the volatility distribution of SOAs from α-pinene ozonolysis using positive electrospray ionization mass analysis and dilution- and heat-induced evaporation measurements. Laboratory chamber experiments were conducted on α-pinene ozonolysis, in the presence and absence of OH scavengers. Among these, we identified not only semi-volatile products, but also less volatile highly oxygenated molecules (HOMs) and dimers. Ozonolysis products were further exposed to OH radicals to check the effects of photochemical aging. HOMs were also formed during OH-initiated photochemical aging. Most HOMs that formed from ozonolysis and photochemical aging had 10 or fewer carbons. SOA particle evaporation after instantaneous dilution was measured at fraction remaining of SOAs decreased with time and the equilibration timescale was determined to be 24-46 min for SOA evaporation. The experimental results of the equilibration timescale can be explained when the mass accommodation coefficient is assumed to be 0.1, suggesting that the existence of low-volatility materials in SOAs, kinetic inhibition, or some combined effect may affect the equilibration timescale measured in this study.

  15. Secondary organic aerosol from ozone-initiated reactions with terpene-rich household products

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Beverly; Coleman, Beverly K.; Lunden, Melissa M.; Destaillats, Hugo; Nazaroff, William W.

    2008-01-01

    We analyzed secondary organic aerosol (SOA) data from a series of small-chamber experiments in which terpene-rich vapors from household products were combined with ozone under conditions analogous to product use indoors. Reagents were introduced into a continuously ventilated 198 L chamber at steady rates. Consistently, at the time of ozone introduction, nucleation occurred exhibiting behavior similar to atmospheric events. The initial nucleation burst and growth was followed by a period in which approximately stable particle levels were established reflecting a balance between new particle formation, condensational growth, and removal by ventilation. Airborne particles were measured with a scanning mobility particle sizer (SMPS, 10 to 400 nm) in every experiment and with an optical particle counter (OPC, 0.1 to 2.0 ?m) in a subset. Parameters for a three-mode lognormal fit to the size distribution at steady state were determined for each experiment. Increasing the supply ozone level increased the steady-state mass concentration and yield of SOA from each product tested. Decreasing the air-exchange rate increased the yield. The steady-state fine-particle mass concentration (PM1.1) ranged from 10 to> 300 mu g m-3 and yields ranged from 5percent to 37percent. Steady-state nucleation rates and SOA mass formation rates were on the order of 10 cm-3 s-1 and 10 mu g m-3 min-1, respectively.

  16. Phase transitions and phase miscibility of mixed particles of ammonium sulfate, toluene-derived secondary organic material, and water.

    Science.gov (United States)

    Smith, Mackenzie L; You, Yuan; Kuwata, Mikinori; Bertram, Allan K; Martin, Scot T

    2013-09-12

    The phase states of atmospheric particles influence their roles in physicochemical processes related to air quality and climate. The phases of particles containing secondary organic materials (SOMs) are still uncertain, especially for SOMs produced from aromatic precursor gases. In this work, efflorescence and deliquescence phase transitions, as well as phase separation, in particles composed of toluene-derived SOM, ammonium sulfate, and water were studied by hygroscopic tandem differential mobility analysis (HTDMA) and optical microscopy. The SOM was produced in the Harvard Environmental Chamber by photo-oxidation of toluene at chamber relative humidities of toluene-derived SOM and aqueous ammonium sulfate, suggesting phase immiscibility between the two. Optical microscopy of particles prepared for ε = 0.12 confirmed phase separation for RH 0.5, the DRH values of ammonium sulfate in mixtures with SOM produced at toluene-derived SOM and aqueous ammonium sulfate across a limited range of organic volume fractions differentiates this SOM from previous reports for isoprene-derived SOM of full miscibility and for α-pinene-derived SOM of nearly full immiscibility with aqueous ammonium sulfate.

  17. Diurnally resolved particulate and VOC measurements at a rural site: indication of significant biogenic secondary organic aerosol formation

    Science.gov (United States)

    Sjostedt, S. J.; Slowik, J. G.; Brook, J. R.; Chang, R. Y.-W.; Mihele, C.; Stroud, C. A.; Vlasenko, A.; Abbatt, J. P. D.

    2011-06-01

    We report simultaneous measurements of volatile organic compound (VOC) mixing ratios including C6 to C8 aromatics, isoprene, monoterpenes, acetone and organic aerosol mass loadings at a rural location in southwestern Ontario, Canada by Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) and Aerosol Mass Spectrometry (AMS), respectively. During the three-week-long Border Air Quality and Meteorology Study in June-July 2007, air was sampled from a range of sources, including aged air from the polluted US Midwest, direct outflow from Detroit 50 km away, and clean air with higher biogenic input. After normalization to the diurnal profile of CO, a long-lived tracer, diurnal analyses show clear photochemical loss of reactive aromatics and production of oxygenated VOCs and secondary organic aerosol (SOA) during the daytime. Biogenic VOC mixing ratios increase during the daytime in accord with their light- and temperature-dependent sources. Long-lived species, such as hydrocarbon-like organic aerosol and benzene show little to no photochemical reactivity on this timescale. From the normalized diurnal profiles of VOCs, an estimate of OH concentrations during the daytime, measured O3 concentrations, and laboratory SOA yields, we calculate integrated local organic aerosol production amounts associated with each measured SOA precursor. Under the assumption that biogenic precursors are uniformly distributed across the southwestern Ontario location, we conclude that such precursors contribute significantly to the total amount of SOA formation, even during the period of Detroit outflow. The importance of aromatic precursors is more difficult to assess given that their sources are likely to be localized and thus of variable impact at the sampling location.

  18. Modeling a typical winter-time dust event over the Arabian Peninsula and the Red Sea

    Directory of Open Access Journals (Sweden)

    S. Kalenderski

    2013-02-01

    Full Text Available We used WRF-Chem, a regional meteorological model coupled with an aerosol-chemistry component, to simulate various aspects of the dust phenomena over the Arabian Peninsula and Red Sea during a typical winter-time dust event that occurred in January 2009. The model predicted that the total amount of emitted dust was 18.3 Tg for the entire dust outburst period and that the two maximum daily rates were ~2.4 Tg day−1 and ~1.5 Tg day−1, corresponding to two periods with the highest aerosol optical depth that were well captured by ground- and satellite-based observations. The model predicted that the dust plume was thick, extensive, and mixed in a deep boundary layer at an altitude of 3–4 km. Its spatial distribution was modeled to be consistent with typical spatial patterns of dust emissions. We utilized MODIS-Aqua and Solar Village AERONET measurements of the aerosol optical depth (AOD to evaluate the radiative impact of aerosols. Our results clearly indicated that the presence of dust particles in the atmosphere caused a significant reduction in the amount of solar radiation reaching the surface during the dust event. We also found that dust aerosols have significant impact on the energy and nutrient balances of the Red Sea. Our results showed that the simulated cooling under the dust plume reached 100 W m−2, which could have profound effects on both the sea surface temperature and circulation. Further analysis of dust generation and its spatial and temporal variability is extremely important for future projections and for better understanding of the climate and ecological history of the Red Sea.

  19. Carbonaceous PM(2.5) and secondary organic aerosol across the Veneto region (NE Italy).

    Science.gov (United States)

    Khan, Md Badiuzzaman; Masiol, Mauro; Formenton, Gianni; Di Gilio, Alessia; de Gennaro, Gianluigi; Agostinelli, Claudio; Pavoni, Bruno

    2016-01-15

    Organic and elemental carbon (OC-EC) were measured in 360 PM2.5 samples collected from April 2012 to February 2013 at six provinces in the Veneto region, to determine the factors affecting the carbonaceous aerosol variations. The 60 daily samples have been collected simultaneously in all sites during 10 consecutive days for 6 months (April, June, August, October, December and February). OC ranged from 0.98 to 22.34 μg/m(3), while the mean value was 5.5 μg/m(3), contributing 79% of total carbon. EC concentrations fluctuated from 0.19 to 11.90 μg/m(3) with an annual mean value of 1.31 μg/m(3) (19% of the total carbon). The monthly OC concentration gradually increased from April to December. The EC did not vary in accordance with OC. However the highest values for both parameters were recorded in the cold period. The mean OC/EC ratio is 4.54, which is higher than the values observed in most of the other European cities. The secondary organic carbon (SOC) contributed for 69% of the total OC and this was confirmed by both the approaches OC/EC minimum ratio and regression. The results show that OC, EC and SOC exhibited higher concentration during winter months in all measurement sites, suggesting that the stable atmosphere and lower mixing play important role for the accumulation of air pollutant and hasten the condensation or adsorption of volatile organic compounds over the Veneto region. Significant meteorological factors controlling OC and EC were investigated by fitting linear models and using a robust procedure based on weighted likelihood, suggesting that low wind speed and temperature favour accumulation of emissions from local sources. Conditional probability function and conditional bivariate probability function plots indicate that both biomass burning and vehicular traffic are probably the main local sources for carbonaceous particulate matter emissions in two selected cities. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Predicting the glass transition temperature and viscosity of secondary organic material using molecular composition

    Science.gov (United States)

    Wong DeRieux, Wing-Sy; Li, Ying; Lin, Peng; Laskin, Julia; Laskin, Alexander; Bertram, Allan K.; Nizkorodov, Sergey A.; Shiraiwa, Manabu

    2018-05-01

    Secondary organic aerosol (SOA) accounts for a large fraction of submicron particles in the atmosphere. SOA can occur in amorphous solid or semi-solid phase states depending on chemical composition, relative humidity (RH), and temperature. The phase transition between amorphous solid and semi-solid states occurs at the glass transition temperature (Tg). We have recently developed a method to estimate Tg of pure compounds containing carbon, hydrogen, and oxygen atoms (CHO compounds) with molar mass less than 450 g mol-1 based on their molar mass and atomic O : C ratio. In this study, we refine and extend this method for CH and CHO compounds with molar mass up to ˜ 1100 g mol-1 using the number of carbon, hydrogen, and oxygen atoms. We predict viscosity from the Tg-scaled Arrhenius plot of fragility (viscosity vs. Tg/T) as a function of the fragility parameter D. We compiled D values of organic compounds from the literature and found that D approaches a lower limit of ˜ 10 (±1.7) as the molar mass increases. We estimated the viscosity of α-pinene and isoprene SOA as a function of RH by accounting for the hygroscopic growth of SOA and applying the Gordon-Taylor mixing rule, reproducing previously published experimental measurements very well. Sensitivity studies were conducted to evaluate impacts of Tg, D, the hygroscopicity parameter (κ), and the Gordon-Taylor constant on viscosity predictions. The viscosity of toluene SOA was predicted using the elemental composition obtained by high-resolution mass spectrometry (HRMS), resulting in a good agreement with the measured viscosity. We also estimated the viscosity of biomass burning particles using the chemical composition measured by HRMS with two different ionization techniques: electrospray ionization (ESI) and atmospheric pressure photoionization (APPI). Due to differences in detected organic compounds and signal intensity, predicted viscosities at low RH based on ESI and APPI measurements differ by 2-5 orders

  1. Estimating the direct and indirect effects of secondary organic aerosols using ECHAM5-HAM

    Directory of Open Access Journals (Sweden)

    D. O'Donnell

    2011-08-01

    Full Text Available Secondary organic aerosol (SOA has been introduced into the global climate-aerosol model ECHAM5/HAM. The SOA module handles aerosols originating from both biogenic and anthropogenic sources. The model simulates the emission of precursor gases, their chemical conversion into condensable gases, the partitioning of semi-volatile condenable species into the gas and aerosol phases. As ECHAM5/HAM is a size-resolved model, a new method that permits the calculation of partitioning of semi-volatile species between different size classes is introduced. We compare results of modelled organic aerosol concentrations against measurements from extensive measurement networks in Europe and the United States, running the model with and without SOA. We also compare modelled aerosol optical depth against measurements from the AERONET network of grond stations. We find that SOA improves agreement between model and measurements in both organic aerosol mass and aerosol optical depth, but does not fully correct the low bias that is present in the model for both of these quantities. Although many models now include SOA, any overall estimate of the direct and indirect effects of these aerosols is still lacking. This paper makes a first step in that direction. The model is applied to estimate the direct and indirect effects of SOA under simulated year 2000 conditions. The modelled SOA spatial distribution indicates that SOA is likely to be an important source of free and upper tropospheric aerosol. We find a negative shortwave (SW forcing from the direct effect, amounting to −0.31 Wm−2 on the global annual mean. In contrast, the model indicates a positive indirect effect of SOA of +0.23 Wm−2, arising from the enlargement of particles due to condensation of SOA, together with an enhanced coagulation sink of small particles. In the longwave, model results are a direct effect of +0.02 Wm−2 and an indirect effect of −0.03 Wm−2

  2. North American wintertime temperature anomalies: the role of El Niño diversity and differential teleconnections

    Science.gov (United States)

    Beyene, Mussie T.; Jain, Shaleen

    2018-06-01

    El Niño-Southern Oscillation (ENSO) teleconnections induced wintertime surface air temperature (SAT) anomalies over North America show inter-event variability, asymmetry, and nonlinearity. This diagnostic study appraises the assumption that ENSO-induced teleconnections are adequately characterized as symmetric shifts in the SAT probability distributions for North American locations. To this end, a new conditional quantile functional estimation approach presented here incorporates: (a) the detailed nature of location and amplitude of SST anomalies—in particular the Eastern Pacific (EP), Central Pacific (CP) ENSO events—based on its two leading principal components, and (b) over the entire range of SATs, characterize the differential sensitivity to ENSO. Statistical significance is assessed using a wild bootstrap approach. Conditional risk at upper and lower quartile SAT conditioned on archetypical ENSO states is derived. There is marked asymmetry in ENSO effects on the likelihood of upper and lower quartile winter SATs for most North American regions. CP El Niño patterns show 20-80% decrease in the likelihood of lower quartile SATs for Canada and US west coast and a 20-40% increase across southeastern US. However, the upper quartile SAT for large swathes of Canada shows no sensitivity to CP El Niño. Similarly, EP El Niño is linked to a 40-80% increase in the probability of upper quartile winter SATs for Canada and northern US and a 20% decrease for southern US and northern Mexico regions; however, little or no change in the risk of lower quartile winter temperatures for southern parts of North America. Localized estimate of ENSO-related risk are also presented.

  3. Interannual variations and future change of wintertime extratropical cyclone activity over North America in CCSM3

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Haiyan; Washington, Warren M.; Meehl, Gerald A. [National Center for Atmospheric Research, PO Box 3000, Boulder, CO (United States)

    2008-06-15

    Climatology and interannual variations of wintertime extratropical cyclone frequency in CCSM3 twentieth century simulation are compared with the NCEP/NCAR reanalysis during 1950-1999. CCSM3 can simulate the storm tracks reasonably well, although the model produces slightly less cyclones at the beginning of the Pacific and Atlantic storm tracks and weaker poleward deflection over the Pacific. As in the reanalysis, frequency of cyclones stronger than 980 hPa shows significant correlation with the Pacific/North America (PNA) teleconnection pattern over the Pacific region and with the North Atlantic Oscillation (NAO) in the Atlantic sector. Composite maps are constructed for opposite phases of El Nino-Southern Oscillation (ENSO) and the NAO and all anomalous patterns coincide with observed. One CCSM3 twenty-first century A1B scenario realization indicates there is significant increase in the extratropical cyclone frequency on the US west coast and decrease in Alaska. Meanwhile, cyclone frequency increases from the Great Lakes region to Quebec and decreases over the US east coast, suggesting a possible northward shift of the Atlantic storm tracks under the warmer climate. The cyclone frequency anomalies are closely linked to changes in seasonal mean states of the upper-troposphere zonal wind and baroclinicity in the lower troposphere. Due to lack of 6-hourly outputs, we cannot apply the cyclone-tracking algorithm to the other eight CCSM3 realizations. Based on the linkage between the mean state change and the cyclone frequency anomalies, it is likely a common feature among the other ensemble members that cyclone activity is reduced on the East Coast and in Alaska as a result of global warming. (orig.)

  4. Arrangement between the International Atomic Energy Agency and the World Health Organization concerning the establishment and operation of a network of Secondary Standard Dosimetry Laboratories

    International Nuclear Information System (INIS)

    1986-01-01

    The International Atomic Energy Agency (IAEA) and the World Health Organization (WHO), recognizing that they have been co-operating in the operation of a network of Secondary Standard Dosimetry Laboratories (the Network), established pursuant to a Working Arrangement, dated 5 April 1976; and desiring to continue this co-operation in accordance with Article V of the relationship agreement concluded by IAEA and WHO in 1959; hereby enter a new arrangement to guide their work in operating the Network and providing assistance, when needed, to individual Secondary Standard Dosimetry Laboratories (SSDLs). The purpose of this Arrangement is to set forth responsibilities of IAEA and WHO in the operation and support of the Network and to establish criteria for SSDLs

  5. Secondary syphilis presenting as vertigo

    International Nuclear Information System (INIS)

    Bari, A.U.; Mehmood, T.; Khan, B.; Malik, N.; Malik, K.Z.; Sukhera, A.M.

    2006-01-01

    Syphilis is a chronic, systemic and sexually transmitted infectious disease affecting most of the organs in the body. A young African man presented with vertigo, unsteadiness of gait and a skin rash suggestive of secondary syphilis. Diagnosis was confirmed on serology and was treated with two shots of long-acting penicillin, following which his symptoms settled. (author)

  6. Nitrous acid formation in a snow-free wintertime polluted rural area

    Science.gov (United States)

    Tsai, Catalina; Spolaor, Max; Fedele Colosimo, Santo; Pikelnaya, Olga; Cheung, Ross; Williams, Eric; Gilman, Jessica B.; Lerner, Brian M.; Zamora, Robert J.; Warneke, Carsten; Roberts, James M.; Ahmadov, Ravan; de Gouw, Joost; Bates, Timothy; Quinn, Patricia K.; Stutz, Jochen

    2018-02-01

    Nitrous acid (HONO) photolysis is an important source of hydroxyl radicals (OH) in the lower atmosphere, in particular in winter when other OH sources are less efficient. The nighttime formation of HONO and its photolysis in the early morning have long been recognized as an important contributor to the OH budget in polluted environments. Over the past few decades it has become clear that the formation of HONO during the day is an even larger contributor to the OH budget and additionally provides a pathway to recycle NOx. Despite the recognition of this unidentified HONO daytime source, the precise chemical mechanism remains elusive. A number of mechanisms have been proposed, including gas-phase, aerosol, and ground surface processes, to explain the elevated levels of daytime HONO. To identify the likely HONO formation mechanisms in a wintertime polluted rural environment we present LP-DOAS observations of HONO, NO2, and O3 on three absorption paths that cover altitude intervals from 2 to 31, 45, and 68 m above ground level (a.g.l.) during the UBWOS 2012 experiment in the Uintah Basin, Utah, USA. Daytime HONO mixing ratios in the 2-31 m height interval were, on average, 78 ppt, which is lower than HONO levels measured in most polluted urban environments with similar NO2 mixing ratios of 1-2 ppb. HONO surface fluxes at 19 m a.g.l., calculated using the HONO gradients from the LP-DOAS and measured eddy diffusivity coefficient, show clear upward fluxes. The hourly average vertical HONO flux during sunny days followed solar irradiance, with a maximum of (4.9 ± 0.2) × 1010 molec. cm-2 s-1 at noontime. A photostationary state analysis of the HONO budget shows that the surface flux closes the HONO budget, accounting for 63 ± 32 % of the unidentified HONO daytime source throughout the day and 90 ± 30 % near noontime. This is also supported by 1-D chemistry and transport model calculations that include the measured surface flux, thus clearly identifying chemistry at the

  7. Multiple aetiologies of secondary hypertension in one patient

    OpenAIRE

    Golan, Eliezer; Nabriski, Danny; Sharabi, Yehonatan; Werner, Miryam; Griton, Yigal; Moshkovich, Evgeny; Korzets, Ze?ev

    2008-01-01

    Apart from seeking target organ damage, the investigation of hypertension is primarily aimed at finding a treatable cause of the hypertension. The finding of one such cause is usually construed as being the sole culprit responsible for the patient's elevated blood pressure. The existence of multiple aetiologies of secondary hypertension in one patient is infrequent. In this report, we describe such a patient in whom secondary hypertension due to Cushing's disease, renovascular and finally bar...

  8. A multimethodological approach to study the spatial distribution of air pollution in an Alpine valley during wintertime

    Directory of Open Access Journals (Sweden)

    R. Schnitzhofer

    2009-05-01

    Full Text Available In order to investigate the spatial distribution of air pollutants in the Inn valley (Tyrol, Austria during wintertime, a joint field campaign of the three research projects ALPNAP (Monitoring and Minimisation of Traffic-Induced Noise and Air Pollution Along Major Alpine Transport Routes, INNAP (Boundary Layer Structure in the Inn Valley during high Air Pollution and INNOX (NOx-structure in the Inn Valley during High Air Pollution was carried out in January/February 2006. In addition to continuous ground based measurements, vertical profiles of various air pollutants and meteorological parameters were obtained on six selected days. For in-situ investigations, a tethered balloon was used to analyse the lowest atmospheric layers, 0–500 m above the valley bottom (a.v.b., and a research aircraft sampled at 150–2200 m a.v.b. An aircraft equipped with an aerosol backscatter lidar performed nadir measurements at 3000 m a.v.b. Combined results from a typical day show a strongly polluted layer up to about 125 m a.v.b. in the morning. Around midday concentrations on the valley floor decrease indicating some vertical air exchange despite thermally stable conditions. Strong vertical and horizontal gradients with enhanced pollution levels along the sunny side of the valley up to 1300 m a.v.b. were observed in the afternoon. This vertical mixing due to thermally or dynamically driven slope winds reduces the concentration of air pollutants at the bottom of the valley and causes the formation of elevated pollution layers.

  9. Modeling the gas-particle partitioning of secondary organic aerosol: the importance of liquid-liquid phase separation

    Directory of Open Access Journals (Sweden)

    A. Zuend

    2012-05-01

    Full Text Available The partitioning of semivolatile organic compounds between the gas phase and aerosol particles is an important source of secondary organic aerosol (SOA. Gas-particle partitioning of organic and inorganic species is influenced by the physical state and water content of aerosols, and therefore ambient relative humidity (RH, as well as temperature and organic loading levels. We introduce a novel combination of the thermodynamic models AIOMFAC (for liquid mixture non-ideality and EVAPORATION (for pure compound vapor pressures with oxidation product information from the Master Chemical Mechanism (MCM for the computation of gas-particle partitioning of organic compounds and water. The presence and impact of a liquid-liquid phase separation in the condensed phase is calculated as a function of variations in relative humidity, organic loading levels, and associated changes in aerosol composition. We show that a complex system of water, ammonium sulfate, and SOA from the ozonolysis of α-pinene exhibits liquid-liquid phase separation over a wide range of relative humidities (simulated from 30% to 99% RH. Since fully coupled phase separation and gas-particle partitioning calculations are computationally expensive, several simplified model approaches are tested with regard to computational costs and accuracy of predictions compared to the benchmark calculation. It is shown that forcing a liquid one-phase aerosol with or without consideration of non-ideal mixing bears the potential for vastly incorrect partitioning predictions. Assuming an ideal mixture leads to substantial overestimation of the particulate organic mass, by more than 100% at RH values of 80% and by more than 200% at RH values of 95%. Moreover, the simplified one-phase cases stress two key points for accurate gas-particle partitioning calculations: (1 non-ideality in the condensed phase needs to be considered and (2 liquid-liquid phase separation is a consequence of considerable deviations

  10. Indoor secondary organic aerosols formation from ozonolysis of monoterpene: An example of d-limonene with ammonia and potential impacts on pulmonary inflammations.

    Science.gov (United States)

    Niu, Xinyi; Ho, Steven Sai Hang; Ho, Kin Fai; Huang, Yu; Cao, Junji; Shen, Zhenxing; Sun, Jian; Wang, Xiumei; Wang, Yu; Lee, Shuncheng; Huang, Rujin

    2017-02-01

    Monoterpene is one class of biogenic volatile organic compounds (BVOCs) which widely presents in household cleaning products and air fresheners. It plays reactive role in secondary organic aerosols (SOAs) formation with ozone (O 3 ) in indoor environments. Such ozonolysis can be influenced by the presence of gaseous pollutants such as ammonia (NH 3 ). This study focuses on investigations of ozone-initiated formation of indoor SOAs with d-limonene, one of the most abundant indoor monoterpenes, in a large environmental chamber. The maximum total particle number concentration from the ozonolysis in the presence of NH 3 was 60% higher than that in the absence of NH 3 . Both of the nuclei coagulation and condensation involve in the SOAs growth. The potential risks of pulmonary injury for the exposure to the secondary particles formed were presented with the indexes of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-10 (IL-10) expression levels in bronchoalveolar lavage fluid (BALF) upon intratracheal instillation in mice lung for 6 and 12h. The results indicated that there was 22-39% stronger pulmonary inflammatory effect on the particles generated with NH 3 . This is a pilot study which demonstrates the toxicities of the indoor SOAs formed from the ozonolysis of a monoterpene. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Basis for selecting optimum antibiotic regimens for secondary peritonitis.

    Science.gov (United States)

    Maseda, Emilio; Gimenez, Maria-Jose; Gilsanz, Fernando; Aguilar, Lorenzo

    2016-01-01

    Adequate management of severely ill patients with secondary peritonitis requires supportive therapy of organ dysfunction, source control of infection and antimicrobial therapy. Since secondary peritonitis is polymicrobial, appropriate empiric therapy requires combination therapy in order to achieve the needed coverage for both common and more unusual organisms. This article reviews etiological agents, resistance mechanisms and their prevalence, how and when to cover them and guidelines for treatment in the literature. Local surveillances are the basis for the selection of compounds in antibiotic regimens, which should be further adapted to the increasing number of patients with risk factors for resistance (clinical setting, comorbidities, previous antibiotic treatments, previous colonization, severity…). Inadequate antimicrobial regimens are strongly associated with unfavorable outcomes. Awareness of resistance epidemiology and of clinical consequences of inadequate therapy against resistant bacteria is crucial for clinicians treating secondary peritonitis, with delicate balance between optimization of empirical therapy (improving outcomes) and antimicrobial overuse (increasing resistance emergence).

  12. Single-particle investigation of summertime and wintertime Antarctic sea spray aerosols using low-Z particle EPMA, Raman microspectrometry, and ATR-FTIR imaging techniques

    Directory of Open Access Journals (Sweden)

    H.-J. Eom

    2016-11-01

    Full Text Available Two aerosol samples collected at King Sejong Korean scientific research station, Antarctica, on 9 December 2011 in the austral summer (sample S1 and 23 July 2012 in the austral winter (sample S2, when the oceanic chlorophyll a levels on the collection days of the samples were quite different, by  ∼  19 times (2.46 vs. 0.13 µg L−1, respectively, were investigated on a single-particle basis using quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA, called low-Z particle EPMA, Raman microspectrometry (RMS, and attenuated total reflection Fourier transform infrared (ATR-FTIR imaging techniques to obtain their characteristics based on the elemental chemical compositions, molecular species, and mixing state. X-ray analysis showed that the supermicron summertime and wintertime Antarctic aerosol samples have different elemental chemical compositions, even though all the individual particles analyzed were sea spray aerosols (SSAs; i.e., the contents of C, O, Ca, S, and Si were more elevated, whereas Cl was more depleted, for sample S1 than for sample S2. Based on qualitative analysis of the chemical species present in individual SSAs by the combined application of RMS and ATR-FTIR imaging, different organic species were observed in samples S1 and S2; i.e., Mg hydrate salts of alanine were predominant in samples S1 and S2, whereas Mg salts of fatty acids internally mixed with Mg hydrate salts of alanine were significant in sample S2. Although CaSO4 was observed significantly in both samples S1 and S2, other inorganic species, such as Na2SO4, NaNO3, Mg(NO32, SiO2, and CH3SO3Mg, were observed more significantly in sample S1, suggesting that those compounds may be related to the higher phytoplankton activity in summer.

  13. Imaging dose in breast radiotherapy: does breast size affect the dose to the organs at risk and the risk of secondary cancer to the contralateral breast?

    International Nuclear Information System (INIS)

    Batumalai, Vikneswary; Quinn, Alexandra; Jameson, Michael; Delaney, Geoff; Holloway, Lois

    2015-01-01

    Correct target positioning is crucial for accurate dose delivery in breast radiotherapy resulting in utilisation of daily imaging. However, the radiation dose from daily imaging is associated with increased probability of secondary induced cancer. The aim of this study was to quantify doses associated with three imaging modalities and investigate the correlation of dose and varying breast size in breast radiotherapy. Planning computed tomography (CT) data sets of 30 breast cancer patients were utilised to simulate the dose received by various organs from a megavoltage computed tomography (MV-CT), megavoltage electronic portal image (MV-EPI) and megavoltage cone-beam computed tomography (MV-CBCT). The mean dose to organs adjacent to the target volume (contralateral breast, lungs, spinal cord and heart) were analysed. Pearson correlation analysis was performed to determine the relationship between imaging dose and primary breast volume and the lifetime attributable risk (LAR) of induced secondary cancer was calculated for the contralateral breast. The highest contralateral breast mean dose was from the MV-CBCT (1.79 Gy), followed by MV-EPI (0.22 Gy) and MV-CT (0.11 Gy). A similar trend was found for all organs at risk (OAR) analysed. The primary breast volume inversely correlated with the contralateral breast dose for all three imaging modalities. As the primary breast volume increases, the likelihood of a patient developing a radiation-induced secondary cancer to the contralateral breast decreases. MV-CBCT showed a stronger relationship between breast size and LAR of developing a radiation-induced contralateral breast cancer in comparison with the MV-CT and MV-EPI. For breast patients, imaging dose to OAR depends on imaging modality and treated breast size. When considering the use of imaging during breast radiotherapy, the patient's breast size and contralateral breast dose should be taken into account

  14. Open burning of rice, corn and wheat straws: primary emissions, photochemical aging, and secondary organic aerosol formation

    Science.gov (United States)

    Fang, Zheng; Deng, Wei; Zhang, Yanli; Ding, Xiang; Tang, Mingjin; Liu, Tengyu; Hu, Qihou; Zhu, Ming; Wang, Zhaoyi; Yang, Weiqiang; Huang, Zhonghui; Song, Wei; Bi, Xinhui; Chen, Jianmin; Sun, Yele; George, Christian; Wang, Xinming

    2017-12-01

    Agricultural residues are among the most abundant biomass burned globally, especially in China. However, there is little information on primary emissions and photochemical evolution of agricultural residue burning. In this study, indoor chamber experiments were conducted to investigate primary emissions from open burning of rice, corn and wheat straws and their photochemical aging as well. Emission factors of NOx, NH3, SO2, 67 non-methane hydrocarbons (NMHCs), particulate matter (PM), organic aerosol (OA) and black carbon (BC) under ambient dilution conditions were determined. Olefins accounted for > 50 % of the total speciated NMHCs emission (2.47 to 5.04 g kg-1), indicating high ozone formation potential of straw burning emissions. Emission factors of PM (3.73 to 6.36 g kg-1) and primary organic carbon (POC, 2.05 to 4.11 gC kg-1), measured at dilution ratios of 1300 to 4000, were lower than those reported in previous studies at low dilution ratios, probably due to the evaporation of semi-volatile organic compounds under high dilution conditions. After photochemical aging with an OH exposure range of (1.97-4.97) × 1010 molecule cm-3 s in the chamber, large amounts of secondary organic aerosol (SOA) were produced with OA mass enhancement ratios (the mass ratio of total OA to primary OA) of 2.4-7.6. The 20 known precursors could only explain 5.0-27.3 % of the observed SOA mass, suggesting that the major precursors of SOA formed from open straw burning remain unidentified. Aerosol mass spectrometry (AMS) signaled that the aged OA contained less hydrocarbons but more oxygen- and nitrogen-containing compounds than primary OA, and carbon oxidation state (OSc) calculated with AMS resolved O / C and H / C ratios increased linearly (p < 0.001) with OH exposure with quite similar slopes.

  15. High-time resolved measurements of biogenic and anthropogenic secondary organic aerosol precursors and products in urban air

    Science.gov (United States)

    Flores, Rosa M.; Doskey, Paul V.

    2016-04-01

    Volatile organic compounds (VOCs), which are present in the atmosphere entirely in the gas phase are directly emitted by biogenic (~1089 Tg yr-1) and anthropogenic sources (~185 Tg yr-1). However, the sources and molecular speciation of intermediate VOCs (IVOCs), which are for the most part also present almost entirely in the gas phase, are not well characterized. The VOCs and IVOCs participate in reactions that form ozone and semivolatile OC (SVOC) that partition into the aerosol phase. Formation and evolution of secondary organic aerosol (SOA) are part of a complex dynamic process that depends on the molecular speciation and concentration of VOCs, IVOCs, primary organic aerosol (POA), and the level of oxidants (NO3, OH, O3). The current lack of understanding of OA properties and their impact on radiative forcing, ecosystems, and human health is partly due to limitations of models to predict SOA production on local, regional, and global scales. More accurate forecasting of SOA production requires high-temporal resolution measurement and molecular characterization of SOA precursors and products. For the subject study, the IVOCs and aerosol-phase organic matter were collected using the high-volume sampling technique and were analyzed by multidimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-ToFMS). The IVOCs included terpenes, terpenoids, n-alkanes, branched alkanes, isoprenoids, alkylbenzenes, cycloalkylbenzenes, PAH, alkyl PAH, and an unresolved complex mixture (UCM). Diurnal variations of OA species containing multiple oxygenated functionalities and selected SOA tracers of isorprene, α-pinene, toluene, cyclohexene, and n-dodecane oxidation were also quantified. The data for SOA precursor and oxidation products presented here will be useful for evaluating the ability of molecular-specific SOA models to forecast SOA production in and downwind of urban areas.

  16. Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds

    Directory of Open Access Journals (Sweden)

    V. Varutbangkul

    2006-01-01

    Full Text Available A series of experiments has been conducted in the Caltech indoor smog chamber facility to investigate the water uptake properties of aerosol formed by oxidation of various organic precursors. Secondary organic aerosol (SOA from simple and substituted cycloalkenes (C5-C8 is produced in dark ozonolysis experiments in a dry chamber (RH~5%. Biogenic SOA from monoterpenes, sesquiterpenes, and oxygenated terpenes is formed by photooxidation in a humid chamber (~50% RH. Using the hygroscopicity tandem differential mobility analyzer (HTDMA, we measure the diameter-based hygroscopic growth factor (GF of the SOA as a function of time and relative humidity. All SOA studied is found to be slightly hygroscopic, with smaller water uptake than that of typical inorganic aerosol substances. The aerosol water uptake increases with time early in the experiments for the cycloalkene SOA, but decreases with time for the sesquiterpene SOA. This behavior could indicate competing effects between the formation of more highly oxidized polar compounds (more hygroscopic, and formation of longer-chained oligomers (less hygroscopic. All SOA also exhibit a smooth water uptake with RH with no deliquescence or efflorescence. The water uptake curves are found to be fitted well with an empirical three-parameter functional form. The measured pure organic GF values at 85% RH are between 1.09–1.16 for SOA from ozonolysis of cycloalkenes, 1.01–1.04 for sesquiterpene photooxidation SOA, and 1.06–1.10 for the monoterpene and oxygenated terpene SOA. The GF of pure SOA (GForg in experiments in which inorganic seed aerosol is used is determined by assuming volume-weighted water uptake (Zdanovskii-Stokes-Robinson or 'ZSR' approach and using the size-resolved organic mass fraction measured by the Aerodyne Aerosol Mass Spectrometer. Knowing the water content associated with the inorganic fraction yields GForg values. However, for each precursor, the GForg values computed from different

  17. Cloud Processing of Secondary Organic Aerosol from Isoprene and Methacrolein Photooxidation.

    Science.gov (United States)

    Giorio, Chiara; Monod, Anne; Brégonzio-Rozier, Lola; DeWitt, Helen Langley; Cazaunau, Mathieu; Temime-Roussel, Brice; Gratien, Aline; Michoud, Vincent; Pangui, Edouard; Ravier, Sylvain; Zielinski, Arthur T; Tapparo, Andrea; Vermeylen, Reinhilde; Claeys, Magda; Voisin, Didier; Kalberer, Markus; Doussin, Jean-François

    2017-10-12

    Aerosol-cloud interaction contributes to the largest uncertainties in the estimation and interpretation of the Earth's changing energy budget. The present study explores experimentally the impacts of water condensation-evaporation events, mimicking processes occurring in atmospheric clouds, on the molecular composition of secondary organic aerosol (SOA) from the photooxidation of methacrolein. A range of on- and off-line mass spectrometry techniques were used to obtain a detailed chemical characterization of SOA formed in control experiments in dry conditions, in triphasic experiments simulating gas-particle-cloud droplet interactions (starting from dry conditions and from 60% relative humidity (RH)), and in bulk aqueous-phase experiments. We observed that cloud events trigger fast SOA formation accompanied by evaporative losses. These evaporative losses decreased SOA concentration in the simulation chamber by 25-32% upon RH increase, while aqueous SOA was found to be metastable and slowly evaporated after cloud dissipation. In the simulation chamber, SOA composition measured with a high-resolution time-of-flight aerosol mass spectrometer, did not change during cloud events compared with high RH conditions (RH > 80%). In all experiments, off-line mass spectrometry techniques emphasize the critical role of 2-methylglyceric acid as a major product of isoprene chemistry, as an important contributor to the total SOA mass (15-20%) and as a key building block of oligomers found in the particulate phase. Interestingly, the comparison between the series of oligomers obtained from experiments performed under different conditions show a markedly different reactivity. In particular, long reaction times at high RH seem to create the conditions for aqueous-phase processing to occur in a more efficient manner than during two relatively short cloud events.

  18. Whales of New England. Secondary Curriculum.

    Science.gov (United States)

    New England Aquarium, Boston, MA.

    Instructional materials and suggestions for conducting a whale watching field trip are contained in this curriculum packet for secondary science teachers. It is one unit in a series of curricular programs developed by the New England Aquarium Education Department. Activities and information are organized into three sections: (1) pre-trip…

  19. Primary emissions and secondary organic aerosol formation from the exhaust of a flex-fuel (ethanol) vehicle

    Science.gov (United States)

    Suarez-Bertoa, R.; Zardini, A. A.; Platt, S. M.; Hellebust, S.; Pieber, S. M.; El Haddad, I.; Temime-Roussel, B.; Baltensperger, U.; Marchand, N.; Prévôt, A. S. H.; Astorga, C.

    2015-09-01

    Incentives to use biofuels may result in increasing vehicular emissions of compounds detrimental to air quality. Therefore, regulated and unregulated emissions from a Euro 5a flex-fuel vehicle, tested using E85 and E75 blends (gasoline containing 85% and 75% of ethanol (vol/vol), respectively), were investigated at 22 and -7 °C over the New European Driving Cycle, at the Vehicle Emission Laboratory at the European Commission Joint Research Centre Ispra, Italy. Vehicle exhaust was comprehensively analyzed at the tailpipe and in a dilution tunnel. A fraction of the exhaust was injected into a mobile smog chamber to study the photochemical aging of the mixture. We found that emissions from a flex-fuel vehicle, fueled by E85 and E75, led to secondary organic aerosol (SOA) formation, despite the low aromatic content of these fuel blends. Emissions of regulated and unregulated compounds, as well as emissions of black carbon (BC) and primary organic aerosol (POA) and SOA formation were higher at -7 °C. The flex-fuel unregulated emissions, mainly composed of ethanol and acetaldehyde, resulted in very high ozone formation potential and SOA, especially at low temperature (860 mg O3 km-1 and up to 38 mg C kg-1). After an OH exposure of 10 × 106 cm-3 h, SOA mass was, on average, 3 times larger than total primary particle mass emissions (BC + POA) with a high O:C ratio (up to 0.7 and 0.5 at 22 and -7 °C, respectively) typical of highly oxidized mixtures. Furthermore, high resolution organic mass spectra showed high 44/43 ratios (ratio of the ions m/z 44 and m/z 43) characteristic of low-volatility oxygenated organic aerosol. We also hypothesize that SOA formation from vehicular emissions could be due to oxidation products of ethanol and acetaldehyde, both short-chain oxygenated VOCs, e.g. methylglyoxal and acetic acid, and not only from aromatic compounds.

  20. Characterization and health risk assessment of airborne pollutants in commercial restaurants in northwestern China: Under a low ventilation condition in wintertime.

    Science.gov (United States)

    Dai, Wenting; Zhong, Haobin; Li, Lijuan; Cao, Junji; Huang, Yu; Shen, Minxia; Wang, Liqin; Dong, Jungang; Tie, Xuexi; Ho, Steven Sai Hang; Ho, Kin Fai

    2018-03-22

    Impacts on indoor air quality of dining areas from cooking activities were investigated in eight categories of commercial restaurants including Szechwan Hotpot, Hunan, Shaanxi Noodle, Chinese Barbecue, Chinese Vegetarian, Korean Barbecue, Italian, and Indian, in Northwestern China during December 2011 to January 2012. Chemical characterization and health risk assessment for airborne carbonyls, and particulate-bound polycyclic aromatic hydrocarbons (PAHs) and heavy metals were conducted under low ventilation conditions in wintertime. The highest total quantified carbonyls (Σ carbonyls ) concentration of 313.6μgm -3 was found in the Chinese Barbecue, followed by the Szechwan Hotpot (222.6μgm -3 ) and Indian (221.9μgm -3 ) restaurants. However, the highest Σ carbonyls per capita was found at the Indian restaurant (4500μgcapita -1 ), suggesting that cooking methods such as stir-fly and bake for spices ingredients released more carbonyls from thermal cooking processes. Formaldehyde, acetaldehyde, and acetone were the three most abundant species, totally accounting for >60% of mass concentrations of the Σ carbonyls . Phenanthrene, chrysene, and benzo[a]anthracene were the three most abundant PAHs. Low molecular weight fraction (ΣPAHs ≤178 ) had the highest contributions accounting for 40.6%-65.7%, much greater than their heaver counterparts. Diagnostic PAHs ratios suggest that cooking fuel and environmental tobacco smoke (ETS) contribute to the indoor PAHs profiles. Lead was the most abundant heavy metal in all sampled restaurants. High quantity of nickel was also found in samples due to the emissions from stainless-steel made kitchen utensils and cookware and ETS. Cancer risk assessments on the toxic substances demonstrate that the working environment of dining areas were hazard to health. Formation of reactive organic species (ROS) from the cooking activities was evidenced by measurement of hydroxyl radical (OH) formed from simulating particulate matter (PM

  1. Study on application of ethanolamine in NPP secondary water treatment

    International Nuclear Information System (INIS)

    Wang Lin; Xie Yang; Cui Huaiming

    2013-01-01

    Ethanolamine (ETA) is an organic amine which has stronger alkalinity and lower volatility than ammonia. The paper analyzes the influence of ETA used in the secondary system and calculates its distributing status at the different nodes of the secondary system. The study shows that ETA can enhance the pH value in liquid phase of vapor-liquid two phase regions, effectively inhibit the flow-accelerated corrosion, reduce the corrosion rate of the secondary system materials and improve the economy of the in-service nuclear power plants. It is concluded that ETA as a pH additive to the secondary side of pressurized water reactor is completely viable. (authors)

  2. Enhanced performance of a submerged membrane bioreactor with powdered activated carbon addition for municipal secondary effluent treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hongjun, E-mail: hjlin@zjnu.cn [College of Geography and Environmental Sciences, Zhejiang Normal University, 688 Yingbin Avenue, Jinhua, Zhejiang Province 321004 (China); Wang, Fangyuan; Ding, Linxian; Hong, Huachang [College of Geography and Environmental Sciences, Zhejiang Normal University, 688 Yingbin Avenue, Jinhua, Zhejiang Province 321004 (China); Chen, Jianrong, E-mail: cjr@zjnu.cn [College of Geography and Environmental Sciences, Zhejiang Normal University, 688 Yingbin Avenue, Jinhua, Zhejiang Province 321004 (China); Lu, Xiaofeng [Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201800 (China)

    2011-09-15

    Highlights: {yields} The first study to investigate the feasibility of PAC-MBR process treating municipal secondary effluent. {yields} The study revealed that most organics in the secondary effluent were low molecular weight (MW) substances, which could be retained in the reactor and then removed to some extent by PAC-MBR process. {yields} The study suggested that the action of biomass and the PAC is mutual and synergistic. - Abstract: The aim of this study was to investigate the feasibility of PAC-MBR process treating municipal secondary effluent. Two laboratory-scale submerged MBRs (SMBR) with and without PAC addition were continuously operated in parallel for secondary effluent treatment. Approximately 63%TOC, 95% NH{sub 4}{sup +}-N and 98% turbidity in secondary effluent were removed by the PAC-MBR process. Most organics in the secondary effluent were found to be low molecular weight (MW) substances, which could be retained in the reactor and then removed to some extent by using PAC-MBR process. Parallel experiments showed that the addition of PAC significantly increased organic removal and responsible for the largest fraction of organic removal. Membrane fouling analysis showed the enhanced membrane performance in terms of sustainable operational time and filtration resistances by PAC addition. Based on these results, the PAC-MBR process was considered as an attractive option for the reduction of pollutants in secondary effluent.

  3. Enhanced performance of a submerged membrane bioreactor with powdered activated carbon addition for municipal secondary effluent treatment

    International Nuclear Information System (INIS)

    Lin, Hongjun; Wang, Fangyuan; Ding, Linxian; Hong, Huachang; Chen, Jianrong; Lu, Xiaofeng

    2011-01-01

    Highlights: → The first study to investigate the feasibility of PAC-MBR process treating municipal secondary effluent. → The study revealed that most organics in the secondary effluent were low molecular weight (MW) substances, which could be retained in the reactor and then removed to some extent by PAC-MBR process. → The study suggested that the action of biomass and the PAC is mutual and synergistic. - Abstract: The aim of this study was to investigate the feasibility of PAC-MBR process treating municipal secondary effluent. Two laboratory-scale submerged MBRs (SMBR) with and without PAC addition were continuously operated in parallel for secondary effluent treatment. Approximately 63%TOC, 95% NH 4 + -N and 98% turbidity in secondary effluent were removed by the PAC-MBR process. Most organics in the secondary effluent were found to be low molecular weight (MW) substances, which could be retained in the reactor and then removed to some extent by using PAC-MBR process. Parallel experiments showed that the addition of PAC significantly increased organic removal and responsible for the largest fraction of organic removal. Membrane fouling analysis showed the enhanced membrane performance in terms of sustainable operational time and filtration resistances by PAC addition. Based on these results, the PAC-MBR process was considered as an attractive option for the reduction of pollutants in secondary effluent.

  4. Modeling biogenic secondary organic aerosol (BSOA) formation from monoterpene reactions with NO3: A case study of the SOAS campaign using CMAQ

    Science.gov (United States)

    Qin, Momei; Hu, Yongtao; Wang, Xuesong; Vasilakos, Petros; Boyd, Christopher M.; Xu, Lu; Song, Yu; Ng, Nga Lee; Nenes, Athanasios; Russell, Armistead G.

    2018-07-01

    Monoterpenes react with nitrate radicals (NO3), contributing substantially to nighttime organic aerosol (OA) production. In this study, the role of reactions of monoterpenes + NO3 in forming biogenic secondary organic aerosol (BSOA) was examined using the Community Multiscale Air Quality (CMAQ) model, with extended emission profiles of biogenic volatile organic compounds (BVOCs), species-specific representations of BSOA production from individual monoterpenes and updated aerosol yields for monoterpene + NO3. The model results were compared to detailed measurements from the Southern Oxidants and Aerosol Study (SOAS) at Centreville, Alabama. With the more detailed model, monoterpene-derived BSOA increased by ∼1 μg m-3 at night, accounting for one-third of observed less-oxidized oxygenated OA (LO-OOA), more closely agreeing with observations (lower error, stronger correlation). Implementation of a multigenerational oxidation approach resulted in the model capturing elevated OA episodes. With the aging model, aged semi-volatile organic compounds (ASVOCs) contributed over 60% of the monoterpene-derived BSOA, followed by SOA formation via nitrate radical chemistry, making up to 34% of that formed at night. Among individual monoterpenes, β-pinene and limonene contributed most to the monoterpene-derived BSOA from nighttime reactions.

  5. Particulate pollutants in the Brazilian city of São Paulo: 1-year investigation for the chemical composition and source apportionment

    Science.gov (United States)

    Martins Pereira, Guilherme; Teinilä, Kimmo; Custódio, Danilo; Gomes Santos, Aldenor; Xian, Huang; Hillamo, Risto; Alves, Célia A.; Bittencourt de Andrade, Jailson; Olímpio da Rocha, Gisele; Kumar, Prashant; Balasubramanian, Rajasekhar; de Fátima Andrade, Maria; de Castro Vasconcellos, Pérola

    2017-10-01

    São Paulo in Brazil has relatively relaxed regulations for ambient air pollution standards and often experiences high air pollution levels due to emissions of particulate pollutants from local sources and long-range transport of air masses impacted by biomass burning. In order to evaluate the sources of particulate air pollution and related health risks, a year-round sampling was done at the University of São Paulo campus (20 m a.g.l.), a green area near an important expressway. The sampling was performed for PM2. 5 ( ≤ 2. 5 µm) and PM10 ( ≤ 10 µm) in 2014 through intensive (everyday sampling in wintertime) and extensive campaigns (once a week for the whole year) with 24 h of sampling. This year was characterized by having lower average precipitation compared to meteorological data, and high-pollution episodes were observed all year round, with a significant increase in pollution level in the intensive campaign, which was performed during wintertime. Different chemical constituents, such as carbonaceous species, polycyclic aromatic hydrocarbons (PAHs) and derivatives, water-soluble ions, and biomass burning tracers were identified in order to evaluate health risks and to apportion sources. The species such as PAHs, inorganic and organic ions, and monosaccharides were determined using chromatographic techniques and carbonaceous species using thermal-optical analysis. Trace elements were determined using inductively coupled plasma mass spectrometry. The risks associated with particulate matter exposure based on PAH concentrations were also assessed, along with indexes such as the benzo[a]pyrene equivalent (BaPE) and lung cancer risk (LCR). High BaPE and LCR were observed in most of the samples, rising to critical values in the wintertime. Also, biomass burning tracers and PAHs were higher in this season, while secondarily formed ions presented low variation throughout the year. Meanwhile, vehicular tracer species were also higher in the intensive campaign

  6. Particulate pollutants in the Brazilian city of São Paulo: 1-year investigation for the chemical composition and source apportionment

    Directory of Open Access Journals (Sweden)

    G. M. Pereira

    2017-10-01

    Full Text Available São Paulo in Brazil has relatively relaxed regulations for ambient air pollution standards and often experiences high air pollution levels due to emissions of particulate pollutants from local sources and long-range transport of air masses impacted by biomass burning. In order to evaluate the sources of particulate air pollution and related health risks, a year-round sampling was done at the University of São Paulo campus (20 m a.g.l., a green area near an important expressway. The sampling was performed for PM2. 5 ( ≤ 2. 5 µm and PM10 ( ≤  10 µm in 2014 through intensive (everyday sampling in wintertime and extensive campaigns (once a week for the whole year with 24 h of sampling. This year was characterized by having lower average precipitation compared to meteorological data, and high-pollution episodes were observed all year round, with a significant increase in pollution level in the intensive campaign, which was performed during wintertime. Different chemical constituents, such as carbonaceous species, polycyclic aromatic hydrocarbons (PAHs and derivatives, water-soluble ions, and biomass burning tracers were identified in order to evaluate health risks and to apportion sources. The species such as PAHs, inorganic and organic ions, and monosaccharides were determined using chromatographic techniques and carbonaceous species using thermal-optical analysis. Trace elements were determined using inductively coupled plasma mass spectrometry. The risks associated with particulate matter exposure based on PAH concentrations were also assessed, along with indexes such as the benzo[a]pyrene equivalent (BaPE and lung cancer risk (LCR. High BaPE and LCR were observed in most of the samples, rising to critical values in the wintertime. Also, biomass burning tracers and PAHs were higher in this season, while secondarily formed ions presented low variation throughout the year. Meanwhile, vehicular tracer species were also

  7. Uterine, but not ovarian, female reproductive organ involvement at presentation by diffuse large B-cell lymphoma is associated with poor outcomes and a high frequency of secondary CNS involvement

    DEFF Research Database (Denmark)

    El-Galaly, Tarec Christoffer; Cheah, Chan Y; Hutchings, Martin

    2016-01-01

    progression-free survival and overall survival compared to those without reproductive organ involvement, whereas ovarian DLBCL was not predictive of outcome. Secondary central nervous system (CNS) involvement (SCNS) occurred in 7/17 (41%) women with uterine DLBCL (two patients with concomitant ovarian DLBCL...

  8. Industrywide survey of PWR organics. Final report

    International Nuclear Information System (INIS)

    Richards, J.E.; Byers, W.A.

    1986-07-01

    Thirteen Pressurized Water reactor (PWR) secondary cycles were sampled for organic acids, total organic carbon, and inorganic anions. The distribution and removal of organics in a makeup water treatment system were investigted at an additional plant. TOC analyses were used for the analysis of makeup water systems; anion ion chromatography and ion exclusion chromatography were used for the analysis of secondary water systems. Additional information on plant operation and water chemistry was collected in a survey. The analytical and survey data were compared and correlations made

  9. Government, Coercive Power and the Perceived Legitimacy of Canadian Post-Secondary Institutions

    Science.gov (United States)

    McQuarrie, Fiona A. E.; Kondra, Alex Z.; Lamertz, Kai

    2013-01-01

    Governments regulate and control organizations, yet their role in determining organizational legitimacy is largely unexamined. In the changing Canadian post-secondary landscape, legitimacy is an increasingly important issue for post-secondary institutions as they compete amongst themselves for access to ever-shrinking resources. Using an…

  10. Fat necrosis Secondary to Pancreatitis Mimicking Transverse Colon Cancer: A Case Report

    Directory of Open Access Journals (Sweden)

    S. Mirmomen

    2007-02-01

    Full Text Available Fat necrosis secondary to pancreatitis can be either mild and self limited or create severe organ damage,but may rarely lead to abdominal opancreatic pseudotumor.We report a case of fat necrosis secondary to pancreatitis which clinically simulates transverse colon cancer.

  11. Exploring sources of biogenic secondary organic aerosol compounds using chemical analysis and the FLEXPART model

    Directory of Open Access Journals (Sweden)

    J. Martinsson

    2017-09-01

    Full Text Available Molecular tracers in secondary organic aerosols (SOAs can provide information on origin of SOA, as well as regional scale processes involved in their formation. In this study 9 carboxylic acids, 11 organosulfates (OSs and 2 nitrooxy organosulfates (NOSs were determined in daily aerosol particle filter samples from Vavihill measurement station in southern Sweden during June and July 2012. Several of the observed compounds are photo-oxidation products from biogenic volatile organic compounds (BVOCs. Highest average mass concentrations were observed for carboxylic acids derived from fatty acids and monoterpenes (12. 3 ± 15. 6 and 13. 8 ± 11. 6 ng m−3, respectively. The FLEXPART model was used to link nine specific surface types to single measured compounds. It was found that the surface category sea and ocean was dominating the air mass exposure (56 % but contributed to low mass concentration of observed chemical compounds. A principal component (PC analysis identified four components, where the one with highest explanatory power (49 % displayed clear impact of coniferous forest on measured mass concentration of a majority of the compounds. The three remaining PCs were more difficult to interpret, although azelaic, suberic, and pimelic acid were closely related to each other but not to any clear surface category. Hence, future studies should aim to deduce the biogenic sources and surface category of these compounds. This study bridges micro-level chemical speciation to air mass surface exposure at the macro level.

  12. Simulation of the interannual variations of biogenic emissions of volatile organic compounds in China: Impacts on tropospheric ozone and secondary organic aerosol

    Science.gov (United States)

    Fu, Y.; Liao, H.

    2012-12-01

    We use the MEGAN (Model of emissions of Gases and Aerosols from Nature) module embedded within the global three-dimensional Goddard Earth Observing System chemical transport model (GEOS-Chem) to simulate the interannual variations in biogenic volatile organic compound (BVOC) emissions and concentrations of ozone and secondary organic aerosols (SOA) in China over years 2001-2006. To have better representation of biogenic emissions, we have updated in the model the land cover and leaf area index in China using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite measurements, and we have developed a new classification of vegetation with 21 plant functional types. Estimated annual BVOC emission in China averaged over 2001-2006 is 18.85 Tg C yr-1, in which emissions of isoprene, monoterpenes, and other reactive volatile organic compounds account for 50.9%, 15.0%, and 34.1%, respectively. The simulated BVOC emissions in China have large interannual variations. The values of regionally averaged absolute percent departure from the mean (APDM) of isoprene emissions are in the range of 21-42% in January and 15-28% in July. The APDM values of monoterpene emissions are 14-32% in January and 10-21% in July, which are generally smaller than those of isoprene emissions. Model results indicate that the interannual variations in isoprene emissions are more dependent on variations in meteorological fields, whereas the interannual variations in monoterpene emissions are more sensitive to changes in vegetation parameters. With fixed anthropogenic emissions, as a result of the variations in both meteorological parameters and vegetation, simulated O3 concentrations show interannual variations of 0.8-5 ppbv (or largest APDM values of 4-15%), and simulated SOA shows APDM values of 5-15% in southwestern China in January as well as 10-25% in southeastern and 20-35% in northeastern China in July. On a regional mean basis, the interannual variations in BVOCs alone can lead to 2

  13. Understanding chemistry behind secondary aerosol production from nitrogen and sulfur compounds from agriculture

    Science.gov (United States)

    Agricultural emissions impact particulate mass concentrations through both primary and secondary processes. Evidence from laboratory and field work suggest that not only does ammonia produce secondary particulate matter, but nitrogen and sulfur containing volatile organic compounds also contribute. ...

  14. Secondary organic aerosols from ozone-initiated reactions with emissions from wood-based materials and a ‘‘green’’ paint

    DEFF Research Database (Denmark)

    Toftum, Jørn; Freund, Sarah; Salthammer, Tunga

    2008-01-01

    This study examined the formation and growth of secondary organic aerosols (SOA) generated when ozone was added to a 1 m3 glass chamber that contained either pine shelving, oriented strand board (OSB), beech boards, or beach boards painted with an ‘‘eco’’ paint. The experiments were conducted...... dramatically; the mass concentration reached w15 mgm3 at w20 ppb O3, and w95 mgm3 at w40 ppb O3. The OSB emitted primarily limonene and a-pinene. Although the particle counts increased when O3 was introduced, the increase was not as large as anticipated based on the terpene concentrations. The beech boards...

  15. Secondary sulfate is internally mixed with sea spray aerosol and organic aerosol in the winter Arctic

    Science.gov (United States)

    Kirpes, Rachel M.; Bondy, Amy L.; Bonanno, Daniel; Moffet, Ryan C.; Wang, Bingbing; Laskin, Alexander; Ault, Andrew P.; Pratt, Kerri A.

    2018-03-01

    Few measurements of aerosol chemical composition have been made during the winter-spring transition (following polar sunrise) to constrain Arctic aerosol-cloud-climate feedbacks. Herein, we report the first measurements of individual particle chemical composition near Utqiaġvik (Barrow), Alaska, in winter (seven sample days in January and February 2014). Individual particles were analyzed by computer-controlled scanning electron microscopy with energy dispersive X-ray spectroscopy (CCSEM-EDX, 24 847 particles), Raman microspectroscopy (300 particles), and scanning transmission X-ray microscopy with near-edge X-ray absorption fine structure spectroscopy (STXM-NEXAFS, 290 particles). Sea spray aerosol (SSA) was observed in all samples, with fresh and aged SSA comprising 99 %, by number, of 2.5-7.5 µm diameter particles, 65-95 % from 0.5-2.5 µm, and 50-60 % from 0.1-0.5 µm, indicating SSA is the dominant contributor to accumulation and coarse-mode aerosol during the winter. The aged SSA particles were characterized by reduced chlorine content with 94 %, by number, internally mixed with secondary sulfate (39 %, by number, internally mixed with both nitrate and sulfate), indicative of multiphase aging reactions during transport. There was a large number fraction (40 % of 1.0-4.0 µm diameter particles) of aged SSA during periods when particles were transported from near Prudhoe Bay, consistent with pollutant emissions from the oil fields participating in atmospheric processing of aerosol particles. Organic carbon and sulfate particles were observed in all samples and comprised 40-50 %, by number, of 0.1-0.4 µm diameter particles, indicative of Arctic haze influence. Soot was internally mixed with organic and sulfate components. All sulfate was mixed with organic carbon or SSA particles. Therefore, aerosol sources in the Alaskan Arctic and resulting aerosol chemical mixing states need to be considered when predicting aerosol climate effects, particularly cloud

  16. Predicting the glass transition temperature and viscosity of secondary organic material using molecular composition

    Directory of Open Access Journals (Sweden)

    W.-S. W. DeRieux

    2018-05-01

    Full Text Available Secondary organic aerosol (SOA accounts for a large fraction of submicron particles in the atmosphere. SOA can occur in amorphous solid or semi-solid phase states depending on chemical composition, relative humidity (RH, and temperature. The phase transition between amorphous solid and semi-solid states occurs at the glass transition temperature (Tg. We have recently developed a method to estimate Tg of pure compounds containing carbon, hydrogen, and oxygen atoms (CHO compounds with molar mass less than 450 g mol−1 based on their molar mass and atomic O : C ratio. In this study, we refine and extend this method for CH and CHO compounds with molar mass up to ∼ 1100 g mol−1 using the number of carbon, hydrogen, and oxygen atoms. We predict viscosity from the Tg-scaled Arrhenius plot of fragility (viscosity vs. Tg∕T as a function of the fragility parameter D. We compiled D values of organic compounds from the literature and found that D approaches a lower limit of ∼ 10 (±1.7 as the molar mass increases. We estimated the viscosity of α-pinene and isoprene SOA as a function of RH by accounting for the hygroscopic growth of SOA and applying the Gordon–Taylor mixing rule, reproducing previously published experimental measurements very well. Sensitivity studies were conducted to evaluate impacts of Tg, D, the hygroscopicity parameter (κ, and the Gordon–Taylor constant on viscosity predictions. The viscosity of toluene SOA was predicted using the elemental composition obtained by high-resolution mass spectrometry (HRMS, resulting in a good agreement with the measured viscosity. We also estimated the viscosity of biomass burning particles using the chemical composition measured by HRMS with two different ionization techniques: electrospray ionization (ESI and atmospheric pressure photoionization (APPI. Due to differences in detected organic compounds and signal intensity, predicted viscosities at low RH based on ESI and

  17. Effect of Pellet Boiler Exhaust on Secondary Organic Aerosol Formation from α-Pinene.

    Science.gov (United States)

    Kari, Eetu; Hao, Liqing; Yli-Pirilä, Pasi; Leskinen, Ari; Kortelainen, Miika; Grigonyte, Julija; Worsnop, Douglas R; Jokiniemi, Jorma; Sippula, Olli; Faiola, Celia L; Virtanen, Annele

    2017-02-07

    Interactions between anthropogenic and biogenic emissions, and implications for aerosol production, have raised particular scientific interest. Despite active research in this area, real anthropogenic emission sources have not been exploited for anthropogenic-biogenic interaction studies until now. This work examines these interactions using α-pinene and pellet boiler emissions as a model test system. The impact of pellet boiler emissions on secondary organic aerosol (SOA) formation from α-pinene photo-oxidation was studied under atmospherically relevant conditions in an environmental chamber. The aim of this study was to identify which of the major pellet exhaust components (including high nitrogen oxide (NO x ), primary particles, or a combination of the two) affected SOA formation from α-pinene. Results demonstrated that high NO x concentrations emitted by the pellet boiler reduced SOA yields from α-pinene, whereas the chemical properties of the primary particles emitted by the pellet boiler had no effect on observed SOA yields. The maximum SOA yield of α-pinene in the presence of pellet boiler exhaust (under high-NO x conditions) was 18.7% and in the absence of pellet boiler exhaust (under low-NO x conditions) was 34.1%. The reduced SOA yield under high-NO x conditions was caused by changes in gas-phase chemistry that led to the formation of organonitrate compounds.

  18. Degradation of indoor limonene by outdoor ozone: A cascade of secondary organic aerosols.

    Science.gov (United States)

    Rösch, Carolin; Wissenbach, Dirk K; Franck, Ulrich; Wendisch, Manfred; Schlink, Uwe

    2017-07-01

    In indoor air, terpene-ozone reactions can form secondary organic aerosols (SOA) in a transient process. 'Real world' measurements conducted in a furnished room without air conditioning were modelled involving the indoor background of airborne particulate matter, outdoor ozone infiltrated by natural ventilation, repeated transient limonene evaporations, and different subsequent ventilation regimes. For the given setup, we disentangled the development of nucleated, coagulated, and condensed SOA fractions in the indoor air and calculated the time dependence of the aerosol mass fraction (AMF) by means of a process model. The AMF varied significantly between 0.3 and 5.0 and was influenced by the ozone limonene ratio and the background particles which existed prior to SOA formation. Both influencing factors determine whether nucleation or adsorption processes are preferred; condensation is strongly intensified by particulate background. The results provide evidence that SOA levels in natural indoor environments can surpass those known from chamber measurements. An indicator for the SOA forming potential of limonene was found to be limona ketone. Multiplying its concentration (in μg/m 3 ) by 450(±100) provides an estimate of the concentration of the reacted limonene. This can be used to detect a high particle formation potential due to limonene pollution, e.g. in epidemiological studies considering adverse health effects of indoor air pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The effects of isoprene and NOx on secondary organic aerosols formed through reversible and irreversible uptake to aerosol water

    Science.gov (United States)

    El-Sayed, Marwa M. H.; Ortiz-Montalvo, Diana L.; Hennigan, Christopher J.

    2018-01-01

    Isoprene oxidation produces water-soluble organic gases capable of partitioning to aerosol liquid water. The formation of secondary organic aerosols through such aqueous pathways (aqSOA) can take place either reversibly or irreversibly; however, the split between these fractions in the atmosphere is highly uncertain. The aim of this study was to characterize the reversibility of aqSOA formed from isoprene at a location in the eastern United States under substantial influence from both anthropogenic and biogenic emissions. The reversible and irreversible uptake of water-soluble organic gases to aerosol water was characterized in Baltimore, Maryland, USA, using measurements of particulate water-soluble organic carbon (WSOCp) in alternating dry and ambient configurations. WSOCp evaporation with drying was observed systematically throughout the late spring and summer, indicating reversible aqSOA formation during these times. We show through time lag analyses that WSOCp concentrations, including the WSOCp that evaporates with drying, peak 6 to 11 h after isoprene concentrations, with maxima at a time lag of 9 h. The absolute reversible aqSOA concentrations, as well as the relative amount of reversible aqSOA, increased with decreasing NOx / isoprene ratios, suggesting that isoprene epoxydiol (IEPOX) or other low-NOx oxidation products may be responsible for these effects. The observed relationships with NOx and isoprene suggest that this process occurs widely in the atmosphere, and is likely more important in other locations characterized by higher isoprene and/or lower NOx levels. This work underscores the importance of accounting for both reversible and irreversible uptake of isoprene oxidation products to aqueous particles.

  20. Aqueous benzene-diols react with an organic triplet excited state and hydroxyl radical to form secondary organic aerosol.

    Science.gov (United States)

    Smith, Jeremy D; Kinney, Haley; Anastasio, Cort

    2015-04-21

    Chemical processing in atmospheric aqueous phases, such as cloud and fog drops, can play a significant role in the production and evolution of secondary organic aerosol (SOA). In this work we examine aqueous SOA production via the oxidation of benzene-diols (dihydroxy-benzenes) by the triplet excited state of 3,4-dimethoxybenzaldehyde, (3)DMB*, and by hydroxyl radical, ˙OH. Reactions of the three benzene-diols (catechol (CAT), resorcinol (RES) and hydroquinone (HQ)) with (3)DMB* or ˙OH proceed rapidly, with rate constants near diffusion-controlled values. The two oxidants exhibit different behaviors with pH, with rate constants for (3)DMB* increasing as pH decreases from pH 5 to 2, while rate constants with ˙OH decrease in more acidic solutions. Mass yields of SOA were near 100% for all three benzene-diols with both oxidants. We also examined the reactivity of atmospherically relevant mixtures of phenols and benzene-diols in the presence of (3)DMB*. We find that the kinetics of phenol and benzene-diol loss, and the production of SOA mass, in mixtures are generally consistent with rate constants determined in experiments containing a single phenol or benzene-diol. Combining our aqueous kinetic and SOA mass yield data with previously published gas-phase data, we estimate a total SOA production rate from benzene-diol oxidation in a foggy area with significant wood combustion to be nearly 0.6 μg mair(-3) h(-1), with approximately half from the aqueous oxidation of resorcinol and hydroquinone, and half from the gas-phase oxidation of catechol.

  1. Method of decomposing radioactive organic solvent wastes

    International Nuclear Information System (INIS)

    Uki, Kazuo; Ichihashi, Toshio; Hasegawa, Akira; Sato, Tatsuaki

    1986-01-01

    Purpose: To decompose radioactive organic solvent wastes or radioactive hydrocarbon solvents separated therefrom into organic materials under moderate conditions, as well as greatly decrease the amount of secondary wastes generated. Method: Radioactive organic solvent wastes comprising an organic phosphoric acid ester ingredient and a hydrocarbon ingredient as a diluent therefor, or radioactive hydrocarbon solvents separated therefrom are oxidatively decomposed by hydrogen peroxide in an aqueous phosphoric acid solution of phosphoric acid metal salts finally into organic materials to perform decomposing treatment for the radioactive organic solvent wastes. The decomposing reaction is carried out under relatively moderate conditions and cause less burden to facilities or the likes. Further, since the decomposed liquid after the treatment can be reused for the decomposing reaction as a catalyst solution secondary wastes can significantly be decreased. (Yoshihara, H.)

  2. Education quality monitoring in a comprehensive secondary institution with the use of modern IT-based means

    Directory of Open Access Journals (Sweden)

    Оксана Николаевна Ромашкова

    2014-12-01

    Full Text Available In the article one can find an example of the Balanced Score Card (BSC development for a comprehensive secondary organization. The idea of using the BSC for the education quality monitoring is justified. The interrelation between the modern IT-based means introduction and the educational process quality improvement in a comprehensive secondary organization has been set.

  3. Secondary hypertension: the ways of management.

    Science.gov (United States)

    Rossi, Gian P; Seccia, Teresa M; Pessina, Achille C

    2010-11-01

    The prevalence of secondary hypertension is lower than that of primary (essential) hypertension, but it is likely that it has been underestimated because appropriate tests were not generally performed. Hence, before embarking on a search for secondary hypertension physicians are generally advised to select populations of patients with a high pre-test probability of secondary forms of hypertension in order to maximize the positive predictive value and the gain in "ruling in" of the diagnostic tests. Based on updated information on prevalence and pathophysiology we herein critically review the general diagnostic strategy and the management of the main forms of secondary hypertension. In particular, strategies for identifying primary aldosteronism, the most frequent form of endocrine secondary hypertension, and for determining its unilateral or bilateral causes are discussed in details, because of the differences of treatment that requires adrenalectomy in the unilateral forms and mineralocorticoid receptor blockade in the bilateral forms. The tests available for the diagnosing pheochromocytoma (pheo), which is much rarer but extremely important to identify, as it can be fatal if unrecognized are also discussed, with emphasis on the recent developments in genetic testing. Renovascular hypertension is also a common curable form of hypertension, which should be identified as early as possible to avoid the onset of cardiovascular target organ damage and events, is also discussed.

  4. Atmospheric hydrogen peroxide and organic hydroperoxides during PRIDE-PRD'06, China: their concentration, formation mechanism and contribution to secondary aerosols

    Science.gov (United States)

    Hua, W.; Chen, Z. M.; Jie, C. Y.; Kondo, Y.; Hofzumahaus, A.; Takegawa, N.; Chang, C. C.; Lu, K. D.; Miyazaki, Y.; Kita, K.; Wang, H. L.; Zhang, Y. H.; Hu, M.

    2008-11-01

    in samples of rainwater collected in a heavy shower on 25 July when a typhoon passed through, indicating that a considerable mixing ratio of hydroperoxides, particularly MHP, resided above the boundary layer, which might be transported on a regional scale and further influence the redistribution of HOx and ROx radicals. It was found that hydroperoxides, in particular H2O2, play an important role in the formation of secondary sulfate in the aerosol phase, where the heterogeneous reaction might contribute substantially. A negative correlation between hydroperoxides and water-soluble organic compounds (WSOC), a considerable fraction of the secondary organic aerosol (SOA), was observed, possibly providing field evidence for the importance of hydroperoxides in the formation of SOA found in previous laboratory studies. We suggest that hydroperoxides act as an important link between sulfate and organic aerosols, which needs further study and should be considered in current atmospheric models.

  5. Primary organic pollutants in New Zealand urban aerosol in winter during high PM1 episodes

    International Nuclear Information System (INIS)

    Krivacsy, Zoltan; Blazso, Marianne; Shooter, David

    2006-01-01

    In the two biggest New Zealand cities, Auckland and Christchurch, the mass concentration of the PM 1 atmospheric aerosol can exceed the 50 μg m -3 24 h health guideline in winter. This high pollution level is thought to be caused mainly by old-fashioned domestic heating systems based on wood combustion. Therefore the chemistry of the carbonaceous aerosol has been investigated in several high-pollution level urban situations in order to assess the origin of the pollution. All the high concentration organic tracers, including levoglucosan and dehydroabietic acid, were characteristic for biomass burning. The findings have confirmed via advanced chemical analytical methods that domestic heating can be the main contributor to the high level of wintertime pollution, especially in Christchurch. The results are of great importance in supporting the ambition of authorities and environmental associations to change the domestic heating regimes. - PM 1 aerosol concentrations can exceed air quality guidelines during winter in Christchurch, New Zealand

  6. Secondary Organic Aerosol Production from Gasoline Vehicle Exhaust: Effects of Engine Technology, Cold Start, and Emission Certification Standard.

    Science.gov (United States)

    Zhao, Yunliang; Lambe, Andrew T; Saleh, Rawad; Saliba, Georges; Robinson, Allen L

    2018-02-06

    Secondary organic aerosol (SOA) formation from dilute exhaust from 16 gasoline vehicles was investigated using a potential aerosol mass (PAM) oxidation flow reactor during chassis dynamometer testing using the cold-start unified cycle (UC). Ten vehicles were equipped with gasoline direct injection engines (GDI vehicles) and six with port fuel injection engines (PFI vehicles) certified to a wide range of emissions standards. We measured similar SOA production from GDI and PFI vehicles certified to the same emissions standard; less SOA production from vehicles certified to stricter emissions standards; and, after accounting for differences in gas-particle partitioning, similar effective SOA yields across different engine technologies and certification standards. Therefore the ongoing, dramatic shift from PFI to GDI vehicles in the United States should not alter the contribution of gasoline vehicles to ambient SOA and the natural replacement of older vehicles with newer ones certified to stricter emissions standards should reduce atmospheric SOA levels. Compared to hot operations, cold-start exhaust had lower effective SOA yields, but still contributed more SOA overall because of substantially higher organic gas emissions. We demonstrate that the PAM reactor can be used as a screening tool for vehicle SOA production by carefully accounting for the effects of the large variations in emission rates.

  7. Observational evidence for pollution-influenced selective uptake contributing to biogenic secondary organic aerosols in the southeastern U.S.

    Science.gov (United States)

    Liu, J.; Russell, L. M.; Lee, A. K. Y.; McKinney, K. A.; Surratt, J. D.; Ziemann, P. J.

    2017-08-01

    During the 2013 Southern Oxidant and Aerosol Study, aerosol mass spectrometer measurements of submicron mass and single particles were taken at Look Rock, Tennessee. Their concentrations increased during multiday stagnation events characterized by low wind, little rain, and increased daytime isoprene emissions. Organic mass (OM) sources were apportioned as 42% "vehicle-related" and 54% biogenic secondary organic aerosol (bSOA), with the latter including "sulfate-related bSOA" that correlated to sulfate (r = 0.72) and "nitrate-related bSOA" that correlated to nitrate (r = 0.65). Single-particle mass spectra showed three composition types that corresponded to the mass-based factors with spectra cosine similarity of 0.93 and time series correlations of r > 0.4. The vehicle-related OM with m/z 44 was correlated to black carbon, "sulfate-related bSOA" was on particles with high sulfate, and "nitrate-related bSOA" was on all particles. The similarity of the m/z spectra (cosine similarity = 0.97) and the time series correlation (r = 0.80) of the "sulfate-related bSOA" to the sulfate-containing single-particle type provide evidence for particle composition contributing to selective uptake of isoprene oxidation products onto particles that contain sulfate from power plants.

  8. Changing trends in biotechnology of secondary metabolism in medicinal and aromatic plants.

    Science.gov (United States)

    Gandhi, Sumit G; Mahajan, Vidushi; Bedi, Yashbir S

    2015-02-01

    Medicinal and aromatic plants are known to produce secondary metabolites that find uses as flavoring agents, fragrances, insecticides, dyes and drugs. Biotechnology offers several choices through which secondary metabolism in medicinal plants can be altered in innovative ways, to overproduce phytochemicals of interest, to reduce the content of toxic compounds or even to produce novel chemicals. Detailed investigation of chromatin organization and microRNAs affecting biosynthesis of secondary metabolites as well as exploring cryptic biosynthetic clusters and synthetic biology options, may provide additional ways to harness this resource. Plant secondary metabolites are a fascinating class of phytochemicals exhibiting immense chemical diversity. Considerable enigma regarding their natural biological functions and the vast array of pharmacological activities, amongst other uses, make secondary metabolites interesting and important candidates for research. Here, we present an update on changing trends in the biotechnological approaches that are used to understand and exploit the secondary metabolism in medicinal and aromatic plants. Bioprocessing in the form of suspension culture, organ culture or transformed hairy roots has been successful in scaling up secondary metabolite production in many cases. Pathway elucidation and metabolic engineering have been useful to get enhanced yield of the metabolite of interest; or, for producing novel metabolites. Heterologous expression of putative plant secondary metabolite biosynthesis genes in a microbe is useful to validate their functions, and in some cases, also, to produce plant metabolites in microbes. Endophytes, the microbes that normally colonize plant tissues, may also produce the phytochemicals produced by the host plant. The review also provides perspectives on future research in the field.

  9. The secondary water chemistry and its quality specification of PWR steam generators

    International Nuclear Information System (INIS)

    Zhang Guiqin.

    1984-01-01

    Reasonably organizing the secondary water chemistry of a steam generator is of great importance for improving thermal-hydraulic characteristics and avoiding or alleviating probability of its internals failures by corrosion. In this paper emphasis is put on importance and task of the secondary water chemistry, the meaning and the control demand for feedwater and boiler water specification. At the same time, the current situation on the secondary water chemistry of PWR steam generators is reviewed generally. (Author)

  10. SIMS of Organic Materials—Interface Location in Argon Gas Cluster Depth Profiles Using Negative Secondary Ions

    Science.gov (United States)

    Havelund, R.; Seah, M. P.; Tiddia, M.; Gilmore, I. S.

    2018-02-01

    A procedure has been established to define the interface position in depth profiles accurately when using secondary ion mass spectrometry and the negative secondary ions. The interface position varies strongly with the extent of the matrix effect and so depends on the secondary ion measured. Intensity profiles have been measured at both fluorenylmethyloxycarbonyl-uc(l)-pentafluorophenylalanine (FMOC) to Irganox 1010 and Irganox 1010 to FMOC interfaces for many secondary ions. These profiles show separations of the two interfaces that vary over some 10 nm depending on the secondary ion selected. The shapes of these profiles are strongly governed by matrix effects, slightly weakened by a long wavelength roughening. The matrix effects are separately measured using homogeneous, known mixtures of these two materials. Removal of the matrix and roughening effects give consistent compositional profiles for all ions that are described by an integrated exponentially modified Gaussian (EMG) profile. Use of a simple integrated Gaussian may lead to significant errors. The average interface positions in the compositional profiles are determined to standard uncertainties of 0.19 and 0.14 nm, respectively, using the integrated EMG function. Alternatively, and more simply, it is shown that interface positions and profiles may be deduced from data for several secondary ions with measured matrix factors by simply extrapolating the result to Ξ = 0. Care must be taken in quoting interface resolutions since those measured for predominantly Gaussian interfaces with Ξ above or below zero, without correction, appear significantly better than the true resolution.

  11. Direct radiative feedback due to biogenic secondary organic aerosol estimated from boreal forest site observations

    International Nuclear Information System (INIS)

    Lihavainen, Heikki; Asmi, Eija; Aaltonen, Veijo; Makkonen, Ulla; Kerminen, Veli-Matti

    2015-01-01

    We used more than five years of continuous aerosol measurements to estimate the direct radiative feedback parameter associated with the formation of biogenic secondary organic aerosol (BSOA) at a remote continental site at the edge of the boreal forest zone in Northern Finland. Our upper-limit estimate for this feedback parameter during the summer period (ambient temperatures above 10 °C) was −97 ± 66 mW m −2 K −1 (mean ± STD) when using measurements of the aerosol optical depth (f AOD ) and −63 ± 40 mW m −2 K −1 when using measurements of the ‘dry’ aerosol scattering coefficient at the ground level (f σ ). Here STD represents the variability in f caused by the observed variability in the quantities used to derive the value of f. Compared with our measurement site, the magnitude of the direct radiative feedback associated with BSOA is expected to be larger in warmer continental regions with more abundant biogenic emissions, and even larger in regions where biogenic emissions are mixed with anthropogenic pollution. (letter)

  12. Temperature effect on physical and chemical properties of secondary organic aerosol from m-xylene photooxidation

    Directory of Open Access Journals (Sweden)

    D. R. Cocker III

    2010-04-01

    Full Text Available The chemical and physical differences of secondary organic aerosol (SOA formed at select isothermal temperatures (278 K, 300 K, and 313 K are explored with respect to density, particle volatility, particle hygroscopicity, and elemental chemical composition. A transition point in SOA density, volatility, hygroscopicity and elemental composition is observed near 290–292 K as SOA within an environmental chamber is heated from 278 K to 313 K, indicating the presence of a thermally labile compound. No such transition points are observed for SOA produced at 313 K or 300 K and subsequently cooled to 278 K. The SOA formed at the lowest temperatures (278 K is more than double the SOA formed at 313 K. SOA formed at 278 K is less hydrophilic and oxygenated while more volatile and dense than SOA formed at 300 K or 313 K. The properties of SOA formed at 300 K and 313 K when reduced to 278 K did not match the properties of SOA initially formed at 278 K. This study demonstrates that it is insufficient to utilize the enthalpy of vaporization when predicting SOA temperature dependence.

  13. Graphic Organizers for Secondary Students with Learning Disabilities

    Science.gov (United States)

    Singleton, Sabrina M.; Filce, Hollie Gabler

    2015-01-01

    Research suggests students with learning disabilities often have trouble connecting new and prior knowledge, distinguishing essential and nonessential information, and applying comprehension strategies (DiCecco & Gleason, 2002; Vaughn & Edmonds, 2006). Graphic organizers have been suggested as tools educators can use to facilitate critical…

  14. Secondary aerosol formation from photochemical aging of aircraft exhaust in a smog chamber

    Directory of Open Access Journals (Sweden)

    M. A. Miracolo

    2011-05-01

    Full Text Available Field experiments were performed to investigate the effects of photo-oxidation on fine particle emissions from an in-use CFM56-2B gas turbine engine mounted on a KC-135 Stratotanker airframe. Emissions were sampled into a portable smog chamber from a rake inlet installed one-meter downstream of the engine exit plane of a parked and chocked aircraft. The chamber was then exposed to sunlight and/or UV lights to initiate photo-oxidation. Separate tests were performed at different engine loads (4, 7, 30, 85 %. Photo-oxidation created substantial secondary particulate matter (PM, greatly exceeding the direct PM emissions at each engine load after an hour or less of aging at typical summertime conditions. After several hours of photo-oxidation, the ratio of secondary-to-primary PM mass was on average 35 ± 4.1, 17 ± 2.5, 60 ± 2.2, and 2.7 ± 1.1 for the 4, 7, 30, and 85 % load experiments, respectively. The composition of secondary PM formed strongly depended on load. At 4 % load, secondary PM was dominated by secondary organic aerosol (SOA. At higher loads, the secondary PM was mainly secondary sulfate. A traditional SOA model that accounts for SOA formation from single-ring aromatics and other volatile organic compounds underpredicts the measured SOA formation by ~60 % at 4 % load and ~40 % at 85 % load. Large amounts of lower-volatiliy organic vapors were measured in the exhaust; they represent a significant pool of SOA precursors that are not included in traditional SOA models. These results underscore the importance of accounting for atmospheric processing when assessing the influence of aircraft emissions on ambient PM levels. Models that do not account for this processing will likely underpredict the contribution of aircraft emissions to local and regional air pollution.

  15. Thrombotic Microangiopathy with Skin Localization Secondary to Cytarabine-Daunorubicin Association: Report of a Case

    Directory of Open Access Journals (Sweden)

    S. Regragui

    2012-01-01

    Full Text Available The thrombotic microangiopathy is a syndrome characterized by the combination of mechanical hemolytic anemia, peripheral thrombocytopenia, and organ failure of variable severity. In addition to the idiopathic form, several cases are identified as secondary to pregnancy, infections, disease systems, organ transplants, and cancer. Other forms are secondary to drugs including antimitotics. We report the case of a patient followed for acute myelogenous leukemia. She received induction chemotherapy combining daunorubicin and cytarabine, complicated by thrombotic thrombocytopenic purpura.

  16. Secondary hypertension in adults.

    Science.gov (United States)

    Puar, Troy Hai Kiat; Mok, Yingjuan; Debajyoti, Roy; Khoo, Joan; How, Choon How; Ng, Alvin Kok Heong

    2016-05-01

    Secondary hypertension occurs in a significant proportion of adult patients (~10%). In young patients, renal causes (glomerulonephritis) and coarctation of the aorta should be considered. In older patients, primary aldosteronism, obstructive sleep apnoea and renal artery stenosis are more prevalent than previously thought. Primary aldosteronism can be screened by taking morning aldosterone and renin levels, and should be considered in patients with severe, resistant or hypokalaemia-associated hypertension. Symptoms of obstructive sleep apnoea should be sought. Worsening of renal function after starting an angiotensin-converting enzyme inhibitor suggests the possibility of renal artery stenosis. Recognition, diagnosis and treatment of secondary causes of hypertension lead to good clinical outcomes and the possible reversal of end-organ damage, in addition to blood pressure control. As most patients with hypertension are managed at the primary care level, it is important for primary care physicians to recognise these conditions and refer patients appropriately. Copyright: © Singapore Medical Association.

  17. Apportionment of urban aerosol sources in Cork (Ireland) by synergistic measurement techniques.

    Science.gov (United States)

    Dall'Osto, Manuel; Hellebust, Stig; Healy, Robert M; O'Connor, Ian P; Kourtchev, Ivan; Sodeau, John R; Ovadnevaite, Jurgita; Ceburnis, Darius; O'Dowd, Colin D; Wenger, John C

    2014-09-15

    The sources of ambient fine particulate matter (PM2.5) during wintertime at a background urban location in Cork city (Ireland) have been determined. Aerosol chemical analyses were performed by multiple techniques including on-line high resolution aerosol time-of-flight mass spectrometry (Aerodyne HR-ToF-AMS), on-line single particle aerosol time-of-flight mass spectrometry (TSI ATOFMS), on-line elemental carbon-organic carbon analysis (Sunset_EC-OC), and off-line gas chromatography/mass spectrometry and ion chromatography analysis of filter samples collected at 6-h resolution. Positive matrix factorization (PMF) has been carried out to better elucidate aerosol sources not clearly identified when analyzing results from individual aerosol techniques on their own. Two datasets have been considered: on-line measurements averaged over 2-h periods, and both on-line and off-line measurements averaged over 6-h periods. Five aerosol sources were identified by PMF in both datasets, with excellent agreement between the two solutions: (1) regional domestic solid fuel burning--"DSF_Regional," 24-27%; (2) local urban domestic solid fuel burning--"DSF_Urban," 22-23%; (3) road vehicle emissions--"Traffic," 15-20%; (4) secondary aerosols from regional anthropogenic sources--"SA_Regional" 9-13%; and (5) secondary aged/processed aerosols related to urban anthropogenic sources--"SA_Urban," 21-26%. The results indicate that, despite regulations for restricting the use of smoky fuels, solid fuel burning is the major source (46-50%) of PM2.5 in wintertime in Cork, and also likely other areas of Ireland. Whilst wood combustion is strongly associated with OC and EC, it was found that peat and coal combustion is linked mainly with OC and the aerosol from these latter sources appears to be more volatile than that produced by wood combustion. Ship emissions from the nearby port were found to be mixed with the SA_Regional factor. The PMF analysis allowed us to link the AMS cooking organic

  18. Photochemical age of air pollutants, ozone, and secondary organic aerosol in transboundary air observed on Fukue Island, Nagasaki, Japan

    Science.gov (United States)

    Irei, Satoshi; Takami, Akinori; Sadanaga, Yasuhiro; Nozoe, Susumu; Yonemura, Seiichiro; Bandow, Hiroshi; Yokouchi, Yoko

    2016-04-01

    To better understand the secondary air pollution in transboundary air over westernmost Japan, ground-based field measurements of the chemical composition of fine particulate matter ( ≤ 1 µm), mixing ratios of trace gas species (CO, O3, NOx, NOy, i-pentane, toluene, and ethyne), and meteorological elements were conducted with a suite of instrumentation. The CO mixing ratio dependence on wind direction showed that there was no significant influence from primary emission sources near the monitoring site, indicating long- and/or mid-range transport of the measured chemical species. Despite the considerably different atmospheric lifetimes of NOy and CO, these mixing ratios were correlated (r2 = 0.67). The photochemical age of the pollutants, t[OH] (the reaction time × the mean concentration of OH radical during the atmospheric transport), was calculated from both the NOx / NOy concentration ratio (NOx / NOy clock) and the toluene / ethyne concentration ratio (hydrocarbon clock). It was found that the toluene / ethyne concentration ratio was significantly influenced by dilution with background air containing 0.16 ppbv of ethyne, causing significant bias in the estimation of t[OH]. In contrast, the influence of the reaction of NOx with O3, a potentially biasing reaction channel on [NOx] / [NOy], was small. The t[OH] values obtained with the NOx / NOy clock ranged from 2.9 × 105 to 1.3 × 108 h molecule cm-3 and were compared with the fractional contribution of the m/z 44 signal to the total signal in the organic aerosol mass spectra (f44, a quantitative oxidation indicator of carboxylic acids) and O3 mixing ratio. The comparison of t[OH] with f44 showed evidence for a systematic increase of f44 as t[OH] increased, an indication of secondary organic aerosol (SOA) formation. To a first approximation, the f44 increase rate was (1.05 ± 0.03) × 10-9 × [OH] h-1, which is comparable to the background-corrected increase rate observed during the New England Air Quality

  19. Emissions of biogenic volatile organic compounds and subsequent photochemical production of secondary organic aerosol in mesocosm studies of temperate and tropical plant species

    Science.gov (United States)

    Wyche, K. P.; Ryan, A. C.; Hewitt, C. N.; Alfarra, M. R.; McFiggans, G.; Carr, T.; Monks, P. S.; Smallbone, K. L.; Capes, G.; Hamilton, J. F.; Pugh, T. A. M.; MacKenzie, A. R.

    2014-12-01

    Silver birch (Betula pendula) and three Southeast Asian tropical plant species (Ficus cyathistipula, Ficus benjamina and Caryota millis) from the pantropical fig and palm genera were grown in a purpose-built and environment-controlled whole-tree chamber. The volatile organic compounds emitted from these trees were characterised and fed into a linked photochemical reaction chamber where they underwent photo-oxidation under a range of controlled conditions (relative humidity or RH ~65-89%, volatile organic compound-to-NOx or VOC / NOx ~3-9 and NOx ~2 ppbV). Both the gas phase and the aerosol phase of the reaction chamber were monitored in detail using a comprehensive suite of on-line and off-line chemical and physical measurement techniques. Silver birch was found to be a high monoterpene and sesquiterpene but low isoprene emitter, and its emissions were observed to produce measurable amounts of secondary organic aerosol (SOA) via both nucleation and condensation onto pre-existing seed aerosol (YSOA 26-39%). In contrast, all three tropical species were found to be high isoprene emitters with trace emissions of monoterpenes and sesquiterpenes. In tropical plant experiments without seed aerosol there was no measurable SOA nucleation, but aerosol mass was shown to increase when seed aerosol was present. Although principally isoprene emitting, the aerosol mass produced from tropical fig was mostly consistent (i.e. in 78 out of 120 aerosol mass calculations using plausible parameter sets of various precursor specific yields) with condensation of photo-oxidation products of the minor volatile organic compounds (VOCs) co-emitted; no significant aerosol yield from condensation of isoprene oxidation products was required in the interpretations of the experimental results. This finding is in line with previous reports of organic aerosol loadings consistent with production from minor biogenic VOCs co-emitted with isoprene in principally isoprene-emitting landscapes in Southeast

  20. Mild Conditions for Deuteration of Primary and Secondary Arylamines for the Synthesis of Deuterated Optoelectronic Organic Molecules

    Directory of Open Access Journals (Sweden)

    Anwen M. Krause-Heuer

    2014-11-01

    Full Text Available Deuterated arylamines demonstrate great potential for use in optoelectronic devices, but their widespread utility requires a method for large-scale synthesis. The incorporation of these deuterated materials into optoelectronic devices also provides the opportunity for studies of the functioning device using neutron reflectometry based on the difference in the scattering length density between protonated and deuterated compounds. Here we report mild deuteration conditions utilising standard laboratory glassware for the deuteration of: diphenylamine, N-phenylnaphthylamine, N-phenyl-o-phenylenediamine and 1-naphthylamine (via H/D exchange in D2O at 80 °C, catalysed by Pt/C and Pd/C. These conditions were not successful in the deuteration of triphenylamine or N,N-dimethylaniline, suggesting that these mild conditions are not suitable for the deuteration of tertiary arylamines, but are likely to be applicable for the deuteration of other primary and secondary arylamines. The deuterated arylamines can then be used for synthesis of larger organic molecules or polymers with optoelectronic applications.

  1. Professional Learning Community in Secondary Schools Community in Malaysia

    Directory of Open Access Journals (Sweden)

    Zuraidah Abdullah

    2014-08-01

    Full Text Available This paper outlines a research towards an initial assessment of the stage of the PLC in secondary schools in Malaysians secondary school with teachers as the main focus. A brief philosophy of the importance of learning organization and its development in various countries was reviewed and incorporated by the current situations, leading to the objectives and methodology for this study. The result showed the teachers can be active in their learning and improving their schools as to enhance the learning performance of the students in the first four characteristic dimensions refer to the practice of shared values, goals, mission and vision among teachers which play an important role in shaping the PLC in secondary school.

  2. Estimate of neutron secondary doses received by patients in proton therapy: cases of ophthalmologic treatments

    International Nuclear Information System (INIS)

    Martinetti, F.

    2009-12-01

    This research thesis aims at assessing doses due to secondary neutrons and received by the organs of a patient which are located outside of the treatment field. The study focused on ophthalmological treatments performed at the Orsay proton therapy centre. A 75 eV beam line model has first been developed with the MCNPX Monte Carlo code. Several experimental validations of this model have been performed: proton dose distribution in a water phantom, ambient equivalent dose due to secondary neutrons and neutron spectra in the treatment room, and doses deposited by secondary neutrons in an anthropomorphous phantom. Simulations and measurements are in correct agreement. Then, a numeric assessment of secondary doses received by the patient's organs has been performed by using a MIRD-type mathematical phantom. These doses have been computed for several organs: the non-treated eye, the brain, the thyroid, and other parts of the body situated either in the front part of the body (the one directly exposed to neutrons generated in the treatment line) or deeper and further from the treatment field

  3. Item 141 Radiotherapy. Radiobiological notions; main secondary effects

    International Nuclear Information System (INIS)

    Azria, David; Dubois, Jean-Bernard

    2006-11-01

    This document first gives definitions of ionizing radiations, photons, electrons and Gray (as a dose unit). It describes the mechanisms of action of ionizing radiations: physical, chemical, cellular actions, actions on tissues. It analyses and discusses the factors influencing the effects of radiations: intrinsic radio-sensitivity, cellular cycle, oxygen, time (session fractioning and organisation in time), and dose. The different types of radiotherapy are then presented: external radiotherapy, brachytherapy, radio-immunotherapy of internal radiotherapy. It discusses tissues tolerance doses and doses required to sterilize tumours, and discusses the various and main secondary effects: stochastic secondary effects and deterministic secondary effects. A table indicates possible early and late reactions for different organs (skin, lung, brain, medulla, nerves, oesophagus, heart, pancreas, stomach, liver, intestine, kidney, bladder, rectum, ENT, or eye's lens)

  4. Evaluation of factors controlling global secondary organic aerosol production from cloud processes

    Directory of Open Access Journals (Sweden)

    C. He

    2013-02-01

    Full Text Available Secondary organic aerosols (SOA exert a significant influence on ambient air quality and regional climate. Recent field, laboratorial and modeling studies have confirmed that in-cloud processes contribute to a large fraction of SOA production with large space-time heterogeneity. This study evaluates the key factors that govern the production of cloud-process SOA (SOAcld on a global scale based on the GFDL coupled chemistry-climate model AM3 in which full cloud chemistry is employed. The association between SOAcld production rate and six factors (i.e., liquid water content (LWC, total carbon chemical loss rate (TCloss, temperature, VOC/NOx, OH, and O3 is examined. We find that LWC alone determines the spatial pattern of SOAcld production, particularly over the tropical, subtropical and temperate forest regions, and is strongly correlated with SOAcld production. TCloss ranks the second and mainly represents the seasonal variability of vegetation growth. Other individual factors are essentially uncorrelated spatiotemporally to SOAcld production. We find that the rate of SOAcld production is simultaneously determined by both LWC and TCloss, but responds linearly to LWC and nonlinearly (or concavely to TCloss. A parameterization based on LWC and TCloss can capture well the spatial and temporal variability of the process-based SOAcld formation (R2 = 0.5 and can be easily applied to global three dimensional models to represent the SOA production from cloud processes.

  5. Elemental Composition Analysis to Investigate NOx Effects on Secondary Organic Aerosol from α-Pinene Using Ultrahigh Resolution Mass Spectrometry

    Science.gov (United States)

    Lim, H. J.; Park, J. H.; Babar, Z.

    2015-12-01

    Secondary organic aerosol (SOA) accounts for 20-70% of atmospheric fine aerosol. NOx plays crucial roles in SOA formation and consequently affects the composition and yield of SOA. SOA component speciation is incomplete due to its complex composition of polar oxygenated and multifunctional species. In this study, ultrahigh resolution mass spectrometry (UHR MS) was applied to improve the understanding of NOx effects on biogenic SOA formation by identifying the elemental composition of SOA. Additional research aim was to investigate oligomer components that are considered as a driving force for SOA formation and growth. In this study α-pinene SOA from photochemical reaction was examined. SOA formation was performed in the absence and presence of NOx at dry condition (grant funded by the Korea government (MEST) (No. 2011-01350000).

  6. School organization and the mobilization of teachers and students in the use of a new general secondary education curriculum in East Timor

    Directory of Open Access Journals (Sweden)

    Ana Margarida Capelo

    2015-07-01

    Full Text Available Given that reforms involving how to deal with the past are extremely difficult, especially when the past involves memories of victimization, death, and destruction so widespread that a high percentage of the population is affected, the main purpose of this article is to describe how the general secondary education (GSE curriculum in East Timor –an ancient Portuguese colony– is organized in terms of principles and objectives, themes, and methodological guidelines that give priority to assisting students to minimize or manage problems associated with conflict. Subsequently, the current state of GSE is characterized, in terms of school organization and logistics, and mobilization of teachers and students in using the new curriculum. The empirical results show that curricular materials incorporate aspects that can contribute to understanding and minimizing or managing problems created by the conflict, as well as contributing to avoid new conflicts. Nevertheless, although textbooks incorporate these aspects and teachers and students express interest in use them, problems remain regarding their appropriate usage due to numerous factors such as: logistics; school organization and poor teacher skills, despite training given and continued focused investment.

  7. Information training for secondary school level teachers

    International Nuclear Information System (INIS)

    Chateau Thierry, A. de

    1994-01-01

    The INSTN (National Institute for Nuclear Sciences and Techniques) in France, organizes each year an information training concerning the nuclear field for secondary school level teachers; created in 1957, the two-weeks session is concerned with radioactivity and nuclear reactor principles and a four-day practical teaching. Since 1968, 1150 teachers assisted to the session

  8. Secondary Hypertension

    Science.gov (United States)

    Secondary hypertension Overview Secondary hypertension (secondary high blood pressure) is high blood pressure that's caused by another medical condition. Secondary hypertension can be caused by conditions that affect your kidneys, ...

  9. Phase, composition, and growth mechanism for secondary organic aerosol from the ozonolysis of α-cedrene

    Directory of Open Access Journals (Sweden)

    Y. Zhao

    2016-03-01

    Full Text Available Sesquiterpenes are an important class of biogenic volatile organic compounds (BVOCs and have a high secondary organic aerosol (SOA forming potential. However, SOA formation from sesquiterpene oxidation has received less attention compared to other BVOCs such as monoterpenes, and the underlying mechanisms remain poorly understood. In this work, we present a comprehensive experimental investigation of the ozonolysis of α-cedrene both in a glass flow reactor (27–44 s reaction times and in static Teflon chambers (30–60 min reaction times. The SOA was collected by impaction or filters, followed by analysis using attenuated total reflectance Fourier transform infrared (ATR-FTIR spectroscopy and electrospray ionization mass spectrometry (ESI-MS, or measured online using direct analysis in real-time mass spectrometry (DART-MS and aerosol mass spectrometry (AMS. The slow evaporation of 2-ethylhexyl nitrate that was incorporated into the SOA during its formation and growth gives an estimated diffusion coefficient of 3  ×  10−15 cm2 s−1 and shows that SOA is a highly viscous semisolid. Possible structures of four newly observed low molecular weight (MW  ≤  300 Da reaction products with higher oxygen content than those previously reported were identified. High molecular weight (HMW products formed in the early stages of the oxidation have structures consistent with aldol condensation products, peroxyhemiacetals, and esters. The size-dependent distributions of HMW products in the SOA, as well as the effects of stabilized Criegee intermediate (SCI scavengers on HMW products and particle formation, confirm that HMW products and reactions of SCI play a crucial role in early stages of particle formation. Our studies provide new insights into mechanisms of SOA formation and growth in α-cedrene ozonolysis and the important role of sesquiterpenes in new particle formation as suggested by field measurements.

  10. Secondary Organic Aerosol Produced from Aqueous Reactions of Phenols in Fog Drops and Deliquesced Particles

    Science.gov (United States)

    Smith, J.; Anastasio, C.

    2014-12-01

    The formation and evolution of secondary organic aerosol (SOA) in atmospheric condensed phases (i.e., aqueous SOA) can proceed rapidly, but relatively little is known of the important aqueous SOA precursors or their reaction pathways. In our work we are studying the aqueous SOA formed from reactions of phenols (phenol, guaiacol, and syringol), benzene-diols (catechol, resorcinol, and hydroquinone), and phenolic carbonyls (e.g., vanillin and syringaldehyde). These species are potentially important aqueous SOA precursors because they are released in large quantities from biomass burning, have high Henry's Law constants (KH = 103 -109 M-1 atm-1) and are rapidly oxidized. To evaluate the importance of aqueous reactions of phenols as a source of SOA, we first quantified the kinetics and SOA mass yields for 11 phenols reacting via direct photodegradation, hydroxyl radical (•OH), and with an excited organic triplet state (3C*). In the second step, which is the focus of this work, we use these laboratory results in a simple model of fog chemistry using conditions during a previously reported heavy biomass burning event in Bakersfield, CA. Our calculations indicate that under aqueous aerosol conditions (i.e., a liquid water content of 100 μg m-3) the rate of aqueous SOA production (RSOA(aq)) from phenols is similar to the rate in the gas phase. In contrast, under fog/cloud conditions the aqueous RSOA from phenols is 10 times higher than the rate in the gas phase. In both of these cases aqueous RSOA is dominated by the oxidation of phenols by 3C*, followed by direct photodegradation of phenolic carbonyls, and then •OH oxidation. Our results suggest that aqueous oxidation of phenols is a significant source of SOA during fog events and also during times when deliquesced aerosols are present.

  11. Modeling reactive ammonia uptake by secondary organic aerosol in CMAQ: application to the continental US

    Directory of Open Access Journals (Sweden)

    S. Zhu

    2018-03-01

    Full Text Available Ammonium salts such as ammonium nitrate and ammonium sulfate constitute an important fraction of the total fine particulate matter (PM2.5 mass. While the conversion of inorganic gases into particulate-phase sulfate, nitrate, and ammonium is now well understood, there is considerable uncertainty over interactions between gas-phase ammonia and secondary organic aerosols (SOAs. Observations have confirmed that ammonia can react with carbonyl compounds in SOA, forming nitrogen-containing organic compounds (NOCs. This chemistry consumes gas-phase NH3 and may therefore affect the amount of ammonium nitrate and ammonium sulfate in particulate matter (PM as well as particle acidity. In order to investigate the importance of such reactions, a first-order loss rate for ammonia onto SOA was implemented into the Community Multiscale Air Quality (CMAQ model based on the ammonia uptake coefficients reported in the literature. Simulations over the continental US were performed for the winter and summer of 2011 with a range of uptake coefficients (10−3–10−5. Simulation results indicate that a significant reduction in gas-phase ammonia may be possible due to its uptake onto SOA; domain-averaged ammonia concentrations decrease by 31.3 % in the winter and 67.0 % in the summer with the highest uptake coefficient (10−3. As a result, the concentration of particulate matter is also significantly affected, with a distinct spatial pattern over different seasons. PM concentrations decreased during the winter, largely due to the reduction in ammonium nitrate concentrations. On the other hand, PM concentrations increased during the summer due to increased biogenic SOA (BIOSOA production resulting from enhanced acid-catalyzed uptake of isoprene-derived epoxides. Since ammonia emissions are expected to increase in the future, it is important to include NH3 + SOA chemistry in air quality models.

  12. Modeling reactive ammonia uptake by secondary organic aerosol in CMAQ: application to the continental US

    Science.gov (United States)

    Zhu, Shupeng; Horne, Jeremy R.; Montoya-Aguilera, Julia; Hinks, Mallory L.; Nizkorodov, Sergey A.; Dabdub, Donald

    2018-03-01

    Ammonium salts such as ammonium nitrate and ammonium sulfate constitute an important fraction of the total fine particulate matter (PM2.5) mass. While the conversion of inorganic gases into particulate-phase sulfate, nitrate, and ammonium is now well understood, there is considerable uncertainty over interactions between gas-phase ammonia and secondary organic aerosols (SOAs). Observations have confirmed that ammonia can react with carbonyl compounds in SOA, forming nitrogen-containing organic compounds (NOCs). This chemistry consumes gas-phase NH3 and may therefore affect the amount of ammonium nitrate and ammonium sulfate in particulate matter (PM) as well as particle acidity. In order to investigate the importance of such reactions, a first-order loss rate for ammonia onto SOA was implemented into the Community Multiscale Air Quality (CMAQ) model based on the ammonia uptake coefficients reported in the literature. Simulations over the continental US were performed for the winter and summer of 2011 with a range of uptake coefficients (10-3-10-5). Simulation results indicate that a significant reduction in gas-phase ammonia may be possible due to its uptake onto SOA; domain-averaged ammonia concentrations decrease by 31.3 % in the winter and 67.0 % in the summer with the highest uptake coefficient (10-3). As a result, the concentration of particulate matter is also significantly affected, with a distinct spatial pattern over different seasons. PM concentrations decreased during the winter, largely due to the reduction in ammonium nitrate concentrations. On the other hand, PM concentrations increased during the summer due to increased biogenic SOA (BIOSOA) production resulting from enhanced acid-catalyzed uptake of isoprene-derived epoxides. Since ammonia emissions are expected to increase in the future, it is important to include NH3 + SOA chemistry in air quality models.

  13. Effects of NOx and SO2 on the secondary organic aerosol formation from photooxidation of α-pinene and limonene

    Directory of Open Access Journals (Sweden)

    D. Zhao

    2018-02-01

    Full Text Available Anthropogenic emissions such as NOx and SO2 influence the biogenic secondary organic aerosol (SOA formation, but detailed mechanisms and effects are still elusive. We studied the effects of NOx and SO2 on the SOA formation from the photooxidation of α-pinene and limonene at ambient relevant NOx and SO2 concentrations (NOx: < 1to 20 ppb, SO2: < 0.05 to 15 ppb. In these experiments, monoterpene oxidation was dominated by OH oxidation. We found that SO2 induced nucleation and enhanced SOA mass formation. NOx strongly suppressed not only new particle formation but also SOA mass yield. However, in the presence of SO2 which induced a high number concentration of particles after oxidation to H2SO4, the suppression of the mass yield of SOA by NOx was completely or partly compensated for. This indicates that the suppression of SOA yield by NOx was largely due to the suppressed new particle formation, leading to a lack of particle surface for the organics to condense on and thus a significant influence of vapor wall loss on SOA mass yield. By compensating for the suppressing effect on nucleation of NOx, SO2 also compensated for the suppressing effect on SOA yield. Aerosol mass spectrometer data show that increasing NOx enhanced nitrate formation. The majority of the nitrate was organic nitrate (57–77 %, even in low-NOx conditions (<  ∼  1 ppb. Organic nitrate contributed 7–26 % of total organics assuming a molecular weight of 200 g mol−1. SOA from α-pinene photooxidation at high NOx had a generally lower hydrogen to carbon ratio (H ∕ C, compared to low NOx. The NOx dependence of the chemical composition can be attributed to the NOx dependence of the branching ratio of the RO2 loss reactions, leading to a lower fraction of organic hydroperoxides and higher fractions of organic nitrates at high NOx. While NOx suppressed new particle formation and SOA mass formation, SO2 can compensate for such effects, and the

  14. Organic aerosols

    International Nuclear Information System (INIS)

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN

  15. Heterogeneous ice nucleation of viscous secondary organic aerosol produced from ozonolysis of α-pinene

    Science.gov (United States)

    Ignatius, Karoliina; Kristensen, Thomas B.; Järvinen, Emma; Nichman, Leonid; Fuchs, Claudia; Gordon, Hamish; Herenz, Paul; Hoyle, Christopher R.; Duplissy, Jonathan; Garimella, Sarvesh; Dias, Antonio; Frege, Carla; Höppel, Niko; Tröstl, Jasmin; Wagner, Robert; Yan, Chao; Amorim, Antonio; Baltensperger, Urs; Curtius, Joachim; Donahue, Neil M.; Gallagher, Martin W.; Kirkby, Jasper; Kulmala, Markku; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Tomé, Antonio; Virtanen, Annele; Worsnop, Douglas; Stratmann, Frank

    2016-05-01

    There are strong indications that particles containing secondary organic aerosol (SOA) exhibit amorphous solid or semi-solid phase states in the atmosphere. This may facilitate heterogeneous ice nucleation and thus influence cloud properties. However, experimental ice nucleation studies of biogenic SOA are scarce. Here, we investigated the ice nucleation ability of viscous SOA particles. The SOA particles were produced from the ozone initiated oxidation of α-pinene in an aerosol chamber at temperatures in the range from -38 to -10 °C at 5-15 % relative humidity with respect to water to ensure their formation in a highly viscous phase state, i.e. semi-solid or glassy. The ice nucleation ability of SOA particles with different sizes was investigated with a new continuous flow diffusion chamber. For the first time, we observed heterogeneous ice nucleation of viscous α-pinene SOA for ice saturation ratios between 1.3 and 1.4 significantly below the homogeneous freezing limit. The maximum frozen fractions found at temperatures between -39.0 and -37.2 °C ranged from 6 to 20 % and did not depend on the particle surface area. Global modelling of monoterpene SOA particles suggests that viscous biogenic SOA particles are indeed present in regions where cirrus cloud formation takes place. Hence, they could make up an important contribution to the global ice nucleating particle budget.

  16. Effects of diesel engine exhaust origin secondary organic aerosols on novel object recognition ability and maternal behavior in BALB/c mice.

    Science.gov (United States)

    Win-Shwe, Tin-Tin; Fujitani, Yuji; Kyi-Tha-Thu, Chaw; Furuyama, Akiko; Michikawa, Takehiro; Tsukahara, Shinji; Nitta, Hiroshi; Hirano, Seishiro

    2014-10-30

    Epidemiological studies have reported an increased risk of cardiopulmonary and lung cancer mortality associated with increasing exposure to air pollution. Ambient particulate matter consists of primary particles emitted directly from diesel engine vehicles and secondary organic aerosols (SOAs) are formed by oxidative reaction of the ultrafine particle components of diesel exhaust (DE) in the atmosphere. However, little is known about the relationship between exposure to SOA and central nervous system functions. Recently, we have reported that an acute single intranasal instillation of SOA may induce inflammatory response in lung, but not in brain of adult mice. To clarify the whole body exposure effects of SOA on central nervous system functions, we first created inhalation chambers for diesel exhaust origin secondary organic aerosols (DE-SOAs) produced by oxidation of diesel exhaust particles caused by adding ozone. Male BALB/c mice were exposed to clean air (control), DE and DE-SOA in inhalation chambers for one or three months (5 h/day, 5 days/week) and were examined for memory function using a novel object recognition test and for memory function-related gene expressions in the hippocampus by real-time RT-PCR. Moreover, female mice exposed to DE-SOA for one month were mated and maternal behaviors and the related gene expressions in the hypothalamus examined. Novel object recognition ability and N-methyl-D-aspartate (NMDA) receptor expression in the hippocampus were affected in male mice exposed to DE-SOA. Furthermore, a tendency to decrease maternal performance and significantly decreased expression levels of estrogen receptor (ER)-α, and oxytocin receptor were found in DE-SOA exposed dams compared with the control. This is the first study of this type and our results suggest that the constituents of DE-SOA may be associated with memory function and maternal performance based on the impaired gene expressions in the hippocampus and hypothalamus, respectively.

  17. Effects of Diesel Engine Exhaust Origin Secondary Organic Aerosols on Novel Object Recognition Ability and Maternal Behavior in BALB/C Mice

    Directory of Open Access Journals (Sweden)

    Tin-Tin Win-Shwe

    2014-10-01

    Full Text Available Epidemiological studies have reported an increased risk of cardiopulmonary and lung cancer mortality associated with increasing exposure to air pollution. Ambient particulate matter consists of primary particles emitted directly from diesel engine vehicles and secondary organic aerosols (SOAs are formed by oxidative reaction of the ultrafine particle components of diesel exhaust (DE in the atmosphere. However, little is known about the relationship between exposure to SOA and central nervous system functions. Recently, we have reported that an acute single intranasal instillation of SOA may induce inflammatory response in lung, but not in brain of adult mice. To clarify the whole body exposure effects of SOA on central nervous system functions, we first created inhalation chambers for diesel exhaust origin secondary organic aerosols (DE-SOAs produced by oxidation of diesel exhaust particles caused by adding ozone. Male BALB/c mice were exposed to clean air (control, DE and DE-SOA in inhalation chambers for one or three months (5 h/day, 5 days/week and were examined for memory function using a novel object recognition test and for memory function-related gene expressions in the hippocampus by real-time RT-PCR. Moreover, female mice exposed to DE-SOA for one month were mated and maternal behaviors and the related gene expressions in the hypothalamus examined. Novel object recognition ability and N-methyl-D-aspartate (NMDA receptor expression in the hippocampus were affected in male mice exposed to DE-SOA. Furthermore, a tendency to decrease maternal performance and significantly decreased expression levels of estrogen receptor (ER-a, and oxytocin receptor were found in DE-SOA exposed dams compared with the control. This is the first study of this type and our results suggest that the constituents of DE-SOA may be associated with memory function and maternal performance based on the impaired gene expressions in the hippocampus and hypothalamus

  18. Aerosol composition and sources during the Chinese Spring Festival: fireworks, secondary aerosol, and holiday effects

    Science.gov (United States)

    Jiang, Q.; Sun, Y. L.; Wang, Z.; Yin, Y.

    2015-06-01

    Aerosol particles were characterized by an Aerodyne aerosol chemical speciation monitor along with various collocated instruments in Beijing, China, to investigate the role of fireworks (FW) and secondary aerosol in particulate pollution during the Chinese Spring Festival of 2013. Three FW events, exerting significant and short-term impacts on fine particles (PM2.5), were observed on the days of Lunar New Year, Lunar Fifth Day, and Lantern Festival. The FW were shown to have a large impact on non-refractory potassium, chloride, sulfate, and organics in submicron aerosol (PM1), of which FW organics appeared to be emitted mainly in secondary, with its mass spectrum resembling that of secondary organic aerosol (SOA). Pollution events (PEs) and clean periods (CPs) alternated routinely throughout the study. Secondary particulate matter (SPM = SOA + sulfate + nitrate + ammonium) dominated the total PM1 mass on average, accounting for 63-82% during nine PEs in this study. The elevated contributions of secondary species during PEs resulted in a higher mass extinction efficiency of PM1 (6.4 m2 g-1) than during CPs (4.4 m2 g-1). The Chinese Spring Festival also provides a unique opportunity to study the impact of reduced anthropogenic emissions on aerosol chemistry in the city. Primary species showed ubiquitous reductions during the holiday period with the largest reduction being in cooking organic aerosol (OA; 69%), in nitrogen monoxide (54%), and in coal combustion OA (28%). Secondary sulfate, however, remained only slightly changed, and the SOA and the total PM2.5 even slightly increased. Our results have significant implications for controlling local primary source emissions during PEs, e.g., cooking and traffic activities. Controlling these factors might have a limited effect on improving air quality in the megacity of Beijing, due to the dominance of SPM from regional transport in aerosol particle composition.

  19. Secondary Organic Aerosol Formation from Acetylene (C2H2: seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase

    Directory of Open Access Journals (Sweden)

    P. J. Ziemann

    2009-03-01

    Full Text Available The lightest Non Methane HydroCarbon (NMHC, i.e., acetylene (C2H2 is found to form secondary organic aerosol (SOA. Contrary to current belief, the number of carbon atoms, n, for a NMHC to act as SOA precursor is lowered to n=2 here. The OH-radical initiated oxidation of C2H2 forms glyoxal (CHOCHO as the highest yield product, and >99% of the SOA from C2H2 is attributed to CHOCHO. SOA formation from C2H2 and CHOCHO was studied in a photochemical and a dark simulation chamber. Further, the experimental conditions were varied with respect to the chemical composition of the seed aerosols, mild acidification with sulphuric acid (SA, 3organic mass portion of the seed, but increased linearly with liquid water content (LWC of the seed. For fixed LWC, YSOA varied by more than a factor of five. Water soluble organic carbon (WSOC photochemistry in the liquid water associated with internally mixed inorganic/WSOC seed aerosols is found responsible for this seed effect. WSOC photochemistry enhances the SOA source from CHOCHO, while seeds containing amino acids (AA and/or SA showed among the lowest of all YSOA values, and largely suppress the photochemical enhancement on the rate of CHOCHO uptake. Our results give first evidence for the importance of heterogeneous photochemistry of CHOCHO in SOA formation, and identify a potential bias in the currently available YSOA data for other SOA precursor NMHCs. We demonstrate that SOA formation via the aqueous phase is not limited to cloud droplets, but proceeds also in the absence of clouds, i.e., does not stop once a cloud droplet evaporates. Atmospheric models need to be expanded to include SOA formation from WSOC photochemistry of CHOCHO, and possibly other α-dicarbonyls, in aqueous aerosols.

  20. Oxidative potential of secondary organic aerosols produced from photooxidation of different hydrocarbons using outdoor chamber under ambient sunlight

    Science.gov (United States)

    Jiang, Huanhuan; Jang, Myoseon; Sabo-Attwood, Tara; Robinson, Sarah E.

    2016-04-01

    The oxidative potential of various secondary organic aerosols (SOA) was measured using dithiothreitol (DTT) assay to understand how organic aerosols react with cellular materials. SOA was produced via the photooxidation of four different hydrocarbons (toluene, 1,3,5-trimethylbenzene, isoprene and α-pinene) in the presence of NOx using a large outdoor photochemical smog chamber. The DTT consumption rate was normalized by the aerosol mass, which is expressed as DTTmass. Toluene SOA and isoprene SOA yielded higher DTTmass than 1,3,5-trimethylbenzene SOA or α-pinene SOA. In order to discover the correlation between the molecular structure and oxidative potential, the DTT responses of selected model compounds were also measured. Among them, conjugated aldehydes, quinones, and H2O2 showed considerable DTT response. To investigate the correlation between DTT response and cell responses in vitro, the expression of biological markers, i.e. IL-6, IL-8, and HMOX-1 were studied using small airway epithelial cells. Higher cellular expression of IL-8 was observed with toluene SOA exposure compared to 1,3,5-trimethylbenzene SOA exposure, which aligned with the results from DTT assay. Our study also suggests that within the urban atmosphere, the contribution of toluene SOA and isoprene SOA to the oxidative potential of ambient SOA will be more significant than that of α-pinene SOA.

  1. Teachers Assessment of Secondary School Effectiveness in Akwa ...

    African Journals Online (AJOL)

    The aim of the study was to determine how secondary school teachers in Akwa Ibom State of Nigeria assess their school effectiveness in terms of learning and teaching, planning and organizing teaching, guidance and counselling, leadership and ethos. Three hypotheses were raised. The population of study consisted of ...

  2. Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review

    International Nuclear Information System (INIS)

    Wiegand, C.; Pflugmacher, S.

    2005-01-01

    Cyanobacteria are one of the most diverse groups of gram-negative photosynthetic prokaryotes. Many of them are able to produce a wide range of toxic secondary metabolites. These cyanobacterial toxins can be classified in five different groups: hepatotoxins, neurotoxins, cytotoxins, dermatotoxins, and irritant toxins (lipopolysaccharides). Cyanobacterial blooms are hazardous due to this production of secondary metabolites and endotoxins, which could be toxic to animals and plants. Many of the freshwater cyanobacterial blooms include species of the toxigenic genera Microcystis, Anabaena, or Plankthotrix. These compounds differ in mechanisms of uptake, affected organs, and molecular mode of action. In this review, the main focus is the aquatic environment and the effects of these toxins to the organisms living there. Some basic toxic mechanisms will be discussed in comparison to the mammalian system

  3. Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    P. O. Wennberg

    2010-08-01

    Full Text Available Aldehydes are an important class of products from atmospheric oxidation of hydrocarbons. Isoprene (2-methyl-1,3-butadiene, the most abundantly emitted atmospheric non-methane hydrocarbon, produces a significant amount of secondary organic aerosol (SOA via methacrolein (a C4-unsaturated aldehyde under urban high-NOx conditions. Previously, we have identified peroxy methacryloyl nitrate (MPAN as the important intermediate to isoprene and methacrolein SOA in this NOx regime. Here we show that as a result of this chemistry, NO2 enhances SOA formation from methacrolein and two other α, β-unsaturated aldehydes, specifically acrolein and crotonaldehyde, a NOx effect on SOA formation previously unrecognized. Oligoesters of dihydroxycarboxylic acids and hydroxynitrooxycarboxylic acids are observed to increase with increasing NO2/NO ratio, and previous characterizations are confirmed by both online and offline high-resolution mass spectrometry techniques. Molecular structure also determines the amount of SOA formation, as the SOA mass yields are the highest for aldehydes that are α, β-unsaturated and contain an additional methyl group on the α-carbon. Aerosol formation from 2-methyl-3-buten-2-ol (MBO232 is insignificant, even under high-NO2 conditions, as PAN (peroxy acyl nitrate, RC(OOONO2 formation is structurally unfavorable. At atmospherically relevant NO2/NO ratios (3–8, the SOA yields from isoprene high-NOx photooxidation are 3 times greater than previously measured at lower NO2/NO ratios. At sufficiently high NO2 concentrations, in systems of α, β-unsaturated aldehydes, SOA formation from subsequent oxidation of products from acyl peroxyl radicals+NO2 can exceed that from RO2+HO2 reactions under the same inorganic seed conditions, making RO2+NO2 an important channel for SOA formation.

  4. Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation

    Science.gov (United States)

    Chan, A. W. H.; Chan, M. N.; Surratt, J. D.; Chhabra, P. S.; Loza, C. L.; Crounse, J. D.; Yee, L. D.; Flagan, R. C.; Wennberg, P. O.; Seinfeld, J. H.

    2010-08-01

    Aldehydes are an important class of products from atmospheric oxidation of hydrocarbons. Isoprene (2-methyl-1,3-butadiene), the most abundantly emitted atmospheric non-methane hydrocarbon, produces a significant amount of secondary organic aerosol (SOA) via methacrolein (a C4-unsaturated aldehyde) under urban high-NOx conditions. Previously, we have identified peroxy methacryloyl nitrate (MPAN) as the important intermediate to isoprene and methacrolein SOA in this NOx regime. Here we show that as a result of this chemistry, NO2 enhances SOA formation from methacrolein and two other α, β-unsaturated aldehydes, specifically acrolein and crotonaldehyde, a NOx effect on SOA formation previously unrecognized. Oligoesters of dihydroxycarboxylic acids and hydroxynitrooxycarboxylic acids are observed to increase with increasing NO2/NO ratio, and previous characterizations are confirmed by both online and offline high-resolution mass spectrometry techniques. Molecular structure also determines the amount of SOA formation, as the SOA mass yields are the highest for aldehydes that are α, β-unsaturated and contain an additional methyl group on the α-carbon. Aerosol formation from 2-methyl-3-buten-2-ol (MBO232) is insignificant, even under high-NO2 conditions, as PAN (peroxy acyl nitrate, RC(O)OONO2) formation is structurally unfavorable. At atmospherically relevant NO2/NO ratios (3-8), the SOA yields from isoprene high-NOx photooxidation are 3 times greater than previously measured at lower NO2/NO ratios. At sufficiently high NO2 concentrations, in systems of α, β-unsaturated aldehydes, SOA formation from subsequent oxidation of products from acyl peroxyl radicals+NO2 can exceed that from RO2+HO2 reactions under the same inorganic seed conditions, making RO2+NO2 an important channel for SOA formation.

  5. Extraction and applications of cyanotoxins and other cyanobacterial secondary metabolites.

    Science.gov (United States)

    Haque, Fatima; Banayan, Sara; Yee, Josephine; Chiang, Yi Wai

    2017-09-01

    The rapid proliferation of cyanobacteria in bodies of water has caused cyanobacterial blooms, which have become an increasing cause of concern, largely due to the presence of toxic secondary metabolites (or cyanotoxins). Cyanotoxins are the toxins produced by cyanobacteria that may be harmful to surrounding wildlife. They include hepatotoxins, neurotoxins and dermatotoxins, and are classified based on the organs they affect. There are also non-toxic secondary metabolites that include chelators and UV-absorbing compounds. This paper summarizes the optimal techniques for secondary metabolite extraction and the possible useful products that can be obtained from cyanobacteria, with additional focus given to products derived from secondary metabolites. It becomes evident that the potential for their use as biocides, chelators, biofuels, biofertilizers, pharmaceuticals, food and feed, and cosmetics has not yet been comprehensively studied or extensively implemented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Mass yields of secondary organic aerosols from the oxidation of α-pinene and real plant emissions

    Directory of Open Access Journals (Sweden)

    J. N. Smith

    2011-02-01

    Full Text Available Biogenic volatile organic compounds (VOCs are a significant source of global secondary organic aerosol (SOA; however, quantifying their aerosol forming potential remains a challenge. This study presents smog chamber laboratory work, focusing on SOA formation via oxidation of the emissions of two dominant tree species from boreal forest area, Scots pine (Pinus sylvestris L. and Norway spruce (Picea abies, by hydroxyl radical (OH and ozone (O3. Oxidation of α-pinene was also studied as a reference system. Tetramethylethylene (TME and 2-butanol were added to control OH and O3 levels, thereby allowing SOA formation events to be categorized as resulting from either OH-dominated or O3-initiated chemistry. SOA mass yields from α-pinene are consistent with previous studies while the yields from the real plant emissions are generally lower than that from α-pinene, varying from 1.9% at an aerosol mass loading of 0.69 μg m−3 to 17.7% at 26.0 μg m−3. Mass yields from oxidation of real plant emissions are subject to the interactive effects of the molecular structures of plant emissions and their reaction chemistry with OH and O3, which lead to variations in condensable product volatility. SOA formation can be reproduced with a two-product gas-phase partitioning absorption model in spite of differences in the source of oxidant species and product volatility in the real plant emission experiments. Condensable products from OH-dominated chemistry showed a higher volatility than those from O3-initiated systems during aerosol growth stage. Particulate phase products became less volatile via aging process which continued after input gas-phase oxidants had been completely consumed.

  7. RNA STRAND: The RNA Secondary Structure and Statistical Analysis Database

    Directory of Open Access Journals (Sweden)

    Andronescu Mirela

    2008-08-01

    Full Text Available Abstract Background The ability to access, search and analyse secondary structures of a large set of known RNA molecules is very important for deriving improved RNA energy models, for evaluating computational predictions of RNA secondary structures and for a better understanding of RNA folding. Currently there is no database that can easily provide these capabilities for almost all RNA molecules with known secondary structures. Results In this paper we describe RNA STRAND – the RNA secondary STRucture and statistical ANalysis Database, a curated database containing known secondary structures of any type and organism. Our new database provides a wide collection of known RNA secondary structures drawn from public databases, searchable and downloadable in a common format. Comprehensive statistical information on the secondary structures in our database is provided using the RNA Secondary Structure Analyser, a new tool we have developed to analyse RNA secondary structures. The information thus obtained is valuable for understanding to which extent and with which probability certain structural motifs can appear. We outline several ways in which the data provided in RNA STRAND can facilitate research on RNA structure, including the improvement of RNA energy models and evaluation of secondary structure prediction programs. In order to keep up-to-date with new RNA secondary structure experiments, we offer the necessary tools to add solved RNA secondary structures to our database and invite researchers to contribute to RNA STRAND. Conclusion RNA STRAND is a carefully assembled database of trusted RNA secondary structures, with easy on-line tools for searching, analyzing and downloading user selected entries, and is publicly available at http://www.rnasoft.ca/strand.

  8. Laboratory studies of the chemical composition and cloud condensation nuclei (CCN activity of secondary organic aerosol (SOA and oxidized primary organic aerosol (OPOA

    Directory of Open Access Journals (Sweden)

    A. T. Lambe

    2011-09-01

    Full Text Available Secondary organic aerosol (SOA and oxidized primary organic aerosol (OPOA were produced in laboratory experiments from the oxidation of fourteen precursors representing atmospherically relevant biogenic and anthropogenic sources. The SOA and OPOA particles were generated via controlled exposure of precursors to OH radicals and/or O3 in a Potential Aerosol Mass (PAM flow reactor over timescales equivalent to 1–20 days of atmospheric aging. Aerosol mass spectra of SOA and OPOA were measured with an Aerodyne aerosol mass spectrometer (AMS. The fraction of AMS signal at m/z = 43 and m/z = 44 (f43, f44, the hydrogen-to-carbon (H/C ratio, and the oxygen-to-carbon (O/C ratio of the SOA and OPOA were obtained, which are commonly used to characterize the level of oxidation of oxygenated organic aerosol (OOA. The results show that PAM-generated SOA and OPOA can reproduce and extend the observed f44f43 composition beyond that of ambient OOA as measured by an AMS. Van Krevelen diagrams showing H/C ratio as a function of O/C ratio suggest an oxidation mechanism involving formation of carboxylic acids concurrent with fragmentation of carbon-carbon bonds. Cloud condensation nuclei (CCN activity of PAM-generated SOA and OPOA was measured as a function of OH exposure and characterized as a function of O/C ratio. CCN activity of the SOA and OPOA, which was characterized in the form of the hygroscopicity parameter κorg, ranged from 8.4×10−4 to 0.28 over measured O/C ratios ranging from 0.05 to 1.42. This range of κorg and O/C ratio is significantly wider than has been previously obtained. To first order, the κorg-to-O/C relationship is well represented by a linear function of the form κorg = (0.18±0.04 ×O/C + 0.03, suggesting that a simple, semi-empirical parameterization of OOA hygroscopicity and

  9. Particle size distribution, chemical composition and meteorological factor analysis: A case study during wintertime snow cover in Zhengzhou, China

    Science.gov (United States)

    Yu, Fei; Wang, Qun; Yan, Qishe; Jiang, Nan; Wei, Junhua; Wei, Zhiyuan; Yin, Shasha

    2018-04-01

    There was a significant snowfall event in North China from November 23 to 25 in 2015. Considering that most of the bare surface and road dust were covered by snow, the effect of dust and soil could be ignored. Atmospheric particle samples were collected in Zhengzhou, China during a haze event from November 28 to December 4, 2015. To better understand the formation and evolution of this hazy event, the size distribution, particle number, composition of particles and meteorological parameters were measured and analyzed. Results show that the meteorological conditions played an important role in the occurrence and elimination of this event. The hourly fine particle matter (PM2.5) concentration was positively correlated with relative humidity (r = 0.84, p NH4+) on hazy days was higher than that on clean days. The higher NH4+ concentration in this case may be contributed by traffic and coal-power emission. Crustal matter accounted for 2.4% in PM2.5 on hazy days, and it confirmed that the contribution of dust emission source was negligible during this event. The ratios of NO3-/SO42 - ranging from 0.41 to 0.67 indicated the relative importance of stationary combustion. The ratios of OC/EC varied from 2.73 to 3.42 and indicated the presence of secondary organic carbon. Effective haze mitigation should enforce pollutant control measures for primary emission (dust) and secondary aerosol gaseous precursor (NH3, NO2 and SO2).

  10. Palladium-catalysed direct cross-coupling of secondary alkyllithium reagents

    NARCIS (Netherlands)

    Vila, Carlos; Giannerini, Massimo; Hornillos, Valentin; Fananas-Mastral, Martin; Feringa, Ben L.

    2014-01-01

    Palladium-catalysed cross-coupling of secondary C(sp(3)) organometallic reagents has been a long-standing challenge in organic synthesis, due to the problems associated with undesired isomerisation or the formation of reduction products. Based on our recently developed catalytic C-C bond formation

  11. Advance Organizers in Secondary Special Education Resource Classrooms: Effects on Student Engagement Behaviors

    Science.gov (United States)

    King, Lisa

    2013-01-01

    Student engagement and appropriate behaviors are essential for effective instruction in secondary special education classrooms. Research suggests that proactive engagement strategies and interventions can have a greater effect on overall classroom behaviors than negative consequences. A single case experiment measured the effects of…

  12. Probing the rhizosphere to define mineral organic relationships

    Science.gov (United States)

    Schulz, M. S.; Dohnalkova, A.; Stonestrom, D. A.

    2016-12-01

    Soil organic matter (SOM) accumulation and stabilization over time is an important process as soils are a large carbon reservoir in which feedbacks under changing climates are unclear. The association of SOM with poorly crystalline or short-range-ordered secondary minerals has been shown to be important for carbon stabilization. Commonly used soil extraction techniques display correlations of SOM with secondary phases but do not show causation. The fate of root exudates in soils and processes controlling exudate associations with mineral phases are as yet structurally undefined. Sub-micron exploration of in-situ relations provides valuable information on SOM-mineral interactions. Soils of the Santa Cruz (California) marine terrace chronosequence are used to illustrate changes in deep (> 1 m) rhizosphere through time. Cracks and soil ped faces are sites of high root density and organic matter (biofilm or mucilage) deposition. We employ a variety of scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM) techniques for high resolution imaging and elemental analyses of deep rhizosphere and associated carbon mineral interactions. In these coastal prairie soils microscopy reveals secondary clay minerals associated with and possibly forming from organic-rich mucilage that occurs along the aforementioned rooting networks on fracture surfaces. We hypothesize that the production of secondary clays in the rhizosphere is an important mode of C incorporation into secondary minerals.

  13. Model analysis of secondary organic aerosol formation by glyoxal in laboratory studies: the case for photoenhanced chemistry.

    Science.gov (United States)

    Sumner, Andrew J; Woo, Joseph L; McNeill, V Faye

    2014-10-21

    The reactive uptake of glyoxal by atmospheric aerosols is believed to be a significant source of secondary organic aerosol (SOA). Several recent laboratory studies have been performed with the goal of characterizing this process, but questions remain regarding the effects of photochemistry on SOA growth. We applied GAMMA (McNeill et al. Environ. Sci. Technol. 2012, 46, 8075-8081), a photochemical box model with coupled gas-phase and detailed aqueous aerosol-phase chemistry, to simulate aerosol chamber studies of SOA formation by the uptake of glyoxal by wet aerosol under dark and irradiated conditions (Kroll et al. J. Geophys. Res. 2005, 110 (D23), 1-10; Volkamer et al. Atmos. Chem. Phys. 2009, 9, 1907-1928; Galloway et al. Atmos. Chem. Phys. 2009, 9, 3331- 306 3345 and Geophys. Res. Lett. 2011, 38, L17811). We find close agreement between simulated SOA growth and the results of experiments conducted under dark conditions using values of the effective Henry's Law constant of 1.3-5.5 × 10(7) M atm(-1). While irradiated conditions led to the production of some organic acids, organosulfates, and other oxidation products via well-established photochemical mechanisms, these additional product species contribute negligible aerosol mass compared to the dark uptake of glyoxal. Simulated results for irradiated experiments therefore fell short of the reported SOA mass yield by up to 92%. This suggests a significant light-dependent SOA formation mechanism that is not currently accounted for by known bulk photochemistry, consistent with recent laboratory observations of SOA production via photosensitizer chemistry.

  14. Primary gas- and particle-phase emissions and secondary organic aerosol production from gasoline and diesel off-road engines.

    Science.gov (United States)

    Gordon, Timothy D; Tkacik, Daniel S; Presto, Albert A; Zhang, Mang; Jathar, Shantanu H; Nguyen, Ngoc T; Massetti, John; Truong, Tin; Cicero-Fernandez, Pablo; Maddox, Christine; Rieger, Paul; Chattopadhyay, Sulekha; Maldonado, Hector; Maricq, M Matti; Robinson, Allen L

    2013-12-17

    Dilution and smog chamber experiments were performed to characterize the primary emissions and secondary organic aerosol (SOA) formation from gasoline and diesel small off-road engines (SOREs). These engines are high emitters of primary gas- and particle-phase pollutants relative to their fuel consumption. Two- and 4-stroke gasoline SOREs emit much more (up to 3 orders of magnitude more) nonmethane organic gases (NMOGs), primary PM and organic carbon than newer on-road gasoline vehicles (per kg of fuel burned). The primary emissions from a diesel transportation refrigeration unit were similar to those of older, uncontrolled diesel engines used in on-road vehicles (e.g., premodel year 2007 heavy-duty diesel trucks). Two-strokes emitted the largest fractional (and absolute) amount of SOA precursors compared to diesel and 4-stroke gasoline SOREs; however, 35-80% of the NMOG emissions from the engines could not be speciated using traditional gas chromatography or high-performance liquid chromatography. After 3 h of photo-oxidation in a smog chamber, dilute emissions from both 2- and 4-stroke gasoline SOREs produced large amounts of semivolatile SOA. The effective SOA yield (defined as the ratio of SOA mass to estimated mass of reacted precursors) was 2-4% for 2- and 4-stroke SOREs, which is comparable to yields from dilute exhaust from older passenger cars and unburned gasoline. This suggests that much of the SOA production was due to unburned fuel and/or lubrication oil. The total PM contribution of different mobile source categories to the ambient PM burden was calculated by combining primary emission, SOA production and fuel consumption data. Relative to their fuel consumption, SOREs are disproportionately high total PM sources; however, the vastly greater fuel consumption of on-road vehicles renders them (on-road vehicles) the dominant mobile source of ambient PM in the Los Angeles area.

  15. New experiments in organic, fast-atom-bomdardment, and secondary-ion mass spectrometry

    International Nuclear Information System (INIS)

    DiDonato, G.C.

    1987-01-01

    The goal of research presented in this dissertation is the creative use of new ionization and instrumental techniques in mass spectrometry. This goal manifests itself in three areas of mass spectrometry. In the first portion, modern, state-of-the-art instrumentation and new experiments were used to re-examine the mass spectra of transition-metal acetates and acetylacetonates. High resolution, chemical ionization, negative chemical ionization, and extended-mass-range mass spectrometry uncovered a wealth of new gas-phase ionic species. Energy-resolved mass spectrometry/mass spectrometry was applied to the characterization of molecular and fragment ion first-row transition-metal acetylacetonates, and comprises the second portion of the thesis. Studies in fast-atom-bombardment mass spectrometry are the subject of the third portion of the dissertation. Since fast-atom bombardment samples a liquid matrix, absolute and relative abundances of sputtered secondary ions are influenced by solution chemistry. The design and construction of an imaging secondary-ion mass spectrometer is the subject of the final portion of the thesis. This instrument provides for direct mass-spectrometric analysis of thin-layer and paper chromatograms and electrophoretograms

  16. Modeling organic aerosols in a megacity: potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    A. Hodzic

    2010-06-01

    Full Text Available It has been established that observed local and regional levels of secondary organic aerosols (SOA in polluted areas cannot be explained by the oxidation and partitioning of anthropogenic and biogenic VOC precursors, at least using current mechanisms and parameterizations. In this study, the 3-D regional air quality model CHIMERE is applied to estimate the potential contribution to SOA formation of recently identified semi-volatile and intermediate volatility organic precursors (S/IVOC in and around Mexico City for the MILAGRO field experiment during March 2006. The model has been updated to include explicitly the volatility distribution of primary organic aerosols (POA, their gas-particle partitioning and the gas-phase oxidation of the vapors. Two recently proposed parameterizations, those of Robinson et al. (2007 ("ROB" and Grieshop et al. (2009 ("GRI" are compared and evaluated against surface and aircraft measurements. The 3-D model results are assessed by comparing with the concentrations of OA components from Positive Matrix Factorization of Aerosol Mass Spectrometer (AMS data, and for the first time also with oxygen-to-carbon ratios derived from high-resolution AMS measurements. The results show a substantial enhancement in predicted SOA concentrations (2–4 times with respect to the previously published base case without S/IVOCs (Hodzic et al., 2009, both within and downwind of the city leading to much reduced discrepancies with the total OA measurements. Model improvements in OA predictions are associated with the better-captured SOA magnitude and diurnal variability. The predicted production from anthropogenic and biomass burning S/IVOC represents 40–60% of the total measured SOA at the surface during the day and is somewhat larger than that from commonly measured aromatic VOCs, especially at the T1 site at the edge of the city. The SOA production from the continued multi-generation S/IVOC oxidation products continues actively

  17. The secondary school teaching in Spain

    International Nuclear Information System (INIS)

    Pascualena, M.T.

    1994-01-01

    The Spanish educational system is to be completely re-shaped in 1995 (for the secondary grade level); the important work involved has clearly shown the information lack concerning energy, and especially nuclear energy. Energy instruction should be provided in a new way, spread on several years in various domains (natural science, physics, etc.). Forum Atomico Espanol, a nuclear energy organization, has provided information with various tools (books, conferences, etc.) for teacher's and pupil's training

  18. Identification and imaging of modern paints using Secondary Ion Mass Spectrometry with MeV ions

    DEFF Research Database (Denmark)

    Bogdanović Radović, Iva; Siketić, Zdravko; Jembrih-Simbürger, Dubravka

    2017-01-01

    Secondary Ion Mass Spectrometry using MeV ion excitation was applied to analyse modern paint materials containing synthetic organic pigments and binders. It was demonstrated that synthetic organic pigments and binder components with molecular masses in the m/z range from 1 to 1200 could be identi......Secondary Ion Mass Spectrometry using MeV ion excitation was applied to analyse modern paint materials containing synthetic organic pigments and binders. It was demonstrated that synthetic organic pigments and binder components with molecular masses in the m/z range from 1 to 1200 could...... be identified in different paint samples with a high efficiency and in a single measurement. Different ways of mounting of mostly insulating paint samples were tested prior to the analysis in order to achieve the highest possible yield of pigment main molecular ions. As Time-of-Flight mass spectrometer for Me......V Secondary Ion Mass Spectrometry is attached to the heavy ion microprobe, molecular imaging on cross-sections of small paint fragments was performed using focused ions. Due to the fact that molecules are extracted from the uppermost layer of the sample and to avoid surface contamination, the paint samples...

  19. Performance of Hybrid Photocatalytic-Ceramic Membrane System for the Treatment of Secondary Effluent.

    Science.gov (United States)

    Song, Lili; Zhu, Bo; Gray, Stephen; Duke, Mikel; Muthukumaran, Shobha

    2017-03-28

    Evaluation of an advanced wastewater treatment system that combines photocatalysis with ceramic membrane filtration for the treatment of secondary effluent was undertaken. The results showed that, after photocatalysis and ceramic membrane filtration, the removal of dissolved organic carbon and UV 254 was 60% and 54%, respectively, at a concentration of 4 g/L of TiO₂. Dissolved organic matter (DOM) present in the secondary effluent was characterised with a liquid chromatography-organic carbon detector (LC-OCD) technique. The results showed low removal of humics, building blocks, the other oxidation by-products and no removal of biopolymers after TiO₂/UV photocatalytic treatment. This suggested that the radical non-selective oxidation mechanisms of TiO₂/UV process resulted in secondary effluent in which all of the DOM fractions were present. However, the hybrid system was effective for removing biopolymers with the exception of low molecular weight (LMW) compounds acids, which accumulated from the beginning of the reaction. In addition, monitoring of the DOM fractions with LC-OCD analysis demonstrated that the reduction of the effluent aromaticity was not firmly correlated with the removal of humic substances for the combined processes.

  20. Increases to Biogenic Secondary Organic Aerosols from SO2 and NOx in the Southeastern US

    Science.gov (United States)

    Russell, L. M.; Liu, J.; Ruggeri, G.; Takahama, S.; Claflin, M. S.; Ziemann, P. J.; Lee, A.; Murphy, B.; Pye, H. O. T.; Ng, N. L.; McKinney, K. A.; Surratt, J. D.

    2017-12-01

    During the 2013 Southern Oxidant and Aerosol Study, Fourier Transform Infrared Spectroscopy (FTIR) and Aerosol Mass Spectrometer (AMS) measurements of submicron mass were collected at Look Rock, Tennessee, and Centreville, Alabama. The low NOx, low wind, little rain, and increased daytime isoprene emissions led to multi-day stagnation events at Look Rock that provided clear evidence of particle-phase sulfate enhancing biogenic secondary organic aerosol (bSOA) by selective uptake. Organic mass (OM) sources were apportioned as 42% "vehicle-related" and 54% bSOA, with the latter including "sulfate-related bSOA" that correlated to sulfate (r=0.72) and "nitrate-related bSOA" that correlated to nitrate (r=0.65). Single-particle mass spectra showed three composition types that corresponded to the mass-based factors with spectra cosine similarity of 0.93 and time series correlations of r>0.4. The vehicle-related OM with m/z 44 was correlated to black carbon, "sulfate-related bSOA" was on particles with high sulfate, and "nitrate-related bSOA" was on all particles. The similarity of the m/z spectra (cosine similarity=0.97) and the time series correlation (r=0.80) of the "sulfate-related bSOA" to the sulfate-containing single-particle type provide evidence for particle composition contributing to selective uptake of isoprene oxidation products onto particles that contain sulfate from power plants. Since Look Rock had much less NOx than Centreville, comparing the bSOA at the two sites provides an evaluation of the role of NOx for bSOA. CO and submicron sulfate and OM concentrations were 15-60 % higher at Centreville than at Look Rock but their time series had moderate correlations of r= 0.51, 0.54, and 0.47, respectively. However, NOx had no correlation (r=0.08) between the two sites. OM correlated with the higher NOx levels at Centreville but with O3 at Look Rock. OM sources identified by Positive Matrix Factorization had three very similar factors at both sites from FTIR

  1. Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia

    Science.gov (United States)

    Palm, Brett B.; de Sá, Suzane S.; Day, Douglas A.; Campuzano-Jost, Pedro; Hu, Weiwei; Seco, Roger; Sjostedt, Steven J.; Park, Jeong-Hoo; Guenther, Alex B.; Kim, Saewung; Brito, Joel; Wurm, Florian; Artaxo, Paulo; Thalman, Ryan; Wang, Jian; Yee, Lindsay D.; Wernis, Rebecca; Isaacman-VanWertz, Gabriel; Goldstein, Allen H.; Liu, Yingjun; Springston, Stephen R.; Souza, Rodrigo; Newburn, Matt K.; Lizabeth Alexander, M.; Martin, Scot T.; Jimenez, Jose L.

    2018-01-01

    Secondary organic aerosol (SOA) formation from ambient air was studied using an oxidation flow reactor (OFR) coupled to an aerosol mass spectrometer (AMS) during both the wet and dry seasons at the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) field campaign. Measurements were made at two sites downwind of the city of Manaus, Brazil. Ambient air was oxidized in the OFR using variable concentrations of either OH or O3, over ranges from hours to days (O3) or weeks (OH) of equivalent atmospheric aging. The amount of SOA formed in the OFR ranged from 0 to as much as 10 µg m-3, depending on the amount of SOA precursor gases in ambient air. Typically, more SOA was formed during nighttime than daytime, and more from OH than from O3 oxidation. SOA yields of individual organic precursors under OFR conditions were measured by standard addition into ambient air and were confirmed to be consistent with published environmental chamber-derived SOA yields. Positive matrix factorization of organic aerosol (OA) after OH oxidation showed formation of typical oxidized OA factors and a loss of primary OA factors as OH aging increased. After OH oxidation in the OFR, the hygroscopicity of the OA increased with increasing elemental O : C up to O : C ˜ 1.0, and then decreased as O : C increased further. Possible reasons for this decrease are discussed. The measured SOA formation was compared to the amount predicted from the concentrations of measured ambient SOA precursors and their SOA yields. While measured ambient precursors were sufficient to explain the amount of SOA formed from O3, they could only explain 10-50 % of the SOA formed from OH. This is consistent with previous OFR studies, which showed that typically unmeasured semivolatile and intermediate volatility gases (that tend to lack C = C bonds) are present in ambient air and can explain such additional SOA formation. To investigate the sources of the unmeasured SOA-forming gases during this campaign

  2. Empirical evaluation of metal deposition for the analysis of organic compounds with static secondary ion mass spectrometry (S-SIMS)

    International Nuclear Information System (INIS)

    Mondt, R. de; Adriaensen, L.; Vangaever, F.; Lenaerts, J.; Vaeck, L. van; Gijbels, R.

    2006-01-01

    Metal-assisted (MetA) SIMS using the deposition of a thin Au or Ag layer on non-conducting samples prior to analysis has been advocated as a means to improve the secondary ion (S.I.) yields of organic analytes. This study focuses on the influence of time and temperature on the yield enhancement in MetA-SIMS using thick layers of poly(vinylbutyral-co-vinylalcohol-co-vinylacetate) (PVB) containing dihydroxybenzophenone (DHBPh) or a cationic carbocyanine dye (CBC) and spin-coated layers of the cationic dye on Si. Pristine samples as well as Au- and Ag-coated ones were kept between -8 deg. C and 80 deg. C and analysed with S-SIMS at intervals of a few days over a period of 1 month. The yield enhancement was found to depend strongly on the kind of evaporated metal, the storage temperature and time between coating and analysis

  3. [Secondary hypertension].

    Science.gov (United States)

    Yoshida, Yuichi; Shibata, Hirotaka

    2015-11-01

    Hypertension is a common disease and a crucial predisposing factor of cardiovascular diseases. Approximately 10% of hypertensive patients are secondary hypertension, a pathogenetic factor of which can be identified. Secondary hypertension consists of endocrine, renal, and other diseases. Primary aldosteronism, Cushing's syndrome, pheochromocytoma, hyperthyroidism, and hypothyroidism result in endocrine hypertension. Renal parenchymal hypertension and renovascular hypertension result in renal hypertension. Other diseases such as obstructive sleep apnea syndrome are also very prevalent in secondary hypertension. It is very crucial to find and treat secondary hypertension at earlier stages since most secondary hypertension is curable or can be dramatically improved by specific treatment. One should keep in mind that screening of secondary hypertension should be done at least once in a daily clinical practice.

  4. Secondary neutron doses received by patients of different ages during intracranial proton therapy treatments

    International Nuclear Information System (INIS)

    Sayah, R.

    2012-01-01

    Proton therapy is an advanced radiation therapy technique that allows delivering high doses to the tumor while saving the healthy surrounding tissues due to the protons' ballistic properties. However, secondary particles, especially neutrons, are created during protons' nuclear reactions in the beam-line and the treatment room components, as well as inside the patient. Those secondary neutrons lead to unwanted dose deposition to the healthy tissues located at distance from the target, which may increase the secondary cancer risks to the patients, especially the pediatric ones. The aim of this work was to calculate the neutron secondary doses received by patients of different ages treated at the Institut Curie-centre de Protontherapie d'Orsay (ICPO) for intracranial tumors, using a 178 MeV proton beam. The treatments are undertaken at the new ICPO room equipped with an IBA gantry. The treatment room and the beam-line components, as well as the proton source were modeled using the Monte Carlo code MCNPX. The obtained model was then validated by a series of comparisons between model calculations and experimental measurements. The comparisons concerned: a) depth and lateral proton dose distributions in a water phantom, b) neutron spectrometry at one position in the treatment room, c) ambient dose equivalents at different positions in the treatment room and d) secondary absorbed doses inside a physical anthropomorphic phantom. A general good agreement was found between calculations and measurements, thus our model was considered as validated. The University of Florida hybrid voxelized phantoms of different ages were introduced into the MCNPX validated model, and secondary neutron doses were calculated to many of these phantoms' organs. The calculated doses were found to decrease as the organ's distance to the treatment field increases and as the patient's age increases. The secondary doses received by a one year-old patient may be two times higher than the doses

  5. The role of organizers in patterning the nervous system.

    Science.gov (United States)

    Kiecker, Clemens; Lumsden, Andrew

    2012-01-01

    The foundation for the anatomical and functional complexity of the vertebrate central nervous system is laid during embryogenesis. After Spemann's organizer and its derivatives have endowed the neural plate with a coarse pattern along its anteroposterior and mediolateral axes, this basis is progressively refined by the activity of secondary organizers within the neuroepithelium that function by releasing diffusible signaling factors. Dorsoventral patterning is mediated by two organizer regions that extend along the dorsal and ventral midlines of the entire neuraxis, whereas anteroposterior patterning is controlled by several discrete organizers. Here we review how these secondary organizers are established and how they exert their signaling functions. Organizer signals come from a surprisingly limited set of signaling factor families, indicating that the competence of target cells to respond to those signals plays an important part in neural patterning.

  6. Investigation of the correlation between odd oxygen and secondary organic aerosol in Mexico City and Houston

    Directory of Open Access Journals (Sweden)

    E. C. Wood

    2010-09-01

    Full Text Available Many recent models underpredict secondary organic aerosol (SOA particulate matter (PM concentrations in polluted regions, indicating serious deficiencies in the models' chemical mechanisms and/or missing SOA precursors. Since tropospheric photochemical ozone production is much better understood, we investigate the correlation of odd-oxygen ([Ox]≡[O3]+[NO2] and the oxygenated component of organic aerosol (OOA, which is interpreted as a surrogate for SOA. OOA and Ox measured in Mexico City in 2006 and Houston in 2000 were well correlated in air masses where both species were formed on similar timescales (less than 8 h and not well correlated when their formation timescales or location differed greatly. When correlated, the ratio of these two species ranged from 30 μg m−3/ppm (STP in Houston during time periods affected by large petrochemical plant emissions to as high as 160 μg m−3/ppm in Mexico City, where typical values were near 120 μg m−3/ppm. On several days in Mexico City, the [OOA]/[Ox] ratio decreased by a factor of ~2 between 08:00 and 13:00 local time. This decrease is only partially attributable to evaporation of the least oxidized and most volatile components of OOA; differences in the diurnal emission trends and timescales for photochemical processing of SOA precursors compared to ozone precursors also likely contribute to the observed decrease. The extent of OOA oxidation increased with photochemical aging. Calculations of the ratio of the SOA formation rate to the Ox production rate using ambient VOC measurements and traditional laboratory SOA yields are lower than the observed [OOA]/[Ox] ratios by factors of 5 to 15, consistent with several other models' underestimates of SOA. Calculations of this ratio using emission factors for organic compounds from gasoline and diesel exhaust do not reproduce the observed

  7. Morphology, Composition, and Mixing State of Individual Aerosol Particles in Northeast China during Wintertime

    Directory of Open Access Journals (Sweden)

    Liang Xu

    2017-02-01

    Full Text Available Northeast China is located in a high latitude area of the world and undergoes a cold season that lasts six months each year. Recently, regional haze episodes with high concentrations of fine particles (PM2.5 have frequently been occurring in Northeast China during the heating period, but little information has been available. Aerosol particles were collected in winter at a site in a suburban county town (T1 and a site in a background rural area (T2. Morphology, size, elemental composition, and mixing state of individual aerosol particles were characterized by transmission electron microscopy (TEM. Aerosol particles were mainly composed of organic matter (OM and S-rich and certain amounts of soot and K-rich. OM represented the most abundant particles, accounting for 60.7% and 53.5% at the T1 and T2 sites, respectively. Abundant spherical OM particles were likely emitted directly from coal-burning stoves. Soot decreased from 16.9% at the T1 site to 4.6% at the T2 site and sulfate particles decrease from 35.9% at the T2 site to 15.7% at the T1 site, suggesting that long-range transport air masses experienced more aging processes and produced more secondary particles. Based on our investigations, we proposed that emissions from coal-burning stoves in most rural areas of the west part of Northeast China can induce regional haze episodes.

  8. CCN activity and droplet growth kinetics of fresh and aged monoterpene secondary organic aerosol

    Directory of Open Access Journals (Sweden)

    G. J. Engelhart

    2008-07-01

    Full Text Available The ability of secondary organic aerosol (SOA produced from the ozonolysis of α-pinene and monoterpene mixtures (α-pinene, β-pinene, limonene and 3-carene to become cloud droplets was investigated. A static CCN counter and a Scanning Mobility CCN Analyser (a Scanning Mobility Particle Sizer coupled with a Continuous Flow counter were used for the CCN measurements. Consistent with previous studies monoterpene SOA is quite active and would likely be a good source of cloud condensation nuclei (CCN in the atmosphere. A decrease in CCN activation diameter for α-pinene SOA of approximately 3 nm hr−1 was observed as the aerosol continued to react with oxidants. Hydroxyl radicals further oxidize the SOA particles thereby enhancing the particle CCN activity with time. The initial concentrations of ozone and monoterpene precursor (for concentrations lower than 40 ppb do not appear to affect the activity of the resulting SOA. Köhler Theory Analysis (KTA is used to infer the molar mass of the SOA sampled online and offline from atomized filter samples. The estimated average molar mass of online SOA was determined to be 180±55 g mol−1 (consistent with existing SOA speciation studies assuming complete solubility. KTA suggests that the aged aerosol (both from α-pinene and the mixed monoterpene oxidation is primarily water-soluble (around 65%. CCN activity measurements of the SOA mixed with (NH42SO4 suggest that the organic can depress surface tension by as much as 10 N m−1 (with respect to pure water. The droplet growth kinetics of SOA samples are similar to (NH42SO4, except at low supersaturation, where SOA tends to grow more slowly. The CCN activation diameter of α-pinene and mixed monoterpene SOA can be modelled to within 10–15% of experiments by a simple implementation of Köhler theory, assuming complete dissolution of the particles, no

  9. Increased cloud activation potential of secondary organic aerosol for atmospheric mass loadings

    Directory of Open Access Journals (Sweden)

    S. M. King

    2009-05-01

    Full Text Available The effect of organic particle mass loading from 1 to ≥100 μg m−3 on the cloud condensation nuclei (CCN properties of mixed organic-sulfate particles was investigated in the Harvard Environmental Chamber. Mixed particles were produced by the condensation of organic molecules onto ammonium sulfate particles during the dark ozonolysis of α-pinene. A continuous-flow mode of the chamber provided stable conditions over long time periods, allowing for signal integration and hence increased measurement precision at low organic mass loadings representative of atmospheric conditions. CCN activity was measured at eight mass loadings for 80- and 100-nm particles grown on 50-nm sulfate seeds. A two-component (organic/sulfate Köhler model, which included the particle heterogeneity arising from DMA size selection and from organic volume fraction for the selected 80- and 100-nm particles, was used to predict CCN activity. For organic mass loadings of 2.9 μg m−3 and greater, the observed activation curves were well predicted using a single set of physicochemical parameters for the organic component. For mass loadings of 1.74 μg m−3 and less, the observed CCN activity increased beyond predicted values using the same parameters, implying changed physicochemical properties of the organic component. A sensitivity analysis suggests that a drop in surface tension must be invoked to explain quantitatively the CCN observations at low SOA particle mass loadings. Other factors, such as decreased molecular weight, increased density, or increased van't Hoff factor, can contribute to the explanation but are quantitatively insufficient as the full explanation.

  10. Characteristics and generation of secondary jets and secondary gigantic jets

    Science.gov (United States)

    Lee, Li-Jou; Huang, Sung-Ming; Chou, Jung-Kung; Kuo, Cheng-Ling; Chen, Alfred B.; Su, Han-Tzong; Hsu, Rue-Rou; Frey, Harald U.; Takahashi, Yukihiro; Lee, Lou-Chuang

    2012-06-01

    Secondary transient luminous events (TLEs) recorded by the ISUAL-FORMOSAT2 mission can either be secondary jets or secondary gigantic jets (GJs), depending on their terminal altitudes. The secondary jets emerge from the cloud top beneath the preceding sprites and extend upward to the base of the sprites at ˜50 km. The secondary jets likely are negative electric discharges with vertically straight luminous columns, morphologically resembling the trailing jet of the type-I GJs. The number of luminous columns in a secondary jet seems to be affected by the size of the effective capacitor plate formed near the base of the preceding sprites and the charge distribution left behind by the sprite-inducing positive cloud-to-ground discharges. The secondary GJs originate from the cloud top under the shielding area of the preceding sprites, and develop upward to reach the lower ionosphere at ˜90 km. The observed morphology of the secondary GJs can either be the curvy shifted secondary GJs extending outside the region occupied by the preceding sprites or the straight pop-through secondary GJs developing through the center of the preceding circular sprites. A key factor in determining the terminal height of the secondary TLEs appears to be the local ionosphere boundary height that established by the preceding sprites. The abundance and the distribution of the negative charge in the thundercloud following the sprite-inducing positive cloud-to-ground discharges may play important role in the generation of the secondary TLEs.

  11. Influence of aerosol acidity on the chemical composition of secondary organic aerosol from β-caryophyllene

    Directory of Open Access Journals (Sweden)

    E. M. Knipping

    2011-02-01

    Full Text Available The secondary organic aerosol (SOA yield of β-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of β-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI-TOFMS. A number of first-, second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increased acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. To our knowledge, this is the first detection of organosulfates and nitrated organosulfates derived from a sesquiterpene. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three β-caryophyllene products (i.e., β-nocaryophyllon aldehyde, β-hydroxynocaryophyllon aldehyde, and β-dihydroxynocaryophyllon aldehyde are suggested as chemical tracers for β-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS.

  12. Excitation-emission spectra and fluorescence quantum yields for fresh and aged biogenic secondary organic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Ji; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey A.

    2013-05-10

    Certain biogenic secondary organic aerosols (SOA) become absorbent and fluorescent when exposed to reduced nitrogen compounds such as ammonia, amines and their salts. Fluorescent SOA may potentially be mistaken for biological particles by detection methods relying on fluorescence. This work quantifies the spectral distribution and effective quantum yields of fluorescence of SOA generated from two monoterpenes, limonene and a-pinene, and two different oxidants, ozone (O3) and hydroxyl radical (OH). The SOA was generated in a smog chamber, collected on substrates, and aged by exposure to ~100 ppb ammonia vapor in air saturated with water vapor. Absorption and excitation-emission matrix (EEM) spectra of aqueous extracts of aged and control SOA samples were measured, and the effective absorption coefficients and fluorescence quantum yields (~0.005 for 349 nm excitation) were determined from the data. The strongest fluorescence for the limonene-derived SOA was observed for excitation = 420+- 50 nm and emission = 475 +- 38 nm. The window of the strongest fluorescence shifted to excitation = 320 +- 25 nm and emission = 425 +- 38 nm for the a-pinene-derived SOA. Both regions overlap with the excitation-emission matrix (EEM) spectra of some of the fluorophores found in primary biological aerosols. Our study suggests that, despite the low quantum yield, the aged SOA particles should have sufficient fluorescence intensities to interfere with the fluorescence detection of common bioaerosols.

  13. Gas-phase products and secondary organic aerosol formation from the ozonolysis and photooxidation of myrcene

    Science.gov (United States)

    Böge, Olaf; Mutzel, Anke; Iinuma, Yoshiteru; Yli-Pirilä, Pasi; Kahnt, Ariane; Joutsensaari, Jorma; Herrmann, Hartmut

    2013-11-01

    In this study, the ozone and OH-radical reactions of myrcene were investigated in an aerosol chamber (at 292-295 K and 50% relative humidity) to examine the gas-phase oxidation products and secondary organic aerosol (SOA) formation. The ozone reaction studies were performed in the presence and absence of CO, which serves as an OH radical scavenger. In the photooxidation experiments OH radicals were generated by photolysis of methyl nitrite. The ozonolysis of myrcene in the presence of CO resulted in a substantial yield of 4-vinyl-4-pentenal (55.3%), measured as m/z 111 plus m/z 93 using proton transfer reaction-mass spectrometry (PTR-MS) and confirmed unambiguously as C7H10O by denuder measurements and HPLC/ESI-TOFMS analysis of its 2,4-dinitrophenylhydrazine (DNPH) derivative. Additionally, the formation of two different organic dicarbonyls with m/z 113 and a molecular formula of C6H8O2 were observed (2.1%). The yields of these dicarbonyls were higher in the ozonolysis experiments without an OH scavenger (5.4%) and even higher (13.8%) in the myrcene OH radical reaction. The formation of hydroxyacetone as a direct product of the myrcene reaction with ozone with a molar yield of 17.6% was also observed. The particle size distribution and volume concentrations were monitored and facilitated the calculation of SOA yields, which ranged from 0 to 0.01 (ozonolysis in the presence of CO) to 0.39 (myrcene OH radical reaction). Terpenylic acid was found in the SOA samples collected from the ozonolysis of myrcene in the absence of an OH scavenger and the OH radical-initiated reaction of myrcene but not in samples collected from the ozonolysis in the presence of CO as an OH radical scavenger, suggesting that terpenylic acid formation involves the reaction of myrcene with an OH radical. A reaction mechanism describing the formation of terpenylic acid is proposed.

  14. Beyond Academic Tracking: Using Cluster Analysis and Self-Organizing Maps to Investigate Secondary Students' Chemistry Self-Concept

    Science.gov (United States)

    Nielsen, Sara E.; Yezierski, Ellen J.

    2016-01-01

    Academic tracking, placing students in different classes based on past performance, is a common feature of the American secondary school system. A longitudinal study of secondary students' chemistry self-concept scores was conducted, and one feature of the study was the presence of academic tracking. Though academic tracking is one way to group…

  15. Photochemical age of air pollutants, ozone, and secondary organic aerosol in transboundary air observed on Fukue Island, Nagasaki, Japan

    Directory of Open Access Journals (Sweden)

    S. Irei

    2016-04-01

    Full Text Available To better understand the secondary air pollution in transboundary air over westernmost Japan, ground-based field measurements of the chemical composition of fine particulate matter ( ≤  1 µm, mixing ratios of trace gas species (CO, O3, NOx, NOy, i-pentane, toluene, and ethyne, and meteorological elements were conducted with a suite of instrumentation. The CO mixing ratio dependence on wind direction showed that there was no significant influence from primary emission sources near the monitoring site, indicating long- and/or mid-range transport of the measured chemical species. Despite the considerably different atmospheric lifetimes of NOy and CO, these mixing ratios were correlated (r2 = 0.67. The photochemical age of the pollutants, t[OH] (the reaction time  ×  the mean concentration of OH radical during the atmospheric transport, was calculated from both the NOx ∕ NOy concentration ratio (NOx ∕ NOy clock and the toluene ∕ ethyne concentration ratio (hydrocarbon clock. It was found that the toluene / ethyne concentration ratio was significantly influenced by dilution with background air containing 0.16 ppbv of ethyne, causing significant bias in the estimation of t[OH]. In contrast, the influence of the reaction of NOx with O3, a potentially biasing reaction channel on [NOx] / [NOy], was small. The t[OH] values obtained with the NOx ∕ NOy clock ranged from 2.9  ×  105 to 1.3  ×  108 h molecule cm−3 and were compared with the fractional contribution of the m∕z 44 signal to the total signal in the organic aerosol mass spectra (f44, a quantitative oxidation indicator of carboxylic acids and O3 mixing ratio. The comparison of t[OH] with f44 showed evidence for a systematic increase of f44 as t[OH] increased, an indication of secondary organic aerosol (SOA formation. To a first approximation, the f44 increase rate was (1.05 ± 0.03  ×  10−9

  16. Adolescent low back pain among secondary school students in ...

    African Journals Online (AJOL)

    Adolescent low back pain among secondary school students in Ibadan, Nigeria. BOA Adegoke, AC Odole, AA Adeyinka. Abstract. Background: Adolescent low back pain (ALBP) can be considered a signal or precursor of a serious organic disease or telltale sign of future incidence of low back pain in adulthood. Published ...

  17. A Role for 2-Methyl Pyrrole in the Browning of 4-Oxopentanal and Limonene Secondary Organic Aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Aiona, Paige K. [Department; Lee, Hyun Ji [Department; Lin, Peng [Department; Heller, Forrest [Environmental; Laskin, Alexander [Department; Laskin, Julia [Department; Nizkorodov, Sergey A. [Department

    2017-09-15

    “Brown Carbon” (BrC) is a type of organic particulate matter that absorbs visible and near ultraviolet radiation. Reactions of carbonyls in secondary organic aerosol (SOA) produced from limonene with ammonia (NH3) or ammonium sulfate (AS) are known to produce BrC with a distinctive absorption band at 500 nm. Although the general mechanism for this process has been proposed in previous studies, the specific molecular structures of the light-absorbing species remain unclear. This study examined the browning processes occurring in aqueous solutions of AS and 4-oxopentanal (4-OPA), which has a 1,4-dicarbonyl structural motif present in many limonene SOA compounds. The reaction of 4-OPA with AS in a bulk aqueous solution produces a 2-methyl pyrrole (2-MP) intermediate, which is not a strong light absorber by itself, but can react further with carbonyl compounds leading to the eventual formation of BrC chromophores. The direct involvement of 2-MP in the browning process was demonstrated by reacting 2-MP with 4-OPA and with limonene SOA, both of which produced BrC chromophores with distinctive absorption bands at visible wavelengths. The formation of BrC in reaction of 4-OPA with AS and ammonium nitrate (AN) was found to be accelerated by evaporation of the solution suggesting an important role of the dehydration processes in BrC formation from 1,4- dicarbonyls. 4-OPA was also found to produce BrC in aqueous reactions with a broad spectrum of amino acids and amines. The results suggest that 4-OPA may be the smallest atmospherically relevant compound capable of browning by the same mechanism as limonene SOA.

  18. Isomerization of Second-Generation Isoprene Peroxy Radicals: Epoxide Formation and Implications for Secondary Organic Aerosol Yields

    Energy Technology Data Exchange (ETDEWEB)

    D’Ambro, Emma L.; Møller, Kristian H.; Lopez-Hilfiker, Felipe D.; Schobesberger, Siegfried; Liu, Jiumeng; Shilling, John E.; Lee, Ben Hwan; Kjaergaard, Henrik G.; Thornton, Joel A.

    2017-04-11

    We report chamber measurements of secondary organic aerosol (SOA) formation from isoprene photochemical oxidation, where radical concentrations were systematically varied and the molecular composition of semi to low volatility gases and SOA were measured online. Using a detailed chemical mechanism, we find that to explain the behavior of low volatility products and SOA mass yields relative to input H2O2 concentrations, the second generation dihydroxy hydroperoxy peroxy radical (C5H11O6•) must undergo an intra-molecular H-shift with a net forward rate constant of order 0.1 s-1 or higher, consistent with quantum chemical calculations which suggest a net forward rate constant of 0.3-0.9 s-1. Furthermore, these calculations suggest the dominant product of this isomerization is a dihydroxy hydroperoxy epoxide (C5H10O5) which is expected to have a saturation vapor pressure ~2 orders of magnitude higher than the dihydroxy dihydroperoxide, ISOP(OOH)2 (C5H12O6), a major product of the peroxy radical reacting with HO2. These results provide strong constraints on the likely volatility distribution of isoprene oxidation products under atmospheric conditions and thus on the importance of non-reactive gas-particle partitioning of isoprene oxidation products as an SOA source.

  19. Cerebral hydatid disease: Is it primary or secondary?

    Directory of Open Access Journals (Sweden)

    Onteddu Joji Reddy

    2014-01-01

    Full Text Available Hydatid disease is a serious medical problem in Mediterranean and particularly among sheep farming countries, caused by larval stages of dog tapeworms belonging to the genus Echinococcus. Hydatid cysts may affect every organ in the human body; however, multiple organ involvement (spleen, adrenal gland, heart, pericardium, intravascular growth of hydatids and brain without affecting the two major filters in the body liver and the lung was very rare. In this case, myocardial hydatid cyst is considered as primary and involvement of other organs such as brain, spleen, adrenal glands, and vascular involvement are considered as secondary involvement due to the rupture of hydatid in heart. Rarity of this atypical presentation of hydatid disease leads to this case report.

  20. Secondary organic aerosol formation through fog processing of VOCs

    Science.gov (United States)

    Herckes, P.; Hutchings, J. W.

    2010-07-01

    Volatile Organic Compounds (VOCs) including benzene, toluene, ethylbenzene and xylenes (BTEX) have been determined in highly concentrated amounts (>1 ug/L) in intercepted clouds in northern Arizona (USA). These VOCs are found in concentrations much higher than predicted by partitioning alone. The reactivity of BTEX in the fog/cloud aqueous phase was investigated through laboratory studies. BTEX species showed fast degradation in the aqueous phase in the presence of peroxides and light. Observed half-lives ranged from three and six hours, substantially shorter than the respective gas phase half-lives (several days). The observed reaction rates were on the order of 1 ppb/min but decreased substantially with increasing concentrations of organic matter (TOC). The products of BTEX oxidation reactions were analyzed using HPLC-UV and LCMS. The first generation of products identified included phenol and cresols which correspond to the hydroxyl-addition reaction to benzene and toluene. Upon investigating of multi-generational products, smaller, less volatile species are predominant although a large variety of products is found. Most reaction products have substantially lower vapor pressure and will remain in the particle phase upon droplet evaporation. The SOA generation potential of cloud and fog processing of BTEX was evaluated using simple calculations and showed that in ideal situations these reactions could add up to 9% of the ambient aerosol mass. In more conservative scenarios, the contribution of the processing of BTEX was around 1% of ambient aerosol concentrations. Overall, cloud processing of VOC has the potential to contribute to the atmospheric aerosol mass. However, the contribution will depend upon many factors such as the irradiation, organic matter content in the droplets and droplet lifetime.

  1. Evaluation of the atmospheric significance of multiphase reactions in atmospheric secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    Gelencsér

    2005-01-01

    Full Text Available In a simple conceptual cloud-aerosol model the mass of secondary organic aerosol (SOA that may be formed in multiphase reaction in an idealized scenario involving two cloud cycles separated with a cloud-free period is evaluated. The conditions are set to those typical of continental clouds, and each parameter used in the model calculations is selected as a mean of available observational data of individual species for which the multiphase SOA formation route has been established. In the idealized setting gas and aqueous-phase reactions are both considered, but only the latter is expected to yield products of sufficiently low volatility to be retained by aerosol particles after the cloud dissipates. The key variable of the model is the Henry-constant which primarily determines how important multiphase reactions are relative to gas-phase photooxidation processes. The precursor considered in the model is assumed to already have some affinity to water, i.e. it is a compound having oxygen-containing functional group(s. As a principal model output an aerosol yield parameter is calculated for the multiphase SOA formation route as a function of the Henry-constant, and has been found to be significant already above H~103 M atm-1. Among the potential precursors that may be eligible for this mechanism based on their Henry constants, there are a suite of oxygenated compounds such as primary oxidation products of biogenic and anthropogenic hydrocarbons, including, for example, pinonaldehyde. Finally, the analogy of multiphase SOA formation to in-cloud sulfate production is exploited.

  2. Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene.

    Science.gov (United States)

    Lin, Peng; Liu, Jiumeng; Shilling, John E; Kathmann, Shawn M; Laskin, Julia; Laskin, Alexander

    2015-09-28

    Atmospheric brown carbon (BrC) is a significant contributor to light absorption and climate forcing. However, little is known about a fundamental relationship between the chemical composition of BrC and its optical properties. In this work, light-absorbing secondary organic aerosol (SOA) was generated in the PNNL chamber from toluene photo-oxidation in the presence of NOx (Tol-SOA). Molecular structures of BrC components were examined using nanospray desorption electrospray ionization (nano-DESI) and liquid chromatography (LC) combined with UV/Vis spectroscopy and electrospray ionization (ESI) high-resolution mass spectrometry (HRMS). The chemical composition of BrC chromophores and the light absorption properties of toluene SOA (Tol-SOA) depend strongly on the initial NOx concentration. Specifically, Tol-SOA generated under high-NOx conditions (defined here as initial NOx/toluene of 5/1) appears yellow and mass absorption coefficient of the bulk sample (MACbulk@365 nm = 0.78 m(2) g(-1)) is nearly 80 fold higher than that measured for the Tol-SOA sample generated under low-NOx conditions (NOx/toluene atmosphere.

  3. Effects of Relative Humidity on Ozone and Secondary Organic Aerosol Formation from the Photooxidation of Benzene and Ethylbenzene

    Science.gov (United States)

    Jia, L.; Xu, Y.

    2012-12-01

    The formation of ozone and secondary organic aerosol from benzene-NOx and ethylbenzene-NOx irradiations was investigated under different levels of relative humidity (RH) in a smog chamber. The results show that the increase in RH can greatly reduce the maximum O3 by the transformation of -NO2 and -ONO2-containing products into the particle phase. In benzene irradiations, the SOA number concentration increases over 26 times as RH rises from ethylbenzene irradiations, ethylglyoxal favors the formation of monohydrate, which limits the RH effects. During evaporating processes, the lost substances have similar structures for both benzene and ethylbenzene. This demonstrates that ethyl-containing substances are very stable and difficult to evaporate. For benzene some of glyoxal hydrates are left to form C-O-C and C=O-containing species like hemiacetal and acetal after evaporation, whereas for ethylbenzene, glyoxal favors cross reactions with ethylglyoxal during the evaporating process. It is concluded that the increase in RH can irreversibly enhance the yields of SOA from both benzene and ethylbenzene.

  4. Organizing your practice for screening and secondary prevention among adults.

    Science.gov (United States)

    Knierim, Kyle E; Fernald, Douglas H; Staton, Elizabeth W; Nease, Donald E

    2014-06-01

    Prevention plays an important role in achieving the triple aim of decreasing per capita health care costs, improving the health of populations, and bettering the patient experience. Primary care is uniquely positioned to provide preventive services. External forces are aligning to support the transition of primary care from traditional models focused on disease-specific, acute episodes of care to new ways of organizing that are more patient centered, team based, and quality driven. By aligning leadership, building change capacity, and selectively choosing relevant processes to change, those practicing primary care can successfully organize their practice environment to deliver preventive services. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Secondary arterial hypertension: when, who, and how to screen?

    Science.gov (United States)

    Rimoldi, Stefano F; Scherrer, Urs; Messerli, Franz H

    2014-05-14

    Secondary hypertension refers to arterial hypertension due to an identifiable cause and affects ∼5-10% of the general hypertensive population. Because secondary forms are rare and work up is time-consuming and expensive, only patients with clinical suspicion should be screened. In recent years, some new aspects gained importance regarding this screening. In particular, increasing evidence suggests that 24 h ambulatory blood pressure (BP) monitoring plays a central role in the work up of patients with suspected secondary hypertension. Moreover, obstructive sleep apnoea has been identified as one of the most frequent causes. Finally, the introduction of catheter-based renal denervation for the treatment of patients with resistant hypertension has dramatically increased the interest and the number of patients evaluated for renal artery stenosis. We review the clinical clues of the most common causes of secondary hypertension. Specific recommendations are given as to evaluation and treatment of various forms of secondary hypertension. Despite appropriate therapy or even removal of the secondary cause, BP rarely ever returns to normal with long-term follow-up. Such residue hypertension indicates either that some patients with secondary hypertension also have concomitant essential hypertension or that irreversible vascular remodelling has taken place. Thus, in patients with potentially reversible causes of hypertension, early detection and treatment are important to minimize/prevent irreversible changes in the vasculature and target organs. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2013. For permissions please email: journals.permissions@oup.com.

  6. Aerosol optical properties measurements by a CAPS single scattering albedo monitor: Comparisons between summer and winter in Beijing, China

    Science.gov (United States)

    Han, Tingting; Xu, Weiqi; Li, Jie; Freedman, Andrew; Zhao, Jian; Wang, Qingqing; Chen, Chen; Zhang, Yingjie; Wang, Zifa; Fu, Pingqing; Liu, Xingang; Sun, Yele

    2017-02-01

    Aerosol optical properties were measured in Beijing in summer and winter using a state-of-the-art cavity attenuated phase shift single scattering albedo monitor (CAPS PMssa) along with aerosol composition measurements by aerosol mass spectrometers and aethalometers. The SSA directly measured by the CAPS PMssa showed overall agreements with those derived from colocated measurements. However, substantial differences were observed during periods with low SSA values in both summer and winter, suggesting that interpretation of low SSA values needs to be cautious. The average (±σ) extinction coefficient (bext) and absorption coefficient (bap) were 336 (±343) Mm-1 and 44 (±41) Mm-1, respectively, during wintertime, which were approximately twice those observed in summer, while the average SSA was relatively similar, 0.86 (±0.06) and 0.85 (±0.04) in summer and winter, respectively. Further analysis showed that the variations in SSA can be approximately parameterized as a function of mass fraction of secondary particulate matter (fSPM), which is SSA = 0.74 + 0.19 × fSPM (fSPM > 0.3, r2 = 0.85). The contributions of aerosol species to extinction coefficients during the two seasons were also estimated. Our results showed that the light extinction was dominantly contributed by ammonium sulfate (30%) and secondary organic aerosol (22%) in summer, while organic aerosol was the largest contributor (51%) in winter. Consistently, SPM played the major role in visibility degradation in both seasons by contributing 70% of the total extinction.

  7. 12 CFR 701.34 - Designation of low income status; Acceptance of secondary capital accounts by low-income...

    Science.gov (United States)

    2010-01-01

    ... NATIONAL CREDIT UNION ADMINISTRATION REGULATIONS AFFECTING CREDIT UNIONS ORGANIZATION AND OPERATION OF... governmental or private entity. (6) Subordination of claim. The secondary capital account investor's claim... investor or into a separate account from which the secondary capital investor may make withdrawals. Losses...

  8. The impact of biogenic, anthropogenic, and biomass burning volatile organic compound emissions on regional and seasonal variations in secondary organic aerosol

    Science.gov (United States)

    Kelly, Jamie M.; Doherty, Ruth M.; O'Connor, Fiona M.; Mann, Graham W.

    2018-05-01

    The global secondary organic aerosol (SOA) budget is highly uncertain, with global annual SOA production rates, estimated from global models, ranging over an order of magnitude and simulated SOA concentrations underestimated compared to observations. In this study, we use a global composition-climate model (UKCA) with interactive chemistry and aerosol microphysics to provide an in-depth analysis of the impact of each VOC source on the global SOA budget and its seasonality. We further quantify the role of each source on SOA spatial distributions, and evaluate simulated seasonal SOA concentrations against a comprehensive set of observations. The annual global SOA production rates from monoterpene, isoprene, biomass burning, and anthropogenic precursor sources is 19.9, 19.6, 9.5, and 24.6 Tg (SOA) a-1, respectively. When all sources are included, the SOA production rate from all sources is 73.6 Tg (SOA) a-1, which lies within the range of estimates from previous modelling studies. SOA production rates and SOA burdens from biogenic and biomass burning SOA sources peak during Northern Hemisphere (NH) summer. In contrast, the anthropogenic SOA production rate is fairly constant all year round. However, the global anthropogenic SOA burden does have a seasonal cycle which is lowest during NH summer, which is probably due to enhanced wet removal. Inclusion of the new SOA sources also accelerates the ageing by condensation of primary organic aerosol (POA), making it more hydrophilic, leading to a reduction in the POA lifetime. With monoterpene as the only source of SOA, simulated SOA and total organic aerosol (OA) concentrations are underestimated by the model when compared to surface and aircraft measurements. Model agreement with observations improves with all new sources added, primarily due to the inclusion of the anthropogenic source of SOA, although a negative bias remains. A further sensitivity simulation was performed with an increased anthropogenic SOA reaction

  9. Atmospheric hydrogen peroxide and organic hydroperoxides during PRIDE-PRD'06, China: their concentration, formation mechanism and contribution to secondary aerosols

    Directory of Open Access Journals (Sweden)

    W. Hua

    2008-11-01

    detected in this region can account for the production of hydroperoxides, while the moderate level of NOx suppressed the formation of hydroperoxides. High concentrations of hydroperoxides were detected in samples of rainwater collected in a heavy shower on 25 July when a typhoon passed through, indicating that a considerable mixing ratio of hydroperoxides, particularly MHP, resided above the boundary layer, which might be transported on a regional scale and further influence the redistribution of HOx and ROx radicals. It was found that hydroperoxides, in particular H2O2, play an important role in the formation of secondary sulfate in the aerosol phase, where the heterogeneous reaction might contribute substantially. A negative correlation between hydroperoxides and water-soluble organic compounds (WSOC, a considerable fraction of the secondary organic aerosol (SOA, was observed, possibly providing field evidence for the importance of hydroperoxides in the formation of SOA found in previous laboratory studies. We suggest that hydroperoxides act as an important link between sulfate and organic aerosols, which needs further study and should be considered in current atmospheric models.

  10. Organic complexation and translocation of ferric iron in podzols of the Negro River watershed. Separation of secondary Fe species from Al species

    Science.gov (United States)

    Fritsch, E.; Allard, Th.; Benedetti, M. F.; Bardy, M.; do Nascimento, N. R.; Li, Y.; Calas, G.

    2009-04-01

    The development of podzols in lateritic landscapes of the upper Amazon basin contributes to the exportation of organic carbon and associated metals in the black waters of the Negro River watershed. We have investigated the distribution of Fe III in the clay-size fraction of eight organic-rich horizons of waterlogged plateau podzols, to unravel the weathering conditions and mechanisms that control its transfer to the rivers. The speciation and amount of Fe III stored in residual mineral phases of laterites, or bound to organic compounds of weakly and well-expressed podzols, were determined by electron paramagnetic resonance spectroscopy combined with chemical analyses. Reducing conditions restrict the production of organo-Fe complexes in the subsoil B-horizons of waterlogged podzols and most of the Fe 2+ released from the dissolution of Fe-oxides is exported to the rivers via the perched groundwater. However, significant amounts of diluted Fe III bound to organic ligands (Fe IIIOM) and nano Fe-oxides are produced at the margin of the depression in the topsoil A horizons of weakly expressed podzols due to shorter periods of anoxia. The downward translocation of organically bound metals from topsoil A to subsoil B-horizons of podzols occurs in shorter distances for Fe than it does for Al. This separation of secondary Fe species from Al species is attributed to the physical fractionation of their organic carriers in texture contrasted B-horizons of podzols, as well as to the effect of pH on metal speciation in soil solutions and metal binding onto soil organic ligands (mostly for Al). This leads us to consider the topsoil A horizons of weakly expressed podzols, as well as the subsoil Bh horizon of better-expressed ones, as the main sources for the transfer of Fe IIIOM to the rivers. The concentration of Fe IIIOM rises from soil sources to river colloids, suggesting drastic biogeochemical changes in more oxygenated black waters of the Negro River watershed. The

  11. Wound infection secondary to snakebite

    Directory of Open Access Journals (Sweden)

    M Wagener

    2017-04-01

    Full Text Available Background. Snakebites can produce severe local and systemic septic complications as well as being associated with significant overall morbidity and even mortality. Objective. A prospective audit was undertaken to determine the bacterial causation of wound infection secondary to snakebite, and attempt to quantify the burden of disease. Methods. The audit was undertaken at Ngwelezane Hospital, which provides both regional and tertiary services for north-eastern KwaZulu-Natal Province, South Africa, over a 4-month period. Records of patients who required surgical debridement for extensive skin and soft-tissue necrosis were analysed. At the time of debridement, tissue samples of necrotic or infected tissue were sent for bacteriological analysis as standard of care. Microbiology results were analysed. Results. A total of 164 patients were admitted to hospital for management of snakebite, of whom 57 required surgical debridement and 42 were included in the final microbiological analysis. Children were found to be the most frequent victims of snakebite; 57.8% of patients in this study were aged ≤10 years and 73.7% ≤15 years. Culture showed a single organism in 32/42 cases, two organisms in 8 and no growth in 2. Eight different types of organisms were cultured, five of them more than once. Thirty-five specimens (83.3% grew Gram-negative Enterobacteriaceae, the most frequent being Morganella morganii and Proteus species. Thirteen specimens (31.0% grew Enterococcus faecalis. Gram-negative Enterobacteriaceae showed 31.4% sensitivity to ampicillin, 40.0% sensitivity to amoxicillin plus clavulanic acid, 34.3% sensitivity to cefuroxime, 97.1% sensitivity to ceftriaxone, and 100% sensitivity to ciprofloxacin, gentamicin and amikacin. E. faecalis was 92.3% sensitive to amoxicillin, 92.3% sensitive to amoxicillin plus clavulanic acid, 100% sensitive to ciprofloxacin, 92.3% resistant to erythromycin and 100% resistant to ceftriaxone. Conclusion. Children are

  12. Wound infection secondary to snakebite.

    Science.gov (United States)

    Wagener, M; Naidoo, M; Aldous, C

    2017-03-29

    Snakebites can produce severe local and systemic septic complications as well as being associated with significant overall morbidity and even mortality. A prospective audit was undertaken to determine the bacterial causation of wound infection secondary to snakebite, and attempt to quantify the burden of disease. The audit was undertaken at Ngwelezane Hospital, which provides both regional and tertiary services for north-eastern KwaZulu-Natal Province, South Africa, over a 4-month period. Records of patients who required surgical debridement for extensive skin and soft-tissue necrosis were analysed. At the time of debridement, tissue samples of necrotic or infected tissue were sent for bacteriological analysis as standard of care. Microbiology results were analysed. A total of 164 patients were admitted to hospital for management of snakebite, of whom 57 required surgical debridement and 42 were included in the final microbiological analysis. Children were found to be the most frequent victims of snakebite; 57.8% of patients in this study were aged ≤10 years and 73.7% ≤15 years. Culture showed a single organism in 32/42 cases, two organisms in 8 and no growth in 2. Eight different types of organisms were cultured, five of them more than once. Thirty-five specimens (83.3%) grew Gram-negative Enterobacteriaceae, the most frequent being Morganella morganii and Proteus species. Thirteen specimens (31.0%) grew Enterococcus faecalis. Gram-negative Enterobacteriaceae showed 31.4% sensitivity to ampicillin, 40.0% sensitivity to amoxicillin plus clavulanic acid, 34.3% sensitivity to cefuroxime, 97.1% sensitivity to ceftriaxone, and 100% sensitivity to ciprofloxacin, gentamicin and amikacin. E. faecalis was 92.3% sensitive to amoxicillin, 92.3% sensitive to amoxicillin plus clavulanic acid, 100% sensitive to ciprofloxacin, 92.3% resistant to erythromycin and 100% resistant to ceftriaxone. Children are particularly vulnerable to snakebite, and the consequences can be

  13. Effect of organic acids traces on the carbon steel corrosion behavior

    International Nuclear Information System (INIS)

    Stefanescu, D.; Radulescu; Mogosan, S.

    2009-01-01

    There are many different ways in which organic matter may get in water-steam cycles. One important pathway is constituted by organic matter admitted into the system by chemical make-up water under standard operation conditions (without inverse osmosis). The high molecular weight organic matter, in particularly polysaccharides are broken in organic acids, in particular acetic and formic acid. This paper presents an overview of the investigations undertaken referring to the behavior SA106 gr. B mild steel in secondary circuit aqueous environment contaminated with formic and acetic acid traces. The samples were filmed in static autoclaves in operation conditions of secondary circuit, in contaminated environment and after that they were investigated using metallographic microscopy and SEM. In addition, an electrochemical technique videlicet impedance spectroscopy (EIS) was used to investigate the corrosion behavior of SA106 gr. B carbon steel in secondary circuit medium contaminated with formic and acetic acid traces. (authors)

  14. Cryptogenic organizing pneumonia: typical and atypical imaging features on computed tomography

    International Nuclear Information System (INIS)

    Hamer, O.W.; Silva, C.I.; Mueller, N.L.

    2008-01-01

    Organizing pneumonia (OP) occurs without any identifiable cause (''cryptogenic organizing pneumonia'') as well as secondary to a multitude of disorders of various origins (''secondary organizing pneumonia''). Possible triggers are infections, drugs, collagen vascular disease, inflammatory bowel disease, transplantations, and radiation directed to the chest. The present manuscript provides an overview of the histopathological, clinical and CT imaging features of OP. Classic CT morphologies (peripheral and peribronchovascular consolidations and ground glass opacities) and atypical imaging features (nodules, crazy paving, lines and bands, perilobular consolidations and the reversed halo sign) are discussed. (orig.)

  15. Secondary Solid Organ Neoplasm in Patients with Acute Lymphoblastic Leukemia: A Nationwide Population-Based Study in Taiwan.

    Directory of Open Access Journals (Sweden)

    Chung-Jen Teng

    Full Text Available Acute lymphoblastic leukemia (ALL is more common in children than in adults. Secondary neoplasms (SNs in childhood ALL have been widely reported. However, only one study has demonstrated SNs in adult ALL. Because of the poorer survival of adult ALL, the incidence might be underestimated.To evaluate the incidence and risk factors of secondary solid organ neoplasms among adult and child ALL patients.Newly diagnosed ALL patients between 1997 and 2011 were recruited from the Taiwan National Health Insurance database. Those who had antecedent or combined malignancies were excluded. Standardized incidence ratios (SIRs were analyzed to compare the risk of our cohort to general population in the same age, sex and calendar year. Risk factors for SN development were analyzed by Cox proportional hazards models. Effects of treatments were treated as time-dependent variables.The 15-year cumulative incidence of SN was 1.9% and 8.4% in 1,381 child and 2,154 adult ALL patients, respectively. The SIR was significantly increased in child ALL (SIR 6.06, but not in adult ALL (SIR 1.16. The SIRs of follow-up periods were 5.14, 2.24, .87 and .71 at ≥ 10 years, 5-10 years, 1-5 years and 0-1, respectively. Overall, 15 SNs developed, and CNS tumors (SIR 11.56 were the most common type. Multivariate analysis showed that age ≥ 20 years (hazard ratio [HR] 5.04, end-stage renal disease (HR 18.98 and cranial irradiation (HR 8.12 were independent risk factors for cancer development.When compared with the general population, child ALL shows a increased risk of developing SNs. CNS tumors are the most common type, and cranial irradiation is an independent risk factor. With longer follow-up, the risk of SNs increases. Hence, physicians need to pay more attention on the risk of developing SNs in long-term ALL survivors with risk factors.

  16. Production of trichothecenes and other secondary metabolites by Fusarium culmorum and Fusarium equiseti on common laboratory media and a soil organic matter agar: An ecological interpretation

    DEFF Research Database (Denmark)

    Hestbjerg, H.; Nielsen, Kristian Fog; Thrane, Ulf

    2002-01-01

    trichothecene production was detected for 94 of 102 F culmorum isolates, only 8 of 57 F equiseti isolates were positive. Profiles of secondary metabolites were compared by following growth on yeast extract sucrose agar (YES), potato sucrose agar (PSA), and an agar medium, prepared from soil organic matter (SOM......), which was included to simulate growth, conditions in soil. SOM supported the production of chrysogine by F culmorum. The two species utilized the media differently. F culmorum produced zearalenone (ZEA) on YES, whereas some F. equiseti isolates produced ZEA on PSA. Other F. equiseti isolates produced...

  17. Incubation of air-pollution-control residues from secondary Pb smelter in deciduous and coniferous organic soil horizons: leachability of lead, cadmium and zinc.

    Science.gov (United States)

    Chrastný, Vladislav; Vaněk, Aleš; Komárek, Michael; Farkaš, Juraj; Drábek, Ondřej; Vokurková, Petra; Němcová, Jana

    2012-03-30

    The leachability of air-pollution-control (APC) residues from a secondary lead smelter in organic soil horizons (F and H) from a deciduous and a coniferous forest during incubation periods of 0, 3 and 6 months were compared in this work. While the concentration of Pb, Zn and Cd associated with the exchangeable/acid extractable fraction in the horizon F from the coniferous forest was higher compared to the deciduous, significantly lower concentrations in the humified horizon H was found. It is suggested that lower pH and a higher share of fulvic acids fraction (FAs) of solid phase soil organic matter (SOM) in the humified soil horizon H from the coniferous compared to the deciduous forest is responsible for a higher metal association with solid phase SOM and therefore a lower metal leaching in a soil system. From this point of view, the humified soil horizon H from the deciduous forest represents a soil system more vulnerable to Pb, Zn and Cd leaching from APC residues. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Contextualized Magnetism in Secondary School: Learning from the LHC (CERN)

    Science.gov (United States)

    Cid, Ramon

    2005-01-01

    Physics teachers in secondary schools usually mention the world's largest particle physics laboratory--CERN (European Organization for Nuclear Research)--only because of the enormous size of the accelerators and detectors used there, the number of scientists involved in their activities and also the necessary international scientific…

  19. Stroma cell priming in enteric lymphoid organ morphogenesis

    Directory of Open Access Journals (Sweden)

    Manuela eFerreira

    2012-07-01

    Full Text Available The lymphoid system is equipped with a network of specialized platforms located at strategic sites, which grant strict immune-surveillance and efficient immune responses. The development of these peripheral secondary lymphoid organs occurs mainly in utero, while tertiary lymphoid structures can form in adulthood generally in response to persistent infection and inflammation. Regardless of the lymphoid tissue and intrinsic cellular and molecular differences, it is now well established that the recruitment of fully functional Lymphoid Tissue inducer (LTi cells to presumptive lymphoid organ sites, and their consequent close and reciprocal interaction with resident stroma cells, are central to secondary lymphoid organ formation. In contrast, the nature of events that initially prime resident sessile stroma cells to recruit and retain LTi cells remains poorly understood.

  20. Characterization of secondary treated effluents for tertiary membrane filtration and water recycling

    KAUST Repository

    Ayache, C.; Pidou, Marc; Gernjak, Wolfgang; Poussade, Yvan; Croue, Jean-Philippe; Tazi-Pain, Annie; Keller, Jurg R.

    2012-01-01

    This study evaluates the impacts of water quality from three different secondary effluents on low pressure membrane fouling. Effluent organic matter (EfOM) has been reported by previous studies as responsible for membrane fouling. However, the contribution of the different components of EfOM to membrane fouling is still not well understood. In order to improve and optimize treatment processes, characterization and quantification of the organic matter are important. The characterization methods used in this study are liquid chromatography coupled with an organic detector (LC-OCD) and excitation emission matrix fluorescence spectroscopy (EEM). A bench-scale hollow fibre membrane system was used to identify the type of fouling depending on the feed water quality. Results showed no measurable dissolved organic carbon removal by the membranes for the three secondary effluents. Biopolymers and humic-like substances found in different proportions in the three effluents were partially retained by the membranes and were identified to contribute significantly to the flux decline of the low pressure membranes. The observed fouling was determined to be reversible by hydraulic backwashing for two effluents and only by chemical cleaning for the third effluent. © IWA Publishing 2012.

  1. Characterization of secondary treated effluents for tertiary membrane filtration and water recycling

    KAUST Repository

    Ayache, C.

    2012-06-01

    This study evaluates the impacts of water quality from three different secondary effluents on low pressure membrane fouling. Effluent organic matter (EfOM) has been reported by previous studies as responsible for membrane fouling. However, the contribution of the different components of EfOM to membrane fouling is still not well understood. In order to improve and optimize treatment processes, characterization and quantification of the organic matter are important. The characterization methods used in this study are liquid chromatography coupled with an organic detector (LC-OCD) and excitation emission matrix fluorescence spectroscopy (EEM). A bench-scale hollow fibre membrane system was used to identify the type of fouling depending on the feed water quality. Results showed no measurable dissolved organic carbon removal by the membranes for the three secondary effluents. Biopolymers and humic-like substances found in different proportions in the three effluents were partially retained by the membranes and were identified to contribute significantly to the flux decline of the low pressure membranes. The observed fouling was determined to be reversible by hydraulic backwashing for two effluents and only by chemical cleaning for the third effluent. © IWA Publishing 2012.

  2. Synthesis, characterizations and catalytic studies of a new two-dimensional metal-organic framework based on Co-carboxylate secondary building units

    Science.gov (United States)

    Bagherzadeh, Mojtaba; Ashouri, Fatemeh; Đaković, Marijana

    2015-03-01

    A metal-organic framework [Co3(BDC)3(DMF)2(H2O)2] was synthesized and structurally characterized. X-ray single crystal analysis revealed that the framework contains a 2D polymeric chain through coordination of 1,4-benzenedicarboxylic acid linker ligand to cobalt centers. The polymer crystallize in monoclinic P21/n space group with a=13.989(3) Å, b=9.6728(17) Å, c=16.707(3) Å, and Z=2. The polymer features a framework based on the perfect octahedral Co-O6 secondary building units. The catalytic activities of [Co3(BDC)3(DMF)2(H2O)2]n for olefins oxidation was conducted. The heterogeneous catalyst could be facilely separated from the reaction mixture, and reused three times without significant degradation in catalytic activity. Furthermore, no contribution from homogeneous catalysis of active species leaching into reaction solution was detected.

  3. Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia

    Directory of Open Access Journals (Sweden)

    B. B. Palm

    2018-01-01

    Full Text Available Secondary organic aerosol (SOA formation from ambient air was studied using an oxidation flow reactor (OFR coupled to an aerosol mass spectrometer (AMS during both the wet and dry seasons at the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5 field campaign. Measurements were made at two sites downwind of the city of Manaus, Brazil. Ambient air was oxidized in the OFR using variable concentrations of either OH or O3, over ranges from hours to days (O3 or weeks (OH of equivalent atmospheric aging. The amount of SOA formed in the OFR ranged from 0 to as much as 10 µg m−3, depending on the amount of SOA precursor gases in ambient air. Typically, more SOA was formed during nighttime than daytime, and more from OH than from O3 oxidation. SOA yields of individual organic precursors under OFR conditions were measured by standard addition into ambient air and were confirmed to be consistent with published environmental chamber-derived SOA yields. Positive matrix factorization of organic aerosol (OA after OH oxidation showed formation of typical oxidized OA factors and a loss of primary OA factors as OH aging increased. After OH oxidation in the OFR, the hygroscopicity of the OA increased with increasing elemental O : C up to O : C ∼ 1.0, and then decreased as O : C increased further. Possible reasons for this decrease are discussed. The measured SOA formation was compared to the amount predicted from the concentrations of measured ambient SOA precursors and their SOA yields. While measured ambient precursors were sufficient to explain the amount of SOA formed from O3, they could only explain 10–50 % of the SOA formed from OH. This is consistent with previous OFR studies, which showed that typically unmeasured semivolatile and intermediate volatility gases (that tend to lack C = C bonds are present in ambient air and can explain such additional SOA formation. To investigate the sources of the

  4. Formation kinetics and abundance of organic nitrates in α-pinene ozonolysis

    Science.gov (United States)

    Berkemeier, Thomas; Ammann, Markus; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-04-01

    Formation of organic nitrates affects the total atmospheric budget of oxidized nitrogen (NOy) and alters the total aerosol mass yield from secondary sources. We investigated the formation of organic nitrate species during ozonolysis of α-pinene and subsequent formation of secondary organic aerosols (SOA) using the short-lived radioactive tracer 13N inside an aerosol flow reactor (Ammann et al., 2001). The results represent direct measurements of the organic nitrate content of α-pinene secondary aerosol and give insight into the kinetics of organic nitrate formation. Organic nitrates constituted up to 40 % of aerosol mass with a pronounced influence during the initial period of particle growth. Kinetic modelling, as well as additional experiments using OH scavengers and UV irradiation, suggests that organic peroxy radicals (RO2) from the reaction of α-pinene with secondarily produced OH are important intermediates in the organic nitrate formation process. Direct oxidation of α-pinene by NO3 was found to be a less efficient pathway for formation of particle phase nitrate. The organic nitrate content decreased very slightly with an increase of relative humidity on the experimental time scale. The experiments show a tight correlation between organic nitrate content and SOA number concentrations, implying that organic nitrates play an important role in nucleation and growth of nanoparticles. Since present in large amounts in organic aerosol, organic nitrates deposited in the lung might have implications for human health as they release nitric acid upon hydrolysis, especially in regions influenced by urban pollution and large sources of monoterpene SOA precursors. References Ammann et al. (2001) Radiochimica Acta 89, 831.

  5. Aqueous Photochemistry of Secondary Organic Aerosol of α-Pinene and α-Humulene Oxidized with Ozone, Hydroxyl Radical, and Nitrate Radical

    Energy Technology Data Exchange (ETDEWEB)

    Romonosky, Dian E.; Li, Ying; Shiraiwa, Manabu; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey

    2017-01-18

    Formation of secondary organic aerosols (SOA) from biogenic volatile organic compounds 13 (BVOC) occurs via O3- and OH-initiated reactions during the day and reactions with NO3 during the 14 night. We explored the effect of these three oxidation conditions on the molecular composition and 15 aqueous photochemistry of model SOA prepared from two common BVOC. A common monoterpene, α- 16 pinene, and sesquiterpene, α-humulene, were used to form SOA in a smog chamber via BVOC + O3, 17 BVOC + NO3, and BVOC + OH + NOx oxidation. Samples of SOA were collected, extracted in water, 18 and photolyzed in an aqueous solution in order to simulate the photochemical cloud processing of SOA. 19 The extent of change in the molecular level composition of SOA over 4 hours of photolysis (roughly 20 equivalent to 64 hours of photolysis under ambient conditions) was assessed with high-resolution 21 electrospray ionization mass spectrometry. The analysis revealed significant differences in the molecular 22 composition between monoterpene and sesquiterpene SOA formed by the different oxidation pathways. 23 The composition further evolved during photolysis with the most notable change corresponding to the 24 nearly-complete removal of nitrogen-containing organic compounds. Hydrolysis of SOA compounds also 25 occurred in parallel with photolysis. The preferential loss of larger SOA compounds during photolysis 26 and hydrolysis made the SOA compounds more volatile on average. This study suggests that cloud- and 27 fog-processing may under certain conditions lead to a reduction in the SOA loading as opposed to an 28 increase in SOA loading commonly assumed in the literature.

  6. Doses to internal organs for various breast radiation techniques - implications on the risk of secondary cancers and cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Keller Brian M

    2011-01-01

    Full Text Available Abstract Background Breast cancers are more frequently diagnosed at an early stage and currently have improved long term outcomes. Late normal tissue complications induced by adjuvant radiotherapy like secondary cancers or cardiomyopathy must now be avoided at all cost. Several new breast radiotherapy techniques have been developed and this work aims at comparing the scatter doses of internal organs for those techniques. Methods A CT-scan of a typical early stage left breast cancer patient was used to describe a realistic anthropomorphic phantom in the MCNP Monte Carlo code. Dose tally detectors were placed in breasts, the heart, the ipsilateral lung, and the spleen. Five irradiation techniques were simulated: whole breast radiotherapy 50 Gy in 25 fractions using physical wedge or breast IMRT, 3D-CRT partial breast radiotherapy 38.5 Gy in 10 fractions, HDR brachytherapy delivering 34 Gy in 10 treatments, or Permanent Breast 103Pd Seed Implant delivering 90 Gy. Results For external beam radiotherapy the wedge compensation technique yielded the largest doses to internal organs like the spleen or the heart, respectively 2,300 mSv and 2.7 Gy. Smaller scatter dose are induced using breast IMRT, respectively 810 mSv and 1.1 Gy, or 3D-CRT partial breast irradiation, respectively 130 mSv and 0.7 Gy. Dose to the lung is also smaller for IMRT and 3D-CRT compared to the wedge technique. For multicatheter HDR brachytherapy a large dose is delivered to the heart, 3.6 Gy, the spleen receives 1,171 mSv and the lung receives 2,471 mSv. These values are 44% higher in case of a balloon catheter. In contrast, breast seeds implant is associated with low dose to most internal organs. Conclusions The present data support the use of breast IMRT or virtual wedge technique instead of physical wedges for whole breast radiotherapy. Regarding partial breast irradiation techniques, low energy source brachytherapy and external beam 3D-CRT appear safer than 192Ir HDR

  7. Fine particulate matter (PM) and organic speciation of fireplace emissions

    International Nuclear Information System (INIS)

    Purvis, C.R.; McCrillis, R.C.; Kariher, P.H.

    2000-01-01

    This paper presents a summary of fireplace particle size and organic speciation data gathered to date in an ongoing project. Tests are being conducted in a residential wood combustion (RWC) laboratory on three factory-built fireplaces. RWC wood smoke particles <10 microm (PM10) consist primarily of a mixture of organic compounds that have condensed into droplets; therefore, the size distribution and total mass are influenced by temperature of the sample during its collection. During the series 1 tests (15 tests), the dilution tunnel used to cool and dilute the stack gases gave an average mixed gas temperature of 47.3 C and an average dilution ration of 4.3. Averages for the PM2.5 (particles <2.5 microm) and PM10 fractions were 74 and 84%, respectively. For the series 2 tests, the dilution tunnel was modified, reducing the average mixed gas temperatures to 33.8 C and increasing the average dilution ratio to 11.0 in tests completed to date. PM2.5 and PM10 fractions were 83 and 91%, respectively. Since typical winter-time mixed gas temperatures would usually be less than 10 C, these size fraction results probably represent the lower bound; the PM10 and PM2.5 size fraction results might be higher at typical winter temperatures. The particles collected on the first stage were light gray and appeared to include inorganic ash. Particles collected on the remainder of the stages were black and appeared to be condensed organics because there was noticeable lateral bleeding of the collected materials into the filter substrate. Total particulate emission rates ranged from 10.3 to 58.4 g/h; corresponding emission factors ranged from 3.3 to 14.9 g/kg of dry wood burned. A wide range of Environmental Protection Agency (EPA) Method 8270 semivolatile organic compounds were found in the emissions; of the 17 target compounds quantified, major constituents are phenol, 2-methylphenol, 4-methylphenol, 2,4-dimethylphenol, and naphthalene

  8. Chemical characterisation of atmospheric aerosols during a 2007 summer field campaign at Brasschaat, Belgium: sources and source processes of biogenic secondary organic aerosol

    Directory of Open Access Journals (Sweden)

    Y. Gómez-González

    2012-01-01

    Full Text Available Measurements of organic marker compounds and inorganic species were performed on PM2.5 aerosols from a Belgian forest site that is severely impacted by urban pollution ("De Inslag", Brasschaat, Belgium during a 2007 summer period within the framework of the "Formation mechanisms, marker compounds, and source apportionment for biogenic atmospheric aerosols (BIOSOL" project. The measured organic species included (i low-molecular weight (MW dicarboxylic acids (LMW DCAs, (ii methanesulfonate (MSA, (iii terpenoic acids originating from the oxidation of α-pinene, β-pinene, d-limonene and Δ3-carene, and (iv organosulfates related to secondary organic aerosol from the oxidation of isoprene and α-pinene. The organic tracers explained, on average, 5.3 % of the organic carbon (OC, of which 0.7 % was due to MSA, 3.4 % to LMW DCAs, 0.6 % to organosulfates, and 0.6 % to terpenoic acids. The highest atmospheric concentrations of most species were observed during the first five days of the campaign, which were characterised by maximum day-time temperatures >22 °C. Most of the terpenoic acids and the organosulfates peaked during day-time, consistent with their local photochemical origin. High concentrations of 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA and low concentrations of cis-pinonic acid were noted during the first five days of the campaign, indicative of an aged biogenic aerosol. Several correlations between organic species were very high (r>0.85, high (0.7<r<0.85, or substantial (0.5<r<0.7, suggesting that they are generated through similar formation pathways. Substantial correlations with temperature were found for OC, water-soluble OC, MBTCA, and several other organic species. MBTCA and terebic acid were highly correlated with the temperature (r>0.7 and showed an Arrhenius-type relationship, consistent with their formation through OH radical chemistry.

  9. The prevalence of secondary diseases of the HIV patients in the Omsk region: cross sectional study

    OpenAIRE

    Pasechnik, Oksana; Pitsenko, Natalia

    2014-01-01

    The prevalence of secondary diseases of the HIV infected patients who were under observation in medical organizations of Omsk region in 2013 has been studied. 16, 8% of HIV-infected patients had a wide spectrum of secondary diseases, mainly infectious etiology. In the structure of secondary infections the leading position was occupied by tuberculosis (32, 3%), candidiasis (24,4%), bacterial diseases (23,7%). The average risk of tuberculosis diseases is 24 cases for 1000 HIV-infected patients.

  10. Kinetics, Mechanism, and Secondary Organic Aerosol Yield of Aqueous Phase Photo-oxidation of α-Pinene Oxidation Products.

    Science.gov (United States)

    Aljawhary, Dana; Zhao, Ran; Lee, Alex K Y; Wang, Chen; Abbatt, Jonathan P D

    2016-03-10

    Formation of secondary organic aerosol (SOA) involves atmospheric oxidation of volatile organic compounds (VOCs), the majority of which are emitted from biogenic sources. Oxidation can occur not only in the gas-phase but also in atmospheric aqueous phases such as cloudwater and aerosol liquid water. This study explores for the first time the aqueous-phase OH oxidation chemistry of oxidation products of α-pinene, a major biogenic VOC species emitted to the atmosphere. The kinetics, reaction mechanisms, and formation of SOA compounds in the aqueous phase of two model compounds, cis-pinonic acid (PIN) and tricarballylic acid (TCA), were investigated in the laboratory; TCA was used as a surrogate for 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a known α-pinene oxidation product. Aerosol time-of-flight chemical ionization mass spectrometry (Aerosol-ToF-CIMS) was used to follow the kinetics and reaction mechanisms at the molecular level. Room-temperature second-order rate constants of PIN and TCA were determined to be 3.3 (± 0.5) × 10(9) and 3.1 (± 0.2) × 10(8) M(-1) s(-1), respectively, from which were estimated their condensed-phase atmospheric lifetimes. Aerosol-ToF-CIMS detected a large number of products leading to detailed reaction mechanisms for PIN and MBTCA. By monitoring the particle size distribution after drying, the amount of SOA material remaining in the particle phase was determined. An aqueous SOA yield of 40 to 60% was determined for PIN OH oxidation. Although recent laboratory studies have focused primarily on aqueous-phase processing of isoprene-related compounds, we demonstrate that aqueous formation of SOA materials also occurs from monoterpene oxidation products, thus representing an additional source of biogenically driven aerosol formation.

  11. Bioactive secondary metabolites from marine microbes for drug discovery.

    Science.gov (United States)

    Nikapitiya, Chamilani

    2012-01-01

    The isolation and extraction of novel bioactive secondary metabolites from marine microorganisms have a biomedical potential for future drug discovery as the oceans cover 70% of the planet's surface and life on earth originates from sea. Wide range of novel bioactive secondary metabolites exhibiting pharmacodynamic properties has been isolated from marine microorganisms and many to be discovered. The compounds isolated from marine organisms (macro and micro) are important in their natural form and also as templates for synthetic modifications for the treatments for variety of deadly to minor diseases. Many technical issues are yet to overcome before wide-scale bioprospecting of marine microorganisms becomes a reality. This chapter focuses on some novel secondary metabolites having antitumor, antivirus, enzyme inhibitor, and other bioactive properties identified and isolated from marine microorganisms including bacteria, actinomycetes, fungi, and cyanobacteria, which could serve as potentials for drug discovery after their clinical trials. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Impact of NOx and OH on secondary organic aerosol formation from β-pinene photooxidation

    Directory of Open Access Journals (Sweden)

    M. Sarrafzadeh

    2016-09-01

    Full Text Available In this study, the NOx dependence of secondary organic aerosol (SOA formation from photooxidation of the biogenic volatile organic compound (BVOC β-pinene was comprehensively investigated in the Jülich Plant Atmosphere Chamber. Consistent with the results of previous NOx studies we found increases of SOA yields with increasing [NOx] at low-NOx conditions ([NOx]0  <  30 ppb, [BVOC]0 ∕ [NOx]0  >  10 ppbC ppb−1. Furthermore, increasing [NOx] at high-NOx conditions ([NOx]0  >  30 ppb, [BVOC]0 ∕ [NOx]0  ∼  10 to  ∼  2.6 ppbC ppb−1 suppressed the SOA yield. The increase of SOA yield at low-NOx conditions was attributed to an increase of OH concentration, most probably by OH recycling in NO + HO2  →  NO2 + OH reaction. Separate measurements without NOx addition but with different OH primary production rates confirmed the OH dependence of SOA yields. After removing the effect of OH concentration on SOA mass growth by keeping the OH concentration constant, SOA yields only decreased with increasing [NOx]. Measuring the NOx dependence of SOA yields at lower [NO] ∕ [NO2] ratio showed less pronounced increase in both OH concentration and SOA yield. This result was consistent with our assumption of OH recycling by NO and to SOA yields being dependent on OH concentrations. Our results furthermore indicated that NOx dependencies vary for different NOx compositions. A substantial fraction of the NOx-induced decrease of SOA yields at high-NOx conditions was caused by NOx-induced suppression of new particle formation (NPF, which subsequently limits the particle surface where low volatiles condense. This was shown by probing the NOx dependence of SOA formation in the presence of seed particles. After eliminating the effect of NOx-induced suppression of NPF and NOx-induced changes of OH concentrations, the remaining effect of NOx on the SOA yield from

  13. Doing Multisensory Ethnography In Classroom Study In Danish Secondary Schools

    DEFF Research Database (Denmark)

    Falkenberg, Helene

    The thesis of this Ph.D. is new forms of organizing the secondary school in Denmark and the potential of these organizational forms as inclusive learning environments. I´m inspired by multisensory ethnography (Pink, 2011a, 2011b) in my study of the ways the students are categorized into included...

  14. Towards Molecular Characterization of Mineral-Organic Matter Interface Using In Situ Liquid Secondary Ion Mass Spectrometry

    Science.gov (United States)

    Zhu, Z.; Yu, X. Y.

    2017-12-01

    Organo-Mineral-Microbe interactions in terrestrial ecosystems are of great interest. Quite a few models have been developed through extensive efforts in this field. However, predictions from current models are far from being accurate, and many debates still exist. One of the major reasons is that most experimental data generated from bulk analysis, and the information of molecular dynamics occurring at mineral-organic matter interface is rare. Such information has been difficult to obtain, due to lack of suitable in situ analysis tools. Recently, we have developed in situ liquid secondary ion mass spectrometry (SIMS) at Pacific Northwest National Laboratory1, and it has shown promise to provide both elemental and molecular information at vacuum-liquid and solid-liquid interfaces.2 In this presentation, we demonstrate that in situ liquid SIMS can provide critical molecular information at solid substrate-live biofilm interface.3 Shewanella oneidensis is used as a model micro-organism and silicon nitride as a model mineral surface. Of particular interest, biologically relevant water clusters have been first observed in the living biofilms. Characteristic fragments of biofilm matrix components such as proteins, polysaccharides, and lipids can be molecularly examined. Furthermore, characteristic fatty acids (e.g., palmitic acid), quinolone signal, and riboflavin fragments were found to respond after the biofilm is treated with Cr(VI), leading to biofilm dispersal. Significant changes in water clusters and quorum sensing signals indicative of intercellular communication in the aqueous environment were observed, suggesting that they might result in fatty acid synthesis and inhibition of riboflavin production. The Cr(VI) reduction seems to follow the Mtr pathway leading to Cr(III) formation. Our approach potentially opens a new avenue for in-situ understanding of mineral-organo or mineral-microbe interfaces using in situ liquid SIMS and super resolution fluorescence

  15. Mathematical Modelling at Secondary School: The MACSI-Clongowes Wood College Experience

    Science.gov (United States)

    Charpin, J. P. F.; O'Hara, S.; Mackey, D.

    2013-01-01

    In Ireland, to encourage the study of STEM (science, technology, engineering and mathematics) subjects and particularly mathematics, the Mathematics Applications Consortium for Science and Industry (MACSI) and Clongowes Wood College (County Kildare, Ireland) organized a mathematical modelling workshop for senior cycle secondary school students.…

  16. Secondary organic aerosol (trans)formation through aqueous phase guaiacol photonitration: a kinetic study

    Science.gov (United States)

    Kroflič, Ana; Grgić, Irena

    2014-05-01

    It is well known that atmospheric aerosols play a crucial role in the Earth's climate and public health (Pöschl 2005). Despite a great effort invested in the studies of secondary organic aerosol (SOA) budget, composition, and its formation mechanisms, there is still a gap between field observations and atmospheric model predictions (Heald et al. 2005, Hallquist et al. 2009, and Lim et al. 2010). The insisting uncertainties surrounding SOA formation and aging thus gained an increasing interest in atmospheric aqueous phase chemistry; they call for more complex and time consuming studies at the environmentally relevant conditions allowing confident extrapolation to desired ambient conditions. In addition to the adverse health effects of atmospheric particulate matter (PM) as such, toxicity is also attributed to nitro-aromatic and other organic compounds which have already been detected in real aerosol samples (Traversi et al. 2009). Moreover, low-volatility aromatic derivatives are believed to form at least partly in the aerosol aqueous phase and not only in the gas phase from where they partition into water droplets (Ervens et al. 2011). Two nitro derivatives of biomass burning tracer guaiacol have recently been found in winter PM10 samples from the city of Ljubljana, Slovenia, and aqueous photonitration reaction was proposed as their possible production pathway (Kitanovski et al. 2012). In this study the kinetics of guaiacol nitration in aqueous solution was investigated in the presence of H2O2 and NO2¯ upon simulated solar irradiation (Xenon lamp, 300 W). During the experiment the DURAN® flask with the reaction mixture was held in the thermostated bath and thoroughly mixed. The reaction was monitored for 44 hours at different temperatures. Guaiacol and its main nitro-products (4-nitroguaiacol, 4-NG; 6-nitroguaiacol, 6-NG; and 4,6-dinitroguaiacol, 4,6-DNG) were quantified in every aliquot, taken from the reaction mixture, by use of high pressure liquid

  17. Towards integrated environmental quality objectives for several compounds with a potential for secondary poisoning

    OpenAIRE

    van de Plassche EJ; ACT; VW/RWS-DGW; AIDE

    1994-01-01

    Values are derived which can be used to set integrated environmental quality objectives (limit and target values) for 25 compounds with a potential for secondary poisoning. First, Maximum Permissible Concentrations (MPs) and Negligible Concentrations (NCs) are derived for water, sediment and soil based on direct effects on aquatic and soil organisms using extrapolation methods and on possible adverse effects due to secondary poisoning. Two foodchains are taken into account: an aquatic route (...

  18. Contrasting organic aerosol particles from boreal and tropical forests during HUMPPA-COPEC-2010 and AMAZE-08 using coherent vibrational spectroscopy

    Directory of Open Access Journals (Sweden)

    C. J. Ebben

    2011-10-01

    Full Text Available We present the vibrational sum frequency generation spectra of organic particles collected in a boreal forest in Finland and a tropical forest in Brazil. These spectra are compared to those of secondary organic material produced in the Harvard Environmental Chamber. By comparing coherent vibrational spectra of a variety of terpene and olefin reference compounds, along with the secondary organic material synthesized in the environmental chamber, we show that submicron aerosol particles sampled in Southern Finland during HUMPPA-COPEC-2010 are composed to a large degree of material similar in chemical composition to synthetic α-pinene-derived material. For material collected in Brazil as part of AMAZE-08, the organic component is found to be chemically complex in the coarse mode but highly uniform in the fine mode. When combined with histogram analyses of the isoprene and monoterpene abundance recorded during the HUMPPA-COPEC-2010 and AMAZE-08 campaigns, the findings presented here indicate that if air is rich in monoterpenes, submicron-sized secondary aerosol particles that form under normal OH and O3 concentration levels can be described in terms of their hydrocarbon content as being similar to α-pinene-derived model secondary organic aerosol particles. If the isoprene concentration dominates the chemical composition of organic compounds in forest air, then the hydrocarbon component of secondary organic material in the submicron size range is not simply well-represented by that of isoprene-derived model secondary organic aerosol particles but is more complex. Throughout the climate-relevant size range of the fine mode, however, we find that the chemical composition of the secondary organic particle material from such air is invariant with size, suggesting that the particle growth does not change the chemical composition of the hydrocarbon component of the particles in a significant way.

  19. Patients with secondary amenorrhea due to tuberculosis endometritis towards the induced anti-tuberculosis drug category 1.

    Science.gov (United States)

    Perdhana, Raditya; Sutrisno, Sutrisno; Sugiri, Yani Jane; Baktiyani, Siti Candra Windu; Wiyasa, Arsana

    2016-01-01

    Tuberculosis (TB) is a disease which can affect various organs, including human's genital organs such as the endometrium. Tuberculosis endometritis can cause clinical symptoms of secondary amenorrhea and infertility. Infertility in genital TB caused by the involvement of the endometrium. The case presentation is 33-year-old woman from dr. Saiful Anwar Public Hospital to consult that she has not menstruated since 5 years ago (28 years old). The diagnosis was done by performing a clinical examination until the diagnosis of secondary amenorrhea due to tuberculosis endometritis is obtained. A treatment by using category I of anti-tuberculosis drugs was done for 6 months, afterward an Anatomical Pathology observation found no signs of the tuberculosis symptoms. Based on that, patient, who was diagnosed to have secondary amenorrhea due to tuberculosis endometritis, has no signs of tuberculosis process after being treated by using category I of anti-tuberculosis drugs for 6 months.

  20. PFC Performance Improvement of Ultra-supercritical Secondary Reheat Unit

    Directory of Open Access Journals (Sweden)

    Li Jun

    2018-01-01

    Full Text Available Ultra-supercritical secondary reheat unit has been widely used in the world because of its advantages of large capacity, low consumption and high efficiency etc., but rapid load change ability of the turbines to be weakened which caused by its system organization, cannot meet the requirements of power grid frequency modulation. Based on the analysis of the control characteristics of ultra-supercritical once-through reheat unit, the primary frequency control based on feed-water flow overshoot compensation is proposed. The main steam pressure generated by the feed-water is changed to improve the primary frequency control capability. The relevant control strategy has been applied to the 1000MW secondary reheating unit. The results show that the technology is feasible and has high economical efficiency.

  1. Secondary-school chemistry textbooks in the 19th century

    Directory of Open Access Journals (Sweden)

    Milanović Vesna D.

    2015-01-01

    Full Text Available The teaching of chemistry in Serbia as a separate subject dates from 1874. The first secondary-school chemistry textbooks appeared in the second half of the 19th century. The aim of this paper is to gain insight, by analysing two secondary-school chemistry textbooks, written by Sima Lozanić (1895 and Mita Petrović (1892, into what amount of scientific knowledge from the sphere of chemistry was presented to secondary school students in Serbia in the second half of the 19th century, and what principles textbooks written at the time were based on. Within the framework of the research conducted, we defined the criteria for assessing the quality of secondary-school chemistry textbooks in the context of the time they were written in. The most important difference between the two textbooks under analysis that we found pertained to the way in which their contents were organized. Sima Lozanić’s textbook is characterized by a greater degree of systematicness when it comes to the manner of presenting its contents and consistency of approach throughout the book. In both textbooks one can perceive the authors’ attempts to link chemistry-related subjects to everyday life, and to point out the practical significance of various substances, as well as their toxicness.

  2. Impacts of controlling biomass burning emissions on wintertime carbonaceous aerosol in Europe

    NARCIS (Netherlands)

    Fountoukis, C.; Butler, T.; Lawrence, M.G.; Denier van der Gon, H.A.C.; Visschedijk, A.J.H.; Charalampidis, P.; Pilinis, C.; Pandis, S.N.

    2014-01-01

    We use a 3-D regional chemical transport model, with the latest advancements in the organic aerosol (OA) treatment, and an updated emission inventory for wood combustion to study the organic aerosol change in response to the replacement of current residential wood combustion technologies with pellet

  3. The relationship between departments as professional communities and student achievement in secondary schools

    NARCIS (Netherlands)

    Lomos, C.; Hofman, R.H.; Bosker, R.J.

    Secondary school teaching is organized in departments and effective departments functioning as collaborative teams have been associated with effective schools. Therefore, this study investigates the relationship of mathematics departments perceived as professional communities and student achievement

  4. Time-resolved analysis of primary volatile emissions and secondary aerosol formation potential from a small-scale pellet boiler

    Science.gov (United States)

    Czech, Hendryk; Pieber, Simone M.; Tiitta, Petri; Sippula, Olli; Kortelainen, Miika; Lamberg, Heikki; Grigonyte, Julija; Streibel, Thorsten; Prévôt, André S. H.; Jokiniemi, Jorma; Zimmermann, Ralf

    2017-06-01

    Small-scale pellet boilers and stoves became popular as a wood combustion appliance for domestic heating in Europe, North America and Asia due to economic and environmental aspects. Therefore, an increasing contribution of pellet boilers to air pollution is expected despite their general high combustion efficiency. As emissions of primary organic aerosol (POA) and permanent gases of pellet boilers are well investigated, the scope of this study was to investigate the volatile organic emissions and the formation potential of secondary aerosols for this type of appliance. Fresh and aged emissions were analysed by a soot-particle aerosol time-of-flight mass spectrometry (SP-AMS) and the molecular composition of the volatile precursors with single-photon ionisation time-of-flight mass spectrometry (SPI-TOFMS) at different pellet boiler operation conditions. Organic emissions in the gas phase were dominated by unsaturated hydrocarbons while wood-specific VOCs, e.g. phenolic species or substituted furans, were only detected during the starting phase. Furthermore, organic emissions in the gas phase were found to correlate with fuel grade and combustion technology in terms of secondary air supply. Secondary organic aerosols of optimised pellet boiler conditions (OPT, state-of-the-art combustion appliance) and reduced secondary air supply (RSA, used as a proxy for pellet boilers of older type) were studied by simulating atmospheric ageing in a Potential Aerosol Mass (PAM) flow reactor. Different increases in OA mass (55% for OPT, 102% for RSA), associated with higher average carbon oxidation state and O:C, could be observed in a PAM chamber experiment. Finally, it was found that derived SOA yields and emission factors were distinctly lower than reported for log wood stoves.

  5. Mixed Emotions and Coping: The Benefits of Secondary Emotions

    Science.gov (United States)

    Braniecka, Anna; Trzebińska, Ewa; Dowgiert, Aneta; Wytykowska, Agata

    2014-01-01

    The existing empirical literature suggests that during difficult situations, the concurrent experience of positive and negative affects may be ideal for ensuring successful adaptation and well-being. However, different patterns of mixed emotions may have different adaptive consequences. The present research tested the proposition that experiencing a pattern of secondary mixed emotion (i.e., secondary emotion that embrace both positive and negative affects) more greatly promotes adaptive coping than experiencing two other patterns of mixed emotional experiences: simultaneous (i.e., two emotions of opposing affects taking place at the same time) and sequential (i.e., two emotions of opposing affects switching back and forth). Support for this hypothesis was obtained from two experiments (Studies 1 and 2) and a longitudinal survey (Study 3). The results revealed that secondary mixed emotions predominate over sequential and simultaneous mixed emotional experiences in promoting adaptive coping through fostering the motivational and informative functions of emotions; this is done by providing solution-oriented actions rather than avoidance, faster decisions regarding coping strategies (Study 1), easier access to self-knowledge, and better narrative organization (Study 2). Furthermore, individuals characterized as being prone to feeling secondary mixed emotions were more resilient to stress caused by transitions than those who were characterized as being prone to feeling opposing emotions separately (Study 3). Taken together, the preliminary results indicate that the pattern of secondary mixed emotion provides individuals with a higher capacity to handle adversity than the other two patterns of mixed emotional experience. PMID:25084461

  6. Trace organic removal by photochemical oxidation

    International Nuclear Information System (INIS)

    Gupta, S.K. Sen; Peori, R.G.; Wickware, S.L.

    1995-02-01

    Photochemical oxidation methods can be used for the destruction of dissolved organic contaminants in most process effluent streams, including those originating from the nuclear power sector. Evaporators can be used to separate organic contaminants from the aqueous phase if they are non volatile, but a large volume of secondary waste (concentrate) is produced, and the technology is capital-intensive. This paper describes two different types of photochemical oxidation technologies used to destroy trace organics in wastewater containing oil and grease. (author). 9 refs., 4 figs

  7. Dual enzymatic dynamic kinetic resolution by Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase and Candida antarctica lipase B

    KAUST Repository

    Karume, Ibrahim

    2016-10-04

    The immobilization of Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase (TeSADH) using sol–gel method enables its use to racemize enantiopure alcohols in organic media. Here, we report the racemization of enantiopure phenyl-ring-containing secondary alcohols using xerogel-immobilized W110A TeSADH in hexane rather than the aqueous medium required by the enzyme. We further showed that this racemization approach in organic solvent was compatible with Candida antarctica lipase B (CALB)-catalyzed kinetic resolution. This compatibility, therefore, allowed a dual enzymatic dynamic kinetic resolution of racemic alcohols using CALB-catalyzed kinetic resolution and W110A TeSADH-catalyzed racemization of phenyl-ring-containing alcohols.

  8. Thermal pre-treatment of primary and secondary sludge at 70ºC prior to anaerobic digestion

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, H.N.; Lu, Jingquan

    2005-01-01

    . The present study investigates the effect of the pre-treatment at 70 degrees C on thermophilic (55 degrees C) anaerobic digestion of primary and secondary sludge in continuously operated digesters. Thermal pre-treatment of primary and secondary sludge at 70 degrees C enhanced the removal of organic matter...... and the methane production during the subsequent anaerobic digestion step at 55 degrees C. It also greatly contributed to the destruction of pathogens present in primary sludge. Finally it results in enhanced microbial activities of the subsequent anaerobic step suggesting that the same efficiencies in organic...... matter removal and methane recovery could be obtained at lower HRTs....

  9. Complex refractive indices in the near-ultraviolet spectral region of biogenic secondary organic aerosol aged with ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Flores, J. M.; Washenfelder, Rebecca; Adler, Gabriela; Lee, H-J; Segev, Lior; Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey; Brown, Steven; Rudich, Yinon

    2014-05-14

    Atmospheric absorption by brown carbon aerosol may play an important role in global radiative forcing. Brown carbon arises from both primary and secondary sources, but the mechanisms and reactions for the latter are highly uncertain. One proposed mechanism is the reaction of ammonia or amino acids with carbonyl products in secondary organic aerosol (SOA). We generated SOA in situ by reacting biogenic alkenes (α-pinene, limonene, and α-humulene) with excess ozone, humidifying the resulting aerosol, and reacting the humidified aerosol with gaseous ammonia. We determined the complex refractive indices (RI) in the 360 – 420 nm range for these aerosols using broadband cavity enhanced spectroscopy (BBCES). The average real part (n) of the measured spectral range of the NH3-aged α-pinene SOA increased from n = 1.50 (±0.01) for the unreacted SOA to n = 1.57 (± 0.01) after a 1.5h exposure to 1.9 ppm NH3; whereas,the imaginary component (k) remained below k < 0.001 (± 0.002). For the limonene and α-humulene SOA the real part did not change significantly, and we observed a small change in the imaginary component of the RI. The imaginary component increased from k = 0.0 to an average k= 0.029 (± 0.021) for α-humulene SOA, and from k < 0.001 (± 0.002) to an average k = 0.032 (±0.019) for limonene SOA after a 1.5 h exposure to 1.3 and 1.9 ppm of NH3, respectively. Collected filter samples of the aged and unreacted α-pinene SOA and limonene SOA were analyzed off-line with nanospray desorption electrospray ionization high resolution mass spectrometry (nano-DESI/HR-MS), and in-situ with a Time-of-Fligh Aerosol Mass Spectrometer, confirming that the SOA reacted and that various nitrogen-containing reaction products formed. If we assume that NH3 aging reactions scale linearly with time and concentration, then a 1.5 h reaction with 1 ppm NH3 in the laboratory is equivalent to 24 h reaction with 63 ppbv NH3, indicating that the observed aerosol absorption will be limited

  10. Organic Matter Dynamics in Soils Regenerating from Degraded ...

    African Journals Online (AJOL)

    The area of secondary forest (SF) regenerating from degraded abandoned rubber (Hevea brasiliensis) plantation is increasing in the rainforest zone of south southern Nigeria; however, the build-up of soil organic matter following abandonment is not well understood. This study examined the build-up of soil organic matter in ...

  11. Ice nucleation activity of diesel soot particles at cirrus relevant temperature conditions: Effects of hydration, secondary organics coating, soot morphology, and coagulation

    Science.gov (United States)

    Kulkarni, Gourihar; China, Swarup; Liu, Shang; Nandasiri, Manjula; Sharma, Noopur; Wilson, Jacqueline; Aiken, Allison C.; Chand, Duli; Laskin, Alexander; Mazzoleni, Claudio; Pekour, Mikhail; Shilling, John; Shutthanandan, Vaithiyalingam; Zelenyuk, Alla; Zaveri, Rahul A.

    2016-04-01

    Ice formation by diesel soot particles was investigated at temperatures ranging from -40 to -50°C. Size-selected soot particles were physically and chemically aged in an environmental chamber, and their ice nucleating properties were determined using a continuous flow diffusion type ice nucleation chamber. Bare (freshly formed), hydrated, and compacted soot particles, as well as α-pinene secondary organic aerosol (SOA)-coated soot particles at high relative humidity conditions, showed ice formation activity at subsaturation conditions with respect to water but below the homogeneous freezing threshold conditions. However, SOA-coated soot particles at dry conditions were observed to freeze at homogeneous freezing threshold conditions. Overall, our results suggest that heterogeneous ice nucleation activity of freshly emitted diesel soot particles are sensitive to some of the aging processes that soot can undergo in the atmosphere.

  12. Male secondary sexu al characters in Aphnaeinae wings (Lepidoptera: Lycaenidae

    Directory of Open Access Journals (Sweden)

    Bálint, Zsolt

    2017-04-01

    Full Text Available Male secondary sexual characters have been discovered on the hindwing verso of genera Aphnaeus Hübner, [1819], Cigaritis Donzel, 1847, Lipaphnaeus Aurivillius, 1916 and Pseudaletis Druce, 1888 representing the Palaeotropical subfamily Aphnaeinae Lycaenidae: Lepidoptera. Relevant wing parts are illustrated, described, and some observations on the organs are briefly annotated. With an appendix and 14 figures.

  13. Tropical biodiversity: has it been a potential source of secondary metabolites useful for medicinal chemistry?

    Energy Technology Data Exchange (ETDEWEB)

    Valli, Marilia; Pivatto, Marcos; Danuello, Amanda; Castro-Gamboa, Ian; Silva, Dulce Helena Siqueira; Cavalheiro, Alberto Jose; Araujo, Angela Regina; Furlan, Maysa; Lopes, Marcia Nasser; Bolzani, Vanderlan da Silva, E-mail: bolzaniv@iq.unesp.br [UNESP, Araraquara, SP (Brazil). Inst. de Quimica. Dept. de Quimica Organica

    2012-07-01

    The use of natural products has definitely been the most successful strategy in the discovery of novel medicines. Secondary metabolites from terrestrial and marine organisms have found considerable use in the treatment of numerous diseases and have been considered lead molecules both in their natural form and as templates for medicinal chemistry. This paper seeks to show the great value of secondary metabolites and emphasize the rich chemical diversity of Brazilian biodiversity. This natural chemical library remains understudied, but can be a useful source of new secondary metabolites with potential application as templates for drug discovery. (author)

  14. Tropical biodiversity: has it been a potential source of secondary metabolites useful for medicinal chemistry?

    Directory of Open Access Journals (Sweden)

    Marilia Valli

    2012-01-01

    Full Text Available The use of natural products has definitely been the most successful strategy in the discovery of novel medicines. Secondary metabolites from terrestrial and marine organisms have found considerable use in the treatment of numerous diseases and have been considered lead molecules both in their natural form and as templates for medicinal chemistry. This paper seeks to show the great value of secondary metabolites and emphasize the rich chemical diversity of Brazilian biodiversity. This natural chemical library remains understudied, but can be a useful source of new secondary metabolites with potential application as templates for drug discovery.

  15. Tropical biodiversity: has it been a potential source of secondary metabolites useful for medicinal chemistry?

    International Nuclear Information System (INIS)

    Valli, Marilia; Pivatto, Marcos; Danuello, Amanda; Castro-Gamboa, Ian; Silva, Dulce Helena Siqueira; Cavalheiro, Alberto Jose; Araujo, Angela Regina; Furlan, Maysa; Lopes, Marcia Nasser; Bolzani, Vanderlan da Silva

    2012-01-01

    The use of natural products has definitely been the most successful strategy in the discovery of novel medicines. Secondary metabolites from terrestrial and marine organisms have found considerable use in the treatment of numerous diseases and have been considered lead molecules both in their natural form and as templates for medicinal chemistry. This paper seeks to show the great value of secondary metabolites and emphasize the rich chemical diversity of Brazilian biodiversity. This natural chemical library remains understudied, but can be a useful source of new secondary metabolites with potential application as templates for drug discovery. (author)

  16. Antifouling Activity of Secondary Metabolites Isolated from Chinese Marine Organisms

    KAUST Repository

    Li, Yong Xin

    2013-04-25

    Biofouling results in tremendous economic losses to maritime industries around the world. A recent global ban on the use of organotin compounds as antifouling agents has further raised demand for safe and effective antifouling compounds. In this study, 49 secondary metabolites, including diterpenoids, steroids, and polyketides, were isolated from soft corals, gorgonians, brown algae, and fungi collected along the coast of China, and their antifouling activity was tested against cyprids of the barnacle Balanus (Amphibalanus) amphitrite. Twenty of the compounds were found to inhibit larval settlement significantly at a concentration of 25 μg ml-1. Two briarane diterpenoids, juncin O (2) and juncenolide H (3), were the most promising non-toxic antilarval settlement candidates, with EC50 values less than 0.13 μg ml-1 and a safety ratio (LC50/EC50) higher than 400. A preliminary structure-activity relationships study indicated that both furanon and furan moieties are important for antifouling activity. Intriguingly, the presence of hydroxyls enhanced their antisettlement activity. © 2013 Springer Science+Business Media New York.

  17. Antifouling Activity of Secondary Metabolites Isolated from Chinese Marine Organisms

    KAUST Repository

    Li, Yong Xin; Wu, Hui Xian; Xu, Ying; Shao, Chang Lun; Wang, Chang Yun; Qian, Pei Yuan

    2013-01-01

    Biofouling results in tremendous economic losses to maritime industries around the world. A recent global ban on the use of organotin compounds as antifouling agents has further raised demand for safe and effective antifouling compounds. In this study, 49 secondary metabolites, including diterpenoids, steroids, and polyketides, were isolated from soft corals, gorgonians, brown algae, and fungi collected along the coast of China, and their antifouling activity was tested against cyprids of the barnacle Balanus (Amphibalanus) amphitrite. Twenty of the compounds were found to inhibit larval settlement significantly at a concentration of 25 μg ml-1. Two briarane diterpenoids, juncin O (2) and juncenolide H (3), were the most promising non-toxic antilarval settlement candidates, with EC50 values less than 0.13 μg ml-1 and a safety ratio (LC50/EC50) higher than 400. A preliminary structure-activity relationships study indicated that both furanon and furan moieties are important for antifouling activity. Intriguingly, the presence of hydroxyls enhanced their antisettlement activity. © 2013 Springer Science+Business Media New York.

  18. Wintertime hygroscopicity and volatility of ambient urban aerosol particles

    Science.gov (United States)

    Enroth, Joonas; Mikkilä, Jyri; Németh, Zoltán; Kulmala, Markku; Salma, Imre

    2018-04-01

    Hygroscopic and volatile properties of atmospheric aerosol particles with dry diameters of (20), 50, 75, 110 and 145 nm were determined in situ by using a volatility-hygroscopicity tandem differential mobility analyser (VH-TDMA) system with a relative humidity of 90 % and denuding temperature of 270 °C in central Budapest during 2 months in winter 2014-2015. The probability density function of the hygroscopic growth factor (HGF) showed a distinct bimodal distribution. One of the modes was characterised by an overall mean HGF of approximately 1.07 (this corresponds to a hygroscopicity parameter κ of 0.033) independently of the particle size and was assigned to nearly hydrophobic (NH) particles. Its mean particle number fraction was large, and it decreased monotonically from 69 to 41 % with particle diameter. The other mode showed a mean HGF increasing slightly from 1.31 to 1.38 (κ values from 0.186 to 0.196) with particle diameter, and it was attributed to less hygroscopic (LH) particles. The mode with more hygroscopic particles was not identified. The probability density function of the volatility GF (VGF) also exhibited a distinct bimodal distribution with an overall mean VGF of approximately 0.96 independently of the particle size, and with another mean VGF increasing from 0.49 to 0.55 with particle diameter. The two modes were associated with less volatile (LV) and volatile (V) particles. The mean particle number fraction for the LV mode decreased from 34 to 21 % with particle diameter. The bimodal distributions indicated that the urban atmospheric aerosol contained an external mixture of particles with a diverse chemical composition. Particles corresponding to the NH and LV modes were assigned mainly to freshly emitted combustion particles, more specifically to vehicle emissions consisting of large mass fractions of soot likely coated with or containing some water-insoluble organic compounds such as non-hygroscopic hydrocarbon-like organics. The hygroscopic

  19. Laboratory Experiments and Modeling for Interpreting Field Studies of Secondary Organic Aerosol Formation Using an Oxidation Flow Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, Jose-Luis [Univ. of Colorado, Boulder, CO (United States)

    2016-02-01

    This grant was originally funded for deployment of a suite of aerosol instrumentation by our group in collaboration with other research groups and DOE/ARM to the Ganges Valley in India (GVAX) to study aerosols sources and processing. Much of the first year of this grant was focused on preparations for GVAX. That campaign was cancelled due to political reasons and with the consultation with our program manager, the research of this grant was refocused to study the applications of oxidation flow reactors (OFRs) for investigating secondary organic aerosol (SOA) formation and organic aerosol (OA) processing in the field and laboratory through a series of laboratory and modeling studies. We developed a gas-phase photochemical model of an OFR which was used to 1) explore the sensitivities of key output variables (e.g., OH exposure, O3, HO2/OH) to controlling factors (e.g., water vapor, external reactivity, UV irradiation), 2) develop simplified OH exposure estimation equations, 3) investigate under what conditions non-OH chemistry may be important, and 4) help guide design of future experiments to avoid conditions with undesired chemistry for a wide range of conditions applicable to the ambient, laboratory, and source studies. Uncertainties in the model were quantified and modeled OH exposure was compared to tracer decay measurements of OH exposure in the lab and field. Laboratory studies using OFRs were conducted to explore aerosol yields and composition from anthropogenic and biogenic VOC as well as crude oil evaporates. Various aspects of the modeling and laboratory results and tools were applied to interpretation of ambient and source measurements using OFR. Additionally, novel measurement methods were used to study gas/particle partitioning. The research conducted was highly successful and details of the key results are summarized in this report through narrative text, figures, and a complete list of publications acknowledging this grant.

  20. Assessment of doses due to secondary neutrons received by patient treated by proton therapy

    International Nuclear Information System (INIS)

    Sayah, R.; Martinetti, F.; Donadille, L.; Clairand, I.; Delacroix, S.; De Oliveira, A.; Herault, J.

    2010-01-01

    Proton therapy is a specific technique of radiotherapy which aims at destroying cancerous cells by irradiating them with a proton beam. Nuclear reactions in the device and in the patient himself induce secondary radiations involving mainly neutrons which contribute to an additional dose for the patient. The author reports a study aimed at the assessment of these doses due to secondary neutrons in the case of ophthalmological and intra-cranial treatments. He presents a Monte Carlo simulation of the room and of the apparatus, reports the experimental validation of the model (dose deposited by protons in a water phantom, ambient dose equivalent due to neutrons in the treatment room, absorbed dose due to secondary particles in an anthropomorphic phantom), and the assessment with a mathematical phantom of doses dues to secondary neutrons received by organs during an ophthalmological treatment. He finally evokes current works of calculation of doses due to secondary neutrons in the case of intra-cranial treatments