WorldWideScience

Sample records for winter polar vortex

  1. Polar vortex evolution during Northern Hemispheric winter 2004/05

    Directory of Open Access Journals (Sweden)

    T. Chshyolkova

    2007-06-01

    Full Text Available As a part of the project "Atmospheric Wave Influences upon the Winter Polar Vortices (0–100 km" of the CAWSES program, data from meteor and Medium Frequency radars at 12 locations and MetO (UK Meteorological Office global assimilated fields have been analyzed for the first campaign during the Northern Hemispheric winter of 2004/05. The stratospheric state has been described using the conventional zonal mean parameters as well as Q-diagnostic, which allows consideration of the longitudinal variability. The stratosphere was cold during winter of 2004/05, and the polar vortex was relatively strong during most of the winter with relatively weak disturbances occurring at the end of December and the end of January. For this winter the strongest deformation with the splitting of the polar vortex in the lower stratosphere was observed at the end of February. Here the results show strong latitudinal and longitudinal differences that are evident in the stratospheric and mesospheric data sets at different stations. Eastward winds are weaker and oscillations with planetary wave periods have smaller amplitudes at more poleward stations. Accordingly, the occurrence, time and magnitude of the observed reversal of the zonal mesospheric winds associated with stratospheric disturbances depend on the local stratospheric conditions. In general, compared to previous years, the winter of 2004/05 could be characterized by weak planetary wave activity at stratospheric and mesospheric heights.

  2. Evolution of microwave limb sounder ozone and the polar vortex during winter

    Science.gov (United States)

    Manney, G. L.; Froidevaux, L.; Waters, J. W.; Zurek, R. W.

    1995-01-01

    The evolution of polar ozone observed by the Upper Atmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS) is described for the northern hemisphere (NH) winters of 1991/1992, 1992/1993, and 1993/1994 and the southern hemisphere (SH) winters of 1992 and 1993. Imterannual and interhemispheric variability in polar ozone evolution are closely related to differences in the polar vortex and to the frequency, duration and strength of stratospheric sudden warmings. Ozone in the midstratospheric vortices increases during the winter, with largest increases associated with stratospheric warmings and a much larger increase in the NH than in the SH. A smaller NH increase was observed in 1993/1994, when the middle stratospheric vortex was stronger. During strong stratospheric warmings in the NH, the upper stratospheric vortex may be so much eroded that it presents little barrier to poleward transport; in contrast, the SH vortex remains strong throughout the stratosphere during wintertime warmings, and ozone increases only below the mixing ratio peak, due to enhanced diabatic descent. Ozone mixing ratios decrease rapidly in the lower stratosphere in both SH late winters, as expected from chemical destruction due to enhanced reactive chlorine. The interplay between dynamics and chemistry is more complex in the NH lower stratosphere and interannual variability is greater. Evidence has previously been shown for chemical ozone destruction in the 1991/1992 and 1992/1993 winters. We show here evidence suggesting some chemical destruction in late February and early March 1994. In the NH late winter lower stratosphere the pattern of high-ozone values (typical of the vortex) seen in mid-latitudes is related to the strength of the lower-stratospheric vortex, with the largest areal extent of high ozone outside the vortex in 1994, when the lower stratospheric vortex is relatively weak, and the least extent in 1993 when the lower stratospheric vortex is strongest.

  3. Polar Vortex Conditions during the 1995-96 Artic Winter: Meteorology and MLS Ozone

    Science.gov (United States)

    Manney, G. L.; Santee, M. L.; Froidevaux, L.; Waters, J. W.; Zurek, R. W.

    1996-01-01

    The 1995-96 northern hemisphere (NH) 205 winter stratosphere was colder than in any of the previous 17 winters, with lower stratospheric temperatures continuously below the type 1 (primarily HN03) polar stratospheric cloud (PSC) threshold for over 2 1/2 months. Upper tropospheric ridges in late Feb and early Mar 1996 led to the lowest observed NH lower stratospheric temperatures, and the latest observed NH temperatures below the type 2 (water ice) PSC threshold. Consistent with the unusual cold and chemical processing on PSCS, Upper Atmosphere Research Satellite (UARS) MLS observed a greater decrease in lower stratospheric ozone (03) in 1995-96 than in any of the previous 4 NH winters. 03 decreased throughout the vortex over an altitude range nearly as large as that typical of the southern hemisphere (SH). The decrease between late Dec 1995 and early Mar 1996 was about 2/3 of that over the equivalent SH period. As in other NH winters, temperatures in 1996 rose above the PSC threshold before the spring equinox, ending chemical processing in the NH vortex much earlier than is usual in the SH. A downward trend in column 03 above 100 hPa during Jan and Feb 1996 appears to be related to the lower stratospheric 03 depletion.

  4. The formation and evolution of Titan’s winter polar vortex

    NARCIS (Netherlands)

    Teanby, Nicholas; Bezard, Bruno; Vinatier, Sandrine; Sylvestre, Melody; Nixon, Conor; Irwin, Patrick; de Kok, R.J.; Calcutt, Simon; Flasar, Michael

    2017-01-01

    Saturn’s largest moon Titan has a substantial nitrogen-methane atmosphere, with strong seasonal effects, including formation of winter polar vortices. Following Titan’s 2009 northern spring equinox, peak solar heating moved to the northern hemisphere, initiating south-polar subsidence and winter

  5. Understanding dynamics of Martian winter polar vortex with “improved” moist-convective shallow water model

    Science.gov (United States)

    Rostami, M.; Zeitlin, V.

    2017-12-01

    We show how the properties of the Mars polar vortex can be understood in the framework of a simple shallow-water type model obtained by vertical averaging of the adiabatic “primitive” equations, and “improved” by inclusion of thermal relaxation and convective fluxes due to the phase transitions of CO 2, the major constituent of the Martian atmosphere. We perform stability analysis of the vortex, show that corresponding mean zonal flow is unstable, and simulate numerically non-linear saturation of the instability. We show in this way that, while non-linear adiabatic saturation of the instability tends to reorganize the vortex, the diabatic effects prevent this, and thus provide an explanation of the vortex form and longevity.

  6. Quantifying Subsidence in the 1999-2000 Arctic Winter Vortex

    Science.gov (United States)

    Greenblatt, Jeffery B.; Jost, Hans-juerg; Loewenstein, Max; Podolske, James R.; Bui, T. Paul; Elkins, James W.; Moore, Fred L.; Ray, Eric A.; Sen, Bhaswar; Margitan, James J.; hide

    2000-01-01

    Quantifying the subsidence of the polar winter stratospheric vortex is essential to the analysis of ozone depletion, as chemical destruction often occurs against a large, altitude-dependent background ozone concentration. Using N2O measurements made during SOLVE on a variety of platforms (ER-2, in-situ balloon and remote balloon), the 1999-2000 Arctic winter subsidence is determined from N2O-potential temperature correlations along several N2O isopleths. The subsidence rates are compared to those determined in other winters, and comparison is also made with results from the SLIMCAT stratospheric chemical transport model.

  7. Plasmonic vortex generator without polarization dependence

    Science.gov (United States)

    Wang, Han; Liu, Lixia; Liu, Chunxiang; Li, Xing; Wang, Shuyun; Xu, Qing; Teng, Shuyun

    2018-03-01

    In view of the limitations of vortex generators with polarization dependence at present, we propose a plasmonic vortex generator composed of rectangular holes etched in silver film, in which the optical vortex can be generated under arbitrary linearly polarized light illumination. Two sets of rectangular holes are arranged equidistantly on a circle and rotate in postulate directions. Theoretical analysis provides the design principle for the vortex generator, and numerical simulations give guidance on designating the vortex generator parameters. Experimental measurements verify the performance of the proposed vortex generator. Moreover, two alternative structures for the generation of a plasmonic vortex are also provided in this paper. The resulting perfect vortex, compact structure and flexible illumination conditions will lead to wide applications of this plasmonic vortex generator.

  8. Regional stratospheric warmings in the Pacific-Western Canada (PWC sector during winter 2004/2005: implications for temperatures, winds, chemical constituents and the characterization of the Polar vortex

    Directory of Open Access Journals (Sweden)

    A. H. Manson

    2008-11-01

    Full Text Available The vortex during winter 2004/2005 was interesting for several reasons. It has been described as "cold" stratospherically, with relatively strong westerly winds. Losses of ozone until the final warming in March were considerable, and comparable to the cold 1999–2000 winter. There were also modest warming events, indicated by peaks in 10 hPa zonal mean temperatures at high latitudes, near 1 January and 1 February. Events associated with a significant regional stratospheric warming in the Pacific-Western Canada (PWC sector then began and peaked toward the end of February, providing strong longitudinal variations in dynamical characteristics (Chshyolkova et al., 2007; hereafter C07. The associated disturbed vortex of 25 February was displaced from the pole and either elongated (upper or split into two cyclonic centres (lower.

    Observations from Microwave Limb Sounder (MLS on Aura are used here to study the thermal characteristics of the stratosphere in the Canadian-US (253° E and Scandinavian-Europe (16° E sectors. Undisturbed high latitude stratopause (55 km zonal mean temperatures during the mid-winter (December–February reached 270 K, warmer than empirical-models such as CIRA-86, suggesting that seasonal polar warming due to dynamical influences affects the high altitude stratosphere as well as the mesosphere. There were also significant stratopause differences between Scandinavia and Canada during the warming events of 1 January and 1 February, with higher temperatures near 275 K at 16° E. During the 25 February "PWC" event a warming occurred at low and middle stratospheric heights (10–30 km: 220 K at 253° E and the stratopause cooled; while over Scandinavia-Europe the stratosphere below ~30 km was relatively cold at 195 K and the stratopause became even warmer (>295 K and lower (~45 km. The zonal winds followed the associated temperature gradients so that the vertical and latitudinal gradients of the winds differed strongly

  9. Venus's southern polar vortex reveals precessing circulation.

    Science.gov (United States)

    Luz, D; Berry, D L; Piccioni, G; Drossart, P; Politi, R; Wilson, C F; Erard, S; Nuccilli, F

    2011-04-29

    Initial images of Venus's south pole by the Venus Express mission have shown the presence of a bright, highly variable vortex, similar to that at the planet's north pole. Using high-resolution infrared measurements of polar winds from the Venus Express Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument, we show the vortex to have a constantly varying internal structure, with a center of rotation displaced from the geographic south pole by ~3 degrees of latitude and that drifts around the pole with a period of 5 to 10 Earth days. This is indicative of a nonsymmetric and varying precession of the polar atmospheric circulation with respect to the planetary axis.

  10. Chemical Observations of a Polar Vortex Intrusion

    Science.gov (United States)

    Schoeberl, M. R.; Kawa, S. R.; Douglass, A. R.; McGee, T. J.; Browell, E.; Waters, J.; Livesey, N.; Read, W.; Froidevaux, L.

    2006-01-01

    An intrusion of vortex edge air in D the interior of the Arctic polar vortex was observed on the January 31,2005 flight of the NASA DC-8 aircraft. This intrusion was identified as anomalously high values of ozone by the AROTAL and DIAL lidars. Our analysis shows that this intrusion formed when a blocking feature near Iceland collapsed, allowing edge air to sweep into the vortex interior. along the DC-8 flight track also shows the intrusion in both ozone and HNO3. Polar Stratospheric Clouds (PSCs) were observed by the DIAL lidar on the DC-8. The spatial variability of the PSCs can be explained using MLS HNO3 and H2O observations and meteorological analysis temperatures. We also estimate vortex denitrification using the relationship between N2O and HNO3. Reverse domain fill back trajectory calculations are used to focus on the features in the MLS data. The trajectory results improve the agreement between lidar measured ozone and MLS ozone and also improve the agreement between the HNO3 measurements PSC locations. The back trajectory calculations allow us to compute the local denitrification rate and reduction of HCl within the filament. We estimate a denitrification rate of about lO%/day after exposure to below PSC formation temperature. Analysis of Aura MLS observations made

  11. A consistent definition of the Arctic polar vortex breakup in both the lower and upper stratosphere

    Science.gov (United States)

    Choi, W.; Seo, J.

    2014-12-01

    Breakup of the polar vortex is a dominant feature of the seasonal transition from winter to summer in the stratosphere, which significantly affects stratospheric O3 concentration and tropospheric weather. Previously several criteria for the vortex breakup have been suggested based on the potential vorticity (PV) and wind speed, however, those mainly have focused on the lower stratospheric vortex of which spatiotemporal evolution and decay are more continuous than those of the upper stratospheric vortex. To find a consistent criterion for the vortex breakup in both the lower and upper stratosphere, the present study defined a polar vortex breakup day as when PV gradient at the polar vortex edge becomes lower than that at the subtropical edge on the area equivalent latitude based on PV. With applying the new definition to the UK Met Office reanalysis data, the breakup days of the Arctic polar vortices on 18 isentropic levels from 450 K to 1300 K were calculated for the period of 1993-2005. In comparison with CH4, N2O and O3 measured by the ILAS and POAM II/III satellite instruments, the breakup days are well consistent with changes in the distribution of such tracers as well as their zonal standard deviations associated with the vortex structure breaking and irreversible mixing. The vortex breakup in the upper stratosphere occurs more or less a month prior to that in the middle and lower stratosphere while the stratospheric final warming events occurs simultaneously in the upper and lower stratosphere.

  12. The Distribution of Ozone in the Early Stages of Polar Vortex Development

    Science.gov (United States)

    Kawa, S. R.; Newman, P. A.; Schoeberl, M. R.; Bevilacqua, R.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Previous analysis has shown that the distribution of O3 at high northern latitudes in the lower-to-middle stratosphere at the beginning of the winter season, 1999-2000 has a characteristic distribution, which is consistent between in situ and satellite measurements [Kawa et al., The Interaction Between Dynamics and Chemistry of Ozone in the Set-up Phase of the Northern Hemisphere Polar Vortex, submitted manuscript, 2001 ]. Initial O3 profiles in the vortex are similar to each other and are quite different from outside the vortex at the same latitude and also from a zonal mean climatology. In the vortex, O3 is nearly constant from 500 to above 800 K with a value at 3 ppmv +/- approx.10%. Values outside the vortex are up to a factor of 2 higher and increase significantly with potential temperature. The seasonal time series of POAM data shows that relatively low O3 mixing ratios, which characterize the vortex in late fall, are already present at high latitudes at the end of summer in September before the vortex circulation sets up. This suggests a possible feedback role between O3 chemistry and the formation of the vortex, which is dominated by the seasonal radiation balance. Here we show that these characteristic O3 distributions are consistent from year to year and between the hemispheres. We will attempt to determine whether variations in fall vortex O3 are related in any way to O3 abundances and vortex structure later during winter and into spring.

  13. Controlling vortex chirality and polarity by geometry in magnetic nanodots

    OpenAIRE

    Agramunt Puig, Sebastià

    2014-01-01

    The independent control of both vortex chirality and polarity is a significant challenge in magnetic devices based on nano-sized magnetic vortex structures. By micromagnetic simulations here, we show that in soft ferromagnetic nanodots with an adequate modulated thickness, the desired combination of chirality and polarity can be achieved just by changing the direction of the in-plane applied magnetic field. Despite the complex behavior, the vortex chirality and polarity control can be summari...

  14. Functionalized liquid crystal polymers generate optical and polarization vortex beams

    Science.gov (United States)

    Sakamoto, Moritsugu; Nakamoto, Yuki; Tien, Tran Minh; Kawai, Kotaro; Noda, Kohei; Sasaki, Tomoyuki; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2017-08-01

    In recent year, optical and polarization vortex (OV and PV) beams, which has phase and polarization singularities, have much-attracted attention in various research fields due to their unique physical properties. In this presentation, we report our attempts for the vortex beam generation based on the photo-alignment technique of functionalized liquid crystal polymers. The OV and PV beam generations are respectively demonstrated by using azo-dye-doped liquid crystal polymers and photocrosslinkable polymer liquid crystal. Our approaches realize highly functionalized vortex beam generators which are expected to evolve the photonics applications of vortex beams.

  15. A quantitative analysis of the reactions involved in stratospheric ozone depletion in the polar vortex core

    Science.gov (United States)

    Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2017-09-01

    We present a quantitative analysis of the chemical reactions involved in polar ozone depletion in the stratosphere and of the relevant reaction pathways and cycles. While the reactions involved in polar ozone depletion are well known, quantitative estimates of the importance of individual reactions or reaction cycles are rare. In particular, there is no comprehensive and quantitative study of the reaction rates and cycles averaged over the polar vortex under conditions of heterogeneous chemistry so far. We show time series of reaction rates averaged over the core of the polar vortex in winter and spring for all relevant reactions and indicate which reaction pathways and cycles are responsible for the vortex-averaged net change of the key species involved in ozone depletion, i.e., ozone, chlorine species (ClOx, HCl, ClONO2), bromine species, nitrogen species (HNO3, NOx) and hydrogen species (HOx). For clarity, we focus on one Arctic winter (2004-2005) and one Antarctic winter (2006) in a layer in the lower stratosphere around 54 hPa and show results for additional pressure levels and winters in the Supplement. Mixing ratios and reaction rates are obtained from runs of the ATLAS Lagrangian chemistry and transport model (CTM) driven by the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis data. An emphasis is put on the partitioning of the relevant chemical families (nitrogen, hydrogen, chlorine, bromine and odd oxygen) and activation and deactivation of chlorine.

  16. A quantitative analysis of the reactions involved in stratospheric ozone depletion in the polar vortex core

    Directory of Open Access Journals (Sweden)

    I. Wohltmann

    2017-09-01

    Full Text Available We present a quantitative analysis of the chemical reactions involved in polar ozone depletion in the stratosphere and of the relevant reaction pathways and cycles. While the reactions involved in polar ozone depletion are well known, quantitative estimates of the importance of individual reactions or reaction cycles are rare. In particular, there is no comprehensive and quantitative study of the reaction rates and cycles averaged over the polar vortex under conditions of heterogeneous chemistry so far. We show time series of reaction rates averaged over the core of the polar vortex in winter and spring for all relevant reactions and indicate which reaction pathways and cycles are responsible for the vortex-averaged net change of the key species involved in ozone depletion, i.e., ozone, chlorine species (ClOx, HCl, ClONO2, bromine species, nitrogen species (HNO3, NOx and hydrogen species (HOx. For clarity, we focus on one Arctic winter (2004–2005 and one Antarctic winter (2006 in a layer in the lower stratosphere around 54 hPa and show results for additional pressure levels and winters in the Supplement. Mixing ratios and reaction rates are obtained from runs of the ATLAS Lagrangian chemistry and transport model (CTM driven by the European Centre for Medium-Range Weather Forecasts (ECMWF ERA-Interim reanalysis data. An emphasis is put on the partitioning of the relevant chemical families (nitrogen, hydrogen, chlorine, bromine and odd oxygen and activation and deactivation of chlorine.

  17. Applications of point vortex equilibria: blocking events and the stability of the polar vortex

    Directory of Open Access Journals (Sweden)

    Annette Müller

    2015-12-01

    Full Text Available The present study investigates non-linear dynamics of atmospheric flow phenomena on different scales as interactions of vortices. Thereby, we apply the idealised, two-dimensional concept of point vortices considering two important issues in atmospheric dynamics. First, we propose this not widely spread concept in meteorology to explain blocked weather situations using a three-point vortex equilibrium. Here, a steady state is given if the zonal mean flow is identical to the opposed translational velocity of the vortex system. We apply this concept exemplarily to two major blocked events establishing a new pattern recognition technique based on the kinematic vorticity number to determine the circulations and positions of the interacting vortices. By using reanalysis data, we demonstrate that the velocity of the tripole in a westward direction is almost equal to the westerly flow explaining the steady state of blocked events. Second, we introduce a novel idea to transfer a stability analysis of a vortex equilibrium to the stability of the polar vortex concerning its interaction with the quasi-biennial oscillation (QBO. Here, the point vortex system is built as a polygon ring of vortices around a central vortex. On this way we confirm observations that perturbations of the polar vortex during the QBO east phase lead to instability, whereas the polar vortex remains stable in QBO west phases. Thus, by applying point vortex theory to challenging problems in atmospheric dynamics we show an alternative, discrete view of synoptic and planetary scale motion.

  18. Defining the Polar Vortex Edge from a N20: Potential Temperature Correlation

    Science.gov (United States)

    Greenblatt, Jeffery B.; Jost, Hans-Juerg; Loewenstein, Max; Podolske, James R.; Bui, T. Paul; Hurst, Dale F.; Elkins, James W.; Herman, Robert L.; Webster, Christopher R.; Schauffler, Sue M.

    2002-01-01

    A prerequisite to studying phenomena in the winter stratospheric polar vortex is the separation of measurements inside and outside the dynamical barrier of the vortex edge. We describe a technique to accurately determine the inner edge of the vortex boundary region from measurements of potential temperature and a trace gas, such as N2O, and apply it to in situ aircraft and balloon measurements from the SOLVE/THESEO 2000 Arctic campaign. The method may be used to refine the Nash algorithm, which, due to the inherently coarser resolution of potential vorticity on which it is dependent, may misidentify the inner edge by more than 400 km and omit the identification of small, extravortex filaments within the vortex.

  19. Quantification of transport across the boundary of the lower stratospheric vortex during Arctic winter 2002/2003

    Directory of Open Access Journals (Sweden)

    G. Günther

    2008-07-01

    Full Text Available Strong perturbations of the Arctic stratosphere during the winter 2002/2003 by planetary waves led to enhanced stretching and folding of the vortex. On two occasions the vortex in the lower stratosphere split into two secondary vortices that re-merged after some days. As a result of these strong disturbances the role of transport in and out of the vortex was stronger than usual. An advection and mixing simulation with the Chemical Lagrangian Model of the Stratosphere (CLaMS utilising a suite of inert tracers tagging the original position of the air masses has been carried out. The results show a variety of synoptic and small scale features in the vicinity of the vortex boundary, especially long filaments peeling off the vortex edge and being slowly mixed into the mid latitude environment. The vortex folding events, followed by re-merging of different parts of the vortex led to strong filamentation of the vortex interior. During January, February, and March 2003 flights of the Russian high-altitude aircraft Geophysica were performed in order to probe the vortex, filaments and in one case the merging zone between the secondary vortices. Comparisons between CLaMS results and observations obtained from the Geophysica flights show in general good agreement.

    Several areas affected by both transport and strong mixing could be identified, allowing explanation of many of the structures observed during the flights. Furthermore, the CLaMS simulations allow for a quantification of the air mass exchange between mid latitudes and the vortex interior. The simulation suggests that after the formation of the vortex was completed, its interior remaind relatively undisturbed. Only during the two re-merging events were substantial amounts of extra-vortex air transported into the polar vortex. When in March the vortex starts weakening additional influence from lower latitudes becomes apparent in the model results.

    In the lower stratosphere export

  20. CO as a marker and probe of polar vortex structure in the upper stratosphere and mesosphere

    Science.gov (United States)

    de Zafra, R. L.; Muscari, G.

    2003-04-01

    We present new ground-based measurements of polar stratospheric and mesospheric CO showing that it serves as an excellent tracer of vortex position, size, and descent at an altitude range where other information may be sparse or unreliable. Observations were made with a mm-wave spectrometer at Thule, Greenland (76.5o N, 68.7o W), and involved almost-daily measurements between January 17 and March 4, 2002. Our analysis is supplemented with occasional observations made at the geographic South Pole during both summer and winter periods of 1999. Mixing ratio profiles are retrieved from pressure-broadened line shape measurements of the 230 GHz rotational emission line, using a spectrometer with a bandwidth of 50 MHz and a resolution of about 65 kHz. Although Doppler broadening increasingly dominates over pressure broadening in the mesosphere, eventually frustrating profile retrieval, extensive testing shows that rather accurate retrievals (Lidar probe for temperature retrievals in 2003. We find CO to be a very good marker for the upper vortex (e.g. 50-70 km), in agreement with recent analysis of 1991-92 ISAMS data by Allen et al. [J. Atmos. Sci. 56, 563-583, 1999]. Large changes in the vertical profile are evident from outside to inside the polar vortex in this altitude range. Observed short-term changes at 50-70 km are consistent with vortex position below 50 km. Relative to its January height just outside the vortex, we find that the CO mixing ratio peak had descended by ˜10 km (to ˜55 km altitude) within the vortex by late January of 2002, while the external peak altitude is already much lower (˜65 km) than the CO peak at low latitudes or in polar summer. From earlier South Pole trial observations (with poorer signal/noise ratio) we find the total column density above 40 km in polar summer to be only 6-7% of its winter value. We have also compared our total column density values above 64 km to the same computations by Solomon et al. [J. Atmos. Sci., 42, 1072

  1. Defining the Polar Vortex Edge Using an N2O: Potential Temperature Correlation Versus the Nash Criterion: A Comparison

    Science.gov (United States)

    Greenblatt, Jeffery B.; Jost, Hans-Juerg; Loewenstein, Max; Podolske, James R.; Bui, T. Paul; Hurst, Dale F.; Elkins, James W.; Herman, Robert L.; Webster, Christopher R.; Schauffler, Sue M.; hide

    2001-01-01

    A prerequisite to study phenomena in the winter stratospheric polar vortex is the separation of measurements inside and outside the dynamical barrier of the vortex edge. We describe a technique to accurately determine the inner edge of the vortex boundary region from measurements of potential temperature and a trace gas, such as N2O, and apply it to in situ aircraft and balloon measurements from the SOLVE/THESE02000 Arctic campaign. The method may be used to refine the Nash algorithm, which, due to the inherently coarser resolution of potential vorticity on which it is dependent, may misidentify the inner edge by up to 466 km, and omit the identification of small, extra-vortex filaments within the vortex.

  2. Different Stratospheric Polar Vortex States linked to Cold-Spells in North America and Northern Eurasia

    Science.gov (United States)

    Kretschmer, M.; Cohen, J. L.; Runge, J.; Coumou, D.

    2017-12-01

    The stratospheric polar vortex in boreal winter can influence the tropospheric circulation and thereby surface weather in the mid-latitudes. Weak states of the vortex, e.g. associated with Sudden Stratospheric Warmings (SSWs), often precede a negative phase of the North Atlantic Oscillation (NAO), and thus increase the risk of mid-latitude cold-spells especially over Eurasia. Here we show using cluster analysis that next to the well-documented relationship between a zonally symmetric disturbed vortex and a negative NAO, there exists a zonally asymmetric pattern linked to a negative Western Pacific Oscillation (WPO) and cold-spells in the northeastern US, like for example observed in February 2014. The latter is more synoptic in time-scale but occurs more frequently than SSWs. A causal effect network (CEN) approach gives insights into the underlying physical pathways and time-lags showing that high-pressure around Greenland leads to vertical wave activity over eastern Siberia leading to downward propagating waves over Alaska and high pressure over the North Pacific. Moreover, composites propose that a rather strong mid-stratospheric vortex seems to be favorable for this zonally asymmetric and reflective mechanism. Overall, the mutual relationship between stratospheric circulation and high-latitude blocking in both the Pacific and Atlantic Oceans is complex and involves mechanisms operating at different time-scales. Our results suggest that the stratospheric influence on winter circulation should not exclusively be analyzed in terms of a downward propagating Northern Annular Mode (NAM) signal and SSWs. In particular when studying the stratospheric impacts on North American temperature it is crucial to also consider the more transient and zonally asymmetric events which might help to improve seasonal winter predictions for this region.

  3. Vortex chain formation in regions of ion concentration polarization.

    Science.gov (United States)

    Hanasoge, Srinivas; Diez, Francisco J

    2015-09-07

    The local vortical flow generated inside an ion concentration polarization (ICP) region is evaluated experimentally. The ICP is induced by a patterned nanoporous self-assembling membrane integrated inside a single microchannel. A bottom-view image of the depletion region near the membrane revealed a primary vortex which results from the electric field amplification. A unique perspective of the flow is obtained by imaging the microchannel from its side. This visualization shows for the first time the formation of a chain of three vortices all rotating in the same direction in the depletion region. While observation of multiple vortices has been previously reported, it was in reference to counter rotating vortex pairs and not to the same direction of rotating vortex chain formation. A physical model is proposed which considers a two dimensionally varying concentration profile in the depletion region to account for the formation of multiple vortices rotating in the same direction. The fast rotating primary vortex changes the local concentration in regions adjacent to it, as the advection time scale is much higher than the diffusion time scale. Near the membrane, it moves the low concentration electrolyte from the bottom wall upwards into a higher concentration region. Away from the membrane, it moves the high concentration electrolyte from the middle of the channel downwards into a low concentration region. These local changes in the wall concentration result in a varying slip velocity capable of inducing a secondary vortex. Similarly, this secondary vortex can induce a tertiary one. A numerical simulation is performed using the proposed varying slip velocity model which showed excellent agreement with the experimental observations.

  4. Barotropic and baroclinic energy conversions associated with planetary wave forcing of the northern stratospheric polar vortex

    Science.gov (United States)

    Liberato, M. L. R.; Castanheira, J. M.; Dacamara, C. C.

    2009-04-01

    An analysis of the energy conversion of barotropic and baroclinic planetary waves for extended winter in the extratropical Northern Hemisphere is presented. The analysis is based on a three-dimensional normal mode expansion of the global circulation of the atmosphere (Castanheira et al. 2002; Liberato et al. 2007). This method allows separating the atmospheric circulation into planetary (Rossby) and inertio-gravity waves as well as characterising each type of wave by the respective zonal, meridional and vertical structures. The 3-D normal mode scheme further allows evaluating the contribution of each type of wave for the global total (i.e., kinetic + available potential) atmospheric energy. A brief overview of the normal mode energetics of the global atmospheric circulation is given, focusing on the energy conversions between barotropic and baroclinic components of different vertical and horizontal scales. The methodology is applied to the global NCEP/NCAR (National Centers for Environmental Prediction / National Center for Atmospheric Research) reanalysis data set, using extended winter (November to March) daily means of the horizontal wind components (u, v) and of the geopotential height, at the 17 standard pressure levels, with the spatial horizontal resolution available (2.5° regular grid) and spanning the period 1957-2008. Obtained results are then used to relate the variability of the stratospheric polar vortex to the variability of the energy of the forcing planetary waves. Barotropic and baroclinic energy conversions associated with planetary wave forcing of the northern winter polar vortex are finally analysed, during rapid stratospheric vortex decelerations and accelerations. Castanheira, J. M., H.-F. Graf, C. DaCamara, and A. Rocha, 2002: Using a physical reference frame to study global circulation variability. J. Atmos. Sci., 59, 1490-1501. Liberato, M. L. R., J. M. Castanheira, L. da la Torre, C. C. DaCamara and L. Gimeno, 2007: Wave Energy Associated

  5. Vortex-wide chlorine activation by a mesoscale PSC event in the Arctic winter of 2009/10

    Directory of Open Access Journals (Sweden)

    T. Wegner

    2016-04-01

    Full Text Available In the Arctic polar vortex of the 2009/10 winter temperatures were low enough to allow widespread formation of polar stratospheric clouds (PSCs. These clouds occurred during the initial chlorine activation phase which provided the opportunity to investigate the impact of PSCs on chlorine activation. Satellite observations of gas-phase species and PSCs are used in combination with trajectory modeling to assess this initial activation. The initial activation occurred in association with the formation of PSCs over the east coast of Greenland at the beginning of January 2010. Although this area of PSCs covered only a small portion of the vortex, it was responsible for almost the entire initial activation of chlorine vortex wide. Observations show HCl (hydrochloric acid mixing ratios decreased rapidly in and downstream of this region. Trajectory calculations and simplified heterogeneous chemistry modeling confirmed that the initial chlorine activation continued until ClONO2 (chlorine nitrate was completely depleted and the activated air masses were advected throughout the polar vortex. For the calculation of heterogeneous reaction rates, surface area density is estimated from backscatter observations. Modeled heterogeneous reaction rates along trajectories intersecting with the PSCs indicate that the initial phase of chlorine activation occurred in just a few hours. These calculations also indicate that chlorine activation on the binary background aerosol is significantly slower than on the PSC particles and the observed chlorine activation can only be explained by an increase in surface area density due to PSC formation. Furthermore, there is a strong correlation between the magnitude of the observed HCl depletion and PSC surface area density.

  6. Independent control of the vortex chirality and polarity in a pair of magnetic nanodots

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junqin; Wang, Yong, E-mail: wangyong@sinap.ac.cn; Cao, Jiefeng; Meng, Xiangyu; Zhu, Fangyuan; Wu, Yanqing; Tai, Renzhong

    2017-08-01

    Independent control of the vortex chirality and polarity is realized by changing the in-plane magnetic field direction in nanodot pair through Object Oriented Micromagnetic Framework (OOMMF) simulation. The two magnetic circles are close to each other and have magnetic interaction. The two circles always have the same polarity and opposite chirality at every remanent state. There are totally four predictable magnetic states in the nanodot pair which can be obtained in the remanent state relaxed from the saturation state along all possible directions. An explanation on the formation of vortex states is given by vortex dynamics. The vortex states are stable in large out-of-plane magnetic field which is in a direction opposite to the vortex polarity. The geometry of the nanodot pair gives a way to easily realize a vortex state with specific polarity and chirality.

  7. Heterogeneous chlorine activation on stratospheric aerosols and clouds in the Arctic polar vortex

    Directory of Open Access Journals (Sweden)

    T. Wegner

    2012-11-01

    Full Text Available Chlorine activation in the Arctic is investigated by examining different parameterizations for uptake coefficients on stratospheric aerosols, high-resolution in-situ measurements and vortex-wide satellite observations. The parameterizations for heterogeneous chemistry on liquid aerosols are most sensitive to temperature with the reaction rates doubling for every 1 K increase in temperature. However, differences between the currently available parameterizations are negligible. For Nitric Acid Trihydrate particles (NAT the major factors of uncertainty are the number density of nucleated particles and different parameterizations for heterogeneous chemistry. These two factors induce an uncertainty that covers several orders of magnitude on the reaction rate. Nonetheless, since predicted reaction rates on liquid aerosols always exceed those on NAT, the overall uncertainty for chlorine activation is small. In-situ observations of ClOx from Arctic winters in 2005 and 2010 are used to evaluate the heterogeneous chemistry parameterizations. The conditions for these measurements proved to be very different between those two winters with HCl being the limiting reacting partner for the 2005 measurements and ClONO2 for the 2010 measurements. Modeled levels of chlorine activation are in very good agreement with the in-situ observations and the surface area provided by Polar Stratospheric Clouds (PSCs has only a limited impact on modeled chlorine activation. This indicates that the parameterizations give a good representation of the processes in the atmosphere. Back-trajectories started on the location of the observations in 2005 indicate temperatures on the threshold for PSC formation, hence the surface area is mainly provided by the background aerosol. Still, the model shows additional chlorine activation during this time-frame, providing cautionary evidence for chlorine activation even in the absence of PSCs. Vortex-averaged satellite

  8. Nanoscale switch for vortex polarization mediated by Bloch core formation in magnetic hybrid systems

    Science.gov (United States)

    Wohlhüter, Phillip; Bryan, Matthew Thomas; Warnicke, Peter; Gliga, Sebastian; Stevenson, Stephanie Elizabeth; Heldt, Georg; Saharan, Lalita; Suszka, Anna Kinga; Moutafis, Christoforos; Chopdekar, Rajesh Vilas; Raabe, Jörg; Thomson, Thomas; Hrkac, Gino; Heyderman, Laura Jane

    2015-01-01

    Vortices are fundamental magnetic topological structures characterized by a curling magnetization around a highly stable nanometric core. The control of the polarization of this core and its gyration is key to the utilization of vortices in technological applications. So far polarization control has been achieved in single-material structures using magnetic fields, spin-polarized currents or spin waves. Here we demonstrate local control of the vortex core orientation in hybrid structures where the vortex in an in-plane Permalloy film coexists with out-of-plane maze domains in a Co/Pd multilayer. The vortex core reverses its polarization on crossing a maze domain boundary. This reversal is mediated by a pair of magnetic singularities, known as Bloch points, and leads to the transient formation of a three-dimensional magnetization structure: a Bloch core. The interaction between vortex and domain wall thus acts as a nanoscale switch for the vortex core polarization. PMID:26238042

  9. Missing chemistry of reactive nitrogen in the upper stratospheric polar winter

    Energy Technology Data Exchange (ETDEWEB)

    Kawa, S.R.; Douglass, A.R. [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Kumer, J.B. [Lockheed Palo Alto Research Lab., CA (United States)] [and others

    1995-10-01

    Data from the CLAES on UARS indicate that a significant mechanism for production of HNO{sub 3} in the middle to upper stratosphere is missing from the chemical reaction set currently used by atmospheric models. Measured HNO{sub 3} in the polar vortex is strongly enhanced relative to the extra-vortex at 1200 K potential temperature (near 3 mbar) in January, 1992. The HNO{sub 3} vertical profile shows this enhancement forms a secondary altitude maximum from about 10 to 2 mbar (800-1500 K). A chemistry/transport model (CTM) simulation of this period produces no increase of HNO{sub 3} in the vortex near 3 mbar and no secondary maximum in the HNO{sub 3} profile. Furthermore, the CTM produces relatively high N{sub 2}O{sub 5} in the vortex, with a vertical peak near 3 mbar, while both CLAES and ISAMS show a shallow minimum there. The implication of this comparison is that some unmodeled process is acting to enhance HNO{sub 3} and reduce N{sub 2}O{sub 5} at high latitudes in the winter middle and upper stratosphere. Heterogeneous conversion of N{sub 2}O{sub 5} to HNO{sub 3} on hydrated ion clusters is proposed as a possibility for the missing mechanism. 15 refs., 5 figs.

  10. Chemical analysis of refractory stratospheric aerosol particles collected within the arctic vortex and inside polar stratospheric clouds

    Directory of Open Access Journals (Sweden)

    M. Ebert

    2016-07-01

    Full Text Available Stratospheric aerosol particles with diameters larger than about 10 nm were collected within the arctic vortex during two polar flight campaigns: RECONCILE in winter 2010 and ESSenCe in winter 2011. Impactors were installed on board the aircraft M-55 Geophysica, which was operated from Kiruna, Sweden. Flights were performed at a height of up to 21 km and some of the particle samples were taken within distinct polar stratospheric clouds (PSCs. The chemical composition, size and morphology of refractory particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis. During ESSenCe no refractory particles with diameters above 500 nm were sampled. In total 116 small silicate, Fe-rich, Pb-rich and aluminum oxide spheres were found. In contrast to ESSenCe in early winter, during the late-winter RECONCILE mission the air masses were subsiding inside the Arctic winter vortex from the upper stratosphere and mesosphere, thus initializing a transport of refractory aerosol particles into the lower stratosphere. During RECONCILE, 759 refractory particles with diameters above 500 nm were found consisting of silicates, silicate ∕ carbon mixtures, Fe-rich particles, Ca-rich particles and complex metal mixtures. In the size range below 500 nm the presence of soot was also proven. While the data base is still sparse, the general tendency of a lower abundance of refractory particles during PSC events compared to non-PSC situations was observed. The detection of large refractory particles in the stratosphere, as well as the experimental finding that these particles were not observed in the particle samples (upper size limit ∼  5 µm taken during PSC events, strengthens the hypothesis that such particles are present in the lower polar stratosphere in late winter and have provided a surface for heterogeneous nucleation during PSC formation.

  11. Tracer-Based Determination of Vortex Descent in the 1999-2000 Arctic Winter

    Science.gov (United States)

    Greenblatt, Jeffery B.; Jost, Hans-Juerg; Loewenstein, Max; Podolske, James R.; Hurst, Dale F.; Elkins, James W.; Schauffler, Sue M.; Atlas, Elliot L.; Herman, Robert L.; Webster, Christopher R.

    2001-01-01

    A detailed analysis of available in situ and remotely sensed N2O and CH4 data measured in the 1999-2000 winter Arctic vortex has been performed in order to quantify the temporal evolution of vortex descent. Differences in potential temperature (theta) among balloon and aircraft vertical profiles (an average of 19-23 K on a given N2O or CH4 isopleth) indicated significant vortex inhomogeneity in late fall as compared with late winter profiles. A composite fall vortex profile was constructed for November 26, 1999, whose error bars encompassed the observed variability. High-latitude, extravortex profiles measured in different years and seasons revealed substantial variability in N2O and CH4 on theta surfaces, but all were clearly distinguishable from the first vortex profiles measured in late fall 1999. From these extravortex-vortex differences, we inferred descent prior to November 26: 397+/-15 K (1sigma) at 30 ppbv N2O and 640 ppbv CH4, and 28+/-13 K above 200 ppbv N2O and 1280 ppbv CH4. Changes in theta were determined on five N2O and CH4 isopleths from November 26 through March 12, and descent rates were calculated on each N2O isopleth for several time intervals. The maximum descent rates were seen between November 26 and January 27: 0.82+/-0.20 K/day averaged over 50-250 ppbv N2O. By late winter (February 26-March 12), the average rate had decreased to 0.10+/-0.25 K/day. Descent rates also decreased with increasing N2O; the winter average (November 26-March 5) descent rate varied from 0.75+/-0.10 K/day at 50 ppbv to 0.40+/-0.11 K/day at 250 ppbv. Comparison of these results with observations and models of descent in prior years showed very good overall agreement. Two models of the 1999-2000 vortex descent, SLIMCAT and REPROBUS, despite theta offsets with respect to observed profiles of up to 20 K on most tracer isopleths, produced descent rates that agreed very favorably with the inferred rates from observation.

  12. Tracer-based Determination of Vortex Descent in the 1999/2000 Arctic Winter

    Science.gov (United States)

    Greenblatt, Jeffrey B.; Jost, Hans-Juerg; Loewenstein, Max; Podolske, James R.; Hurst, Dale F.; Elkins, James W.; Schauffler, Sue M.; Atlas, Elliot L.; Herman, Robert L.; Webster, Chrisotopher R.

    2002-01-01

    A detailed analysis of available in situ and remotely sensed N2O and CH4 data measured in the 1999/2000 winter Arctic vortex has been performed in order to quantify the temporal evolution of vortex descent. Differences in potential temperature (theta) among balloon and aircraft vertical profiles (an average of 19-23 K on a given N2O or CH4 isopleth) indicated significant vortex inhomogeneity in late fall as compared with late winter profiles. A composite fall vortex profile was constructed for 26 November 1999, whose error bars encompassed the observed variability. High-latitude extravortex profiles measured in different years and seasons revealed substantial variability in N2O and CH4 on theta surfaces, but all were clearly distinguishable from the first vortex profiles measured in late fall 1999. From these extravortex-vortex differences we inferred descent prior to 26 November: as much as 397 plus or minus 15 K (lsigma) at 30 ppbv N2O and 640 ppbv CH4, and falling to 28 plus or minus 13 K above 200 ppbv N2O and 1280 ppbv CH4. Changes in theta were determined on five N2O and CH4 isopleths from 26 November through 12 March, and descent rates were calculated on each N2O isopleth for several time intervals. The maximum descent rates were seen between 26 November and 27 January: 0.82 plus or minus 0.20 K/day averaged over 50- 250 ppbv N2O. By late winter (26 February to 12 March), the average rate had decreased to 0.10 plus or minus 0.25 K/day. Descent rates also decreased with increasing N2O; the winter average (26 November to 5 March) descent rate varied from 0.75 plus or minus 0.10 K/day at 50 ppbv to 0.40 plus or minus 0.11 K/day at 250 ppbv. Comparison of these results with observations and models of descent in prior years showed very good overall agreement. Two models of the 1999/2000 vortex descent, SLIMCAT and REPROBUS, despite theta offsets with respect to observed profiles of up to 20 K on most tracer isopleths, produced descent rates that agreed very

  13. Three dimensional Lagrangian structures in the Antarctic Polar Vortex.

    Science.gov (United States)

    Mancho, Ana M.; Garcia-Garrido, Victor J.; Curbelo, Jezabel; Niang, Coumba; Mechoso, Carlos R.; Wiggins, Stephen

    2017-04-01

    Dynamical systems theory has supported the description of transport processes in fluid dynamics. For understanding trajectory patterns in chaotic advection the geometrical approach by Poincaré seeks for spatial structures that separate regions corresponding to qualitatively different types of trajectories. These structures have been referred to as Lagrangian Coherent Structures (LCS), which typically in geophysical flows are well described under the approach of incompressible 2D flows. Different tools have been used to visualize LCS. In this presentation we use Lagrangian Descriptors [1,2,3,4] (function M) for visualizing 3D Lagrangian structures in the atmosphere, in particular in the Antarctic Polar Vortex. The function M is computed in a fully 3D incompressible flow obtained from data provided by the European Centre for Medium-Range Weather Forecast and it is represented in 2D surfaces. We discuss the findings during the final warming that took place in the spring of 1979 [5]. This research is supported by MINECO grant MTM2014-56392-R. Support is acknowledged also from CSIC grant COOPB20265, U.S. NSF grant AGS-1245069 and ONR grant No. N00014- 01-1-0769. C. Niang acknowledges Fundacion Mujeres por Africa and ICMAT Severo Ochoa project SEV-2011-0087 for financial support. [1] C. Mendoza, A. M. Mancho. The hidden geometry of ocean flows. Physical Review Letters 105 (2010), 3, 038501-1-038501-4. [2] A. M. Mancho, S. Wiggins, J. Curbelo, C. Mendoza. Lagrangian Descriptors: A Method for Revealing Phase Space Structures of General Time Dependent Dynamical Systems. Communications in Nonlinear Science and Numerical Simulation. 18 (2013) 3530-3557. [3] C. Lopesino, F. Balibrea-Iniesta, S. Wiggins and A. M. Mancho. Lagrangian descriptors for two dimensional, area preserving autonomous and nonautonomous maps. Communications in Nonlinear Science and Numerical Simulations, 27 (2015) (1-3), 40-51. [4] C. Lopesino, F. Balibrea-Iniesta, V. J. García-Garrido, S. Wiggins, and A

  14. Generating, Separating and Polarizing Terahertz Vortex Beams via Liquid Crystals with Gradient-Rotation Directors

    Directory of Open Access Journals (Sweden)

    Shi-Jun Ge

    2017-10-01

    Full Text Available Liquid crystal (LC is a promising candidate for terahertz (THz devices. Recently, LC has been introduced to generate THz vortex beams. However, the efficiency is intensely dependent on the incident wavelength, and the transformed THz vortex beam is usually mixed with the residual component. Thus, a separating process is indispensable. Here, we introduce a gradient blazed phase, and propose a THz LC forked polarization grating that can simultaneously generate and separate pure THz vortices with opposite circular polarization. The specific LC gradient-rotation directors are implemented by a photoalignment technique. The generated THz vortex beams are characterized with a THz imaging system, verifying features of polarization controllability. This work may pave a practical road towards generating, separating and polarizing THz vortex beams, and may prompt applications in THz communications, sensing and imaging.

  15. Vortex phase-induced changes of the statistical properties of a partially coherent radially polarized beam.

    Science.gov (United States)

    Guo, Lina; Chen, Yahong; Liu, Xianlong; Liu, Lin; Cai, Yangjian

    2016-06-27

    Partially coherent radially polarized (PCRP) beam was introduced and generated in recent years. In this paper, we investigate the statistical properties of a PCRP beam embedded with a vortex phase (i.e., PCRP vortex beam). We derive the analytical formula for the cross-spectral density matrix of a PCRP vortex beam propagating through a paraxial ABCD optical system and analyze the statistical properties of a PCRP vortex beam focused by a thin lens. It is found that the statistical properties of a PCRP vortex beam on propagation are much different from those of a PCRP beam. The vortex phase induces not only the rotation of the beam spot, but also the changes of the beam shape, the degree of polarization and the state of polarization. We also find that the vortex phase plays a role of resisting the coherence-induced degradation of the intensity distribution and the coherence-induced depolarization. Furthermore, we report experimental generation of a PCRP vortex beam for the first time. Our results will be useful for trapping and rotating particles, free-space optical communications and detection of phase object.

  16. Generation of cylindrically polarized vector vortex beams with digital micromirror device

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Lei; Liu, Weiwei; Wang, Meng; Zhong, Mincheng; Wang, Ziqiang; Li, Yinmei, E-mail: liyinmei@ustc.edu.cn [Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026 (China); Ren, Yuxuan [National Center for Protein Sciences Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, CAS, Shanghai 201210 (China)

    2014-11-14

    We propose a novel technique to directly transform a linearly polarized Gaussian beam into vector-vortex beams with various spatial patterns. Full high-quality control of amplitude and phase is implemented via a Digital Micro-mirror Device (DMD) binary holography for generating Laguerre-Gaussian, Bessel-Gaussian, and helical Mathieu–Gaussian modes, while a radial polarization converter (S-waveplate) is employed to effectively convert the optical vortices into cylindrically polarized vortex beams. Additionally, the generated vector-vortex beams maintain their polarization symmetry after arbitrary polarization manipulation. Due to the high frame rates of DMD, rapid switching among a series of vector modes carrying different orbital angular momenta paves the way for optical microscopy, trapping, and communication.

  17. The high Arctic in extreme winters: vortex, temperature, and MLS and ACE-FTS trace gas evolution

    Directory of Open Access Journals (Sweden)

    G. L. Manney

    2008-02-01

    Full Text Available The first three Arctic winters of the ACE mission represented two extremes of winter variability: Stratospheric sudden warmings (SSWs in 2004 and 2006 were among the strongest, most prolonged on record; 2005 was a record cold winter. Canadian Arctic Atmospheric Chemistry Experiment (ACE Validation Campaigns were conducted at Eureka (80° N, 86° W during each of these winters. New satellite measurements from ACE-Fourier Transform Spectrometer (ACE-FTS, Sounding of the Atmosphere using Broadband Emission Radiometry (SABER, and Aura Microwave Limb Sounder (MLS, along with meteorological analyses and Eureka lidar temperatures, are used to detail the meteorology in these winters, to demonstrate its influence on transport, and to provide a context for interpretation of ACE-FTS and validation campaign observations. During the 2004 and 2006 SSWs, the vortex broke down throughout the stratosphere, reformed quickly in the upper stratosphere, and remained weak in the middle and lower stratosphere. The stratopause reformed at very high altitude, near 75 km. ACE measurements covered both vortex and extra-vortex conditions in each winter, except in late-February through mid-March 2004 and 2006, when the strong, pole-centered vortex that reformed after the SSWs resulted in ACE sampling only inside the vortex in the middle through upper stratosphere. The 2004 and 2006 Eureka campaigns were during the recovery from the SSWs, with the redeveloping vortex over Eureka. 2005 was the coldest winter on record in the lower stratosphere, but with an early final warming in mid-March. The vortex was over Eureka at the start of the 2005 campaign, but moved away as it broke up. Disparate temperature profile structure and vortex evolution resulted in much lower (higher temperatures in the upper (lower stratosphere in 2004 and 2006 than in 2005. Satellite temperatures agree well with lidar data up to 50–60 km, and ACE-FTS, MLS and SABER show good agreement in high

  18. The Interaction Between Dynamics and Chemistry of Ozone in the Set-up Phase of the Northern Hemisphere Polar Vortex

    Science.gov (United States)

    Kawa, S. R.; Bevilacqua, R.; Margitan, J. J.; Douglass, A. R.; Schoeberl, M. R.; Hoppel, K.; Sen, B.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    The morphology and evolution of the stratospheric ozone (O3) distribution at high latitudes in the Northern Hemisphere (NH) are examined for the late summer and fall seasons of 1999. This time period sets the O3 initial condition for the SOLVE/THESEO field mission performed during winter 1999-2000. In situ and satellite data are used along with a three-dimensional model of chemistry and transport (CTM) to determine the key processes that control the distribution of O3 in the lower-to-middle stratosphere. O3 in the vortex at the beginning of the winter season is found to be nearly constant from 500 to above 800 K with a value at 3 ppmv +/- approx. 10%. Values outside the vortex are up to a factor of 2 higher and increase significantly with potential temperature. The seasonal time series of data from POAM shows that relatively low O3 mixing ratios, which characterize the vortex in late fall, are already present at high latitudes at the end of summer before the vortex circulation sets up. Analysis of the CTM output shows that the minimum O3 and increase in variance in late summer are the result of: 1) stirring of polar concentric O3 gradients by nascent wave-driven transport, and 2) an acceleration of net photochemical loss with decreasing solar illumination. The segregation of low O3 mixing ratios into the vortex as the circulation strengthens through the fall suggests a possible feedback role between O3 chemistry and the vortex formation dynamics. Trajectory calculations from O3 sample points early in the fall, however, show only a weak correlation between initial O3 mixing ratio and potential vorticity later in the season consistent with order-of-magnitude calculations for the relative importance of O3 in the fall radiative balance at high latitudes. The possible connection between O3 chemistry and the dynamics of vortex formation does suggest that these feedbacks and sensitivities need to be better understood in order to make confident predictions of the recovery

  19. Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation

    Science.gov (United States)

    Meraner, Katharina; Schmidt, Hauke

    2018-01-01

    Energetic particles enter the polar atmosphere and enhance the production of nitrogen oxides and hydrogen oxides in the winter stratosphere and mesosphere. Both components are powerful ozone destroyers. Recently, it has been inferred from observations that the direct effect of energetic particle precipitation (EPP) causes significant long-term mesospheric ozone variability. Satellites observe a decrease in mesospheric ozone up to 34 % between EPP maximum and EPP minimum. Stratospheric ozone decreases due to the indirect effect of EPP by about 10-15 % observed by satellite instruments. Here, we analyze the climate impact of winter boreal idealized polar mesospheric and polar stratospheric ozone losses as caused by EPP in the coupled Max Planck Institute Earth System Model (MPI-ESM). Using radiative transfer modeling, we find that the radiative forcing of mesospheric ozone loss during polar night is small. Hence, climate effects of mesospheric ozone loss due to energetic particles seem unlikely. Stratospheric ozone loss due to energetic particles warms the winter polar stratosphere and subsequently weakens the polar vortex. However, those changes are small, and few statistically significant changes in surface climate are found.

  20. Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation

    Directory of Open Access Journals (Sweden)

    K. Meraner

    2018-01-01

    Full Text Available Energetic particles enter the polar atmosphere and enhance the production of nitrogen oxides and hydrogen oxides in the winter stratosphere and mesosphere. Both components are powerful ozone destroyers. Recently, it has been inferred from observations that the direct effect of energetic particle precipitation (EPP causes significant long-term mesospheric ozone variability. Satellites observe a decrease in mesospheric ozone up to 34 % between EPP maximum and EPP minimum. Stratospheric ozone decreases due to the indirect effect of EPP by about 10–15 % observed by satellite instruments. Here, we analyze the climate impact of winter boreal idealized polar mesospheric and polar stratospheric ozone losses as caused by EPP in the coupled Max Planck Institute Earth System Model (MPI-ESM. Using radiative transfer modeling, we find that the radiative forcing of mesospheric ozone loss during polar night is small. Hence, climate effects of mesospheric ozone loss due to energetic particles seem unlikely. Stratospheric ozone loss due to energetic particles warms the winter polar stratosphere and subsequently weakens the polar vortex. However, those changes are small, and few statistically significant changes in surface climate are found.

  1. Structured caustic vector vortex optical field: manipulating optical angular momentum flux and polarization rotation.

    Science.gov (United States)

    Chen, Rui-Pin; Chen, Zhaozhong; Chew, Khian-Hooi; Li, Pei-Gang; Yu, Zhongliang; Ding, Jianping; He, Sailing

    2015-05-29

    A caustic vector vortex optical field is experimentally generated and demonstrated by a caustic-based approach. The desired caustic with arbitrary acceleration trajectories, as well as the structured states of polarization (SoP) and vortex orders located in different positions in the field cross-section, is generated by imposing the corresponding spatial phase function in a vector vortex optical field. Our study reveals that different spin and orbital angular momentum flux distributions (including opposite directions) in different positions in the cross-section of a caustic vector vortex optical field can be dynamically managed during propagation by intentionally choosing the initial polarization and vortex topological charges, as a result of the modulation of the caustic phase. We find that the SoP in the field cross-section rotates during propagation due to the existence of the vortex. The unique structured feature of the caustic vector vortex optical field opens the possibility of multi-manipulation of optical angular momentum fluxes and SoP, leading to more complex manipulation of the optical field scenarios. Thus this approach further expands the functionality of an optical system.

  2. Chemical ozone losses in Arctic and Antarctic polar winter/spring season derived from SCIAMACHY limb measurements 2002–2009

    Directory of Open Access Journals (Sweden)

    T. Sonkaew

    2013-02-01

    Full Text Available Stratospheric ozone profiles are retrieved for the period 2002–2009 from SCIAMACHY measurements of limb-scattered solar radiation in the Hartley and Chappuis absorption bands of ozone. This data set is used to determine the chemical ozone losses in both the Arctic and Antarctic polar vortices by averaging the ozone in the vortex at a given potential temperature. The chemical ozone losses at isentropic levels between 450 K and 600 K are derived from the difference between observed ozone abundances and the ozone modelled taking diabatic cooling into account, but no chemical ozone loss. Chemical ozone losses of up to 30–40% between mid-January and the end of March inside the Arctic polar vortex are reported. Strong inter-annual variability of the Arctic ozone loss is observed, with the cold winters 2004/2005 and 2006/2007 showing chemical ozone losses inside the polar vortex at 475 K, where 1.7 ppmv and 1.4 ppmv of ozone were removed, respectively, over the period from 22 January to beginning of April and 0.9 ppmv and 1.2 ppmv, respectively, during February. For the winters of 2007/2008 and 2002/2003, ozone losses of about 0.8 ppmv and 0.4 ppmv, respectively are estimated at the 475 K isentropic level for the period from 22 January to beginning of April. Essentially no ozone losses were diagnosed for the relatively warm winters of 2003/2004 and 2005/2006. The maximum ozone loss in the SCIAMACHY data set was found in 2007 at the 600 K level and amounted to about 2.1 ppmv for the period between 22 January and the end of April. Enhanced losses close to this altitude were found in all investigated Arctic springs, in contrast to Antarctic spring. The inter-annual variability of ozone losses and PSC occurrence rates observed during Arctic spring is consistent with the known QBO effects on the Arctic polar vortex, with exception of the unusual Arctic winter 2008/2009.

    The maximum total ozone mass loss of about 25 million tons was found in the

  3. Global drivers of the stratospheric polar vortex via nonlinear causal discovery

    Science.gov (United States)

    Kretschmer, M.; Runge, J.; Coumou, D.

    2016-12-01

    The stratospheric polar vortex plays a major role in the Northern Hemisphere midlatitudes, especially in driving extreme weather conditions. Many different global drivers, from Arctic sea ice to tropical climate patterns, are hypothesized to influence its stability, including linear and nonlinear mechanisms. Here a novel causal discovery approach, extending previous work [1], that is adapted to the particular challenges posed by such a high-dimensional dataset comprised of multiple, possibly nonlinearly coupled time series is demonstrated. While links in the reconstructed network can be called causal only with respect to the set of analyzed variables, the absence of causal links allows to assess where physical mechanisms are unlikely.The present work confirms recent results obtained with a similar, but linear, approach [2], regarding the impact of Barents and Kara sea ice concentrations, and extends the analysis also to tropical drivers to cover more proposed mechanisms. [1] Jakob Runge, Vladimir Petoukhov, and Jürgen Kurths, 2014: Quantifying the Strength and Delay of Climatic Interactions: The Ambiguities of Cross Correlation and a Novel Measure Based on Graphical Models. J. Climate 27, 720-739, doi: 10.1175/JCLI-D-13-00159.1.[2] Marlene Kretschmer, Dim Coumou, Jonathan F. Donges, and Jakob Runge, 2016: Using Causal Effect Networks to Analyze Different Arctic Drivers of Midlatitude Winter Circulation. J. Climate 29, 4069-4081, doi: 10.1175/JCLI-D-15-0654.1.

  4. Connections Between the Spring Breakup of the Southern Hemisphere Polar Vortex, Stationary Waves, and Air-sea Roughness

    Science.gov (United States)

    Garfinkel, Chaim I.; Oman, Luke David; Barnes, Elizabeth A.; Waugh, Darryn W.; Hurwitz, Margaret H.; Molod, Andrea M.

    2013-01-01

    A robust connection between the drag on surface-layer winds and the stratospheric circulation is demonstrated in NASA's Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM). Specifically, an updated parameterization of roughness at the air-sea interface, in which surface roughness is increased for moderate wind speeds (4ms to 20ms), leads to a decrease in model biases in Southern Hemispheric ozone, polar cap temperature, stationary wave heat flux, and springtime vortex breakup. A dynamical mechanism is proposed whereby increased surface roughness leads to improved stationary waves. Increased surface roughness leads to anomalous eddy momentum flux convergence primarily in the Indian Ocean sector (where eddies are strongest climatologically) in September and October. The localization of the eddy momentum flux convergence anomaly in the Indian Ocean sector leads to a zonally asymmetric reduction in zonal wind and, by geostrophy, to a wavenumber-1 stationary wave pattern. This tropospheric stationary wave pattern leads to enhanced upwards wave activity entering the stratosphere. The net effect is an improved Southern Hemisphere vortex: the vortex breaks up earlier in spring (i.e., the spring late-breakup bias is partially ameliorated) yet is no weaker in mid-winter. More than half of the stratospheric biases appear to be related to the surface wind speed biases. As many other chemistry climate models use a similar scheme for their surface layer momentum exchange and have similar biases in the stratosphere, we expect that results from GEOSCCM may be relevant for other climate models.

  5. Pattern recognition analysis of polar clouds during summer and winter

    Science.gov (United States)

    Ebert, Elizabeth E.

    1992-01-01

    A pattern recognition algorithm is demonstrated which classifies eighteen surface and cloud types in high-latitude AVHRR imagery based on several spectral and textural features, then estimates the cloud properties (fractional coverage, albedo, and brightness temperature) using a hybrid histogram and spatial coherence technique. The summertime version of the algorithm uses both visible and infrared data (AVHRR channels 1-4), while the wintertime version uses only infrared data (AVHRR channels 3-5). Three days of low-resolution AVHRR imagery from the Arctic and Antarctic during January and July 1984 were analyzed for cloud type and fractional coverage. The analysis showed significant amounts of high cloudiness in the Arctic during one day in winter. The Antarctic summer scene was characterized by heavy cloud cover in the southern ocean and relatively clear conditions in the continental interior. A large region of extremely low brightness temperatures in East Antarctica during winter suggests the presence of polar stratospheric cloud.

  6. Interannual Variability of Ozone in the Polar Vortex during the Fall Season

    Science.gov (United States)

    Bhartia, P. K. (Technical Monitor); Kawa, S. R.; Newman, P. A.; Schoeberl, M. R.; Stolarski, R. S.; Bevilacqua, R.

    2002-01-01

    Previous analysis has shown that the distribution of O3 at high northern latitudes in the lower-to-middle stratosphere at the beginning of the winter season has a characteristic distribution, which is consistent between in situ and satellite measurements. Initial O3 profiles in the vortex are similar to each other and are quite different from outside the vortex at the same latitude and also from a zonal mean climatology. In the vortex, O3 is nearly constant from 500 to above 800 K with a value near 3 ppmv. Values outside the vortex are up to a factor of 2 higher and increase significantly with potential temperature. Model analysis indicates that the characteristic vortex O3 profiles arise from a combination of seasonally accelerated photochemical loss at high latitudes and minimal transport of air from lower latitudes. Analysis of the relatively high-resolution POAM data shows that these characteristic O3 distributions are consistent from year to year and between the hemispheres. Here we emphasize analysis of the 24-year time series of O3 data from SBUV in the lower-to-middle stratosphere at high latitudes in the fall vortex. We find that the variability of O3 from SBUV is relatively small in this regime and no significant trend is detectable. The implications of the findings for stratospheric O3 chemistry and transport will be explored.

  7. Correlations of mesospheric winds with subtle motion of the Arctic polar vortex

    Directory of Open Access Journals (Sweden)

    Y. Bhattacharya

    2010-01-01

    Full Text Available This paper investigates the relationship between high latitude upper mesospheric winds and the state of the stratospheric polar vortex in the absence of major sudden stratospheric warmings. A ground based Michelson Interferometer stationed at Resolute Bay (74°43' N, 94°58' W in the Canadian High Arctic is used to measure mesopause region neutral winds using the hydroxyl (OH Meinel-band airglow emission (central altitude of ~85 km. These observed winds are compared to analysis winds in the upper stratosphere during November and December of 1995 and 1996; years characterized as cold, stable polar vortex periods. Correlation of mesopause wind speeds with those from the upper stratosphere is found to be significant for the 1996 season when the polar vortex is subtly displaced off its initial location by a strong Aleutian High. These mesopause winds are observed to lead stratospheric winds by approximately two days with increasing (decreasing mesospheric winds predictive of decreasing (increasing stratospheric winds. No statistically significant correlations are found for the 1995 season when there is no such displacement of the polar vortex.

  8. The effect of preceding wintertime Arctic polar vortex on springtime NDVI patterns in boreal Eurasia, 1982-2015

    Science.gov (United States)

    Li, Jing; Fan, Ke; Xu, Jianjun; Powell, Alfred M.; Kogan, Felix

    2017-07-01

    The polar vortex is implicated in certain cold events in boreal Eurasia and has a further influence on land surface properties (e.g., vegetation and snow) during spring. The Normalized Difference Vegetation Index (NDVI) can be used as a proxy of land surface responses to climate changes to a certain degree. In this study, we demonstrate the significant correlation between preceding wintertime Arctic polar vortex intensity (WAPVI) and springtime NDVI (SNDVI) over a 34-year period (1982-2015) in boreal Eurasia (50°-75°N, 0°-150°E). Results show that a positive phase of WAPVI tends to increase the SNDVI in Europe and Lake Baikal, but causes a significant decrease in Siberia; the physical mechanisms involved in this relationship are then investigated. A positive phase of WAPVI leads to anomalies in surface air temperature and rainfall over Eurasia, which then induces a significant decrease in snow cover and snow depth in Europe and Lake Baikal and an increase of snow depth in Siberia. The colder ground temperature in Siberia during spring is considered responsible for the stronger snow depth and weaker vegetation growth in this region. The weaker and thinner snow cover in Europe and Baikal produces a decrease in albedo and an increase in heat. Thin snow melts fast in the following spring and land releases more heat to the atmosphere; consequently, warm and moist land surface facilitates vegetation growth in Europe and the Baikal regions during positive WAPVI years. In addition, WAPVI can induce sea surface temperature (SST) anomalies in the North Atlantic, which displays a tripole pattern similar to that of the empirical mode pattern in winter. Furthermore, the SST anomalous pattern persisting from winter to spring can trigger a stationary wave-train propagating from west to east in boreal Eurasia, with "negative-positive-negative-positive" geopotential height anomalies, which further exerts an impact on vegetation growth through modulation of the heat balance.

  9. Polarization-selective vortex-core switching by tailored orthogonal Gaussian-pulse currents

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Young-Sang; Lee, Ki-Suk; Jung, Hyunsung; Choi, Youn-Seok; Yoo, Myoung-Woo; Han, Dong-Soo; Im, Mi-Young; Fischer, Peter; Kim, Sang-Koog

    2011-05-01

    We experimentally demonstrate low-power-consumption vortex-core switching in magnetic nanodisks using tailored rotating magnetic fields produced with orthogonal and unipolar Gaussian-pulse currents. The optimal width of the orthogonal pulses and their time delay are found, from analytical and micromagnetic numerical calculations, to be determined only by the angular eigenfrequency ωD for a given vortex-state disk of polarization p, such that σ=1/ωD and Δt=π/2p/ωD. The estimated optimal pulse parameters are in good agreement with the experimental results. Finally, this work lays a foundation for energy-efficient information recording in vortex-core cross-point architecture.

  10. Polar night vortex breakdown and large-scale stirring in the southern stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Camara, Alvaro de la [Universidad Complutense de Madrid, Departamento de Geofisica y Meteorologia, Madrid (Spain); University of California, Department of Atmospheric and Oceanic Sciences, Los Angeles, CA (United States); Mechoso, C.R. [University of California, Department of Atmospheric and Oceanic Sciences, Los Angeles, CA (United States); Ide, K. [University of California, Department of Atmospheric and Oceanic Sciences, Los Angeles, CA (United States); University of Maryland, Department of Atmospheric and Oceanic Science, Collage Park, MD (United States); Walterscheid, R. [The Aerospace Corporation, Space Sciences Department, Los Angeles, CA (United States); Schubert, G. [University of California, Department of Earth and Space Sciences, Institute of Geophysics and Planetary Physics, Los Angeles, CA (United States)

    2010-11-15

    The present paper examines the vortex breakdown and large-scale stirring during the final warming of the Southern Hemisphere stratosphere during the spring of 2005. A unique set of in situ observations collected by 27 superpressure balloons (SPBs) is used. The balloons, which were launched from McMurdo, Antarctica, by the Strateole/VORCORE project, drifted for several weeks on two different isopycnic levels in the lower stratosphere. We describe balloon trajectories and compare them with simulations obtained on the basis of the velocity field from the GEOS-5 and NCEP/NCAR reanalyses performed with and without VORCORE data. To gain insight on the mechanisms responsible for the horizontal transport of air inside and outside the well-isolated vortex we examine the balloon trajectories in the framework of the Lagrangian properties of the stratospheric flow. Coherent structures of the flow are visualized by computing finite-time Lyapunov exponents (FTLE). A combination of isentropic analysis and FTLE distributions reveals that air is stripped away from the vortex's interior as stable manifolds eventually cross the vortex's edge. It is shown that two SPBs escaped from the vortex within high potential vorticity tongues that developed in association with wave breaking at locations along the vortex's edge where forward and backward FTLE maxima approximately intersect. The trajectories of three SPBs flying as a group at the same isopycnic level are examined and their behavior is interpreted in reference to the FTLE field. These results support the concept of stable and unstable manifolds governing transport of air masses across the periphery of the stratospheric polar vortex. (orig.)

  11. Dependence of model-simulated response to ozone depletion on stratospheric polar vortex climatology

    Science.gov (United States)

    Lin, Pu; Paynter, David; Polvani, Lorenzo; Correa, Gustavo J. P.; Ming, Yi; Ramaswamy, V.

    2017-06-01

    We contrast the responses to ozone depletion in two climate models: Community Atmospheric Model version 3 (CAM3) and Geophysical Fuild Dynamics Laboratory (GFDL) AM3. Although both models are forced with identical ozone concentration changes, the stratospheric cooling simulated in CAM3 is 30% stronger than in AM3 in annual mean, and twice as strong in December. We find that this difference originates from the dynamical response to ozone depletion, and its strength can be linked to the timing of the climatological springtime polar vortex breakdown. This mechanism is further supported by a variant of the AM3 simulation in which the southern stratospheric zonal wind climatology is nudged to be CAM3-like. Given that the delayed breakdown of the southern polar vortex is a common bias among many climate models, previous model-based assessments of the forced responses to ozone depletion may have been somewhat overestimated.

  12. Polarization dependent nanostructuring of silicon with femtosecond vortex pulse

    Directory of Open Access Journals (Sweden)

    M. G. Rahimian

    2017-08-01

    Full Text Available We fabricated conical nanostructures on silicon with a tip dimension of ∼ 70 nm using a single twisted femtosecond light pulse carrying orbital angular momentum (ℓ=±1. The height of the nano-cone, encircled by a smooth rim, increased from ∼ 350 nm to ∼ 1 μm with the pulse energy and number of pulses, whereas the apex angle remained constant. The nano-cone height was independent of the helicity of the twisted light; however, it is reduced for linear polarization compared to circular at higher pulse energies. Fluid dynamics simulations show nano-cones formation when compressive forces arising from the radial inward motion of the molten material push it perpendicular to the surface and undergo re-solidification. Simultaneously, the radial outward motion of the molten material re-solidifies after reaching the cold boundary to form a rim. Overlapping of two irradiated spots conforms to the fluid dynamics model.

  13. Insights into the three-dimensional Lagrangian geometry of the Antarctic polar vortex

    Directory of Open Access Journals (Sweden)

    J. Curbelo

    2017-07-01

    Full Text Available In this paper we study the three-dimensional (3-D Lagrangian structures in the stratospheric polar vortex (SPV above Antarctica. We analyse and visualize these structures using Lagrangian descriptor function M. The procedure for calculation with reanalysis data is explained. Benchmarks are computed and analysed that allow us to compare 2-D and 3-D aspects of Lagrangian transport. Dynamical systems concepts appropriate to 3-D, such as normally hyperbolic invariant curves, are discussed and applied. In order to illustrate our approach we select an interval of time in which the SPV is relatively undisturbed (August 1979 and an interval of rapid SPV changes (October 1979. Our results provide new insights into the Lagrangian structure of the vertical extension of the stratospheric polar vortex and its evolution. Our results also show complex Lagrangian patterns indicative of strong mixing processes in the upper troposphere and lower stratosphere. Finally, during the transition to summer in the late spring, we illustrate the vertical structure of two counterrotating vortices, one the polar and the other an emerging one, and the invariant separatrix that divides them.

  14. Stratospheric water vapour in the vicinity of the Arctic polar vortex

    Energy Technology Data Exchange (ETDEWEB)

    Maturilli, M. [Alfred Wegener Institute for Polar and Marine Research, Potsdam (Germany); Fierli, F. [CNR (Italy). Inst. for Atmospheric Sciences and Climate; Yushkov, V.; Lukyanov, A.; Khaykin, S. [Central Aerological Observatory, Moscow (Russian Federation); Hauchecorne, A. [CNRS, Verrieres-le-Buisson (France). Service d' Aeronomie

    2006-07-01

    The stratospheric water vapour mixing ratio inside, outside, and at the edge of the polar vortex has been accurately measured by the FLASH-B Lyman-Alpha hygrometer during the LAUTLOS campaign in Sodankylae, Finland, in January and February 2004. The retrieved H{sub 2}O profiles reveal a detailed view on the Arctic lower stratospheric water vapour distribution, and provide a valuable dataset for the validation of model and satellite data. Analysing the measurements with the semi-lagrangian advection model MIMOSA, water vapour profiles typical for the polar vortex' interior and exterior have been identified, and laminae in the observed profiles have been correlated to filamentary structures in the potential vorticity field. Applying the validated MIMOSA transport scheme to specific humidity fields from operational ECMWF analyses, large discrepancies from the observed profiles arise. Although MIMOSA is able to reproduce weak water vapour filaments and improves the shape of the profiles compared to operational ECMWF analyses, both models reveal a dry bias of about 1 ppmv in the lower stratosphere above 400 K, accounting for a relative difference from the measurements in the order of 20%. The large dry bias in the analysis representation of stratospheric water vapour in the Arctic implies the need for future regular measurements of water vapour in the polar stratosphere to allow the validation and improvement of climate models. (orig.)

  15. The Vector Vortex Coronagraph: Sensitivity to Low-Order Aberrations, Central Obscuration, Chromaticism, and Polarization

    Science.gov (United States)

    Mawet, Dimitri; Pueyo, Laurent; Moody, Dwight; Krist, John; Serabyn, Eugene

    2010-01-01

    The Vector Vortex Coronagraph is a phase-based coronagraph, one of the most efficient in terms of inner working angle, throughput, discovery space, contrast, and simplicity. Using liquid-crystal polymer technology, this new coronagraph has recently been the subject of lab demonstrations in the near-infrared, visible and was also used on sky at the Palomar observatory in the H and K bands (1.65 and 2.2 micrometers, respectively) to image the brown dwarf companion to HR 7672, and the three extasolar planets around HR 8799. However, despite these recent successes, the Vector Vortex Coronagraph is, as are most coronagraphs, sensitive to the central obscuration and secondary support structures, low-order aberrations (tip-tilt, focus, etc), bandwidth (chromaticism), and polarization when image-plane wavefront sensing is performed. Here, we consider in detail these sensitivities as a function of the topological charge of the vortex and design properties inherent to the manufacturing technology, and show that in practice all of them can be mitigated to meet specific needs.

  16. Interannual variations of early winter Antarctic polar stratospheric cloud formation and nitric acid observed by CALIOP and MLS

    Science.gov (United States)

    Lambert, Alyn; Santee, Michelle L.; Livesey, Nathaniel J.

    2016-12-01

    We use satellite-borne measurements collected over the last decade (2006-2015) from the Aura Microwave Limb Sounder (MLS) and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) to investigate the nitric acid distribution and the properties of polar stratospheric clouds (PSCs) in the early winter Antarctic vortex. Frequently, at the very start of the winter, we find that synoptic-scale depletion of HNO3 can be detected in the inner vortex before the first lidar detection of geophysically associated PSCs. The generation of "sub-visible" PSCs can be explained as arising from the development of a solid particle population with low number densities and large particle sizes. Assumed to be composed of nitric acid trihydrate (NAT), the sub-visible PSCs form at ambient temperatures well above the ice frost point, but also above the temperature at which supercooled ternary solution (STS) grows out of the background supercooled binary solution (SBS) distribution. The temperature regime of their formation, inferred from the simultaneous uptake of ambient HNO3 into NAT and their Lagrangian temperature histories, is at a depression of a few kelvin with respect to the NAT existence threshold, TNAT. Therefore, their nucleation requires a considerable supersaturation of HNO3 over NAT, and is consistent with a recently described heterogeneous nucleation process on solid foreign nuclei immersed in liquid aerosol. We make a detailed investigation of the comparative limits of detection of PSCs and the resulting sequestration of HNO3 imposed by lidar, mid-infrared, and microwave techniques. We find that the temperature history of air parcels, in addition to the local ambient temperature, is an important factor in the relative frequency of formation of liquid/solid PSCs. We conclude that the initiation of NAT nucleation and the subsequent development of large NAT particles capable of sedimentation and denitrification in the early winter do not emanate from an ice

  17. Vortex-averaged Arctic ozone depletion in the winter 2002/2003

    Directory of Open Access Journals (Sweden)

    T. Christensen

    2005-01-01

    Full Text Available A total ozone depletion of 68±7 Dobson units between 380 and 525K from 10 December 2002 to 10 March 2003 is derived from ozone sonde data by the vortex-average method, taking into account both diabatic descent of the air masses and transport of air into the vortex. When the vortex is divided into three equal-area regions, the results are 85±9DU for the collar region (closest to the edge, 52±5DU for the vortex centre and 68±7DU for the middle region in between centre and collar. Our results compare well with other studies: We find good agreement with ozone loss deduced from SAOZ data, with results inferred from POAM III observations and with results from tracer-tracer correlations using HF as the long-lived tracer. We find a higher ozone loss than that deduced by tracer-tracer correlations using CH4. We have made a careful comparison with Match results: The results were recalculated using a common time period, vortex edge definition and height interval. The two methods generally compare very well, except at the 475K level which exhibits an unexplained discrepancy.

  18. Mechanically Reconfigurable Single-Arm Spiral Antenna Array for Generation of Broadband Circularly Polarized Orbital Angular Momentum Vortex Waves.

    Science.gov (United States)

    Li, Long; Zhou, Xiaoxiao

    2018-03-23

    In this paper, a mechanically reconfigurable circular array with single-arm spiral antennas (SASAs) is designed, fabricated, and experimentally demonstrated to generate broadband circularly polarized orbital angular momentum (OAM) vortex waves in radio frequency domain. With the symmetrical and broadband properties of single-arm spiral antennas, the vortex waves with different OAM modes can be mechanically reconfigurable generated in a wide band from 3.4 GHz to 4.7 GHz. The prototype of the circular array is proposed, conducted, and fabricated to validate the theoretical analysis. The simulated and experimental results verify that different OAM modes can be effectively generated by rotating the spiral arms of single-arm spiral antennas with corresponding degrees, which greatly simplify the feeding network. The proposed method paves a reconfigurable way to generate multiple OAM vortex waves with spin angular momentum (SAM) in radio and microwave satellite communication applications.

  19. A simple kinematic model for the Lagrangian description of relevant nonlinear processes in the stratospheric polar vortex

    Directory of Open Access Journals (Sweden)

    V. J. García-Garrido

    2017-06-01

    Full Text Available In this work, we study the Lagrangian footprint of the planetary waves present in the Southern Hemisphere stratosphere during the exceptional sudden Stratospheric warming event that took place during September 2002. Our focus is on constructing a simple kinematic model that retains the fundamental mechanisms responsible for complex fluid parcel evolution, during the polar vortex breakdown and its previous stages. The construction of the kinematic model is guided by the Fourier decomposition of the geopotential field. The study of Lagrangian transport phenomena in the ERA-Interim reanalysis data highlights hyperbolic trajectories, and these trajectories are Lagrangian objects that are the kinematic mechanism for the observed filamentation phenomena. Our analysis shows that the breaking and splitting of the polar vortex is justified in our model by the sudden growth of a planetary wave and the decay of the axisymmetric flow.

  20. Temporal trends and transport within and around the Antarctic polar vortex during the formation of the 1987 Antarctic ozone hole

    Science.gov (United States)

    Proffitt, M. H.; Powell, J. A.; Tuck, A. F.; Fahey, D. W.; Kelly, K. K.; Loewenstein, M.; Podolske, J. R.; Chan, K. Roland

    1988-01-01

    During AAOE in 1987 an ER-2 high altitude aircraft made twelve flights out of Punta Arenas, Chile (53 S, 71 W) into the Antarctic polar vortex. The aircraft was fitted with fast response instruments for in situ measurements of many trace species including O3, ClO, BrO, NO sub y, NO, H2O, and N2O. Grab samples of long-lived tracers were also taken and a scanning microwave radiometer measured temperatures above and below the aircraft. Temperature, pressure, and wind measurements were also made on the flight tracks. Most of these flights were flown to 72 S, at a constant potential temperature, followed by a dip to a lower altitude and again assuming a sometimes different potential temperature for the return leg. The potential temperature chosen was 425 K (17 to 18 km) on 12 of the flight legs, and 5 of the flight legs were flown at 450 K (18 to 19 km). The remaining 7 legs of the 12 flights were not flown on constant potential temperature surfaces. Tracer data have been analyzed for temporal trends. Data from the ascents out of Punta Arenas, the constant potential temperature flight legs, and the dips within the vortex are used to compare tracer values inside and outside the vortex, both with respect to constant potential temperature and constant N2O. The time trend during the one-month period of August 23 through September 22, 1987, shows that ozone decreased by 50 percent or more at altitudes form 15 to 19 km. This trend is evident whether analyzed with respect to constant potential temperature or constant N2O. The trend analysis for ozone outside the vortex shows no downward trend during this period. The analysis for N2O at a constant potential temperature indicates no significant trend either inside or outside the vortex; however, a decrease in N2O with an increase in latitude is evident.

  1. Accuracy of Modelled Stratospheric Temperatures in the Winter Arctic Vortex from Infra Red Montgolfier Long Duration Balloon Measurements

    Science.gov (United States)

    Pommereau, J.-P.; Garnier, A.; Knudson, B. M.; Letrenne, G.; Durand, M.; Cseresnjes, M.; Nunes-Pinharanda, M.; Denis, L.; Newman, P. A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The temperature of the stratosphere has been measured in the Arctic vortex every 9-10 minutes along the trajectory of four Infra Red Montgolfier long duration balloons flown for 7 to 22 days during the winters of 1997 and 1999. From a number of comparisons to independent sensors, the accuracy of the measurements is demonstrated to be plus or minus 0.5 K during nighttime and at altitude below 28 km (10 hPa). The performances of the analyses of global meteorological models, European Center for Medium Range Weather Forecasts (ECMWF) 31 and 50 levels, United Kingdom Meteorological Office (UKMO), Data Assimilation Office (DAO), National Climatic Prediction Center (NCEP) and NCEP/NCAR reanalysis, used in photochemical simulations of ozone destruction and interpretation of satellite data, are evaluated by comparison to this large (3500 data points) and homogeneous experimental data set. Most of models, except ECMWF31 in 1999, do show a smal1 average warm bias of between 0 and 1.6 K, with deviations particularly large, up to 20 K at high altitude (5hPa) in stratospheric warming conditions in 1999. Particularly wrong was ECMWF 31 levels near its top level at 10 hPa in 1999 where temperature 25 K colder than the real atmosphere were reported. The average dispersion between models and measurements varies from plus or minus 1.0 to plus or minus 3.0 K depending on the model and the year. It is shown to be the result of three contributions. The largest is a long wave modulation likely caused by the displacement of the temperature field in the analyses compared to real atmosphere. The second is the overestimation of the vertical gradient of temperature particularly in warming conditions, which explains the increase of dispersion from 1997 to 1999. Unexpectedly, the third and smallest (plus or minus 0.6-0.7 K) is the contribution of meso and subgrid scale vertical and horizontal features associated to the vertical propagation of orographic or gravity waves. Compared to other

  2. Subsidence, Mixing and Denitrification of Polar Vortex Air Measured During Polaris

    Science.gov (United States)

    Rex, M.; Salawitch, R.; Toon, G.; Sen, B.; Margitan, J.; Osterman, G.; Blavier, J.; Gao, R.; Del Negro, L.; Donnelly, S.; hide

    1998-01-01

    We use the correlation between CH(sub 4) and N(sub 2)O as measured during the POLARIS campaign in spring 1997 to estimate the degree of mixing between descended air masses from the vortex and air masses from mid-latitudes.

  3. Polarization resolved classification of winter road condition in the near-infrared region.

    Science.gov (United States)

    Casselgren, Johan; Sjödahl, Mikael

    2012-05-20

    Three different configurations utilizing polarized short-wave infrared light to classify winter road conditions have been investigated. In the first configuration, polarized broadband light was detected in the specular and backward directions, and the quotient between the detected intensities was used as the classification parameter. Best results were obtained for the SS-configuration. This sensor was shown to be able to distinguish between the smooth road conditions of water and ice from the diffuse road conditions of snow and dry asphalt with a probability of wrong classification as low as 7%. The second sensor configuration was a pure backward architecture utilizing polarized light with two distinct wavelengths. This configuration was shown to be effective for the important problem of distinguishing water from ice with a probability of wrong classification of only 1.5%. The third configuration was a combination of the two previous ones. This combined sensor utilizing bispectral illumination and bidirectional detection resulted in a probability of wrong classification as low as 2% among all four surfaces.

  4. Climate Response to Negative Greenhouse Gas Radiative Forcing in Polar Winter

    Science.gov (United States)

    Flanner, M. G.; Huang, X.; Chen, X.; Krinner, G.

    2018-02-01

    Greenhouse gas (GHG) additions to Earth's atmosphere initially reduce global outgoing longwave radiation, thereby warming the planet. In select environments with temperature inversions, however, increased GHG concentrations can actually increase local outgoing longwave radiation. Negative top of atmosphere and effective radiative forcing (ERF) from this situation give the impression that local surface temperatures could cool in response to GHG increases. Here we consider an extreme scenario in which GHG concentrations are increased only within the warmest layers of winter near-surface inversions of the Arctic and Antarctic. We find, using a fully coupled Earth system model, that the underlying surface warms despite the GHG addition exerting negative ERF and cooling the troposphere in the vicinity of the GHG increase. This unique radiative forcing and thermal response is facilitated by the high stability of the polar winter atmosphere, which inhibit thermal mixing and amplify the impact of surface radiative forcing on surface temperature. These findings also suggest that strategies to exploit negative ERF via injections of short-lived GHGs into inversion layers would likely be unsuccessful in cooling the planetary surface.

  5. The generation of a complete spiral spot and multi split rings by focusing three circularly polarized vortex beams

    Science.gov (United States)

    Chen, Jiannong; Gao, Xiumin; Zhu, Linwei; Xu, Qinfeng; Ma, Wangzi

    2014-05-01

    We demonstrate that a complete right-handed or left-handed spiral-shaped focus can be created by focusing circularly polarized and three spatially shifted vortex beams through high numerical objective. By dividing the back aperture into multi annular zones and applying an additional phase term, the multi focal spots aligned along z axis of individual three dimensional focal shapes can be generated. The spiral shaped focus provides a pathway of manipulating the micro-particles in a curved trajectory and opens up a possibility of measuring mechanical torque of biological large molecules such as DNA by chemically binding one end on the cover-glass. The multi focal spots aligned along the z axis can eliminate the need of z axis scanning in the direct laser writing fabrication of some metamaterials which is composed of three-dimensional array of specific shapes of building blocks.

  6. High-speed solar wind streams and polar mesosphere winter echoes at Troll, Antarctica

    Directory of Open Access Journals (Sweden)

    S. Kirkwood

    2015-06-01

    Full Text Available A small, 54 MHz wind-profiler radar, MARA, was operated at Troll, Antarctica (72° S, 2.5° E, continuously from November 2011 to January 2014, covering two complete Antarctic winters. Despite very low power, MARA observed echoes from heights of 55–80 km (polar mesosphere winter echoes, PMWE on 60% of all winter days (from March to October. This contrasts with previous reports from radars at high northern latitudes, where PWME have been reported only by very high power radars or during rare periods of unusually high electron density at PMWE heights, such as during solar proton events. Analysis shows that PWME at Troll were not related to solar proton events but were often closely related to the arrival of high-speed solar wind streams (HSS at the Earth, with PWME appearing at heights as low as 56 km and persisting for up to 15 days following HSS arrival. This demonstrates that HSS effects penetrate directly to below 60 km height in the polar atmosphere. Using local observations of cosmic-noise absorption (CNA, a theoretical ionization/ion-chemistry model and a statistical model of precipitating energetic electrons associated with HSS, the electron density conditions during the HSS events are estimated. We find that PMWE detectability cannot be explained by these variations in electron density and molecular-ion chemistry alone. PWME become detectable at different thresholds depending on solar illumination and height. In darkness, PWME are detected only when the modelled electron density is above a threshold of about 1000 cm−3, and only above 75 km height, where negative ions are few. In daylight, the electron density threshold falls by at least 2 orders of magnitude and PWME are found primarily below 75 km height, even in conditions when a large proportion of negative ions is expected. There is also a strong dawn–dusk asymmetry with PWME detected very rarely during morning twilight but often during evening twilight. This behaviour cannot be

  7. High-speed solar wind streams and polar mesosphere winter echoes at Troll, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Kirkwood, S.; Belova, E. [Swedish Institute of Space Physics, Kiruna (Sweden). Polar Atmospheric Research; Osepian, A. [Polar Geophysical Institute, Murmansk (Russian Federation); Lee, Y.S. [Korea Astronomy and Space Science Institute, Daejeon (Korea, Republic of)

    2015-10-01

    A small, 54 MHz wind-profiler radar, MARA, was operated at Troll, Antarctica (72 S, 2.5 E), continuously from November 2011 to January 2014, covering two complete Antarctic winters. Despite very low power, MARA observed echoes from heights of 55-80 km (polar mesosphere winter echoes, PMWE) on 60% of all winter days (from March to October). This contrasts with previous reports from radars at high northern latitudes, where PWME have been reported only by very high power radars or during rare periods of unusually high electron density at PMWE heights, such as during solar proton events. Analysis shows that PWME at Troll were not related to solar proton events but were often closely related to the arrival of high-speed solar wind streams (HSS) at the Earth, with PWME appearing at heights as low as 56 km and persisting for up to 15 days following HSS arrival. This demonstrates that HSS effects penetrate directly to below 60 km height in the polar atmosphere. Using local observations of cosmic-noise absorption (CNA), a theoretical ionization/ion-chemistry model and a statistical model of precipitating energetic electrons associated with HSS, the electron density conditions during the HSS events are estimated. We find that PMWE detectability cannot be explained by these variations in electron density and molecular-ion chemistry alone. PWME become detectable at different thresholds depending on solar illumination and height. In darkness, PWME are detected only when the modelled electron density is above a threshold of about 1000 cm{sup -3}, and only above 75 km height, where negative ions are few. In daylight, the electron density threshold falls by at least 2 orders of magnitude and PWME are found primarily below 75 km height, even in conditions when a large proportion of negative ions is expected. There is also a strong dawn-dusk asymmetry with PWME detected very rarely during morning twilight but often during evening twilight. This behaviour cannot be explained if PMWE

  8. Large-scale irregularities of the winter polar topside ionosphere according to data from Swarm satellites

    Science.gov (United States)

    Lukianova, R. Yu.; Bogoutdinov, Sh. R.

    2017-11-01

    An analysis of the electron density measurements ( Ne) along the flyby trajectories over the high-latitude region of the Northern Hemisphere under winter conditions in 2014 and 2016 has shown that the main large-scale structure observed by Swarm satellites is the tongue of ionization (TOI). At the maximum of the solar cycle ( F 10.7 = 160), the average value of Ne in the TOI region at an altitude of 500 km was 8 × 104 cm-3. Two years later, at F 10.7 = 100, Ne 5 × 104 cm-3 and Ne 2.5 × 104 cm-3 were observed at altitudes of 470 and 530 km, respectively. During the dominance of the azimuthal component of the interplanetary magnetic field, the TOI has been observed mainly on the dawn or dusk side depending on the sign of B y . Simultaneous observations of the convective plasma drift velocity in the polar cap show the transpolar flow drift to the dawn ( B y y generation of large-scale irregularities in the polar ionosphere.

  9. A-train CALIOP and MLS observations of early winter Antarctic polar stratospheric clouds and nitric acid in 2008

    Directory of Open Access Journals (Sweden)

    A. Lambert

    2012-03-01

    Full Text Available A-train Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP and Microwave Limb Sounder (MLS observations are used to investigate the development of polar stratospheric clouds (PSCs and the gas-phase nitric acid distribution in the early 2008 Antarctic winter. Observational evidence of gravity-wave activity is provided by Atmospheric Infrared Sounder (AIRS radiances and infrared spectroscopic detection of nitric acid trihydrate (NAT in PSCs is obtained from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS. Goddard Earth Observing System Data Assimilation System (GEOS-5 DAS analyses are used to derive Lagrangian trajectories and to determine temperature-time histories of air parcels. We use CALIOP backscatter and depolarization measurements to classify PSCs and the MLS measurements to determine the corresponding gas-phase HNO3 as a function of temperature. For liquid PSCs the uptake of HNO3 follows the theoretical equilibrium curve for supercooled ternary solutions (STS, but at temperatures about 1 K lower as determined from GEOS-5. In the presence of solid phase PSCs, above the ice frost-point, the HNO3 depletion occurs over a wider range of temperatures (+2 to −7 K distributed about the NAT equilibrium curve. Rapid gas-phase HNO3 depletion is first seen by MLS from from 23–25 May 2008, consisting of a decrease in the volume mixing ratio from 14 ppbv (parts per billion by volume to 7 ppbv on the 46–32 hPa (hectopascal pressure levels and accompanied by a 2–3 ppbv increase by renitrification at the 68 hPa pressure level. The observed region of depleted HNO3 is substantially smaller than the region bounded by the NAT existence temperature threshold. Temperature-time histories of air parcels demonstrate that the depletion is more clearly correlated with prior exposure to temperatures a few kelvin above the frost-point. From the combined data we infer the presence

  10. Evidence for long-lived polar vortex air in the mid-latitude summer stratosphere from in situ laser diode CH4 and H2O measurements

    Directory of Open Access Journals (Sweden)

    G. Durry

    2005-01-01

    Full Text Available A balloon borne diode laser spectrometer was launched in southern France in June 2000 to yield in situ stratospheric CH4 and H2O measurements. In the altitude region ranging from 20km to 25km, striking large spatial structures were observed in the vertical concentration profiles of both species. We suggest these patterns are due to the presence of long-lived remnants of the wintertime polar vortex in the mid-latitude summer stratosphere. To support this interpretation, a high resolution advection model for potential vorticity is used to investigate the evolution of the Arctic vortex after its breakdown phase in spring 2000.

  11. A vortex dynamics perspective on stratospheric sudden warmings

    OpenAIRE

    Matthewman, N. J.

    2009-01-01

    A vortex dynamics approach is used to study the underlying mechanisms leading to polar vortex breakdown during stratospheric sudden warmings (SSWs). Observational data are used in chapter 2 to construct climatologies of the Arctic polar vortex structure during vortex-splitting and vortex-displacement SSWs occurring between 1958 and 2002. During vortex-splitting SSWs, polar vortex breakdown is shown to be typically independent of height (barotropic), whereas breakdown during vor...

  12. Vortex polarity in 2-D magnetic dots by Langevin dynamics simulations

    International Nuclear Information System (INIS)

    Depondt, Ph.; Levy, J.-C.S.; Mertens, F.G.

    2011-01-01

    Two-dimensional magnetic plots of finite size were simulated by integrating the Landau-Lifshitz equation for the isotropic Heisenberg model with a systematic exploration of the effect of dipole-dipole interactions of various strengths d, at a low temperature. Structures with or without vortices are observed, and in the cases in which vortices are present, out-of-plane contributions show only for relatively weak dipolar strengths: the integrated intensity of the out-of-plane component decreases roughly as 1/d with increasing dipolar strength while the vortex core width decreases as d -1/2 . The coexistence of several vortices with an out-of-plane component seems limited to a narrow d-range, at least for the sample sizes studied. The size limit below which the vortices disappear decreases roughly as 1/d.

  13. Polar stratospheric cloud observations by MIPAS on ENVISAT: detection method, validation and analysis of the northern hemisphere winter 2002/2003

    Directory of Open Access Journals (Sweden)

    R. Spang

    2005-01-01

    Full Text Available The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS on ENVISAT has made extensive measurements of polar stratospheric clouds (PSCs in the northern hemisphere winter 2002/2003. A PSC detection method based on a ratio of radiances (the cloud index has been implemented for MIPAS and is validated in this study with respect to ground-based lidar and space borne occultation measurements. A very good correspondence in PSC sighting and cloud altitude between MIPAS detections and those of other instruments is found for cloud index values of less than four. Comparisons with data from the Stratospheric Aerosol and Gas Experiment (SAGE III are used to further show that the sensitivity of the MIPAS detection method for this threshold value of cloud index is approximately equivalent to an extinction limit of 10-3km-1 at 1022nm, a wavelength used by solar occultation experiments. The MIPAS cloud index data are subsequently used to examine, for the first time with any technique, the evolution of PSCs throughout the Arctic polar vortex up to a latitude close to 90° north on a near-daily basis. We find that the winter of 2002/2003 is characterised by three phases of very different PSC activity. First, an unusual, extremely cold phase in the first three weeks of December resulted in high PSC occurrence rates. This was followed by a second phase of only moderate PSC activity from 5-13 January, separated from the first phase by a minor warming event. Finally there was a third phase from February to the end of March where only sporadic and mostly weak PSC events took place. The composition of PSCs during the winter period has also been examined, exploiting in particular an infra-red spectral signature which is probably characteristic of NAT. The MIPAS observations show the presence of these particles on a number of occasions in December but very rarely in January. The PSC type differentiation from MIPAS indicates that future comparisons of PSC

  14. The Arctic Vortex in March 2011: A Dynamical Perspective

    Science.gov (United States)

    Hurwitz, Margaret M.; Newman, Paul A.; Garfinkel,Chaim I.

    2011-01-01

    Despite the record ozone loss observed in March 2011, dynamical conditions in the Arctic stratosphere were unusual but not unprecedented. Weak planetary wave driving in February preceded cold anomalies in t he polar lower stratosphere in March and a relatively late breakup of the Arctic vortex in April. La Nina conditions and the westerly phas e of the quasi-biennial oscillation (QBO) were observed in March 201 1. Though these conditions are generally associated with a stronger vortex in mid-winter, the respective cold anomalies do not persist t hrough March. Therefore, the La Nina and QBO-westerly conditions cannot explain the observed cold anomalies in March 2011. In contrast, po sitive sea surface temperature anomalies in the North Pacific may ha ve contributed to the unusually weak tropospheric wave driving and s trong Arctic vortex in late winter 2011.

  15. Polar-core spin vortex of quasi-2D ferromagnetic spin-1 condensate in a flat-bottomed optical trap with a weak magnetic field

    Science.gov (United States)

    Zheng, Gong-Ping; Li, Pin; Li, Ting; Xue, Ya-Jie

    2018-02-01

    Motivated by the recent experiments realized in a flat-bottomed optical trap (Navon et al., 2015; Chomaz et al., 2015), we study the ground state of polar-core spin vortex of quasi-2D ferromagnetic spin-1 condensate in a finite-size homogeneous trap with a weak magnetic field. The exact spatial distribution of local spin is obtained with a variational method. Unlike the fully-magnetized planar spin texture with a zero-spin core, which was schematically demonstrated in previous studies for the ideal polar-core spin vortex in a homogeneous trap with infinitely large boundary, some plateaus and two-cores structure emerge in the distribution curves of spin magnitude in the polar-core spin vortex we obtained for the larger effective spin-dependent interaction. More importantly, the spin values of the plateaus are not 1 as expected in the fully-magnetized spin texture, except for the sufficiently large spin-dependent interaction and the weak-magnetic-field limit. We attribute the decrease of spin value to the effect of finite size of the system. The spin values of the plateaus can be controlled by the quadratic Zeeman energy q of the weak magnetic field, which decreases with the increase of q.

  16. Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation

    OpenAIRE

    Meraner, Katharina; Schmidt, Hauke

    2018-01-01

    Energetic particles enter the polar atmosphere and enhance the production of nitrogen oxides and hydrogen oxides in the winter stratosphere and mesosphere. Both components are powerful ozone destroyers. Recently, it has been inferred from observations that the direct effect of energetic particle precipitation (EPP) causes significant long-term mesospheric ozone variability. Satellites observe a decrease in mesospheric ozone up to 34 % between EPP maximum and EPP minimum. Str...

  17. A microwave satellite water vapour column retrieval for polar winter conditions

    Energy Technology Data Exchange (ETDEWEB)

    Perro, Christopher; Lesins, Glen; Duck, Thomas J.; Cadeddu, Maria

    2016-01-01

    A new microwave satellite water vapour retrieval for the polar winter atmosphere is presented. The retrieval builds on the work of Miao et al. (2001) and Melsheimer and Heygster (2008), employing auxiliary information for atmospheric conditions and numerical optimization. It was tested using simulated and actual measurements from the Microwave Humidity Sounder (MHS) satellite instruments. Ground truth was provided by the G-band vapour radiometer (GVR) at Barrow, Alaska. For water vapour columns less than 6 kg m-2, comparisons between the retrieval and GVR result in a root mean square (RMS) deviation of 0.39 kg m-2 and a systematic bias of 0.08 kg m-2. These results are compared with RMS deviations and biases at Barrow for the retrieval of Melsheimer and Heygster (2008), the AIRS and MIRS satellite data products, and the ERA-Interim, NCEP, JRA-55, and ASR reanalyses. When applied to MHS measurements, the new retrieval produces a smaller RMS deviation and bias than for the earlier retrieval and satellite data products. The RMS deviations for the new retrieval were comparable to those for the ERA-Interim, JRA-55, and ASR reanalyses; however, the MHS retrievals have much finer horizontal resolution (15 km at nadir) and reveal more structure. The new retrieval can be used to obtain pan-Arctic maps of water vapour columns of unprecedented quality. It may also be applied to measurements from the Special Sensor Microwave/Temperature 2 (SSM/T2), Advanced Microwave Sounding Unit B (AMSU-B), Special Sensor Microwave Imager/Sounder (SSMIS), Advanced Technology Microwave Sounder (ATMS), and Chinese MicroWave Humidity Sounder (MWHS) instruments.

  18. Polarized Imaging Nephelometer Scattering Measurements from the Winter of 2013 Discover-AQ Field Mission

    Science.gov (United States)

    Espinosa, R.; Martins, J.; Dolgos, G.; Dubovik, O.; Ziemba, L. D.; Beyersdorf, A. J.

    2013-12-01

    After greenhouse gases, aerosols are thought to have the largest contribution to the total radiative forcing of the atmosphere, but they are frequently cited as the single largest source of uncertainty among all anthropogenic radiative forcing components. Remote sensing allows global measurements of aerosol properties, however validation of these measurements are crucial, and their retrieval algorithms require climatological assumptions that must be first measured in situ. In situ instruments are also needed to supplement remote sensing measurements, which frequently have a relatively low spatial resolution, particularly when assessing surface air quality. The Laboratory for Aerosols, Clouds and Optics (LACO) at the University of Maryland Baltimore County (UMBC) has developed an instrument called the Polarized Imaging NEPHelometer (PI-Neph) to significantly aid in situ particle optical scattering measurements. The PI-Neph is based on a novel polar nephelometer design that uses a high-powered laser and wide field of view optical detection system (CCD camera) to measure the intensity of scattered laser light as a function of scattering angle. This allows for the measurement of scattering coefficient, phase function and polarized phase function over an angular range of 2 to 178 degrees with an angular resolution of less than half of a degree. This simple layout also permits the construction of an instrument that is compact enough to be flown on a variety of airborne platforms. PI-Neph measurements have been validated by a variety of methods since its completion in the fall of 2011. Measurements of mono-disperse polystyrene spheres have yielded results that are in close agreement with Mie theory, while scattering coefficient measurements made in parallel with commercially available integrating nephelometers from TSI have agreed to within 5%. The PI-Neph has successfully participated in several field experiments, most recently completing the January/February portion of

  19. Nitric oxide measurements in the Arctic winter stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Fahey, D.W. (National Oceanic and Atmospheric Administration (USA)); Kawa, S.R. (National Oceanic and Atmospheric Administration (USA) Univ. of Colorado, Boulder (USA)); Chan, K.R. (NASA Ames Research Center, Moffett Field, CA (USA))

    1990-03-01

    Measurements of nitric oxide (NO) from five flights of the NASA ER-2 aircraft during the Airborne Arctic Stratospheric Expedition (AASE) are presented. The NO values and vertical gradient near 60{degree}N latitude are similar to previous measurements near 50{degree}N in winter (Ridley et al., 1984; 1987). The NO latitudinal gradient is distinctly negative outside of the polar vortex, approaching zero at the boundary of the vortex, and remaining below the 20 pptv detection limit inside the vortex. The low NO values in the vortex occur at solar zenith angles as low as 82{degree} indicating that NO{sub 2} values in the vortex are also low. Steady state NO{sub 2} and NO{sub x} (NO+NO{sub 2}) are calculated from measured NO, O{sub 3}, and ClO, and modeled photodissociation rates. NO{sub x} outside the vortex shows a negative dependence on latitude and solar zenith angle. The average ratio of NO{sub x} to NO{sub y} (at the same relative latitudes from different flight days) shows a strong latitude gradient with values near 0.08 at 12{degree} equatorward of the vortex edge, decreasing to less than 0.02 at the vortex boundary. Low NO{sub x} and NO{sub x}/NO{sub y} inside and near the vortex boundary may be indications of heterogeneous removal of ClONO{sub 2} and N{sub 2}O{sub 5}.

  20. Polar bears experience skeletal muscle atrophy in response to food deprivation and reduced activity in winter and summer

    Science.gov (United States)

    Harlow, Henry J.; Durner, George M.; Regehr, Eric V.; Rourke, Bryan C.; Robles, Manuel; Amstrup, Steven C.; Ben-David, Merav

    2017-01-01

    Abstract When reducing activity and using stored energy during seasonal food shortages, animals risk degradation of skeletal muscles, although some species avoid or minimize the resulting atrophy while experiencing these conditions during hibernation. Polar bears may be food deprived and relatively inactive during winter (when pregnant females hibernate and hunting success declines for other demographic groups) as well as summer (when sea ice retreats from key foraging habitats). We investigated muscle atrophy in samples of biceps femoris collected from free-ranging polar bears in the Southern Beaufort Sea (SBS) throughout their annual cycle. Atrophy was most pronounced in April–May as a result of food deprivation during the previous winter, with muscles exhibiting reduced protein concentration, increased water content, and lower creatine kinase mRNA. These animals increased feeding and activity in spring (when seal prey becomes more available), initiating a period of muscle recovery. During the following ice melt of late summer, ~30% of SBS bears abandon retreating sea ice for land; in August, these ‘shore’ bears exhibited no muscle atrophy, indicating that they had fully recovered from winter food deprivation. These individuals subsequently scavenged whale carcasses deposited by humans and by October, had retained good muscle condition. In contrast, ~70% of SBS bears follow the ice north in late summer, into deep water with less prey. These ‘ice’ bears fast; by October, they exhibited muscle protein loss and rapid changes in myosin heavy-chain isoforms in response to reduced activity. These findings indicate that, unlike other bears during winter hibernation, polar bears without food in summer cannot mitigate atrophy. Consequently, prolonged summer fasting resulting from climate change-induced ice loss creates a risk of greater muscle atrophy and reduced abilities to travel and hunt. PMID:28835844

  1. Polar bears experience skeletal muscle atrophy in response to food deprivation and reduced activity in winter and summer

    Science.gov (United States)

    Whiteman, John P.; Harlow, Henry J.; Durner, George M.; Regehr, Eric V.; Rourke, Bryan C.; Robles, Manuel; Amstrup, Steven C.; Ben-David, Merav

    2017-01-01

    When reducing activity and using stored energy during seasonal food shortages, animals risk degradation of skeletal muscles, although some species avoid or minimize the resulting atrophy while experiencing these conditions during hibernation. Polar bears may be food deprived and relatively inactive during winter (when pregnant females hibernate and hunting success declines for other demographic groups) as well as summer (when sea ice retreats from key foraging habitats). We investigated muscle atrophy in samples of biceps femoris collected from free-ranging polar bears in the Southern Beaufort Sea (SBS) throughout their annual cycle. Atrophy was most pronounced in April–May as a result of food deprivation during the previous winter, with muscles exhibiting reduced protein concentration, increased water content, and lower creatine kinase mRNA. These animals increased feeding and activity in spring (when seal prey becomes more available), initiating a period of muscle recovery. During the following ice melt of late summer, ~30% of SBS bears abandon retreating sea ice for land; in August, these ‘shore’ bears exhibited no muscle atrophy, indicating that they had fully recovered from winter food deprivation. These individuals subsequently scavenged whale carcasses deposited by humans and by October, had retained good muscle condition. In contrast, ~70% of SBS bears follow the ice north in late summer, into deep water with less prey. These ‘ice’ bears fast; by October, they exhibited muscle protein loss and rapid changes in myosin heavy-chain isoforms in response to reduced activity. These findings indicate that, unlike other bears during winter hibernation, polar bears without food in summer cannot mitigate atrophy. Consequently, prolonged summer fasting resulting from climate change-induced ice loss creates a risk of greater muscle atrophy and reduced abilities to travel and hunt.

  2. Polar bears experience skeletal muscle atrophy in response to food deprivation and reduced activity in winter and summer.

    Science.gov (United States)

    Whiteman, John P; Harlow, Henry J; Durner, George M; Regehr, Eric V; Rourke, Bryan C; Robles, Manuel; Amstrup, Steven C; Ben-David, Merav

    2017-01-01

    When reducing activity and using stored energy during seasonal food shortages, animals risk degradation of skeletal muscles, although some species avoid or minimize the resulting atrophy while experiencing these conditions during hibernation. Polar bears may be food deprived and relatively inactive during winter (when pregnant females hibernate and hunting success declines for other demographic groups) as well as summer (when sea ice retreats from key foraging habitats). We investigated muscle atrophy in samples of biceps femoris collected from free-ranging polar bears in the Southern Beaufort Sea (SBS) throughout their annual cycle. Atrophy was most pronounced in April-May as a result of food deprivation during the previous winter, with muscles exhibiting reduced protein concentration, increased water content, and lower creatine kinase mRNA. These animals increased feeding and activity in spring (when seal prey becomes more available), initiating a period of muscle recovery. During the following ice melt of late summer, ~30% of SBS bears abandon retreating sea ice for land; in August, these 'shore' bears exhibited no muscle atrophy, indicating that they had fully recovered from winter food deprivation. These individuals subsequently scavenged whale carcasses deposited by humans and by October, had retained good muscle condition. In contrast, ~70% of SBS bears follow the ice north in late summer, into deep water with less prey. These 'ice' bears fast; by October, they exhibited muscle protein loss and rapid changes in myosin heavy-chain isoforms in response to reduced activity. These findings indicate that, unlike other bears during winter hibernation, polar bears without food in summer cannot mitigate atrophy. Consequently, prolonged summer fasting resulting from climate change-induced ice loss creates a risk of greater muscle atrophy and reduced abilities to travel and hunt.

  3. Theory for Spin Selective Andreev Re ection in Vortex Core of Topological Superconductor: Majorana Zero Modes on Spherical Surface and Application to Spin Polarized Scanning Tunneling Microscope Probe

    Science.gov (United States)

    Zhang, Fu-Chun; Hu, Lun-Hui; Li, Chuang; Xu, Dong-Hui; Zhou, Yi

    Majorana zero modes (MZMs) have been predicted to exist in the topological insulator (TI)/superconductor (SC) heterostructure. Recent spin polarized scanning tunneling microscope(STM) experiment has observed spin-polarization dependence of the zero bias differential tunneling conductance at the center of vortex core. Here we consider a helical electron system described by a Rashba spin orbit coupling Hamiltonian on a spherical surface with a s-wave superconducting pairing due to proximity effect. We examine in-gap excitations of a pair of vortices with one at the north pole and the other at the south pole. While the MZM is not a spin eigenstate, the spin wavefunction of the MZM at the center of the vortex core, r = 0, is parallel to the magnetic field, and the local Andreev reflection of the MZM is spin selective, namely occurs only when the STM tip has the spin polarization parallel to the magnetic field, similar to the case in 1-dimensional nanowire. The total local differential tunneling conductance consists of the normal term proportional to the local density of states and an additional term arising from the Andreev reflection. We apply our theory to examine the recently reported spin-polarized STM experiments and show good agreement with the experiments

  4. The thermal and dynamical state of the atmosphere during polar mesosphere winter echoes

    Directory of Open Access Journals (Sweden)

    F.-J. Lübken

    2006-01-01

    Full Text Available In January 2005, a total of 18 rockets were launched from the Andøya Rocket Range in Northern Norway (69° N into strong VHF radar echoes called 'Polar Mesosphere Winter Echoes' (PMWE. The echoes were observed in the lower and middle mesosphere during large solar proton fluxes. In general, PMWE occur much more seldom compared to their summer counterparts PMSE (typical occurrence rates at 69° N are 1–3% vs. 80%, respectively. Our in-situ measurements by falling sphere, chaff, and instrumented payloads provide detailed information about the thermal and dynamical state of the atmosphere and therefore allow an unprecedented study of the background atmosphere during PMWE. There are a number of independent observations indicating that neutral air turbulence has caused PMWE. Ion density fluctuations show a turbulence spectrum within PMWE and no fluctuations outside. Temperature lapse rates close to the adiabatic gradient are observed in the vicinity of PMWE indicating persistent turbulent mixing. The spectral broadening of radar echoes is consistent with turbulent velocity fluctuations. Turbulence also explains the mean occurrence height of PMWE (~68–75 km: viscosity increases rapidly with altitude and destroys any small scale fluctuations in the upper mesosphere, whereas electron densities are usually too low in the lower mesosphere to cause significant backscatter. The seasonal variation of echoes in the lower mesosphere is in agreement with a turbulence climatology derived from earlier sounding rocket flights. We have performed model calculations to study the radar backscatter from plasma fluctuations caused by neutral air turbulence. We find that volume reflectivities observed during PMWE are in quantitative agreement with theory. Apart from turbulence the most crucial requirement for PMWE is a sufficiently large number of electrons, for example produced by solar proton events. We have studied the sensitivity of the radar echo strength on

  5. Variation in winter diet of southern Beaufort Sea polar bears inferred from stable isotope analysis

    Science.gov (United States)

    Bentzen, T.W.; Follmann, Erich H.; Amstrup, Steven C.; York, G.S.; Wooller, M.J.; O'Hara, T. M.

    2007-01-01

    Ringed seals (Phoca hispida Schreber, 1775 = Pusa hispida (Schreber, 1775)) and bearded seals (Erignathus barbatus (Erxleben, 1777)) represent the majority of the polar bear (Ursus maritimus Phipps, 1774) annual diet. However, remains of lower trophic level bowhead whales (Balaena mysticetus L., 1758) are available in the southern Beaufort Sea and their dietary contribution to polar bears has been unknown. We used stable isotope (13C/12C, δ13C, 15N/14N, and δ15N) analysis to determine the diet composition of polar bears sampled along Alaska’s Beaufort Sea coast in March and April 2003 and 2004. The mean δ15N values of polar bear blood cells were 19.5‰ (SD = 0.7‰) in 2003 and 19.9‰ (SD = 0.7‰) in 2004. Mixing models indicated bowhead whales composed 11%–26% (95% CI) of the diets of sampled polar bears in 2003, and 0%–14% (95% CI) in 2004. This suggests significant variability in the proportion of lower trophic level prey in polar bear diets among individuals and between years. Polar bears depend on sea ice for hunting seals, and the temporal and spatial availabilities of sea ice are projected to decline. Consumption of low trophic level foods documented here suggests bears may increasingly scavenge such foods in the future.

  6. An Organic Vortex Laser.

    Science.gov (United States)

    Stellinga, Daan; Pietrzyk, Monika E; Glackin, James M E; Wang, Yue; Bansal, Ashu K; Turnbull, Graham A; Dholakia, Kishan; Samuel, Ifor D W; Krauss, Thomas F

    2018-03-27

    Optical vortex beams are at the heart of a number of novel research directions, both as carriers of information and for the investigation of optical activity and chiral molecules. Optical vortex beams are beams of light with a helical wavefront and associated orbital angular momentum. They are typically generated using bulk optics methods or by a passive element such as a forked grating or a metasurface to imprint the required phase distribution onto an incident beam. Since many applications benefit from further miniaturization, a more integrated yet scalable method is highly desirable. Here, we demonstrate the generation of an azimuthally polarized vortex beam directly by an organic semiconductor laser that meets these requirements. The organic vortex laser uses a spiral grating as a feedback element that gives control over phase, handedness, and degree of helicity of the emitted beam. We demonstrate vortex beams up to an azimuthal index l = 3 that can be readily multiplexed into an array configuration.

  7. An NOy Algorithm for Arctic Winter 2000

    Science.gov (United States)

    Loewenstein, M.; Jost, H.; Greenblatt, J. B.; Podolske, J. R.; Gao, R. S.; Popp, P. J.; Toon, G. C.; Webster, C. R.; Herman, R. L.; Hurst, D. F.; hide

    2000-01-01

    NOy, total reactive nitrogen, and the long-lived tracer N2O, nitrous oxide, were measured by both in situ and remote sensing instruments during the Arctic winter 1999-2000 SAGE III Ozone Loss and Validation Experiment (SOLVE). The correlation function NOy:N2O observed before the winter Arctic vortex forms, which is known as NOy(sup), is an important reference relationship for conditions in the evolving vortex. NOy(sup) can, with suitable care, be used to quantify vortex denitrification by sedimentation of polar stratospheric cloud particles when NOy data is taken throughout the winter. Observed NOy values less than the reference value can be interpreted in terms of semi-permanent removal of active nitrogen by condensation and sedimentation processes. In this paper we present a segmented function representing NOy(sup) applicable over the full range of altitudes sampled during SOLVE. We also assess the range of application of this function and some of its limitations.

  8. Update of the Polar SWIFT model for polar stratospheric ozone loss (Polar SWIFT version 2)

    Science.gov (United States)

    Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2017-07-01

    The Polar SWIFT model is a fast scheme for calculating the chemistry of stratospheric ozone depletion in polar winter. It is intended for use in global climate models (GCMs) and Earth system models (ESMs) to enable the simulation of mutual interactions between the ozone layer and climate. To date, climate models often use prescribed ozone fields, since a full stratospheric chemistry scheme is computationally very expensive. Polar SWIFT is based on a set of coupled differential equations, which simulate the polar vortex-averaged mixing ratios of the key species involved in polar ozone depletion on a given vertical level. These species are O3, chemically active chlorine (ClOx), HCl, ClONO2 and HNO3. The only external input parameters that drive the model are the fraction of the polar vortex in sunlight and the fraction of the polar vortex below the temperatures necessary for the formation of polar stratospheric clouds. Here, we present an update of the Polar SWIFT model introducing several improvements over the original model formulation. In particular, the model is now trained on vortex-averaged reaction rates of the ATLAS Chemistry and Transport Model, which enables a detailed look at individual processes and an independent validation of the different parameterizations contained in the differential equations. The training of the original Polar SWIFT model was based on fitting complete model runs to satellite observations and did not allow for this. A revised formulation of the system of differential equations is developed, which closely fits vortex-averaged reaction rates from ATLAS that represent the main chemical processes influencing ozone. In addition, a parameterization for the HNO3 change by denitrification is included. The rates of change of the concentrations of the chemical species of the Polar SWIFT model are purely chemical rates of change in the new version, whereas in the original Polar SWIFT model, they included a transport effect caused by the

  9. Resonance scattering of a dielectric sphere illuminated by electromagnetic Bessel non-diffracting (vortex) beams with arbitrary incidence and selective polarizations

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F.G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology–ETC, 5 Bisbee Ct., Santa Fe, NM 87508 (United States); Li, R.X., E-mail: rxli@mail.xidian.edu.cn [School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071 (China); Collaborative Innovation Center of Information Sensing and Understanding, Xidian University, Xi’an 710071 (China); Guo, L.X. [School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071 (China); Collaborative Innovation Center of Information Sensing and Understanding, Xidian University, Xi’an 710071 (China); Ding, C.Y. [School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071 (China)

    2015-10-15

    A complete description of vector Bessel (vortex) beams in the context of the generalized Lorenz–Mie theory (GLMT) for the electromagnetic (EM) resonance scattering by a dielectric sphere is presented, using the method of separation of variables and the subtraction of a non-resonant background (corresponding to a perfectly conducting sphere of the same size) from the standard Mie scattering coefficients. Unlike the conventional results of standard optical radiation, the resonance scattering of a dielectric sphere in air in the field of EM Bessel beams is examined and demonstrated with particular emphasis on the EM field’s polarization and beam order (or topological charge). Linear, circular, radial, azimuthal polarizations as well as unpolarized Bessel vortex beams are considered. The conditions required for the resonance scattering are analyzed, stemming from the vectorial description of the EM field using the angular spectrum decomposition, the derivation of the beam-shape coefficients (BSCs) using the integral localized approximation (ILA) and Neumann–Graf’s addition theorem, and the determination of the scattering coefficients of the sphere using Debye series. In contrast with the standard scattering theory, the resonance method presented here allows the quantitative description of the scattering using Debye series by separating diffraction effects from the external and internal reflections from the sphere. Furthermore, the analysis is extended to include rainbow formation in Bessel beams and the derivation of a generalized formula for the deviation angle of high-order rainbows. Potential applications for this analysis include Bessel beam-based laser imaging spectroscopy, atom cooling and quantum optics, electromagnetic instrumentation and profilometry, optical tweezers and tractor beams, to name a few emerging areas of research.

  10. Surviving extreme polar winters by desiccation: clues from Arctic springtail (Onychiurus arcticus EST libraries

    Directory of Open Access Journals (Sweden)

    Kube Michael

    2007-12-01

    Full Text Available Abstract Background Ice, snow and temperatures of -14°C are conditions which most animals would find difficult, if not impossible, to survive in. However this exactly describes the Arctic winter, and the Arctic springtail Onychiurus arcticus regularly survives these extreme conditions and re-emerges in the spring. It is able to do this by reducing the amount of water in its body to almost zero: a process that is called "protective dehydration". The aim of this project was to generate clones and sequence data in the form of ESTs to provide a platform for the future molecular characterisation of the processes involved in protective dehydration. Results Five normalised libraries were produced from both desiccating and rehydrating populations of O. arcticus from stages that had previously been defined as potentially informative for molecular analyses. A total of 16,379 EST clones were generated and analysed using Blast and GO annotation. 40% of the clones produced significant matches against the Swissprot and trembl databases and these were further analysed using GO annotation. Extraction and analysis of GO annotations proved an extremely effective method for identifying generic processes associated with biochemical pathways, proving more efficient than solely analysing Blast data output. A number of genes were identified, which have previously been shown to be involved in water transport and desiccation such as members of the aquaporin family. Identification of these clones in specific libraries associated with desiccation validates the computational analysis by library rather than producing a global overview of all libraries combined. Conclusion This paper describes for the first time EST data from the arctic springtail (O. arcticus. This significantly enhances the number of Collembolan ESTs in the public databases, providing useful comparative data within this phylum. The use of GO annotation for analysis has facilitated the identification of a

  11. The impact of bright artificial white and 'blue-enriched' light on sleep and circadian phase during the polar winter.

    Science.gov (United States)

    Mottram, Victoria; Middleton, Benita; Williams, Peter; Arendt, Josephine

    2011-03-01

    Delayed sleep phase (and sometimes free-run) is common in the Antarctic winter (no natural sunlight) and optimizing the artificial light conditions is desirable. This project evaluated sleep when using 17,000 K blue-enriched lamps compared with standard white lamps (5000 K) for personal and communal illumination. Base personnel, 10 males, five females, 32.5±8 years took part in the study. From 24 March to 21 September 2006 light exposure alternated between 4-5-week periods of standard white (5000 K) and blue-enriched lamps (17,000 K), with a 3-week control before and after extra light. Sleep and light exposure were assessed by actigraphy and sleep diaries. General health (RAND 36-item questionnaire) and circadian phase (urinary 6-sulphatoxymelatonin rhythm) were evaluated at the end of each light condition. Direct comparison (rmanova) of blue-enriched light with white light showed that sleep onset was earlier by 19 min (P=0.022), and sleep latency tended to be shorter by 4 min (P=0.065) with blue-enriched light. Analysing all light conditions, control, blue and white, again provided evidence for greater efficiency of blue-enriched light compared with white (Plight conditions. Circadian phase was earlier on average in midwinter blue compared with midwinter white light by 45 min (PLight condition had no influence on general health. We conclude that the use of blue-enriched light had some beneficial effects, notably earlier sleep, compared with standard white light during the polar winter. © 2010 European Sleep Research Society.

  12. Vortex rings

    CERN Document Server

    Akhmetov, D G

    2009-01-01

    This text on vortex rings covers their theoretical foundation, systematic investigations, and practical applications such as the extinction of fires at gushing oil wells. It pays special attention to the formation and motion of turbulent vortex rings.

  13. On the relation between ionospheric winter anomalies and solar wind

    International Nuclear Information System (INIS)

    Rumi, G.C.

    2001-01-01

    There are two different winter anomalies. A small one that appears in connection with ionization at relatively low latitudes in the bottom of the D-region of the ionosphere. There, the electron densities in the winter happen to be less than should be expected. On the other hand, the classic winter anomaly is present when in the winter the upper D-region, again at relatively low latitudes, has more ionization than should be expected. Both these effects are due to the slant compression of the geomagnetic field produced by the solar wind in the wind in the winter season (which is, of course, the summer season when reference is made to events in the other hemisphere). It is shown that the small winter anomaly is a consequence of a hemispheric imbalance in the flux of galactic cosmic rays determined by the obliquely distorted geomagnetic field. It is shown that the standard winter anomaly can be ascribed to the influx of a super solar wind, which penetrates into the Earth's polar atmosphere down to E-region, heights and, duly concentrated through a funneling action at the winter pole of the distorted geomagnetic field, slows down the winter polar vortex. An equatorward motion of the polar air with its content of nitric oxide brings about the excess of ionization in the upper D-region at lower latitudes. The experimentally observed rhythmic recurrence of the upper winter anomaly is correlated to a possible rhythmic recurrence of the super solar wind. The actual detection of the upper winter anomaly could yield some information on the velocity of the basic solar wind. A by-product of the present analysis, the determination of Γ, the coefficient of collisional detachment of the electrons from the O 2 - ions, is presented in the Appendix

  14. The major stratospheric final warming in 2016: dispersal of vortex air and termination of Arctic chemical ozone loss

    Directory of Open Access Journals (Sweden)

    G. L. Manney

    2016-12-01

    Full Text Available The 2015/16 Northern Hemisphere winter stratosphere appeared to have the greatest potential yet seen for record Arctic ozone loss. Temperatures in the Arctic lower stratosphere were at record lows from December 2015 through early February 2016, with an unprecedented period of temperatures below ice polar stratospheric cloud thresholds. Trace gas measurements from the Aura Microwave Limb Sounder (MLS show that exceptional denitrification and dehydration, as well as extensive chlorine activation, occurred throughout the polar vortex. Ozone decreases in 2015/16 began earlier and proceeded more rapidly than those in 2010/11, a winter that saw unprecedented Arctic ozone loss. However, on 5–6 March 2016 a major final sudden stratospheric warming ("major final warming", MFW began. By mid-March, the mid-stratospheric vortex split after being displaced far off the pole. The resulting offspring vortices decayed rapidly preceding the full breakdown of the vortex by early April. In the lower stratosphere, the period of temperatures low enough for chlorine activation ended nearly a month earlier than that in 2011 because of the MFW. Ozone loss rates were thus kept in check because there was less sunlight during the cold period. Although the winter mean volume of air in which chemical ozone loss could occur was as large as that in 2010/11, observed ozone values did not drop to the persistently low values reached in 2011.We use MLS trace gas measurements, as well as mixing and polar vortex diagnostics based on meteorological fields, to show how the timing and intensity of the MFW and its impact on transport and mixing halted chemical ozone loss. Our detailed characterization of the polar vortex breakdown includes investigations of individual offspring vortices and the origins and fate of air within them. Comparisons of mixing diagnostics with lower-stratospheric N2O and middle-stratospheric CO from MLS (long-lived tracers show rapid vortex erosion and

  15. Non-coaxial superposition of vector vortex beams.

    Science.gov (United States)

    Aadhi, A; Vaity, Pravin; Chithrabhanu, P; Reddy, Salla Gangi; Prabakar, Shashi; Singh, R P

    2016-02-10

    Vector vortex beams are classified into four types depending upon spatial variation in their polarization vector. We have generated all four of these types of vector vortex beams by using a modified polarization Sagnac interferometer with a vortex lens. Further, we have studied the non-coaxial superposition of two vector vortex beams. It is observed that the superposition of two vector vortex beams with same polarization singularity leads to a beam with another kind of polarization singularity in their interaction region. The results may be of importance in ultrahigh security of the polarization-encrypted data that utilizes vector vortex beams and multiple optical trapping with non-coaxial superposition of vector vortex beams. We verified our experimental results with theory.

  16. Testing our understanding of Arctic denitrification using MIPAS-E satellite measurements in winter 2002/2003

    Directory of Open Access Journals (Sweden)

    S. Davies

    2006-01-01

    Full Text Available Observations of gas-phase HNO3 and N2O in the polar stratosphere from the Michelson Interferometer for Passive Atmospheric Sounding aboard the ENVISAT satellite (MIPAS-E were made during the cold Arctic winter of 2002/2003. Vortex temperatures were unusually low in early winter and remained favourable for polar stratospheric cloud formation and denitrification until mid-January. MIPAS-E observations provide the first dataset with sufficient coverage of the polar vortex in mid-winter which enables a reasonable estimate of the timing of onset and spatial distribution of denitrification of the Arctic lower stratosphere to be performed. We use the observations from MIPAS-E to test the evolution of denitrification in the DLAPSE (Denitrification by Lagrangian Particle Sedimentation microphysical denitrification model coupled to the SLIMCAT chemical transport model. In addition, the predicted denitrification from a simple equilibrium nitric acid trihydrate-based scheme is also compared with MIPAS-E. Modelled denitrification is compared with in-vortex NOy and N2O observations from the balloon-borne MarkIV interferometer in mid-December. Denitrification was clearly observed by MIPAS-E in mid-December 2002 and reached 80% in the core of the vortex by early January 2003. The DLAPSE model is broadly able to capture both the timing of onset and the spatial distribution of the observed denitrification. A simple thermodynamic equilibrium scheme is able to reproduce the observed denitrification in the core of the vortex but overestimates denitrification closer to the vortex edge. This study also suggests that the onset of denitrification in simple thermodynamic schemes may be earlier than in the MIPAS-E observations.

  17. Seasonal Evolution of the North and South Polar Vortex on Titan From 2004 to 2017 as Seen by Cassini/VIMS

    Science.gov (United States)

    Le Mouelic, S.; Robidel, R.; Rousseau, B.; Rodriguez, S.; Cornet, T.; Sotin, C.; Barnes, J. W.; Brown, R. H.; Buratti, B. J.; Baines, K. H.; Clark, R. N.; Nicholson, P. D.

    2017-12-01

    Cassini entered in Saturn's orbit in July 2004. In thirteen years, 127 targeted flybys of Titan have been performed. We focus our study on the analysis of the complete Visual and Infrared Mapping Spectrometer data set, with a particular emphasis on the evolving features on both poles. We have computed individual global maps of the north and south poles for each of the 127 targeted flybys, using VIMS wavelengths sensitive both to clouds and surface features. First evidences for a vast ethane cloud covering the North Pole is seen as soon as the first and second targeted flyby in October 2004 and December 2005 [1]. The first detailed imaging of this north polar feature with VIMS was obtained in December 2006, thanks to a change in inclination of the spacecraft orbit [2]. At this time, the northern lakes and seas of Titan were totally masked to the optical instruments by the haze and clouds, whereas the southern pole was well illuminated and mostly clear of haze and vast clouds. The vast north polar feature progressively vanished around the equinox in 2009 [2,3,4], in agreement with the predictions of Global Circulation Models [5]. It revealed progressively the underlying lakes to the ISS and VIMS instruments, which show up very nicely in VIMS in a series of flybys between T90 and T100. First evidences of an atmospheric vortex growing over the south pole occurred in May 2012 (T82), with a high altitude feature being detected consistently at each flyby up to the last T126 targeted flyby, and also appearing in more distant observations up to the end of the Cassini mission. Cassini has covered almost half a titanian year, corresponding to two seasons. The situation observed at the South Pole in the last images may correspond to what was observed in the north as Cassini just arrived. [1] Griffith et al., Science, 2006. [2] Le Mouélic et al., PSS, 2012. [3] Rodriguez et al., Nature, 2009. [4] Rodriguez et al., Icarus 2011. [4] Hirtzig et al., Icarus, 2013. [5] Rannou et al

  18. Magnetic Vortex Based Transistor Operations

    Science.gov (United States)

    Kumar, D.; Barman, S.; Barman, A.

    2014-01-01

    Transistors constitute the backbone of modern day electronics. Since their advent, researchers have been seeking ways to make smaller and more efficient transistors. Here, we demonstrate a sustained amplification of magnetic vortex core gyration in coupled two and three vortices by controlling their relative core polarities. This amplification is mediated by a cascade of antivortex solitons travelling through the dynamic stray field. We further demonstrated that the amplification can be controlled by switching the polarity of the middle vortex in a three vortex sequence and the gain can be controlled by the input signal amplitude. An attempt to show fan–out operation yielded gain for one of the symmetrically placed branches which can be reversed by switching the core polarity of all the vortices in the network. The above observations promote the magnetic vortices as suitable candidates to work as stable bipolar junction transistors (BJT). PMID:24531235

  19. Magnetic Vortex Based Transistor Operations

    Science.gov (United States)

    Kumar, D.; Barman, S.; Barman, A.

    2014-02-01

    Transistors constitute the backbone of modern day electronics. Since their advent, researchers have been seeking ways to make smaller and more efficient transistors. Here, we demonstrate a sustained amplification of magnetic vortex core gyration in coupled two and three vortices by controlling their relative core polarities. This amplification is mediated by a cascade of antivortex solitons travelling through the dynamic stray field. We further demonstrated that the amplification can be controlled by switching the polarity of the middle vortex in a three vortex sequence and the gain can be controlled by the input signal amplitude. An attempt to show fan-out operation yielded gain for one of the symmetrically placed branches which can be reversed by switching the core polarity of all the vortices in the network. The above observations promote the magnetic vortices as suitable candidates to work as stable bipolar junction transistors (BJT).

  20. Magnetic vortex racetrack memory

    International Nuclear Information System (INIS)

    Geng, Liwei D.; Jin, Yongmei M.

    2017-01-01

    We report a new type of racetrack memory based on current-controlled movement of magnetic vortices in magnetic nanowires with rectangular cross-section and weak perpendicular anisotropy. Data are stored through the core polarity of vortices and each vortex carries a data bit. Besides high density, non-volatility, fast data access, and low power as offered by domain wall racetrack memory, magnetic vortex racetrack memory has additional advantages of no need for constrictions to define data bits, changeable information density, adjustable current magnitude for data propagation, and versatile means of ultrafast vortex core switching. By using micromagnetic simulations, current-controlled motion of magnetic vortices in cobalt nanowire is demonstrated for racetrack memory applications. - Highlights: • Advance fundamental knowledge of current-driven magnetic vortex phenomena. • Report appealing new magnetic racetrack memory based on current-controlled magnetic vortices in nanowires. • Provide a novel approach to adjust current magnitude for data propagation. • Overcome the limitations of domain wall racetrack memory.

  1. Vortex methods and vortex statistics

    International Nuclear Information System (INIS)

    Chorin, A.J.

    1993-05-01

    Vortex methods originated from the observation that in incompressible, inviscid, isentropic flow vorticity (or, more accurately, circulation) is a conserved quantity, as can be readily deduced from the absence of tangential stresses. Thus if the vorticity is known at time t = 0, one can deduce the flow at a later time by simply following it around. In this narrow context, a vortex method is a numerical method that makes use of this observation. Even more generally, the analysis of vortex methods leads, to problems that are closely related to problems in quantum physics and field theory, as well as in harmonic analysis. A broad enough definition of vortex methods ends up by encompassing much of science. Even the purely computational aspects of vortex methods encompass a range of ideas for which vorticity may not be the best unifying theme. The author restricts himself in these lectures to a special class of numerical vortex methods, those that are based on a Lagrangian transport of vorticity in hydrodynamics by smoothed particles (''blobs'') and those whose understanding contributes to the understanding of blob methods. Vortex methods for inviscid flow lead to systems of ordinary differential equations that can be readily clothed in Hamiltonian form, both in three and two space dimensions, and they can preserve exactly a number of invariants of the Euler equations, including topological invariants. Their viscous versions resemble Langevin equations. As a result, they provide a very useful cartoon of statistical hydrodynamics, i.e., of turbulence, one that can to some extent be analyzed analytically and more importantly, explored numerically, with important implications also for superfluids, superconductors, and even polymers. In the authors view, vortex ''blob'' methods provide the most promising path to the understanding of these phenomena

  2. Temporal and spectral cloud screening of polar winter aerosol optical depth (AOD: impact of homogeneous and inhomogeneous clouds and crystal layers on climatological-scale AODs

    Directory of Open Access Journals (Sweden)

    N. T. O'Neill

    2016-10-01

    Full Text Available We compared star-photometry-derived, polar winter aerosol optical depths (AODs, acquired at Eureka, Nunavut, Canada, and Ny-Ålesund, Svalbard, with GEOS-Chem (GC simulations as well as ground-based lidar and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization retrievals over a sampling period of two polar winters. The results indicate significant cloud and/or low-altitude ice crystal (LIC contamination which is only partially corrected using temporal cloud screening. Spatially homogeneous clouds and LICs that remain after temporal cloud screening represent an inevitable systematic error in the estimation of AOD: this error was estimated to vary from 78 to 210 % at Eureka and from 2 to 157 % at Ny-Ålesund. Lidar analysis indicated that LICs appeared to have a disproportionately large influence on the homogeneous coarse-mode optical depths that escape temporal cloud screening. In principle, spectral cloud screening (to yield fine-mode or submicron AODs reduces pre-cloud-screened AODs to the aerosol contribution if one assumes that coarse-mode (super-micron aerosols are a minor part of the AOD. Large, low-frequency differences between these retrieved values and their GC analogue appeared to be often linked to strong, spatially extensive planetary boundary layer events whose presence at either site was inferred from CALIOP profiles. These events were either not captured or significantly underestimated by the GC simulations. High-frequency AOD variations of GC fine-mode aerosols at Ny-Ålesund were attributed to sea salt, while low-frequency GC variations at Eureka and Ny-Ålesund were attributable to sulfates. CALIOP profiles and AODs were invaluable as spatial and temporal redundancy support (or, alternatively, as insightful points of contention for star photometry retrievals and GC estimates of AOD.

  3. Fall vortex ozone as a predictor of springtime total ozone at high northern latitudes

    Directory of Open Access Journals (Sweden)

    S. R. Kawa

    2005-01-01

    Full Text Available Understanding the impact of atmospheric dynamical variability on observed changes in stratospheric O3 is a key to understanding how O3 will change with future climate dynamics and trace gas abundances. In this paper we examine the linkage between interannual variability in total column O3 at northern high latitudes in March and lower-to-mid stratospheric vortex O3 in the prior November. We find that these two quantities are significantly correlated in the years available from TOMS, SBUV, and POAM data (1978-2004. Additionally, we find that the increase in March O3 variability from the 1980s to years post-1990 is also seen in the November vortex O3, i.e., interannual variability in both quantities is much larger in the later years. The cause of this correlation is not clear, however. Interannual variations in March total O3 are known to correspond closely with variations in winter stratospheric wave driving consistent with the effects of varying residual circulation, temperature, and chemical loss. Variation in November vortex O3 may also depend on dynamical wave activity, but the dynamics in fall are less variable than in winter and spring. We do not find significant correlations of dynamic indicators for November such as temperature, heat flux, or polar average total O3 with the November vortex O3, nor with dynamical indicators later in winter and spring that might lead to a connection to March. We discuss several potential hypotheses for the observed correlation but do not find strong evidence for any considered mechanism. We present the observations as a phenomenon whose understanding may improve our ability to predict the dependence of O3 on changing dynamics and chemistry.

  4. Tunable-wavelength picosecond vortex generation in fiber and its application in frequency-doubled vortex

    Science.gov (United States)

    Zhang, Wending; Wei, Keyan; Wang, Heng; Mao, Dong; Gao, Feng; Huang, Ligang; Mei, Ting; Zhao, Jianlin

    2018-01-01

    We present a method for tunable-wavelength picosecond vortex pulse generation by using an acoustically-induced fiber grating (AIFG). The AIFG-driven mode conversion characteristic was activated via a shear-mode piezoelectric transducer that excels in excitation efficiency of acoustic flexural wave and mechanical stability. The linearly-polarized ±1-order picosecond vortex pulse was experimentally generated via AIFG with a uniform coupling efficiency of ∼98.4% from the fundamental mode to the ±1-order vortex mode within the wavelength range 1540 nm ∼ 1560 nm. The topological charge and the linearly-polarized characteristic of the picosecond vortex pulse were verified by examination of the off-axial interference and the polarization angle-dependent intensity, respectively. Furthermore, the picosecond vortex pulse with wavelength tunability was input to a nonlinear BBO crystal to generate a frequency-doubled ±2-order vortex in the wavelength range 770 nm ∼ 780 nm. This technology provides a convenient apparatus for generating a picosecond vortex pulse and the frequency-doubled vortex with wavelength tunability.

  5. The 2009–2010 Arctic stratospheric winter – general evolution, mountain waves and predictability of an operational weather forecast model

    Directory of Open Access Journals (Sweden)

    A. Dörnbrack

    2012-04-01

    Full Text Available The relatively warm 2009–2010 Arctic winter was an exceptional one as the North Atlantic Oscillation index attained persistent extreme negative values. Here, selected aspects of the Arctic stratosphere during this winter inspired by the analysis of the international field experiment RECONCILE are presented. First of all, and as a kind of reference, the evolution of the polar vortex in its different phases is documented. Special emphasis is put on explaining the formation of the exceptionally cold vortex in mid winter after a sequence of stratospheric disturbances which were caused by upward propagating planetary waves. A major sudden stratospheric warming (SSW occurring near the end of January 2010 concluded the anomalous cold vortex period. Wave ice polar stratospheric clouds were frequently observed by spaceborne remote-sensing instruments over the Arctic during the cold period in January 2010. Here, one such case observed over Greenland is analysed in more detail and an attempt is made to correlate flow information of an operational numerical weather prediction model to the magnitude of the mountain-wave induced temperature fluctuations. Finally, it is shown that the forecasts of the ECMWF ensemble prediction system for the onset of the major SSW were very skilful and the ensemble spread was very small. However, the ensemble spread increased dramatically after the major SSW, displaying the strong non-linearity and internal variability involved in the SSW event.

  6. Effect of Recent Sea Surface Temperature Trends on the Arctic Stratospheric Vortex

    Science.gov (United States)

    Garfinkel, Chaim I.; Oman, Luke; Hurwitz, Margaret

    2015-01-01

    The springtime Arctic polar vortex has cooled significantly over the satellite era, with consequences for ozone concentrations in the springtime transition season. The causes of this cooling trend are deduced by using comprehensive chemistry-climate model experiments. Approximately half of the satellite era early springtime cooling trend in the Arctic lower stratosphere was caused by changing sea surface temperatures (SSTs). An ensemble of experiments forced only by changing SSTs is compared to an ensemble of experiments in which both the observed SSTs and chemically- and radiatively-active trace species are changing. By comparing the two ensembles, it is shown that warming of Indian Ocean, North Pacific, and North Atlantic SSTs, and cooling of the tropical Pacific, have strongly contributed to recent polar stratospheric cooling in late winter and early spring, and to a weak polar stratospheric warming in early winter. When concentrations of ozone-depleting substances and greenhouse gases are fixed, polar ozone concentrations show a small but robust decline due to changing SSTs. Ozone changes are magnified in the presence of changing gas concentrations. The stratospheric changes can be understood by examining the tropospheric height and heat flux anomalies generated by the anomalous SSTs. Finally, recent SST changes have contributed to a decrease in the frequency of late winter stratospheric sudden warmings.

  7. Spin torque and critical currents for magnetic vortex nano-oscillator in nanopillars

    Energy Technology Data Exchange (ETDEWEB)

    Guslienko, K Y; Gonzalez, J [Dpto. Fisica de Materiales, Universidad del Pais Vasco, 20018 Donostia-San Sebastian (Spain); Aranda, G R, E-mail: sckguslk@ehu.es [Centro de Fisica de Materiales UPV/EHU-CSIC, 20018 San Sebastian (Spain)

    2011-04-01

    We calculated the main dynamic parameters of the spin polarized current induced magnetic vortex oscillations in nanopillars, such as the range of current density, where vortex steady oscillations exist, the oscillation frequency and orbit radius. We accounted for both the non-linear vortex frequency and non-linear vortex damping. To describe the vortex excitations by the spin polarized current we used a generalized Thiele approach to motion of the vortex core as a collective coordinate. All the calculation results are represented via the free layer sizes, saturation magnetization, and the Gilbert damping. Predictions of the developed model can be checked experimentally.

  8. Extreme ozone depletion in the 2010–2011 Arctic winter stratosphere as observed by MIPAS/ENVISAT using a 2-D tomographic approach

    Directory of Open Access Journals (Sweden)

    E. Arnone

    2012-10-01

    Full Text Available We present observations of the 2010–2011 Arctic winter stratosphere from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS onboard ENVISAT. Limb sounding infrared measurements were taken by MIPAS during the Northern polar winter and into the subsequent spring, giving a continuous vertically resolved view of the Arctic dynamics, chemistry and polar stratospheric clouds (PSCs. We adopted a 2-D tomographic retrieval approach to account for the strong horizontal inhomogeneity of the atmosphere present under vortex conditions, self-consistently comparing 2011 to the 2-D analysis of 2003–2010. Unlike most Arctic winters, 2011 was characterized by a strong stratospheric vortex lasting until early April. Lower stratospheric temperatures persistently remained below the threshold for PSC formation, extending the PSC season up to mid-March, resulting in significant chlorine activation leading to ozone destruction. On 3 January 2011, PSCs were detected up to 30.5 ± 0.9 km altitude, representing the highest PSCs ever reported in the Arctic. Through inspection of MIPAS spectra, 83% of PSCs were identified as supercooled ternary solution (STS or STS mixed with nitric acid trihydrate (NAT, 17% formed mostly by NAT particles, and only two cases by ice. In the lower stratosphere at potential temperature 450 K, vortex average ozone showed a daily depletion rate reaching 100 ppbv day−1. In early April at 18 km altitude, 10% of vortex measurements displayed total depletion of ozone, and vortex average values dropped to 0.6 ppmv. This corresponds to a chemical loss from early winter greater than 80%. Ozone loss was accompanied by activation of ClO, associated depletion of its reservoir ClONO2, and significant denitrification, which further delayed the recovery of ozone in spring. Once the PSC season halted, ClO was reconverted primarily into ClONO2. Compared to MIPAS observed 2003–2010 Arctic average values

  9. Technical Note: SWIFT - a fast semi-empirical model for polar stratospheric ozone loss

    Science.gov (United States)

    Rex, M.; Kremser, S.; Huck, P.; Bodeker, G.; Wohltmann, I.; Santee, M. L.; Bernath, P.

    2014-07-01

    An extremely fast model to estimate the degree of stratospheric ozone depletion during polar winters is described. It is based on a set of coupled differential equations that simulate the seasonal evolution of vortex-averaged hydrogen chloride (HCl), nitric acid (HNO3), chlorine nitrate (ClONO2), active forms of chlorine (ClOx = Cl + ClO + 2 ClOOCl) and ozone (O3) on isentropic levels within the polar vortices. Terms in these equations account for the chemical and physical processes driving the time rate of change of these species. Eight empirical fit coefficients associated with these terms are derived by iteratively fitting the equations to vortex-averaged satellite-based measurements of HCl, HNO3 and ClONO2 and observationally derived ozone loss rates. The system of differential equations is not stiff and can be solved with a time step of one day, allowing many years to be processed per second on a standard PC. The inputs required are the daily fractions of the vortex area covered by polar stratospheric clouds and the fractions of the vortex area exposed to sunlight. The resultant model, SWIFT (Semi-empirical Weighted Iterative Fit Technique), provides a fast yet accurate method to simulate ozone loss rates in polar regions. SWIFT's capabilities are demonstrated by comparing measured and modeled total ozone loss outside of the training period.

  10. Decadal variation of the impact of La Niña on the winter Arctic stratosphere

    Science.gov (United States)

    Yang, Shuangyan; Li, Tim; Hu, Jinggao; Shen, Xi

    2017-05-01

    The impact of La Niña on the winter Arctic stratosphere has thus far been an ambiguous topic of research. Contradictory results have been reported depending on the La Niña events considered. This study shows that this is mainly due to the decadal variation of La Niña's impact on the winter Arctic stratosphere since the late 1970s. Specifically, during the period 1951-78, the tropospheric La Niña teleconnection exhibits a typical negative Pacific-North America pattern, which strongly inhibits the propagation of the planetary waves from the extratropical troposphere to the stratosphere, and leads to a significantly strengthened stratospheric polar vortex. In contrast, during 1979-2015, the La Niña teleconnection shifts eastwards, with an anomalous high concentrated in the northeastern Pacific. The destructive interference of the La Niña teleconnection with climatological stationary waves seen in the earlier period reduces greatly, which prevents the drastic reduction of planetary wave activities in the extratropical stratosphere. Correspondingly, the stratospheric response shows a less disturbed stratospheric polar vortex in winter.

  11. A 20-day period standing oscillation in the northern winter stratosphere

    Directory of Open Access Journals (Sweden)

    K. Hocke

    2013-04-01

    Full Text Available Observations of the ozone profile by a ground-based microwave radiometer in Switzerland indicate a dominant 20-day oscillation in stratospheric ozone, possibly related to oscillations of the polar vortex edge during winter. For further understanding of the nature of the 20-day oscillation, the ozone data set of ERA Interim meteorological reanalysis is analyzed at the latitude belt of 47.5° N and in the time from 1979 to 2010. Spectral analysis of ozone time series at 7 hPa indicates that the 20-day oscillation is maximal at two locations: 7.5° E, 47.5° N and 60° E, 47.5° N. Composites of the stream function are derived for different phases of the 20-day oscillation of stratospheric ozone at 7 hPa in the Northern Hemisphere. The streamline at Ψ = −2 × 107 m2 s−1 is in the vicinity of the polar vortex edge. The other streamline at Ψ = 4 × 107 m2 s1 surrounds the Aleutian anticyclone and goes to the subtropics. The composites show 20-day period standing oscillations at the polar vortex edge and in the subtropics above Northern Africa, India, and China. The 20-day period standing oscillation above Aral Sea and India is correlated to the strength of the Aleutian anticyclone.

  12. Current-driven resonant excitation of magnetic vortex

    OpenAIRE

    Kasai, Shinya; Nakatani, Yoshinobu; Kobayashi, Kensuke; Kohno, Hiroshi; Ono, Teruo

    2006-01-01

    A magnetic vortex core in a ferromagnetic circular nanodot has a resonance frequency originating from the confinement of the vortex core. By the micromagnetic simulation including the spin-transfer torque, we show that the vortex core can be resonantly excited by an AC (spin-polarized) current through the dot and that the resonance frequency can be tuned by the dot shape. The resistance measurement under the AC current successfully detects the resonance at the frequency consistent with the si...

  13. Vortex beam characterization in terms of Hypergeometric- Gaussian modes

    CSIR Research Space (South Africa)

    Sephton, Bereneice C

    2016-10-01

    Full Text Available Q-plates are commonly used for uncomplicated generation of polarization controlled vortex beams. Here we show experimentally that the output is not a pure vortex but rather a Hypergeometric-Gaussian mode. Results are in good agreement with theory....

  14. Representation of the Antarctic circumpolar vortex mixing barrier in a Global Climate Model

    Science.gov (United States)

    Cameron, Chris; Conway, Jono; Bodeker, Greg; Renwick, James

    2017-04-01

    Dynamical processes that occur in the stratosphere between 15 and 50 km above Earth's surface can affect circulation in the troposphere and have an impact on weather and climate. The Antarctic Circumpolar Vortex (ACV) forms each winter and spring as a zone of strong stratospheric westerly winds surrounding Antarctica. The ACV presents a barrier to transport of air masses between middle and high-latitudes, and contributes to stratospheric temperatures above the polar region dropping sufficiently low in spring to allow for ozone loss. The processes controlling the permeability of the ACV, and how they are likely to respond to a changing climate and a recovering ozone hole, have not been well studied, and as a result are not well simulated in Global Climate Models, particularly in terms of sub-grid scale turbulent diffusion which is parameterized in the models. The UK Met Office Unified Model (UM) is used to examine vortex permeability using both the "New Dynamics" and the upgraded "ENDGame" dynamical cores. Results are compared against reanalysis representations of vortex permeability using the MERRA-2 and ERA-Interim reanalyses data sets, which have been shown to have superior performance in the Southern Hemisphere stratosphere when compared against NCEP-CFSR, and MERRA reanalyses. Results are expected to lead to improved representation of ACV transport process in Global Climate Models and subsequent improvements in climate modelling.

  15. The control of magnetic vortex state in rectangular nanomagnet

    Science.gov (United States)

    Li, Junqin; Wang, Yong; Cao, Jiefeng; Meng, Xiangyu; Zhu, Fangyuan; Tai, Renzhong

    2018-04-01

    We study the magnetic vortex states in rectangular nanomagnet with aspect ratio close to two by micro-magnetic simulations and experiments comparatively, and propose a simple way to manipulate both the chirality and polarity independently by tuning the direction of the in-plane magnetic field. There are always two vortices which have opposite chirality with Neel type wall and identical polarity for the rectangular nanomagnet with aspect ratio close to two. Four stable vortex states can be genetated from the uniformly magnetized state by in-plane magnetic field, and specific vortex states depend on the direction of the initial magnetization. The phenomenont of the formation of vortex states was explained based on the vortex dynamics. Also the reliability of proposed method was confirmed by domain structure using magnetic force microscopy (MFM) in experiment.

  16. Sadovskii vortex in strain

    Science.gov (United States)

    Freilich, Daniel; Llewellyn Smith, Stefan

    2014-11-01

    A Sadovskii vortex is a patch of fluid with uniform vorticity surrounded by a vortex sheet. Using a boundary element type method, we investigate the steady states of this flow in an incompressible, inviscid straining flow. Outside the vortex, the fluid is irrotational. In the limiting case where the entire circulation is due to the vortex patch, this is a patch vortex (Moore & Saffman, Aircraft wake turbulence and its detection 1971). In the other limiting case, where all the circulation is due to the vortex sheet, this is a hollow vortex (Llewellyn Smith and Crowdy, J. Fluid Mech. 691, 2012). This flow has two governing nondimensional parameters, relating the strengths of the straining field, vortex sheet, and patch vorticity. We study the relationship between these two parameters, and examine the shape of the resulting vortices. We also work towards a bifurcation diagram of the steady states of the Sadovskii vortex in an attempt to understand the connection between vortex sheet and vortex patch desingularizations of the point vortex. Support from NSF-CMMI-0970113.

  17. Vortex Airy beams directly generated via liquid crystal q-Airy-plates

    Science.gov (United States)

    Wei, Bing-Yan; Liu, Sheng; Chen, Peng; Qi, Shu-Xia; Zhang, Yi; Hu, Wei; Lu, Yan-Qing; Zhao, Jian-Lin

    2018-03-01

    Liquid crystal q-Airy-plates with director distributions integrated by q-plates and polarization Airy masks are proposed and demonstrated via the photoalignment technique. Single/dual vortex Airy beams of opposite topological charges and orthogonal circular polarizations are directly generated with polarization-controllable characteristic. The singular phase of the vortex part is verified by both astigmatic transformation and digital holography. The trajectory of vortex Airy beams is investigated, manifesting separate propagation dynamics of optical vortices and Airy beams. Meanwhile, Airy beams still keep their intrinsic transverse acceleration, self-healing, and nondiffraction features. This work provides a versatile candidate for generating high-quality vortex Airy beams.

  18. Evidence of Vortex Jamming in Abrikosov Vortex Flux Flow Regime

    OpenAIRE

    Karapetrov, G.; Yefremenko, V.; Mihajlović, G.; Pearson, J. E.; Iavarone, M.; Novosad, V.; Bader, S. D.

    2012-01-01

    We report on dynamics of non-local Abrikosov vortex flow in mesoscopic superconducting Nb channels. Magnetic field dependence of the non-local voltage induced by the flux flow shows that vortices form ordered vortex chains. Voltage asymmetry (rectification) with respect to the direction of vortex flow is evidence that vortex jamming strongly moderates vortex dynamics in mesoscopic geometries. The findings can be applied to superconducting devices exploiting vortex dynamics and vortex manipula...

  19. Vortex profiles and vortex interactions at the electroweak crossover

    OpenAIRE

    Chernodub, M. N.; Ilgenfritz, E. -M.; Schiller, A.

    1999-01-01

    Local correlations of Z-vortex operators with gauge and Higgs fields (lattice quantum vortex profiles) as well as vortex two-point functions are studied in the crossover region near a Higgs mass of 100 GeV within the 3D SU(2) Higgs model. The vortex profiles resemble certain features of the classical vortex solutions in the continuum. The vortex-vortex interactions are analogous to the interactions of Abrikosov vortices in a type-I superconductor.

  20. Comparison of the CMAM30 data set with ACE-FTS and OSIRIS: polar regions

    Science.gov (United States)

    Pendlebury, D.; Plummer, D.; Scinocca, J.; Sheese, P.; Strong, K.; Walker, K.; Degenstein, D.

    2015-11-01

    CMAM30 is a 30-year data set extending from 1979 to 2010 that is generated using a version of the Canadian Middle Atmosphere Model (CMAM) in which the winds and temperatures are relaxed to the Interim Reanalysis product from the European Centre for Medium-Range Weather Forecasts (ERA-Interim). The data set has dynamical fields that are very close to the reanalysis below 1 hPa and chemical tracers that are self-consistent with respect to the model winds and temperature. The chemical tracers are expected to be close to actual observations. The data set is here compared to two satellite records - the Atmospheric Chemistry Experiment Fourier transform spectrometer and the Odin Optical Spectrograph and Infrared Imaging System - for the purpose of validating the temperature, ozone, water vapour and methane fields. Data from the Aura microwave limb sounder are also used for validation of the chemical processing in the polar vortex. It is found that the CMAM30 temperature is warmer by up to 5 K in the stratosphere, with a low bias in the mesosphere of ~ 5-15 K. Ozone is reasonable (±15 %), except near the tropopause globally and in the Southern Hemisphere winter polar vortex. Water vapour is consistently low by 10-20 %, with corresponding high methane of 10-20 %, except in the Southern Hemisphere polar vortex. Discrepancies in this region are shown to stem from the treatment of polar stratospheric cloud formation in the model.

  1. Understanding and forecasting polar stratospheric variability with statistical models

    Directory of Open Access Journals (Sweden)

    C. Blume

    2012-07-01

    Full Text Available The variability of the north-polar stratospheric vortex is a prominent aspect of the middle atmosphere. This work investigates a wide class of statistical models with respect to their ability to model geopotential and temperature anomalies, representing variability in the polar stratosphere. Four partly nonstationary, nonlinear models are assessed: linear discriminant analysis (LDA; a cluster method based on finite elements (FEM-VARX; a neural network, namely the multi-layer perceptron (MLP; and support vector regression (SVR. These methods model time series by incorporating all significant external factors simultaneously, including ENSO, QBO, the solar cycle, volcanoes, to then quantify their statistical importance. We show that variability in reanalysis data from 1980 to 2005 is successfully modeled. The period from 2005 to 2011 can be hindcasted to a certain extent, where MLP performs significantly better than the remaining models. However, variability remains that cannot be statistically hindcasted within the current framework, such as the unexpected major warming in January 2009. Finally, the statistical model with the best generalization performance is used to predict a winter 2011/12 with warm and weak vortex conditions. A vortex breakdown is predicted for late January, early February 2012.

  2. Winter Weather

    Science.gov (United States)

    ... Education Centers Harwood Training Grants Videos E-Tools Winter Storms Plan. Equip. Train To prevent injuries, illnesses and Fatalities during winter storms. This page requires that javascript be enabled ...

  3. Winter MVC

    OpenAIRE

    Castellón Gadea, Pasqual

    2013-01-01

    Winter MVC és un framework de presentació basat en Spring MVC que simplifica la metodologia de configuracions. Winter MVC es un framework de presentación basado en Spring MVC que simplifica la metodología de configuraciones. Winter MVC is a presentation framework that simplifies Spring MVC configuration methodology.

  4. Winter is losing its cool

    Science.gov (United States)

    Feng, S.

    2017-12-01

    Winter seasons have significant societal impacts across all sectors ranging from direct human health to ecosystems, transportation, and recreation. This study quantifies the severity of winter and its spatial-temporal variations using a newly developed winter severity index and daily temperature, snowfall and snow depth. The winter severity and the number of extreme winter days are decreasing across the global terrestrial areas during 1901-2015 except the southeast United States and isolated regions in the Southern Hemisphere. These changes are dominated by winter warming, while the changes in daily snowfall and snow depth played a secondary role. The simulations of multiple CMIP5 climate models can well capture the spatial and temporal variations of the observed changes in winter severity and extremes during 1951-2005. The models are consistent in projecting a future milder winter under various scenarios. The winter severity is projected to decrease 60-80% in the middle-latitude Northern Hemisphere under the business-as-usual scenario. The winter arrives later, ends earlier and the length of winter season will be notably shorter. The changes in harsh winter in the polar regions are weak, mainly because the warming leads to more snowfall in the high latitudes.

  5. Vortex-Core Reversal Dynamics: Towards Vortex Random Access Memory

    Science.gov (United States)

    Kim, Sang-Koog

    2011-03-01

    An energy-efficient, ultrahigh-density, ultrafast, and nonvolatile solid-state universal memory is a long-held dream in the field of information-storage technology. The magnetic random access memory (MRAM) along with a spin-transfer-torque switching mechanism is a strong candidate-means of realizing that dream, given its nonvolatility, infinite endurance, and fast random access. Magnetic vortices in patterned soft magnetic dots promise ground-breaking applications in information-storage devices, owing to the very stable twofold ground states of either their upward or downward core magnetization orientation and plausible core switching by in-plane alternating magnetic fields or spin-polarized currents. However, two technologically most important but very challenging issues --- low-power recording and reliable selection of each memory cell with already existing cross-point architectures --- have not yet been resolved for the basic operations in information storage, that is, writing (recording) and readout. Here, we experimentally demonstrate a magnetic vortex random access memory (VRAM) in the basic cross-point architecture. This unique VRAM offers reliable cell selection and low-power-consumption control of switching of out-of-plane core magnetizations using specially designed rotating magnetic fields generated by two orthogonal and unipolar Gaussian-pulse currents along with optimized pulse width and time delay. Our achievement of a new device based on a new material, that is, a medium composed of patterned vortex-state disks, together with the new physics on ultrafast vortex-core switching dynamics, can stimulate further fruitful research on MRAMs that are based on vortex-state dot arrays.

  6. Diagnostic Comparison of Meteorological Analyses during the 2002 Antarctic Winter

    Science.gov (United States)

    Manney, Gloria L.; Allen, Douglas R.; Kruger, Kirstin; Naujokat, Barbara; Santee, Michelle L.; Sabutis, Joseph L.; Pawson, Steven; Swinbank, Richard; Randall, Cora E.; Simmons, Adrian J.; hide

    2005-01-01

    Several meteorological datasets, including U.K. Met Office (MetO), European Centre for Medium-Range Weather Forecasts (ECMWF), National Centers for Environmental Prediction (NCEP), and NASA's Goddard Earth Observation System (GEOS-4) analyses, are being used in studies of the 2002 Southern Hemisphere (SH) stratospheric winter and Antarctic major warming. Diagnostics are compared to assess how these studies may be affected by the meteorological data used. While the overall structure and evolution of temperatures, winds, and wave diagnostics in the different analyses provide a consistent picture of the large-scale dynamics of the SH 2002 winter, several significant differences may affect detailed studies. The NCEP-NCAR reanalysis (REAN) and NCEP-Department of Energy (DOE) reanalysis-2 (REAN-2) datasets are not recommended for detailed studies, especially those related to polar processing, because of lower-stratospheric temperature biases that result in underestimates of polar processing potential, and because their winds and wave diagnostics show increasing differences from other analyses between similar to 30 and 10 hPa (their top level). Southern Hemisphere polar stratospheric temperatures in the ECMWF 40-Yr Re-analysis (ERA-40) show unrealistic vertical structure, so this long-term reanalysis is also unsuited for quantitative studies. The NCEP/Climate Prediction Center (CPC) objective analyses give an inferior representation of the upper-stratospheric vortex. Polar vortex transport barriers are similar in all analyses, but there is large variation in the amount, patterns, and timing of mixing, even among the operational assimilated datasets (ECMWF, MetO, and GEOS-4). The higher-resolution GEOS-4 and ECMWF assimilations provide significantly better representation of filamentation and small-scale structure than the other analyses, even when fields gridded at reduced resolution are studied. The choice of which analysis to use is most critical for detailed transport

  7. Satellite-derived attributes of cloud vortex systems and their application to climate studies

    Science.gov (United States)

    Carleton, Andrew M.

    1987-01-01

    Defense Meteorological Satellite Program (DMSP) visible and infrared mosaics are analyzed in conjunction with synoptic meteorological observations of sea level pressure (SLP) and upper-air height to derive composite patterns of cyclonic cloud vortices for the Northern Hemisphere. The patterns reveal variations in the structure and implied dynamics of cyclonic systems at different stages of development that include: (1) increasing vertical symmetry of the lower-level and upper-air circulations and (2) decreasing lower-tropospheric thicknesses and temperature advection, associated with increasing age of the vortex. Cloud vortices are more intense in winter than in summer and typically reach maximum intensity in the short-lived prespiral signature stage. There are major structural differences among frontal wave, polar air, and 'instant occlusion' cyclogenesis types. Cyclones in the dissipation stage may reintensify (deepen), as denoted by the appearance in the imagery of an asymmetric cloud band or a tightened spiral vortex. The satellite-derived statistics on cloud vortex intensity, which are seasonal- and latitude- as well as type-dependent, are applied to a preliminary examination of the synoptic manifestations of seasonal climate variability. An apparently close relationship is found, for two winter and spring seasons, between Northern Hemisphere cyclonic activity and variations in cryosphere variables, particularly the extent of Arctic sea ice. The results may indicate that increased snow and ice extent accompany a southward displacement of cyclonic activity and/or a predominance of deeper systems. However, there is also a strong regional dependence to the ice-synoptics feedback. This study demonstrates the utility of high resolution meteorological satellite imagery for studies of climate variations (climate dynamics).

  8. Stability of barotropic vortex strip on a rotating sphere.

    Science.gov (United States)

    Sohn, Sung-Ik; Sakajo, Takashi; Kim, Sun-Chul

    2018-02-01

    We study the stability of a barotropic vortex strip on a rotating sphere, as a simple model of jet streams. The flow is approximated by a piecewise-continuous vorticity distribution by zonal bands of uniform vorticity. The linear stability analysis shows that the vortex strip becomes stable as the strip widens or the rotation speed increases. When the vorticity constants in the upper and the lower regions of the vortex strip have the same positive value, the inner flow region of the vortex strip becomes the most unstable. However, when the upper and the lower vorticity constants in the polar regions have different signs, a complex pattern of instability is found, depending on the wavenumber of perturbations, and interestingly, a boundary far away from the vortex strip can be unstable. We also compute the nonlinear evolution of the vortex strip on the rotating sphere and compare with the linear stability analysis. When the width of the vortex strip is small, we observe a good agreement in the growth rate of perturbation at an early time, and the eigenvector corresponding to the unstable eigenvalue coincides with the most unstable part of the flow. We demonstrate that a large structure of rolling-up vortex cores appears in the vortex strip after a long-time evolution. Furthermore, the geophysical relevance of the model to jet streams of Jupiter, Saturn and Earth is examined.

  9. Stability of barotropic vortex strip on a rotating sphere

    Science.gov (United States)

    Sohn, Sung-Ik; Sakajo, Takashi; Kim, Sun-Chul

    2018-02-01

    We study the stability of a barotropic vortex strip on a rotating sphere, as a simple model of jet streams. The flow is approximated by a piecewise-continuous vorticity distribution by zonal bands of uniform vorticity. The linear stability analysis shows that the vortex strip becomes stable as the strip widens or the rotation speed increases. When the vorticity constants in the upper and the lower regions of the vortex strip have the same positive value, the inner flow region of the vortex strip becomes the most unstable. However, when the upper and the lower vorticity constants in the polar regions have different signs, a complex pattern of instability is found, depending on the wavenumber of perturbations, and interestingly, a boundary far away from the vortex strip can be unstable. We also compute the nonlinear evolution of the vortex strip on the rotating sphere and compare with the linear stability analysis. When the width of the vortex strip is small, we observe a good agreement in the growth rate of perturbation at an early time, and the eigenvector corresponding to the unstable eigenvalue coincides with the most unstable part of the flow. We demonstrate that a large structure of rolling-up vortex cores appears in the vortex strip after a long-time evolution. Furthermore, the geophysical relevance of the model to jet streams of Jupiter, Saturn and Earth is examined.

  10. Hydrodynamic Vortex on Surfaces

    Science.gov (United States)

    Ragazzo, Clodoaldo Grotta; de Barros Viglioni, Humberto Henrique

    2017-10-01

    The equations of motion for a system of point vortices on an oriented Riemannian surface of finite topological type are presented. The equations are obtained from a Green's function on the surface. The uniqueness of the Green's function is established under hydrodynamic conditions at the surface's boundaries and ends. The hydrodynamic force on a point vortex is computed using a new weak formulation of Euler's equation adapted to the point vortex context. An analogy between the hydrodynamic force on a massive point vortex and the electromagnetic force on a massive electric charge is presented as well as the equations of motion for massive vortices. Any noncompact Riemann surface admits a unique Riemannian metric such that a single vortex in the surface does not move ("Steady Vortex Metric"). Some examples of surfaces with steady vortex metric isometrically embedded in R^3 are presented.

  11. Vortex cutting in superconductors

    Science.gov (United States)

    Vlasko-Vlasov, Vitalii K.; Koshelev, Alexei E.; Glatz, Andreas; Welp, Ulrich; Kwok, Wai-K.

    2015-03-01

    Unlike illusive magnetic field lines in vacuum, magnetic vortices in superconductors are real physical strings, which interact with the sample surface, crystal structure defects, and with each other. We address the complex and poorly understood process of vortex cutting via a comprehensive set of magneto-optic experiments which allow us to visualize vortex patterns at magnetization of a nearly twin-free YBCO crystal by crossing magnetic fields of different orientations. We observe a pronounced anisotropy in the flux dynamics under crossing fields and the filamentation of induced supercurrents associated with the staircase vortex structure expected in layered cuprates, flux cutting effects, and angular vortex instabilities predicted for anisotropic superconductors. At some field angles, we find formation of the vortex domains following a type-I phase transition in the vortex state accompanied by an abrupt change in the vortex orientation. To clarify the vortex cutting scenario we performed time-dependent Ginzburg-Landau simulations, which confirmed formation of sharp vortex fronts observed in the experiment and revealed a left-handed helical instability responsible for the rotation of vortices. This work was supported by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division.

  12. Observations and analysis of polar stratospheric clouds detected by POAM III and SAGE III during the SOLVE II/VINTERSOL campaign in the 2002/2003 Northern Hemisphere winter

    Science.gov (United States)

    Alfred, J.; Fromm, M.; Bevilacqua, R.; Nedoluha, G.; Strawa, A.; Poole, L.; Wickert, J.

    2007-05-01

    The Polar Ozone and Aerosol Measurement and Stratospheric Aerosol and Gas Experiment instruments both observed high numbers of polar stratospheric clouds (PSCs) in the polar region during the second SAGE Ozone Loss and Validation (SOLVE II) and Validation of INTERnational Satellites and Study of Ozone Loss (VINTERSOL) campaign, conducted during the 2002/2003 Northern Hemisphere winter. Between 15 November 2002 (14 November 2002) and 18 March 2003 (21 March 2003) SAGE (POAM) observed 122 (151) aerosol extinction profiles containing PSCs. PSCs were observed on an almost daily basis, from early December through 15 January, in both instruments. No PSCs were observed from either instrument from 15 January until 4 February, and from then only sparingly in three periods in mid- and late February and mid-March. In early December, PSCs were observed in the potential temperature range from roughly 375 K to 750 K. Throughout December the top of this range decreases to near 600 K. In February and March, PSC observations were primarily constrained to potential temperatures below 500 K. The PSC observation frequency as a function of ambient temperature relative to the nitric acid-trihydrate saturation point (using a nitric acid profile prior to denitrification) was used to infer irreversible denitrification. By late December 38% denitrification was inferred at both the 400-475 K and 475-550 K potential temperature ranges. By early January extensive levels of denitrification near 80% were inferred at both potential temperature ranges, and the air remained denitrified at least through early March.

  13. Cryptanalysis of Vortex

    DEFF Research Database (Denmark)

    Aumasson, Jean-Philippe; Dunkelman, Orr; Mendel, Florian

    2009-01-01

    Vortex is a hash function that was first presented at ISC'2008, then submitted to the NIST SHA-3 competition after some modifications. This paper describes several attacks on both versions of Vortex, including collisions, second preimages, preimages, and distinguishers. Our attacks exploit flaws...

  14. Vortex diode jet

    Science.gov (United States)

    Houck, Edward D.

    1994-01-01

    A fluid transfer system that combines a vortex diode with a jet ejector to transfer liquid from one tank to a second tank by a gas pressurization method having no moving mechanical parts in the fluid system. The vortex diode is a device that has a high resistance to flow in one direction and a low resistance to flow in the other.

  15. Aerodynamically shaped vortex generators

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Velte, Clara Marika; Øye, Stig

    2016-01-01

    An aerodynamically shaped vortex generator has been proposed, manufactured and tested in a wind tunnel. The effect on the overall performance when applied on a thick airfoil is an increased lift to drag ratio compared with standard vortex generators. Copyright © 2015 John Wiley & Sons, Ltd....

  16. Ferroelectric nanostructure having switchable multi-stable vortex states

    Science.gov (United States)

    Naumov, Ivan I [Fayetteville, AR; Bellaiche, Laurent M [Fayetteville, AR; Prosandeev, Sergey A [Fayetteville, AR; Ponomareva, Inna V [Fayetteville, AR; Kornev, Igor A [Fayetteville, AR

    2009-09-22

    A ferroelectric nanostructure formed as a low dimensional nano-scale ferroelectric material having at least one vortex ring of polarization generating an ordered toroid moment switchable between multi-stable states. A stress-free ferroelectric nanodot under open-circuit-like electrical boundary conditions maintains such a vortex structure for their local dipoles when subject to a transverse inhomogeneous static electric field controlling the direction of the macroscopic toroidal moment. Stress is also capable of controlling the vortex's chirality, because of the electromechanical coupling that exists in ferroelectric nanodots.

  17. Stratospheric influence on Northern Hemisphere winter climate variability

    Science.gov (United States)

    Ouzeau, Gaelle; Douville, Herve; Saint Martin, David

    2010-05-01

    Despite significant improvements in observing and data assimilation systems, long-range dynamical forecasting remains a difficult challenge for the climate modelling community. The skill of operational seasonal forecasting systems is particularly poor in the northern extratropics where seas surface temperature (SST) has a weaker influence than in the Tropics. It is therefore relevant to look for additional potential sources of long-range climate predictability in the stratosphere using ensembles of global atmospheric simulations. Besides a control experiment where the ARPEGE-Climat model is only driven by SST, parallel simulations have been performed in which an additional control on climate variability has been accounted for through the nudging of the northern extratropical stratosphere towards the ERA40 reanalysis. Though idealized, this original experiment design allows us to compare the relative contribution of the lower and upper boundary forcings on the simulated tropospheric variability. Results show that the stratospheric nudging improves the climatology and interannual variability of the mid-latitude troposphere, especially in winter in the Northern Hemisphere. Major impacts are found in particular on the simulation of the Arctic and North Atlantic oscillations (AO and NAO). Case studies were carried out for the 1976-1977 and 1988-1989 winters, corresponding to extreme phases of the AO. Results confirm the robustness of the positive impact of the nudging, especially for winter 1976-1977 corresponding to relatively weak SST anomalies in the tropical Pacific. A sensitivity study to the model resolution shows that a well-resolved stratosphere is not necessary for the nudging to be efficient. Besides seasonal mean results, analysis of the day-to-day variability in winter allowed us to better understand the stratospheric polar vortex influence on the tropospheric circulation in the Northern Hemisphere mid-latitudes.

  18. Cassini Returns to Saturn's Poles: Seasonal Change in the Polar Vortices

    Science.gov (United States)

    Fletcher, Leigh N.; Orton, G. S.; Irwin, P. G. J.; Sinclair, J. A.; Hesman, B. E.; Hurley, J.; Bjoraker, G. L.; Simon-Miller, A. A.

    2013-01-01

    High inclination orbits during Cassini's solstice mission (2012) are providing us with our first observations of Saturn's high latitudes since the prime mission (2007). Since that time, the northern spring pole has emerged into sunlight and the southern autumn pole has disappeared into winter darkness, allowing us to study the seasonal changes occurring within the polar vortices in response to these dramatic insolation changes. Observations from the Cassini Composite Infrared Spectrometer] have revealed (i) the continued presence of small, cyclonic polar hotspots at both spring and autumn poles; and (ii) the emergence of an infrared-bright polar vortex at the north pole, consistent with the historical record of Saturn observations from the 1980s (previous northern spring).

  19. VORTEX Gimbal, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To overcome the communication gap to Venus, TUI proposes to develop the Venus or Titan Exploratory (VORTEX) Gimbal to point a meter scale diameter, high gain...

  20. The singing vortex

    Science.gov (United States)

    Arndt, R.; Pennings, P.; Bosschers, J.; van Terwisga, T.

    2015-01-01

    Marine propellers display several forms of cavitation. Of these, propeller-tip vortex cavitation is one of the important factors in propeller design. The dynamic behaviour of the tip vortex is responsible for hull vibration and noise. Thus, cavitation in the vortices trailing from tips of propeller blades has been studied extensively. Under certain circumstances cavitating vortices have been observed to have wave-like disturbances on the surfaces of vapour cores. Intense sound at discrete frequencies can result from a coupling between tip vortex disturbances and oscillating sheet cavitation on the surfaces of the propeller blades. This research article focuses on the dynamics of vortex cavitation and more in particular on the energy and frequency content of the radiated pressures. PMID:26442147

  1. The singing vortex.

    Science.gov (United States)

    Arndt, R; Pennings, P; Bosschers, J; van Terwisga, T

    2015-10-06

    Marine propellers display several forms of cavitation. Of these, propeller-tip vortex cavitation is one of the important factors in propeller design. The dynamic behaviour of the tip vortex is responsible for hull vibration and noise. Thus, cavitation in the vortices trailing from tips of propeller blades has been studied extensively. Under certain circumstances cavitating vortices have been observed to have wave-like disturbances on the surfaces of vapour cores. Intense sound at discrete frequencies can result from a coupling between tip vortex disturbances and oscillating sheet cavitation on the surfaces of the propeller blades. This research article focuses on the dynamics of vortex cavitation and more in particular on the energy and frequency content of the radiated pressures.

  2. Non-ionic detergent Triton X-114 Based vortex- synchronized matrix solid-phase dispersion method for the simultaneous determination of six compounds with various polarities from Forsythiae Fructus by ultra high-performance liquid chromatography.

    Science.gov (United States)

    Du, Kunze; Li, Jin; Tian, Fei; Chang, Yan-Xu

    2018-02-20

    A simple nonionic detergent - based vortex- synchronized matrix solid-phase dispersion (ND-VSMSPD) method was developed to extract bioactive compounds in Forsythiae Fructus coupled with ultra high-performance liquid chromatography (UHPLC). Nonionic detergent Triton 114 was firstly used as a green elution reagent in vortex- synchronized MSPD procedure. The optimum parameters were investigated to attain the best results, including Florisil as sorbent, 2mL 10% (v/v) nonionic detergent Triton X-114 as the elution reagent, 1:1 of sample/sorbent ratio, grinding for 3min, and whirling for 2min. The recoveries of the six compounds in Forsythiae Fructus were in the range of 95-104% (RSD vortex- synchronized MSPD, which required lower sample, reagent and time, were higher than the normal MSPD and the traditional ultrasonic-assisted extraction. Consequently, this developed vortex- synchronized MSPD coupled with simple UHPLC method could be efficiently applies to extract and analyze the target compounds in real Forsythiae Fructus samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. On a distribution of electric fields caused by the northern component of the interplanetary magnetic field in the absence of longitudinal currents in the winter polar cap

    International Nuclear Information System (INIS)

    Uvarov, V.M.

    1984-01-01

    Data on the distribution of electric fields, conditioned by the northern component of the interplanetary magnetic field Bsub(z), have been discussed. The problem of electric field excitation is reduced to the solution of equations of continuity for the current in three regions: northern and southern polar caps and region beyond the caps. At the values Bsub(z)>0 in the ranqe of latitudes phi >= 80 deg the localization of convection conversion effect is obtained in calculations for summer cap and it agrees with the data of direct measurements

  4. Evolution of stratospheric ozone during winter 2002/2003 as observed by a ground-based millimetre wave radiometer at Kiruna, Sweden

    Directory of Open Access Journals (Sweden)

    U. Raffalski

    2005-01-01

    Full Text Available We present ozone measurements from the millimetre wave radiometer installed at the Swedish Institute of Space Physics (Institutet för rymdfysik, IRF in Kiruna (67.8° N, 20.4° E, 420 m asl. Nearly continuous operation in the winter of 2002/2003 allows us to give an overview of ozone evolution in the stratosphere between 15 and 55 km. In this study we present a detailed analysis of the Arctic winter 2002/2003. By means of a methodology using equivalent latitudes we investigate the meteorological processes in the stratosphere during the entire winter/spring period. During the course of the winter strong mixing into the vortex took place in the middle and upper stratosphere as a result of three minor and one major warming event, but no evidence was found for significant mixing in the lower stratosphere. Ozone depletion in the lower stratosphere during this winter was estimated by measurements on those days when Kiruna was well inside the Arctic polar vortex. The days were carefully chosen using a definition of the vortex edge based on equivalent latitudes. At the 475 K isentropic level a cumulative ozone loss of about 0.5 ppmv was found starting in January and lasting until mid-March. The early ozone loss is probably a result of the very cold temperatures in the lower stratosphere in December and the geographical extension of the vortex to lower latitudes where solar irradiation started photochemical ozone loss in the pre-processed air. In order to correct for dynamic effects of the ozone variation due to diabatic subsidence of air masses inside the vortex, we used N2O measurements from the Odin satellite for the same time period. The derived ozone loss in the lower stratosphere between mid-December and mid-March varies between 1.1±0.1 ppmv on the 150 ppbv N2O isopleth and 1.7±0.1 ppmv on the 50 ppbv N2O isopleth.

  5. Vortex and source rings

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    2017-01-01

    The velocity field, vector potential and velocity gradient of a vortex ring is derived in this chapter. The Biot-Savart law for the vector potential and velocity is expressed in a first section. Then, the flow is derived at specific locations: on the axis, near the axis and in the far field where...... is dedicated to vortex rings. Source rings are only briefly mentioned....

  6. Interhemispheric differences in polar stratospheric HNO3, H2O, ClO, and O3

    Science.gov (United States)

    Santee, M. L.; Read, W. G.; Waters, J. W.; Froidevaux, L.; Manney, G. L.; Flower, D. A.; Jarnot, R. F.; Harwood, R. S.; Peckham, G. E.

    1995-01-01

    Simultaneous global measurements of nitric acid (HNO3), water (H2O), chlorine monoxide (ClO), and ozone (O3) in the stratosphere have been obtained over complete annual cycles in both hemispheres by the Microwave Limb Sounder on the Upper Atmosphere Research Satellite. A sizeable decrease in gas-phase HNO3 was evident in the lower stratospheric vortex over Antarctica by early June 1992, followed by a significant reduction in gas-phase H2O after mid-July. By mid-August, near the time of peak ClO, abundances of gas-phase HNO3 and H2O were extremely low. The concentrations of HNO3 and H2O over Antarctica remained depressed into November, well after temperatures in the lower stratosphere had risen above the evaporation threshold for polar stratospheric clouds, implying that denitrification and dehydration had occurred. No large decreases in either gas-phase HNO3 or H2O were observed in the 1992-1993 Arctic winter vortex. Although ClO was enhanced over the Arctic as it was over the Antarctic, Arctic O3 depletion was substantially smaller than that over Antarctica. A major factor currently limiting the formation of an Arctic ozone 'hole' is the lack of denitrification in the northern polar vortex, but future cooling of the lower stratosphere could lead to more intense denitrification and consequently larger losses of Arctic ozone.

  7. Vectorial diffraction properties of THz vortex Bessel beams.

    Science.gov (United States)

    Wu, Zhen; Wang, Xinke; Sun, Wenfeng; Feng, Shengfei; Han, Peng; Ye, Jiasheng; Yu, Yue; Zhang, Yan

    2018-01-22

    A vortex Bessel beam combines the merits of an optical vortex and a Bessel beam, including a spiral wave front and a non-diffractive feature, which has immense application potentials in optical trapping, optical fabrication, optical communications, and so on. Here, linearly and circularly polarized vortex Bessel beams in the terahertz (THz) frequency range are generated by utilizing a THz quarter wave plate, a spiral phase plate, and Teflon axicons with different opening angles. Taking advantage of a THz focal-plane imaging system, vectorial diffraction properties of the THz vortex Bessel beams are comprehensively characterized and discussed, including the transverse (Ex, Ey) and longitudinal (Ez) polarization components. The experimental phenomena are accurately simulated by adopting the vectorial Rayleigh diffraction integral. By varying the opening angle of the axicon, the characteristic parameters of these THz vortex Bessel beams are exhibited and compared, including the light spot size, the diffraction-free range, and the phase evolution process. This work provides the precise experimental and theoretical bases for the comprehension and application of a THz vortex Bessel beam.

  8. Titan's Emergence from Winter

    Science.gov (United States)

    Flasar, F. Michael; Achterberg, Richard; Jennings, Donald; Schinder, Paul

    2011-01-01

    We summarize the changes in Titans thermal structure derived from Cassini CIRS and radio-occultation data during the transition from winter to early spring. Titan's surface, and middle atmosphere show noticeable seasonal change, whereas that in most of the troposphere is mated. This can be understood in terms of the relatively small radiative relaxation time in the middle atmosphere and much larger time scale in the troposphere. The surface exhibits seasonal change because the heat capacity in an annual skin depth is much smaller than that in the lowest scale height of the troposphere. Surface temperatures rise 1 K at raid and high latitudes in the winter northern hemisphere and cool in the southern hemisphere. Changes in in the middle atmosphere are more complicated. Temperatures in the middle stratosphere (approximately 1 mbar) increase by a few kelvin at mid northern latitudes, but those at high latitudes first increase as that region moves out of winter shadow, and then decrease. This probably results from the combined effect of increased solar heating as the suit moves higher in the sky and the decreased adiabatic warming as the sinking motions associated with the cross-equatorial meridional cell weaken. Consistent with this interpretation, the warm temperatures observed higher up at the winter polar stratopause cool significantly.

  9. Controlling vortex motion and vortex kinetic friction

    International Nuclear Information System (INIS)

    Nori, Franco; Savel'ev, Sergey

    2006-01-01

    We summarize some recent results of vortex motion control and vortex kinetic friction. (1) We describe a device [J.E. Villegas, S. Savel'ev, F. Nori, E.M. Gonzalez, J.V. Anguita, R. Garcia, J.L. Vicent, Science 302 (2003) 1188] that can easily control the motion of flux quanta in a Niobium superconducting film on an array of nanoscale triangular magnets. Even though the input ac current has zero average, the resulting net motion of the vortices can be directed along either one direction, the opposite direction, or producing zero net motion. We also consider layered strongly anisotropic superconductors, with no fixed spatial asymmetry, and show [S. Savel'ev, F. Nori, Nature Materials 1 (2002) 179] how, with asymmetric drives, the ac motion of Josephson and/or pancake vortices can provide a net dc vortex current. (2) In analogy with the standard macroscopic friction, we present [A. Maeda, Y. Inoue, H. Kitano, S. Savel'ev, S. Okayasu, I. Tsukada, F. Nori , Phys. Rev. Lett. 94 (2005) 077001] a comparative study of the friction force felt by vortices in superconductors and charge density waves

  10. Controlling vortex motion and vortex kinetic friction

    Science.gov (United States)

    Nori, Franco; Savel'ev, Sergey

    2006-05-01

    We summarize some recent results of vortex motion control and vortex kinetic friction. (1) We describe a device [J.E. Villegas, S. Savel'ev, F. Nori, E.M. Gonzalez, J.V. Anguita, R. Garcìa, J.L. Vicent, Science 302 (2003) 1188] that can easily control the motion of flux quanta in a Niobium superconducting film on an array of nanoscale triangular magnets. Even though the input ac current has zero average, the resulting net motion of the vortices can be directed along either one direction, the opposite direction, or producing zero net motion. We also consider layered strongly anisotropic superconductors, with no fixed spatial asymmetry, and show [S. Savel'ev, F. Nori, Nature Materials 1 (2002) 179] how, with asymmetric drives, the ac motion of Josephson and/or pancake vortices can provide a net dc vortex current. (2) In analogy with the standard macroscopic friction, we present [A. Maeda, Y. Inoue, H. Kitano, S. Savel'ev, S. Okayasu, I. Tsukada, F. Nori , Phys. Rev. Lett. 94 (2005) 077001] a comparative study of the friction force felt by vortices in superconductors and charge density waves.

  11. Temperature effect on vortex-core reversals in magnetic nanodots

    Science.gov (United States)

    Kim, Bosung; Yoo, Myoung-Woo; Lee, Jehyun; Kim, Sang-Koog

    2015-05-01

    We studied the temperature effect on vortex-core reversals in soft magnetic nanodots by micromagnetic numerical calculations within a framework of the stochastic Landau-Lifshitz-Gilbert scheme. It was determined that vortex-core-switching events at non-zero temperatures occur stochastically, and that the threshold field strength increases with temperature for a given field frequency. The mechanism of core reversals at elevated temperatures is the same as that of vortex-antivortex-pair-mediated core reversals found at the zero temperature. The reversal criterion is also the out-of-plane component of a magnetization dip that should reach -p, which is to say, m z , dip = -p, where p is the original polarization, p = +1 (-1), for the upward (downward) core. By this criterion, the creation of a vortex-antivortex pair accompanies complete vortex-antivortex-annihilation-mediated core reversals, resulting in the maximum excess of the exchange energy density, Δ Eex cri ≈ 15.4 ± 0.2 mJ/cm3. This work provides the underlying physics of vortex-core reversals at non-zero temperatures, and potentiates the real application of vortex random access memory operating at elevated temperatures.

  12. Denitrification, dehydration and ozone loss during the 2015/2016 Arctic winter

    Science.gov (United States)

    Khosrawi, Farahnaz; Kirner, Oliver; Sinnhuber, Björn-Martin; Johansson, Sören; Höpfner, Michael; Santee, Michelle L.; Froidevaux, Lucien; Ungermann, Jörn; Ruhnke, Roland; Woiwode, Wolfgang; Oelhaf, Hermann; Braesicke, Peter

    2017-11-01

    The 2015/2016 Arctic winter was one of the coldest stratospheric winters in recent years. A stable vortex formed by early December and the early winter was exceptionally cold. Cold pool temperatures dropped below the nitric acid trihydrate (NAT) existence temperature of about 195 K, thus allowing polar stratospheric clouds (PSCs) to form. The low temperatures in the polar stratosphere persisted until early March, allowing chlorine activation and catalytic ozone destruction. Satellite observations indicate that sedimentation of PSC particles led to denitrification as well as dehydration of stratospheric layers. Model simulations of the 2015/2016 Arctic winter nudged toward European Centre for Medium-Range Weather Forecasts (ECMWF) analysis data were performed with the atmospheric chemistry-climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC) for the Polar Stratosphere in a Changing Climate (POLSTRACC) campaign. POLSTRACC is a High Altitude and Long Range Research Aircraft (HALO) mission aimed at the investigation of the structure, composition and evolution of the Arctic upper troposphere and lower stratosphere (UTLS). The chemical and physical processes involved in Arctic stratospheric ozone depletion, transport and mixing processes in the UTLS at high latitudes, PSCs and cirrus clouds are investigated. In this study, an overview of the chemistry and dynamics of the 2015/2016 Arctic winter as simulated with EMAC is given. Further, chemical-dynamical processes such as denitrification, dehydration and ozone loss during the 2015/2016 Arctic winter are investigated. Comparisons to satellite observations by the Aura Microwave Limb Sounder (Aura/MLS) as well as to airborne measurements with the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) performed aboard HALO during the POLSTRACC campaign show that the EMAC simulations nudged toward ECMWF analysis generally agree well with observations. We derive a maximum polar stratospheric O3 loss of

  13. Denitrification, dehydration and ozone loss during the 2015/2016 Arctic winter

    Directory of Open Access Journals (Sweden)

    F. Khosrawi

    2017-11-01

    Full Text Available The 2015/2016 Arctic winter was one of the coldest stratospheric winters in recent years. A stable vortex formed by early December and the early winter was exceptionally cold. Cold pool temperatures dropped below the nitric acid trihydrate (NAT existence temperature of about 195 K, thus allowing polar stratospheric clouds (PSCs to form. The low temperatures in the polar stratosphere persisted until early March, allowing chlorine activation and catalytic ozone destruction. Satellite observations indicate that sedimentation of PSC particles led to denitrification as well as dehydration of stratospheric layers. Model simulations of the 2015/2016 Arctic winter nudged toward European Centre for Medium-Range Weather Forecasts (ECMWF analysis data were performed with the atmospheric chemistry–climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC for the Polar Stratosphere in a Changing Climate (POLSTRACC campaign. POLSTRACC is a High Altitude and Long Range Research Aircraft (HALO mission aimed at the investigation of the structure, composition and evolution of the Arctic upper troposphere and lower stratosphere (UTLS. The chemical and physical processes involved in Arctic stratospheric ozone depletion, transport and mixing processes in the UTLS at high latitudes, PSCs and cirrus clouds are investigated. In this study, an overview of the chemistry and dynamics of the 2015/2016 Arctic winter as simulated with EMAC is given. Further, chemical–dynamical processes such as denitrification, dehydration and ozone loss during the 2015/2016 Arctic winter are investigated. Comparisons to satellite observations by the Aura Microwave Limb Sounder (Aura/MLS as well as to airborne measurements with the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA performed aboard HALO during the POLSTRACC campaign show that the EMAC simulations nudged toward ECMWF analysis generally agree well with observations. We derive a maximum polar

  14. Spontaneous Formation of Anti-ferromagnetic Vortex Lattice in a Fast Rotating BEC with Dipole Interactions

    International Nuclear Information System (INIS)

    Yang Shijie; Feng Shiping; Wen Yuchuan; Yu Yue

    2007-01-01

    When a Bose-Einstein condensate is set to rotate, superfluid vortices will be formed, which finally condense into a vortex lattice as the rotation frequency further increases. We show that the dipole-dipole interactions renormalize the short-range interaction strength and result in a distinction between interactions of parallel-polarized atoms and interactions of antiparallel-polarized atoms. This effect may lead to a spontaneous breakdown of the rapidly rotating Bose condensate into a novel anti-ferromagnetic-like vortex lattice. The upward-polarized Bose condensate forms a vortex lattice, which is staggered against a downward-polarized vortex lattice. A phase diagram related to the coupling strength is obtained.

  15. OWC with vortex beams in data center networks

    Science.gov (United States)

    Kupferman, Judy; Arnon, Shlomi

    2017-10-01

    Data centers are a key building block in the rapidly growing area of internet technology. A typical data center has tens of thousands of servers, and communication between them must be flexible and robust. Vortex light beams have orbital angular momentum and can provide a useful and flexible method for optical wireless communication in data centers. Vortex beams can be generated with orbital angular momentum but independent of polarization, and used in a multiplexed system. We propose a multiplexing vortex system to increase the communication capacity using optical wireless communication for data center networks. We then evaluate performance. This paper is intended for use as an engineering guideline for design of vortex multiplexing in data center applications.

  16. Global Hawk dropsonde observations of the Arctic atmosphere obtained during the Winter Storms and Pacific Atmospheric Rivers (WISPAR field campaign

    Directory of Open Access Journals (Sweden)

    J. M. Intrieri

    2014-11-01

    Full Text Available In February and March of 2011, the Global Hawk unmanned aircraft system (UAS was deployed over the Pacific Ocean and the Arctic during the Winter Storms and Pacific Atmospheric Rivers (WISPAR field campaign. The WISPAR science missions were designed to (1 mprove our understanding of Pacific weather systems and the polar atmosphere; (2 evaluate operational use of unmanned aircraft for investigating these atmospheric events; and (3 demonstrate operational and research applications of a UAS dropsonde system at high latitudes. Dropsondes deployed from the Global Hawk successfully obtained high-resolution profiles of temperature, pressure, humidity, and wind information between the stratosphere and surface. The 35 m wingspan Global Hawk, which can soar for ~ 31 h at altitudes up to ~ 20 km, was remotely operated from NASA's Dryden Flight Research Center at Edwards Air Force Base (AFB in California. During the 25 h polar flight on 9–10 March 2011, the Global Hawk released 35 sondes between the North Slope of Alaska and 85° N latitude, marking the first UAS Arctic dropsonde mission of its kind. The polar flight transected an unusually cold polar vortex, notable for an associated record-level Arctic ozone loss, and documented polar boundary layer variations over a sizable ocean–ice lead feature. Comparison of dropsonde observations with atmospheric reanalyses reveal that, for this day, large-scale structures such as the polar vortex and air masses are captured by the reanalyses, while smaller-scale features, including low-level jets and inversion depths, are mischaracterized. The successful Arctic dropsonde deployment demonstrates the capability of the Global Hawk to conduct operations in harsh, remote regions. The limited comparison with other measurements and reanalyses highlights the potential value of Arctic atmospheric dropsonde observations where routine in situ measurements are practically nonexistent.

  17. Winter Wonderlands

    Science.gov (United States)

    Coy, Mary

    2011-01-01

    Listening to people complain about the hardships of winter and the dreariness of the nearly constant gray sky prompted the author to help her sixth graders recognize and appreciate the beauty that surrounds them for nearly five months of the year in western New York. The author opines that if students could see things more artistically, the winter…

  18. Vortex Apparatus and Demonstrations

    Science.gov (United States)

    Shakerin, Said

    2010-05-01

    Vortex flow, from millimeter to kilometer in scale, is important in many scientific and technological areas. Examples are seen in water strider locomotion, from industrial pipe flow (wastewater treatment) to air traffic control (safe distance between aircrafts on a runway ready for takeoff) to atmospheric studies.2-5 In this paper, we focus on a particular vortex known as bathtub vortex (BTV). It occurs when water is drained from a hole at the bottom of a container such as a bathtub or a sink under the action of gravity. The vortex has a funnel shape with a central air core, resembling a tornado. We have designed a portable apparatus to demonstrate bathtub vortex on a continual basis. The apparatus consists of a clear cylinder supported by a frame over a water reservoir and a submersible pump. Young and old have been equally amazed by watching the demonstrations at various public presentations held at the University of the Pacific recently. With material cost of less than 100, the apparatus can be easily fabricated and used at other universities. With a short set-up time, it is an ideal device for promoting science to the general public, and it can be used to enhance lectures in physics courses as well.

  19. Phase locking of vortex cores in two coupled magnetic nanopillars

    Directory of Open Access Journals (Sweden)

    Qiyuan Zhu

    2014-11-01

    Full Text Available Phase locking dynamics of the coupled vortex cores in two identical magnetic spin valves induced by spin-polarized current are studied by means of micromagnetic simulations. Our results show that the available current range of phase locking can be expanded significantly by the use of constrained polarizer, and the vortices undergo large orbit motions outside the polarization areas. The effects of polarization areas and dipolar interaction on the phase locking dynamics are studied systematically. Phase locking parameters extracted from simulations are discussed by theoreticians. The dynamics of vortices influenced by spin valve geometry and vortex chirality are discussed at last. This work provides deeper insights into the dynamics of phase locking and the results are important for the design of spin-torque nano-oscillators.

  20. Vorticity and vortex dynamics

    CERN Document Server

    Wu, Jie-Zhi; Zhou, M-D

    2006-01-01

    The importance of vorticity and vortex dynamics has now been well rec- nized at both fundamental and applied levels of ?uid dynamics, as already anticipatedbyTruesdellhalfcenturyagowhenhewrotethe?rstmonograph onthesubject, The Kinematics of Vorticity(1954);andasalsoevidencedby the appearance of several books on this ?eld in 1990s. The present book is characterizedbythefollowingfeatures: 1. A basic physical guide throughout the book. The material is directed by a basic observation on the splitting and coupling of two fundamental processes in ?uid motion, i.e., shearing (unique to ?uid) and compre- ing/expanding.Thevorticityplaysakeyroleintheformer,andavortex isnothingbuta?uidbodywithhighconcentrationofvorticitycompared to its surrounding ?uid. Thus, the vorticity and vortex dynamics is - cordinglyde?nedasthetheoryofshearingprocessanditscouplingwith compressing/expandingprocess. 2. A description of the vortex evolution following its entire life.Thisbegins from the generation of vorticity to the formation of thi...

  1. Broadband and high-efficiency vortex beam generator based on a hybrid helix array.

    Science.gov (United States)

    Fang, Chaoqun; Wu, Chao; Gong, Zhijie; Zhao, Song; Sun, Anqi; Wei, Zeyong; Li, Hongqiang

    2018-04-01

    The vortex beam which carries the orbital angular momentum has versatile applications, such as high-resolution imaging, optical communications, and particle manipulation. Generating vortex beams with the Pancharatnam-Berry (PB) phase has drawn considerable attention for its unique spin-to-orbital conversion features. Despite the PB phase being frequency independent, an optical element with broadband high-efficiency circular polarization conversion feature is still needed for the broadband high-efficiency vortex beam generation. In this work, a broadband and high-efficiency vortex beam generator based on the PB phase is built with a hybrid helix array. Such devices can generate vortex beams with arbitrary topological charge. Moreover, vortex beams with opposite topological charge can be generated with an opposite handedness incident beam that propagates backward. The measured efficiency of our device is above 65% for a wide frequency range, with the relative bandwidth of 46.5%.

  2. Electric vortex in MHD flow

    International Nuclear Information System (INIS)

    Garcia, M.

    1995-01-01

    An electric vortex is the circulation of electron space charge about a magnetic field line that is transported by ion momentum. In cold, or low β flow the vortex diameter is the minimum length scale of charge neutrality. The distinctive feature of the vortex is its radial electric field which manifests the interplay of electrostatics, magnetism, and motion

  3. Collapse of the 2017 Winter Beaufort High: A Response to Thinning Sea Ice?

    Science.gov (United States)

    Moore, G. W. K.; Schweiger, A.; Zhang, J.; Steele, M.

    2018-03-01

    The winter Arctic atmosphere is under the influence of two very different circulation systems: extratropical cyclones travel along the primary North Atlantic storm track from Iceland toward the eastern Arctic, while the western Arctic is characterized by a quasi-stationary region of high pressure known as the Beaufort High. The winter (January through March) of 2017 featured an anomalous reversal of the normally anticyclonic surface winds and sea ice motion in the western Arctic. This reversal can be traced to a collapse of the Beaufort High as the result of the intrusion of low-pressure systems from the North Atlantic, along the East Siberian Coast, into the Arctic Basin. Thin sea ice as the result of an extremely warm autumn (October through December) of 2016 contributed to the formation of an anomalous thermal low over the Barents Sea that, along with a northward shift of the tropospheric polar vortex, permitted this intrusion. The collapse of the Beaufort High during the winter of 2017 was associated with simultaneous 2-sigma sea level pressure, surface wind, and sea ice circulation anomalies in the western Arctic. As the Arctic sea ice continues to thin, such reversals may become more common and impact ocean circulation, sea ice, and biology.

  4. Severe haze in Hangzhou in winter 2013/14 and associated meteorological anomalies

    Science.gov (United States)

    Chen, Yini; Zhu, Zhiwei; Luo, Ling; Zhang, Jiwei

    2018-03-01

    Aerosol pollution over eastern China has worsened considerably in recent years, resulting in heavy haze weather with low visibility and poor air quality. The present study investigates the characteristics of haze weather in Hangzhou city, and aims to unravel the meteorological anomalies associated with the heavy haze that occurred over Hangzhou in winter 2013/14. On the interannual timescale, because of the neutral condition of tropical sea surface temperature anomalies during winter 2013/14, no significant circulation and convection anomalies were induced over East Asia, leading to a stable atmospheric condition favorable for haze weather in Hangzhou. Besides, the shift of the polar vortex, caused by changes in surface temperature and ice cover at high latitudes, induced a barotropic anomalous circulation dipole pattern. The southerly anomaly associated with this anomalous dipole pattern hindered the transportation of cold/clear air mass from Siberia to central-eastern China, leading to abnormal haze during winter 2013/14 in Hangzhou. On the intraseasonal timescale, an eastward-propagating mid-latitude Rossby wave train altered the meridional wind anomaly over East Asia, causing the intraseasonal variability of haze weather during 2013/14 in Hangzhou.

  5. Dynamics of Vortex Crystals.*

    Science.gov (United States)

    Jin, D. Z.; Dubin, D. H. E.

    1997-11-01

    We discuss the linear and nonlinear 2D dynamics of vortex crystals observed in experiments on pure electron plasmas [1]. Vortex crystals are rods of intense vorticity that form stable geometrical patterns in a low vorticity background. We consider a system consisting of several point vortices inside an initially circular background of constant vorticity. When the point vorticities have sufficiently small circulation compared to the background, there exist two time scales in the dynamics: a slow time scale associated with the motion of the point vortices and the driven response in the background; and a fast time scale associated with freely streaming Kelvin waves on the edge of the background vorticity profile. On the slow time scale, we show that the linear dynamics of the point vortices is equivalent to the classical problem of point vortices inside a circular conducting boundary, with the boundary radius equal to that of the background. However, filamentation involving both slow and fast time scales and subsequent wave breaking eventually occurs due to the nonlinear processes. This causes turbulent mixing of the background, and may be responsible for the irreversible ``cooling'' of the point vortex motions toward the vortex crystal state. Supported by NSF grant PHY94-21318. [1] K.S. Fine et al., Phys. Rev. Lett. 75, 3277 (1995).

  6. Vortex Apparatus and Demonstrations

    Science.gov (United States)

    Shakerin, Said

    2010-01-01

    Vortex flow, from millimeter to kilometer in scale, is important in many scientific and technological areas. Examples are seen in water strider locomotion, from industrial pipe flow (wastewater treatment) to air traffic control (safe distance between aircrafts on a runway ready for takeoff) to atmospheric studies. In this paper, we focus on a…

  7. The influence of off-centered nanocontact on the dynamics of magnetic vortex in a confined structure

    Science.gov (United States)

    Li, Huanan; Sun, Hang; Wang, Li; Xu, Zibo; Dong, Ying; Liu, Yan

    2018-03-01

    We report the dynamical behaviors of magnetic vortices in different Permalloy nanodisks induced by an out-of-plane spin-polarized current in an off-centered nanocontact geometry through micromagnetic simulation. Simulation results show that the dynamical behaviors of magnetic vortex are sensitive to nanocontact position and the dimension of nanodisks. The influences of nanocontact position on the vortex core pinning behavior, the critical switching current density and switching time are analyzed deeply. Non-circular symmetry of system total energy in such off-centered geometry leads to the magnetic vortex easy to be excited in all nanodisks. The thicker nanodisks are beneficial to the magnetic vortex pinning, and the vortex is easier to exhibit gyration in the thinner nanodisks. We put forward an effective method to control the magnetic vortex position, thus improving the possibility of using magnetic vortex as a candidate for magnetic memory and logical devices.

  8. Unusually low ozone, HCl, and HNO3 column measurements at Eureka, Canada during winter/spring 2011

    Directory of Open Access Journals (Sweden)

    R. L. Mittermeier

    2012-04-01

    Full Text Available As a consequence of dynamically variable meteorological conditions, springtime Arctic ozone levels exhibit significant interannual variability in the lower stratosphere. In winter 2011, the polar vortex was strong and cold for an unusually long time. Our research site, located at Eureka, Nunavut, Canada (80.05° N, 86.42° W, was mostly inside the vortex from October 2010 until late March 2011. The Bruker 125HR Fourier transform infrared spectrometer installed at the Polar Environment Atmospheric Research Laboratory at Eureka acquired measurements from 23 February to 6 April during the 2011 Canadian Arctic Atmospheric Chemistry Experiment Validation Campaign. These measurements showed unusually low ozone, HCl, and HNO3 total columns compared to the previous 14 yr. To remove dynamical effects, we normalized these total columns by the HF total column. The normalized values of the ozone, HCl, and HNO3 total columns were smaller than those from previous years, and confirmed the occurrence of chlorine activation and chemical ozone depletion. To quantify the chemical ozone loss, a three-dimensional chemical transport model, SLIMCAT, and the passive subtraction method were used. The chemical ozone depletion was calculated as the mean percentage difference between the measured ozone and the SLIMCAT passive ozone, and was found to be 35%.

  9. A study of polar ozone depletion based on sequential assimilation of satellite data from the ENVISAT/MIPAS and Odin/SMR instruments

    Directory of Open Access Journals (Sweden)

    J. D. Rösevall

    2007-01-01

    Full Text Available The objective of this study is to demonstrate how polar ozone depletion can be mapped and quantified by assimilating ozone data from satellites into the wind driven transport model DIAMOND, (Dynamical Isentropic Assimilation Model for OdiN Data. By assimilating a large set of satellite data into a transport model, ozone fields can be built up that are less noisy than the individual satellite ozone profiles. The transported fields can subsequently be compared to later sets of incoming satellite data so that the rates and geographical distribution of ozone depletion can be determined. By tracing the amounts of solar irradiation received by different air parcels in a transport model it is furthermore possible to study the photolytic reactions that destroy ozone. In this study, destruction of ozone that took place in the Antarctic winter of 2003 and in the Arctic winter of 2002/2003 have been examined by assimilating ozone data from the ENVISAT/MIPAS and Odin/SMR satellite-instruments. Large scale depletion of ozone was observed in the Antarctic polar vortex of 2003 when sunlight returned after the polar night. By mid October ENVISAT/MIPAS data indicate vortex ozone depletion in the ranges 80–100% and 70–90% on the 425 and 475 K potential temperature levels respectively while the Odin/SMR data indicates depletion in the ranges 70–90% and 50–70%. The discrepancy between the two instruments has been attributed to systematic errors in the Odin/SMR data. Assimilated fields of ENVISAT/MIPAS data indicate ozone depletion in the range 10–20% on the 475 K potential temperature level, (~19 km altitude, in the central regions of the 2002/2003 Arctic polar vortex. Assimilated fields of Odin/SMR data on the other hand indicate ozone depletion in the range 20–30%.

  10. Dynamical response of the Arctic winter stratosphere to global warming

    Science.gov (United States)

    Karpechko, A.; Manzini, E.

    2017-12-01

    Climate models often simulate dynamical warming of the Arctic stratosphere as a response to global warming in association with a strengthening of the deep branch of the Brewer-Dobson circulation; however until now, no satisfactory mechanism for such a response has been suggested. Here we investigate the role of stationary planetary waves in the dynamical response of the Arctic winter stratosphere circulation to global warming by analysing simulations performed with atmosphere-only Coupled Model Intercomparison Project Phase 5 (CMIP5) models driven by prescribed sea surface temperatures (SSTs). We focus on December-February (DJF) because this is the period when the troposphere and stratosphere are strongly coupled. When forced by increased SSTs, all the models analysed here simulate Arctic stratosphere dynamical warming, mostly due to increased upward propagation of quasi-stationary wave number 1, as diagnosed by the meridional eddy heat flux. By analysing intermodel spread in the response we show that the stratospheric warming and increased wave flux to the stratosphere correlate with the strengthening of the zonal winds in subtropics and mid-latitudes near the tropopause- a robust response to global warming. These results support previous studies of future Arctic stratosphere changes and suggest a dynamical warming of the Arctic wintertime polar vortex as the most likely response to global warming.

  11. Segmented trapped vortex cavity

    Science.gov (United States)

    Grammel, Jr., Leonard Paul (Inventor); Pennekamp, David Lance (Inventor); Winslow, Jr., Ralph Henry (Inventor)

    2010-01-01

    An annular trapped vortex cavity assembly segment comprising includes a cavity forward wall, a cavity aft wall, and a cavity radially outer wall there between defining a cavity segment therein. A cavity opening extends between the forward and aft walls at a radially inner end of the assembly segment. Radially spaced apart pluralities of air injection first and second holes extend through the forward and aft walls respectively. The segment may include first and second expansion joint features at distal first and second ends respectively of the segment. The segment may include a forward subcomponent including the cavity forward wall attached to an aft subcomponent including the cavity aft wall. The forward and aft subcomponents include forward and aft portions of the cavity radially outer wall respectively. A ring of the segments may be circumferentially disposed about an axis to form an annular segmented vortex cavity assembly.

  12. The Physics of Polarization

    Science.gov (United States)

    Landi Degl'Innocenti, Egidio

    2015-10-01

    The introductory lecture that has been delivered at this Symposium is a condensed version of an extended course held by the author at the XII Canary Island Winter School from November 13 to November 21, 2000. The full series of lectures can be found in Landi Degl'Innocenti (2002). The original reference is organized in 20 Sections that are here itemized: 1. Introduction, 2. Description of polarized radiation, 3. Polarization and optical devices: Jones calculus and Muller matrices, 4. The Fresnel equations, 5. Dichroism and anomalous dispersion, 6. Polarization in everyday life, 7. Polarization due to radiating charges, 8. The linear antenna, 9. Thomson scattering, 10. Rayleigh scattering, 11. A digression on Mie scattering, 12. Bremsstrahlung radiation, 13. Cyclotron radiation, 14. Synchrotron radiation, 15. Polarization in spectral lines, 16. Density matrix and atomic polarization, 17. Radiative transfer and statistical equilibrium equations, 18. The amplification condition in polarized radiative transfer, and 19. Coupling radiative transfer and statistical equilibrium equations.

  13. Dynamics of Vortex Crystals

    Science.gov (United States)

    Jin, D. Z.; Dubin, D. H. E.

    1997-11-01

    This poster discusses the linear and nonlinear dynamics of vortex crystals observed in experiments on pure electron plasmas [1]. Vortex crystals are rods of intense density that form stable geometrical patterns in a low density background. We consider a system consisting of several line charges inside an initially circular background of constant density. When the line charges have sufficiently small charge per unit length compared to the background, there exist two time scales in the dynamics: a slow time scale associated with the motion of the line charges and the driven response in the background; and a fast time scale associated with freely streaming diocotron waves on the edge of the background density profile. On the slow time scale, we show that the linear dynamics of the line charges is equivalent to the classical problem of line charges inside a circular conducting wall, with the wall radius equal to that of the background. However, filamentation involving both slow and fast time scales and subsequent wave breaking eventually occurs due to the nonlinear processes. This causes turbulent mixing of the background, and may be responsible for the irreversible ``cooling'' of the line charge motions toward the vortex crystal state. Supported by NSF grant PHY94-21318. [1] K.S. Fine et al., Phys. Rev. Lett. 75, 3277 (1995).

  14. Interferometric optical vortex array generator.

    Science.gov (United States)

    Vyas, Sunil; Senthilkumaran, P

    2007-05-20

    Two new interferometric configurations for optical vortex array generation are presented. These interferometers are different from the conventional interferometers in that they are capable of producing a large number of isolated zeros of intensity, and all of them contain optical vortices. Simulation and theory for optical vortex array generation using three-plane-wave interference is presented. The vortex dipole array produced this way is noninteracting, as there are no attraction or repulsion forces between them, leading to annihilation or creation of vortex pairs.

  15. Dehydration, denitrification and ozone loss during the Arctic winter 2015/2016: Simulations with the Chemistry-Climate Model EMAC and comparison to Aura/MLS and GLORIA observations

    Science.gov (United States)

    Khosrawi, Farahnaz; Kirner, Oliver; Sinnhuber, Bjoern-Martin; Johansson, Sören; Höpfner, Michael; Santee, Michelle L.; Manney, Gloria; Froidevaux, Lucien; Ungermann, Jörn; Preusse, Peter; Friedl-Vallon, Felix; Ruhnke, Roland; Woiwode, Wolfgang; Oelhaf, Hermann; Braesicke, Peter

    2017-04-01

    The Arctic winter 2015/2016 has been one of the coldest stratospheric winters in recent years. A stable vortex formed already in early December and the early winter has been exceptionally cold. Cold pool temperatures dropped below the Nitric Acid Trihydrate (NAT) existence temperature, thus allowing Polar Stratospheric Clouds (PSCs) to form. The low temperatures in the polar stratosphere persisted until early March allowing chlorine activation and catalytic ozone destruction. Satellite observations indicate that sedimentation of PSC particles have led to denitrification as well as dehydration of stratospheric layers. Nudged model simulations of the Arctic winter 2015/2016 were performed with the atmospheric chemistry-climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC) for the POLSTRACC (Polar Stratosphere in a Changing Climate) campaign. POLSTRACC was a HALO mission (High Altitude and LOng Range Research Aircraft) aiming on the investigation of the structure, composition and evolution of the Arctic Upper Troposphere Lower Stratosphere (UTLS). The chemical and physical processes involved in Arctic stratospheric ozone depletion, transport and mixing processes in the UTLS at high latitudes, polar stratospheric clouds as well as cirrus clouds were investigated. In this presentation, an overview of the chemistry and dynamics of the Arctic winter 2015/2016 as simulated with EMAC will be given. Chemical-dynamical processes such as denitrification, dehydration and ozone loss will be investigated. Comparisons to satellite observations by the Aura Microwave Limb Sounder (Aura/MLS) as well as to airborne measurements with the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) performed onboard of HALO during the POLSTRACC campaign show that the EMAC simulations are in good agreement with observations (differences generally within ±20%). However, larger differences between model and simulations are found e.g. in the areas of denitrification. Both

  16. Airborne lidar observations of Arctic polar stratospheric clouds

    Science.gov (United States)

    Poole, L. R.; Kent, G. S.

    1986-01-01

    Polar stratospheric clouds (PSC's) have been detected repeatedly during Arctic and Antarctic winters since 1978/1979 by the SAM II (Stratospheric Aerosol Measurement II) instrument aboard the NIMBUS-7 satellite. PSC's are believed to form when supercooled sulfuric acid droplets freeze, and subsequently grow by deposition of ambient water vapor as the local stratospheric temperature falls below the frost point. In order to study the characteristics of PSC's at higher spatial and temporal resolution than that possible from the satellite observations, aircraft missions were conducted within the Arctic polar night vortex in Jan. 1984 and Jan. 1986 using the NASA Langley Research Center airborne dual polarization ruby lidar system. A synopsis of the 1984 and 1986 PSC observations is presented illustrating short range spatial changes in cloud structure, the variation of backscatter ratio with temperature, and the depolarization characterics of cloud layers. Implications are noted with regard to PSC particle characteristics and the physical process by which the clouds are thougth to form.

  17. Aircraft Wake Vortex Deformation in Turbulent Atmosphere

    OpenAIRE

    Hennemann, Ingo; Holzaepfel, Frank

    2007-01-01

    Large-scale distortion of aircraft wake vortices appears to play a crucial role for aircraft safety during approach and landing. Vortex distortion is investigated based on large eddy simulations of wake vortex evolution in a turbulent atmosphere. A vortex identification method is developed that can be adapted to the vortex scales of interest. Based on the identified vortex center tracks, a statistics of vortex curvature radii is established. This statistics constitutes the basis for understan...

  18. WINTER SAECULUM

    Directory of Open Access Journals (Sweden)

    Emil Mihalina

    2017-03-01

    Full Text Available Accumulated imbalances in the economy and on the markets cause specific financial market dynamics that have formed characteristic patterns kept throughout long financial history. In 2008 Authors presented their expectations of key macroeconomic and selected asset class markets developments for period ahead based on Saeculum theory. Use of term Secular describes a specific valuation environment during prolonged period. If valuations as well as selected macro variables are considered as a tool for understanding business cycles then market cycles become much more obvious and easily understandable. Therefore over the long run, certain asset classes do better in terms of risk reward profile than others. Further on, there is no need for frequent portfolio rebalancing and timing of specific investment positions within a particular asset class market. Current stage in cycle development suggests a need for reassessment of trends and prevailing phenomena due to cyclical nture of long lasting Saeculums. Paper reviews developments in recognizable patterns of selected metrics in current Winter Saeculum dominated with prevailing forces of delivering, deflation and decrease in velocity of money.

  19. Vortex lattice disorder in YBa2Cu3O7-δ probed using β-NMR

    Science.gov (United States)

    Saadaoui, H.; Macfarlane, W. A.; Salman, Z.; Morris, G. D.; Song, Q.; Chow, K. H.; Hossain, M. D.; Levy, C. D. P.; Mansour, A. I.; Parolin, T. J.; Pearson, M. R.; Smadella, M.; Wang, D.; Kiefl, R. F.

    2009-12-01

    β -detected NMR (β-NMR) has been used to study vortex lattice disorder near the surface of the high- TC superconductor YBa2Cu3O7-δ (YBCO). The magnetic-field distribution from the vortex lattice was detected by implanting a low-energy beam of highly polarized L8i+ into a thin overlayer of silver on optimally doped, twinned, and detwinned YBCO samples. The resonance in Ag broadens significantly below the transition temperature TC as expected from the emerging field lines of the vortex lattice in YBCO. However, the lineshape is more symmetric and the dependence on the applied magnetic field is much weaker than expected from an ideal vortex lattice, indicating that the vortex density varies across the face of the sample, likely due to pinning at twin boundaries. At low temperatures the broadening from such disorder does not scale with the superfluid density.

  20. Melting of heterogeneous vortex matter: The vortex 'nanoliquid'

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 66; Issue 1. Melting of heterogeneous vortex matter: The vortex `nanoliquid'. S S Banerjee S Goldberg Y Myasoedov M Rappaport E Zeldov A Soibel F de la Cruz C J van der Beek M Konczykowski T Tamegai V Vinokur. Volume 66 Issue 1 January 2006 pp 43-54 ...

  1. Vortex-Surface Interactions: Vortex Dynamics and Instabilities

    Science.gov (United States)

    2015-10-16

    Crow instability (see for example Leweke & Williamson, 2012). (b) Short-wave cooperative elliptic instability (Leweke & Williamson 1998). (c...vortex generators. Of interest in such studies would be the formation of secondary vorticity from the surface, the downstream vortex trajectories , and

  2. Winter Weather: Frostbite

    Science.gov (United States)

    ... Safety During Fire Cleanup Wildfires PSAs Related Links Winter Weather About Winter Weather Before a Storm Prepare Your Home Prepare Your Car Winter Weather Checklists During a Storm Indoor Safety During ...

  3. Vortex Flipping in Superconductor-Ferromagnet Spin Valve Structures

    Science.gov (United States)

    Patino, Edgar J.; Aprili, Marco; Blamire, Mark; Maeno, Yoshiteru

    2014-03-01

    We report in plane magnetization measurements on Ni/Nb/Ni/CoO and Co/Nb/Co/CoO spin valve structures with one of the ferromagnetic layers pinned by an antiferromagnetic layer. In samples with Ni, below the superconducting transition Tc, our results show strong evidence of vortex flipping driven by the ferromagnets magnetization. This is a direct consequence of proximity effect that leads to vortex supercurrents leakage into the ferromagnets. Here the polarized electron spins are subject to vortices magnetic field occasioning vortex flipping. Such novel mechanism has been made possible for the first time by fabrication of the F/S/F/AF multilayered spin valves with a thin-enough S layer to barely confine vortices inside as well as thin-enough F layers to align and control the magnetization within the plane. When Co is used there is no observation of vortex flipping effect. This is attributed to Co shorter coherence length. Interestingly instead a reduction in pinning field of about 400 Oe is observed when the Nb layer is in superconducting state. This effect cannot be explained in terms of vortex fields. In view of these facts any explanation must be directly related to proximity effect and thus a remarkable phenomenon that deserves further investigation. Programa Nacional de Ciencias Basicas COLCIENCIAS (No. 120452128168).

  4. Generation of intense high-order vortex harmonics.

    Science.gov (United States)

    Zhang, Xiaomei; Shen, Baifei; Shi, Yin; Wang, Xiaofeng; Zhang, Lingang; Wang, Wenpeng; Xu, Jiancai; Yi, Longqiong; Xu, Zhizhan

    2015-05-01

    This Letter presents for the first time a scheme to generate intense high-order optical vortices that carry orbital angular momentum in the extreme ultraviolet region based on relativistic harmonics from the surface of a solid target. In the three-dimensional particle-in-cell simulation, the high-order harmonics of the high-order vortex mode is generated in both reflected and transmitted light beams when a linearly polarized Laguerre-Gaussian laser pulse impinges on a solid foil. The azimuthal mode of the harmonics scales with its order. The intensity of the high-order vortex harmonics is close to the relativistic region, with the pulse duration down to attosecond scale. The obtained intense vortex beam possesses the combined properties of fine transversal structure due to the high-order mode and the fine longitudinal structure due to the short wavelength of the high-order harmonics. In addition to the application in high-resolution detection in both spatial and temporal scales, it also presents new opportunities in the intense vortex required fields, such as the inner shell ionization process and high energy twisted photons generation by Thomson scattering of such an intense vortex beam off relativistic electrons.

  5. On the cryogenic removal of NOy from the Antarctic polar stratosphere

    Directory of Open Access Journals (Sweden)

    S. Smyshlyaev

    2003-06-01

    Full Text Available We review current knowledge about the annual cycle of transport of nitrogen oxides to, and removal from, the polar stratosphere, with particular attention to Antarctica where the annual winter denitrifi cation process is both regular in occurrence and severe in effect. Evidence for a large downward fl ux of NOy from the mesosphere to the stratosphere, fi rst seen briefl y in the Limb Infrared Monitor of the Stratosphere (LIMS data from the Arctic winter of 1978-1979, has been found during the 1990s in both satellite and ground-based observations, though this still seems to be omitted from many atmospheric models. When incorporated in the Stony Brook- St. Petersburg two dimensional (2D transport and chemistry model, more realistic treatment of the NOy fl ux, along with sulfate transport from the mesosphere, sulfate aerosol formation where temperature is favorable, and the inclusion of a simple ion-cluster reaction, leads to good agreement with observed HNO3 formation in the mid-winter middle to upper stratosphere. To further emphasize the importance of large fl uxes of thermospheric and mesospheric NOy into the polar stratosphere, we have used observations, supplemented with model calculations, to defi ne new altitude dependent correlation curves between N2O and NOy. These are more suitable than those previously used in the literature to represent conditions within the Antarctic vortex region prior to and during denitrifi cation by Polar Stratospheric Cloud (PSC particles. Our NOy -N2O curves lead to a 40% increase in the average amount of NOy removed during the Antarctic winter with respect to estimates calculated using NOy-N2O curves from the Atmospheric Trace Molecule Spectroscopy (ATMOS/ATLAS-3 data set.

  6. Antarctic air over New Zealand following vortex breakdown in 1998

    Directory of Open Access Journals (Sweden)

    J. Ajtic

    2003-11-01

    Full Text Available An ozonesonde profile over the Network for Detection of Stratospheric Change (NDSC site at Lauder (45.0° S, 169.7° E, New Zealand, for 24 December 1998 showed atypically low ozone centered around 24 km altitude (600 K potential temperature. The origin of the anomaly is explained using reverse domain filling (RDF calculations combined with a PV/O3 fitting technique applied to ozone measurements from the Polar Ozone and Aerosol Measurement (POAM III instrument. The RDF calculations for two isentropic surfaces, 550 and 600 K, show that ozone-poor air from the Antarctic polar vortex reached New Zealand on 24–26 December 1998. The vortex air on the 550 K isentrope originated in the ozone hole region, unlike the air on 600 K where low ozone values were caused by dynamical effects. High-resolution ozone maps were generated, and their examination shows that a vortex remnant situated above New Zealand was the cause of the altered ozone profile on 24 December. The maps also illustrate mixing of the vortex filaments into southern midlatitudes, whereby the overall mid-latitude ozone levels were decreased.Key words. Atmospheric composition and structure (middle atmosphere composition and chemistry – Meteorology and atmospheric dynamics (middle atmosphere dynamics

  7. Antarctic air over New Zealand following vortex breakdown in 1998

    Directory of Open Access Journals (Sweden)

    J. Ajtic

    Full Text Available An ozonesonde profile over the Network for Detection of Stratospheric Change (NDSC site at Lauder (45.0° S, 169.7° E, New Zealand, for 24 December 1998 showed atypically low ozone centered around 24 km altitude (600 K potential temperature. The origin of the anomaly is explained using reverse domain filling (RDF calculations combined with a PV/O3 fitting technique applied to ozone measurements from the Polar Ozone and Aerosol Measurement (POAM III instrument. The RDF calculations for two isentropic surfaces, 550 and 600 K, show that ozone-poor air from the Antarctic polar vortex reached New Zealand on 24–26 December 1998. The vortex air on the 550 K isentrope originated in the ozone hole region, unlike the air on 600 K where low ozone values were caused by dynamical effects. High-resolution ozone maps were generated, and their examination shows that a vortex remnant situated above New Zealand was the cause of the altered ozone profile on 24 December. The maps also illustrate mixing of the vortex filaments into southern midlatitudes, whereby the overall mid-latitude ozone levels were decreased.

    Key words. Atmospheric composition and structure (middle atmosphere composition and chemistry – Meteorology and atmospheric dynamics (middle atmosphere dynamics

  8. Vortex lattices in layered superconductors

    International Nuclear Information System (INIS)

    Prokic, V.; Davidovic, D.; Dobrosavljevic-Grujic, L.

    1995-01-01

    We study vortex lattices in a superconductor--normal-metal superlattice in a parallel magnetic field. Distorted lattices, resulting from the shear deformations along the layers, are found to be unstable. Under field variation, nonequilibrium configurations undergo an infinite sequence of continuous transitions, typical for soft lattices. The equilibrium vortex arrangement is always a lattice of isocell triangles, without shear

  9. The Acoustically Driven Vortex Cannon

    Science.gov (United States)

    Perry, Spencer B.; Gee, Kent L.

    2014-01-01

    Vortex cannons have been used by physics teachers for years, mostly to teach the continuity principle. In its simplest form, a vortex cannon is an empty coffee can with a hole cut in the bottom and the lid replaced. More elaborate models can be purchased through various scientific suppliers under names such as "Air Cannon" and…

  10. Compressibility effect in vortex identification

    Czech Academy of Sciences Publication Activity Database

    Kolář, Václav

    2009-01-01

    Roč. 47, č. 2 (2009), s. 473-475 ISSN 0001-1452 R&D Projects: GA AV ČR IAA200600801 Institutional research plan: CEZ:AV0Z20600510 Keywords : vortex * vortex identification * compressible flows * compressibility effect Subject RIV: BK - Fluid Dynamics Impact factor: 0.990, year: 2009

  11. Magnetic vortex filament flows

    International Nuclear Information System (INIS)

    Barros, Manuel; Cabrerizo, Jose L.; Fernandez, Manuel; Romero, Alfonso

    2007-01-01

    We exhibit a variational approach to study the magnetic flow associated with a Killing magnetic field in dimension 3. In this context, the solutions of the Lorentz force equation are viewed as Kirchhoff elastic rods and conversely. This provides an amazing connection between two apparently unrelated physical models and, in particular, it ties the classical elastic theory with the Hall effect. Then, these magnetic flows can be regarded as vortex filament flows within the localized induction approximation. The Hasimoto transformation can be used to see the magnetic trajectories as solutions of the cubic nonlinear Schroedinger equation showing the solitonic nature of those

  12. Vector vortex beam generation with dolphin-shaped cell meta-surface.

    Science.gov (United States)

    Yang, Zhuo; Kuang, Deng-Feng; Cheng, Fang

    2017-09-18

    We present a dolphin-shaped cell meta-surface, which is a combination of dolphin-shaped metallic cells and dielectric substrate, for vector vortex beam generation with the illumination of linearly polarized light. Surface plasmon polaritons are excited at the boundary of the metallic cells, then guided by the metallic structures, and finally squeezed to the tips to form highly localized strong electromagnetic fields, which generate the intensity of vector vortex beams at z component. Synchronously, the abrupt phase change produced by the meta-surface is utilized to explain the vortex phase generated by elements. The new kind of structure can be utilized for communication, bioscience, and materiality.

  13. Propagation effects in the generation process of high-order vortex harmonics.

    Science.gov (United States)

    Zhang, Chaojin; Wu, Erheng; Gu, Mingliang; Liu, Chengpu

    2017-09-04

    We numerically study the propagation of a Laguerre-Gaussian beam through polar molecular media via the exact solution of full-wave Maxwell-Bloch equations where the rotating-wave and slowly-varying-envelope approximations are not included. It is found that beyond the coexistence of odd-order and even-order vortex harmonics due to inversion asymmetry of the system, the light propagation effect results in the intensity enhancement of a high-order vortex harmonics. Moreover, the orbital momentum successfully transfers from the fundamental laser driver to the vortex harmonics which topological charger number is directly proportional to its order.

  14. Atmospheric winter response to Arctic sea ice changes in reanalysis data and model simulations

    Science.gov (United States)

    Jaiser, Ralf; Nakamura, Tetsu; Handorf, Dörthe; Romanowsky, Erik; Dethloff, Klaus; Ukita, Jinro; Yamazaki, Koji

    2017-04-01

    In recent years, Arctic regions showcased the most pronounced signals of a changing climate: Sea ice is reduced by more the ten percent per decade. At the same time, global warming trends have their maximum in Arctic latitudes often labled Arctic Amplification. There is strong evidence that amplified Arctic changes feed back into mid-latitudes in winter. We identified mechanisms that link recent Arctic changes through vertically propagating planetary waves to events of a weakened stratospheric polar vortex. Related anomalies propagate downward and lead to negative AO-like situations in the troposphere. European winter climate is sensitive to negative AO situations in terms of cold air outbreaks that are likely to occur more often in that case. These results based on ERA-Interim reanalysis data do not allow to dismiss other potential forcing factors leading to observed mid-latitude climate changes. Nevertheless, properly designed Atmospheric General Circulation Model (AGCM) experiments with AFES and ECHAM6 are able to reproduce observed atmospheric circulation changes if only observed sea ice changes in the Arctic are prescribed. This allows to deduce mechanisms that explain how Arctic Amplification can lead to a negative AO response via a stratospheric pathway. Further investigation of these mechanisms may feed into improved prediction systems.

  15. Stationary planetary wave propagation in Northern Hemisphere winter – climatological analysis of the refractive index

    Directory of Open Access Journals (Sweden)

    Q. Li

    2007-01-01

    Full Text Available The probability density on a height-meridional plane of negative refractive index squared f(nk2<0 is introduced as a new analysis tool to investigate the climatology of the propagation conditions of stationary planetary waves based on NCEP/NCAR reanalysis data for 44 Northern Hemisphere boreal winters (1958–2002. This analysis addresses the control of the atmospheric state on planetary wave propagation. It is found that not only the variability of atmospheric stability with altitudes, but also the variability with latitudes has significant influence on planetary wave propagation. Eliassen-Palm flux and divergence are also analyzed to investigate the eddy activities and forcing on zonal mean flow. Only the ultra-long planetary waves with zonal wave number 1, 2 and 3 are investigated. In Northern Hemisphere winter the atmosphere shows a large possibility for stationary planetary waves to propagate from the troposphere to the stratosphere. On the other hand, waves induce eddy momentum flux in the subtropical troposphere and eddy heat flux in the subpolar stratosphere. Waves also exert eddy momentum forcing on the mean flow in the troposphere and stratosphere at middle and high latitudes. A similar analysis is also performed for stratospheric strong and weak polar vortex regimes, respectively. Anomalies of stratospheric circulation affect planetary wave propagation and waves also play an important role in constructing and maintaining of interannual variations of stratospheric circulation.

  16. Vortex coupling in trailing vortex-wing interactions

    Science.gov (United States)

    Chen, C.; Wang, Z.; Gursul, I.

    2018-03-01

    The interaction of trailing vortices of an upstream wing with rigid and flexible downstream wings has been investigated experimentally in a wind tunnel, using particle image velocimetry, hot-wire, force, and deformation measurements. Counter-rotating upstream vortices exhibit increased meandering when they are close to the tip of the downstream wing. The upstream vortex forms a pair with the vortex shed from the downstream wing and then exhibits large displacements around the wing tip. This coupled motion of the pair has been found to cause large lift fluctuations on the downstream wing. The meandering of the vortex pair occurs at the natural meandering frequency of the isolated vortex, with a low Strouhal number, and is not affected by the frequency of the large-amplitude wing oscillations if the downstream wing is flexible. The displacement of the leading vortex is larger than that of the trailing vortex; however, it causes highly correlated variations of the core radius, core vorticity, and circulation of the trailing vortex with the coupled meandering motion. In contrast, co-rotating vortices do not exhibit any increased meandering.

  17. A Coaxial Vortex Ring Model for Vortex Breakdown

    OpenAIRE

    Blackmore, Denis; Brons, Morten; Goullet, Arnaud

    2008-01-01

    A simple - yet plausible - model for B-type vortex breakdown flows is postulated; one that is based on the immersion of a pair of slender coaxial vortex rings in a swirling flow of an ideal fluid rotating around the axis of symmetry of the rings. It is shown that this model exhibits in the advection of passive fluid particles (kinematics) just about all of the characteristics that have been observed in what is now a substantial body of published research on the phenomenon of vortex breakdown....

  18. Vortex-vortex interactions in toroidally trapped Bose-Einstein condensates

    OpenAIRE

    Schulte, T.; Santos, L.; Sanpera, A.; Lewenstein, M.

    2002-01-01

    We analyze the vortex dynamics and vortex-vortex interactions in Bose-Einstein condensates confined in toroidal traps. We show that this particular geometry strongly distorts the vortex dynamics. The numerically calculated vortex trajectories are well explained by an analytical calculation based on image method and conformal mapping. Finally, the dissipation effects are discussed.

  19. Cylindrical vortex wake model: right cylinder

    DEFF Research Database (Denmark)

    Branlard, Emmanuel; Gaunaa, Mac

    2015-01-01

    The vortex system consisting of a bound vortex disk, a root vortex and a vortex cylinder as introduced by Joukowski in 1912 is further studied in this paper. This system can be used for simple modeling of rotors (e.g. wind turbines) with infinite number of blades and finite tip-speed ratios. For ...

  20. A differentiated plane wave as an electromagnetic vortex

    Science.gov (United States)

    Hannay, J. H.; Nye, J. F.

    2015-04-01

    Differentiating a complex scalar plane wave with respect to its direction produces an isolated straight vortex line and has a natural extension, described in earlier papers, to the vector waves of electromagnetism—a differentiated plane wave (DPW). It epitomizes destructive interference and will be shown to have the local structure of an electromagnetic vortex. In this paper its polarization structure and Poynting vector field are compared and contrasted with that of the family of linear polynomial waves, of which it is a special member. By definition this wider family has a general linear complex vector function of position multiplying a plane wave, but the function must be such that the combination satisfies Maxwell’s equations. This forces translational invariance of the function along the wavevector direction—in other words the wave is ‘non-diffracting’. In a natural sense all possible polarizations are exhibited once only. But the DPW has a distinctive polarization structure only partly explored previously. Both classes of waves share similar Poynting vector fields, which can be ‘elliptic’ (helix-like flow lines) or ‘hyperbolic’, of a repulsive nature, unexpected for a vortex. Both classes can be considered as a limit in the superposition of three closely parallel ordinary plane waves in destructive interference, and this derivation is supplied in full here.

  1. Manipulation of vortex rings for flow control

    International Nuclear Information System (INIS)

    Toyoda, Kuniaki; Hiramoto, Riho

    2009-01-01

    This paper reviews the dynamics of vortex rings and the control of flow by the manipulation of vortex rings. Vortex rings play key roles in many flows; hence, the understanding of the dynamics of vortex rings is crucial for scientists and engineers dealing with flow phenomena. We describe the structures and motions of vortex rings in circular and noncircular jets, which are typical examples of flows evolving into vortex rings. For circular jets the mechanism of evolving, merging and breakdown of vortex rings is described, and for noncircular jets the dynamics of three-dimensional deformation and interaction of noncircular vortex rings under the effect of self- and mutual induction is discussed. The application of vortex-ring manipulation to the control of various flows is reviewed with successful examples, based on the relationship between the vortex ring dynamics and the flow properties. (invited paper)

  2. Phenomenological Model of Vortex Generators

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Westergaard, C.

    1995-01-01

    For some time attempts have been made to improve the power curve of stall regulated wind turbines by using devices like vortex generators VG and Gurney flaps. The vortex produces an additional mixing of the boundary layer and the free stream and thereby increasing the momentum close to the wall......, which again delays separation in adverse pressure gradient regions. A model is needed to include the effect of vortex generators in numerical computations of the viscous flow past rotors. In this paper a simple model is proposed....

  3. Review of Vortex Methods for Simulation of Vortex Breakdown

    National Research Council Canada - National Science Library

    Levinski, Oleg

    2001-01-01

    The aim of this work is to identify current developments in the field of vortex breakdown modelling in order to initiate the development of a numerical model for the simulation of F/A-18 empennage buffet...

  4. Multiple helical modes of vortex breakdown

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Naumov, I. V.; Okulov, Valery

    2011-01-01

    Experimental observations of vortex breakdown in a rotating lid-driven cavity are presented. The results show that vortex breakdown for cavities with high aspect ratios is associated with the appearance of stable helical vortex multiplets. By using results from stability theory generalizing Kelvin......’s problem on vortex polygon stability, and systematically exploring the cavity flow, we succeeded in identifying two new stable vortex breakdown states consisting of triple and quadruple helical multiplets....

  5. Vortex cores and vortex motion in superconductors with anisotropic Fermi surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Galvis, J.A. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Departamento de Ciencias Naturales, Facultad de ingeniería y Ciencias Básicas, Universidad Central, Bogotá (Colombia); National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310 (United States); Herrera, E.; Guillamón, I.; Vieira, S. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Altos Campos Magnéticos y Bajas Temperaturas, UAM, CSIC, Madrid (Spain); Suderow, H., E-mail: hermann.suderow@uam.es [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Altos Campos Magnéticos y Bajas Temperaturas, UAM, CSIC, Madrid (Spain)

    2017-02-15

    Highlights: • The observation of vortex cores is reviewed, with emphasis in new experiments. • Vortex cores are follow superconducting gap and Fermi surface shapes. • The vortex core shape influences vortex dynamics. - Abstract: Explaning static and dynamic properties of the vortex lattice in anisotropic superconductors requires a careful characterization of vortex cores. The vortex core contains Andreev bound states whose spatial extension depends on the anisotropy of the electronic band-structure and superconducting gap. This might have an impact on the anisotropy of the superconducting properties and on vortex dynamics. Here we briefly summarize basic concepts to understand anisotropic vortex cores and review vortex core imaging experiments. We further discuss moving vortex lattices and the influence of vortex core shape in vortex motion. We find vortex motion in highly tilted magnetic fields. We associate vortex motion to the vortex entry barrier and the screening currents at the surface. We find preferential vortex motion along the main axis of the vortex lattice. After travelling integers of the intervortex distance, we find that vortices move more slowly due to the washboard potential of the vortex lattice.

  6. Vortex cores and vortex motion in superconductors with anisotropic Fermi surfaces

    International Nuclear Information System (INIS)

    Galvis, J.A.; Herrera, E.; Guillamón, I.; Vieira, S.; Suderow, H.

    2017-01-01

    Highlights: • The observation of vortex cores is reviewed, with emphasis in new experiments. • Vortex cores are follow superconducting gap and Fermi surface shapes. • The vortex core shape influences vortex dynamics. - Abstract: Explaning static and dynamic properties of the vortex lattice in anisotropic superconductors requires a careful characterization of vortex cores. The vortex core contains Andreev bound states whose spatial extension depends on the anisotropy of the electronic band-structure and superconducting gap. This might have an impact on the anisotropy of the superconducting properties and on vortex dynamics. Here we briefly summarize basic concepts to understand anisotropic vortex cores and review vortex core imaging experiments. We further discuss moving vortex lattices and the influence of vortex core shape in vortex motion. We find vortex motion in highly tilted magnetic fields. We associate vortex motion to the vortex entry barrier and the screening currents at the surface. We find preferential vortex motion along the main axis of the vortex lattice. After travelling integers of the intervortex distance, we find that vortices move more slowly due to the washboard potential of the vortex lattice.

  7. Vortex loops and Majoranas

    International Nuclear Information System (INIS)

    Chesi, Stefano; Jaffe, Arthur; Loss, Daniel; Pedrocchi, Fabio L.

    2013-01-01

    We investigate the role that vortex loops play in characterizing eigenstates of interacting Majoranas. We give some general results and then focus on ladder Hamiltonian examples as a test of further ideas. Two methods yield exact results: (i) A mapping of certain spin Hamiltonians to quartic interactions of Majoranas shows that the spectra of these two examples coincide. (ii) In cases with reflection-symmetric Hamiltonians, we use reflection positivity for Majoranas to characterize vortices in the ground states. Two additional methods suggest wider applicability of these results: (iii) Numerical evidence suggests similar behavior for certain systems without reflection symmetry. (iv) A perturbative analysis also suggests similar behavior without the assumption of reflection symmetry

  8. Holographic Vortex Coronagraph

    Science.gov (United States)

    Palacios, David

    2010-01-01

    A holographic vortex coronagraph (HVC) has been proposed as an improvement over conventional coronagraphs for use in high-contrast astronomical imaging for detecting planets, dust disks, and other broadband light scatterers in the vicinities of stars other than the Sun. Because such light scatterers are so faint relative to their parent stars, in order to be able to detect them, it is necessary to effect ultra-high-contrast (typically by a factor of the order of 1010) suppression of broadband light from the stars. Unfortunately, the performances of conventional coronagraphs are limited by low throughput, dispersion, and difficulty of satisfying challenging manufacturing requirements. The HVC concept offers the potential to overcome these limitations.

  9. Vortex electronis and squids

    CERN Document Server

    2003-01-01

    Understanding the nature of vortices in high-Tc superconductors is a crucial subject for research on superconductive electronics, especially for superconducting interference devices (SQUIDs), it is also a fundamental problem in condensed-matter physics. Recent technological progress in methods for both direct and indirect observation of vortices, e.g. scanning SQUID, terahertz imaging, and microwave excitation, has led to new insights into vortex physics, the dynamic behavior of vortices in junctions and related questions of noise. This book presents the current status of research activity and provides new information on the applications of SQUIDs, including magnetocardiography, immunoassays, and laser-SQUID microscopes, all of which are close to being commercially available.

  10. Saturn's north polar cyclone and hexagon at depth revealed by Cassini/VIMS

    Science.gov (United States)

    Baines, K.H.; Momary, T.W.; Fletcher, L.N.; Showman, A.P.; Roos-Serote, M.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Nicholson, P.D.

    2009-01-01

    A high-speed cyclonic vortex centered on the north pole of Saturn has been revealed by the visual-infrared mapping spectrometer (VIMS) onboard the Cassini-Huygens Orbiter, thus showing that the tropospheres of both poles of Saturn are occupied by cyclonic vortices with winds exceeding 135 m/s. High-spatial-resolution (~200 km per pixel) images acquired predominantly under night-time conditions during Saturn's polar winter-using a thermal wavelength of 5.1 ??m to obtain time-lapsed imagery of discrete, deep-seated (>2.1-bar) cloud features viewed in silhouette against Saturn's internally generated thermal glow-show a classic cyclonic structure, with prograde winds exceeding 135 m/s at its maximum near 88.3?? (planetocentric) latitude, and decreasing to Saturn indicates that cyclonic circulation may be an important dynamical style in planets with significant atmospheres. ?? 2009 Elsevier Ltd. All rights reserved.

  11. The Rapid Arctic Warming and Its Impact on East Asian Winter Weather in Recent Decade

    Science.gov (United States)

    Kim, S. J.; Kim, B. M.; Kim, J. H.

    2015-12-01

    The Arctic is warming much more rapidly than the lower latitudes. In contrast to the rapid Arctic warming, in winters of the recent decade, the cold-air outbreaks over East Asia occur more frequently and stronger than in 1990s. By accompanying the snow over East Asia, the strong cold surges have led to a severe socio-economic impact. Such severe cold surges in recent decade over east Asia is consistent with the more dominant negative phase of the Arctic Oscillation (AO), that may be attributed by the Arctic amplification. In both observation-based reanalysis and numerical model experiments, the Arctic sea ice melting leads to the weakening of the AO polarity by reducing the meridional temperature gradient through a heat flux feedback. The Arctic warming and associated sea ice melting over the Kara-Barents area in late fall and early winter first release a lot of heat to the atmosphere from the ocean by a strong contrast in temperature and moisture and higher height anomaly is developed over the Kara/Barents and the Ural mountains The anomalous anticyclonic anomaly over the Arctic strengthen the Siberian High and at the same time the east Asian trough is developed over the western coast of the North Pacific. Through the passage between the margin of the Siberian High and east Asian tough, an extremely cold air is transported from east Siberia to east Asia for sometimes more than a week. Such a severe sold air brings about the moisture from nearby ocean, largely influencing the daily lives and economy in north East China, Korea, and Japan. The recent Arctic and associated sea ice melting is not only contributed to the local climate and weather, but also a severe weather in mid-latitudes through a modulation in polar vortex.

  12. Paraxial propagation of the first-order chirped Airy vortex beams in a chiral medium.

    Science.gov (United States)

    Xie, Jintao; Zhang, Jianbin; Ye, Junran; Liu, Haowei; Liang, Zhuoying; Long, Shangjie; Zhou, Kangzhu; Deng, Dongmei

    2018-03-05

    We introduce the propagation of the first-order chirped Airy vortex beams (FCAiV) in a chiral medium analytically. Results show that the FCAiV beams split into the left circularly polarized vortex (LCPV) beams and the right circularly polarized vortex (RCPV) beams, which have totally different propagation trajectories in the chiral medium. In this paper, we investigate the effects of the first-order chirped parameter β, the chiral parameter γ and the optical vortex on the propagation process of the FCAiV beams. It is shown that the propagation trajectory of the FCAiV beams declines with the chirped parameter increasing. Besides, the increase of the chiral parameter acting on the LCPV beams makes the relative position between the main lobe and the optical vortex further while the effect on the RCPV beams is the opposite. Furthermore, the relative position between the main lobe and the optical vortex contributes to the position of the intensity focusing. Meanwhile, with the chiral parameter increasing, the maximum gradient and scattering forces of the LCPV beams decrease but those of the RCPV beams will increase during the propagation. It is significant that we can control the propagation trajectory, the intensity focusing position and the radiation forces of the FCAiV beams by varying the chirped parameter and the chiral parameter.

  13. Winter Weather Emergencies

    Science.gov (United States)

    Severe winter weather can lead to health and safety challenges. You may have to cope with Cold related health ... Although there are no guarantees of safety during winter weather emergencies, you can take actions to protect ...

  14. Winter maintenance performance measure.

    Science.gov (United States)

    2016-01-01

    The Winter Performance Index is a method of quantifying winter storm events and the DOTs response to them. : It is a valuable tool for evaluating the States maintenance practices, performing post-storm analysis, training : maintenance personnel...

  15. Winter weather demand considerations.

    Science.gov (United States)

    2015-04-01

    Winter weather has varied effects on travel behavior. Using 418 survey responses from the Northern Virginia : commuting area of Washington, D.C. and binary logit models, this study examines travel related changes under : different types of winter wea...

  16. Regimes of flow past a vortex generator

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Okulov, V.L.; Naumov, I.V.

    2012-01-01

    A complete parametric investigation of the development of multi-vortex regimes in a wake past simple vortex generator has been carried out. It is established that the vortex structure in the wake is much more complicated than a simple monopole tip vortex. The vortices were studied by stereoscopic...... particle image velocimetry (SPIV). Based on the obtained SPIV data, a map of the regimes of flow past the vortex generator has been constructed. One region with a developed stable multivortex system on this map reaches the vicinity of the optimum angle of attack of the vortex generator....

  17. Three-dimensional imaging of vortex structure in a ferroelectric nanoparticle driven by an electric field.

    Science.gov (United States)

    Karpov, D; Liu, Z; Rolo, T Dos Santos; Harder, R; Balachandran, P V; Xue, D; Lookman, T; Fohtung, E

    2017-08-17

    Topological defects of spontaneous polarization are extensively studied as templates for unique physical phenomena and in the design of reconfigurable electronic devices. Experimental investigations of the complex topologies of polarization have been limited to surface phenomena, which has restricted the probing of the dynamic volumetric domain morphology in operando. Here, we utilize Bragg coherent diffractive imaging of a single BaTiO 3 nanoparticle in a composite polymer/ferroelectric capacitor to study the behavior of a three-dimensional vortex formed due to competing interactions involving ferroelectric domains. Our investigation of the structural phase transitions under the influence of an external electric field shows a mobile vortex core exhibiting a reversible hysteretic transformation path. We also study the toroidal moment of the vortex under the action of the field. Our results open avenues for the study of the structure and evolution of polar vortices and other topological structures in operando in functional materials under cross field configurations.Imaging of topological states of matter such as vortex configurations has generally been limited to 2D surface effects. Here Karpov et al. study the volumetric structure and dynamics of a vortex core mediated by electric-field induced structural phase transition in a ferroelectric BaTiO 3 nanoparticle.

  18. Polarization Optics

    OpenAIRE

    Fressengeas, Nicolas

    2010-01-01

    The physics of polarization optics *Polarized light propagation *Partially polarized light; DEA; After a brief introduction to polarization optics, this lecture reviews the basic formalisms for dealing with it: Jones Calculus for totally polarized light and Stokes parameters associated to Mueller Calculus for partially polarized light.

  19. Reconfigurable magnetic domain wall pinning using vortex-generated magnetic fields

    Science.gov (United States)

    Hurst, Aaron C. H.; Izaac, Joshua A.; Altaf, Fouzia; Baltz, Vincent; Metaxas, Peter J.

    2017-05-01

    Although often important for domain wall device applications, reproducible fabrication of pinning sites at the nano-scale remains challenging. Here, we demonstrate that the stray magnetic field generated beneath magnetic vortex cores can be used to generate localized pinning sites for magnetic domain walls in an underlying, perpendicularly magnetized nanostrip. Moreover, we show that the pinning strength can be tuned by switching the vortex core polarity: switching the core polarity so that it is aligned with the magnetization of the expanding domain (rather than against it) can reduce the vortex-mediated wall depinning field by between 40% and 90%, depending on the system geometry. Significant reductions in the depinning field are also demonstrated in narrow strips by shifting the core away from the strips' centers.

  20. Reversible rectification of vortex motion in magnetic and non-magnetic asymmetric pinning potentials

    International Nuclear Information System (INIS)

    Gonzalez, E.M.; Gonzalez, M.P.; Nunez, N.O.; Villegas, J.E.; Anguita, J.V.; Jaafa, M.; Asenjo, A.; Vicent, J.L.

    2006-01-01

    Nb films have been grown on arrays of asymmetric pinning centers. The lattice vortex dynamics could be modified, almost at will, by periodic pinning potentials. In the case of asymmetric pinning potentials a vortex ratchet effect occurs: the vortex lattice motion is rectified. That is, an injected ac current yields an output dc voltage, which polarity could be tuned. The output signal polarity could be switched with the applied magnetic field and the ac current strength. Ratchet effect occurs when asymmetric potentials induce outward particles flow under external fluctuations in the lack of driven direct outward forces. The output signal is similar using magnetic or non-magnetic submicrometric array of pinning centers. This device works as an adiabatic rocking ratchet. This superconducting ratchet could be a model to study biological motors

  1. Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam

    Science.gov (United States)

    Lin, Han; Gu, Min

    2013-02-01

    Diffraction-limited non-Airy multifocal arrays are created by focusing a phase-modulated vortex beam through a high numerical-aperture objective. The modulated phase at the back aperture of the objective resulting from the superposition of two concentric phase-modulated vortex beams allows for the generation of a multifocal array of cylindrically polarized non-Airy patterns. Furthermore, we shift the spatial positions of the phase vortices to manipulate the intensity distribution at each focal spot, leading to the creation of a multifocal array of split-ring patterns. Our method is experimentally validated by generating the predicted phase modulation through a spatial light modulator. Consequently, the spatially shifted circularly polarized vortex beam adopted in a dynamic laser direct writing system facilitates the fabrication of a split-ring microstructure array in a polymer material by a single exposure of a femtosecond laser beam.

  2. Winter-to-winter variations in indoor radon

    International Nuclear Information System (INIS)

    Mose, D.G.; Mushrush, G.W.; Kline, S.W.

    1989-01-01

    Indoor radon concentrations in northern Virginia and central Maryland show a strong dependence on weather. Winter tends to be associated with higher than average indoor radon, and summer with lower than average. However, compared to the winter of 1986-1987, the winter of 1987-1988 was warmer and drier. Consequently, winter-to-winter indoor radon decreased by about 25%. This winter-to-winter decrease is unexpectedly large, and simulates winter-to-summer variations that have been reported

  3. Point vortex modelling of the wake dynamics behind asymmetric vortex generator arrays

    NARCIS (Netherlands)

    Baldacchino, D.; Simao Ferreira, C.; Ragni, D.; van Bussel, G.J.W.

    2016-01-01

    In this work, we present a simple inviscid point vortex model to study the dynamics of asymmetric vortex rows, as might appear behind misaligned vortex generator vanes. Starting from the existing solution of the in_nite vortex cascade, a numerical model of four base-vortices is chosen to represent

  4. Direct observation of current-induced motion of a 3D vortex domain wall in cylindrical nanowires

    KAUST Repository

    Ivanov, Yurii P.

    2017-05-08

    The current-induced dynamics of 3D magnetic vortex domain walls in cylindrical Co/Ni nanowires are revealed experimentally using Lorentz microscopy and theoretically using micromagnetic simulations. We demonstrate that a spin-polarized electric current can control the reversible motion of 3D vortex domain walls, which travel with a velocity of a few hundred meters per second. This finding is a key step in establishing fast, high-density memory devices based on vertical arrays of cylindrical magnetic nanowires.

  5. Vortex breakdown incipience: Theoretical considerations

    Science.gov (United States)

    Berger, Stanley A.; Erlebacher, Gordon

    1992-01-01

    The sensitivity of the onset and the location of vortex breakdowns in concentrated vortex cores, and the pronounced tendency of the breakdowns to migrate upstream have been characteristic observations of experimental investigations; they have also been features of numerical simulations and led to questions about the validity of these simulations. This behavior seems to be inconsistent with the strong time-like axial evolution of the flow, as expressed explicitly, for example, by the quasi-cylindrical approximate equations for this flow. An order-of-magnitude analysis of the equations of motion near breakdown leads to a modified set of governing equations, analysis of which demonstrates that the interplay between radial inertial, pressure, and viscous forces gives an elliptic character to these concentrated swirling flows. Analytical, asymptotic, and numerical solutions of a simplified non-linear equation are presented; these qualitatively exhibit the features of vortex onset and location noted above.

  6. Ground vortex flow field investigation

    Science.gov (United States)

    Kuhn, Richard E.; Delfrate, John H.; Eshleman, James E.

    1988-01-01

    Flow field investigations were conducted at the NASA Ames-Dryden Flow Visualization Facility (water tunnel) to investigate the ground effect produced by the impingement of jets from aircraft nozzles on a ground board in a STOL operation. Effects on the overall flow field with both a stationary and a moving ground board were photographed and compared with similar data found in other references. Nozzle jet impingement angles, nozzle and inlet interaction, side-by-side nozzles, nozzles in tandem, and nozzles and inlets mounted on a flat plate model were investigated. Results show that the wall jet that generates the ground effect is unsteady and the boundary between the ground vortex flow field and the free-stream flow is unsteady. Additionally, the forward projection of the ground vortex flow field with a moving ground board is one-third less than that measured over a fixed ground board. Results also showed that inlets did not alter the ground vortex flow field.

  7. A note on integral vortex strength

    Czech Academy of Sciences Publication Activity Database

    Kolář, Václav

    2010-01-01

    Roč. 58, č. 1 (2010), s. 23-28 ISSN 0042-790X R&D Projects: GA AV ČR IAA200600801 Institutional research plan: CEZ:AV0Z20600510 Keywords : circulation * unsteady Taylor vortex * vortex intensity * vortex strength * vorticity * vorticity decomposition Subject RIV: BK - Fluid Dynamics Impact factor: 0.553, year: 2010

  8. Vortex ice in nanostructured superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia J [Los Alamos National Laboratory; Libal, Andras J [Los Alamos National Laboratory

    2008-01-01

    We demonstrate using numerical simulations of nanostructured superconductors that it is possible to realize vortex ice states that are analogous to square and kagome ice. The system can be brought into a state that obeys either global or local ice rules by applying an external current according to an annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure array and show that in square ice, topological defects appear along grain boundaries, while in kagome ice, individual defects appear. We argue that the vortex system offers significant advantages over other artificial ice systems.

  9. Vortex State in Sub-100 nm Magnetic Nanodots.

    Science.gov (United States)

    Roshchin, Igor V.

    2006-03-01

    Magnetism of nanostructured magnets, which size is comparable to or smaller than ferromagnetic domain size, offers a great potential for new physics. Detailed knowledge of magnetization reversal and possible magnetic configurations in magnetic nanostructures is essential for high-density magnetic memory. Many theoretical and experimental studies are focused on a magnetic vortex which in addition to a circular in-plane configuration of spins has a core, - the region with out-of-plane magnetization. We present a quantitative study of the magnetic vortex state and the vortex core in sub-100 nm magnetic dots. Arrays of single-layer and bilayer nanodots covering over 1 cm^2 are fabricated using self-assembled nanopores in anodized alumina. This method allows good control over the dot size and periodicity. Magnetization measurements performed using SQUID, VSM, and MOKE indicate a transition from a vortex to a single domain state for the Fe dots. This transition is studied as a function of the magnetic field and dots size. Micromagnetic and Monte Carlo simulations confirm the experimental observations. Thermal activation and exchange bias strongly affect the vortex nucleation field and have a much weaker effect on the vortex annihilation field. Direct imaging of magnetic moments in sub-100 nm dots is extremely difficult and has not been reported yet. Polarized grazing incidence small angle neutron scattering measurements allow dot imaging in reciprocal space. Quantitative analysis of such measurements performed on 65 nm Fe dots yields the vortex core size of ˜15 nm, in good agreement with the 14 nm obtained from the simulations. This work is done in collaboration with Chang-Peng Li, Zhi-Pan Li, S. Roy, S. K. Sinha, (UCSD), Xavier Batlle (U. Barcelona), R. K. Dumas, Kai Liu, (UC Davis), S. Park, R. Pynn, M. R. Fitzsimmons (LANL), J. Mejia Lopez (Pontificia U. Catolica de Chile), D. Altbir, (U. de Santiago de Chile), A. H. Romero (Cinvestav-Unidad Queretaro), and Ivan K

  10. Polar low monitoring

    Science.gov (United States)

    Bobylev, Leonid; Zabolotskikh, Elizaveta; Mitnik, Leonid

    2010-05-01

    passive microwave data make it possible to retrieve several important atmospheric and oceanic parameters inside the polar lows, such as sea surface wind speed, water vapour content in the atmosphere, total liquid water content in the clouds and others, providing not only qualitative image of a vortex, but also quantitative information about these severe events, constituting a promising tool for their study and monitoring. An approach for detection and tracking of polar lows is developed utilizing the data from two sensors: SSM/I onboard DMSP and Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) onboard Aqua satellite. This approach consists of two stages. At the first stage total atmospheric water vapor fields are retrieved from SSM/I and AMSRE-E measurement data using precise Arctic polar algorithms, developed at NIERSC. These algorithms are applicable over open water. They have high retrieval accuracies under a wide range of environmental conditions. Algorithms are based on numerical simulation of brightness temperatures and their inversion by means of Neural Networks. At the second stage the vortex structures are detected in these fields, polar lows are identified and tracked and some of their parameters are calculated. A few case studies are comprehensively conducted based on SSM/I and AMSRE-E measurements and using other satellite data including visible, infrared and SAR images, QuickScat Scatterometer wind fields, surface analysis maps and re-analysis data, which demonstrated the advantages of satellite passive microwave data usage in the polar low studies.

  11. Anatomy of a Bathtub Vortex

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Bohr, Tomas; Stenum, Bjarne

    2003-01-01

    We present experiments and theory for the "bathtub vortex," which forms when a fluid drains out of a rotating cylindrical container through a small drain hole. The fast down-flow is found to be confined to a narrow and rapidly rotating "drainpipe" from the free surface down to the drain hole. Sur...

  12. Vortex dynamics in inhomogeneous plasmas

    DEFF Research Database (Denmark)

    Naulin, V.; Juul Rasmussen, J.

    1999-01-01

    The dynamics of vortical structures in magnetized plasmas with nonuniform density is investigated numerically. In particular the dynamics of monopolar vortices is considered and the results are discussed in terms of the conservation of potential vorticity. It is found that individual vortex...

  13. 150 Years of vortex dynamics

    DEFF Research Database (Denmark)

    Aref, Hassan

    2010-01-01

    An IUTAM symposium with the title of this paper was held on October 12-16, 2008, in Lyngby and Copenhagen, Denmark, to mark the sesquicentennial of publication of Helmholtz's seminal paper on vortex dynamics. This volume contains the proceedings of the Symposium. The present paper provides...

  14. Application study of monthly precipitation forecast in Northeast China based on the cold vortex persistence activity index

    Science.gov (United States)

    Gang, Liu; Meihui, Qu; Guolin, Feng; Qucheng, Chu; Jing, Cao; Jie, Yang; Ling, Cao; Yao, Feng

    2018-03-01

    This paper introduces three quantitative indicators to conduct research for characterizing Northeast China cold vortex persistence activity: cold vortex persistence, generalized "cold vortex," and cold vortex precipitation. As discussed in the first part of paper, a hindcast is performed by multiple regressions using Northeast China precipitation from 2012 to 2014 combination with the previous winter 144 air-sea system factors. The results show that the mentioned three cold vortex index series can reflect the spatial and temporal distributions of observational precipitation in 2012-2014 and obtain results. The cold vortex factors are then added to the Forecast System on Dynamical and Analogy Skills (FODAS) to carry out dynamic statistical hindcast of precipitation in Northeast China from 2003 to 2012. Based on the characteristics and significance of each index, precipitation hindcast is carried out for Northeast China in May, June, July, August, May-June, and July-August. It turns out that the Northeast Cold Vortex Index Series, as defined in this paper, can make positive corrections to the FODAS forecast system, and most of the index correction results are higher than the system's own correction value. This study provides quantitative index products and supplies a solid technical foundation and support for monthly precipitation forecast in Northeast China.

  15. Generating broadband vortex modes in ring-core fiber by using a plasmonic q-plate.

    Science.gov (United States)

    Ye, Jingfu; Li, Yan; Han, Yanhua; Deng, Duo; Su, Xiaoya; Song, He; Gao, Jianmin; Qu, Shiliang

    2017-08-15

    A mode convertor was proposed and investigated for generating vortex modes in a ring-core fiber based on a plasmonic q-plate (PQP), which is composed of specially organized L-shaped resonator (LSR) arrays. A multicore fiber was used to transmit fundamental modes, and the LSR arrays were used to modulate phases of these fundamental modes. Behind the PQP, the transmitted fundamental modes with gradient phase distribution can be considered as the incident lights for generating broadband vortex modes in the ring-core fiber filter. The topological charges of generated vortex modes can be various by using an optical PQP with different q, and the chirality of the generated vortex mode can be controlled by the sign of q and handedness of the incident circularly polarized light. The operation bandwidth is 800 nm in the range of 1200-2000 nm, which covers six communication bands from the O band to the U band. The separation of vortex modes also was addressed by using a dual ring-core fiber. The mode convertor is of potential interest for connecting a traditional network and vortex communication network.

  16. Vortex veins: anatomic investigations on human eyes.

    Science.gov (United States)

    Kutoglu, Tunc; Yalcin, Bulent; Kocabiyik, Necdet; Ozan, Hasan

    2005-05-01

    The aim of this study was to determine number of ocular vortex veins, their scleral coordinates, and their relationship with nearby extraocular muscles. Sixty intact cadaver orbits having no history of eye or orbital disorders during life were carefully dissected under stereomicroscopic magnification to expose vortex veins and their exit sites from the eyeball. The number of vortex veins per eye varied from four to eight. Eyes having four (35%) or five (30%) vortex veins were observed most frequently. Three eyes (5%) had eight vortex veins. Although the incidence of the vortex veins was variable, there was at least one vein in each quadrant of the sclera. Knowledge of the approximate location of the vortex vein exit sites is very important for surgeons because damage to these veins during eye surgery could produce potential complications, especially choroidal detachment. Copyright 2005 Wiley-Liss, Inc.

  17. Experiments concerning the theories of vortex breakdown

    Science.gov (United States)

    Panton, Ronald L.; Stifle, Kirk E.

    1991-01-01

    An experimental project was undertaken to investigate the character of vortex breakdown with particular regard to the stagnation and wave guide theories of vortex breakdown. Three different wings were used to produce a trailing vortex which convected downstream without undergoing breakdown. Disturbances were then introduced onto the vortex using a moving wire to 'cut' the vortex. The development of upstream and downstream propagating disturbance waves was observed and the propagation velocities measured. A downstream traveling wave was observed to produce a structure similar in appearance to a vortex breakdown. An upstream traveling wave produced a moving turbulent region. The upstream disturbance moved into an axial velocity profile that had a wake-like defect while the downstream moving vortex breakdown moved against a jet-like overshoot. The longitudinal and swirl velocity profiles were documented by LDV measurement. Wave velocities, swirl angles, and swirl parameters are reported.

  18. The potential for ozone depletion in the Arctic polar stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Brune, W.H. (Pennsylvania State Univ., University Park (United States)); Anderson, J.G.; Toohey, D.W. (Harvard Univ., Cambridge, MA (United States)); Fahey, D.W.; Kawa, S.R. (National Oceanic and Atmospheric Administration, Boulder, CO (United States)); Jones, R.L. (Univ. of Cambridge (England)); McKenna, D.S. (United Kingdom Meteorological Office, Berkshire (England)); Poole, L.R. (NASA Langley Research Center, Hampton, VA (United States))

    1991-05-31

    The nature of the Arctic polar stratosphere is observed to be similar in many respects to that of the Antarctic polar stratosphere, where an ozone hole has been identified. most of the available chlorine (HCl and ClONO{sub 2}) was converted by reactions on polar stratospheric clouds to reactive ClO and Cl{sub 2}O{sub 2} throughout the Arctic polar vortex before midwinter. Reactive nitrogen was converted to HNO{sub 3}, and some, with spatial inhomogeneity, fell out of the stratosphere. These chemical changes ensured characteristic ozone losses of 10 to 15% at altitudes inside the polar vortex where polar stratospheric clouds had occurred. These local losses can translate into 5 to 8% losses in the vertical column abundance of ozone. As the amount of stratospheric chlorine inevitably increases by 50% over the next two decades, ozone losses recognizable as an ozone hole may well appear.

  19. Tracer-tracer relations as a tool for research on polar ozone loss

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Rolf

    2010-07-01

    The report includes the following chapters: (1) Introduction: ozone in the atmosphere, anthropogenic influence on the ozone layer, polar stratospheric ozone loss; (2) Tracer-tracer relations in the stratosphere: tracer-tracer relations as a tool in atmospheric research; impact of cosmic-ray-induced heterogeneous chemistry on polar ozone; (3) quantifying polar ozone loss from ozone-tracer relations: principles of tracer-tracer correlation techniques; reference ozone-tracer relations in the early polar vortex; impact of mixing on ozone-tracer relations in the polar vortex; impact of mesospheric intrusions on ozone-tracer relations in the stratospheric polar vortex calculation of chemical ozone loss in the arctic in March 2003 based on ILAS-II measurements; (4) epilogue.

  20. Magnetic vortex crystals in frustrated 3D Mott insulators

    Science.gov (United States)

    Wang, Zhentao; Kamiya, Yoshitomo; Nevidomskyy, Andriy; Batista, Cristian

    2015-03-01

    Topological spin textures, such as skyrmions, are of great interest to the field of spintronics and usually arise due to the interplay of Dzyaloshinskii-Moriya and exchange couplings. By contrast, using the BCC and FCC lattices as examples, here we demonstrate that frustrated spin exchange interactions alone can produce topological vortex crystals near the magnetic field-induced saturation transition of 3D bulk Mott insulators. Because of the magnetic frustration, the magnon spectrum of the high-field fully polarized state has multiple degenerate minima at different Q-vectors. This quantum paramagnet becomes gapless and goes through a Bose-Einstein condensation at the saturation field (quantum critical point). In this limit, we apply the dilute bosonic gas approximation to study the rich topological structures produced due to multi-Q condensation. We find that the vortex crystal phases span sizable regions in the phase diagrams of frustrated 3D Mott insulators with isotropic Heisenberg interactions, and are further stabilized by exchange anisotropies. Vortex strings emerge in the direction of the magnetic field and, depending on the distributions of the condensed modes, can form different exotic patterns.

  1. Shock/vortex interaction and vortex-breakdown modes

    Science.gov (United States)

    Kandil, Osama A.; Kandil, H. A.; Liu, C. H.

    1992-01-01

    Computational simulation and study of shock/vortex interaction and vortex-breakdown modes are considered for bound (internal) and unbound (external) flow domains. The problem is formulated using the unsteady, compressible, full Navier-Stokes (NS) equations which are solved using an implicit, flux-difference splitting, finite-volume scheme. For the bound flow domain, a supersonic swirling flow is considered in a configured circular duct and the problem is solved for quasi-axisymmetric and three-dimensional flows. For the unbound domain, a supersonic swirling flow issued from a nozzle into a uniform supersonic flow of lower Mach number is considered for quasi-axisymmetric and three-dimensional flows. The results show several modes of breakdown; e.g., no-breakdown, transient single-bubble breakdown, transient multi-bubble breakdown, periodic multi-bubble multi-frequency breakdown and helical breakdown.

  2. A lunar polar expedition

    Science.gov (United States)

    Dowling, Richard; Staehle, Robert L.; Svitek, Tomas

    1992-09-01

    Advanced exploration and development in harsh environments require mastery of basic human survival skill. Expeditions into the lethal climates of Earth's polar regions offer useful lessons for tommorrow's lunar pioneers. In Arctic and Antarctic exploration, 'wintering over' was a crucial milestone. The ability to establish a supply base and survive months of polar cold and darkness made extensive travel and exploration possible. Because of the possibility of near-constant solar illumination, the lunar polar regions, unlike Earth's may offer the most hospitable site for habitation. The World Space Foundation is examining a scenario for establishing a five-person expeditionary team on the lunar north pole for one year. This paper is a status report on a point design addressing site selection, transportation, power, and life support requirements.

  3. Average thermospheric wind patterns over the polar regions, as observed by CHAMP

    Directory of Open Access Journals (Sweden)

    H. Lühr

    2007-06-01

    Full Text Available Measurements of the CHAMP accelerometer are utilized to investigate the average thermospheric wind distribution in the polar regions at altitudes around 400 km. This study puts special emphasis on the seasonal differences in the wind patterns. For this purpose 131 days centered on the June solstice of 2003 are considered. Within that period CHAMP's orbit is precessing once through all local times. The cross-track wind estimates of all 2030 passes are used to construct mean wind vectors for 918 equal-area cells. These bin averages are presented in corrected geomagnetic coordinates. Both hemispheres are considered simultaneously providing summer and winter responses for the same prevailing geophysical conditions. The period under study is characterized by high magnetic activity (Kp=4− but moderate solar flux level (F10.7=124. Our analysis reveals clear wind features in the summer (Northern Hemisphere. Over the polar cap there is a fast day-to-night flow with mean speeds surpassing 600 m/s in the dawn sector. At auroral latitudes we find strong westward zonal winds on the dawn side. On the dusk side, however, an anti-cyclonic vortex is forming. The dawn/dusk asymmetry is attributed to the combined action of Coriolis and centrifugal forces. Along the auroral oval the sunward streaming plasma causes a stagnation of the day-to-night wind. This effect is particularly clear on the dusk side. On the dawn side it is evident only from midnight to 06:00 MLT. The winter (Southern Hemisphere reveals similar wind features, but they are less well ordered. The mean day-to-night wind over the polar cap is weaker by about 35%. Otherwise, the seasonal differences are mainly confined to the dayside (06:00–18:00 MLT. In addition, the larger offset between geographic and geomagnetic pole in the south also causes hemispheric differences of the thermospheric wind distribution.

  4. Average thermospheric wind patterns over the polar regions, as observed by CHAMP

    Directory of Open Access Journals (Sweden)

    H. Lühr

    2007-06-01

    Full Text Available Measurements of the CHAMP accelerometer are utilized to investigate the average thermospheric wind distribution in the polar regions at altitudes around 400 km. This study puts special emphasis on the seasonal differences in the wind patterns. For this purpose 131 days centered on the June solstice of 2003 are considered. Within that period CHAMP's orbit is precessing once through all local times. The cross-track wind estimates of all 2030 passes are used to construct mean wind vectors for 918 equal-area cells. These bin averages are presented in corrected geomagnetic coordinates. Both hemispheres are considered simultaneously providing summer and winter responses for the same prevailing geophysical conditions. The period under study is characterized by high magnetic activity (Kp=4− but moderate solar flux level (F10.7=124. Our analysis reveals clear wind features in the summer (Northern Hemisphere. Over the polar cap there is a fast day-to-night flow with mean speeds surpassing 600 m/s in the dawn sector. At auroral latitudes we find strong westward zonal winds on the dawn side. On the dusk side, however, an anti-cyclonic vortex is forming. The dawn/dusk asymmetry is attributed to the combined action of Coriolis and centrifugal forces. Along the auroral oval the sunward streaming plasma causes a stagnation of the day-to-night wind. This effect is particularly clear on the dusk side. On the dawn side it is evident only from midnight to 06:00 MLT. The winter (Southern Hemisphere reveals similar wind features, but they are less well ordered. The mean day-to-night wind over the polar cap is weaker by about 35%. Otherwise, the seasonal differences are mainly confined to the dayside (06:00–18:00 MLT. In addition, the larger offset between geographic and geomagnetic pole in the south also causes hemispheric differences of the thermospheric wind distribution.

  5. Winters fuels report

    International Nuclear Information System (INIS)

    1995-01-01

    The outlook for distillate fuel oil this winter is for increased demand and a return to normal inventory patterns, assuming a resumption of normal, cooler weather than last winter. With industrial production expected to grow slightly from last winter's pace, overall consumption is projected to increase 3 percent from last winter, to 3.4 million barrels per day during the heating season (October 1, 1995-March 31, 1996). Much of the supply win come from stock drawdowns and refinery production. Estimates for the winter are from the Energy Information Administration's (EIA) 4th Quarter 1995 Short-Tenn Energy Outlook (STEO) Mid-World Oil Price Case forecast. Inventories in place on September 30, 1995, of 132 million barrels were 9 percent below the unusually high year-earlier level. Inventories of high-sulfur distillate fuel oil, the principal type used for heating, were 13 percent lower than a year earlier. Supply problems are not anticipated because refinery production and the ready availability of imports should be adequate to meet demand. Residential heating off prices are expected to be somewhat higher than last winter's, as the effects of lower crude oil prices are offset by lower distillate inventories. Heating oil is forecast to average $0.92 per gallon, the highest price since the winter of 1992-93. Diesel fuel (including tax) is predicted to be slightly higher than last year at $1.13 per gallon. This article focuses on the winter assessment for distillate fuel oil, how well last year's STEO winter outlook compared to actual events, and expectations for the coming winter. Additional analyses include regional low-sulfur and high-sulfur distillate supply, demand, and prices, and recent trends in distillate fuel oil inventories

  6. Polarization dependent switching of asymmetric nanorings with a circular field

    Directory of Open Access Journals (Sweden)

    Nihar R. Pradhan

    2016-01-01

    Full Text Available We experimentally investigated the switching from onion to vortex states in asymmetric cobalt nanorings by an applied circular field. An in-plane field is applied along the symmetric or asymmetric axis of the ring to establish domain walls (DWs with symmetric or asymmetric polarization. A circular field is then applied to switch from the onion state to the vortex state, moving the DWs in the process. The asymmetry of the ring leads to different switching fields depending on the location of the DWs and direction of applied field. For polarization along the asymmetric axis, the field required to move the DWs to the narrow side of the ring is smaller than the field required to move the DWs to the larger side of the ring. For polarization along the symmetric axis, establishing one DW in the narrow side and one on the wide side, the field required to switch to the vortex state is an intermediate value.

  7. Sensitivity of polar stratospheric ozone loss to uncertainties in chemical reaction kinetics

    Directory of Open Access Journals (Sweden)

    M. L. Santee

    2009-11-01

    Full Text Available The impact and significance of uncertainties in model calculations of stratospheric ozone loss resulting from known uncertainty in chemical kinetics parameters is evaluated in trajectory chemistry simulations for the Antarctic and Arctic polar vortices. The uncertainty in modeled ozone loss is derived from Monte Carlo scenario simulations varying the kinetic (reaction and photolysis rate parameters within their estimated uncertainty bounds. Simulations of a typical winter/spring Antarctic vortex scenario and Match scenarios in the Arctic produce large uncertainty in ozone loss rates and integrated seasonal loss. The simulations clearly indicate that the dominant source of model uncertainty in polar ozone loss is uncertainty in the Cl2O2 photolysis reaction, which arises from uncertainty in laboratory-measured molecular cross sections at atmospherically important wavelengths. This estimated uncertainty in JCl2O2 from laboratory measurements seriously hinders our ability to model polar ozone loss within useful quantitative error limits. Atmospheric observations, however, suggest that the Cl2O2 photolysis uncertainty may be less than that derived from the lab data. Comparisons to Match, South Pole ozonesonde, and Aura Microwave Limb Sounder (MLS data all show that the nominal recommended rate simulations agree with data within uncertainties when the Cl2O2 photolysis error is reduced by a factor of two, in line with previous in situ ClOx measurements. Comparisons to simulations using recent cross sections from Pope et al. (2007 are outside the constrained error bounds in each case. Other reactions producing significant sensitivity in polar ozone loss include BrO + ClO and its branching ratios. These uncertainties challenge our confidence in modeling polar ozone depletion and projecting future changes in response to changing halogen

  8. Vortex Wakes of Conventional Aircraft

    Science.gov (United States)

    1975-05-01

    literature . Of course, the correct scheme would be one which exactly predicts the unsteady velocity at each vortex. However, there is evidence that...problem, many measurements of the velocity distributions in trailing vortices are appearing in the literature . Unfortunately, since the Betz method did...small axial grad- ients) seemingly for no reason. Peckham and Atkinson [36] first observed the phenomenon over leading edge vortices on a gothic

  9. Normal-mode-vortex interactions

    International Nuclear Information System (INIS)

    Bernal, R.; Coste, C.; Lund, F.; Melo, F.

    2002-01-01

    Standing surface waves that interact with a confined, vertical, vorticity field with zero net circulation are studied both analytically and experimentally. The surface waves are generated by vertical vibration, and constant vorticity injection is achieved by a rotating disk flush mounted in the cell. Experimental results are indicative of a local wave-vortex interaction (no dislocation), and a simple theoretical model is able to explain them in quantitative detail

  10. Vortex Molecules in Bose-Einstein Condensates

    Science.gov (United States)

    Nitta, Muneto; Eto, Minoru; Cipriani, Mattia

    2014-04-01

    Stable vortex dimers are known to exist in coherently coupled two component Bose-Einstein condensates (BECs). We construct stable vortex trimers in three component BECs and find that the shape can be controlled by changing the internal coherent (Rabi) couplings. Stable vortex N-omers are also constructed in coherently coupled N-component BECs. We classify all possible N-omers in terms of the mathematical graph theory. Next, we study effects of the Rabi coupling in vortex lattices in two-component BECs. We find how the vortex lattices without the Rabi coupling known before are connected to the Abrikosov lattice of integer vortices with increasing the Rabi coupling. In this process, vortex dimers change their partners in various ways at large couplings. We then find that the Abrikosov lattices are robust in three-component BECs.

  11. Vortex dynamics in nonrelativistic Abelian Higgs model

    Directory of Open Access Journals (Sweden)

    A.A. Kozhevnikov

    2015-11-01

    Full Text Available The dynamics of the gauge vortex with arbitrary form of a contour is considered in the framework of the nonrelativistic Abelian Higgs model, including the possibility of the gauge field interaction with the fermion asymmetric background. The equations for the time derivatives of the curvature and the torsion of the vortex contour generalizing the Betchov–Da Rios equations in hydrodynamics, are obtained. They are applied to study the conservation of helicity of the gauge field forming the vortex, twist, and writhe numbers of the vortex contour. It is shown that the conservation of helicity is broken when both terms in the equation of the vortex motion are present, the first due to the exchange of excitations of the phase and modulus of the scalar field and the second one due to the coupling of the gauge field forming the vortex, with the fermion asymmetric background.

  12. Birth and evolution of an optical vortex.

    Science.gov (United States)

    Vallone, Giuseppe; Sponselli, Anna; D'Ambrosio, Vincenzo; Marrucci, Lorenzo; Sciarrino, Fabio; Villoresi, Paolo

    2016-07-25

    When a phase singularity is suddenly imprinted on the axis of an ordinary Gaussian beam, an optical vortex appears and starts to grow radially, by effect of diffraction. This radial growth and the subsequent evolution of the optical vortex under focusing or imaging can be well described in general within the recently introduced theory of circular beams, which generalize the hypergeometric-Gaussian beams and which obey novel kinds of ABCD rules. Here, we investigate experimentally these vortex propagation phenomena and test the validity of circular-beam theory. Moreover, we analyze the difference in radial structure between the newly generated optical vortex and the vortex obtained in the image plane, where perfect imaging would lead to complete closure of the vortex core.

  13. Review of Idealized Aircraft Wake Vortex Models

    Science.gov (United States)

    Ahmad, Nashat N.; Proctor, Fred H.; Duparcmeur, Fanny M. Limon; Jacob, Don

    2014-01-01

    Properties of three aircraft wake vortex models, Lamb-Oseen, Burnham-Hallock, and Proctor are reviewed. These idealized models are often used to initialize the aircraft wake vortex pair in large eddy simulations and in wake encounter hazard models, as well as to define matched filters for processing lidar observations of aircraft wake vortices. Basic parameters for each vortex model, such as peak tangential velocity and circulation strength as a function of vortex core radius size, are examined. The models are also compared using different vortex characterizations, such as the vorticity magnitude. Results of Euler and large eddy simulations are presented. The application of vortex models in the postprocessing of lidar observations is discussed.

  14. Analytical model of the optical vortex microscope.

    Science.gov (United States)

    Płocinniczak, Łukasz; Popiołek-Masajada, Agnieszka; Masajada, Jan; Szatkowski, Mateusz

    2016-04-20

    This paper presents an analytical model of the optical vortex scanning microscope. In this microscope the Gaussian beam with an embedded optical vortex is focused into the sample plane. Additionally, the optical vortex can be moved inside the beam, which allows fine scanning of the sample. We provide an analytical solution of the whole path of the beam in the system (within paraxial approximation)-from the vortex lens to the observation plane situated on the CCD camera. The calculations are performed step by step from one optical element to the next. We show that at each step, the expression for light complex amplitude has the same form with only four coefficients modified. We also derive a simple expression for the vortex trajectory of small vortex displacements.

  15. Ferroelectric critical size and vortex domain structures of PbTiO3 nanodots: A density functional theory study

    Science.gov (United States)

    Wang, Xiaoyuan; Yan, Yabin; Shimada, Takahiro; Wang, Jie; Kitamura, Takayuki

    2018-03-01

    The ferroelectric critical size and microscopic domain structure of PbTiO3 nanodots with unit cells of N × N × N (N = 1-3) have been investigated by ab initio (first-principles) density functional theory calculations. Nanodots with PbO and TiO surface terminations are investigated, and the ground state of TiO-terminated nanodots is found to be paraelectric regardless of the size. However, for PbO-terminated nanodots, the ferroelectric state is energetically favorable even in the smallest nanodot, indicating the absence of an intrinsic critical size for ferroelectricity in the nanodot structure. Moreover, the distributions of polarizations in nanodots with different sizes are analyzed. The vortex polarizations rotating around both the central [001] axis and diagonal [1 1 ¯ 1 ] directions of nanodots can stably exist. The vortex polarization arises from the opposite rotation between the cations and anions around the [001] and the [1 1 ¯ 1 ] directions of nanodots, respectively. On the other hand, the toroidal moments of vortex polarizations both around the [001] and [1 1 ¯ 1 ] directions increase with the increment of nanodot size, and these vortex polarizations are energetically favorable in small and large nanodots, respectively.

  16. Stabilization of Inviscid Vortex Sheets

    Science.gov (United States)

    Protas, Bartosz; Sakajo, Takashi

    2017-11-01

    In this study we investigate the problem of stabilizing inviscid vortex sheets via feedback control. Such models, expressed in terms of the Birkhoff-Rott equation, are often used to describe the Kevin-Helmholtz instability of shear layers and are known to be strongly unstable to small-scale perturbations. First, we consider the linear stability of a straight vortex sheet in the periodic setting with actuation in the form of an array of point vortices or sources located a certain distance away from the sheet. We establish conditions under which this system is controllable and observable. Next, using methods of the linear control theory, we synthesize a feedback control strategy which stabilizes a straight vortex sheet in the linear regime. Given the poor conditioning of the discretized problem, reliable solution of the resulting algebraic Riccati equation requires the use of high-precision arithmetic. Finally, we demonstrate that this control approach also succeeds in the nonlinear regime, provided the magnitude of the initial perturbation is sufficiently small.

  17. ProFile Vortex and Vortex Blue Nickel-Titanium Rotary Instruments after Clinical Use.

    Science.gov (United States)

    Shen, Ya; Zhou, Huimin; Coil, Jeffrey M; Aljazaeri, Bassim; Buttar, Rene; Wang, Zhejun; Zheng, Yu-feng; Haapasalo, Markus

    2015-06-01

    The aim of this study was to analyze the incidence and mode of ProFile Vortex and Vortex Blue instrument defects after clinical use in a graduate endodontic program and to examine the impact of clinical use on the instruments' metallurgical properties. A total of 330 ProFile Vortex and 1136 Vortex Blue instruments from the graduate program were collected after each had been used in 3 teeth. The incidence and type of instrument defects were analyzed. The lateral surfaces and fracture surfaces of the fractured files were examined by using scanning electron microscopy. Unused and used instruments were examined by full and partial differential scanning calorimetry. No fractures were observed in the 330 ProFile Vortex instruments, whereas 20 (6.1%) revealed bent or blunt defects. Only 2 of the 1136 Vortex Blue files fractured during clinical use. The cause of fracture was shear stress. The fractures occurred at the tip end of the spirals. Only 1.8% (21 of 1136) of the Vortex Blue files had blunt tips. Austenite-finish temperatures were very similar for unused and used ProFile Vortex files and were all greater than 50°C. The austenite-finish temperatures of used and unused Vortex Blue files (38.5°C) were lower than those in ProFile Vortex instruments (P Vortex Blue files had an obvious 2-stage transformation, martensite-to-R phase and R-to-austenite phase. The trends of differential scanning calorimetry plots of unused Vortex Blue instruments and clinically used instruments were very similar. The risk of ProFile Vortex and Vortex Blue instrument fracture is very low when instruments are discarded after clinical use in the graduate endodontic program. The Vortex Blue files have metallurgical behavior different from ProFile Vortex instruments. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Obstacle-induced spiral vortex breakdown

    OpenAIRE

    Pasche, Simon; Gallaire, François; Dreyer, Matthieu; Farhat, Mohamed

    2014-01-01

    An experimental investigation on vortex breakdown dynamics is performed. An adverse pressure gradient is created along the axis of a wing-tip vortex by introducing a sphere downstream of an elliptical hydrofoil. The instrumentation involves high-speed visualizations with air bubbles used as tracers and 2D Laser Doppler Velocimeter (LDV). Two key parameters are identified and varied to control the onset of vortex breakdown: the swirl number, defined as the maximum azimuthal velocity divided by...

  19. Quantum Kinematics of Bosonic Vortex Loops

    International Nuclear Information System (INIS)

    Goldin, G.A.; Owczarek, R.; Sharp, D.H.

    1999-01-01

    Poisson structure for vortex filaments (loops and arcs) in 2D ideal incompressible fluid is analyzed in detail. Canonical coordinates and momenta on coadjoint orbits of the area-preserving diffeomorphism group, associated with such vortices, are found. The quantum space of states in the simplest case of ''bosonic'' vortex loops is built within a geometric quantization approach to the description of a quantum fluid. Fock-like structure and non-local creation and annihilation operators of quantum vortex filaments are introduced

  20. Vortex molecules in Bose-Einstein condensates

    OpenAIRE

    Nitta, Muneto; Eto, Minoru; Cipriani, Mattia

    2013-01-01

    Stable vortex dimers are known to exist in coherently coupled two component Bose-Einstein condensates (BECs). We construct stable vortex trimers in three component BECs and find that the shape can be controlled by changing the internal coherent (Rabi) couplings. Stable vortex N-omers are also constructed in coherently coupled N-component BECs. We classify all possible N-omers in terms of the mathematical graph theory. Next, we study effects of the Rabi coupling in vortex lattices in two-compo...

  1. ASRS Reports on Wake Vortex Encounters

    Science.gov (United States)

    Connell, Linda J.; Taube, Elisa Ann; Drew, Charles Robert; Barclay, Tommy Earl

    2010-01-01

    ASRS is conducting a structured callback research project of wake vortex incidents reported to the ASRS at all US airports, as well as wake encounters in the enroute environment. This study has three objectives: (1) Utilize the established ASRS supplemental data collection methodology and provide ongoing analysis of wake vortex encounter reports; (2) Document event dynamics and contributing factors underlying wake vortex encounter events; and (3) Support ongoing FAA efforts to address pre-emptive wake vortex risk reduction by utilizing ASRS reporting contributions.

  2. Ring vortex solitons in nonlocal nonlinear media

    DEFF Research Database (Denmark)

    Briedis, D.; Petersen, D.E.; Edmundson, D.

    2005-01-01

    We study the formation and propagation of two-dimensional vortex solitons, i.e. solitons with a phase singularity, in optical materials with a nonlocal focusing nonlinearity. We show that nonlocality stabilizes the dynamics of an otherwise unstable vortex beam. This occurs for either single...... or higher charge fundamental vortices as well as higher order (multiple ring) vortex solitons. Our results pave the way for experimental observation of stable vortex rings in other nonlocal nonlinear systems including Bose-Einstein condensates with pronounced long-range interparticle interaction....

  3. Statistical behaviour of optical vortex fields

    CSIR Research Space (South Africa)

    Roux, FS

    2009-09-01

    Full Text Available = ρ exp(−iφ) V+ = x+ iy = ρ exp(iφ) +1-1 y x Vortex Contour: Unit circle ∮ C ∇θ(x, y) · dˆs = ν 2pi Vortex dipole = 2 oppositely charged vortices . – p.3/37 Topological charge conservation Vortices form lines in 3D → annihilation and creation of vortex...→ optical vortices. ⇒ conventional adaptive optics does not work anymore. Need to get rid of the vortices. . – p.12/37 Forced annihilation One idea to get rid of optical vortices in strongly scintillated optical beams is to force vortex dipoles to annihilate...

  4. Employment and winter construction

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Larsen, Jacob Norvig

    2011-01-01

    Reduced seasonal building activity in the construction sector is often assumed to be related to hard winter conditions for building activities and poor working conditions for construction workers, resulting in higher costs and poor quality of building products, particularly in the northern...... hemisphere. Can climatic conditions alone explain the sizeable difference in reduction in building activity in the construction sector in European countries in the winter months, or are other factors such as technology, economic cycles and schemes for financial compensation influential as well? What...... possibilities exist for reducing seasonal variation in employment? In addition to a literature review related to winter construction, European and national employment and meteorological data were studied. Finally, ministerial acts, ministerial orders or other public policy documents related to winter...

  5. Deer Wintering Areas

    Data.gov (United States)

    Vermont Center for Geographic Information — Deer winter habitat is critical to the long term survival of white-tailed deer (Odocoileus virginianus) in Vermont. Being near the northern extreme of the...

  6. Winter Bottom Trawl Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The standardized NEFSC Winter Bottom Trawl Survey was initiated in 1992 and covered offshore areas from the Mid-Atlantic to Georges Bank. Inshore strata were covered...

  7. Analysis of record-low ozone values during the 1997 winter over Lauder, New Zealand

    Science.gov (United States)

    Brinksma, E. J.; Meijer, Y. J.; Connor, B. J.; Manney, G. L.; Bergwerff, J. B.; Bodeker, G. E.; Boyd, I. S.; Liley, J. B.; Hogervorst, W.; Hovenier, J. W.; Livesey, N. J.; Swart, D. P. J.

    Record-low ozone (O3) column densities (with a minimum of 222 DU) were observed over the Lauder NDSC (Network for the Detection of Stratospheric Change) station (45°S, 170°E) in August 1997. Possible causes are examined using height-resolved O3 measurements over Lauder, and high-resolution reverse trajectory maps of O3 (initialised with Microwave Limb Sounder measurements) and of potential vorticity. The analysis shows that O3 poor air originated from two regions: Below the 550 K isentrope (˜22 km) subtropical air was observed, while between 600 and 1000 K (˜25-33.5 km) the polar vortex tilted over Lauder for several days. A rapid recovery of the O3 column density was observed later, due to an O3 rich polar vortex filament moving over Lauder between 18 and 24 km, while simultaneously the O3 poor higher vortex moved away.

  8. First remote sensing measurements of ClOOCl along with ClO and ClONO2 in activated and deactivated Arctic vortex conditions using new ClOOCl IR absorption cross sections

    Directory of Open Access Journals (Sweden)

    M. Birk

    2010-02-01

    Full Text Available Active chlorine species play a dominant role in the catalytic destruction of stratospheric ozone in the polar vortices during the late winter and early spring seasons. Recently, the correct understanding of the ClO dimer cycle was challenged by the release of new laboratory absorption cross sections (Pope et al., 2007 yielding significant model underestimates of observed ClO and ozone loss (von Hobe et al., 2007. Under this aspect, nocturnal Arctic stratospheric limb emission measurements carried out by the balloon version of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS-B from Kiruna (Sweden on 11 January 2001 and 20/21 March 2003 have been reanalyzed with regard to the chlorine reservoir species ClONO2 and the active species, ClO and ClOOCl (Cl2O2. New laboratory measurements of IR absorption cross sections of ClOOCl for various temperatures and pressures allowed for the first time the retrieval of ClOOCl mixing ratios from remote sensing measurements. High values of active chlorine (ClOx of roughly 2.3 ppbv at 20 km were observed by MIPAS-B in the cold mid-winter Arctic vortex on 11 January 2001. While nighttime ClOOCl shows enhanced values of nearly 1.1 ppbv at 20 km, ClONO2 mixing ratios are less than 0.1 ppbv at this altitude. In contrast, high ClONO2 mixing ratios of nearly 2.4 ppbv at 20 km have been observed in the late winter Arctic vortex on 20 March 2003. No significant ClOx amounts are detectable on this date since most of the active chlorine has already recovered to its main reservoir species ClONO2. The observed values of ClOx and ClONO2 are in line with the established polar chlorine chemistry. The thermal equilibrium constants between the dimer formation and its dissociation, as derived from the balloon measurements, are on the lower side of reported data and in good agreement with values recommended by von Hobe et al. (2007. Calculations with the ECHAM/MESSy Atmospheric Chemistry model (EMAC using

  9. Kinetics of O3 destruction by ClO and BrO within the Antarctic vortex - An analysis based on in situ ER-2 data

    Science.gov (United States)

    Anderson, J. G.; Brune, W. H.; Lloyd, S. A.; Toohey, D. W.; Sander, S. P.; Starr, W. L.; Loewenstein, M.; Podolske, J. R.

    1989-01-01

    The kinetics of ozone destruction within the Antarctic polar vortex are studied via simultaneous in situ observations of ClO, BrO, O3, N2O, pressure, and temperature. It is found that the chlorine dimer mechanism rate, limited by the reaction ClO + ClO + M yields ClOOCl + M, contributes the most to the integrated rate of ozone destruction within the vortex on isentropic surfaces between altitudes of 14 and 18.3 km.

  10. An investigation of the vortex method

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, Jr., Duaine Wright [Univ. of California, Berkeley, CA (United States)

    1994-05-01

    The vortex method is a numerical scheme for solving the vorticity transport equation. Chorin introduced modern vortex methods. The vortex method is a Lagrangian, grid free method which has less intrinsic diffusion than many grid schemes. It is adaptive in the sense that elements are needed only where the vorticity is non-zero. Our description of vortex methods begins with the point vortex method of Rosenhead for two dimensional inviscid flow, and builds upon it to eventually cover the case of three dimensional slightly viscous flow with boundaries. This section gives an introduction to the fundamentals of the vortex method. This is done in order to give a basic impression of the previous work and its line of development, as well as develop some notation and concepts which will be used later. The purpose here is not to give a full review of vortex methods or the contributions made by all the researchers in the field. Please refer to the excellent review papers in Sethian and Gustafson, chapters 1 Sethian, 2 Hald, 3 Sethian, 8 Chorin provide a solid introduction to vortex methods, including convergence theory, application in two dimensions and connection to statistical mechanics and polymers. Much of the information in this review is taken from those chapters, Chorin and Marsden and Batchelor, the chapters are also useful for their extensive bibliographies.

  11. Formation of Ion Phase-Space Vortexes

    DEFF Research Database (Denmark)

    Pécseli, Hans; Trulsen, J.; Armstrong, R. J.

    1984-01-01

    The formation of ion phase space vortexes in the ion two stream region behind electrostatic ion acoustic shocks are observed in a laboratory experiment. A detailed analysis demonstrates that the evolution of such vortexes is associated with ion-ion beam instabilities and a nonlinear equation for ...

  12. The bathtub vortex in a rotating container

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Bohr, Tomas; Stenum, B.

    2006-01-01

    We study the time-independent free-surface flow which forms when a fluid drains out of a container, a so-called bathtub vortex. We focus on the bathtub vortex in a rotating container and describe the free-surface shape and the complex flow structure using photographs of the free surface, flow...

  13. The decay of confined vortex rings

    Science.gov (United States)

    Stewart, K. C.; Niebel, C. L.; Jung, S.; Vlachos, P. P.

    2012-07-01

    Vortex rings are produced during the ejection of fluid through a nozzle or orifice, which occurs in a wide range of biological conditions such as blood flow through the valves of the heart or through arterial constrictions. Confined vortex ring dynamics, such as these, have not been previously studied despite their occurrence within the biological flow conditions mentioned. In this work, we investigate laminar vortex rings using particle image velocimetry and develop a new semi-empirical model for the evolution of vortex ring circulation subject to confinement. Here we introduce a decay parameter β which exponentially grows with increasing vortex ring confinement ratio, the ratio of the vortex ring diameter ( D VR) to the confinement diameter ( D), with the relationship β=4.38 exp(9.5D_VR/D), resulting in a corresponding increase in the rate of vortex ring circulation decay. This work enables the prediction of circulation decay rate based on confinement, which is important to understanding naturally occurring confined vortex ring dynamics.

  14. Kinematic vorticity number – a tool for estimating vortex sizes and circulations

    Directory of Open Access Journals (Sweden)

    Lisa Schielicke

    2016-02-01

    Full Text Available The influence of extratropical vortices on a global scale is mainly characterised by their size and by the magnitude of their circulation. However, the determination of these properties is still a great challenge since a vortex has no clear delimitations but is part of the flow field itself. In this work, we introduce a kinematic vortex size determination method based on the kinematic vorticity number Wk to atmospheric flows. Wk relates the local rate-of-rotation to the local rate-of-deformation at every point in the field and a vortex core is identified as a simply connected region where the rotation prevails over the deformation. Additionally, considering the sign of vorticity in the extended Wk-method allows to identify highs and lows in different vertical layers of the atmosphere and to study vertical as well as horizontal vortex interactions. We will test the Wk-method in different idealised -D (superposition of two lows/low and jet and real -D flow situations (winter storm affecting Europe and compare the results with traditional methods based on the pressure and the vorticity fields. In comparison to these traditional methods, the Wk-method is able to extract vortex core sizes even in shear-dominated regions that occur frequently in the upper troposphere. Furthermore, statistics of the size and circulation distributions of cyclones will be given. Since the Wk-method identifies vortex cores, the identified radii are subsynoptic with a broad peak around 300–500 km at the 1000 hPa level. However, the total circulating area is not only restricted to the core. In general, circulations are in the order of 107 m2/s with only a few cyclones in the order of 108 m2/s.

  15. Mathematical aspects of vortex dynamics; Proceedings of the Workshop, Leesburg, VA, Apr. 25-27, 1988

    International Nuclear Information System (INIS)

    Caflisch, R.E.

    1989-01-01

    Various papers on the mathematical aspects of vortex dynamics are presented. Individual topics addressed include: mathematical analysis of vortex dynamics, improved vortex methods for three-dimensional flows, the relation between thin vortex layer and vortex sheets, computations of broadband instabilities in a class of closed-streamline flows, vortex-sheet dynamics and hyperfunction theory, free surface vortex method with weak viscous effects, iterative method for computing steady vortex flow systems, invariant measures for the two-dimensional Euler flow, similarity flows containing two-branched vortex sheets, strain-induced vortex stripping, convergence of the vortex method for vortex sheets, boundary conditions and deterministic vortex methods for the Navier-Stokes equations, vorticity creation boundary conditions, vortex dynamics of stratified flows, vortex breakdown, numerical studies of vortex reconnection, vortex lattices in theory and practice, dynamics of vortex structures in the wall region of a turbulent boundary layer, and energy of a vortex lattice configuration

  16. Bifurcation and instability problems in vortex wakes

    DEFF Research Database (Denmark)

    Aref, Hassan; Brøns, Morten; Stremler, Mark A.

    2007-01-01

    A number of instability and bifurcation problems related to the dynamics of vortex wake flows are addressed using various analytical tools and approaches. We discuss the bifurcations of the streamline pattern behind a bluff body as a vortex wake is produced, a theory of the universal Strouhal......-Reynolds number relation for vortex wakes, the bifurcation diagram for "exotic" wake patterns behind an oscillating cylinder first determined experimentally by Williamson & Roshko, and the bifurcations in topology of the streamlines pattern in point vortex streets. The Hamiltonian dynamics of point vortices...... in a periodic strip is considered. The classical results of von Kármán concerning the structure of the vortex street follow from the two-vortices-in-a-strip problem, while the stability results follow largely from a four-vortices-in-a-strip analysis. The three-vortices-in-a-strip problem is argued...

  17. What causes Mars' annular polar vortices?

    Science.gov (United States)

    Toigo, A. D.; Waugh, D. W.; Guzewich, S. D.

    2017-01-01

    A distinctive feature of the Martian atmosphere is that the winter polar vortices exhibit annuli of high potential vorticity (PV) with a local minimum near the pole. These annuli are seen in observations, reanalyses, and free-running general circulation model simulations of Mars, but are not generally a feature of Earth's polar vortices, where there is a monotonic increase in magnitude of PV with latitude. The creation and maintenance of the annular polar vortices on Mars are not well understood. Here we use simulations with a Martian general circulation model to the show that annular vortices are related to another distinctive, and possibly unique in the solar system, feature of the Martian atmosphere: the condensation of the predominant atmospheric gas species (CO2) in polar winter regions. The latent heat associated with CO2 condensation leads to destruction of PV in the polar lower atmosphere, inducing the formation of an annular PV structure.

  18. The nuclear winter

    International Nuclear Information System (INIS)

    Velikhow, Y.P.

    1986-01-01

    Nuclear winter is an example of possible secondary effects, and if we speak of secondary we are thinking of small-scale second-order effects, but a nuclear winter is not a second-order effect. If you calculate the amount of heat produced by a nuclear explosion, it is a very small amount which does not have any chance of changing the Earth's climate, but a nuclear explosion drives or stars some new mechanism - the mechanism of nuclear winter - after 100 megatons of dust are transferred to the upper atmosphere. Another example of such amplification is radioactive fall-out, especially long-life radioactive fall-out after the possible elimination of the nuclear power industry, nuclear storage and distribution of storage waste around the globe. This is a very powerful amplification mechanism

  19. Introduction to Vortex Lattice Theory

    Directory of Open Access Journals (Sweden)

    Santiago Pinzón

    2015-10-01

    Full Text Available Panel methods have been widely used in industry and are well established since the 1970s for aerodynamic analysis and computation. The Vortex Lattice Panel Method presented in this study comes across a sophisticated method that provides a quick solution time, allows rapid changes in geometry and suits well for aerodynamic analysis. The aerospace industry is highly competitive in design efficiency, and perhaps one of the most important factors on airplane design and engineering today is multidisciplinary optimization.  Any cost reduction method in the design cycle of a product becomes vital in the success of its outcome. The subsequent sections of this article will further explain in depth the theory behind the vortex lattice method, and the reason behind its selection as the method for aerodynamic analysis during preliminary design work and computation within the aerospace industry. This article is analytic in nature, and its main objective is to present a mathematical summary of this widely used computational method in aerodynamics.

  20. PREFACE: Special section on vortex rings Special section on vortex rings

    Science.gov (United States)

    Fukumoto, Yasuhide

    2009-10-01

    This special section of Fluid Dynamics Research includes five articles on vortex rings in both classical and quantum fluids. The leading scientists of the field describe the trends in and the state-of-the-art development of experiments, theories and numerical simulations of vortex rings. The year 2008 was the 150th anniversary of 'vortex motion' since Hermann von Helmholtz opened up this field. In 1858, Helmholtz published a paper in Crelle's Journal which put forward the concept of 'vorticity' and made the first analysis of vortex motion. Fluid mechanics before that was limited to irrotational motion. In the absence of vorticity, the motion of an incompressible homogeneous fluid is virtually equivalent to a rigid-body motion in the sense that the fluid motion is determined once the boundary configuration is specified. Helmholtz proved, among other things, that, without viscosity, a vortex line is frozen into the fluid. This Helmholtz's law immediately implies the preservation of knots and links of vortex lines and its implication is enormous. One of the major trends of fluid mechanics since the latter half of the 20th century is to clarify the topological meaning of Helmholtz's law and to exploit it to develop theoretical and numerical methods to find the solutions of the Euler equations and to develop experimental techniques to gain an insight into fluid motion. Vortex rings are prominent coherent structures in a variety of fluid motions from the microscopic scale, through human and mesoscale to astrophysical scales, and have attracted people's interest. The late professor Philip G Saffman (1981) emphasized the significance of studies on vortex rings. One particular motion exemplifies the whole range of problems of vortex motion and is also a commonly known phenomenon, namely the vortex ring or smoke ring. Vortex rings are easily produced by dropping drops of one liquid into another, or by puffing fluid out of a hole, or by exhaling smoke if one has the skill

  1. Computing the flow past Vortex Generators: Comparison between RANS Simulations and Experiments

    DEFF Research Database (Denmark)

    Manolesos, M.; Sørensen, Niels N.; Troldborg, Niels

    2016-01-01

    The flow around a wind turbine airfoil equipped with Vortex Generators (VGs) is examined. Predictions from three different Reynolds Averaged Navier Stokes (RANS) solvers with two different turbulence models and two different VG modelling approaches are compared between them and with experimental ...... data. The best results are obtained with the more expensive fully resolved VG approach. The cost efficient BAY model can also provide acceptable results, if grid related numerical diffusion is minimized and only force coefficient polars are considered....

  2. Polarization Properties of Laser Solitons

    Directory of Open Access Journals (Sweden)

    Pedro Rodriguez

    2017-04-01

    Full Text Available The objective of this paper is to summarize the results obtained for the state of polarization in the emission of a vertical-cavity surface-emitting laser with frequency-selective feedback added. We start our research with the single soliton; this situation presents two perpendicular main orientations, connected by a hysteresis loop. In addition, we also find the formation of a ring-shaped intensity distribution, the vortex state, that shows two homogeneous states of polarization with very close values to those found in the soliton. For both cases above, the study shows the spatially resolved value of the orientation angle. It is important to also remark the appearance of a non-negligible amount of circular light that gives vectorial character to all the different emissions investigated.

  3. New scanning technique for the optical vortex microscope.

    Science.gov (United States)

    Augustyniak, Ireneusz; Popiołek-Masajada, Agnieszka; Masajada, Jan; Drobczyński, Sławomir

    2012-04-01

    In the optical vortex microscopy the focused Gaussian beam with optical vortex scans a sample. An optical vortex can be introduced into a laser beam with the use of a special optical element--a vortex lens. When moving the vortex lens, the optical vortex changes its position inside the spot formed by a focused laser beam. This effect can be used as a new precise scanning technique. In this paper, we study the optical vortex behavior at the sample plane. We also estimate if the new scanning technique results in observable effects that could be used for a phase object detection.

  4. On the Use of Vortex-Fitting in the Numerical Simulation of Blade-Vortex Interaction

    Science.gov (United States)

    Srinivasan, G. R.; VanDalsem, William (Technical Monitor)

    1997-01-01

    The usefulness of vortex-fitting in the computational fluid dynamics (CFD) methods to preserve the vortex strength and structure while convecting in a uniform free stream is demonstrated through the numerical simulations of two- and three-dimensional blade-vortex interactions. The fundamental premise of the formulation is the velocity and pressure field of the interacting vortex are unaltered either in the presence of an airfoil or a rotor blade or by the resulting nonlinear interactional flowfield. Although, the governing Euler and Navier-Stokes equations are nonlinear and independent solutions cannot be superposed, the interactional flowfield can be accurately captured by adding and subtracting the flowfield of the convecting vortex at each instant. The aerodynamics and aeroacoustics of two- and three-dimensional blade-vortex interactions have been calculated in Refs. 1-6 using this concept. Some of the results from these publications and similar other published material will be summarized in this paper.

  5. Polarization developments

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1993-07-01

    Recent developments in laser-driven photoemission sources of polarized electrons have made prospects for highly polarized electron beams in a future linear collider very promising. This talk discusses the experiences with the SLC polarized electron source, the recent progress with research into gallium arsenide and strained gallium arsenide as a photocathode material, and the suitability of these cathode materials for a future linear collider based on the parameters of the several linear collider designs that exist

  6. A numerical study of atmospheric Kàrmàn vortex shedding from Jeju Island

    Science.gov (United States)

    Ito, J.; Niino, H.

    2014-12-01

    Kàrmàn vortex shading universally occurs when a uniform flow pasts a bluff body. Similar vortex shading occurs when an atmospheric flow hits an isolated mountain, and can be seen in satellite images when the vortices are accompanied by clouds. While previous idealized numerical studies have focused on the mechanism of the atmospheric Kàrmàn vortex shading, there has been no simulation for a real case. In this study, a meso-scale non-hydrostatic model developed by the Japan Meteorological Agency (JMA) is used to reproduce the observed Kàrmàn vortex shedding, where initial and boundary conditions are given by the meso-scale objective analysis data of the JMA. The cases investigated here occurred on 16 and 20 February 2013 when satellite images clearly capture Kàrmàn vortex shading behind the Jeju Island over the East China sea. The size of simulation's domain is about 800 km by 1200 km in the horizontal direction, and the Jeju Island locates the center of the domain. The horizontal gird interval is 2 km. The cloud microphysics including the ice phase is considered. The numerical simulation successfully reproduced realistic Kàrmàn vortex shading which accompany characteristic clouds in the wake of the Jeju Island (see Figure; shading show mixing ratio of cloud water). The size of the vortices and there intervals appear to be comparable to those observed by the satellite. The winter monsoon flows out from Eurasia continent over the Yellow sea, which is 10 K warmer than the atmosphere, obtain much sensible and latent heat flux, and then a convective boundary layer is developed. Necessary conditions to form lee vortices proposed in previous studies are indeed satisfied: (1) the height of the convective boundary layer is lower than that of the mountain, and (2) the Froude number above the convective boundary layer is less than 0.4. The environment around the region in the wintertime is favorable for forming Kàrmàn vortex shading. The pressure depressions

  7. Vortex breakdown in a supersonic jet

    Science.gov (United States)

    Cutler, Andrew D.; Levey, Brian S.

    1991-01-01

    This paper reports a study of a vortex breakdown in a supersonic jet. A supersonic vortical jets were created by tangential injection and acceleration through a convergent-divergent nozzle. Vortex circulation was varied, and the nature of the flow in vortical jets was investigated using several types of flow visualization, including focusing schlieren and imaging of Rayleigh scattering from a laser light sheet. Results show that the vortical jet mixed much more rapidly with the ambient air than a comparable straight jet. When overexpanded, the vortical jet exhibited considerable unsteadiness and showed signs of vortex breakdown.

  8. Vortex Pada Bangunan Pengambilan (Intake) Waduk Wonogiri

    OpenAIRE

    Qomariyah, Siti

    2007-01-01

    Vortex or swirling flow in a reservoir is a result of the complex interaction among the geometry of the reservoir, the approach channel, the flow velocity, and the liquid properties. The vortex enables air entrains and floating trash took in the flow system swirling to an inlet of an intake. This natural phenomenon may result in a disturbance of an intake performance. An aim of the experiment was to examine the occurrence of vortex in front of an intake structure of a reservoir and the provis...

  9. Vortex rings and the solar granulation

    Science.gov (United States)

    Arendt, Steve

    1994-01-01

    Observations indicate that solar granules have the flow topology of updraft vortex loops. We interpret granule behavior in terms of the mutual and self-interactions of such loops. In particular, the expansion phase that granules commonly undergo is explained by the self-expansion of a vortex ring in a stratified fluid. For a range of granular parameters, we find that the expansion velocity of a vortex ring varies from 0.7 to 1.5 times the maximum surface flow velocity, in agreement with granule observations. We also present speculation on the nature of granule fragmentation.

  10. Flow structure of vortex-wing interaction

    Science.gov (United States)

    McKenna, Christopher K.

    Impingement of a streamwise-oriented vortex upon a fin, tail, blade or wing represents a fundamental class of flow-structure interaction that extends across a range of applications. This interaction can give rise to time-averaged loading, as well as unsteady loading known as buffeting. The loading is sensitive to parameters of the incident vortex as well as the location of vortex impingement on the downstream aerodynamic surface, generically designated as a wing. Particle image velocimetry is employed to determine patterns of velocity, vorticity, swirl ratio, and streamlines on successive cross-flow planes upstream of and along the wing, which lead to volume representations and thereby characterization of the interaction. At locations upstream of the leading edge of the wing, the evolution of the incident vortex is affected by the presence of the wing, and is highly dependent on the spanwise location of vortex impingement. Even at spanwise locations of impingement well outboard of the wing tip, a substantial influence on the structure of the incident vortex at locations significantly upstream of the leading edge of the wing was observed. For spanwise locations close to or intersecting the vortex core, the effects of upstream influence of the wing on the vortex are to: decrease the swirl ratio; increase the streamwise velocity deficit; decrease the streamwise vorticity; increase the azimuthal vorticity; increase the upwash; decrease the downwash; and increase the root-mean-square fluctuations of both streamwise velocity and vorticity. The interrelationship between these effects is addressed, including the rapid attenuation of axial vorticity in presence of an enhanced defect of axial velocity in the central region of the vortex. Moreover, when the incident vortex is aligned with, or inboard of, the tip of the wing, the swirl ratio decreases to values associated with instability of the vortex, giving rise to enhanced values of azimuthal vorticity relative to the

  11. Instability of vortex pair leapfrogging

    DEFF Research Database (Denmark)

    Tophøj, Laust; Aref, Hassan

    2013-01-01

    )]10.1088/0143-0807/21/3/310 determined by numerical experiments that leapfrogging is linearly unstable for σ2 stable for larger α. Here we derive a linear system of equations governing small perturbations of the leapfrogging motion. We show that symmetry-breaking perturbations are essentially governed by a 2D...... linear system with time-periodic coefficients and perform a Floquet analysis. We find transition from linearly unstable to stable leapfrogging at α = φ2 ≈ 0.381966, where is the golden ratio. Acheson also suggested that there was a sharp transition between a "disintegration" instability mode, where two...... pairs fly off to infinity, and a "walkabout" mode, where the vortices depart from leapfrogging but still remain within a finite distance of one another. We show numerically that this transition is more gradual, a result that we relate to earlier investigations of chaotic scattering of vortex pairs [L...

  12. Paramagnetic Meissner effect in ZrB12 single crystal with non-monotonic vortex-vortex interactions

    Science.gov (United States)

    Ge, Jun-Yi; Gladilin, Vladimir N.; Sluchanko, Nikolay E.; Lyashenko, A.; Filipov, Volodimir B.; Indekeu, Joseph O.; Moshchalkov, Victor V.

    2017-09-01

    The magnetic response related to the paramagnetic Meissner effect (PME) is studied in a high quality single crystal ZrB12 with non-monotonic vortex-vortex interactions. We observe the expulsion and penetration of magnetic flux in the form of vortex clusters with increasing temperature. A vortex phase diagram is constructed, and shows that the PME can be explained by considering the interplay among the flux compression, the different temperature dependencies of the vortex-vortex and the vortex-pin interactions, and thermal fluctuations. Such a scenario is in good agreement with the results of magnetic relaxation measurements.

  13. The History of Winter: teachers as scientists

    Science.gov (United States)

    Koenig, L.; Courville, Z.; Wasilewski, P. J.; Gow, T.; Bender, K. J.

    2013-12-01

    The History of Winter (HOW) is a NASA Goddard Space Flight Center-funded teacher enrichment program that was started by Dr. Peter Wasilewski (NASA), Dr. Robert Gabrys (NASA) and Dr. Tony Gow (Cold Regions Research and Engineering Laboratory, or CRREL) in 2001 and continues with support and involvement of scientists from both the NASA Cryospheric Sciences Laboratory and CREEL. The program brings educators mostly from middle and high schools but also from state parks, community colleges and other institutions from across the US to the Northwood School (a small, private boarding school) in Lake Placid, NY for one week to learn about several facets of winter, polar, and snow research, including the science and history of polar ice core research, lake ice formation and structure, snow pack science, winter ecology, and remote sensing including current and future NASA cryospheric missions. The program receives support from the Northwood School staff to facilitate the program. The goal of the program is to create 'teachers as scientists' which is achieved through several hands-on field experiences in which the teachers have the opportunity to work with polar researchers from NASA, CRREL and partner Universities to dig and sample snow pits, make ice thin sections from lake ice, make snow shelters, and observe under-ice lake ecology. The hands-on work allows the teachers to use the same tools and techniques used in polar research while simultaneously introducing science concepts and activities to support their classroom work. The ultimate goal of the program is to provide the classroom teachers with the opportunity to learn about current and timely cryospheric research as well as to engage in real fieldwork experiences. The enthusiasm generated during the week-long program is translated into classroom activities with guidance from scientists, teachers and educational professionals. The opportunity to engage with polar researchers, both young investigators and renowned

  14. Aircraft Vortex Wake Decay Near the Ground

    Science.gov (United States)

    1977-05-01

    A multi-faceted experimental and analytical research program was carried out to explore the details of aircraft wake vortex breakdown under conditions representative of those which prevail at low altitudes in the vicinity of airports. Three separate ...

  15. Free wake models for vortex methods

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, K. [Technical Univ. Berlin, Aerospace Inst. (Germany)

    1997-08-01

    The blade element method works fast and good. For some problems (rotor shapes or flow conditions) it could be better to use vortex methods. Different methods for calculating a wake geometry will be presented. (au)

  16. Polarization, political

    NARCIS (Netherlands)

    Wojcieszak, M.; Mazzoleni, G.; Barnhurst, K.G.; Ikeda, K.; Maia, R.C.M.; Wessler, H.

    2015-01-01

    Polarization has been studied in three different forms: on a social, group, and individual level. This entry first focuses on the undisputed phenomenon of elite polarization (i.e., increasing adherence of policy positions among the elites) and also outlines different approaches to assessing mass

  17. Editorial - The winter Atomiades

    CERN Multimedia

    Staff Association

    2011-01-01

    As we wrote in our previous editorial, the Staff Association gives direct support to sports events, such as the Atomiades, a section of the Association of Sports Communities of European Research Institutes, which brings together sportsmen and women from 38 European research centres in 13 countries (Austria, Belgium, Czech Republic, United Kingdom, Finland, France, Germany, Hungary, Italy, Luxemburg, the Netherlands, Russia, and Switzerland). The summer Atomiades take place between the months of June and September every three years. Thirteen such events have taken place since 1973, the last one in June 2009 in Berlin. As far as the winter Atomiades are concerned, also organized every three years, and alternating with the summer Atomiades, there have been eleven since 1981, the last one at the end of January this year in neighbouring France. The following article tells the wonderful adventure of the CERN staff who took part in this event. A positive outcome for CERN skiers at the winter Atomiades The 11t...

  18. Polarization holography

    DEFF Research Database (Denmark)

    Nikolova, L.; Ramanujam, P.S.

    Current research into holography is concerned with applications in optically storing, retrieving, and processing information. Polarization holography has many unique properties compared to conventional holography. It gives results in high efficiency, achromaticity, and special polarization...... properties. This books reviews the research carried out in this field over the last 15 years. The authors provide basic concepts in polarization and the propagation of light through anisotropic materials, before presenting a sound theoretical basis for polarization holography. The fabrication...... and characterization of azobenzene based materials, which remain the most efficient for the purpose, is described in detail. This is followed by a description of other materials that are used in polarization holography. An in-depth description of various applications, including display holography and optical storage...

  19. Applications of 2D helical vortex dynamics

    DEFF Research Database (Denmark)

    Okulov, Valery; Sørensen, Jens Nørkær

    2010-01-01

    In the paper, we show how the assumption of helical symmetry in the context of 2D helical vortices can be exploited to analyse and to model various cases of rotating flows. From theory, examples of three basic applications of 2D dynamics of helical vortices embedded in flows with helical symmetry...... of the vorticity field are addressed. These included some of the problems related to vortex breakdown, instability of far wakes behind rotors and vortex theory of ideal rotors....

  20. Towards a string formulation of vortex dynamics

    International Nuclear Information System (INIS)

    Elsebeth Schroeder; Ola Toernkvist

    1998-01-01

    We derive an exact equation of motion for a non-relativistic vortex in two- and three-dimensional models with a complex field. The velocity is given in terms of gradients of the complex field at the vortex position. We discuss the problem of reducing the field dynamics to a closed dynamical system with non-locally interacting strings as the fundamental degrees of freedom

  1. On the interpretation of vortex breakdown

    Science.gov (United States)

    Keller, Jakob J.

    1995-07-01

    Studying the numerous papers that have appeared in the recent past that address ``vortex breakdown,'' it may be difficult for a reader to avoid getting rather confused. It appears that various authors or even schools have conflicting views on the correct interpretation of the physics of vortex breakdown. Following the investigation by Keller et al. [Z. Angew. Math. Phys. 36, 854 (1985)], in this paper, axisymmetric forms of vortex breakdown, as originally defined by Benjamin [J. Fluid Mech. 14, 593 (1962)] are addressed. It is argued that at least some of the previous investigations have been concerned with different aspects of the same phenomena and may, in fact, not disagree. One of the most fundamental questions in this context concerns the properties of the distributions of total head and circulation on the downstream side of vortex breakdown transitions. Some previous investigators have suggested that the downstream flow would exhibit properties that are similar to those of a wake. For this reason the phenomenon of vortex breakdown is investigated for a class of distributions of total head and circulation in the domain of flow reversal that is substantially more general than in previous investigations. Finally, a variety of problems are discussed that are crucial for a more complete theory of vortex breakdown, but have not yet been solved. It is shown that for the typically small flow speeds in a domain of flow reversal produced by a vortex breakdown wave, the departures of both vortex core size and swirl number, with respect to the case of uniform total pressure in the zone of flow reversal, as discussed by Keller et al. [Z. Angew. Math. Phys. 36, 854 (1985)], remain surprisingly small. As a consequence, the possible appearance of large departures from a Kirchhoff-type wake must be due to viscous diffusion at low and due to shear-layer instabilities at high Reynolds numbers.

  2. Superconductivity and vortex properties in various multilayers

    International Nuclear Information System (INIS)

    Koorevaar, P.

    1994-01-01

    In this thesis three qualitatively different type of superconducting multilayers are studied. We discuss the vortex lattice structure in Nb/NbZr multilayers, a system where both type of constituting layers are superconducting. At certain temperatures and for parallel fields close to H c2parallel , the Nb/NbZr system has a strongly modulated order parameter, and in this aspect resembles the high-Tc materials. By lowering the field the modulation decreases, having important consequences for the vortex lattice structure. By studying the transport critical currents we show that in the case of strong modulation the vortex lattice has a kinked structure, but at weaker modulations the vortices are straight, and the change in modulation actually results in a vortex lattice transition. Our study confirms the picture of the existence of kinked vortex lattices, but it is rather surprising that these kinked structures can exist in a system which in itself is not at all that anisotropic. It indicates the relevance of other parameters governing the vortex lattice structure. (orig.)

  3. Aperiodicity Correction for Rotor Tip Vortex Measurements

    Science.gov (United States)

    Ramasamy, Manikandan; Paetzel, Ryan; Bhagwat, Mahendra J.

    2011-01-01

    The initial roll-up of a tip vortex trailing from a model-scale, hovering rotor was measured using particle image velocimetry. The unique feature of the measurements was that a microscope was attached to the camera to allow much higher spatial resolution than hitherto possible. This also posed some unique challenges. In particular, the existing methodologies to correct for aperiodicity in the tip vortex locations could not be easily extended to the present measurements. The difficulty stemmed from the inability to accurately determine the vortex center, which is a prerequisite for the correction procedure. A new method is proposed for determining the vortex center, as well as the vortex core properties, using a least-squares fit approach. This approach has the obvious advantage that the properties are derived from not just a few points near the vortex core, but from a much larger area of flow measurements. Results clearly demonstrate the advantage in the form of reduced variation in the estimated core properties, and also the self-consistent results obtained using three different aperiodicity correction methods.

  4. Polar Bears

    Science.gov (United States)

    Amstrup, Steven C.; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.

    2002-01-01

    Polar bears (Ursus maritimus) are hunted throughout most of their range. In addition to hunting polar bears of the Beaufort Sea region are exposed to mineral and petroleum extraction and related human activities such as shipping road-building, and seismic testing (Stirling 1990).Little was known at the start of this project about how polar bears move about in their environment, and although it was understood that many bears travel across political borders, the boundaries of populations had not been delineated (Amstrup 1986, Amstrup et al. 1986, Amstrup and DeMaster 1988, Garner et al. 1994, Amstrup 1995, Amstrup et al. 1995, Amstrup 2000).As human populations increase and demands for polar bears and other arctic resources escalate, managers must know the sizes and distributions of the polar bear populations. Resource managers also need reliable estimates of breeding rates, reproductive intervals, litter sizes, and survival of young and adults.Our objectives for this research were 1) to determine the seasonal and annual movements of polar bears in the Beaufort Sea, 2) to define the boundaries of the population(s) using this region, 3) to determine the size and status of the Beaufort Sea polar bear population, and 4) to establish reproduction and survival rates (Amstrup 2000).

  5. Propeller and inflow vortex interaction : vortex response and impact on the propeller performance

    NARCIS (Netherlands)

    Yang, Y.; Zhou, T; Sciacchitano, A.; Veldhuis, L.L.M.; Eitelberg, G.

    2016-01-01

    The aerodynamic operating conditions of a propeller can include complex situations where vorticity from sources upstream can enter the propeller plane. In general, when the vorticity enters in a concentrated form of a vortex, the interaction between the vortex and blade is referred to as

  6. Post-Younger Dryas climate interval linked to circumpolar vortex variability: isotopic evidence from Fayetteville Green Lake, New York

    Science.gov (United States)

    Kirby, M. E.; Patterson, W. P.; Mullins, H. T.; Burnett, A. W.

    2002-04-01

    The late-Glacial/Holocene transition in the North Atlantic-European sectors has long been known to be a period of rapid climate change. There is, however, a continued need for acquiring and developing paleoclimate archives spanning this interval from continental settings. Here we report on a lacustrine (Fayetteville Green Lake) isotope record sampled at a 10-year resolution from the NE USA over the late-Glacial/Holocene interval (14,600-8000 cal year BP). Based on prior isotopic and hydrologic research from Green Lake, the δ18O(calcite) values predominantly reflect winter moisture source and thus winter atmospheric patterns. Furthermore, we use historic (AD 1948-1980) winter circulation data and δ18O(calcite) values from varved sediments to examine the relationship between the circumpolar vortex latitude and isotopes which results in a strong (r = -0.79 r2 = 0.63) negative relationship. Using the linear regression from the isotope-vortex relationship, we model the winter vortex latitude for the late-Glacial/Holocene transition over the NE USA. In addition, we identify an interval from 11,600 to 10,300 cal year BP (the post-Younger Dryas climate interval) wherein the mean winter vortex over the NE USA was expanded by 6° latitude ( 36.1°N i.e., 630 km) from its mean historic position between AD 1948-1998 ( 41.8°N). Renewal of more vigorous thermohaline circulation following the Younger Dryas cold event may have forced the post-Younger Dryas climate interval. Increased poleward heat transport due to an active oceanic conveyor would have strengthened the thermal contrast between the NE USA and the North Atlantic thereby enhancing atmospheric pressure gradients and firmly establishing the semi-permanent winter trough over the NE USA. Consequently, storms tracked more frequently up the east coast of the United States from the Gulf of Mexico and Atlantic regions delivering precipitation with relatively high δ18O values to the NE USA. Alternatively, the relative

  7. Devices that Alter the Tip Vortex of a Rotor

    Science.gov (United States)

    McAlister, Kenneth W.; Tung, Chee; Heineck, James T.

    2001-01-01

    Small devices were attached near the tip of a hovering rotor blade 'in order to alter the structure and trajectory of the trailing vortex. Stereo particle image velocimetry (PIV) images were used to quantify the wake behind the rotor blade during the first revolution. A procedure for analyzing the 3D-velocity field is presented that includes a method for accounting for vortex wander. The results show that a vortex generator can alter the trajectory of the trailing vortex and that a major change in the size and intensity of the trailing vortex can be achieved by introducing a high level of turbulence into the core of the vortex.

  8. Transverse force on a moving vortex with the acoustic geometry

    International Nuclear Information System (INIS)

    Zhang Pengming; Cao Liming; Duan Yishi; Zhong Chengkui

    2004-01-01

    We consider the transverse force on a moving vortex with the acoustic metric using the phi-mapping topological current theory. In the frame of effective space-time geometry the vortex appear naturally by virtue of the vortex tensor in the Lorentz space-time and we show that it is just the vortex derived with the order parameter in the condensed matter. With the usual Lagrangian we obtain the equation of motion for the vortex. At last, we show that the transverse force on the moving vortex in our equation is just the usual Magnus force in a simple model

  9. Dynamics and chemistry of vortex remnants in late Arctic spring 1997 and 2000: Simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS

    Directory of Open Access Journals (Sweden)

    P. Konopka

    2003-01-01

    Full Text Available High-resolution simulations of the chemical composition of the Arctic stratosphere during late spring 1997 and 2000 were performed with the Chemical Lagrangian Model of the Stratosphere (CLaMS. The simulations were performed for the entire northern hemisphere on two isentropic levels 450 K (~18 km and 585 K (~24 km. The spatial distribution and the lifetime of the vortex remnants formed after the vortex breakup in May 1997 display different behavior above and below 20 km. Above 20 km, vortex remnants propagate southward (up to 40°N and are "frozen in'' in the summer circulation without significant mixing. Below 20 km the southward propagation of the remnants is bounded by the subtropical jet. Their lifetime is shorter by a factor of 2 than that above 20 km, owing to significant stirring below this altitude. The behavior of vortex remnants formed in March 2000 is similar but, due to an earlier vortex breakup, dominated during the first 6 weeks after the vortex breakup by westerly winds, even above 20 km. Vortex remnants formed in May 1997 are characterized by large mixing ratios of HCl indicating negligible, halogen-induced ozone loss. In contrast, mid-latitude ozone loss in late boreal spring 2000 is dominated, until mid-April, by halogen-induced ozone destruction within the vortex remnants, and subsequent transport of the ozone-depleted polar air masses (dilution into the mid-latitudes. By varying the intensity of mixing in CLaMS, the impact of mixing on the formation of ClONO2 and ozone depletion is investigated. We find that the photochemical decomposition of HNO3 and not mixing with NOx-rich mid-latitude air is the main source of NOx within the vortex remnants in March and April 2000. Ozone depletion in the remnants is driven by ClOx photolytically formed from ClONO2. At the end of May 1997, the halogen-induced ozone deficit at 450 K poleward of 30°N amounts to ~12% with ~10% in the polar vortex and ~2% in well-isolated vortex remnants

  10. Vortex shedding from tandem cylinders

    Science.gov (United States)

    Alam, Md. Mahbub; Elhimer, Mehdi; Wang, Longjun; Jacono, David Lo; Wong, C. W.

    2018-03-01

    An experimental investigation is conducted on the flow around tandem cylinders for ranges of diameter ratio d/ D = 0.25-1.0, spacing ratio L/ d = 5.5-20, and Reynolds number Re = 0.8 × 104-2.42 × 104, where d and D are the diameters of the upstream and downstream cylinders, respectively, L is the distance from the upstream cylinder center to the forward stagnation point of the downstream one. The focus is given on examining the effects of d/ D, L/ d and Re on Strouhal number St, flow structures and fluid forces measured using hotwire, particle image velocimetry (PIV) and load cell measurement techniques, respectively. Changes in d/ D and L/ d in the ranges examined lead to five flow regimes, namely lock-in, intermittent lock-in, no lock-in, subharmonic lock-in and shear-layer reattachment regimes. Time-mean drag coefficient ( C D) and fluctuating drag and lift coefficients ({C^'D} and {C^'L}) are more sensitive to L/ d than d/ D. The scenario is opposite for St where d/ D is more prominent than L/ d to change the St. The detailed facet of the dependence on d/ D and L/ d of C D, {C^'D}, {C^'L} and St is discussed based on shear-layer velocity, approaching velocity, vortex formation length, and wake width.

  11. Intraventricular vortex properties in nonischemic dilated cardiomyopathy

    Science.gov (United States)

    Benito, Yolanda; Alhama, Marta; Yotti, Raquel; Martínez-Legazpi, Pablo; del Villar, Candelas Pérez; Pérez-David, Esther; González-Mansilla, Ana; Santa-Marta, Cristina; Barrio, Alicia; Fernández-Avilés, Francisco; del Álamo, Juan C.

    2014-01-01

    Vortices may have a role in optimizing the mechanical efficiency and blood mixing of the left ventricle (LV). We aimed to characterize the size, position, circulation, and kinetic energy (KE) of LV main vortex cores in patients with nonischemic dilated cardiomyopathy (NIDCM) and analyze their physiological correlates. We used digital processing of color-Doppler images to study flow evolution in 61 patients with NIDCM and 61 age-matched control subjects. Vortex features showed a characteristic biphasic temporal course during diastole. Because late filling contributed significantly to flow entrainment, vortex KE reached its maximum at the time of the peak A wave, storing 26 ± 20% of total KE delivered by inflow (range: 1–74%). Patients with NIDCM showed larger and stronger vortices than control subjects (circulation: 0.008 ± 0.007 vs. 0.006 ± 0.005 m2/s, respectively, P = 0.02; KE: 7 ± 8 vs. 5 ± 5 mJ/m, P = 0.04), even when corrected for LV size. This helped confining the filling jet in the dilated ventricle. The vortex Reynolds number was also higher in the NIDCM group. By multivariate analysis, vortex KE was related to the KE generated by inflow and to chamber short-axis diameter. In 21 patients studied head to head, Doppler measurements of circulation and KE closely correlated with phase-contract magnetic resonance values (intraclass correlation coefficient = 0.82 and 0.76, respectively). Thus, the biphasic nature of filling determines normal vortex physiology. Vortex formation is exaggerated in patients with NIDCM due to chamber remodeling, and enlarged vortices are helpful for ameliorating convective pressure losses and facilitating transport. These findings can be accurately studied using ultrasound. PMID:24414062

  12. Decontamination and winter conditions

    International Nuclear Information System (INIS)

    Quenild, C.; Tveten, U.

    1984-12-01

    The report deals with two decontamonation experiments under winter conditions. A snow-covered parking lot was contaminated, and the snow was subsequently removed using standard snow-moving equipment. The snow left behind was collected and the content of contaminant was determined. A non-radioactive contaminant was used. A decontamination factor exceeding 100 was obtained. Although the eksperimental conditions were close to ideal, it is reason to believe that extremely efficient removal of deposited materials on a snow surface is achivable. In another investigation, run-off from agricultural surface, contaminated while covered with snow, was measured A lycimeter was used in this experiment. A stable layer of ice and snow was allowed to form before contamination. The run-off water was collected at each thaw period until all snow and ice was gone. Cs-134 was used as contaminant. Roughly 30% of the Cs-134 with which the area was contaminated ran off with the melt water. Following a reactor accident situation, this would have given a corresponding reduction in the long term doses. Both of these experiments show that consequence calculation assumptions, as they are currently applied to large accident assessment, tend to overestimate the consequences resulting from accidents taking place under winter conditions

  13. Winter School Les Houches

    CERN Document Server

    Lannoo, Michel; Bastard, Gérald; Voos, Michel; Boccara, Nino

    1986-01-01

    The Winter School held in Les Houches on March 12-21, 1985 was devoted to Semiconductor Heterojunctions and Superlattices, a topic which is recognized as being now one of the most interesting and active fields in semiconductor physics. In fact, following the pioneering work of Esaki and Tsu in 1970, the study of these two-dimensional semiconductor heterostructures has developed rapidly, both from the point of view of basic physics and of applications. For instance, modulation-doped heterojunctions are nowadays currently used to investigate the quantum Hall effect and to make very fast transistors. This book contains the lectures presented at this Winter School, showing in particular that many aspects of semiconductor heterojunctions and super­ lattices were treated, extending from the fabrication of these two-dimensional systems to their basic properties and applications in micro-and opto-electron­ ics. Among the subjects which were covered, one can quote as examples: molecular beam epitaxy and metallorgani...

  14. Optical torque on a magneto-dielectric Rayleigh absorptive sphere by a vector Bessel (vortex) beam

    Science.gov (United States)

    Li, Renxian; Yang, Ruiping; Ding, Chunying; Mitri, F. G.

    2017-04-01

    The optical torque exerted on an absorptive megneto-dielectric sphere by an axicon-generated vector Bessel (vortex) beam with selected polarizations is investigated in the framework of the dipole approximation. The total optical torque is expressed as the sum of orbital and spin torques. The axial orbital torque component is calculated from the z-component of the cross-product of the vector position r and the optical force exerted on the sphere F. Depending on the beam characteristics (such as the half-cone angle and polarization type) and the physical properties of the sphere, it is shown here that the axial orbital torque vanishes before reversing sign, indicating a counter-intuitive orbital motion in opposite handedness of the angular momentum carried by the incident waves. Moreover, analytical formulas for the spin torque, which is divided into spin torques induced by electric and magnetic dipoles, are derived. The corresponding components of both the optical spin and orbital torques are numerically calculated, and the effects of polarization, the order of the beam, and half-cone angle are discussed in detail. The left-handed (i.e., negative) optical torque is discussed, and the conditions for generating optical spin and orbital torque sign reversal are numerically investigated. The transverse optical spin torque has a vortex-like character, whose direction depends on the polarization, the half-cone angle, and the order of the beam. Numerical results also show that the vortex direction depends on the radial position of the particle in the transverse plane. This means that a sphere may rotate with different directions when it moves radially. Potential applications are in particle manipulation and rotation, single beam optical tweezers, and other emergent technologies using vector Bessel beams on a small magneto-dielectric (nano) particle.

  15. Phenomena, dynamics and instabilities of vortex pairs

    International Nuclear Information System (INIS)

    Williamson, C H K; Asselin, D J; Leweke, T; Harris, D M

    2014-01-01

    Our motivation for studying the dynamics of vortex pairs stems initially from an interest in the trailing wake vortices from aircraft and the dynamics of longitudinal vortices close to a vehicle surface. However, our motivation also comes from the fact that vortex–vortex interactions and vortex–wall interactions are fundamental to many turbulent flows. The intent of the paper is to present an overview of some of our recent work concerning the formation and structure of counter-rotating vortex pairs. We are interested in the long-wave and short-wave three-dimensional instabilities that evolve for an isolated vortex pair, but also we would like to know how vortex pairs interact with a wall, including both two-dimensional interactions, and also the influence of the surface on the three-dimensional instabilities. The emphasis of this presentation is on physical mechanisms by which vortices interact with each other and with surfaces, principally from an experimental approach, but also coupled with analytical studies. (paper)

  16. Vortex Shedding Inside a Baffled Air Duct

    Science.gov (United States)

    Davis, Philip; Kenny, R. Jeremy

    2010-01-01

    Common in the operation of both segmented and un-segmented large solid rocket motors is the occurrence of vortex shedding within the motor chamber. A portion of the energy within a shed vortex is converted to acoustic energy, potentially driving the longitudinal acoustic modes of the motor in a quasi-discrete fashion. This vortex shedding-acoustic mode excitation event occurs for every Reusable Solid Rocket Motor (RSRM) operation, giving rise to subsequent axial thrust oscillations. In order to better understand this vortex shedding/acoustic mode excitation phenomena, unsteady CFD simulations were run for both a test geometry and the full scale RSRM geometry. This paper covers the results from the subscale geometry runs, which were based on work focusing on the RSRM hydrodynamics. Unsteady CFD simulation parameters, including boundary conditions and post-processing returns, are reviewed. The results were further post-processed to identify active acoustic modes and vortex shedding characteristics. Probable locations for acoustic energy generation, and subsequent acoustic mode excitation, are discussed.

  17. Vortices and vortex lattices in quantum ferrofluids

    International Nuclear Information System (INIS)

    Martin, A M; Marchant, N G; Parker, N G; O’Dell, D H J

    2017-01-01

    The experimental realization of quantum-degenerate Bose gases made of atoms with sizeable magnetic dipole moments has created a new type of fluid, known as a quantum ferrofluid, which combines the extraordinary properties of superfluidity and ferrofluidity. A hallmark of superfluids is that they are constrained to rotate through vortices with quantized circulation. In quantum ferrofluids the long-range dipolar interactions add new ingredients by inducing magnetostriction and instabilities, and also affect the structural properties of vortices and vortex lattices. Here we give a review of the theory of vortices in dipolar Bose–Einstein condensates, exploring the interplay of magnetism with vorticity and contrasting this with the established behaviour in non-dipolar condensates. We cover single vortex solutions, including structure, energy and stability, vortex pairs, including interactions and dynamics, and also vortex lattices. Our discussion is founded on the mean-field theory provided by the dipolar Gross–Pitaevskii equation, ranging from analytic treatments based on the Thomas–Fermi (hydrodynamic) and variational approaches to full numerical simulations. Routes for generating vortices in dipolar condensates are discussed, with particular attention paid to rotating condensates, where surface instabilities drive the nucleation of vortices, and lead to the emergence of rich and varied vortex lattice structures. We also present an outlook, including potential extensions to degenerate Fermi gases, quantum Hall physics, toroidal systems and the Berezinskii–Kosterlitz–Thouless transition. (topical review)

  18. Vortices and vortex lattices in quantum ferrofluids

    Science.gov (United States)

    Martin, A. M.; Marchant, N. G.; O'Dell, D. H. J.; Parker, N. G.

    2017-03-01

    The experimental realization of quantum-degenerate Bose gases made of atoms with sizeable magnetic dipole moments has created a new type of fluid, known as a quantum ferrofluid, which combines the extraordinary properties of superfluidity and ferrofluidity. A hallmark of superfluids is that they are constrained to rotate through vortices with quantized circulation. In quantum ferrofluids the long-range dipolar interactions add new ingredients by inducing magnetostriction and instabilities, and also affect the structural properties of vortices and vortex lattices. Here we give a review of the theory of vortices in dipolar Bose-Einstein condensates, exploring the interplay of magnetism with vorticity and contrasting this with the established behaviour in non-dipolar condensates. We cover single vortex solutions, including structure, energy and stability, vortex pairs, including interactions and dynamics, and also vortex lattices. Our discussion is founded on the mean-field theory provided by the dipolar Gross-Pitaevskii equation, ranging from analytic treatments based on the Thomas-Fermi (hydrodynamic) and variational approaches to full numerical simulations. Routes for generating vortices in dipolar condensates are discussed, with particular attention paid to rotating condensates, where surface instabilities drive the nucleation of vortices, and lead to the emergence of rich and varied vortex lattice structures. We also present an outlook, including potential extensions to degenerate Fermi gases, quantum Hall physics, toroidal systems and the Berezinskii-Kosterlitz-Thouless transition.

  19. Micromagnetic simulation of vortex-antivortex magnetization in permalloy nano particle

    Science.gov (United States)

    Purnama, B.; Muhammady, S.; Suharyana

    2017-02-01

    A process of vortex-antivortex magnetization reversal in a Permalloy nano particle with uniform polarity of magnetization has been investigated numerically. Micromagnetic simulation is performed using the Landau-Lifshitz-Gilbert equation. A short field pulse is applied in a film plane anti parallel to magnetization direction. Sequences of simulation of reversals mechanism are evaluated for thickness of nano particle. As the results in the case of thickness of 20 nm thin layer, magnetization reversal realizes through a creation-annihilation of Neel-Bloch wall pair. Contrarily, reversal mechanism via a creation-annihilation process of vortex-antivortex pair occurs for thickness of 60 nm thin layer. By analyzing barrier energy of the sample, we find that a maximum barrier energy reaches a threshold value (e.g., ˜ 2.6×106 erg/cm3 for Permalloy in this simulation).

  20. Anomalous transient behavior from an inhomogeneous initial optical vortex density

    CSIR Research Space (South Africa)

    Roux, FS

    2011-04-01

    Full Text Available Inhomogeneous optical vortex densities can be produced in stochastic optical fields by a combination of coherent and incoherent superposition of speckle fields. During subsequent propagation, the inhomogeneity in the vortex density decays away...

  1. Dynamic Control of Collapse in a Vortex Airy Beam

    Science.gov (United States)

    Chen, Rui-Pin; Chew, Khian-Hooi; He, Sailing

    2013-01-01

    Here we study systematically the self-focusing dynamics and collapse of vortex Airy optical beams in a Kerr medium. The collapse is suppressed compared to a non-vortex Airy beam in a Kerr medium due to the existence of vortex fields. The locations of collapse depend sensitively on the initial power, vortex order, and modulation parameters. The collapse may occur in a position where the initial field is nearly zero, while no collapse appears in the region where the initial field is mainly distributed. Compared with a non-vortex Airy beam, the collapse of a vortex Airy beam can occur at a position away from the area of the initial field distribution. Our study shows the possibility of controlling and manipulating the collapse, especially the precise position of collapse, by purposely choosing appropriate initial power, vortex order or modulation parameters of a vortex Airy beam. PMID:23518858

  2. Vortex Filaments in Grids for Scalable, Fine Smoke Simulation.

    Science.gov (United States)

    Meng, Zhang; Weixin, Si; Yinling, Qian; Hanqiu, Sun; Jing, Qin; Heng, Pheng-Ann

    2015-01-01

    Vortex modeling can produce attractive visual effects of dynamic fluids, which are widely applicable for dynamic media, computer games, special effects, and virtual reality systems. However, it is challenging to effectively simulate intensive and fine detailed fluids such as smoke with fast increasing vortex filaments and smoke particles. The authors propose a novel vortex filaments in grids scheme in which the uniform grids dynamically bridge the vortex filaments and smoke particles for scalable, fine smoke simulation with macroscopic vortex structures. Using the vortex model, their approach supports the trade-off between simulation speed and scale of details. After computing the whole velocity, external control can be easily exerted on the embedded grid to guide the vortex-based smoke motion. The experimental results demonstrate the efficiency of using the proposed scheme for a visually plausible smoke simulation with macroscopic vortex structures.

  3. Universal statistics of vortex lines.

    Science.gov (United States)

    Nahum, Adam; Chalker, J T

    2012-03-01

    We study the vortex lines that are a feature of many random or disordered three-dimensional systems. These show universal statistical properties on long length scales, and geometrical phase transitions analogous to percolation transitions but in distinct universality classes. The field theories for these problems have not previously been identified, so that while many numerical studies have been performed, a framework for interpreting the results has been lacking. We provide such a framework with mappings to simple supersymmetric models. Our main focus is on vortices in short-range-correlated complex fields, which show a geometrical phase transition that we argue is described by the CP(k|k) model (essentially the CP(n-1) model in the replica limit n→1). This can be seen by mapping a lattice version of the problem to a lattice gauge theory. A related field theory with a noncompact gauge field, the 'NCCP(k|k) model', is a supersymmetric extension of the standard dual theory for the XY transition, and we show that XY duality gives another way to understand the appearance of field theories of this type. The supersymmetric descriptions yield results relevant, for example, to vortices in the XY model and in superfluids, to optical vortices, and to certain models of cosmic strings. A distinct but related field theory, the RP(2l|2l) model (or the RP(n-1) model in the limit n→1) describes the unoriented vortices that occur, for instance, in nematic liquid crystals. Finally, we show that in two dimensions, a lattice gauge theory analogous to that discussed in three dimensions gives a simple way to see the known relation between two-dimensional percolation and the CP(k|k) σ model with a θ term.

  4. Scattering of a vortex pair by a single quantum vortex in a Bose–Einstein condensate

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, L. A., E-mail: smirnov-lev@allp.sci-nnov.ru; Smirnov, A. I., E-mail: smirnov@appl.sci-nnov.ru; Mironov, V. A. [Russian Academy of Sciences, Institute of Applied Physics (Russian Federation)

    2016-01-15

    We analyze the scattering of vortex pairs (the particular case of 2D dark solitons) by a single quantum vortex in a Bose–Einstein condensate with repulsive interaction between atoms. For this purpose, an asymptotic theory describing the dynamics of such 2D soliton-like formations in an arbitrary smoothly nonuniform flow of a ultracold Bose gas is developed. Disregarding the radiation loss associated with acoustic wave emission, we demonstrate that vortex–antivortex pairs can be put in correspondence with quasiparticles, and their behavior can be described by canonical Hamilton equations. For these equations, we determine the integrals of motion that can be used to classify various regimes of scattering of vortex pairs by a single quantum vortex. Theoretical constructions are confirmed by numerical calculations performed directly in terms of the Gross–Pitaevskii equation. We propose a method for estimating the radiation loss in a collision of a soliton-like formation with a phase singularity. It is shown by direct numerical simulation that under certain conditions, the interaction of vortex pairs with a core of a single quantum vortex is accompanied by quite intense acoustic wave emission; as a result, the conditions for applicability of the asymptotic theory developed here are violated. In particular, it is visually demonstrated by a specific example how radiation losses lead to a transformation of a vortex–antivortex pair into a vortex-free 2D dark soliton (i.e., to the annihilation of phase singularities).

  5. Front propagation in a regular vortex lattice: Dependence on the vortex structure.

    Science.gov (United States)

    Beauvier, E; Bodea, S; Pocheau, A

    2017-11-01

    We investigate the dependence on the vortex structure of the propagation of fronts in stirred flows. For this, we consider a regular set of vortices whose structure is changed by varying both their boundary conditions and their aspect ratios. These configurations are investigated experimentally in autocatalytic solutions stirred by electroconvective flows and numerically from kinematic simulations based on the determination of the dominant Fourier mode of the vortex stream function in each of them. For free lateral boundary conditions, i.e., in an extended vortex lattice, it is found that both the flow structure and the front propagation negligibly depend on vortex aspect ratios. For rigid lateral boundary conditions, i.e., in a vortex chain, vortices involve a slight dependence on their aspect ratios which surprisingly yields a noticeable decrease of the enhancement of front velocity by flow advection. These different behaviors reveal a sensitivity of the mean front velocity on the flow subscales. It emphasizes the intrinsic multiscale nature of front propagation in stirred flows and the need to take into account not only the intensity of vortex flows but also their inner structure to determine front propagation at a large scale. Differences between experiments and simulations suggest the occurrence of secondary flows in vortex chains at large velocity and large aspect ratios.

  6. Front propagation in a regular vortex lattice: Dependence on the vortex structure

    Science.gov (United States)

    Beauvier, E.; Bodea, S.; Pocheau, A.

    2017-11-01

    We investigate the dependence on the vortex structure of the propagation of fronts in stirred flows. For this, we consider a regular set of vortices whose structure is changed by varying both their boundary conditions and their aspect ratios. These configurations are investigated experimentally in autocatalytic solutions stirred by electroconvective flows and numerically from kinematic simulations based on the determination of the dominant Fourier mode of the vortex stream function in each of them. For free lateral boundary conditions, i.e., in an extended vortex lattice, it is found that both the flow structure and the front propagation negligibly depend on vortex aspect ratios. For rigid lateral boundary conditions, i.e., in a vortex chain, vortices involve a slight dependence on their aspect ratios which surprisingly yields a noticeable decrease of the enhancement of front velocity by flow advection. These different behaviors reveal a sensitivity of the mean front velocity on the flow subscales. It emphasizes the intrinsic multiscale nature of front propagation in stirred flows and the need to take into account not only the intensity of vortex flows but also their inner structure to determine front propagation at a large scale. Differences between experiments and simulations suggest the occurrence of secondary flows in vortex chains at large velocity and large aspect ratios.

  7. Acoustic scattering of a Bessel vortex beam by a rigid fixed spheroid

    Science.gov (United States)

    Mitri, F. G.

    2015-12-01

    Partial-wave series representation of the acoustic scattering field of high-order Bessel vortex beams by rigid oblate and prolate spheroids using the modal matching method is developed. The method, which is applicable to slightly elongated objects at low-to-moderate frequencies, requires solving a system of linear equations which depends on the partial-wave index n and the order of the Bessel vortex beam m using truncated partial-wave series expansions (PWSEs), and satisfying the Neumann boundary condition for a rigid immovable surface in the least-squares sense. This original semi-analytical approach developed for Bessel vortex beams is demonstrated for finite oblate and prolate spheroids, where the mathematical functions describing the spheroidal geometry are written in a form involving single angular (polar) integrals that are numerically computed. The transverse (θ = π / 2) and 3D scattering directivity patterns are evaluated in the far-field for both prolate and oblate spheroids, with particular emphasis on the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid) not exceeding 3:1, the half-cone angle β and order m of the Bessel vortex beam, as well as the dimensionless size parameter kr0. Periodic oscillations in the magnitude plots of the far-field scattering form function are observed, which result from the interference of the reflected waves with the circumferential (Franz') waves circumnavigating the surface of the spheroid in the surrounding fluid. Moreover, the 3D directivity patterns illustrate the far-field scattering from the spheroid, that vanishes in the forward (θ = 0) and backward (θ = π) directions. Particular applications in underwater acoustics and scattering, acoustic levitation and the detection of submerged elongated objects using Bessel vortex waves to name a few, would benefit from the results of the present investigation.

  8. Scattering of electromagnetic waves by counter-rotating vortex streets in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, R.; Mendonca, J.T. [Centro de Electrodinamica, Instituto Superior Tecnico, 1096 Lisboa Codex (Portugal); Dendy, R.O. [UKAEA Government Division, Fusion (UKAEA---Euratom Fusion Association), Culham, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Shukla, P.K. [Institut fuer Theoretische Physik IV, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)

    1996-03-01

    The scattering of electromagnetic waves from counter-rotating vortex streets associated with nonlinear convective cells in uniform plasmas has been considered. The vortex street solution of the Navier{endash}Stokes or the Hasegawa{endash}Mima (and of the {open_quote}{open_quote}sinh-Poisson{close_quote}{close_quote}) equation is adopted as a scatterer. Assuming arbitrary polarization and profile function for the incident electromagnetic field, a compact expression for the scattering cross section has been obtained. Specific results for the differential cross section are obtained for the case in which the incident beam has a Gaussian profile and propagates as an ordinary mode. The results show that when the characteristic wavelength of the vortex street ({lambda}{sub {ital v}}=2{pi}/{ital a}) is larger than that of the incident electromagnetic wave ({lambda}{sub {ital i}}=2{pi}/{ital k}{sub {ital i}}), the differential cross section {ital d}{sigma}/{ital d}{Omega} has a very well-defined angular periodicity; in fact, it is a collection of Gaussians varying as exp[{minus}{ital f}({ital k}{sub {ital iw}}){sup 2}], where {ital w} is the waist and {ital f} is a function expressing a kind of {open_quote}{open_quote}Bragg condition.{close_quote}{close_quote} On the other hand, for {lambda}{sub {ital i}}{approx_gt}{lambda}{sub {ital v}} the incident electromagnetic beam is unable to distinguish the periodic structure of the vortex street. The effects of the vortex street as well as the incident beam parameters on the scattering cross section are examined. {copyright} {ital 1996 American Institute of Physics.}

  9. Measurements for winter road maintenance

    OpenAIRE

    Riehm, Mats

    2012-01-01

    Winter road maintenance activities are crucial for maintaining the accessibility and traffic safety of the road network at northerly latitudes during winter. Common winter road maintenance activities include snow ploughing and the use of anti-icing agents (e.g. road salt, NaCl). Since the local weather is decisive in creating an increased risk of slippery conditions, understanding the link between local weather and conditions at the road surface is critically important. Sensors are commonly i...

  10. Elementary pinning force for a superconducting vortex

    International Nuclear Information System (INIS)

    Hyun, O.B.; Finnemore, D.K.; Schwartzkopf, L.; Clem, J.R.

    1987-01-01

    The elementary pinning force f/sub p/ has been measured for a single vortex trapped in one of the superconducting layers of a cross-strip Josephson junction. At temperatures close to the transition temperature the vortex can be pushed across the junction by a transport current. The vortex is found to move in a small number of discrete steps before it exits the junction. The pinning force for each site is found to be asymmetric and to have a value of about 10/sup -6/ N/m at the reduced temperature, t = T/T/sub c/ = 0.95. As a function of temperature, f/sub p/ is found to vary approximately as (1-t)/sup 3/2/. .AE

  11. Sphagnum moss disperses spores with vortex rings.

    Science.gov (United States)

    Whitaker, Dwight L; Edwards, Joan

    2010-07-23

    Sphagnum spores, which have low terminal velocities, are carried by turbulent wind currents to establish colonies many kilometers away. However, spores that are easily kept aloft are also rapidly decelerated in still air; thus, dispersal range depends strongly on release height. Vascular plants grow tall to lift spores into sufficient wind currents for dispersal, but nonvascular plants such as Sphagnum cannot grow sufficiently high. High-speed videos show that exploding capsules of Sphagnum generate vortex rings to efficiently carry spores high enough to be dispersed by turbulent air currents. Spores launched ballistically at similar speeds through still air would travel a few millimeters and not easily reach turbulent air. Vortex rings are used by animals; here, we report vortex rings generated by plants.

  12. Inertial mass of the Abrikosov vortex.

    Science.gov (United States)

    Chudnovsky, E M; Kuklov, A B

    2003-08-08

    We show that a large contribution to the inertial mass of the Abrikosov vortex comes from transversal displacements of the crystal lattice. The corresponding part of the mass per unit length of the vortex line is M(l)=(m(2)(e)c(2)/64 pi alpha(2)mu lambda(4)(L))ln((lambda(L)/xi), where m(e) is the bare electron mass, c is the speed of light, alpha=e(2)/Planck's over 2 pi c approximately 1/137 is the fine structure constant, mu is the shear modulus of the solid, lambda(L) is the London penetration length, and xi is the coherence length. In conventional superconductors, this mass can be comparable to or even greater than the vortex core mass computed by Suhl [Phys. Rev. Lett. 14, 226 (1965)

  13. Wavelength-versatile optical vortex lasers

    Science.gov (United States)

    Omatsu, Takashige; Miyamoto, Katsuhiko; Lee, Andrew J.

    2017-12-01

    The unique properties of optical vortex beams, in particular their spiral wavefront, have resulted in the emergence of a wide range of unique applications for this type of laser output. These applications include optical tweezing, free space optical communications, microfabrication, environmental optics, and astrophysics. However, much like the laser in its infancy, the adaptation of this type of laser output requires a diversity of wavelengths. We report on recent progress on development of optical vortex laser sources and in particular, focus on their wavelength extension, where nonlinear optical processes have been used to generate vortex laser beams with wavelengths which span the ultraviolet to infrared. We show that nonlinear optical conversion can be used to not only diversify the output wavelength of these sources, but can be used to uniquely engineer the wavefront and spatial properties of the laser output.

  14. Vortex operators in gauge field theories

    International Nuclear Information System (INIS)

    Polchinski, J.G.

    1980-01-01

    We study several related aspects of the t Hooft vortex operator. The first chapter reviews the current picture of the vacuum of quantum chromodynamics, the idea of dual field theories, and the idea of the vortex operator. The second chapter deals with the Abelian vortex operator written in terms of elementary fields and with the calculation of its Green's functions. The Dirac veto problem appears in a new guise. We present a two dimensional solvable model of a Dirac string. This leads us to a new solution of the veto problem; we discuss its extension to four dimensions. We then show how the Green's functions can be expressed more neatly in terms of Wu and Yang's geometrical idea of sections. In the third chapter we discuss the dependence of the Green's functions of the Wilson and t Hooft operators on the nature of the vacuum. In the fourth chapter we consider systems which have fields in the fundamental representation, so that there are no vortex operators. When these fields enter only weakly into the dynamics, as is the case in QCD and in real superconductors, we would expect to be able to define a vortex-like operator. We show that any such operator can no longer be local looplike, but must have commutators at long range. We can still find an operator with useful properties, its cluster property, though more complicated than that of the usual vortex operator, still appears to distinguish Higgs, confining and perturbative phases. To test this, we consider a U(1) lattice gauge theory with two matter fields, one singly charged (fundamental) and one doubly charged (adjoint)

  15. Vortex lattice theory: A linear algebra approach

    Science.gov (United States)

    Chamoun, George C.

    Vortex lattices are prevalent in a large class of physical settings that are characterized by different mathematical models. We present a coherent and generalized Hamiltonian fluid mechanics-based formulation that reduces all vortex lattices into a classic problem in linear algebra for a non-normal matrix A. Via Singular Value Decomposition (SVD), the solution lies in the null space of the matrix (i.e., we require nullity( A) > 0) as well as the distribution of its singular values. We demonstrate that this approach provides a good model for various types of vortex lattices, and makes it possible to extract a rich amount of information on them. The contributions of this thesis can be classified into four main points. The first is asymmetric equilibria. A 'Brownian ratchet' construct was used which converged to asymmetric equilibria via a random walk scheme that utilized the smallest singular value of A. Distances between configurations and equilibria were measured using the Frobenius norm ||·||F and 2-norm ||·||2, and conclusions were made on the density of equilibria within the general configuration space. The second contribution used Shannon Entropy, which we interpret as a scalar measure of the robustness, or likelihood of lattices to occur in a physical setting. Third, an analytic model was produced for vortex street patterns on the sphere by using SVD in conjunction with expressions for the center of vorticity vector and angular velocity. Equilibrium curves within the configuration space were presented as a function of the geometry, and pole vortices were shown to have a critical role in the formation and destruction of vortex streets. The fourth contribution entailed a more complete perspective of the streamline topology of vortex streets, linking the bifurcations to critical points on the equilibrium curves.

  16. Theory of pairing symmetry in the vortex states

    NARCIS (Netherlands)

    Yokoyama, Takehito; Ichioka, Yukio; Yanaka, Yukio; Golubov, Alexandre Avraamovitch

    2010-01-01

    We investigate pairing symmetry in an Abrikosov vortex and vortex lattice. It is shown that the Cooper pair wave function at the center of an Abrikosov vortex with vorticity m has a different parity with respect to frequency from that in the bulk if m is an odd number, while it has the same parity

  17. Chaotic scattering of two identical point vortex pairs revisited

    DEFF Research Database (Denmark)

    Tophøj, Laust Emil Hjerrild; Aref, Hassan

    2008-01-01

    unstable periodic solutions similar to those seen in the thereby associated three-vortex problems. The integrals of motion, linear impulse and Hamiltonian are recast in a form appropriate for vortex pair scattering interactions that provides constraints on the parameters characterizing the outgoing vortex...

  18. Winter fuels report

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-29

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. 27 figs, 12 tabs.

  19. Winter fuels report

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-17

    The Winter Fuels Report is intended to provide consise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; Natural gas supply and disposition and underground storage for the US and consumption for all PADD`s as well as selected National average prices; Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; Crude oil and petroleum price comparisons for the US and selected cities; and A 6-10 Day and 30-Day outlook for temperature and precipitation and US total heating degree days by city.

  20. Winter fuels report

    International Nuclear Information System (INIS)

    1995-01-01

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD's I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD's, as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city

  1. Stamena winter wheat variety

    Directory of Open Access Journals (Sweden)

    Mišić Todor

    2001-01-01

    Full Text Available Stamena is a winter wheat variety developed at the Institute of Field and Vegetable Crops in Novi Sad, Yugoslavia. It was released by the Federal Commission for varietals Approval in 1999. Stamena was developed by crossing genetically divergent and highly productive parents Lasta and Rodna (Breeders: T. Mišić. N. Mladenov, Z. Jerković and R. Jevtić. Spike is white, smooth, awn less, medium compact with 18-21 spike lets. The grain is vitreous and dark red (Triticum aestivum L. ssp. vulgar e var. lutescens. Stamena is a medium early variety, 1 day earlier than Partizanka and 3 days earlier than Jugoslavija (Table 4. It has excellent resistance to winterkilling, as in very winter hardy Partizanka. The average stem height is 78 cm, with a good resistance to lodging. Stamena has field resistance to leaf rust (Pucce, recondita tritict, horizontal resistance, which is the type of resistance that modern wheat breeding is interested in. The resistance to stem rust (Pucce, graminis tritict is good and to powdery mildew (Erysiphegraminis tritici very good. The 1000 grain mass is about 32 g and volume grain mass 81.3 kg/hi. (Table 2. Stamena is classified in the subgroup A-l. It has excellent milling and baking quality and it belong to the 1st technological group (quality enhancer. The quantity of dry gluten is about 9%. The variety Stamena is a very productive, with the genetic potential for grain above 11 t/ha suitable for growing on fertile and less fertile soils. It has started to be grown commercially in 2000.

  2. Integrable Abelian vortex-like solitons

    Directory of Open Access Journals (Sweden)

    Felipe Contatto

    2017-05-01

    Full Text Available We propose a modified version of the Ginzburg–Landau energy functional admitting static solitons and determine all the Painlevé-integrable cases of its Bogomolny equations of a given class of models. Explicit solutions are determined in terms of the third Painlevé transcendents, allowing us to calculate physical quantities such as the vortex number and the vortex strength. These solutions can be interpreted as the usual Abelian-Higgs vortices on surfaces of non-constant curvature with conical singularity.

  3. Multi-Model Ensemble Wake Vortex Prediction

    Science.gov (United States)

    Koerner, Stephan; Holzaepfel, Frank; Ahmad, Nash'at N.

    2015-01-01

    Several multi-model ensemble methods are investigated for predicting wake vortex transport and decay. This study is a joint effort between National Aeronautics and Space Administration and Deutsches Zentrum fuer Luft- und Raumfahrt to develop a multi-model ensemble capability using their wake models. An overview of different multi-model ensemble methods and their feasibility for wake applications is presented. The methods include Reliability Ensemble Averaging, Bayesian Model Averaging, and Monte Carlo Simulations. The methodologies are evaluated using data from wake vortex field experiments.

  4. Flow induced by a skewed vortex cylinder

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    2017-01-01

    The velocity field induced by a skewed vortex cylinder of longitudinal and tangential vorticity is derived in this chapter by direct integration of the Biot– Savart law. The derivation steps are provided in details. The results of Castles and Durham for the skewed semi-infinite cylinder....... The content of this chapter is based on the publication of the author entitled "Cylindrical vortex wake model: skewed cylinder, application to yawed or tilted rotors" [1]. Results from this chapter are applied: in Chap. 21 to model a wind turbine (or rotor) in yaw, in Chap. 22 to derive a new yaw...

  5. Vortex-Peierls States in Optical Lattices

    International Nuclear Information System (INIS)

    Burkov, A.A.; Demler, Eugene

    2006-01-01

    We show that vortices, induced in cold atom superfluids in optical lattices, may order in a novel vortex-Peierls ground state. In such a state vortices do not form a simple lattice but arrange themselves in clusters, within which the vortices are partially delocalized, tunneling between classically degenerate configurations. We demonstrate that this exotic quantum many-body state is selected by an order-from-disorder mechanism for a special combination of the vortex filling and lattice geometry that has a macroscopic number of classically degenerate ground states

  6. Characterization of Vortex Generator Induced Flow

    DEFF Research Database (Denmark)

    Velte, Clara Marika

    The aim of this thesis is the characterization and modeling of the longitudinal structures actuated by vortex generators. Results from generic studies performed at low Reynolds numbers have shown that the device induced vortices possess helical structure of the vortex core. Further, their ability...... to control separation and downstream evolution across the chord of a circular sector have been studied. Similar flow structures to the ones found in the generic experiments have been found in a higher Reynolds number setting, more applicable to realistic cases common to, e.g., aeronautical applications...

  7. Aircraft Wake Vortex Observations in Hong Kong

    Directory of Open Access Journals (Sweden)

    Hon Kaikwong

    2017-12-01

    Full Text Available The Hong Kong International Airport (HKIA is among the busiest airports in the world, with total aircraft movement exceeding 400,000 in 2016. The Hong Kong Observatory (HKO, provider of aviation meteorological services to HKIA, has recently begun making the first sets of aircraft wake vortex observations at HKIA using short-range LIDARs. This paper briefly describes the preliminary observation results obtained from field measurements between 2014 and 2016, and discusses the way forward on the monitoring and prediction of wake vortex behaviour in Hong Kong.

  8. Integrable Abelian vortex-like solitons

    Energy Technology Data Exchange (ETDEWEB)

    Contatto, Felipe, E-mail: felipe.contatto@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 70040-020 (Brazil)

    2017-05-10

    We propose a modified version of the Ginzburg–Landau energy functional admitting static solitons and determine all the Painlevé-integrable cases of its Bogomolny equations of a given class of models. Explicit solutions are determined in terms of the third Painlevé transcendents, allowing us to calculate physical quantities such as the vortex number and the vortex strength. These solutions can be interpreted as the usual Abelian-Higgs vortices on surfaces of non-constant curvature with conical singularity.

  9. Inertial mass of a superconducting vortex

    OpenAIRE

    Chudnovsky, E. M.; Kuklov, A. B.

    2003-01-01

    We show that a large contribution to the inertial mass of a moving superconducting vortex comes from transversal displacements of the crystal lattice. The corresponding part of the mass per unit length of the vortex line is $M_{l} = ({\\rm m}_e^2c^{2}/64{\\pi}{\\alpha}^{2}{\\mu}{\\lambda}_{L}^{4})\\ln({\\lambda}_{L}/{\\xi})$ , where ${\\rm m}_{e}$ is the the bare electron mass, $c$ is the speed of light, ${\\alpha}=e^{2}/{\\hbar}c {\\approx} 1/137$ is the fine structure constant, ${\\mu}$ is the shear mod...

  10. Cloud morphology and dynamics in Saturn's northern polar region

    Science.gov (United States)

    Antuñano, Arrate; del Río-Gaztelurrutia, Teresa; Sánchez-Lavega, Agustín; Rodríguez-Aseguinolaza, Javier

    2018-01-01

    We present a study of the cloud morphology and motions in the north polar region of Saturn, from latitude ∼ 70°N to the pole based on Cassini ISS images obtained between January 2009 and November 2014. This region shows a variety of dynamical structures: the permanent hexagon wave and its intense eastward jet, a large field of permanent ;puffy; clouds with scales from 10 - 500 km, probably of convective origin, local cyclone and anticyclones vortices with sizes of ∼1,000 km embedded in this field, and finally the intense cyclonic polar vortex. We report changes in the albedo of the clouds that delineate rings of circulation around the polar vortex and the presence of ;plume-like; activity in the hexagon jet, in both cases not accompanied with significant variations in the corresponding jets. No meridional migration is observed in the clouds forming and merging in the field of puffy clouds, suggesting that their mergers do not contribute to the maintenance of the polar vortex. Finally, we analyze the dominant growing modes for barotropic and baroclinic instabilities in the hexagon jet, showing that a mode 6 barotropic instability is dominant at the latitude of the hexagon.

  11. Vortex dynamics in Josephson junctions arrays

    International Nuclear Information System (INIS)

    Shalom, Diego Edgar

    2005-01-01

    In this work we study the dynamics of vortices in two-dimensional overdamped Josephson Junctions Arrays (JJA) driven by dc current in a wide range of conditions varying magnetic field and temperature using experiments, numerical simulations and analytic studies.We develop the Fixed Phase method, a variation of numeric relaxation techniques in which we fix and control the phase of some islands, adjacent to the vortex center, while allowing all other phases in the system to relax.In this way we are able to pull and push the vortex uphill, as we are forcing the center of rotation of the vortex currents to be in a defined location, allowing us to calculate the potential energy of a vortex located in any arbitrary position.We use this method to study the potential energy of a vortex in a variety of situations in homogeneous and non-homogeneous JJA, such as arrays with defects, channel arrays and ratchets.We study the finite size effects in JJA by means of analytic and numerical tools.We implement the rings model, in which we replace the two-dimensional square array by a series of square, concentric, uncoupled rings. This is equivalent to disregarding the radial junctions that couple consecutive rings.In spite of its extreme simplicity, this model holds the main ingredients of the magnetic dependence of the energy.We combine this model with other terms that take into account the dependence in the position of the vortex to obtain a general expression for the potential energy of a vortex in a finite JJA with applied magnetic field.We also present an expression for the first critical field, corresponding to the value of the magnetic field in which the entrance of the first vortex becomes energetically favorable.We build and study JJA modulated to form periodic and asymmetrical potentials for the vortices, named ratchet potentials.The experimental results clearly show the existence of a rectification in the motion of vortices in these potentials.Under certain conditions we

  12. Vortex Ring Extremization for Low Speed Maneuvering of Underwater Vehicles

    Science.gov (United States)

    Mohseni, Kamran

    2004-11-01

    Most attempts in underwater locomotion have been focused on propeller thrust generation or recently on flapping locomotion. However, new developments in autonomous and tethered underwater vehicles motivated closer look at the biomimetics of sea animals. To this end, Cephalopoda and jelly fish utilize pulsatile jets and vortex formation for locomotion. To avoid further complications with background flows, we focus on the formation of the leading vortex ring rather than a train of vortices. It is shown that a pinched-off vortex ring characterizes the extremum impulse accumulated by the leading vortex ring in vortex formation process. An appropriate scaling for vortex ring impulse is found and the limiting values of the non-dimensionalized impulses are established. An estimate for the non-dimensional impulses is provided by equating their values from the slug model with their values from a vortex in the Norbury family of vortices. For a vortex ring generator with constant kinetic energy and circulation generation rate, the pinched-off vortex ring has a maximum impulse of I_nd^E ≈ 11 normalized by the circulation and energy. On the other hand, for a vortex ring generator with constant rate of circulation generation at a constant translational velocity, a pinched-off vortex ring produces a minimum impulse of I_nd^Γ ≈ 0.12 normalized by the circulation and translational velocity. Direct numerical simulations of vortex ring formation and vortex ring pinch-off process are performed and the estimated values of the non-dimensionalized impulses are confirmed. These ideas are employed in designing a vortex jet generator for low speed maneuvering of underwater robots. The presented vortex generators are simple and low cost, they consume little valuable payload space, and they have no moving external parts. Experimental data are presented in support of the optimal formation number of 4 for maximum thrust generation.

  13. Political polarization

    OpenAIRE

    Dixit, Avinash K.; Weibull, Jörgen W.

    2007-01-01

    Failures of government policies often provoke opposite reactions from citizens; some call for a reversal of the policy, whereas others favor its continuation in stronger form. We offer an explanation of such polarization, based on a natural bimodality of preferences in political and economic contexts and consistent with Bayesian rationality.

  14. Political polarization.

    Science.gov (United States)

    Dixit, Avinash K; Weibull, Jörgen W

    2007-05-01

    Failures of government policies often provoke opposite reactions from citizens; some call for a reversal of the policy, whereas others favor its continuation in stronger form. We offer an explanation of such polarization, based on a natural bimodality of preferences in political and economic contexts and consistent with Bayesian rationality.

  15. High-charge and multiple-star vortex coronagraphy from stacked vector vortex phase masks.

    Science.gov (United States)

    Aleksanyan, Artur; Brasselet, Etienne

    2018-02-01

    Optical vortex phase masks are now installed at many ground-based large telescopes for high-contrast astronomical imaging. To date, such instrumental advances have been restricted to the use of helical phase masks of the lowest even order, while future giant telescopes will require high-order masks. Here we propose a single-stage on-axis scheme to create high-order vortex coronagraphs based on second-order vortex phase masks. By extending our approach to an off-axis design, we also explore the implementation of multiple-star vortex coronagraphy. An experimental laboratory demonstration is reported and supported by numerical simulations. These results offer a practical roadmap to the development of future coronagraphic tools with enhanced performances.

  16. DNS of droplet-vortex interaction with a Karman vortex street

    International Nuclear Information System (INIS)

    Burger, M.; Schmehl, R.; Koch, R.; Wittig, S.; Bauer, H.-J.

    2006-01-01

    Predicting fuel spray interaction with large scale vortex structures still is a major challenge for state-of-the-art CFD codes. In order to elucidate the mechanisms involved, a fundamental study has been carried out in which the interaction of water droplets with a Karman vortex street is investigated. The disperse two-phase flow around a cylinder has been computed taking into account the mass, momentum and heat transfer between both phases. Flow conditions are chosen such that large scale vortices are generated by periodic flow separations of the well known Karman vortex street. A homogeneous distribution of water droplets is injected into the hot air up-stream of the computational domain. The mixing process as well as the impact of the droplets on the gas phase instabilities is analyzed in the downstream region where large scale vortex structures are present

  17. Optimal Cross Hedging Winter Canola

    OpenAIRE

    Kim, Seon-Woong; Brorsen, B. Wade; Yoon, Byung-Sam

    2014-01-01

    Winter canola in the southern Great Plains has shown large price fluctuations and there have been questions about which futures market could be used to reduce price risk. Our results indicate that the optimal futures contract to cross hedge winter canola is soybean oil futures.

  18. Vortex Thermometry for Turbulent Two-Dimensional Fluids.

    Science.gov (United States)

    Groszek, Andrew J; Davis, Matthew J; Paganin, David M; Helmerson, Kristian; Simula, Tapio P

    2018-01-19

    We introduce a new method of statistical analysis to characterize the dynamics of turbulent fluids in two dimensions. We establish that, in equilibrium, the vortex distributions can be uniquely connected to the temperature of the vortex gas, and we apply this vortex thermometry to characterize simulations of decaying superfluid turbulence. We confirm the hypothesis of vortex evaporative heating leading to Onsager vortices proposed in Phys. Rev. Lett. 113, 165302 (2014)PRLTAO0031-900710.1103/PhysRevLett.113.165302, and we find previously unidentified vortex power-law distributions that emerge from the dynamics.

  19. Vortex Thermometry for Turbulent Two-Dimensional Fluids

    Science.gov (United States)

    Groszek, Andrew J.; Davis, Matthew J.; Paganin, David M.; Helmerson, Kristian; Simula, Tapio P.

    2018-01-01

    We introduce a new method of statistical analysis to characterize the dynamics of turbulent fluids in two dimensions. We establish that, in equilibrium, the vortex distributions can be uniquely connected to the temperature of the vortex gas, and we apply this vortex thermometry to characterize simulations of decaying superfluid turbulence. We confirm the hypothesis of vortex evaporative heating leading to Onsager vortices proposed in Phys. Rev. Lett. 113, 165302 (2014), 10.1103/PhysRevLett.113.165302, and we find previously unidentified vortex power-law distributions that emerge from the dynamics.

  20. Hybrid Vortex Method for the Aerodynamic Analysis of Wind Turbine

    Directory of Open Access Journals (Sweden)

    Hao Hu

    2015-01-01

    Full Text Available The hybrid vortex method, in which vortex panel method is combined with the viscous-vortex particle method (HPVP, was established to model the wind turbine aerodynamic and relevant numerical procedure program was developed to solve flow equations. The panel method was used to calculate the blade surface vortex sheets and the vortex particle method was employed to simulate the blade wake vortices. As a result of numerical calculations on the flow over a wind turbine, the HPVP method shows significant advantages in accuracy and less computation resource consuming. The validation of the aerodynamic parameters against Phase VI wind turbine experimental data is performed, which shows reasonable agreement.

  1. Summer climate of Madagascar and monsoon pulsing of its vortex

    Science.gov (United States)

    Jury, Mark R.

    2016-02-01

    This study analyzes the climate of Madagascar (12°-26°S, 43°-50°E) and its relation to the Indian Ocean during austral summer (Dec-Mar). Moisture converges onto a standing easterly wave and floods are prevalent in late summer. All-island daytime land temperatures exceed 38 °C in October and are ~4 °C above sea temperatures during summer. Analysis of thermally induced diurnal convection and circulation revealed inflow during the afternoon recirculated from the southeastern mountains and the warm Mozambique Channel. Summer rainfall follows latent and sensible heat flux during the first half of the day, and gains a surplus by evening via thunderstorms over the western plains. At the inter-annual time-scale, 2.3 years oscillations in all-island rainfall appear linked with the stratospheric quasi-biennial oscillation and corresponding 80 Dobson Unit ozone fluctuations during flood events. Wet spells at frequencies from 11-27 days derive from locally-formed tropical cyclones and NW-cloud bands. Flood case studies exhibit moisture recycling in the confluence zone between the sub-tropical anticyclone and the lee-side vortex. Hovmoller analysis of daily rainfall reinforces the concept of local generation and pulsing by cross-equatorial (Indian winter) monsoon flow rather than zonal atmospheric waves. Since the surface water budget is critical to agriculture in Madagascar, this study represents a further step to understand its meso-scale summer climate.

  2. Superconducting vortex pinning with artificial magnetic nanostructures.

    Energy Technology Data Exchange (ETDEWEB)

    Velez, M.; Martin, J. I.; Villegas, J. E.; Hoffmann, A.; Gonzalez, E. M.; Vicent, J. L.; Schuller, I. K.; Univ. de Oviedo-CINN; Unite Mixte de Physique CNRS/Thales; Univ. Paris-Sud; Univ.Complutense de Madrid; Univ. California at San Diego

    2008-11-01

    This review is dedicated to summarizing the recent research on vortex dynamics and pinning effects in superconducting films with artificial magnetic structures. The fabrication of hybrid superconducting/magnetic systems is presented together with the wide variety of properties that arise from the interaction between the superconducting vortex lattice and the artificial magnetic nanostructures. Specifically, we review the role that the most important parameters in the vortex dynamics of films with regular array of dots play. In particular, we discuss the phenomena that appear when the symmetry of a regular dot array is distorted from regularity towards complete disorder including rectangular, asymmetric, and aperiodic arrays. The interesting phenomena that appear include vortex-lattice reconfigurations, anisotropic dynamics, channeling, and guided motion as well as ratchet effects. The different regimes are summarized in a phase diagram indicating the transitions that take place as the characteristic distances of the array are modified respect to the superconducting coherence length. Future directions are sketched out indicating the vast open area of research in this field.

  3. Vortex breakdown in a truncated conical bioreactor

    DEFF Research Database (Denmark)

    Balci, Adnan; Brøns, Morten; Herrada, Miguel A.

    2015-01-01

    . It is found that the sidewall convergence (divergence) from the top to the bottom stimulates (suppresses) the development of vortex breakdown (VB) in both water and air. At α = 60°, the flow topology changes eighteen times as Hw varies. The changes are due to (a) competing effects of AMF (the air meridional...

  4. Three-dimensional supersonic vortex breakdown

    Science.gov (United States)

    Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.

    1993-01-01

    Three-dimensional supersonic vortex-breakdown problems in bound and unbound domains are solved. The solutions are obtained using the time-accurate integration of the unsteady, compressible, full Navier-Stokes (NS) equations. The computational scheme is an implicit, upwind, flux-difference splitting, finite-volume scheme. Two vortex-breakdown applications are considered in the present paper. The first is for a supersonic swirling jet which is issued from a nozzle into a supersonic uniform flow at a lower Mach number than that of the swirling jet. The second is for a supersonic swirling flow in a configured circular duct. In the first application, an extensive study of the effects of grid fineness, shape and grid-point distribution on the vortex breakdown is presented. Four grids are used in this study and they show a substantial dependence of the breakdown bubble and shock wave on the grid used. In the second application, the bubble-type and helix-type vortex breakdown have been captured.

  5. On open-quotes Vortex breakdownclose quotes

    International Nuclear Information System (INIS)

    Shmyglevskii, Yu.D.

    1995-01-01

    The well-known investigations of vortex breakdown are supplemented with an exact analytic representation of this phenomenon on the basis of the complete Navier-Stokes equations for the case of a potential swirl of the input flow about the axis of symmetry

  6. Vortex Cloud Street during AMTEX 75

    DEFF Research Database (Denmark)

    Jensen, Niels Otto; Agee, E. M.

    1978-01-01

    Strong northerly flow across Cheju Island, Korea, during the 1975 Air Mass Transformation Experiment (AMTEX 75) resulted in a pronounced vortex cloud street to the lee of the island on February 17 1975. This pattern has been studied and explained in terms of classical von Karman eddies shed...

  7. Revealing the radial modes in vortex beams

    CSIR Research Space (South Africa)

    Sephton, Bereneice C

    2016-10-01

    Full Text Available is neglected in this generation approach. Here, we show that a consequence of this is that vortex beams carry very little energy in the desired zeroth radial order, as little as only a few percent of the incident power. We demonstrate this experimentally...

  8. Point vortex dynamics: A classical mathematics playground

    DEFF Research Database (Denmark)

    Aref, Hassan

    2007-01-01

    the integrability of the three-vortex problem, the interplay of relative equilibria of identical vortices and the roots of certain polynomials, addition formulas for the cotangent and the Weierstrass zeta function, projective geometry, and other topics. The hope and intent of the article is to garner further...

  9. Wake Vortex Avoidance System and Method

    Science.gov (United States)

    Shams, Qamar A. (Inventor); Zuckerwar, Allan J. (Inventor); Knight, Howard K. (Inventor)

    2017-01-01

    A wake vortex avoidance system includes a microphone array configured to detect low frequency sounds. A signal processor determines a geometric mean coherence based on the detected low frequency sounds. A display displays wake vortices based on the determined geometric mean coherence.

  10. Iterative Brinkman penalization for remeshed vortex methods

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Koumoutsakos, Petros; Leonard, Anthony

    2015-01-01

    We introduce an iterative Brinkman penalization method for the enforcement of the no-slip boundary condition in remeshed vortex methods. In the proposed method, the Brinkman penalization is applied iteratively only in the neighborhood of the body. This allows for using significantly larger time...

  11. Vortex identification: new requirements and limitations

    Czech Academy of Sciences Publication Activity Database

    Kolář, Václav

    2007-01-01

    Roč. 28, č. 4 (2007), s. 638-652 ISSN 0142-727X R&D Projects: GA AV ČR IAA2060302 Institutional research plan: CEZ:AV0Z20600510 Keywords : vortex identification * vorticity decomposition * decomposition of motion Subject RIV: BK - Fluid Dynamics Impact factor: 1.283, year: 2007

  12. Vortex wakes of a flapping foil

    DEFF Research Database (Denmark)

    Schnipper, Teis; Andersen, Anders Peter; Bohr, Tomas

    2009-01-01

    We present an experimental study of a symmetric foil performing pitching oscillations in a vertically flowing soap film. By varying the frequency and amplitude of the oscillation we visualize a variety of wakes with up to 46 vortices per oscillation period, including von Karman vortex street, inv...

  13. Vortex lattice melting, pinning and kinetics

    International Nuclear Information System (INIS)

    Doniach, S.; Ryu, S.; Kapitulnik, A.

    1994-01-01

    The phenomenology of the high T c superconductors is discussed both at the level of the thermodynamics of melting of the Abrikosov flux lattice and in terms of the melting and kinetics of the flux lattice for a pinned system. The authors review results on 3D melting obtained by a Monte Carlo simulation approach in which the 2D open-quotes pancakeclose quotes vortices are treated as statistical variables. The authors discuss pinning in the context of the strong pinning regime in which the vortex density given in terms of the applied field B is small compared to that represented by an effective field B pin measuring the pinning center density. The authors introduce a new criterion for the unfreezing of a vortex glass on increase of magnetic field or temperature, in the strong pinning, small field unit. The authors model this limit in terms of a single flux line interacting with a columnar pin. This model is studied both analytically and by computer simulation. By applying a tilt potential, the authors study the kinetics of the vortex motion in an external current and show that the resulting current-voltage characteristic follows a basic vortex glass-like scaling relation in the vicinity of the depinning transition

  14. Hexatic vortex glass in disordered superconductors

    International Nuclear Information System (INIS)

    Chudnovsky, E.M.

    1989-01-01

    It is shown that interaction of the flux-line lattice with randomly arranged pinning centers should destroy the long-range positional order in the lattice, but not the long-range orientational order. A new phase: hexatic vortex glass, is suggested for the mixed state of disordered, type-II superconductors. Relevance to amorphous and high-T c superconductors is discussed

  15. Vortex formation with a snapping shrimp claw.

    Directory of Open Access Journals (Sweden)

    David Hess

    Full Text Available Snapping shrimp use one oversized claw to generate a cavitating high speed water jet for hunting, defence and communication. This work is an experimental investigation about the jet generation. Snapping shrimp (Alpheus-bellulus were investigated by using an enlarged transparent model reproducing the closure of the snapper claw. Flow inside the model was studied using both High-Speed Particle Image Velocimetry (HS-PIV and flow visualization. During claw closure a channel-like cavity was formed between the plunger and the socket featuring a nozzle-type contour at the orifice. Closing the mechanism led to the formation of a leading vortex ring with a dimensionless formation number of approximate ΔT*≈4. This indicates that the claw might work at maximum efficiency, i.e. maximum vortex strength was achieved by a minimum of fluid volume ejected. The subsequent vortex cavitation with the formation of an axial reentrant jet is a reasonable explanation for the large penetration depth of the water jet. That snapping shrimp can reach with their claw-induced flow. Within such a cavitation process, an axial reentrant jet is generated in the hollow cylindrical core of the cavitated vortex that pushes the front further downstream and whose length can exceed the initial jet penetration depth by several times.

  16. Vortex formation with a snapping shrimp claw.

    Science.gov (United States)

    Hess, David; Brücker, Christoph; Hegner, Franziska; Balmert, Alexander; Bleckmann, Horst

    2013-01-01

    Snapping shrimp use one oversized claw to generate a cavitating high speed water jet for hunting, defence and communication. This work is an experimental investigation about the jet generation. Snapping shrimp (Alpheus-bellulus) were investigated by using an enlarged transparent model reproducing the closure of the snapper claw. Flow inside the model was studied using both High-Speed Particle Image Velocimetry (HS-PIV) and flow visualization. During claw closure a channel-like cavity was formed between the plunger and the socket featuring a nozzle-type contour at the orifice. Closing the mechanism led to the formation of a leading vortex ring with a dimensionless formation number of approximate ΔT*≈4. This indicates that the claw might work at maximum efficiency, i.e. maximum vortex strength was achieved by a minimum of fluid volume ejected. The subsequent vortex cavitation with the formation of an axial reentrant jet is a reasonable explanation for the large penetration depth of the water jet. That snapping shrimp can reach with their claw-induced flow. Within such a cavitation process, an axial reentrant jet is generated in the hollow cylindrical core of the cavitated vortex that pushes the front further downstream and whose length can exceed the initial jet penetration depth by several times.

  17. Size dependence of vortex-type spin torque oscillation in a Co2Fe0.4Mn0.6Si Heusler alloy disk

    Science.gov (United States)

    Seki, T.; Kubota, T.; Yamamoto, T.; Takanashi, K.

    2018-02-01

    This paper reports the systematic investigation of vortex-type spin torque oscillation in circular disks of highly spin-polarized Co2Fe0.4Mn0.6Si (CFMS) Heusler alloys. We fabricated the current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices with various disk diameters (D) using the layer stack of CFMS/Ag3Mg/CFMS. The gyrotropic motion of the vortex core was successfully excited for the CFMS circular disks with 0.2 µm  ⩽  D  ⩽  0.3 µm. The CPP-GMR device with D  =  0.2 µm exhibited the Q factor of more than 5000 and the large output power of 0.4 nW owing to the high coherency of vortex dynamics and the high spin-polarization of CFMS. However, the Q factor was remarkably decreased as D was reduced from 0.2 µm to 0.14 µm. The comparison with the calculated resonance frequencies suggested that this degradation of the Q factor was due to the transition of the oscillation mode from the vortex mode to other modes such as the low-coherent out-of-plane precession mode. The present experimental results also suggest that there exists an adequate disk size for the enhanced Q factor of the vortex-type spin torque oscillation.

  18. Vortex and half-vortex dynamics in a nonlinear spinor quantum fluid.

    Science.gov (United States)

    Dominici, Lorenzo; Dagvadorj, Galbadrakh; Fellows, Jonathan M; Ballarini, Dario; De Giorgi, Milena; Marchetti, Francesca M; Piccirillo, Bruno; Marrucci, Lorenzo; Bramati, Alberto; Gigli, Giuseppe; Szymańska, Marzena H; Sanvitto, Daniele

    2015-12-01

    Vortices are archetypal objects that recur in the universe across the scale of complexity, from subatomic particles to galaxies and black holes. Their appearance is connected with spontaneous symmetry breaking and phase transitions. In Bose-Einstein condensates and superfluids, vortices are both point-like and quantized quasiparticles. We use a two-dimensional (2D) fluid of polaritons, bosonic particles constituted by hybrid photonic and electronic oscillations, to study quantum vortex dynamics. Polaritons benefit from easiness of wave function phase detection, a spinor nature sustaining half-integer vorticity, strong nonlinearity, and tuning of the background disorder. We can directly generate by resonant pulsed excitations a polariton condensate carrying either a full or half-integer vortex as initial condition and follow their coherent evolution using ultrafast imaging on the picosecond scale. The observations highlight a rich phenomenology, such as the spiraling of the half-vortex and the joint path of the twin charges of a full vortex, until the moment of their splitting. Furthermore, we observe the ordered branching into newly generated secondary couples, associated with the breaking of radial and azimuthal symmetries. This allows us to devise the interplay of nonlinearity and sample disorder in shaping the fluid and driving the vortex dynamics. In addition, our observations suggest that phase singularities may be seen as fundamental particles whose quantized events span from pair creation and recombination to 2D+t topological vortex strings.

  19. Numerical investigation of vortex shedding and vortex-induced vibration for flexible riser models

    Directory of Open Access Journals (Sweden)

    Zheng-Shou Chen

    2010-06-01

    Full Text Available The numerical study about the vortex-induced vibration and vortex shedding in the wake has been presented. Prior to the numerical simulation of flexible riser systems concerning engineering conditions, efficiency validating of the proposed FSI solution method have been performed. The comparison between numerical simulation and published experimental data shows that the CFD method designed for FSI solution could give acceptable result for the VIV prediction of flexible riser/pipe system. As meaningful study on VIV and vortex shedding mode with the focus on flexible riser model systems, two kinds of typical simulation cases have been carried out. One was related to the simulation of vortex visualization in the wake for a riser model subject to forced oscillation, and another was related to the simulation of fluid-structure interaction between the pipes of coupled multi-assembled riser system. The result from forced oscillation simulation shows that the vortex-induced vibration with high response frequency but small instantaneous vibration amplitude contributes to vortex conformation as much as the forced oscillation with large normalized amplitude does, when the frequency of forced oscillation was relatively high. In the multi-assembled riser systems, it has been found that the external current velocity and the distance between two pipes are the critical factors to determine the vibration state and the steady vibration state emerging in quad-pipe system may be destroyed more easily than dual-pipe system.

  20. The oceanography of winter leads

    Science.gov (United States)

    Morison, J. H.; McPhee, M. G.; Curtin, T. B.; Paulson, C. A.

    1992-07-01

    Leads in pack ice have long been considered important to the thermodynamics of the polar regions. A winter lead affects the ocean around it because it is a density source. As the surface freezes, salt is rejected and forms more dense water which sinks under the lead. This sets up a circulation with freshwater flowing in from the sides near the surface and dense water flowing away from the lead at the base of the mixed layer. If the mixed layer is fully turbulent, this pattern may not occur; rather, the salt rejected at the surface may simply mix into the surface boundary layer. In either event the instability produced at the surface of leads is the primary source of unstable buoyancy flux and, as such, exerts a strong influence on the mixed layer. Here as many as possible of the disparate and almost anecdotal observations of lead oceanography are assembled and combined with theoretical arguments to predict the form and scale of oceanographic disturbances caused by winter leads. The experimental data suggest the velocity disturbances associated with lead convection are about 1-5 cm s-1. These appear as jets near the surface and the base of the mixed layer when ice velocities across the lead are less than about 5 cm s-1. The salinity disturbances are about 0.01 to 0.05 psu. Scaling arguments suggest that the geostrophic currents set up by the lead density disturbances are also of the order of 1-5 cm s-1. The disturbances are most obvious when freezing is rapid and ice velocity is low because the salinity and velocity disturbances in the upper ocean are not smeared out by turbulence. In this vein, lead convection may be characterized at one extreme as free convection in which the density disturbance forces the circulation. At the other extreme, lead convection may be characterized as forced convection in which the density disturbance is mixed rapidly by boundary layer turbulence. The lead number Lo, which is the ratio of the pressure term to the turbulence term in the

  1. On the evolution of vortex rings with swirl

    International Nuclear Information System (INIS)

    Naitoh, Takashi; Okura, Nobuyuki; Gotoh, Toshiyuki; Kato, Yusuke

    2014-01-01

    A laminar vortex ring with swirl, which has the meridional velocity component inside the vortex core, was experimentally generated by the brief fluid ejection from a rotating outlet. The evolution of the vortex ring was investigated with flow visualizations and particle image velocimetry measurements in order to find the influence of swirling flow in particular upon the transition to turbulence. Immediately after the formation of a vortex ring with swirl, a columnar strong vortex along the symmetric axis is observed in all cases of the present experiment. Then the characteristic fluid discharging from a vortex ring with swirl referred to as “peeling off” appears. The amount of discharging fluid due to the “peeling off” increases with the angular velocity of the rotating outlet. We conjectured that the mechanism generating the “peeling off” is related to the columnar strong vortex by close observations of the spatio-temporal development of the vorticity distribution and the cutting 3D images constructed from the successive cross sections of a vortex ring. While a laminar vortex ring without swirl may develop azimuthal waves around its circumference at some later time and the ring structure subsequently breaks, the swirling flow in a vortex ring core reduces the amplification rate of the azimuthal wavy deformation and preserved its ring structure. Then the traveling distance of a vortex ring can be extended using the swirl flow under certain conditions

  2. Flexoelectricity and the polarity of complex ferroelastic twin patterns

    Science.gov (United States)

    Salje, Ekhard K. H.; Li, Suzhi; Stengel, Massimiliano; Gumbsch, Peter; Ding, Xiangdong

    2016-07-01

    We study, by means of an atomistic toy model, the interplay of ferroelastic twin patterns and electrical polarization. Our molecular dynamics simulations reproduce polarity in straight twin walls as observed experimentally. We show, by making contact with continuum theory, that the effect is governed by linear flexoelectricity. Complex twin patterns, with very high densities of kinks and/or junctions, produce winding structures in the dipolar field, which are reminiscent of polarization vortices. By means of a "cold shearing" technique, we produce patches with high vortex densities; these unexpectedly show a net macroscopic polarization even if neither the original sample nor the applied mechanical perturbation breaks inversion symmetry by itself. These results may explain some puzzling experimental observations of "parasitic" polarity in the paraelectric phase of BaTi O3 and LaAl O3 .

  3. The organized nature of a turbulent trailing vortex

    Science.gov (United States)

    Bandyopadhyay, Promode R.; Ash, Robert L.; Stead, Daniel J.

    1990-01-01

    The turbulence structure of a trailing vortex produced at the juncture of a flow aligned cylinder and a pair of oppositely loaded airfoils is analyzed. The freestream turbulence intensity in this study varies from 0.32 to 1.48 percent, the vortex Reynold number varies from 15000 to 25000, and the Rossby number varies from 0.65 to 0.81. Within this parameter range, it is shown that the screens, but not the freestream turbulence level, are able to produce significant variations in the turbulence structure of the vortex, and that the turbulent structure is determined by the Rossby number and not the vortex Reynolds number. It is noted that the core is dynamic and an organized exchange of momentum takes place between the outer flow and the core region of the vortex. The vortex structure in the trailing vortex having the lowest Rossby number is considered.

  4. Winter fuels report

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-04

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition, underground storage, and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil price comparisons for the United States and selected cities; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. The data will also be available electronically after 5:00 p.m. on Thursday during the heating season through the EIA Electronic Publication System (EPUB). 12 tabs.

  5. Klaus Winter (1930 - 2015)

    CERN Multimedia

    2015-01-01

    We learned with great sadness that Klaus Winter passed away on 9 February 2015, after a long illness.   Klaus was born in 1930 in Hamburg, where he obtained his diploma in physics in 1955. From 1955 to 1958 he held a scholarship at the Collège de France, where he received his doctorate in nuclear physics under the guidance of Francis Perrin. Klaus joined CERN in 1958, where he first participated in experiments on π+ and K0 decay properties at the PS, and later became the spokesperson of the CHOV Collaboration at the ISR. Starting in 1976, his work focused on experiments with the SPS neutrino beam. In 1984 he joined Ugo Amaldi to head the CHARM experiment, designed for detailed studies of the neutral current interactions of high-energy neutrinos, which had been discovered in 1973 using the Gargamelle bubble chamber at the PS. The unique feature of the detector was its target calorimeter, which used large Carrara marble plates as an absorber material. From 1984 to 1991, Klau...

  6. Winter fuels report

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-13

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s, as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  7. A New Dark Vortex on Neptune

    Science.gov (United States)

    Wong, Michael H.; Tollefson, Joshua; Hsu, Andrew I.; de Pater, Imke; Simon, Amy A.; Hueso, Ricardo; Sánchez-Lavega, Agustín; Sromovsky, Lawrence; Fry, Patrick; Luszcz-Cook, Statia; Hammel, Heidi; Delcroix, Marc; de Kleer, Katherine; Orton, Glenn S.; Baranec, Christoph

    2018-03-01

    An outburst of cloud activity on Neptune in 2015 led to speculation about whether the clouds were convective in nature, a wave phenomenon, or bright companions to an unseen dark vortex (similar to the Great Dark Spot studied in detail by Voyager 2). The Hubble Space Telescope (HST) finally answered this question by discovering a new dark vortex at 45 degrees south planetographic latitude, named SDS-2015 for “southern dark spot discovered in 2015.” SDS-2015 is only the fifth dark vortex ever seen on Neptune. In this paper, we report on imaging of SDS-2015 using HST’s Wide Field Camera 3 across four epochs: 2015 September, 2016 May, 2016 October, and 2017 October. We find that the size of SDS-2015 did not exceed 20 degrees of longitude, more than a factor of two smaller than the Voyager dark spots, but only slightly smaller than previous northern-hemisphere dark spots. A slow (1.7–2.5 deg/year) poleward drift was observed for the vortex. Properties of SDS-2015 and its surroundings suggest that the meridional wind shear may be twice as strong at the deep level of the vortex as it is at the level of cloud-tracked winds. Over the 2015–2017 period, the dark spot’s contrast weakened from about -7 % to about -3 % , while companion clouds shifted from offset to centered, a similar evolution to some historical dark spots. The properties and evolution of SDS-2015 highlight the diversity of Neptune’s dark spots and the need for faster cadence dark spot observations in the future.

  8. Optical vortex symmetry breakdown and decomposition of the orbital angular momentum of light beams.

    Science.gov (United States)

    Bekshaev, A Ya; Soskin, M S; Vasnetsov, M V

    2003-08-01

    Two forms of the transverse energy circulation within plane-polarized paraxial light beams are specified: one inherent in wave-front singularities (optical vortices) and the other peculiar to astigmatism and asymmetry of beams with a smooth wave front. As quantitative measures of these energy flow components, the concepts of vortex and asymmetry parts of a beam's orbital angular momentum are introduced and their definitions are proposed on the basis of beam intensity moments. The properties and physical meaning of these concepts are analyzed, and their use for the study of transformations of optical vortices is demonstrated.

  9. Ultrafast magnetic vortex core switching driven by the topological inverse Faraday effect.

    Science.gov (United States)

    Taguchi, Katsuhisa; Ohe, Jun-ichiro; Tatara, Gen

    2012-09-21

    We present a theoretical discovery of an unconventional mechanism of inverse Faraday effect which acts selectively on topological magnetic structures. The effect, topological inverse Faraday effect, is induced by the spin Berry's phase of the magnetic structure when a circularly polarized light is applied. Thus a spin-orbit interaction is not necessary unlike that in the conventional inverse Faraday effect. We demonstrate by numerical simulation that topological inverse Faraday effect realizes ultrafast switching of a magnetic vortex within a switching time of 150 ps without magnetic field.

  10. Diurnal and seasonal occurrence of polar patches

    Directory of Open Access Journals (Sweden)

    A. S. Rodger

    1996-05-01

    Full Text Available Analysis of the diurnal and seasonal variation of polar patches, as identified in two years of HF-radar data from Halley, Antarctica during a period near sunspot maximum, shows that there is a broad maximum in occurrence centred about magnetic noon, not local noon. There are minima in occurrence near midsummer and midwinter, with maxima in occurrence between equinox and winter. There are no significant correlations between the occurrence of polar patches and the corresponding hourly averages of the solar wind and IMF parameters, except that patches usually occur when the interplanetary magnetic field has a southward component. The results can be understood in terms of UT and seasonal differences in the plasma concentration being convected from the dayside ionosphere into the polar cap. In summer and winter the electron concentrations in the polar cap are high and low, respectively, but relatively unstructured. About equinox, a tongue of enhanced ionisation is convected into the polar cap; this tongue is then structured by the effects of the interplanetary magnetic field, but these Halley data cannot be used to separate the various competing mechanisms for patch formation. The observed diurnal and seasonal variation in the occurrence of polar patches are largely consistent with predictions of Sojka et al. (1994 when their results are translated into the southern hemisphere. However, the ionospheric effects of flux transfer events are still considered essential in their formation, a feature not yet included in the Sojka et al. model.

  11. Persistence of metastable vortex lattice domains in MgB2 in the presence of vortex motion.

    Science.gov (United States)

    Rastovski, C; Schlesinger, K J; Gannon, W J; Dewhurst, C D; DeBeer-Schmitt, L; Zhigadlo, N D; Karpinski, J; Eskildsen, M R

    2013-09-06

    Recently, extensive vortex lattice metastability was reported in MgB2 in connection with a second-order rotational phase transition. However, the mechanism responsible for these well-ordered metastable vortex lattice phases is not well understood. Using small-angle neutron scattering, we studied the vortex lattice in MgB2 as it was driven from a metastable to the ground state through a series of small changes in the applied magnetic field. Our results show that metastable vortex lattice domains persist in the presence of substantial vortex motion and directly demonstrate that the metastability is not due to vortex pinning. Instead, we propose that it is due to the jamming of counterrotated vortex lattice domains which prevents a rotation to the ground state orientation.

  12. Winter Safety Tips for Older Adults

    Science.gov (United States)

    Winter Safety Tips for Older Adults Expert Information from Healthcare Professionals Who Specialize in the Care of ... thick clothing. Think about getting your thermals! –Essential winter wears: hats, gloves or preferably mittens, winter coat, ...

  13. Essential Outdoor Sun Safety Tips for Winter

    Science.gov (United States)

    ... Vitamin D Essential Outdoor Sun Safety Tips for Winter Winter sports enthusiasts are at increased risk for overexposure ... associated with sun exposure. "It's easy to associate winter with frostbite and windburn, but most people are ...

  14. On vortex shedding and prediction of vortex-induced vibrations of circular cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Halse, Karl Henning

    1997-12-31

    In offshore installations, many crucial components can be classified as slender marine structures: risers, mooring lines, umbilicals and cables, pipelines. This thesis studies the vortex shedding phenomenon and the problem of predicting vortex-induced vibrations of such structures. As the development of hydrocarbons move to deeper waters, the importance of accurately predicting the vortex-induced response has increased and so the need for proper response prediction methods is large. This work presents an extensive review of existing research publications about vortex shedding from circular cylinders and the vortex-induced vibrations of cylinders and the different numerical approaches to modelling the fluid flow. The response predictions from different methods are found to disagree, both in response shapes and in vibration amplitudes. This work presents a prediction method that uses a fully three-dimensional structural finite element model integrated with a laminar two-dimensional Navier-Stokes solution modelling the fluid flow. This solution is used to study the flow both around a fixed cylinder and in a flexibly mounted one-degree-of-freedom system. It is found that the vortex-shedding process (in the low Reynolds number regime) is well described by the computer program, and that the vortex-induced vibration of the flexibly mounted section do reflect the typical dynamic characteristics of lock-in oscillations. However, the exact behaviour of the experimental results found in the literature was not reproduced. The response of the three-dimensional structural model is larger than the expected difference between a mode shape and a flexibly mounted section. This is due to the use of independent hydrodynamic sections along the cylinder. The predicted response is not unrealistic, and the method is considered a powerful tool. 221 refs., 138 figs., 36 tabs.

  15. On the statistical connection between tropospheric and stratospheric circulation of the northern hemisphere in winter

    International Nuclear Information System (INIS)

    Perlwitz, J.; Graf, H.F.

    1994-01-01

    The associated anomaly patterns of the stratospheric geopotential height field and the tropospheric geopotential and temperature height fields of the northern hemisphere are determined applying the Canonical Correlation Analysis (CCA). With this linear multivariate technique the coupled modes of variability of time series of two fields are isolated in the EOF space. The one data set is the 50 hPa geopotential field, the other set consists of different height fields of the tropospheric pressure levels (200 hPa, 500 hPa, 700 hPa, 850 hPa) and the temperature of the 850 hPa pressure level. For the winter months (December, January, February) two natural coupled modes, a barotropic and a baroclinic one, of linear relationship between stratospheric and tropospheric circulation are found. The baroclinic mode describes a connection between the strength of the stratospheric cyclonic winter vortex and the tropospheric circulation over the North Atlantic. The corresponding temperature pattern for an anomalously strong stratospheric cyclonic vortex is characterized by positive temperature anomalies over higher latitudes of Eurasia. These 'Winter Warmings' are observed e.g. after violent volcanic eruptions. The barotropic mode is characterized by a zonal wave number one in the lower stratosphere and by a PNA-like pattern in the troposphere. It was shown by Labitzke and van Loon (1987) that this mode can be enhanced e.g. by El Ninos via the intensification of the Aleutian low. (orig.)

  16. Winter/Summer Monsoon Experiment

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Winter/Summer Monsoon Experiment (MONEX) was conducted during the First Global GARP (Global Atmospheric Research Program) Experiment (FGGE). An international...

  17. The meaning of nuclear winter

    International Nuclear Information System (INIS)

    Geiger, H.J.

    1987-01-01

    In this paper the author reviews the history and origins of the basic ideas underlying nuclear winter; and findings and predictions of several groups regarding this topic. The author reviews some of the further developments and scientific analyses regarding nuclear winter since the initial announcements of 1983, touching on some of the revisions and controversies and trying to indicate the current status of the field

  18. The horseshoe vortex and vortex shedding around a vertical wall-mounted cylinder exposed to waves

    Science.gov (United States)

    Sumer, B. M.; Christiansen, N.; Fredsøe, J.

    1997-02-01

    This study concerns the flow around the base of a vertical, wall-mounted cylinder a pile exposed to waves. The study comprises (i) flow visualization of horseshoe-vortex flow in front of and the lee-wake-vortex flow behind the pile and (ii) bed shear stress measurements around the pile conducted in a wave flume, plus supplementary bed shear stress measurements carried out in an oscillatory-flow water tunnel. The Reynolds number range of the flume experiments is ReD = (2[minus sign]9) × 103 and that of the tunnel experiments is ReD = 103[minus sign]5 × 104, in which ReD is based on the pile size. Steady-current tests were also carried out for reference. The horseshoe-vortex flow (like lee-wake-vortex flow) is governed primarily by the Keulegan Carpenter number, KC. The range of KC was from 0 to about 25 in the flume experiments, and from 4 to 120 in the tunnel experiments. The experiments were conducted mainly with circular piles. The results indicate that no horseshoe vortex exists for KC one, the circular-pile result being between the two. The influence of a superimposed current on the horseshoe vortex was also investigated. The range of the current-to-wave-induced-velocity ratio, Uc/Um, was from 0 to about 0.8. The overall effect of the superimposed current is to increase the size and lifespan of the horseshoe vortex. This effect increases with increasing Uc/Um. Regarding the near-bed lee-wake flow, the flow regimes observed for the two-dimensional free-cylinder case exist for the present case, too, but with one exception: in the present case, no transverse vortex street was observed in the so-called single-pair regime. The results show that the bed shear stress beneath the horseshoe vortex and in the lee-wake area is heavily influenced by KC. The amplification of the bed shear stress with respect to its undisturbed value is maximum (O(4)) at the side edges of the pile, in contrast to what occurs in steady currents where the maximum occurs at an angle of about

  19. Numerical study of the vortex tube reconnection using vortex particle method on many graphics cards

    Science.gov (United States)

    Kudela, Henryk; Kosior, Andrzej

    2014-08-01

    Vortex Particle Methods are one of the most convenient ways of tracking the vorticity evolution. In the article we presented numerical recreation of the real life experiment concerning head-on collision of two vortex rings. In the experiment the evolution and reconnection of the vortex structures is tracked with passive markers (paint particles) which in viscous fluid does not follow the evolution of vorticity field. In numerical computations we showed the difference between vorticity evolution and movement of passive markers. The agreement with the experiment was very good. Due to problems with very long time of computations on a single processor the Vortex-in-Cell method was implemented on the multicore architecture of the graphics cards (GPUs). Vortex Particle Methods are very well suited for parallel computations. As there are myriads of particles in the flow and for each of them the same equations of motion have to be solved the SIMD architecture used in GPUs seems to be perfect. The main disadvantage in this case is the small amount of the RAM memory. To overcome this problem we created a multiGPU implementation of the VIC method. Some remarks on parallel computing are given in the article.

  20. Supersonic quasi-axisymmetric vortex breakdown

    Science.gov (United States)

    Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.

    1991-01-01

    An extensive computational study of supersonic quasi-axisymmetric vortex breakdown in a configured circular duct is presented. The unsteady, compressible, full Navier-Stokes (NS) equations are used. The NS equations are solved for the quasi-axisymmetric flows using an implicit, upwind, flux difference splitting, finite volume scheme. The quasi-axisymmetric solutions are time accurate and are obtained by forcing the components of the flowfield vector to be equal on two axial planes, which are in close proximity of each other. The effect of Reynolds number, for laminar flows, on the evolution and persistence of vortex breakdown, is studied. Finally, the effect of swirl ration at the duct inlet is investigated.

  1. Three-Phased Wake Vortex Decay

    Science.gov (United States)

    Proctor, Fred H.; Ahmad, Nashat N.; Switzer, George S.; LimonDuparcmeur, Fanny M.

    2010-01-01

    A detailed parametric study is conducted that examines vortex decay within turbulent and stratified atmospheres. The study uses a large eddy simulation model to simulate the out-of-ground effect behavior of wake vortices due to their interaction with atmospheric turbulence and thermal stratification. This paper presents results from a parametric investigation and suggests improvements for existing fast-time wake prediction models. This paper also describes a three-phased decay for wake vortices. The third phase is characterized by a relatively slow rate of circulation decay, and is associated with the ringvortex stage that occurs following vortex linking. The three-phased decay is most prevalent for wakes imbedded within environments having low-turbulence and near-neutral stratification.

  2. Vortex Generators to Control Boundary Layer Interactions

    Science.gov (United States)

    Babinsky, Holger (Inventor); Loth, Eric (Inventor); Lee, Sang (Inventor)

    2014-01-01

    Devices for generating streamwise vorticity in a boundary includes various forms of vortex generators. One form of a split-ramp vortex generator includes a first ramp element and a second ramp element with front ends and back ends, ramp surfaces extending between the front ends and the back ends, and vertical surfaces extending between the front ends and the back ends adjacent the ramp surfaces. A flow channel is between the first ramp element and the second ramp element. The back ends of the ramp elements have a height greater than a height of the front ends, and the front ends of the ramp elements have a width greater than a width of the back ends.

  3. Coherent vortex structures in fluids and plasmas

    CERN Document Server

    Tur, Anatoli

    2017-01-01

    This monograph introduces readers to the hydrodynamics of vortex formation, and reviews the last decade of active research in the field, offering a unique focus on research topics at the crossroads of traditional fluids and plasmas. Vortices are responsible for the process of macroscopic transport of momentum, energy and mass, and are formed as the result of spontaneous self-organization. Playing an important role in nature and technology, localized, coherent vortices are regularly observed in shear flows, submerged jets, afterbody flows and in atmospheric boundary layers, sometimes taking on the form of vortex streets. In addition, the book addresses a number of open issues, including but not limited to: which singularities are permitted in a 2D Euler equation besides point vortices? Which other, even more complex, localized vortices could be contained in the Euler equation? How do point vortices interact with potential waves?

  4. Geometric symmetries in superfluid vortex dynamics

    Science.gov (United States)

    Kozik, Evgeny; Svistunov, Boris

    2010-10-01

    Dynamics of quantized vortex lines in a superfluid feature symmetries associated with the geometric character of the complex-valued field, w(z)=x(z)+iy(z) , describing the instant shape of the line. Along with a natural set of Noether’s constants of motion, which—apart from their rather specific expressions in terms of w(z) —are nothing but components of the total linear and angular momenta of the fluid, the geometric symmetry brings about crucial consequences for kinetics of distortion waves on the vortex lines, the Kelvin waves. It is the geometric symmetry that renders Kelvin-wave cascade local in the wave-number space. Similar considerations apply to other systems with purely geometric degrees of freedom.

  5. Vortex Anemometer Using MEMS Cantilever Sensor

    CERN Document Server

    Zylka, P; Zylka, Pawel; Modrzynski, Pawel

    2010-01-01

    This paper presents construction and performance of a novel hybrid microelectromechanical system (MEMS) vortex flowmeter. A miniature cantilever MEMS displacement sensor was used to detect frequency of vortices development. 3-mm-long silicon cantilever, protruding directly out of a trailing edge of a trapezoidal glass-epoxy composite bluff body was put into oscillatory motion by vortices shed alternately from side surfaces of the obstacle. Verified linearmeasurement range of the device extended from 5 to 22 m/s; however, it could be broadened in absence of external 50-Hz mains electrical interfering signal which required bandpass frequency-domain digital sensor signal processing. The MEMS vortex sensor proved its effectiveness in detection of semilaminar airflow velocity distribution in a 40-mm-diameter tubular pipe.

  6. Vortex dynamics in superconducting transition edge sensors

    Science.gov (United States)

    Ezaki, S.; Maehata, K.; Iyomoto, N.; Asano, T.; Shinozaki, B.

    2018-02-01

    The temperature dependence of the electrical resistance (R-T) and the current-voltage (I-V) characteristics has been measured and analyzed in a 40 nm thick Ti thin film, which is used as a transition edge sensor (TES). The analyses of the I-V characteristics with the vortex-antivortex pair dissociation model indicate the possible existence of the Berezinskii-Kosterlitz-Thouless (BKT) transition in two-dimensional superconducting Ti thin films. We investigated the noise due to the vortices' flow in TESs. The values of the current noise spectral density in the TESs were estimated by employing the vortex dynamics caused by the BKT transition in the Ti thin films. The estimated values of the current noise spectral density induced by the vortices' flow were in respectable agreement with the values of excess noise experimentally observed in the TESs with Ti/Au bilayer.

  7. Three-dimensional simulation of vortex breakdown

    Science.gov (United States)

    Kuruvila, G.; Salas, M. D.

    1990-01-01

    The integral form of the complete, unsteady, compressible, three-dimensional Navier-Stokes equations in the conservation form, cast in generalized coordinate system, are solved, numerically, to simulate the vortex breakdown phenomenon. The inviscid fluxes are discretized using Roe's upwind-biased flux-difference splitting scheme and the viscous fluxes are discretized using central differencing. Time integration is performed using a backward Euler ADI (alternating direction implicit) scheme. A full approximation multigrid is used to accelerate the convergence to steady state.

  8. A nonabelian particle–vortex duality

    Directory of Open Access Journals (Sweden)

    Jeff Murugan

    2016-02-01

    Full Text Available We define a nonabelian particle–vortex duality as a 3-dimensional analogue of the usual 2-dimensional worldsheet nonabelian T-duality. The transformation is defined in the presence of a global SU(2 symmetry and, although derived from a string theoretic setting, we formulate it generally. We then apply it to so-called “semilocal strings” in an SU(2G×U(1L gauge theory, originally discovered in the context of cosmic string physics.

  9. Vortex induced vibrations in gapped restrainted pipes

    International Nuclear Information System (INIS)

    Veloso, P. de A.A.; Loula, A.F.D.

    1984-01-01

    The vortex induced vibration problem of gapped restrained piping is solved numerically. The model proposed by Skop-Griffin is used to describe the pipe-fluid interaction. The variational formulation is obtained modeling the gapped restraints as non-linear elastic springs. The regularized problem is solved using a finite element discretization for the spatial domain. In the time domain a finite difference discretization is used for the lift coefficient equatin and a Newmark discretization for the equation of motion. (Author) [pt

  10. Quantum vortex fluid in two dimensions

    International Nuclear Information System (INIS)

    Chudnovsky, E.M.

    1995-01-01

    It is argued that in two dimensions the high-field zero-temperature phase of a type-II superconductor can be quantum vortex fluid. The average intervortex spacing in this phase takes discrete values, leading to macroscopic steps in the total flux through the superconductor on the applied magnetic field. In the absence of dissipation, the Hall conductivity is quantized in units of 4e 2 /πℎ

  11. Polar-night O3, NO2 and NO3 distributions during sudden stratospheric warmings in 2003–2008 as seen by GOMOS/Envisat

    Directory of Open Access Journals (Sweden)

    E. Kyrölä

    2012-01-01

    Full Text Available Sudden stratospheric warmings (SSW are large-scale transient events, which have a profound effect on the Northern Hemisphere stratospheric circulation in winter. During the SSW events the temperature in stratosphere increases by several tens of Kelvins and zonal winds decelerate or reverse in direction. Changes in temperature and dynamics significantly affect the chemical composition of the middle atmosphere. In this paper, the response of the middle-atmosphere trace gases during several sudden stratospheric warmings in 2003–2008 is investigated using measurements from the GOMOS (Global Ozone Monitoring by Occultation of Stars instrument on board the Envisat satellite. We have analyzed spatial and temporal changes of NO2 and NO3 in the stratosphere, and of ozone in the whole middle atmosphere. To facilitate our analyses, we have used the temperature profiles data from the MLS (Microwave Limb Sounder instrument on board the Aura satellite, as well as simulations by the FinROSE chemistry-transport model and the Sodankylä Ion and Neutral Chemistry model (SIC. NO3 observations in the polar winter stratosphere during SSWs are reported for the first time. Changes in chemical composition are found not to be restricted to the stratosphere, but to extend to mesosphere and lower thermosphere. They often exhibit a complicated structure, because the distribution of trace gases is affected by changes in both chemistry and dynamics. The tertiary ozone maximum in the mesosphere often disappears with the onset of SSW, probably because of strong mixing processes. The strong horizontal mixing with outside-vortex air is well observed also in NO2 data, especially in cases of enhanced NO2 inside the polar vortex before SSW. Almost in all of the considered events, ozone near the secondary maximum decreases with onset of SSW. In both experimental data and FinROSE modelling, ozone changes are positively correlated with temperature changes in the lower stratosphere

  12. Strategic Polarization.

    Science.gov (United States)

    Kalai, Adam; Kalai, Ehud

    2001-08-01

    In joint decision making, similarly minded people may take opposite positions. Consider the example of a marriage in which one spouse gives generously to charity while the other donates nothing. Such "polarization" may misrepresent what is, in actuality, a small discrepancy in preferences. It may be that the donating spouse would like to see 10% of their combined income go to charity each year, while the apparently frugal spouse would like to see 8% donated. A simple game-theoretic analysis suggests that the spouses will end up donating 10% and 0%, respectively. By generalizing this argument to a larger class of games, we provide strategic justification for polarization in many situations such as debates, shared living accommodations, and disciplining children. In some of these examples, an arbitrarily small disagreement in preferences leads to an arbitrarily large loss in utility for all participants. Such small disagreements may also destabilize what, from game-theoretic point of view, is a very stable equilibrium. Copyright 2001 Academic Press.

  13. Numerical study of hydrofoil tip vortex fluid field

    Directory of Open Access Journals (Sweden)

    PU Jijun

    2017-01-01

    Full Text Available Three different models,k-ω,DES and LES,are conducted in the analysis of the tip vortex flow field. In order to reduce the discrete error induced by the grid,mesh refinement is applied to the area of the tip vortex core in numerical simulations. The axis and tangential velocities of the tip vortex flow field with no cavitation are calculated,and the calculated velocities agree well with the experimental results. On the basis of this process,the influence of vortex roll-up on the tip vortex pressure filed is discussed,and bubble static equilibrium is proposed by which the tip vortex cavitation inception number is computed.

  14. A Discretized Method for Deriving Vortex Impulse from Volumetric Datasets

    Science.gov (United States)

    Buckman, Noam; Mendelson, Leah; Techet, Alexandra

    2015-11-01

    Many biological and mechanical systems transfer momentum through a fluid by creating vortical structures. To study this mechanism, we derive a method for extracting impulse and its time derivative from flow fields observed in experiments and simulations. We begin by discretizing a thin-cored vortex filament, and extend the model to account for finite vortex core thickness and asymmetric distributions of vorticity. By solely using velocity fields to extract vortex cores and calculate circulation, this method is applicable to 3D PIV datasets, even with low spatial resolution flow fields and measurement noise. To assess the performance of this analysis method, we simulate vortex rings and arbitrary vortex structures using OpenFOAM computational fluid dynamics software and analyze the wake momentum using this model in order to validate this method. We further examine a piston-vortex experiment, using 3D synthetic particle image velocimetry (SAPIV) to capture velocity fields. Strengths, limitations, and improvements to the framework are discussed.

  15. Josephson Vortex Qubit based on a Confocal Annular Josephson Junction

    DEFF Research Database (Denmark)

    Monaco, Roberto; Mygind, Jesper; Koshelets, Valery P.

    2017-01-01

    . Thisintrinsic vortex potential can be tuned by an externally applied magnetic fieldand tilted by a bias current. The two-state system is accurately modeled by aone-dimensional sine-Gordon like equation by means of which one can numericallycalculate both the magnetic field needed to set the vortex in a given...... state aswell as the vortex depinning currents. Experimental data taken at 4.2K onhigh-quality Nb/Al-AlOx/Nb CAJTJs with an individual trapped fluxon advocatethe presence of a robust and finely tunable double-well potential for whichreliable manipulation of the vortex state has been classically...... demonstrated.The vortex is prepared in a given potential by means of an externally appliedmagnetic field, while the state readout is accomplished by measuring thevortex-depinning current in a small magnetic field. Our proof of principleexperiment convincingly demonstrates that the proposed vortex qubit based...

  16. Origin and dynamics of vortex rings in drop splashing.

    Science.gov (United States)

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho; Weon, Byung Mook; Fezzaa, Kamel; Je, Jung Ho

    2015-09-04

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row of vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing.

  17. Vortex Lattices in the Bose-Fermi Superfluid Mixture.

    Science.gov (United States)

    Jiang, Yuzhu; Qi, Ran; Shi, Zhe-Yu; Zhai, Hui

    2017-02-24

    In this Letter we show that the vortex lattice structure in the Bose-Fermi superfluid mixture can undergo a sequence of structure transitions when the Fermi superfluid is tuned from the BCS regime to the BEC regime. This is due to the difference in the vortex core structure of a Fermi superfluid in the BCS regime and in the BEC regime. In the BCS regime the vortex core is nearly filled, while the density at the vortex core gradually decreases until it empties out in the BEC regime. Therefore, with the density-density interaction between the Bose and the Fermi superfluids, interaction between the two sets of vortex lattices gets stronger in the BEC regime, which yields the structure transition of vortex lattices. In view of the recent realization of this superfluid mixture and vortices therein, our theoretical predication can be verified experimentally in the near future.

  18. Distinct magnetic signatures of fractional vortex configurations in multiband superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R. M. da [Programa de Pós-Graduação em Ciência dos Materiais, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire, s/n, 50670-901 Recife-PE (Brazil); Milošević, M. V.; Peeters, F. M. [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Domínguez, D. [Centro Atómico Bariloche, 8400 San Carlos de Bariloche, Río Negro (Argentina); Aguiar, J. Albino, E-mail: albino@df.ufpe.br [Departamento de Física, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire, s/n, 50670-901 Recife-PE (Brazil); Programa de Pós-Graduação em Ciência dos Materiais, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire, s/n, 50670-901 Recife-PE (Brazil)

    2014-12-08

    Vortices carrying fractions of a flux quantum are predicted to exist in multiband superconductors, where vortex core can split between multiple band-specific components of the superconducting condensate. Using the two-component Ginzburg-Landau model, we examine such vortex configurations in a two-band superconducting slab in parallel magnetic field. The fractional vortices appear due to the band-selective vortex penetration caused by different thresholds for vortex entry within each band-condensate, and stabilize near the edges of the sample. We show that the resulting fractional vortex configurations leave distinct fingerprints in the static measurements of the magnetization, as well as in ac dynamic measurements of the magnetic susceptibility, both of which can be readily used for the detection of these fascinating vortex states in several existing multiband superconductors.

  19. Vortex jamming in superconductors and granular rheology

    International Nuclear Information System (INIS)

    Yoshino, Hajime; Nogawa, Tomoaki; Kim, Bongsoo

    2009-01-01

    We demonstrate that a highly frustrated anisotropic Josephson junction array (JJA) on a square lattice exhibits a zero-temperature jamming transition, which shares much in common with those in granular systems. Anisotropy of the Josephson couplings along the horizontal and vertical directions plays roles similar to normal load or density in granular systems. We studied numerically static and dynamic response of the system against shear, i.e. injection of external electric current at zero temperature. Current-voltage curves at various strength of the anisotropy exhibit universal scaling features around the jamming point much as do the flow curves in granular rheology, shear-stress versus shear-rate. It turns out that at zero temperature the jamming transition occurs right at the isotropic coupling and anisotropic JJA behaves as exotic fragile vortex matter: it behaves as a superconductor (vortex glass) in one direction, whereas it is a normal conductor (vortex liquid) in the other direction even at zero temperature. Furthermore, we find a variant of the theoretical model for the anisotropic JJA quantitatively reproduces universal master flow-curves of the granular systems. Our results suggest an unexpected common paradigm stretching over seemingly unrelated fields-the rheology of soft materials and superconductivity.

  20. Simulating marine propellers with vortex particle method

    Science.gov (United States)

    Wang, Youjiang; Abdel-Maksoud, Moustafa; Song, Baowei

    2017-01-01

    The vortex particle method is applied to compute the open water characteristics of marine propellers. It is based on the large-eddy simulation technique, and the Smagorinsky-Lilly sub-grid scale model is implemented for the eddy viscosity. The vortex particle method is combined with the boundary element method, in the sense that the body is modelled with boundary elements and the slipstream is modelled with vortex particles. Rotational periodic boundaries are adopted, which leads to a cylindrical sector domain for the slipstream. The particle redistribution scheme and the fast multipole method are modified to consider the rotational periodic boundaries. Open water characteristics of three propellers with different skew angles are calculated with the proposed method. The results are compared with the ones obtained with boundary element method and experiments. It is found that the proposed method predicts the open water characteristics more accurately than the boundary element method, especially for high loading condition and high skew propeller. The influence of the Smagorinsky constant is also studied, which shows the results have a low sensitivity to it.

  1. Vortex formation in a complex plasma

    Science.gov (United States)

    Ishihara, Osamu

    Complex plasma experiments in ground-based laboratories as well as in microgravity conditions have shown the formation of vortex structures in various conditions (e.g., 1,2,3,4). The vortex structures formed in a complex plasma are visible by naked eyes with the help of irradiating laser and the individual dust particles in the structure give us the opportunity to study detailed physics of the commonly observed natural phenomena known such as tornadoes, typhoons, hurricanes and dust devils. Based on the Navier-Stokes equation with proper complex plasma conditions we analyze as much as possible in a universal way the vortex structure and clarifies the role of the controlling parameters like flow velocity and external magnetic field. 1. G. E. Morfill,H. M. Thomas, U. Konopka,H. Rothermel, M. Zuzic, A. Ivlev, and J. Goree, Phys,. Rev. Lett. 83, 1598 (1999). 2. E. Nebbat and R. Annou, Phys. Plasmas 17, 093702 (2010). 3. Y. Saitou and O. Ishihara, Phys. Rev. Lett. 111, 185003 (2013). 4. V. N. Tsytovich and N. G. Gusein-zade, Plasma Phys. Rep. 39, 515 (2013).

  2. Vortex convection in nonuniform compressible flow

    Science.gov (United States)

    Szumowski, A. P.; Meier, G. E. A.

    1988-03-01

    Vortex convection in longitudinally nonuniform transonic flow fields was studied. Vortices moving in moderately accelerated flow are distinct in the subsonic and supersonic range. Due to the acceleration, the vortices of the Karman street separate continuously one from another. They form a series of periodically shedding individual vortices. The density distribution of the accelerated vortices stays circular. Vortices in subsonic stream (behind the shock wave in the divergent part of the Laval nozzle) impinging on an obstacle (in this case on the regulating valve) cause shock fronts which move upstream. In a subsonic stream flowing out from the convergent nozzle, the primary vortices inside the stream significantly perturb its boundaries and induce secondary vortices (at the boundaries). Flow patterns in a duct with a sudden enlargement of cross section are influenced by the vortices convected in the flow too. However, the observed perturbations of these patterns are relatively weak. The unsteady behaviour of the free stream is not only the effect of the vortex convection but also of the unsteady interactions with the boundaries, i.e., the adjusting valve and the test-section walls. However, the effect of the vortex convection is the stronger.

  3. Nonlinear tearing mode and vortex chains

    International Nuclear Information System (INIS)

    Jovanovic, D.; Vranjes, J.

    1996-01-01

    We study the nonlinear stage of a tearing mode, whose island width exceeds the tearing layer thickness, and the wavelength is of the order of collisionless skin depth. A coherent solution is found in the form of a moving vortex chain. It is the result of a self-organization process, which adjusts the profile of the sheared poloidal magnetic field and excites a localized perpendicular sheared plasma flow, consisting of three counterstreaming jets. A numerical solution shows a twin chain of plasma vortices, coupled with a single chain of magnetic islands, whose width is of the order of collisionless skin depth. Adiabatic evolution of the vortex chain in the presence of small viscosity reveals its finite lifetime. The chain destruction may occur either directly, or through a sequence of bifurcations (corresponding to abrupt changes of the vortex chain parameters) to magnetic field stochastization within a layer of the collisionless skin depth scale, which occurs before the magnetic island overlapping takes place. This provides a new mechanism for the anomalous transport. (orig.)

  4. From vortex reconnections to quantum turbulence

    International Nuclear Information System (INIS)

    Lipniacki, T.

    2001-01-01

    An alternative approach to quantum turbulence is proposed in order to derive the evolution equation for vortex line-length density. Special attention is paid to reconnections of vortex lines. The summed line-length change ΔS of two vortex lines resulting from the reconnection (in the presence of counterflow V ns ) can be approximated in the form: δS=-at 1/2 +bV ns 2 t 3/2 , with a>0, b≥0, at least until δS≤0. For steady-state turbulence, the average line-length change left angle ΔS right angle between reconnections has to be zero. If, for a given value of the counterflow, the line density is smaller than the equilibrium one, the reconnections occur less frequently and left angle ΔS right angle becomes positive and the line density grows until the equilibrium is restored. When the line-density is too large, the reconnections are more frequent, the lines shorten between reconnections and the line density gets smaller. The time derivative of the total line density is proportional to the reconnection frequency multiplied by the average line-length change due to a single reconnection. The evolution equation obtained in the proposed approach resembles the alternative Vinen equation. (orig.)

  5. A comparative study of the major sudden stratospheric warmings in the Arctic winters 2003/2004–2009/2010

    Directory of Open Access Journals (Sweden)

    G. Nikulin

    2012-09-01

    Full Text Available We present an analysis of the major sudden stratospheric warmings (SSWs in the Arctic winters 2003/04–2009/10. There were 6 major SSWs (major warmings [MWs] in 6 out of the 7 winters, in which the MWs of 2003/04, 2005/06, and 2008/09 were in January and those of 2006/07, 2007/08, and 2009/10 were in February. Although the winter 2009/10 was relatively cold from mid-December to mid-January, strong wave 1 activity led to a MW in early February, for which the largest momentum flux among the winters was estimated at 60° N/10 hPa, about 450 m2 s−2. The strongest MW, however, was observed in 2008/09 and the weakest in 2006/07. The MW in 2008/09 was triggered by intense wave 2 activity and was a vortex split event. In contrast, strong wave 1 activity led to the MWs of other winters and were vortex displacement events. Large amounts of Eliassen-Palm (EP and wave 1/2 EP fluxes (about 2–4 ×105 kg s−2 are estimated shortly before the MWs at 100 hPa averaged over 45–75° N in all winters, suggesting profound tropospheric forcing for the MWs. We observe an increase in the occurrence of MWs (~1.1 MWs/winter in recent years (1998/99–2009/10, as there were 13 MWs in the 12 Arctic winters, although the long-term average (1957/58–2009/10 of the frequency stays around its historical value (~0.7 MWs/winter, consistent with the findings of previous studies. An analysis of the chemical ozone loss in the past 17 Arctic winters (1993/94–2009/10 suggests that the loss is inversely proportional to the intensity and timing of MWs in each winter, where early (December–January MWs lead to minimal ozone loss. Therefore, this high frequency of MWs in recent Arctic winters has significant implications for stratospheric ozone trends in the northern hemisphere.

  6. Criterion for vortex breakdown on shock wave and streamwise vortex interactions.

    Science.gov (United States)

    Hiejima, Toshihiko

    2014-05-01

    The interactions between supersonic streamwise vortices and oblique shock waves are theoretically and numerically investigated by three-dimensional (3D) Navier-Stokes equations. Based on the two inequalities, a criterion for shock-induced breakdown of the streamwise vortex is proposed. The simple breakdown condition depends on the Mach number, the swirl number, the velocity deficit, and the shock angle. According to the proposed criterion, the breakdown region expands as the Mach number increases. In numerical simulations, vortex breakdown appeared under conditions of multiple pressure increases and the helicity disappeared behind the oblique shock wave along the line of the vortex center. The numerical results are consistent with the predicted breakdown condition at Mach numbers 2.0 and 3.0. This study also found that the axial velocity deficit is important for classifying the breakdown configuration.

  7. Numerical simulation and physical aspects of supersonic vortex breakdown

    Science.gov (United States)

    Liu, C. H.; Kandil, O. A.; Kandil, H. A.

    1993-01-01

    Existing numerical simulations and physical aspects of subsonic and supersonic vortex-breakdown modes are reviewed. The solution to the problem of supersonic vortex breakdown is emphasized in this paper and carried out with the full Navier-Stokes equations for compressible flows. Numerical simulations of vortex-breakdown modes are presented in bounded and unbounded domains. The effects of different types of downstream-exit boundary conditions are studied and discussed.

  8. Vortex (particle) and antivortex (hole) doping into superconducting network

    International Nuclear Information System (INIS)

    Ishida, Takekazu; Shimizu, Makoto; Matsushima, Yoshiaki; Hayashi, Masahiko; Ebisawa, Hiromichi; Sato, Osamu; Kato, Masaru; Satoh, Kazuo

    2007-01-01

    Superconducting finite-sized Pb square networks with 10 x 10 square holes fabricated by electron beam lithography have been investigated in view of particle (vortex) doping into superconducting networks. Vortex image observations were carried out by a SQUID microscope to compare with predictions from the Ginzburg-Landau theory. We found the exactly reversed pattern between the vortex-doping x and the antivortex doping 1 - x into the fully occupied network (x = 1/4)

  9. Examples of Applications of Vortex Methods to Wind Energy

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    2017-01-01

    The current chapter presents wind-energy simulations obtained with the vortex code OmniVor (described in Chap. 44 ) and compared to BEM, CFD and measurements. The chapter begins by comparing rotor loads obtained with vortex methods, BEM and actuator-line simulations of wind turbines under uniform...... on the determination of wake deficits. The last section compares the wake deficits obtained from vortex code and CFD simulations under turbulent conditions with results from lidar measurements....

  10. Electromagnetic Radiation from Vortex Flow in Type-II Superconductors

    International Nuclear Information System (INIS)

    Bulaevskii, L. N.; Chudnovsky, E. M.

    2006-01-01

    We show that a moving vortex lattice, as it comes to a crystal edge, radiates into a free space the harmonics of the washboard frequency, ω 0 =2πv/a, up to a superconducting gap, Δ/(ℎ/2π). Here v is the velocity of the vortex lattice and a is the intervortex spacing. We compute radiation power and show that this effect can be used for the generation of terahertz radiation and for characterization of moving vortex lattices

  11. Z2 vortex strings in grand unified theories

    International Nuclear Information System (INIS)

    Olive, D.; Turok, N.

    1982-01-01

    Spontaneously broken gauge theories may display distinct vortex string solutions for the disconnected components of the exact gauge symmetry group. A type of Higgs mechanism thought to apply in grand unified theories as being responsible for fermion masses yields Z 2 vortex lines, irrespectively of the group. These could seed galaxy formation if the corresponding fermion masses are superheavy. More generally a Higgs mechanism producing Zsub(n) vortex strings is presented. (orig.)

  12. Electromagnetic radiation from vortex flow in type-II superconductors

    OpenAIRE

    Bulaevskii, L. N.; Chudnovsky, E. M.

    2006-01-01

    We show that a moving vortex lattice, as it comes to a crystal edge, radiates into a free space the harmonics of the washboard frequency, $\\omega_0=2\\pi v/a$, up to a superconducting gap, $\\Delta/\\hbar$. Here $v$ is the velocity of the vortex lattice and $a$ is the intervortex spacing. We compute radiation power and show that this effect can be used for generation of terahertz radiation and for characterization of moving vortex lattices.

  13. Theory of spin-selective Andreev reflection in the vortex core of a topological superconductor

    Science.gov (United States)

    Hu, Lun-Hui; Li, Chuang; Xu, Dong-Hui; Zhou, Yi; Zhang, Fu-Chun

    2016-12-01

    Majorana zero modes (MZMs) have been predicted to exist in a topological insulator (TI)/superconductor (SC) heterostructure. A recent spin-polarized scanning tunneling microscope (STM) experiment [Sun et al., Phys. Rev. Lett. 116, 257003 (2016), 10.1103/PhysRevLett.116.257003] has observed a spin-polarization dependence of the zero bias differential tunneling conductance at the center of a vortex core. Here, we consider a helical electron system described by a Rashba spin-orbit coupling Hamiltonian on a spherical surface with an s -wave superconducting pairing due to proximity effect. We examine the in-gap excitations of a pair of vortices with one at the north pole and the other at the south pole. While the MZM is not a spin eigenstate, the spin wave function of the MZM at the center of the vortex core, r =0 , is parallel to the magnetic field, and the local Andreev reflection of the MZM is spin selective, namely, occurs only when the STM tip has the spin polarization parallel to the magnetic field, similar to the case in a one-dimensional nanowire [He et al., Phys. Rev. Lett. 112, 037001 (2014), 10.1103/PhysRevLett.112.037001]. The total local differential tunneling conductance consists of the normal term proportional to the local density of states and an additional term arising from the Andreev reflection. We also discuss the finite size effect, for which the MZM at the north pole is hybridized with the MZM at the south pole. We apply our theory to examine the recently reported spin-polarized STM experiments and show good agreement with the experiments.

  14. Wake Vortex Inverse Model User's Guide

    Science.gov (United States)

    Lai, David; Delisi, Donald

    2008-01-01

    NorthWest Research Associates (NWRA) has developed an inverse model for inverting landing aircraft vortex data. The data used for the inversion are the time evolution of the lateral transport position and vertical position of both the port and starboard vortices. The inverse model performs iterative forward model runs using various estimates of vortex parameters, vertical crosswind profiles, and vortex circulation as a function of wake age. Forward model predictions of lateral transport and altitude are then compared with the observed data. Differences between the data and model predictions guide the choice of vortex parameter values, crosswind profile and circulation evolution in the next iteration. Iterations are performed until a user-defined criterion is satisfied. Currently, the inverse model is set to stop when the improvement in the rms deviation between the data and model predictions is less than 1 percent for two consecutive iterations. The forward model used in this inverse model is a modified version of the Shear-APA model. A detailed description of this forward model, the inverse model, and its validation are presented in a different report (Lai, Mellman, Robins, and Delisi, 2007). This document is a User's Guide for the Wake Vortex Inverse Model. Section 2 presents an overview of the inverse model program. Execution of the inverse model is described in Section 3. When executing the inverse model, a user is requested to provide the name of an input file which contains the inverse model parameters, the various datasets, and directories needed for the inversion. A detailed description of the list of parameters in the inversion input file is presented in Section 4. A user has an option to save the inversion results of each lidar track in a mat-file (a condensed data file in Matlab format). These saved mat-files can be used for post-inversion analysis. A description of the contents of the saved files is given in Section 5. An example of an inversion input

  15. Alteration of helical vortex core without change in flow topology

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Okulov, Valery; Hansen, Martin Otto Laver

    2011-01-01

    The abrupt expansion of the slender vortex core with changes in flow topology is commonly known as vortex breakdown. We present new experimental observations of an alteration of the helical vortex core in wall bounded turbulent flow with abrupt growth in core size, but without change in flow...... topology. The helical symmetry as such is preserved, although the characteristic parameters of helical symmetry of the vortex core transfer from a smooth linear variation to a different trend under the influence of a non-uniform pressure gradient, causing an increase in helical pitch without changing its...

  16. Three-wave electron vortex lattices for measuring nanofields.

    Science.gov (United States)

    Dwyer, C; Boothroyd, C B; Chang, S L Y; Dunin-Borkowski, R E

    2015-01-01

    It is demonstrated how an electron-optical arrangement consisting of two electron biprisms can be used to generate three-wave vortex lattices with effective lattice spacings between 0.1 and 1 nm. The presence of vortices in these lattices was verified by using a third biprism to perform direct phase measurements via off-axis electron holography. The use of three-wave lattices for nanoscale electromagnetic field measurements via vortex interferometry is discussed, including the accuracy of vortex position measurements and the interpretation of three-wave vortex lattices in the presence of partial spatial coherence. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Trailing Vortex-Induced Loads During Close Encounters in Cruise

    Science.gov (United States)

    Mendenhall, Michael R.; Lesieutre, Daniel J; Kelly, Michael J.

    2015-01-01

    The trailing vortex induced aerodynamic loads on a Falcon 20G business jet flying in the wake of a DC-8 are predicted to provide a preflight estimate of safe trail distances during flight test measurements in the wake. Static and dynamic loads on the airframe flying in the near wake are shown at a matrix of locations, and the dynamic motion of the Falcon 20G during traverses of the DC-8 primary trailing vortex is simulated. Safe trailing distances for the test flights are determined, and optimum vortex traverse schemes are identified to moderate the motion of the trailing aircraft during close encounters with the vortex wake.

  18. Anomalous Josephson effect controlled by an Abrikosov vortex

    Science.gov (United States)

    Mironov, S.; Goldobin, E.; Koelle, D.; Kleiner, R.; Tamarat, Ph.; Lounis, B.; Buzdin, A.

    2017-12-01

    The possibility of a fast and precise Abrikosov vortex manipulation by a focused laser beam opens the way to create laser-driven Josephson junctions. We theoretically demonstrate that a vortex pinned in the vicinity of the Josephson junction generates an arbitrary ground state phase which can be equal not only to 0 or π but to any desired φ0 value in between. Such φ0 junctions have many peculiar properties and may be effectively controlled by the optically driven Abrikosov vortex. Also we theoretically show that the Josephson junction with the embedded vortex can serve as an ultrafast memory cell operating at sub THz frequencies.

  19. Comparison of four different models of vortex generators

    DEFF Research Database (Denmark)

    Fernandez, U.; Réthoré, Pierre-Elouan; Sørensen, Niels N.

    2012-01-01

    Actuator Vortex Generator Model (AcVG), is based on the lifting force theory of Bender, Anderson and Yagle, the BAY Model, which provides an efficient method for computational fluid dynamic (CFD) simulations of flow with VGs, and the forces are applied into the computational domain using the actuator shape...... in the center of the test section. The fourth model, used as a quantitative comparison, is the analytical model of the primary vortex based in the helical structure of longitudinal embedded vortex, which can reduce the complex flow to merely four parameters: circulation, convection velocity, vortex core radius...

  20. Topological dynamics of vortex-line networks in hexagonal manganites

    Science.gov (United States)

    Xue, Fei; Wang, Nan; Wang, Xueyun; Ji, Yanzhou; Cheong, Sang-Wook; Chen, Long-Qing

    2018-01-01

    The two-dimensional X Y model is the first well-studied system with topological point defects. On the other hand, although topological line defects are common in three-dimensional systems, the evolution mechanism of line defects is not fully understood. The six domains in hexagonal manganites converge to vortex lines in three dimensions. Using phase-field simulations, we predicted that during the domain coarsening process, the vortex-line network undergoes three types of basic topological changes, i.e., vortex-line loop shrinking, coalescence, and splitting. It is shown that the vortex-antivortex annihilation controls the scaling dynamics.

  1. Influence of free stream turbulence on a trailing line vortex

    Science.gov (United States)

    Ash, Robert L.; Stead, Daniel J.

    1990-01-01

    Low-speed wind tunnel experiments have been conducted to investigate the influence of free stream turbulence on the mean behavior of a trailing line vortex. Perforated plates and screens were used to produce turbulence levels ranging between 0.03 percent and 5 percent of the free stream velocity in the vicinity of the vortex generator. Smoke was used to provide a visual image of the vortex and photographic and videotape records were taken. Experiments have shown that high turbulence levels cause vortices to meander but with little evidence of structural change. At lower turbulence intensities, some types of vortex oscillations were observed which suggest possible instabilities.

  2. Vortex dynamics and correlated disorder in high-{Tc} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Vinokur, V.M.

    1993-08-01

    We develop a theory for the vortex motion in the presence of correlated disorder in the form of the twin boundaries and columnar defects. Mapping vortex trajectories onto boson world lines enables us to establish the duality of the vortex transport in the systems with correlated disorder and hopping conductivity of charged particles in 2D systems. A glassy-like dynamics of the vortex lines with zero linear-resistivity and strongly nonlinear current-voltage behavior as V {proportional_to} exp[{minus} const/J{sup {mu}}] in a Bose glass state is predicted.

  3. Defect-Induced Hedgehog Polarization States in Multiferroics

    Science.gov (United States)

    Li, Linze; Cheng, Xiaoxing; Jokisaari, Jacob R.; Gao, Peng; Britson, Jason; Adamo, Carolina; Heikes, Colin; Schlom, Darrell G.; Chen, Long-Qing; Pan, Xiaoqing

    2018-03-01

    Continuous developments in nanotechnology require new approaches to materials synthesis that can produce novel functional structures. Here, we show that nanoscale defects, such as nonstoichiometric nanoregions (NSNRs), can act as nano-building blocks for creating complex electrical polarization structures in the prototypical multiferroic BiFeO3 . An array of charged NSNRs are produced in BiFeO3 thin films by tuning the substrate temperature during film growth. Atomic-scale scanning transmission electron microscopy imaging reveals exotic polarization rotation patterns around these NSNRs. These polarization patterns resemble hedgehog or vortex topologies and can cause local changes in lattice symmetries leading to mixed-phase structures resembling the morphotropic phase boundary with high piezoelectricity. Phase-field simulations indicate that the observed polarization configurations are mainly induced by charged states at the NSNRs. Engineering defects thus may provide a new route for developing ferroelectric- or multiferroic-based nanodevices.

  4. Three-dimensional parallel vortex rings in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Crasovan, Lucian-Cornel; Perez-Garcia, Victor M.; Danaila, Ionut; Mihalache, Dumitru; Torner, Lluis

    2004-01-01

    We construct three-dimensional structures of topological defects hosted in trapped wave fields, in the form of vortex stars, vortex cages, parallel vortex lines, perpendicular vortex rings, and parallel vortex rings, and we show that the latter exist as robust stationary, collective states of nonrotating Bose-Einstein condensates. We discuss the stability properties of excited states containing several parallel vortex rings hosted by the condensate, including their dynamical and structural stability

  5. Domain formation in the type-II/1 superconductor niobium: Interplay of pinning, geometry, and attractive vortex-vortex interaction

    Science.gov (United States)

    Reimann, Tommy; Schulz, Michael; Mildner, David F. R.; Bleuel, Markus; Brûlet, Annie; Harti, Ralph P.; Benka, Georg; Bauer, Andreas; Böni, Peter; Mühlbauer, Sebastian

    2017-10-01

    Vortex attraction which can cause a bundling of vortices has been observed in a multitude of type-II superconductors. While its underlying mechanisms have been extensively studied, the morphology of the emerging vortex superstructure has only been rarely considered. Here, we present a comprehensive experimental study on the type-II/1 superconductor niobium which focuses on the transformation of its homogeneous vortex lattice into an inhomogeneous domain structure at the onset of vortex attraction. By means of small-angle neutron scattering, ultra-small-angle neutron scattering, and neutron grating interferometry, the vortex lattice and the micrometer-scale vortex domain structure as well as its distribution could be investigated. In particular, we focus on the transformation of the vortex lattice at the transition to the intermediate mixed state, which is characterized by vortex attraction. We have found that the phase separation of the vortex lattice into an irregular domain structure takes place via a process showing strong similarity to spinodal decomposition. While pinning disorders the domain morphology, the characteristic length scale of the domain structure is governed by an interplay of field distortion energy and domain surface tension. Finally, geometric barriers in the disk-shaped samples provoke an inhomogeneous distribution of domains on the macroscopic scale.

  6. Impact of the CO2 and H2O clouds of the Martian polar hood on the polar energy balance

    Science.gov (United States)

    Forget, Francois; Pollack, James B.

    1993-01-01

    Clouds covering extensive areas above the martian polar caps have regularly been observed during the fall and winter seasons of each hemisphere. These 'polar hoods' are thought to be made of H2O and CO2. In particular, the very cold temperatures observed during the polar night by Viking and Mariner 9 around both poles have been identified as CO2 clouds and several models, including GCM, have indicated that the CO2 can condense in the atmosphere at all polar latitudes. Estimating the impact of the polar hood clouds on the energy balance of the polar regions is necessary to model the CO2 cycle and address puzzling problems like the polar caps assymetry. For example, by altering the thermal radiation emitted to space, CO2 clouds alter the amount of CO2 that condenses during the fall and winter season. The complete set of Viking IRTM data was analyzed to define the spatial and temporal properties of the polar hoods, and how their presence affects the energy radiated by the atmosphere/caps system to space was estimated. The IRTM observations provide good spatial and temporal converage of both polar regions during fall, winter, and spring, when a combination of the first and the second Viking year is used. Only the IRTM brightness temperatures at 11, 15, and 20 microns are reliable at martian polar temperatures. To recover the integrated thermal fluxes from the IRTM data, a simple model of the polar hood, thought to consist of 'warm' H2O clouds lying above colder and opaque CO2 clouds was developed. Such a model is based on the analysis of the IRIS spectra, and is consistent with the IRTM data used.

  7. A case study on the cyclone activity around Europe from winter to spring of 2000 (From the view of comparison with that in East Asia)

    Science.gov (United States)

    Kuwana, Yusuke; Otani, Kazuo; Matsumoto, Kengo; Kato, Kuranoshin

    2017-04-01

    The extratropical cyclone is one of the basic systems that characterize the weather and climate in mid-latitude area, where the mean meridional temperature gradient is large. However, this activity is deeply influenced by the seasonal transition and regional differences of the mean atmospheric fields. Diversity of cyclone's characteristics such as baroclinic instability wave, polar lows and slow-moving cold vortexes is also seen within the mid-latitude area. For example, the seasonal transition of the large-scale fields is rather widely different in European region from that in East Asia where the influence Asian monsoon is very great. It is also noted that the cyclones developed in the other region might effect greatly the weather in Europe. On the other hand, detailed knowledge of the daily cyclone activity would help to understand deeply the differences of regional climatology among various areas including seasonal transition and geographical characteristics. After such interest, Takigawa and Kato(EGU 2015) made a preliminary study on the cyclone activity in Europe . We used the NCEP/NCAR re-analysis data for 2000 and pointed out that not only the daily systems but also the intraseasonal-scale systems were also dominant in winter and summer. Thus the present study will examining the case for 2000 with special attention to the features from winter to spring. In winter, submonthly-scale intraseasonal variation of the Icelandic Low was change. In the stage when Icelandic Low with such intraseasonal-scale approached northwestern Europe, several lows passed eastward around with a few days interval the southern edge of Icelandic low with relatively strong baraclinicity. It is remarked that their center pressure was rather low (below 980hPa). After April, when the seasonal mean Icelandic low had disappeared, different types of the intra-seasonal-scale cyclones and anticyclones were dominantly observed. In the lower SLP stage of the intraseasonal variation in Europe

  8. Precessing deuteron polarization

    International Nuclear Information System (INIS)

    Sitnik, I.M.; Volkov, V.I.; Kirillov, D.A.; Piskunov, N.M.; Plis, Yu.A.

    2002-01-01

    The feasibility of the acceleration in the Nuclotron of deuterons polarized in the horizontal plane is considered. This horizontal polarization is named precessing polarization. The effects of the main magnetic field and synchrotron oscillations are included. The precessing polarization is supposed to be used in studying the polarization parameters of the elastic dp back-scattering and other experiments

  9. Simulations of a single vortex ring using an unbounded, regularized particle-mesh based vortex method

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Spietz, Henrik J.; Walther, Jens Honore

    2014-01-01

    In resent work we have developed a new FFT based Poisson solver, which uses regularized Greens functions to obtain arbitrary high order convergence to the unbounded Poisson equation. The high order Poisson solver has been implemented in an unbounded particle-mesh based vortex method which uses a re...

  10. Development of new tip-loss corrections based on vortex theory and vortex methods

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre; Gaunaa, Mac

    2014-01-01

    A new analytical formulation of the tip-loss factor is established based on helical vortex lament solutions. The derived tip-loss factor can be applied to wind-turbines, propellers or other rotary wings. Similar numerical formulations are used to assess the influence of wake expansion on tip...

  11. Topological Vortex and Knotted Dissipative Optical 3D Solitons Generated by 2D Vortex Solitons.

    Science.gov (United States)

    Veretenov, N A; Fedorov, S V; Rosanov, N N

    2017-12-29

    We predict a new class of three-dimensional (3D) topological dissipative optical one-component solitons in homogeneous laser media with fast saturable absorption. Their skeletons formed by vortex lines where the field vanishes are tangles, i.e., N_{c} knotted or unknotted, linked or unlinked closed lines and M unclosed lines that thread all the closed lines and end at the infinitely far soliton periphery. They are generated by embedding two-dimensional laser solitons or their complexes in 3D space after their rotation around an unclosed, infinite vortex line with topological charge M_{0} (N_{c}, M, and M_{0} are integers). With such structure propagation, the "hula-hoop" solitons form; their stability is confirmed numerically. For the solitons found, all vortex lines have unit topological charge: the number of closed lines N_{c}=1 and 2 (unknots, trefoils, and Solomon knots links); unclosed vortex lines are unknotted and unlinked, their number M=1, 2, and 3.

  12. Vortex 'puddles' and magic vortex numbers in mesoscopic superconducting disks

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, M R; Milosevic, M V; Bending, S J [Department of Physics, University of Bath - Claverton Down, Bath, BA2 7AY (United Kingdom); Clem, J R [Ames Laboratory Department of Physics and Astronomy - Iowa State University, Ames, IA 50011-3160 (United States); Tamegai, T, E-mail: mrc61@cam.ac.u [Department of Applied Physics, University of Tokyo - Hongo, Bunkyo-ku, Tokyo 113-8627 (Japan)

    2009-03-01

    The magnetic properties of a superconducting disk change dramatically when its dimensions become mesoscopic. Unlike large disks, where the screening currents induced by an applied magnetic field are strong enough to force vortices to accumulate in a 'puddle' at the centre, in a mesoscopic disk the interaction between one of these vortices and the edge currents can be comparable to the intervortex repulsion, resulting in a destruction of the ordered triangular vortex lattice structure at the centre. Vortices instead form clusters which adopt polygonal and shell-like structures which exhibit magic number states similar to those of charged particles in a confining potential, and electrons in artificial atoms. We have fabricated mesoscopic high temperature superconducting Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+delta} disks and investigated their magnetic properties using magneto-optical imaging (MOI) and high resolution scanning Hall probe microscopy (SHPM). The temperature dependence of the vortex penetration field measured using MOI is in excellent agreement with models of the thermal excitation of pancake vortices over edge barriers. The growth of the central vortex puddle has been directly imaged using SHPM and magic vortex numbers showing higher stability have been correlated with abrupt jumps in the measured local magnetisation curves.

  13. Recrystallization and damage of ice in winter sports.

    Science.gov (United States)

    Seymour-Pierce, Alexandra; Lishman, Ben; Sammonds, Peter

    2017-02-13

    Ice samples, after sliding against a steel runner, show evidence of recrystallization and microcracking under the runner, as well as macroscopic cracking throughout the ice. The experiments that produced these ice samples are designed to be analogous to sliding in the winter sport of skeleton. Changes in the ice fabric are shown using thick and thin sections under both diffuse and polarized light. Ice drag is estimated as 40-50% of total energy dissipation in a skeleton run. The experimental results are compared with visual inspections of skeleton tracks, and to similar behaviour in rocks during sliding on earthquake faults. The results presented may be useful to athletes and designers of winter sports equipment.This article is part of the themed issue 'Microdynamics of ice'. © 2016 The Author(s).

  14. Polare maskuliniteter

    Directory of Open Access Journals (Sweden)

    Marit Anne Hauan

    2012-05-01

    Full Text Available In this paper my aim is to read and understand the journal of Gerrit de Veer from the last journey of William Barents to the Arctic Regions in 1596 and the journal of captain Junge on his hunting trip from Tromsø to Svalbard in 1834.It is nearly 240 years between this to voyages. The first journal is known as the earliest report from the arctic era. Gerrit de Veer adds instructive copper engravings to his text and give us insight in the crews meeting with this new land. Captain Junges journal is found together with his dead crew in a house in a fjord nearby Ny-Ålesund and has no drawings, but word. Both of these journals may be read as sources of the knowledge and understanding of the polar region. They might also unveil the ideas of how to deal with and survive under the challenges that is given. In addition one can ask if the sources can tell us more about how men describe their challenges. Can the way they expressed themselves in the journals give us an understanding of masculinity? And not least help us to create good questions of the change in the ideas of masculinities which is said to follow the change in understanding of the wilderness.

  15. Frequency response of Lamb-Oseen vortex

    Science.gov (United States)

    Blanco-Rodríguez, F. J.; Parras, L.; del Pino, C.

    2016-12-01

    In this numerical study we present the frequency response of the Lamb-Oseen (Gaussian) vortex for two synthetic jet configurations. The first one consists of an annular axial jet that is superimposed on the Gaussian vortex. The other configuration deals with an off-axis, single-point, axial jet (SPI). We detect that the system responds to the forcing for a given axial wavenumber, k, exciting natural modes of the vortex by a resonance mechanism. We propose an explanation for the physical mechanism responsible for the maximum energy gain obtained by comparing our results with the different branches found theoretically by Fabre et al (2006 J. Fluid Mech. 551 235-74). We find high energy gains in both cases ({G}∞ ≃ {10}3 for the annular jet and {G}∞ ≃ {10}4 for the SPI jet), so these types of forcing are able to produce responses of the system strong enough to reach a non-linear state. Axisymmetric modes, with azimuthal wavenumber m = 0, produce the highest energy gain while applying an annular forcing. However, other modes, such as the helical one m = 1 and also double helix modes with m = 2, contribute in the SPI configuration. We find that the best region to be tested experimentally in both cases is the region that corresponds to the L2 branch described by Fabre and his collaborators. Furthermore, and whenever using these L2 branch frequencies, the response of the system is always axisymmetric, independently of the type of excitation. Finally, we conclude that the energy gain with the SPI jet is one order of magnitude greater than for the annular jet, so that the single-point off-axis jet is a feasible candidate to design a control device.

  16. Basic study on vortex cavitation inception

    International Nuclear Information System (INIS)

    Ezure, Toshiki; Sato, Hiroyuki; Kimura, Nobuyuki; Kamide, Hideki

    2008-12-01

    In the FaCT Project for Commercialized Fast Reactor Cycle Systems, a compact reactor vessel and 2 loops system are investigated in terms of economical improvement of a sodium cooled fast reactor. In order to certificate the issues in thermal hydraulics, 1/10th scaled model water tests have been performed. In the flow visualization of the 1/10th scaled model tests, vortex cavitations were observed at the inlet of Hot Leg pipes. In order to estimate the occurrence of this type of cavitation in the reactor, cavitation number will be used. In the reactor design, cover gas in a reactor vessel is pressurized up to 0.25MPa. This results in higher velocity at the onset condition of the cavitation as compared to the open-air water experiment. In addition, viscosity of the sodium at 550degC is nearly 1/3rd of that of water at room temperature. These differences may affect the flow pattern and the inception of vortex cavitation. These factors will bring some difficulties in the estimation using the cavitation number. Thus, the effects of pressure and viscosity on the inception of vortex cavitations were examined in basic water experiments. As the results, it was found that the onset value of cavitation coefficient became higher with the increase of the pressure. In addition, it also appeared that the onset value of cavitation coefficient became higher under lower viscosity. However, this difference of onset value due to the viscosity became smaller with the increase of pressure, and was negligible under the same pressure in the real reactor. (author)

  17. On the formation modes in vortex interaction for multiple co-axial co-rotating vortex rings

    Science.gov (United States)

    Qin, Suyang; Liu, Hong; Xiang, Yang

    2018-01-01

    Interaction among multiple vortices is of particular importance to biological locomotion. It plays an essential role in the force and energy capture. This study examines the motion and dynamics of multiple co-axial co-rotating vortex rings. The vortex rings, which have the same formation time, are successively generated in a piston-cylinder apparatus by accurately controlling the interval time. The flow fields are visualized by the finite-time Lyapunov exponent and then repelling Lagrangian coherent structures (r-LCSs) are determined. Two types of vortex interactions ("strong" and "weak") are defined by investigating the r-LCSs: a strong interaction is indicated by connected r-LCSs showing a channel for fluid transport (termed as a "flux window"); a weak interaction is indicated by disconnected r-LCSs between the vortex rings. For strong interaction, leapfrogging and merger of vortex rings can happen in the later stage of the evolution process; however, the rings are separated for weak interaction. Two distinct formation modes, the formation enhancement mode (FEM) and formation restraint mode (FRM), refer to the effect of one or multiple vortex ring(s) on the initial circulation of the subsequently formed vortex ring. In the FEM, the circulation of a vortex ring is larger than that of an isolated (without interaction) vortex ring. On the other hand, the situation is opposite in the FRM. A dimensionless number reflecting the interaction mechanism, "structure stretching number" S*, is proposed, which evaluates the induced effect of the wake vortices on the formation of a vortex ring. A limiting S* (SL*=(2 ±0.4 ) ×1 0-4) is the bifurcation point of the two formation modes. The augmentation of circulation reaches up to 10% for the FEM when S*SL*), the circulation decreases for at most 20%. The newly defined formation modes and number could shed light on the understanding of the dynamics of multiple vortex ring flows.

  18. Vortex dynamics in the wake of a mechanical fish

    Energy Technology Data Exchange (ETDEWEB)

    Bruecker, Christoph [TU Bergakademie Freiberg, Lehrstuhl fuer Stroemungslehre und Stroemungsmaschinen, Freiberg (Germany); Bleckmann, Horst [Poppelsdorfer Schloss, Zoologisches Institut Bonn, Bonn (Germany)

    2007-11-15

    This study focuses on the three-dimensional flow around a mechanical fish model, which reproduces the typical undulatory body and fin motion of a carangiform swimmer. The mechanical model consists of a flexible skeleton embedded in a soft transparent silicone body, which is connected with two cams to a flapping and bending hinge generating a traveling wave motion with increasing amplitude from anterior to posterior, extending to a combined heaving and pitching motion at the fin. The model is submerged in a water tank and towed at the characteristic swimming speed for the neutral swimming mode at U/V = 1. The method of Scanning Particle Image Velocimetry was used to analyze the three-dimensional time-dependent flow field in the axial and saggital planes. The results confirm the earlier observations that the wake develops into a chain of vortex rings which travel sidewards perpendicular to the swimming direction. However, instead of one single vortex shed at each tail beat half-cycle we observed a pair of two vortex rings being shed. Each pair consists of a larger main vortex ring corresponding to the tail beat start-stop vortex, while the second vortex ring is due to the body bending motion. The existence of the second vortex reflects the role of the body in undulatory swimming. A simplified model of the fish body comparing it to a plate with a hinged flap demonstrates the link between the sequence of kinematics and vortex shedding. (orig.)

  19. Drift turbulence of plasma as a gas of vortex ensemble

    International Nuclear Information System (INIS)

    Aburdzhaniya, G.

    1989-01-01

    This paper shows that in the magnetoactive plasma the short-wavelength nonlinear vortex structures can form the drift turbulence. It has been established that the vortex structures, interacting between and with plasma particles, exite the wide density pulsation spectrum and lead to the anomalous diffusion of the particles. (author). 28 refs

  20. Shell Games. VORTEX: Virginia's Oyster Reef Teaching EXperience.

    Science.gov (United States)

    Harding, Juliana M.; Mann, Roger; Clark, Vicki P.

    This document introduces Virginia's Oyster Reef Teaching EXperience (VORTEX), which is an interdisciplinary program focusing on the importance of oyster reef communities in the Chesapeake Bay ecosystem. The VORTEX program uses field and laboratory experiences supported by multimedia instruction. This document presents an overview on the biology of…

  1. Spontaneous symmetry breaking in vortex systems with two repulsive lengthscales.

    Science.gov (United States)

    Curran, P J; Desoky, W M; Milosević, M V; Chaves, A; Laloë, J-B; Moodera, J S; Bending, S J

    2015-10-23

    Scanning Hall probe microscopy (SHPM) has been used to study vortex structures in thin epitaxial films of the superconductor MgB2. Unusual vortex patterns observed in MgB2 single crystals have previously been attributed to a competition between short-range repulsive and long-range attractive vortex-vortex interactions in this two band superconductor; the type 1.5 superconductivity scenario. Our films have much higher levels of disorder than bulk single crystals and therefore both superconducting condensates are expected to be pushed deep into the type 2 regime with purely repulsive vortex interactions. We observe broken symmetry vortex patterns at low fields in all samples after field-cooling from above Tc. These are consistent with those seen in systems with competing repulsions on disparate length scales, and remarkably similar structures are reproduced in dirty two band Ginzburg-Landau calculations, where the simulation parameters have been defined by experimental observations. This suggests that in our dirty MgB2 films, the symmetry of the vortex structures is broken by the presence of vortex repulsions with two different lengthscales, originating from the two distinct superconducting condensates. This represents an entirely new mechanism for spontaneous symmetry breaking in systems of superconducting vortices, with important implications for pinning phenomena and high current density applications.

  2. Magnetization reversal in circular vortex dots of small radius.

    Science.gov (United States)

    Goiriena-Goikoetxea, M; Guslienko, K Y; Rouco, M; Orue, I; Berganza, E; Jaafar, M; Asenjo, A; Fernández-Gubieda, M L; Fernández Barquín, L; García-Arribas, A

    2017-08-10

    We present a detailed study of the magnetic behavior of Permalloy (Ni 80 Fe 20 alloy) circular nanodots with small radii (30 nm and 70 nm) and different thicknesses (30 nm or 50 nm). Despite the small size of the dots, the measured hysteresis loops manifestly display the features of classical vortex behavior with zero remanence and lobes at high magnetic fields. This is remarkable because the size of the magnetic vortex core is comparable to the dot diameter, as revealed by magnetic force microscopy and micromagnetic simulations. The dot ground states are close to the border of the vortex stability and, depending on the dot size, the magnetization distribution combines attributes of the typical vortex, single domain states or even presents features resembling magnetic skyrmions. An analytical model of the dot magnetization reversal, accounting for the large vortex core size, is developed to explain the observed behavior, providing a rather good agreement with the experimental results. The study extends the understanding of magnetic nanodots beyond the classical vortex concept (where the vortex core spins have a negligible influence on the magnetic behavior) and can therefore be useful for improving emerging spintronic applications, such as spin-torque nano-oscillators. It also delimits the feasibility of producing a well-defined vortex configuration in sub-100 nm dots, enabling the intracellular magneto-mechanical actuation for biomedical applications.

  3. Modeling Vortex Generators in the Wind-US Code

    Science.gov (United States)

    Dudek, Julianne C.

    2010-01-01

    A source term model which simulates the effects of vortex generators was implemented into the Wind-US Navier Stokes code. The source term added to the Navier-Stokes equations simulates the lift force which would result from a vane-type vortex generator in the flowfield. The implementation is user-friendly, requiring the user to specify only three quantities for each desired vortex generator: the range of grid points over which the force is to be applied and the planform area and angle of incidence of the physical vane. The model behavior was evaluated for subsonic flow in a rectangular duct with a single vane vortex generator, supersonic flow in a rectangular duct with a counterrotating vortex generator pair, and subsonic flow in an S-duct with 22 co-rotating vortex generators. The validation results indicate that the source term vortex generator model provides a useful tool for screening vortex generator configurations and gives comparable results to solutions computed using a gridded vane.

  4. Quantitative theory of thermal fluctuations and disorder in the vortex ...

    Indian Academy of Sciences (India)

    Abstract. A metastable supercooled homogeneous vortex liquid state exists down to zero fluctuation temperature in systems of mutually repelling objects. The zero- temperature liquid state therefore serves as a (pseudo) 'fixed point' controlling the prop- erties of vortex liquid below and even around the melting point.

  5. Vortex Analysis of Intra-Aneurismal Flow in Cerebral Aneurysms.

    Science.gov (United States)

    Sunderland, Kevin; Haferman, Christopher; Chintalapani, Gouthami; Jiang, Jingfeng

    2016-01-01

    This study aims to develop an alternative vortex analysis method by measuring structure ofIntracranial aneurysm (IA) flow vortexes across the cardiac cycle, to quantify temporal stability of aneurismal flow. Hemodynamics were modeled in "patient-specific" geometries, using computational fluid dynamics (CFD) simulations. Modified versions of known λ 2 and Q -criterion methods identified vortex regions; then regions were segmented out using the classical marching cube algorithm. Temporal stability was measured by the degree of vortex overlap (DVO) at each step of a cardiac cycle against a cycle-averaged vortex and by the change in number of cores over the cycle. No statistical differences exist in DVO or number of vortex cores between 5 terminal IAs and 5 sidewall IAs. No strong correlation exists between vortex core characteristics and geometric or hemodynamic characteristics of IAs. Statistical independence suggests this proposed method may provide novel IA information. However, threshold values used to determine the vortex core regions and resolution of velocity data influenced analysis outcomes and have to be addressed in future studies. In conclusions, preliminary results show that the proposed methodology may help give novel insight toward aneurismal flow characteristic and help in future risk assessment given more developments.

  6. Generating and analyzing non-diffracting vector vortex beams

    CSIR Research Space (South Africa)

    Li, Y

    2013-08-01

    Full Text Available We experimentally generate non-diffracting vector vortex beams by using a Spatial Light Modulator (SLM) and an azimuthal birefringent plate (q-plate). The SLM generates scalar Bessel beams and the q-plate converts them to vector vortex beams. Both...

  7. The formation of turbulent vortex rings by synthetic jets

    Science.gov (United States)

    Lawson, J. M.; Dawson, J. R.

    2013-10-01

    An investigation is made into the mechanism of pinch-off for turbulent vortex rings formed by a synthetic jet using time resolved particle image velocimetry measurements in air. During formation, measurements of the material acceleration field show a trailing pressure maximum (TPM) forms behind the vortex core. The adverse pressure gradient behind this TPM inhibits vorticity transport into the ring and the TPM is spatially coincident with the termination of vorticity flux into a control volume moving with the ring. A Lagrangian Coherent Structures (LCS) analysis is shown to be in agreement with the role of the TPM in pinch-off and in identifying the vortex ring before separation. The LCS analysis provides physical insights which form the basis of a revised model of pinch-off, based on kinematics, which predicts the time of formation (formation number) well for the present dataset. The delivery of impulse to the vortex ring is also considered. Two equally important mechanisms are shown to play a role: a material flux and a vortex force. In the case of long maximum stroke ratio, it is demonstrated that a vortex force continues to deliver impulse to the ring after the material flux is terminated at pinch-off and that this contribution may be substantial. This shows that the pinch-off and separation process cannot be considered impulse invariant, which has important implications for unsteady propulsion, present models of vortex ring formation, and existing explanations for vortex ring pinch-off.

  8. Modeling Vortex Generators in a Navier-Stokes Code

    Science.gov (United States)

    Dudek, Julianne C.

    2011-01-01

    A source-term model that simulates the effects of vortex generators was implemented into the Wind-US Navier-Stokes code. The source term added to the Navier-Stokes equations simulates the lift force that would result from a vane-type vortex generator in the flowfield. The implementation is user-friendly, requiring the user to specify only three quantities for each desired vortex generator: the range of grid points over which the force is to be applied and the planform area and angle of incidence of the physical vane. The model behavior was evaluated for subsonic flow in a rectangular duct with a single vane vortex generator, subsonic flow in an S-duct with 22 corotating vortex generators, and supersonic flow in a rectangular duct with a counter-rotating vortex-generator pair. The model was also used to successfully simulate microramps in supersonic flow by treating each microramp as a pair of vanes with opposite angles of incidence. The validation results indicate that the source-term vortex-generator model provides a useful tool for screening vortex-generator configurations and gives comparable results to solutions computed using gridded vanes.

  9. Quantum vortex dynamics in two-dimensional neutral superfluids

    NARCIS (Netherlands)

    Wang, C. -C J.; Duine, R.A.; MacDonald, A.H.

    2010-01-01

    We derive an effective action for the vortex-position degree of freedom in a superfluid by integrating out condensate phase- and density-fluctuation environmental modes. When the quantum dynamics of environmental fluctuations is neglected, we confirm the occurrence of the vortex Magnus force and

  10. Finned Tube With Vortex Generators For A Heat Exchanger.

    Science.gov (United States)

    Sohal, Monohar S.; O'Brien, James E.

    2004-09-14

    A system for and method of manufacturing a finned tube for a heat exchanger is disclosed herein. A continuous fin strip is provided with at least one pair of vortex generators. A tube is rotated and linearly displaced while the continuous fin strip with vortex generators is spirally wrapped around the tube.

  11. Experimental adiabatic vortex ratchet effect in Nb films with ...

    Indian Academy of Sciences (India)

    Keywords. Vortices; asymmetric pinning; rectifier; adiabatic ratchet. Abstract. Nb films grown on top of an array of asymmetric pinning centers show a vortex ratchet effect. A net flow of vortices is induced when the vortex lattice is driven by fluctuating forces on an array of pinning centers without reflection symmetry. This effect ...

  12. Evaluation of Aircraft Wing-Tip Vortex Using PIV

    Science.gov (United States)

    Alsayed, Omer A.; Asrar, Waqar; Omar, Ashraf A.

    2010-06-01

    The formation and development of a wing-tip vortex in a near and extended near filed were studied experimentally. Particle image velocimetry was used in a wind tunnel to measure the tip vortex velocity field and hence investigate the flow structure in a wake of aircraft half-wing model. The purpose of this investigation is to evaluate the main features of the lift generated vortices in order to find ways to alleviate hazardous wake vortex encounters for follower airplanes during start and approach such that the increase in airport capacity can be achieved. First the wake structure at successive downstream planes crosswise to the axis of the wake vortices was investigated by measuring parameters such as core radius, maximum tangential velocities, vorticities and circulation distributions. The effect of different angles of attack setting on vortex parameters was examined at one downstream location. In very early stages the vortex sheet evolution makes the tip vortex to move inward and to the suction side of the wing. While the core radius and circulation distributions hardly vary with the downstream distance, noticeable differences for the same vortex parameters at different angles of attack settings were observed. The center of the wing tip vortices scatter in a circle of radius nearly equal to 1% of the mean wing chord and wandering amplitudes shows no direct dependence on the vortex strength but linearly increase with the downstream distance.

  13. Experimental adiabatic vortex ratchet effect in Nb films with ...

    Indian Academy of Sciences (India)

    Nb films grown on top of an array of asymmetric pinning centers show a vortex ratchet effect. A net flow of vortices is induced when the vortex lattice is driven by fluctuating forces on an array of pinning centers without reflection symmetry. This effect occurs in the adiabatic regime and it could be mimiced only by reversible DC ...

  14. Vortex-glass transition in three dimensions

    International Nuclear Information System (INIS)

    Reger, J.D.; Tokuyasu, T.A.; Young, A.P.; Fisher, M.P.A.

    1991-01-01

    We investigate the possibility of a vortex-glass transition in a disordered type-II superconductor in a magnetic field in three dimensions by numerical studies of a simplified model. Monte Carlo simulations at finite temperature and domain-wall renormalization-group calculations at T=0 indicate that d=3 is just above the lower critical dimension d l , though the possibility that d l =3 cannot be definitely ruled out. A comparison is made with XY and Ising spin glasses. The (effective) correlation-length exponent ν and dynamical exponent z are in fairly good agreement with experiment

  15. IDRC Bulletin — Winter 2017

    International Development Research Centre (IDRC) Digital Library (Canada)

    2018-01-16

    Jan 16, 2018 ... In this issue, read the research results from our Safe and Inclusive Cities program and don't forget that the Joint Canada-Israel Health Research Program 2018 call is now open. IDRC Bulletin logo IDRC Bulletin — Winter 2017. Featured this month. View of Port-au-Prince in Haiti, March 30, 2016. Safe and ...

  16. Learning through a Winter's Tale

    Science.gov (United States)

    Vidotto, Kristie

    2010-01-01

    In this article, the author shares her experience during the final semester of Year 11 Theatre Studies when she performed a monologue about Hermione from "The Winter's Tale". This experience was extremely significant to her because it nearly made her lose faith in one of the most important parts of her life, drama. She believes this…

  17. Winter School on Coding Theory

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 8. Winter School on Coding Theory. Information and Announcements Volume 8 Issue 8 August 2003 pp 111-111. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/008/08/0111-0111. Resonance ...

  18. Nuclear Winter: The Continuing Debate.

    Science.gov (United States)

    1987-03-23

    prospect of human annihilation. Speculation about the environmental results of a ’long darkness’ were considered by Paul Ehrlich .10 The term nuclear winter...Washington D.C., 1983 The Cold and the Dark: The World after Nuclear War, by Paul Ehrlich , et al. New York: Norton, 1984. (QH545 N83 C66 1983k Caldicott

  19. Investigation of asymmetry of vortex flow over slender delta wings

    Science.gov (United States)

    Atashbaz, Ghasem

    Vortex flow, a major area of interest in fluid mechanics, is widespread in nature and in many man-made fluid mechanical devices. It can create havoc as cyclones or tornadoes or have significant implications in the performance of turbo-fluid machines or supersonic vehicles and so forth. Asymmetric vortices can cause a loss of lift and increase in rolling moment which can significantly affect wing stability and control. Up until the early nineties, it was generally believed that vortex asymmetry was the result of vortex interactions due to the close proximity of vortices over slender delta wings. However, some recent studies have thrown considerable doubt on the validity of this hypothesis. As a result, wind tunnel investigations were conducted on a series of nine delta wing planforms with sharp and round leading edges to examine the occurrence of vortex asymmetry at different angles of attack and sideslip. The study included surface oil and laser light sheet flow visualization in addition to surface pressure and hot-wire velocity measurements under static conditions. The effects of incidence, sideslip and sweep angles as well as Reynolds number variations were investigated. In this study, it was found that the effect of apex and leading edge shape played an important role in vortex asymmetry generation at high angle of attack. Vortex asymmetry was not observed over slender sharp leading edge delta wings due to the separation point being fixed at the sharp leading edge. Experimental results for these wings showed that the vortices do not impinge on one another because they do not get any closer beyond a certain value of angle of attack. Thus vortex asymmetry was not generated. However, significant vortex asymmetry was observed for round leading-edged delta wings. Asymmetric separation positions over the round leading edge was the result of laminar/turbulent transition which caused vortex asymmetry on these delta wing configurations. Sideslip angle and vortex

  20. The structure and dynamics of bubble-type vortex breakdown

    Science.gov (United States)

    Spall, R. E.; Ash, R. L.; Gatski, T. B.

    1990-01-01

    A unique discrete form of the Navier-Stokes equations for unsteady, three-dimensional, incompressible flow has been used to study vortex breakdown numerically. A Burgers-type vortex was introduced along the central axis of the computational domain, and allowed to evolve in space and time. By varying the strength of the vortex and the free stream axial velocity distribution, using a previously developed Rossby number criterion as a guide, the location and size of the vortex breakdown region was controlled. While the boundaries of the vortex breakdown bubble appear to be nominally symmetric, the internal flow field is not. Consequently, the mechanisms for mixing and entrainment required to sustain the bubble region are different from those suggested by earlier axisymmetric models. Results presented in this study, for a Reynolds number of 200, are in good qualitative agreement with higher Reynolds number experimental observations, and a variety of plots have been presented to help illuminate the fluid physics.

  1. Stability and dynamics of electron plasma vortex under external strain

    Science.gov (United States)

    Hurst, N. C.; Danielson, J. R.; Dubin, D. H. E.; Surko, C. M.

    2016-11-01

    The behavior of two-dimensional vortex structures is of key interest in a number of important physical systems, including geophysical fluids and strongly magnetized plasmas. Studied here is the case of an initially axisymmetric vortex subjected to a simple strain flow. Experiments are performed using pure electron plasmas confined in a Penning-Malmberg trap to model the dynamics of an ideal two-dimensional fluid. Vortex-In-Cell simulations are also conducted to complement the laboratory results. The dynamical behavior and stability threshold of the strained vortex are measured, showing good agreement with Kida's elliptical patch model for relatively flat vorticity profiles. However, non-flat profiles feature a reduced stability threshold, apparently due to filamentation at the vortex periphery.

  2. An Improved Wake Vortex Tracking Algorithm for Multiple Aircraft

    Science.gov (United States)

    Switzer, George F.; Proctor, Fred H.; Ahmad, Nashat N.; LimonDuparcmeur, Fanny M.

    2010-01-01

    The accurate tracking of vortex evolution from Large Eddy Simulation (LES) data is a complex and computationally intensive problem. The vortex tracking requires the analysis of very large three-dimensional and time-varying datasets. The complexity of the problem is further compounded by the fact that these vortices are embedded in a background turbulence field, and they may interact with the ground surface. Another level of complication can arise, if vortices from multiple aircrafts are simulated. This paper presents a new technique for post-processing LES data to obtain wake vortex tracks and wake intensities. The new approach isolates vortices by defining "regions of interest" (ROI) around each vortex and has the ability to identify vortex pairs from multiple aircraft. The paper describes the new methodology for tracking wake vortices and presents application of the technique for single and multiple aircraft.

  3. Experimental framework to study tip vortex interactions in multirotor wakes

    Science.gov (United States)

    Yao, Rongnan; Araya, Daniel

    2017-11-01

    We present an experimental study to compare the dynamic characteristics of tip vortices shed from a propeller in a crossflow to similar characteristics of an isolated vortex column generated in a closed system. Our aim is to evaluate the feasibility of using this simple isolated system to study the more complicated three-dimensional vortex interactions inherent to multirotor wakes, where the local unsteadiness generated by one rotor can strongly impact the performance of nearby rotors. Time-resolved particle image velocimetry is used to measure the velocity field of the propeller wake flow in a wind tunnel and the vortex column in a water tank. Specific attention is placed on analyzing the observed vortex core precession in the isolated system and comparing this to characteristic tip-vortex wandering phenomenon.

  4. Vortex Tube Modeling Using the System Identification Method

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jaeyoung; Jeong, Jiwoong; Yu, Sangseok [Chungnam Nat’l Univ., Daejeon (Korea, Republic of); Im, Seokyeon [Tongmyong Univ., Busan (Korea, Republic of)

    2017-05-15

    In this study, vortex tube system model is developed to predict the temperature of the hot and the cold sides. The vortex tube model is developed based on the system identification method, and the model utilized in this work to design the vortex tube is ARX type (Auto-Regressive with eXtra inputs). The derived polynomial model is validated against experimental data to verify the overall model accuracy. It is also shown that the derived model passes the stability test. It is confirmed that the derived model closely mimics the physical behavior of the vortex tube from both the static and dynamic numerical experiments by changing the angles of the low-temperature side throttle valve, clearly showing temperature separation. These results imply that the system identification based modeling can be a promising approach for the prediction of complex physical systems, including the vortex tube.

  5. The evolution of contrail microphysics in the vortex phase

    Directory of Open Access Journals (Sweden)

    Simon Unterstrasser

    2008-04-01

    Full Text Available We investigate the evolution of contrails during the vortex phase using numerical simulations. Emphasis is placed on microphysical properties and on the vertical distribution of ice mass and number concentration at the end of the vortex phase. Instead of using a 3D model which would be preferable but computationally too costly, we use a 2D model equipped with a special tool for controlling vortex decay. We conduct a great number of sensitivity studies for one aircraft type. It turns out that atmospheric parameters, namely supersaturation, temperature, stability and turbulence level have the biggest impact on the number of ice crystals and on the ice mass that survives until vortex breakup and that therefore makes up the persistent contrail in supersaturated air. The initial ice crystal number density and its distribution in the vortex, are of minor importance.

  6. A study of short wave instability on vortex filaments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong Yun [Univ. of California, Berkeley, CA (United States)

    1996-12-01

    The numerical stability and accuracy of the vortex method are studied. The effect of the ordinary differential equations (ODE) solver and of the time step on the numerical stability is analyzed. Various ODE solvers are compared and a best performer is chosen. A new constraint on the time step based on numerical stability is proposed and verified in numerical simulations. It is shown through numerical examples that empirical rules for selecting the spatial discretization obtained in simple test problems may not be extended to more general problems. The thin tube vortex filament method is applied to the problem of Widnall's instability on vortex rings. Numerical results different from previous calculations are presented and the source of the discrepancies is explained. The long time behavior of the unstable mode on thin vortex rings is simulated and analyzed. The short wave instability on vortex filaments is investigated both theoretically and numerically. It is shown that the short wave instability always occurs on co-rotating vortex filaments of fixed core structure. Furthermore when they are close to each other, vortex filaments produce short wave unstable modes which lead to wild stretching and folding. However, when the inter-filament distance is large in comparison with the core size of the filaments, unstable modes are bounded by a small fraction of the core size and the vortex filaments do not create hairpins nor wild stretching. These findings may explain the smooth behavior of the superfluid vortices. The formation of hairpin structures on numerical vortex filaments is investigated. It is shown that the formation of hairpin structures is independent of the ODE solver, of the time step and of other numerical parameters. The hairpin structures are primarily caused by short wave instability on co-rotating vortex filaments.

  7. Inclined Jet in Crossflow Interacting with a Vortex Generator

    Science.gov (United States)

    Zaman, K. B. M. Q.; Rigby, D .L.; Heidmann, J. D.

    2011-01-01

    An experiment is conducted on the effectiveness of a vortex generator in preventing liftoff of a jet in crossflow, with possible relevance to film-cooling applications. The jet issues into the boundary layer at an angle of 20 degreees to the freestream. The effect of a triangular ramp-shaped vortex generator is studied while varying its geometry and location. Detailed flowfield properties are obtained for a case in which the height of the vortex generator and the diameter of the orifice are comparable with the approach boundary-layer thickness. The vortex generator produces a streamwise vortex pair with a vorticity magnitude 3 times larger (and of opposite sense) than that found in the jet in crossflow alone. Such a vortex generator appears to be most effective in keeping the jet attached to the wall. The effect of parametric variation is studied mostly from surveys 10 diameters downstream from the orifice. Results over a range of jet-to-freestream momentum flux ratio (1 vortex generator has a significant effect even at the highest J covered in the experiment. When the vortex generator height is halved, there is a liftoff of the jet. On the other hand, when the height is doubled, the jet core is dissipated due to larger turbulence intensity. Varying the location of the vortex generator, over a distance of three diameters from the orifice, is found to have little impact. Rounding off the edges of the vortex generator with the increasing radius of curvature progressively diminishes its effect. However, allowing for a small radius of curvature may be quite tolerable in practice.

  8. Time-lapse imagery of Adélie penguins reveals differential winter strategies and breeding site occupation.

    Science.gov (United States)

    Black, Caitlin; Southwell, Colin; Emmerson, Louise; Lunn, Daniel; Hart, Tom

    2018-01-01

    Polar seabirds adopt different over-wintering strategies to survive and build condition during the critical winter period. Penguin species either reside at the colony during the winter months or migrate long distances. Tracking studies and survey methods have revealed differences in winter migration routes among penguin species and colonies, dependent on both biotic and abiotic factors present. However, scan sampling methods are rarely used to reveal non-breeding behaviors during winter and little is known about presence at the colony site over this period. Here we show that Adélie penguins on the Yalour Islands in the Western Antarctic Peninsula (WAP) are present year-round at the colony and undergo a mid-winter peak in abundance during winter. We found a negative relationship between daylight hours and penguin abundance when either open water or compact ice conditions were present, suggesting that penguins return to the breeding colony when visibility is lowest for at-sea foraging and when either extreme low or high levels of sea ice exist offshore. In contrast, Adélie penguins breeding in East Antarctica were not observed at the colonies during winter, suggesting that Adélie penguins undergo differential winter strategies in the marginal ice zone on the WAP compared to those in East Antarctica. These results demonstrate that cameras can successfully monitor wildlife year-round in areas that are largely inaccessible during winter.

  9. Numerical simulation of a precessing vortex breakdown

    International Nuclear Information System (INIS)

    Jochmann, P.; Sinigersky, A.; Hehle, M.; Schaefer, O.; Koch, R.; Bauer, H.-J.

    2006-01-01

    The objective of this work is to present the results of time-dependent numerical predictions of a turbulent symmetry breaking vortex breakdown in a realistic gas turbine combustor. The unsteady Reynolds-averaged Navier-Stokes (URANS) equations are solved by using the k-ε two-equation model as well as by a full second-order closure using the Reynolds stress model of Speziale, Sarkar and Gatski (SSG). The results for a Reynolds number of 5.2 x 10 4 , a swirl number of 0.52 and an expansion ratio of 5 show that the flow is emerging from the swirler as a spiral gyrating around a zone of strong recirculation which is also asymmetric and precessing. These flow structures which are typical for the spiral type (S-type) vortex breakdown have been confirmed by PIV and local LDA measurements in a corresponding experimental setup. Provided that high resolution meshes are employed the calculations with both turbulence models are capable to reproduce the spatial and temporal dynamics of the flow

  10. Stationary two-variable gravitational vortex fields

    International Nuclear Information System (INIS)

    Koppel, A.

    1974-01-01

    Some properties of stationary two-variable solutions of the Einstein equations were studied on the basis of rigorous analysis of the nonrelativistic limit of the relativistic gravitation theory. For this case a particular method was developed of determining so-called vortex gravitational fields described by vortex solutions, which in the nonrelativistic limit transform from → infinity to the nonnewtonian type solutions. The main formulae for such fields are derived and a scheme for their calculation is presented. It is shown that under certain conditions the exact stationary solutions of the Papapetrou type for vacuum relativistic equations are vortical. From this fact, first, the presence of particular exact vortical solutions for the Einstein equations is proved, and secondly, a new possibility of a physical interpretation is proposed for the Papapetrou solutions. It is also shown that the nonrelativistic limit of this class of solutions strongly depends on the structure of solution parameters (under certain conditions these solutions may also have the Newtonian limit). 'Multipole' and 'one-variable' partial solutions of the Papapetrou class solution are derived as particular examples of vortical solutions. It is shown that for a specific parameter structure the known NUT solution is also vortical, since it belongs to the Papapetrou class [ru

  11. Scalable fast multipole accelerated vortex methods

    KAUST Repository

    Hu, Qi

    2014-05-01

    The fast multipole method (FMM) is often used to accelerate the calculation of particle interactions in particle-based methods to simulate incompressible flows. To evaluate the most time-consuming kernels - the Biot-Savart equation and stretching term of the vorticity equation, we mathematically reformulated it so that only two Laplace scalar potentials are used instead of six. This automatically ensuring divergence-free far-field computation. Based on this formulation, we developed a new FMM-based vortex method on heterogeneous architectures, which distributed the work between multicore CPUs and GPUs to best utilize the hardware resources and achieve excellent scalability. The algorithm uses new data structures which can dynamically manage inter-node communication and load balance efficiently, with only a small parallel construction overhead. This algorithm can scale to large-sized clusters showing both strong and weak scalability. Careful error and timing trade-off analysis are also performed for the cutoff functions induced by the vortex particle method. Our implementation can perform one time step of the velocity+stretching calculation for one billion particles on 32 nodes in 55.9 seconds, which yields 49.12 Tflop/s.

  12. Winter movement dynamics of black brant

    Science.gov (United States)

    Lindberg, Mark S.; Ward, David H.; Tibbitts, T. Lee; Roser, John

    2007-01-01

    Although North American geese are managed based on their breeding distributions, the dynamics of those breeding populations may be affected by events that occur during the winter. Birth rates of capital breeding geese may be influenced by wintering conditions, mortality may be influenced by timing of migration and wintering distribution, and immigration and emigration among breeding populations may depend on winter movement and timing of pair formation. We examined factors affecting movements of black brant (Branta bernicla nigricans) among their primary wintering sites in Mexico and southern California, USA, (Mar 1998–Mar 2000) using capture–recapture models. Although brant exhibited high probability (>0.85) of monthly and annual fidelity to the wintering sites we sampled, we observed movements among all wintering sites. Movement probabilities both within and among winters were negatively related to distance between sites. We observed a higher probability both of southward movement between winters (Mar to Dec) and northward movement between months within winters. Between-winter movements were probably most strongly affected by spatial and temporal variation in habitat quality as we saw movement patterns consistent with contrasting environmental conditions (e.g., La Niña and El Niño southern oscillation cycles). Month-to-month movements were related to migration patterns and may also have been affected by differences in habitat conditions among sites. Patterns of winter movements indicate that a network of wintering sites may be necessary for effective conservation of brant.

  13. Wintering ecology of adult North American ospreys

    Science.gov (United States)

    Washburn, Brian E.; Martell, Mark S.; Bierregaard, Richard O.; Henny, Charles J.; Dorr, Brian S.; Olexa, Thomas J.

    2014-01-01

    North American Ospreys (Pandion haliaetus) typically migrate long distances to their wintering grounds in the tropics. Beyond the general distribution of their wintering range (i.e., the Caribbean, South America, and Central America), very little is known about the wintering ecology of these birds. We used satellite telemetry to determine the duration of wintering period, to examine the characteristics of wintering areas used by Ospreys, and to quantify space use and activity patterns of wintering Ospreys. Adult Ospreys migrated to wintering sites and exhibited high wintering site fidelity among years. Overall, Ospreys wintered on river systems (50.6%) more than on lakes (19.0%), and use of coastal areas was (30.4%) intermediate. Ospreys remained on their wintering grounds for an average of 154 d for males and 167 d for females. Locations of wintering Ospreys obtained via GPS-capable satellite telemetry suggest these birds move infrequently and their movements are very localized (i.e., 2 and 1.4 km2, respectively. Overall, our findings suggest wintering adult North American Ospreys are very sedentary, demonstrating a pattern of limited daily movements and high fidelity to a few select locations (presumably roosts). We suggest this wintering strategy might be effective for reducing the risk of mortality and maximizing energy conservation.

  14. Vortex particle method in parallel computations on graphical processing units used in study of the evolution of vortex structures

    Science.gov (United States)

    Kudela, Henryk; Kosior, Andrzej

    2014-12-01

    Understanding the dynamics and the mutual interaction among various types of vortical motions is a key ingredient in clarifying and controlling fluid motion. In the paper several different cases related to vortex tube interactions are presented. Due to problems with very long computation times on the single processor, the vortex-in-cell (VIC) method is implemented on the multicore architecture of a graphics processing unit (GPU). Numerical results of leapfrogging of two vortex rings for inviscid and viscous fluid are presented as test cases for the new multi-GPU implementation of the VIC method. Influence of the Reynolds number on the reconnection process is shown for two examples: antiparallel vortex tubes and orthogonally offset vortex tubes. Our aim is to show the great potential of the VIC method for solutions of three-dimensional flow problems and that the VIC method is very well suited for parallel computation.

  15. Study on the thermal structure of the Venusian polar atmosphere

    Science.gov (United States)

    Takamura, M.; Taguchi, M.; Fukuhara, T.; Kouyama, T.; Imamura, T.; Sato, T. M.; Futaguchi, M.; Yamada, T.; Nakamura, M.; Iwagami, N.; Suzuki, M.; Ueno, M.; Sato, M.; Hashimoto, G. L.; Takagi, S.

    2017-12-01

    The Venus atmosphere exhibits characteristic thermal features called `polar dipoles' and `polar collars' in both polar regions. The polar dipole which locates around the center of the polar region is warmer than mid-latitudes and the polar collar surrounding the polar dipole is colder than the other regions at the same altitude. These features were revealed by infrared observations of Venus by the previous missions. The previous observations showed that shapes of the polar dipoles can be characterized by three patterns which are the zonal wave numbers of 0-2, and that they change with time. The rotation periods of polar dipoles were determined to be 2.5 and 2.8-3.2 Earth days for the southern and northern polar regions, respectively. It has not been clear that the difference and variability in the rotation period is due to just a temporal variation, influence of solar activity, or other reasons. Sato et al. compared the appearances of both polar hot regions by a ground-based observation, rotation of the hot regions is synchronized between the northern and southern hemispheres. However, rotation periods of the northern and southern polar dipoles have not yet been directly compared. The Japanese Venus orbiter Akatsuki is a planetary meteorological satellite aiming at understanding the atmosphere dynamics of Venus. The Longwave Infrared Camera (LIR), observes thermal emission from the cloud top ( 65km). Akatsuki is in an equatorial orbit, which is suitable for simultaneous observations of both northern and southern polar regions. Rotation periods of polar vortices were derived using the LIR data by tracking a zonal position of maximum temperature. The rotation periods of polar vortices of southern and northern hemispheres are determined to be 3.0 - 8.2 and 1.6 - 5.5 Earth days, respectively (Fig.1). These rotation periods of southern polar vortex are longer than the values observed in the past. As a next step, we will derive rotation periods of the polar vortices for

  16. Long-term variability in Northern Hemisphere snow cover and associations with warmer winters

    Science.gov (United States)

    McCabe, Gregory J.; Wolock, David M.

    2010-01-01

    A monthly snow accumulation and melt model is used with gridded monthly temperature and precipitation data for the Northern Hemisphere to generate time series of March snow-covered area (SCA) for the period 1905 through 2002. The time series of estimated SCA for March is verified by comparison with previously published time series of SCA for the Northern Hemisphere. The time series of estimated Northern Hemisphere March SCA shows a substantial decrease since about 1970, and this decrease corresponds to an increase in mean winter Northern Hemisphere temperature. The increase in winter temperature has caused a decrease in the fraction of precipitation that occurs as snow and an increase in snowmelt for some parts of the Northern Hemisphere, particularly the mid-latitudes, thus reducing snow packs and March SCA. In addition, the increase in winter temperature and the decreases in SCA appear to be associated with a contraction of the circumpolar vortex and a poleward movement of storm tracks, resulting in decreased precipitation (and snow) in the low- to mid-latitudes and an increase in precipitation (and snow) in high latitudes. If Northern Hemisphere winter temperatures continue to warm as they have since the 1970s, then March SCA will likely continue to decrease.

  17. Classification guide: Sochi 2014 Paralympic Winter Games

    OpenAIRE

    2014-01-01

    The Sochi 2014 Paralympic Winter Games classification guide is designed to provide National Paralympic Committees (NPCs) and International Federations (IFs) with information about the classification policies and procedures that will apply to the Sochi 2014 Paralympic Winter Games.

  18. Formation of vortex breakdown in conical–cylindrical cavities

    International Nuclear Information System (INIS)

    Martins, Diego Alves de Moro; Souza, Francisco José de; Salvo, Ricardo de Vasconcelos

    2014-01-01

    Highlights: • Rotating flows in conical–cylindrical cavities were simulated via an in-house code using unstructured meshes. • The vortex breakdown phenomenon was verified in the geometries analyzed. • The influence of Stewartson and Bödewadt layers was observed in the vortex breakdown formation. • A curve of stability and number of breakdowns was obtained as a function of Reynolds number. • Spiral vortex breakdown was observed in some situations. - Abstract: Numerical simulations in confined rotating flows were performed in this work, in order to verify and characterize the formation of the vortex breakdown phenomenon. Cylindrical and conical–cylindrical geometries, both closed, were used in the simulations. The rotating flow is induced by the bottom wall, which rotates at constant angular velocity. Firstly the numerical results were compared to experimental results available in references, with the purpose to verify the capacity of the computational code to predict the vortex breakdown phenomenon. Further, several simulations varying the parameters which govern the characteristics of the flows analyzed in this work, i.e., the Reynolds number and the aspect ratio, were performed. In these simulations, the limits for the transitional regime and the vortex breakdown formation were verified. Steady and transient cases, with and without turbulence modeling, were simulated. In general, some aspects of the process of vortex breakdown in conical–cylindrical geometries were observed to be different from that in cylinders

  19. On the scaling and dynamics of periodically generated vortex rings

    Science.gov (United States)

    Asadi, Hossein; Asgharzadeh, Hafez; Borazjani, Iman; Scientific Computing; Biofluids Team

    2017-11-01

    Periodically generated vortex rings are observed in nature, e.g., left ventricle or jellyfish, but their scaling and dynamics is not completely well understood. We are interested in identifying the main parameters governing the propagation and dynamics of periodically generated vortex rings. Therefore, vortex rings, generated periodically through a circular cylinder into a tank, is numerically investigated for a range of Reynolds numbers (Re), non-dimensional periods (T), and stroke ratios (stroke time to period) for a simple square wave. Based on the results, by using the averaged inflow velocity in definition of Reynolds number and non-dimensional period, vortex ring velocity becomes approximately independent of the stroke ratio. The results also show that reducing Reynolds number or increasing non-dimensional period increases the translational velocity of vortex ring. Based on our test cases, an empirical relation is proposed to predict the location of vortex cores propagating into domain which shows good agreement with other experimental data. The vortex instabilities and interactions are also visualized and discussed. This work was supported by AHA Grant 13SDG17220022, NIH Grant R03EB014860, and the Center of Computational Research (CCR) of University at Buffalo.

  20. A counter-rotating vortex pair in inviscid fluid

    Science.gov (United States)

    Habibah, Ummu; Fukumoto, Yasuhide

    2017-12-01

    We study the motion of a counter-rotating vortex pair with the circulations ±Γ move in incompressible fluid. The assumption is made that the core is very thin, that is the core radius σ is much smaller than the vortex radius d such that ɛ = σ/d ≪ 1. With this condition, the method of matched asymptotic expansion is employed. The solutions of the Navier-Stokes equations and the Biot-Savart law, regarding the inner and outer solutions respectively, are constructed in the form of a small parameter. An asymptotic expansion of the Biot-Savart law near the vortex core provides with the matching condition for an asymptotic expansion for limiting the Navier-Stokes equations for large radius r. The general formula of an anti-parallel vortex pair is established. At leading order O(ɛ0), we apply the special case in inviscid fluid, the Rankine vortex, a circular vortex of uniform vorticity. Furthermore at leading order O(ɛ5) we show the traveling speed of a vortex pair.