WorldWideScience

Sample records for winter darkness shows

  1. The long darkness: Psychological and moral perspectives on nuclear winter

    International Nuclear Information System (INIS)

    Grinspoon, L.

    1986-01-01

    The aftermath of nuclear war - a sustained period of devastation called nuclear winter - would threaten the survival of civilization, even of the human species. In this book some opponents of the arms race describe the consequences of nuclear warfare and offer explanations - drawn from their knowledge of psychiatry, history, religion, and biology - for the irrational behavior of political leaders who risk these consequences and for the reluctance of ordinary citizens to face the horror of the nuclear threat

  2. Dark winter how the sun is causing a 30-year cold spell

    CERN Document Server

    Casey, John L

    2014-01-01

    Climate change has been a perplexing problem for years. In Dark Winter, author John L. Casey, a former White House national space policy advisor, NASA headquarters consultant, and space shuttle engineer tells the truth about ominous changes taking place in the climate and the Sun. Casey's research into the Sun's activity, which began almost a decade ago, resulted in discovery of a solar cycle that is now reversing from its global warming phase to that of dangerous global cooling for the next thirty years or more. This new cold climate will dramatically impact the world's citizens. In Dark Wint

  3. A new PCR-based method shows that blue crabs (Callinectes sapidus (Rathbun)) consume winter flounder (Pseudopleuronectes americanus (Walbaum)).

    Science.gov (United States)

    Collier, Jackie L; Fitzgerald, Sean P; Hice, Lyndie A; Frisk, Michael G; McElroy, Anne E

    2014-01-01

    Winter flounder (Pseudopleuronectes americanus) once supported robust commercial and recreational fisheries in the New York (USA) region, but since the 1990s populations have been in decline. Available data show that settlement of young-of-the-year winter flounder has not declined as sharply as adult abundance, suggesting that juveniles are experiencing higher mortality following settlement. The recent increase of blue crab (Callinectes sapidus) abundance in the New York region raises the possibility that new sources of predation may be contributing to juvenile winter flounder mortality. To investigate this possibility we developed and validated a method to specifically detect winter flounder mitochondrial control region DNA sequences in the gut contents of blue crabs. A survey of 55 crabs collected from Shinnecock Bay (along the south shore of Long Island, New York) in July, August, and September of 2011 showed that 12 of 42 blue crabs (28.6%) from which PCR-amplifiable DNA was recovered had consumed winter flounder in the wild, empirically supporting the trophic link between these species that has been widely speculated to exist. This technique overcomes difficulties with visual identification of the often unrecognizable gut contents of decapod crustaceans, and modifications of this approach offer valuable tools to more broadly address their feeding habits on a wide variety of species.

  4. Dark Ages Religious Conflicts and their Literary Representations: The Winter King, by Bernard Cornwell

    Directory of Open Access Journals (Sweden)

    Carlos A. Sanz Mingo

    2011-07-01

    Full Text Available This paper analyses the religious situation in Britain in the fifth and sixth centuries as reflected in Arthurian literature. This reflection usually depicts religious strife which brought a political division between the British kingdoms. This, in turn, provoked the final defeat against the Anglo-Saxons. Four religious creeds will be dealt with: the native Celtic religion and the cults that the Romans brought with them from the Eastern Mediterranean, including Christianity and the mysteries of Isis and Mithras. All of them are represented in Bernard Cornwell’s trilogy The WarlordChronicles. We will concentrate on how these creeds influenced the lives of Britons in the agerepresented and exemplified in the first book of Conrnwell’s trilogy, The Winter King. Despite thefact that religion has always been one of the most common topics in Arthuriana, modern literaturedeals with it in a different way to previous texts, linking it with history and politics.

  5. Identifying temporal bottlenecks for the conservation of large-bodied fishes: Lake Sturgeon (Acipenser fulvescens show highly restricted movement and habitat use over-winter

    Directory of Open Access Journals (Sweden)

    Donnette Thayer

    2017-04-01

    Full Text Available The relationship between species’ size and home range size has been well studied. In practice, home range may provide a good surrogate of broad spatial coverage needed for species conservation, however, many species can show restricted movement during critical life stages, such as breeding and over-wintering. This suggests the existence of either a behavioral or habitat mediated ‘temporal bottleneck,’ where restricted or sedentary movement can make populations more susceptible to harm during specific life stages. Here, we study over-winter movement and habitat use of Lake Sturgeon (Acipenser fulvescens, the largest freshwater fish in North America. We monitored over-winter movement of 86 fish using a hydro-acoustic receiver array in the South Saskatchewan River, Canada. Overall, 20 fish remained within our study system throughout the winter. Lake Sturgeon showed strong aggregation and sedentary movement over-winter, demonstrating a temporal bottleneck. Movement was highly restricted during ice-on periods (ranging from 0.9 km/day in November and April to 0.2 km/day in mid-November to mid-March, with Lake Sturgeon seeking deeper, slower pools. We also show that Lake Sturgeon have strong aggregation behavior, where distance to conspecifics decreased (from 575 to 313 m in preparation for and during ice-on periods. Although the Lake Sturgeon we studied had access to 1100 kilometers of unfragmented riverine habitat, we show that during the over-winter period Lake Sturgeon utilized a single, deep pool (<0.1% of available habitat. The temporal discrepancy between mobile and sedentary behaviors in Lake Sturgeon suggest adaptive management is needed with more localized focus during periods of temporal bottlenecks, even for large-bodied species.

  6. Dark group: dark energy and dark matter

    International Nuclear Information System (INIS)

    Macorra, A. de la

    2004-01-01

    We study the possibility that a dark group, a gauge group with particles interacting with the standard model particles only via gravity, is responsible for containing the dark energy and dark matter required by present day observations. We show that it is indeed possible and we determine the constrains for the dark group. The non-perturbative effects generated by a strong gauge coupling constant can de determined and a inverse power law scalar potential IPL for the dark meson fields is generated parameterizing the dark energy. On the other hand it is the massive particles, e.g., dark baryons, of the dark gauge group that give the corresponding dark matter. The mass of the dark particles is of the order of the condensation scale Λ c and the temperature is smaller then the photon's temperature. The dark matter is of the warm matter type. The only parameters of the model are the number of particles of the dark group. The allowed values of the different parameters are severely restricted. The dark group energy density at Λ c must be Ω DGc ≤0.17 and the evolution and acceptable values of dark matter and dark energy leads to a constrain of Λ c and the IPL parameter n giving Λ c =O(1-10 3 ) eV and 0.28≤n≤1.04

  7. Dark energy and dark matter

    International Nuclear Information System (INIS)

    Comelli, D.; Pietroni, M.; Riotto, A.

    2003-01-01

    It is a puzzle why the densities of dark matter and dark energy are nearly equal today when they scale so differently during the expansion of the universe. This conundrum may be solved if there is a coupling between the two dark sectors. In this Letter we assume that dark matter is made of cold relics with masses depending exponentially on the scalar field associated to dark energy. Since the dynamics of the system is dominated by an attractor solution, the dark matter particle mass is forced to change with time as to ensure that the ratio between the energy densities of dark matter and dark energy become a constant at late times and one readily realizes that the present-day dark matter abundance is not very sensitive to its value when dark matter particles decouple from the thermal bath. We show that the dependence of the present abundance of cold dark matter on the parameters of the model differs drastically from the familiar results where no connection between dark energy and dark matter is present. In particular, we analyze the case in which the cold dark matter particle is the lightest supersymmetric particle

  8. Winter-to-winter variations in indoor radon

    International Nuclear Information System (INIS)

    Mose, D.G.; Mushrush, G.W.; Kline, S.W.

    1989-01-01

    Indoor radon concentrations in northern Virginia and central Maryland show a strong dependence on weather. Winter tends to be associated with higher than average indoor radon, and summer with lower than average. However, compared to the winter of 1986-1987, the winter of 1987-1988 was warmer and drier. Consequently, winter-to-winter indoor radon decreased by about 25%. This winter-to-winter decrease is unexpectedly large, and simulates winter-to-summer variations that have been reported

  9. Dark stars

    DEFF Research Database (Denmark)

    Maselli, Andrea; Pnigouras, Pantelis; Nielsen, Niklas Grønlund

    2017-01-01

    to the formation of compact objects predominantly made of dark matter. Considering both fermionic and bosonic (scalar φ4) equations of state, we construct the equilibrium structure of rotating dark stars, focusing on their bulk properties and comparing them with baryonic neutron stars. We also show that these dark......Theoretical models of self-interacting dark matter represent a promising answer to a series of open problems within the so-called collisionless cold dark matter paradigm. In case of asymmetric dark matter, self-interactions might facilitate gravitational collapse and potentially lead...... objects admit the I-Love-Q universal relations, which link their moments of inertia, tidal deformabilities, and quadrupole moments. Finally, we prove that stars built with a dark matter equation of state are not compact enough to mimic black holes in general relativity, thus making them distinguishable...

  10. A cry in the dark: depressed mothers show reduced neural activation to their own infant’s cry

    Science.gov (United States)

    Ablow, Jennifer C.

    2012-01-01

    This study investigated depression-related differences in primiparous mothers’ neural response to their own infant’s distress cues. Mothers diagnosed with major depressive disorder (n = 11) and comparison mothers with no diagnosable psychopathology (n = 11) were exposed to their own 18-months-old infant’s cry sound, as well as unfamiliar infant’s cry and control sound, during functional neuroimaging. Depressed mothers’ response to own infant cry greater than other sounds was compared to non-depressed mothers’ response in the whole brain [false discovery rate (FDR) corrected]. A continuous measure of self-reported depressive symptoms (CESD) was also tested as a predictor of maternal response. Non-depressed mothers activated to their own infant’s cry greater than control sound in a distributed network of para/limbic and prefrontal regions, whereas depressed mothers as a group failed to show activation. Non-depressed compared to depressed mothers showed significantly greater striatal (caudate, nucleus accumbens) and medial thalamic activation. Additionally, mothers with lower depressive symptoms activated more strongly in left orbitofrontal, dorsal anterior cingulate and medial superior frontal regions. Non-depressed compared to depressed mothers activated uniquely to own infant greater than other infant cry in occipital fusiform areas. Disturbance of these neural networks involved in emotional response and regulation may help to explain parenting deficits in depressed mothers. PMID:21208990

  11. Dark catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa; Scholtz, Jakub, E-mail: prateekagrawal@fas.harvard.edu, E-mail: fcyrraci@physics.harvard.edu, E-mail: randall@physics.harvard.edu, E-mail: jscholtz@physics.harvard.edu [Department of Physics, Harvard University, 17 Oxford St., Cambridge, MA 02138 (United States)

    2017-08-01

    Recently it was shown that dark matter with mass of order the weak scale can be charged under a new long-range force, decoupled from the Standard Model, with only weak constraints from early Universe cosmology. Here we consider the implications of an additional charged particle C that is light enough to lead to significant dissipative dynamics on galactic times scales. We highlight several novel features of this model, which can be relevant even when the C particle constitutes only a small fraction of the number density (and energy density). We assume a small asymmetric abundance of the C particle whose charge is compensated by a heavy X particle so that the relic abundance of dark matter consists mostly of symmetric X and X-bar , with a small asymmetric component made up of X and C . As the universe cools, it undergoes asymmetric recombination binding the free C s into ( XC ) dark atoms efficiently. Even with a tiny asymmetric component, the presence of C particles catalyzes tight coupling between the heavy dark matter X and the dark photon plasma that can lead to a significant suppression of the matter power spectrum on small scales and lead to some of the strongest bounds on such dark matter theories. We find a viable parameter space where structure formation constraints are satisfied and significant dissipative dynamics can occur in galactic haloes but show a large region is excluded. Our model shows that subdominant components in the dark sector can dramatically affect structure formation.

  12. Decaying dark matter from dark instantons

    International Nuclear Information System (INIS)

    Carone, Christopher D.; Erlich, Joshua; Primulando, Reinard

    2010-01-01

    We construct an explicit, TeV-scale model of decaying dark matter in which the approximate stability of the dark matter candidate is a consequence of a global symmetry that is broken only by instanton-induced operators generated by a non-Abelian dark gauge group. The dominant dark matter decay channels are to standard model leptons. Annihilation of the dark matter to standard model states occurs primarily through the Higgs portal. We show that the mass and lifetime of the dark matter candidate in this model can be chosen to be consistent with the values favored by fits to data from the PAMELA and Fermi-LAT experiments.

  13. Dark Dark Wood

    DEFF Research Database (Denmark)

    2017-01-01

    2017 student Bachelor film. Synopsis: Young princess Maria has had about enough of her royal life – it’s all lesson, responsibilities and duties on top of each other, every hour of every day. Overwhelmed Maria is swept away on an adventure into the monster-filled dark, dark woods. During 2017...

  14. Impeded Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Joachim; Liu, Jia [PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,Johannes Gutenberg University,Staudingerweg 7, 55099 Mainz (Germany); Slatyer, Tracy R. [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States); Wang, Xiao-Ping [PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,Johannes Gutenberg University,Staudingerweg 7, 55099 Mainz (Germany); Xue, Wei [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)

    2016-12-12

    We consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario “Impeded Dark Matter”. We demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.

  15. Impeded Dark Matter

    International Nuclear Information System (INIS)

    Kopp, Joachim; Liu, Jia; Slatyer, Tracy R.; Wang, Xiao-Ping; Xue, Wei

    2016-01-01

    We consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario “Impeded Dark Matter”. We demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.

  16. Collapsed Dark Matter Structures.

    Science.gov (United States)

    Buckley, Matthew R; DiFranzo, Anthony

    2018-02-02

    The distributions of dark matter and baryons in the Universe are known to be very different: The dark matter resides in extended halos, while a significant fraction of the baryons have radiated away much of their initial energy and fallen deep into the potential wells. This difference in morphology leads to the widely held conclusion that dark matter cannot cool and collapse on any scale. We revisit this assumption and show that a simple model where dark matter is charged under a "dark electromagnetism" can allow dark matter to form gravitationally collapsed objects with characteristic mass scales much smaller than that of a Milky-Way-type galaxy. Though the majority of the dark matter in spiral galaxies would remain in the halo, such a model opens the possibility that galaxies and their associated dark matter play host to a significant number of collapsed substructures. The observational signatures of such structures are not well explored but potentially interesting.

  17. Collapsed Dark Matter Structures

    Science.gov (United States)

    Buckley, Matthew R.; DiFranzo, Anthony

    2018-02-01

    The distributions of dark matter and baryons in the Universe are known to be very different: The dark matter resides in extended halos, while a significant fraction of the baryons have radiated away much of their initial energy and fallen deep into the potential wells. This difference in morphology leads to the widely held conclusion that dark matter cannot cool and collapse on any scale. We revisit this assumption and show that a simple model where dark matter is charged under a "dark electromagnetism" can allow dark matter to form gravitationally collapsed objects with characteristic mass scales much smaller than that of a Milky-Way-type galaxy. Though the majority of the dark matter in spiral galaxies would remain in the halo, such a model opens the possibility that galaxies and their associated dark matter play host to a significant number of collapsed substructures. The observational signatures of such structures are not well explored but potentially interesting.

  18. Dark matter detectors

    International Nuclear Information System (INIS)

    Forster, G.

    1995-01-01

    A fundamental question of astrophysics and cosmology is the nature of dark matter. Astrophysical observations show clearly the existence of some kind of dark matter, though they cannot yet reveal its nature. Dark matter can consist of baryonic particles, or of other (known or unknown) elementary particles. Baryonic dark matter probably exists in the form of dust, gas, or small stars. Other elementary particles constituting the dark matter can possibly be measured in terrestrial experiments. Possibilities for dark matter particles are neutrinos, axions and weakly interacting massive particles (WIMPs). While a direct detection of relic neutrinos seems at the moment impossible, there are experiments looking for baryonic dark matter in the form of Massive Compact Halo Objects, and for particle dark matter in the form of axions and WIMPS. (orig.)

  19. Winter Wonderlands

    Science.gov (United States)

    Coy, Mary

    2011-01-01

    Listening to people complain about the hardships of winter and the dreariness of the nearly constant gray sky prompted the author to help her sixth graders recognize and appreciate the beauty that surrounds them for nearly five months of the year in western New York. The author opines that if students could see things more artistically, the winter…

  20. Revival of the unified dark energy-dark matter model?

    International Nuclear Information System (INIS)

    Bento, M.C.; Bertolami, O.; Sen, A.A.

    2004-01-01

    We consider the generalized Chaplygin gas (GCG) proposal for unification of dark energy and dark matter and show that it admits an unique decomposition into dark energy and dark matter components once phantomlike dark energy is excluded. Within this framework, we study structure formation and show that difficulties associated to unphysical oscillations or blowup in the matter power spectrum can be circumvented. Furthermore, we show that the dominance of dark energy is related to the time when energy density fluctuations start deviating from the linear δ∼a behavior

  1. Spirit Scans Winter Haven

    Science.gov (United States)

    2006-01-01

    At least three different kinds of rocks await scientific analysis at the place where NASA's Mars Exploration Rover Spirit will likely spend several months of Martian winter. They are visible in this picture, which the panoramic camera on Spirit acquired during the rover's 809th sol, or Martian day, of exploring Mars (April 12, 2006). Paper-thin layers of light-toned, jagged-edged rocks protrude horizontally from beneath small sand drifts; a light gray rock with smooth, rounded edges sits atop the sand drifts; and several dark gray to black, angular rocks with vesicles (small holes) typical of hardened lava lie scattered across the sand. This view is an approximately true-color rendering that combines images taken through the panoramic camera's 753-nanometer, 535-nanometer, and 432-nanometer filters.

  2. Dark matters

    International Nuclear Information System (INIS)

    Silk, Joseph

    2010-01-01

    One of the greatest mysteries in the cosmos is that it is mostly dark. That is, not only is the night sky dark, but also most of the matter and the energy in the universe is dark. For every atom visible in planets, stars and galaxies today there exists at least five or six times as much 'Dark Matter' in the universe. Astronomers and particle physicists today are seeking to unravel the nature of this mysterious but pervasive dark matter, which has profoundly influenced the formation of structure in the universe. Dark energy remains even more elusive, as we lack candidate fields that emerge from well established physics. I will describe various attempts to measure dark matter by direct and indirect means, and discuss the prospects for progress in unravelling dark energy.

  3. Dark Matter

    Directory of Open Access Journals (Sweden)

    Einasto J.

    2011-06-01

    Full Text Available I give a review of the development of the concept of dark matter. The dark matter story passed through several stages from a minor observational puzzle to a major challenge for theory of elementary particles. Modern data suggest that dark matter is the dominant matter component in the Universe, and that it consists of some unknown non-baryonic particles. Dark matter is the dominant matter component in the Universe, thus properties of dark matter particles determine the structure of the cosmic web.

  4. Metastable dark energy

    Directory of Open Access Journals (Sweden)

    Ricardo G. Landim

    2017-01-01

    Full Text Available We build a model of metastable dark energy, in which the observed vacuum energy is the value of the scalar potential at the false vacuum. The scalar potential is given by a sum of even self-interactions up to order six. The deviation from the Minkowski vacuum is due to a term suppressed by the Planck scale. The decay time of the metastable vacuum can easily accommodate a mean life time compatible with the age of the universe. The metastable dark energy is also embedded into a model with SU(2R symmetry. The dark energy doublet and the dark matter doublet naturally interact with each other. A three-body decay of the dark energy particle into (cold and warm dark matter can be as long as large fraction of the age of the universe, if the mediator is massive enough, the lower bound being at intermediate energy level some orders below the grand unification scale. Such a decay shows a different form of interaction between dark matter and dark energy, and the model opens a new window to investigate the dark sector from the point-of-view of particle physics.

  5. Why we need to see the dark matter to understand the dark energy

    OpenAIRE

    Kunz, Martin

    2007-01-01

    The cosmological concordance model contains two separate constituents which interact only gravitationally with themselves and everything else, the dark matter and the dark energy. In the standard dark energy models, the dark matter makes up some 20% of the total energy budget today, while the dark energy is responsible for about 75%. Here we show that these numbers are only robust for specific dark energy models and that in general we cannot measure the abundance of the dark constituents sepa...

  6. WINTER SAECULUM

    Directory of Open Access Journals (Sweden)

    Emil Mihalina

    2017-03-01

    Full Text Available Accumulated imbalances in the economy and on the markets cause specific financial market dynamics that have formed characteristic patterns kept throughout long financial history. In 2008 Authors presented their expectations of key macroeconomic and selected asset class markets developments for period ahead based on Saeculum theory. Use of term Secular describes a specific valuation environment during prolonged period. If valuations as well as selected macro variables are considered as a tool for understanding business cycles then market cycles become much more obvious and easily understandable. Therefore over the long run, certain asset classes do better in terms of risk reward profile than others. Further on, there is no need for frequent portfolio rebalancing and timing of specific investment positions within a particular asset class market. Current stage in cycle development suggests a need for reassessment of trends and prevailing phenomena due to cyclical nture of long lasting Saeculums. Paper reviews developments in recognizable patterns of selected metrics in current Winter Saeculum dominated with prevailing forces of delivering, deflation and decrease in velocity of money.

  7. Dark Matter

    International Nuclear Information System (INIS)

    Holt, S. S.; Bennett, C. L.

    1995-01-01

    These proceedings represent papers presented at the Astrophysics conference in Maryland, organized by NASA Goddard Space Flight Center and the University of Maryland. The topics covered included low mass stars as dark matter, dark matter in galaxies and clusters, cosmic microwave background anisotropy, cold and hot dark matter, and the large scale distribution and motions of galaxies. There were eighty five papers presented. Out of these, 10 have been abstracted for the Energy Science and Technology database

  8. Dark energy

    International Nuclear Information System (INIS)

    Wang, Yun

    2010-01-01

    Dark energy research aims to illuminate the mystery of the observed cosmic acceleration, one of the fundamental problems in physics and astronomy today. This book presents a systematic and detailed review of the current state of dark energy research, with the focus on the examination of the major observational techniques for probing dark energy. It can be used as a textbook to train students and others who wish to enter this extremely active field in cosmology.

  9. Titan's Emergence from Winter

    Science.gov (United States)

    Flasar, F. Michael; Achterberg, Richard; Jennings, Donald; Schinder, Paul

    2011-01-01

    We summarize the changes in Titans thermal structure derived from Cassini CIRS and radio-occultation data during the transition from winter to early spring. Titan's surface, and middle atmosphere show noticeable seasonal change, whereas that in most of the troposphere is mated. This can be understood in terms of the relatively small radiative relaxation time in the middle atmosphere and much larger time scale in the troposphere. The surface exhibits seasonal change because the heat capacity in an annual skin depth is much smaller than that in the lowest scale height of the troposphere. Surface temperatures rise 1 K at raid and high latitudes in the winter northern hemisphere and cool in the southern hemisphere. Changes in in the middle atmosphere are more complicated. Temperatures in the middle stratosphere (approximately 1 mbar) increase by a few kelvin at mid northern latitudes, but those at high latitudes first increase as that region moves out of winter shadow, and then decrease. This probably results from the combined effect of increased solar heating as the suit moves higher in the sky and the decreased adiabatic warming as the sinking motions associated with the cross-equatorial meridional cell weaken. Consistent with this interpretation, the warm temperatures observed higher up at the winter polar stratopause cool significantly.

  10. Dark energy and dark matter in galaxy halos

    International Nuclear Information System (INIS)

    Tetradis, N.

    2006-01-01

    We consider the possibility that the dark matter is coupled through its mass to a scalar field associated with the dark energy of the Universe. In order for such a field to play a role at the present cosmological distances, it must be effectively massless at galactic length scales. We discuss the effect of the field on the distribution of dark matter in galaxy halos. We show that the profile of the distribution outside the galaxy core remains largely unaffected and the approximately flat rotation curves persist. The dispersion of the dark matter velocity is enhanced by a potentially large factor relative to the case of zero coupling between dark energy and dark matter. The counting rates in terrestrial dark matter detectors are similarly enhanced. Existing bounds on the properties of dark matter candidates can be extended to the coupled case, by taking into account the enhancement factor

  11. Dark Matter

    International Nuclear Information System (INIS)

    Bashir, A.; Cotti, U.; De Leon, C. L.; Raya, A; Villasenor, L.

    2008-01-01

    One of the biggest scientific mysteries of our time resides in the identification of the particles that constitute a large fraction of the mass of our Universe, generically known as dark matter. We review the observations and the experimental data that imply the existence of dark matter. We briefly discuss the properties of the two best dark-matter candidate particles and the experimental techniques presently used to try to discover them. Finally, we mention a proposed project that has recently emerged within the Mexican community to look for dark matter

  12. Intraspecific variation in Pinus pinaster PSII photochemical efficiency in response to winter stress and freezing temperatures.

    Science.gov (United States)

    Corcuera, Leyre; Gil-Pelegrin, Eustaquio; Notivol, Eduardo

    2011-01-01

    As part of a program to select maritime pine (Pinus pinaster Ait.) genotypes for resistance to low winter temperatures, we examined variation in photosystem II activity by chlorophyll fluorescence. Populations and families within populations from contrasting climates were tested during two consecutive winters through two progeny trials, one located at a continental and xeric site and one at a mesic site with Atlantic influence. We also obtained the LT₅₀, or the temperature that causes 50% damage, by controlled freezing and the subsequent analysis of chlorophyll fluorescence in needles and stems that were collected from populations at the continental trial site.P. pinaster showed sensitivity to winter stress at the continental site, during the colder winter. The combination of low temperatures, high solar irradiation and low precipitation caused sustained decreases in maximal photochemical efficiency (F(v)/F(m)), quantum yield of non-cyclic electron transport (Φ(PSII)) and photochemical quenching (qP). The variation in photochemical parameters was larger among families than among populations, and population differences appeared only under the harshest conditions at the continental site. As expected, the environmental effects (winter and site) on the photochemical parameters were much larger than the genotypic effects (population or family). LT₅₀ was closely related to the minimum winter temperatures of the population's range. The dark-adapted F(v)/F(m) ratio discriminated clearly between interior and coastal populations.In conclusion, variations in F(v)/F(m), Φ(PSII), qP and non-photochemical quenching (NPQ) in response to winter stress were primarily due to the differences between the winter conditions and the sites and secondarily due to the differences among families and their interactions with the environment. Populations from continental climates showed higher frost tolerance (LT₅₀) than coastal populations that typically experience mild winters

  13. Dark matter and dark radiation

    International Nuclear Information System (INIS)

    Ackerman, Lotty; Buckley, Matthew R.; Carroll, Sean M.; Kamionkowski, Marc

    2009-01-01

    We explore the feasibility and astrophysical consequences of a new long-range U(1) gauge field ('dark electromagnetism') that couples only to dark matter, not to the standard model. The dark matter consists of an equal number of positive and negative charges under the new force, but annihilations are suppressed if the dark-matter mass is sufficiently high and the dark fine-structure constant α-circumflex is sufficiently small. The correct relic abundance can be obtained if the dark matter also couples to the conventional weak interactions, and we verify that this is consistent with particle-physics constraints. The primary limit on α-circumflex comes from the demand that the dark matter be effectively collisionless in galactic dynamics, which implies α-circumflex -3 for TeV-scale dark matter. These values are easily compatible with constraints from structure formation and primordial nucleosynthesis. We raise the prospect of interesting new plasma effects in dark-matter dynamics, which remain to be explored.

  14. Dark Matter

    Indian Academy of Sciences (India)

    What You See Ain't What. You Got, Resonance, Vol.4,. No.9,1999. Dark Matter. 2. Dark Matter in the Universe. Bikram Phookun and Biman Nath. In Part 11 of this article we learnt that there are compelling evidences from dynamics of spiral galaxies, like our own, that there must be non-luminous matter in them. In this.

  15. Quantum Field Theory of Interacting Dark Matter/Dark Energy: Dark Monodromies

    CERN Document Server

    D'Amico, Guido; Kaloper, Nemanja

    2016-11-28

    We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dark matter are very light axions, they can have significant mixings which are radiatively stable and perfectly consistent with quantum field theory. Such models can naturally occur in multi-axion realizations of monodromies. The mixings yield interesting signatures which are observable and are within current cosmological limits but could be constrained further by future observations.

  16. Measuring the speed of dark: Detecting dark energy perturbations

    International Nuclear Information System (INIS)

    Putter, Roland de; Huterer, Dragan; Linder, Eric V.

    2010-01-01

    The nature of dark energy can be probed not only through its equation of state but also through its microphysics, characterized by the sound speed of perturbations to the dark energy density and pressure. As the sound speed drops below the speed of light, dark energy inhomogeneities increase, affecting both cosmic microwave background and matter power spectra. We show that current data can put no significant constraints on the value of the sound speed when dark energy is purely a recent phenomenon, but can begin to show more interesting results for early dark energy models. For example, the best fit model for current data has a slight preference for dynamics [w(a)≠-1], degrees of freedom distinct from quintessence (c s ≠1), and early presence of dark energy [Ω de (a<<1)≠0]. Future data may open a new window on dark energy by measuring its spatial as well as time variation.

  17. Forbidden Channels and SIMP Dark Matter

    OpenAIRE

    Choi Soo-Min; Kang Yoo-Jin; Lee Hyun Min

    2018-01-01

    In this review, we focus on dark matter production from thermal freeze-out with forbidden channels and SIMP processes. We show that forbidden channels can be dominant to produce dark matter depending on the dark photon and / or dark Higgs mass compared to SIMP.

  18. Dark coupling

    International Nuclear Information System (INIS)

    Gavela, M.B.; Hernández, D.; Honorez, L. Lopez; Mena, O.; Rigolin, S.

    2009-01-01

    The two dark sectors of the universe—dark matter and dark energy—may interact with each other. Background and linear density perturbation evolution equations are developed for a generic coupling. We then establish the general conditions necessary to obtain models free from non-adiabatic instabilities. As an application, we consider a viable universe in which the interaction strength is proportional to the dark energy density. The scenario does not exhibit ''phantom crossing'' and is free from instabilities, including early ones. A sizeable interaction strength is compatible with combined WMAP, HST, SN, LSS and H(z) data. Neutrino mass and/or cosmic curvature are allowed to be larger than in non-interacting models. Our analysis sheds light as well on unstable scenarios previously proposed

  19. Dark Matter

    Science.gov (United States)

    Lincoln, Don

    2013-01-01

    It's a dark, dark universe out there, and I don't mean because the night sky is black. After all, once you leave the shadow of the Earth and get out into space, you're surrounded by countless lights glittering everywhere you look. But for all of Sagan's billions and billions of stars and galaxies, it's a jaw-dropping fact that the ordinary kind of…

  20. Dark energy and extended dark matter halos

    Science.gov (United States)

    Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2012-03-01

    The cosmological mean matter (dark and baryonic) density measured in the units of the critical density is Ωm = 0.27. Independently, the local mean density is estimated to be Ωloc = 0.08-0.23 from recent data on galaxy groups at redshifts up to z = 0.01-0.03 (as published by Crook et al. 2007, ApJ, 655, 790 and Makarov & Karachentsev 2011, MNRAS, 412, 2498). If the lower values of Ωloc are reliable, as Makarov & Karachentsev and some other observers prefer, does this mean that the Local Universe of 100-300 Mpc across is an underdensity in the cosmic matter distribution? Or could it nevertheless be representative of the mean cosmic density or even be an overdensity due to the Local Supercluster therein. We focus on dark matter halos of groups of galaxies and check how much dark mass the invisible outer layers of the halos are able to host. The outer layers are usually devoid of bright galaxies and cannot be seen at large distances. The key factor which bounds the size of an isolated halo is the local antigravity produced by the omnipresent background of dark energy. A gravitationally bound halo does not extend beyond the zero-gravity surface where the gravity of matter and the antigravity of dark energy balance, thus defining a natural upper size of a system. We use our theory of local dynamical effects of dark energy to estimate the maximal sizes and masses of the extended dark halos. Using data from three recent catalogs of galaxy groups, we show that the calculated mass bounds conform with the assumption that a significant amount of dark matter is located in the invisible outer parts of the extended halos, sufficient to fill the gap between the observed and expected local matter density. Nearby groups of galaxies and the Virgo cluster have dark halos which seem to extend up to their zero-gravity surfaces. If the extended halo is a common feature of gravitationally bound systems on scales of galaxy groups and clusters, the Local Universe could be typical or even

  1. On dark energy isocurvature perturbation

    International Nuclear Information System (INIS)

    Liu, Jie; Zhang, Xinmin; Li, Mingzhe

    2011-01-01

    Determining the equation of state of dark energy with astronomical observations is crucially important to understand the nature of dark energy. In performing a likelihood analysis of the data, especially of the cosmic microwave background and large scale structure data the dark energy perturbations have to be taken into account both for theoretical consistency and for numerical accuracy. Usually, one assumes in the global fitting analysis that the dark energy perturbations are adiabatic. In this paper, we study the dark energy isocurvature perturbation analytically and discuss its implications for the cosmic microwave background radiation and large scale structure. Furthermore, with the current astronomical observational data and by employing Markov Chain Monte Carlo method, we perform a global analysis of cosmological parameters assuming general initial conditions for the dark energy perturbations. The results show that the dark energy isocurvature perturbations are very weakly constrained and that purely adiabatic initial conditions are consistent with the data

  2. Winter to winter recurrence of atmospheric circulation anomalies over East Asia and its impact on winter surface air temperature anomalies.

    Science.gov (United States)

    Zhao, Xia; Yang, Guang

    2017-01-01

    The persistence of atmospheric circulation anomalies over East Asia shows a winter to winter recurrence (WTWR) phenomenon. Seasonal variations in sea level pressure anomalies and surface wind anomalies display significantly different characteristics between WTWR and non-WTWR years. The WTWR years are characterized by the recurrence of both a strong (weak) anomalous Siberian High and an East Asian winter monsoon over two successive winters without persistence through the intervening summer. However, anomalies during the non-WTWR years have the opposite sign between the current and ensuing winters. The WTWR of circulation anomalies contributes to that of surface air temperature anomalies (SATAs), which is useful information for improving seasonal and interannual climate predictions over East Asia and China. In the positive (negative) WTWR years, SATAs are cooler (warmer) over East Asia in two successive winters, but the signs of the SATAs are opposite in the preceding and subsequent winters during the non-WTWR years.

  3. Production of Purely Gravitational Dark Matter

    OpenAIRE

    Ema, Yohei; Nakayama, Kazunori; Tang, Yong

    2018-01-01

    In the purely gravitational dark matter scenario, the dark matter particle does not have any interaction except for gravitational one. We study the gravitational particle production of dark matter particle in such a minimal setup and show that correct amount of dark matter can be produced depending on the inflation model and the dark matter mass. In particular, we carefully evaluate the particle production rate from the transition epoch to the inflaton oscillation epoch in a realistic inflati...

  4. Dark matter universe

    Science.gov (United States)

    Bahcall, Neta A.

    2015-01-01

    Most of the mass in the universe is in the form of dark matter—a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations—from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is “cold” (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology—a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)—fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle. PMID:26417091

  5. Dark matter universe.

    Science.gov (United States)

    Bahcall, Neta A

    2015-10-06

    Most of the mass in the universe is in the form of dark matter--a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations--from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is "cold" (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology--a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)--fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle.

  6. Winter Frost and Fog

    Science.gov (United States)

    2005-01-01

    This somewhat oblique blue wide angle Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the 174 km (108 mi) diameter crater, Terby, and its vicinity in December 2004. Located north of Hellas, this region can be covered with seasonal frost and ground-hugging fog, even in the afternoon, despite being north of 30oS. The subtle, wavy pattern is a manifestation of fog. Location near: 28oS, 286oW Illumination from: upper left Season: Southern Winter

  7. On dark degeneracy and interacting models

    International Nuclear Information System (INIS)

    Carneiro, S.; Borges, H.A.

    2014-01-01

    Cosmological background observations cannot fix the dark energy equation of state, which is related to a degeneracy in the definition of the dark sector components. Here we show that this degeneracy can be broken at perturbation level by imposing two observational properties on dark matter. First, dark matter is defined as the clustering component we observe in large scale structures. This definition is meaningful only if dark energy is unperturbed, which is achieved if we additionally assume, as a second condition, that dark matter is cold, i.e. non-relativistic. As a consequence, dark energy models with equation-of-state parameter −1 ≤ ω < 0 are reduced to two observationally distinguishable classes with ω = −1, equally competitive when tested against observations. The first comprises the ΛCDM model with constant dark energy density. The second consists of interacting models with an energy flux from dark energy to dark matter

  8. The dark universe dark matter and dark energy

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    According to the standard cosmological model, 95% of the present mass density of the universe is dark: roughly 70% of the total in the form of dark energy and 25% in the form of dark matter. In a series of four lectures, I will begin by presenting a brief review of cosmology, and then I will review the observational evidence for dark matter and dark energy. I will discuss some of the proposals for dark matter and dark energy, and connect them to high-energy physics. I will also present an overview of an observational program to quantify the properties of dark energy.

  9. Winter Weather Emergencies

    Science.gov (United States)

    Severe winter weather can lead to health and safety challenges. You may have to cope with Cold related health problems, including ... there are no guarantees of safety during winter weather emergencies, you can take actions to protect yourself. ...

  10. Winter maintenance performance measure.

    Science.gov (United States)

    2016-01-01

    The Winter Performance Index is a method of quantifying winter storm events and the DOTs response to them. : It is a valuable tool for evaluating the States maintenance practices, performing post-storm analysis, training : maintenance personnel...

  11. Winter weather demand considerations.

    Science.gov (United States)

    2015-04-01

    Winter weather has varied effects on travel behavior. Using 418 survey responses from the Northern Virginia : commuting area of Washington, D.C. and binary logit models, this study examines travel related changes under : different types of winter wea...

  12. Terra Data Confirm Warm, Dry U.S. Winter

    Science.gov (United States)

    2002-01-01

    New maps of land surface temperature and snow cover produced by NASA's Terra satellite show this year's winter was warmer than last year's, and the snow line stayed farther north than normal. The observations confirm earlier National Oceanic and Atmospheric Administration reports that the United States was unusually warm and dry this past winter. (Click to read the NASA press release and to access higher-resolution images.) For the last two years, a new sensor aboard Terra has been collecting the most detailed global measurements ever made of our world's land surface temperatures and snow cover. The Moderate-resolution Imaging Spectroradiometer (MODIS) is already giving scientists new insights into our changing planet. Average temperatures during December 2001 through February 2002 for the contiguous United States appear to have been unseasonably warm from the Rockies eastward. In the top image the coldest temperatures appear black, while dark green, blue, red, yellow, and white indicate progressively warmer temperatures. MODIS observes both land surface temperature and emissivity, which indicates how efficiently a surface absorbs and emits thermal radiation. Compared to the winter of 2000-01, temperatures throughout much of the U.S. were warmer in 2001-02. The bottom image depicts the differences on a scale from dark blue (colder this year than last) to red (warmer this year than last). A large region of warm temperatures dominated the northern Great Plains, while the area around the Great Salt Lake was a cold spot. Images courtesy Robert Simmon, NASA GSFC, based upon data courtesy Zhengming Wan, MODIS Land Science Team member at the University of California, Santa Barbara's Institute for Computational Earth System Science

  13. Dark Matter in Quantum Gravity

    OpenAIRE

    Calmet, Xavier; Latosh, Boris

    2018-01-01

    We show that quantum gravity, whatever its ultra-violet completion might be, could account for dark matter. Indeed, besides the massless gravitational field recently observed in the form of gravitational waves, the spectrum of quantum gravity contains two massive fields respectively of spin 2 and spin 0. If these fields are long-lived, they could easily account for dark matter. In that case, dark matter would be very light and only gravitationally coupled to the standard model particles.

  14. Adiabatic instability in coupled dark energy/dark matter models

    International Nuclear Information System (INIS)

    Bean, Rachel; Flanagan, Eanna E.; Trodden, Mark

    2008-01-01

    We consider theories in which there exists a nontrivial coupling between the dark matter sector and the sector responsible for the acceleration of the Universe. Such theories can possess an adiabatic regime in which the quintessence field always sits at the minimum of its effective potential, which is set by the local dark matter density. We show that if the coupling strength is much larger than gravitational, then the adiabatic regime is always subject to an instability. The instability, which can also be thought of as a type of Jeans instability, is characterized by a negative sound speed squared of an effective coupled dark matter/dark energy fluid, and results in the exponential growth of small scale modes. We discuss the role of the instability in specific coupled cold dark matter and mass varying neutrino models of dark energy and clarify for these theories the regimes in which the instability can be evaded due to nonadiabaticity or weak coupling.

  15. Late forming dark matter in theories of neutrino dark energy

    International Nuclear Information System (INIS)

    Das, Subinoy; Weiner, Neal

    2011-01-01

    We study the possibility of late forming dark matter, where a scalar field, previously trapped in a metastable state by thermal or finite density effects, goes through a phase transition near the era matter-radiation equality and begins to oscillate about its true minimum. Such a theory is motivated generally if the dark energy is of a similar form, but has not yet made the transition to dark matter, and, in particular, arises automatically in recently considered theories of neutrino dark energy. If such a field comprises the present dark matter, the matter power spectrum typically shows a sharp break at small, presently nonlinear scales, below which power is highly suppressed and previously contained acoustic oscillations. If, instead, such a field forms a subdominant component of the total dark matter, such acoustic oscillations may imprint themselves in the linear regime.

  16. Dark Energy and Structure Formation

    International Nuclear Information System (INIS)

    Singh, Anupam

    2010-01-01

    We study the gravitational dynamics of dark energy configurations. We report on the time evolution of the dark energy field configurations as well as the time evolution of the energy density to demonstrate the gravitational collapse of dark energy field configurations. We live in a Universe which is dominated by Dark Energy. According to current estimates about 75% of the Energy Density is in the form of Dark Energy. Thus when we consider gravitational dynamics and Structure Formation we expect Dark Energy to play an important role. The most promising candidate for dark energy is the energy density of fields in curved space-time. It therefore become a pressing need to understand the gravitational dynamics of dark energy field configurations. We develop and describe the formalism to study the gravitational collapse of fields given any general potential for the fields. We apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting evolution equations which determine the time evolution of field configurations as well as the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our universe.

  17. Dark Matter

    Indian Academy of Sciences (India)

    As if this was not enough, it turns out that if our knowledge of ... are thought to contain dark matter, although the evidences from them are the .... protons, electrons, neutrons ... ratio of protons to neutrons was close to unity then as they were in ...

  18. Dark Matter

    Indian Academy of Sciences (India)

    The study of gas clouds orbiting in the outer regions of spiral galaxies has revealed that their gravitational at- traction is much larger than the stars alone can provide. Over the last twenty years, astronomers have been forced to postulate the presence of large quantities of 'dark matter' to explain their observations. They are ...

  19. Dark Matter

    International Nuclear Information System (INIS)

    Audouze, J.; Tran Thanh Van, J.

    1988-01-01

    The book begins with the papers devoted to the experimental search of signatures of the dark matter which governs the evolution of the Universe as a whole. A series of contributions describe the presently considered experimental techniques (cryogenic detectors, supraconducting detectors...). A real dialogue concerning these techniques has been instaured between particle physicists and astrophysicists. After the progress report of the particle physicists, the book provides the reader with an updated situation concerning the research in cosmology. The second part of the book is devoted to the analysis of the backgrounds at different energies such as the possible role of the cooling flows in the constitution of massive galactic halos. Any search of dark matter implies necessarily the analysis of the spatial distributions of the large scale structures of the Universe. This report is followed by a series of statistical analyses of these distributions. These analyses concern mainly universes filled up with cold dark matter. The last paper of this third part concerns the search of clustering in the spatial distribution of QSOs. The presence of dark matter should affect the solar neighborhood and related to the existence of galactic haloes. The contributions are devoted to the search of such local dark matter. Primordial nucleosynthesis provides a very powerful tool to set up quite constraining limitations on the overall baryonic density. Even if on takes into account the inhomogeneities in density possibly induced by the Quark-Hadron transition, this baryonic density should be much lower than the overall density deduced from the dynamical models of Universe or the inflationary theories

  20. Dark matter in the universe

    International Nuclear Information System (INIS)

    Opher, Reuven

    2001-01-01

    We treat here the problem of dark matter in galaxies. Recent articles seem to imply that we are entering into the precision era of cosmology, implying that all of the basic physics of cosmology is known. However, we show here that recent observations question the pillar of the standard model: the presence of nonbaryonic 'dark matter' in galaxies. Using Newton's law of gravitation, observations indicate that most of the matter in galaxies in invisible or dark. From the observed abundances of light elements, dark matter in galaxies must be primarily nonbaryonic. The standard model and its problems in explaining nonbaryonic dark matter will first be discussed. This will be followed by a discussion of a modification of Newton's law of gravitation to explain dark matter in galaxies. (author)

  1. Weak lensing: Dark Matter, Dark Energy and Dark Gravity

    International Nuclear Information System (INIS)

    Heavens, Alan

    2009-01-01

    In this non-specialist review I look at how weak lensing can provide information on the dark sector of the Universe. The review concentrates on what can be learned about Dark Matter, Dark Energy and Dark Gravity, and why. On Dark Matter, results on the confrontation of theoretical profiles with observation are reviewed, and measurements of neutrino masses discussed. On Dark Energy, the interest is whether this could be Einstein's cosmological constant, and prospects for high-precision studies of the equation of state are considered. On Dark Gravity, we consider the exciting prospects for future weak lensing surveys to distinguish General Relativity from extra-dimensional or other gravity theories.

  2. Dark information of black hole radiation raised by dark energy

    Science.gov (United States)

    Ma, Yu-Han; Chen, Jin-Fu; Sun, Chang-Pu

    2018-06-01

    The "lost" information of black hole through the Hawking radiation was discovered being stored in the correlation among the non-thermally radiated particles (Parikh and Wilczek, 2000 [31], Zhang et al., 2009 [16]). This correlation information, which has not yet been proved locally observable in principle, is named by dark information. In this paper, we systematically study the influences of dark energy on black hole radiation, especially on the dark information. Calculating the radiation spectrum in the existence of dark energy by the approach of canonical typicality, which is reconfirmed by the quantum tunneling method, we find that the dark energy will effectively lower the Hawking temperature, and thus makes the black hole has longer life time. It is also discovered that the non-thermal effect of the black hole radiation is enhanced by dark energy so that the dark information of the radiation is increased. Our observation shows that, besides the mechanical effect (e.g., gravitational lensing effect), the dark energy rises the stored dark information, which could be probed by a non-local coincidence measurement similar to the coincidence counting of the Hanbury-Brown-Twiss experiment in quantum optics.

  3. Dark fluid: A complex scalar field to unify dark energy and dark matter

    International Nuclear Information System (INIS)

    Arbey, Alexandre

    2006-01-01

    In this article, we examine a model which proposes a common explanation for the presence of additional attractive gravitational effects - generally considered to be due to dark matter - in galaxies and in clusters, and for the presence of a repulsive effect at cosmological scales - generally taken as an indication of the presence of dark energy. We therefore consider the behavior of a so-called dark fluid based on a complex scalar field with a conserved U(1)-charge and associated to a specific potential, and show that it can at the same time account for dark matter in galaxies and in clusters, and agree with the cosmological observations and constraints on dark energy and dark matter

  4. Decontamination and winter conditions

    International Nuclear Information System (INIS)

    Quenild, C.; Tveten, U.

    1984-12-01

    The report deals with two decontamonation experiments under winter conditions. A snow-covered parking lot was contaminated, and the snow was subsequently removed using standard snow-moving equipment. The snow left behind was collected and the content of contaminant was determined. A non-radioactive contaminant was used. A decontamination factor exceeding 100 was obtained. Although the eksperimental conditions were close to ideal, it is reason to believe that extremely efficient removal of deposited materials on a snow surface is achivable. In another investigation, run-off from agricultural surface, contaminated while covered with snow, was measured A lycimeter was used in this experiment. A stable layer of ice and snow was allowed to form before contamination. The run-off water was collected at each thaw period until all snow and ice was gone. Cs-134 was used as contaminant. Roughly 30% of the Cs-134 with which the area was contaminated ran off with the melt water. Following a reactor accident situation, this would have given a corresponding reduction in the long term doses. Both of these experiments show that consequence calculation assumptions, as they are currently applied to large accident assessment, tend to overestimate the consequences resulting from accidents taking place under winter conditions

  5. Spirit's Winter Work Site

    Science.gov (United States)

    2006-01-01

    [figure removed for brevity, see original site] Annotated Version This portion of an image acquired by the Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment camera shows the Spirit rover's winter campaign site. Spirit was parked on a slope tilted 11 degrees to the north to maximize sunlight during the southern winter season. 'Tyrone' is an area where the rover's wheels disturbed light-toned soils. Remote sensing and in-situ analyses found the light-toned soil at Tyrone to be sulfate rich and hydrated. The original picture is catalogued as PSP_001513_1655_red and was taken on Sept. 29, 2006. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and built the spacecraft. The High Resolution Imaging Science Experiment is operated by the University of Arizona, Tucson, and the instrument was built by Ball Aerospace and Technology Corp., Boulder, Colo.

  6. Winter School Les Houches

    CERN Document Server

    Lannoo, Michel; Bastard, Gérald; Voos, Michel; Boccara, Nino

    1986-01-01

    The Winter School held in Les Houches on March 12-21, 1985 was devoted to Semiconductor Heterojunctions and Superlattices, a topic which is recognized as being now one of the most interesting and active fields in semiconductor physics. In fact, following the pioneering work of Esaki and Tsu in 1970, the study of these two-dimensional semiconductor heterostructures has developed rapidly, both from the point of view of basic physics and of applications. For instance, modulation-doped heterojunctions are nowadays currently used to investigate the quantum Hall effect and to make very fast transistors. This book contains the lectures presented at this Winter School, showing in particular that many aspects of semiconductor heterojunctions and super­ lattices were treated, extending from the fabrication of these two-dimensional systems to their basic properties and applications in micro-and opto-electron­ ics. Among the subjects which were covered, one can quote as examples: molecular beam epitaxy and metallorgani...

  7. Why we need to see the dark matter to understand the dark energy

    International Nuclear Information System (INIS)

    Kunz, M

    2008-01-01

    Abstract. The cosmological concordance model contains two separate constituents which interact only gravitationally with themselves and everything else, the dark matter and the dark energy. In the standard dark energy models, the dark matter makes up some 20% of the total energy budget today, while the dark energy is responsible for about 75%. Here we show that these numbers are only robust for specific dark energy models and that in general we cannot measure the abundance of the dark constituents separately without making strong assumptions

  8. Dark matter detection - II

    International Nuclear Information System (INIS)

    Zacek, Viktor

    2015-01-01

    The quest for the mysterious missing mass of the universe has become one of the big challenges of today's particle physics and cosmology. Astronomical observations show that only 1% of the matter of the universe is luminous. Moreover there is now convincing evidence that 85% of all gravitationally observable matter in the universe is of a new exotic kind, different from the 'ordinary' matter surrounding us. In a series of three lectures we discuss past, recent and future efforts made world-wide to detect and/or decipher the nature of Dark Matter. In Lecture I we review our present knowledge of the Dark Matter content of the Universe and how experimenters search for it's candidates; In Lecture II we discuss so-called 'direct detection' techniques which allow to search for scattering of galactic dark matter particles with detectors in deep-underground laboratories; we discuss the interpretation of experimental results and the challenges posed by different backgrounds; In Lecture III we take a look at the 'indirect detection' of the annihilation of dark matter candidates in astrophysical objects, such as our sun or the center of the Milky Way; In addition we will have a look at efforts to produce Dark Matter particles directly at accelerators and we shall close with a look at alternative nonparticle searches and future prospects. (author)

  9. Dark matter detection - I

    International Nuclear Information System (INIS)

    Zacek, Viktor

    2015-01-01

    The quest for the mysterious missing mass of the universe has become one of the big challenges of today's particle physics and cosmology. Astronomical observations show that only 1% of the matter of the universe is luminous. Moreover there is now convincing evidence that 85% of all gravitationally observable matter in the universe is of a new exotic kind, different from the 'ordinary' matter surrounding us. In a series of three lectures we discuss past, recent and future efforts made world-wide to detect and/or decipher the nature of Dark Matter. In Lecture I we review our present knowledge of the Dark Matter content of the Universe and how experimenters search for it's candidates; In Lecture II we discuss so-called 'direct detection' techniques which allow to search for scattering of galactic dark matter particles with detectors in deep-underground laboratories; we discuss the interpretation of experimental results and the challenges posed by different backgrounds; In Lecture III we take a look at the 'indirect detection' of the annihilation of dark matter candidates in astrophysical objects, such as our sun or the center of the Milky Way; In addition we will have a look at efforts to produce Dark Matter particles directly at accelerators and we shall close with a look at alternative nonparticle searches and future prospects. (author)

  10. Dark matter detection - III

    International Nuclear Information System (INIS)

    Zacek, Viktor

    2015-01-01

    The quest for the missing mass of the universe has become one of the big challenges of todays particle physics and cosmology. Astronomical observations show that only 1% of the matter of the Universe is luminous. Moreover there is now convincing evidence that 85% of all gravitationally observable matter in the Universe is of a new exotic kind, different from the 'ordinary' matter surrounding us. In a series of three lectures we discuss past, recent and future efforts made world- wide to detect and/or decipher the nature of Dark Matter. In Lecture I we review our present knowledge of the Dark Matter content of the Universe and how experimenters search for it's candidates; In Lecture II we discuss so-called 'direct detection' techniques which allow to search for scattering of galactic dark matter particles with detectors in deep-underground laboratories; we discuss the interpretation of experimental results and the challenges posed by different backgrounds; In Lecture III we take a look at the 'indirect detection' of the annihilation of dark matter candidates in astrophysical objects, such as our sun or the center of the Milky Way; In addition we will have a look at efforts to produce Dark Matter particles directly at accelerators and we shall close with a look at alternative nonparticle searches and future prospects. (author)

  11. Winter warming from large volcanic eruptions

    Science.gov (United States)

    Robock, Alan; Mao, Jianping

    1992-01-01

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95-percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  12. Braneworlds and dark energy

    International Nuclear Information System (INIS)

    Neves, Rui; Vaz, Cenalo

    2006-01-01

    In the Randall-Sundrum scenario, we analyse the dynamics of an AdS 5 braneworld when conformal matter fields propagate in five dimensions. We show that conformal fields of weight -4 are associated with stable geometries which describe the dynamics of inhomogeneous dust, generalized dark radiation and homogeneous polytropic dark energy on a spherically symmetric 3-brane embedded in the compact AdS 5 orbifold. We discuss aspects of the radion stability conditions and of the localization of gravity in the vicinity of the brane

  13. Periodically modulated dark states

    Science.gov (United States)

    Han, Yingying; Zhang, Jun; Zhang, Wenxian

    2018-04-01

    Phenomena of electromagnetically induced transparency (PEIT) may be interpreted by the Autler-Townes Splitting (ATS), where the coupled states are split by the coupling laser field, or by the quantum destructive interference (QDI), where the atomic phases caused by the coupling laser and the probe laser field cancel. We propose modulated experiments to explore the PEIT in an alternative way by periodically modulating the coupling and the probe fields in a Λ-type three-level system initially in a dark state. Our analytical and numerical results rule out the ATS interpretation and show that the QDI interpretation is more appropriate for the modulated experiments. Interestingly, dark state persists in the double-modulation situation where control and probe fields never occur simultaneously, which is significant difference from the traditional dark state condition. The proposed experiments are readily implemented in atomic gases, artificial atoms in superconducting quantum devices, or three-level meta-atoms in meta-materials.

  14. Interacting agegraphic dark energy

    International Nuclear Information System (INIS)

    Wei, Hao; Cai, Rong-Gen

    2009-01-01

    A new dark energy model, named ''agegraphic dark energy'', has been proposed recently, based on the so-called Karolyhazy uncertainty relation, which arises from quantum mechanics together with general relativity. In this note, we extend the original agegraphic dark energy model by including the interaction between agegraphic dark energy and pressureless (dark) matter. In the interacting agegraphic dark energy model, there are many interesting features different from the original agegraphic dark energy model and holographic dark energy model. The similarity and difference between agegraphic dark energy and holographic dark energy are also discussed. (orig.)

  15. Dark-Skies Awareness

    Science.gov (United States)

    Walker, Constance E.

    2009-05-01

    The arc of the Milky Way seen from a truly dark location is part of our planet's natural heritage. More than one fifth of the world population, two thirds of the United States population and one half of the European Union population have already lost naked eye visibility of the Milky Way. This loss, caused by light pollution, is a serious and growing issue that impacts astronomical research, the economy, ecology, energy conservation, human health, public safety and our shared ability to see the night sky. For this reason, "Dark Skies” is a cornerstone project of the International Year of Astronomy. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people worldwide involved in a variety of programs that: 1. Teach about dark skies using new technology (e.g., an activity-based planetarium show on DVD, podcasting, social networking on Facebook and MySpace, a Second Life presence) 2. Provide thematic events on light pollution at star parties and observatory open houses (Dark Skies Discovery Sites, Nights in the (National) Parks, Sidewalk Astronomy) 3. Organize events in the arts (e.g., a photography contest) 4. Involve citizen-scientists in naked-eye and digital-meter star hunting programs (e.g., GLOBE at Night, "How Many Stars?", the Great World Wide Star Count and the radio frequency interference equivalent: "Quiet Skies") and 5. Raise awareness about the link between light pollution and public health, economic issues, ecological consequences, energy conservation, safety and security, and astronomy (e.g., The Starlight Initiative, World Night in Defense of Starlight, International Dark Sky Week, International Dark-Sky Communities, Earth Hour, The Great Switch Out, a traveling exhibit, downloadable posters and brochures). The presentation will provide an update, describe how people can become involved and take a look ahead at the program's sustainability. For more information, visit www.darkskiesawareness.org.

  16. Dark Tourism

    OpenAIRE

    Bali-Hudáková, Lenka

    2008-01-01

    This thesis is focused on the variability of the demand and the development of new trends in the fields of the tourism industry. Special attention is devoted to a new arising trend of the Dark Tourism. This trend has appeared in the end of the 20th century and it has gained the attraction of media, tourists, tourism specialists and other stakeholders. First part of the thesis is concerned with the variety of the tourism industry and the ethic question of the tourism development. The other par...

  17. Turning off the lights: How dark is dark matter?

    International Nuclear Information System (INIS)

    McDermott, Samuel D.; Yu Haibo; Zurek, Kathryn M.

    2011-01-01

    We consider current observational constraints on the electromagnetic charge of dark matter. The velocity dependence of the scattering cross section through the photon gives rise to qualitatively different constraints than standard dark matter scattering through massive force carriers. In particular, recombination epoch observations of dark matter density perturbations require that ε, the ratio of the dark matter to electronic charge, is less than 10 -6 for m X =1 GeV, rising to ε -4 for m X =10 TeV. Though naively one would expect that dark matter carrying a charge well below this constraint could still give rise to large scattering in current direct detection experiments, we show that charged dark matter particles that could be detected with upcoming experiments are expected to be evacuated from the Galactic disk by the Galactic magnetic fields and supernova shock waves and hence will not give rise to a signal. Thus dark matter with a small charge is likely not a source of a signal in current or upcoming dark matter direct detection experiments.

  18. Correlation between dark matter and dark radiation in string compactifications

    International Nuclear Information System (INIS)

    Allahverdi, Rouzbeh; Cicoli, Michele; Dutta, Bhaskar; Sinha, Kuver

    2014-01-01

    Reheating in string compactifications is generically driven by the decay of the lightest modulus which produces Standard Model particles, dark matter and light hidden sector degrees of freedom that behave as dark radiation. This common origin allows us to find an interesting correlation between dark matter and dark radiation. By combining present upper bounds on the effective number of neutrino species N eff with lower bounds on the reheating temperature as a function of the dark matter mass m DM from Fermi data, we obtain strong constraints on the (N eff , m DM )-plane. Most of the allowed region in this plane corresponds to non-thermal scenarios with Higgsino-like dark matter. Thermal dark matter can be allowed only if N eff tends to its Standard Model value. We show that the above situation is realised in models with perturbative moduli stabilisation where the production of dark radiation is unavoidable since bulk closed string axions remain light and do not get eaten up by anomalous U(1)s

  19. Exponentially Light Dark Matter from Coannihilation

    OpenAIRE

    D'Agnolo, Raffaele Tito; Mondino, Cristina; Ruderman, Joshua T.; Wang, Po-Jen

    2018-01-01

    Dark matter may be a thermal relic whose abundance is set by mutual annihilations among multiple species. Traditionally, this coannihilation scenario has been applied to weak scale dark matter that is highly degenerate with other states. We show that coannihilation among states with split masses points to dark matter that is exponentially lighter than the weak scale, down to the keV scale. We highlight the regime where dark matter does not participate in the annihilations that dilute its numb...

  20. Composite Dark Sectors

    International Nuclear Information System (INIS)

    Carmona, Adrian

    2015-06-01

    We introduce a new paradigm in Composite Dark Sectors, where the full Standard Model (including the Higgs boson) is extended with a strongly-interacting composite sector with global symmetry group G spontaneously broken to H is contained in G. We show that, under well-motivated conditions, the lightest neutral pseudo Nambu-Goldstone bosons are natural dark matter candidates for they are protected by a parity symmetry not even broken in the electroweak phase. These models are characterized by only two free parameters, namely the typical coupling g D and the scale f D of the composite sector, and are therefore very predictive. We consider in detail two minimal scenarios, SU(3)/[SU(2) x U(1)] and [SU(2) 2 x U(1)]/[SU(2) x U(1)], which provide a dynamical realization of the Inert Doublet and Triplet models, respectively. We show that the radiatively-induced potential can be computed in a five-dimensional description with modified boundary conditions with respect to Composite Higgs models. Finally, the dark matter candidates are shown to be compatible, in a large region of the parameter space, with current bounds from dark matter searches as well as electroweak and collider constraints on new resonances.

  1. Within-Winter Flexibility in Muscle Masses, Myostatin, and Cellular Aerobic Metabolic Intensity in Passerine Birds.

    Science.gov (United States)

    Swanson, David L; King, Marisa O; Culver, William; Zhang, Yufeng

    Metabolic rates of passerine birds are flexible traits that vary both seasonally and among and within winters. Seasonal variation in summit metabolic rates (M sum = maximum thermoregulatory metabolism) in birds is consistently correlated with changes in pectoralis muscle and heart masses and sometimes with variation in cellular aerobic metabolic intensity, so these traits might also be associated with shorter-term, within-winter variation in metabolic rates. To determine whether these mechanisms are associated with within-winter variation in M sum , we examined the effects of short-term (ST; 0-7 d), medium-term (MT; 14-30 d), and long-term (LT; 30-yr means) temperature variables on pectoralis muscle and heart masses, pectoralis expression of the muscle-growth inhibitor myostatin and its metalloproteinase activators TLL-1 and TLL-2, and pectoralis and heart citrate synthase (CS; an indicator of cellular aerobic metabolic intensity) activities for two temperate-zone resident passerines, house sparrows (Passer domesticus) and dark-eyed juncos (Junco hyemalis). For both species, pectoralis mass residuals were positively correlated with ST temperature variables, suggesting that cold temperatures resulted in increased turnover of pectoralis muscle, but heart mass showed little within-winter variation for either species. Pectoralis mRNA and protein expression of myostatin and the TLLs were only weakly correlated with ST and MT temperature variables, which is largely consistent with trends in muscle masses for both species. Pectoralis and heart CS activities showed weak and variable trends with ST temperature variables in both species, suggesting only minor effects of temperature variation on cellular aerobic metabolic intensity. Thus, neither muscle or heart masses, regulation by the myostatin system, nor cellular aerobic metabolic intensity varied consistently with winter temperature, suggesting that other factors regulate within-winter metabolic variation in these birds.

  2. Aspen Winter Conferences on High Energy

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-02-12

    The 2011 Aspen Winter Conference on Particle Physics was held at the Aspen Center for Physics from February 12 to February 18, 2011. Ninety-four participants from ten countries, and several universities and national labs attended the workshop titled, "New Data From the Energy Frontier." There were 54 formal talks, and a considerable number of informal discussions held during the week. The week's events included a public lecture ("The Hunt for the Elusive Higgs Boson" given by Ben Kilminster from Ohio State University) and attended by 119 members of the public, and a physics cafe geared for high schoolers that is a discussion with physicists. The 2011 Aspen Winter Conference on Astroparticle physics held at the Aspen Center for Physics was "Indirect and Direct Detection of Dark Matter." It was held from February 6 to February 12, 2011. The 70 participants came from 7 countries and attended 53 talks over five days. Late mornings through the afternoon are reserved for informal discussions. In feedback received from participants, it is often these unplanned chats that produce the most excitement due to working through problems with fellow physicists from other institutions and countries or due to incipient collaborations. In addition, Blas Cabrera of Stanford University gave a public lecture titled "What Makes Up Dark Matter." There were 183 members of the general public in attendance. Before the lecture, 45 people attended the physics cafe to discuss dark matter. This report provides the attendee lists, programs, and announcement posters for each event.

  3. Winters fuels report

    International Nuclear Information System (INIS)

    1995-01-01

    The outlook for distillate fuel oil this winter is for increased demand and a return to normal inventory patterns, assuming a resumption of normal, cooler weather than last winter. With industrial production expected to grow slightly from last winter's pace, overall consumption is projected to increase 3 percent from last winter, to 3.4 million barrels per day during the heating season (October 1, 1995-March 31, 1996). Much of the supply win come from stock drawdowns and refinery production. Estimates for the winter are from the Energy Information Administration's (EIA) 4th Quarter 1995 Short-Tenn Energy Outlook (STEO) Mid-World Oil Price Case forecast. Inventories in place on September 30, 1995, of 132 million barrels were 9 percent below the unusually high year-earlier level. Inventories of high-sulfur distillate fuel oil, the principal type used for heating, were 13 percent lower than a year earlier. Supply problems are not anticipated because refinery production and the ready availability of imports should be adequate to meet demand. Residential heating off prices are expected to be somewhat higher than last winter's, as the effects of lower crude oil prices are offset by lower distillate inventories. Heating oil is forecast to average $0.92 per gallon, the highest price since the winter of 1992-93. Diesel fuel (including tax) is predicted to be slightly higher than last year at $1.13 per gallon. This article focuses on the winter assessment for distillate fuel oil, how well last year's STEO winter outlook compared to actual events, and expectations for the coming winter. Additional analyses include regional low-sulfur and high-sulfur distillate supply, demand, and prices, and recent trends in distillate fuel oil inventories

  4. Exploring the dark side of the Universe

    International Nuclear Information System (INIS)

    Das, Mala

    2014-01-01

    Astronomical observations show that about 95% of the energy density of the Universe cannot be accounted for in terms of mass and energy of which about 26.8% is considered to be dark matter. The detection of this dark matter is one of the major and interesting unsolved problems in Physics. There are many experiments running worldwide at different underground laboratories for the direct detection of dark matter, mainly WIMPs (Weakly Interacting Massive Particles), the most favoured candidate of dark matter. Direct detection experiments expect to detect the dark matter directly by measuring the small energy imparted to recoil nuclei in occasional dark matter interactions with detector, stationed at earth's laboratory. In the subsequent sections, the challenges of such experiments are discussed followed by the details on PICASSO/PICO dark matter search experiment at SNO Lab, activities related to this experiment at SINP and the future direction of dark matter experiments

  5. Intraspecific variation in Pinus pinaster PSII photochemical efficiency in response to winter stress and freezing temperatures.

    Directory of Open Access Journals (Sweden)

    Leyre Corcuera

    Full Text Available As part of a program to select maritime pine (Pinus pinaster Ait. genotypes for resistance to low winter temperatures, we examined variation in photosystem II activity by chlorophyll fluorescence. Populations and families within populations from contrasting climates were tested during two consecutive winters through two progeny trials, one located at a continental and xeric site and one at a mesic site with Atlantic influence. We also obtained the LT₅₀, or the temperature that causes 50% damage, by controlled freezing and the subsequent analysis of chlorophyll fluorescence in needles and stems that were collected from populations at the continental trial site.P. pinaster showed sensitivity to winter stress at the continental site, during the colder winter. The combination of low temperatures, high solar irradiation and low precipitation caused sustained decreases in maximal photochemical efficiency (F(v/F(m, quantum yield of non-cyclic electron transport (Φ(PSII and photochemical quenching (qP. The variation in photochemical parameters was larger among families than among populations, and population differences appeared only under the harshest conditions at the continental site. As expected, the environmental effects (winter and site on the photochemical parameters were much larger than the genotypic effects (population or family. LT₅₀ was closely related to the minimum winter temperatures of the population's range. The dark-adapted F(v/F(m ratio discriminated clearly between interior and coastal populations.In conclusion, variations in F(v/F(m, Φ(PSII, qP and non-photochemical quenching (NPQ in response to winter stress were primarily due to the differences between the winter conditions and the sites and secondarily due to the differences among families and their interactions with the environment. Populations from continental climates showed higher frost tolerance (LT₅₀ than coastal populations that typically experience mild

  6. Winter climate variability and classification in the Bulgarian Mountainous Regions

    International Nuclear Information System (INIS)

    Petkova, Nadezhda; Koleva, Ekaterina

    2004-01-01

    The problems of snowiness and thermal conditions of winters are of high interest of investigations because of the more frequent droughts, occurred in the region. In the present study an attempt to reveal tendencies existing during the last 70 years of 20 th century in the course winter precipitation and,temperature as well as in some of the snow cover parameters. On the base of mean winter air temperature winters in the Bulgarian mountains were analyzed and classified. The main results of the study show that winter precipitation has decrease tendencies more significant in the highest parts of the mountains. On the other hand winter air temperature increases. It shows a relatively well-established maximum at the end of the studied period. In the Bulgarian mountains normal winters are about 35-40% of all winters. (Author)

  7. Interacting Agegraphic Dark Energy

    OpenAIRE

    Wei, Hao; Cai, Rong-Gen

    2007-01-01

    A new dark energy model, named "agegraphic dark energy", has been proposed recently, based on the so-called K\\'{a}rolyh\\'{a}zy uncertainty relation, which arises from quantum mechanics together with general relativity. In this note, we extend the original agegraphic dark energy model by including the interaction between agegraphic dark energy and pressureless (dark) matter. In the interacting agegraphic dark energy model, there are many interesting features different from the original agegrap...

  8. Satellite remote sensing of air quality in winter of Lanzhou

    Science.gov (United States)

    Wang, Dawei; Han, Tao; Jiang, Youyan; Li, Lili; Ren, Shuyuan

    2018-03-01

    Fine particulate matter (aerodynamic diameters of less than 2.5 μm, PM2.5) air pollution has become one of the global environmental problem, endangering the existence of residents living, climate, and public health. Estimation Particulate Matter (aerodynamic diameters of less than 10 μm, PM10) concentration and aerosol absorption was the key point in air quality and climate studies. In this study, we retrieve the Aerosol Optical Depth (AOD) from the Earth Observing System (EOS) and the Moderate Resolution Imaging Spectroradiometer (MODIS), and PM2.5, PM10 in winter on 2014 and 2015, using Extended Dense Dark Vegetation Algorithm and 6S radiation model to analysis the correlation. The result showed that at the condition of non-considering the influence of primary pollutants, the correlation of two Polynomials between aerosol optical depth and PM2.5 and PM10 was poor; taking the influence of the primary pollutants into consideration, the aerosol optical depth has a good correlation with PM2.5 and PM10. The version of PM10 by aerosol optical depth is higher than that of PM2.5, so the model can be used to realize the high precision inversion of winter PM10 in Lanzhou.

  9. Unification of dark energy and dark matter

    International Nuclear Information System (INIS)

    Takahashi, Fuminobu; Yanagida, T.T.

    2006-01-01

    We propose a scenario in which dark energy and dark matter are described in a unified manner. The ultralight pseudo-Nambu-Goldstone (pNG) boson, A, naturally explains the observed magnitude of dark energy, while the bosonic supersymmetry partner of the pNG boson, B, can be a dominant component of dark matter. The decay of B into a pair of electron and positron may explain the 511 keV γ ray from the Galactic Center

  10. Dark matter that can form dark stars

    International Nuclear Information System (INIS)

    Gondolo, Paolo; Huh, Ji-Haeng; Kim, Hyung Do; Scopel, Stefano

    2010-01-01

    The first stars to form in the Universe may be powered by the annihilation of weakly interacting dark matter particles. These so-called dark stars, if observed, may give us a clue about the nature of dark matter. Here we examine which models for particle dark matter satisfy the conditions for the formation of dark stars. We find that in general models with thermal dark matter lead to the formation of dark stars, with few notable exceptions: heavy neutralinos in the presence of coannihilations, annihilations that are resonant at dark matter freeze-out but not in dark stars, some models of neutrinophilic dark matter annihilating into neutrinos only and lighter than about 50 GeV. In particular, we find that a thermal DM candidate in standard Cosmology always forms a dark star as long as its mass is heavier than ≅ 50 GeV and the thermal average of its annihilation cross section is the same at the decoupling temperature and during the dark star formation, as for instance in the case of an annihilation cross section with a non-vanishing s-wave contribution

  11. AGA predicts winter jump in residential gas price

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The American Gas Association predicts the average heating bill for residential gas consumers could increase by as much as 18% this winter. AGA Pres. Mike Baly said, Last year's winter was warmer than normal. If the 1992-93 winter is similar, AGA projects that residential natural gas heating bills will go up about 6%. If we see a return to normal winter weather, our projection show the average bill could rise by almost 18%

  12. Winter Bottom Trawl Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The standardized NEFSC Winter Bottom Trawl Survey was initiated in 1992 and covered offshore areas from the Mid-Atlantic to Georges Bank. Inshore strata were covered...

  13. Deer Wintering Areas

    Data.gov (United States)

    Vermont Center for Geographic Information — Deer winter habitat is critical to the long term survival of white-tailed deer (Odocoileus virginianus) in Vermont. Being near the northern extreme of the...

  14. Clustering properties of dynamical dark energy models

    International Nuclear Information System (INIS)

    Avelino, P. P.; Beca, L. M. G.; Martins, C. J. A. P.

    2008-01-01

    We provide a generic but physically clear discussion of the clustering properties of dark energy models. We explicitly show that in quintessence-type models the dark energy fluctuations, on scales smaller than the Hubble radius, are of the order of the perturbations to the Newtonian gravitational potential, hence necessarily small on cosmological scales. Moreover, comparable fluctuations are associated with different gauge choices. We also demonstrate that the often used homogeneous approximation is unrealistic, and that the so-called dark energy mutation is a trivial artifact of an effective, single fluid description. Finally, we discuss the particular case where the dark energy fluid is nonminimally coupled to dark matter

  15. Dark energy from gravitoelectromagnetic inflation?

    International Nuclear Information System (INIS)

    Membiela, A.; Bellini, M.

    2008-01-01

    Gravitoelectromagnetic Inflation (GI) was introduced to describe in a unified manner electromagnetic, gravitatory and inflation fields from a 5D vacuum state. On the other hand, the primordial origin and evolution of dark energy is today unknown. In this letter we show using GI that the zero modes of some redefined vector fields B i = A i /a produced during inflation could be the source of dark energy in the Universe.

  16. Dark energy from gravitoelectromagnetic inflation?

    Science.gov (United States)

    Membiela, F. A.; Bellini, M.

    2008-02-01

    Gravitoectromagnetic Inflation (GI) was introduced to describe in an unified manner, electromagnetic, gravitatory and inflaton fields from a 5D vacuum state. On the other hand, the primordial origin and evolution of dark energy is today unknown. In this letter we show using GI that the zero modes of some redefined vector fields $B_i=A_i/a$ produced during inflation, could be the source of dark energy in the universe.

  17. A new method of CCD dark current correction via extracting the dark Information from scientific images

    Science.gov (United States)

    Ma, Bin; Shang, Zhaohui; Hu, Yi; Liu, Qiang; Wang, Lifan; Wei, Peng

    2014-07-01

    We have developed a new method to correct dark current at relatively high temperatures for Charge-Coupled Device (CCD) images when dark frames cannot be obtained on the telescope. For images taken with the Antarctic Survey Telescopes (AST3) in 2012, due to the low cooling efficiency, the median CCD temperature was -46°C, resulting in a high dark current level of about 3e-/pix/sec, even comparable to the sky brightness (10e-/pix/sec). If not corrected, the nonuniformity of the dark current could even overweight the photon noise of the sky background. However, dark frames could not be obtained during the observing season because the camera was operated in frame-transfer mode without a shutter, and the telescope was unattended in winter. Here we present an alternative, but simple and effective method to derive the dark current frame from the scientific images. Then we can scale this dark frame to the temperature at which the scientific images were taken, and apply the dark frame corrections to the scientific images. We have applied this method to the AST3 data, and demonstrated that it can reduce the noise to a level roughly as low as the photon noise of the sky brightness, solving the high noise problem and improving the photometric precision. This method will also be helpful for other projects that suffer from similar issues.

  18. Dark energy and dark matter perturbations in singular universes

    International Nuclear Information System (INIS)

    Denkiewicz, Tomasz

    2015-01-01

    We discuss the evolution of density perturbations of dark matter and dark energy in cosmological models which admit future singularities in a finite time. Up to now geometrical tests of the evolution of the universe do not differentiate between singular universes and ΛCDM scenario. We solve perturbation equations using the gauge invariant formalism. The analysis shows that the detailed reconstruction of the evolution of perturbations within singular cosmologies, in the dark sector, can exhibit important differences between the singular universes models and the ΛCDM cosmology. This is encouraging for further examination and gives hope for discriminating between those models with future galaxy weak lensing experiments like the Dark Energy Survey (DES) and Euclid or CMB observations like PRISM and CoRE

  19. Concentrated dark matter: Enhanced small-scale structure from codecaying dark matter

    OpenAIRE

    Dror, Jeff A.; Kuflik, Eric; Melcher, Brandon; Watson, Scott

    2018-01-01

    We study the cosmological consequences of codecaying dark matter—a recently proposed mechanism for depleting the density of dark matter through the decay of nearly degenerate particles. A generic prediction of this framework is an early dark matter dominated phase in the history of the Universe, that results in the enhanced growth of dark matter perturbations on small scales. We compute the duration of the early matter dominated phase and show that the perturbations are robust against washout...

  20. Dust of dark energy

    International Nuclear Information System (INIS)

    Lim, Eugene A.; Sawicki, Ignacy; Vikman, Alexander

    2010-01-01

    We introduce a novel class of field theories where energy always flows along timelike geodesics, mimicking in that respect dust, yet which possess non-zero pressure. This theory comprises two scalar fields, one of which is a Lagrange multiplier enforcing a constraint between the other's field value and derivative. We show that this system possesses no wave-like modes but retains a single dynamical degree of freedom. Thus, the sound speed is always identically zero on all backgrounds. In particular, cosmological perturbations reproduce the standard behaviour for hydrodynamics in the limit of vanishing sound speed. Using all these properties we propose a model unifying Dark Matter and Dark Energy in a single degree of freedom. In a certain limit this model exactly reproduces the evolution history of ΛCDM, while deviations away from the standard expansion history produce a potentially measurable difference in the evolution of structure

  1. Interacting hot dark matter

    International Nuclear Information System (INIS)

    Atrio-Barandela, F.; Davidson, S.

    1997-01-01

    We discuss the viability of a light particle (∼30eV neutrino) with strong self-interactions as a dark matter candidate. The interaction prevents the neutrinos from free-streaming during the radiation-dominated regime so galaxy-sized density perturbations can survive. Smaller scale perturbations are damped due to neutrino diffusion. We calculate the power spectrum in the imperfect fluid approximation, and show that it is damped at the length scale one would estimate due to neutrino diffusion. The strength of the neutrino-neutrino coupling is only weakly constrained by observations, and could be chosen by fitting the power spectrum to the observed amplitude of matter density perturbations. The main shortcoming of our model is that interacting neutrinos cannot provide the dark matter in dwarf galaxies. copyright 1997 The American Physical Society

  2. Superheavy thermal dark matter and primordial asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Bramante, Joseph [Perimeter Institute for Theoretical Physics,31 Caroline St N, Waterloo, ON N2L 2Y5 (Canada); Unwin, James [Department of Physics, University of Illinois at Chicago,845 W Taylor St, Chicago, IL 60607 (United States)

    2017-02-23

    The early universe could feature multiple reheating events, leading to jumps in the visible sector entropy density that dilute both particle asymmetries and the number density of frozen-out states. In fact, late time entropy jumps are usually required in models of Affleck-Dine baryogenesis, which typically produces an initial particle-antiparticle asymmetry that is much too large. An important consequence of late time dilution, is that a smaller dark matter annihilation cross section is needed to obtain the observed dark matter relic density. For cosmologies with high scale baryogenesis, followed by radiation-dominated dark matter freeze-out, we show that the perturbative unitarity mass bound on thermal relic dark matter is relaxed to 10{sup 10} GeV. We proceed to study superheavy asymmetric dark matter models, made possible by a sizable entropy injection after dark matter freeze-out, and identify how the Affleck-Dine mechanism would generate the baryon and dark asymmetries.

  3. Superheavy thermal dark matter and primordial asymmetries

    International Nuclear Information System (INIS)

    Bramante, Joseph; Unwin, James

    2017-01-01

    The early universe could feature multiple reheating events, leading to jumps in the visible sector entropy density that dilute both particle asymmetries and the number density of frozen-out states. In fact, late time entropy jumps are usually required in models of Affleck-Dine baryogenesis, which typically produces an initial particle-antiparticle asymmetry that is much too large. An important consequence of late time dilution, is that a smaller dark matter annihilation cross section is needed to obtain the observed dark matter relic density. For cosmologies with high scale baryogenesis, followed by radiation-dominated dark matter freeze-out, we show that the perturbative unitarity mass bound on thermal relic dark matter is relaxed to 10 10 GeV. We proceed to study superheavy asymmetric dark matter models, made possible by a sizable entropy injection after dark matter freeze-out, and identify how the Affleck-Dine mechanism would generate the baryon and dark asymmetries.

  4. Baryon destruction by asymmetric dark matter

    International Nuclear Information System (INIS)

    Davoudiasl, Hooman; Morrissey, David E.; Tulin, Sean; Sigurdson, Kris

    2011-01-01

    We investigate new and unusual signals that arise in theories where dark matter is asymmetric and carries a net antibaryon number, as may occur when the dark matter abundance is linked to the baryon abundance. Antibaryonic dark matter can cause induced nucleon decay by annihilating visible baryons through inelastic scattering. These processes lead to an effective nucleon lifetime of 10 29 -10 32 yrs in terrestrial nucleon decay experiments, if baryon number transfer between visible and dark sectors arises through new physics at the weak scale. The possibility of induced nucleon decay motivates a novel approach for direct detection of cosmic dark matter in nucleon decay experiments. Monojet searches (and related signatures) at hadron colliders also provide a complementary probe of weak-scale dark-matter-induced baryon number violation. Finally, we discuss the effects of baryon-destroying dark matter on stellar systems and show that it can be consistent with existing observations.

  5. Dark stars in Starobinsky's model

    Science.gov (United States)

    Panotopoulos, Grigoris; Lopes, Ilídio

    2018-01-01

    In the present work we study non-rotating dark stars in f (R ) modified theory of gravity. In particular, we have considered bosonic self-interacting dark matter modeled inside the star as a Bose-Einstein condensate, while as far as the modified theory of gravity is concerned we have assumed Starobinsky's model R +a R2. We solve the generalized structure equations numerically, and we obtain the mass-to-ratio relation for several different values of the parameter a , and for two different dark matter equation-of-states. Our results show that the dark matter stars become more compact in the R-squared gravity compared to general relativity, while at the same time the highest star mass is slightly increased in the modified gravitational theory. The numerical value of the highest star mass for each case has been reported.

  6. Nuclear winter or nuclear fall?

    Science.gov (United States)

    Berger, André

    Climate is universal. If a major modern nuclear war (i.e., with a large number of small-yield weapons) were to happen, it is not even necessary to have a specific part of the world directly involved for there to be cause to worry about the consequences for its inhabitants and their future. Indeed, smoke from fires ignited by the nuclear explosions would be transported by winds all over the world, causing dark and cold. According to the first study, by Turco et al. [1983], air surface temperature over continental areas of the northern mid-latitudes (assumed to be the nuclear war theatre) would fall to winter levels even in summer (hence the term “nuclear winter”) and induce drastic climatic conditions for several months at least. The devastating effects of a nuclear war would thus last much longer than was assumed initially. Discussing to what extent these estimations of long-term impacts on climate are reliable is the purpose of this article.

  7. Dark Tourism in Budapest

    OpenAIRE

    Shen, Cen; Li, Jin

    2011-01-01

    A new trend is developing in the tourism market nowadays – dark tourism. The main purpose of the study was to explore the marketing strategies of dark tourism sites in Budapest based on the theoretical overview of dark tourism and data gathering of quantitative research. The study started with a theoretical overview of dark tourism in Budapest. Then, the authors focused on the case study of House of Terror, one of the most important dark tourism sites in Budapest. Last, the research has ...

  8. Dark refraction shift with allowance for astigmatism

    Directory of Open Access Journals (Sweden)

    W.D.H. Gillan

    2005-12-01

    Full Text Available Purpose: To show that the dark refraction shift (dark focus is a more complicated phenomenon than implied when presented as spherical. Methods: Fifty autorefractor measurements of refractive state of the right eye were obtained in light  and  dark  conditions.  Multivariate  methods were used to analyze the data and stereo-pair scat-ter plots, polar meridional profiles and other means of presenting results are used to show important characteristics of the dark refraction shift. Results: The complexity of the dark refrac-tion shift is indicated by stereo-pair scatter plots showing the amount of stigmatic and antistigmatic variation that occurs in light and dark conditions. The mean dark refraction shift is presented in a complete manner including all three components of refractive state. The greater variance and covari-ance under dark conditions is clearly shown by the term-by-term dark-light variance-covariance ratio and polar profiles  of variance and covariance.Conclusions: The  dark  refraction  shift  is  a more complicated phenomenon than implied by representations as purely spherical in nature.

  9. Interacting agegraphic dark energy models in non-flat universe

    International Nuclear Information System (INIS)

    Sheykhi, Ahmad

    2009-01-01

    A so-called 'agegraphic dark energy' was recently proposed to explain the dark energy-dominated universe. In this Letter, we generalize the agegraphic dark energy models to the universe with spatial curvature in the presence of interaction between dark matter and dark energy. We show that these models can accommodate w D =-1 crossing for the equation of state of dark energy. In the limiting case of a flat universe, i.e. k=0, all previous results of agegraphic dark energy in flat universe are restored.

  10. The nuclear winter

    International Nuclear Information System (INIS)

    Velikhow, Y.P.

    1986-01-01

    Nuclear winter is an example of possible secondary effects, and if we speak of secondary we are thinking of small-scale second-order effects, but a nuclear winter is not a second-order effect. If you calculate the amount of heat produced by a nuclear explosion, it is a very small amount which does not have any chance of changing the Earth's climate, but a nuclear explosion drives or stars some new mechanism - the mechanism of nuclear winter - after 100 megatons of dust are transferred to the upper atmosphere. Another example of such amplification is radioactive fall-out, especially long-life radioactive fall-out after the possible elimination of the nuclear power industry, nuclear storage and distribution of storage waste around the globe. This is a very powerful amplification mechanism

  11. Light dark sector at colliders and fixed target experiments

    OpenAIRE

    Darmé, Luc; Rao, Soumya; Roszkowski, Leszek

    2018-01-01

    Minimal scenarios with light (sub-GeV) thermal dark matter are usually accompanied by a correspondingly light "dark sector". Taking as an example a simple fermionic dark matter model, we will show that the presence of the dark sector plays a key role in constraining such scenarios at accelerators experiments. The effect of including a dark Higgs boson in the light spectrum is in particular investigated.

  12. Conformal Gravity: Dark Matter and Dark Energy

    Directory of Open Access Journals (Sweden)

    Robert K. Nesbet

    2013-01-01

    Full Text Available This short review examines recent progress in understanding dark matter, dark energy, and galactic halos using theory that departs minimally from standard particle physics and cosmology. Strict conformal symmetry (local Weyl scaling covariance, postulated for all elementary massless fields, retains standard fermion and gauge boson theory but modifies Einstein–Hilbert general relativity and the Higgs scalar field model, with no new physical fields. Subgalactic phenomenology is retained. Without invoking dark matter, conformal gravity and a conformal Higgs model fit empirical data on galactic rotational velocities, galactic halos, and Hubble expansion including dark energy.

  13. Strategies for dark matter detection

    International Nuclear Information System (INIS)

    Silk, J.

    1988-01-01

    The present status of alternative forms of dark matter, both baryonic and nonbaryonic, is reviewed. Alternative arguments are presented for the predominance of either cold dark matter (CDM) or of baryonic dark matter (BDM). Strategies are described for dark matter detection, both for dark matter that consists of weakly interacting relic particles and for dark matter that consists of dark stellar remnants

  14. Probing the Dark Sector with Dark Matter Bound States.

    Science.gov (United States)

    An, Haipeng; Echenard, Bertrand; Pospelov, Maxim; Zhang, Yue

    2016-04-15

    A model of the dark sector where O(few  GeV) mass dark matter particles χ couple to a lighter dark force mediator V, m_{V}≪m_{χ}, is motivated by the recently discovered mismatch between simulated and observed shapes of galactic halos. Such models, in general, provide a challenge for direct detection efforts and collider searches. We show that for a large range of coupling constants and masses, the production and decay of the bound states of χ, such as 0^{-+} and 1^{--} states, η_{D} and ϒ_{D}, is an important search channel. We show that e^{+}e^{-}→η_{D}+V or ϒ_{D}+γ production at B factories for α_{D}>0.1 is sufficiently strong to result in multiple pairs of charged leptons and pions via η_{D}→2V→2(l^{+}l^{-}) and ϒ_{D}→3V→3(l^{+}l^{-}) (l=e,μ,π). The absence of such final states in the existing searches performed at BABAR and Belle sets new constraints on the parameter space of the model. We also show that a search for multiple bremsstrahlung of dark force mediators, e^{+}e^{-}→χχ[over ¯]+nV, resulting in missing energy and multiple leptons, will further improve the sensitivity to self-interacting dark matter.

  15. Gravitational Waves from a Dark Phase Transition.

    Science.gov (United States)

    Schwaller, Pedro

    2015-10-30

    In this work, we show that a large class of models with a composite dark sector undergo a strong first order phase transition in the early Universe, which could lead to a detectable gravitational wave signal. We summarize the basic conditions for a strong first order phase transition for SU(N) dark sectors with n_{f} flavors, calculate the gravitational wave spectrum and show that, depending on the dark confinement scale, it can be detected at eLISA or in pulsar timing array experiments. The gravitational wave signal provides a unique test of the gravitational interactions of a dark sector, and we discuss the complementarity with conventional searches for new dark sectors. The discussion includes the twin Higgs and strongly interacting massive particle models as well as symmetric and asymmetric composite dark matter scenarios.

  16. Secretly asymmetric dark matter

    Science.gov (United States)

    Agrawal, Prateek; Kilic, Can; Swaminathan, Sivaramakrishnan; Trendafilova, Cynthia

    2017-01-01

    We study a mechanism where the dark matter number density today arises from asymmetries generated in the dark sector in the early Universe, even though the total dark matter number remains zero throughout the history of the Universe. The dark matter population today can be completely symmetric, with annihilation rates above those expected from thermal weakly interacting massive particles. We give a simple example of this mechanism using a benchmark model of flavored dark matter. We discuss the experimental signatures of this setup, which arise mainly from the sector that annihilates the symmetric component of dark matter.

  17. Employment and winter construction

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Larsen, Jacob Norvig

    2011-01-01

    Reduced seasonal building activity in the construction sector is often assumed to be related to hard winter conditions for building activities and poor working conditions for construction workers, resulting in higher costs and poor quality of building products, particularly in the northern hemisp...... of contracts for workers is more likely to explain differences in seasonal activity than climatic or technological factors....

  18. The Dark Cube: dark character profiles and OCEAN

    Directory of Open Access Journals (Sweden)

    Danilo Garcia

    2017-09-01

    Full Text Available Background The Big Five traits (i.e., openness, conscientiousness, extraversion, agreeableness, and neuroticism: OCEAN have been suggested to provide a meaningful taxonomy for studying the Dark Triad: Machiavellianism, narcissism, and psychopathy. Nevertheless, current research consists of mixed and inconsistent associations between the Dark Triad and OCEAN. Here we used the Dark Cube (Garcia & Rosenberg, 2016, a model of malevolent character theoretically based on Cloninger’s biopsychosocial model of personality and in the assumption of a ternary structure of malevolent character. We use the dark cube profiles to investigate differences in OCEAN between individuals who differ in one dark character trait while holding the other two constant (i.e., conditional relationships. Method Participants (N = 330 responded to the Short Dark Triad Inventory and the Big Five Inventory and were grouped according to the eight possible combinations using their dark trait scores (M, high Machiavellianism; m, low Machiavellianism; N, high narcissism; n, low narcissism; P, high psychopathy; p, low psychopathy: MNP “maleficent”, MNp “manipulative narcissistic”, MnP “anti-social”, Mnp “Machiavellian”, mNP “psychopathic narcissistic”, mNp “narcissistic”, mnP “psychopathic”, and mnp “benevolent”. Results High narcissism-high extraversion and high psychopathy-low agreeableness were consistently associated across comparisons. The rest of the comparisons showed a complex interaction. For example, high Machiavellianism-high neuroticism only when both narcissism and psychopathy were low (Mnp vs. mnp, high narcissism-high conscientiousness only when both Machiavellianism and psychopathy were also high (MNP vs. MnP, and high psychopathy-high neuroticism only when Machiavellianism was low and narcissism was high (mNP vs. mNp. Conclusions We suggest that the Dark Cube is a useful tool in the investigation of a consistent Dark Triad Theory

  19. The Dark Cube: dark character profiles and OCEAN.

    Science.gov (United States)

    Garcia, Danilo; González Moraga, Fernando R

    2017-01-01

    The Big Five traits (i.e., openness, conscientiousness, extraversion, agreeableness, and neuroticism: OCEAN) have been suggested to provide a meaningful taxonomy for studying the Dark Triad: Machiavellianism, narcissism, and psychopathy. Nevertheless, current research consists of mixed and inconsistent associations between the Dark Triad and OCEAN. Here we used the Dark Cube (Garcia & Rosenberg, 2016), a model of malevolent character theoretically based on Cloninger's biopsychosocial model of personality and in the assumption of a ternary structure of malevolent character. We use the dark cube profiles to investigate differences in OCEAN between individuals who differ in one dark character trait while holding the other two constant (i.e., conditional relationships). Participants ( N  = 330) responded to the Short Dark Triad Inventory and the Big Five Inventory and were grouped according to the eight possible combinations using their dark trait scores (M, high Machiavellianism; m, low Machiavellianism; N, high narcissism; n, low narcissism; P, high psychopathy; p, low psychopathy): MNP "maleficent", MNp "manipulative narcissistic", MnP "anti-social", Mnp "Machiavellian", mNP "psychopathic narcissistic", mNp "narcissistic", mnP "psychopathic", and mnp "benevolent". High narcissism-high extraversion and high psychopathy-low agreeableness were consistently associated across comparisons. The rest of the comparisons showed a complex interaction. For example, high Machiavellianism-high neuroticism only when both narcissism and psychopathy were low (Mnp vs. mnp), high narcissism-high conscientiousness only when both Machiavellianism and psychopathy were also high (MNP vs. MnP), and high psychopathy-high neuroticism only when Machiavellianism was low and narcissism was high (mNP vs. mNp). We suggest that the Dark Cube is a useful tool in the investigation of a consistent Dark Triad Theory. This approach suggests that the only clear relationships were narcissism

  20. DarkSide search for dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, T.; Alton, D.; Arisaka, K.; Back, H. O.; Beltrame, P.; Benziger, J.; Bonfini, G.; Brigatti, A.; Brodsky, J.; Bussino, S.; Cadonati, L.; Calaprice, F.; Candela, A.; Cao, H.; Cavalcante, P.; Chepurnov, A.; Chidzik, S.; Cocco, A. G.; Condon, C.; D' Angelo, D.; Davini, S.; Vincenzi, M. De; Haas, E. De; Derbin, A.; Pietro, G. Di; Dratchnev, I.; Durben, D.; Empl, A.; Etenko, A.; Fan, A.; Fiorillo, G.; Franco, D.; Fomenko, K.; Forster, G.; Gabriele, F.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M.; Guo, C.; Guray, G.; Hungerford, E. V.; Ianni, Al; Ianni, An; Joliet, C.; Kayunov, A.; Keeter, K.; Kendziora, C.; Kidner, S.; Klemmer, R.; Kobychev, V.; Koh, G.; Komor, M.; Korablev, D.; Korga, G.; Li, P.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Lukyanchenko, L.; Lund, A.; Lung, K.; Ma, Y.; Machulin, I.; Mari, S.; Maricic, J.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P.; Mohayai, T.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Nelson, A.; Nemtzow, A.; Nurakhov, N.; Orsini, M.; Ortica, F.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Parsells, R.; Pelliccia, N.; Perasso, L.; Perasso, S.; Perfetto, F.; Pinsky, L.; Pocar, A.; Pordes, S.; Randle, K.; Ranucci, G.; Razeto, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Saggese, P.; Saldanha, R.; Salvo, C.; Sands, W.; Seigar, M.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvarov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Thompson, J.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wang, H.; Westerdale, S.; Wojcik, M.; Wright, A.; Xu, J.; Yang, C.; Zavatarelli, S.; Zehfus, M.; Zhong, W.; Zuzel, G.

    2013-11-22

    The DarkSide staged program utilizes a two-phase time projection chamber (TPC) with liquid argon as the target material for the scattering of dark matter particles. Efficient background reduction is achieved using low radioactivity underground argon as well as several experimental handles such as pulse shape, ratio of ionization over scintillation signal, 3D event reconstruction, and active neutron and muon vetos. The DarkSide-10 prototype detector has proven high scintillation light yield, which is a particularly important parameter as it sets the energy threshold for the pulse shape discrimination technique. The DarkSide-50 detector system, currently in commissioning phase at the Gran Sasso Underground Laboratory, will reach a sensitivity to dark matter spin-independent scattering cross section of 10-45 cm2 within 3 years of operation.

  1. Very heavy dark Skyrmions

    International Nuclear Information System (INIS)

    Dick, Rainer

    2017-01-01

    A dark sector with a solitonic component provides a means to circumvent the problem of generically low annihilation cross sections of very heavy dark matter particles. At the same time, enhanced annihilation cross sections are necessary for indirect detection of very heavy dark matter components beyond 100 TeV. Non-thermally produced dark matter in this mass range could therefore contribute to the cosmic γ-ray and neutrino flux above 100 TeV, and massive Skyrmions provide an interesting framework for the discussion of these scenarios. Therefore a Higgs portal and a neutrino portal for very heavy Skyrmion dark matter are discussed. The Higgs portal model demonstrates a dark mediator bottleneck, where limitations on particle annihilation cross sections will prevent a signal from the potentially large soliton annihilation cross sections. This problem can be avoided in models where the dark mediator decays. This is illustrated by the neutrino portal for Skyrmion dark matter. (orig.)

  2. Codecaying Dark Matter.

    Science.gov (United States)

    Dror, Jeff Asaf; Kuflik, Eric; Ng, Wee Hao

    2016-11-18

    We propose a new mechanism for thermal dark matter freeze-out, called codecaying dark matter. Multicomponent dark sectors with degenerate particles and out-of-equilibrium decays can codecay to obtain the observed relic density. The dark matter density is exponentially depleted through the decay of nearly degenerate particles rather than from Boltzmann suppression. The relic abundance is set by the dark matter annihilation cross section, which is predicted to be boosted, and the decay rate of the dark sector particles. The mechanism is viable in a broad range of dark matter parameter space, with a robust prediction of an enhanced indirect detection signal. Finally, we present a simple model that realizes codecaying dark matter.

  3. Baryonic Dark Matter

    OpenAIRE

    Silk, Joseph

    1994-01-01

    In the first two of these lectures, I present the evidence for baryonic dark matter and describe possible forms that it may take. The final lecture discusses formation of baryonic dark matter, and sets the cosmological context.

  4. Very heavy dark Skyrmions

    Energy Technology Data Exchange (ETDEWEB)

    Dick, Rainer [University of Saskatchewan, Department of Physics and Engineering Physics, Saskatoon, SK (Canada)

    2017-12-15

    A dark sector with a solitonic component provides a means to circumvent the problem of generically low annihilation cross sections of very heavy dark matter particles. At the same time, enhanced annihilation cross sections are necessary for indirect detection of very heavy dark matter components beyond 100 TeV. Non-thermally produced dark matter in this mass range could therefore contribute to the cosmic γ-ray and neutrino flux above 100 TeV, and massive Skyrmions provide an interesting framework for the discussion of these scenarios. Therefore a Higgs portal and a neutrino portal for very heavy Skyrmion dark matter are discussed. The Higgs portal model demonstrates a dark mediator bottleneck, where limitations on particle annihilation cross sections will prevent a signal from the potentially large soliton annihilation cross sections. This problem can be avoided in models where the dark mediator decays. This is illustrated by the neutrino portal for Skyrmion dark matter. (orig.)

  5. The dark side of cosmology: dark matter and dark energy.

    Science.gov (United States)

    Spergel, David N

    2015-03-06

    A simple model with only six parameters (the age of the universe, the density of atoms, the density of matter, the amplitude of the initial fluctuations, the scale dependence of this amplitude, and the epoch of first star formation) fits all of our cosmological data . Although simple, this standard model is strange. The model implies that most of the matter in our Galaxy is in the form of "dark matter," a new type of particle not yet detected in the laboratory, and most of the energy in the universe is in the form of "dark energy," energy associated with empty space. Both dark matter and dark energy require extensions to our current understanding of particle physics or point toward a breakdown of general relativity on cosmological scales. Copyright © 2015, American Association for the Advancement of Science.

  6. Winter Dew Harvest in Mexico City

    Directory of Open Access Journals (Sweden)

    Arias-Torres Jorge Ernesto

    2015-12-01

    Full Text Available This study presents experimental and theoretical results of winter dew harvest in México City in terms of condensation rate. A simplified theoretical model based on a steady-state energy balance on a radiator-condenser was fitted, as a function of the ambient temperature, the relative humidity and the wind velocity. A glass sheet and aluminum sheet white-painted were used as samples over the outdoor experiments. A good correlation was obtained between the theoretical and experimental data. The experimental results show that there was condensation in 68% of the winter nights on both condensers. The total winter condensed mass was 2977 g/m2 and 2888 g/m2 on the glass sheet and aluminum sheet white-painted, respectively. Thus, the condensed mass on the glass was only 3% higher than that on the painted surface. The maximum nightly dew harvests occurred during December, which linearly reduced from 50 g/m2 night to 22 g/m2 night as the winter months went by. The condensation occurred from 1:00 a.m. to 9:00 a.m., with maximum condensation rates between 6:00 a.m. and 7:00 a.m. The dew harvest can provide a partial alternative to the winter water shortage in certain locations with similar climates to the winter in Mexico City, as long as pollution is not significant.

  7. Major role of microbes in carbon fluxes during Austral winter in the Southern Drake Passage.

    Directory of Open Access Journals (Sweden)

    Maura Manganelli

    Full Text Available Carbon cycling in Southern Ocean is a major issue in climate change, hence the need to understand the role of biota in the regulation of carbon fixation and cycling. Southern Ocean is a heterogeneous system, characterized by a strong seasonality, due to long dark winter. Yet, currently little is known about biogeochemical dynamics during this season, particularly in the deeper part of the ocean. We studied bacterial communities and processes in summer and winter cruises in the southern Drake Passage. Here we show that in winter, when the primary production is greatly reduced, Bacteria and Archaea become the major producers of biogenic particles, at the expense of dissolved organic carbon drawdown. Heterotrophic production and chemoautotrophic CO(2 fixation rates were substantial, also in deep water, and bacterial populations were controlled by protists and viruses. A dynamic food web is also consistent with the observed temporal and spatial variations in archaeal and bacterial communities that might exploit various niches. Thus, Southern Ocean microbial loop may substantially maintain a wintertime food web and system respiration at the expense of summer produced DOC as well as regenerate nutrients and iron. Our findings have important implications for Southern Ocean ecosystem functioning and carbon cycle and its manipulation by iron enrichment to achieve net sequestration of atmospheric CO(2.

  8. Dark Sky Education | CTIO

    Science.gov (United States)

    Calendar Activities NOAO-S EPO Programs CADIAS Astro Chile Hugo E. Schwarz Telescope Dark Sky Education ‹› You are here CTIO Home » Outreach » NOAO-S EPO Programs » Dark Sky Education Dark Sky Education Dark Sky Education (in progress) Is an EPO Program. It runs Globe at Night, an annual program to

  9. Dark Matter Effective Theory

    DEFF Research Database (Denmark)

    Del Nobile, Eugenio; Sannino, Francesco

    2012-01-01

    We organize the effective (self)interaction terms for complex scalar dark matter candidates which are either an isosinglet, isodoublet or an isotriplet with respect to the weak interactions. The classification has been performed ordering the operators in inverse powers of the dark matter cutoff...... scale. We assume Lorentz invariance, color and charge neutrality. We also introduce potentially interesting dark matter induced flavor-changing operators. Our general framework allows for model independent investigations of dark matter properties....

  10. Inflationary imprints on dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Nurmi, Sami; Tenkanen, Tommi; Tuominen, Kimmo, E-mail: sami.nurmi@helsinki.fi, E-mail: tommi.tenkanen@helsinki.fi, E-mail: kimmo.i.tuominen@helsinki.fi [University of Helsinki and Helsinki Institute of Physics, P.O. Box 64, FI-00014, University of Helsinki (Finland)

    2015-11-01

    We show that dark matter abundance and the inflationary scale H could be intimately related. Standard Model extensions with Higgs mediated couplings to new physics typically contain extra scalars displaced from vacuum during inflation. If their coupling to Standard Model is weak, they will not thermalize and may easily constitute too much dark matter reminiscent to the moduli problem. As an example we consider Standard Model extended by a Z{sub 2} symmetric singlet s coupled to the Standard Model Higgs Φ via λ Φ{sup †}Φ s{sup 2}. Dark matter relic density is generated non-thermally for λ ∼< 10{sup −7}. We show that the dark matter yield crucially depends on the inflationary scale. For H∼ 10{sup 10} GeV we find that the singlet self-coupling and mass should lie in the regime λ{sub s}∼> 10{sup −9} and m{sub s}∼< 50 GeV to avoid dark matter overproduction.

  11. Nonthermal Supermassive Dark Matter

    Science.gov (United States)

    Chung, Daniel J. H.; Kolb, Edward W.; Riotto, Antonio

    1999-01-01

    We discuss several cosmological production mechanisms for nonthermal supermassive dark matter and argue that dark matter may he elementary particles of mass much greater than the weak scale. Searches for dark matter should ma be limited to weakly interacting particles with mass of the order of the weak scale, but should extend into the supermassive range as well.

  12. Nonthermal Supermassive Dark Matter

    International Nuclear Information System (INIS)

    Chung, D.J.; Chung, D.J.; Kolb, E.W.; Kolb, E.W.; Riotto, A.

    1998-01-01

    We discuss several cosmological production mechanisms for nonthermal supermassive dark matter and argue that dark matter may be elementary particles of mass much greater than the weak scale. Searches for dark matter should not be limited to weakly interacting particles with mass of the order of the weak scale, but should extend into the supermassive range as well. copyright 1998 The American Physical Society

  13. Nonthermal Supermassive Dark Matter

    OpenAIRE

    Chung, Daniel J. H.; Kolb, Edward W.; Riotto, Antonio

    1998-01-01

    We discuss several cosmological production mechanisms for nonthermal supermassive dark matter and argue that dark matter may be elementary particles of mass much greater than the weak scale. Searches for dark matter should not be limited to weakly interacting particles with mass of the order of the weak scale, but should extend into the supermassive range as well.

  14. Possible dark energy imprints in the gravitational wave spectrum of mixed neutron-dark-energy stars

    Energy Technology Data Exchange (ETDEWEB)

    Yazadjiev, Stoytcho S. [Department of Theoretical Physics, Faculty of Physics, St. Kliment Ohridski University of Sofia, James Bourchier Blvd. 5, 1164 Sofia (Bulgaria); Doneva, Daniela D., E-mail: yazad@phys.uni-sofia.bg, E-mail: daniela.doneva@uni-tuebingen.de [Theoretical Astrophysics, IAAT, Eberhard-Karls University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen (Germany)

    2012-03-01

    In the present paper we study the oscillation spectrum of neutron stars containing both ordinary matter and dark energy in different proportions. Within the model we consider, the equilibrium configurations are numerically constructed and the results show that the properties of the mixed neuron-dark-energy star can differ significantly when the amount of dark energy in the stars is varied. The oscillations of the mixed neuron-dark-energy stars are studied in the Cowling approximation. As a result we find that the frequencies of the fundamental mode and the higher overtones are strongly affected by the dark energy content. This can be used in the future to detect the presence of dark energy in the neutron stars and to constrain the dark-energy models.

  15. Dark Mass Creation During EWPT Via Dark Energy Interaction

    OpenAIRE

    Kisslinger, Leonard S.; Casper, Steven

    2013-01-01

    We add Dark Matter Dark Energy terms with a quintessence field interacting with a Dark Matter field to a MSSM EW Lagrangian previously used to calculate the magnetic field created during the EWPT. From the expectation value of the quintessence field we estimate the Dark Matter mass for parameters used in previous work on Dark Matter-Dark Energy interactions.

  16. Editorial - The winter Atomiades

    CERN Multimedia

    Staff Association

    2011-01-01

    As we wrote in our previous editorial, the Staff Association gives direct support to sports events, such as the Atomiades, a section of the Association of Sports Communities of European Research Institutes, which brings together sportsmen and women from 38 European research centres in 13 countries (Austria, Belgium, Czech Republic, United Kingdom, Finland, France, Germany, Hungary, Italy, Luxemburg, the Netherlands, Russia, and Switzerland). The summer Atomiades take place between the months of June and September every three years. Thirteen such events have taken place since 1973, the last one in June 2009 in Berlin. As far as the winter Atomiades are concerned, also organized every three years, and alternating with the summer Atomiades, there have been eleven since 1981, the last one at the end of January this year in neighbouring France. The following article tells the wonderful adventure of the CERN staff who took part in this event. A positive outcome for CERN skiers at the winter Atomiades The 11t...

  17. Winter is losing its cool

    Science.gov (United States)

    Feng, S.

    2017-12-01

    Winter seasons have significant societal impacts across all sectors ranging from direct human health to ecosystems, transportation, and recreation. This study quantifies the severity of winter and its spatial-temporal variations using a newly developed winter severity index and daily temperature, snowfall and snow depth. The winter severity and the number of extreme winter days are decreasing across the global terrestrial areas during 1901-2015 except the southeast United States and isolated regions in the Southern Hemisphere. These changes are dominated by winter warming, while the changes in daily snowfall and snow depth played a secondary role. The simulations of multiple CMIP5 climate models can well capture the spatial and temporal variations of the observed changes in winter severity and extremes during 1951-2005. The models are consistent in projecting a future milder winter under various scenarios. The winter severity is projected to decrease 60-80% in the middle-latitude Northern Hemisphere under the business-as-usual scenario. The winter arrives later, ends earlier and the length of winter season will be notably shorter. The changes in harsh winter in the polar regions are weak, mainly because the warming leads to more snowfall in the high latitudes.

  18. Dark matter and dark forces from a supersymmetric hidden sector

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, S.; Goodsell, M.D.; Ringwald, A.

    2011-09-15

    We show that supersymmetric ''Dark Force'' models with gravity mediation are viable. To this end, we analyse a simple supersymmetric hidden sector model that interacts with the visible sector via kinetic mixing of a light Abelian gauge boson with the hypercharge. We include all induced interactions with the visible sector such as neutralino mass mixing and the Higgs portal term. We perform a detailed parameter space scan comparing the produced dark matter relic abundance and direct detection cross-sections to current experiments. (orig.)

  19. Interactions between dark energy and dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Baldi, Marco

    2009-03-20

    We have investigated interacting dark energy cosmologies both concerning their impact on the background evolution of the Universe and their effects on cosmological structure growth. For the former aspect, we have developed a cosmological model featuring a matter species consisting of particles with a mass that increases with time. In such model the appearance of a Growing Matter component, which is negligible in early cosmology, dramatically slows down the evolution of the dark energy scalar field at a redshift around six, and triggers the onset of the accelerated expansion of the Universe, therefore addressing the Coincidence Problem. We propose to identify this Growing Matter component with cosmic neutrinos, in which case the present dark energy density can be related to the measured average mass of neutrinos. For the latter aspect, we have implemented the new physical features of interacting dark energy models into the cosmological N-body code GADGET-2, and we present the results of a series of high-resolution simulations for a simple realization of dark energy interaction. As a consequence of the new physics, cold dark matter and baryon distributions evolve differently both in the linear and in the non-linear regime of structure formation. Already on large scales, a linear bias develops between these two components, which is further enhanced by the non-linear evolution. We also find, in contrast with previous work, that the density profiles of cold dark matter halos are less concentrated in coupled dark energy cosmologies compared with {lambda}{sub CDM}. Also, the baryon fraction in halos in the coupled models is significantly reduced below the universal baryon fraction. These features alleviate tensions between observations and the {lambda}{sub CDM} model on small scales. Our methodology is ideally suited to explore the predictions of coupled dark energy models in the fully non-linear regime, which can provide powerful constraints for the viable parameter

  20. Interactions between dark energy and dark matter

    International Nuclear Information System (INIS)

    Baldi, Marco

    2009-01-01

    We have investigated interacting dark energy cosmologies both concerning their impact on the background evolution of the Universe and their effects on cosmological structure growth. For the former aspect, we have developed a cosmological model featuring a matter species consisting of particles with a mass that increases with time. In such model the appearance of a Growing Matter component, which is negligible in early cosmology, dramatically slows down the evolution of the dark energy scalar field at a redshift around six, and triggers the onset of the accelerated expansion of the Universe, therefore addressing the Coincidence Problem. We propose to identify this Growing Matter component with cosmic neutrinos, in which case the present dark energy density can be related to the measured average mass of neutrinos. For the latter aspect, we have implemented the new physical features of interacting dark energy models into the cosmological N-body code GADGET-2, and we present the results of a series of high-resolution simulations for a simple realization of dark energy interaction. As a consequence of the new physics, cold dark matter and baryon distributions evolve differently both in the linear and in the non-linear regime of structure formation. Already on large scales, a linear bias develops between these two components, which is further enhanced by the non-linear evolution. We also find, in contrast with previous work, that the density profiles of cold dark matter halos are less concentrated in coupled dark energy cosmologies compared with Λ CDM . Also, the baryon fraction in halos in the coupled models is significantly reduced below the universal baryon fraction. These features alleviate tensions between observations and the Λ CDM model on small scales. Our methodology is ideally suited to explore the predictions of coupled dark energy models in the fully non-linear regime, which can provide powerful constraints for the viable parameter space of such scenarios

  1. Dark Matter Caustics

    International Nuclear Information System (INIS)

    Natarajan, Aravind

    2010-01-01

    The continuous infall of dark matter with low velocity dispersion in galactic halos leads to the formation of high density structures called caustics. Dark matter caustics are of two kinds : outer and inner. Outer caustics are thin spherical shells surrounding galaxies while inner caustics have a more complicated structure that depends on the dark matter angular momentum distribution. The presence of a dark matter caustic in the plane of the galaxy modifies the gas density in its neighborhood which may lead to observable effects. Caustics are also relevant to direct and indirect dark matter searches.

  2. Dark Matter Searches

    International Nuclear Information System (INIS)

    Moriyama, Shigetaka

    2008-01-01

    Recent cosmological as well as historical observations of rotational curves of galaxies strongly suggest the existence of dark matter. It is also widely believed that dark matter consists of unknown elementary particles. However, astrophysical observations based on gravitational effects alone do not provide sufficient information on the properties of dark matter. In this study, the status of dark matter searches is investigated by observing high-energy neutrinos from the sun and the earth and by observing nuclear recoils in laboratory targets. The successful detection of dark matter by these methods facilitates systematic studies of its properties. Finally, the XMASS experiment, which is due to start at the Kamioka Observatory, is introduced

  3. Attraction of nonlocal dark optical solitons

    DEFF Research Database (Denmark)

    Nikolov, Nikola Ivanov; Neshev, Dragomir; Krolikowski, Wieslaw

    2004-01-01

    We study the formation and interaction of spatial dark optical solitons in materials with a nonlocal nonlinear response. We show that unlike in local materials, where dark solitons typically repel, the nonlocal nonlinearity leads to a long-range attraction and formation of stable bound states...

  4. Reversible decay of ring dark solitons

    International Nuclear Information System (INIS)

    Toikka, L A; Suominen, K-A

    2014-01-01

    We show how boundary effects can cause a Bose–Einstein condensate to periodically oscillate between a (circular) array of quantized vortex–antivortex pairs and a (ring) dark soliton. If the boundary is restrictive enough, the ring dark soliton becomes long-lived. (paper)

  5. Hunting the dark Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Duerr, Michael; Grohsjean, Alexander; Kahlhoefer, Felix; Schmidt-Hoberg, Kai; Schwanenberger, Christian [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Penning, Bjoern [Bristol Univ. (United Kingdom). H.H. Wills Physics Lab.

    2017-05-15

    We discuss a novel signature of dark matter production at the LHC resulting from the emission of an additional Higgs boson in the dark sector. The presence of such a dark Higgs boson is motivated simultaneously by the need to generate the masses of the particles in the dark sector and the possibility to relax constraints from the dark matter relic abundance by opening up a new annihilation channel. If the dark Higgs boson decays into Standard Model states via a small mixing with the Standard Model Higgs boson, one obtains characteristic large-radius jets in association with missing transverse momentum that can be used to efficiently discriminate signal from backgrounds. We present the sensitivities achievable in LHC searches for dark Higgs bosons with already collected data and demonstrate that such searches can probe large regions of parameter space that are inaccessible to conventional mono-jet or di-jet searches.

  6. Hunting the dark Higgs

    International Nuclear Information System (INIS)

    Duerr, Michael; Grohsjean, Alexander; Kahlhoefer, Felix; Schmidt-Hoberg, Kai; Schwanenberger, Christian; Penning, Bjoern

    2017-05-01

    We discuss a novel signature of dark matter production at the LHC resulting from the emission of an additional Higgs boson in the dark sector. The presence of such a dark Higgs boson is motivated simultaneously by the need to generate the masses of the particles in the dark sector and the possibility to relax constraints from the dark matter relic abundance by opening up a new annihilation channel. If the dark Higgs boson decays into Standard Model states via a small mixing with the Standard Model Higgs boson, one obtains characteristic large-radius jets in association with missing transverse momentum that can be used to efficiently discriminate signal from backgrounds. We present the sensitivities achievable in LHC searches for dark Higgs bosons with already collected data and demonstrate that such searches can probe large regions of parameter space that are inaccessible to conventional mono-jet or di-jet searches.

  7. Dipolar dark matter with massive bigravity

    International Nuclear Information System (INIS)

    Blanchet, Luc; Heisenberg, Lavinia

    2015-01-01

    Massive gravity theories have been developed as viable IR modifications of gravity motivated by dark energy and the problem of the cosmological constant. On the other hand, modified gravity and modified dark matter theories were developed with the aim of solving the problems of standard cold dark matter at galactic scales. Here we propose to adapt the framework of ghost-free massive bigravity theories to reformulate the problem of dark matter at galactic scales. We investigate a promising alternative to dark matter called dipolar dark matter (DDM) in which two different species of dark matter are separately coupled to the two metrics of bigravity and are linked together by an internal vector field. We show that this model successfully reproduces the phenomenology of dark matter at galactic scales (i.e. MOND) as a result of a mechanism of gravitational polarisation. The model is safe in the gravitational sector, but because of the particular couplings of the matter fields and vector field to the metrics, a ghost in the decoupling limit is present in the dark matter sector. However, it might be possible to push the mass of the ghost beyond the strong coupling scale by an appropriate choice of the parameters of the model. Crucial questions to address in future work are the exact mass of the ghost, and the cosmological implications of the model

  8. How to distinguish dark energy and modified gravity?

    International Nuclear Information System (INIS)

    Wei Hao; Zhang Shuangnan

    2008-01-01

    The current accelerated expansion of our universe could be due to an unknown energy component (dark energy) or a modification of general relativity (modified gravity). In the literature it has been proposed that combining the probes of the cosmic expansion history and growth history can distinguish between dark energy and modified gravity. In this work, without invoking nontrivial dark energy clustering, we show that the possible interaction between dark energy and dark matter could make the interacting dark model and the modified gravity model indistinguishable. An explicit example is also given. Therefore, it is required to seek some complementary probes beyond the ones of cosmic expansion history and growth history.

  9. Flavoured Dark Matter moving left

    Science.gov (United States)

    Blanke, Monika; Das, Satrajit; Kast, Simon

    2018-02-01

    We investigate the phenomenology of a simplified model of flavoured Dark Matter (DM), with a dark fermionic flavour triplet coupling to the left-handed SU(2) L quark doublets via a scalar mediator. The DM-quark coupling matrix is assumed to constitute the only new source of flavour and CP violation, following the hypothesis of Dark Minimal Flavour Violation. We analyse the constraints from LHC searches, from meson mixing data in the K, D, and B d,s meson systems, from thermal DM freeze-out, and from direct detection experiments. Our combined analysis shows that while the experimental constraints are similar to the DMFV models with DM coupling to right-handed quarks, the multitude of couplings between DM and the SM quark sector resulting from the SU(2) L structure implies a richer phenomenology and significantly alters the resulting impact on the viable parameter space.

  10. Dark nebulae, dark lanes, and dust belts

    CERN Document Server

    Cooke, Antony

    2012-01-01

    As probably the only book of its type, this work is aimed at the observer who wants to spend time with something less conventional than the usual fare. Because we usually see objects in space by means of illumination of one kind or another, it has become routine to see them only in these terms. However, part of almost everything that we see is the defining dimension of dark shading, or even the complete obscuration of entire regions in space. Thus this book is focused on everything dark in space: those dark voids in the stellar fabric that mystified astronomers of old; the dark lanes reported in many star clusters; the magical dust belts or dusty regions that have given so many galaxies their identities; the great swirling 'folds' that we associate with bright nebulae; the small dark feature detectable even in some planetary nebulae; and more. Many observers pay scant attention to dark objects and details. Perhaps they are insufficiently aware of them or of the viewing potential they hold, but also it may be...

  11. Roles of dark energy perturbations in dynamical dark energy models: can we ignore them?

    Science.gov (United States)

    Park, Chan-Gyung; Hwang, Jai-chan; Lee, Jae-heon; Noh, Hyerim

    2009-10-09

    We show the importance of properly including the perturbations of the dark energy component in the dynamical dark energy models based on a scalar field and modified gravity theories in order to meet with present and future observational precisions. Based on a simple scaling scalar field dark energy model, we show that observationally distinguishable substantial differences appear by ignoring the dark energy perturbation. By ignoring it the perturbed system of equations becomes inconsistent and deviations in (gauge-invariant) power spectra depend on the gauge choice.

  12. Gravitational waves in cold dark matter

    Science.gov (United States)

    Flauger, Raphael; Weinberg, Steven

    2018-06-01

    We study the effects of cold dark matter on the propagation of gravitational waves of astrophysical and primordial origin. We show that the dominant effect of cold dark matter on gravitational waves from astrophysical sources is a small frequency dependent modification of the propagation speed of gravitational waves. However, the magnitude of the effect is too small to be detected in the near future. We furthermore show that the spectrum of primordial gravitational waves in principle contains detailed information about the properties of dark matter. However, depending on the wavelength, the effects are either suppressed because the dark matter is highly nonrelativistic or because it contributes a small fraction of the energy density of the universe. As a consequence, the effects of cold dark matter on primordial gravitational waves in practice also appear too small to be detectable.

  13. Warmed Winter Water Temperatures Alter Reproduction in Two Fish Species.

    Science.gov (United States)

    Firkus, Tyler; Rahel, Frank J; Bergman, Harold L; Cherrington, Brian D

    2018-02-01

    We examined the spawning success of Fathead Minnows (Pimephales promelas) and Johnny Darters (Etheostoma nigrum) exposed to elevated winter water temperatures typical of streams characterized by anthropogenic thermal inputs. When Fathead Minnows were exposed to temperature treatments of 12, 16, or 20 °C during the winter, spawning occurred at 16 and 20 °C but not 12 °C. Eggs were deposited over 9 weeks before winter spawning ceased. Fathead Minnows from the three winter temperature treatments were then exposed to a simulated spring transition. Spawning occurred at all three temperature treatments during the spring, but fish from the 16° and 20 °C treatment had delayed egg production indicating a latent effect of warm winter temperatures on spring spawning. mRNA analysis of the egg yolk protein vitellogenin showed elevated expression in female Fathead Minnows at 16 and 20 °C during winter spawning that decreased after winter spawning ceased, whereas Fathead Minnows at 12 °C maintained comparatively low expression during winter. Johnny Darters were exposed to 4 °C to represent winter temperatures in the absence of thermal inputs, and 12, 16, and 20 °C to represent varying degrees of winter thermal pollution. Johnny Darters spawned during winter at 12, 16, and 20 °C but not at 4 °C. Johnny Darters at 4 °C subsequently spawned following a simulated spring period while those at 12, 16, and 20 °C did not. Our results indicate elevated winter water temperatures common in effluent-dominated streams can promote out-of-season spawning and that vitellogenin expression is a useful indicator of spawning readiness for fish exposed to elevated winter temperatures.

  14. Warmed Winter Water Temperatures Alter Reproduction in Two Fish Species

    Science.gov (United States)

    Firkus, Tyler; Rahel, Frank J.; Bergman, Harold L.; Cherrington, Brian D.

    2018-02-01

    We examined the spawning success of Fathead Minnows ( Pimephales promelas) and Johnny Darters ( Etheostoma nigrum) exposed to elevated winter water temperatures typical of streams characterized by anthropogenic thermal inputs. When Fathead Minnows were exposed to temperature treatments of 12, 16, or 20 °C during the winter, spawning occurred at 16 and 20 °C but not 12 °C. Eggs were deposited over 9 weeks before winter spawning ceased. Fathead Minnows from the three winter temperature treatments were then exposed to a simulated spring transition. Spawning occurred at all three temperature treatments during the spring, but fish from the 16° and 20 °C treatment had delayed egg production indicating a latent effect of warm winter temperatures on spring spawning. mRNA analysis of the egg yolk protein vitellogenin showed elevated expression in female Fathead Minnows at 16 and 20 °C during winter spawning that decreased after winter spawning ceased, whereas Fathead Minnows at 12 °C maintained comparatively low expression during winter. Johnny Darters were exposed to 4 °C to represent winter temperatures in the absence of thermal inputs, and 12, 16, and 20 °C to represent varying degrees of winter thermal pollution. Johnny Darters spawned during winter at 12, 16, and 20 °C but not at 4 °C. Johnny Darters at 4 °C subsequently spawned following a simulated spring period while those at 12, 16, and 20 °C did not. Our results indicate elevated winter water temperatures common in effluent-dominated streams can promote out-of-season spawning and that vitellogenin expression is a useful indicator of spawning readiness for fish exposed to elevated winter temperatures.

  15. Hidden charged dark matter

    International Nuclear Information System (INIS)

    Feng, Jonathan L.; Kaplinghat, Manoj; Tu, Huitzu; Yu, Hai-Bo

    2009-01-01

    Can dark matter be stabilized by charge conservation, just as the electron is in the standard model? We examine the possibility that dark matter is hidden, that is, neutral under all standard model gauge interactions, but charged under an exact (\\rm U)(1) gauge symmetry of the hidden sector. Such candidates are predicted in WIMPless models, supersymmetric models in which hidden dark matter has the desired thermal relic density for a wide range of masses. Hidden charged dark matter has many novel properties not shared by neutral dark matter: (1) bound state formation and Sommerfeld-enhanced annihilation after chemical freeze out may reduce its relic density, (2) similar effects greatly enhance dark matter annihilation in protohalos at redshifts of z ∼ 30, (3) Compton scattering off hidden photons delays kinetic decoupling, suppressing small scale structure, and (4) Rutherford scattering makes such dark matter self-interacting and collisional, potentially impacting properties of the Bullet Cluster and the observed morphology of galactic halos. We analyze all of these effects in a WIMPless model in which the hidden sector is a simplified version of the minimal supersymmetric standard model and the dark matter is a hidden sector stau. We find that charged hidden dark matter is viable and consistent with the correct relic density for reasonable model parameters and dark matter masses in the range 1 GeV ∼ X ∼< 10 TeV. At the same time, in the preferred range of parameters, this model predicts cores in the dark matter halos of small galaxies and other halo properties that may be within the reach of future observations. These models therefore provide a viable and well-motivated framework for collisional dark matter with Sommerfeld enhancement, with novel implications for astrophysics and dark matter searches

  16. Consequences of dark matter-dark energy interaction on cosmological parameters derived from type Ia supernova data

    International Nuclear Information System (INIS)

    Amendola, Luca; Campos, Gabriela Camargo; Rosenfeld, Rogerio

    2007-01-01

    Models where the dark matter component of the Universe interacts with the dark energy field have been proposed as a solution to the cosmic coincidence problem, since in the attractor regime both dark energy and dark matter scale in the same way. In these models the mass of the cold dark matter particles is a function of the dark energy field responsible for the present acceleration of the Universe, and different scenarios can be parametrized by how the mass of the cold dark matter particles evolves with time. In this article we study the impact of a constant coupling δ between dark energy and dark matter on the determination of a redshift dependent dark energy equation of state w DE (z) and on the dark matter density today from SNIa data. We derive an analytical expression for the luminosity distance in this case. In particular, we show that the presence of such a coupling increases the tension between the cosmic microwave background data from the analysis of the shift parameter in models with constant w DE and SNIa data for realistic values of the present dark matter density fraction. Thus, an independent measurement of the present dark matter density can place constraints on models with interacting dark energy

  17. Incorporating Yearly Derived Winter Wheat Maps Into Winter Wheat Yield Forecasting Model

    Science.gov (United States)

    Skakun, S.; Franch, B.; Roger, J.-C.; Vermote, E.; Becker-Reshef, I.; Justice, C.; Santamaría-Artigas, A.

    2016-01-01

    Wheat is one of the most important cereal crops in the world. Timely and accurate forecast of wheat yield and production at global scale is vital in implementing food security policy. Becker-Reshef et al. (2010) developed a generalized empirical model for forecasting winter wheat production using remote sensing data and official statistics. This model was implemented using static wheat maps. In this paper, we analyze the impact of incorporating yearly wheat masks into the forecasting model. We propose a new approach of producing in season winter wheat maps exploiting satellite data and official statistics on crop area only. Validation on independent data showed that the proposed approach reached 6% to 23% of omission error and 10% to 16% of commission error when mapping winter wheat 2-3 months before harvest. In general, we found a limited impact of using yearly winter wheat masks over a static mask for the study regions.

  18. Sex and dark times' strategy: The Dark Triad and time perspective.

    Science.gov (United States)

    Moraga, Fernando R G; Nima, Ali A; Garcia, Danilo

    2017-03-01

    We investigated the effect of sex on associations between dark traits and time perspective dimensions. Responses by participants (N = 338) to the Short Dark Triad Inventory and the Zimbardo Time Perspective Inventory showed that while sex was involved in different time perspective associations of Machiavellianism, psychopathy, and narcissism, it did not moderate the dark times' strategy. © 2017 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  19. Dark degeneracy and interacting cosmic components

    International Nuclear Information System (INIS)

    Aviles, Alejandro; Cervantes-Cota, Jorge L.

    2011-01-01

    We study some properties of the dark degeneracy, which is the fact that what we measure in gravitational experiments is the energy-momentum tensor of the total dark sector, and any split into components (as in dark matter and dark energy) is arbitrary. In fact, just one dark fluid is necessary to obtain exactly the same cosmological and astrophysical phenomenology as the ΛCDM model. We work explicitly the first-order perturbation theory and show that beyond the linear order the dark degeneracy is preserved under some general assumptions. Then we construct the dark fluid from a collection of interacting fluids. Finally, we try to break the degeneracy with a general class of couplings to baryonic matter. Nonetheless, we show that these interactions can also be understood in the context of the ΛCDM model as between dark matter and baryons. For this last investigation we choose two independent parametrizations for the interactions, one inspired by electromagnetism and the other by chameleon theories. Then, we constrain them with a joint analysis of CMB and supernovae observational data.

  20. Partially acoustic dark matter, interacting dark radiation, and large scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Chacko, Zackaria [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland,Stadium Dr., College Park, MD 20742 (United States); Cui, Yanou [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland,Stadium Dr., College Park, MD 20742 (United States); Department of Physics and Astronomy, University of California-Riverside,University Ave, Riverside, CA 92521 (United States); Perimeter Institute, 31 Caroline Street, North Waterloo, Ontario N2L 2Y5 (Canada); Hong, Sungwoo [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland,Stadium Dr., College Park, MD 20742 (United States); Okui, Takemichi [Department of Physics, Florida State University,College Avenue, Tallahassee, FL 32306 (United States); Tsai, Yuhsinz [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland,Stadium Dr., College Park, MD 20742 (United States)

    2016-12-21

    The standard paradigm of collisionless cold dark matter is in tension with measurements on large scales. In particular, the best fit values of the Hubble rate H{sub 0} and the matter density perturbation σ{sub 8} inferred from the cosmic microwave background seem inconsistent with the results from direct measurements. We show that both problems can be solved in a framework in which dark matter consists of two distinct components, a dominant component and a subdominant component. The primary component is cold and collisionless. The secondary component is also cold, but interacts strongly with dark radiation, which itself forms a tightly coupled fluid. The growth of density perturbations in the subdominant component is inhibited by dark acoustic oscillations due to its coupling to the dark radiation, solving the σ{sub 8} problem, while the presence of tightly coupled dark radiation ameliorates the H{sub 0} problem. The subdominant component of dark matter and dark radiation continue to remain in thermal equilibrium until late times, inhibiting the formation of a dark disk. We present an example of a simple model that naturally realizes this scenario in which both constituents of dark matter are thermal WIMPs. Our scenario can be tested by future stage-IV experiments designed to probe the CMB and large scale structure.

  1. Partially acoustic dark matter, interacting dark radiation, and large scale structure

    International Nuclear Information System (INIS)

    Chacko, Zackaria; Cui, Yanou; Hong, Sungwoo; Okui, Takemichi; Tsai, Yuhsinz

    2016-01-01

    The standard paradigm of collisionless cold dark matter is in tension with measurements on large scales. In particular, the best fit values of the Hubble rate H 0 and the matter density perturbation σ 8 inferred from the cosmic microwave background seem inconsistent with the results from direct measurements. We show that both problems can be solved in a framework in which dark matter consists of two distinct components, a dominant component and a subdominant component. The primary component is cold and collisionless. The secondary component is also cold, but interacts strongly with dark radiation, which itself forms a tightly coupled fluid. The growth of density perturbations in the subdominant component is inhibited by dark acoustic oscillations due to its coupling to the dark radiation, solving the σ 8 problem, while the presence of tightly coupled dark radiation ameliorates the H 0 problem. The subdominant component of dark matter and dark radiation continue to remain in thermal equilibrium until late times, inhibiting the formation of a dark disk. We present an example of a simple model that naturally realizes this scenario in which both constituents of dark matter are thermal WIMPs. Our scenario can be tested by future stage-IV experiments designed to probe the CMB and large scale structure.

  2. Dark discrete gauge symmetries

    International Nuclear Information System (INIS)

    Batell, Brian

    2011-01-01

    We investigate scenarios in which dark matter is stabilized by an Abelian Z N discrete gauge symmetry. Models are surveyed according to symmetries and matter content. Multicomponent dark matter arises when N is not prime and Z N contains one or more subgroups. The dark sector interacts with the visible sector through the renormalizable kinetic mixing and Higgs portal operators, and we highlight the basic phenomenology in these scenarios. In particular, multiple species of dark matter can lead to an unconventional nuclear recoil spectrum in direct detection experiments, while the presence of new light states in the dark sector can dramatically affect the decays of the Higgs at the Tevatron and LHC, thus providing a window into the gauge origin of the stability of dark matter.

  3. Detecting dark matter

    International Nuclear Information System (INIS)

    Dixon, Roger L.

    2000-01-01

    Dark matter is one of the most pressing problems in modern cosmology and particle physic research. This talk will motivate the existence of dark matter by reviewing the main experimental evidence for its existence, the rotation curves of galaxies and the motions of galaxies about one another. It will then go on to review the corroborating theoretical motivations before combining all the supporting evidence to explore some of the possibilities for dark matter along with its expected properties. This will lay the ground work for dark matter detection. A number of differing techniques are being developed and used to detect dark matter. These will be briefly discussed before the focus turns to cryogenic detection techniques. Finally, some preliminary results and expectations will be given for the Cryogenic Dark Matter Search (CDMS) experiment

  4. Clumpy cold dark matter

    Science.gov (United States)

    Silk, Joseph; Stebbins, Albert

    1993-01-01

    A study is conducted of cold dark matter (CDM) models in which clumpiness will inhere, using cosmic strings and textures suited to galaxy formation. CDM clumps of 10 million solar mass/cu pc density are generated at about z(eq) redshift, with a sizable fraction surviving. Observable implications encompass dark matter cores in globular clusters and in galactic nuclei. Results from terrestrial dark matter detection experiments may be affected by clumpiness in the Galactic halo.

  5. Charming dark matter

    Science.gov (United States)

    Jubb, Thomas; Kirk, Matthew; Lenz, Alexander

    2017-12-01

    We have considered a model of Dark Minimal Flavour Violation (DMFV), in which a triplet of dark matter particles couple to right-handed up-type quarks via a heavy colour-charged scalar mediator. By studying a large spectrum of possible constraints, and assessing the entire parameter space using a Markov Chain Monte Carlo (MCMC), we can place strong restrictions on the allowed parameter space for dark matter models of this type.

  6. Interacting warm dark matter

    International Nuclear Information System (INIS)

    Cruz, Norman; Palma, Guillermo; Zambrano, David; Avelino, Arturo

    2013-01-01

    We explore a cosmological model composed by a dark matter fluid interacting with a dark energy fluid. The interaction term has the non-linear λρ m α ρ e β form, where ρ m and ρ e are the energy densities of the dark matter and dark energy, respectively. The parameters α and β are in principle not constrained to take any particular values, and were estimated from observations. We perform an analytical study of the evolution equations, finding the fixed points and their stability properties in order to characterize suitable physical regions in the phase space of the dark matter and dark energy densities. The constants (λ,α,β) as well as w m and w e of the EoS of dark matter and dark energy respectively, were estimated using the cosmological observations of the type Ia supernovae and the Hubble expansion rate H(z) data sets. We find that the best estimated values for the free parameters of the model correspond to a warm dark matter interacting with a phantom dark energy component, with a well goodness-of-fit to data. However, using the Bayesian Information Criterion (BIC) we find that this model is overcame by a warm dark matter – phantom dark energy model without interaction, as well as by the ΛCDM model. We find also a large dispersion on the best estimated values of the (λ,α,β) parameters, so even if we are not able to set strong constraints on their values, given the goodness-of-fit to data of the model, we find that a large variety of theirs values are well compatible with the observational data used

  7. Dark matter and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  8. Dark matter and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  9. Hybrid Dark Matter

    OpenAIRE

    Chao, Wei

    2018-01-01

    Dark matter can be produced in the early universe via the freeze-in or freeze-out mechanisms. Both scenarios were investigated in references, but the production of dark matters via the combination of these two mechanisms are not addressed. In this paper we propose a hybrid dark matter model where dark matters have two components with one component produced thermally and the other one produced non-thermally. We present for the first time the analytical calculation for the relic abundance of th...

  10. Dark matter and cosmology

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the Ω = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ''cold'' and ''hot'' non-baryonic candidates is shown to depend on the assumed ''seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed

  11. Dark U (1)

    International Nuclear Information System (INIS)

    Chang, Chia-Feng; Ma, Ernest; Yuan, Tzu-Chiang

    2015-01-01

    In this talk we will explore the possibility of adding a local U(1) dark sector to the standard model with the Higgs boson as a portal connecting the visible standard model sector and the dark one. We will discuss existing experimental constraint on the model parameters from the invisible width of Higgs decay. Implications of such a dark U(1) sector on phenomenology at the Large Hardon Collider will be addressed. In particular, detailed results for the non-standard signals of multi-lepton-jets that arise from this simple dark sector will be presented. (paper)

  12. Searching for dark matter

    Science.gov (United States)

    Mateo, Mario

    1994-01-01

    Three teams of astronomers believe they have independently found evidence for dark matter in our galaxy. A brief history of the search for dark matter is presented. The use of microlensing-event observation for spotting dark matter is described. The equipment required to observe microlensing events and three groups working on dark matter detection are discussed. The three groups are the Massive Compact Halo Objects (MACHO) Project team, the Experience de Recherche d'Objets Sombres (EROS) team, and the Optical Gravitational Lensing Experiment (OGLE) team. The first apparent detections of microlensing events by the three teams are briefly reported.

  13. Chaplygin dark star

    International Nuclear Information System (INIS)

    Bertolami, O.; Paramos, J.

    2005-01-01

    We study the general properties of a spherically symmetric body described through the generalized Chaplygin equation of state. We conclude that such an object, dubbed generalized Chaplygin dark star, should exist within the context of the generalized Chaplygin gas (GCG) model of unification of dark energy and dark matter, and derive expressions for its size and expansion velocity. A criteria for the survival of the perturbations in the GCG background that give origin to the dark star are developed, and its main features are analyzed

  14. Asymmetric Dark Matter and Dark Radiation

    International Nuclear Information System (INIS)

    Blennow, Mattias; Martinez, Enrique Fernandez; Mena, Olga; Redondo, Javier; Serra, Paolo

    2012-01-01

    Asymmetric Dark Matter (ADM) models invoke a particle-antiparticle asymmetry, similar to the one observed in the Baryon sector, to account for the Dark Matter (DM) abundance. Both asymmetries are usually generated by the same mechanism and generally related, thus predicting DM masses around 5 GeV in order to obtain the correct density. The main challenge for successful models is to ensure efficient annihilation of the thermally produced symmetric component of such a light DM candidate without violating constraints from collider or direct searches. A common way to overcome this involves a light mediator, into which DM can efficiently annihilate and which subsequently decays into Standard Model particles. Here we explore the scenario where the light mediator decays instead into lighter degrees of freedom in the dark sector that act as radiation in the early Universe. While this assumption makes indirect DM searches challenging, it leads to signals of extra radiation at BBN and CMB. Under certain conditions, precise measurements of the number of relativistic species, such as those expected from the Planck satellite, can provide information on the structure of the dark sector. We also discuss the constraints of the interactions between DM and Dark Radiation from their imprint in the matter power spectrum

  15. Winter mortality in relation to climate

    NARCIS (Netherlands)

    Keatinge, W. R.; Donaldson, G. C.; Bucher, K.; Jendritzky, G.; Cordioli, E.; Martinelli, M.; Katsouyanni, K.; Kunst, A. E.; McDonald, C.; Näyhä, S.; Vuori, I.

    2000-01-01

    We report further details of the Eurowinter survey of cold related mortalities and protective measures against cold in seven regions of Europe, and review these with other evidence on the relationship of winter mortality to climate. Data for the oldest subject group studied, aged 65-74, showed that

  16. Winter Video Series Coming in January | Poster

    Science.gov (United States)

    The Scientific Library’s annual Summer Video Series was so successful that it will be offering a new Winter Video Series beginning in January. For this inaugural event, the staff is showing the eight-part series from National Geographic titled “American Genius.” 

  17. Vector dark matter annihilation with internal bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Bambhaniya, Gulab, E-mail: gulab@prl.res.in [Physical Research Laboratory, Ahmedabad 380009 (India); Kumar, Jason, E-mail: jkumar@hawaii.edu [Department of Physics & Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Marfatia, Danny, E-mail: dmarf8@hawaii.edu [Department of Physics & Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Nayak, Alekha C., E-mail: acnayak@iitk.ac.in [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India); Tomar, Gaurav, E-mail: tomar@prl.res.in [Physical Research Laboratory, Ahmedabad 380009 (India)

    2017-03-10

    We consider scenarios in which the annihilation of self-conjugate spin-1 dark matter to a Standard Model fermion–antifermion final state is chirality suppressed, but where this suppression can be lifted by the emission of an additional photon via internal bremsstrahlung. We find that this scenario can only arise if the initial dark matter state is polarized, which can occur in the context of self-interacting dark matter. In particular, this is possible if the dark matter pair forms a bound state that decays to its ground state before the constituents annihilate. We show that the shape of the resulting photon spectrum is the same as for self-conjugate spin-0 and spin-1/2 dark matter, but the normalization is less heavily suppressed in the limit of heavy mediators.

  18. Gravity-mediated (or Composite) Dark Matter

    CERN Document Server

    Lee, Hyun Min; Sanz, Veronica

    2014-01-01

    Dark matter could have an electroweak origin, yet communicate with the visible sector exclusively through gravitational interactions. In a set-up addressing the hierarchy problem, we propose a new dark matter scenario where gravitational mediators, arising from the compactification of extra-dimensions, are responsible for dark matter interactions and its relic abundance in the Universe. We write an explicit example of this mechanism in warped extra-dimensions and work out its constraints. We also develop a dual picture of the model, based on a four-dimensional scenario with partial compositeness. We show that Gravity-mediated Dark Matter is equivalent to a mechanism of generating viable dark matter scenarios in a strongly-coupled, near-conformal theory, such as in composite Higgs models.

  19. Lepton flavor violation induced by dark matter

    Science.gov (United States)

    Arcadi, Giorgio; Ferreira, C. P.; Goertz, Florian; Guzzo, M. M.; Queiroz, Farinaldo S.; Santos, A. C. O.

    2018-04-01

    Guided by gauge principles we discuss a predictive and falsifiable UV complete model where the Dirac fermion that accounts for the cold dark matter abundance in our Universe induces the lepton flavor violation (LFV) decays μ →e γ and μ →e e e as well as μ -e conversion. We explore the interplay between direct dark matter detection, relic density, collider probes and lepton flavor violation to conclusively show that one may have a viable dark matter candidate yielding flavor violation signatures that can be probed in the upcoming experiments. In fact, keeping the dark matter mass at the TeV scale, a sizable LFV signal is possible, while reproducing the correct dark matter relic density and meeting limits from direct-detection experiments.

  20. Planckian Interacting Massive Particles as Dark Matter

    DEFF Research Database (Denmark)

    Garny, Mathias; Sandora, McCullen; Sloth, Martin S.

    2016-01-01

    . In this case the WIMP miracle is a mirage, and instead minimality as dictated by Occam's razor would indicate that dark matter is related to the Planck scale, where quantum gravity is anyway expected to manifest itself. Assuming within this framework that dark matter is a Planckian Interacting Massive Particle......, we show that the most natural mass larger than $0.01\\,\\textrm{M}_p$ is already ruled out by the absence of tensor modes in the CMB. This also indicates that we expect tensor modes in the CMB to be observed soon for this type of minimal dark matter model. Finally, we touch upon the KK graviton mode...... as a possible realization of this scenario within UV complete models, as well as further potential signatures and peculiar properties of this type of dark matter candidate. This paradigm therefore leads to a subtle connection between quantum gravity, the physics of primordial inflation, and the nature of dark...

  1. Asymmetric Dark Matter and Dark Radiation

    CERN Document Server

    Blennow, Mattias; Mena, Olga; Redondo, Javier; Serra, Paolo

    2012-01-01

    Asymmetric Dark Matter (ADM) models invoke a particle-antiparticle asymmetry, similar to the one observed in the Baryon sector, to account for the Dark Matter (DM) abundance. Both asymmetries are usually generated by the same mechanism and generally related, thus predicting DM masses around 5 GeV in order to obtain the correct density. The main challenge for successful models is to ensure efficient annihilation of the thermally produced symmetric component of such a light DM candidate without violating constraints from collider or direct searches. A common way to overcome this involves a light mediator, into which DM can efficiently annihilate and which subsequently decays into Standard Model particles. Here we explore the scenario where the light mediator decays instead into lighter degrees of freedom in the dark sector that act as radiation in the early Universe. While this assumption makes indirect DM searches challenging, it leads to signals of extra radiation at BBN and CMB. Under certain conditions, pre...

  2. Winter fuels report

    International Nuclear Information System (INIS)

    1995-01-01

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD's I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD's, as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city

  3. Winter fuels report

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-29

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. 27 figs, 12 tabs.

  4. Instabilities in dark coupled models and constraints from cosmological data

    CERN Document Server

    Honorez, L Lopez

    2010-01-01

    Coupled dark matter-dark energy systems can suffer from non-adiabatic instabilities at early times and large scales. In these proceedings, we consider two parameterizations of the dark sector interaction. In the first one the energy-momentum transfer 4-vector is parallel to the dark matter 4-velocity and in the second one to the dark energy 4-velocity. In these cases, coupled models which suffer from non-adiabatic instabilities can be identified as a function of a generic coupling Q and of the dark energy equation of state. In our analysis, we do not refer to any particular cosmic field. We confront then a viable class of models in which the interaction is directly proportional to the dark energy density and to the Hubble rate parameter to recent cosmological data. In that framework, we show that correlations between the dark coupling and several cosmological parameters allow for a larger neutrino mass than in uncoupled models.

  5. Neutrino mixing, flavor states and dark energy

    International Nuclear Information System (INIS)

    Blasone, M.; Capolupo, A.; Capozziello, S.; Vitiello, G.

    2008-01-01

    We shortly summarize the quantum field theory formalism for the neutrino mixing and report on recent results showing that the vacuum condensate induced by neutrino mixing can be interpreted as a dark energy component of the Universe

  6. Dark Energy vs. Dark Matter: Towards a Unifying Scalar Field?

    OpenAIRE

    Arbey, A.

    2008-01-01

    The standard model of cosmology suggests the existence of two components, "dark matter" and "dark energy", which determine the fate of the Universe. Their nature is still under investigation, and no direct proof of their existences has emerged yet. There exist alternative models which reinterpret the cosmological observations, for example by replacing the dark energy/dark matter hypothesis by the existence of a unique dark component, the dark fluid, which is able to mimic the behaviour of bot...

  7. Interaction in the dark sector

    Science.gov (United States)

    del Campo, Sergio; Herrera, Ramón; Pavón, Diego

    2015-06-01

    It may well happen that the two main components of the dark sector of the Universe, dark matter and dark energy, do not evolve separately but interact nongravitationally with one another. However, given our current lack of knowledge of the microscopic nature of these two components, there is no clear theoretical path to determine their interaction. Yet, over the years, phenomenological interaction terms have been proposed on mathematical simplicity and heuristic arguments. In this paper, based on the likely evolution of the ratio between the energy densities of these dark components, we lay down reasonable criteria to obtain phenomenological, useful, expressions of the said term independent of any gravity theory. We illustrate this with different proposals which seem compatible with the known evolution of the Universe at the background level. Likewise, we show that two possible degeneracies with noninteracting models are only apparent as they can be readily broken at the background level. Further, we analyze some interaction terms that appear in the literature.

  8. Superball dark matter

    CERN Document Server

    Kusenko, A

    1999-01-01

    Supersymmetric models predict a natural dark-matter candidate, stable baryonic Q-balls. They could be copiously produced in the early Universe as a by-product of the Affleck-Dine baryogenesis. I review the cosmological and astrophysical implications, methods of detection, and the present limits on this form of dark matter.

  9. Baryonic Dark Matter

    OpenAIRE

    De Paolis, F.; Jetzer, Ph.; Ingrosso, G.; Roncadelli, M.

    1997-01-01

    Reasons supporting the idea that most of the dark matter in galaxies and clusters of galaxies is baryonic are discussed. Moreover, it is argued that most of the dark matter in galactic halos should be in the form of MACHOs and cold molecular clouds.

  10. Asymptotically Safe Dark Matter

    DEFF Research Database (Denmark)

    Sannino, Francesco; Shoemaker, Ian M.

    2015-01-01

    We introduce a new paradigm for dark matter (DM) interactions in which the interaction strength is asymptotically safe. In models of this type, the coupling strength is small at low energies but increases at higher energies, and asymptotically approaches a finite constant value. The resulting...... searches are the primary ways to constrain or discover asymptotically safe dark matter....

  11. The Dark Matter Problem

    NARCIS (Netherlands)

    Sanders, Robert H.

    1. Introduction; 2. Early history of the dark matter hypothesis; 3. The stability of disk galaxies: the dark halo solutions; 4. Direct evidence: extended rotation curves of spiral galaxies; 5. The maximum disk: light traces mass; 6. Cosmology and the birth of astroparticle physics; 7. Clusters

  12. Asymmetric dark matter

    International Nuclear Information System (INIS)

    Kaplan, David E.; Luty, Markus A.; Zurek, Kathryn M.

    2009-01-01

    We consider a simple class of models in which the relic density of dark matter is determined by the baryon asymmetry of the Universe. In these models a B-L asymmetry generated at high temperatures is transferred to the dark matter, which is charged under B-L. The interactions that transfer the asymmetry decouple at temperatures above the dark matter mass, freezing in a dark matter asymmetry of order the baryon asymmetry. This explains the observed relation between the baryon and dark matter densities for the dark matter mass in the range 5-15 GeV. The symmetric component of the dark matter can annihilate efficiently to light pseudoscalar Higgs particles a or via t-channel exchange of new scalar doublets. The first possibility allows for h 0 →aa decays, while the second predicts a light charged Higgs-like scalar decaying to τν. Direct detection can arise from Higgs exchange in the first model or a nonzero magnetic moment in the second. In supersymmetric models, the would-be lightest supersymmetric partner can decay into pairs of dark matter particles plus standard model particles, possibly with displaced vertices.

  13. On the capture of dark matter by neutron stars

    International Nuclear Information System (INIS)

    Güver, Tolga; Erkoca, Arif Emre; Sarcevic, Ina; Reno, Mary Hall

    2014-01-01

    We calculate the number of dark matter particles that a neutron star accumulates over its lifetime as it rotates around the center of a galaxy, when the dark matter particle is a self-interacting boson but does not self-annihilate. We take into account dark matter interactions with baryonic matter and the time evolution of the dark matter sphere as it collapses within the neutron star. We show that dark matter self-interactions play an important role in the rapid accumulation of dark matter in the core of the neutron star. We consider the possibility of determining an exclusion region of the parameter space for dark matter mass and dark matter interaction cross section with the nucleons as well as dark matter self-interaction cross section, based on the observation of old neutron stars. We show that for a dark matter density of 10 3 GeV/cm 3 and dark matter mass m χ ∼< 10 GeV, there is a potential exclusion region for dark matter interactions with nucleons that is three orders of magnitude more stringent than without self-interactions. The potential exclusion region for dark matter self-interaction cross sections is many orders of magnitude stronger than the current Bullet Cluster limit. For example, for high dark matter density regions, we find that for m χ ∼ 10 GeV when the dark matter interaction cross section with the nucleons ranges from σ χn ∼ 10 −52 cm 2 to σ χn ∼ 10 −57 cm 2 , the dark matter self-interaction cross section limit is σ χχ ∼< 10 −33 cm 2 , which is about ten orders of magnitude stronger than the Bullet Cluster limit

  14. Resonant SIMP dark matter

    Directory of Open Access Journals (Sweden)

    Soo-Min Choi

    2016-07-01

    Full Text Available We consider a resonant SIMP dark matter in models with two singlet complex scalar fields charged under a local dark U(1D. After the U(1D is broken down to a Z5 discrete subgroup, the lighter scalar field becomes a SIMP dark matter which has the enhanced 3→2 annihilation cross section near the resonance of the heavier scalar field. Bounds on the SIMP self-scattering cross section and the relic density can be fulfilled at the same time for perturbative couplings of SIMP. A small gauge kinetic mixing between the SM hypercharge and dark gauge bosons can be used to make SIMP dark matter in kinetic equilibrium with the SM during freeze-out.

  15. Sterile neutrino dark matter

    CERN Document Server

    Merle, Alexander

    2017-01-01

    This book is a new look at one of the hottest topics in contemporary science, Dark Matter. It is the pioneering text dedicated to sterile neutrinos as candidate particles for Dark Matter, challenging some of the standard assumptions which may be true for some Dark Matter candidates but not for all. So, this can be seen either as an introduction to a specialized topic or an out-of-the-box introduction to the field of Dark Matter in general. No matter if you are a theoretical particle physicist, an observational astronomer, or a ground based experimentalist, no matter if you are a grad student or an active researcher, you can benefit from this text, for a simple reason: a non-standard candidate for Dark Matter can teach you a lot about what we truly know about our standard picture of how the Universe works.

  16. Macro Dark Matter

    CERN Document Server

    Jacobs, David M; Lynn, Bryan W.

    2015-01-01

    Dark matter is a vital component of the current best model of our universe, $\\Lambda$CDM. There are leading candidates for what the dark matter could be (e.g. weakly-interacting massive particles, or axions), but no compelling observational or experimental evidence exists to support these particular candidates, nor any beyond-the-Standard-Model physics that might produce such candidates. This suggests that other dark matter candidates, including ones that might arise in the Standard Model, should receive increased attention. Here we consider a general class of dark matter candidates with characteristic masses and interaction cross-sections characterized in units of grams and cm$^2$, respectively -- we therefore dub these macroscopic objects as Macros. Such dark matter candidates could potentially be assembled out of Standard Model particles (quarks and leptons) in the early universe. A combination of earth-based, astrophysical, and cosmological observations constrain a portion of the Macro parameter space; ho...

  17. Dark photons from the center of the Earth: Smoking-gun signals of dark matter

    Science.gov (United States)

    Feng, Jonathan L.; Smolinsky, Jordan; Tanedo, Philip

    2016-01-01

    Dark matter may be charged under dark electromagnetism with a dark photon that kinetically mixes with the Standard Model photon. In this framework, dark matter will collect at the center of the Earth and annihilate into dark photons, which may reach the surface of the Earth and decay into observable particles. We determine the resulting signal rates, including Sommerfeld enhancements, which play an important role in bringing the Earth's dark matter population to their maximal, equilibrium value. For dark matter masses mX˜100 GeV - 10 TeV , dark photon masses mA'˜MeV -GeV , and kinetic mixing parameters ɛ ˜1 0-9- 1 0-7 , the resulting electrons, muons, photons, and hadrons that point back to the center of the Earth are a smoking-gun signal of dark matter that may be detected by a variety of experiments, including neutrino telescopes, such as IceCube, and space-based cosmic ray detectors, such as Fermi-LAT and AMS. We determine the signal rates and characteristics and show that large and striking signals—such as parallel muon tracks—are possible in regions of the (mA',ɛ ) plane that are not probed by direct detection, accelerator experiments, or astrophysical observations.

  18. Light dark Higgs boson in minimal sub-GeV dark matter scenarios

    Science.gov (United States)

    Darmé, Luc; Rao, Soumya; Roszkowski, Leszek

    2018-03-01

    Minimal scenarios with light (sub-GeV) dark matter whose relic density is obtained from thermal freeze-out must include new light mediators. In particular, a very well-motivated case is that of a new "dark" massive vector gauge boson mediator. The mass term for such mediator is most naturally obtained by a "dark Higgs mechanism" which leads to the presence of an often long-lived dark Higgs boson whose mass scale is the same as that of the mediator. We study the phenomenology and experimental constraints on two minimal, self-consistent dark sectors that include such a light dark Higgs boson. In one the dark matter is a pseudo-Dirac fermion, in the other a complex scalar. We find that the constraints from BBN and CMB are considerably relaxed in the framework of such minimal dark sectors. We present detection prospects for the dark Higgs boson in existing and projected proton beam-dump experiments. We show that future searches at experiments like Xenon1T or LDMX can probe all the relevant parameter space, complementing the various upcoming indirect constraints from astrophysical observations.

  19. Latitudinal trends in human primary activities: characterizing the winter day as a synchronizer.

    Science.gov (United States)

    Martín-Olalla, José María

    2018-03-28

    This work analyzes time use surveys from 19 countries (17 European and 2 American) in the middle latitude (38-61 degree) accounting for 45% of world population in this range. Time marks for primary activities are contrasted against light/dark conditions. The analysis reveals winter sunrise synchronizes labor start time below 54 degree, occurring within winter civil twilight. Winter sunset is a source of synchronization for labor end times. Winter terminator punctuate meal times in Europe: dinner occurs 3 h after winter sunset time within 1 h; 40% narrower than variability of dinner local times. The sleep-wake cycle of laborers is shown to be related to winter sunrise whereas standard population's appears to be irrespective of latitude. The significance of the winter terminator depends on two competing factors average labor time (~7 h30 m) and the shortest photoperiod. Winter terminator gains significance when both roughly matches. That is within a latitude range from 38 degree to 54 degree. The significance of winter terminator as a source of synchronization is also related to contemporary year round time schedules: the shortest photoperiod represents the worst case scenario the society faces.

  20. Dark matter: the astrophysical case

    International Nuclear Information System (INIS)

    Silk, J.

    2012-01-01

    The identification of dark matter is one of the most urgent problems in cosmology. I describe the astrophysical case for dark matter, from both an observational and a theoretical perspective. This overview will therefore focus on the observational motivations rather than the particle physics aspects of dark matter constraints on specific dark matter candidates. First, however, I summarize the astronomical evidence for dark matter, then I highlight the weaknesses of the standard cold dark matter model (LCDM) to provide a robust explanation of some observations. The greatest weakness in the dark matter saga is that we have not yet identified the nature of dark matter itself

  1. Vortices in a rotating dark matter condensate

    International Nuclear Information System (INIS)

    Yu, Rotha P; Morgan, Michael J

    2002-01-01

    We examine vortices in a self-gravitating dark matter Bose-Einstein condensate (BEC), consisting of ultra-low mass scalar bosons that arise during a late-time cosmological phase transition. Rotation of the dark matter BEC imprints a background phase gradient on the condensate, which establishes a harmonic trap potential for vortices. A numerical simulation of vortex dynamics shows that the vortex number density, n v ∝ r -1 , resulting in a flat velocity profile for the dark matter condensate. (letter to the editor)

  2. Charged mediators in dark matter scattering

    Science.gov (United States)

    Stengel, Patrick

    2017-11-01

    We consider a scenario, within the framework of the MSSM, in which dark matter is bino-like and dark matter-nucleon spin-independent scattering occurs via the exchange of light squarks which exhibit left-right mixing. We show that direct detection experiments such as LUX and SuperCDMS will be sensitive to a wide class of such models through spin-independent scattering. The dominant nuclear physics uncertainty is the quark content of the nucleon, particularly the strangeness content. We also investigate parameter space with nearly degenerate neutralino and squark masses, thus enhancing dark matter annihilation and nucleon scattering event rates.

  3. On baryogenesis from dark matter annihilation

    International Nuclear Information System (INIS)

    Bernal, Nicolás; Colucci, Stefano; Ubaldi, Lorenzo; Josse-Michaux, François-Xavier; Racker, J.

    2013-01-01

    We study in detail the conditions to generate the baryon asymmetry of the universe from the annihilation of dark matter. This scenario requires a low energy mechanism for thermal baryogenesis, hence we first discuss some of these mechanisms together with the specific constraints due to the connection with the dark matter sector. Then we show that, contrary to what stated in previous studies, it is possible to generate the cosmological asymmetry without adding a light sterile dark sector, both in models with violation and with conservation of B−L. In addition, one of the models we propose yields some connection to neutrino masses

  4. Dark matter versus Mach's principle.

    Science.gov (United States)

    von Borzeszkowski, H.-H.; Treder, H.-J.

    1998-02-01

    Empirical and theoretical evidence show that the astrophysical problem of dark matter might be solved by a theory of Einstein-Mayer type. In this theory up to global Lorentz rotations the reference system is determined by the motion of cosmic matter. Thus one is led to a "Riemannian space with teleparallelism" realizing a geometric version of the Mach-Einstein doctrine. The field equations of this gravitational theory contain hidden matter terms where the existence of hidden matter is inferred safely from its gravitational effects. It is argued that in the nonrelativistic mechanical approximation they provide an inertia-free mechanics where the inertial mass of a body is induced by the gravitational action of the comic masses. Interpreted form the Newtonian point of view this mechanics shows that the effective gravitational mass of astrophysical objects depends on r such that one expects the existence of dark matter.

  5. Winter fuels report

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-13

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s, as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  6. Klaus Winter (1930 - 2015)

    CERN Multimedia

    2015-01-01

    We learned with great sadness that Klaus Winter passed away on 9 February 2015, after a long illness.   Klaus was born in 1930 in Hamburg, where he obtained his diploma in physics in 1955. From 1955 to 1958 he held a scholarship at the Collège de France, where he received his doctorate in nuclear physics under the guidance of Francis Perrin. Klaus joined CERN in 1958, where he first participated in experiments on π+ and K0 decay properties at the PS, and later became the spokesperson of the CHOV Collaboration at the ISR. Starting in 1976, his work focused on experiments with the SPS neutrino beam. In 1984 he joined Ugo Amaldi to head the CHARM experiment, designed for detailed studies of the neutral current interactions of high-energy neutrinos, which had been discovered in 1973 using the Gargamelle bubble chamber at the PS. The unique feature of the detector was its target calorimeter, which used large Carrara marble plates as an absorber material. From 1984 to 1991, Klau...

  7. Winter fuels report

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-04

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition, underground storage, and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil price comparisons for the United States and selected cities; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. The data will also be available electronically after 5:00 p.m. on Thursday during the heating season through the EIA Electronic Publication System (EPUB). 12 tabs.

  8. Exothermic dark matter

    International Nuclear Information System (INIS)

    Graham, Peter W.; Saraswat, Prashant; Harnik, Roni; Rajendran, Surjeet

    2010-01-01

    We propose a novel mechanism for dark matter to explain the observed annual modulation signal at DAMA/LIBRA which avoids existing constraints from every other dark matter direct detection experiment including CRESST, CDMS, and XENON10. The dark matter consists of at least two light states with mass ∼few GeV and splittings ∼5 keV. It is natural for the heavier states to be cosmologically long-lived and to make up an O(1) fraction of the dark matter. Direct detection rates are dominated by the exothermic reactions in which an excited dark matter state downscatters off of a nucleus, becoming a lower energy state. In contrast to (endothermic) inelastic dark matter, the most sensitive experiments for exothermic dark matter are those with light nuclei and low threshold energies. Interestingly, this model can also naturally account for the observed low-energy events at CoGeNT. The only significant constraint on the model arises from the DAMA/LIBRA unmodulated spectrum but it can be tested in the near future by a low-threshold analysis of CDMS-Si and possibly other experiments including CRESST, COUPP, and XENON100.

  9. Dissipative dark matter and the Andromeda plane of satellites

    International Nuclear Information System (INIS)

    Randall, Lisa; Scholtz, Jakub

    2015-01-01

    We show that dissipative dark matter can potentially explain the large observed mass to light ratio of the dwarf satellite galaxies that have been observed in the recently identified planar structure around Andromeda, which are thought to result from tidal forces during a galaxy merger. Whereas dwarf galaxies created from ordinary disks would be dark matter poor, dark matter inside the galactic plane not only provides a source of dark matter, but one that is more readily bound due to the dark matter's lower velocity. This initial N-body study shows that with a thin disk of dark matter inside the baryonic disk, mass-to-light ratios as high as O(90) can be generated when tidal forces pull out patches of sizes similar to the scales of Toomre instabilities of the dark disk. A full simulation will be needed to confirm this result

  10. Variable sound speed in interacting dark energy models

    Science.gov (United States)

    Linton, Mark S.; Pourtsidou, Alkistis; Crittenden, Robert; Maartens, Roy

    2018-04-01

    We consider a self-consistent and physical approach to interacting dark energy models described by a Lagrangian, and identify a new class of models with variable dark energy sound speed. We show that if the interaction between dark energy in the form of quintessence and cold dark matter is purely momentum exchange this generally leads to a dark energy sound speed that deviates from unity. Choosing a specific sub-case, we study its phenomenology by investigating the effects of the interaction on the cosmic microwave background and linear matter power spectrum. We also perform a global fitting of cosmological parameters using CMB data, and compare our findings to ΛCDM.

  11. New Views on Dark Matter from Emergent Gravity

    Directory of Open Access Journals (Sweden)

    Sun Sichun

    2018-01-01

    Full Text Available We discuss a scenario that apparent dark matter comes from the induced gravity in the (3+1- dimensional spacetime, which can be embedded into one higher dimensional flat spacetime. The stress tensor of dark energy and dark matter is identified with the Brown-York stress tensor on the hypersurface, and we find an interesting constraint relation between the dark matter and dark energy density parameter and baryonic density parameter. Our approach may show a new understanding for Verlinde’s emergent gravity from higher dimensions. We also comment on some phenomenological implications, including gravitational wave solutions and MOND limit.

  12. Review on Dark Photon

    Directory of Open Access Journals (Sweden)

    Curciarello Francesca

    2016-01-01

    Full Text Available e+e− collider experiments at the intensity frontier are naturally suited to probe the existence of a force beyond the Standard Model between WIMPs, the most viable dark matter candidates. The mediator of this new force, known as dark photon, should be a new vector gauge boson very weakly coupled to the Standard Model photon. No significant signal has been observed so far. I will report on current limits set on the coupling factor ε2 between the photon and the dark photon by e+e− collider experiments.

  13. Working the Dark Side

    DEFF Research Database (Denmark)

    Bjering, Jens Christian Borrebye

    A few days after the terror attacks of 9/11, then Vice President Dick Cheney appeared on television with a call for “working the dark side.” While still unclear what this expression entailed at the time, Cheney's comment appears in retrospect to almost have been prophetic for the years to come....... By analyzing official reports and testimonies from soldiers partaking in the War On Terror, the dissertation's second part—dark arts—focuses on the transformation of the dark side into a productive space in which “information” and the hunt for said information overshadowed all legal, ethical, or political...

  14. Films and dark room

    International Nuclear Information System (INIS)

    Abdul Nassir Ibrahim; Azali Muhammad; Ab. Razak Hamzah; Abd. Aziz Mohamed; Mohamad Pauzi Ismail

    2008-01-01

    After we know where the radiographic come from, then we must know about the film and also dark room. So, this chapter 5 discusses the two main components for radiography work that is film and dark room, places to process the film. Film are structured with three structured that are basic structured, emulsion and protection structured. So, this film can be classified either with their speed, screen and standard that used. The process to wash the film must be done in dark room otherwise the radiographer cannot get what are they inspected. The processing of film will be discussed briefly in next chapter.

  15. Auschwitz dark tourism -kohteena

    OpenAIRE

    Kuusimäki, Karita

    2015-01-01

    Dark tourism eli synkkä matkailu on matkustamista kohteisiin, jotka liittyvät jollain tavalla kuolemaan, kauhuun, kärsimykseen tai katastrofeihin. Dark tourism on ilmiönä suhteellisen tuore, mutta sen historia juontaa juurensa jo antiikin ajan gladiaattoritaisteluihin. Ilmiötä on tutkittu jonkin verran ja siitä on tehty muutamia opinnäytetöitä. Yksi tunnetuimmista ja eniten vierailluista dark tourism -kohteista on Auschwitzin keskitysleiri. Auschwitz aloitti toimintansa vuonna 1940 ja le...

  16. Cold dark matter plus not-so-clumpy dark relics

    NARCIS (Netherlands)

    Diamanti, R.; Ando, S.; Gariazzo, S.; Mena, O.; Weniger, C.

    Various particle physics models suggest that, besides the (nearly) cold dark matter that accounts for current observations, additional but sub-dominant dark relics might exist. These could be warm, hot, or even contribute as dark radiation. We present here a comprehensive study of two-component dark

  17. Inflation, Dark Matter, and Dark Energy in the String Landscape

    OpenAIRE

    Liddle, Andrew R; Ureña-López, L Arturo

    2006-01-01

    We consider the conditions needed to unify the description of dark matter, dark energy and inflation in the context of the string landscape. We find that incomplete decay of the inflaton field gives the possibility that a single field is responsible for all three phenomena. By contrast, unifying dark matter and dark energy into a single field, separate from the inflaton, appears rather difficult.

  18. Little composite dark matter.

    Science.gov (United States)

    Balkin, Reuven; Perez, Gilad; Weiler, Andreas

    2018-01-01

    We examine the dark matter phenomenology of a composite electroweak singlet state. This singlet belongs to the Goldstone sector of a well-motivated extension of the Littlest Higgs with T -parity. A viable parameter space, consistent with the observed dark matter relic abundance as well as with the various collider, electroweak precision and dark matter direct detection experimental constraints is found for this scenario. T -parity implies a rich LHC phenomenology, which forms an interesting interplay between conventional natural SUSY type of signals involving third generation quarks and missing energy, from stop-like particle production and decay, and composite Higgs type of signals involving third generation quarks associated with Higgs and electroweak gauge boson, from vector-like top-partners production and decay. The composite features of the dark matter phenomenology allows the composite singlet to produce the correct relic abundance while interacting weakly with the Higgs via the usual Higgs portal coupling [Formula: see text], thus evading direct detection.

  19. Inelastic dark matter

    International Nuclear Information System (INIS)

    Smith, David; Weiner, Neal

    2001-01-01

    Many observations suggest that much of the matter of the universe is nonbaryonic. Recently, the DAMA NaI dark matter direct detection experiment reported an annual modulation in their event rate consistent with a WIMP relic. However, the Cryogenic Dark Matter Search (CDMS) Ge experiment excludes most of the region preferred by DAMA. We demonstrate that if the dark matter can only scatter by making a transition to a slightly heavier state (Δm∼100 keV), the experiments are no longer in conflict. Moreover, differences in the energy spectrum of nuclear recoil events could distinguish such a scenario from the standard WIMP scenario. Finally, we discuss the sneutrino as a candidate for inelastic dark matter in supersymmetric theories

  20. Inflatable Dark Matter.

    Science.gov (United States)

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D

    2016-01-22

    We describe a general scenario, dubbed "inflatable dark matter," in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early Universe. The overproduction of dark matter that is predicted within many, otherwise, well-motivated models of new physics can be elegantly remedied within this context. Thermal relics that would, otherwise, be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the nonthermal abundance of grand unified theory or Planck scale axions can be brought to acceptable levels without invoking anthropic tuning of initial conditions. A period of late-time inflation could have occurred over a wide range of scales from ∼MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the standard model.

  1. Dark matter search

    International Nuclear Information System (INIS)

    Bernabei, R.

    2003-01-01

    Some general arguments on the particle Dark Matter search are addressed. The WIMP direct detection technique is mainly considered and recent results obtained by exploiting the annual modulation signature are summarized. (author)

  2. Baryonic dark matter

    International Nuclear Information System (INIS)

    Uson, Juan M.

    2000-01-01

    Many searches for baryonic dark matter have been conducted but, so far, all have been unsuccessful. Indeed, no more than 1% of the dark matter can be in the form of hydrogen burning stars. It has recently been suggested that most of the baryons in the universe are still in the form of ionized gas so that it is possible that there is no baryonic dark matter. Although it is likely that a significant fraction of the dark matter in the Milky Way is in a halo of non-baryonic matter, the data do not exclude the possibility that a considerable amount, perhaps most of it, could be in a tenuous halo of diffuse ionized gas

  3. Lectures on dark matter

    International Nuclear Information System (INIS)

    Seljak, U.

    2001-01-01

    These lectures concentrate on evolution and generation of dark matter perturbations. The purpose of the lectures is to present, in a systematic way, a comprehensive review of the cosmological parameters that can lead to observable effects in the dark matter clustering properties. We begin by reviewing the relativistic linear perturbation theory formalism. We discuss the gauge issue and derive Einstein's and continuity equations for several popular gauge choices. We continue by developing fluid equations for cold dark matter and baryons and Boltzmann equations for photons, massive and massless neutrinos. We then discuss the generation of initial perturbations by the process of inflation and the parameters of that process that can be extracted from the observations. Finally we discuss evolution of perturbations in various regimes and the imprint of the evolution on the dark matter power spectrum both in the linear and in the nonlinear regime. (author)

  4. Lectures on dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Seljak, U [Department of Physics, Princeton University, Princeton, NJ (United States)

    2001-11-15

    These lectures concentrate on evolution and generation of dark matter perturbations. The purpose of the lectures is to present, in a systematic way, a comprehensive review of the cosmological parameters that can lead to observable effects in the dark matter clustering properties. We begin by reviewing the relativistic linear perturbation theory formalism. We discuss the gauge issue and derive Einstein's and continuity equations for several popular gauge choices. We continue by developing fluid equations for cold dark matter and baryons and Boltzmann equations for photons, massive and massless neutrinos. We then discuss the generation of initial perturbations by the process of inflation and the parameters of that process that can be extracted from the observations. Finally we discuss evolution of perturbations in various regimes and the imprint of the evolution on the dark matter power spectrum both in the linear and in the nonlinear regime. (author)

  5. Dark matter search

    Energy Technology Data Exchange (ETDEWEB)

    Bernabei, R [Dipto. di Fisica, Universita di Roma ' Tor Vergata' and INFN, sez. Roma2, Rome (Italy)

    2003-08-15

    Some general arguments on the particle Dark Matter search are addressed. The WIMP direct detection technique is mainly considered and recent results obtained by exploiting the annual modulation signature are summarized. (author)

  6. Gravity's dark side: Doing without dark matte

    International Nuclear Information System (INIS)

    Chalmers, M.

    2006-01-01

    Despite decades of searching, the 'dark matter' thought to hold galaxies together is still nowhere to be found. Matthew Chalmers describes how some physicists think it makes more sense to change our theory of gravity instead. Einstein's general theory of relativity is part of the bedrock of modern physics. It describes in elegant mathematical terms how matter causes space-time to curve, and therefore how objects move in a gravitational field. Since it was published in 1916, general relativity has passed every test asked of it with flying colours, and to many physicists the notion that it is wrong is sacrilege. But the motivation for developing an alternative theory of gravity is compelling. Over the last few years cosmologists have arrived at a simple yet extraordinarily successful model of universe. The trouble is that it requires most of the cosmos to be filled with mysterious stuff that we cannot see. In particular, general relativity - or rather its non-relativistic limit otherwise known as Newtonian gravity - can only correctly describe the dynamics of galaxies if we invoke huge quantities of 'dark matter'. Furthermore, an exotic entity called dark energy is necessary to account for the recent discovery that the expansion of the universe is accelerating. Indeed, in the standard model of cosmology, visible matter such as stars, planets and physics textbooks accounts for just 4% of the total universe. (U.K.)

  7. Orientalism and Heart of Darkness

    Institute of Scientific and Technical Information of China (English)

    赵艳

    2012-01-01

      Heart of Darkness was written by Joseph Conrad and published as a whole in 1902. The story begins on a British ship“the Nellie”moored on the coast of the Thames. It mainly talks about what Marlow sees and thinks when he begins his journey up to the Congo Riveres and reveals a turning process of a white colonizer called Kurts who is at the very beginning, an idealistic white colonizer trying to bring“civilization”and“progress”to the Africa but in the end falls into a greedy, cruel person. The novel, on the one hand, describes the terrible life of African peple and reveals the tyranne, greed of western colo⁃nism and stong racism; and on the other hand, it also shows readers a strong orientalism towards the Africa. So my purpose of the paper is to analyse how Orientalism is revealed in the Heart of Darkness.

  8. Characterizing Dark Energy Through Supernovae

    Science.gov (United States)

    Davis, Tamara M.; Parkinson, David

    Type Ia supernovae are a powerful cosmological probe that gave the first strong evidence that the expansion of the universe is accelerating. Here we provide an overview of how supernovae can go further to reveal information about what is causing the acceleration, be it dark energy or some modification to our laws of gravity. We first review the methods of statistical inference that are commonly used, making a point of separating parameter estimation from model selection. We then summarize the many different approaches used to explain or test the acceleration, including parametric models (like the standard model, ΛCDM), nonparametric models, dark fluid models such as quintessence, and extensions to standard gravity. Finally, we also show how supernova data can be used beyond the Hubble diagram, to give information on gravitational lensing and peculiar velocities that can be used to distinguish between models that predict the same expansion history.

  9. Number-theory dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Kazunori [Theory Center, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Takahashi, Fuminobu, E-mail: fumi@tuhep.phys.tohoku.ac.jp [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa 277-8568 (Japan); Yanagida, Tsutomu T. [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa 277-8568 (Japan); Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan)

    2011-05-23

    We propose that the stability of dark matter is ensured by a discrete subgroup of the U(1){sub B-L} gauge symmetry, Z{sub 2}(B-L). We introduce a set of chiral fermions charged under the U(1){sub B-L} in addition to the right-handed neutrinos, and require the anomaly-cancellation conditions associated with the U(1){sub B-L} gauge symmetry. We find that the possible number of fermions and their charges are tightly constrained, and that non-trivial solutions appear when at least five additional chiral fermions are introduced. The Fermat theorem in the number theory plays an important role in this argument. Focusing on one of the solutions, we show that there is indeed a good candidate for dark matter, whose stability is guaranteed by Z{sub 2}(B-L).

  10. Number-theory dark matter

    International Nuclear Information System (INIS)

    Nakayama, Kazunori; Takahashi, Fuminobu; Yanagida, Tsutomu T.

    2011-01-01

    We propose that the stability of dark matter is ensured by a discrete subgroup of the U(1) B-L gauge symmetry, Z 2 (B-L). We introduce a set of chiral fermions charged under the U(1) B-L in addition to the right-handed neutrinos, and require the anomaly-cancellation conditions associated with the U(1) B-L gauge symmetry. We find that the possible number of fermions and their charges are tightly constrained, and that non-trivial solutions appear when at least five additional chiral fermions are introduced. The Fermat theorem in the number theory plays an important role in this argument. Focusing on one of the solutions, we show that there is indeed a good candidate for dark matter, whose stability is guaranteed by Z 2 (B-L).

  11. Dark matter: Theoretical perspectives

    International Nuclear Information System (INIS)

    Turner, M.S.

    1993-01-01

    The author both reviews and makes the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that (i) there are no dark-matter candidates within the open-quotes standard modelclose quotes of particle physics, (ii) there are several compelling candidates within attractive extensions of the standard model of particle physics, and (iii) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for open-quotes new physics.close quotes The compelling candidates are a very light axion (10 -6 --10 -4 eV), a light neutrino (20--90 eV), and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. The author briefly mentions more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos. 119 refs

  12. Dark matter: Theoretical perspectives

    International Nuclear Information System (INIS)

    Turner, M.S.

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for ''new physics.'' The compelling candidates are: a very light axion ( 10 -6 eV--10 -4 eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos

  13. Dark matter: Theoretical perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.S. (Chicago Univ., IL (United States). Enrico Fermi Inst. Fermi National Accelerator Lab., Batavia, IL (United States))

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for new physics.'' The compelling candidates are: a very light axion ( 10[sup [minus]6] eV--10[sup [minus]4] eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.

  14. Dark matter: Theoretical perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.S. [Chicago Univ., IL (United States). Enrico Fermi Inst.]|[Fermi National Accelerator Lab., Batavia, IL (United States)

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for ``new physics.`` The compelling candidates are: a very light axion ( 10{sup {minus}6} eV--10{sup {minus}4} eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.

  15. Winter/Summer Monsoon Experiment

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Winter/Summer Monsoon Experiment (MONEX) was conducted during the First Global GARP (Global Atmospheric Research Program) Experiment (FGGE). An international...

  16. The meaning of nuclear winter

    International Nuclear Information System (INIS)

    Geiger, H.J.

    1987-01-01

    In this paper the author reviews the history and origins of the basic ideas underlying nuclear winter; and findings and predictions of several groups regarding this topic. The author reviews some of the further developments and scientific analyses regarding nuclear winter since the initial announcements of 1983, touching on some of the revisions and controversies and trying to indicate the current status of the field

  17. Imperfect Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Mirzagholi, Leila; Vikman, Alexander, E-mail: l.mirzagholi@physik.uni-muenchen.de, E-mail: alexander.vikman@lmu.de [Arnold Sommerfeld Center for Theoretical Physics, Ludwig Maximilian University Munich, Theresienstr. 37, Munich, D-80333 Germany (Germany)

    2015-06-01

    We consider cosmology of the recently introduced mimetic matter with higher derivatives (HD). Without HD this system describes irrotational dust—Dark Matter (DM) as we see it on cosmologically large scales. DM particles correspond to the shift-charges—Noether charges of the shifts in the field space. Higher derivative corrections usually describe a deviation from the thermodynamical equilibrium in the relativistic hydrodynamics. Thus we show that mimetic matter with HD corresponds to an imperfect DM which: i) renormalises the Newton's constant in the Friedmann equations, ii) has zero pressure when there is no extra matter in the universe, iii) survives the inflationary expansion which puts the system on a dynamical attractor with a vanishing shift-charge, iv) perfectly tracks any external matter on this attractor, v) can become the main (and possibly the only) source of DM, provided the shift-symmetry in the HD terms is broken during some small time interval in the radiation domination époque. In the second part of the paper we present a hydrodynamical description of general anisotropic and inhomogeneous configurations of the system. This imperfect mimetic fluid has an energy flow in the field's rest frame. We find that in the Eckart and in the Landau-Lifshitz frames the mimetic fluid possesses nonvanishing vorticity appearing already at the first order in the HD. Thus, the structure formation and gravitational collapse should proceed in a rather different fashion from the simple irrotational DM models.

  18. Imperfect Dark Matter

    International Nuclear Information System (INIS)

    Mirzagholi, Leila; Vikman, Alexander

    2015-01-01

    We consider cosmology of the recently introduced mimetic matter with higher derivatives (HD). Without HD this system describes irrotational dust—Dark Matter (DM) as we see it on cosmologically large scales. DM particles correspond to the shift-charges—Noether charges of the shifts in the field space. Higher derivative corrections usually describe a deviation from the thermodynamical equilibrium in the relativistic hydrodynamics. Thus we show that mimetic matter with HD corresponds to an imperfect DM which: i) renormalises the Newton's constant in the Friedmann equations, ii) has zero pressure when there is no extra matter in the universe, iii) survives the inflationary expansion which puts the system on a dynamical attractor with a vanishing shift-charge, iv) perfectly tracks any external matter on this attractor, v) can become the main (and possibly the only) source of DM, provided the shift-symmetry in the HD terms is broken during some small time interval in the radiation domination époque. In the second part of the paper we present a hydrodynamical description of general anisotropic and inhomogeneous configurations of the system. This imperfect mimetic fluid has an energy flow in the field's rest frame. We find that in the Eckart and in the Landau-Lifshitz frames the mimetic fluid possesses nonvanishing vorticity appearing already at the first order in the HD. Thus, the structure formation and gravitational collapse should proceed in a rather different fashion from the simple irrotational DM models

  19. Imperfect Dark Matter

    Science.gov (United States)

    Mirzagholi, Leila; Vikman, Alexander

    2015-06-01

    We consider cosmology of the recently introduced mimetic matter with higher derivatives (HD). Without HD this system describes irrotational dust—Dark Matter (DM) as we see it on cosmologically large scales. DM particles correspond to the shift-charges—Noether charges of the shifts in the field space. Higher derivative corrections usually describe a deviation from the thermodynamical equilibrium in the relativistic hydrodynamics. Thus we show that mimetic matter with HD corresponds to an imperfect DM which: i) renormalises the Newton's constant in the Friedmann equations, ii) has zero pressure when there is no extra matter in the universe, iii) survives the inflationary expansion which puts the system on a dynamical attractor with a vanishing shift-charge, iv) perfectly tracks any external matter on this attractor, v) can become the main (and possibly the only) source of DM, provided the shift-symmetry in the HD terms is broken during some small time interval in the radiation domination époque. In the second part of the paper we present a hydrodynamical description of general anisotropic and inhomogeneous configurations of the system. This imperfect mimetic fluid has an energy flow in the field's rest frame. We find that in the Eckart and in the Landau-Lifshitz frames the mimetic fluid possesses nonvanishing vorticity appearing already at the first order in the HD. Thus, the structure formation and gravitational collapse should proceed in a rather different fashion from the simple irrotational DM models.

  20. Baryonic pinching of galactic dark matter halos

    International Nuclear Information System (INIS)

    Gustafsson, Michael; Fairbairn, Malcolm; Sommer-Larsen, Jesper

    2006-01-01

    High resolution cosmological N-body simulations of four galaxy-scale dark matter halos are compared to corresponding N-body/hydrodynamical simulations containing dark matter, stars and gas. The simulations without baryons share features with others described in the literature in that the dark matter density slope continuously decreases towards the center, with a density ρ DM ∝r -1.3±0.2 , at about 1% of the virial radius for our Milky Way sized galaxies. The central cusps in the simulations which also contain baryons steepen significantly, to ρ DM ∝r -1.9±0.2 , with an indication of the inner logarithmic slope converging. Models of adiabatic contraction of dark matter halos due to the central buildup of stellar/gaseous galaxies are examined. The simplest and most commonly used model, by Blumenthal et al., is shown to overestimate the central dark matter density considerably. A modified model proposed by Gnedin et al. is tested and it is shown that, while it is a considerable improvement, it is not perfect. Moreover, it is found that the contraction parameters in their model not only depend on the orbital structure of the dark-matter-only halos but also on the stellar feedback prescription which is most relevant for the baryonic distribution. Implications for dark matter annihilation at the galactic center are discussed and it is found that, although our simulations show a considerable reduced dark matter halo contraction as compared to the Blumenthal et al. model, the fluxes from dark matter annihilation are still expected to be enhanced by at least a factor of a hundred, as compared to dark-matter-only halos. Finally, it is shown that, while dark-matter-only halos are typically prolate, the dark matter halos containing baryons are mildly oblate with minor-to-major axis ratios of c/a=0.73±0.11, with their flattening aligned with the central baryonic disks

  1. Dark matter annihilation in the local group

    International Nuclear Information System (INIS)

    Pieri, Lidia; Branchini, Enzo

    2004-01-01

    Under the hypothesis of a dark matter composed by supersymmetric particles such as neutralinos, we investigate the possibility that their annihilation in the halos of nearby galaxies could produce detectable fluxes of γ photons. Expected fluxes depend on several, poorly known quantities such as the density profiles of dark matter halos, the existence and prominence of central density cusps and the presence of a population of subhalos. We find that, for all reasonable choices of dark matter halo models, the intensity of the γ-ray flux from some of the nearest extragalactic objects, such as M31, is comparable to or higher than the diffuse galactic foreground. We show that next generation ground-based experiments could have the sensitivity to reveal such fluxes which could help us to unveil the nature of dark matter particles

  2. Dark Tourism and Destination Marketing

    OpenAIRE

    Jahnke, Daniela

    2013-01-01

    This thesis is about the dark tourism and destination marketing. The aim of the thesis is to display how these two terms can be combined. The term dark tourism is a relatively new research area; therefore the thesis will provide an outlook of the current situation of dark tourism. It starts with the beginning of dark tourism and continuous to the managerial aspects of dark tourism sites. The second part of the theoretical background is about destination marketing. It provides an overvie...

  3. Dark energy and key physical parameters of clusters of galaxies

    Science.gov (United States)

    Bisnovatyi-Kogan, G. S.; Chernin, A. D.

    2012-04-01

    We study physics of clusters of galaxies embedded in the cosmic dark energy background. Under the assumption that dark energy is described by the cosmological constant, we show that the dynamical effects of dark energy are strong in clusters like the Virgo cluster. Specifically, the key physical parameters of the dark mater halos in clusters are determined by dark energy: (1) the halo cut-off radius is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; (2) the halo averaged density is equal to two densities of dark energy; (3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile. The cluster gravitational potential well in which the particles of the dark halo (as well as galaxies and intracluster plasma) move is strongly affected by dark energy: the maximum of the potential is located at the zero-gravity radius of the cluster.

  4. Winter chilling speeds spring development of temperate butterflies.

    Science.gov (United States)

    Stålhandske, Sandra; Gotthard, Karl; Leimar, Olof

    2017-07-01

    Understanding and predicting phenology has become more important with ongoing climate change and has brought about great research efforts in the recent decades. The majority of studies examining spring phenology of insects have focussed on the effects of spring temperatures alone. Here we use citizen-collected observation data to show that winter cold duration, in addition to spring temperature, can affect the spring emergence of butterflies. Using spatial mixed models, we disentangle the effects of climate variables and reveal impacts of both spring and winter conditions for five butterfly species that overwinter as pupae across the UK, with data from 1976 to 2013 and one butterfly species in Sweden, with data from 2001 to 2013. Warmer springs lead to earlier emergence in all species and milder winters lead to statistically significant delays in three of the five investigated species. We also find that the delaying effect of winter warmth has become more pronounced in the last decade, during which time winter durations have become shorter. For one of the studied species, Anthocharis cardamines (orange tip butterfly), we also make use of parameters determined from previous experiments on pupal development to model the spring phenology. Using daily temperatures in the UK and Sweden, we show that recent variation in spring temperature corresponds to 10-15 day changes in emergence time over UK and Sweden, whereas variation in winter duration corresponds to 20 days variation in the south of the UK versus only 3 days in the south of Sweden. In summary, we show that short winters delay phenology. The effect is most prominent in areas with particularly mild winters, emphasising the importance of winter for the response of ectothermic animals to climate change. With climate change, these effects may become even stronger and apply also at higher latitudes. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  5. Testing the Cosmic Coincidence Problem and the Nature of Dark Energy

    International Nuclear Information System (INIS)

    Dalal, Neal; Abazajian, Kevork; Jenkins, Elizabeth; Manohar, Aneesh V.

    2001-01-01

    Dark energy models which alter the relative scaling behavior of dark energy and matter could provide a natural solution to the cosmic coincidence problem -- why the densities of dark energy and dark matter are comparable today. A generalized class of dark energy models is introduced which allows noncanonical scaling of the ratio of dark matter and dark energy with the Robertson-Walker scale factor a(t) . We show that determining whether there is a coincidence problem, and the extent of cosmic coincidence, can be addressed by several forthcoming experiments

  6. Dark gamma-ray bursts

    Science.gov (United States)

    Brdar, Vedran; Kopp, Joachim; Liu, Jia

    2017-03-01

    Many theories of dark matter (DM) predict that DM particles can be captured by stars via scattering on ordinary matter. They subsequently condense into a DM core close to the center of the star and eventually annihilate. In this work, we trace DM capture and annihilation rates throughout the life of a massive star and show that this evolution culminates in an intense annihilation burst coincident with the death of the star in a core collapse supernova. The reason is that, along with the stellar interior, also its DM core heats up and contracts, so that the DM density increases rapidly during the final stages of stellar evolution. We argue that, counterintuitively, the annihilation burst is more intense if DM annihilation is a p -wave process than for s -wave annihilation because in the former case, more DM particles survive until the supernova. If among the DM annihilation products are particles like dark photons that can escape the exploding star and decay to standard model particles later, the annihilation burst results in a flash of gamma rays accompanying the supernova. For a galactic supernova, this "dark gamma-ray burst" may be observable in the Čerenkov Telescope Array.

  7. Stable dark energy stars

    International Nuclear Information System (INIS)

    Lobo, Francisco S N

    2006-01-01

    The gravastar picture is an alternative model to the concept of a black hole, where there is an effective phase transition at or near where the event horizon is expected to form, and the interior is replaced by a de Sitter condensate. In this work a generalization of the gravastar picture is explored by considering matching of an interior solution governed by the dark energy equation of state, ω ≡ p/ρ < -1/3, to an exterior Schwarzschild vacuum solution at a junction interface. The motivation for implementing this generalization arises from the fact that recent observations have confirmed an accelerated cosmic expansion, for which dark energy is a possible candidate. Several relativistic dark energy stellar configurations are analysed by imposing specific choices for the mass function. The first case considered is that of a constant energy density, and the second choice that of a monotonic decreasing energy density in the star's interior. The dynamical stability of the transition layer of these dark energy stars to linearized spherically symmetric radial perturbations about static equilibrium solutions is also explored. It is found that large stability regions exist that are sufficiently close to where the event horizon is expected to form, so that it would be difficult to distinguish the exterior geometry of the dark energy stars, analysed in this work, from an astrophysical black hole

  8. Levitating dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Kaloper, Nemanja [Department of Physics, University of California, Davis, CA 95616 (United States); Padilla, Antonio, E-mail: kaloper@physics.ucdavis.edu, E-mail: antonio.padilla@nottingham.ac.uk [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2009-10-01

    A sizable fraction of the total energy density of the universe may be in heavy particles with a net dark U(1)' charge comparable to its mass. When the charges have the same sign the cancellation between their gravitational and gauge forces may lead to a mismatch between different measures of masses in the universe. Measuring galactic masses by orbits of normal matter, such as galaxy rotation curves or lensing, will give the total mass, while the flows of dark matter agglomerates may yield smaller values if the gauge repulsion is not accounted for. If distant galaxies which house light beacons like SNe Ia contain such dark particles, the observations of their cosmic recession may mistake the weaker forces for an extra 'antigravity', and infer an effective dark energy equation of state smaller than the real one. In some cases, including that of a cosmological constant, these effects can mimic w < −1. They can also lead to a local variation of galaxy-galaxy forces, yielding a larger 'Hubble Flow' in those regions of space that could be taken for a dynamical dark energy, or superhorizon effects.

  9. Levitating dark matter

    Science.gov (United States)

    Kaloper, Nemanja; Padilla, Antonio

    2009-10-01

    A sizable fraction of the total energy density of the universe may be in heavy particles with a net dark U(1)' charge comparable to its mass. When the charges have the same sign the cancellation between their gravitational and gauge forces may lead to a mismatch between different measures of masses in the universe. Measuring galactic masses by orbits of normal matter, such as galaxy rotation curves or lensing, will give the total mass, while the flows of dark matter agglomerates may yield smaller values if the gauge repulsion is not accounted for. If distant galaxies which house light beacons like SNe Ia contain such dark particles, the observations of their cosmic recession may mistake the weaker forces for an extra `antigravity', and infer an effective dark energy equation of state smaller than the real one. In some cases, including that of a cosmological constant, these effects can mimic w < -1. They can also lead to a local variation of galaxy-galaxy forces, yielding a larger `Hubble Flow' in those regions of space that could be taken for a dynamical dark energy, or superhorizon effects.

  10. DarkBit. A GAMBIT module for computing dark matter observables and likelihoods

    Energy Technology Data Exchange (ETDEWEB)

    Bringmann, Torsten; Dal, Lars A. [University of Oslo, Department of Physics, Oslo (Norway); Conrad, Jan; Edsjoe, Joakim; Farmer, Ben [AlbaNova University Centre, Oskar Klein Centre for Cosmoparticle Physics, Stockholm (Sweden); Stockholm University, Department of Physics, Stockholm (Sweden); Cornell, Jonathan M. [McGill University, Department of Physics, Montreal, QC (Canada); Kahlhoefer, Felix; Wild, Sebastian [DESY, Hamburg (Germany); Kvellestad, Anders; Savage, Christopher [NORDITA, Stockholm (Sweden); Putze, Antje [LAPTh, Universite de Savoie, CNRS, Annecy-le-Vieux (France); Scott, Pat [Blackett Laboratory, Imperial College London, Department of Physics, London (United Kingdom); Weniger, Christoph [University of Amsterdam, GRAPPA, Institute of Physics, Amsterdam (Netherlands); White, Martin [University of Adelaide, Department of Physics, Adelaide, SA (Australia); Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale, Parkville (Australia); Collaboration: The GAMBIT Dark Matter Workgroup

    2017-12-15

    We introduce DarkBit, an advanced software code for computing dark matter constraints on various extensions to the Standard Model of particle physics, comprising both new native code and interfaces to external packages. This release includes a dedicated signal yield calculator for gamma-ray observations, which significantly extends current tools by implementing a cascade-decay Monte Carlo, as well as a dedicated likelihood calculator for current and future experiments (gamLike). This provides a general solution for studying complex particle physics models that predict dark matter annihilation to a multitude of final states. We also supply a direct detection package that models a large range of direct detection experiments (DDCalc), and that provides the corresponding likelihoods for arbitrary combinations of spin-independent and spin-dependent scattering processes. Finally, we provide custom relic density routines along with interfaces to DarkSUSY, micrOMEGAs, and the neutrino telescope likelihood package nulike. DarkBit is written in the framework of the Global And Modular Beyond the Standard Model Inference Tool (GAMBIT), providing seamless integration into a comprehensive statistical fitting framework that allows users to explore new models with both particle and astrophysics constraints, and a consistent treatment of systematic uncertainties. In this paper we describe its main functionality, provide a guide to getting started quickly, and show illustrative examples for results obtained with DarkBit (both as a stand-alone tool and as a GAMBIT module). This includes a quantitative comparison between two of the main dark matter codes (DarkSUSY and micrOMEGAs), and application of DarkBit's advanced direct and indirect detection routines to a simple effective dark matter model. (orig.)

  11. Cosmological anisotropy from non-comoving dark matter and dark energy

    International Nuclear Information System (INIS)

    Harko, Tiberiu; Lobo, Francisco S. N.

    2013-01-01

    We consider a cosmological model in which the two major fluid components of the Universe, dark energy and dark matter, flow with distinct four-velocities. This cosmological configuration is equivalent to a single anisotropic fluid, expanding with a four-velocity that is an appropriate combination of the two fluid four-velocities. The energy density of the single cosmological fluid is larger than the sum of the energy densities of the two perfect fluids, i.e., dark energy and dark matter, respectively, and contains a correction term due to the anisotropy generated by the differences in the four-velocities. Furthermore, the gravitational field equations of the two-fluid anisotropic cosmological model are obtained for a Bianchi type I geometry. By assuming that the non-comoving motion of the dark energy and dark matter induces small perturbations in the homogeneous and isotropic Friedmann-Lemaitre-Robertson-Walker type cosmological background, and that the anisotropy parameter is small, the equations of the cosmological perturbations due to the non-comoving nature of the two major components are obtained. The time evolution of the metric perturbations is explicitly obtained for the cases of the exponential and power law background cosmological expansion. The imprints of a non-comoving dark energy - dark matter on the Cosmic Microwave Background and on the luminosity distance are briefly discussed, and the temperature anisotropies and the quadrupole are explicitly obtained in terms of the metric perturbations of the flat background metric. Therefore, if there is a slight difference between the four-velocities of the dark energy and dark matter, the Universe would acquire some anisotropic characteristics, and its geometry will deviate from the standard FLRW one. In fact, the recent Planck results show that the presence of an intrinsic large scale anisotropy in the Universe cannot be excluded a priori, so that the model presented in this work can be considered as a

  12. Dark matter as a weakly coupled dark baryon

    Science.gov (United States)

    Mitridate, Andrea; Redi, Michele; Smirnov, Juri; Strumia, Alessandro

    2017-10-01

    Dark Matter might be an accidentally stable baryon of a new confining gauge interaction. We extend previous studies exploring the possibility that the DM is made of dark quarks heavier than the dark confinement scale. The resulting phenomenology contains new unusual elements: a two-stage DM cosmology (freeze-out followed by dark condensation), a large DM annihilation cross section through recombination of dark quarks (allowing to fit the positron excess). Light dark glue-balls are relatively long lived and give extra cosmological effects; DM itself can remain radioactive.

  13. Doppler effect on indirect detection of dark matter using dark matter only simulations

    Science.gov (United States)

    Powell, Devon; Laha, Ranjan; Ng, Kenny C. Y.; Abel, Tom

    2017-03-01

    Indirect detection of dark matter is a major avenue for discovery. However, baryonic backgrounds are diverse enough to mimic many possible signatures of dark matter. In this work, we study the newly proposed technique of dark matter velocity spectroscopy [E. G. Speckhard, K. C. Y. Ng, J. F. Beacom, and R. Laha, Phys. Rev. Lett. 116, 031301 (2016), 10.1103/PhysRevLett.116.031301]. The nonrotating dark matter halo and the Solar motion produce a distinct longitudinal dependence of the signal which is opposite in direction to that produced by baryons. Using collisionless dark matter only simulations of Milky Way like halos, we show that this new signature is robust and holds great promise. We develop mock observations by a high energy resolution x-ray spectrometer on a sounding rocket, the Micro-X experiment, to our test case, the 3.5 keV line. We show that by using six different pointings, Micro-X can exclude a constant line energy over various longitudes at ≥3 σ . The halo triaxiality is an important effect, and it will typically reduce the significance of this signal. We emphasize that this new smoking gun in motion signature of dark matter is general and is applicable to any dark matter candidate which produces a sharp photon feature in annihilation or decay.

  14. THE MAGIC OF DARK TOURISM

    Directory of Open Access Journals (Sweden)

    Erika KULCSÁR

    2015-10-01

    Full Text Available The dark tourism is a form of tourism that is not unanimously accepted by the whole society, but in spite of this fact, the practitioners of dark tourism is a viable segment. Indeed the concept that defines dark tourism is none other than death, and perhaps this is why it will always be a segment that will not be attracted by this form of tourism. Many questions about dark tourism arise. Among them: (1 is dark tourism an area of science attractive for researches? (2 which is the typology of dark tourism? (3 what are the motivating factors that determine practicing dark tourism? This paper provides a detailed analysis of publication behaviour in the field of dark tourism. The article also includes the main results obtained by achieving a quantitative marketing research among students of Sfantu Gheorghe University Extension in order to know their opinion, attitude towards dark tourism.

  15. Interaction between bosonic dark matter and stars

    Science.gov (United States)

    Brito, Richard; Cardoso, Vitor; Macedo, Caio F. B.; Okawa, Hirotada; Palenzuela, Carlos

    2016-02-01

    We provide a detailed analysis of how bosonic dark matter "condensates" interact with compact stars, extending significantly the results of a recent Letter [1]. We focus on bosonic fields with mass mB , such as axions, axion-like candidates and hidden photons. Self-gravitating bosonic fields generically form "breathing" configurations, where both the spacetime geometry and the field oscillate, and can interact and cluster at the center of stars. We construct stellar configurations formed by a perfect fluid and a bosonic condensate, and which may describe the late stages of dark matter accretion onto stars, in dark-matter-rich environments. These composite stars oscillate at a frequency which is a multiple of f =2.5 ×1014(mBc2/eV ) Hz . Using perturbative analysis and numerical relativity techniques, we show that these stars are generically stable, and we provide criteria for instability. Our results also indicate that the growth of the dark matter core is halted close to the Chandrasekhar limit. We thus dispel a myth concerning dark matter accretion by stars: dark matter accretion does not necessarily lead to the destruction of the star, nor to collapse to a black hole. Finally, we argue that stars with long-lived bosonic cores may also develop in other theories with effective mass couplings, such as (massless) scalar-tensor theories.

  16. Condensate cosmology: Dark energy from dark matter

    International Nuclear Information System (INIS)

    Bassett, Bruce A.; Parkinson, David; Kunz, Martin; Ungarelli, Carlo

    2003-01-01

    Imagine a scenario in which the dark energy forms via the condensation of dark matter at some low redshift. The Compton wavelength therefore changes from small to very large at the transition, unlike quintessence or metamorphosis. We study cosmic microwave background (CMB), large scale structure, supernova and radio galaxy constraints on condensation by performing a four parameter likelihood analysis over the Hubble constant and the three parameters associated with Q, the condensate field: Ω Q , w f and z t (energy density and equation of state today, and redshift of transition). Condensation roughly interpolates between ΛCDM (for large z t ) and SCDM (low z t ) and provides a slightly better fit to the data than ΛCDM. We confirm that there is no degeneracy in the CMB between H and z t and discuss the implications of late-time transitions for the Lyman-α forest. Finally we discuss the nonlinear phase of both condensation and metamorphosis, which is much more interesting than in standard quintessence models

  17. WISPy cold dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Arias, Paola [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Pontificia Univ. Catolica de Chile, Santiago (Chile). Facultad de Fisica; Cadamuro, Davide; Redondo, Javier [Max-Planck-Institut fuer Physik, Muenchen (Germany); Goodsell, Mark [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Jaeckel, Joerg [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-01-15

    Very weakly interacting slim particles (WISPs), such as axion-like particles (ALPs) or hidden photons (HPs), may be non-thermally produced via the misalignment mechanism in the early universe and survive as a cold dark matter population until today. We find that, both for ALPs and HPs whose dominant interactions with the standard model arise from couplings to photons, a huge region in the parameter spaces spanned by photon coupling and ALP or HP mass can give rise to the observed cold dark matter. Remarkably, a large region of this parameter space coincides with that predicted in well motivated models of fundamental physics. A wide range of experimental searches - exploiting haloscopes (direct dark matter searches exploiting microwave cavities), helioscopes (searches for solar ALPs or HPs), or light-shining-through-a-wall techniques - can probe large parts of this parameter space in the foreseeable future. (orig.)

  18. Asymmetric Higgsino dark matter.

    Science.gov (United States)

    Blum, Kfir; Efrati, Aielet; Grossman, Yuval; Nir, Yosef; Riotto, Antonio

    2012-08-03

    In the supersymmetric framework, prior to the electroweak phase transition, the existence of a baryon asymmetry implies the existence of a Higgsino asymmetry. We investigate whether the Higgsino could be a viable asymmetric dark matter candidate. We find that this is indeed possible. Thus, supersymmetry can provide the observed dark matter abundance and, furthermore, relate it with the baryon asymmetry, in which case the puzzle of why the baryonic and dark matter mass densities are similar would be explained. To accomplish this task, two conditions are required. First, the gauginos, squarks, and sleptons must all be very heavy, such that the only electroweak-scale superpartners are the Higgsinos. With this spectrum, supersymmetry does not solve the fine-tuning problem. Second, the temperature of the electroweak phase transition must be low, in the (1-10) GeV range. This condition requires an extension of the minimal supersymmetric standard model.

  19. Nearly Supersymmetric Dark Atoms

    Energy Technology Data Exchange (ETDEWEB)

    Behbahani, Siavosh R.; Jankowiak, Martin; /SLAC /Stanford U., ITP; Rube, Tomas; /Stanford U., ITP; Wacker, Jay G.; /SLAC /Stanford U., ITP

    2011-08-12

    Theories of dark matter that support bound states are an intriguing possibility for the identity of the missing mass of the Universe. This article proposes a class of models of supersymmetric composite dark matter where the interactions with the Standard Model communicate supersymmetry breaking to the dark sector. In these models supersymmetry breaking can be treated as a perturbation on the spectrum of bound states. Using a general formalism, the spectrum with leading supersymmetry effects is computed without specifying the details of the binding dynamics. The interactions of the composite states with the Standard Model are computed and several benchmark models are described. General features of non-relativistic supersymmetric bound states are emphasized.

  20. Dark Energy. What the ...?

    Energy Technology Data Exchange (ETDEWEB)

    Wechsler, Risa

    2007-10-30

    What is the Universe made of? This question has been asked as long as humans have been questioning, and astronomers and physicists are finally converging on an answer. The picture which has emerged from numerous complementary observations over the past decade is a surprising one: most of the matter in the Universe isn't visible, and most of the Universe isn't even made of matter. In this talk, I will explain what the rest of this stuff, known as 'Dark Energy' is, how it is related to the so-called 'Dark Matter', how it impacts the evolution of the Universe, and how we can study the dark universe using observations of light from current and future telescopes.

  1. Dark chocolate exacerbates acne.

    Science.gov (United States)

    Vongraviopap, Saivaree; Asawanonda, Pravit

    2016-05-01

    The effects of chocolate on acne exacerbations have recently been reevaluated. For so many years, it was thought that it had no role in worsening acne. To investigate whether 99% dark chocolate, when consumed in regular daily amounts, would cause acne to worsen in acne-prone male subjects, twenty-five acne prone male subjects were asked to consume 25 g of 99% dark chocolate daily for 4 weeks. Assessments which included Leeds revised acne scores as well as lesion counts took place weekly. Food frequency questionnaire was used, and daily activities were recorded. Statistically significant changes of acne scores and numbers of comedones and inflammatory papules were detected as early as 2 weeks into the study. At 4 weeks, the changes remained statistically significant compared to baseline. Dark chocolate when consumed in normal amounts for 4 weeks can exacerbate acne in male subjects with acne-prone skin. © 2015 The International Society of Dermatology.

  2. Simplified models for dark matter face their consistent completions

    Energy Technology Data Exchange (ETDEWEB)

    Gonçalves, Dorival; Machado, Pedro A. N.; No, Jose Miguel

    2017-03-01

    Simplified dark matter models have been recently advocated as a powerful tool to exploit the complementarity between dark matter direct detection, indirect detection and LHC experimental probes. Focusing on pseudoscalar mediators between the dark and visible sectors, we show that the simplified dark matter model phenomenology departs significantly from that of consistent ${SU(2)_{\\mathrm{L}} \\times U(1)_{\\mathrm{Y}}}$ gauge invariant completions. We discuss the key physics simplified models fail to capture, and its impact on LHC searches. Notably, we show that resonant mono-Z searches provide competitive sensitivities to standard mono-jet analyses at $13$ TeV LHC.

  3. The dark matter distribution of M87 and NGC 1399

    Science.gov (United States)

    Tsai, John C.

    1993-01-01

    Recent X-ray observations of clusters of galaxies indicate that, outside the innermost about 100 kpc region, the ratio of dark matter density to baryonic matter density declines with radius. We show that this result is consistent with a cold dark matter simulation, suggesting the presence of dissipationless dark matter in the observed clusters. This is contrary to previous suggestions that dissipational baryonic dark matter is required to explain the decline in the density ratio. The simulation further shows that, in the inner 100 kpc region, the density ratio should rise with radius. We confirm this property in M87 and NGC 1399, which are close enough to allow the determination of the density ratio in the required inner region. X-ray mappings of the dark matter distribution in clusters of galaxies are therefore consistent with the presence of dissipationless dark matter.

  4. Gravitational Waves From a Dark (Twin) Phase Transition

    CERN Document Server

    Schwaller, Pedro

    2015-01-01

    In this work, we show that a large class of models with a composite dark sector undergo a strong first order phase transition in the early universe, which could lead to a detectable gravitational wave signal. We summarise the basic conditions for a strong first order phase transition for SU(N) dark sectors with n_f flavours, calculate the gravitational wave spectrum and show that, depending on the dark confinement scale, it can be detected at eLISA or in pulsar timing array experiments. The gravitational wave signal provides a unique test of the gravitational interactions of a dark sector, and we discuss the complementarity with conventional searches for new dark sectors. The discussion includes Twin Higgs and SIMP models as well as symmetric and asymmetric composite dark matter scenarios.

  5. Structure formation in inhomogeneous Early Dark Energy models

    International Nuclear Information System (INIS)

    Batista, R.C.; Pace, F.

    2013-01-01

    We study the impact of Early Dark Energy fluctuations in the linear and non-linear regimes of structure formation. In these models the energy density of dark energy is non-negligible at high redshifts and the fluctuations in the dark energy component can have the same order of magnitude of dark matter fluctuations. Since two basic approximations usually taken in the standard scenario of quintessence models, that both dark energy density during the matter dominated period and dark energy fluctuations on small scales are negligible, are not valid in such models, we first study approximate analytical solutions for dark matter and dark energy perturbations in the linear regime. This study is helpful to find consistent initial conditions for the system of equations and to analytically understand the effects of Early Dark Energy and its fluctuations, which are also verified numerically. In the linear regime we compute the matter growth and variation of the gravitational potential associated with the Integrated Sachs-Wolf effect, showing that these observables present important modifications due to Early Dark Energy fluctuations, though making them more similar to the ΛCDM model. We also make use of the Spherical Collapse model to study the influence of Early Dark Energy fluctuations in the nonlinear regime of structure formation, especially on δ c parameter, and their contribution to the halo mass, which we show can be of the order of 10%. We finally compute how the number density of halos is modified in comparison to the ΛCDM model and address the problem of how to correct the mass function in order to take into account the contribution of clustered dark energy. We conclude that the inhomogeneous Early Dark Energy models are more similar to the ΛCDM model than its homogeneous counterparts

  6. Cosmology and Dark Matter

    CERN Document Server

    Tkachev, Igor

    2017-01-01

    This lecture course covers cosmology from the particle physicist perspective. Therefore, the emphasis will be on the evidence for the new physics in cosmological and astrophysical data together with minimal theoretical frameworks needed to understand and appreciate the evidence. I review the case for non-baryonic dark matter and describe popular models which incorporate it. In parallel, the story of dark energy will be developed, which includes accelerated expansion of the Universe today, the Universe origin in the Big Bang, and support for the Inflationary theory in CMBR data.

  7. Dark Side of the Universe

    CERN Document Server

    2016-01-01

    The Dark Side of the Universe (DSU) workshops bring together a wide range of theorists and experimentalists to discuss current ideas on models of the dark side, and relate them to current and future experiments. This year's DSU will take place in the colorful Norwegian city of Bergen. Topics include dark matter, dark energy, cosmology, and physics beyond the standard model. One of the goals of the workshop is to expose in particular students and young researchers to the fascinating topics of dark matter and dark energy, and to provide them with the opportunity to meet some of the best researchers in these areas .

  8. Dark matter and its detection

    International Nuclear Information System (INIS)

    Bi Xiaojun; Qin Bo

    2011-01-01

    We first explain the concept of dark matter,then review the history of its discovery and the evidence of its existence. We describe our understanding of the nature of dark matter particles, the popular dark matter models,and why the weakly interacting massive particles (called WIMPs) are the most attractive candidates for dark matter. Then we introduce the three methods of dark matter detection: colliders, direct detection and indirect detection. Finally, we review the recent development of dark matter detection, including the new results from DAMA, CoGent, PAMELA, ATIC and Fermi. (authors)

  9. Dark matter and dark energy: The critical questions

    International Nuclear Information System (INIS)

    Michael S. Turner

    2002-01-01

    Stars account for only about 0.5% of the content of the Universe; the bulk of the Universe is optically dark. The dark side of the Universe is comprised of: at least 0.1% light neutrinos; 3.5% ± 1% baryons; 29% ± 4% cold dark matter; and 66% ± 6% dark energy. Now that we have characterized the dark side of the Universe, the challenge is to understand it. The critical questions are: (1) What form do the dark baryons take? (2) What is (are) the constituent(s) of the cold dark matter? (3) What is the nature of the mysterious dark energy that is causing the Universe to speed up

  10. New interactions in the dark sector mediated by dark energy

    International Nuclear Information System (INIS)

    Brookfield, Anthony W.; Bruck, Carsten van de; Hall, Lisa M. H.

    2008-01-01

    Cosmological observations have revealed the existence of a dark matter sector, which is commonly assumed to be made up of one particle species only. However, this sector might be more complicated than we currently believe: there might be more than one dark matter species (for example, two components of cold dark matter or a mixture of hot and cold dark matter) and there may be new interactions between these particles. In this paper we study the possibility of multiple dark matter species and interactions mediated by a dark energy field. We study both the background and the perturbation evolution in these scenarios. We find that the background evolution of a system of multiple dark matter particles (with constant couplings) mimics a single fluid with a time-varying coupling parameter. However, this is no longer true on the perturbative level. We study the case of attractive and repulsive forces as well as a mixture of cold and hot dark matter particles

  11. Exceptional Arctic warmth of early winter 2016 and attribution to global warming

    Science.gov (United States)

    van Oldenborgh, Geert Jan; Macias-Fauria, Marc; King, Andrew; Uhe, Peter; Philip, Sjoukje; Kew, Sarah; Karoly, David; Otto, Friederike; Allen, Myles; Cullen, Heidi

    2017-04-01

    The dark polar winters usually sport the coldest extremes on Earth, however this winter, the North Pole and the surrounding Arctic region have experienced record high temperatures in November and December, with daily means reaching 15 °C (27 °F) above normal and a November monthly mean that was 13 °C (23 °F) above normal on the pole. November also saw a brief retreat of sea-ice that was virtually unprecedented in nearly 40 years of satellite records, followed by a record low in November sea ice area since 1850. Unlike the Antarctic, Arctic lands are inhabited and their socio-economic systems are greatly affected by the impacts of extreme and unprecedented sea ice dynamics and temperatures, such as for example, the timing of marine mammal migrations, and refreezing rain on snow that prevents reindeer from feeding. Here we report on our multi-method rapid attribution analysis of North Pole November-December temperatures. To quantify the rarity of the event, we computed the November-December averaged temperature around the North Pole (80-90 °N) in the (short but North-pole covering) ERA-interim reanalysis. To put the event in context of natural variability, we use a longer and closely related time series based on the northern most meteorological observations on land (70-80 °N). This allows for a reconstruction of Arctic temperatures back to about 1900. We also perform a multi-method analysis of North Pole temperatures with two sets of climate models: the CMIP5 multi-model ensemble, and a large ensemble of model runs in the so-called Weather@Home project. Physical mechanisms that are responsible for temperature and sea ice variability in the North Pole region are also discussed. The observations and the bias-corrected CMIP5 ensemble point to a return period of about 50 to 200 years in the present climate, i.e., the probability of such an extreme is about 0.5% to 2% every year, with a large uncertainty. The observations show that November-December temperatures

  12. Unified Description of Dark Energy and Dark Matter

    OpenAIRE

    Petry, Walter

    2008-01-01

    Dark energy in the universe is assumed to be vacuum energy. The energy-momentum of vacuum is described by a scale-dependent cosmological constant. The equations of motion imply for the density of matter (dust) the sum of the usual matter density (luminous matter) and an additional matter density (dark matter) similar to the dark energy. The scale-dependent cosmological constant is given up to an exponent which is approximated by the experimentally decided density parameters of dark matter and...

  13. Supplying Dark Energy from Scalar Field Dark Matter

    OpenAIRE

    Gogberashvili, Merab; Sakharov, Alexander S.

    2017-01-01

    We consider the hypothesis that dark matter and dark energy consists of ultra-light self-interacting scalar particles. It is found that the Klein-Gordon equation with only two free parameters (mass and self-coupling) on a Schwarzschild background, at the galactic length-scales has the solution which corresponds to Bose-Einstein condensate, behaving as dark matter, while the constant solution at supra-galactic scales can explain dark energy.

  14. Dark energy and dark matter from primordial QGP

    Energy Technology Data Exchange (ETDEWEB)

    Vaidya, Vaishali, E-mail: vaidvavaishali24@gmail.com; Upadhyaya, G. K., E-mail: gopalujiain@yahoo.co.in [School of Studies in Physics, Vikram University Ujjain (India)

    2015-07-31

    Coloured relics servived after hadronization might have given birth to dark matter and dark energy. Theoretical ideas to solve mystery of cosmic acceleration, its origin and its status with reference to recent past are of much interest and are being proposed by many workers. In the present paper, we present a critical review of work done to understand the earliest appearance of dark matter and dark energy in the scenario of primordial quark gluon plasma (QGP) phase after Big Bang.

  15. Dark Matter Decay between Phase Transitions at the Weak Scale.

    Science.gov (United States)

    Baker, Michael J; Kopp, Joachim

    2017-08-11

    We propose a new alternative to the weakly interacting massive particle paradigm for dark matter. Rather than being determined by thermal freeze-out, the dark matter abundance in this scenario is set by dark matter decay, which is allowed for a limited amount of time just before the electroweak phase transition. More specifically, we consider fermionic singlet dark matter particles coupled weakly to a scalar mediator S_{3} and to auxiliary dark sector fields, charged under the standard model gauge groups. Dark matter freezes out while still relativistic, so its abundance is initially very large. As the Universe cools down, the scalar mediator develops a vacuum expectation value (VEV), which breaks the symmetry that stabilizes dark matter. This allows dark matter to mix with charged fermions and decay. During this epoch, the dark matter abundance is reduced to give the value observed today. Later, the SM Higgs field also develops a VEV, which feeds back into the S_{3} potential and restores the dark sector symmetry. In a concrete model we show that this "VEV flip-flop" scenario is phenomenologically successful in the most interesting regions of its parameter space. We also comment on detection prospects at the LHC and elsewhere.

  16. Direct and indirect detection of dissipative dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Fan, JiJi; Katz, Andrey; Shelton, Jessie, E-mail: jijifan1982@gmail.com, E-mail: katz.andrey@gmail.com, E-mail: jshelton137@gmail.com [Department of Physics, Harvard University, Cambridge, MA 02138 (United States)

    2014-06-01

    We study the constraints from direct detection and solar capture on dark matter scenarios with a subdominant dissipative component. This dissipative dark matter component in general has both a symmetric and asymmetric relic abundance. Dissipative dynamics allow this subdominant dark matter component to cool, resulting in its partial or total collapse into a smaller volume inside the halo (e.g., a dark disk) as well as a reduced thermal velocity dispersion compared to that of normal cold dark matter. We first show that these features considerably relax the limits from direct detection experiments on the couplings between standard model (SM) particles and dissipative dark matter. On the other hand, indirect detection of the annihilation of the symmetric dissipative dark matter component inside the Sun sets stringent and robust constraints on the properties of the dissipative dark matter. In particular, IceCube observations force dissipative dark matter particles with mass above 50 GeV to either have a small coupling to the SM or a low local density in the solar system, or to have a nearly asymmetric relic abundance. Possible helioseismology signals associated with purely asymmetric dissipative dark matter are discussed, with no present constraints.

  17. Non-adiabatic perturbations in Ricci dark energy model

    International Nuclear Information System (INIS)

    Karwan, Khamphee; Thitapura, Thiti

    2012-01-01

    We show that the non-adiabatic perturbations between Ricci dark energy and matter can grow both on superhorizon and subhorizon scales, and these non-adiabatic perturbations on subhorizon scales can lead to instability in this dark energy model. The rapidly growing non-adiabatic modes on subhorizon scales always occur when the equation of state parameter of dark energy starts to drop towards -1 near the end of matter era, except that the parameter α of Ricci dark energy equals to 1/2. In the case where α = 1/2, the rapidly growing non-adiabatic modes disappear when the perturbations in dark energy and matter are adiabatic initially. However, an adiabaticity between dark energy and matter perturbations at early time implies a non-adiabaticity between matter and radiation, this can influence the ordinary Sachs-Wolfe (OSW) effect. Since the amount of Ricci dark energy is not small during matter domination, the integrated Sachs-Wolfe (ISW) effect is greatly modified by density perturbations of dark energy, leading to a wrong shape of CMB power spectrum. The instability in Ricci dark energy is difficult to be alleviated if the effects of coupling between baryon and photon on dark energy perturbations are included

  18. Direct and indirect detection of dissipative dark matter

    International Nuclear Information System (INIS)

    Fan, JiJi; Katz, Andrey; Shelton, Jessie

    2014-01-01

    We study the constraints from direct detection and solar capture on dark matter scenarios with a subdominant dissipative component. This dissipative dark matter component in general has both a symmetric and asymmetric relic abundance. Dissipative dynamics allow this subdominant dark matter component to cool, resulting in its partial or total collapse into a smaller volume inside the halo (e.g., a dark disk) as well as a reduced thermal velocity dispersion compared to that of normal cold dark matter. We first show that these features considerably relax the limits from direct detection experiments on the couplings between standard model (SM) particles and dissipative dark matter. On the other hand, indirect detection of the annihilation of the symmetric dissipative dark matter component inside the Sun sets stringent and robust constraints on the properties of the dissipative dark matter. In particular, IceCube observations force dissipative dark matter particles with mass above 50 GeV to either have a small coupling to the SM or a low local density in the solar system, or to have a nearly asymmetric relic abundance. Possible helioseismology signals associated with purely asymmetric dissipative dark matter are discussed, with no present constraints

  19. Flowering time control in European winter wheat

    Directory of Open Access Journals (Sweden)

    Simon Martin Langer

    2014-10-01

    Full Text Available Flowering time is an important trait in wheat breeding as it affects adaptation and yield potential. The aim of this study was to investigate the genetic architecture of flowering time in European winter bread wheat cultivars. To this end a population of 410 winter wheat varieties was evaluated in multi-location field trials and genotyped by a genotyping-by-sequencing approach and candidate gene markers. Our analyses revealed that the photoperiod regulator Ppd-D1 is the major factor affecting flowering time in this germplasm set, explaining 58% of the genotypic variance. Copy number variation at the Ppd-B1 locus was present but explains only 3.2% and thus a comparably small proportion of genotypic variance. By contrast, the plant height loci Rht-B1 and Rht-D1 had no effect on flowering time. The genome-wide scan identified six QTL which each explain only a small proportion of genotypic variance and in addition we identified a number of epistatic QTL, also with small effects. Taken together, our results show that flowering time in European winter bread wheat cultivars is mainly controlled by Ppd-D1 while the fine tuning to local climatic conditions is achieved through Ppd-B1 copy number variation and a larger number of QTL with small effects.

  20. Probing the sign-changeable interaction between dark energy and dark matter with current observations

    Science.gov (United States)

    Guo, Juan-Juan; Zhang, Jing-Fei; Li, Yun-He; He, Dong-Ze; Zhang, Xin

    2018-03-01

    We consider the models of vacuum energy interacting with cold dark matter in this study, in which the coupling can change sigh during the cosmological evolution. We parameterize the running coupling b by the form b( a) = b 0 a+ b e(1- a), where at the early-time the coupling is given by a constant b e and today the coupling is described by another constant b 0. We explore six specific models with (i) Q = b( a) H 0 ρ 0, (ii) Q = b( a) H 0 ρ de, (iii) Q = b( a) H 0 ρ c, (iv) Q = b( a) Hρ 0, (v) Q = b( a) H ρ de, and (vi) Q = b( a) Hρ c. The current observational data sets we use to constrain the models include the JLA compilation of type Ia supernova data, the Planck 2015 distance priors data of cosmic microwave background observation, the baryon acoustic oscillations measurements, and the Hubble constant direct measurement. We find that, for all the models, we have b 0 0 at around the 1 σ level, and b 0 and b e are in extremely strong anti-correlation. Our results show that the coupling changes sign during the evolution at about the 1 σ level, i.e., the energy transfer is from dark matter to dark energy when dark matter dominates the universe and the energy transfer is from dark energy to dark matter when dark energy dominates the universe.

  1. Signals of dark matter in a supersymmetric two dark matter model

    International Nuclear Information System (INIS)

    Fukuoka, Hiroki; Suematsu, Daijiro; Toma, Takashi

    2011-01-01

    Supersymmetric radiative neutrino mass models have often two dark matter candidates. One is the usual lightest neutralino with odd R parity and the other is a new neutral particle whose stability is guaranteed by a discrete symmetry that forbids tree-level neutrino Yukawa couplings. If their relic abundance is comparable, dark matter phenomenology can be largely different from the minimal supersymmetric standard model (MSSM). We study this in a supersymmetric radiative neutrino mass model with the conserved R parity and a Z 2 symmetry weakly broken by the anomaly effect. The second dark matter with odd parity of this new Z 2 is metastable and decays to the neutralino dark matter. Charged particles and photons associated to this decay can cause the deviation from the expected background of the cosmic rays. Direct search of the neutralino dark matter is also expected to show different features from the MSSM since the relic abundance is not composed of the neutralino dark matter only. We discuss the nature of dark matter in this model by analyzing these signals quantitatively

  2. light amber and dark amber

    African Journals Online (AJOL)

    Both samples showed high amount of carbohydrate, that of light amber being higher. The antioxidant vitamins (vitamins A, C and E) content of the two honeys are 4.08± 0.21, 2.22± 0.10and 0.28± 0.03(mg/dl), (for light amber), and 4.42± 0.06, 2.61± 0.11,and 0.26± 0.02 (mg/dl), (for dark amber) respectively. Both samples

  3. Dark influences: imprints of dark satellites on dwarf galaxies

    NARCIS (Netherlands)

    Starkenburg, T. K.; Helmi, A.

    Context. In the context of the current Λ cold dark matter cosmological model small dark matter halos are abundant and satellites of dwarf galaxies are expected to be predominantly dark. Since low mass galaxies have smaller baryon fractions, interactions with these satellites may leave particularly

  4. Dark clouds in particle physics and cosmology: the issues of dark matter and dark energy

    International Nuclear Information System (INIS)

    Zhang Xinmin

    2011-01-01

    Unveiling the nature of dark matter and dark energy is one of the main tasks of particle physics and cosmology in the 21st century. We first present an overview of the history and current status of research in cosmology, at the same time emphasizing the new challenges in particle physics. Then we focus on the scientific issues of dark energy, dark matter and anti-matter, and review the recent progress made in these fields. Finally, we discuss the prospects for future research on the experimental probing of dark matter and dark energy in China. (authors)

  5. Little composite dark matter

    Science.gov (United States)

    Balkin, Reuven; Perez, Gilad; Weiler, Andreas

    2018-02-01

    We examine the dark matter phenomenology of a composite electroweak singlet state. This singlet belongs to the Goldstone sector of a well-motivated extension of the Littlest Higgs with T-parity. A viable parameter space, consistent with the observed dark matter relic abundance as well as with the various collider, electroweak precision and dark matter direct detection experimental constraints is found for this scenario. T-parity implies a rich LHC phenomenology, which forms an interesting interplay between conventional natural SUSY type of signals involving third generation quarks and missing energy, from stop-like particle production and decay, and composite Higgs type of signals involving third generation quarks associated with Higgs and electroweak gauge boson, from vector-like top-partners production and decay. The composite features of the dark matter phenomenology allows the composite singlet to produce the correct relic abundance while interacting weakly with the Higgs via the usual Higgs portal coupling λ _{ {DM}}˜ O(1%), thus evading direct detection.

  6. with dark matter

    Indian Academy of Sciences (India)

    2012-11-16

    Nov 16, 2012 ... November 2012 physics pp. 1271–1274. Radiative see-saw formula in ... on neutrino physics, dark matter and all fermion masses and mixings. ... as such, high-energy accelerators cannot directly test the underlying origin of ...

  7. Exceptional composite dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros, Guillermo [Universite Paris Saclay, CEA, CNRS, Institut de Physique Theorique, Gif-sur-Yvette (France); Carmona, Adrian [CERN, Theoretical Physics Department, Geneva (Switzerland); Chala, Mikael [Universitat de Valencia y IFIC, Universitat de Valencia-CSIC, Departament de Fisica Teorica, Burjassot, Valencia (Spain)

    2017-07-15

    We study the dark matter phenomenology of non-minimal composite Higgs models with SO(7) broken to the exceptional group G{sub 2}. In addition to the Higgs, three pseudo-Nambu-Goldstone bosons arise, one of which is electrically neutral. A parity symmetry is enough to ensure this resonance is stable. In fact, if the breaking of the Goldstone symmetry is driven by the fermion sector, this Z{sub 2} symmetry is automatically unbroken in the electroweak phase. In this case, the relic density, as well as the expected indirect, direct and collider signals are then uniquely determined by the value of the compositeness scale, f. Current experimental bounds allow one to account for a large fraction of the dark matter of the Universe if the dark matter particle is part of an electroweak triplet. The totality of the relic abundance can be accommodated if instead this particle is a composite singlet. In both cases, the scale f and the dark matter mass are of the order of a few TeV. (orig.)

  8. Simplified Dark Matter Models

    OpenAIRE

    Morgante, Enrico

    2018-01-01

    I review the construction of Simplified Models for Dark Matter searches. After discussing the philosophy and some simple examples, I turn the attention to the aspect of the theoretical consistency and to the implications of the necessary extensions of these models.

  9. Dark matter candidates

    International Nuclear Information System (INIS)

    Turner, M.S.

    1989-01-01

    One of the simplest, yet most profound, questions we can ask about the Universe is, how much stuff is in it, and further what is that stuff composed of? Needless to say, the answer to this question has very important implications for the evolution of the Universe, determining both the ultimate fate and the course of structure formation. Remarkably, at this late date in the history of the Universe we still do not have a definitive answer to this simplest of questions---although we have some very intriguing clues. It is known with certainty that most of the material in the Universe is dark, and we have the strong suspicion that the dominant component of material in the Cosmos is not baryons, but rather is exotic relic elementary particles left over from the earliest, very hot epoch of the Universe. If true, the Dark Matter question is a most fundamental one facing both particle physics and cosmology. The leading particle dark matter candidates are: the axion, the neutralino, and a light neutrino species. All three candidates are accessible to experimental tests, and experiments are now in progress. In addition, there are several dark horse, long shot, candidates, including the superheavy magnetic monopole and soliton stars. 13 refs

  10. Asymmetric condensed dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre, Anthony; Diez-Tejedor, Alberto, E-mail: aguirre@scipp.ucsc.edu, E-mail: alberto.diez@fisica.ugto.mx [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA, 95064 (United States)

    2016-04-01

    We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate must be lighter than a few tens of eV so that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of decoupling to the scale of the QCD phase transition or above. This requires large dark matter-to-photon ratios and very weak interactions with standard model particles.

  11. Template Composite Dark Matter

    DEFF Research Database (Denmark)

    Drach, Vincent; Hietanen, Ari; Pica, Claudio

    2015-01-01

    We present a non perturbative study of SU(2) gauge theory with two fundamental Dirac flavours. We discuss how the model can be used as a template for composite Dark Matter (DM). We estimate one particular interaction of the DM candidate with the Standard Model : the interaction through photon...

  12. Little composite dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Balkin, Reuven; Weiler, Andreas [Technische Universitaet Muenchen, First Physik-Department, Garching (Germany); Perez, Gilad [Weizmann Institute of Science, Department of Particle Physics and Astrophysics, Rehovot (Israel)

    2018-02-15

    We examine the dark matter phenomenology of a composite electroweak singlet state. This singlet belongs to the Goldstone sector of a well-motivated extension of the Littlest Higgs with T-parity. A viable parameter space, consistent with the observed dark matter relic abundance as well as with the various collider, electroweak precision and dark matter direct detection experimental constraints is found for this scenario. T-parity implies a rich LHC phenomenology, which forms an interesting interplay between conventional natural SUSY type of signals involving third generation quarks and missing energy, from stop-like particle production and decay, and composite Higgs type of signals involving third generation quarks associated with Higgs and electroweak gauge boson, from vector-like top-partners production and decay. The composite features of the dark matter phenomenology allows the composite singlet to produce the correct relic abundance while interacting weakly with the Higgs via the usual Higgs portal coupling λ{sub DM} ∝ O(1%), thus evading direct detection. (orig.)

  13. Dark matter axions '96

    International Nuclear Information System (INIS)

    Sikivie, P.

    1996-01-01

    This report discusses why axions have been postulated to exist, what cosmology implies about their presence as cold dark matter in the galactic halo, how axions might be detected in cavities wherein strong magnetic fields stimulate their conversion into photons, and relations between axions' energy spectra and galactic halos' properties

  14. Impacts of winter NPO on subsequent winter ENSO: sensitivity to the definition of NPO index

    Science.gov (United States)

    Chen, Shangfeng; Wu, Renguang

    2018-01-01

    This study investigates the linkage between boreal winter North Pacific Oscillation (NPO) and subsequent winter El Niño-Southern Oscillation (ENSO) based on seven different NPO indices. Results show that the influence of winter NPO on the subsequent winter El Niño is sensitive to how the NPO is defined. A significant NPO-El Niño connection is obtained when the NPO-related anomalous cyclone over the subtropical North Pacific extends to near-equatorial regions. The anomalous cyclone induces warm sea surface temperature (SST) anomalies through modulating surface heat fluxes. These warm SST anomalies are able to maintain into the following spring and summer through an air-sea coupled process and in turn induce significant westerly wind anomalies over the tropical western Pacific. In contrast, the NPO-El Niño relationship is unclear when the NPO-related anomalous cyclone over the subtropical North Pacific is confined to off-equatorial regions and cannot induce significant warm SST anomalies over the subtropical North Pacific. The present study suggests that definitions of NPO should be taken into account when using NPO to predict ENSO. In particular, we recommend defining the NPO index based on the empirical orthogonal function technique over appropriate region that does not extend too far north.

  15. Neutrinos and dark energy

    International Nuclear Information System (INIS)

    Schrempp, L.

    2008-02-01

    From the observed late-time acceleration of cosmic expansion arises the quest for the nature of Dark Energy. As has been widely discussed, the cosmic neutrino background naturally qualifies for a connection with the Dark Energy sector and as a result could play a key role for the origin of cosmic acceleration. In this thesis we explore various theoretical aspects and phenomenological consequences arising from non-standard neutrino interactions, which dynamically link the cosmic neutrino background and a slowly-evolving scalar field of the dark sector. In the considered scenario, known as Neutrino Dark Energy, the complex interplay between the neutrinos and the scalar field not only allows to explain cosmic acceleration, but intriguingly, as a distinct signature, also gives rise to dynamical, time-dependent neutrino masses. In a first analysis, we thoroughly investigate an astrophysical high energy neutrino process which is sensitive to neutrino masses. We work out, both semi-analytically and numerically, the generic clear-cut signatures arising from a possible time variation of neutrino masses which we compare to the corresponding results for constant neutrino masses. Finally, we demonstrate that even for the lowest possible neutrino mass scale, it is feasible for the radio telescope LOFAR to reveal a variation of neutrino masses and therefore to probe the nature of Dark Energy within the next decade. A second independent analysis deals with the recently challenged stability of Neutrino Dark Energy against the strong growth of hydrodynamic perturbations, driven by the new scalar force felt between neutrinos. Within the framework of linear cosmological perturbation theory, we derive the equation of motion of the neutrino perturbations in a model-independent way. This equation allows to deduce an analytical stability condition which translates into a comfortable upper bound on the scalar-neutrino coupling which is determined by the ratio of the densities in cold dark

  16. Neutrinos and dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Schrempp, L.

    2008-02-15

    From the observed late-time acceleration of cosmic expansion arises the quest for the nature of Dark Energy. As has been widely discussed, the cosmic neutrino background naturally qualifies for a connection with the Dark Energy sector and as a result could play a key role for the origin of cosmic acceleration. In this thesis we explore various theoretical aspects and phenomenological consequences arising from non-standard neutrino interactions, which dynamically link the cosmic neutrino background and a slowly-evolving scalar field of the dark sector. In the considered scenario, known as Neutrino Dark Energy, the complex interplay between the neutrinos and the scalar field not only allows to explain cosmic acceleration, but intriguingly, as a distinct signature, also gives rise to dynamical, time-dependent neutrino masses. In a first analysis, we thoroughly investigate an astrophysical high energy neutrino process which is sensitive to neutrino masses. We work out, both semi-analytically and numerically, the generic clear-cut signatures arising from a possible time variation of neutrino masses which we compare to the corresponding results for constant neutrino masses. Finally, we demonstrate that even for the lowest possible neutrino mass scale, it is feasible for the radio telescope LOFAR to reveal a variation of neutrino masses and therefore to probe the nature of Dark Energy within the next decade. A second independent analysis deals with the recently challenged stability of Neutrino Dark Energy against the strong growth of hydrodynamic perturbations, driven by the new scalar force felt between neutrinos. Within the framework of linear cosmological perturbation theory, we derive the equation of motion of the neutrino perturbations in a model-independent way. This equation allows to deduce an analytical stability condition which translates into a comfortable upper bound on the scalar-neutrino coupling which is determined by the ratio of the densities in cold dark

  17. Non-baryonic dark matter

    International Nuclear Information System (INIS)

    Berkes, I.

    1996-01-01

    This article discusses the nature of the dark matter and the possibility of the detection of non-baryonic dark matter in an underground experiment. Among the useful detectors the low temperature bolometers are considered in some detail. (author)

  18. Dark energy and dark matter from hidden symmetry of gravity model with a non-Riemannian volume form

    Energy Technology Data Exchange (ETDEWEB)

    Guendelman, Eduardo [Ben-Gurion University of the Negev, Department of Physics, Beersheba (Israel); Nissimov, Emil; Pacheva, Svetlana [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria)

    2015-10-15

    We show that dark energy and dark matter can be described simultaneously by ordinary Einstein gravity interacting with a single scalar field provided the scalar field Lagrangian couples in a symmetric fashion to two different spacetime volume forms (covariant integration measure densities) on the spacetime manifold - one standard Riemannian given by √(-g) (square root of the determinant of the pertinent Riemannian metric) and another non-Riemannian volume form independent of the Riemannian metric, defined in terms of an auxiliary antisymmetric tensor gauge field of maximal rank. Integration of the equations of motion of the latter auxiliary gauge field produce an a priori arbitrary integration constant that plays the role of a dynamically generated cosmological constant or dark energy. Moreover, the above modified scalar field action turns out to possess a hidden Noether symmetry whose associated conserved current describes a pressureless ''dust'' fluid which we can identify with the dark matter completely decoupled from the dark energy. The form of both the dark energy and dark matter that results from the above class of models is insensitive to the specific form of the scalar field Lagrangian. By adding an appropriate perturbation, which breaks the above hidden symmetry and along with this couples dark matter and dark energy, we also suggest a way to obtain growing dark energy in the present universe's epoch without evolution pathologies. (orig.)

  19. arXiv Exponentially Light Dark Matter from Coannihilation

    CERN Document Server

    D'Agnolo, Raffaele Tito; Ruderman, Joshua T.; Wang, Po-Jen

    Dark matter may be a thermal relic whose abundance is set by mutual annihilations among multiple species. Traditionally, this coannihilation scenario has been applied to weak scale dark matter that is highly degenerate with other states. We show that coannihilation among states with split masses points to dark matter that is exponentially lighter than the weak scale, down to the keV scale. We highlight the regime where dark matter does not participate in the annihilations that dilute its number density. In this "sterile coannihilation" limit, the dark matter relic density is independent of its couplings, implying a broad parameter space of thermal relic targets for future experiments. Light dark matter from coannihilation evades stringent bounds from the cosmic microwave background, but will be tested by future direct detection, fixed target, and long-lived particle experiments.

  20. Welcome to the dark side

    CERN Multimedia

    Hogan, Jenny

    2007-01-01

    "Physicists says that 96% of the Universe is unseen, and appeal tot he ideas of "dark matter" and "dark energy" to make up the difference. In the first of two articles, jeanny hogan reports that attempts to identify the mysterious dark matter are on the verge of success. In the second, Geoff Brumfiel asks why dark energy, hailed as a breakthrough when discovered a decade ago, is proving more frustrating than ever tot he scientists who study it." (4,5 pages)

  1. Particle Dark Matter: An Overview

    International Nuclear Information System (INIS)

    Roszkowski, Leszek

    2009-01-01

    Dark matter in the Universe is likely to be made up of some new, hypothetical particle which would be a part of an extension of the Standard Model of particle physics. In this overview, I will first briefly review well motivated particle candidates for dark matter. Next I will focus my attention on the neutralino of supersymmetry which is the by far most popular dark matter candidate. I will discuss some recent progress and comment on prospects for dark matter detection.

  2. Polarization of photons emitted by decaying dark matter

    Directory of Open Access Journals (Sweden)

    W. Bonivento

    2017-02-01

    Full Text Available Radiatively decaying dark matter may be searched through investigating the photon spectrum of galaxies and galaxy clusters. We explore whether the properties of dark matter can be constrained through the study of a polarization state of emitted photons. Starting from the basic principles of quantum mechanics we show that the models of symmetric dark matter are indiscernible by the photon polarization. However, we find that the asymmetric dark matter consisted of Dirac fermions is a source of circularly polarized photons, calling for the experimental determination of the photon state.

  3. Dark matter from gravitational particle production at reheating

    Energy Technology Data Exchange (ETDEWEB)

    Markkanen, Tommi [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom); Nurmi, Sami, E-mail: tommi.markkanen@kcl.ac.uk, E-mail: sami.t.nurmi@jyu.fi [Department of Physics, University of Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä (Finland)

    2017-02-01

    We show that curvature induced particle production at reheating generates adiabatic dark matter if there are non-minimally coupled spectator scalars weakly coupled to visible matter. The observed dark matter abundance implies an upper bound on spectator masses m and non-minimal coupling values ξ. For example, assuming quadratic inflation, instant reheating and a single spectator scalar with only gravitational couplings, the observed dark matter abundance is obtained for m ∼ 0.1 GeV and ξ ∼ 1. Larger mass and coupling values of the spectator are excluded as they would lead to overproduction of dark matter.

  4. Dark matter from gravitational particle production at reheating

    International Nuclear Information System (INIS)

    Markkanen, Tommi; Nurmi, Sami

    2017-01-01

    We show that curvature induced particle production at reheating generates adiabatic dark matter if there are non-minimally coupled spectator scalars weakly coupled to visible matter. The observed dark matter abundance implies an upper bound on spectator masses m and non-minimal coupling values ξ. For example, assuming quadratic inflation, instant reheating and a single spectator scalar with only gravitational couplings, the observed dark matter abundance is obtained for m ∼ 0.1 GeV and ξ ∼ 1. Larger mass and coupling values of the spectator are excluded as they would lead to overproduction of dark matter.

  5. Learning through a Winter's Tale

    Science.gov (United States)

    Vidotto, Kristie

    2010-01-01

    In this article, the author shares her experience during the final semester of Year 11 Theatre Studies when she performed a monologue about Hermione from "The Winter's Tale". This experience was extremely significant to her because it nearly made her lose faith in one of the most important parts of her life, drama. She believes this…

  6. How dark chocolate is processed

    Science.gov (United States)

    This month’s column will continue the theme of “How Is It Processed?” The column will focus on dark chocolate. The botanical name for the cacao tree is Theobroma cacao, which literally means “food of the Gods.” Dark chocolate is both delicious and nutritious. Production of dark chocolate will be des...

  7. The DarkSide Program

    Directory of Open Access Journals (Sweden)

    Rossi B.

    2016-01-01

    Full Text Available DarkSide-50 at Gran Sasso underground laboratory (LNGS, Italy, is a direct dark matter search experiment based on a liquid argon TPC. DS-50 has completed its first dark matter run using atmospheric argon as target. The detector performances and the results of the first physics run are presented in this proceeding.

  8. Dark Matter Searches at LHC

    CERN Document Server

    Terashi, Koji; The ATLAS collaboration

    2017-01-01

    This talk will present dark matter searches at the LHC in the PIC2017 conference. The main emphasis is placed on the direct dark matter searches while the interpretation of searches for SUSY and invisible Higgs signals for the dark matter is also presented.

  9. Accretion of dark matter by stars.

    Science.gov (United States)

    Brito, Richard; Cardoso, Vitor; Okawa, Hirotada

    2015-09-11

    Searches for dark matter imprints are one of the most active areas of current research. We focus here on light fields with mass m_{B}, such as axions and axionlike candidates. Using perturbative techniques and full-blown nonlinear numerical relativity methods, we show the following. (i) Dark matter can pile up in the center of stars, leading to configurations and geometries oscillating with a frequency that is a multiple of f=2.5×10^{14}(m_{B}c^{2}/eV)  Hz. These configurations are stable throughout most of the parameter space, and arise out of credible mechanisms for dark-matter capture. Stars with bosonic cores may also develop in other theories with effective mass couplings, such as (massless) scalar-tensor theories. We also show that (ii) collapse of the host star to a black hole is avoided by efficient gravitational cooling mechanisms.

  10. Minimal Left-Right Symmetric Dark Matter.

    Science.gov (United States)

    Heeck, Julian; Patra, Sudhanwa

    2015-09-18

    We show that left-right symmetric models can easily accommodate stable TeV-scale dark matter particles without the need for an ad hoc stabilizing symmetry. The stability of a newly introduced multiplet either arises accidentally as in the minimal dark matter framework or comes courtesy of the remaining unbroken Z_{2} subgroup of B-L. Only one new parameter is introduced: the mass of the new multiplet. As minimal examples, we study left-right fermion triplets and quintuplets and show that they can form viable two-component dark matter. This approach is, in particular, valid for SU(2)×SU(2)×U(1) models that explain the recent diboson excess at ATLAS in terms of a new charged gauge boson of mass 2 TeV.

  11. Detecting superlight dark matter with Fermi-degenerate materials

    Energy Technology Data Exchange (ETDEWEB)

    Hochberg, Yonit [Theory Group, Lawrence Berkeley National Laboratory,Berkeley, CA 94709 (United States); Berkeley Center for Theoretical Physics, University of California, Berkeley, CA 94709 (United States); Pyle, Matt [Physics Department, University of California,Berkeley, CA 94709 (United States); Zhao, Yue [Michigan Center for Theoretical Physics, University of Michigan,Ann Arbor, MI 48109 (United States); Zurek, Kathryn M. [Theory Group, Lawrence Berkeley National Laboratory,Berkeley, CA 94709 (United States); Berkeley Center for Theoretical Physics, University of California,Berkeley, CA 94709 (United States)

    2016-08-08

    We examine in greater detail the recent proposal of using superconductors for detecting dark matter as light as the warm dark matter limit of O(keV). Detection of such light dark matter is possible if the entire kinetic energy of the dark matter is extracted in the scattering, and if the experiment is sensitive to O(meV) energy depositions. This is the case for Fermi-degenerate materials in which the Fermi velocity exceeds the dark matter velocity dispersion in the Milky Way of ∼10{sup −3}. We focus on a concrete experimental proposal using a superconducting target with a transition edge sensor in order to detect the small energy deposits from the dark matter scatterings. Considering a wide variety of constraints, from dark matter self-interactions to the cosmic microwave background, we show that models consistent with cosmological/astrophysical and terrestrial constraints are observable with such detectors. A wider range of viable models with dark matter mass below an MeV is available if dark matter or mediator properties (such as couplings or masses) differ at BBN epoch or in stellar interiors from those in superconductors. We also show that metal targets pay a strong in-medium suppression for kinetically mixed mediators; this suppression is alleviated with insulating targets.

  12. Interacting dark matter disguised as warm dark matter

    International Nuclear Information System (INIS)

    Boehm, Celine; Riazuelo, Alain; Hansen, Steen H.; Schaeffer, Richard

    2002-01-01

    We explore some of the consequences of dark-matter-photon interactions on structure formation, focusing on the evolution of cosmological perturbations and performing both an analytical and a numerical study. We compute the cosmic microwave background anisotropies and matter power spectrum in this class of models. We find, as the main result, that when dark matter and photons are coupled, dark matter perturbations can experience a new damping regime in addition to the usual collisional Silk damping effect. Such dark matter particles (having quite large photon interactions) behave like cold dark matter or warm dark matter as far as the cosmic microwave background anisotropies or matter power spectrum are concerned, respectively. These dark-matter-photon interactions leave specific imprints at sufficiently small scales on both of these two spectra, which may allow us to put new constraints on the acceptable photon-dark-matter interactions. Under the conservative assumption that the abundance of 10 12 M · galaxies is correctly given by the cold dark matter, and without any knowledge of the abundance of smaller objects, we obtain the limit on the ratio of the dark-matter-photon cross section to the dark matter mass σ γ-DM /m DM -6 σ Th /(100 GeV)≅6x10 -33 cm 2 GeV -1

  13. Finding structure in the dark: Coupled dark energy, weak lensing, and the mildly nonlinear regime

    Science.gov (United States)

    Miranda, Vinicius; González, Mariana Carrillo; Krause, Elisabeth; Trodden, Mark

    2018-03-01

    We reexamine interactions between the dark sectors of cosmology, with a focus on robust constraints that can be obtained using only mildly nonlinear scales. While it is well known that couplings between dark matter and dark energy can be constrained to the percent level when including the full range of scales probed by future optical surveys, calibrating matter power spectrum emulators to all possible choices of potentials and couplings requires many computationally expensive n-body simulations. Here we show that lensing and clustering of galaxies in combination with the cosmic microwave background (CMB) are capable of probing the dark sector coupling to the few percent level for a given class of models, using only linear and quasilinear Fourier modes. These scales can, in principle, be described by semianalytical techniques such as the effective field theory of large-scale structure.

  14. Impact of semi-annihilations on dark matter phenomenology - an example of ZN symmetric scalar dark matter

    International Nuclear Information System (INIS)

    Belanger, G.; Kannike, K.; Pukhov, A.; Raidal, M.

    2012-01-01

    We study the impact of semi-annihilations χχ ↔ χX; where χ is dark matter and X is any standard model particle, on dark matter phenomenology. We formulate scalar dark matter models with minimal field content that predict non-trivial dark matter phenomenology for different discrete Abelian symmetries Z N , N > 2, and contain semi-annihilation processes. We implement such an example model in micrOMEGAs and show that semi-annihilations modify the phenomenology of this type of models. (authors)

  15. THE MAGIC OF DARK TOURISM

    OpenAIRE

    Erika KULCSÁR; PhD Rozalina Zsófia SIMON

    2015-01-01

    The dark tourism is a form of tourism that is not unanimously accepted by the whole society, but in spite of this fact, the practitioners of dark tourism is a viable segment. Indeed the concept that defines dark tourism is none other than death, and perhaps this is why it will always be a segment that will not be attracted by this form of tourism. Many questions about dark tourism arise. Among them: (1) is dark tourism an area of science attractive for researches? (2) which is the typology of...

  16. Dark matter in the universe

    International Nuclear Information System (INIS)

    Kormendy, J.; Knapp, G.R.

    1987-01-01

    Until recently little more was known than that dark matter appears to exist; there was little systematic information about its properties. Only in the past several years was progress made to the point where dark matter density distributions can be measured. For example, with accurate rotation curves extending over large ranges in radius, decomposing the effects of visible and dark matter to measure dark matter density profiles can be tried. Some regularities in dark matter behaviour have already turned up. This volume includes review and invited papers, poster papers, and the two general discussions. (Auth.)

  17. Dark Matter Detection: Current Status

    International Nuclear Information System (INIS)

    Akerib, Daniel S.

    2011-01-01

    Overwhelming observational evidence indicates that most of the matter in the Universe consists of non-baryonic dark matter. One possibility is that the dark matter is Weakly-Interacting Massive Particles (WIMPs) that were produced in the early Universe. These relics could comprise the Milky Way's dark halo and provide evidence for new particle physics, such as Supersymmetry. This talk focuses on the status of current efforts to detect dark matter by testing the hypothesis that WIMPs exist in the galactic halo. WIMP searches have begun to explore the region of parameter space where SUSY particles could provide dark matter candidates.

  18. Strongly coupled dark energy with warm dark matter vs. LCDM

    Energy Technology Data Exchange (ETDEWEB)

    Bonometto, S.A.; Mezzetti, M. [INAF, Osservatorio di Trieste and Trieste University, Physics Department, Astronomy Unit, Via Tiepolo 11, 34143 Trieste (Italy); Mainini, R., E-mail: bonometto@oats.inaf.it, E-mail: mezzetti@oats.inaf.it, E-mail: roberto.mainini@mib.infn.it [Physics Department G. Occhialini, Milano-Bicocca University, Piazza della Scienza 3, 20126 Milano (Italy)

    2017-10-01

    Cosmologies including strongly Coupled (SC) Dark Energy (DE) and Warm dark matter (SCDEW) are based on a conformally invariant (CI) attractor solution modifying the early radiative expansion. Then, aside of radiation, a kinetic field Φ and a DM component account for a stationary fraction, ∼ 1 %, of the total energy. Most SCDEW predictions are hardly distinguishable from LCDM, while SCDEW alleviates quite a few LCDM conceptual problems, as well as its difficulties to meet data below the average galaxy scale. The CI expansion begins at the end of inflation, when Φ (future DE) possibly plays a role in reheating, and ends at the Higgs scale. Afterwards, a number of viable options is open, allowing for the transition from the CI expansion to the present Universe. In this paper: (i) We show how the attractor is recovered when the spin degrees of freedom decreases. (ii) We perform a detailed comparison of CMB anisotropy and polarization spectra for SCDEW and LCDM, including tensor components, finding negligible discrepancies. (iii) Linear spectra exhibit a greater parameter dependence at large k 's, but are still consistent with data for suitable parameter choices. (iv) We also compare previous simulation results with fresh data on galaxy concentration. Finally, (v) we outline numerical difficulties at high k . This motivates a second related paper [1], where such problems are treated in a quantitative way.

  19. Augury of darkness: the low-mass dark Z′ portal

    International Nuclear Information System (INIS)

    Alves, Alexandre; Arcadi, Giorgio; Mambrini, Yann; Profumo, Stefano; Queiroz, Farinaldo S.

    2017-01-01

    Dirac fermion dark matter models with heavy Z ′ mediators are subject to stringent constraints from spin-independent direct searches and from LHC bounds, cornering them to live near the Z ′ resonance. Such constraints can be relaxed, however, by turning off the vector coupling to Standard Model fermions, thus weakening direct detection bounds, or by resorting to light Z ′ masses, below the Z pole, to escape heavy resonance searches at the LHC. In this work we investigate both cases, as well as the applicability of our findings to Majorana dark matter. We derive collider bounds for light Z ′ gauge bosons using the CL S method, spin-dependent scattering limits, as well as the spin-independent scattering rate arising from the evolution of couplings between the energy scale of the mediator mass and the nuclear energy scale, and indirect detection limits. We show that such scenarios are still rather constrained by data, and that near resonance they could accommodate the gamma-ray GeV excess in the Galactic center.

  20. Dilaton could affect abundance of dark matter particles

    CERN Multimedia

    2007-01-01

    "The amount of dark matter left over from the early universe may be less than previously believed. new research shows that the "relic abundance" of stable dark matter particles such as the neutralino may be reduced as compared to standard cosmology theories due to the effects of the "dilaton", a particle with zero spin in the gravitational sector of strings." (1 page)

  1. Dark and bright vortex solitons in electromagnetically induced transparent media

    International Nuclear Information System (INIS)

    Wu Xuan; Xie Xiaotao; Yang Xiaoxue

    2006-01-01

    We show that dark and bright vortex solitons can exist in three-state electromagnetically induced transparent media under some appropriate conditions. We also analyse the stability of the dark and bright vortex solitons. This work may provide other research opportunities in nonlinear optical experiments and may result in a substantial impact on technology

  2. Light asymmetric dark matter from new strong dynamics

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal; Sarkar, Subir; Schmidt-Hoberg, Kai

    2011-01-01

    A ~5 GeV `dark baryon' with a cosmic asymmetry similar to that of baryons is a natural candidate for the dark matter. We study the possibility of generating such a state through dynamical electroweak symmetry breaking, and show that it can share the relic baryon asymmetry via sphaleron interactions...

  3. Flipped dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.; Hagelin, J.S.; Kelley, S.; Nanopoulos, D.V.; Olive, K.A.

    1988-08-04

    We study candidates for dark matter in a minimal flipped SU(5) x U(1) supersymmetric GUT. Since the model has no R-parity, spin-1/2 supersymmetric partners of conventional particles mix with other neutral fermions including neutrinos, and can decay into them. The lighest particle which is predominantly a gaugino/higgsino mixture decays with a lifetime tau/sub chi/ approx. = 1-10/sup 9/ s. The model contains a scalar 'flaton' field whose coherent oscillations decay before cosmological nucleosynthesis, and whose pseudoscalar partner contributes negligibly to ..cap omega.. if it is light enough to survive to the present epoch. The fermionic 'flatino' partner of the flaton has a lifetime tau/sub PHI/ approx. = 10/sup 28/-10/sup 34/ yr and is a viable candiate for metastable dark matter with ..cap omega.. < or approx. 1.

  4. CN in dark clouds

    International Nuclear Information System (INIS)

    Churchwell, E.; Bieging, J.H.

    1983-01-01

    We have detected CN (N = 1--0) emission toward six locations in the Taurus dark cloud complex, but not toward L183 or B227. The two hyperfine components, F = 3/2--1/2 and F = 5/2--3/2 (of J = 3/2--1/2), have intensity ratios near unity toward four locations in Taurus, consistent with large line optical depths. CN column densities are found to be > or approx. =6 x 10 13 cm -2 in those directions where the hyperfine ratios are near unity. By comparing CN with NH 3 and C 18 O column densities, we find that the relative abundance of CN in the Taurus cloudlets is at least a factor of 10 greater than in L183. In this respect, CN fits the pattern of enhanced abundances of carbon-bearing molecules (in partricular the cyanopolyynes) in the Taurus cloudlets relative to similar dark clouds outside Taurus

  5. Dark matter from unification

    DEFF Research Database (Denmark)

    Kainulainen, Kimmo; Tuominen, Kimmo; Virkajärvi, Jussi Tuomas

    2013-01-01

    We consider a minimal extension of the Standard Model (SM), which leads to unification of the SM coupling constants, breaks electroweak symmetry dynamically by a new strongly coupled sector and leads to novel dark matter candidates. In this model, the coupling constant unification requires...... eigenstates of this sector and determine the resulting relic density. The results are constrained by available data from colliders and direct and indirect dark matter experiments. We find the model viable and outline briefly future research directions....... the existence of electroweak triplet and doublet fermions singlet under QCD and new strong dynamics underlying the Higgs sector. Among these new matter fields and a new right handed neutrino, we consider the mass and mixing patterns of the neutral states. We argue for a symmetry stabilizing the lightest mass...

  6. Are cold winters in Europe associated with low solar activity?

    International Nuclear Information System (INIS)

    Lockwood, M; Harrison, R G; Woollings, T; Solanki, S K

    2010-01-01

    Solar activity during the current sunspot minimum has fallen to levels unknown since the start of the 20th century. The Maunder minimum (about 1650-1700) was a prolonged episode of low solar activity which coincided with more severe winters in the United Kingdom and continental Europe. Motivated by recent relatively cold winters in the UK, we investigate the possible connection with solar activity. We identify regionally anomalous cold winters by detrending the Central England temperature (CET) record using reconstructions of the northern hemisphere mean temperature. We show that cold winter excursions from the hemispheric trend occur more commonly in the UK during low solar activity, consistent with the solar influence on the occurrence of persistent blocking events in the eastern Atlantic. We stress that this is a regional and seasonal effect relating to European winters and not a global effect. Average solar activity has declined rapidly since 1985 and cosmogenic isotopes suggest an 8% chance of a return to Maunder minimum conditions within the next 50 years (Lockwood 2010 Proc. R. Soc. A 466 303-29): the results presented here indicate that, despite hemispheric warming, the UK and Europe could experience more cold winters than during recent decades.

  7. Polar vortex evolution during Northern Hemispheric winter 2004/05

    Directory of Open Access Journals (Sweden)

    T. Chshyolkova

    2007-06-01

    Full Text Available As a part of the project "Atmospheric Wave Influences upon the Winter Polar Vortices (0–100 km" of the CAWSES program, data from meteor and Medium Frequency radars at 12 locations and MetO (UK Meteorological Office global assimilated fields have been analyzed for the first campaign during the Northern Hemispheric winter of 2004/05. The stratospheric state has been described using the conventional zonal mean parameters as well as Q-diagnostic, which allows consideration of the longitudinal variability. The stratosphere was cold during winter of 2004/05, and the polar vortex was relatively strong during most of the winter with relatively weak disturbances occurring at the end of December and the end of January. For this winter the strongest deformation with the splitting of the polar vortex in the lower stratosphere was observed at the end of February. Here the results show strong latitudinal and longitudinal differences that are evident in the stratospheric and mesospheric data sets at different stations. Eastward winds are weaker and oscillations with planetary wave periods have smaller amplitudes at more poleward stations. Accordingly, the occurrence, time and magnitude of the observed reversal of the zonal mesospheric winds associated with stratospheric disturbances depend on the local stratospheric conditions. In general, compared to previous years, the winter of 2004/05 could be characterized by weak planetary wave activity at stratospheric and mesospheric heights.

  8. Dark matter wants Linear Collider

    International Nuclear Information System (INIS)

    Matsumoto, S.; Asano, M.; Fujii, K.; Takubo, Y.; Honda, T.; Saito, T.; Yamamoto, H.; Humdi, R.S.; Ito, H.; Kanemura, S; Nabeshima, T.; Okada, N.; Suehara, T.

    2011-01-01

    One of the main purposes of physics at the International Linear Collider (ILC) is to study the property of dark matter such as its mass, spin, quantum numbers, and interactions with particles of the standard model. We discuss how the property can or cannot be investigated at the ILC using two typical cases of dark matter scenario: 1) most of new particles predicted in physics beyond the standard model are heavy and only dark matter is accessible at the ILC, and 2) not only dark matter but also other new particles are accessible at the ILC. We find that, as can be easily imagined, dark matter can be detected without any difficulties in the latter case. In the former case, it is still possible to detect dark matter when the mass of dark matter is less than a half mass of the Higgs boson.

  9. Planckian Interacting Massive Particles as Dark Matter.

    Science.gov (United States)

    Garny, Mathias; Sandora, McCullen; Sloth, Martin S

    2016-03-11

    The standard model could be self-consistent up to the Planck scale according to the present measurements of the Higgs boson mass and top quark Yukawa coupling. It is therefore possible that new physics is only coupled to the standard model through Planck suppressed higher dimensional operators. In this case the weakly interacting massive particle miracle is a mirage, and instead minimality as dictated by Occam's razor would indicate that dark matter is related to the Planck scale, where quantum gravity is anyway expected to manifest itself. Assuming within this framework that dark matter is a Planckian interacting massive particle, we show that the most natural mass larger than 0.01M_{p} is already ruled out by the absence of tensor modes in the cosmic microwave background (CMB). This also indicates that we expect tensor modes in the CMB to be observed soon for this type of minimal dark matter model. Finally, we touch upon the Kaluza-Klein graviton mode as a possible realization of this scenario within UV complete models, as well as further potential signatures and peculiar properties of this type of dark matter candidate. This paradigm therefore leads to a subtle connection between quantum gravity, the physics of primordial inflation, and the nature of dark matter.

  10. Dark matter maps reveal cosmic scaffolding

    Energy Technology Data Exchange (ETDEWEB)

    Massey, R; Rhodes, J; Ellis, R; Scoville, N; Capak, P [CALTECH, Pasadena, CA 91125 (United States); Rhodes, J [CALTECH, Jet Prop Lab, Pasadena, CA 91109 (United States); Leauthaud, A; Kneib, J P [Lab Astrophys Marseille, F-13376 Marseille, (France); Finoguenov, A [Max Planck Inst Extraterr Phys, D-85748 Garching, (Germany); Bacon, D; Taylor, A [Inst Astron, Edinburgh EH9 3HJ, Midlothian, (United Kingdom); Aussel, H; Refregier, A [CNRS, CEA, Unite Mixte Rech, AIM, F-91191 Gif Sur Yvette, (France); Koekemoer, A; Mobasher, B [Univ Paris 07, CE Saclay, UMR 7158, F-91191 Gif Sur Yvette, (France); McCracken, H [Space Telescope Sci Inst, Baltimore, MD 21218 (United States); Pires, S; Starck, J L [Univ Paris 06, Inst Astrophys Paris, F-75014 Paris, (France); Pires, S [Ctr Etud Saclay, CEA, DSM, DAPNIA, SEDI, F-91191 Gif Sur Yvette, (France); Sasaki, S; Taniguchi, Y [Ehime Univ, Dept Phys, Matsuyama, Ehime 7908577, (Japan); Taylor, J [Univ Waterloo, Dept Phys and Astron, Waterloo, ON N2L 3G1, (Canada)

    2007-07-01

    Ordinary baryonic particles (such as protons and neutrons) account for only one-sixth of the total matter in the Universe. The remainder is a mysterious 'dark matter' component, which does not interact via electromagnetism and thus neither emits nor reflects light. As dark matter cannot be seen directly using traditional observations, very little is currently known about its properties. It does interact via gravity, and is most effectively probed through gravitational lensing: the deflection of light from distant galaxies by the gravitational attraction of foreground mass concentrations. This is a purely geometrical effect that is free of astrophysical assumptions and sensitive to all matter - whether baryonic or dark. Here we show high-fidelity maps of the large-scale distribution of dark matter, resolved in both angle and depth. We find a loose network of filaments, growing over time, which intersect in massive structures at the locations of clusters of galaxies. Our results are consistent with predictions of gravitationally induced structure formation, in which the initial, smooth distribution of dark matter collapses into filaments then into clusters, forming a gravitational scaffold into which gas can accumulate, and stars can be built. (authors)

  11. Dark matter maps reveal cosmic scaffolding

    International Nuclear Information System (INIS)

    Massey, R.; Rhodes, J.; Ellis, R.; Scoville, N.; Capak, P.; Rhodes, J.; Leauthaud, A.; Kneib, J.P.; Finoguenov, A.; Bacon, D.; Taylor, A.; Aussel, H.; Refregier, A.; Koekemoer, A.; Mobasher, B.; McCracken, H.; Pires, S.; Starck, J.L.; Pires, S.; Sasaki, S.; Taniguchi, Y.; Taylor, J.

    2007-01-01

    Ordinary baryonic particles (such as protons and neutrons) account for only one-sixth of the total matter in the Universe. The remainder is a mysterious 'dark matter' component, which does not interact via electromagnetism and thus neither emits nor reflects light. As dark matter cannot be seen directly using traditional observations, very little is currently known about its properties. It does interact via gravity, and is most effectively probed through gravitational lensing: the deflection of light from distant galaxies by the gravitational attraction of foreground mass concentrations. This is a purely geometrical effect that is free of astrophysical assumptions and sensitive to all matter - whether baryonic or dark. Here we show high-fidelity maps of the large-scale distribution of dark matter, resolved in both angle and depth. We find a loose network of filaments, growing over time, which intersect in massive structures at the locations of clusters of galaxies. Our results are consistent with predictions of gravitationally induced structure formation, in which the initial, smooth distribution of dark matter collapses into filaments then into clusters, forming a gravitational scaffold into which gas can accumulate, and stars can be built. (authors)

  12. Dark matter maps reveal cosmic scaffolding.

    Science.gov (United States)

    Massey, Richard; Rhodes, Jason; Ellis, Richard; Scoville, Nick; Leauthaud, Alexie; Finoguenov, Alexis; Capak, Peter; Bacon, David; Aussel, Hervé; Kneib, Jean-Paul; Koekemoer, Anton; McCracken, Henry; Mobasher, Bahram; Pires, Sandrine; Refregier, Alexandre; Sasaki, Shunji; Starck, Jean-Luc; Taniguchi, Yoshi; Taylor, Andy; Taylor, James

    2007-01-18

    Ordinary baryonic particles (such as protons and neutrons) account for only one-sixth of the total matter in the Universe. The remainder is a mysterious 'dark matter' component, which does not interact via electromagnetism and thus neither emits nor reflects light. As dark matter cannot be seen directly using traditional observations, very little is currently known about its properties. It does interact via gravity, and is most effectively probed through gravitational lensing: the deflection of light from distant galaxies by the gravitational attraction of foreground mass concentrations. This is a purely geometrical effect that is free of astrophysical assumptions and sensitive to all matter--whether baryonic or dark. Here we show high-fidelity maps of the large-scale distribution of dark matter, resolved in both angle and depth. We find a loose network of filaments, growing over time, which intersect in massive structures at the locations of clusters of galaxies. Our results are consistent with predictions of gravitationally induced structure formation, in which the initial, smooth distribution of dark matter collapses into filaments then into clusters, forming a gravitational scaffold into which gas can accumulate, and stars can be built.

  13. A dark energy multiverse

    International Nuclear Information System (INIS)

    Robles-Perez, Salvador; Martin-Moruno, Prado; Rozas-Fernandez, Alberto; Gonzalez-Diaz, Pedro F

    2007-01-01

    We present cosmic solutions corresponding to universes filled with dark and phantom energy, all having a negative cosmological constant. All such solutions contain infinite singularities, successively and equally distributed along time, which can be either big bang/crunches or big rips singularities. Classically these solutions can be regarded as associated with multiverse scenarios, being those corresponding to phantom energy that may describe the current accelerating universe. (fast track communication)

  14. Baryonic dark matter

    Science.gov (United States)

    Silk, Joseph

    1991-01-01

    Both canonical primordial nucleosynthesis constraints and large-scale structure measurements, as well as observations of the fundamental cosmological parameters, appear to be consistent with the hypothesis that the universe predominantly consists of baryonic dark matter (BDM). The arguments for BDM to consist of compact objects that are either stellar relics or substellar objects are reviewed. Several techniques for searching for halo BDM are described.

  15. A dark energy multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Robles-Perez, Salvador; Martin-Moruno, Prado; Rozas-Fernandez, Alberto; Gonzalez-Diaz, Pedro F [Colina de los Chopos, Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, Serrano 121, 28006 Madrid (Spain)

    2007-05-21

    We present cosmic solutions corresponding to universes filled with dark and phantom energy, all having a negative cosmological constant. All such solutions contain infinite singularities, successively and equally distributed along time, which can be either big bang/crunches or big rips singularities. Classically these solutions can be regarded as associated with multiverse scenarios, being those corresponding to phantom energy that may describe the current accelerating universe. (fast track communication)

  16. DARK MATTER: Optical shears

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Evidence for dark matter continues to build up. Last year (December 1993, page 4) excitement rose when the French EROS (Experience de Recherche d'Objets Sombres) and the US/Australia MACHO collaborations reported hints that small inert 'brown dwarf stars could provide some of the Universe's missing matter. In the 1930s, astronomers first began to suspect that there is a lot more to the Universe than meets the eye

  17. Revealing dark matter substructure with anisotropies in the diffuse gamma-ray background

    OpenAIRE

    Siegal-Gaskins, Jennifer M.

    2008-01-01

    The majority of gamma-ray emission from Galactic dark matter annihilation is likely to be detected as a contribution to the diffuse gamma-ray background. I show that dark matter substructure in the halo of the Galaxy induces characteristic anisotropies in the diffuse background that could be used to determine the small-scale dark matter distribution. I calculate the angular power spectrum of the emission from dark matter substructure for several models of the subhalo population, and show that...

  18. Dark Energy in Practice

    CERN Document Server

    Sapone, Domenico

    2010-01-01

    In this paper we review a part of the approaches that have been considered to explain the extraordinary discovery of the late time acceleration of the Universe. We discuss the arguments that have led physicists and astronomers to accept dark energy as the current preferable candidate to explain the acceleration. We highlight the problems and the attempts to overcome the difficulties related to such a component. We also consider alternative theories capable of explaining the acceleration of the Universe, such as modification of gravity. We compare the two approaches and point out the observational consequences, reaching the sad but foresightful conclusion that we will not be able to distinguish between a Universe filled by dark energy or a Universe where gravity is different from General Relativity. We review the present observations and discuss the future experiments that will help us to learn more about our Universe. This is not intended to be a complete list of all the dark energy models but this paper shou...

  19. 36 CFR 1002.19 - Winter activities.

    Science.gov (United States)

    2010-07-01

    ... RECREATION § 1002.19 Winter activities. (a) Skiing, snowshoeing, ice skating, sledding, innertubing, tobogganing and similar winter sports are prohibited on Presidio Trust roads and in parking areas open to...

  20. Classification guide: Sochi 2014 Paralympic Winter Games

    OpenAIRE

    2014-01-01

    The Sochi 2014 Paralympic Winter Games classification guide is designed to provide National Paralympic Committees (NPCs) and International Federations (IFs) with information about the classification policies and procedures that will apply to the Sochi 2014 Paralympic Winter Games.

  1. Essential Outdoor Sun Safety Tips for Winter

    Science.gov (United States)

    ... Weekend Warriors expand/collapse Vitamin D Essential Outdoor Sun Safety Tips for Winter Winter sports enthusiasts are ... skiing! Be Mindful of Time Spent in the Sun, Regardless of the Season If possible, ski early ...

  2. Comprehensive asymmetric dark matter model

    Science.gov (United States)

    Lonsdale, Stephen J.; Volkas, Raymond R.

    2018-05-01

    Asymmetric dark matter (ADM) is motivated by the similar cosmological mass densities measured for ordinary and dark matter. We present a comprehensive theory for ADM that addresses the mass density similarity, going beyond the usual ADM explanations of similar number densities. It features an explicit matter-antimatter asymmetry generation mechanism, has one fully worked out thermal history and suggestions for other possibilities, and meets all phenomenological, cosmological and astrophysical constraints. Importantly, it incorporates a deep reason for why the dark matter mass scale is related to the proton mass, a key consideration in ADM models. Our starting point is the idea of mirror matter, which offers an explanation for dark matter by duplicating the standard model with a dark sector related by a Z2 parity symmetry. However, the dark sector need not manifest as a symmetric copy of the standard model in the present day. By utilizing the mechanism of "asymmetric symmetry breaking" with two Higgs doublets in each sector, we develop a model of ADM where the mirror symmetry is spontaneously broken, leading to an electroweak scale in the dark sector that is significantly larger than that of the visible sector. The weak sensitivity of the ordinary and dark QCD confinement scales to their respective electroweak scales leads to the necessary connection between the dark matter and proton masses. The dark matter is composed of either dark neutrons or a mixture of dark neutrons and metastable dark hydrogen atoms. Lepton asymmetries are generated by the C P -violating decays of heavy Majorana neutrinos in both sectors. These are then converted by sphaleron processes to produce the observed ratio of visible to dark matter in the universe. The dynamics responsible for the kinetic decoupling of the two sectors emerges as an important issue that we only partially solve.

  3. Signatures of dark radiation in neutrino and dark matter detectors

    Science.gov (United States)

    Cui, Yanou; Pospelov, Maxim; Pradler, Josef

    2018-05-01

    We consider the generic possibility that the Universe's energy budget includes some form of relativistic or semi-relativistic dark radiation (DR) with nongravitational interactions with standard model (SM) particles. Such dark radiation may consist of SM singlets or a nonthermal, energetic component of neutrinos. If such DR is created at a relatively recent epoch, it can carry sufficient energy to leave a detectable imprint in experiments designed to search for very weakly interacting particles: dark matter and underground neutrino experiments. We analyze this possibility in some generality, assuming that the interactive dark radiation is sourced by late decays of an unstable particle, potentially a component of dark matter, and considering a variety of possible interactions between the dark radiation and SM particles. Concentrating on the sub-GeV energy region, we derive constraints on different forms of DR using the results of the most sensitive neutrino and dark matter direct detection experiments. In particular, for interacting dark radiation carrying a typical momentum of ˜30 MeV /c , both types of experiments provide competitive constraints. This study also demonstrates that non-standard sources of neutrino emission (e.g., via dark matter decay) are capable of creating a "neutrino floor" for dark matter direct detection that is closer to current bounds than is expected from standard neutrino sources.

  4. Axions as hot and cold dark matter

    International Nuclear Information System (INIS)

    Jeong, Kwang Sik; Kawasaki, Masahiro; Tokyo Univ., Kashiwa; Takahashi, Fuminobu; Tokyo Univ., Kashiwa

    2013-10-01

    The presence of a hot dark matter component has been hinted at 3σ by a combination of the results from different cosmological observations. We examine a possibility that pseudo Nambu- Goldstone bosons account for both hot and cold dark matter components. We show that the QCD axions can do the job for the axion decay constant f a 10 ) GeV, if they are produced by the saxion decay and the domain wall annihilation. We also investigate the cases of thermal QCD axions, pseudo Nambu-Goldstone bosons coupled to the standard model sector through the Higgs portal, and axions produced by modulus decay.

  5. Asymmetric dark matter and the Sun

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal; Sarkar, Subir

    2010-01-01

    Cold dark matter particles with an intrinsic matter-antimatter asymmetry do not annihilate after gravitational capture by the Sun and can affect its interior structure. The rate of capture is exponentially enhanced when such particles have self-interactions of the right order to explain structure...... formation on galactic scales. A `dark baryon' of mass 5 GeV is a natural candidate and has the required relic abundance if its asymmetry is similar to that of ordinary baryons. We show that such particles can solve the `solar composition problem'. The predicted small decrease in the low energy neutrino...

  6. Research on spatial distribution of photosynthetic characteristics of Winter Wheat

    Science.gov (United States)

    Yan, Q. Q.; Zhou, Q. Y.; Zhang, B. Z.; Han, X.; Han, N. N.; Li, S. M.

    2018-03-01

    In order to explore the spatial distribution of photosynthetic characteristics of winter wheat leaf, the photosynthetic rate on different parts of leaf (leaf base-leaf middle-leaf apex) and that on each canopy (top layer-middle layer-bottom layer) leaf during the whole growth period of winter wheat were measured. The variation of photosynthetic rate with PAR and the spatial distribution of winter wheat leaf during the whole growth periods were analysed. The results showed that the photosynthetic rate of different parts of winter wheat increased with the increase of PAR, which was showed as leaf base>leaf middle>leaf apex. In the same growth period, photosynthetic rate in different parts of the tablet was showed as leaf middle>leaf base>leaf apex. For the different canopy layer of winter wheat, the photosynthetic rate of the top layer leaf was significantly greater than that of the middle layer and lower layer leaf. The photosynthetic rate of the top layer leaf was the largest in the leaf base position. The photosynthetic rate of leaf of the same canopy layer at different growth stages were showed as tasseling stage >grain filling stage > maturation stage.

  7. Cold dark matter plus not-so-clumpy dark relics

    International Nuclear Information System (INIS)

    Diamanti, Roberta; Ando, Shin'ichiro; Weniger, Christoph; Gariazzo, Stefano; Mena, Olga

    2017-01-01

    Various particle physics models suggest that, besides the (nearly) cold dark matter that accounts for current observations, additional but sub-dominant dark relics might exist. These could be warm, hot, or even contribute as dark radiation. We present here a comprehensive study of two-component dark matter scenarios, where the first component is assumed to be cold, and the second is a non-cold thermal relic. Considering the cases where the non-cold dark matter species could be either a fermion or a boson, we derive consistent upper limits on the non-cold dark relic energy density for a very large range of velocity dispersions, covering the entire range from dark radiation to cold dark matter. To this end, we employ the latest Planck Cosmic Microwave Background data, the recent BOSS DR11 and other Baryon Acoustic Oscillation measurements, and also constraints on the number of Milky Way satellites, the latter of which provides a measure of the suppression of the matter power spectrum at the smallest scales due to the free-streaming of the non-cold dark matter component. We present the results on the fraction f ncdm of non-cold dark matter with respect to the total dark matter for different ranges of the non-cold dark matter masses. We find that the 2σ limits for non-cold dark matter particles with masses in the range 1–10 keV are f ncdm ≤0.29 (0.23) for fermions (bosons), and for masses in the 10–100 keV range they are f ncdm ≤0.43 (0.45), respectively.

  8. Cold dark matter plus not-so-clumpy dark relics

    Energy Technology Data Exchange (ETDEWEB)

    Diamanti, Roberta; Ando, Shin' ichiro; Weniger, Christoph [GRAPPA, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Gariazzo, Stefano; Mena, Olga, E-mail: r.diamanti@uva.nl, E-mail: s.ando@uva.nl, E-mail: gariazzo@to.infn.it, E-mail: omena@ific.uv.es, E-mail: c.weniger@uva.nl [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de Valencia, Apartado de Correos 22085, E-46071, Valencia (Spain)

    2017-06-01

    Various particle physics models suggest that, besides the (nearly) cold dark matter that accounts for current observations, additional but sub-dominant dark relics might exist. These could be warm, hot, or even contribute as dark radiation. We present here a comprehensive study of two-component dark matter scenarios, where the first component is assumed to be cold, and the second is a non-cold thermal relic. Considering the cases where the non-cold dark matter species could be either a fermion or a boson, we derive consistent upper limits on the non-cold dark relic energy density for a very large range of velocity dispersions, covering the entire range from dark radiation to cold dark matter. To this end, we employ the latest Planck Cosmic Microwave Background data, the recent BOSS DR11 and other Baryon Acoustic Oscillation measurements, and also constraints on the number of Milky Way satellites, the latter of which provides a measure of the suppression of the matter power spectrum at the smallest scales due to the free-streaming of the non-cold dark matter component. We present the results on the fraction f {sub ncdm} of non-cold dark matter with respect to the total dark matter for different ranges of the non-cold dark matter masses. We find that the 2σ limits for non-cold dark matter particles with masses in the range 1–10 keV are f {sub ncdm}≤0.29 (0.23) for fermions (bosons), and for masses in the 10–100 keV range they are f {sub ncdm}≤0.43 (0.45), respectively.

  9. Electroweak baryogenesis, large Yukawas and dark matter

    International Nuclear Information System (INIS)

    Provenza, Alessio; Quiros, Mariano; Ullio, Piero

    2005-01-01

    It has recently been shown that the electroweak baryogenesis mechanism is feasible in Standard Model extensions containing extra fermions with large Yukawa couplings. We show here that the lightest of these fermionic fields can naturally be a good candidate for cold dark matter. We find regions in the parameter space where the thermal relic abundance of this particle is compatible with the dark matter density of the Universe as determined by the WMAP experiment. We study direct and indirect dark matter detection for this model and compare with current experimental limits and prospects for upcoming experiments. We find, contrary to the standard lore, that indirect detection searches are more promising than direct ones, and they already exclude part of the parameter space

  10. Studying dark energy with galaxy cluster surveys

    International Nuclear Information System (INIS)

    Mohr, Joseph J.; O'Shea, Brian; Evrard, August E.; Bialek, John; Haiman, Zoltan

    2003-01-01

    Galaxy cluster surveys provide a powerful means of studying the density and nature of the dark energy. The redshift distribution of detected clusters in a deep, large solid angle SZE or X-ray survey is highly sensitive to the dark energy equation of state. Accurate constraints at the 5% level on the dark energy equation of state require that systematic biases in the mass estimators must be controlled at better than the ∼10% level. Observed regularity in the cluster population and the availability of multiple, independent mass estimators suggests these precise measurements are possible. Using hydrodynamical simulations that include preheating, we show that the level of preheating required to explain local galaxy cluster structure has a dramatic effect on X-ray cluster surveys, but only a mild effect on SZE surveys. This suggests that SZE surveys may be optimal for cosmology while X-ray surveys are well suited for studies of the thermal history of the intracluster medium

  11. Dark radiation dynamics on the brane

    International Nuclear Information System (INIS)

    Neves, Rui; Vaz, Cenalo

    2002-01-01

    We investigate the dynamics of a spherically symmetric vacuum on a Randall and Sundrum 3-brane world. Under certain natural conditions, the effective Einstein equations on the brane form a closed system for spherically symmetric dark radiation. We determine exact dynamical and inhomogeneous solutions, which are shown to depend on the brane cosmological constant, on the dark radiation tidal charge and on its initial energy configuration. We identify the conditions defining these solutions as singular or as globally regular. Finally, we discuss the confinement of gravity to the vicinity of the brane and show that a phase transition to a regime where gravity is not bound to the brane may occur at short distances during the collapse of positive dark energy density on a realistic de Sitter brane

  12. Dark matter study of NGC 5055

    Science.gov (United States)

    Ibrahim, Ungku Ferwani Salwa Ungku; Hashim, Norsiah; Abidin, Zamri Zainal

    2013-05-01

    This paper is about rediscovering dark matter (DM) in galaxies before the year 1970. It is an Italy-Malaysia Astroproject (SISSA-Radio Cosmology Research group), introducing to the field of DM. Investigations about the rotation curve (RC) of NGC 5055 or the Sunflower Galaxy at that time showed that there was a distinct possibility that they had the knowledge and also the theory of gravitation to initiate the study of dark matter. NGC 5055 was chosen because of its good kinematical and photometric data. Information of the surface brightness of this spiral galaxy will determine the disk length scale, RD. Using this RD and by fitting the RC data of NGC 5055 with the velocity profile of the Freeman's disk, we look at the results to conclude whether there are signs of dark matter in the Sunflower Galaxy.

  13. Cold dark matter in brane cosmology scenario

    International Nuclear Information System (INIS)

    Dahab, Eiman Abou El; Khalil, Shaaban

    2006-01-01

    We analyze the dark matter problem in the context of brane cosmology. We investigate the impact of the non-conventional brane cosmology on the relic abundance of non-relativistic stable particles in high and low reheating temperature scenarios. We show that in case of high reheating temperature, the brane cosmology may enhance the dark matter relic density by many order of magnitudes and a stringent lower bound on the five dimensional scale is obtained. We also consider low reheating temperature scenarios with chemical equilibrium and non-equilibrium. We emphasize that in non-equilibrium case, the resulting relic density is very small. While with equilibrium, it is increased by a factor of O(10 2 ) with respect to the standard thermal production. Therefore, dark matter particles with large cross section, which is favored by detection expirements, can be consistent with the recent relic density observational limits

  14. Self-interacting spin-2 dark matter

    Science.gov (United States)

    Chu, Xiaoyong; Garcia-Cely, Camilo

    2017-11-01

    Recent developments in bigravity allow one to construct consistent theories of interacting spin-2 particles that are free of ghosts. In this framework, we propose an elementary spin-2 dark matter candidate with a mass well below the TeV scale. We show that, in a certain regime where the interactions induced by the spin-2 fields do not lead to large departures from the predictions of general relativity, such a light dark matter particle typically self-interacts and undergoes self-annihilations via 3-to-2 processes. We discuss its production mechanisms and also identify the regions of the parameter space where self-interactions can alleviate the discrepancies at small scales between the predictions of the collisionless dark matter paradigm and cosmological N-body simulations.

  15. Does Zoning Winter Recreationists Reduce Recreation Conflict?

    Science.gov (United States)

    Miller, Aubrey D.; Vaske, Jerry J.; Squires, John R.; Olson, Lucretia E.; Roberts, Elizabeth K.

    2017-01-01

    Parks and protected area managers use zoning to decrease interpersonal conflict between recreationists. Zoning, or segregation, of recreation—often by non-motorized and motorized activity—is designed to limit physical interaction while providing recreation opportunities to both groups. This article investigated the effectiveness of zoning to reduce recreation conflict in the Vail Pass Winter Recreation Area in Colorado, USA. Despite a zoning management system, established groomed travel routes were used by both non-motorized recreationists (backcountry skiers, snowboarders, snowshoers) and motorized recreationists (snowmobilers). We hypothesized that persistent recreation conflict reported by non-motorized recreationists was the result of recreation occurring in areas of mixed non-motorized and motorized use, mostly along groomed routes. We performed a geospatial analysis of recreation [from Global Positioning System (GPS) points, n = 1,233,449] in the Vail Pass Winter Recreation Area to identify areas of mixed non-motorized and motorized use. We then surveyed non-motorized recreationists ( n = 199) to test whether reported conflict is higher for respondents who traveled in areas of mixed-use, compared with respondents traveling outside areas of mixed-use. Results from the geospatial analysis showed that only 0.7 % of the Vail Pass Winter Recreation Area contained recreation from both groups, however that area contained 14.8 % of all non-motorized recreation and 49.1 % of all motorized recreation. Survey analysis results showed higher interpersonal conflict for all five standard conflict variables among non-motorized respondents who traveled in areas of mixed-use, compared with those traveling outside mixed-use areas. Management implications and recommendations for increasing the effectiveness of zoning are provided.

  16. The year in ideas; dark energy

    CERN Multimedia

    Burdick, A

    2002-01-01

    Gravity should halt the expansion of the universe but a few years ago a study of supernovae showed that in fact cosmic expansion is speeding up. To explain this, cosmologists have postulated that a strange, repulsive force, which they call dark energy, is at work, counteracting gravity and pushing galaxies apart at an accelerating rate (1/2 page).

  17. Late time phase transition as dark energy

    Indian Academy of Sciences (India)

    Abstract. We show that the dark energy field can naturally be described by the scalar condensates of a non-abelian gauge group. This gauge group is unified with the standard model gauge groups and it has a late time phase transition. The small phase transition explains why the positive acceleration of the universe is ...

  18. Genome features of "Dark-fly", a Drosophila line reared long-term in a dark environment.

    Directory of Open Access Journals (Sweden)

    Minako Izutsu

    Full Text Available Organisms are remarkably adapted to diverse environments by specialized metabolisms, morphology, or behaviors. To address the molecular mechanisms underlying environmental adaptation, we have utilized a Drosophila melanogaster line, termed "Dark-fly", which has been maintained in constant dark conditions for 57 years (1400 generations. We found that Dark-fly exhibited higher fecundity in dark than in light conditions, indicating that Dark-fly possesses some traits advantageous in darkness. Using next-generation sequencing technology, we determined the whole genome sequence of Dark-fly and identified approximately 220,000 single nucleotide polymorphisms (SNPs and 4,700 insertions or deletions (InDels in the Dark-fly genome compared to the genome of the Oregon-R-S strain, a control strain. 1.8% of SNPs were classified as non-synonymous SNPs (nsSNPs: i.e., they alter the amino acid sequence of gene products. Among them, we detected 28 nonsense mutations (i.e., they produce a stop codon in the protein sequence in the Dark-fly genome. These included genes encoding an olfactory receptor and a light receptor. We also searched runs of homozygosity (ROH regions as putative regions selected during the population history, and found 21 ROH regions in the Dark-fly genome. We identified 241 genes carrying nsSNPs or InDels in the ROH regions. These include a cluster of alpha-esterase genes that are involved in detoxification processes. Furthermore, analysis of structural variants in the Dark-fly genome showed the deletion of a gene related to fatty acid metabolism. Our results revealed unique features of the Dark-fly genome and provided a list of potential candidate genes involved in environmental adaptation.

  19. Leadership in American Indian Communities: Winter Lessons

    Science.gov (United States)

    Metoyer, Cheryl A.

    2010-01-01

    Winter lessons, or stories told in the winter, were one of the ways in which tribal elders instructed and directed young men and women in the proper ways to assume leadership responsibilities. Winter lessons stressed the appropriate relationship between the leader and the community. The intent was to remember the power and purpose of that…

  20. 46 CFR 45.73 - Winter freeboard.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Winter freeboard. 45.73 Section 45.73 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Freeboards § 45.73 Winter freeboard. The minimum winter freeboard (fw) in inches is obtained by the formula: fw=f(s)+T s...

  1. Interacting diffusive unified dark energy and dark matter from scalar fields

    Energy Technology Data Exchange (ETDEWEB)

    Benisty, David; Guendelman, E.I. [Ben Gurion University of the Negev, Department of Physics, Beersheba (Israel)

    2017-06-15

    Here we generalize ideas of unified dark matter-dark energy in the context of two measure theories and of dynamical space time theories. In two measure theories one uses metric independent volume elements and this allows one to construct unified dark matter-dark energy, where the cosmological constant appears as an integration constant associated with the equation of motion of the measure fields. The dynamical space-time theories generalize the two measure theories by introducing a vector field whose equation of motion guarantees the conservation of a certain Energy Momentum tensor, which may be related, but in general is not the same as the gravitational Energy Momentum tensor. We propose two formulations of this idea: (I) by demanding that this vector field be the gradient of a scalar, (II) by considering the dynamical space field appearing in another part of the action. Then the dynamical space time theory becomes a theory of Diffusive Unified dark energy and dark matter. These generalizations produce non-conserved energy momentum tensors instead of conserved energy momentum tensors which leads at the end to a formulation of interacting DE-DM dust models in the form of a diffusive type interacting Unified dark energy and dark matter scenario. We solved analytically the theories for perturbative solution and asymptotic solution, and we show that the ΛCDM is a fixed point of these theories at large times. Also a preliminary argument as regards the good behavior of the theory at the quantum level is proposed for both theories. (orig.)

  2. Impact of semi-annihilations on dark matter phenomenology. An example of ZN symmetric scalar dark matter

    International Nuclear Information System (INIS)

    Bélanger, Geneviève; Kannike, Kristjan; Pukhov, Alexander; Raidal, Martti

    2012-01-01

    We study the impact of semi-annihilations x i x j ↔x k X and dark matter conversion x i x j ↔x k x l , where x i is any dark matter and X is any standard model particle, on dark matter phenomenology. We formulate minimal scalar dark matter models with an extra doublet and a complex singlet that predict non-trivial dark matter phenomenology with semi-annihilation processes for different discrete Abelian symmetries Z N , N > 2. We implement two such example models with Z 3 and Z 4 symmetry in micrOMEGAs and work out their phenomenology. We show that both semi-annihilations and dark matter conversion significantly modify the dark matter relic abundance in this type of models. In the Z 4 model, there are two stable neutral particles and therefore multi-component dark matter. We also study the possibility of dark matter direct detection in XENON100 in those models

  3. The dark side of gloss.

    Science.gov (United States)

    Kim, Juno; Marlow, Phillip J; Anderson, Barton L

    2012-11-01

    Our visual system relies on the image structure generated by the interaction of light with objects to infer their material properties. One widely studied surface property is gloss, which can provide information that an object is smooth, shiny or wet. Studies have historically focused on the role of specular highlights in modulating perceived gloss. Here we show in human observers that glossy surfaces can generate both bright specular highlights and dark specular 'lowlights', and that the presence of either is sufficient to generate compelling percepts of gloss. We show that perceived gloss declines when the image structure generated by specular lowlights is blurred or misaligned with surrounding surface shading and that perceived gloss can arise from the presence of lowlights in surface regions isolated from highlights. These results suggest that the image structure generated by specular highlights and lowlights is used to construct our experience of surface gloss.

  4. Quantum foam, gravitational thermodynamics, and the dark sector

    Science.gov (United States)

    Ng, Y. Jack

    2017-05-01

    Is it possible that the dark sector (dark energy in the form of an effective dynamical cosmological constant, and dark matter) has its origin in quantum gravity? This talk sketches a positive response. Here specifically quantum gravity refers to the combined effect of quantum foam (or spacetime foam due to quantum fluctuations of spacetime) and gravitational thermodynamics. We use two simple independent gedankan experiments to show that the holographic principle can be understood intuitively as having its origin in the quantum fluctuations of spacetime. Applied to cosmology, this consideration leads to a dynamical cosmological constant of the observed magnitude, a result that can also be obtained for the present and recent cosmic eras by using unimodular gravity and causal set theory. Next we generalize the concept of gravitational thermodynamics to a spacetime with positive cosmological constant (like ours) to reveal the natural emergence, in galactic dynamics, of a critical acceleration parameter related to the cosmological constant. We are then led to construct a phenomenological model of dark matter which we call “modified dark matter” (MDM) in which the dark matter density profile depends on both the cosmological constant and ordinary matter. We provide observational tests of MDM by fitting the rotation curves to a sample of 30 local spiral galaxies with a single free parameter and by showing that the dynamical and observed masses agree in a sample of 93 galactic clusters. We also give a brief discussion of the possibility that quanta of both dark energy and dark matter are non-local, obeying quantum Boltzmann statistics (also called infinite statistics) as described by a curious average of the bosonic and fermionic algebras. If such a scenario is correct, we can expect some novel particle phenomenology involving dark matter interactions. This may explain why so far no dark matter detection experiments have been able to claim convincingly to have detected

  5. Quantum foam, gravitational thermodynamics, and the dark sector

    International Nuclear Information System (INIS)

    Ng, Y. Jack

    2017-01-01

    Is it possible that the dark sector (dark energy in the form of an effective dynamical cosmological constant, and dark matter) has its origin in quantum gravity? This talk sketches a positive response. Here specifically quantum gravity refers to the combined effect of quantum foam (or spacetime foam due to quantum fluctuations of spacetime) and gravitational thermodynamics. We use two simple independent gedankan experiments to show that the holographic principle can be understood intuitively as having its origin in the quantum fluctuations of spacetime. Applied to cosmology, this consideration leads to a dynamical cosmological constant of the observed magnitude, a result that can also be obtained for the present and recent cosmic eras by using unimodular gravity and causal set theory. Next we generalize the concept of gravitational thermodynamics to a spacetime with positive cosmological constant (like ours) to reveal the natural emergence, in galactic dynamics, of a critical acceleration parameter related to the cosmological constant. We are then led to construct a phenomenological model of dark matter which we call “modified dark matter” (MDM) in which the dark matter density profile depends on both the cosmological constant and ordinary matter. We provide observational tests of MDM by fitting the rotation curves to a sample of 30 local spiral galaxies with a single free parameter and by showing that the dynamical and observed masses agree in a sample of 93 galactic clusters. We also give a brief discussion of the possibility that quanta of both dark energy and dark matter are non-local, obeying quantum Boltzmann statistics (also called infinite statistics) as described by a curious average of the bosonic and fermionic algebras. If such a scenario is correct, we can expect some novel particle phenomenology involving dark matter interactions. This may explain why so far no dark matter detection experiments have been able to claim convincingly to have detected

  6. Unified dark energy-dark matter model with inverse quintessence

    Energy Technology Data Exchange (ETDEWEB)

    Ansoldi, Stefano [ICRA — International Center for Relativistic Astrophysics, INFN — Istituto Nazionale di Fisica Nucleare, and Dipartimento di Matematica e Informatica, Università degli Studi di Udine, via delle Scienze 206, I-33100 Udine (UD) (Italy); Guendelman, Eduardo I., E-mail: ansoldi@fulbrightmail.org, E-mail: guendel@bgu.ac.il [Department of Physics, Ben-Gurion University of the Negeev, Beer-Sheva 84105 (Israel)

    2013-05-01

    We consider a model where both dark energy and dark matter originate from the coupling of a scalar field with a non-canonical kinetic term to, both, a metric measure and a non-metric measure. An interacting dark energy/dark matter scenario can be obtained by introducing an additional scalar that can produce non constant vacuum energy and associated variations in dark matter. The phenomenology is most interesting when the kinetic term of the additional scalar field is ghost-type, since in this case the dark energy vanishes in the early universe and then grows with time. This constitutes an ''inverse quintessence scenario'', where the universe starts from a zero vacuum energy density state, instead of approaching it in the future.

  7. Coupling q-Deformed Dark Energy to Dark Matter

    Directory of Open Access Journals (Sweden)

    Emre Dil

    2016-01-01

    Full Text Available We propose a novel coupled dark energy model which is assumed to occur as a q-deformed scalar field and investigate whether it will provide an expanding universe phase. We consider the q-deformed dark energy as coupled to dark matter inhomogeneities. We perform the phase-space analysis of the model by numerical methods and find the late-time accelerated attractor solutions. The attractor solutions imply that the coupled q-deformed dark energy model is consistent with the conventional dark energy models satisfying an acceleration phase of universe. At the end, we compare the cosmological parameters of deformed and standard dark energy models and interpret the implications.

  8. Unified dark energy-dark matter model with inverse quintessence

    International Nuclear Information System (INIS)

    Ansoldi, Stefano; Guendelman, Eduardo I.

    2013-01-01

    We consider a model where both dark energy and dark matter originate from the coupling of a scalar field with a non-canonical kinetic term to, both, a metric measure and a non-metric measure. An interacting dark energy/dark matter scenario can be obtained by introducing an additional scalar that can produce non constant vacuum energy and associated variations in dark matter. The phenomenology is most interesting when the kinetic term of the additional scalar field is ghost-type, since in this case the dark energy vanishes in the early universe and then grows with time. This constitutes an ''inverse quintessence scenario'', where the universe starts from a zero vacuum energy density state, instead of approaching it in the future

  9. Dark matter and dark energy a challenge for modern cosmology

    CERN Document Server

    Gorini, Vittorio; Moschella, Ugo; Matarrese, Sabino

    2011-01-01

    This book brings together reviews from leading international authorities on the developments in the study of dark matter and dark energy, as seen from both their cosmological and particle physics side. Studying the physical and astrophysical properties of the dark components of our Universe is a crucial step towards the ultimate goal of unveiling their nature. The work developed from a doctoral school sponsored by the Italian Society of General Relativity and Gravitation. The book starts with a concise introduction to the standard cosmological model, as well as with a presentation of the theory of linear perturbations around a homogeneous and isotropic background. It covers the particle physics and cosmological aspects of dark matter and (dynamical) dark energy, including a discussion of how modified theories of gravity could provide a possible candidate for dark energy. A detailed presentation is also given of the possible ways of testing the theory in terms of cosmic microwave background, galaxy redshift su...

  10. Nonlocal astrophysics dark matter, dark energy and physical vacuum

    CERN Document Server

    Alexeev, Boris V

    2017-01-01

    Non-Local Astrophysics: Dark Matter, Dark Energy and Physical Vacuum highlights the most significant features of non-local theory, a highly effective tool for solving many physical problems in areas where classical local theory runs into difficulties. The book provides the fundamental science behind new non-local astrophysics, discussing non-local kinetic and generalized hydrodynamic equations, non-local parameters in several physical systems, dark matter, dark energy, black holes and gravitational waves. Devoted to the solution of astrophysical problems from the position of non-local physics Provides a solution for dark matter and dark energy Discusses cosmological aspects of the theory of non-local physics Includes a solution for the problem of the Hubble Universe expansion, and of the dependence of the orbital velocity from the center of gravity

  11. Reproductive arrest and stress resistance in winter-acclimated Drosophila suzukii.

    Science.gov (United States)

    Toxopeus, Jantina; Jakobs, Ruth; Ferguson, Laura V; Gariepy, Tara D; Sinclair, Brent J

    2016-06-01

    Overwintering insects must survive the multiple-stress environment of winter, which includes low temperatures, reduced food and water availability, and cold-active pathogens. Many insects overwinter in diapause, a developmental arrest associated with high stress tolerance. Drosophila suzukii (Diptera: Drosophilidae), spotted wing drosophila, is an invasive agricultural pest worldwide. Its ability to overwinter and therefore establish in temperate regions could have severe implications for fruit crop industries. We demonstrate here that laboratory populations of Canadian D. suzukii larvae reared under short-day, low temperature, conditions develop into dark 'winter morph' adults similar to those reported globally from field captures, and observed by us in southern Ontario, Canada. These winter-acclimated adults have delayed reproductive maturity, enhanced cold tolerance, and can remain active at low temperatures, although they do not have the increased desiccation tolerance or survival of fungal pathogen challenges that might be expected from a more heavily melanised cuticle. Winter-acclimated female D. suzukii have underdeveloped ovaries and altered transcript levels of several genes associated with reproduction and stress. While superficially indicative of reproductive diapause, the delayed reproductive maturity of winter-acclimated D. suzukii appears to be temperature-dependent, not regulated by photoperiod, and is thus unlikely to be 'true' diapause. The traits of this 'winter morph', however, likely facilitate overwintering in southern Canada, and have probably contributed to the global success of this fly as an invasive species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Constraints on holographic dark energy from type Ia supernova observations

    International Nuclear Information System (INIS)

    Zhang Xin; Wu Fengquan

    2005-01-01

    In this paper, we use the type Ia supernovae data to constrain the holographic dark energy model proposed by Li. We also apply a cosmic age test to this analysis. We consider in this paper a spatially flat Friedmann-Robertson-Walker universe with a matter component and a holographic dark energy component. The fit result shows that the case c m 0 =0.28, and h=0.65, which lead to the present equation of state of dark energy w 0 =-1.03 and the deceleration/acceleration transition redshift z T =0.63. Finally, an expected supernova/acceleration probe simulation using ΛCDM as a fiducial model is performed on this model, and the result shows that the holographic dark energy model takes on c<1 (c=0.92) even though the dark energy is indeed a cosmological constant

  13. Future CMB cosmological constraints in a dark coupled universe

    CERN Document Server

    Martinelli, Matteo; Melchiorri, Alessandro; Mena, Olga

    2010-01-01

    Cosmic Microwave Background satellite missions as the on-going Planck experiment are expected to provide the strongest constraints on a wide set of cosmological parameters. Those constraints, however, could be weakened when the assumption of a cosmological constant as the dark energy component is removed. Here we show that it will indeed be the case when there exists a coupling among the dark energy and the dark matter fluids. In particular, the expected errors on key parameters as the cold dark matter density and the angular diameter distance at decoupling are significantly larger when a dark coupling is introduced. We show that it will be the case also for future satellite missions as EPIC, unless CMB lensing extraction is performed.

  14. Probes for dark matter physics

    Science.gov (United States)

    Khlopov, Maxim Yu.

    The existence of cosmological dark matter is in the bedrock of the modern cosmology. The dark matter is assumed to be nonbaryonic and consists of new stable particles. Weakly Interacting Massive Particle (WIMP) miracle appeals to search for neutral stable weakly interacting particles in underground experiments by their nuclear recoil and at colliders by missing energy and momentum, which they carry out. However, the lack of WIMP effects in their direct underground searches and at colliders can appeal to other forms of dark matter candidates. These candidates may be weakly interacting slim particles, superweakly interacting particles, or composite dark matter, in which new particles are bound. Their existence should lead to cosmological effects that can find probes in the astrophysical data. However, if composite dark matter contains stable electrically charged leptons and quarks bound by ordinary Coulomb interaction in elusive dark atoms, these charged constituents of dark atoms can be the subject of direct experimental test at the colliders. The models, predicting stable particles with charge ‑ 2 without stable particles with charges + 1 and ‑ 1 can avoid severe constraints on anomalous isotopes of light elements and provide solution for the puzzles of dark matter searches. In such models, the excessive ‑ 2 charged particles are bound with primordial helium in O-helium atoms, maintaining specific nuclear-interacting form of the dark matter. The successful development of composite dark matter scenarios appeals for experimental search for doubly charged constituents of dark atoms, making experimental search for exotic stable double charged particles experimentum crucis for dark atoms of composite dark matter.

  15. 'McMurdo' Panorama from Spirit's 'Winter Haven' (Color Stereo)

    Science.gov (United States)

    2006-01-01

    [figure removed for brevity, see original site] Left-eye view of a stereo pair for PIA01905 [figure removed for brevity, see original site] Right-eye view of a stereo pair for PIA01905 This 360-degree view, called the 'McMurdo' panorama, comes from the panoramic camera (Pancam) on NASA's Mars Exploration Rover Spirit. From April through October 2006, Spirit has stayed on a small hill known as 'Low Ridge.' There, the rover's solar panels are tilted toward the sun to maintain enough solar power for Spirit to keep making scientific observations throughout the winter on southern Mars. This view of the surroundings from Spirit's 'Winter Haven' is presented as a stereo anaglyph to show the scene three-dimensionally when viewed through red-blue glasses (with the red lens on the left). Oct. 26, 2006, marks Spirit's 1,000th sol of what was planned as a 90-sol mission. (A sol is a Martian day, which lasts 24 hours, 39 minutes, 35 seconds). The rover has lived through the most challenging part of its second Martian winter. Its solar power levels are rising again. Spring in the southern hemisphere of Mars will begin in early 2007. Before that, the rover team hopes to start driving Spirit again toward scientifically interesting places in the 'Inner Basin' and 'Columbia Hills' inside Gusev crater. The McMurdo panorama is providing team members with key pieces of scientific and topographic information for choosing where to continue Spirit's exploration adventure. The Pancam began shooting component images of this panorama during Spirit's sol 814 (April 18, 2006) and completed the part shown here on sol 932 (Aug. 17, 2006). The panorama was acquired using all 13 of the Pancam's color filters, using lossless compression for the red and blue stereo filters, and only modest levels of compression on the remaining filters. The overall panorama consists of 1,449 Pancam images and represents a raw data volume of nearly 500 megabytes. It is thus the largest, highest-fidelity view of Mars

  16. 'McMurdo' Panorama from Spirit's 'Winter Haven' (Stereo)

    Science.gov (United States)

    2006-01-01

    This 360-degree view, called the 'McMurdo' panorama, comes from the panoramic camera (Pancam) on NASA's Mars Exploration Rover Spirit. From April through October 2006, Spirit has stayed on a small hill known as 'Low Ridge.' There, the rover's solar panels are tilted toward the sun to maintain enough solar power for Spirit to keep making scientific observations throughout the winter on southern Mars. This view of the surroundings from Spirit's 'Winter Haven' is presented as a stereo anaglyph to show the scene three-dimensionally when viewed through red-blue glasses (with the red lens on the left). Oct. 26, 2006, marks Spirit's 1,000th sol of what was planned as a 90-sol mission. (A sol is a Martian day, which lasts 24 hours, 39 minutes, 35 seconds). The rover has lived through the most challenging part of its second Martian winter. Its solar power levels are rising again. Spring in the southern hemisphere of Mars will begin in early 2007. Before that, the rover team hopes to start driving Spirit again toward scientifically interesting places in the 'Inner Basin' and 'Columbia Hills' inside Gusev crater. The McMurdo panorama is providing team members with key pieces of scientific and topographic information for choosing where to continue Spirit's exploration adventure. The Pancam began shooting component images of this panorama during Spirit's sol 814 (April 18, 2006) and completed the part shown here on sol 932 (Aug. 17, 2006). The panorama was acquired using all 13 of the Pancam's color filters, using lossless compression for the red and blue stereo filters, and only modest levels of compression on the remaining filters. The overall panorama consists of 1,449 Pancam images and represents a raw data volume of nearly 500 megabytes. It is thus the largest, highest-fidelity view of Mars acquired from either rover. Additional photo coverage of the parts of the rover deck not shown here was completed on sol 980 (Oct. 5 , 2006). The team is completing the processing and

  17. Is Self-Interacting Dark Matter Undergoing Dark Fusion?

    OpenAIRE

    McDermott, Samuel D.

    2018-01-01

    We suggest that two-to-two dark matter fusion may be the relaxation process that resolves the small-scale structure problems of the cold collisionless dark matter paradigm. In order for the fusion cross section to scale correctly across many decades of astrophysical masses from dwarf galaxies to galaxy clusters, we require the fractional binding energy released to be greater than vn∼(10−(2−3))n, where n=1, 2 depends on local dark sector chemistry. The size of the dark-sector interaction cross...

  18. Sourcing dark matter and dark energy from α-attractors

    International Nuclear Information System (INIS)

    Mishra, Swagat S.; Sahni, Varun; Shtanov, Yuri

    2017-01-01

    In [1], Kallosh and Linde drew attention to a new family of superconformal inflationary potentials, subsequently called α-attractors [2]. The α-attractor family can interpolate between a large class of inflationary models. It also has an important theoretical underpinning within the framework of supergravity. We demonstrate that the α-attractors have an even wider appeal since they may describe dark matter and perhaps even dark energy. The dark matter associated with the α-attractors, which we call α-dark matter (αDM), shares many of the attractive features of fuzzy dark matter, with V (φ) = ½ m 2 φ 2 , while having none of its drawbacks. Like fuzzy dark matter, αDM can have a large Jeans length which could resolve the cusp-core and substructure problems faced by standard cold dark matter. αDM also has an appealing tracker property which enables it to converge to the late-time dark matter asymptote, ( w ) ≅ 0, from a wide range of initial conditions. It thus avoids the enormous fine-tuning problems faced by the m 2 φ 2 potential in describing dark matter.

  19. Sourcing dark matter and dark energy from α-attractors

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Swagat S.; Sahni, Varun [Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411 007 (India); Shtanov, Yuri, E-mail: swagat@iucaa.in, E-mail: varun@iucaa.in, E-mail: shtanov@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Kiev 03680 (Ukraine)

    2017-06-01

    In [1], Kallosh and Linde drew attention to a new family of superconformal inflationary potentials, subsequently called α-attractors [2]. The α-attractor family can interpolate between a large class of inflationary models. It also has an important theoretical underpinning within the framework of supergravity. We demonstrate that the α-attractors have an even wider appeal since they may describe dark matter and perhaps even dark energy. The dark matter associated with the α-attractors, which we call α-dark matter (αDM), shares many of the attractive features of fuzzy dark matter, with V (φ) = ½ m {sup 2}φ{sup 2}, while having none of its drawbacks. Like fuzzy dark matter, αDM can have a large Jeans length which could resolve the cusp-core and substructure problems faced by standard cold dark matter. αDM also has an appealing tracker property which enables it to converge to the late-time dark matter asymptote, ( w ) ≅ 0, from a wide range of initial conditions. It thus avoids the enormous fine-tuning problems faced by the m {sup 2}φ{sup 2} potential in describing dark matter.

  20. Can modified gravity from extra dimensions explain dark matter effects?

    International Nuclear Information System (INIS)

    Kar, S.; Bharadwaj, S.; Pal, S.

    2006-01-01

    Observations on galaxy rotation curves and X-ray profiles of galaxy clusters over several decades have shown us that there exists a need for non-luminous (dark) matter. Cosmological observations also point towards the existence of dark components of two kinds - dark matter and dark energy - which, together, seem to be most of what is there the universe. However, for several years, there has been a line of thought which proposes modified gravity as an alternative to dark matter. In this article, we show, how the effective Einstein equations which arise in the context of the currently fashionable warped braneworld models, can explain the effects of dark matter as a manifestation of the consequences of the existence of extra dimensions. Finally, in order to distinguish between the effects of material dark matter and modified gravity, we calculate gravitational lensing in our modified gravity theory and show distinct differences in the deflection angles. If confirmed with observations, our results may shed new light on the existence of extra dimensions and dark matter. (authors)

  1. Scalar dark matter in the B−L model

    International Nuclear Information System (INIS)

    Rodejohann, Werner; Yaguna, Carlos E.

    2015-01-01

    The U(1) B−L extension of the Standard Model requires the existence of right-handed neutrinos and naturally realizes the seesaw mechanism of neutrino mass generation. We study the possibility of explaining the dark matter in this model with an additional scalar field, ϕ DM , that is a singlet of the Standard Model but charged under U(1) B−L . An advantage of this scenario is that the stability of ϕ DM can be guaranteed by appropriately choosing its B−L charge, without the need of an extra ad hoc discrete symmetry. We investigate in detail the dark matter phenomenology of this model. We show that the observed dark matter density can be obtained via gauge or scalar interactions, and that semi-annihilations could play an important role in the latter case. The regions consistent with the dark matter density are determined in each instance and the prospects for detection in future experiments are analyzed. If dark matter annihilations are controlled by the B−L gauge interaction, the mass of the dark matter particle should lie below 5 TeV and its direct detection cross section can be easily probed by XENON1T; if instead they are controlled by scalar interactions, the dark matter mass can be much larger and the detection prospects are less certain. Finally, we show that this scenario can be readily extended to accommodate multiple dark matter particles

  2. Effect of CP violation in the singlet-doublet dark matter model

    Directory of Open Access Journals (Sweden)

    Tomohiro Abe

    2017-08-01

    Full Text Available We revisit the singlet-doublet dark matter model with a special emphasis on the effect of CP violation on the dark matter phenomenology. The CP violation in the dark sector induces a pseudoscalar interaction of a fermionic dark matter candidate with the SM Higgs boson. The pseudoscalar interaction helps the dark matter candidate evade the strong constraints from the dark matter direct detection experiments. We show that the model can explain the measured value of the dark matter density even if dark matter direct detection experiments do not observe any signal. We also show that the electron electric dipole moment is an important complement to the direct detection for testing this model. Its value is smaller than the current upper bound but within the reach of future experiments.

  3. Review of dark photon searches

    International Nuclear Information System (INIS)

    Denig, Achim

    2016-01-01

    Dark Photons are hypothetical extra-U(1) gauge bosons, which are motivated by a number of astrophysical anomalies as well as the presently seen deviation between the Standard Model prediction and the direct measurement of the anomalous magnetic moment of the muon, (g − 2)μ. The Dark Photon does not serve as the Dark Matter particle itself, but acts as a messenger particle of a hypothetical Dark Sector with residual interaction to the Standard Model. We review recent Dark Photon searches, which were carried out in a global effort at various hadron and particle physics facilities. We also comment on the perspectives for future invisble searches, which directly probe the existence of Light Dark Matter particles.

  4. Discrete dark matter

    CERN Document Server

    Hirsch, M; Peinado, E; Valle, J W F

    2010-01-01

    We propose a new motivation for the stability of dark matter (DM). We suggest that the same non-abelian discrete flavor symmetry which accounts for the observed pattern of neutrino oscillations, spontaneously breaks to a Z2 subgroup which renders DM stable. The simplest scheme leads to a scalar doublet DM potentially detectable in nuclear recoil experiments, inverse neutrino mass hierarchy, hence a neutrinoless double beta decay rate accessible to upcoming searches, while reactor angle equal to zero gives no CP violation in neutrino oscillations.

  5. Viscous Ricci dark energy

    International Nuclear Information System (INIS)

    Feng Chaojun; Li Xinzhou

    2009-01-01

    We investigate the viscous Ricci dark energy (RDE) model by assuming that there is bulk viscosity in the linear barotropic fluid and the RDE. In the RDE model without bulk viscosity, the universe is younger than some old objects at certain redshifts. Since the age of the universe should be longer than any objects living in the universe, the RDE model suffers the age problem, especially when we consider the object APM 08279+5255 at z=3.91 with age t=2.1 Gyr. In this Letter, we find that once the viscosity is taken into account, this age problem is alleviated.

  6. Frontiers of Dark Energy

    OpenAIRE

    Linder, Eric V.

    2010-01-01

    Cosmologists are just beginning to probe the properties of the cosmic vacuum and its role in reversing the attractive pull of gravity to cause an acceleration in the expansion of the cosmos. The cause of this acceleration is given the generic name of dark energy, whether it is due to a true vacuum, a false, temporary vacuum, or a new relation between the vacuum and the force of gravity. Despite the common name, the distinction between these origins is of utmost interest and physicists are act...

  7. Direct search for dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jonghee; /Fermilab

    2009-12-01

    Dark matter is hypothetical matter which does not interact with electromagnetic radiation. The existence of dark matter is only inferred from gravitational effects of astrophysical observations to explain the missing mass component of the Universe. Weakly Interacting Massive Particles are currently the most popular candidate to explain the missing mass component. I review the current status of experimental searches of dark matter through direct detection using terrestrial detectors.

  8. Baryonic dark matter and Machos

    International Nuclear Information System (INIS)

    Griest, K.

    2000-01-01

    A brief description of the status of baryons in the Universe is given, along with recent results from the MACHO collaboration and their meaning. A dark matter halo consisting of baryons in the form of Machos is ruled out, leaving an elementary particle as the prime candidate for the dark matter. The observed microlensing events may make up around 20% of the dark matter in the Milky Way, or may indicate an otherwise undetected component of the Large Magellanic Cloud

  9. Dark energy: myths and reality

    International Nuclear Information System (INIS)

    Lukash, V N; Rubakov, V A

    2008-01-01

    We discuss the questions related to dark energy in the Universe. We note that in spite of the effect of dark energy, large-scale structure is still being generated in the Universe and this will continue for about ten billion years. We also comment on some statements in the paper 'Dark energy and universal antigravitation' by A D Chernin, Physics-Uspekhi 51 (3) (2008). (physics of our days)

  10. Supersymmetric dark matter: Indirect detection

    International Nuclear Information System (INIS)

    Bergstroem, L.

    2000-01-01

    Dark matter detection experiments are improving to the point where they can detect or restrict the primary particle physics candidates for non baryonic dark matter. The methods for detection are usually categorized as direct, i.e., searching for signals caused by passage of dark matter particles in terrestrial detectors, or indirect. Indirect detection methods include searching for antimatter and gamma rays, in particular gamma ray lines, in cosmic rays and high-energy neutrinos from the centre of the Earth or Sun caused by accretion and annihilation of dark matter particles. A review is given of recent progress in indirect detection, both on the theoretical and experimental side

  11. Abnormally dark or light skin

    Science.gov (United States)

    Hyperpigmentation; Hypopigmentation; Skin - abnormally light or dark ... Normal skin contains cells called melanocytes. These cells produce melanin , the substance that gives skin its color. Skin with ...

  12. Dark spectroscopy at lepton colliders

    Science.gov (United States)

    Hochberg, Yonit; Kuflik, Eric; Murayama, Hitoshi

    2018-03-01

    Rich and complex dark sectors are abundant in particle physics theories. Here, we propose performing spectroscopy of the mass structure of dark sectors via mono-photon searches at lepton colliders. The energy of the mono-photon tracks the invariant mass of the invisible system it recoils against, which enables studying the resonance structure of the dark sector. We demonstrate this idea with several well-motivated models of dark sectors. Such spectroscopy measurements could potentially be performed at Belle II, BES-III and future low-energy lepton colliders.

  13. Dark matter. A light move

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Javier [Muenchen Univ. (Germany). Arnold Sommerfeld Center; Max-Planck-Institut fuer Physik, Muenchen (Germany); Doebrich, Babette [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-11-15

    This proceedings contribution reports from the workshop Dark Matter - a light move, held at DESY in Hamburg in June 2013. Dark Matter particle candidates span a huge parameter range. In particular, well motivated candidates exist also in the sub-eV mass region, for example the axion. Whilst a plethora of searches for rather heavy Dark Matter particles exists, there are only very few experiments aimed at direct detection of sub-eV Dark Matter to this date. The aim of our workshop was to discuss if and how this could be changed in the near future.

  14. Dark matter. A light move

    International Nuclear Information System (INIS)

    Redondo, Javier; Doebrich, Babette

    2013-11-01

    This proceedings contribution reports from the workshop Dark Matter - a light move, held at DESY in Hamburg in June 2013. Dark Matter particle candidates span a huge parameter range. In particular, well motivated candidates exist also in the sub-eV mass region, for example the axion. Whilst a plethora of searches for rather heavy Dark Matter particles exists, there are only very few experiments aimed at direct detection of sub-eV Dark Matter to this date. The aim of our workshop was to discuss if and how this could be changed in the near future.

  15. Searching dark matter at LHC

    International Nuclear Information System (INIS)

    Nojiri, Mihoko M.

    2007-01-01

    We now believe that the dark matter in our Universe must be an unknown elementary particle, which is charge neutral and weakly interacting. The standard model must be extended to include it. The dark matter was likely produced in the early universe from the high energy collisions of the particles. Now LHC experiment starting from 2008 will create such high energy collision to explore the nature of the dark matter. In this article we explain how dark matter and LHC physics will be connected in detail. (author)

  16. Winter survival of Scots pine seedlings under different snow conditions.

    Science.gov (United States)

    Domisch, Timo; Martz, Françoise; Repo, Tapani; Rautio, Pasi

    2018-04-01

    Future climate scenarios predict increased air temperatures and precipitation, particularly at high latitudes, and especially so during winter. Soil temperatures, however, are more difficult to predict, since they depend strongly on the fate of the insulating snow cover. 'Rain-on-snow' events and warm spells during winter can lead to thaw-freeze cycles, compacted snow and ice encasement, as well as local flooding. These adverse conditions could counteract the otherwise positive effects of climatic changes on forest seedling growth. In order to study the effects of different winter and snow conditions on young Scots pine (Pinus sylvestris L.) seedlings, we conducted a laboratory experiment in which 80 1-year-old Scots pine seedlings were distributed between four winter treatments in dasotrons: ambient snow cover (SNOW), compressed snow and ice encasement (ICE), flooded and frozen soil (FLOOD) and no snow (NO SNOW). During the winter treatment period and a 1.5-month simulated spring/early summer phase, we monitored the needle, stem and root biomass of the seedlings, and determined their starch and soluble sugar concentrations. In addition, we assessed the stress experienced by the seedlings by measuring chlorophyll fluorescence, electric impedance and photosynthesis of the previous-year needles. Compared with the SNOW treatment, carbohydrate concentrations were lower in the FLOOD and NO SNOW treatments where the seedlings had almost died before the end of the experiment, presumably due to frost desiccation of aboveground parts during the winter treatments. The seedlings of the ICE treatment showed dead needles and stems only above the snow and ice cover. The results emphasize the importance of an insulating and protecting snow cover for small forest tree seedlings, and that future winters with changed snow patterns might affect the survival of tree seedlings and thus forest productivity.

  17. Communicating Certainty About Nuclear Winter

    Science.gov (United States)

    Robock, A.

    2013-12-01

    I have been spending much of my time in the past several years trying to warn the world about the continuing danger of nuclear weapons, and that the solution is a rapid reduction in the nuclear arsenal. I feel that a scientist who discovers dangers to society has an ethical duty to issue a warning, even if the danger is so scary that it is hard for people to deal with. The debate about nuclear winter in the 1980s helped to end the nuclear arms race, but the planet still has enough nuclear weapons, even after reductions planned for 2017 under the New START treaty, to produce nuclear winter, with temperatures plunging below freezing in the summer in major agricultural regions, threatening the food supply for most of the planet. New research by myself, Brian Toon, Mike Mills, and colleagues over the past six years has found that a nuclear war between any two countries, such as India and Pakistan, using 50 atom bombs each of the size dropped on Hiroshima could produce climate change unprecedented in recorded human history, and a world food crisis because of the agricultural effects. This is much less than 1% of the current global arsenal. Communicating certainty - what we know for sure - has been much more effective than communicating uncertainty. The limited success I have had has come from persistence and serendipity. The first step was to do the science. We have published peer-reviewed articles in major journals, including Science, Nature, Proceedings of the National Academy of Sciences, Journal of Geophysical Research, Atmospheric Chemistry and Physics, Physics Today, and Climatic Change. But policymakers do not read these journals. Through fairly convoluted circumstances, which will be described in this talk, we were able to get papers published in Scientific American and the Bulletin of Atomic Scientists. I have also published several encyclopedia articles on the subject. As a Lead Author of Chapter 8 (Radiative Forcing) of the recently published Fifth Assessment

  18. Dark Matter remains obscure

    CERN Multimedia

    Fabio Capello

    2011-01-01

    It is one of the hidden secrets that literally surround the Universe. Experiments have shown no result so far because trying to capture particles that do not seem to interact with ordinary matter is no trivial exercise. The OSQAR experiment at CERN is dedicated to the search for axions, one of the candidates for Dark Matter. For its difficult challenge, OSQAR counts on one of the world’s most powerful magnets borrowed from the LHC. In a recent publication, the OSQAR collaboration was able to confirm that no axion signal appears out of the background. In other words: the quest is still on.   The OSQAR experiment installed in the SM18 hall. (Photo by F. Capello) The OSQAR “Light Shining Through a Wall” experiment was officially launched in 2007 with the aim of detecting axions, that is, particles that might be the main components of Dark Matter. OSQAR uses the powerful LHC dipole magnet to intensify the predicted photon-axion conversions in the presence of strong m...

  19. Baryonic dark matter

    International Nuclear Information System (INIS)

    Lynden-Bell, D.; Gilmore, G.

    1990-01-01

    Dark matter, first definitely found in the large clusters of galaxies, is now known to be dominant mass in the outer parts of galaxies. All the mass definitely deduced could be made up of baryons, and this would fit well with the requirements of nucleosynthesis in a big bang of small Ω B . However, if inflation is the explanation of the expansion and large scale homogeneity of the universe and of baryon synthesis, and if the universe did not have an infinite extent at the big bang, then Ω should be minutely greater than unity. It is commonly hypothesized that most mass is composed of some unknown, non-baryonic form. This book first discusses the known forms, comets, planets, brown dwarfs, stars, gas, galaxies and Lyman α clouds in which baryons are known to exist. Limits on the amount of dark matter in baryonic form are discussed in the context of the big bang. Inhomogeneities of the right type alleviate the difficulties associated with Ω B = 1 cosmological nucleosynthesis

  20. Asymmetric dark matter and baryogenesis from pseudoscalar inflation

    Energy Technology Data Exchange (ETDEWEB)

    Cado, Yann; Sabancilar, Eray, E-mail: yann.cado@epfl.ch, E-mail: eray.sabancilar@epfl.ch [Laboratory of Particle Physics and Cosmology, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland)

    2017-04-01

    We show that both the baryon asymmetry of the Universe and the dark matter abundance can be explained within a single framework that makes use of maximally helical hypermagnetic fields produced during pseudoscalar inflation and the chiral anomaly in the Standard Model. We consider a minimal asymmetric dark matter model free from anomalies and constraints. We find that the observed baryon and the dark matter abundances are achieved for a wide range of inflationary parameters, and the dark matter mass ranges between 7–15 GeV . The novelty of our mechanism stems from the fact that the same source of CP violation occurring during inflation explains both baryonic and dark matter in the Universe with two inflationary parameters, hence addressing all the initial condition problems in an economical way.

  1. Cosmological radio emission induced by WIMP Dark Matter

    International Nuclear Information System (INIS)

    Fornengo, N.; Regis, M.; Lineros, R.; Taoso, M.

    2012-01-01

    We present a detailed analysis of the radio synchrotron emission induced by WIMP dark matter annihilations and decays in extragalactic halos. We compute intensity, angular correlation, and source counts and discuss the impact on the expected signals of dark matter clustering, as well as of other astrophysical uncertainties as magnetic fields and spatial diffusion. Bounds on dark matter microscopic properties are then derived, and, depending on the specific set of assumptions, they are competitive with constraints from other indirect dark matter searches. At GHz frequencies, dark matter sources can become a significant fraction of the total number of sources with brightness below the microJansky level. We show that, at this level of fluxes (which are within the reach of the next-generation radio surveys), properties of the faint edge of differential source counts, as well as angular correlation data, can become an important probe for WIMPs

  2. Cosmological radio emission induced by WIMP Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Fornengo, N.; Regis, M. [Dipartimento di Fisica Teorica, Università di Torino, via P. Giuria 1, I-10125 Torino (Italy); Lineros, R.; Taoso, M., E-mail: fornengo@to.infn.it, E-mail: rlineros@ific.uv.es, E-mail: regis@to.infn.it, E-mail: mtaoso@phas.ubc.ca [IFIC, CSIC-Universidad de Valencia, Ed. Institutos, Apdo. Correos 22085, E-46071 Valencia (Spain)

    2012-03-01

    We present a detailed analysis of the radio synchrotron emission induced by WIMP dark matter annihilations and decays in extragalactic halos. We compute intensity, angular correlation, and source counts and discuss the impact on the expected signals of dark matter clustering, as well as of other astrophysical uncertainties as magnetic fields and spatial diffusion. Bounds on dark matter microscopic properties are then derived, and, depending on the specific set of assumptions, they are competitive with constraints from other indirect dark matter searches. At GHz frequencies, dark matter sources can become a significant fraction of the total number of sources with brightness below the microJansky level. We show that, at this level of fluxes (which are within the reach of the next-generation radio surveys), properties of the faint edge of differential source counts, as well as angular correlation data, can become an important probe for WIMPs.

  3. Dark matter halos with cores from hierarchical structure formation

    International Nuclear Information System (INIS)

    Strigari, Louis E.; Kaplinghat, Manoj; Bullock, James S.

    2007-01-01

    We show that dark matter emerging from late decays (z or approx. 0.1 Mpc), and simultaneously generates observable constant-density cores in small dark matter halos. We refer to this class of models as meta-cold dark matter (mCDM), because it is born with nonrelativistic velocities from the decays of cold thermal relics. The constant-density cores are a result of the low phase-space density of mCDM at birth. Warm dark matter cannot produce similar size phase-space limited cores without saturating the Lyα power spectrum bounds. Dark matter-dominated galaxy rotation curves and stellar velocity dispersion profiles may provide the best means to discriminate between mCDM and CDM. mCDM candidates are motivated by the particle spectrum of supersymmetric and extra dimensional extensions to the standard model of particle physics

  4. Strong CMB constraint on P-wave annihilating dark matter

    Directory of Open Access Journals (Sweden)

    Haipeng An

    2017-10-01

    Full Text Available We consider a dark sector consisting of dark matter that is a Dirac fermion and a scalar mediator. This model has been extensively studied in the past. If the scalar couples to the dark matter in a parity conserving manner then dark matter annihilation to two mediators is dominated by the P-wave channel and hence is suppressed at very low momentum. The indirect detection constraint from the anisotropy of the Cosmic Microwave Background is usually thought to be absent in the model because of this suppression. In this letter we show that dark matter annihilation via bound state formation occurs through the S-wave and hence there is a constraint on the parameter space of the model from the Cosmic Microwave Background.

  5. Reduced time delay for gravitational waves with dark matter emulators

    International Nuclear Information System (INIS)

    Desai, S.; Kahya, E. O.; Woodard, R. P.

    2008-01-01

    We discuss the implications for gravitational wave detectors of a class of modified gravity theories which dispense with the need for dark matter. These models, which are known as dark matter emulators, have the property that weak gravitational waves couple to the metric that would follow from general relativity without dark matter whereas ordinary particles couple to a combination of the metric and other fields which reproduces the result of general relativity with dark matter. We show that there is an appreciable difference in the Shapiro delays of gravitational waves and photons or neutrinos from the same source, with the gravitational waves always arriving first. We compute the expected time lags for GRB 070201, for SN 1987a and for Sco-X1. We estimate the probable error by taking account of the uncertainty in position, and by using three different dark matter profiles

  6. Directional detection of dark matter with two-dimensional targets

    Science.gov (United States)

    Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela; Tully, Christopher G.; Zurek, Kathryn M.

    2017-09-01

    We propose two-dimensional materials as targets for direct detection of dark matter. Using graphene as an example, we focus on the case where dark matter scattering deposits sufficient energy on a valence-band electron to eject it from the target. We show that the sensitivity of graphene to dark matter of MeV to GeV mass can be comparable, for similar exposure and background levels, to that of semiconductor targets such as silicon and germanium. Moreover, a two-dimensional target is an excellent directional detector, as the ejected electron retains information about the angular dependence of the incident dark matter particle. This proposal can be implemented by the PTOLEMY experiment, presenting for the first time an opportunity for directional detection of sub-GeV dark matter.

  7. Dark matter searches with a mono-Z′ jet

    International Nuclear Information System (INIS)

    Bai, Yang; Bourbeau, James; Lin, Tongyan

    2015-01-01

    We study collider signatures of a class of dark matter models with a GeV-scale dark Z ′ . At hadron colliders, the production of dark matter particles naturally leads to associated production of the Z ′ , which can appear as a narrow jet after it decays hadronically. Contrary to the usual mono-jet signal from initial state radiation, the final state radiation of dark matter can generate the signature of a mono-Z ′ jet plus missing transverse energy. Performing a jet-substructure analysis to tag the Z ′ jet, we show that these Z ′ jets can be distinguished from QCD jets at high significance. Compared to mono-jets, a dedicated search for mono-Z ′ jet events can lead to over an order of magnitude stronger bounds on the interpreted dark matter-nucleon scattering cross sections.

  8. Baryon acoustic oscillation intensity mapping of dark energy.

    Science.gov (United States)

    Chang, Tzu-Ching; Pen, Ue-Li; Peterson, Jeffrey B; McDonald, Patrick

    2008-03-07

    The expansion of the Universe appears to be accelerating, and the mysterious antigravity agent of this acceleration has been called "dark energy." To measure the dynamics of dark energy, baryon acoustic oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as 10(9) individual galaxies, by observing the 21 cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the 21 cm brightness can be accomplished by economical three-dimensional intensity mapping. If our estimates gain acceptance they may be the starting point for a new class of dark energy experiments dedicated to large angular scale mapping of the radio sky, shedding light on dark energy.

  9. Is Self-Interacting Dark Matter Undergoing Dark Fusion?

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, Samuel D.

    2017-11-02

    We suggest that two-to-two dark matter fusion may be the relaxation process that resolves the small-scale structure problems of the cold collisionless dark matter paradigm. In order for the fusion cross section to scale correctly across many decades of astrophysical masses from dwarf galaxies to galaxy clusters, we require the fractional binding energy released to be greater than v^n ~ [10^{-(2-3)}]^n, where n=1,2 depends on local dark sector chemistry. The size of the dark-sector interaction cross sections must be sigma ~ 0.1-1 barn, moderately larger than for Standard Model deuteron fusion, indicating a dark nuclear scale Lambda ~ O(100 MeV). Dark fusion firmly predicts constant sigma v below the characteristic velocities of galaxy clusters. Observations of the inner structure of galaxy groups with velocity dispersion of several hundred kilometer per second, of which a handful have been identified, could differentiate dark fusion from a dark photon model.

  10. Dark Matter Decays from Nonminimal Coupling to Gravity.

    Science.gov (United States)

    Catà, Oscar; Ibarra, Alejandro; Ingenhütt, Sebastian

    2016-07-08

    We consider the standard model extended with a dark matter particle in curved spacetime, motivated by the fact that the only current evidence for dark matter is through its gravitational interactions, and we investigate the impact on the dark matter stability of terms in the Lagrangian linear in the dark matter field and proportional to the Ricci scalar. We show that this "gravity portal" induces decay even if the dark matter particle only has gravitational interactions, and that the decay branching ratios into standard model particles only depend on one free parameter: the dark matter mass. We study in detail the case of a singlet scalar as a dark matter candidate, which is assumed to be absolutely stable in flat spacetime due to a discrete Z_{2} symmetry, but which may decay in curved spacetimes due to a Z_{2}-breaking nonminimal coupling to gravity. We calculate the dark matter decay widths and we set conservative limits on the nonminimal coupling parameter from experiments. The limits are very stringent and suggest that there must exist an additional mechanism protecting the singlet scalar from decaying via this gravity portal.

  11. Simulations of structure formation in interacting dark energy cosmologies

    International Nuclear Information System (INIS)

    Baldi, M.

    2009-01-01

    The evidence in favor of a dark energy component dominating the Universe, and driving its presently accelerated expansion, has progressively grown during the last decade of cosmological observations. If this dark energy is given by a dynamic scalar field, it may also have a direct interaction with other matter fields in the Universe, in particular with cold dark matter. Such interaction would imprint new features on the cosmological background evolution as well as on the growth of cosmic structure, like an additional long-range fifth-force between massive particles, or a variation in time of the dark matter particle mass. We present here the implementation of these new physical effects in the N-body code GADGET-2, and we discuss the outcomes of a series of high-resolution N-body simulations for a selected family of interacting dark energy models. We interestingly find, in contrast with previous claims, that the inner overdensity of dark matter halos decreases in these models with respect to ΛCDM, and consistently halo concentrations show a progressive reduction for increasing couplings. Furthermore, the coupling induces a bias in the overdensities of cold dark matter and baryons that determines a decrease of the halo baryon fraction below its cosmological value. These results go in the direction of alleviating tensions between astrophysical observations and the predictions of the ΛCDM model on small scales, thereby opening new room for coupled dark energy models as an alternative to the cosmological constant.

  12. Dark Skies Awareness Programs for the International Year of Astronomy

    Science.gov (United States)

    Walker, C. E.; Pompea, S. M.

    2008-12-01

    The loss of a dark night sky as a natural resource is a growing concern. It impacts not only astronomical research, but also our environment in terms of ecology, health, safety, economics and energy conservation. For this reason, "Dark Skies are a Universal Resource" is a cornerstone project for the U.S. International Year of Astronomy (IYA) program in 2009. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people involved in a variety of dark skies-related programs. These programs focus on citizen-scientist sky-brightness monitoring programs, a planetarium show, podcasting, social networking, a digital photography contest, the Good Neighbor Lighting Program, Earth Hour, National Dark Skies Week, a traveling exhibit, a video tutorial, Dark Skies Discovery Sites, Astronomy Nights in the (National) Parks, Sidewalk Astronomy, and a Quiet Skies program. Many similar programs are available internationally through the "Dark Skies Awareness" Global Cornerstone Project. Working groups for both the national and international dark skies cornerstone projects are being chaired by the National Optical Astronomy Observatory (NOAO). The presenters from NOAO will provide the "know-how" and the means for session participants to become community advocates in promoting Dark Skies programs as public events at their home institutions. Participants will be able to get information on jump-starting their education programs through the use of well-developed instructional materials and kits. For more information, visit http://astronomy2009.us/darkskies/ and http://www.darkskiesawareness.org/.

  13. Addressing challenges for youths with mobility devices in winter conditions.

    Science.gov (United States)

    Morales, Ernesto; Lindsay, Sally; Edwards, Geoffrey; Howell, Lori; Vincent, Claude; Yantzi, Nicole; Gauthier, Véronique

    2018-01-01

    Winter-related research about the experience of navigating in the urban context has mostly focused on the elderly population with physical disabilities. The aim of this project was to explore potential design solutions to enhance young people's mobility devices and the built environment to improve accessibility and participation in winter. A multi-method qualitative design process included the following steps: (1) in-depth interviews; (2) photo elicitation; (3) individual co-design sessions; and (4) group co-design sessions (i.e., focus group). The participants were 13 youths (nine males and four females), aged 12-21, who used a wheelchair (12 power chair users and one manual wheelchair), for some with their parents, others without their parents, according to the parents' willingness to participate or not in the study (n = 13). The first two authors conducted group co-design sessions with mechanical engineers and therapists/clinicians in two Canadian cities to discuss the feasibility of the designs. Results (findings): The youths and their parents reported different winter-related challenges and proposed specific design solutions to enhance their participation and inclusion in winter activities. Seven of these designs were presented at two group co-design sessions of therapists/clinicians and engineers. Two designs were found to be feasible: (1) a traction device for wheelchairs in snow and (2) a mat made of rollers to clean snow and dirt from tires. The results of this research highlight the frustrations and challenges youths who use wheelchairs encounter in winter and a need for new solutions to ensure greater accessibility in winter. Therapists/clinicians and designers should address winter-related accessibility problems in areas with abundant snow. Implications for Rehabilitation Several studies show that current urban contexts do not necessarily respond accurately to the needs of individuals with limited mobility. Winter-related research about the

  14. Show-Bix &

    DEFF Research Database (Denmark)

    2014-01-01

    The anti-reenactment 'Show-Bix &' consists of 5 dias projectors, a dial phone, quintophonic sound, and interactive elements. A responsive interface will enable the Dias projectors to show copies of original dias slides from the Show-Bix piece ”March på Stedet”, 265 images in total. The copies are...

  15. The interaction between dark energy and dark matter

    International Nuclear Information System (INIS)

    He Jianhua; Wang Bin

    2010-01-01

    In this review we first present a general formalism to study the growth of dark matter perturbations in the presence of interactions between dark matter(DM) and dark energy(DE). We also study the signature of such interaction on the temperature anisotropies of the large scale cosmic microwave background (CMB). We find that the effect of such interaction has significant signature on both the growth of dark matter structure and the late Integrated Sachs Wolfe effect(ISW). We further discuss the potential possibility to detect the coupling by cross-correlating CMB maps with tracers of the large scale structure. We finally confront this interacting model with WMAP 5-year data as well as other data sets. We find that in the 1σ range, the constrained coupling between dark sectors can solve the coincidence problem.

  16. Use of geolocators reveals previously unknown Chinese and Korean scaly-sided merganser wintering sites

    DEFF Research Database (Denmark)

    Soloveyva, Diana; Afanasiev, Vsevolod; Fox, James W.

    2012-01-01

    areas in successive years, suggesting winter fidelity to catchments if not specific sites. A single female from the adjacent Avvakumovka catchment wintered on saltwater in Korea, at least 1300 km east of Chinese wintering birds. Most sea duck species (Tribe Mergini) form pairs away from breeding areas......, suggesting that this high level of winter dispersal amongst close-nesting females is a potential mechanism to maintain gene flow in this threatened species that has specialist habitat requirements. Hence, female scaly-sided mergansers disperse widely from breeding areas, but show fidelity to nesting areas...

  17. Learning at old age: a study on winter bees

    Directory of Open Access Journals (Sweden)

    Andreas Behrends

    2010-04-01

    Full Text Available Ageing is often accompanied by a decline in learning and memory abilities across the animal kingdom. Understanding age-related changes in cognitive abilities is therefore a major goal of current research. The honey bee is emerging as a novel model organism for age-related changes in brain function, because learning and memory can easily be studied in bees under controlled laboratory conditions. In addition, genetically similar workers naturally display life expectancies from six weeks (summer bees to six months (winter bees. We studied whether in honey bees, extreme longevity leads to a decline in cognitive functions. Six-month-old winter bees were conditioned either to odours or to tactile stimuli. Afterwards, long-term memory and discrimination abilities were analysed. Winter bees were kept under different conditions (flight /no flight opportunity to test for effects of foraging activity on learning performance. Despite their extreme age, winter bees did not display an age-related decline in learning or discrimination abilities, but had a slightly impaired olfactory long-term memory. The opportunity to forage indoors led to a slight decrease in learning performance. This suggests that in honey bees, unlike in most other animals, age per se does not impair associative learning. Future research will show which mechanisms protect winter bees from age-related deficits in learning.

  18. Small Winter Thunderstorm with Sprites and Strong Positive Discharge

    Science.gov (United States)

    Suzuki, Tomoyuki; Hayakawa, Masashi; Michimoto, Koichiro

    A sprite campaign was conducted in the Hokuriku area of Japan during a winter of 2004/2005. On the basis of a combined analysis of the data from various instruments (CCD cameras, radar, VHF/LF∼MF lightning mapping system, field mill network, and ELF detector), we studied meteorological and electrical structures for winter thunderstorms and sprite-producing positive discharge. Typical winter sprite parent thunderstorms had a meso-scale cloud area with embedded small convective cells. Some small winter thunderstorms accompanied by the most frequent sprite events were found to cause 2∼3 sprite events during a short interval of about 3∼5 min. When the sprites were observed, the extent of the convective cells at 20 dBZ counter was atmost ∼20 × 20 km. The VHF sources associated with sprites were located near south of the convective cell and were mapped within very small areas of at most ∼10 × 10 km. This fact shows that some small winter thunderstorms can generate large positive charge associated with sprites. We will present the analysis of such a small thunderstorms with sprites and positive lightning discharges.

  19. Genetic architecture of winter hardiness and frost tolerance in triticale.

    Directory of Open Access Journals (Sweden)

    Wenxin Liu

    Full Text Available Abiotic stress experienced by autumn-sown crops during winter is of great economic importance as it can have a severe negative impact on yield. In this study, we investigated the genetic architecture of winter hardiness and frost tolerance in triticale. To this end, we used a large mapping population of 647 DH lines phenotyped for both traits in combination with genome-wide marker data. Employing multiple-line cross QTL mapping, we identified nine main effect QTL for winter hardiness and frost tolerance of which six were overlapping between both traits. Three major QTL were identified on chromosomes 5A, 1B and 5R. In addition, an epistasis scan revealed the contribution of epistasis to the genetic architecture of winter hardiness and frost tolerance in triticale. Taken together, our results show that winter hardiness and frost tolerance are complex traits that can be improved by phenotypic selection, but also that genomic approaches hold potential for a knowledge-based improvement of these important traits in elite triticale germplasm.

  20. Winter therapy for the accelerators

    CERN Multimedia

    Corinne Pralavorio

    2016-01-01

    Hundreds of people are hard at work during the year-end technical stop as all the accelerators are undergoing maintenance, renovation and upgrade operations in parallel.   The new beam absorber on its way to Point 2 before being lowered into the LHC tunnel for installation. The accelerator teams didn’t waste any time before starting their annual winter rejuvenation programme over the winter. At the end of November, as the LHC ion run was beginning, work got under way on the PS Booster, where operation had already stopped. On 14 December, once the whole complex had been shut down, the technical teams turned their attention to the other injectors and the LHC. The year-end technical stop (YETS) provides an opportunity to carry out maintenance work on equipment and repair any damage as well as to upgrade the machines for the upcoming runs. Numerous work projects are carried out simultaneously, so good coordination is crucial. Marzia Bernardini's team in the Enginee...

  1. Cosmic ray-dark matter scattering: a new signature of (asymmetric) dark matter in the gamma ray sky

    International Nuclear Information System (INIS)

    Profumo, Stefano; Ubaldi, Lorenzo

    2011-01-01

    We consider the process of scattering of Galactic cosmic-ray electrons and protons off of dark matter with the radiation of a final-state photon. This process provides a novel way to search for Galactic dark matter with gamma rays. We argue that for a generic weakly interacting massive particle, barring effects such as co-annihilation or a velocity-dependent cross section, the gamma-ray emission from cosmic-ray scattering off of dark matter is typically smaller than that from dark matter pair-annihilation. However, if dark matter particles cannot pair-annihilate, as is the case for example in asymmetric dark matter scenarios, cosmic-ray scattering with final state photon emission provides a unique window to detect a signal from dark matter with gamma rays. We estimate the expected flux level and its spectral features for a generic supersymmetric setup, and we also discuss dipolar and luminous dark matter. We show that in some cases the gamma-ray emission might be large enough to be detectable with the Fermi Large Area Telescope

  2. Cosmic gamma-ray background from dark matter annihilation

    International Nuclear Information System (INIS)

    Ando, Shin'ichiro

    2007-01-01

    High-energy photons from pair annihilation of dark matter particles contribute to the cosmic gamma-ray background (CGB) observed in a wide energy range. The precise shape of the energy spectrum of CGB depends on the nature of dark matter particles. In order to discriminate between the signals from dark matter annihilation and other astrophysical sources, however, the information from the energy spectrum of CGB may not be sufficient. We show that dark matter annihilation not only contributes to the mean CGB intensity, but also produces a characteristic anisotropy, which provides a powerful tool for testing the origins of the observed CGB. We show that the expected sensitivity of future gamma-ray detectors such as GLAST should allow us to measure the angular power spectrum of CGB anisotropy, if dark matter particles are supersymmetric neutralinos and they account for most of the observed mean intensity. As the intensity of photons from annihilation is proportional to the density squared, we show that the predicted shape of the angular power spectrum of gamma rays from dark matter annihilation is different from that due to other astrophysical sources such as blazars, whose intensity is linearly proportional to density. Therefore, the angular power spectrum of the CGB provides a 'smoking-gun' signature of gamma rays from dark matter annihilation

  3. The space-time of dark-matter

    International Nuclear Information System (INIS)

    Dey, Dipanjan

    2015-01-01

    Dark-matter is a hypothetical matter which can't be seen but around 27% of our universe is made of it. Its distribution, evolution from early stage of our universe to present stage, its particle constituents all these are great unsolved mysteries of modern Cosmology and Astrophysics. In this talk I will introduce a special kind of space-time which is known as Bertrand Space-time (BST). I will show this space-time interestingly shows some dark-matter properties like- flat velocity curve, density profile of Dark-matter, total mass of Dark matter-halo, gravitational lensing etc, for that reason we consider BST is seeded by Dark-matter or it is a space-time of Dark-matter. At last I will show using modified gravity formalism the behaviour of the equation of state parameter of Dark-matter and the behaviour of the Newton's gravitational constant in the vicinity of the singularity. (author)

  4. Increasing Winter Maximal Metabolic Rate Improves Intrawinter Survival in Small Birds.

    Science.gov (United States)

    Petit, Magali; Clavijo-Baquet, Sabrina; Vézina, François

    Small resident bird species living at northern latitudes increase their metabolism in winter, and this is widely assumed to improve their chances of survival. However, the relationship between winter metabolic performance and survival has yet to be demonstrated. Using capture-mark-recapture, we followed a population of free-living black-capped chickadees (Poecile atricapillus) over 3 yr and evaluated their survival probability within and among winters. We also measured the size-independent body mass (M s ), hematocrit (Hct), basal metabolic rate (BMR), and maximal thermogenic capacity (Msum) and investigated how these parameters influenced survival within and among winters. Results showed that survival probability was high and constant both within (0.92) and among (0.96) winters. They also showed that while M s , Hct, and BMR had no significant influence, survival was positively related to Msum-following a sigmoid relationship-within but not among winter. Birds expressing an Msum below 1.26 W (i.e., similar to summer levels) had a winter. Our data therefore suggest that black-capped chickadees that are either too slow or unable to adjust their phenotype from summer to winter have little chances of survival and thus that seasonal upregulation of metabolic performance is highly beneficial. This study is the first to document in an avian system the relationship between thermogenic capacity and winter survival, a proxy of fitness.

  5. Dark Matter Ignition of Type Ia Supernovae.

    Science.gov (United States)

    Bramante, Joseph

    2015-10-02

    Recent studies of low redshift type Ia supernovae (SN Ia) indicate that half explode from less than Chandrasekhar mass white dwarfs, implying ignition must proceed from something besides the canonical criticality of Chandrasekhar mass SN Ia progenitors. We show that 1-100 PeV mass asymmetric dark matter, with imminently detectable nucleon scattering interactions, can accumulate to the point of self-gravitation in a white dwarf and collapse, shedding gravitational potential energy by scattering off nuclei, thereby heating the white dwarf and igniting the flame front that precedes SN Ia. We combine data on SN Ia masses with data on the ages of SN Ia-adjacent stars. This combination reveals a 2.8σ inverse correlation between SN Ia masses and ignition ages, which could result from increased capture of dark matter in 1.4 vs 1.1 solar mass white dwarfs. Future studies of SN Ia in galactic centers will provide additional tests of dark-matter-induced type Ia ignition. Remarkably, both bosonic and fermionic SN Ia-igniting dark matter also resolve the missing pulsar problem by forming black holes in ≳10  Myr old pulsars at the center of the Milky Way.

  6. A couplet from flavored dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Prateek [Fermilab,P.O. Box 500, Batavia, IL, 60510 (United States); Chacko, Zackaria [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland,College Park, MD, 20742-4111 (United States); Kilic, Can [Theory Group, Department of Physics and Texas Cosmology Center,The University of Texas at Austin, 2515 Speedway Stop C1608, Austin, TX, 78712-1197 (United States); Verhaaren, Christopher B. [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland,College Park, MD, 20742-4111 (United States)

    2015-08-17

    We show that a couplet, a pair of closely spaced photon lines, in the X-ray spectrum is a distinctive feature of lepton flavored dark matter models for which the mass spectrum is dictated by Minimal Flavor Violation. In such a scenario, mass splittings between different dark matter flavors are determined by Standard Model Yukawa couplings and can naturally be small, allowing all three flavors to be long-lived and contribute to the observed abundance. Then, in the presence of a tiny source of flavor violation, heavier dark matter flavors can decay via a dipole transition on cosmological timescales, giving rise to three photon lines. Two of these lines are closely spaced, and constitute the couplet. Provided the flavor violation is sufficiently small, the ratios of the line energies are determined in terms of the charged lepton masses, and constitute a prediction of this framework. For dark matter masses of order the weak scale, the couplet lies in the keV-MeV region, with a much weaker line in the eV-keV region. This scenario constitutes a potential explanation for the recent claim of the observation of a 3.5 keV line. The next generation of X-ray telescopes may have the necessary resolution to resolve the double line structure of such a couplet.

  7. Entanglement in holographic dark energy models

    International Nuclear Information System (INIS)

    Horvat, R.

    2010-01-01

    We study a process of equilibration of holographic dark energy (HDE) with the cosmic horizon around the dark-energy dominated epoch. This process is characterized by a huge amount of information conveyed across the horizon, filling thereby a large gap in entropy between the system on the brink of experiencing a sudden collapse to a black hole and the black hole itself. At the same time, even in the absence of interaction between dark matter and dark energy, such a process marks a strong jump in the entanglement entropy, measuring the quantum-mechanical correlations between the horizon and its interior. Although the effective quantum field theory (QFT) with a peculiar relationship between the UV and IR cutoffs, a framework underlying all HDE models, may formally account for such a huge shift in the number of distinct quantum states, we show that the scope of such a framework becomes tremendously restricted, devoid virtually any application in other cosmological epochs or particle-physics phenomena. The problem of negative entropies for the non-phantom stuff is also discussed.

  8. Entanglement in holographic dark energy models

    Energy Technology Data Exchange (ETDEWEB)

    Horvat, R., E-mail: horvat@lei3.irb.h [Rudjer Boskovic Institute, P.O. Box 180, 10002 Zagreb (Croatia)

    2010-10-18

    We study a process of equilibration of holographic dark energy (HDE) with the cosmic horizon around the dark-energy dominated epoch. This process is characterized by a huge amount of information conveyed across the horizon, filling thereby a large gap in entropy between the system on the brink of experiencing a sudden collapse to a black hole and the black hole itself. At the same time, even in the absence of interaction between dark matter and dark energy, such a process marks a strong jump in the entanglement entropy, measuring the quantum-mechanical correlations between the horizon and its interior. Although the effective quantum field theory (QFT) with a peculiar relationship between the UV and IR cutoffs, a framework underlying all HDE models, may formally account for such a huge shift in the number of distinct quantum states, we show that the scope of such a framework becomes tremendously restricted, devoid virtually any application in other cosmological epochs or particle-physics phenomena. The problem of negative entropies for the non-phantom stuff is also discussed.

  9. The long term variation in the ionospheric winter absorption anomaly

    International Nuclear Information System (INIS)

    Beynon, W.J.G.; Williams, E.R.

    1976-01-01

    An analysis of vertical incidence absorption data for a mid-latitude station (Freiburg 48 0 N 7.5 0 E) for the 13-year period 1957 to 1969 shows that there is a solar cycle variation both in the number of winter anomaly days and in the magnitude of the absorption anomaly. The magnitude of this variation is discussed in relation to solar X-ray flux and to geomagnetic disturbance. The magnitude of winter anomaly absorption is a maximum in the frequency range 2 to 2.5 MHz. Comparison of the winter anomaly phenomenon at a range of mid-latitude stations suggests that there may be small longitude variation in the magnitude of the phenomenon. (author)

  10. High-speed solar wind streams and polar mesosphere winter echoes at Troll, Antarctica

    Directory of Open Access Journals (Sweden)

    S. Kirkwood

    2015-06-01

    Full Text Available A small, 54 MHz wind-profiler radar, MARA, was operated at Troll, Antarctica (72° S, 2.5° E, continuously from November 2011 to January 2014, covering two complete Antarctic winters. Despite very low power, MARA observed echoes from heights of 55–80 km (polar mesosphere winter echoes, PMWE on 60% of all winter days (from March to October. This contrasts with previous reports from radars at high northern latitudes, where PWME have been reported only by very high power radars or during rare periods of unusually high electron density at PMWE heights, such as during solar proton events. Analysis shows that PWME at Troll were not related to solar proton events but were often closely related to the arrival of high-speed solar wind streams (HSS at the Earth, with PWME appearing at heights as low as 56 km and persisting for up to 15 days following HSS arrival. This demonstrates that HSS effects penetrate directly to below 60 km height in the polar atmosphere. Using local observations of cosmic-noise absorption (CNA, a theoretical ionization/ion-chemistry model and a statistical model of precipitating energetic electrons associated with HSS, the electron density conditions during the HSS events are estimated. We find that PMWE detectability cannot be explained by these variations in electron density and molecular-ion chemistry alone. PWME become detectable at different thresholds depending on solar illumination and height. In darkness, PWME are detected only when the modelled electron density is above a threshold of about 1000 cm−3, and only above 75 km height, where negative ions are few. In daylight, the electron density threshold falls by at least 2 orders of magnitude and PWME are found primarily below 75 km height, even in conditions when a large proportion of negative ions is expected. There is also a strong dawn–dusk asymmetry with PWME detected very rarely during morning twilight but often during evening twilight. This behaviour cannot be

  11. High-speed solar wind streams and polar mesosphere winter echoes at Troll, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Kirkwood, S.; Belova, E. [Swedish Institute of Space Physics, Kiruna (Sweden). Polar Atmospheric Research; Osepian, A. [Polar Geophysical Institute, Murmansk (Russian Federation); Lee, Y.S. [Korea Astronomy and Space Science Institute, Daejeon (Korea, Republic of)

    2015-10-01

    A small, 54 MHz wind-profiler radar, MARA, was operated at Troll, Antarctica (72 S, 2.5 E), continuously from November 2011 to January 2014, covering two complete Antarctic winters. Despite very low power, MARA observed echoes from heights of 55-80 km (polar mesosphere winter echoes, PMWE) on 60% of all winter days (from March to October). This contrasts with previous reports from radars at high northern latitudes, where PWME have been reported only by very high power radars or during rare periods of unusually high electron density at PMWE heights, such as during solar proton events. Analysis shows that PWME at Troll were not related to solar proton events but were often closely related to the arrival of high-speed solar wind streams (HSS) at the Earth, with PWME appearing at heights as low as 56 km and persisting for up to 15 days following HSS arrival. This demonstrates that HSS effects penetrate directly to below 60 km height in the polar atmosphere. Using local observations of cosmic-noise absorption (CNA), a theoretical ionization/ion-chemistry model and a statistical model of precipitating energetic electrons associated with HSS, the electron density conditions during the HSS events are estimated. We find that PMWE detectability cannot be explained by these variations in electron density and molecular-ion chemistry alone. PWME become detectable at different thresholds depending on solar illumination and height. In darkness, PWME are detected only when the modelled electron density is above a threshold of about 1000 cm{sup -3}, and only above 75 km height, where negative ions are few. In daylight, the electron density threshold falls by at least 2 orders of magnitude and PWME are found primarily below 75 km height, even in conditions when a large proportion of negative ions is expected. There is also a strong dawn-dusk asymmetry with PWME detected very rarely during morning twilight but often during evening twilight. This behaviour cannot be explained if PMWE

  12. Exponential Potential versus Dark Matter

    Science.gov (United States)

    1993-10-15

    scale of the solar system. Galaxy, Dark matter , Galaxy cluster, Gravitation, Quantum gravity...A two parameter exponential potential explains the anomalous kinematics of galaxies and galaxy clusters without need for the myriad ad hoc dark ... matter models currently in vogue. It also explains much about the scales and structures of galaxies and galaxy clusters while being quite negligible on the

  13. Make dark matter charged again

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa; Scholtz, Jakub, E-mail: prateekagrawal@fas.harvard.edu, E-mail: fcyrraci@physics.harvard.edu, E-mail: randall@physics.harvard.edu, E-mail: jscholtz@physics.harvard.edu [Department of Physics, Harvard University, Cambridge, MA 02138 (United States)

    2017-05-01

    We revisit constraints on dark matter that is charged under a U(1) gauge group in the dark sector, decoupled from Standard Model forces. We find that the strongest constraints in the literature are subject to a number of mitigating factors. For instance, the naive dark matter thermalization timescale in halos is corrected by saturation effects that slow down isotropization for modest ellipticities. The weakened bounds uncover interesting parameter space, making models with weak-scale charged dark matter viable, even with electromagnetic strength interaction. This also leads to the intriguing possibility that dark matter self-interactions within small dwarf galaxies are extremely large, a relatively unexplored regime in current simulations. Such strong interactions suppress heat transfer over scales larger than the dark matter mean free path, inducing a dynamical cutoff length scale above which the system appears to have only feeble interactions. These effects must be taken into account to assess the viability of darkly-charged dark matter. Future analyses and measurements should probe a promising region of parameter space for this model.

  14. Galactic searches for dark matter

    International Nuclear Information System (INIS)

    Strigari, Louis E.

    2013-01-01

    For nearly a century, more mass has been measured in galaxies than is contained in the luminous stars and gas. Through continual advances in observations and theory, it has become clear that the dark matter in galaxies is not comprised of known astronomical objects or baryonic matter, and that identification of it is certain to reveal a profound connection between astrophysics, cosmology, and fundamental physics. The best explanation for dark matter is that it is in the form of a yet undiscovered particle of nature, with experiments now gaining sensitivity to the most well-motivated particle dark matter candidates. In this article, I review measurements of dark matter in the Milky Way and its satellite galaxies and the status of Galactic searches for particle dark matter using a combination of terrestrial and space-based astroparticle detectors, and large scale astronomical surveys. I review the limits on the dark matter annihilation and scattering cross sections that can be extracted from both astroparticle experiments and astronomical observations, and explore the theoretical implications of these limits. I discuss methods to measure the properties of particle dark matter using future experiments, and conclude by highlighting the exciting potential for dark matter searches during the next decade, and beyond

  15. Indirect searches for dark matter

    Indian Academy of Sciences (India)

    The current status of indirect searches for dark matter has been reviewed in a schematic way here. The main relevant experimental results of the recent years have been listed and the excitements and disappointments that their phenomenological interpretations in terms of almost-standard annihilating dark matter have ...

  16. Plasma dark matter direct detection

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, J.D.; Foot, R., E-mail: j.clarke5@pgrad.unimelb.edu.au, E-mail: rfoot@unimelb.edu.au [ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, University of Melbourne, Victoria 3010 Australia (Australia)

    2016-01-01

    Dark matter in spiral galaxies like the Milky Way may take the form of a dark plasma. Hidden sector dark matter charged under an unbroken U(1)' gauge interaction provides a simple and well defined particle physics model realising this possibility. The assumed U(1)' neutrality of the Universe then implies (at least) two oppositely charged dark matter components with self-interactions mediated via a massless 'dark photon' (the U(1)' gauge boson). In addition to nuclear recoils such dark matter can give rise to keV electron recoils in direct detection experiments. In this context, the detailed physical properties of the dark matter plasma interacting with the Earth is required. This is a complex system, which is here modelled as a fluid governed by the magnetohydrodynamic equations. These equations are numerically solved for some illustrative examples, and implications for direct detection experiments discussed. In particular, the analysis presented here leaves open the intriguing possibility that the DAMA annual modulation signal is due primarily to electron recoils (or even a combination of electron recoils and nuclear recoils). The importance of diurnal modulation (in addition to annual modulation) as a means of probing this kind of dark matter is also emphasised.

  17. Z2 SIMP dark matter

    International Nuclear Information System (INIS)

    Bernal, Nicolás; Chu, Xiaoyong

    2016-01-01

    Dark matter with strong self-interactions provides a compelling solution to several small-scale structure puzzles. Under the assumption that the coupling between dark matter and the Standard Model particles is suppressed, such strongly interacting massive particles (SIMPs) allow for a successful thermal freeze-out through N-to-N' processes, where N dark matter particles annihilate to N' of them. In the most common scenarios, where dark matter stability is guaranteed by a Z 2 symmetry, the seemingly leading annihilating channel, i.e. 3-to-2 process, is forbidden, so the 4-to-2 one dominate the production of the dark matter relic density. Moreover, cosmological observations require that the dark matter sector is colder than the thermal bath of Standard Model particles, a condition that can be dynamically generated via a small portal between dark matter and Standard Model particles, à la freeze-in. This scenario is exemplified in the context of the Singlet Scalar dark matter model

  18. A Light in the Darkness?

    DEFF Research Database (Denmark)

    Brudholm, Thomas

    2007-01-01

    The article considers the implications of how we remember and commemorate so-called "lights in the darkness," such as the rescue of the Jews in Denmark in 1943.......The article considers the implications of how we remember and commemorate so-called "lights in the darkness," such as the rescue of the Jews in Denmark in 1943....

  19. Hyperion's Dark Material: Rotational Variation

    Science.gov (United States)

    Jarvis, K. S.; Vilas, F.; Buratti, B. J.; Hicks, M. D.; Gaffey, M. J.

    2002-01-01

    We present two new dark material spectra of Hyperion compared with previously published dark material spectra of Hyperion and Iapetus. A 0.67-micron absorption feature is seen in one of the two new spectra. This suggests possible mineralogical differences across the surface of this Saturnian satellite. Additional information is contained in the original extended abstract.

  20. Seasonal variation in orthopedic health services utilization in Switzerland: the impact of winter sport tourism.

    Science.gov (United States)

    Matter-Walstra, Klazien; Widmer, Marcel; Busato, André

    2006-03-03

    Climate- or holiday-related seasonality in hospital admission rates is well known for many diseases. However, little research has addressed the impact of tourism on seasonality in admission rates. We therefore investigated the influence of tourism on emergency admission rates in Switzerland, where winter and summer leisure sport activities in large mountain regions can generate orthopedic injuries. Using small area analysis, orthopedic hospital service areas (HSAo) were evaluated for seasonality in emergency admission rates. Winter sport areas were defined using guest bed accommodation rate patterns of guest houses and hotels located above 1000 meters altitude that show clear winter and summer peak seasons. Emergency admissions (years 2000-2002, n = 135'460) of local and nonlocal HSAo residents were evaluated. HSAo were grouped according to their area type (regular or winter sport area) and monthly analyses of admission rates were performed. Of HSAo within the defined winter sport areas 70.8% show a seasonal, summer-winter peak hospital admission rate pattern and only 1 HSAo outside the defined winter sport areas shows such a pattern. Seasonal hospital admission rates in HSAo in winter sport areas can be up to 4 times higher in winter than the intermediate seasons, and they are almost entirely due to admissions of nonlocal residents. These nonlocal residents are in general -and especially in winter- younger than local residents, and nonlocal residents have a shorter length of stay in winter sport than in regular areas. The overall geographic distribution of nonlocal residents admitted for emergencies shows highest rates during the winter as well as the summer in the winter sport areas. Small area analysis using orthopedic hospital service areas is a reliable method for the evaluation of seasonality in hospital admission rates. In Switzerland, HSAo defined as winter sport areas show a clear seasonal fluctuation in admission rates of only nonlocal residents, whereas

  1. Superheavy dark matter

    CERN Document Server

    Riotto, Antonio

    2000-01-01

    It is usually thought that the present mass density of the Universe is dominated by a weakly interacting massive particle (WIMP), a fossil relic of the early Universe. Theoretical ideas and experimental efforts have focused mostly on production and detection of thermal relics, with mass typically in the range a few GeV to a hundred GeV. Here, we will review scenarios for production of nonthermal dark matter whose mass may be in the range 10/sup 12/ to 10/sup 19/ GeV, much larger than the mass of thermal wimpy WIMPS. We will also review recent related results in understanding the production of very heavy fermions through preheating after inflation. (19 refs).

  2. Through a glass, darkly.

    Science.gov (United States)

    Rittenberry, Ronnie

    2005-10-01

    The technology available in today's auto-darkening welding helmets was the stuff of science fiction to welders 30 years ago. A single lens capable of darkening automatically to a variable, preset shade level the instant an arc is struck would have sounded about as realistic as a "Star Trek"-style "transporter" or a cell phone that can take pictures. "It would have been complete and total science fiction," said Kevin Coughlin, president of Hoodlum Welding Gear, Minneapolis. "The technology really didn't exist, so it would be like me telling you your car will be flying in 20 years--you'd look at me and laugh. Even 25 years ago, if someone had told me [the lens] would go from clear to dark when you spark, I'd have said, 'Yeah, right, sure it does.' "

  3. Ultralight particle dark matter

    International Nuclear Information System (INIS)

    Ringwald, A.

    2013-10-01

    We review the physics case for very weakly coupled ultralight particles beyond the Standard Model, in particular for axions and axion-like particles (ALPs): (i) the axionic solution of the strong CP problem and its embedding in well motivated extensions of the Standard Model; (ii) the possibility that the cold dark matter in the Universe is comprised of axions and ALPs; (iii) the ALP explanation of the anomalous transparency of the Universe for TeV photons; and (iv) the axion or ALP explanation of the anomalous energy loss of white dwarfs. Moreover, we present an overview of ongoing and near-future laboratory experiments searching for axions and ALPs: haloscopes, helioscopes, and light-shining-through-a-wall experiments.

  4. Ultralight particle dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Ringwald, A.

    2013-10-15

    We review the physics case for very weakly coupled ultralight particles beyond the Standard Model, in particular for axions and axion-like particles (ALPs): (i) the axionic solution of the strong CP problem and its embedding in well motivated extensions of the Standard Model; (ii) the possibility that the cold dark matter in the Universe is comprised of axions and ALPs; (iii) the ALP explanation of the anomalous transparency of the Universe for TeV photons; and (iv) the axion or ALP explanation of the anomalous energy loss of white dwarfs. Moreover, we present an overview of ongoing and near-future laboratory experiments searching for axions and ALPs: haloscopes, helioscopes, and light-shining-through-a-wall experiments.

  5. Measuring Dark Molecular Gas

    Science.gov (United States)

    Li, Di; Heiles, Carl E.

    2017-01-01

    It is now well known that a substantial fraction of Galactic molecular gas cannot be traced by CO emission. The thus dubbed CO dark molecular gas (DMG) occupy a large volume of ISM with intermediate extinction, where CO is either not self-shielded and/or subthermally excited. We explore the utilities of simple hydrides, such OH, CH, etc., in tracing DMG. We mapped and modeled the transition zone cross a cloud boundary and derived emperical OH abundance and DMG distribution formulae. We also obtained absorption measurements of various species using Arecibo, VLA, ATCA, and ALMA. The absorption technique has the potential to provide systematic quantification of DMG in the next few years.

  6. Thermalizing Sterile Neutrino Dark Matter.

    Science.gov (United States)

    Hansen, Rasmus S L; Vogl, Stefan

    2017-12-22

    Sterile neutrinos produced through oscillations are a well motivated dark matter candidate, but recent constraints from observations have ruled out most of the parameter space. We analyze the impact of new interactions on the evolution of keV sterile neutrino dark matter in the early Universe. Based on general considerations we find a mechanism which thermalizes the sterile neutrinos after an initial production by oscillations. The thermalization of sterile neutrinos is accompanied by dark entropy production which increases the yield of dark matter and leads to a lower characteristic momentum. This resolves the growing tensions with structure formation and x-ray observations and even revives simple nonresonant production as a viable way to produce sterile neutrino dark matter. We investigate the parameters required for the realization of the thermalization mechanism in a representative model and find that a simple estimate based on energy and entropy conservation describes the mechanism well.

  7. Fireworks in a dark universe

    CERN Document Server

    Levinson, Amir

    2018-01-01

    This book is a new look at one of the hottest topics in contemporary science, Dark Matter. It is the pioneering text dedicated to sterile neutrinos as candidate particles for Dark Matter, challenging some of the standard assumptions which may be true for some Dark Matter candidates but not for all. So, this can be seen either as an introduction to a specialized topic or an out-of-the-box introduction to the field of Dark Matter in general. No matter if you are a theoretical particle physicist, an observational astronomer, or a ground based experimentalist, no matter if you are a grad student or an active researcher, you can benefit from this text, for a simple reason: a non-standard candidate for Dark Matter can teach you a lot about what we truly know about our standard picture of how the Universe works.

  8. Thermodynamical properties of dark energy

    International Nuclear Information System (INIS)

    Gong Yungui; Wang Bin; Wang Anzhong

    2007-01-01

    We have investigated the thermodynamical properties of dark energy. Assuming that the dark energy temperature T∼a -n and considering that the volume of the Universe enveloped by the apparent horizon relates to the temperature, we have derived the dark energy entropy. For dark energy with constant equation of state w>-1 and the generalized Chaplygin gas, the derived entropy can be positive and satisfy the entropy bound. The total entropy, including those of dark energy, the thermal radiation, and the apparent horizon, satisfies the generalized second law of thermodynamics. However, for the phantom with constant equation of state, the positivity of entropy, the entropy bound, and the generalized second law cannot be satisfied simultaneously

  9. Thermalizing Sterile Neutrino Dark Matter

    Science.gov (United States)

    Hansen, Rasmus S. L.; Vogl, Stefan

    2017-12-01

    Sterile neutrinos produced through oscillations are a well motivated dark matter candidate, but recent constraints from observations have ruled out most of the parameter space. We analyze the impact of new interactions on the evolution of keV sterile neutrino dark matter in the early Universe. Based on general considerations we find a mechanism which thermalizes the sterile neutrinos after an initial production by oscillations. The thermalization of sterile neutrinos is accompanied by dark entropy production which increases the yield of dark matter and leads to a lower characteristic momentum. This resolves the growing tensions with structure formation and x-ray observations and even revives simple nonresonant production as a viable way to produce sterile neutrino dark matter. We investigate the parameters required for the realization of the thermalization mechanism in a representative model and find that a simple estimate based on energy and entropy conservation describes the mechanism well.

  10. Dark matter and particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Masiero, A [SISSA-ISAS, Trieste (Italy) and INFN, Sezione di Trieste (Italy); Pascoli, S [SISSA-ISAS, Trieste (Italy) and INFN, Sezione di Trieste (Italy)

    2001-11-15

    Dark matter constitutes a key-problem at the interface between Particle Physics, Astrophysics and Cosmology. Indeed, the observational facts which have been accumulated in the last years on dark matter point to the existence of an amount of non-baryonic dark matter. Since the Standard Model of Particle Physics does not possess any candidate for such non-baryonic dark matter, this problem constitutes a major indication for new Physics beyond the Standard Model. We analyze the most important candidates for non-baryonic dark matter in the context of extensions of the Standard Model (in particular supersymmetric models). The recent hints for the presence of a large amount of unclustered 'vacuum' energy (cosmological constant?) is discussed from the Astrophysical and Particle Physics perspective. (author)

  11. In search of dark matter

    CERN Document Server

    Freeman, Kenneth C

    2006-01-01

    The dark matter problem is one of the most fundamental and profoundly difficult to solve problems in the history of science. Not knowing what makes up most of the known universe goes to the heart of our understanding of the Universe and our place in it. In Search of Dark Matter is the story of the emergence of the dark matter problem, from the initial erroneous ‘discovery’ of dark matter by Jan Oort to contemporary explanations for the nature of dark matter and its role in the origin and evolution of the Universe. Written for the educated non-scientist and scientist alike, it spans a variety of scientific disciplines, from observational astronomy to particle physics. Concepts that the reader will encounter along the way are at the cutting edge of scientific research. However the themes are explained in such a way that no prior understanding of science beyond a high school education is necessary.

  12. Avian dark cells

    Science.gov (United States)

    Hara, J.; Plymale, D. R.; Shepard, D. L.; Hara, H.; Garry, Robert F.; Yoshihara, T.; Zenner, Hans-Peter; Bolton, M.; Kalkeri, R.; Fermin, Cesar D.

    2002-01-01

    Dark cells (DCs) of mammalian and non-mammalian species help to maintain the homeostasis of the inner ear fluids in vivo. Although the avian cochlea is straight and the mammalian cochlea is coiled, no significant difference in the morphology and/or function of mammalian and avian DCs has been reported. The mammalian equivalent of avian DCs are marginal cells and are located in the stria vascularis along a bony sheet. Avian DCs hang free from the tegmentum vasculosum (TV) of the avian lagena between the perilymph and endolymph. Frame averaging was used to image the fluorescence emitted by several fluorochromes applied to freshly isolated dark cells (iDCs) from chickens (Gallus domesticus) inner ears. The viability of iDCs was monitored via trypan blue exclusion at each isolation step. Sodium Green, BCECF-AM, Rhodamine 123 and 9-anthroyl ouabain molecules were used to test iDC function. These fluorochromes label iDCs ionic transmembrane trafficking function, membrane electrogenic potentials and Na+/K+ ATPase pump's activity. Na+/K+ ATPase pump sites, were also evaluated by the p-nitrophenyl phosphatase reaction. These results suggest that iDCs remain viable for several hours after isolation without special culturing requirements and that the number and functional activity of Na+/K+ ATPase pumps in the iDCs were indistinguishable from in vivo DCs. Primary cultures of freshly iDCs were successfully maintained for 28 days in plastic dishes with RPMI 1640 culture medium. The preparation of iDCs overcomes the difficulty of DCs accessability in vivo and the unavoidable contamination that rupturing the inner ear microenvironments induces.

  13. Sustainable use of winter Durum wheat landraces under ...

    African Journals Online (AJOL)

    ... the two checks cultivars. Bi- plot analysis showed that some promising lines with reasonable grain yields, good quality parameters, winter hardiness and drought tolerances among yellow rust resistance durum wheat landraces can be selected for semiarid conditions of Mediterranean countries for sustainable production.

  14. Particle Dark Matter: Status and Searches

    OpenAIRE

    Sandick, Pearl

    2010-01-01

    A brief overview is given of the phenomenology of particle dark matter and the properties of some of the most widely studied dark matter candidates. Recent developments in direct and indirect dark matter searches are discussed.

  15. Revisit of the interaction between holographic dark energy and dark matter

    International Nuclear Information System (INIS)

    Zhang, Zhenhui; Li, Xiao-Dong; Li, Song; Li, Miao; Zhang, Xin

    2012-01-01

    In this paper we investigate the possible direct, non-gravitational interaction between holographic dark energy (HDE) and dark matter. Firstly, we start with two simple models with the interaction terms Q∝ρ dm and Q∝ρ de , and then we move on to the general form Q∝ρ m α ρ de β . The cosmological constraints of the models are obtained from the joint analysis of the present Union2.1+BAO+CMB+H 0 data. We find that the data slightly favor an energy flow from dark matter to dark energy, although the original HDE model still lies in the 95.4% confidence level (CL) region. For all models we find c dm and ρ de is smaller, and the relative increment (decrement) amount of the energy in the dark matter component is constrained to be less than 9% (15%) at the 95.4% CL. By introducing the interaction, we find that even when c < 1 the big rip still can be avoided due to the existence of a de Sitter solution at z→−1. We show that this solution can not be accomplished in the two simple models, while for the general model such a solution can be achieved with a large β, and the big rip may be avoided at the 95.4% CL

  16. Gravitational wave from dark sector with dark pion

    Energy Technology Data Exchange (ETDEWEB)

    Tsumura, Koji [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Yamada, Masatoshi [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany); Yamaguchi, Yuya, E-mail: ko2@gauge.scphys.kyoto-u.ac.jp, E-mail: m.yamada@thphys.uni-heidelberg.de, E-mail: yy@particle.sci.hokudai.ac.jp [Department of Physics, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan)

    2017-07-01

    In this work, we investigate the spectra of gravitational waves produced by chiral symmetry breaking in dark quantum chromodynamics (dQCD) sector. The dark pion (π) can be a dark matter candidate as weakly interacting massive particle (WIMP) or strongly interacting massive particle (SIMP). For a WIMP scenario, we introduce the dQCD sector coupled to the standard model (SM) sector with classical scale invariance and investigate the annihilation process of the dark pion via the 2π → 2 SM process. For a SIMP scenario, we investigate the 3π → 2π annihilation process of the dark pion as a SIMP using chiral perturbation theory. We find that in the WIMP scenario the gravitational wave background spectra can be observed by future space gravitational wave antennas. On the other hand, when the dark pion is the SIMP dark matter with the constraints for the chiral perturbative limit and pion-pion scattering cross section, the chiral phase transition becomes crossover and then the gravitational waves are not produced.

  17. Dancing in the dark: darkness as a signal in plants.

    Science.gov (United States)

    Seluzicki, Adam; Burko, Yogev; Chory, Joanne

    2017-11-01

    Daily cycles of light and dark provide an organizing principle and temporal constraints under which life on Earth evolved. While light is often the focus of plant studies, it is only half the story. Plants continuously adjust to their surroundings, taking both dawn and dusk as cues to organize their growth, development and metabolism to appropriate times of day. In this review, we examine the effects of darkness on plant physiology and growth. We describe the similarities and differences between seedlings grown in the dark versus those grown in light-dark cycles, and the evolution of etiolated growth. We discuss the integration of the circadian clock into other processes, looking carefully at the points of contact between clock genes and growth-promoting gene-regulatory networks in temporal gating of growth. We also examine daily starch accumulation and degradation, and the possible contribution of dark-specific metabolic controls in regulating energy and growth. Examining these studies together reveals a complex and continuous balancing act, with many signals, dark included, contributing information and guiding the plant through its life cycle. The extraordinary interconnection between light and dark is manifest during cycles of day and night and during seedling emergence above versus below the soil surface. © 2017 John Wiley & Sons Ltd.

  18. Can GRACE detect winter snows in Japan?

    Science.gov (United States)

    Heki, Kosuke

    2010-05-01

    Current spatial resolution of the GRACE (Gravity Recovery and Climate Experiment) satellites is 300-400 km, and so its hydrological applications have been limited to continents and large islands. The Japanese Islands have width slightly smaller than this spatial resolution, but are known to show large amplitude seasonal changes in surface masses due mainly to winter snow. Such loads are responsible for seasonal crustal deformation observed with GEONET, a dense array of GPS (Global Positioning System) receivers in Japan (Heki, 2001). There is also a dense network of surface meteorological sensors for, e.g. snow depths, atmospheric pressures, etc. Heki (2004) showed that combined effects of surface loads, i.e. snow (predominant), atmosphere, soil moisture, dam impoundment, can explain seasonal crustal deformation observed by GPS to a large extent. The total weight of the winter snow in the Japanese Islands in its peak season may reach ~50 Gt. This is comparable to the annual loss of mountain glaciers in the Asian high mountains (Matsuo & Heki, 2010), and is above the detection level of GRACE. In this study, I use GRACE Level-2 Release-4 data from CSR, Univ. Texas, up to 2009 November, and evaluated seasonal changes in surface loads in and around the Japanese Islands. After applying a 350 km Gaussian filter and a de-striping filter, the peak-to-peak change of the water depth becomes ~4 cm in northern Japan. The maximum value is achieved in February-March. The region of large winter load spans from Hokkaido, Japan, to northeastern Honshu, which roughly coincides with the region of deep snow in Japan. Next I compiled snow depth data from surface meteorological observations, and converted them to loads using time-dependent snow density due to compaction. By applying the same spatial filter as the GRACE data, its spatial pattern becomes similar to the GRACE results. The present study suggests that GRACE is capable of detecting seasonal mass changes in an island arc not

  19. On wave dark matter in spiral and barred galaxies

    International Nuclear Information System (INIS)

    Martinez-Medina, Luis A.; Matos, Tonatiuh; Bray, Hubert L.

    2015-01-01

    We recover spiral and barred spiral patterns in disk galaxy simulations with a Wave Dark Matter (WDM) background (also known as Scalar Field Dark Matter (SFDM), Ultra-Light Axion (ULA) dark matter, and Bose-Einstein Condensate (BEC) dark matter). Here we show how the interaction between a baryonic disk and its Dark Matter Halo triggers the formation of spiral structures when the halo is allowed to have a triaxial shape and angular momentum. This is a more realistic picture within the WDM model since a non-spherical rotating halo seems to be more natural. By performing hydrodynamic simulations, along with earlier test particles simulations, we demonstrate another important way in which wave dark matter is consistent with observations. The common existence of bars in these simulations is particularly noteworthy. This may have consequences when trying to obtain information about the dark matter distribution in a galaxy, the mere presence of spiral arms or a bar usually indicates that baryonic matter dominates the central region and therefore observations, like rotation curves, may not tell us what the DM distribution is at the halo center. But here we show that spiral arms and bars can develop in DM dominated galaxies with a central density core without supposing its origin on mechanisms intrinsic to the baryonic matter

  20. Light higgsino dark matter from non-thermal cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Aparicio, Luis [ICTP,Strada Costiera 11, Trieste 34014 (Italy); Cicoli, Michele [ICTP,Strada Costiera 11, Trieste 34014 (Italy); Dipartimento di Fisica e Astronomia, Università di Bologna,via Irnerio 46, 40126 Bologna (Italy); INFN, Sezione di Bologna,via Irnerio 46, 40126 Bologna (Italy); Dutta, Bhaskar [Department of Physics and Astronomy,Mitchell Institute for Fundamental Physics and Astronomy,TAMU, College Station, TX 77843-4242 (United States); Muia, Francesco [Dipartimento di Fisica e Astronomia, Università di Bologna,via Irnerio 46, 40126 Bologna (Italy); INFN, Sezione di Bologna,via Irnerio 46, 40126 Bologna (Italy); Quevedo, Fernando [ICTP,Strada Costiera 11, Trieste 34014 (Italy); DAMTP, Centre for Mathematical Sciences,Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2016-11-08

    We study the scenario of higgsino dark matter in the context of a non-standard cosmology with a period of matter domination prior to Big Bang nucleosynthesis. Matter domination changes the dark matter relic abundance if it ends via reheating to a temperature below the higgsino thermal freeze-out temperature. We perform a model independent analysis of the higgsino dark matter production in such scenario. We show that light higgsino-type dark matter is possible for reheating temperatures close to 1 GeV. We study the impact of dark matter indirect detection and collider physics in this context. We show that Fermi-LAT data rule out non-thermal higgsinos with masses below 300 GeV. Future indirect dark matter searches from Fermi-LAT and CTA will be able to cover essentially the full parameter space. Contrary to the thermal case, collider signals from a 100 TeV collider could fully test the non-thermal higgsino scenario. In the second part of the paper we discuss the motivation of such non-thermal cosmology from the perspective of string theory with late-time decaying moduli for both KKLT and LVS moduli stabilisation mechanisms. We finally describe the impact of embedding higgsino dark matter in these scenarios.

  1. The power situation in winter 2010/2011; Kraftsituasjonen vinteren 2010/2011

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Finn Erik Ljaastad (ed.)

    2011-07-15

    At the beginning of winter, the reservoir level was record low. Very cold weather before the end of the year contributed to the further tapping. Mild weather and early snow melt caused a rapid increase in water levels in beginning of April. On average, the Norwegian power prices was higher last winter compared with the previous winter. High prices are necessary to get high Norwegian imports and keep consumption down, and thus saving water in the reservoirs. Limitations in transmission capacity between market areas affected the prices and power flow last winter. In the night and weekend hours contributed network problems in southern Sweden to the reduced transmission capacity to Southern Norway. This dampened the Norwegian imports, and Norwegian hydropower producers tapped more of the magazined water than they otherwise would. This emphasizes the need to continue NVE's efforts to explore possibilities for a better utilization of transmission capacities in the network. There were several events that had an impact on the operation of the power system and security of supply last winter. Error events led to interruption for many grid customers, in addition to significant risk of further extensive dark laying of large areas if another failure should occur. (AG

  2. Directly detecting isospin-violating dark matter

    OpenAIRE

    Kelso, Chris; Kumar, Jason; Marfatia, Danny; Sandick, Pearl

    2018-01-01

    We consider the prospects for multiple dark matter direct detection experiments to determine if the interactions of a dark matter candidate are isospin-violating. We focus on theoretically well-motivated examples of isospin-violating dark matter (IVDM), including models in which dark matter interactions with nuclei are mediated by a dark photon, a Z, or a squark. We determine that the best prospects for distinguishing IVDM from the isospin-invariant scenario arise in the cases of dark photon–...

  3. Instability in interacting dark sector: an appropriate holographic Ricci dark energy model

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Ramón [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2950, Casilla 4059, Valparaíso (Chile); Hipólito-Ricaldi, W.S. [Departamento de Ciências Naturais, Universidade Federal do Espírito Santo, Rodovia BR 101 Norte, km. 60, São Mateus, Espírito Santo (Brazil); Videla, Nelson, E-mail: ramon.herrera@pucv.cl, E-mail: wiliam.ricaldi@ufes.br, E-mail: nelson.videla@ing.uchile.cl [Departamento de Física, Universidad de Chile, FCFM, Blanco Encalada 2008, Santiago (Chile)

    2016-08-01

    In this paper we investigate the consequences of phantom crossing considering the perturbative dynamics in models with interaction in their dark sector. By mean of a general study of gauge-invariant variables in comoving gauge, we relate the sources of instabilities in the structure formation process with the phantom crossing. In order to illustrate these relations and its consequences in more detail, we consider a specific case of an holographic dark energy interacting with dark matter. We find that in spite of the model is in excellent agreement with observational data at background level, however it is plagued of instabilities in its perturbative dynamics. We reconstruct the model in order to avoid these undesirable instabilities, and we show that this implies a modification of the concordance model at background. Also we find drastic changes on the parameters space in our model when instabilities are avoided.

  4. Update on hidden sectors with dark forces and dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, Sarah

    2012-11-15

    Recently there has been much interest in hidden sectors, especially in the context of dark matter and ''dark forces'', since they are a common feature of beyond standard model scenarios like string theory and SUSY and additionally exhibit interesting phenomenological aspects. Various laboratory experiments place limits on the so-called hidden photon and continuously further probe and constrain the parameter space; an updated overview is presented here. Furthermore, for several hidden sector models with light dark matter we study the viability with respect to the relic abundance and direct detection experiments.

  5. Extra Dimensions are Dark: II Fermionic Dark Matter

    OpenAIRE

    Rizzo, Thomas G.

    2018-01-01

    Extra dimensions can be very useful tools when constructing new physics models. Previously, we began investigating toy models for the 5-D analog of the kinetic mixing/vector portal scenario where the interactions of bulk dark matter with the brane-localized fields of the Standard Model are mediated by a massive $U(1)_D$ dark photon also living in the bulk. In that setup, where the dark matter was taken to be a complex scalar, a number of nice features were obtained such as $U(1)_D$ breaking b...

  6. Winter active bumblebees (Bombus terrestris achieve high foraging rates in urban Britain.

    Directory of Open Access Journals (Sweden)

    Ralph J Stelzer

    2010-03-01

    Full Text Available Foraging bumblebees are normally associated with spring and summer in northern Europe. However, there have been sightings of the bumblebee Bombus terrestris during the warmer winters in recent years in southern England. But what floral resources are they relying upon during winter and how much winter forage can they collect?To test if urban areas in the UK provide a rich foraging niche for bees we set up colonies of B. terrestris in the field during two late winter periods (2005/6 & 2006/7 in London, UK, and measured their foraging performance. Fully automatic radio-frequency identification (RFID technology was used in 2006/7 to enable us to record the complete foraging activity of individually tagged bees. The number of bumblebees present during winter (October 2007 to March 2008 and the main plants they visited were also recorded during transect walks. Queens and workers were observed throughout the winter, suggesting a second generation of bee colonies active during the winter months. Mass flowering shrubs such as Mahonia spp. were identified as important food resources. The foraging experiments showed that bees active during the winter can attain nectar and pollen foraging rates that match, and even surpass, those recorded during summer.B. terrestris in the UK are now able to utilise a rich winter foraging resource in urban parks and gardens that might at present still be under-exploited, opening up the possibility of further changes in pollinator phenology.

  7. Winter active bumblebees (Bombus terrestris) achieve high foraging rates in urban Britain.

    Science.gov (United States)

    Stelzer, Ralph J; Chittka, Lars; Carlton, Marc; Ings, Thomas C

    2010-03-05

    Foraging bumblebees are normally associated with spring and summer in northern Europe. However, there have been sightings of the bumblebee Bombus terrestris during the warmer winters in recent years in southern England. But what floral resources are they relying upon during winter and how much winter forage can they collect? To test if urban areas in the UK provide a rich foraging niche for bees we set up colonies of B. terrestris in the field during two late winter periods (2005/6 & 2006/7) in London, UK, and measured their foraging performance. Fully automatic radio-frequency identification (RFID) technology was used in 2006/7 to enable us to record the complete foraging activity of individually tagged bees. The number of bumblebees present during winter (October 2007 to March 2008) and the main plants they visited were also recorded during transect walks. Queens and workers were observed throughout the winter, suggesting a second generation of bee colonies active during the winter months. Mass flowering shrubs such as Mahonia spp. were identified as important food resources. The foraging experiments showed that bees active during the winter can attain nectar and pollen foraging rates that match, and even surpass, those recorded during summer. B. terrestris in the UK are now able to utilise a rich winter foraging resource in urban parks and gardens that might at present still be under-exploited, opening up the possibility of further changes in pollinator phenology.

  8. A comparison of pine and spruce in recovery from winter stress; changes in recovery kinetics, and the abundance and phosphorylation status of photosynthetic proteins during winter.

    Science.gov (United States)

    Merry, Ryan; Jerrard, Jacob; Frebault, Julia; Verhoeven, Amy

    2017-09-01

    During winter evergreens maintain a sustained form of thermal energy dissipation that results in reduced photochemical efficiency measured using the chlorophyll fluorescence parameter Fv/Fm. Eastern white pine (Pinus strobus L.) and white spruce [Picea glauca (Moench) Voss] have been shown to differ in their rate of recovery of Fv/Fm from winter stress. The goal of this study was to monitor changes in photosynthetic protein abundance and phosphorylation status during winter recovery that accompany these functional changes. An additional goal was to determine whether light-dependent changes in light harvesting complex II (LHCII) phosphorylation occur during winter conditions. We used a combination of field measurements and recovery experiments to monitor chlorophyll fluorescence and photosynthetic protein content and phosphorylation status. We found that pine recovered three times more slowly than spruce, and that the kinetics of recovery in spruce included a rapid and slow component, while in pine there was only a rapid component to recovery. Both species retained relatively high amounts of the light harvesting protein Lhcb5 (CP26) and the PsbS protein during winter, suggesting a role for these proteins in sustained thermal dissipation. Both species maintained high phosphorylation of LHCII and the D1 protein in darkness during winter. Pine and spruce differed in the kinetics of the dephosphorylation of LHCII and D1 upon warming, suggesting the rate of dephosphorylation of LHCII and D1 may be important in the rapid component of recovery from winter stress. Finally, we demonstrated that light-dependent changes in LHII phosphorylation do not continue to occur on subzero winter days and that needles are maintained in a phosphorylation pattern consistent with the high light conditions to which those needles are exposed. Our results suggest a role for retained phosphorylation of both LHCII and D1 in maintenance of the photosynthetic machinery in a winter conformation

  9. Tales from the dark side: Privacy dark strategies and privacy dark patterns

    DEFF Research Database (Denmark)

    Bösch, Christoph; Erb, Benjamin; Kargl, Frank

    2016-01-01

    Privacy strategies and privacy patterns are fundamental concepts of the privacy-by-design engineering approach. While they support a privacy-aware development process for IT systems, the concepts used by malicious, privacy-threatening parties are generally less understood and known. We argue...... that understanding the “dark side”, namely how personal data is abused, is of equal importance. In this paper, we introduce the concept of privacy dark strategies and privacy dark patterns and present a framework that collects, documents, and analyzes such malicious concepts. In addition, we investigate from...... a psychological perspective why privacy dark strategies are effective. The resulting framework allows for a better understanding of these dark concepts, fosters awareness, and supports the development of countermeasures. We aim to contribute to an easier detection and successive removal of such approaches from...

  10. Experimental log hauling through a traditional caribou wintering area

    Directory of Open Access Journals (Sweden)

    Harold G. Cumming

    1998-03-01

    Full Text Available A 3-year field experiment (fall 1990-spring 1993 showed that woodland caribou (Rangifer tarandus caribou altered their dispersion when logs were hauled through their traditional wintering area. Unlike observations in control years 1 and 3, radio-collared caribou that had returned to the study area before the road was plowed on January 6 of the experimental year 2, moved away 8-60 km after logging activities began. Seasonal migration to Lake Nipigon islands usually peaked in April, but by February 22 of year 2, 4 of the 6 had returned. The islands provide summer refuge from predation, but not when the lake is frozen. Tracks in snow showed that some caribou remained but changed locations. They used areas near the road preferentially in year 1, early year 2, and year 3, but moved away 2-5 km after the road was plowed in year 2. In a nearby undisturbed control area, no such changes occurred. Caribou and moose partitioned habitat on a small scale; tracks showed gray wolf (Canis lupus remote from caribou but close to moose tracks. No predation on caribou was observed within the wintering area; 2 kills were found outside it. Due to the possibility of displacing caribou from winter refugia to places with higher predation risk, log hauling through important caribou winter habitat should be minimized.

  11. Reconstruction of the interaction term between dark matter and dark energy using SNe Ia

    Energy Technology Data Exchange (ETDEWEB)

    Solano, Freddy Cueva; Nucamendi, Ulises, E-mail: freddy@ifm.umich.mx, E-mail: ulises@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, CP. 58040, Morelia, Michoacán (Mexico)

    2012-04-01

    We apply a parametric reconstruction method to a homogeneous, isotropic and spatially flat Friedmann-Robertson-Walker (FRW) cosmological model filled of a fluid of dark energy (DE) with constant equation of state (EOS) parameter interacting with dark matter (DM)\\@. The reconstruction method is based on expansions of the general interaction term and the relevant cosmological variables in terms of Chebyshev polynomials which form a complete set orthonormal functions. This interaction term describes an exchange of energy flow between the DE and DM within dark sector. To show how the method works we do the reconstruction of the interaction function expanding it in terms of only the first six Chebyshev polynomials and obtain the best estimation for the coefficients of the expansion assuming three models: (a) a DE equation of the state parameter w = −1 (an interacting cosmological Λ), (b) a DE equation of the state parameter w = constant with a dark matter density parameter fixed, (c) a DE equation of the state parameter w = constant with a free constant dark matter density parameter to be estimated, and using the Union2 SNe Ia data set from ''The Supernova Cosmology Project'' (SCP) composed by 557 type Ia supernovae. In both cases, the preliminary reconstruction shows that in the best scenario there exist the possibility of a crossing of the noninteracting line Q = 0 in the recent past within the 1σ and 2σ errors from positive values at early times to negative values at late times. This means that, in this reconstruction, there is an energy transfer from DE to DM at early times and an energy transfer from DM to DE at late times. We conclude that this fact is an indication of the possible existence of a crossing behavior in a general interaction coupling between dark components.

  12. Fishing for Northern Pike in Minnesota: A comparison of anglers and dark house spearers

    Science.gov (United States)

    Schroeder, Susan A.; Fulton, David C.

    2014-01-01

    In order to project fishing effort and demand of individuals targeting Northern Pike Esox lucius in Minnesota, it is important to understand the catch orientations, management preferences, and site choice preferences of those individuals. Northern Pike are specifically targeted by about 35% of the approximately 1.5 million licensed anglers in Minnesota and by approximately 14,000–15,000 dark house spearers. Dark house spearing is a traditional method of harvesting fish through the ice in winter. Mail surveys were distributed to three research strata: anglers targeting Northern Pike, dark house spearing license holders spearing Northern Pike, and dark house spearing license holders angling for Northern Pike. Dark house spearers, whether spearing or angling, reported a stronger orientation toward keeping Northern Pike than did anglers. Anglers reported a stronger orientation toward catching large Northern Pike than did dark house spearers when spearing or angling. Northern Pike regulations were the most important attribute affecting site choice for respondents in all three strata. Models for all strata indicated a preference for lakes without protected slot limits. However, protected slot limits had a stronger negative influence on lake preference for dark house spearing licensees (whether spearing or angling) than for anglers.

  13. Detectability of Light Dark Matter with Superfluid Helium.

    Science.gov (United States)

    Schutz, Katelin; Zurek, Kathryn M

    2016-09-16

    We show that a two-excitation process in superfluid helium, combined with sensitivity to meV energy depositions, can probe dark matter down to the ∼keV warm dark matter mass limit. This mass reach is 3 orders of magnitude below what can be probed with ordinary nuclear recoils in helium at the same energy resolution. For dark matter lighter than ∼100  keV, the kinematics of the process requires the two athermal excitations to have nearly equal and opposite momentum, potentially providing a built-in coincidence mechanism for controlling backgrounds.

  14. Planck-scale effects on WIMP dark matter

    Directory of Open Access Journals (Sweden)

    Sofiane M Boucenna

    2014-01-01

    Full Text Available There exists a widely known conjecture that gravitational effects violate global symmetries. We study the effect of global-symmetry violating higher-dimension operators induced by Planck-scale physics on the properties of WIMP dark matter. Using an effective description, we show that the lifetime of the WIMP dark matter candidate can satisfy cosmological bounds under reasonable assumptions regarding the strength of the dimension-five operators. On the other hand, the indirect WIMP dark matter detection signal is significantly enhanced due to new decay channels.

  15. Cancellation Mechanism for Dark-Matter-Nucleon Interaction.

    Science.gov (United States)

    Gross, Christian; Lebedev, Oleg; Toma, Takashi

    2017-11-10

    We consider a simple Higgs portal dark-matter model, where the standard model is supplemented with a complex scalar whose imaginary part plays the role of weakly interacting massive particle dark matter (DM). We show that the direct DM detection cross section vanishes at the tree level and zero momentum transfer due to a cancellation by virtue of a softly broken symmetry. This cancellation is operative for any mediator masses. As a result, our electroweak-scale dark matter satisfies all of the phenomenological constraints quite naturally.

  16. Prospects for indirect detection of frozen-in dark matter

    Science.gov (United States)

    Heikinheimo, Matti; Tenkanen, Tommi; Tuominen, Kimmo

    2018-03-01

    We study observational consequences arising from dark matter (DM) of nonthermal origin, produced by dark freeze-out from a hidden sector heat bath. We assume this heat bath was populated by feebly coupled mediator particles, produced via a Higgs portal interaction with the Standard Model (SM). The dark sector then attained internal equilibrium with a characteristic temperature different from the SM photon temperature. We find that even if the coupling between the DM and the SM sectors is very weak, the scenario allows for indirect observational signals. We show how the expected strength of these signals depends on the temperature of the hidden sector at DM freeze-out.

  17. Observing Primeval Galaxies and Dark Matter with LAIRTS

    Science.gov (United States)

    1988-12-05

    in the form of black holes. Previously, we had argued that the dark matter in the halo of spiral galaxies is not baryonic . Now we have extended those...consider each type of barvonic matter and show the contradictions that would exist if the dark matter were made up of each form of baryonic matter . A topic...Classification) Observing Primeval Galaxies and Dark Matter with LAIRTS 12. PERSONAL AUTHOR(S) 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year

  18. Rippled cosmological dark matter from a damped oscillating Newton constant

    International Nuclear Information System (INIS)

    Davidson, Aharon

    2005-01-01

    Let the reciprocal Newton 'constant' be an apparently non-dynamical Brans-Dicke scalar field damped oscillating towards its general relativistic VEV. We show, without introducing additional matter fields or dust, that the corresponding cosmological evolution averagely resembles, in the Jordan frame, the familiar dark radiation → dark matter → dark energy domination sequence. The fingerprints of our theory are fine ripples, hopefully testable, in the FRW scale factor; they die away at the general relativity limit. The possibility that the Brans-Dicke scalar also serves as the inflaton is favourably examined

  19. Cold light dark matter in extended seesaw models

    Science.gov (United States)

    Boulebnane, Sami; Heeck, Julian; Nguyen, Anne; Teresi, Daniele

    2018-04-01

    We present a thorough discussion of light dark matter produced via freeze-in in two-body decays A→ B DM . If A and B are quasi-degenerate, the dark matter particle has a cold spectrum even for keV masses. We show this explicitly by calculating the transfer function that encodes the impact on structure formation. As examples for this setup we study extended seesaw mechanisms with a spontaneously broken global U(1) symmetry, such as the inverse seesaw. The keV-scale pseudo-Goldstone dark matter particle is then naturally produced cold by the decays of the quasi-degenerate right-handed neutrinos.

  20. Role of baryons in unified dark matter models

    International Nuclear Information System (INIS)

    Beca, L.M.G.; Avelino, P.P.; Carvalho, J.P. de M.; Martins, C.J.A.P.

    2003-01-01

    We discuss the importance of including baryons in analyses of unified dark matter scenarios, focusing on toy models involving a generalized Chaplygin gas. We determine observational constraints on this unified dark matter scenario coming from large-scale structure, type Ia supernovae and CMB data showing how this component can bring about a different behavior from the classical cold dark matter model with a cosmological constant and thus motivate further studies of this type of models. We also speculate on interesting new features which are likely to be important on nonlinear scales in this context

  1. Asymmetric dark matter, baryon asymmetry and lepton number violation

    OpenAIRE

    Frandsen, Mads T.; Hagedorn, Claudia; Huang, Wei-Chih; Molinaro, Emiliano; Päs, Heinrich

    2018-01-01

    We study the effect of lepton number violation (LNV) on baryon asymmetry, generated in the early Universe, in the presence of a dark sector with a global symmetry U(1)X , featuring asymmetric dark matter (ADM). We show that in general LNV, observable at the LHC or in neutrinoless double beta decay experiments, cannot wash out a baryon asymmetry generated at higher scales, unlike in scenarios without such dark sector. An observation of LNV at the TeV scale may thus support ADM scenarios. Consi...

  2. Dynamics of Stars, Dark Matter and the Universe

    DEFF Research Database (Denmark)

    Samsing, Johan Georg Mulvad

    of these X-rays alone. This has implication for mass measurements which can be used for constraining the amount of matter and dark energy we have in our universe. On even smaller scales I did an interesting study on the interaction between stars and black holes. I especially looked into the interaction where...... a new model independent way of doing this which also seems promising for measuring modifications to the theory of gravity itself. On slightly smaller scales I looked into what happens when two dark matter structures merge. Numerical simulations show that a smaller fraction of the dark matter particles...

  3. Nuclear winter - a calculative experiment

    International Nuclear Information System (INIS)

    Aleksandrov, V.B.; Stenchikov, G.L.

    1985-01-01

    Using a hydrodynamic model of the Earth climate the climatic consequences following carbon dioxide concentration augmentation in the Earth atmosphere, effects of aerosol contamination and solar constant variation due to the use of nuclear weapon are studied. Results of studying the sensitivity of average annual climatic regime of the atmosphere and ocean general circulation to a sudde extremely strong, long-term change in optical properties of the air in the short-wave portion of the spectrum are discussed. These changes could be caused by contamination of the atmosphere with dust during a nuclear conflict and soot resulting from fires. It is shown, that after nuclear war according to practically any scenario, people who would survive the first blow will find themselves in conditions of a severe cold, darkness, absence of water, food and fuel under the effect of a powerful radiation, contaminants, diseases and under extreme pycological stress

  4. Stochastic dark energy from inflationary quantum fluctuations

    Science.gov (United States)

    Glavan, Dražen; Prokopec, Tomislav; Starobinsky, Alexei A.

    2018-05-01

    We study the quantum backreaction from inflationary fluctuations of a very light, non-minimally coupled spectator scalar and show that it is a viable candidate for dark energy. The problem is solved by suitably adapting the formalism of stochastic inflation. This allows us to self-consistently account for the backreaction on the background expansion rate of the Universe where its effects are large. This framework is equivalent to that of semiclassical gravity in which matter vacuum fluctuations are included at the one loop level, but purely quantum gravitational fluctuations are neglected. Our results show that dark energy in our model can be characterized by a distinct effective equation of state parameter (as a function of redshift) which allows for testing of the model at the level of the background.

  5. Gravitational collapse of dark energy field configurations and supermassive black hole formation

    International Nuclear Information System (INIS)

    Jhalani, V.; Kharkwal, H.; Singh, A.

    2016-01-01

    Dark energy is the dominant component of the total energy density of our Universe. The primary interaction of dark energy with the rest of the Universe is gravitational. It is therefore important to understand the gravitational dynamics of dark energy. Since dark energy is a low-energy phenomenon from the perspective of particle physics and field theory, a fundamental approach based on fields in curved space should be sufficient to understand the current dynamics of dark energy. Here, we take a field theory approach to dark energy. We discuss the evolution equations for a generic dark energy field in curved space-time and then discuss the gravitational collapse for dark energy field configurations. We describe the 3 + 1 BSSN formalism to study the gravitational collapse of fields for any general potential for the fields and apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting equations for the time evolution of field configurations and the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our Universe. We also demonstrate the black hole formation as a result of the gravitational collapse of the dark energy field configurations. The black holes produced by the collapse of dark energy fields are in the supermassive black hole category with the masses of these black holes being comparable to the masses of black holes at the centers of galaxies.

  6. Gravitational collapse of dark energy field configurations and supermassive black hole formation

    Energy Technology Data Exchange (ETDEWEB)

    Jhalani, V.; Kharkwal, H.; Singh, A., E-mail: anupamsingh.iitk@gmail.com [L. N. Mittal Institute of Information Technology, Physics Department (India)

    2016-11-15

    Dark energy is the dominant component of the total energy density of our Universe. The primary interaction of dark energy with the rest of the Universe is gravitational. It is therefore important to understand the gravitational dynamics of dark energy. Since dark energy is a low-energy phenomenon from the perspective of particle physics and field theory, a fundamental approach based on fields in curved space should be sufficient to understand the current dynamics of dark energy. Here, we take a field theory approach to dark energy. We discuss the evolution equations for a generic dark energy field in curved space-time and then discuss the gravitational collapse for dark energy field configurations. We describe the 3 + 1 BSSN formalism to study the gravitational collapse of fields for any general potential for the fields and apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting equations for the time evolution of field configurations and the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our Universe. We also demonstrate the black hole formation as a result of the gravitational collapse of the dark energy field configurations. The black holes produced by the collapse of dark energy fields are in the supermassive black hole category with the masses of these black holes being comparable to the masses of black holes at the centers of galaxies.

  7. Talking with TV shows

    DEFF Research Database (Denmark)

    Sandvik, Kjetil; Laursen, Ditte

    2014-01-01

    User interaction with radio and television programmes is not a new thing. However, with new cross-media production concepts such as X Factor and Voice, this is changing dramatically. The second-screen logic of these productions encourages viewers, along with TV’s traditional one-way communication...... mode, to communicate on interactive (dialogue-enabling) devices such as laptops, smartphones and tablets. Using the TV show Voice as our example, this article shows how the technological and situational set-up of the production invites viewers to engage in new ways of interaction and communication...

  8. The mystery of dark matter

    International Nuclear Information System (INIS)

    Khalatbari, Azar

    2015-01-01

    As only 0.5 per cent (the shining part) of the Universe is seen by telescopes, and corresponds to a tenth of ordinary matter or 5 per cent of the cosmos, astrophysicists postulated that the remaining 95 per cent are made of dark matter and dark energy. But always more researchers put the existence of this dark matter and energy into question again. They notably think of giving up Newton's law of universal gravitation, and also the basic assumption of cosmology, i.e. the homogeneous character of the Universe. The article recalls the emergence of the notion of dark matter to explain the fact that stars stay within a galaxy, whereas with their observed speed and the application of the gravitational theory they should escape their galaxy. Then, the issue has been to find evidence of the existence of dark matter. Neutrinos were supposed to be a clue, but only for a while. The notion of dark energy was introduced more recently by researchers who, by the observation of supernovae, noticed that the Universe expansion was accelerated in time. Then, after having discussed the issues raised by the possible existence of dark energy, the article explains how and why a new non homogeneous cosmology emerged. It also evokes current and future researches in this field. In an interview, an astrophysicist outlines why we should dare to modify Newton's law

  9. AMS-02 fits dark matter

    Science.gov (United States)

    Balázs, Csaba; Li, Tong

    2016-05-01

    In this work we perform a comprehensive statistical analysis of the AMS-02 electron, positron fluxes and the antiproton-to-proton ratio in the context of a simplified dark matter model. We include known, standard astrophysical sources and a dark matter component in the cosmic ray injection spectra. To predict the AMS-02 observables we use propagation parameters extracted from observed fluxes of heavier nuclei and the low energy part of the AMS-02 data. We assume that the dark matter particle is a Majorana fermion coupling to third generation fermions via a spin-0 mediator, and annihilating to multiple channels at once. The simultaneous presence of various annihilation channels provides the dark matter model with additional flexibility, and this enables us to simultaneously fit all cosmic ray spectra using a simple particle physics model and coherent astrophysical assumptions. Our results indicate that AMS-02 observations are not only consistent with the dark matter hypothesis within the uncertainties, but adding a dark matter contribution improves the fit to the data. Assuming, however, that dark matter is solely responsible for this improvement of the fit, it is difficult to evade the latest CMB limits in this model.

  10. Dynamics of teleparallel dark energy

    International Nuclear Information System (INIS)

    Wei Hao

    2012-01-01

    Recently, Geng et al. proposed to allow a non-minimal coupling between quintessence and gravity in the framework of teleparallel gravity, motivated by the similar one in the framework of General Relativity (GR). They found that this non-minimally coupled quintessence in the framework of teleparallel gravity has a richer structure, and named it “teleparallel dark energy”. In the present work, we note that there might be a deep and unknown connection between teleparallel dark energy and Elko spinor dark energy. Motivated by this observation and the previous results of Elko spinor dark energy, we try to study the dynamics of teleparallel dark energy. We find that there exist only some dark-energy-dominated de Sitter attractors. Unfortunately, no scaling attractor has been found, even when we allow the possible interaction between teleparallel dark energy and matter. However, we note that w at the critical points is in agreement with observations (in particular, the fact that w=−1 independently of ξ is a great advantage).

  11. Phases of cannibal dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Farina, Marco [New High Energy Theory Center, Department of Physics, Rutgers University,136 Frelinghuisen Road, Piscataway, NJ 08854 (United States); Pappadopulo, Duccio; Ruderman, Joshua T.; Trevisan, Gabriele [Center for Cosmology and Particle Physics, Department of Physics, New York University,New York, NY 10003 (United States)

    2016-12-13

    A hidden sector with a mass gap undergoes an epoch of cannibalism if number changing interactions are active when the temperature drops below the mass of the lightest hidden particle. During cannibalism, the hidden sector temperature decreases only logarithmically with the scale factor. We consider the possibility that dark matter resides in a hidden sector that underwent cannibalism, and has relic density set by the freeze-out of two-to-two annihilations. We identify three novel phases, depending on the behavior of the hidden sector when dark matter freezes out. During the cannibal phase, dark matter annihilations decouple while the hidden sector is cannibalizing. During the chemical phase, only two-to-two interactions are active and the total number of hidden particles is conserved. During the one way phase, the dark matter annihilation products decay out of equilibrium, suppressing the production of dark matter from inverse annihilations. We map out the distinct phenomenology of each phase, which includes a boosted dark matter annihilation rate, new relativistic degrees of freedom, warm dark matter, and observable distortions to the spectrum of the cosmic microwave background.

  12. AMS-02 fits dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Balázs, Csaba; Li, Tong [ARC Centre of Excellence for Particle Physics at the Tera-scale,School of Physics and Astronomy, Monash University, Melbourne, Victoria 3800 (Australia)

    2016-05-05

    In this work we perform a comprehensive statistical analysis of the AMS-02 electron, positron fluxes and the antiproton-to-proton ratio in the context of a simplified dark matter model. We include known, standard astrophysical sources and a dark matter component in the cosmic ray injection spectra. To predict the AMS-02 observables we use propagation parameters extracted from observed fluxes of heavier nuclei and the low energy part of the AMS-02 data. We assume that the dark matter particle is a Majorana fermion coupling to third generation fermions via a spin-0 mediator, and annihilating to multiple channels at once. The simultaneous presence of various annihilation channels provides the dark matter model with additional flexibility, and this enables us to simultaneously fit all cosmic ray spectra using a simple particle physics model and coherent astrophysical assumptions. Our results indicate that AMS-02 observations are not only consistent with the dark matter hypothesis within the uncertainties, but adding a dark matter contribution improves the fit to the data. Assuming, however, that dark matter is solely responsible for this improvement of the fit, it is difficult to evade the latest CMB limits in this model.

  13. The DarkSide experiment

    International Nuclear Information System (INIS)

    Bottino, B.; Aalseth, C.E.; Acconcia, G.

    2017-01-01

    DarkSide is a dark matter direct search experiment at Laboratori Nazionali del Gran Sasso (LNGS). DarkSide is based on the detection of rare nuclear recoils possibly induced by hypothetical dark matter particles, which are supposed to be neutral, massive (m > 10 GeV) and weakly interactive (Wimp). The dark matter detector is a two-phase time projection chamber (TPC) filled with ultra-pure liquid argon. The TPC is placed inside a muon and a neutron active vetoes to suppress the background. Using argon as active target has many advantages, the key features are the strong discriminant power between nuclear and electron recoils, the spatial reconstruction and easy scalability to multi-tons size. At the moment DarkSide-50 is filled with ultra-pure argon, extracted from underground sources, and from April 2015 it is taking data in its final configuration. When combined with the preceding search with an atmospheric argon target, it is possible to set a 90% CL upper limit on the WIMP-nucleon spin-independent cross section of 2.0×10"−"44 cm"2 for a WIMP mass of 100 GeV/c"2. The next phase of the experiment, DarkSide-20k, will be the construction of a new detector with an active mass of ∼ 20 tons.

  14. Phenomenology of ELDER dark matter

    Science.gov (United States)

    Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai

    2017-08-01

    We explore the phenomenology of Elastically Decoupling Relic (ELDER) dark matter. ELDER is a thermal relic whose present density is determined primarily by the cross-section of its elastic scattering off Standard Model (SM) particles. Assuming that this scattering is mediated by a kinetically mixed dark photon, we argue that the ELDER scenario makes robust predictions for electron-recoil direct-detection experiments, as well as for dark photon searches. These predictions are independent of the details of interactions within the dark sector. Together with the closely related Strongly-Interacting Massive Particle (SIMP) scenario, the ELDER predictions provide a physically motivated, well-defined target region, which will be almost entirely accessible to the next generation of searches for sub-GeV dark matter and dark photons. We provide useful analytic approximations for various quantities of interest in the ELDER scenario, and discuss two simple renormalizable toy models which incorporate the required strong number-changing interactions among the ELDERs, as well as explicitly implement the coupling to electrons via the dark photon portal.

  15. Dark matter particle production in b→s transitions with missing energy

    International Nuclear Information System (INIS)

    Bird, Chris; Jackson, Paul; Kowalewski, Robert; Pospelov, Maxim

    2004-01-01

    Dedicated underground experiments searching for dark matter have little sensitivity to GeV and sub-GeV masses of dark matter particles. We show that the decay of B mesons to K(K * ) and missing energy in the final state can be an efficient probe of dark matter models in this mass range. We analyze the minimal scalar dark matter model to show that the width of the decay mode with two dark matter scalars B→KSS may exceed the decay width in the standard model channel, B→Kνν-bar, by up to 2 orders of magnitude. Existing data from B physics experiments almost entirely exclude dark matter scalars with masses less than 1 GeV. Expected data from B factories probe the range of dark matter masses up to 2 GeV

  16. Talk Show Science.

    Science.gov (United States)

    Moore, Mitzi Ruth

    1992-01-01

    Proposes having students perform skits in which they play the roles of the science concepts they are trying to understand. Provides the dialog for a skit in which hot and cold gas molecules are interviewed on a talk show to study how these properties affect wind, rain, and other weather phenomena. (MDH)

  17. Obesity in show cats.

    Science.gov (United States)

    Corbee, R J

    2014-12-01

    Obesity is an important disease with a high prevalence in cats. Because obesity is related to several other diseases, it is important to identify the population at risk. Several risk factors for obesity have been described in the literature. A higher incidence of obesity in certain cat breeds has been suggested. The aim of this study was to determine whether obesity occurs more often in certain breeds. The second aim was to relate the increased prevalence of obesity in certain breeds to the official standards of that breed. To this end, 268 cats of 22 different breeds investigated by determining their body condition score (BCS) on a nine-point scale by inspection and palpation, at two different cat shows. Overall, 45.5% of the show cats had a BCS > 5, and 4.5% of the show cats had a BCS > 7. There were significant differences between breeds, which could be related to the breed standards. Most overweight and obese cats were in the neutered group. It warrants firm discussions with breeders and cat show judges to come to different interpretations of the standards in order to prevent overweight conditions in certain breeds from being the standard of beauty. Neutering predisposes for obesity and requires early nutritional intervention to prevent obese conditions. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  18. Honored Teacher Shows Commitment.

    Science.gov (United States)

    Ratte, Kathy

    1987-01-01

    Part of the acceptance speech of the 1985 National Council for the Social Studies Teacher of the Year, this article describes the censorship experience of this honored social studies teacher. The incident involved the showing of a videotape version of the feature film entitled "The Seduction of Joe Tynan." (JDH)

  19. On the relevance of sharp gamma-ray features for indirect dark matter searches

    International Nuclear Information System (INIS)

    Bringmann, Torsten; Calore, Francesca; Weniger, Christoph

    2011-06-01

    Gamma rays from the annihilation of dark matter particles in the Galactic halo provide a particularly promising means of indirectly detecting dark matter. Here, we demonstrate that pronounced spectral features near the kinematic cutoff at the dark matter particles' mass, which is a generic prediction for most models, can significantly improve the sensitivity of gamma-ray telescopes to dark matter signals. We derive projected limits on such features (including the traditionally looked-for line signals) and show that these can be very efficient in constraining the nature of dark matter. (orig.)

  20. Minimal Dark Matter in the sky

    International Nuclear Information System (INIS)

    Panci, P.

    2016-01-01

    We discuss some theoretical and phenomenological aspects of the Minimal Dark Matter (MDM) model proposed in 2006, which is a theoretical framework highly appreciated for its minimality and yet its predictivity. We first critically review the theoretical requirements of MDM pointing out generalizations of this framework. Then we review the phenomenology of the originally proposed fermionic hyperchargeless electroweak quintuplet showing its main γ-ray tests.