WorldWideScience

Sample records for winged reentry vehicle

  1. Linear quadratic regulator design for an unpowered, winged re-entry vehicle

    NARCIS (Netherlands)

    Mooij, E.

    1998-01-01

    This report describes the design of an attitude controller for an unpowered, winged re-entry vehicle. The decoupling of the symmetric and asymmetric motion makes it possible to design two separate controllers, one for the pitch mot ion and one for the lateral motion. The design of the controller, a

  2. Neural Dynamic Trajectory Design for Reentry Vehicles (Preprint)

    National Research Council Canada - National Science Library

    Verma, Ajay; Xu, Peng; Vadakkeveedu, Kalyan; Mayer, Rick

    2007-01-01

    The next generation of reentry vehicles is envisioned to have onboard autonomous capability of real-time trajectory planning to provide capability of responsive launch and delivering payload anywhere...

  3. Heating and flow-field studies on a straight-wing hypersonic reentry vehicle at angles of attack from 20 to 80 deg with simulation of real-gas trends

    Science.gov (United States)

    Hunt, J. L.

    1973-01-01

    Data are presented from a series of phase-change heat transfer and flow visualization tests at Mach 7.4, 8, and 10.3 in air, Mach 19.5 in nitrogen, Mach 20.3 in helium, and Mach 6 in tetrafluoromethane (CF4) on the windward surface of a straight wing hypersonic reentry configuration for angles of attack from 20 deg to 80 deg. The results indicate that: (1) for hypersonic stream Mach numbers, the flow field over the straight-wing configuration is essentially independent of Mach number, (2) transition Reynolds number decreases with increasing angle of attack, (3) at some critical angle of attack, the wing-shock standoff distance is greatly increased and the stagnation line moves downstream from the wing leading edge, (4) value of the critical angle of attack is very sensitive to the flow shock density ratio or effective gamma, and (5) at angles of attack above the critical value for all gases, the nondimensional level of heat transfer to the wing is higher for the higher shock density ratio flows.

  4. Pre-flight physical simulation test of HIMES reentry test vehicle

    Science.gov (United States)

    Kawaguchi, Jun'ichiro; Inatani, Yoshifumi; Yonemoto, Koichi; Hosokawa, Shigeru

    ISAS is now developing a small reentry test vehicle, which is 2m long with a 1.5m wing span and weighs about 170 kg, for the purpose of exploring high angle-of-attack aerodynamic attitude control issue in supersonic and hypersonic speed. The flight test, employing 'Rockoon' launch system, is planned as a preliminary design verification for a fully reusable winged rocket named HIMES (Highly Maneuverable Experimental Space) vehicle. This paper describes the results of preflight ground test using a motion table system. This ground system test is called 'physical simulation' aimed at: (1) functional verification of side-jet system, aerodynamic surface actuators, battery and onboard avionics; and (2) guidance and control law evaluation, in total hardware-in-the-loop system. The pressure of side-jet nozzles was measured to provide exact thrust characteristics of reaction control. The dynamics of vehicle motion was calculated in real-time by the ground simulation computer.

  5. Reentry Vehicle Flight Controls Design Guidelines: Dynamic Inversion

    Science.gov (United States)

    Ito, Daigoro; Georgie, Jennifer; Valasek, John; Ward, Donald T.

    2002-01-01

    This report addresses issues in developing a flight control design for vehicles operating across a broad flight regime and with highly nonlinear physical descriptions of motion. Specifically it addresses the need for reentry vehicles that could operate through reentry from space to controlled touchdown on Earth. The latter part of controlled descent is achieved by parachute or paraglider - or by all automatic or a human-controlled landing similar to that of the Orbiter. Since this report addresses the specific needs of human-carrying (not necessarily piloted) reentry vehicles, it deals with highly nonlinear equations of motion, and then-generated control systems must be robust across a very wide range of physics. Thus, this report deals almost exclusively with some form of dynamic inversion (DI). Two vital aspects of control theory - noninteracting control laws and the transformation of nonlinear systems into equivalent linear systems - are embodied in DI. Though there is no doubt that the mathematical tools and underlying theory are widely available, there are open issues as to the practicality of using DI as the only or primary design approach for reentry articles. This report provides a set of guidelines that can be used to determine the practical usefulness of the technique.

  6. Flapping Wing Micro Air Vehicle Wing Manufacture and Force Testing

    Science.gov (United States)

    2011-03-03

    manufacturing techniques have been developed by various universities for research on Flapping Wing Micro Air Vehicles. Minimal attention though is given...collected at 2kHz (www.polytec.com/psv3d). A 0.25V band-limited white noise input signal is input to a Bogen HTA -125 High Performance Amplifier, which...manufacturing techniques have been developed by various universities for research on Flapping Wing Micro Air Vehicles. Minimal attention though is given

  7. Robust adaptive backstepping control for reentry reusable launch vehicles

    Science.gov (United States)

    Wang, Zhen; Wu, Zhong; Du, Yijiang

    2016-09-01

    During the reentry process of reusable launch vehicles (RLVs), the large range of flight envelope will not only result in high nonlinearities, strong coupling and fast time-varying characteristics of the attitude dynamics, but also result in great uncertainties in the atmospheric density, aerodynamic coefficients and environmental disturbances, etc. In order to attenuate the effects of these problems on the control performance of the reentry process, a robust adaptive backstepping control (RABC) strategy is proposed for RLV in this paper. This strategy consists of two-loop controllers designed via backstepping method. Both the outer and the inner loop adopt a robust adaptive controller, which can deal with the disturbances and uncertainties by the variable-structure term with the estimation of their bounds. The outer loop can track the desired attitude by the design of virtual control-the desired angular velocity, while the inner one can track the desired angular velocity by the design of control torque. Theoretical analysis indicates that the closed-loop system under the proposed control strategy is globally asymptotically stable. Even if the boundaries of the disturbances and uncertainties are unknown, the attitude can track the desired value accurately. Simulation results of a certain RLV demonstrate the effectiveness of the control strategy.

  8. Fixed-Wing Micro Air Vehicles with Hovering Capabilities

    National Research Council Canada - National Science Library

    Bataille, Boris; Poinsot, Damien; Thipyopas, Chinnapat; Moschetta, Jean-Marc

    2007-01-01

    Fixed-wing micro air vehicles (MAV) are very attractive for outdoor surveillance missions since they generally offer better payload and endurance capabilities than rotorcraft or flapping-wing vehicles of equal size...

  9. In-Flight Imaging Systems for Hypervelocity and Re-Entry Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — It is proposed to create a rugged, reliable, compact, standardized imaging system for hypervelocity and re-entry vehicles using sapphire windows, small imagers, and...

  10. Lunar Return Reentry Thermal Analysis of a Generic Crew Exploration Vehicle Wall Structures

    Science.gov (United States)

    Ko, William L.; Tran, Van T.; Bowles, Jeff

    2007-01-01

    Thermostructural analysis was performed on generic crew exploration vehicle (GCEV) heat shielded wall structures subjected to reentry heating rates based on five potential lunar return reentry trajectories. The GCEV windward outer wall is fabricated with a graphite/epoxy composite honeycomb sandwich panel and the inner wall with an aluminum honeycomb sandwich panel. The outer wall is protected with an ablative Avcoat-5026-39H/CG thermal protection system (TPS). A virtual ablation method (a graphical approximation) developed earlier was further extended, and was used to estimate the ablation periods, ablation heat loads, and the TPS recession layer depths. It was found that up to 83 95 percent of the total reentry heat load was dissipated in the TPS ablation process, leaving a small amount (3-15 percent) of the remaining total reentry heat load to heat the virgin TPS and maintain the TPS surface at the ablation temperature, 1,200 F. The GCEV stagnation point TPS recession layer depths were estimated to be in the range of 0.280-0.910 in, and the allowable minimum stagnation point TPS thicknesses that could maintain the substructural composite sandwich wall at the limit temperature of 300 F were found to be in the range of 0.767-1.538 in. Based on results from the present analyses, the lunar return abort ballistic reentry was found to be quite attractive because it required less TPS weight than the lunar return direct, the lunar return skipping, or the low Earth orbit guided reentry, and only 11.6 percent more TPS weight than the low Earth orbit ballistic reentry that will encounter a considerable weight penalty to obtain the Earth orbit. The analysis also showed that the TPS weight required for the lunar return skipping reentry was much more than the TPS weight necessary for any of the other reentry trajectories considered.

  11. Automated scheme to determine design parameters for a recoverable reentry vehicle

    International Nuclear Information System (INIS)

    Williamson, W.E.

    1976-01-01

    The NRV (Nosetip Recovery Vehicle) program at Sandia Laboratories is designed to recover the nose section from a sphere cone reentry vehicle after it has flown a near ICBM reentry trajectory. Both mass jettison and parachutes are used to reduce the velocity of the RV near the end of the trajectory to a sufficiently low level that the vehicle may land intact. The design problem of determining mass jettison time and parachute deployment time in order to ensure that the vehicle does land intact is considered. The problem is formulated as a min-max optimization problem where the design parameters are to be selected to minimize the maximum possible deviation in the design criteria due to uncertainties in the system. The results of the study indicate that the optimal choice of the design parameters ensures that the maximum deviation in the design criteria is within acceptable bounds. This analytically ensures the feasibility of recovery for NRV

  12. Damage Considerations of a Flexible Micro Air Vehicle Wing Using 3-D Laser Vibrometry

    National Research Council Canada - National Science Library

    Mendoza, Jr, Leo L

    2007-01-01

    .... The flexible micro air vehicle wing studied was based on a University of Florida micro air vehicle wing design and was examined using measurements from the Polytec 400-3D Scanning Vibrometer. Comparisons of the wing?s natural frequencies and displacements were made between the wing?s undamaged and damaged states.

  13. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles

    International Nuclear Information System (INIS)

    Shang, J K; Finio, B M; Wood, R J; Combes, S A

    2009-01-01

    The development of flapping-wing micro air vehicles (MAVs) demands a systematic exploration of the available design space to identify ways in which the unsteady mechanisms governing flapping-wing flight can best be utilized for producing optimal thrust or maneuverability. Mimicking the wing kinematics of biological flight requires examining the potential effects of wing morphology on flight performance, as wings may be specially adapted for flapping flight. For example, insect wings passively deform during flight, leading to instantaneous and potentially unpredictable changes in aerodynamic behavior. Previous studies have postulated various explanations for insect wing complexity, but there lacks a systematic approach for experimentally examining the functional significance of components of wing morphology, and for determining whether or not natural design principles can or should be used for MAVs. In this work, a novel fabrication process to create centimeter-scale wings of great complexity is introduced; via this process, a wing can be fabricated with a large range of desired mechanical and geometric characteristics. We demonstrate the versatility of the process through the creation of planar, insect-like wings with biomimetic venation patterns that approximate the mechanical properties of their natural counterparts under static loads. This process will provide a platform for studies investigating the effects of wing morphology on flight dynamics, which may lead to the design of highly maneuverable and efficient MAVs and insight into the functional morphology of natural wings.

  14. Improved MPSP Method-based Cooperative Re-entry Guidance for Hypersonic Gliding Vehicles

    Directory of Open Access Journals (Sweden)

    Chu Haiyan

    2017-01-01

    Full Text Available A computationally sufficient technique is used to solve the 3-D cooperative re-entry guidance problem for hypersonic gliding vehicles. Due to the poor surrounding adaptive ability of the traditional cooperative guidance methods, a novel methodology, named as model predictive static programming (MPSP, is used to solve a class of finite-horizon optimal control problems with hard terminal constraints. The main feature of this guidance law is that it is capable of hitting the target with high accuracy for each one of the cooperative vehicles at the same time. In addition, it accurately satisfies variable constraints. Performance of the proposed MPSP-based guidance is demonstrated in 3-D nonlinear dynamics scenario. The numerical simulation results show that the proposed cooperative re-entry guidance methodology has the advantage of computational efficiency and better robustness against the perturbations.

  15. Aerodynamics and Aerothermodynamics of undulated re-entry vehicles

    Science.gov (United States)

    Kaushikh, K.; Arunvinthan, S.; Pillai, S. Nadaraja

    2018-01-01

    Aerodynamic and aerothermodynamic analysis is a fundamental basis for the design of a hypersonic vehicle. In this work, aerodynamic and aerothermodynamic analyses of a blunt body vehicle with undulations on its after-body are studied with the help of numerical simulations. A crew exploration vehicle (CEV) is taken for initial analysis and undulations with varying amplitude and wavelength are introduced on CEV's after-body. Numerical simulations were carried out for CEV and for CEV with undulations at Mach 3.0 and 7.0 for angles of attack ranging from -20° to +20° with increments of +5°. The results show that introduction of undulations did not have a significant impact on mono stability and lift-drag characteristics of the vehicle. It was also observed that introduction of undulations improved the aerothermodynamic characteristics of CEV. A reduction of about 36% in maximum heat flux at Mach 3.0 and about 21% at Mach 7.0 compared to the maximum heat flux for CEV was observed.

  16. Aerothermodynamics of generic re-entry vehicle with a series of aerospikes at nose

    Science.gov (United States)

    Yadav, Rajesh; Velidi, Gurunadh; Guven, Ugur

    2014-03-01

    Re-entry of a blunt nosed vehicle is one of the most intriguing problems in any space programme. Especially in light of various space tourism possibilities, there are many works concerning re-entry of commercial blunt nosed space vehicles. In this paper, a generic blunt body re-entry model represented by a hemisphere-cylinder, fitted axisymmetrically with an aerodisk aerospike at the nose is investigated numerically with commercially available control volume based axisymmetric flow solver. The scaled down re-entry model has a base diameter of 40 mm and an overall length of 100 mm. A 6 mm diameter aerospike fitted axisymmetrically at the nose has a hemispherical cap from which another aerospike of 4 mm diameter protrudes which again has a hemispherical cap. Two dimensional compressible, axisymmetric Navier Stokes Equations are solved for a turbulent hypersonic flow of a 5 species, chemically reacting air in thermal equilibrium with free stream conditions of Mach no., static pressure and temperature of 10.1, 16,066 Pa and 216.65 K, respectively. The results are compared with that of re-entry model without any aerospike. Among the cases investigated, the spiked blunt body having two aerospikes in series with lengths l1 and l2 equal to 30 and 20 respectively and overall length-to-diameter ratio of 1.5 showed a favourable reduction in the peak reattachment heat flux along with high reduction in aerodynamic drag and thus stands as a prospective case for blunt body nose configuration for hypersonic flight.

  17. Active disturbance rejection attitude control for a hypersonic reentry vehicle with actuator saturation

    Directory of Open Access Journals (Sweden)

    Hongjiu Yang

    2017-05-01

    Full Text Available In this article, nonlinear uncertainty has been investigated for a hypersonic reentry vehicle subject to actuator saturation via active disturbance rejection control technology. A nonlinear extended state observer is designed to estimate “total disturbances,” which is compensated with a linear controller. Both convergence of the nonlinear extended state observer and stabilization of the closed-loop system are studied in this article. Some simulation results are given to illustrate the effectiveness of the proposed method.

  18. Preliminary development of a wing in ground effect vehicle

    Science.gov (United States)

    Abidin, Razali; Ahamat, Mohamad Asmidzam; Ahmad, Tarmizi; Saad, Mohd Rasdan; Hafizi, Ezzat

    2018-02-01

    Wing in ground vehicle is one of the mode of transportation that allows high speed movement over water by travelling few meters above the water level. Through this manouver strategy, a cushion of compressed air exists between the wing in ground vehicle wings and water. This significantly increase the lift force, thus reducing the necessity in having a long wing span. Our project deals with the development of wing in ground vehicle with the capability of transporting four people. The total weight of this wing in ground vehicle was estimated at 5.4 kN to enable the prediction on required wing area, minimum takeoff velocity, drag force and engine power requirement. The required takeoff velocity is decreases as the lift coefficient increases, and our current mathematical model shows the takeoff velocity at 50 m/s avoid the significant increase in lift coefficient for the wing area of 5 m2. At the velocity of 50 m/s, the drag force created by this wing in ground vehicle is well below 1 kN, which required a 100-120 kW of engine power if the propeller has the efficiency of 0.7. Assessment on the stresses and deflection of the hull structural indicate the capability of plywood to withstand the expected load. However, excessive deflection was expected in the rear section which requires a minor structural modification. In the near future, we expect that the wind tunnel tests of this wing in ground vehicle model would enable more definite prediction on the important parameters related to its performance.

  19. Flapping and flexible wings for biological and micro air vehicles

    Science.gov (United States)

    Shyy, Wei; Berg, Mats; Ljungqvist, Daniel

    1999-07-01

    Micro air vehicles (MAVs) with wing spans of 15 cm or less, and flight speed of 30-60 kph are of interest for military and civilian applications. There are two prominent features of MAV flight: (i) low Reynolds number (10 4-10 5), resulting in unfavorable aerodynamic conditions to support controlled flight, and (ii) small physical dimensions, resulting in certain favorable scaling characteristics including structural strength, reduced stall speed, and low inertia. Based on observations of biological flight vehicles, it appears that wing motion and flexible airfoils are two key attributes for flight at low Reynolds number. The small size of MAVs corresponds in nature to small birds, which do not glide like large birds, but instead flap with considerable change of wing shape during a single flapping cycle. With flapping and flexible wings, birds overcome the deteriorating aerodynamic performance under steady flow conditions by employing unsteady mechanisms. In this article, we review both biological and aeronautical literatures to present salient features relevant to MAVs. We first summarize scaling laws of biological and micro air vehicles involving wing span, wing loading, vehicle mass, cruising speed, flapping frequency, and power. Next we discuss kinematics of flapping wings and aerodynamic models for analyzing lift, drag and power. Then we present issues related to low Reynolds number flows and airfoil shape selection. Recent work on flexible structures capable of adjusting the airfoil shape in response to freestream variations is also discussed.

  20. Pitching stability analysis of half-rotating wing air vehicle

    Science.gov (United States)

    Wang, Xiaoyi; Wu, Yang; Li, Qian; Li, Congmin; Qiu, Zhizhen

    2017-06-01

    Half-Rotating Wing (HRW) is a new power wing which had been developed by our work team using rotating-type flapping instead of oscillating-type flapping. Half-Rotating Wing Air Vehicle (HRWAV) is similar as Bionic Flapping Wing Air Vehicle (BFWAV). It is necessary to guarantee pitching stability of HRWAV to maintain flight stability. The working principle of HRW was firstly introduced in this paper. The rule of motion indicated that the fuselage of HRWAV without empennage would overturn forward as it generated increased pitching movement. Therefore, the empennage was added on the tail of HRWAV to balance the additional moment generated by aerodynamic force during flight. The stability analysis further shows that empennage could weaken rapidly the pitching disturbance on HRWAV and a new balance of fuselage could be achieved in a short time. Case study using numerical analysis verified correctness and validity of research results mentioned above, which could provide theoretical guidance to design and control HRWAV.

  1. Intermediate Experimental Vehicle (IXV): Avionics and Software of the ESA Reentry Demonstrator

    Science.gov (United States)

    Malucchi, Giovanni; Dussy, Stephane; Camuffo, Fabrizio

    2012-08-01

    The IXV project is conceived as a technology platform that would perform the step forward with respect to the Atmospheric Reentry Demonstrator (ARD), by increasing the system maneuverability and verifying the critical technology performances against a wider re- entry corridor.The main objective is to design, develop and to perform an in-flight verification of an autonomous lifting and aerodynamically controlled (by a combined use of thrusters and aerodynamic surfaces) reentry system.The project also includes the verification and experimentation of a set of critical reentry technologies and disciplines:Thermal Protection System (TPS), for verification and characterization of thermal protection technologies in representative operational environment;Aerodynamics - Aerthermodynamics (AED-A TD), for understanding and validation of aerodynamics and aerothermodyamics phenomena with improvement of design tools;Guidance, Navigation and Control (GNC), for verification of guidance, navigation and control techniques in representative operational environment (i.e. reentry from Low Earth Orbit);Flight dynamics, to update and validate the vehicle model during actual flight, focused on stability and control derivatives.The above activities are being performed through the implementation of a strict system design-to-cost approach with a proto-flight model development philosophy.In 2008 and 2009, the IXV project activities reached the successful completion of the project Phase-B, including the System PDR, and early project Phase-C.In 2010, following a re-organization of the industrial consortium, the IXV project successfully completed a design consolidation leading to an optimization of the technical baseline including the GNC, avionics (i.e. power, data handling, radio frequency and telemetry), measurement sensors, hot and cold composite structures, thermal protections and control, with significant improvements of the main system budgets.The project has successfully closed the

  2. Simulation-Based Analysis of Reentry Dynamics for the Sharp Atmospheric Entry Vehicle

    Science.gov (United States)

    Tillier, Clemens Emmanuel

    1998-01-01

    This thesis describes the analysis of the reentry dynamics of a high-performance lifting atmospheric entry vehicle through numerical simulation tools. The vehicle, named SHARP, is currently being developed by the Thermal Protection Materials and Systems branch of NASA Ames Research Center, Moffett Field, California. The goal of this project is to provide insight into trajectory tradeoffs and vehicle dynamics using simulation tools that are powerful, flexible, user-friendly and inexpensive. Implemented Using MATLAB and SIMULINK, these tools are developed with an eye towards further use in the conceptual design of the SHARP vehicle's trajectory and flight control systems. A trajectory simulator is used to quantify the entry capabilities of the vehicle subject to various operational constraints. Using an aerodynamic database computed by NASA and a model of the earth, the simulator generates the vehicle trajectory in three-dimensional space based on aerodynamic angle inputs. Requirements for entry along the SHARP aerothermal performance constraint are evaluated for different control strategies. Effect of vehicle mass on entry parameters is investigated, and the cross range capability of the vehicle is evaluated. Trajectory results are presented and interpreted. A six degree of freedom simulator builds on the trajectory simulator and provides attitude simulation for future entry controls development. A Newtonian aerodynamic model including control surfaces and a mass model are developed. A visualization tool for interpreting simulation results is described. Control surfaces are roughly sized. A simple controller is developed to fly the vehicle along its aerothermal performance constraint using aerodynamic flaps for control. This end-to-end demonstration proves the suitability of the 6-DOF simulator for future flight control system development. Finally, issues surrounding real-time simulation with hardware in the loop are discussed.

  3. Ceramic Adhesive and Methods for On-Orbit Repair of Re-Entry Vehicles

    Science.gov (United States)

    Riedell, James A.; Easler, Timothy E.

    2013-01-01

    This adhesive is capable of repairing damaged leading edge components of reentry vehicles while in space, and is novel with regard to its ability to be applied in the vacuum of space, and in a microgravity environment. Once applied, the adhesive provides thermal and oxidation protection to the substrate (in this case, reinforced carbon/carbon composites, RCCs) during re-entry of a space vehicle. Although there may be many formulations for repair adhesives, at the time of this reporting, this is the first known adhesive capable of an on-orbit repair. The adhesive is an engineered ceramic material composed of a pre-ceramic polymer and refractory powders in the form of a paste or putty that can be applied to a scratched, cracked, or fractured composite surface, covering and protecting the damaged area. The adhesive is then "cured" with a heat cycle, thereby cross-linking the polymer into a hardened material and bonding it to the substrate. During the heat of reentry, the material is converted to a ceramic coating that provides thermal and oxidative stability to the repaired area, thus allowing the vehicle to pass safely from space into the upper atmosphere. Ceramic powders such as SiC, ZrB2 and Y2O3 are combined with allylhydridopolycarbosilane (AHPCS) resin, and are mixed to form a paste adhesive. The material is then applied to the damaged area by brush, spatula, trowel, or other means to fill cracks, gaps, and holes, or used to bond patches onto the damaged area. The material is then cured, in a vacuum, preferably at 250F (approximately equal to 121C) for two hours. The re-entry heating of the vehicle at temperatures in excess of 3,000F (approximately equal to 1,650C) then converts this material into a ceramic coating. This invention has demonstrated advantages in resistance to high temperatures, as was demonstrated in more than 100 arc-jet tests in representative environments at NASA. Extensive testing verified oxidation protection for the repaired substrate (RCC

  4. Modeling the Motion of a Flapping Wing Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Vorochaeva L.Y.

    2017-01-01

    Full Text Available The article discusses the vertical flight of a flapping wing aerial vehicle, which is also called an ornithopter. The robot is a chain of five links connected in series by active cylindrical hinges with the central link being the body and the remainder forming folding wings in pairs. The distinctive feature of this device is that the flaps of its wings imitate those of a seagull i.e. the device has a biological prototype. We construct a mathematical model of this device; much attention is given to the model of the interaction of the wings with the air environment and we determine the positions and velocities of points of application of the reduced aerodynamic forces to each of the links. Based on the results of numerical modelling of the vertical flight of the robot three modes of flight were established: ascent, hovering at a certain height and descent. The device can operate in these modes based on the oscillation parameters of the wings in particular flapping frequency and amplitude, the ratio of the amplitudes of two links and one wing and the shift of the equilibrium oscillation position of the wings relative to zero.

  5. Model identification of a flapping wing micro aerial vehicle

    NARCIS (Netherlands)

    Aguiar Vieira Caetano, J.V.

    2016-01-01

    Different flapping wing micro aerial vehicles (FWMAV) have been developed for academic (Harvard’s RoboBee), military (Israel Aerospace Industries’ Butterfly) and technology demonstration (Aerovironment’s NanoHummingBird) purposes. Among these, theDelFly II is recognized as one of themost successful

  6. Surfzone monitoring using rotary wing unmanned aerial vehicles

    NARCIS (Netherlands)

    Brouwer, R.L.; De Schipper, M.A.; Rynne, P.F.; Graham, F.J.; Reniers, A.J.H.M.; Macmahan, J.H.

    2015-01-01

    This study investigates the potential of rotary wing unmanned aerial vehicles (UAVs) to monitor the surfzone. This paper shows that these UAVs are extremely flexible surveying platforms that can gather nearcontinuous moderate spatial resolution and high temporal resolution imagery from a fixed

  7. Ornithopter Type Flapping Wings for Autonomous Micro Air Vehicles

    Directory of Open Access Journals (Sweden)

    Sutthiphong Srigrarom

    2015-05-01

    Full Text Available In this paper, an ornithopter prototype that mimics the flapping motion of bird flight is developed, and the lift and thrust generation characteristics of different wing designs are evaluated. This project focused on the spar arrangement and material used for the wings that could achieves improved performance. Various lift and thrust measurement techniques are explored and evaluated. Various wings of insects and birds were evaluated to understand how these natural flyers with flapping wings are able to produce sufficient lift to fly. The differences in the flapping aerodynamics were also detailed. Experiments on different wing designs and materials were conducted and a paramount wing was built for a test flight. The first prototype has a length of 46.5 cm, wing span of 88 cm, and weighs 161 g. A mechanism which produced a flapping motion was fabricated and designed to create flapping flight. The flapping flight was produced by using a single motor and a flexible and light wing structure. A force balance made of load cell was then designed to measure the thrust and lift force of the ornithopter. Three sets of wings varying flexibility were fabricated, therefore lift and thrust measurements were acquired from each different set of wings. The lift will be measured in ten cycles computing the average lift and frequency in three different speeds or frequencies (slow, medium and fast. The thrust measurement was measure likewise but in two cycles only. Several observations were made regarding the behavior of flexible flapping wings that should aid in the design of future flexible flapping wing vehicles. The wings angle or phase characteristic were analyze too and studied. The final ornithopter prototype weighs only 160 g, has a wing span of 88.5 cm, that could flap at a maximum flapping frequency of 3.869 Hz, and produce a maximum thrust and lift of about 0.719 and 0.264 N respectively. Next, we proposed resonance type flapping wing utilizes the near

  8. The Advanced Re-Entry Vehicle (ARV) a Development Step from ATV Toward Manned Transportation Systems

    Science.gov (United States)

    Bottacini, M.; Berthe, P.; Vo, X.; Pietsch, K.

    2011-08-01

    The Advanced Re-entry Vehicle (ARV) programme has been undertaken by Europe with the objective to contribute to the preparation of a future European crew transportation system, while providing a valuable logistic support to the ISS through an operational cargo return system. This development would allow: - the early acquisition of critical technologies; - the design, development and testing of elements suitable for the follow up human rated transportation system. These vehicles should also serve future LEO infrastructures and exploration missions. With the aim to satisfy the above objectives a team composed by major European industries and led by EADS Astrium Space Transportation is currently conducting the phase A of the programme under contract with the European Space Agency (ESA). Two vehicle versions are being investigated: a Cargo version, transporting cargo only to/from the ISS, and a Crew version, which will allow the transfer of both crew and cargo to/from the ISS. The ARV Cargo version, in its present configuration, is composed of three modules. The Versatile Service Module (VSM) provides to the system the propulsion/GNC for orbital manoeuvres and attitude control and the orbital power generation. Its propulsion system and GNC shall be robust enough to allow its use for different launch stacks and different LEO missions in the future. The Un-pressurised Cargo Module (UCM) provides the accommodation for about 3000 kg of un-pressurised cargo and is to be sufficiently flexible to ensure the transportation of: - orbital infrastructure components (ORU's); - scientific / technological experiments; - propellant for re-fuelling, re-boost (and deorbiting) of the ISS. The Re-entry Module (RM) provides a pressurized volume to accommodate active/passive cargo (2000 kg upload/1500 kg download). It is conceived as an expendable conical capsule with spherical heat- hield, interfacing with the new docking standard of the ISS, i.e. it carries the IBDM docking system, on a

  9. Gust Mitigation of Micro Air Vehicles Using Passive Articulated Wings

    Directory of Open Access Journals (Sweden)

    Adetunji Oduyela

    2014-01-01

    Full Text Available Birds and insects naturally use passive flexing of their wings to augment their stability in uncertain aerodynamic environments. In a similar manner, micro air vehicle designers have been investigating using wing articulation to take advantage of this phenomenon. The result is a class of articulated micro air vehicles where artificial passive joints are designed into the lifting surfaces. In order to analyze how passive articulation affects performance of micro air vehicles in gusty environments, an efficient 8 degree-of-freedom model is developed. Experimental validation of the proposed mathematical model was accomplished using flight test data of an articulated micro air vehicle obtained from a high resolution indoor tracking facility. Analytical investigation of the gust alleviation properties of the articulated micro air vehicle model was carried out using simulations with varying crosswind gust magnitudes. Simulations show that passive articulation in micro air vehicles can increase their robustness to gusts within a range of joint compliance. It is also shown that if articulation joints are made too compliant that gust mitigation performance is degraded when compared to a rigid system.

  10. The effects of wing flexibility on the flight performance and stability of flapping wing micro air vehicles

    Science.gov (United States)

    Bluman, James Edward

    Insect wings are flexible. However, the influence of wing flexibility on the flight dynamics of insects and flapping wing micro air vehicles is unknown. Most studies in the literature consider rigid wings and conclude that the hover equilibrium is unstable. This dissertation shows that a flapping wing flyer with flexible wings exhibits stable natural modes of the open loop system in hover, never reported before. The free-flight insect flight dynamics is modeled for both flexible and rigid wings. Wing mass and inertia are included in the nonlinear equations of motion. The flapping wing aerodynamics are modeled using a quasi-steady model, a well-validated two dimensional Navier Stokes model, and a coupled, two dimensional Navier Stokes - Euler Bernoulli beam model that accurately models the fluid-structure interaction of flexible wings. Hover equilibrium is systematically and efficiently determined with a coupled quasi-steady and Navier-Stokes equation trimmer. The power and stability are reported at hover while parametrically varying the pitch axis location for rigid wings and the structural stiffness for flexible wings. The results indicate that the rigid wings possess an unstable oscillatory mode mainly due to their pitch sensitivity to horizontal velocity perturbations. The flexible wings stabilize this mode primarily by adjusting their wing shape in the presence of perturbations. The wing's response to perturbations generates significantly more horizontal velocity damping and pitch rate damping than in rigid wings. Furthermore, the flexible wings experience substantially less wing wake interaction, which, for rigid wings, is destabilizing. The power required to hover a fruit fly with actively rotating rigid wings varies between 16.9 and 34.2 W/kg. The optimal power occurs when the pitch axis is located at 30% chord, similar to some biological observations. Flexible wings require 23.1 to 38.5 W/kg. However, flexible wings exhibit more stable system dynamics and

  11. Sliding mode based trajectory linearization control for hypersonic reentry vehicle via extended disturbance observer.

    Science.gov (United States)

    Xingling, Shao; Honglun, Wang

    2014-11-01

    This paper proposes a novel hybrid control framework by combing observer-based sliding mode control (SMC) with trajectory linearization control (TLC) for hypersonic reentry vehicle (HRV) attitude tracking problem. First, fewer control consumption is achieved using nonlinear tracking differentiator (TD) in the attitude loop. Second, a novel SMC that employs extended disturbance observer (EDO) to counteract the effect of uncertainties using a new sliding surface which includes the estimation error is integrated to address the tracking error stabilization issues in the attitude and angular rate loop, respectively. In addition, new results associated with EDO are examined in terms of dynamic response and noise-tolerant performance, as well as estimation accuracy. The key feature of the proposed compound control approach is that chattering free tracking performance with high accuracy can be ensured for HRV in the presence of multiple uncertainties under control constraints. Based on finite time convergence stability theory, the stability of the resulting closed-loop system is well established. Also, comparisons and extensive simulation results are presented to demonstrate the effectiveness of the control strategy. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Active disturbance rejection based trajectory linearization control for hypersonic reentry vehicle with bounded uncertainties.

    Science.gov (United States)

    Shao, Xingling; Wang, Honglun

    2015-01-01

    This paper investigates a novel compound control scheme combined with the advantages of trajectory linearization control (TLC) and alternative active disturbance rejection control (ADRC) for hypersonic reentry vehicle (HRV) attitude tracking system with bounded uncertainties. Firstly, in order to overcome actuator saturation problem, nonlinear tracking differentiator (TD) is applied in the attitude loop to achieve fewer control consumption. Then, linear extended state observers (LESO) are constructed to estimate the uncertainties acting on the LTV system in the attitude and angular rate loop. In addition, feedback linearization (FL) based controllers are designed using estimates of uncertainties generated by LESO in each loop, which enable the tracking error for closed-loop system in the presence of large uncertainties to converge to the residual set of the origin asymptotically. Finally, the compound controllers are derived by integrating with the nominal controller for open-loop nonlinear system and FL based controller. Also, comparisons and simulation results are presented to illustrate the effectiveness of the control strategy. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  13. A Flight Study of a Power-Off Landing Technique Applicable to Re-Entry Vehicles

    Science.gov (United States)

    Bray, Richard S.; Drinkwater, Fred J.; White, Maurice D.

    1960-01-01

    A power-off landing technique, applicable to aircraft of configurations presently being considered for manned re-entry vehicles, has been developed and flight tested at Ames Research Center. The flight tests used two configurations of an airplane for which the values of maximum lift-drag ratios were 4.0 and 2.8. Twenty-four idle-power approaches were made to an 8000-foot runway with touchdown point and airspeed accuracies of +/-600 feet and +/-10 knots, respectively. The landing pattern used was designed to provide an explicitly defined flight path for the pilot and, yet, to require no external guidance other than the pilot's view from the cockpit. The initial phase of the approach pattern is a constant high-speed descent from altitude aimed at a ground reference point short of the runway threshold. At a specified altitude and speed, a constant g pull-out is made to a shallow flight path along which the air-plane decelerates to the touchdown point. Repeatability and safety are inherent because of the reduced number of variables requiring pilot judgment, and because of the fact that a missed approach is evident at speeds and altitudes suitable for safe ejection. The accuracy and repeatability of the pattern are indicated by the measured results. The proposed pattern appears to be particularly suitable for configurations having unusual drag variations with speed in the lower speed regime, since the pilot is not required to control speed in the latter portions of the pattern.

  14. Fault-tolerant control with mixed aerodynamic surfaces and RCS jets for hypersonic reentry vehicles

    Directory of Open Access Journals (Sweden)

    Jingjing He

    2017-04-01

    Full Text Available This paper proposes a fault-tolerant strategy for hypersonic reentry vehicles with mixed aerodynamic surfaces and reaction control systems (RCS under external disturbances and subject to actuator faults. Aerodynamic surfaces are treated as the primary actuator in normal situations, and they are driven by a continuous quadratic programming (QP allocator to generate torque commanded by a nonlinear adaptive feedback control law. When aerodynamic surfaces encounter faults, they may not be able to provide sufficient torque as commanded, and RCS jets are activated to augment the aerodynamic surfaces to compensate for insufficient torque. Partial loss of effectiveness and stuck faults are considered in this paper, and observers are designed to detect and identify the faults. Based on the fault identification results, an RCS control allocator using integer linear programming (ILP techniques is designed to determine the optimal combination of activated RCS jets. By treating the RCS control allocator as a quantization element, closed-loop stability with both continuous and quantized inputs is analyzed. Simulation results verify the effectiveness of the proposed method.

  15. Study of the Use of a Terminal Controller Technique for Reentry Guidance of a Capsule-Type Vehicle

    Science.gov (United States)

    Foudriat, Edwin C.

    1961-01-01

    A study has been made of the use o f a terminal controller technique i n the guidance of a high-drag, variable-lift reentry vehicle to a desired landing point. The technique uses linearized equations of motion attained by the perturbation of the dependent variables from those of a reference trajectory. The guidance system continuously predicts the terminal range error and uses this error to control the angle of attack of the vehicle in an on-off manner until the predicted range error is within +-O.1 degrees of the required arc or +-6.9 miles.

  16. Piezoelectric energy harvesting from morphing wing motions for micro air vehicles

    KAUST Repository

    Abdelkefi, Abdessattar

    2013-09-10

    Wing flapping and morphing can be very beneficial to managing the weight of micro air vehicles through coupling the aerodynamic forces with stability and control. In this letter, harvesting energy from the wing morphing is studied to power cameras, sensors, or communication devices of micro air vehicles and to aid in the management of their power. The aerodynamic loads on flapping wings are simulated using a three-dimensional unsteady vortex lattice method. Active wing shape morphing is considered to enhance the performance of the flapping motion. A gradient-based optimization algorithm is used to pinpoint the optimal kinematics maximizing the propellent efficiency. To benefit from the wing deformation, we place piezoelectric layers near the wing roots. Gauss law is used to estimate the electrical harvested power. We demonstrate that enough power can be generated to operate a camera. Numerical analysis shows the feasibility of exploiting wing morphing to harvest energy and improving the design and performance of micro air vehicles.

  17. An electromagnetic method for removing the communication blackout with a space vehicle upon re-entry into the atmosphere

    Science.gov (United States)

    Cheng, Jianjun; Jin, Ke; Kou, Yong; Hu, Ruifeng; Zheng, Xiaojing

    2017-03-01

    When a hypersonic vehicle travels in the Earth and Mars atmosphere, the surface of the vehicle is surrounded by a plasma layer, which is an envelope of ionized air, created from the compression and heat of the atmosphere by the shock wave. The vehicles will lose contact with ground stations known as the reentry communication blackout. Based on the magnetohydrodynamic framework and electromagnetic wave propagation theory, an analytical model is proposed to describe the effect of the effectiveness of electromagnetic mitigation scheme on removing the reentry communication blackout. C and Global Positioning System (GPS) bands, two commonly used radio bands for communication, are taken as the cases to discuss the effectiveness of the electromagnetic field mitigation scheme. The results show that the electron density near the antenna of vehicles can be reduced by the electromagnetic field, and the required external magnetic field strength is far below the one in the magnetic window method. The directions of the external electric field and magnetic field have a significant impact on the effectiveness of the mitigation scheme. Furthermore, the effect of electron collisions on the required applied electromagnetic field is discussed, and the result indicates that electron collisions are a key factor to analyze the electromagnetic mitigation scheme. Finally, the feasible regions of the applied electromagnetic field for eliminating blackout are given. These investigations could have a significant benefit on the design and optimization of electromagnetic mitigation scheme for the blackout problem.

  18. A FMM-FFT accelerated hybrid volume surface integral equation solver for electromagnetic analysis of re-entry space vehicles

    KAUST Repository

    Yücel, Abdulkadir C.

    2014-07-01

    Space vehicles that re-enter the atmosphere often experience communication blackout. The blackout occurs when the vehicle becomes engulfed in plasma produced by interactions between the vehicle surface and the atmosphere. The plasma often is concentrated in a relatively thin shell around the vehicle, with higher densities near its nose than rear. A less structured, sometimes turbulent plasma wake often trails the vehicle. The plasma shell severely affects the performance of side-mounted antennas as it alters their characteristics (frequency response, gain patterns, axial ratio, and impedance) away from nominal, free-space values, sometimes entirely shielding the antenna from the outside world. The plasma plume/turbulent wake similarly affect the performance of antennas mounted at the back of the vehicle. The electromagnetic characteristics of the thin plasma shell and plume/turbulent wake heavily depend on the type of re-entry trajectory, the vehicle\\'s speed, angles of attack, and chemical composition, as well as environmental conditions. To analyze the antennas\\' performance during blackout and to design robust communication antennas, efficient and accurate simulation tools for charactering the antennas\\' performance along the trajectory are called for.

  19. High Speed and High Angle of Attack Aerodynamic Characteristics of Winged Space Vehicle

    OpenAIRE

    INATANI, Yoshifumi

    1987-01-01

    Static aerodynamic characteristics of winged space vehicle is investigated through a series of wind tunnel testing. This report includes a summary of the test results and associated considerations. The tests were conducted and supported by Working Group for Winged Space Vehicle of Institute of Space and Astronautical Science (ISAS). Attention has been concentrated on both longitudinal and lateral/directional, high angle of attack flight capability at high speed flight condition of the vehicle...

  20. Observer-based attitude controller for lifting re-entry vehicle with non-minimum phase property

    Directory of Open Access Journals (Sweden)

    Wenming Nie

    2017-05-01

    Full Text Available This article concentrates on the attitude control problem for the lifting re-entry vehicle with non-minimum phase property. A novel attitude control method is proposed for this kind of lifting re-entry vehicle without assuming the internal dynamics to be measurable. First, an internal dynamics extended state observer is developed to deal with the unmeasurable problem of the internal dynamics. And then, the control scheme which adopts output feedback method is proposed by modifying the traditional output redefinition technique with internal dynamics extended state observer. This control scheme only requires the system output to be measurable, and it can still stabilize the unstable internal dynamics and track attitude commands. Besides, because of the inherent property of extended state observer in rejecting uncertainties and disturbances, the control precision of the proposed controller is higher than the controller designed with traditional output redefinition technique. Finally, the effectiveness and robustness of the proposed attitude controller are demonstrated by the simulation results.

  1. Conceptual shape optimization of entry vehicles applied to capsules and winged fuselage vehicles

    CERN Document Server

    Dirkx, Dominic

    2017-01-01

    This book covers the parameterization of entry capsules, including Apollo capsules and planetary probes, and winged entry vehicles such as the Space Shuttle and lifting bodies. The aerodynamic modelling is based on a variety of panel methods that take shadowing into account, and it has been validated with flight and wind tunnel data of Apollo and the Space Shuttle. The shape optimization is combined with constrained trajectory analysis, and the multi-objective approach provides the engineer with a Pareto front of optimal shapes. The method detailed in Conceptual Shape Optimization of Entry Vehicles is straightforward, and the output gives the engineer insight in the effect of shape variations on trajectory performance. All applied models and algorithms used are explained in detail, allowing for reconstructing the design tool to the researcher’s requirements. Conceptual Shape Optimization of Entry Vehicles will be of interest to both researchers and graduate students in the field of aerospace engineering, an...

  2. Damage Considerations of a Flexible Micro Air Vehicle Wing Using 3-D Laser Vibrometry

    National Research Council Canada - National Science Library

    Mendoza, Jr, Leo L

    2007-01-01

    .... The focus of this research is to evaluate the effects of damage on a flexible micro air vehicle wing, particularly its natural frequencies and mode shapes, using three dimensional laser vibrometry...

  3. Interactive aircraft flight control and aeroelastic stabilization. [forward swept wing flight vehicles

    Science.gov (United States)

    Weisshaar, T. A.; Schmidt, D. K.

    1981-01-01

    Several examples are presented in which flutter involving interaction between flight mechanics modes and elastic wind bending occurs for a forward swept wing flight vehicle. These results show the basic mechanism by which the instability occurs and form the basis for attempts to actively control such a vehicle.

  4. Identification of time-varying models for flapping-wing micro aerial vehicles

    NARCIS (Netherlands)

    Armanini, S.F.

    2018-01-01

    The demand for always smaller, more manoeuvrable and versatile unmanned aerial vehicles cannot be met with conventional manned flight approaches. This has led engineers to seek inspiration in nature, giving rise to the bio-inspired flapping-wing micro aerial vehicle (FWMAV). FWMAVs achieve a

  5. Development of Bird-like Micro Aerial Vehicle with Flapping and Feathering Wing Motions

    Science.gov (United States)

    Maglasang, Jonathan; Goto, Norihiro; Isogai, Koji

    To investigate the feasibility of a highly efficient flapping system capable of avian maneuvers, such as rapid takeoff, hover and gliding, a full scale bird-like (ornithopter) flapping-wing micro aerial vehicle (MAV) shaped and patterned after a typical pigeon (Columba livia) has been designed and constructed. Both numerical and experimental methods have been used in the development of this vehicle. This flapping-wing micro aerial vehicle utilizes both the flapping and feathering motions of an avian wing by employing a novel flapping-feathering mechanism, which has been synthesized and constructed so as to best describe the properly coordinated flapping and feathering wing motions at phase angle difference of 90° in a horizontal steady level flight condition. This design allows high flapping and feathering amplitudes and is configurable for asymmetric wing motions which are desirable in high-speed flapping flight and maneuvering. The preliminary results indicate its viability as a practical and an efficient flapping-wing micro aerial vehicle.

  6. Design and mechanical analysis of a 3D-printed biodegradable biomimetic micro air vehicle wing

    Science.gov (United States)

    Salami, E.; Ganesan, P. B.; Ward, T. A.; Viyapuri, R.; Romli, F. I.

    2016-10-01

    The biomimetic micro air vehicles (BMAV) are unmanned, micro-scaled aircraft that are bio-inspired from flying organisms to achieve the lift and thrust by flapping their wings. There are still many technological challenges involved with designing the BMAV. One of these is designing the ultra-lightweight materials and structures for the wings that have enough mechanical strength to withstand continuous flapping at high frequencies. Insects achieve this by having chitin-based, wing frame structures that encompass a thin, film membrane. The main objectives of this study are to design a biodegradable BMAV wing (inspired from the dragonfly) and analyze its mechanical properties. The dragonfly-like wing frame structure was bio-mimicked and fabricated using a 3D printer. A chitosan nanocomposite film membrane was applied to the BMAV wing frames through casting method. Its mechanical performance was analyzed using universal testing machine (UTM). This analysis indicates that the tensile strength and Young's modulus of the wing with a membrane is nearly double that of the wing without a membrane, which allow higher wing beat frequencies and deflections that in turn enable a greater lifting performance.

  7. Multi-disciplinary design optimization of subsonic fixed-wing unmanned aerial vehicles projected through 2025

    Science.gov (United States)

    Gundlach, John Frederick, IV

    Through this research, a robust aircraft design methodology is developed for analysis and optimization of the Air Vehicle (AV) segment of Unmanned Aerial Vehicle (UAV) systems. The analysis functionality of the AV design is integrated with a Genetic Algorithm (GA) to form an integrated Multi-disciplinary Design Optimization (MDO) methodology for optimal AV design synthesis. This research fills the gap in integrated subsonic fixed-wing UAV AV MDO methods. No known single methodology captures all of the phenomena of interest over the wide range of UAV families considered here. Key advancements include: (1) parametric Low Reynolds Number (LRN) airfoil aerodynamics formulation, (2) UAV systems mass properties definition, (3) wing structural weight methods, (4) self-optimizing flight performance model, (5) automated geometry algorithms, and (6) optimizer integration. Multiple methods are provided for many disciplines to enable flexibility in functionality, level of detail, computational expediency, and accuracy. The AV design methods are calibrated against the High-Altitude Long-Endurance (HALE) Global Hawk, Medium-Altitude Endurance (MAE) Predator, and Tactical Shadow 200 classes, which exhibit significant variations in mission performance requirements and scale from one another. All three UAV families show significant design gross weight reductions as technology improves. The overall technology synergy experienced 10--11 years after the initial technology year is 6.68% for Global Hawk, 7.09% for Predator, and 4.22% for the Shadow 200, which means that the technology trends interact favorably in all cases. The Global Hawk and Shadow 200 families exhibited niche behavior, where some vehicles attained higher aerodynamic performance while others attained lower structural mass fractions. The high aerodynamic performance Global Hawk vehicles had high aspect ratio wings with sweep, while the low structural mass fraction vehicles had straight, relatively low aspect ratios and

  8. Flapping and fixed wing aerodynamics of low Reynolds number flight vehicles

    Science.gov (United States)

    Viieru, Dragos

    Lately, micro air vehicles (MAVs), with a maximum dimension of 15 cm and nominal flight speed around 10m/s, have attracted interest from scientific and engineering communities due to their potential to perform desirable flight missions and exhibit unconventional aerodynamics, control, and structural characteristics, compared to larger flight vehicles. Since MAVs operate at a Reynolds number of 105 or lower, the lift-to-drag ratio is noticeably lower than the larger manned flight vehicles. The light weight and low flight speed cause MAVs to be sensitive to wind gusts. The MAV's small overall dimensions result in low aspect ratio wings with strong wing tip vortices that further complicate the aerodynamics of such vehicles. In this work, two vehicle concepts are considered, namely, fixed wings with flexible structure aimed at passive shape control, and flapping wings aimed at enhancing aerodynamic performance using unsteady flow fields. A finite volume, pressure-based Navier-Stokes solver along with moving grid algorithms is employed to simulate the flow field. The coupled fluid-structural dynamics of the flexible wing is treated using a hyperelastic finite element structural model, the above-mentioned fluid solver via the moving grid technique, and the geometric conservation law. Three dimensional aerodynamics around a low aspect ratio wing for both rigid and flexible structures and fluid-structure interactions for flexible structures have been investigated. In the Reynolds numbers range of 7x10 4 to 9x104, the flexible wing exhibits self-initiated vibrations even in steady free-stream, and is found to have a similar performance to the identical rigid wing for modest angles of attack. For flapping wings, efforts are made to improve our understanding of the unsteady fluid physics related to the lift generation mechanism at low Reynolds numbers (75 to 1,700). Alternative moving grid algorithms, capable of handling the large movements of the boundaries (characteristic

  9. The application of quaternions and other spatial representations to the reconstruction of re-entry vehicle motion.

    Energy Technology Data Exchange (ETDEWEB)

    De Sapio, Vincent

    2010-09-01

    The analysis of spacecraft kinematics and dynamics requires an efficient scheme for spatial representation. While the representation of displacement in three dimensional Euclidean space is straightforward, orientation in three dimensions poses particular challenges. The unit quaternion provides an approach that mitigates many of the problems intrinsic in other representation approaches, including the ill-conditioning that arises from computing many successive rotations. This report focuses on the computational utility of unit quaternions and their application to the reconstruction of re-entry vehicle (RV) motion history from sensor data. To this end they will be used in conjunction with other kinematic and data processing techniques. We will present a numerical implementation for the reconstruction of RV motion solely from gyroscope and accelerometer data. This will make use of unit quaternions due to their numerical efficacy in dealing with the composition of many incremental rotations over a time series. In addition to signal processing and data conditioning procedures, algorithms for numerical quaternion-based integration of gyroscope data will be addressed, as well as accelerometer triangulation and integration to yield RV trajectory. Actual processed flight data will be presented to demonstrate the implementation of these methods.

  10. CFD based aerodynamic modeling to study flight dynamics of a flapping wing micro air vehicle

    Science.gov (United States)

    Rege, Alok Ashok

    The demand for small unmanned air vehicles, commonly termed micro air vehicles or MAV's, is rapidly increasing. Driven by applications ranging from civil search-and-rescue missions to military surveillance missions, there is a rising level of interest and investment in better vehicle designs, and miniaturized components are enabling many rapid advances. The need to better understand fundamental aspects of flight for small vehicles has spawned a surge in high quality research in the area of micro air vehicles. These aircraft have a set of constraints which are, in many ways, considerably different from that of traditional aircraft and are often best addressed by a multidisciplinary approach. Fast-response non-linear controls, nano-structures, integrated propulsion and lift mechanisms, highly flexible structures, and low Reynolds aerodynamics are just a few of the important considerations which may be combined in the execution of MAV research. The main objective of this thesis is to derive a consistent nonlinear dynamic model to study the flight dynamics of micro air vehicles with a reasonably accurate representation of aerodynamic forces and moments. The research is divided into two sections. In the first section, derivation of the nonlinear dynamics of flapping wing micro air vehicles is presented. The flapping wing micro air vehicle (MAV) used in this research is modeled as a system of three rigid bodies: a body and two wings. The design is based on an insect called Drosophila Melanogaster, commonly known as fruit-fly. The mass and inertial effects of the wing on the body are neglected for the present work. The nonlinear dynamics is simulated with the aerodynamic data published in the open literature. The flapping frequency is used as the control input. Simulations are run for different cases of wing positions and the chosen parameters are studied for boundedness. Results show a qualitative inconsistency in boundedness for some cases, and demand a better

  11. High Performance Piezoelectric Actuators and Wings for Nano Air Vehicles

    Science.gov (United States)

    2012-08-26

    process to monolithically fabricate flying robotic insects at the pico air ve- hicle ( PAV ) scale from SUEX dry film, an epoxy based negative photoresist...cost. It simul- taneously defines the PAV airframe, compliant flapping mechanism, and artificial insect wing using photolithography. Using this process...81 4.4.3 Simulated Average Lift Versus Frequency of the Redesigned LionFly 82 5.1.1 Potential Fabrication Process for PAV Flapping

  12. Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle.

    Science.gov (United States)

    Nakata, T; Liu, H; Tanaka, Y; Nishihashi, N; Wang, X; Sato, A

    2011-12-01

    MAVs (micro air vehicles) with a maximal dimension of 15 cm and nominal flight speeds of around 10 m s⁻¹, operate in a Reynolds number regime of 10⁵ or lower, in which most natural flyers including insects, bats and birds fly. Furthermore, due to their light weight and low flight speed, the MAVs' flight characteristics are substantially affected by environmental factors such as wind gust. Like natural flyers, the wing structures of MAVs are often flexible and tend to deform during flight. Consequently, the aero/fluid and structural dynamics of these flyers are closely linked to each other, making the entire flight vehicle difficult to analyze. We have recently developed a hummingbird-inspired, flapping flexible wing MAV with a weight of 2.4-3.0 g and a wingspan of 10-12 cm. In this study, we carry out an integrated study of the flexible wing aerodynamics of this flapping MAV by combining an in-house computational fluid dynamic (CFD) method and wind tunnel experiments. A CFD model that has a realistic wing planform and can mimic realistic flexible wing kinematics is established, which provides a quantitative prediction of unsteady aerodynamics of the four-winged MAV in terms of vortex and wake structures and their relationship with aerodynamic force generation. Wind tunnel experiments further confirm the effectiveness of the clap and fling mechanism employed in this bio-inspired MAV as well as the importance of the wing flexibility in designing small flapping-wing MAVs.

  13. Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle

    International Nuclear Information System (INIS)

    Nakata, T; Liu, H; Nishihashi, N; Wang, X; Sato, A; Tanaka, Y

    2011-01-01

    MAVs (micro air vehicles) with a maximal dimension of 15 cm and nominal flight speeds of around 10 m s −1 , operate in a Reynolds number regime of 10 5 or lower, in which most natural flyers including insects, bats and birds fly. Furthermore, due to their light weight and low flight speed, the MAVs' flight characteristics are substantially affected by environmental factors such as wind gust. Like natural flyers, the wing structures of MAVs are often flexible and tend to deform during flight. Consequently, the aero/fluid and structural dynamics of these flyers are closely linked to each other, making the entire flight vehicle difficult to analyze. We have recently developed a hummingbird-inspired, flapping flexible wing MAV with a weight of 2.4–3.0 g and a wingspan of 10–12 cm. In this study, we carry out an integrated study of the flexible wing aerodynamics of this flapping MAV by combining an in-house computational fluid dynamic (CFD) method and wind tunnel experiments. A CFD model that has a realistic wing planform and can mimic realistic flexible wing kinematics is established, which provides a quantitative prediction of unsteady aerodynamics of the four-winged MAV in terms of vortex and wake structures and their relationship with aerodynamic force generation. Wind tunnel experiments further confirm the effectiveness of the clap and fling mechanism employed in this bio-inspired MAV as well as the importance of the wing flexibility in designing small flapping-wing MAVs.

  14. Repeatable Manufacture of Wings for Flapping Wing Micro Air Vehicles Using Microelectromechanical System (MEMS) Fabrication Techniques

    Science.gov (United States)

    2011-03-01

    life span, and must be cared for and used expeditiously. Once a hawkmoth hatches from its cocoon, its wing is liberated, taking care to cut the...more controlled fashion than the butterfly, but is not sufficiently so for a Micro- MAV (courtesy of http://www.science-store.com/ life /specimens/la460...50. Michelson, Robert C. and Naqvi, Messam A. Extraterrestrial Flight. s.l. : RTO- AVT von Karman Institute for Fluid Dynamics Lecture Series, 2003

  15. Longitudinal static stability requirements for wing in ground effect vehicle

    Directory of Open Access Journals (Sweden)

    Wei Yang

    2015-03-01

    Full Text Available The issue of the longitudinal stability of a WIG vehicle has been a very critical design factor since the first experimental WIG vehicle has been built. A series of studies had been performed and focused on the longitudinal stability analysis. However, most studies focused on the longitudinal stability of WIG vehicle in cruise phase, and less is available on the longitudinal static stability requirement of WIG vehicle when hydrodynamics are considered: WIG vehicle usually take off from water. The present work focuses on stability requirement for longitudinal motion from taking off to landing. The model of dynamics for a WIG vehicle was developed taking into account the aerodynamic, hydrostatic and hydrodynamic forces, and then was analyzed. Following with the longitudinal static stability analysis, effect of hydrofoil was discussed. Locations of CG, aerodynamic center in pitch, aerodynamic center in height and hydrodynamic center in heave were illustrated for a stabilized WIG vehicle. The present work will further improve the longitudinal static stability theory for WIG vehicle.

  16. Reliable Force Predictions for a Flapping-wing Micro Air Vehicle : A "Vortex-lift" Approach

    NARCIS (Netherlands)

    Thielicke, W.; Kesel, A. B.; Stamhuis, Eize

    2011-01-01

    Vertical and horizontal force of a flapping-wing micro air vehicle (MAV) has been measured in slow-speed forward flight using a force balance. Detailed information on kinematics was used to estimate forces using a blade-element analysis. Input variables for this analysis are lift and drag

  17. Flight dynamic investigations of flying wing with winglet configured unmanned aerial vehicle

    Science.gov (United States)

    Ro, Kapseong

    2006-05-01

    A swept wing tailless vehicle platform is well known in the radio control (RC) and sailing aircraft community for excellent spiral stability during soaring or thermaling, while exhibiting no Dutch roll behavior at high speed. When an unmanned aerial vehicle (UAV) is subjected to fly a mission in a rugged mountainous terrain where air current or thermal up-drift is frequently present, this is great aerodynamic benefit over the conventional cross-tailed aircraft which requires careful balance between lateral and directional stability. Such dynamic characteristics can be studied through vehicle dynamic modeling and simulation, but it requires configuration aerodynamic data through wind tunnel experiments. Obtaining such data is very costly and time consuming, and it is not feasible especially for low cost and dispensable UAVs. On the other hand, the vehicle autonomy is quite demanding which requires substantial understanding of aircraft dynamic characteristics. In this study, flight dynamics of an UAV platform based on flying wing with a large winglet was investigated through analytical modeling and numerical simulation. Flight dynamic modeling software and experimental formulae were used to obtain essential configuration aerodynamic characteristics, and linear flight dynamic analysis was carried out to understand the effect of wing sweep angle and winglet size on the vehicle dynamic characteristics.

  18. Understanding of Low Reynolds Number Aerodynamics and Micro Rotary-Wing Air Vehicles

    Science.gov (United States)

    Winslow, Justin Michael

    The goal of the present research is to understand aerodynamics at low Reynolds numbers and synthesize rules towards the development of hovering micro rotary-wing air vehicles (MRAVs). This entailed the rigorous study of airfoil characteristics at low Reynolds numbers through available experimental results as well as the use of an unsteady Reynolds-Averaged Navier-Stokes solver. A systematic, experimental, variation of parameters approach with physical rotors was carried out to design and develop a micro air vehicle-scale rotor which maximizes the hover Figure of Merit. The insights gained in low Reynolds number aerodynamics have been utilized in the systematic design of a high endurance micro-quadrotor. Based on available characteristics, the physical relations governing electric propulsion system and structural weights have been derived towards a sizing methodology for small-scale rotary-wing vehicles.

  19. Inertial attitude control of a bat-like morphing-wing air vehicle.

    Science.gov (United States)

    Colorado, J; Barrientos, A; Rossi, C; Parra, C

    2013-03-01

    This paper presents a novel bat-like unmanned aerial vehicle inspired by the morphing-wing mechanism of bats. The goal of this paper is twofold. Firstly, a modelling framework is introduced for analysing how the robot should manoeuvre by means of changing wing morphology. This allows the definition of requirements for achieving forward and turning flight according to the kinematics of the wing modulation. Secondly, an attitude controller named backstepping+DAF is proposed. Motivated by biological evidence about the influence of wing inertia on the production of body accelerations, the attitude control law incorporates wing inertia information to produce desired roll (ϕ) and pitch (θ) acceleration commands (desired angular acceleration function (DAF)). This novel control approach is aimed at incrementing net body forces (F(net)) that generate propulsion. Simulations and wind-tunnel experimental results have shown an increase of about 23% in net body force production during the wingbeat cycle when the wings are modulated using the DAF as a part of the backstepping control law. Results also confirm accurate attitude tracking in spite of high external disturbances generated by aerodynamic loads at airspeeds up to 5 ms⁻¹.

  20. Inertial attitude control of a bat-like morphing-wing air vehicle

    International Nuclear Information System (INIS)

    Colorado, J; Barrientos, A; Rossi, C; Parra, C

    2013-01-01

    This paper presents a novel bat-like unmanned aerial vehicle inspired by the morphing-wing mechanism of bats. The goal of this paper is twofold. Firstly, a modelling framework is introduced for analysing how the robot should manoeuvre by means of changing wing morphology. This allows the definition of requirements for achieving forward and turning flight according to the kinematics of the wing modulation. Secondly, an attitude controller named backstepping+DAF is proposed. Motivated by biological evidence about the influence of wing inertia on the production of body accelerations, the attitude control law incorporates wing inertia information to produce desired roll (φ) and pitch (θ) acceleration commands (desired angular acceleration function (DAF)). This novel control approach is aimed at incrementing net body forces (F net ) that generate propulsion. Simulations and wind-tunnel experimental results have shown an increase of about 23% in net body force production during the wingbeat cycle when the wings are modulated using the DAF as a part of the backstepping control law. Results also confirm accurate attitude tracking in spite of high external disturbances generated by aerodynamic loads at airspeeds up to 5 ms −1 . (paper)

  1. Design and testing of shape memory alloy actuation mechanism for flapping wing micro unmanned aerial vehicles

    Science.gov (United States)

    Kamaruzaman, N. F.; Abdullah, E. J.

    2017-12-01

    Shape memory alloy (SMA) actuator offers great solution for aerospace applications with low weight being its most attractive feature. A SMA actuation mechanism for the flapping micro unmanned aerial vehicle (MAV) is proposed in this study, where SMA material is the primary system that provides the flapping motion to the wings. Based on several established design criteria, a design prototype has been fabricated to validate the design. As a proof of concept, an experiment is performed using an electrical circuit to power the SMA actuator to evaluate the flapping angle. During testing, several problems have been observed and their solutions for future development are proposed. Based on the experiment, the average recorded flapping wing angle is 14.33° for upward deflection and 12.12° for downward deflection. This meets the required design criteria and objective set forth for this design. The results prove the feasibility of employing SMA actuators in flapping wing MAV.

  2. Design of flapping wings for application to single active degree of freedom micro air vehicles

    Science.gov (United States)

    Chang, Kelvin Thomas

    This dissertation covers an experimental program to understand how wing compliance influences the performance of flapping micro air vehicle wings. The focus is the design of a membraned flapping wing for a single active degree of freedom mechanism, looking to maximize thrust performance in hover conditions. The optimization approach is unique in that experiments were the chosen engine as opposed to a computation model; this is because of the complexity involved in hover-mode flapping aerodynamics. The flapping mechanism and manufacturing process for fabricating the wings were carefully developed. The uncertainty in the thrust measurement was identified and reduced by implementing precision machining and repeatable techniques for fabrication. This resulted in a reduction of the manufacturing coefficient of variation from 16.8% to 2.6%. Optimization was then conducted for a single objective (Maximize thrust), using a three parameter design space, finding the highest thrust performance in wings with high aspect ratio; then, a multi-objective optimization was conducted with two objectives (Thrust and Power) and a four parameter space. The research then shifted focus to identifying the stiffness and deformation characteristics of high performance wing designs. Static stiffness measurements with a simple line load suggested that high chordwise stiffness or lower spanwise stiffness would be favorable for aerodynamic performance. To explore more components of the deformation, a full-field imaging technique was used and a uniform load was substituted to engage with the membrane. It was found that there is a range of torsional compliance where the wing is most efficient especially at higher flapping frequencies. The final component of the study was the dynamic deformation measurement. The two system, four camera digital image correlation setup uses stroboscopic measurement to capture the wing deformation. The phase shift between the twist and stroke, and the tip deflection

  3. Design and verification of a smart wing for an extreme-agility micro-air-vehicle

    International Nuclear Information System (INIS)

    Wickramasinghe, Viresh; Chen, Yong; Martinez, Marcias; Kernaghan, Robert; Wong, Franklin

    2011-01-01

    A special class of fixed-wing micro-air-vehicle (MAV) is currently being designed to fly and hover to provide range superiority as well as being able to hover through a flight maneuver known as prop-hanging to accomplish a variety of surveillance missions. The hover maneuver requires roll control of the wing through differential aileron deflection but a conventional system contributes significantly to the gross weight and complexity of a MAV. Therefore, it is advantageous to use smart structure approaches with active materials to design a lightweight, robust wing for the MAV. The proposed smart wing consists of an active trailing edge flap integrated with bimorph actuators with piezoceramic fibers. Actuation is enhanced by preloading the bimorph actuators with a compressive axial load. The preload is exerted on the actuators through a passive latex or electroactive polymer (EAP) skin that wraps around the airfoil. An EAP skin would further enhance the actuation by providing an electrostatic effect of the dielectric polymer to increase the deflection. Analytical modeling as well as finite element analysis show that the proposed concept could achieve the target bi-directional deflection of 30° in typical flight conditions. Several bimorph actuators were manufactured and an experimental setup was designed to measure the static and dynamic deflections. The experimental results validated the analytical technique and finite element models, which have been further used to predict the performance of the smart wing design for a MAV

  4. Design and verification of a smart wing for an extreme-agility micro-air-vehicle

    Science.gov (United States)

    Wickramasinghe, Viresh; Chen, Yong; Martinez, Marcias; Wong, Franklin; Kernaghan, Robert

    2011-12-01

    A special class of fixed-wing micro-air-vehicle (MAV) is currently being designed to fly and hover to provide range superiority as well as being able to hover through a flight maneuver known as prop-hanging to accomplish a variety of surveillance missions. The hover maneuver requires roll control of the wing through differential aileron deflection but a conventional system contributes significantly to the gross weight and complexity of a MAV. Therefore, it is advantageous to use smart structure approaches with active materials to design a lightweight, robust wing for the MAV. The proposed smart wing consists of an active trailing edge flap integrated with bimorph actuators with piezoceramic fibers. Actuation is enhanced by preloading the bimorph actuators with a compressive axial load. The preload is exerted on the actuators through a passive latex or electroactive polymer (EAP) skin that wraps around the airfoil. An EAP skin would further enhance the actuation by providing an electrostatic effect of the dielectric polymer to increase the deflection. Analytical modeling as well as finite element analysis show that the proposed concept could achieve the target bi-directional deflection of 30° in typical flight conditions. Several bimorph actuators were manufactured and an experimental setup was designed to measure the static and dynamic deflections. The experimental results validated the analytical technique and finite element models, which have been further used to predict the performance of the smart wing design for a MAV.

  5. Review of delta wing space shuttle vehicle dynamics

    Science.gov (United States)

    Reding, J. P.; Ericsson, L. E.

    1972-01-01

    The unsteady aerodynamics of the delta planform, high cross range, shuttle orbiter were investigated. It has been found that these vehicles are subject to five unsteady flow phenomena that could compromise the flight dynamics. They are: (1) leeside shock induced separation, (2) sudden leading edge stall, (3) vortex burst, (4) bow shock-flap shock interaction, (5) forebody vorticity. Trajectory shaping is seen as the most powerful means of avoiding the detrimental effects of the stall phenomena. However, stall must be fixed or controlled when traversing the stall region. The other phenomena may be controlled by carefully programmed control deflections and some configuration modification. Ways to alter the occurrence of the various flow conditions are explored.

  6. FIXED-WING MICRO AERIAL VEHICLE FOR ACCURATE CORRIDOR MAPPING

    Directory of Open Access Journals (Sweden)

    M. Rehak

    2015-08-01

    Full Text Available In this study we present a Micro Aerial Vehicle (MAV equipped with precise position and attitude sensors that together with a pre-calibrated camera enables accurate corridor mapping. The design of the platform is based on widely available model components to which we integrate an open-source autopilot, customized mass-market camera and navigation sensors. We adapt the concepts of system calibration from larger mapping platforms to MAV and evaluate them practically for their achievable accuracy. We present case studies for accurate mapping without ground control points: first for a block configuration, later for a narrow corridor. We evaluate the mapping accuracy with respect to checkpoints and digital terrain model. We show that while it is possible to achieve pixel (3-5 cm mapping accuracy in both cases, precise aerial position control is sufficient for block configuration, the precise position and attitude control is required for corridor mapping.

  7. Fixed-Wing Micro Aerial Vehicle for Accurate Corridor Mapping

    Science.gov (United States)

    Rehak, M.; Skaloud, J.

    2015-08-01

    In this study we present a Micro Aerial Vehicle (MAV) equipped with precise position and attitude sensors that together with a pre-calibrated camera enables accurate corridor mapping. The design of the platform is based on widely available model components to which we integrate an open-source autopilot, customized mass-market camera and navigation sensors. We adapt the concepts of system calibration from larger mapping platforms to MAV and evaluate them practically for their achievable accuracy. We present case studies for accurate mapping without ground control points: first for a block configuration, later for a narrow corridor. We evaluate the mapping accuracy with respect to checkpoints and digital terrain model. We show that while it is possible to achieve pixel (3-5 cm) mapping accuracy in both cases, precise aerial position control is sufficient for block configuration, the precise position and attitude control is required for corridor mapping.

  8. Comparison of Ballistic-Coefficient-Based Estimation Algorithms for Precise Tracking of a Re-Entry Vehicle and its Impact Point Prediction

    Directory of Open Access Journals (Sweden)

    Kyung Rok Moon

    2012-12-01

    Full Text Available This paper studies the problem of tracking a re-entry vehicle (RV in order to predict its impact point on the ground. Re-entry target dynamics combined with super-high speed has a complex non-linearity due to ballistic coefficient variations. However, it is difficult to construct a database for the ballistic coefficient of a unknown vehicle for a wide range of variations, thus the reliability of target tracking performance cannot be guaranteed if accurate ballistic coefficient estimation is not achieved. Various techniques for ballistic coefficient estimation have been previously proposed, but limitations exist for the estimation of non-linear parts accurately without obtaining prior information. In this paper we propose the ballistic coefficient β model-based interacting multiple model-extended Kalman filter (β-IMM-EKF for precise tracking of an RV. To evaluate the performance, other ballistic coefficient model based filters, which are gamma augmented filter, gamma bootstrapped filter were compared and assessed with the proposed β-IMM-EKF for precise tracking of an RV.

  9. Design of a high altitude long endurance flying-wing solar-powered unmanned air vehicle

    Science.gov (United States)

    Alsahlani, A. A.; Johnston, L. J.; Atcliffe, P. A.

    2017-06-01

    The low-Reynolds number environment of high-altitude §ight places severe demands on the aerodynamic design and stability and control of a high altitude, long endurance (HALE) unmanned air vehicle (UAV). The aerodynamic efficiency of a §ying-wing configuration makes it an attractive design option for such an application and is investigated in the present work. The proposed configuration has a high-aspect ratio, swept-wing planform, the wing sweep being necessary to provide an adequate moment arm for outboard longitudinal and lateral control surfaces. A design optimization framework is developed under a MATLAB environment, combining aerodynamic, structural, and stability analysis. Low-order analysis tools are employed to facilitate efficient computations, which is important when there are multiple optimization loops for the various engineering analyses. In particular, a vortex-lattice method is used to compute the wing planform aerodynamics, coupled to a twodimensional (2D) panel method to derive aerofoil sectional characteristics. Integral boundary-layer methods are coupled to the panel method in order to predict §ow separation boundaries during the design iterations. A quasi-analytical method is adapted for application to flyingwing con¦gurations to predict the wing weight and a linear finite-beam element approach is used for structural analysis of the wing-box. Stability is a particular concern in the low-density environment of high-altitude flight for flying-wing aircraft and so provision of adequate directional stability and control power forms part of the optimization process. At present, a modified Genetic Algorithm is used in all of the optimization loops. Each of the low-order engineering analysis tools is validated using higher-order methods to provide con¦dence in the use of these computationally-efficient tools in the present design-optimization framework. This paper includes the results of employing the present optimization tools in the design of a

  10. First-Order Simulation of Strewn Debris Fields Accompanying Exoatmospheric Re-entry Vehicle Fragmentation by Hypervelocity Impact

    Science.gov (United States)

    1994-09-01

    available information from satellite on- orbit and laboratory collisions. Atmospheric fragment re-entry is modelled using an exponentially dense...interceptions se caracterisent par des etendues de debris mesurant des centaines de kilometres. Si I’ on suppose une distribution uniforme des fragments, on...tests and on- orbit collisions. Much of this work is necessarily speculative: the dynamics of hypervelocity collisions and material behaviour under

  11. Nonlinear Dynamic Modeling of a Fixed-Wing Unmanned Aerial Vehicle: a Case Study of Wulung

    Directory of Open Access Journals (Sweden)

    Fadjar Rahino Triputra

    2015-07-01

    Full Text Available Developing a nonlinear adaptive control system for a fixed-wing unmanned aerial vehicle (UAV requires a mathematical representation of the system dynamics analytically as a set of differential equations in the form of a strict-feedback systems. This paper presents a method for modeling a nonlinear flight dynamics of the fixed-wing UAV of BPPT Wulung in any conditions of the flight altitude and airspeed for the first step into designing a nonlinear adaptive controller. The model was formed into 10-DOF differential equations in the form of strict-feedback systems which separates the terms of elevator, aileron, rudder and throttle from the model. The model simulation results show the behavior of the flight dynamics of the Wulung UAV and also prove the compliance with the actual flight test results.

  12. Design and control of a vertical takeoff and landing fixed-wing unmanned aerial vehicle

    Science.gov (United States)

    Malang, Yasir

    With the goal of extending capabilities of multi-rotor unmanned aerial vehicles (UAVs) for wetland conservation missions, a novel hybrid aircraft design consisting of four tilting rotors and a fixed wing is designed and built. The tilting rotors and nonlinear aerodynamic effects introduce a control challenge for autonomous flight, and the research focus is to develop and validate an autonomous transition flight controller. The overall controller structure consists of separate cascaded Proportional Integral Derivative (PID) controllers whose gains are scheduled according to the rotors' tilt angle. A control mechanism effectiveness factor is used to mix the multi-rotor and fixed-wing control actuators during transition. A nonlinear flight dynamics model is created and transition stability is shown through MATLAB simulations, which proves gain-scheduled control is a good fit for tilt-rotor aircraft. Experiments carried out using the prototype UAV validate simulation results for VTOL and tilted-rotor flight.

  13. Design and Performance of Insect-Scale Flapping-Wing Vehicles

    Science.gov (United States)

    Whitney, John Peter

    Micro-air vehicles (MAVs)---small versions of full-scale aircraft---are the product of a continued path of miniaturization which extends across many fields of engineering. Increasingly, MAVs approach the scale of small birds, and most recently, their sizes have dipped into the realm of hummingbirds and flying insects. However, these non-traditional biologically-inspired designs are without well-established design methods, and manufacturing complex devices at these tiny scales is not feasible using conventional manufacturing methods. This thesis presents a comprehensive investigation of new MAV design and manufacturing methods, as applicable to insect-scale hovering flight. New design methods combine an energy-based accounting of propulsion and aerodynamics with a one degree-of-freedom dynamic flapping model. Important results include analytical expressions for maximum flight endurance and range, and predictions for maximum feasible wing size and body mass. To meet manufacturing constraints, the use of passive wing dynamics to simplify vehicle design and control was investigated; supporting tests included the first synchronized measurements of real-time forces and three-dimensional kinematics generated by insect-scale flapping wings. These experimental methods were then expanded to study optimal wing shapes and high-efficiency flapping kinematics. To support the development of high-fidelity test devices and fully-functional flight hardware, a new class of manufacturing methods was developed, combining elements of rigid-flex printed circuit board fabrication with "pop-up book" folding mechanisms. In addition to their current and future support of insect-scale MAV development, these new manufacturing techniques are likely to prove an essential element to future advances in micro-optomechanics, micro-surgery, and many other fields.

  14. An insect-inspired flapping wing micro air vehicle with double wing clap-fling effects and capability of sustained hovering

    Science.gov (United States)

    Nguyen, Quoc-Viet; Chan, Woei Leong; Debiasi, Marco

    2015-03-01

    We present our recent flying insect-inspired Flapping-Wing Micro Air Vehicle (FW-MAV) capable of hovering flight which we have recently achieved. The FW-MAV has wing span of 22 cm (wing tip-to-wing tip), weighs about 16.6 grams with onboard integration of radio control system including a radio receiver, an electronic speed control (ESC) for brushless motor, three servos for attitude flight controls of roll, pitch, and yaw, and a single cell lithium-polymer (LiPo) battery (3.7 V). The proposed gear box enables the FW-MAV to use one DC brushless motor to synchronously drive four wings and take advantage of the double clap-and-fling effects during one flapping cycle. Moreover, passive wing rotation is utilized to simplify the design, in addition to passive stabilizing surfaces for flight stability. Powered by a single cell LiPo battery (3.7 V), the FW-MAV flaps at 13.7 Hz and produces an average vertical force or thrust of about 28 grams, which is sufficient for take-off and hovering flight. Finally, free flight tests in terms of vertical take-off, hovering, and manual attitude control flight have been conducted to verify the performance of the FW-MAV.

  15. Nano-mechanical properties and structural of a 3D-printed biodegradable biomimetic micro air vehicle wing

    Science.gov (United States)

    Salami, E.; Montazer, E.; Ward, T. A.; Ganesan, P. B.

    2017-06-01

    The biomimetic micro air vehicles (BMAV) are unmanned, micro-scaled aircraft that are bio-inspired from flying organisms to achieve the lift and thrust by flapping their wings. The main objectives of this study are to design a BMAV wing (inspired from the dragonfly) and analyse its nano-mechanical properties. In order to gain insights into the flight mechanics of dragonfly, reverse engineering methods were used to establish three-dimensional geometrical models of the dragonfly wings, so we can make a comparative analysis. Then mechanical test of the real dragonfly wings was performed to provide experimental parameter values for mechanical models in terms of nano-hardness and elastic modulus. The mechanical properties of wings were measured by nanoindentre. Finally, a simplified model was designed and the dragonfly-like wing frame structure was bio-mimicked and fabricated using a 3D printer. Then mechanical test of the BMAV wings was performed to analyse and compare the wings under a variety of simplified load regimes that are concentrated force, uniform line-load and a torque. This work opened up the possibility towards developing an engineering basis for the biomimetic design of BMAV wings.

  16. Unsteady Aerodynamics of Flapping Wings at Re=10,000-100,000 for Micro-Air Vehicles

    Science.gov (United States)

    2014-02-11

    MICO AIR VEHICLE (MAV) APPLICATIONS , Proceedings of the 37th National & 4th International Conference on Fluid Mechanics and Fluid Power, IIT...deviations on the aerodynamic forces. Then we used the knowledge gathered in this domain to attack the complex measured kinematics of a bat wing. The...immersed in a background grid. One surprising conclusion from this work was that in spite of the apparent complexity of wing motion, the motion could be

  17. Development of the PRSEUS Multi-Bay Pressure Box for a Hybrid Wing Body Vehicle

    Science.gov (United States)

    Jegley, Dawn C.; Velicki, Alexander

    2015-01-01

    NASA has created the Environmentally Responsible Aviation Project to explore and document the feasibility, benefits, and technical risk of advanced vehicle configurations and enabling technologies that will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations that have higher lift-to-drag ratios, reduced drag, and lower community noise. Although such novel configurations like the Hybrid Wing Body (HWB) offer better aerodynamic performance as compared to traditional tube-and-wing aircraft, their blended wing shapes also pose significant new design challenges. Developing an improved structural concept that is capable of meeting the structural weight fraction allocated for these non-circular pressurized cabins is the primary obstacle in implementing large lifting-body designs. To address this challenge, researchers at NASA and The Boeing Company are working together to advance new structural concepts like the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS), which is an integrally stiffened panel design that is stitched together and designed to maintain residual load-carrying capabilities under a variety of damage scenarios. The large-scale multi-bay fuselage test article described in this paper is the final specimen in a building-block test program that was conceived to demonstrate the feasibility of meeting the structural weight goals established for the HWB pressure cabin.

  18. Study of the feasibility aspects of flight testing an aeroelastically tailored forward swept research wing on a BQM-34F drone vehicle

    Science.gov (United States)

    Mourey, D. J.

    1979-01-01

    The aspects of flight testing an aeroelastically tailored forward swept research wing on a BQM-34F drone vehicle are examined. The geometry of a forward swept wing, which is incorporated into the BQM-34F to maintain satisfactory flight performance, stability, and control is defined. A preliminary design of the aeroelastically tailored forward swept wing is presented.

  19. Modeling and Closed Loop Flight Testing of a Fixed Wing Micro Air Vehicle

    Directory of Open Access Journals (Sweden)

    Harikumar Kandath

    2018-03-01

    Full Text Available This paper presents the nonlinear six degrees of freedom dynamic modeling of a fixed wing micro air vehicle. The static derivatives of the micro air vehicle are obtained through the wind tunnel testing. The propeller effects on the lift, drag, pitching moment and side force are quantified through wind tunnel testing. The dynamic derivatives are obtained through empirical relations available in the literature. The trim conditions are computed for a straight and constant altitude flight condition. The linearized longitudinal and lateral state space models are obtained about trim conditions. The variations in short period mode, phugoid mode, Dutch roll mode, roll subsidence mode and spiral mode with respect to different trim operating conditions is presented. A stabilizing static output feedback controller is designed using the obtained model. Successful closed loop flight trials are conducted with the static output feedback controller.

  20. Estimation of Supersonic Stage Separation Aerodynamics of Winged-Body Launch Vehicles Using Response Surface Methods

    Science.gov (United States)

    Erickson, Gary E.

    2010-01-01

    Response surface methodology was used to estimate the longitudinal stage separation aerodynamic characteristics of a generic, bimese, winged multi-stage launch vehicle configuration at supersonic speeds in the NASA LaRC Unitary Plan Wind Tunnel. The Mach 3 staging was dominated by shock wave interactions between the orbiter and booster vehicles throughout the relative spatial locations of interest. The inference space was partitioned into several contiguous regions within which the separation aerodynamics were presumed to be well-behaved and estimable using central composite designs capable of fitting full second-order response functions. The underlying aerodynamic response surfaces of the booster vehicle in belly-to-belly proximity to the orbiter vehicle were estimated using piecewise-continuous lower-order polynomial functions. The quality of fit and prediction capabilities of the empirical models were assessed in detail, and the issue of subspace boundary discontinuities was addressed. Augmenting the central composite designs to full third-order using computer-generated D-optimality criteria was evaluated. The usefulness of central composite designs, the subspace sizing, and the practicality of fitting lower-order response functions over a partitioned inference space dominated by highly nonlinear and possibly discontinuous shock-induced aerodynamics are discussed.

  1. Sensor-driven area coverage for an autonomous fixed-wing unmanned aerial vehicle.

    Science.gov (United States)

    Paull, Liam; Thibault, Carl; Nagaty, Amr; Seto, Mae; Li, Howard

    2014-09-01

    Area coverage with an onboard sensor is an important task for an unmanned aerial vehicle (UAV) with many applications. Autonomous fixed-wing UAVs are more appropriate for larger scale area surveying since they can cover ground more quickly. However, their non-holonomic dynamics and susceptibility to disturbances make sensor coverage a challenging task. Most previous approaches to area coverage planning are offline and assume that the UAV can follow the planned trajectory exactly. In this paper, this restriction is removed as the aircraft maintains a coverage map based on its actual pose trajectory and makes control decisions based on that map. The aircraft is able to plan paths in situ based on sensor data and an accurate model of the on-board camera used for coverage. An information theoretic approach is used that selects desired headings that maximize the expected information gain over the coverage map. In addition, the branch entropy concept previously developed for autonomous underwater vehicles is extended to UAVs and ensures that the vehicle is able to achieve its global coverage mission. The coverage map over the workspace uses the projective camera model and compares the expected area of the target on the ground and the actual area covered on the ground by each pixel in the image. The camera is mounted on a two-axis gimbal and can either be stabilized or optimized for maximal coverage. Hardware-in-the-loop simulation results and real hardware implementation on a fixed-wing UAV show the effectiveness of the approach. By including the already developed automatic takeoff and landing capabilities, we now have a fully automated and robust platform for performing aerial imagery surveys.

  2. Methods for In-Flight Wing Shape Predictions of Highly Flexible Unmanned Aerial Vehicles: Formulation of Ko Displacement Theory

    Science.gov (United States)

    Ko, William L.; Fleischer, Van Tran

    2010-01-01

    The Ko displacement theory is formulated for a cantilever tubular wing spar under bending, torsion, and combined bending and torsion loading. The Ko displacement equations are expressed in terms of strains measured at multiple sensing stations equally spaced on the surface of the wing spar. The bending and distortion strain data can then be input to the displacement equations to calculate slopes, deflections, and cross-sectional twist angles of the wing spar at the strain-sensing stations for generating the deformed shapes of flexible aircraft wing spars. The displacement equations have been successfully validated for accuracy by finite-element analysis. The Ko displacement theory that has been formulated could also be applied to calculate the deformed shape of simple and tapered beams, plates, and tapered cantilever wing boxes. The Ko displacement theory and associated strain-sensing system (such as fiber optic sensors) form a powerful tool for in-flight deformation monitoring of flexible wings and tails, such as those often employed on unmanned aerial vehicles. Ultimately, the calculated displacement data can be visually displayed in real time to the ground-based pilot for monitoring the deformed shape of unmanned aerial vehicles during flight.

  3. Advanced Reentry Aeroheating Simulation Framework, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Vehicle reentry presents numerous challenges that must be carefully addressed to ensure the success of current and future space exploration missions. As they enter...

  4. Learning Control of Fixed-Wing Unmanned Aerial Vehicles Using Fuzzy Neural Networks

    Directory of Open Access Journals (Sweden)

    Erdal Kayacan

    2017-01-01

    Full Text Available A learning control strategy is preferred for the control and guidance of a fixed-wing unmanned aerial vehicle to deal with lack of modeling and flight uncertainties. For learning the plant model as well as changing working conditions online, a fuzzy neural network (FNN is used in parallel with a conventional P (proportional controller. Among the learning algorithms in the literature, a derivative-free one, sliding mode control (SMC theory-based learning algorithm, is preferred as it has been proved to be computationally efficient in real-time applications. Its proven robustness and finite time converging nature make the learning algorithm appropriate for controlling an unmanned aerial vehicle as the computational power is always limited in unmanned aerial vehicles (UAVs. The parameter update rules and stability conditions of the learning are derived, and the proof of the stability of the learning algorithm is shown by using a candidate Lyapunov function. Intensive simulations are performed to illustrate the applicability of the proposed controller which includes the tracking of a three-dimensional trajectory by the UAV subject to time-varying wind conditions. The simulation results show the efficiency of the proposed control algorithm, especially in real-time control systems because of its computational efficiency.

  5. Power Requirements for Bi-Harmonic Amplitude and Bias Modulation Control of a Flapping Wing Micro Air Vehicle

    Science.gov (United States)

    2013-03-01

    nature, would have the inherent benefit of stealth through mimicry of insects. Such a MAV is referred to as a flapping wing micro air vehicle (FWMAV...S. Parr, T. Jones, G. S. Hammond, and T. A. Dewey. “The Animal Diversity Web”, 2013. URL http://animaldiversity.ummz.umich.edu/accounts/Manduca_sexta

  6. Fiber Bragg Grating Sensor/Systems for In-Flight Wing Shape Monitoring of Unmanned Aerial Vehicles (UAVs)

    Science.gov (United States)

    Parker, Allen; Richards, Lance; Ko, William; Piazza, Anthony; Tran, Van

    2006-01-01

    A viewgraph presentation describing an in-flight wing shape measurement system based on fiber bragg grating sensors for use in Unmanned Aerial Vehicles (UAV) is shown. The topics include: 1) MOtivation; 2) Objective; 3) Background; 4) System Design; 5) Ground Testing; 6) Future Work; and 7) Conclusions

  7. Control and navigation system for a fixed-wing unmanned aerial vehicle

    Directory of Open Access Journals (Sweden)

    Ruiyong Zhai

    2014-02-01

    Full Text Available This paper presents a flight control and navigation system for a fixed-wing unmanned aerial vehicle (UAV with low-cost micro-electro-mechanical system (MEMS sensors. The system is designed under the inner loop and outer loop strategy. The trajectory tracking navigation loop is the outer loop of the attitude loop, while the attitude control loop is the outer loop of the stabilization loop. The proportional-integral-derivative (PID control was adopted for stabilization and attitude control. The three-dimensional (3D trajectory tracking control of a UAV could be approximately divided into lateral control and longitudinal control. The longitudinal control employs traditional linear PID feedback to achieve the desired altitude of the UAV, while the lateral control uses a non-linear control method to complete the desired trajectory. The non-linear controller can automatically adapt to ground velocity change, which is usually caused by gust disturbance, thus the UAV has good wind resistance characteristics. Flight tests and survey missions were carried out with our self-developed delta fixed-wing UAV and MEMS-based autopilot to confirm the effectiveness and practicality of the proposed navigation method.

  8. An efficient fluid-structure interaction method for conceptual design of flexible micro air vehicle wings: Development, comparison, and application

    Science.gov (United States)

    Combes, Thomas P.

    This thesis summarizes the development, comparison, and applications of an efficient fluid-structure interaction method capable of simulating the effects that wing flexibility has on micro air vehicle (MAV) performance. Micro air vehicles wing designs often incorporate flexible wing structures that mimic the skeleton / membrane designs found in natural flyers such as bats and insects. However, accurate performance prediction for these wings requires the coupling of the simulation of the fluid physics around the wing and the simulation of the structural deformation. These fluid-structure interaction (FSI) simulations are often accomplished using high fidelity, computationally expensive techniques such as computational fluid dynamics (CFD) for the fluid physics and nonlinear finite element analysis (FEA) for the structural simulation. The main drawback of these methods, especially for use simulating vehicles that are able to be manufactured relatively quickly, is that the computational cost required to perform relevant trade studies on the design is prohibitively large and time-consuming. The main goal of this research is the development of a coupled fluid-structure interaction method computationally efficient and accurate enough to be used for conceptual design of micro air vehicles. An advanced potential flow model is used to calculate aerodynamic performance and loading, while a simplified finite element structural model using frame and shell elements calculates the wing deflection due to aerodynamic loading. The contents of this thesis include a literature survey of current approaches, an introduction to the efficient FSI formulation, comparison of the presented FSI method with higher-fidelity simulation methods, demonstrations of the method's capability for tradeoff and optimization studies, and an overview of contributions to a nonlinear dynamic algorithm for the simulation of flapping flight.

  9. Multiple simultaneous specification attitude control of a mini flying-wing unmanned aerial vehicle

    Science.gov (United States)

    Markin, Shael

    The Multiple Simultaneous Specification controller design method is an elegant means of designing a single controller to satisfy multiple convex closed loop performance specifications. In this thesis, the method is used to design pitch and roll attitude controllers for a Zagi flying-wing unmanned aerial vehicle from Procerus Technologies. A linear model of the aircraft is developed, in which the lateral and longitudinal motions of the aircraft are decoupled. The controllers are designed for this decoupled state space model. Linear simulations are performed in Simulink, and all performance specifications are satisfied by the closed loop system. Nonlinear, hardware-in-the-loop simulations are carried out using the aircraft, on-board computer, and ground station software. Flight tests are also executed to test the performance of the designed controllers. The closed loop aircraft behaviour is generally as expected, however the desired performance specifications are not strictly met in the nonlinear simulations or in the flight tests.

  10. Experimental Investigation of Pitch Control Enhancement to the Flapping Wing Micro Air Vehicle

    National Research Council Canada - National Science Library

    Kian, Chin C

    2006-01-01

    .... The MAV without the main fixed-wing is placed in a laminar flow field within a low speed wind tunnel with the wake after the flapping wings characterized with a constant temperature anemometer...

  11. Re-entry Flight Experiments Lessons Learned - The Atmospheric Reentry Demonstrator ARD

    National Research Council Canada - National Science Library

    Paulat, J. C; Boukhobza, P

    2007-01-01

    .... This paper provides with a summary of the ARD flight data and presents some lessons learned that can be avantageously used for the development of future re-entry vehicles with precise landing capabilities...

  12. Drones at the Beach - Surf Zone Monitoring Using Rotary Wing Unmanned Aerial Vehicles

    Science.gov (United States)

    Rynne, P.; Brouwer, R.; de Schipper, M. A.; Graham, F.; Reniers, A.; MacMahan, J. H.

    2014-12-01

    We investigate the potential of rotary wing Unmanned Aerial Vehicles (UAVs) to monitor the surf zone. In recent years, the arrival of lightweight, high-capacity batteries, low-power electronics and compact high-definition cameras has driven the development of commercially available UAVs for hobbyists. Moreover, the low operation costs have increased their potential for scientific research as these UAVs are extremely flexible surveying platforms. The UAVs can fly for ~12 min with a mean loiter radius of 1 - 3.5 m and a mean loiter error of 0.75 - 4.5 m, depending on the environmental conditions, flying style, battery type and vehicle type. Our experiments using multiple, alternating UAVs show that it is possible to have near continuous imagery data with similar Fields Of View. The images obtained from the UAVs (Fig. 1a), and in combination with surveyed Ground Control Points (GCPs) (Fig. 1b, red squares and white circles), can be geo-rectified (Fig. 1c) to pixel resolution between 0.01 - 1 m and a reprojection error, i.e. the difference between the surveyed GPS location of a GCP and the location of the GCP obtained from the geo-rectified image, of O(1 m). These geo-rectified images provide data on a variety of coastal aspects, such as beach width (Wb(x,t)), surf zone width (Wsf(x,t)), wave breaking location (rectangle B), beach usage (circle C) and location of dune vegegation (rectangle D), amongst others. Additionally, the possibility to have consecutive, high frequency (up to 2 Hz) rectified images makes the UAVs a great data instrument for spatially and temporally variable systems, such as the surf zone. Our first observations with the UAVs reveal the potential to quickly obtain surf zone and beach characteristics in response to storms or for day to day beach information, as well as the scientific pursuits of surf zone kinematics on different spatial and temporal scales, and dispersion and advection estimates of pollutants/dye. A selection of findings from

  13. New compliant strain gauges for self-sensing dynamic deformation of flapping wings on miniature air vehicles

    International Nuclear Information System (INIS)

    Wissman, James; Perez-Rosado, Ariel; Edgerton, Alex; Levi, Benjamin M; Karakas, Zeynep N; Kujawski, Mark; Philipps, Alyssa; Papavizas, Nicholas; Fallon, Danielle; Bruck, Hugh A; Smela, Elisabeth

    2013-01-01

    Over the past several years there has been an increasing interest in the development of miniature air vehicles (MAVs) with flapping wings. To allow these MAVs to adjust to changes in wind direction and to maximize their efficiency, it is desirable to monitor the deformation of the wing during flight. This paper presents a step in this direction, demonstrating the measurement of strain on the surface of the wing using minimally invasive compliant piezoresistive sensors. The strain gauges consisted of latex mixed with electrically conducting exfoliated graphite, and they were applied by spray coating. To calibrate the gauges, both static and dynamic testing up to 10 Hz were performed using cantilever structures. In tension the static sensitivity was a linear 0.4 Ω με −1 and the gauge factor was 28; in compression, the gauge factor was −5. Although sensitivities in tension and compression differed by a factor of almost six, this was not reflected in the dynamic data, which followed the strain reversibly with little distortion. There was no attenuation with frequency, indicating a sufficiently small time constant for this application. The gauges were thin, compliant, and light enough to measure, without interference, deformations due to shape changes of the flexible wing associated with generating lift and thrust. During flapping the resistance closely tracked the generated thrust, measured on a test stand, with both signals tracing figure-8 loops as a function of wing position throughout each cycle. (paper)

  14. New compliant strain gauges for self-sensing dynamic deformation of flapping wings on miniature air vehicles

    Science.gov (United States)

    Wissman, James; Perez-Rosado, Ariel; Edgerton, Alex; Levi, Benjamin M.; Karakas, Zeynep N.; Kujawski, Mark; Philipps, Alyssa; Papavizas, Nicholas; Fallon, Danielle; Bruck, Hugh A.; Smela, Elisabeth

    2013-08-01

    Over the past several years there has been an increasing interest in the development of miniature air vehicles (MAVs) with flapping wings. To allow these MAVs to adjust to changes in wind direction and to maximize their efficiency, it is desirable to monitor the deformation of the wing during flight. This paper presents a step in this direction, demonstrating the measurement of strain on the surface of the wing using minimally invasive compliant piezoresistive sensors. The strain gauges consisted of latex mixed with electrically conducting exfoliated graphite, and they were applied by spray coating. To calibrate the gauges, both static and dynamic testing up to 10 Hz were performed using cantilever structures. In tension the static sensitivity was a linear 0.4 Ω μɛ-1 and the gauge factor was 28; in compression, the gauge factor was -5. Although sensitivities in tension and compression differed by a factor of almost six, this was not reflected in the dynamic data, which followed the strain reversibly with little distortion. There was no attenuation with frequency, indicating a sufficiently small time constant for this application. The gauges were thin, compliant, and light enough to measure, without interference, deformations due to shape changes of the flexible wing associated with generating lift and thrust. During flapping the resistance closely tracked the generated thrust, measured on a test stand, with both signals tracing figure-8 loops as a function of wing position throughout each cycle.

  15. Root Locus Based Autopilot PID’s Parameters Tuning for a Flying Wing Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Fendy Santoso

    2008-05-01

    Full Text Available This paper depicts the applications of classical root locus based PID control to the longitudinal flight dynamics of a Flying Wing Unmanned Aerial Vehicle, P15035, developed by Monash Aerobotics Research Group in the Department of Electrical and Computer Systems Engineering, Monash University, Australia. The challenge associated with our UAV is related to the fact that all of its motions and attitude variables are controlled by two independently actuated ailerons, namely elevons, as its primary control surfaces along with throttle, in contrast to most conventional aircraft which have rudder, aileron and elevator. The reason to choose PID control is mainly due to its simplicity and availability. Since our current autopilot, MP2028, only provides PID control law for its flight control, our design result can be implemented straight away for PID parameters’ tuning and practical flight controls. Simulations indicate that a well-tuned PID autopilot has successfully demonstrated acceptable closed loop performances for both pitch and altitude loops. In general, full PID control configuration is the recommended control mode to overcome the adverse impact of disturbances. Moreover, by utilising this control scheme, overshoots have been successfully suppressed into a certain reasonable level. Furthermore, it has been proven that exact pole-zero cancellations by employing Derivative control configuration in both pitch and altitude loop to eliminate the effects of integral action contributed by open loop transfer function of elevon-average-to- pitch as well as pitch- to- pitch- rate is impractical.

  16. Design and Implementation of an Optimal Energy Control System for Fixed-Wing Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Ying-Chih Lai

    2016-11-01

    Full Text Available In conventional flight control design, the autopilot and the autothrottle systems are usually considered separately, resulting in a complex system and inefficient integration of functions. Therefore, the concept of aircraft energy control is brought up to solve the problem of coordinated control using elevator and throttle. The goal of this study is to develop an optimal energy control system (OECS, based on the concept of optimal energy for fixed-wing unmanned aerial vehicles (UAVs. The energy of an aircraft is characterized by two parameters, which are specific energy distribution rate, driven by elevator, and total specific energy rate, driven by throttle. In this study, a system identification method was employed to obtain the energy model of a small UAV. The proposed approach consists of energy distribution loop and total energy loop. Energy distribution loop is designed based on linear-quadratic-Gaussian (LQG regulator and is responsible for regulating specific energy distribution rate to zero. On the other hand, the total energy loop, based on simple gain scheduling method, is responsible for driving the error of total specific energy rate to zero. The implementation of OECS was successfully validated in the hard-in-the-loop (HIL simulation of the applied UAV.

  17. Experimental characterization and multidisciplinary conceptual design optimization of a bendable load stiffened unmanned air vehicle wing

    Science.gov (United States)

    Jagdale, Vijay Narayan

    Demand for deployable MAVs and UAVs with wings designed to reduce aircraft storage volume led to the development of a bendable wing concept at the University of Florida (UF). The wing shows an ability to load stiffen in the flight load direction, still remaining compliant in the opposite direction, enabling UAV storage inside smaller packing volumes. From the design prospective, when the wing shape parameters are treated as design variables, the performance requirements : high aerodynamic efficiency, structural stability under aggressive flight loads and desired compliant nature to prevent breaking while stored, in general conflict with each other. Creep deformation induced by long term storage and its effect on the wing flight characteristics are additional considerations. Experimental characterization of candidate bendable UAV wings is performed in order to demonstrate and understand aerodynamic and structural behavior of the bendable load stiffened wing under flight loads and while the wings are stored inside a canister for long duration, in the process identifying some important wing shape parameters. A multidisciplinary, multiobjective design optimization approach is utilized for conceptual design of a 24 inch span and 7 inch root chord bendable wing. Aerodynamic performance of the wing is studied using an extended vortex lattice method based Athena Vortex Lattice (AVL) program. An arc length method based nonlinear FEA routine in ABAQUS is used to evaluate the structural performance of the wing and to determine maximum flying velocity that the wing can withstand without buckling or failing under aggressive flight loads. An analytical approach is used to study the stresses developed in the composite wing during storage and Tsai-Wu criterion is used to check failure of the composite wing due to the rolling stresses to determine minimum safe storage diameter. Multidisciplinary wing shape and layup optimization is performed using an elitist non-dominated sorting

  18. Unsteady Aerodynamic Investigation of the Propeller-Wing Interaction for a Rocket Launched Unmanned Air Vehicle

    Directory of Open Access Journals (Sweden)

    G. Q. Zhang

    2013-01-01

    Full Text Available The aerodynamic characteristics of propeller-wing interaction for the rocket launched UAV have been investigated numerically by means of sliding mesh technology. The corresponding forces and moments have been collected for axial wing placements ranging from 0.056 to 0.5D and varied rotating speeds. The slipstream generated by the rotating propeller has little effects on the lift characteristics of the whole UAV. The drag can be seen to remain unchanged as the wing's location moves progressively closer to the propeller until 0.056D away from the propeller, where a nearly 20% increase occurred sharply. The propeller position has a negligible effect on the overall thrust and torque of the propeller. The efficiency affected by the installation angle of the propeller blade has also been analyzed. Based on the pressure cloud and streamlines, the vortices generated by propeller, propeller-wing interaction, and wing tip have also been captured and analyzed.

  19. Flow Control and High-Lift Performance for Flying-Wing Unmanned Combat Air Vehicle Configurations by inserting slots

    Directory of Open Access Journals (Sweden)

    U Ali

    2016-06-01

    Full Text Available The objectives of the present study on Unmanned Combat Air Vehicles (UCAVs are two-fold: first to control the flow by inserting leading-edge and cross-flow slots and analysing the viscous flow development over the outer panels of a flying-wing configuration to maximise the performance of the elevons control surfaces; second to predict high-lift performance particularly the maximum-lift characteristics. This is demonstrated using a variety of inviscid Vortex Lattice Method (VLM and Euler, and viscous CFD Reynolds Averaged Navier-Stokes (RANS methods. The computational results are validated against experiment measured in a wind tunnel. Two flying-wing planforms are considered based around a generic 40˚ edge-aligned configuration. The VLM predicts a linear variation of lift and pitching moment with incidence angle, and substantially under-predicts the induced drag. Results obtained from RANS and Euler agree well with experiment.

  20. Heat transfer and oil flow studies on a single-stage-to-orbit control-configured winged entry vehicle

    Science.gov (United States)

    Helms, V. T., III; Bradley, P. F.

    1984-01-01

    Results are presented for oil flow and phase change paint heat transfer tests conducted on a 0.006 scale model of a proposed single stage to orbit control configured vehicle. The data were taken at angles of attack up to 40 deg at a free stream Mach number of 10 for Reynolds numbers based on model length of 0.5 x 10 to the 6th power, 1.0 x 10 to the 6th power and 2.0 x 10 to the 6th power. The magnitude and distribution of heating are characterized in terms of angle of attack and Reynolds number aided by an analysis of the flow data which are used to suggest the presence of various three dimensional flow structures that produce the observed heating patterns. Of particular interest are streak heating patterns that result in high localized heat transfer rates on the wing windward surface at low to moderate angles of attack. These streaks are caused by the bow-shock/wing-shock interaction and formation of the wing-shock. Embedded vorticity was found to be associated with these interactions.

  1. Initial Investigation on the Aerodynamic Performance of Flapping Wings for Nano Air Vehicles

    Science.gov (United States)

    2008-02-01

    drag) in still fluid [4, 5]. However, as the high aerodynamic performance of insect’s wings is achieved by three-degrees-of-freedom ( 3DOF ) motions...it will be very important to study its aerodynamic behavior under 3DOF conditions. Thus, a 3DOF system, i.e. pitch motion (α), dihedral motion (γ...the wing, all of the equipment was above the water surface, including a 3DOF gearbox, a 3DOF control system and a small five-component strain gauge

  2. Analysis and Test Correlation of Proof of Concept Box for Blended Wing Body-Low Speed Vehicle

    Science.gov (United States)

    Spellman, Regina L.

    2003-01-01

    The Low Speed Vehicle (LSV) is a 14.2% scale remotely piloted vehicle of the revolutionary Blended Wing Body concept. The design of the LSV includes an all composite airframe. Due to internal manufacturing capability restrictions, room temperature layups were necessary. An extensive materials testing and manufacturing process development effort was underwent to establish a process that would achieve the high modulus/low weight properties required to meet the design requirements. The analysis process involved a loads development effort that incorporated aero loads to determine internal forces that could be applied to a traditional FEM of the vehicle and to conduct detailed component analyses. A new tool, Hypersizer, was added to the design process to address various composite failure modes and to optimize the skin panel thickness of the upper and lower skins for the vehicle. The analysis required an iterative approach as material properties were continually changing. As a part of the material characterization effort, test articles, including a proof of concept wing box and a full-scale wing, were fabricated. The proof of concept box was fabricated based on very preliminary material studies and tested in bending, torsion, and shear. The box was then tested to failure under shear. The proof of concept box was also analyzed using Nastran and Hypersizer. The results of both analyses were scaled to determine the predicted failure load. The test results were compared to both the Nastran and Hypersizer analytical predictions. The actual failure occurred at 899 lbs. The failure was predicted at 1167 lbs based on the Nastran analysis. The Hypersizer analysis predicted a lower failure load of 960 lbs. The Nastran analysis alone was not sufficient to predict the failure load because it does not identify local composite failure modes. This analysis has traditionally been done using closed form solutions. Although Hypersizer is typically used as an optimizer for the design

  3. Experimental Characterization of Wings for a Hawkmoth-Sized Micro Air Vehicle

    Science.gov (United States)

    2014-03-27

    Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree of...24 3.1.2 Abaqus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1.3 FEA Design Update Process...26 3.5 Abaqus Assembled Wing Layers . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.6 Sample Results

  4. An Experimental Investigation of Flapping Wing Propulsion for Micro Air Vehicles

    National Research Council Canada - National Science Library

    Duggan, Sean

    2000-01-01

    ...). Experimental work is conducted in the NPS 1.5 m x 1.5 m in-draft wind tunnel. A previously constructed model is suspended by thin wires and is used to measure the thrust performance of the flapping-wing MAV...

  5. Computational Fluid Dynamics Studies of a Flapping Wing Nano Air Vehicle (NAV)

    Science.gov (United States)

    2008-12-31

    24 Propeller as a flapper ... flapper The propeller blade described above was used as a flapping wing with reversing camber and twist. The robot fly rotation angle profile (Eq. 6c...frequency reduced to 80Hz, the mean thrust developed by this propeller blade as a flapper is 0.04725N and the mean aerodynamic power is 0.971 W, as

  6. High Fidelity Airborne Imaging System for Remote Observation of Space Launch/Reentry Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The utility of airborne remote observation of hypersonic reentry vehicles was demonstrated by the NASA Hypersonic Thermodynamic Infrared Measurement (HYTHIRM)...

  7. Aerodynamic performance and particle image velocimetery of piezo actuated biomimetic manduca sexta engineered wings towards the design and application of a flapping wing flight vehicle

    Science.gov (United States)

    DeLuca, Anthony M.

    Considerable research and investigation has been conducted on the aerodynamic performance, and the predominate flow physics of the Manduca Sexta size of biomimetically designed and fabricated wings as part of the AFIT FWMAV design project. Despite a burgeoning interest and research into the diverse field of flapping wing flight and biomimicry, the aerodynamics of flapping wing flight remains a nebulous field of science with considerable variance into the theoretical abstractions surrounding aerodynamic mechanisms responsible for aerial performance. Traditional FWMAV flight models assume a form of a quasi-steady approximation of wing aerodynamics based on an infinite wing blade element model (BEM). An accurate estimation of the lift, drag, and side force coefficients is a critical component of autonomous stability and control models. This research focused on two separate experimental avenues into the aerodynamics of AFIT's engineered hawkmoth wings|forces and flow visualization. 1. Six degree of freedom force balance testing, and high speed video analysis was conducted on 30°, 45°, and 60° angle stop wings. A novel, non-intrusive optical tracking algorithm was developed utilizing a combination of a Gaussian Mixture Model (GMM) and ComputerVision (OpenCV) tools to track the wing in motion from multiple cameras. A complete mapping of the wing's kinematic angles as a function of driving amplitude was performed. The stroke angle, elevation angle, and angle of attack were tabulated for all three wings at driving amplitudes ranging from A=0.3 to A=0.6. The wing kinematics together with the force balance data was used to develop several aerodynamic force coefficient models. A combined translational and rotational aerodynamic model predicted lift forces within 10%, and vertical forces within 6%. The total power consumption was calculated for each of the three wings, and a Figure of Merit was calculated for each wing as a general expression of the overall efficiency of

  8. Development of Photographic Dynamic Measurements Applicable to Evaluation of Flapping Wing Micro Air Vehicles

    Science.gov (United States)

    2011-12-01

    Selectable error plot from calib_gui.m……………………………………………… 27 Figure 16: O’Hara flapper ……………………………………………………………………….. 30 Figure 17: Record tab in Motion...Wing downstroke three dimensional point cloud, from the top of the wing stroke... 57 Figure 38: Deleón flapper with hightlighted reference points...purposes. One point is directly over the flapper mount and the other is placed near the mount. The two points can be considered rigid to one another

  9. Development of a Fixed Wing Unmanned Aerial Vehicle (UAV for Disaster Area Monitoring and Mapping

    Directory of Open Access Journals (Sweden)

    Gesang Nugroho

    2015-12-01

    Full Text Available The development of remote sensing technology offers the ability to perform real-time delivery of aerial video and images. A precise disaster map allows a disaster management to be done quickly and accurately. This paper discusses how a fixed wing UAV can perform aerial monitoring and mapping of disaster area to produce a disaster map. This research was conducted using a flying wing, autopilot, digital camera, and data processing software. The research starts with determining the airframe and the avionic system then determine waypoints. The UAV flies according to the given waypoints while taking video and photo. The video is transmitted to the Ground Control Station (GCS so that an operator in the ground can monitor the area condition in real time. After obtaining data, then it is processed to obtain a disaster map. The results of this research are: a fixed wing UAV that can monitor disaster area and send real-time video and photos, a GCS equipped with image processing software, and a mosaic map. This UAV used a flying wing that has 3 kg empty weight, 2.2 m wingspan, and can fly for 12-15 minutes. This UAV was also used for a mission at Parangtritis coast in the southern part of Yogyakarta with flight altitude of 150 m, average speed of 15 m/s, and length of way point of around 5 km in around 6 minutes. A mosaic map with area of around 300 m x 1500 m was also obtained. Interpretation of the mosaic led to some conclusions including: lack of evacuation routes, residential area which faces high risk of tsunami, and lack of green zone around the shore line.

  10. A Rotary Wing System for Micro Air Vehicle Applications. Part 1

    Directory of Open Access Journals (Sweden)

    Valentin BUTOESCU

    2011-09-01

    Full Text Available The goal of the paper is to propose a new type of ornithopter that avoids the mechanical difficulties of a flapping system. It uses a modified design of a cycloidal propulsor. The modification regards the special setting of the wings that is intended to help the formation of a stable leading edge vortex (LEV. It is known that the LEV is the main feature that allows the insects to achieve the necessary lift to fly.

  11. The left wing of NASA's Altair unmanned aerial vehicle (UAV) rests in a jig during construction at G

    Science.gov (United States)

    2002-01-01

    The left wing of NASA's Altair unmanned aerial vehicle (UAV) rests in a jig during construction at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif. General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator to validate a variety of command and control technologies for UAVs, as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Eleven-foot extensions have been added to each wing, giving the Altair an overall wingspan of 86 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.

  12. Multi-Mode Estimation for Small Fixed Wing Unmanned Aerial Vehicle Localization Based on a Linear Matrix Inequality Approach.

    Science.gov (United States)

    Elzoghby, Mostafa; Li, Fu; Arafa, Ibrahim I; Arif, Usman

    2017-04-18

    Information fusion from multiple sensors ensures the accuracy and robustness of a navigation system, especially in the absence of global positioning system (GPS) data which gets degraded in many cases. A way to deal with multi-mode estimation for a small fixed wing unmanned aerial vehicle (UAV) localization framework is proposed, which depends on utilizing a Luenberger observer-based linear matrix inequality (LMI) approach. The proposed estimation technique relies on the interaction between multiple measurement modes and a continuous observer. The state estimation is performed in a switching environment between multiple active sensors to exploit the available information as much as possible, especially in GPS-denied environments. Luenberger observer-based projection is implemented as a continuous observer to optimize the estimation performance. The observer gain might be chosen by solving a Lyapunov equation by means of a LMI algorithm. Convergence is achieved by utilizing the linear matrix inequality (LMI), based on Lyapunov stability which keeps the dynamic estimation error bounded by selecting the observer gain matrix (L). Simulation results are presented for a small UAV fixed wing localization problem. The results obtained using the proposed approach are compared with a single mode Extended Kalman Filter (EKF). Simulation results are presented to demonstrate the viability of the proposed strategy.

  13. NASA N+3 Subsonic Fixed Wing Silent Efficient Low-Emissions Commercial Transport (SELECT) Vehicle Study. Revision A

    Science.gov (United States)

    Bruner, Sam; Baber, Scott; Harris,Chris; Caldwell, Nicholas; Keding, Peter; Rahrig, Kyle; Pho, Luck; Wlezian, Richard

    2010-01-01

    A conceptual commercial passenger transport study was performed to define a single vehicle for entry into service in the 2030 to 2035 timeframe, meeting customer demands as well as NASA goals for improved fuel economy, NOx emissions, noise, and operability into smaller airports. A study of future market and operational scenarios was used to guide the design of an advanced tube-and-wing configuration that utilized advanced material and structural concepts, an advanced three-shaft high-bypass turbofan engine, natural laminar flow technology, and a suite of other advanced technologies. This configuration was found to meet the goals for NOx emissions, noise, and field length. A 64 percent improvement in fuel economy compared to a current state-of-the-art airliner was achieved, which fell slightly short of the desired 70 percent goal. Technology maturation plans for the technologies used in the design were developed to help guide future research and development activities.

  14. Altitude Control of a Single Degree of Freedom Flapping Wing Micro Air Vehicle (Postprint)

    Science.gov (United States)

    2009-08-01

    NUMBER 62201F 6. AUTHOR(S) David B. Doman, Michael W. Oppenheimer, Michael A. Bolender, and David O. Sigthorsson (AFRL/ RBCA ) 5d. PROJECT NUMBER...NUMBER Control Design and Analysis Branch (AFRL/ RBCA ) Control Sciences Division Air Force Research Laboratory, Air Vehicles Directorate Wright

  15. Wingbeat Shape Modulation for Flapping-Wing Micro-Air-Vehicle Control During Hover (Postprint)

    Science.gov (United States)

    2010-06-01

    AUTHOR(S) David B. Doman, Michael W. Oppenheimer, and David O. Sigthorsson (AFRL/ RBCA ) 5d. PROJECT NUMBER 2401 5e. TASK NUMBER N/A 5f. WORK UNIT...AFRL/ RBCA ) Control Sciences Division Air Force Research Laboratory, Air Vehicles Directorate Wright-Patterson Air Force Base, OH 45433-7542 Air

  16. Precision Position Control of the DelFly II Flapping-wing Micro Air Vehicle in a Wind-tunnel

    NARCIS (Netherlands)

    Cunis, T.; Karasek, M.; de Croon, G.C.H.E.

    2016-01-01

    Flapping-wing MAVs represent an attractive alternative to conventional designs with rotary wings, since they promise a much higher efficiency in forward flight. However, further insight into the flapping-wing aerodynamics is still needed to get closer to the flight performance observed in natural

  17. Reynolds Number Effects on Thrust Coefficients and PIV for Flapping Wing Micro Air Vehicles

    Science.gov (United States)

    2012-03-09

    the vehicle is battery powered. ⁄ ( ⁄ ) ⁄ (18) For the selection of a motor Mueller defines the three types of DC ...wire coils wrapped on a core of iron. A coreless motor has wire coils that are interwoven without the iron core, and the brushless motor has permanent...be recorded. The flapping mechanism is driven by a continuous duty DC motor manufactured by Glas- Col. The operating range for the motor is 50 to

  18. Reentry blackout prediction for atmospheric reentry demonstrator mission considering uncertainty in chemical reaction rate model

    Science.gov (United States)

    Jung, Minseok; Kihara, Hisashi; Abe, Ken-ichi; Takahashi, Yusuke

    2018-01-01

    A numerical simulation model of plasma flows and electromagnetic waves around a vehicle was developed to predict a radio frequency blackout. Plasma flows in the shock layer and the wake region were calculated using a computational fluid dynamics technique with a three-dimensional model. A finite-catalytic wall condition known to affect plasma properties, such as the number density of electrons, was considered for accurate prediction. A parametric study was performed to investigate the effect of uncertainty in the chemical reaction rate model on evaluating a radio frequency blackout. The behavior of electromagnetic waves in plasma was investigated using a frequency-dependent finite-difference time-domain method. Numerical simulations of reentry blackout were performed for the Atmospheric Reentry Demonstrator mission at various altitudes. The plasma flows and the complex movement of electromagnetic waves around the Atmospheric Reentry Demonstrator vehicle were clarified. The predicted signal loss profile was then directly compared with the experimental flight data to validate the present models. The numerical results generally reproduced the trends over altitudes of the measured data. It is suggested that the present simulation model can be used to investigate the radio frequency blackout and signal loss of electromagnetic waves in the communication of a reentry vehicle. It was confirmed that high associative ionization reaction rates contribute to reducing the electron density in the wake region and radio frequency blackout. It is suggested that the accuracy of predicting the signal loss improved when considering the uncertainty in the chemical reaction model for associative ionizations.

  19. Hybrid-Wing-Body Vehicle Composite Fuselage Analysis and Case Study

    Science.gov (United States)

    Mukhopadhyay, Vivek

    2014-01-01

    Recent progress in the structural analysis of a Hybrid Wing-Body (HWB) fuselage concept is presented with the objective of structural weight reduction under a set of critical design loads. This pressurized efficient HWB fuselage design is presently being investigated by the NASA Environmentally Responsible Aviation (ERA) project in collaboration with the Boeing Company, Huntington Beach. The Pultruded Rod-Stiffened Efficient Unitized Structure (PRSEUS) composite concept, developed at the Boeing Company, is approximately modeled for an analytical study and finite element analysis. Stiffened plate linear theories are employed for a parametric case study. Maximum deflection and stress levels are obtained with appropriate assumptions for a set of feasible stiffened panel configurations. An analytical parametric case study is presented to examine the effects of discrete stiffener spacing and skin thickness on structural weight, deflection and stress. A finite-element model (FEM) of an integrated fuselage section with bulkhead is developed for an independent assessment. Stress analysis and scenario based case studies are conducted for design improvement. The FEM model specific weight of the improved fuselage concept is computed and compared to previous studies, in order to assess the relative weight/strength advantages of this advanced composite airframe technology

  20. Lightweight Ultrahigh Temperature CMC-Encased C/C Structure for Reentry and Hypersonic Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Future reentry and hypersonic vehicles require advanced lightweight leading edge thermal protection systems that can provide the dual functionality of...

  1. Implementation of the Rauch-Tung-Striebel Smoother for Sensor Compatibility Correction of a Fixed-Wing Unmanned Air Vehicle

    Directory of Open Access Journals (Sweden)

    Fei-Bin Hsiao

    2011-03-01

    Full Text Available This paper presents a complete procedure for sensor compatibility correction of a fixed-wing Unmanned Air Vehicle (UAV. The sensors consist of a differential air pressure transducer for airspeed measurement, two airdata vanes installed on an airdata probe for angle of attack (AoA and angle of sideslip (AoS measurement, and an Attitude and Heading Reference System (AHRS that provides attitude angles, angular rates, and acceleration. The procedure is mainly based on a two pass algorithm called the Rauch-Tung-Striebel (RTS smoother, which consists of a forward pass Extended Kalman Filter (EKF and a backward recursion smoother. On top of that, this paper proposes the implementation of the Wiener Type Filter prior to the RTS in order to avoid the complicated process noise covariance matrix estimation. Furthermore, an easy to implement airdata measurement noise variance estimation method is introduced. The method estimates the airdata and subsequently the noise variances using the ground speed and ascent rate provided by the Global Positioning System (GPS. It incorporates the idea of data regionality by assuming that some sort of statistical relation exists between nearby data points. Root mean square deviation (RMSD is being employed to justify the sensor compatibility. The result shows that the presented procedure is easy to implement and it improves the UAV sensor data compatibility significantly.

  2. Automated Re-Entry System using FNPEG

    Science.gov (United States)

    Johnson, Wyatt R.; Lu, Ping; Stachowiak, Susan J.

    2017-01-01

    This paper discusses the implementation and simulated performance of the FNPEG (Fully Numerical Predictor-corrector Entry Guidance) algorithm into GNC FSW (Guidance, Navigation, and Control Flight Software) for use in an autonomous re-entry vehicle. A few modifications to FNPEG are discussed that result in computational savings -- a change to the state propagator, and a modification to cross-range lateral logic. Finally, some Monte Carlo results are presented using a representative vehicle in both a high-fidelity 6-DOF (degree-of-freedom) sim as well as in a 3-DOF sim for independent validation.

  3. Study of the suit inflation effect on crew safety during landing using a full-pressure IVA suit for new-generation reentry space vehicles

    Science.gov (United States)

    Wataru, Suzuki

    Recently, manned space capsules have been recognized as beneficial and reasonable human space vehicles again. The Dragon capsule already achieved several significant successes. The Orion capsule is going to be sent to a high-apogee orbit without crews for experimental purposes in September 2014. For such human-rated space capsules, the study of acceleration impacts against the human body during splashdown is essential to ensure the safety of crews. Moreover, it is also known that wearing a full pressure rescue suit significantly increases safety of a crew, compared to wearing a partial pressure suit. This is mainly because it enables the use of a personal life support system independently in addition to that which installed in the space vehicle. However, it is unclear how the inflation of the full pressure suit due to pressurization affects the crew safety during splashdown, especially in the case of the new generation manned space vehicles. Therefore, the purpose of this work is to investigate the effect of the suit inflation on crew safety against acceleration impact during splashdown. For this objective, the displacements of the safety harness in relation with the suit, a human surrogate, and the crew seats during pressurizing the suit in order to determine if the safety and survivability of a crew can be improved by wearing a full pressure suit. For these tests, the DL/H-1 full pressure IVA suit, developed by Pablo de Leon and Gary L. Harris, will be used. These tests use image analysis techniques to determine the displacements. It is expected, as a result of these tests, that wearing a full pressure suit will help to mitigate the impacts and will increase the safety and survivability of a crew during landing since it works as a buffer to mitigate impact forces during splashdown. This work also proposes a future plan for sled test experiments using a sled facility such as the one in use by the Civil Aerospace Medical Institute (CAMI) for experimental validation

  4. The X-37 Demonstrator Re-Entry

    Science.gov (United States)

    2004-01-01

    Pictured is an artist's concept of the X-37 Demonstrator re-entry. After being launched from the cargo bay of a Shuttle as a secondary payload, the X-37 remains on-orbit up to 21 days performing a variety of experiments before re-entering the Earth's atmosphere and landing. These vehicles supported the Agency's goal of dramatically reducing the cost of access to space in attempt to define the future of space transportation. The X-37 program was discontinued in 2003.

  5. Enabling efficient vertical takeoff/landing and forward flight of unmanned aerial vehicles: Design and control of tandem wing-tip mounted rotor mechanisms

    Science.gov (United States)

    Mancuso, Peter Timothy

    Fixed-wing unmanned aerial vehicles (UAVs) that offer vertical takeoff and landing (VTOL) and forward flight capability suffer from sub-par performance in both flight modes. Achieving the next generation of efficient hybrid aircraft requires innovations in: (i) power management, (ii) efficient structures, and (iii) control methodologies. Existing hybrid UAVs generally utilize one of three transitioning mechanisms: an external power mechanism to tilt the rotor-propulsion pod, separate propulsion units and rotors during hover and forward flight, or tilt body craft (smaller scale). Thus, hybrid concepts require more energy compared to dedicated fixed-wing or rotorcraft UAVs. Moreover, design trade-offs to reinforce the wing structure (typically to accommodate the propulsion systems and enable hover, i.e. tilt-rotor concepts) adversely impacts the aerodynamics, controllability and efficiency of the aircraft in both hover and forward flight modes. The goal of this research is to develop more efficient VTOL/ hover and forward flight UAVs. In doing so, the transition sequence, transition mechanism, and actuator performance are heavily considered. A design and control methodology was implemented to address these issues through a series of computer simulations and prototype benchtop tests to verify the proposed solution. Finally, preliminary field testing with a first-generation prototype was conducted. The methods used in this research offer guidelines and a new dual-arm rotor UAV concept to designing more efficient hybrid UAVs in both hover and forward flight.

  6. Feasability Analysis And Preliminary Design Of An Atmospheric Re-Entry CubeSat Demonstrator

    Science.gov (United States)

    Bailet, Billes; Asma, Cem O.; Muylaert, Jean; Magin, Thierry

    2011-05-01

    The feasibility analysis of the Re-entry CubeSat demonstrator developed by the von Karman Institute is presented in this paper. The launch of the demonstrator has been scheduled for June 2014. It represents an ideal cost-efficient platform for re-entry flight test and validation of thermal protection system (TPS) materials. The CubeSat comprises a standard double-unit platform with sensors for atmospheric research and the functional unit for essential satellite operations. A third unit accommodating an ablative heat shield is added to protect the vehicle against the extreme aerothermal conditions for the re-entry. The preliminary design of the vehicle results in a payload of minimum 300 g collecting data all along the re-entry trajectory including the maximal heat flux conditions. Finally, the tools developed have been used to carry a first analysis of the range of possible applications and flight conditions for different re-entry scenarios.

  7. 78 FR 72011 - Interpretation Concerning Involvement of NASA Astronauts During a Licensed Launch or Reentry

    Science.gov (United States)

    2013-12-02

    ... an off-nominal or emergency situation, the NASA astronaut would, much of the time, be using... vehicles at this time. A space flight participant who wants to pilot a launch or reentry vehicle would have... would likely only manipulate the flight path of the vehicle if an emergency arose. Accordingly, section...

  8. Aerothermodynamic Reentry Flight Experiments - EXPERT

    National Research Council Canada - National Science Library

    Muylaert, J; Walpot, L; Ottens, H; Cipollini, F

    2005-01-01

    ...) Microaerothermodynamics, and 5) Blackout. Special attention is given to the design of the flight measurement sensors themselves, their integration into the TPS as well as to the measurement of the free stream parameters during re-entry using an Air...

  9. Design and stable flight of a 21 g insect-like tailless flapping wing micro air vehicle with angular rates feedback control.

    Science.gov (United States)

    Phan, Hoang Vu; Kang, Taesam; Park, Hoon Cheol

    2017-04-04

    An insect-like tailless flapping wing micro air vehicle (FW-MAV) without feedback control eventually becomes unstable after takeoff. Flying an insect-like tailless FW-MAV is more challenging than flying a bird-like tailed FW-MAV, due to the difference in control principles. This work introduces the design and controlled flight of an insect-like tailless FW-MAV, named KUBeetle. A combination of four-bar linkage and pulley-string mechanisms was used to develop a lightweight flapping mechanism that could achieve a high flapping amplitude of approximately 190°. Clap-and-flings at dorsal and ventral stroke reversals were implemented to enhance vertical force. In the absence of a control surface at the tail, adjustment of the location of the trailing edges at the wing roots to modulate the rotational angle of the wings was used to generate control moments for the attitude control. Measurements by a 6-axis load cell showed that the control mechanism produced reasonable pitch, roll and yaw moments according to the corresponding control inputs. The control mechanism was integrated with three sub-micro servos to realize the pitch, roll and yaw controls. A simple PD feedback controller was implemented for flight stability with an onboard microcontroller and a gyroscope that sensed the pitch, roll and yaw rates. Several flight tests demonstrated that the tailless KUBeetle could successfully perform a vertical climb, then hover and loiter within a 0.3 m ground radius with small variations in pitch and roll body angles.

  10. Effects of Reentry Plasma Sheath on GPS Patch Antenna Polarization Property

    Directory of Open Access Journals (Sweden)

    L. Zhao

    2013-01-01

    Full Text Available A plasma sheath enveloping a reentry vehicle would affect performances of on-board antenna greatly, especially the navigation antennas. This paper studies the effects of reentry plasma sheath on a GPS right-hand circularly polarized (RHCP patch antenna polarization property during a typical reentry process. Utilizing the algorithm of finite integration technique, the polarization characteristic of a GPS antenna coated by a plasma sheath is obtained. Results show that the GPS RHCP patch antenna radiation pattern distortions as well as polarization deteriorations exist during the entire reentry process, and the worst polarization mismatch loss between a GPS antenna and RHCP GPS signal is nearly 3 dB. This paper also indicates that measures should be taken to alleviate the plasma sheath for maintaining the GPS communication during the reentry process.

  11. Study on adaptive BTT reentry speed depletion guidance law based on BP neural network

    Science.gov (United States)

    Zheng, Zongzhun; Wang, Yongji; Wu, Hao

    2007-11-01

    Reentry guidance is one of the key technologies in hypersonic vehicle research field. In addition to the constraints on its final position coordinates, the vehicle must also impact the target from a specified direction with high precision. And therefore the adaptability of guidance law is critical to control the velocity of hypersonic vehicle and firing accuracy properly in different surroundings of large airspace. In this paper, a new adaptive guidance strategy based on Back Propagation (BP) neural network for the reentry mission of a generic hypersonic vehicle is presented. Depending on the nicer self-learn ability of BP neural network, the guidance law considers the influence of biggish mis-modeling of aerodynamics, structure error and other initial disturbances on the flight capability of vehicle. Consequently, terminal position accuracy and velocity are guaranteed, while many constraints are satisfied. Numerical simulation results clearly bring out the fact that the proposed reentry guidance law based on BP neural network is rational and effective.

  12. "AV nodal" reentry: Part I: "AV nodal" reentry revisited

    NARCIS (Netherlands)

    Janse, M. J.; Anderson, R. H.; McGuire, M. A.; Ho, S. Y.

    1993-01-01

    This review is the first of a two-part series of articles on "atrioventricular [AV] nodal reentry." The early clinical literature as well as the experimental studies are reviewed, and more recent morphologic data are presented, with the aim of clarifying whether the reentrant circuit is confined to

  13. Performance measurements of a dual-rotor arm mechanism for efficient flight transition of fixed-wing unmanned aerial vehicles

    Science.gov (United States)

    McGill, Karen Ashley Jean

    Reconfigurable systems are a class of systems that can be transformed into different configurations, generally to perform unique functions or to maintain operational efficiency under distinct conditions. A UAV can be considered a reconfigurable system when coupled with various useful features such as vertical take-off and landing (VTOL), hover capability, long-range, and relatively large payload. Currently, a UAV having these capabilities is being designed by the UTSA Mechanical Engineering department. UAVs such as this one have the following potential uses: emergency response/disaster relief, hazard-critical missions, offshore oil rig/wind farm delivery, surveillance, etc. The goal of this thesis is to perform experimental thrust and power measurements for the propulsion system of this fixed-wing UAV. Focus was placed on a rotating truss arm supporting two brushless motors and rotors that will later be integrated to the ends of the UAV wing. These truss arms will rotate via a supporting shaft from 0° to 90° to transition the UAV between a vertical take-off, hover, and forward flight. To make this hover/transition possible, a relationship between thrust, arm angle, and power drawn was established by testing the performance of the arm/motor assembly at arm angles of 0°, 15°, 30°, 45°, 60°, 75°, and 90°. Universal equations for this system of thrust as a function of the arm angle were created by correlating data collected by a load cell. A Solidworks model was created and used to conduct fluid dynamics simulations of the streamlines over the arm/motor assembly.

  14. 77 FR 24556 - Waiver of Acceptable Risk Restriction for Launch and Reentry

    Science.gov (United States)

    2012-04-24

    ... petitions for waiver submitted to the FAA by Space Exploration Technologies Corp. (SpaceX): a petition to... . SUPPLEMENTARY INFORMATION: Background On August 12, 2011, SpaceX submitted a petition, which it updated on... Falcon 9 launch vehicle (Falcon 9 003) carrying a Dragon reentry vehicle. First, SpaceX requested a...

  15. Error analysis and assessment of unsteady forces acting on a flapping wing micro air vehicle: free flight versus wind-tunnel experimental methods.

    Science.gov (United States)

    Caetano, J V; Percin, M; van Oudheusden, B W; Remes, B; de Wagter, C; de Croon, G C H E; de Visser, C C

    2015-08-20

    An accurate knowledge of the unsteady aerodynamic forces acting on a bio-inspired, flapping-wing micro air vehicle (FWMAV) is crucial in the design development and optimization cycle. Two different types of experimental approaches are often used: determination of forces from position data obtained from external optical tracking during free flight, or direct measurements of forces by attaching the FWMAV to a force transducer in a wind-tunnel. This study compares the quality of the forces obtained from both methods as applied to a 17.4 gram FWMAV capable of controlled flight. A comprehensive analysis of various error sources is performed. The effects of different factors, e.g., measurement errors, error propagation, numerical differentiation, filtering frequency selection, and structural eigenmode interference, are assessed. For the forces obtained from free flight experiments it is shown that a data acquisition frequency below 200 Hz and an accuracy in the position measurements lower than ± 0.2 mm may considerably hinder determination of the unsteady forces. In general, the force component parallel to the fuselage determined by the two methods compares well for identical flight conditions; however, a significant difference was observed for the forces along the stroke plane of the wings. This was found to originate from the restrictions applied by the clamp to the dynamic oscillations observed in free flight and from the structural resonance of the clamped FWMAV structure, which generates loads that cannot be distinguished from the external forces. Furthermore, the clamping position was found to have a pronounced influence on the eigenmodes of the structure, and this effect should be taken into account for accurate force measurements.

  16. Reentry High Altitude Pulmonary Edema in the Himalayas.

    Science.gov (United States)

    Baniya, Santosh; Holden, Christopher; Basnyat, Buddha

    2017-12-01

    Baniya, Santosh, Christopher Holden, and Buddha Basnyat. Reentry high altitude pulmonary edema in the Himalayas. High Alt Med Biol. 18:425-427, 2017.-Reentry high altitude pulmonary edema (HAPE), a subset of HAPE, is a well recognized, life-threatening illness documented almost exclusively in the North and South Americans, who live at high altitude (>2500 m) and return to their homes after a brief sojourn of days to months at lower altitude. This phenomenon has not been reported in Sherpas or other people of Tibetan origin in Nepal or India. And it has rarely been reported from Tibet. In this study we document a case of reentry HAPE in Manang region (3500 m) of Nepal in a 7-year-old Nepali boy of Tibetan ancestry who fell ill when he ascended to his village (Manang, 3500 m) from Besisahar (760 m) in 1 day in a motor vehicle after spending the winter (December to March) at Besisahar with his family. With more motorable road access to high altitude settlements in the Himalayas, reentry HAPE may need to be strongly considered by healthcare professionals in local residents of high altitude; otherwise life-threatening complications may ensue as in our case report.

  17. Nonlinear Structures Optimization for Flexible Flapping Wing MAVs

    Science.gov (United States)

    2009-02-01

    nonlinear optimization, flapping wing, fluid structure interaction, micro -air vehicles, flexible wing, flapping mechanism 16. SECURITY... Structures Optimization for Flexible Flapping Wing Micro -Air Vehicles” was funded with Chief Scientist Innovative Research funds. This project was divided...predict a 10% resisting load to the model, and Python Scripting to wrap around everything. 2 Building the Model in Abaqus CAE The flapping wing

  18. Quad-thopter: Tailless Flapping Wing Robot with 4 Pairs of Wings

    NARCIS (Netherlands)

    de Wagter, C.; Karasek, M.; de Croon, G.C.H.E.; J.-M. Moschetta G. Hattenberger, H. de Plinval

    2017-01-01

    We present a novel design of a tailless flapping wing Micro Air Vehicle (MAV), which uses four independently driven pairs of flapping wings in order to fly and perform agile maneuvers. The wing pairs are arranged such that differential thrust generates the desired roll and pitch moments, similar to

  19. High-Fidelity Real-Time Trajectory Optimization for Reusable Launch Vehicles

    National Research Council Canada - National Science Library

    Bollino, Kevin P

    2006-01-01

    ... constrained and nonlinear reentry problem. A pseudospectral-based optimal guidance scheme is used to generate high-fidelity, vehicle-tailored solutions to reentry trajectory optimization and guidance problems...

  20. Design optimization of deployable wings

    Science.gov (United States)

    Gaddam, Pradeep

    Morphing technology is an important aspect of UAV design, particularly in regards to deployable systems. The design of such system has an important impact on the vehicle's performance. The primary focus of the present research work was to determine the most optimum deployable wing design from 3 competing designs and develop one of the deployable wing designs to test in the research facility. A Matlab code was developed to optimize 3 deployable wing concepts inflatable, inflatable telescopic and rigid-folding wings based on a sequential optimization strategy. The constraints that were part of the code include the packaging constraints during its stowed state, fixed length of the deployed section and the minimum L/D constraint. This code resulted in determining the optimum weight of all the 3 designs, the most optimum weight design is the inflatable wing design. This is a result of the flexible skin material and also due to no rigid parts in the deployed wing section. Another goal of the research involved developing an inflatable telescopic wing. The prototype was tested in a wind tunnel, while the actual wing was tested in the altitude chamber to determine the deployment speed, input pressure, analyze and predict the deployment sequence and behavior of the wing at such high wind speeds and altitudes ranging from 60,000 ft to 90,000 ft. Results from these tests allowed us to conclude the deployment sequence of the telescopic wing followed from the root to the tip section. The results were used to analyze the deployment time of the wing. As expected the deployment time decreased with an increase in input pressure. The results also show us that as the altitude increases, the deployment speed of the wing also increased. This was demonstrated when the wing was tested at a maximum altitude pressure of 90,000ft, well above the design altitude of 60,000ft.

  1. Preventing re-entry to foster care.

    Science.gov (United States)

    Carnochan, Sarah; Rizik-Baer, Daniel; Austin, Michael J

    2013-01-01

    Re-entry to foster care generally refers to circumstances in which children who have been discharged from foster care to be reunified with their family of origin, adopted, or provided kinship guardianship are returned to foster care. In the context of the federal performance measurement system, re-entry refers specifically to a return to foster care following an unsuccessful reunification. The federal Children and Family Services Review measures re-entry to foster care with a single indicator, called the permanency of reunification indicator, one of four indicators comprising the reunification composite measure. This review focuses on research related to the re-entry indicator, including the characteristics of children, caregivers and families, as well as case and child welfare services that are associated with a higher or lower risk of re-entry to foster care. Promising post-reunification services designed to prevent re-entry to foster care are described.

  2. Micro-unmanned aerodynamic vehicle

    Science.gov (United States)

    Reuel, Nigel [Rio Rancho, NM; Lionberger, Troy A [Ann Arbor, MI; Galambos, Paul C [Albuquerque, NM; Okandan, Murat [Albuquerque, NM; Baker, Michael S [Albuquerque, NM

    2008-03-11

    A MEMS-based micro-unmanned vehicle includes at least a pair of wings having leading wing beams and trailing wing beams, at least two actuators, a leading actuator beam coupled to the leading wing beams, a trailing actuator beam coupled to the trailing wing beams, a vehicle body having a plurality of fulcrums pivotally securing the leading wing beams, the trailing wing beams, the leading actuator beam and the trailing actuator beam and having at least one anisotropically etched recess to accommodate a lever-fulcrum motion of the coupled beams, and a power source.

  3. Perancangan dan Implementasi Kontroler PID untuk Pengaturan Heading dan Pengaturan Arah pada Fixed-Wing Unmanned Aerial Vehicle (UAV

    Directory of Open Access Journals (Sweden)

    Hery setyo widodo

    2012-09-01

    Full Text Available UAV (Unmanned Aerial Vehicle merupakan kendaraan udara tanpa awak yang dikendalikan dari jarak jauh oleh atau tanpa seorang pilot (Autopilot. Kontrol pesawat UAV ada dua variasi utama, variasi pertama yaitu dikontrol melalui pengendali jarak jauh dan variasi kedua adalah pesawat yang terbang secara mandiri berdasarkan program yang dimasukan. Sebuah fixed-winng UAV harus mampu mempertahankan posisinya pada lintasan yang sudah ditentukan selama melakukan tracking lintasan. Keakuratan dalam tracking arah dan heading pesawat sangat berpengaruh terhadap keberhasilan misi penerbangan pesawat UAV dalam memperthankan lintasannya untuk mencapai target. Oleh karena itu pada Tugas Akhir ini dirancang sistem pengaturan dengan menggunakan metode kontrol PID untuk mengatasi kesalahan dalam menjaga lintasan pesawat. Pengaturan arah dan heading pesawat UAV dilakukan dengan memanfaatkan dinamika gerak lateral yang meliputi gerak roll dan yaw dan input dari GPS (Global Positioning System. Dari simulasi diperoleh proses tracking dapat mengikuti rancangan gerak yang diinginkan Pergeseran lintasan pesawat pada saat implementasi kontroler PID disebabkan akurasi GPS yang masih rendah yaitu 3 meter.

  4. Cast Glance Near Infrared Imaging Observations of the Space Shuttle During Hypersonic Re-Entry

    Science.gov (United States)

    Tack, Steve; Tomek, Deborah M.; Horvath, Thomas J.; Verstynen, Harry A.; Shea, Edward J.

    2010-01-01

    High resolution calibrated infrared imagery of the Space Shuttle was obtained during hypervelocity atmospheric entries of the STS-119, STS-125 and STS128 missions and has provided information on the distribution of surface temperature and the state of the airflow over the windward surface of the Orbiter during descent. This data collect was initiated by NASA s Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) team and incorporated the use of air- and land-based optical assets to image the Shuttle during atmospheric re-entry. The HYTHIRM objective is to develop and implement a set of mission planning tools designed to establish confidence in the ability of an existing optical asset to reliably acquire, track and return global quantitative surface temperatures of the Shuttle during entry. On Space Shuttle Discovery s STS-119 mission, NASA flew a specially modified thermal protection system tile and instrumentation package to monitor heating effects from boundary layer transition during re-entry. On STS-119, the windward airflow on the port wing was deliberately disrupted by a four-inch wide and quarter-inch tall protuberance built into the modified tile. In coordination with this flight experiment, a US Navy NP-3D Orion aircraft was flown 28 nautical miles below Discovery and remotely monitored surface temperature of the Orbiter at Mach 8.4 using a long-range infrared optical package referred to as Cast Glance. Approximately two months later, the same Navy Cast Glance aircraft successfully monitored the surface temperatures of the Orbiter Atlantis traveling at approximately Mach 14.3 during its return from the successful Hubble repair mission. In contrast to Discovery, Atlantis was not part of the Boundary Layer Transition (BLT) flight experiment, thus the vehicle was not configured with a protuberance on the port wing. In September 2009, Cast Glance was again successful in capturing infrared imagery and monitoring the surface temperatures on Discovery s next

  5. Phase 2 reentry in man

    DEFF Research Database (Denmark)

    Thomsen, P.E.B.; Jørgensen, R.M.; Kanters, J.K.

    2005-01-01

    mu V, range 0-1,700) and T-wave changes in the sinus beat prior to ventricular ectopy. In addition, J-point elevation was demonstrated in several cases. In total, significant changes were demonstrated in 15 of the 18 patients studied (83%). CONCLUSION J-point elevation, ST-elevation, and T......-wave changes documented in the last sinus beat prior to ventricular extrasystoles are in agreement with phase 2 reentry, suggesting that this may be the responsible mechanism for ventricular extrasystoles and ventricular tachycardia/fibrillation. The phenomenon has been demonstrated in only animal experiments...

  6. An adaptive reentry guidance method considering the influence of blackout zone

    Science.gov (United States)

    Wu, Yu; Yao, Jianyao; Qu, Xiangju

    2018-01-01

    Reentry guidance has been researched as a popular topic because it is critical for a successful flight. In view that the existing guidance methods do not take into account the accumulated navigation error of Inertial Navigation System (INS) in the blackout zone, in this paper, an adaptive reentry guidance method is proposed to obtain the optimal reentry trajectory quickly with the target of minimum aerodynamic heating rate. The terminal error in position and attitude can be also reduced with the proposed method. In this method, the whole reentry guidance task is divided into two phases, i.e., the trajectory updating phase and the trajectory planning phase. In the first phase, the idea of model predictive control (MPC) is used, and the receding optimization procedure ensures the optimal trajectory in the next few seconds. In the trajectory planning phase, after the vehicle has flown out of the blackout zone, the optimal reentry trajectory is obtained by online planning to adapt to the navigation information. An effective swarm intelligence algorithm, i.e. pigeon inspired optimization (PIO) algorithm, is applied to obtain the optimal reentry trajectory in both of the two phases. Compared to the trajectory updating method, the proposed method can reduce the terminal error by about 30% considering both the position and attitude, especially, the terminal error of height has almost been eliminated. Besides, the PIO algorithm performs better than the particle swarm optimization (PSO) algorithm both in the trajectory updating phase and the trajectory planning phases.

  7. Correctional Practitioners on Reentry: A Missed Perspective

    Directory of Open Access Journals (Sweden)

    Elaine Gunnison

    2015-06-01

    Full Text Available Much of the literature on reentry of formerly incarcerated individuals revolves around discussions of failures they incur during reintegration or the identification of needs and challenges that they have during reentry from the perspective of community corrections officers. The present research fills a gap in the reentry literature by examining the needs and challenges of formerly incarcerated individuals and what makes for reentry success from the perspective of correctional practitioners (i.e., wardens and non-wardens. The views of correctional practitioners are important to understand the level of organizational commitment to reentry and the ways in which social distance between correctional professionals and their clients may impact reentry success. This research reports on the results from an email survey distributed to a national sample of correctional officials listed in the American Correctional Association, 2012 Directory. Specifically, correctional officials were asked to report on needs and challenges facing formerly incarcerated individuals, define success, identify factors related to successful reentry, recount success stories, and report what could be done to assist them in successful outcomes. Housing and employment were raised by wardens and corrections officials as important needs for successful reentry. Corrections officials adopted organizational and systems perspectives in their responses and had differing opinions about social distance. Policy implications are presented.

  8. HIAD on ULA (HULA) Orbital Reentry Flight Experiment Concept

    Science.gov (United States)

    Dinonno, J. M.; Cheatwood, F. M.; Hughes, S. J.; Ragab, M. M.; Dillman, R. A.; Bodkin, R. J.; Zumwalt, C. H.; Johnson, R. K.

    2016-01-01

    This paper describes a proposed orbital velocity reentry flight test of a Hypersonic Inflatable Aerodynamic Decelerator (HIAD). The flight test builds upon ground development activities that continue to advance the materials, design, and manufacturing techniques for the inflatable structure and flexible thermal protection system (F-TPS) that comprise the inflatable heat shield. While certain aspects of material and system performance can be assessed using a variety of ground testing capabilities, only orbital velocity energy on a trajectory through the gradient density of the atmosphere can impart the combined aerodynamic and aeroheating design environments in real time. To achieve this at limited cost, the HIAD would be delivered to a spin-stabilized entry trajectory as a secondary payload on the Centaur stage of a United Launch Alliance (ULA) Atlas V launch vehicle. Initial trajectory studies indicate that the combination of launch vehicle capability and achievable reentry vehicle ballistic numbers make this a strategic opportunity for technology development. This 4 to 6 meter diameter scale aeroshell flight, referred to as HIAD on ULA (HULA), would also contribute to ULA asset recovery development. ULA has proposed that a HIAD be utilized as part of the Sensible, Modular, Autonomous Return Technology (SMART) initiative to enable recovery of the Vulcan launch vehicle booster main engines [1], including a Mid-Air Recovery (MAR) to gently return these assets for reuse. Whereas HULA will attain valuable aerothermal and structural response data toward advancing HIAD technology, it may also provide a largest-to-date scaled flight test of the MAR operation, which in turn would allow the examination of a nearly pristine post-entry aeroshell. By utilizing infrared camera imaging, HULA will also attain aft-side thermal response data, enhancing understanding of the aft side aerothermal environment, an area of high uncertainty. The aeroshell inflation will utilize a

  9. Study of design parameters of flapping-wings

    NARCIS (Netherlands)

    Wang, Q.; Goosen, J.F.L.; Van Keulen, F.

    2014-01-01

    As one of the most important components of a flapping-wing micro air vehicle (FWMAV), the design of an energy-efficient flapping-wing has been a research interest recently. Research on insect flight from different perspectives has been carried out, mainly with regard to wing morphology, flapping

  10. Application of the FADS system on the Re-entry Module

    Science.gov (United States)

    Zhen, Huang

    2016-07-01

    The aerodynamic model for Flush Air Data Sensing System (FADS) is built based on the surface pressure distribution obtained through the pressure orifices laid on specific positions of the surface,and the flight parameters,such as angle of attack,angle of side-slip,Mach number,free-stream static pressure and dynamic pressure are inferred from the aerodynamic model.The flush air data sensing system (FADS) has been used on several flight tests of aircraft and re-entry vehicle,such as,X-15,space shuttle,F-14,X-33,X-43A and so on. This paper discusses the application of the FADS on the re-entry module with blunt body to obtain high-precision aerodynamic parameters.First of all,a basic theory and operating principle of the FADS is shown.Then,the applications of the FADS on typical aircrafts and re-entry vehicles are described.Thirdly,the application mode on the re-entry module with blunt body is discussed in detail,including aerodynamic simulation,pressure distribution,trajectory reconstruction and the hardware shoule be used,such as flush air data sensing system(FADS),inertial navigation system (INS),data acquisition system,data storage system.Finally,ablunt module re-entry flight test from low earth orbit (LEO) is planned to obtain aerodynamic parameters and amend the aerodynamic model with this FADS system data.The results show that FADS system can be applied widely in re-entry module with blunt bodies.

  11. How Do Wings Generate Lift?

    Indian Academy of Sciences (India)

    Newton's second law of motion. Hence if a wing can generate lift equal to its weight (total weight of the vehicle) it can balance the gravitational pull and can maintain level flight. The equations for fluid flow that are equivalent to the second law are the well- known Navier–Stokes (N–S) equations [1]. These equations have.

  12. The Morphological Characterization of the Forewing of the Manduca sexta Species for the Application of Biomimetic Flapping Wing Micro Air Vehicles

    Science.gov (United States)

    2012-01-01

    on tobacco and tomato plants, but will occasionally feed on potato and pepper crops and other plants in the Solenaceae family, hence their name... composite plates and is applied here [8]. The experimental sample is harvested from a wing in which the membrane scales have been removed. Then a section

  13. Hypothetical Reentry Thermostructural Performance of Space Shuttle Orbiter With Missing or Eroded Thermal Protection Tiles

    Science.gov (United States)

    Ko, William L.; Gong, Leslie; Quinn, Robert D.

    2004-01-01

    This report deals with hypothetical reentry thermostructural performance of the Space Shuttle orbiter with missing or eroded thermal protection system (TPS) tiles. The original STS-5 heating (normal transition at 1100 sec) and the modified STS-5 heating (premature transition at 800 sec) were used as reentry heat inputs. The TPS missing or eroded site is assumed to be located at the center or corner (spar-rib juncture) of the lower surface of wing midspan bay 3. For cases of missing TPS tiles, under the original STS-5 heating, the orbiter can afford to lose only one TPS tile at the center or two TPS tiles at the corner (spar-rib juncture) of the lower surface of wing midspan bay 3. Under modified STS-5 heating, the orbiter cannot afford to lose even one TPS tile at the center or at the corner of the lower surface of wing midspan bay 3. For cases of eroded TPS tiles, the aluminum skin temperature rises relatively slowly with the decreasing thickness of the eroded central or corner TPS tile until most of the TPS tile is eroded away, and then increases exponentially toward the missing tile case.

  14. Role of wing morphing in thrust generation

    Directory of Open Access Journals (Sweden)

    Mehdi Ghommem

    2014-01-01

    Full Text Available In this paper, we investigate the role of morphing on flight dynamics of two birds by simulating the flow over rigid and morphing wings that have the characteristics of two different birds, namely the Giant Petrel and Dove Prion. The simulation of a flapping rigid wing shows that the root of the wing should be placed at a specific angle of attack in order to generate enough lift to balance the weight of the bird. However, in this case the generated thrust is either very small, or even negative, depending on the wing shape. Further, results show that morphing of the wing enables a significant increase in the thrust and propulsive efficiency. This indicates that the birds actually utilize some sort of active wing twisting and bending to produce enough thrust. This study should facilitate better guidance for the design of flapping air vehicles.

  15. Structural Technology Evaluation and Analysis Program (STEAP). Delivery Order 0035: Dynamics and Control and Computational Design of Flapping Wing Micro Air Vehicles

    Science.gov (United States)

    2012-10-01

    prototype FWMAVs. A brushless DC motor was used to drive a four-bar crank- rocker mechanism to transform rotational motion into a rocking motion, i.e...stroke actuation using brushless DC motors . Furthermore, the microcontrollers were required to communicate with a remote controller and with each other...low-level motor control laws that enable wing beat motion profiles to be produced that generate desired cycle-averaged control forces and moments

  16. Mitigating reentry radio blackout by using a traveling magnetic field

    Directory of Open Access Journals (Sweden)

    Hui Zhou

    2017-10-01

    Full Text Available A hypersonic flight or a reentry vehicle is surrounded by a plasma layer that prevents electromagnetic wave transmission, which results in radio blackout. The magnetic-window method is considered a promising means to mitigate reentry communication blackout. However, the real application of this method is limited because of the need for strong magnetic fields. To reduce the required magnetic field strength, a novel method that applies a traveling magnetic field (TMF is proposed in this study. A mathematical model based on magneto-hydrodynamic theory is adopted to analyze the effect of TMF on plasma. The mitigating effects of the TMF on the blackout of typical frequency bands, including L-, S-, and C-bands, are demonstrated. Results indicate that a significant reduction of plasma density occurs in the magnetic-window region by applying a TMF, and the reduction ratio is positively correlated with the velocity of the TMF. The required traveling velocities for eliminating the blackout of the Global Positioning System (GPS and the typical telemetry system are also discussed. Compared with the constant magnetic-window method, the TMF method needs lower magnetic field strength and is easier to realize in the engineering field.

  17. Mitigating reentry radio blackout by using a traveling magnetic field

    Science.gov (United States)

    Zhou, Hui; Li, Xiaoping; Xie, Kai; Liu, Yanming; Yu, Yuanyuan

    2017-10-01

    A hypersonic flight or a reentry vehicle is surrounded by a plasma layer that prevents electromagnetic wave transmission, which results in radio blackout. The magnetic-window method is considered a promising means to mitigate reentry communication blackout. However, the real application of this method is limited because of the need for strong magnetic fields. To reduce the required magnetic field strength, a novel method that applies a traveling magnetic field (TMF) is proposed in this study. A mathematical model based on magneto-hydrodynamic theory is adopted to analyze the effect of TMF on plasma. The mitigating effects of the TMF on the blackout of typical frequency bands, including L-, S-, and C-bands, are demonstrated. Results indicate that a significant reduction of plasma density occurs in the magnetic-window region by applying a TMF, and the reduction ratio is positively correlated with the velocity of the TMF. The required traveling velocities for eliminating the blackout of the Global Positioning System (GPS) and the typical telemetry system are also discussed. Compared with the constant magnetic-window method, the TMF method needs lower magnetic field strength and is easier to realize in the engineering field.

  18. Implementation of Standardized Vehicle Control Commands

    National Research Council Canada - National Science Library

    Crane, C

    2000-01-01

    .... The objective was to develop a standardized message that would be applicable to a wide variety of vehicles such as steered-wheeled and tracked ground vehicles, fixed wing and rotary air vehicles...

  19. Development and Validation of Reentry Simulation Using MATLAB

    National Research Council Canada - National Science Library

    Jameson, Jr, Robert E

    2006-01-01

    This research effort develops a program using MATLAB to solve the equations of motion for atmospheric reentry and analyzes the validity of the program for use as a tool to expeditiously predict reentry profiles...

  20. 75 FR 75619 - Waiver of Acceptable Mission Risk Restriction for Reentry and a Reentry Vehicle

    Science.gov (United States)

    2010-12-06

    ... of Dragon. Because the FAA's calculations resulted in a total E c value that exceeded the 30 x 10 -6... system has been modified so that if it enters facing down it will burn and demise. [[Page 75620

  1. Veins improve fracture toughness of insect wings.

    Directory of Open Access Journals (Sweden)

    Jan-Henning Dirks

    Full Text Available During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect's flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material's resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m. However, the cross veins increase the wing's toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm. This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically 'optimal' solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial 'venous' wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species.

  2. Optimization of Observation Strategy to Improve Re-entry Prediction of Objects in HEO

    Science.gov (United States)

    Rasotto, M.; Di Mauro, G.; Massari, M.; Di Lizia, P.; Armellin, R.; Funke, Q.; Flohrer, T.

    2016-09-01

    During the last decade the number of space debris moving on high elliptical orbit (HEO) has grown fast. Many of these resident space objects (RSO) consist of medium and large spent upper stages of launch vehicles, whose atmosphere re-entry might violate on-ground casualty risk constraints. Increasing the accuracy of re-entry predictions for this class of RSO is therefore a key issue to limit the hazards on the Earth assets. Traditional computational methods are mainly based on the exploitation of Two Line Elements (TLEs), provided by the United States Strategic Command (USSTRATCOM) and currently the only public data source available for these kind of analyses. TLE data however, are characterized by low accuracies, and in general come without any uncertainty information, thus limiting the achievable precision of the re-entry estimates. Better results on the other hand, can be obtained through the exploitation of observational data provided by one or more Earth sensors. Despite the benefits, this approach introduces a whole new set of complexities, mainly related with the design of proper observation campaigns. This paper presents a method based on evolutionary algorithms, for the optimization of observation strategies. The effectiveness of the proposed approach is demonstrated through dedicated examples, in which re-entry predictions, attainable with existing and ideal sensor architectures, are compared with corresponding results derived from TLE data.

  3. Transmission properties and physical mechanisms of X-ray communication for blackout mitigation during spacecraft reentry

    Science.gov (United States)

    Liu, Yunpeng; Li, Huan; Li, Yanlong; Hang, Shuang; Tang, Xiaobin

    2017-11-01

    Recent advances in X-ray science have witnessed the X-ray communication (XCOM), a new revolutionary technology first proposed by NASA since 2007. In combination with the advanced modulated X-ray source, XCOM shows a promising prospect for helping to alleviate the occurrence of inevitable blackout communication by using the regular radio frequency (RF) signal, paving the way towards realizing real-time communication during spacecraft reentry into atmosphere. Here, we acquired the detailed information of electron density distribution of plasma sheath encountered during vehicle reentry through Computational Fluid Dynamics simulation. Based on these derived parameters, Finite-difference Time-domain method was employed to investigate the transmission properties of X-rays through the plasma sheath, and the results indicated that X-ray transmission was not influenced by the reentry plasma sheath at different reentry altitudes and spacecraft surface positions compared with RF signal. In addition, 2D Particle-In-Cell simulation was also adopted to provide deeper insight into the transmission properties and physical mechanisms of X-ray carrier propagating through the plasma sheath, and results showed that the transmission coefficient was over 0.994 and the observation of plasma channel effect was also an important signature, which was of great importance to X-ray propagating through the plasma sheath.

  4. 14 CFR 431.35 - Acceptable reusable launch vehicle mission risk.

    Science.gov (United States)

    2010-01-01

    ... trajectory analyses covering launch or ascent of the vehicle through orbital insertion and reentry or descent... launch flight through orbital insertion of an RLV or vehicle stage or flight to outer space, whichever is...

  5. Experimental result analysis for scaled model of UiTM tailless blended wing-body (BWB) Baseline 7 unmanned aerial vehicle (UAV)

    Science.gov (United States)

    Nasir, R. E. M.; Ahmad, A. M.; Latif, Z. A. A.; Saad, R. M.; Kuntjoro, W.

    2017-12-01

    Blended wing-body (BWB) aircraft having planform configuration similar to those previously researched and published by other researchers does not guarantee that an efficient aerodynamics in term of lift-to-drag ratio can be achieved. In this wind tunnel experimental study, BWB half model is used. The model is also being scaled down to 71.5% from the actual size. Based on the results, the maximum lift coefficient is found to be 0.763 when the angle is at 27.5° after which the model starts to stall. The minimum drag coefficient is 0.014, measured at zero angle of attack. The corrected lift-to-drag ratio (L/D) is 15.9 at angle 7.8°. The scaled model has a big flat surface that surely gives an inaccurate data but the data obtained shall give some insights for future perspective towards the BWB model being tested.

  6. Aerodynamics of Reentry Vehicle Clipper at Descent Phase

    Science.gov (United States)

    Semenov, Yu. P.; Reshetin, A. G.; Dyadkin, A. A.; Petrov, N. K.; Simakova, T. V.; Tokarev, V. A.

    2005-02-01

    From Gagarin spacecraft to reusable orbiter Buran, RSC Energia has traveled a long way in the search for the most optimal and, which is no less important, the most reliable spacecraft for manned space flight. During the forty years of space exploration, in cooperation with a broad base of subcontractors, a number of problems have been solved which assure a safe long stay in space. Vostok and Voskhod spacecraft were replaced with Soyuz supporting a crew of three. During missions to a space station, it provides crew rescue capability in case of a space station emergency at all times (the spacecraft life is 200 days).The latest modification of Soyuz spacecraft -Soyuz TMA -in contrast to its predecessors, allows to become a space flight participant to a person of virtually any anthropometric parameters with a mass of 50 to 95 kg capable of withstanding up to 6 g load during descent. At present, Soyuz TMA spacecraft are the state-of-the-art, reliable and only means of the ISS crew delivery, in-flight support and return. Introduced on the basis of many years of experience in operation of manned spacecraft were not only the principles of deep redundancy of on-board systems and equipment, but, to assure the main task of the spacecraft -the crew return to Earth -the principles of functional redundancy. That is, vital operations can be performed by different systems based on different physical principles. The emergency escape system that was developed is the only one in the world that provides crew rescue in case of LV failure at any phase in its flight. Several generations of space stations that have been developed have broadened, virtually beyond all limits, capabilities of man in space. The docking system developed at RSC Energia allowed not only to dock spacecraft in space, but also to construct in orbit various complex space systems. These include large space stations, and may include in the future the in-orbit construction of systems for the exploration of the Moon and Mars.. Logistics spacecraft Progress have been flying regularly since 1978. The tasks of these unmanned spacecraft include supplying the space station with all the necessities for long-duration missions, such as propellant for the space station propulsion system, crew life support consumables, scientific equipment for conducting experiments. Various modifications of the spacecraft have expanded the space station capabilities. 1988 saw the first, and, much to our regret, the last flight of the reusable orbiter Buran.. Buran could deliver to orbit up to 30 tons of cargo, return 20 tons to Earth and have a crew of up to 10. However, due to our country's economic situation the project was suspended.

  7. Terminal Control of a Variable-Stability Slender Reentry Vehicle

    Science.gov (United States)

    2008-06-02

    3DoF ) model (pitch, downrange, and altitude). The aerodynamics are dened as quasi-linear (lin- ear for constant Mach number and control deections...is unchanged between inertial and local coordinate frames (see [13]). Consequently, the 3 degrees-of-freedom ( 3DoF ) longitudinal equations of motion

  8. Veins Improve Fracture Toughness of Insect Wings

    Science.gov (United States)

    Dirks, Jan-Henning; Taylor, David

    2012-01-01

    During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect’s flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material’s resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m). However, the cross veins increase the wing’s toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm). This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically ‘optimal’ solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial ‘venous’ wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species. PMID:22927966

  9. Reusable Reentry Satellite (RRS) system design study: System cost estimates document

    Science.gov (United States)

    1991-01-01

    The Reusable Reentry Satellite (RRS) program was initiated to provide life science investigators relatively inexpensive, frequent access to space for extended periods of time with eventual satellite recovery on earth. The RRS will provide an on-orbit laboratory for research on biological and material processes, be launched from a number of expendable launch vehicles, and operate in Low-Altitude Earth Orbit (LEO) as a free-flying unmanned laboratory. SAIC's design will provide independent atmospheric reentry and soft landing in the continental U.S., orbit for a maximum of 60 days, and will sustain three flights per year for 10 years. The Reusable Reentry Vehicle (RRV) will be 3-axis stabilized with artificial gravity up to 1.5g's, be rugged and easily maintainable, and have a modular design to accommodate a satellite bus and separate modular payloads (e.g., rodent module, general biological module, ESA microgravity botany facility, general botany module). The purpose of this System Cost Estimate Document is to provide a Life Cycle Cost Estimate (LCCE) for a NASA RRS Program using SAIC's RRS design. The estimate includes development, procurement, and 10 years of operations and support (O&S) costs for NASA's RRS program. The estimate does not include costs for other agencies which may track or interface with the RRS program (e.g., Air Force tracking agencies or individual RRS experimenters involved with special payload modules (PM's)). The life cycle cost estimate extends over the 10 year operation and support period FY99-2008.

  10. Plume-Free Stream Interaction Heating Effects During Orion Crew Module Reentry

    Science.gov (United States)

    Marichalar, J.; Lumpkin, F.; Boyles, K.

    2012-01-01

    During reentry of the Orion Crew Module (CM), vehicle attitude control will be performed by firing reaction control system (RCS) thrusters. Simulation of RCS plumes and their interaction with the oncoming flow has been difficult for the analysis community due to the large scarf angles of the RCS thrusters and the unsteady nature of the Orion capsule backshell environments. The model for the aerothermal database has thus relied on wind tunnel test data to capture the heating effects of thruster plume interactions with the freestream. These data are only valid for the continuum flow regime of the reentry trajectory. A Direct Simulation Monte Carlo (DSMC) analysis was performed to study the vehicle heating effects that result from the RCS thruster plume interaction with the oncoming freestream flow at high altitudes during Orion CM reentry. The study was performed with the DSMC Analysis Code (DAC). The inflow boundary conditions for the jets were obtained from Data Parallel Line Relaxation (DPLR) computational fluid dynamics (CFD) solutions. Simulations were performed for the roll, yaw, pitch-up and pitch-down jets at altitudes of 105 km, 125 km and 160 km as well as vacuum conditions. For comparison purposes (see Figure 1), the freestream conditions were based on previous DAC simulations performed without active RCS to populate the aerodynamic database for the Orion CM. Other inputs to the analysis included a constant Orbital reentry velocity of 7.5 km/s and angle of attack of 160 degrees. The results of the study showed that the interaction effects decrease quickly with increasing altitude. Also, jets with highly scarfed nozzles cause more severe heating compared to the nozzles with lower scarf angles. The difficulty of performing these simulations was based on the maximum number density and the ratio of number densities between the freestream and the plume for each simulation. The lowest altitude solutions required a substantial amount of computational resources

  11. Physical frameworks of safe vehicles for space tourism

    Science.gov (United States)

    Filatyev, A. S.; Golikov, A. A.; Yanova, O. V.; Petrokovsky, S. A.

    2009-08-01

    The attention to specific problems of guarantee of sub-orbital flight safety is accented. It is displayed, that physical limitations on ascent and reentry segments form conflict requirements to configurations of the launcher and reentry vehicle. The algorithm of construction of permissible parameter ranges determining a shape of such vehicles and their critical flight regimes is offered. The developed technique is demonstrated as an application to analyze a possibility to use the launcher Angara-1 for space tourism purposes.

  12. Flapping wing actuation using resonant compliant mechanisms : An insect-inspired design

    NARCIS (Netherlands)

    Bolsman, C.T.

    2010-01-01

    The realization of a wing actuation mechanism for a flapping wing micro air vehicle requires a move away from traditional designs based on gears and links. An approach inspired by nature’s flyers is better suited. For flapping flight two wing motions are important: the sweeping and the pitching

  13. Machine Learning for Flapping Wing Flight Control

    NARCIS (Netherlands)

    Goedhart, Menno; van Kampen, E.; Armanini, S.F.; de Visser, C.C.; Chu, Q.

    2018-01-01

    Flight control of Flapping Wing Micro Air Vehicles is challenging, because of their complex dynamics and variability due to manufacturing inconsistencies. Machine Learning algorithms can be used to tackle these challenges. A Policy Gradient algorithm is used to tune the gains of a

  14. Sonic Boom Generated by Reentry of Mir

    Science.gov (United States)

    Moody, D. M.

    2002-09-01

    The Russian space station, Mir, was actively deorbited to impact in the South Pacific on 23 March 2001. Mir was the largest body in Earth orbit ever to be deorbited in a controlled fashion. As such, it provided a unique opportunity to observe, at a known time and location, what happens to such a large object as it re-enters the earth's atmosphere. The reentry and breakup were videotaped from the Fiji Sheraton hotel by a CNN cameraman. About four to five minutes after the streaking Mir debris left his view, he described hearing a number of sonic booms which were generated by pieces of the wreckage. This report contains the camera-man's description of what he heard and a calculation of the sonic boom amplitude and duration which would have been generated by a single Mir module on its reentry trajectory. Results of the calculation are consistent with the reported estimated time of boom arrival past visual sighting. However, no actual measurements were made at the hotel of the boom strength (sound level.) Thus the code results for boom amplitude cannot be quantitatively verified.

  15. Atrial tachycardia mimicking atrioventricular nodal reentry tachycardia.

    Science.gov (United States)

    Eilbert, Wesley P; Patel, Neal

    2013-07-01

    The term supraventricular tachycardia (SVT) is used to describe tachydysrhythmias that require atrial or atrioventricular nodal tissue for their initiation and maintenance. SVT can be used to describe atrioventricular nodal reentry tachycardia, atrioventricular reentry tachycardia, and atrial tachycardia (AT). AT is the least common of these SVT subtypes, accounting for only 10% of cases. Although the suggested initial management of each SVT subtype is different, they all can present with similar symptoms and electrocardiographic findings. Discuss the pathophysiology, diagnosis, and treatment of AT as compared with other types of SVT. We report a 56-year-old woman with symptoms and electrocardiographic findings consistent with SVT. Although standard treatment with intravenous adenosine failed to convert the SVT, it revealed AT as the cause of the tachydysrhythmia. The AT was successfully terminated with beta-blockade and the patient eventually underwent successful radioablation of three separate AT foci. AT frequently mimics other more common forms of SVT. AT might be recognized only when standard treatment of SVT has failed. Identification of AT in this setting is crucial to allow for more definitive therapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Measurement of shape and deformation of insect wing

    Science.gov (United States)

    Yin, Duo; Wei, Zhen; Wang, Zeyu; Zhou, Changqiu

    2018-01-01

    To measure the shape and deformation of an insect wing, a scanning setup adopting laser triangulation and image matching was developed. Only one industry camera with two light sources was employed to scan the transparent insect wings. 3D shape and point to point full field deformation of the wings could be obtained even when the wingspan is less than 3 mm. The venation and corrugation could be significantly identified from the results. The deformation of the wing under pin loading could be seen clearly from the results as well. Calibration shows that the shape and deformation measurement accuracies are no lower than 0.01 mm. Laser triangulation and image matching were combined dexterously to adapt wings' complex shape, size, and transparency. It is suitable for insect flight research or flapping wing micro-air vehicle development.

  17. Optimization of aerodynamic efficiency for twist morphing MAV wing

    Directory of Open Access Journals (Sweden)

    N.I. Ismail

    2014-06-01

    Full Text Available Twist morphing (TM is a practical control technique in micro air vehicle (MAV flight. However, TM wing has a lower aerodynamic efficiency (CL/CD compared to membrane and rigid wing. This is due to massive drag penalty created on TM wing, which had overwhelmed the successive increase in its lift generation. Therefore, further CL/CDmax optimization on TM wing is needed to obtain the optimal condition for the morphing wing configuration. In this paper, two-way fluid–structure interaction (FSI simulation and wind tunnel testing method are used to solve and study the basic wing aerodynamic performance over (non-optimal TM, membrane and rigid wings. Then, a multifidelity data metamodel based design optimization (MBDO process is adopted based on the Ansys-DesignXplorer frameworks. In the adaptive MBDO process, Kriging metamodel is used to construct the final multifidelity CL/CD responses by utilizing 23 multi-fidelity sample points from the FSI simulation and experimental data. The optimization results show that the optimal TM wing configuration is able to produce better CL/CDmax magnitude by at least 2% than the non-optimal TM wings. The flow structure formation reveals that low TV strength on the optimal TM wing induces low CD generation which in turn improves its overall CL/CDmax performance.

  18. Structural Health Monitoring of the Space Shuttle's Wing Leading Edge

    Science.gov (United States)

    Madaras, Eric I.; Prosser, William H.; Studor, George; Gorman, Michael R.; Ziola, Steven M.

    2006-03-01

    In a response to the Columbia Accident Investigation Board's recommendations following the loss of the Space Shuttle Columbia in 2003, NASA developed methods to monitor the orbiters while in flight so that on-orbit repairs could be made before reentry if required. One method that NASA investigated was an acoustic based impact detection system. A large array of ground tests successfully demonstrated the capability to detect and localize impact events on the Shuttle's wing structure. Subsequently, a first generation impact sensing system was developed and deployed on the Shuttle Discovery, the first Shuttle scheduled for return to flight.

  19. Simulation of the ATV Re-Entry Obsrvations

    Science.gov (United States)

    Bastida Virgili, B.; Krag, H.; Lips, T.; De Pasquale, E.

    2010-09-01

    The first ATV was launched on 9th March 2008 and, after a successful mission, the last phase was a controlled destructive re-entry on 29th September 2008, shortly after 13:30 UTC, in which the remains of the ATV and its load fell into the South Pacific Ocean. In order to better understand the re-entry processes, an insitu optical observation campaign was launched to record and analyze the ATV controlled re-entry with several instruments on board of two airplanes and also from the ISS. This observation campaign was successful and triggered several different still-ongoing studies on the extraction and analysis of data to draw conclusions on the adequacy of the re-entry break-up and explosion models used for the safety analysis of the ATV re-entry. This paper addresses the validation process for ESA’s model for re-entry survivability and on-ground risk assessment for explosive re-entry events using the observation data. The underlying rationale is to improve the models for the benefit of planning and execution of future controlled re-entries and in risk calculation in case of uncontrolled ones. The re-entry trajectory of the ATV, the explosive event and the trajectories of the fragments are simulated with the existing ESA tools and the EVOLVE explosion model. Additional software has been developed to simulate airborne sensor field of view(FOV) crossings based on the aircraft trajectories, attitude profile, sensor mounts and FOVs. Sensor performance and object radiation are modeled in order to generate synthetic images for the different sensors in the ISS and the two airplanes. These synthetic images and synthetic videos are compared with the available reentry observations of the ATV. This paper will present the software and techniques to generate synthetic imagery. It will give results of the comparison between the simulated and the real trajectories and fragmentation and explain the subsequent validation process of the ESA re-entry tools and the potential

  20. Investigation of plasma-surface interaction effects on pulsed electrostatic manipulation for reentry blackout alleviation

    Science.gov (United States)

    Krishnamoorthy, S.; Close, S.

    2017-03-01

    distances up to three times the electrode length normal to the vehicle surface. Based on our results, we postulate that pulsed electrostatic manipulation (PEM) may be a viable candidate for reentry blackout alleviation in the future.

  1. Probabilistic Structural Health Monitoring of the Orbiter Wing Leading Edge

    Science.gov (United States)

    Yap, Keng C.; Macias, Jesus; Kaouk, Mohamed; Gafka, Tammy L.; Kerr, Justin H.

    2011-01-01

    A structural health monitoring (SHM) system can contribute to the risk management of a structure operating under hazardous conditions. An example is the Wing Leading Edge Impact Detection System (WLEIDS) that monitors the debris hazards to the Space Shuttle Orbiter s Reinforced Carbon-Carbon (RCC) panels. Since Return-to-Flight (RTF) after the Columbia accident, WLEIDS was developed and subsequently deployed on board the Orbiter to detect ascent and on-orbit debris impacts, so as to support the assessment of wing leading edge structural integrity prior to Orbiter re-entry. As SHM is inherently an inverse problem, the analyses involved, including those performed for WLEIDS, tend to be associated with significant uncertainty. The use of probabilistic approaches to handle the uncertainty has resulted in the successful implementation of many development and application milestones.

  2. Reentry of elementary aged children following reunification from foster care.

    Science.gov (United States)

    Barth, Richard P; Weigensberg, Elizabeth C; Fisher, Philip A; Fetrow, Becky; Green, Rebecca L

    2008-04-01

    A recognized goal of family reunification programs is preventing the reentry of children into foster care. Using data from the National Survey of Child and Adolescent Well-Being, this study examined reentry for 273 children between the ages of 5 and 12 years. In multivariate models, reentry into foster care was associated with higher Child Behavior Checklist (CBCL) scores and higher numbers of children in the household when the child is living at home. Although these are not the only risk factors that should be considered in deciding whether to reunify a child, these characteristics appear to be high valence problems for families and their children who are reunified. Future research on reentry and on placement disruptions from foster care should routinely include information about the number of children in the family and behavior problems when endeavoring to explain caseload dynamics.

  3. Basal Complex and Basal Venation of Odonata Wings: Structural Diversity and Potential Role in the Wing Deformation.

    Directory of Open Access Journals (Sweden)

    H Rajabi

    Full Text Available Dragonflies and damselflies, belonging to the order Odonata, are known to be excellent fliers with versatile flight capabilities. The ability to fly over a wide range of speeds, high manoeuvrability and great agility are a few characteristics of their flight. The architecture of the wings and their structural elements have been found to play a major role in this regard. However, the precise influence of individual wing components on the flight performance of these insects remains unknown. The design of the wing basis (so called basal complex and the venation of this part are responsible for particular deformability and specific shape of the wing blade. However, the wing bases are rather different in representatives of different odonate groups. This presumably reflects the dimensions of the wings on one hand, and different flight characteristics on the other hand. In this article, we develop the first three-dimensional (3D finite element (FE models of the proximal part of the wings of typical representatives of five dragonflies and damselflies families. Using a combination of the basic material properties of insect cuticle, a linear elastic material model and a nonlinear geometric analysis, we simulate the mechanical behaviour of the wing bases. The results reveal that although both the basal venation and the basal complex influence the structural stiffness of the wings, it is only the latter which significantly affects their deformation patterns. The use of numerical simulations enabled us to address the role of various wing components such as the arculus, discoidal cell and triangle on the camber formation in flight. Our study further provides a detailed representation of the stress concentration in the models. The numerical analysis presented in this study is not only of importance for understanding structure-function relationship of insect wings, but also might help to improve the design of the wings for biomimetic micro-air vehicles (MAVs.

  4. The NRL MITE Air Vehicle

    National Research Council Canada - National Science Library

    Kellogg, James; Bovais, Christopher; Dahlburg, Jill; Foch, Richard; Gardner, John; Gordon, Diana; Hartley, Ralph; Kamgar-Parsi, Behrooz; McFarlane, Hugh; Pipitone, Frank; Ramamurti, Ravi; Sciambi, Adam; Spears, William; Srull, Donald; Sullivan, Carol

    2001-01-01

    .... The NRL Micro Tactical Expendable "MITE" air vehicle is a result of this research. The operational MITE is a hand-launched, dual-propeller, fixed-wing air vehicle, with a 9-inch chord and a wingspan of 8 to 18 inches, depending on payload weight...

  5. Logistics Supply of the Distributed Air Wing

    Science.gov (United States)

    2014-09-01

    Event Graph The Consumption Process first instantiates the variables . The model follows a conveyor belt pattern, whereby after processing an event...to any part of the world. A capstone project, conducted by the system engineering curriculum, proposed to distribute the air assets from the aircraft...SUBJECT TERMS distributed air wing, logistics, supply, unmanned air systems , cargo UAS, unmanned systems , discrete event simulation, vehicle routing

  6. Application of Piezoelectrics to Flapping-Wing MAVs

    Science.gov (United States)

    Widstrand, Alex; Hubner, J. Paul

    2015-11-01

    Micro air vehicles (MAVs) are a class of unmanned aerial vehicles that are size-restricted and operate at low velocities and low Reynolds numbers. An ongoing challenge with MAVs is that their flight-related operations are highly constrained by their size and weight, which limits battery size and, therefore, available power. One type of MAV called an ornithopter flies using flapping wings to create both lift and thrust, much like birds and insects do. Further bio-inspiration from bats led to the design of membrane wings for these vehicles, which provide aerodynamic benefits through passive vibration. In an attempt to capitalize on this vibration, a piezoelectric film, which generates a voltage when stressed, was investigated as the wing surface. Two wing planforms with constant area were designed and fabricated. The goal was to measure the wings' flight characteristics and output energy in freestream conditions. Complications with the flapper arose which prevented wind tunnel tests from being performed; however, energy data was obtained from table-top shaker tests. Preliminary results indicate that wing shape affects the magnitude of the charge generated, with a quarter-elliptic planform outperforming a rectangular planform. Funding provided by NSF REU Site Award number 1358991.

  7. Parachute systems for the atmospheric reentry of launcher upper stages

    Directory of Open Access Journals (Sweden)

    Bogdan DOBRESCU

    2017-03-01

    Full Text Available Parachute systems can be used to control the reentry trajectory of launcher upper stages, in order to lower the risks to the population or facilitate the retrieval of the stage. Several types of parachutes deployed at subsonic, supersonic and hypersonic speeds are analyzed, modeled as single and multistage systems. The performance of deceleration parachutes depends on their drag area and deployment conditions, while gliding parachutes are configured to achieve stable flight with a high glide ratio. Gliding parachutes can be autonomously guided to a low risk landing area. Sizing the canopy is shown to be an effective method to reduce parachute sensitivity to wind. The reentry trajectory of a launcher upper stage is simulated for each parachute system configuration and the results are compared to the nominal reentry case.

  8. Predictions of cardiovascular responses during STS reentry using mathematical models

    Science.gov (United States)

    Leonard, J. I.; Srinivasan, R.

    1985-01-01

    The physiological adaptation to weightless exposure includes cardiovascular deconditioning arising in part from a loss of total circulating blood volume and resulting in a reduction of orthostatic tolerance. The crew of the Shuttle orbiter are less tolerant to acceleration forces in the head-to-foot direction during the reentry phase of the flight at a time they must function at a high level of performance. The factors that contribute to orthostatic intolerance during and following reentry and to predict the likelihood of impaired crew performance are evaluated. A computer simulation approach employing a mathematical model of the cardiovascular system is employed. It is shown that depending on the severity of blood volume loss, the reentry acceleration stress may be detrimental to physiologic function and may place the physiologic status of the crew near the borderline of some type of impairment. They are in agreement with conclusions from early ground-based experiments and from observations of early Shuttle flights.

  9. Can Social Capital Networks Assist Re-entry Felons to Overcome Barriers to Re-entry and Reduce Recidivism?

    Directory of Open Access Journals (Sweden)

    Earl Smith

    2011-05-01

    Full Text Available Based on interviews with 25 reentry felons, this article examines the impact that social capital plays in successful reentry; specifically with securing stable housing and employment. We found that access to social capital allowed those with the lowest probability for success—African American men with felony convictions—to secure both stable employment and housing and thus avoid engaging in illegitimate behavior that leads to recidivism. The findings suggest that even for those individuals reentering society with the most strikes against them (as noted by researchers such as Pager and Travis, access to the resource rich social capital networks provided by reentry programs can allow these individuals to overcome the barriers to reentry and find stable jobs and secure housing. Our findings suggest that more research be done on the impact of social capital embedded in reentry programs and that referrals be made to these types of programs and funding be provided for those that demonstrate the ability to significantly reduce recidivism. As Putman has noted, "Just as a screwdriver (physical capital or a college education (human capital can increase productivity (both individual and collective, so do social contacts affect the productivity of individuals and groups."

  10. Numerical analysis on the effect of angle of attack on evaluating radio-frequency blackout in atmospheric reentry

    Science.gov (United States)

    Jung, Minseok; Kihara, Hisashi; Abe, Ken-ichi; Takahashi, Yusuke

    2016-06-01

    A three-dimensional numerical simulation model that considers the effect of the angle of attack was developed to evaluate plasma flows around reentry vehicles. In this simulation model, thermochemical nonequilibrium of flowfields is considered by using a four-temperature model for high-accuracy simulations. Numerical simulations were performed for the orbital reentry experiment of the Japan Aerospace Exploration Agency, and the results were compared with experimental data to validate the simulation model. A comparison of measured and predicted results showed good agreement. Moreover, to evaluate the effect of the angle of attack, we performed numerical simulations around the Atmospheric Reentry Demonstrator of the European Space Agency by using an axisymmetric model and a three-dimensional model. Although there were no differences in the flowfields in the shock layer between the results of the axisymmetric and the three-dimensional models, the formation of the electron number density, which is an important parameter in evaluating radio-frequency blackout, was greatly changed in the wake region when a non-zero angle of attack was considered. Additionally, the number of altitudes at which radio-frequency blackout was predicted in the numerical simulations declined when using the three-dimensional model for considering the angle of attack.

  11. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method

    International Nuclear Information System (INIS)

    Tay, W B; Van Oudheusden, B W; Bijl, H

    2014-01-01

    The numerical simulation of an insect-sized ‘X-wing’ type biplane flapping wing configuration is performed in 3D using an immersed boundary method solver at Reynolds numbers equal to 1000 (1 k) and 5 k, based on the wing's root chord length. This X-wing type flapping configuration draws its inspiration from Delfly, a bio-inspired ornithopter MAV which has two pairs of wings flapping in anti-phase in a biplane configuration. The objective of the present investigation is to assess the aerodynamic performance when the original Delfly flapping wing micro-aerial vehicle (FMAV) is reduced to the size of an insect. Results show that the X-wing configuration gives more than twice the average thrust compared with only flapping the upper pair of wings of the X-wing. However, the X-wing's average thrust is only 40% that of the upper wing flapping at twice the stroke angle. Despite this, the increased stability which results from the smaller lift and moment variation of the X-wing configuration makes it more suited for sharp image capture and recognition. These advantages make the X-wing configuration an attractive alternative design for insect-sized FMAVS compared to the single wing configuration. In the Reynolds number comparison, the vorticity iso-surface plot at a Reynolds number of 5 k revealed smaller, finer vortical structures compared to the simulation at 1 k, due to vortices’ breakup. In comparison, the force output difference is much smaller between Re = 1 k and 5 k. Increasing the body inclination angle generates a uniform leading edge vortex instead of a conical one along the wingspan, giving higher lift. Understanding the force variation as the body inclination angle increases will allow FMAV designers to optimize the thrust and lift ratio for higher efficiency under different operational requirements. Lastly, increasing the spanwise flexibility of the wings increases the thrust slightly but decreases the efficiency. The thrust result is similar

  12. A Conceptual Development of a Shape Memory Alloy Actuated Variable Camber Morphing Wing

    NARCIS (Netherlands)

    Ferreira, J.P.; De Breuker, R.

    2016-01-01

    This study describes the development of a morphing wing concept for a Portuguese Air Force Unmanned Air Vehicle (UAV), the UAS-30. Nowadays, optimized fuel efficiency is a primary requirement in the aerospace industry, and it can be significantly improved by designing adaptive wings which can change

  13. Insect-inspired wing actuation structures based on ring-type resonators

    NARCIS (Netherlands)

    Bolsman, C.T.; Goosen, J.F.L.; Van Keulen, F.

    2008-01-01

    In this paper, we illustrate and study the opportunities of resonant ring type structures as wing actuation mechanisms for a flapping wing Micro Air Vehicle (MAV). Various design alternatives are presented and studied based on computational and physical models. Insects provide an excellent source of

  14. Modes of Initiation of Two Types of Atrial Reentry in a Patient with Typical Atrial Flutter: Isthmus-dependent Micro-reentry versus Macro-reentry

    Directory of Open Access Journals (Sweden)

    Makoto Noda, MD

    2005-01-01

    Full Text Available We studied the modes of initiation of two types of atria] reentrant tachycardias (i.e., microreentry isthmus tachycardia and counterclockwise atrial flutter in a 39-year-old male with typical atrial flutter. Rapid atrial pacing from proximal coronary sinus at a cycle length of 220 msec initiated micro-reentry isthmus tachycardia (non-sustained, while rapid atrial pacing at a cycle length of 210 msec initiated sustained atrial flutter circulating counterclockwise around the tricuspid annulus. It was suggested that initiation of the counterclockwise atrial flutter was associated with a pacing-induced conduction block in the entire width of the isthmus, whereas initiation of the micro-reentry isthmus tachycardia was associated with a pacing-induced conduction block in a limited segment of the isthmus (i.e., partial isthmus block.

  15. Psychophysiological assessment and correction of spatial disorientation during simulated Orion spacecraft re-entry.

    Science.gov (United States)

    Cowings, Patricia S; Toscano, William B; Reschke, Millard F; Tsehay, Addis

    2018-03-02

    The National Aeronautics and Space Administration (NASA) has identified a potential risk of spatial disorientation, motion sickness, and degraded performance to astronauts during re-entry and landing of the proposed Orion crew vehicle. The purpose of this study was to determine if a physiological training procedure, Autogenic-Feedback Training Exercise (AFTE), can mitigate these adverse effects. Fourteen men and six women were assigned to two groups (AFTE, no-treatment Control) matched for motion sickness susceptibility and gender. All subjects received a standard rotating chair test to determine motion sickness susceptibility; three training sessions on a manual performance task; and four exposures in the rotating chair (Orion tests) simulating angular accelerations of the crew vehicle during re-entry. AFTE subjects received 2 h of training before Orion tests 2, 3, and 4. Motion sickness symptoms, task performance, and physiological measures were recorded on all subjects. Results showed that the AFTE group had significantly lower symptom scores when compared to Controls on test 2 (p = .05), test 3 (p = .03), and test 4 (p = .02). Although there were no significant group differences on task performance, trends showed that AFTE subjects were less impaired than Controls. Heart rate change scores (20 rpm minus baseline) of AFTE subjects indicated significantly less reactivity on Test 4 compared to Test 1 (10.09 versus 16.59, p = .02), while Controls did not change significantly across tests. Results of this study indicate that AFTE may be an effective countermeasure for mitigating spatial disorientation and motion sickness in astronauts. Copyright © 2018. Published by Elsevier B.V.

  16. Fabrication of corrugated artificial insect wings using laser micromachined molds

    International Nuclear Information System (INIS)

    Tanaka, Hiroto; Wood, Robert J

    2010-01-01

    This paper describes the fabrication of an artificial insect wing with a rich set of topological features by micromolding a thermosetting resin. An example 12 mm long hoverfly-like wing is fabricated with 50–125 µm vein heights and 100 µm corrugation heights. The solid veins and membrane were simultaneously formed and integrated by a single molding process. Employing a layered laser ablation technique, three-dimensional molds were created with 5 µm resolution in height. Safe demolding of the wing was achieved with a water-soluble sacrificial layer on the mold. Measured surface profiles of the wing matched those of the molds, demonstrating the high replication accuracy of this molding process. Using this process, the morphological features of insect wings can be replicated at-scale with high precision, enabling parametric experiments of the functional morphology of insect wings. This fabrication capability also makes it possible to create a variety of wing types for micro air vehicles on scales similar to insects.

  17. Astronauts McNair and Stewart prepare for reentry

    Science.gov (United States)

    1984-01-01

    Astronauts Ronald E. McNair and Robert L. Stewart prepare for the re-entry phase of the shuttle Challenger near the end of the 41-B mission. The are stationed behind the crew commander and pilot. Stewart is already wearing his helmet. McNair is stowing some of his gear.

  18. Death, dynamics and disorder: Terminating reentry in excitable ...

    Indian Academy of Sciences (India)

    Death, dynamics and disorder: Terminating reentry in excitable media by dynamically-induced ... ventricular tachycardia, often leading to death. This is typically treated by rapid stimula- tion from ... Note the non-conducting scar tissue (in black) occupying a significant portion of the ventricle. Pacing is usually applied via an ...

  19. International Study Transitions: Creating and Leading a Reentry Workshop.

    Science.gov (United States)

    Lerstrom, Alan C.

    Many American colleges and universities have developed successful programs to help prepare students for the culture shock associated with living and studying overseas, but have been less effective in aiding students as they return home and experience "reverse culture shock" or the problems associated with reentry. Culture and reentry…

  20. School Reentry for Children with Acquired Central Nervous Systems Injuries

    Science.gov (United States)

    Carney, Joan; Porter, Patricia

    2009-01-01

    Onset of acquired central nervous system (CNS) injury during the normal developmental process of childhood can have impact on cognitive, behavioral, and motor function. This alteration of function often necessitates special education programming, modifications, and accommodations in the education setting for successful school reentry. Special…

  1. Reentry Issues upon Returning from Study Abroad Programs

    Science.gov (United States)

    Wielkiewicz, Richard M.; Turkowski, Laura W.

    2010-01-01

    The impact of returning from studying abroad was surveyed in 669 college students. Students who studied abroad scored significantly higher on a Reentry Shock scale, reflecting skepticism toward U.S. culture, than those who did not. They were also more likely to consume alcohol. Study abroad had no detectable influence on students' romantic…

  2. A novel mechanism for emulating insect wing kinematics

    International Nuclear Information System (INIS)

    Seshadri, Pranay; Benedict, Moble; Chopra, Inderjit

    2012-01-01

    A novel dual-differential four-bar flapping mechanism that can accurately emulate insect wing kinematics in all three degrees of freedom (translation, rotation and stroke plane deviation) is developed. The mechanism is specifically designed to be simple and scalable such that it can be utilized on an insect-based flapping wing micro air vehicle. Kinematic formulations for the wing stroke position, pitch angle and coning angle for this model are derived from first principles and compared with a 3D simulation. A benchtop flapping mechanism based on this model was designed and built, which was also equipped with a balance for force measurements. 3D motion capture tests were conducted on this setup to demonstrate the capability of generating complex figure-of-eight flapping motions along with dynamic pitching. The dual-differential four-bar mechanism was implemented on a light-weight vehicle that demonstrated tethered hover. (paper)

  3. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings.

    Science.gov (United States)

    Wu, P; Stanford, B K; Sällström, E; Ukeiley, L; Ifju, P G

    2011-03-01

    Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.

  4. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings

    International Nuclear Information System (INIS)

    Wu, P; Stanford, B K; Ifju, P G; Saellstroem, E; Ukeiley, L

    2011-01-01

    Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.

  5. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings

    Energy Technology Data Exchange (ETDEWEB)

    Wu, P; Stanford, B K; Ifju, P G [Department of Mechanical and Aerospace Engineering, MAE-A 231, University of Florida, Gainesville, FL 32611 (United States); Saellstroem, E; Ukeiley, L, E-mail: diccidwp@ufl.edu [Department of Mechanical and Aerospace Engineering, University of Florida, Shalimar, FL 32579 (United States)

    2011-03-15

    Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.

  6. WINGS Data Release

    DEFF Research Database (Denmark)

    Moretti, A.; Poggianti, B. M.; Fasano, G.

    2014-01-01

    Context. To effectively investigate galaxy formation and evolution, it is of paramount importance to exploit homogeneous data for large samples of galaxies in different environments. Aims. The WIde-field Nearby Galaxy-cluster Survey (WINGS) project aim is to evaluate physical properties of galaxies...... in a complete sample of low redshift clusters to be used as reference sample for evolutionary studies. The WINGS survey is still ongoing and the original dataset will be enlarged with new observations. This paper presents the entire collection of WINGS measurements obtained so far. Methods. We decided to make......, and on the cluster redshift, reaching on average 90% at V ≲ 21.7. Near-infrared photometric catalogs for 26 (in K) and 19 (in J) clusters are part of the database and the number of sources is 962 344 in K and 628 813 in J. Here again the completeness depends on the data quality, but it is on average higher than 90...

  7. Numerical and Theoretical Considerations for the Design of the AVT-183 Diamond-Wing Experimental Investigations

    Science.gov (United States)

    Boelens, Okko J.; Luckring, James M.; Breitsamter, Christian; Hovelmann, Andreas; Knoth, Florian; Malloy, Donald J.; Deck, Sebatien

    2015-01-01

    A diamond-wing configuration has been developed to isolate and study blunt-leading edge vortex separation with both computations and experiments. The wing has been designed so that the results are relevant to a more complex Uninhabited Combat Air Vehicle concept known as SACCON. The numerical and theoretical development process for this diamond wing is presented, including a view toward planned wind tunnel experiments. This work was conducted under the NATO Science and Technology Organization, Applied Vehicle Technology panel. All information is in the public domain.

  8. Initial Experience With the Outback Catheter for Targeted Reentry During Subintimal Angioplasty of the Infragenicular Arteries.

    Science.gov (United States)

    Diamantopoulos, Athanasios; Santonocito, Serafino; Thulasidasan, Narayanan; Gkoutzios, Panos; Ahmed, Irfan; Zayed, Hany; Katsanos, Konstantinos

    2018-04-01

    To report use of the Outback reentry device for targeted distal reentry during subintimal recanalization of chronic total occlusions (CTOs) in the infragenicular arteries. During an 18-month period, the Outback device was applied in 10 patients (mean age 71.8±18.8 years; 8 men) to achieve reentry at the infragenicular segment following either unsuccessful spontaneous reentry after subintimal crossing of a CTO or when a targeted reentry was desired. The mean occlusion length was 117.5±101.0 mm. Technical (device) success, overall procedure success, and reentry accuracy are reported, along with any major or minor complications. The device was technically successful in achieving reentry in 9 of 10 cases; overall procedure success was achieved in 8 owing to heavy calcifications in a distal posterior tibial artery and a distal popliteal artery. The reentry accuracy was 10.8±14.6 mm. There were no major complications and only 3 minor sequelae, including 2 dissections and 1 small perforation; all were treated successfully with stenting. The Outback device has a high technical success rate in achieving targeted true lumen reentry in infragenicular subintimal angioplasty when spontaneous reentry is not possible or a targeted reentry is desirable.

  9. A Study on Re-entry Predictions of Uncontrolled Space Objects for Space Situational Awareness

    Science.gov (United States)

    Choi, Eun-Jung; Cho, Sungki; Lee, Deok-Jin; Kim, Siwoo; Jo, Jung Hyun

    2017-12-01

    The key risk analysis technologies for the re-entry of space objects into Earth’s atmosphere are divided into four categories: cataloguing and databases of the re-entry of space objects, lifetime and re-entry trajectory predictions, break-up models after re-entry and multiple debris distribution predictions, and ground impact probability models. In this study, we focused on re- entry prediction, including orbital lifetime assessments, for space situational awareness systems. Re-entry predictions are very difficult and are affected by various sources of uncertainty. In particular, during uncontrolled re-entry, large spacecraft may break into several pieces of debris, and the surviving fragments can be a significant hazard for persons and properties on the ground. In recent years, specific methods and procedures have been developed to provide clear information for predicting and analyzing the re-entry of space objects and for ground-risk assessments. Representative tools include object reentry survival analysis tool (ORSAT) and debris assessment software (DAS) developed by National Aeronautics and Space Administration (NASA), spacecraft atmospheric re-entry and aerothermal break-up (SCARAB) and debris risk assessment and mitigation analysis (DRAMA) developed by European Space Agency (ESA), and semi-analytic tool for end of life analysis (STELA) developed by Centre National d’Etudes Spatiales (CNES). In this study, various surveys of existing re-entry space objects are reviewed, and an efficient re-entry prediction technique is suggested based on STELA, the life-cycle analysis tool for satellites, and DRAMA, a re-entry analysis tool. To verify the proposed method, the re-entry of the Tiangong-1 Space Lab, which is expected to re-enter Earth’s atmosphere shortly, was simulated. Eventually, these results will provide a basis for space situational awareness risk analyses of the re-entry of space objects.

  10. Design and flight performance of hybrid underwater glider with controllable wings

    Directory of Open Access Journals (Sweden)

    Yanhui Wang

    2017-05-01

    Full Text Available Hybrid underwater glider combines motion modes of traditional autonomous underwater glider and those of autonomous underwater vehicles. Different motion modes need different flight performance, including flight efficiency, static stability, and maneuverability. Conventional hybrid underwater glider with fixed wings can’t achieve optimal flight performance in one flight mission demanding various motion modes. In this article, controllable wings for hybrid underwater glider Petrel II are designed. Angle of attack, sweep angle, and aspect ratio of controllable wings can be changed to adapt to different motion modes. Kinematics and dynamics models of Petrel II are established based on multibody theory. Motion simulations of Petrel II with different wing configurations are conducted in three motion modes, including glide motion, spiral motion, and horizontal turning motion. The simulation results show the impact of wing parameters on flight performance. Field trials demonstrate that the controllable wings can improve the flight performance.

  11. WHEN COMPASSION GROWS WINGS

    African Journals Online (AJOL)

    Nicky

    antiretroviral roll-out in full swing, the. WHEN COMPASSION GROWS WINGS. The free time and expertise given by its deeply committed core of professional volunteers. (including pilots) is the lifeblood of the operation. Red Cross Air Mercy Service volunteer, German national Dr Florian Funk, at the AMS Durban base.

  12. Twisted Winged Endoparasitoids

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 10. Twisted Winged Endoparasitoids - An Enigma for Entomologists. Alpana Mazumdar. General Article Volume 9 Issue 10 October 2004 pp 19-24. Fulltext. Click here to view fulltext PDF. Permanent link:

  13. F-15 RPRV Attached Under the Wing of the B-52 Mothership in Flight

    Science.gov (United States)

    1973-01-01

    -15 configuration allowed FRC engineers to test the mathematical model of the aircraft in an angle-of-attack range not previously examined in flight research. The basic airplane configuration proved to be resistant to departure from straight and level flight, hence to spins; however, the vehicle could be flown into a spin using a technique developed in the simulator. Data obtained during the first 26 flights gave researchers a better understanding of the spin characteristics of the full-scale fighter. Researchers later obtained spin data with the vehicle in other configurations at angles of attack as large as minus 70 degrees and plus 88 degrees. There were 35 flights of the 3/8-scale F-15s by the end of 1978 and 52 flights by mid-July of 1981. These included some in which the vehicle--redesignated the Spin Research Vehicle after it was modified from the basic F-15 configuration--evaluated the effects of an elongated nose and a wind-tunnel-designed nose strake (among other modifications) on the airplane's stall/spin characteristics. Results of flight research with these modifications indicated that the addition of the nose strake increased the vehicle's resistance to departure from the intended flight path, especially entrance into a spin. Large differential tail deflections, a tail chute, and a nose chute all proved effective as spin recovery techniques, although it was essential to release the nose chute once it had deflated in order to prevent an inadvertent reentry into a spin. Overall, remote piloting with the 3/8-scale F-15 provided high-quality data about spin characteristics. The SRV was about 23 and one-half feet long and had a 16-foot wing span.

  14. MEMS Based Micro Aerial Vehicles

    Science.gov (United States)

    Joshi, Niranjan; Köhler, Elof; Enoksson, Peter

    2016-10-01

    Designing a flapping wing insect robot requires understanding of insect flight mechanisms, wing kinematics and aerodynamic forces. These subsystems are interconnected and their dependence on one another affects the overall performance. Additionally it requires an artificial muscle like actuator and transmission to power the wings. Several kinds of actuators and mechanisms are candidates for this application with their own strengths and weaknesses. This article provides an overview of the insect scaled flight mechanism along with discussion of various methods to achieve the Micro Aerial Vehicle (MAV) flight. Ongoing projects in Chalmers is aimed at developing a low cost and low manufacturing time MAV. The MAV design considerations and design specifications are mentioned. The wings are manufactured using 3D printed carbon fiber and are under experimental study.

  15. Phasing of dragonfly wings can improve aerodynamic efficiency by removing swirl.

    Science.gov (United States)

    Usherwood, James R; Lehmann, Fritz-Olaf

    2008-11-06

    Dragonflies are dramatic, successful aerial predators, notable for their flight agility and endurance. Further, they are highly capable of low-speed, hovering and even backwards flight. While insects have repeatedly modified or reduced one pair of wings, or mechanically coupled their fore and hind wings, dragonflies and damselflies have maintained their distinctive, independently controllable, four-winged form for over 300Myr. Despite efforts at understanding the implications of flapping flight with two pairs of wings, previous studies have generally painted a rather disappointing picture: interaction between fore and hind wings reduces the lift compared with two pairs of wings operating in isolation. Here, we demonstrate with a mechanical model dragonfly that, despite presenting no advantage in terms of lift, flying with two pairs of wings can be highly effective at improving aerodynamic efficiency. This is achieved by recovering energy from the wake wasted as swirl in a manner analogous to coaxial contra-rotating helicopter rotors. With the appropriate fore-hind wing phasing, aerodynamic power requirements can be reduced up to 22 per cent compared with a single pair of wings, indicating one advantage of four-winged flying that may apply to both dragonflies and, in the future, biomimetic micro air vehicles.

  16. Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators

    International Nuclear Information System (INIS)

    Colorado, J; Barrientos, A; Rossi, C; Breuer, K S

    2012-01-01

    This paper presents the design of a bat-like micro aerial vehicle with actuated morphing wings. NiTi shape memory alloys (SMAs) acting as artificial biceps and triceps muscles are used for mimicking the morphing wing mechanism of the bat flight apparatus. Our objective is twofold. Firstly, we have implemented a control architecture that allows an accurate and fast SMA actuation. This control makes use of the electrical resistance measurements of SMAs to adjust morphing wing motions. Secondly, the feasibility of using SMA actuation technology is evaluated for the application at hand. To this purpose, experiments are conducted to analyze the control performance in terms of nominal and overloaded operation modes of the SMAs. This analysis includes: (i) inertial forces regarding the stretchable wing membrane and aerodynamic loads, and (ii) uncertainties due to impact of airflow conditions over the resistance–motion relationship of SMAs. With the proposed control, morphing actuation speed can be increased up to 2.5 Hz, being sufficient to generate lift forces at a cruising speed of 5 m s −1 . (paper)

  17. Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators.

    Science.gov (United States)

    Colorado, J; Barrientos, A; Rossi, C; Bahlman, J W; Breuer, K S

    2012-09-01

    This paper presents the design of a bat-like micro aerial vehicle with actuated morphing wings. NiTi shape memory alloys (SMAs) acting as artificial biceps and triceps muscles are used for mimicking the morphing wing mechanism of the bat flight apparatus. Our objective is twofold. Firstly, we have implemented a control architecture that allows an accurate and fast SMA actuation. This control makes use of the electrical resistance measurements of SMAs to adjust morphing wing motions. Secondly, the feasibility of using SMA actuation technology is evaluated for the application at hand. To this purpose, experiments are conducted to analyze the control performance in terms of nominal and overloaded operation modes of the SMAs. This analysis includes: (i) inertial forces regarding the stretchable wing membrane and aerodynamic loads, and (ii) uncertainties due to impact of airflow conditions over the resistance-motion relationship of SMAs. With the proposed control, morphing actuation speed can be increased up to 2.5 Hz, being sufficient to generate lift forces at a cruising speed of 5 m s(-1).

  18. The management of the MIR reentry in Italy

    Science.gov (United States)

    Anselmo, Luciano; Pardini, Carmen

    2002-11-01

    The paper presents a review of the management of the MIR deorbiting in Italy, with special emphasis on the role played by CNUCE, active in the field of reentry predictions for civil protection purposes since 1979. After a short historical introduction, the criteria used for the definition of potentially risky space objects are presented and discussed, together with the lessons learned during previous reentry campaigns. The activity carried out for MIR is then described in detail, highlighting the end products needed for the civil protection emergency planning. MIR was never declared a risk space object in Italy and only a limited alert status was activated, ready to switch to full emergency if needed. However, the event represented a useful training opportunity and a good example of international cooperation, paving the way for the future end-of-life disposal of large low earth spacecraft.

  19. Flow structure on a rotating wing undergoing deceleration to rest

    Science.gov (United States)

    Tudball Smith, Daniel; Rockwell, Donald; Sheridan, John

    2013-11-01

    Inspired by the behavior of small biological flyers and micro aerial Vehicles, this study experimentally addresses the flow structure on a low aspect ratio rotating wing at low Reynolds number. The study focuses on a wing decelerating to rest after rotating at constant velocity. The wing was set to a constant 45° angle of attack and, during the initial phase of the motion, accelerated to a constant velocity at its radius of gyration, which resulted in a Reynolds number of 1400 based on the chord length. Stereoscopic PIV was used to construct phase-averaged three-dimensional (volumetric) velocity fields that develop and relax throughout the deceleration and cessation of the wing motion. During gradual deceleration, the flow structure is maintained when normalised by the instantaneous velocity; the distinguishing feature is shedding of a trailing edge vortex that develops due to the deceleration. At higher deceleration rates to rest, the flow structure quickly degrades. Induced flow in the upstream direction along the surface of the wing causes detachment of the previously stable leading edge vortex; simultaneously, a trailing-edge vortex and the reoriented tip vortex form a co-rotating vortex pair, drawing flow downward away from the wing.

  20. Structure design of an innovative adaptive variable camber wing

    Directory of Open Access Journals (Sweden)

    Zhao An-Min

    2018-01-01

    Full Text Available In this paper, an innovative double rib sheet structure is proposed, which can replace the traditional rigid hinge joint with the surface contact. On the one hand, the variable camber wing structural design not only can improve the capacity to sustain more load but also will not increase the overall weight of the wing. On the other hand, it is a simple mechanical structure design to achieve the total wing camber change. Then the numerical simulation results show that the maximum stress at the connect of the wing rib is 88.2MPa, and the double ribs sheet engineering design meet the structural strength requirements. In addition, to make a fair comparison, the parameters of variable camber are fully referenced to the Talon Unmanned Aerial Vehicle (UAV. The results reveal that the total variable camber wing can further enhance aircraft flight efficiency by 29.4%. The design of the whole variable camber wing structure proposed in this paper has high engineering value and feasibility.

  1. Distributed Propulsion Vehicles

    Science.gov (United States)

    Kim, Hyun Dae

    2010-01-01

    Since the introduction of large jet-powered transport aircraft, the majority of these vehicles have been designed by placing thrust-generating engines either under the wings or on the fuselage to minimize aerodynamic interactions on the vehicle operation. However, advances in computational and experimental tools along with new technologies in materials, structures, and aircraft controls, etc. are enabling a high degree of integration of the airframe and propulsion system in aircraft design. The National Aeronautics and Space Administration (NASA) has been investigating a number of revolutionary distributed propulsion vehicle concepts to increase aircraft performance. The concept of distributed propulsion is to fully integrate a propulsion system within an airframe such that the aircraft takes full synergistic benefits of coupling of airframe aerodynamics and the propulsion thrust stream by distributing thrust using many propulsors on the airframe. Some of the concepts are based on the use of distributed jet flaps, distributed small multiple engines, gas-driven multi-fans, mechanically driven multifans, cross-flow fans, and electric fans driven by turboelectric generators. This paper describes some early concepts of the distributed propulsion vehicles and the current turboelectric distributed propulsion (TeDP) vehicle concepts being studied under the NASA s Subsonic Fixed Wing (SFW) Project to drastically reduce aircraft-related fuel burn, emissions, and noise by the year 2030 to 2035.

  2. Design of a hybrid rocket / inflatable wing UAV

    Science.gov (United States)

    Sudduth, Cory

    This paper discusses the design challenges and development of a UAV that transitions from a rocket, which allows the aircraft to reach a target altitude rapidly, and then deploys an inflatable wing from an enclosed shell in midflight to allow for loitering and surveillance. The wing deployment and transition is tested in static and dynamic environments, while the performance and stability of both the aircraft mode and rocket mode are examined analytically. An in-depth discussion of key components, including the design, analysis and testing, is also included. Designing an UAV that transitions from a high velocity rocket, to a slow velocity UAV provides many difficult and unique design challenges. For example, the incorporation of deployable wing technology into a full UAV system results in many design constraints. In this particular design inflatable wings are used to generate lift during aircraft mode, and the stabilizing fins for the main wing also acted as the fins for the vehicle during its rocket phase. This required the balancing of the two different vehicle configurations to ensure that the aircraft would be able to fly stably in both modes, and transition between them without catastrophic failure. Significant research, and testing went into the finding the best method of storing the inflatable wing, as well as finding the required inflation rate to minimize unsteady aerodynamic affects. Design work was also invested in the development of an inflation system, as it had to be highly reliable, and yet very light weight for use in this small UAV. This paper discusses how these design challenges were overcome, the development and testing of individual sub-components and how they are incorporated into the overall vehicle. The analysis that went into this UAV, as well as methods used to optimize the design in order to minimize weight and maximize the aircraft performance and loitering time is also discussed.

  3. Workforce re-entry for Japanese unemployed dental hygienists.

    Science.gov (United States)

    Usui, Y; Miura, H

    2015-02-01

    The aim of this study was to define the profile of unemployed dental hygienists who could be enticed to re-enter the workforce and the factors that could facilitate their re-entry into the dental field in Japan. The questionnaire was mailed with a postage-paid return envelope to a sample of 3095 licensed dental hygienists. A 50.4% response rate (S = 1477) was observed. The rate of working dental hygienists was 60.3% (n = 891), and of unemployed dental hygienists was 39.7% (n = 586). Of the latter, 31.9% (n = 187) stated intentions of returning to the workplace. The unemployed dental hygienists seeking employment were more often married and had more children, compared with working dental hygienists currently. This group also had significantly fewer total service years. Moreover, only 11.96% of them belonged to the Japan Dental Hygienists' Association, and 41.3% of those attended training workshops. According to their response, they perceived their top three major barriers to re-entry as 'lack sufficient dental hygiene skill', 'child rearing' and 'poor working atmosphere'. 'Flexibility in the work schedule' and 'location' were the most important factors for re-entry from their perspective. There were not many dental hygienists hoping to return to the dental field. The findings suggested that strategies to encourage non-practicing dental hygienists to re-entry should be emphasized in the areas of a flexible working atmosphere, easy access to information on how to return to practice and guidance on how to maintain professionalism during inactivity. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. RITD - Re-entry: Inflatable Technology Development in Russian Collaboration

    Science.gov (United States)

    Heilimo, J.; Harri, A.-M.; Aleksashkin, S.; Koryanov, V.; Arruego, I.; Schmidt, W.; Haukka, H.; Finchenko, V.; Martynov, M.; Ostresko, B.; Ponomarenko, A.; Kazakovtsev, V.; Martin, S.; Siili, T.

    2014-04-01

    A new generation of inflatable Entry, Descent and Landing System (EDLS) for Mars has been developed. It is used in both the initial atmospheric entry and atmospheric descent before the semi-hard impact of the penetrator into Martian surface. The EDLS applicability to Earth's atmosphere is studied by the EU/RITD [1] project. Project focuses on the analysis and tests of the transonic behaviour of this compact and light weight payload entry system at the Earth re-entry.

  5. Impact of Vehicle Flexibility on IRVE-II Flight Dynamics

    Science.gov (United States)

    Bose, David M.; Toniolo, Matthew D.; Cheatwood, F. M.; Hughes, Stephen J.; Dillman, Robert A.

    2011-01-01

    The Inflatable Re-entry Vehicle Experiment II (IRVE-II) successfully launched from Wallops Flight Facility (WFF) on August 17, 2009. The primary objectives of this flight test were to demonstrate inflation and re-entry survivability, assess the thermal and drag performance of the reentry vehicle, and to collect flight data for refining pre-flight design and analysis tools. Post-flight analysis including trajectory reconstruction outlined in O Keefe3 demonstrated that the IRVE-II Research Vehicle (RV) met mission objectives but also identified a few anomalies of interest to flight dynamics engineers. Most notable of these anomalies was high normal acceleration during the re-entry pressure pulse. Deflection of the inflatable aeroshell during the pressure pulse was evident in flight video and identified as the likely cause of the anomaly. This paper provides a summary of further post-flight analysis with particular attention to the impact of aeroshell flexibility on flight dynamics and the reconciliation of flight performance with pre-flight models. Independent methods for estimating the magnitude of the deflection of the aeroshell experienced on IRVE-II are discussed. The use of the results to refine models for pre-flight prediction of vehicle performance is then described.

  6. Elastically Shaped Wing Optimization and Aircraft Concept for Improved Cruise Efficiency

    Science.gov (United States)

    Nguyen, Nhan; Trinh, Khanh; Reynolds, Kevin; Kless, James; Aftosmis, Michael; Urnes, James, Sr.; Ippolito, Corey

    2013-01-01

    This paper presents the findings of a study conducted tn 2010 by the NASA Innovation Fund Award project entitled "Elastically Shaped Future Air Vehicle Concept". The study presents three themes in support of meeting national and global aviation challenges of reducing fuel burn for present and future aviation systems. The first theme addresses the drag reduction goal through innovative vehicle configurations via non-planar wing optimization. Two wing candidate concepts have been identified from the wing optimization: a drooped wing shape and an inflected wing shape. The drooped wing shape is a truly biologically inspired wing concept that mimics a seagull wing and could achieve about 5% to 6% drag reduction, which is aerodynamically significant. From a practical perspective, this concept would require new radical changes to the current aircraft development capabilities for new vehicles with futuristic-looking wings such as this concept. The inflected wing concepts could achieve between 3% to 4% drag reduction. While the drag reduction benefit may be less, the inflected-wing concept could have a near-term impact since this concept could be developed within the current aircraft development capabilities. The second theme addresses the drag reduction goal through a new concept of elastic wing shaping control. By aeroelastically tailoring the wing shape with active control to maintain optimal aerodynamics, a significant drag reduction benefit could be realized. A significant reduction in fuel burn for long-range cruise from elastic wing shaping control could be realized. To realize the potential of the elastic wing shaping control concept, the third theme emerges that addresses the drag reduction goal through a new aerodynamic control effector called a variable camber continuous trailing edge flap. Conventional aerodynamic control surfaces are discrete independent surfaces that cause geometric discontinuities at the trailing edge region. These discontinuities promote

  7. Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies.

    Science.gov (United States)

    Zheng, Lingxiao; Hedrick, Tyson L; Mittal, Rajat

    2013-01-01

    Insect wings can undergo significant chordwise (camber) as well as spanwise (twist) deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui) in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW) models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW) outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW) model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed.

  8. Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies.

    Directory of Open Access Journals (Sweden)

    Lingxiao Zheng

    Full Text Available Insect wings can undergo significant chordwise (camber as well as spanwise (twist deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed.

  9. Time-Varying Wing-Twist Improves Aerodynamic Efficiency of Forward Flight in Butterflies

    Science.gov (United States)

    Zheng, Lingxiao; Hedrick, Tyson L.; Mittal, Rajat

    2013-01-01

    Insect wings can undergo significant chordwise (camber) as well as spanwise (twist) deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui) in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW) models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW) outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW) model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed. PMID:23341923

  10. X-48B Blended Wing Body Ground to Flight Correlation Update

    Science.gov (United States)

    Vicroy, Dan

    2011-01-01

    The program objectives are: (1) Assess stability & control characteristics of a Blended Wing Body (BWB) class vehicle in free-flight conditions, (2) Assess flight control algorithms designed to provide desired flight characteristics, and (3) Evaluate prediction and test methods for BWB class vehicles.

  11. Low Aspect-Ratio Wings for Wing-Ships

    DEFF Research Database (Denmark)

    Filippone, Antonino; Selig, M.

    1998-01-01

    Flying on ground poses technical and aerodynamical challenges. The requirements for compactness, efficiency, manouverability, off-design operation,open new areas of investigations in the fieldof aerodynamic analysis and design. A review ofthe characteristics of low-aspect ratio wings, in- and out...... of ground, is presented. It is shownthat the performance of such wings is generally inferior to that of slender wings, although in ground placement can yield substantial improvements in the aerodynamic efficiency....

  12. Reentry safety for the Topaz II Space Reactor: Issues and analyses

    Energy Technology Data Exchange (ETDEWEB)

    Connell, L.W.; Trost, L.C.

    1994-03-01

    This report documents the reentry safety analyses conducted for the TOPAZ II Nuclear Electric Propulsion Space Test Program (NEPSTP). Scoping calculations were performed on the reentry aerothermal breakup and ground footprint of reactor core debris. The calculations were used to assess the risks associated with radiologically cold reentry accidents and to determine if constraints should be placed on the core configuration for such accidents. Three risk factors were considered: inadvertent criticality upon reentry impact, atmospheric dispersal of U-235 fuel, and the Special Nuclear Material Safeguards risks. Results indicate that the risks associated with cold reentry are very low regardless of the core configuration. Core configuration constraints were therefore not established for radiologically cold reentry accidents.

  13. Reentry safety for the Topaz II Space Reactor: Issues and analyses

    International Nuclear Information System (INIS)

    Connell, L.W.; Trost, L.C.

    1994-03-01

    This report documents the reentry safety analyses conducted for the TOPAZ II Nuclear Electric Propulsion Space Test Program (NEPSTP). Scoping calculations were performed on the reentry aerothermal breakup and ground footprint of reactor core debris. The calculations were used to assess the risks associated with radiologically cold reentry accidents and to determine if constraints should be placed on the core configuration for such accidents. Three risk factors were considered: inadvertent criticality upon reentry impact, atmospheric dispersal of U-235 fuel, and the Special Nuclear Material Safeguards risks. Results indicate that the risks associated with cold reentry are very low regardless of the core configuration. Core configuration constraints were therefore not established for radiologically cold reentry accidents

  14. Comparative Analysis of Uninhibited and Constrained Avian Wing Aerodynamics

    Science.gov (United States)

    Cox, Jordan A.

    The flight of birds has intrigued and motivated man for many years. Bird flight served as the primary inspiration of flying machines developed by Leonardo Da Vinci, Otto Lilienthal, and even the Wright brothers. Avian flight has once again drawn the attention of the scientific community as unmanned aerial vehicles (UAV) are not only becoming more popular, but smaller. Birds are once again influencing the designs of aircraft. Small UAVs operating within flight conditions and low Reynolds numbers common to birds are not yet capable of the high levels of control and agility that birds display with ease. Many researchers believe the potential to improve small UAV performance can be obtained by applying features common to birds such as feathers and flapping flight to small UAVs. Although the effects of feathers on a wing have received some attention, the effects of localized transient feather motion and surface geometry on the flight performance of a wing have been largely overlooked. In this research, the effects of freely moving feathers on a preserved red tailed hawk wing were studied. A series of experiments were conducted to measure the aerodynamic forces on a hawk wing with varying levels of feather movement permitted. Angle of attack and air speed were varied within the natural flight envelope of the hawk. Subsequent identical tests were performed with the feather motion constrained through the use of externally-applied surface treatments. Additional tests involved the study of an absolutely fixed geometry mold-and-cast wing model of the original bird wing. Final tests were also performed after applying surface coatings to the cast wing. High speed videos taken during tests revealed the extent of the feather movement between wing models. Images of the microscopic surface structure of each wing model were analyzed to establish variations in surface geometry between models. Recorded aerodynamic forces were then compared to the known feather motion and surface

  15. Foster Care Reentry: A survival analysis assessing differences across permanency type.

    Science.gov (United States)

    Goering, Emily Smith; Shaw, Terry V

    2017-06-01

    Foster care reentry is an important factor for evaluating the overall success of permanency. Rates of reentry are typically only measured for 12-months and are often evaluated only for children who exit foster care to reunification and not across exit types, also known as 'permanency types'. This study examined the odds of reentry across multiple common permanency types for a cohort of 8107 children who achieved permanency between 2009 and 2013. Overall, 14% of children reentered care within 18-months with an average time to reentry of 6.36 months. A Kaplan-Meier survival analysis was used to assess differences in reentry across permanency types (including reunification, relative guardianship and non-relative guardianship). Children who achieved guardianship with kin had the lowest odds of reentry overall, followed by guardianship with non-kin, and reunification with family of origin. Children reunifying against the recommendations of Children and Family Services had the highest odds of reentry. A Cox regression survival analysis was conducted to assess odds of reentry across permanency type while controlling for demographics, services, and other risk factors. In the final model, only permanency type and cumulative risk were found to have a statistically significant impact on odds of reentry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Flow Measurements of a Plunging Wing in Unsteady Environment

    Science.gov (United States)

    Wengel, Jesse; Nathan, Rungun; Cheng, Bo; Eslam-Panah, Azar

    2017-11-01

    Despite the great progress in their design and control, Unmanned Aerial Vehicles (UAVs) are tremendously troubled while flying in turbulent environments, which are common in the lower atmospheric boundary layer (ABL). A nominally 2D plunging wing was developed and tested in the presence of unsteady wake to investigate the effect of the flow disturbances on vorticity fields. The experiments were conducted in a water channel facility with test section width of 0.76 m, and a water depth of 0.6 m. The unsteady wake in the form of von Kármán Vortex Street was generated by a cylinder located upstream of the plunging wing. The plunge amplitude and frequency of the oscillation were adjusted to bracket the range of Strouhal numbers relevant to the biological locomotion (0.25PIV) was employed to quantitatively study the effect of unsteady wake on the flow measurements of the plunging wing.

  17. The efficacy of family reunification practices: reentry rates and correlates of reentry for abused and neglected children reunited with their families.

    Science.gov (United States)

    Terling, T

    1999-12-01

    Since the 1980s Child Protective Services has increasingly relied on family reunification for abused/neglected children rather than long term foster care or adoption. While family reunification practices are controversial, little research is available to inform the debate. This research explores the efficacy of these practices. This study utilizes two CPS data sources and both quantitative and qualitative methodologies to identify reentry rates and correlates of reentry for abused and neglected children returned to their families by CPS. System reentry due to additional maltreatment is considerable. Thirty-seven percent of the children reunited with their families reenter the system within 3 1/2 years. Correlates of reentry are identified as; abuse type, CPS history, parental competency, race, criminal history, substance abuse, and social support. Notably, assessments of risk made by caseworkers are found to be unrelated to reentry. The high reentry rate and the limitations of current risk assessment procedures suggest that CPS family reunification practices have not been entirely successful. The identification of specific risks of reentry, such as those revealed in this study, will be helpful in assessing risk on cases. In addition, future studies should explore the systemic deficiencies that contribute to the additional maltreatment that occurs for a sizable proportion of the children served by the system.

  18. Autonomous Aerodynamic Control of Micro Air Vehicles

    Science.gov (United States)

    2009-10-19

    29 Design of the Air Force Research Laboratory Micro Aerial Vehicle Research Configuration Kelly Stewart*, Jeffrey Wagener †, and Gregg Abate‡ Air...Development and Initial Flight Tests of a Single-Jointed Articulated-Wing Micro Air Vehicle Kelly C. Stewart*, Ken Blackburn†, Jeffrey Wagener ‡, Lt... Wagener , J., Abate, G., and Salichon, M., “Design of the Air Force Research Laboratory Micro Aerial Vehicle Research Configuration,” AIAA 45th Aerospace

  19. Reentry thermal protection from Pioneer F RTG insulation material

    Science.gov (United States)

    Vorreiter, J. W.

    1972-01-01

    Ablation tests were performed on the insulation material used in the Pioneer F radioisotope thermoelectric generator (RTG) in the Ames Arc-Heated Planetary-Gas Wind Tunnel. Test results indicate that the material, trade name Min-K 1301, should experience little ablation for heat transfer rates below 40 BTU/sq ft-sec. If the current design were to be changed so that the various pieces of Min-K were fastened or interlocked together the total amount of heat delivered to the RTG heat source during an earth orbital decay reentry would be reduced by at least 22.7%.

  20. Successful reentry: the perspective of private correctional health care providers.

    Science.gov (United States)

    Mellow, Jeff; Greifinger, Robert B

    2007-01-01

    Due to public health and safety concerns, discharge planning is increasingly prioritized by correctional systems when preparing prisoners for their reintegration into the community. Annually, private correctional health care vendors provide $3 billion of health care services to inmates in correctional facilities throughout the U.S., but rarely are contracted to provide transitional health care. A discussion with 12 people representing five private nationwide correctional health care providers highlighted the barriers they face when implementing transitional health care and what templates of services health care companies could provide to state and counties to enhance the reentry process.

  1. DAST in Flight just after Structural Failure of Right Wing

    Science.gov (United States)

    1980-01-01

    Two BQM-34 Firebee II drones were modified with supercritical airfoils, called the Aeroelastic Research Wing (ARW), for the Drones for Aerodynamic and Structural Testing (DAST) program, which ran from 1977 to 1983. This photo, taken 12 June 1980, shows the DAST-1 (Serial #72-1557) immediately after it lost its right wing after suffering severe wing flutter. The vehicle crashed near Cuddeback Dry Lake. The Firebee II was selected for the DAST program because its standard wing could be removed and replaced by a supercritical wing. The project's digital flutter suppression system was intended to allow lighter wing structures, which would translate into better fuel economy for airliners. Because the DAST vehicles were flown intentionally at speeds and altitudes that would cause flutter, the program anticipated that crashes might occur. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for

  2. Getting Started with PEAs-Based Flapping-Wing Mechanisms for Micro Aerial Systems

    Directory of Open Access Journals (Sweden)

    José Carlos Durán Hernández

    2016-05-01

    Full Text Available This paper introduces recent advances on flapping-wing Micro and Nano Aerial Vehicles (MAVs and NAVs based on Piezoelectric Actuators (PEA. Therefore, this work provides essential information to address the development of such bio-inspired aerial robots. PEA are commonly used in micro-robotics and precise positioning applications (e.g., micro-positioning and micro-manipulation, whereas within the Unmanned Aerial Vehicles (UAVs domain, motors are the classical actuators used for rotary or fixed-wing configurations. Therefore, we consider it pertinent to provide essential information regarding the modeling and control of piezoelectric cantilever actuators to accelerate early design and development stages of aerial microrobots based on flapping-wing systems. In addition, the equations describing the aerodynamic behavior of a flapping-wing configuration are presented.

  3. Numerical Analysis of the Influence of Fibre Orientations in a two-layered Biomimetic Flapping Wing

    Directory of Open Access Journals (Sweden)

    Rayhan Saiaf Bin

    2017-01-01

    Full Text Available A numerical study was carried out to investigate the effects of fibre orientation angles in an adopted biomimetic flapping wing having two-layered Carbon/Epoxy Composite T300/5208. The purpose of this paper is to understand how different orientation angles with different combinations affect the stresses of a flapping-wing. One flapping cycle was divided into twelve segments and both maximum stress and deformation were calculated for all the segments. The results revealed that, the maximum stress was produced in [0/-45] combination, where the least was found for [45/0]. For all the simulated wings, deformation was found less than 1.8 mm. ANSYS DesignModeler and Static Structural was used to design and perform structural analysis. The findings are helpful in answering why insect wings are so impeccable, thus providing a possibility of improving the design of flapping-wing aerial vehicles.

  4. Video change detection for fixed wing UAVs

    Science.gov (United States)

    Bartelsen, Jan; Müller, Thomas; Ring, Jochen; Mück, Klaus; Brüstle, Stefan; Erdnüß, Bastian; Lutz, Bastian; Herbst, Theresa

    2017-10-01

    In this paper we proceed the work of Bartelsen et al.1 We present the draft of a process chain for an image based change detection which is designed for videos acquired by fixed wing unmanned aerial vehicles (UAVs). From our point of view, automatic video change detection for aerial images can be useful to recognize functional activities which are typically caused by the deployment of improvised explosive devices (IEDs), e.g. excavations, skid marks, footprints, left-behind tooling equipment, and marker stones. Furthermore, in case of natural disasters, like flooding, imminent danger can be recognized quickly. Due to the necessary flight range, we concentrate on fixed wing UAVs. Automatic change detection can be reduced to a comparatively simple photogrammetric problem when the perspective change between the "before" and "after" image sets is kept as small as possible. Therefore, the aerial image acquisition demands a mission planning with a clear purpose including flight path and sensor configuration. While the latter can be enabled simply by a fixed and meaningful adjustment of the camera, ensuring a small perspective change for "before" and "after" videos acquired by fixed wing UAVs is a challenging problem. Concerning this matter, we have performed tests with an advanced commercial off the shelf (COTS) system which comprises a differential GPS and autopilot system estimating the repetition accuracy of its trajectory. Although several similar approaches have been presented,23 as far as we are able to judge, the limits for this important issue are not estimated so far. Furthermore, we design a process chain to enable the practical utilization of video change detection. It consists of a front-end of a database to handle large amounts of video data, an image processing and change detection implementation, and the visualization of the results. We apply our process chain on the real video data acquired by the advanced COTS fixed wing UAV and synthetic data. For the

  5. Pegasus Rocket Wing and PHYSX Glove Undergoes Stress Loads Testing

    Science.gov (United States)

    1997-01-01

    The Pegasus Hypersonic Experiment (PHYSX) Project's Pegasus rocket wing with attached PHYSX glove rests after load-tests at Scaled Composites, Inc., in Mojave, California, in January 1997. Technicians slowly filled water bags beneath the wing, to create the pressure, or 'wing-loading,' required to determine whether the wing could withstand its design limit for stress. The wing sits in a wooden triangular frame which serves as the test-rig, mounted to the floor atop the waterbags. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially; later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research

  6. Aeroelastic Wing Shaping Using Distributed Propulsion

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor); Reynolds, Kevin Wayne (Inventor); Ting, Eric B. (Inventor)

    2017-01-01

    An aircraft has wings configured to twist during flight. Inboard and outboard propulsion devices, such as turbofans or other propulsors, are connected to each wing, and are spaced along the wing span. A flight controller independently controls thrust of the inboard and outboard propulsion devices to significantly change flight dynamics, including changing thrust of outboard propulsion devices to twist the wing, and to differentially apply thrust on each wing to change yaw and other aspects of the aircraft during various stages of a flight mission. One or more generators can be positioned upon the wing to provide power for propulsion devices on the same wing, and on an opposite wing.

  7. Butterflies regulate wing temperatures using radiative cooling

    Science.gov (United States)

    Tsai, Cheng-Chia; Shi, Norman Nan; Ren, Crystal; Pelaez, Julianne; Bernard, Gary D.; Yu, Nanfang; Pierce, Naomi

    2017-09-01

    Butterfly wings are live organs embedded with multiple sensory neurons and, in some species, with pheromoneproducing cells. The proper function of butterfly wings demands a suitable temperature range, but the wings can overheat quickly in the sun due to their small thermal capacity. We developed an infrared technique to map butterfly wing temperatures and discovered that despite the wings' diverse visible colors, regions of wings that contain live cells are the coolest, resulting from the thickness of the wings and scale nanostructures. We also demonstrated that butterflies use behavioral traits to prevent overheating of their wings.

  8. Investigation of asymmetry of vortex flow over slender delta wings

    Science.gov (United States)

    Atashbaz, Ghasem

    Vortex flow, a major area of interest in fluid mechanics, is widespread in nature and in many man-made fluid mechanical devices. It can create havoc as cyclones or tornadoes or have significant implications in the performance of turbo-fluid machines or supersonic vehicles and so forth. Asymmetric vortices can cause a loss of lift and increase in rolling moment which can significantly affect wing stability and control. Up until the early nineties, it was generally believed that vortex asymmetry was the result of vortex interactions due to the close proximity of vortices over slender delta wings. However, some recent studies have thrown considerable doubt on the validity of this hypothesis. As a result, wind tunnel investigations were conducted on a series of nine delta wing planforms with sharp and round leading edges to examine the occurrence of vortex asymmetry at different angles of attack and sideslip. The study included surface oil and laser light sheet flow visualization in addition to surface pressure and hot-wire velocity measurements under static conditions. The effects of incidence, sideslip and sweep angles as well as Reynolds number variations were investigated. In this study, it was found that the effect of apex and leading edge shape played an important role in vortex asymmetry generation at high angle of attack. Vortex asymmetry was not observed over slender sharp leading edge delta wings due to the separation point being fixed at the sharp leading edge. Experimental results for these wings showed that the vortices do not impinge on one another because they do not get any closer beyond a certain value of angle of attack. Thus vortex asymmetry was not generated. However, significant vortex asymmetry was observed for round leading-edged delta wings. Asymmetric separation positions over the round leading edge was the result of laminar/turbulent transition which caused vortex asymmetry on these delta wing configurations. Sideslip angle and vortex

  9. Stiffness of desiccating insect wings

    Energy Technology Data Exchange (ETDEWEB)

    Mengesha, T E; Vallance, R R [Department of Mechanical Engineering, The George Washington University, 738 Phillips Hall, 801 22nd St NW, Washington, DC 20052 (United States); Mittal, R, E-mail: vallance@gwu.edu [Department of Mechanical Engineering, Johns Hopkins University, 126 Latrobe Hall, 3400 N Charles Street, Baltimore, MD 21218 (United States)

    2011-03-15

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 {mu}N mm{sup -1} h{sup -1}. For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm{sup -1}. (communication)

  10. Comments on prospects of fully adaptive aircraft wings

    Science.gov (United States)

    Inman, Daniel J.; Gern, Frank H.; Robertshaw, Harry H.; Kapania, Rakesh K.; Pettit, Greg; Natarajan, Anand; Sulaeman, Erwin

    2001-06-01

    New generations of highly maneuverable aircraft, such as Uninhabited Combat Air Vehicles (UCAV) or Micro Air Vehicles (MAV) are likely to feature very flexible lifting surfaces. To enhance stealth properties and performance, the replacement of hinged control surfaces by smart wings and morphing airfoils is investigated. This requires a fundamental understanding of the interaction between aerodynamics, structures, and control systems. The goal is to build a model consistent with distributed control and to exercise this model to determine the progress possible in terms of flight control (lift, drag and maneuver performance) with an adaptive wing. Different modeling levels are examined and combined with a variety of distributed control approaches to determine what types of maneuvers and flight regimes may be possible. This paper describes the current progress of the project and highlights some recent findings.

  11. AERODYNAMICS OF WING TIP SAILS

    Directory of Open Access Journals (Sweden)

    MUSHTAK AL-ATABI

    2006-06-01

    Full Text Available Observers have always been fascinated by soaring birds. An interesting feature of these birds is the existence of few feathers extending from the tip of the wing. In this paper, small lifting surfaces were fitted to the tip of a NACA0012 wing in a fashion similar to that of wing tip feathers. Experimental measurements of induced drag, longitudinal static stability and trailing vortex structure were obtained.The tests showed that adding wing tip surfaces (sails decreased the induced drag factor and increased the longitudinal static stability. Results identified two discrete appositely rotated tip vortices and showed the ability of wing tip surfaces to break them down and to diffuse them.

  12. The ESA/NASA Multi-Aircraft ATV-1 Re-Entry Campaign: Analysis of Airborne Intensified Video Observations from the NASA/JSC Experiment

    Science.gov (United States)

    Barker, Ed; Maley, Paul; Mulrooney, Mark; Beaulieu, Kevin

    2009-01-01

    In September 2008, a joint ESA/NASA multi-instrument airborne observing campaign was conducted over the Southern Pacific ocean. The objective was the acquisition of data to support detailed atmospheric re-entry analysis for the first flight of the European Automated Transfer Vehicle (ATV)-1. Skilled observers were deployed aboard two aircraft which were flown at 12.8 km altitude within visible range of the ATV-1 re-entry zone. The observers operated a suite of instruments with low-light-level detection sensitivity including still cameras, high speed and 30 fps video cameras, and spectrographs. The collected data has provided valuable information regarding the dynamic time evolution of the ATV-1 re-entry fragmentation. Specifically, the data has satisfied the primary mission objective of recording the explosion of ATV-1's primary fuel tank and thereby validating predictions regarding the tanks demise and the altitude of its occurrence. Furthermore, the data contains the brightness and trajectories of several hundred ATV-1 fragments. It is the analysis of these properties, as recorded by the particular instrument set sponsored by NASA/Johnson Space Center, which we present here.

  13. Improved Chicken Swarm Optimization Method for Reentry Trajectory Optimization

    Directory of Open Access Journals (Sweden)

    Yu Wu

    2018-01-01

    Full Text Available Reentry trajectory optimization has been researched as a popular topic because of its wide applications in both military and civilian use. It is a challenging problem owing to its strong nonlinearity in motion equations and constraints. Besides, it is a high-dimensional optimization problem. In this paper, an improved chicken swarm optimization (ICSO method is proposed considering that the chicken swarm optimization (CSO method is easy to fall into local optimum when solving high-dimensional optimization problem. Firstly, the model used in this study is described, including its characteristic, the nonlinear constraints, and cost function. Then, by introducing the crossover operator, the principles and the advantages of the ICSO algorithm are explained. Finally, the ICSO method solving the reentry trajectory optimization problem is proposed. The control variables are discretized at a set of Chebyshev collocation points, and the angle of attack is set to fit with the flight velocity to make the optimization efficient. Based on those operations, the process of ICSO method is depicted. Experiments are conducted using five algorithms under different indexes, and the superiority of the proposed ICSO algorithm is demonstrated. Another group of experiments are carried out to investigate the influence of hen percentage on the algorithm’s performance.

  14. Optimal Earth's reentry disposal of the Galileo constellation

    Science.gov (United States)

    Armellin, Roberto; San-Juan, Juan F.

    2018-02-01

    Nowadays there is international consensus that space activities must be managed to minimize debris generation and risk. The paper presents a method for the end-of-life (EoL) disposal of spacecraft in Medium Earth Orbit (MEO). The problem is formulated as a multiobjective optimisation one, which is solved with an evolutionary algorithm. An impulsive manoeuvre is optimised to reenter the spacecraft in Earth's atmosphere within 100 years. Pareto optimal solutions are obtained using the manoeuvre Δv and the time-to-reentry as objective functions to be minimised. To explore at the best the search space a semi-analytical orbit propagator, which can propagate an orbit for 100 years in few seconds, is adopted. An in-depth analysis of the results is carried out to understand the conditions leading to a fast reentry with minimum propellant. For this aim a new way of representing the disposal solutions is introduced. With a single 2D plot we are able to fully describe the time evolution of all the relevant orbital parameters as well as identify the conditions that enables the eccentricity build-up. The EoL disposal of the Galileo constellation is used as test case.

  15. Identities, Education and Reentry: Performative Spaces and Enclosures

    Directory of Open Access Journals (Sweden)

    Randall Wright

    2014-10-01

    Full Text Available This is part one of a two-part interdisciplinary paper that examines the various forces (discourses and institutional processes that shape prisoner-student identities. Discourses of officers from a correctional website serve as a limited, single case study of discourses that ascribe dehumanized, stigmatized identities to "the prisoner." Two critical concepts, performative spaces and identity enclosures, are purposed as potential critical, emancipatory terms to explore the prisoner-student identity work that occurs in schools and elsewhere in prison. This paper is guided by the effort to assist teachers to act as transformative intellectuals in prisons and closed-custody settings by becoming more aware of the multilayered contexts--the politics of location--that undergird their work. Seeing the "bigger picture" has implications for how and what educators teach in prison settings and, perhaps, why education works to facilitate reentry. This paper is grounded in normalization theory. Normalization theorists believe prisons can facilitate reentry when they mirror important dimensions of outside life. The performance of multiple, contextualized identities, considered here and examined in more detail in a forthcoming article, serves as an example of how educators mirror "normal" life by facilitating the performance of different roles for prisoners on the inside.

  16. THE AERODYNAMIC ANALYSIS OF THE PROFILES FOR FLYING WINGS

    Directory of Open Access Journals (Sweden)

    Vasile PRISACARIU

    2013-01-01

    Full Text Available The possibility of using an un-piloted aerial vector is determined by the aerodynamic characteristics and performances. The design for a tailless unmanned aerial vehicles starts from defining the aerial vector mission and implies o series of geometrical and aerodynamic aspects for stability. This article proposes to remark the aerodynamic characteristics of three profiles used at flying wing airship through 2D software analysis.

  17. Recidivism among Participants of a Reentry Program for Prisoners Released without Supervision

    Science.gov (United States)

    Wikoff, Nora; Linhorst, Donald M.; Morani, Nicole

    2012-01-01

    As higher numbers of individuals are released from prison and rejoin society, reentry programs can help former offenders reintegrate into society without continuing to engage in crime. This quasi-experimental study examined whether participation in reentry programming was associated with reduced recidivism among offenders who were no longer under…

  18. A Randomized Trial of a Multimodal Community-Based Prisoner Reentry Program Emphasizing Substance Abuse Treatment

    Science.gov (United States)

    Grommon, Eric; Davidson, William S., II; Bynum, Timothy S.

    2013-01-01

    Prisoner reentry programs continue to be developed and implemented to ease the process of transition into the community and to curtail fiscal pressures. This study describes and provides relapse and recidivism outcome findings related to a randomized trial evaluating a multimodal, community-based reentry program that prioritized substance abuse…

  19. 75 FR 22813 - Guidance for Industry: Requalification Method for Reentry of Blood Donors Deferred Because of...

    Science.gov (United States)

    2010-04-30

    ... blood components intended for transfusion, with recommendations for a requalification method or process...] Guidance for Industry: Requalification Method for Reentry of Blood Donors Deferred Because of Reactive Test... availability of a document entitled ``Guidance for Industry: Requalification Method for Reentry of Blood Donors...

  20. Socio-Economic status of parents as a correlate of re-entry of girls ...

    African Journals Online (AJOL)

    economic status (SES) and re-entry of girls into school in Edo State, Nigeria. One research question and one hypothesis were formulated for the study. Two research instruments, the “Socio-Economic Status of Parents” and the “Reentry into ...

  1. Re-Thinking Re-Entry: New Approaches to Supporting Students after Study Abroad

    Science.gov (United States)

    Brubaker, Cate

    2017-01-01

    While participation in study abroad continues to increase, and both pre-departure and in-country support and interventions have become more robust, the re-entry experience after a program ends still typically takes a back seat to other priorities. Consequently, most students are left to navigate the re-entry transition on their own. This article…

  2. Flight Testing of Novel Compliant Spines for Passive Wing Morphing on Ornithopters

    Science.gov (United States)

    Wissa, Aimy; Guerreiro, Nelson; Grauer, Jared; Altenbuchner, Cornelia; Hubbard, James E., Jr.; Tummala, Yashwanth; Frecker, Mary; Roberts, Richard

    2013-01-01

    Unmanned Aerial Vehicles (UAVs) are proliferating in both the civil and military markets. Flapping wing UAVs, or ornithopters, have the potential to combine the agility and maneuverability of rotary wing aircraft with excellent performance in low Reynolds number flight regimes. The purpose of this paper is to present new free flight experimental results for an ornithopter equipped with one degree of freedom (1DOF) compliant spines that were designed and optimized in terms of mass, maximum von-Mises stress, and desired wing bending deflections. The spines were inserted in an experimental ornithopter wing spar in order to achieve a set of desired kinematics during the up and down strokes of a flapping cycle. The ornithopter was flown at Wright Patterson Air Force Base in the Air Force Research Laboratory Small Unmanned Air Systems (SUAS) indoor flight facility. Vicon motion tracking cameras were used to track the motion of the vehicle for five different wing configurations. The effect of the presence of the compliant spine on wing kinematics and leading edge spar deflection during flight is presented. Results show that the ornithopter with the compliant spine inserted in its wing reduced the body acceleration during the upstroke which translates into overall lift gains.

  3. Fracture Mechanics Analyses of the Slip-Side Joggle Regions of Wing-Leading Edge Panels

    Science.gov (United States)

    Raju, Ivatury S.; Knight, Norman F., Jr.; Song, Kyongchan; Phillips, Dawn R.

    2010-01-01

    The Space Shuttle Orbiter wing comprises of 22 leading edge panels on each side of the wing. These panels are part of the thermal protection system that protects the Orbiter wings from extreme heating that take place on the reentry in to the earth atmosphere. On some panels that experience extreme heating, liberation of silicon carbon (SiC) coating was observed on the slip side regions of the panels. Global structural and local fracture mechanics analyses were performed on these panels as a part of the root cause investigation of this coating liberation anomaly. The wing-leading-edge reinforced carbon-carbon (RCC) panels, Panel 9, T-seal 10, and Panel 10, are shown in Figure 1 and the progression of the stress analysis models is presented in Figure 2. The global structural analyses showed minimal interaction between adjacent panels and the T-seal that bridges the gap between the panels. A bounding uniform temperature is applied to a representative panel and the resulting stress distribution is examined. For this loading condition, the interlaminar normal stresses showed negligible variation in the chord direction and increased values in the vicinity of the slip-side joggle shoulder. As such, a representative span wise slice on the panel can be taken and the cross section can be analyzed using plane strain analysis.

  4. Effects of Reentry Plasma Sheath on Mutual-Coupling Property of Array Antenna

    Directory of Open Access Journals (Sweden)

    B. W. Bai

    2015-01-01

    Full Text Available A plasma sheath enveloping a reentry vehicle would cause the failure of on-board antennas, which is an important effect that contributes to the “blackout” problem. The method of replacing the on-board single antenna with the array antennas and using beamforming technology has been proposed to mitigate “blackout” problem by many other researchers. Because the plasma sheath is a reflective medium, plasma will alter the mutual coupling between array elements and degrade the beamforming performance of array antenna. In this paper, the effects of the plasma sheath on the mutual coupling properties between adjacent array elements are studied utilizing the algorithm of finite integration technique. Results show that mutual coupling coefficients of array elements are deteriorating more seriously with the decrease of collision frequency. Moreover, when electron density and collision frequency are both large, plasma sheath improves the mutual coupling property of array elements; this conclusion suggests that replacing the on-board single antenna with the array antennas and using beamforming technology can be adopted to mitigate the blackout problem in this condition.

  5. Finite-Time Reentry Attitude Control Using Time-Varying Sliding Mode and Disturbance Observer

    Directory of Open Access Journals (Sweden)

    Xuzhong Wu

    2015-01-01

    Full Text Available This paper presents the finite-time attitude control problem for reentry vehicle with redundant actuators in consideration of planet uncertainties and external disturbances. Firstly, feedback linearization technique is used to cancel the nonlinearities of equations of motion to construct a basic mode for attitude controller. Secondly, two kinds of time-varying sliding mode control methods with disturbance observer are integrated with the basic mode in order to enhance the control performance and system robustness. One method is designed based on boundary layer technique and the other is a novel second-order sliding model control method. The finite-time stability analyses of both resultant closed-loop systems are carried out. Furthermore, after attitude controller produces the torque commands, an optimization control allocation approach is introduced to allocate them into aerodynamic surface deflections and on-off reaction control system thrusts. Finally, the numerical simulation results demonstrate that both of the time-varying sliding mode control methods are robust to uncertainties and disturbances without chattering phenomenon. Moreover, the proposed second-order sliding mode control method possesses better control accuracy.

  6. Simulation for Prediction of Entry Article Demise (SPEAD): An Analysis Tool for Spacecraft Safety Analysis and Ascent/Reentry Risk Assessment

    Science.gov (United States)

    Ling, Lisa

    2014-01-01

    For the purpose of performing safety analysis and risk assessment for a potential off-nominal atmospheric reentry resulting in vehicle breakup, a synthesis of trajectory propagation coupled with thermal analysis and the evaluation of node failure is required to predict the sequence of events, the timeline, and the progressive demise of spacecraft components. To provide this capability, the Simulation for Prediction of Entry Article Demise (SPEAD) analysis tool was developed. The software and methodology have been validated against actual flights, telemetry data, and validated software, and safety/risk analyses were performed for various programs using SPEAD. This report discusses the capabilities, modeling, validation, and application of the SPEAD analysis tool.

  7. Aerodynamic improvement of a delta wing in combination with leading edge flaps

    Directory of Open Access Journals (Sweden)

    Tadateru Ishide

    2017-11-01

    Full Text Available Recently, various studies of micro air vehicle (MAV and unmanned air vehicle (UAV have been reported from wide range points of view. The aim of this study is to research the aerodynamic improvement of delta wing in low Reynold’s number region to develop an applicative these air vehicle. As an attractive tool in delta wing, leading edge flap (LEF is employed to directly modify the strength and structure of vortices originating from the separation point along the leading edge. Various configurations of LEF such as drooping apex flap and upward deflected flap are used in combination to enhance the aerodynamic characteristics in the delta wing. The fluid force measurement by six component load cell and particle image velocimetry (PIV analysis are performed as the experimental method. The relations between the aerodynamic superiority and the vortex behavior around the models are demonstrated.

  8. A comparative study of the hovering efficiency of flapping and revolving wings

    International Nuclear Information System (INIS)

    Zheng, L; Mittal, R; Hedrick, T

    2013-01-01

    Direct numerical simulations are used to explore the hovering performance and efficiency for hawkmoth-inspired flapping and revolving wings at Reynolds (Re) numbers varying from 50 to 4800. This range covers the gamut from small (fruit fly size) to large (hawkmoth size) flying insects and is also relevant to the design of micro- and nano-aerial vehicles. The flapping wing configuration chosen here corresponds to a hovering hawkmoth and the model is derived from high-speed videogrammetry of this insect. The revolving wing configuration also employs the wings of the hawkmoth but these are arranged in a dual-blade configuration typical of helicopters. Flow for both of these configurations is simulated over the range of Reynolds numbers of interest and the aerodynamic performance of the two compared. The comparison of these two seemingly different configurations raises issues regarding the appropriateness of various performance metrics and even characteristic scales; these are also addressed in the current study. Finally, the difference in the performance between the two is correlated with the flow physics of the two configurations. The study indicates that viscous forces dominate the aerodynamic power expenditure of the revolving wing to a degree not observed for the flapping wing. Consequently, the lift-to-power metric of the revolving wing declines rapidly with decreasing Reynolds numbers resulting in a hovering performance that is at least a factor of 2 lower than the flapping wing at Reynolds numbers less than about 100. (paper)

  9. Aerodynamics power consumption for mechanical flapping wings undergoing flapping and pitching motion

    Science.gov (United States)

    Razak, N. A.; Dimitriadis, G.; Razaami, A. F.

    2017-07-01

    Lately, due to the growing interest in Micro Aerial Vehicles (MAV), interest in flapping flight has been rekindled. The reason lies in the improved performance of flapping wing flight at low Reynolds number regime. Many studies involving flapping wing flight focused on the generation of unsteady aerodynamic forces such as lift and thrust. There is one aspect of flapping wing flight that received less attention. The aspect is aerodynamic power consumption. Since most mechanical flapping wing aircraft ever designed are battery powered, power consumption is fundamental in improving flight endurance. This paper reports the results of experiments carried out on mechanical wings under going active root flapping and pitching in the wind tunnel. The objective of the work is to investigate the effect of the pitch angle oscillations and wing profile on the power consumption of flapping wings via generation of unsteady aerodynamic forces. The experiments were repeated for different airspeeds, flapping and pitching kinematics, geometric angle of attack and wing sections with symmetric and cambered airfoils. A specially designed mechanical flapper modelled on large migrating birds was used. It will be shown that, under pitch leading conditions, less power is required to overcome the unsteady aerodnamics forces. The study finds less power requirement for downstroke compared to upstroke motion. Overall results demonstrate power consumption depends directly on the unsteady lift force.

  10. Passively morphing ornithopter wings constructed using a novel compliant spine: design and testing

    International Nuclear Information System (INIS)

    Wissa, A A; Hubbard Jr, J E; Tummala, Y; Frecker, M I

    2012-01-01

    Ornithopters or flapping wing uncrewed aerial vehicles (UAVs) have potential applications in civil and military sectors. Amongst the UAVs, ornithopters have a unique ability to fly in low Reynolds number flight regimes and also have the agility and maneuverability of rotary wing aircraft. In nature, birds achieve such performance by exploiting various wing kinematics known as gaits. The objective of this work is to improve the steady level flight performance of an ornithopter by implementing a continuous vortex gait using a novel passive compliant spine inserted in the ornithopter’s wings. This paper presents an optimal compliant spine concept for ornithopter applications. A quasi-static design optimization procedure was formulated to design the compliant spine. Finite element analysis was performed on a first generation spine and the spine was fabricated. This prototype was then tested by inserting it into an ornithopter’s wing leading edge spar. The effect of inserting the compliant spine into the wings on the electric power required, the aerodynamic loads and the wing kinematics was studied. The ornithopter with the compliant spines inserted in its wings consumed 45% less power and produced an additional 16% of its weight in mean lift compared to the same ornithopter without the compliant spine. The results indicate that this passive morphing approach is promising for improved steady level flight performance. (paper)

  11. Topology optimization of compliant adaptive wing leading edge with composite materials

    Directory of Open Access Journals (Sweden)

    Tong Xinxing

    2014-12-01

    Full Text Available An approach for designing the compliant adaptive wing leading edge with composite material is proposed based on the topology optimization. Firstly, an equivalent constitutive relationship of laminated glass fiber reinforced epoxy composite plates has been built based on the symmetric laminated plate theory. Then, an optimization objective function of compliant adaptive wing leading edge was used to minimize the least square error (LSE between deformed curve and desired aerodynamics shape. After that, the topology structures of wing leading edge of different glass fiber ply-orientations were obtained by using the solid isotropic material with penalization (SIMP model and sensitivity filtering technique. The desired aerodynamics shape of compliant adaptive wing leading edge was obtained based on the proposed approach. The topology structures of wing leading edge depend on the glass fiber ply-orientation. Finally, the corresponding morphing experiment of compliant wing leading edge with composite materials was implemented, which verified the morphing capability of topology structure and illustrated the feasibility for designing compliant wing leading edge. The present paper lays the basis of ply-orientation optimization for compliant adaptive wing leading edge in unmanned aerial vehicle (UAV field.

  12. Effect of torsional stiffness and inertia on the dynamics of low aspect ratio flapping wings.

    Science.gov (United States)

    Xiao, Qing; Hu, Jianxin; Liu, Hao

    2014-03-01

    Micro air vehicle-motivated aerodynamics in biological flight has been an important subject in the past decade. Inspired by the novel flapping wing mechanisms in insects, birds and bats, we have carried out a numerical study systematically investigating a three-dimensional flapping rigid wing with passively actuated lateral and rotational motion. Distinguishing it from the limited existing studies, this work performs a systematic examination on the effects of wing aspect ratio (AR = 1.0 to infinity), inertia (density ratio σ = 4-32), torsional stiffness (frequency ratio F = 1.5-10 and infinity) and pivot point (from chord-center to leading edge) on the dynamics response of a low AR rectangular wing under an initial zero speed flow field condition. The simulation results show that the symmetry breakdown of the flapping wing results in a forward/backward motion with a rotational pitching. When the wing reaches its stable periodic state, the induced pitching frequency is identical to its forced flapping frequency. However, depending on various kinematic and dynamic system parameters, (i.e. flapping frequency, density ratio and pitching axis), the lateral induced velocity shows a number of different oscillating frequencies. Furthermore, compared with a one degree of freedom (DoF) wing in the lateral direction only, the propulsion performance of such a two DoF wing relies very much on the magnitude of torsional stiffness adding on the pivot point, as well as its pitching axis. In all cases examined here, thrust force and moment generated by a long span wing is larger than that of a short wing, which is remarkably linked to the strong reverse von Kármán vortex street formed in the wake of a wing.

  13. Falling with Style: Bats Perform Complex Aerial Rotations by Adjusting Wing Inertia

    Science.gov (United States)

    Bergou, Attila J.; Swartz, Sharon M.; Vejdani, Hamid; Riskin, Daniel K.; Reimnitz, Lauren; Taubin, Gabriel; Breuer, Kenneth S.

    2015-01-01

    The remarkable maneuverability of flying animals results from precise movements of their highly specialized wings. Bats have evolved an impressive capacity to control their flight, in large part due to their ability to modulate wing shape, area, and angle of attack through many independently controlled joints. Bat wings, however, also contain many bones and relatively large muscles, and thus the ratio of bats’ wing mass to their body mass is larger than it is for all other extant flyers. Although the inertia in bat wings would typically be associated with decreased aerial maneuverability, we show that bat maneuvers challenge this notion. We use a model-based tracking algorithm to measure the wing and body kinematics of bats performing complex aerial rotations. Using a minimal model of a bat with only six degrees of kinematic freedom, we show that bats can perform body rolls by selectively retracting one wing during the flapping cycle. We also show that this maneuver does not rely on aerodynamic forces, and furthermore that a fruit fly, with nearly massless wings, would not exhibit this effect. Similar results are shown for a pitching maneuver. Finally, we combine high-resolution kinematics of wing and body movements during landing and falling maneuvers with a 52-degree-of-freedom dynamical model of a bat to show that modulation of wing inertia plays the dominant role in reorienting the bat during landing and falling maneuvers, with minimal contribution from aerodynamic forces. Bats can, therefore, use their wings as multifunctional organs, capable of sophisticated aerodynamic and inertial dynamics not previously observed in other flying animals. This may also have implications for the control of aerial robotic vehicles. PMID:26569116

  14. An Automated Method to Compute Orbital Re-Entry Trajectories with Heating Constraints

    Science.gov (United States)

    Zimmerman, Curtis; Dukeman, Greg; Hanson, John; Fogle, Frank R. (Technical Monitor)

    2002-01-01

    Determining how to properly manipulate the controls of a re-entering re-usable launch vehicle (RLV) so that it is able to safely return to Earth and land involves the solution of a two-point boundary value problem (TPBVP). This problem, which can be quite difficult, is traditionally solved on the ground prior to flight. If necessary, a nearly unlimited amount of time is available to find the "best" solution using a variety of trajectory design and optimization tools. The role of entry guidance during flight is to follow the pre-determined reference solution while correcting for any errors encountered along the way. This guidance method is both highly reliable and very efficient in terms of onboard computer resources. There is a growing interest in a style of entry guidance that places the responsibility of solving the TPBVP in the actual entry guidance flight software. Here there is very limited computer time. The powerful, but finicky, mathematical tools used by trajectory designers on the ground cannot in general be made to do the job. Nonconvergence or slow convergence can result in disaster. The challenges of designing such an algorithm are numerous and difficult. Yet the payoff (in the form of decreased operational costs and increased safety) can be substantial. This paper presents an algorithm that incorporates features of both types of guidance strategies. It takes an initial RLV orbital re-entry state and finds a trajectory that will safely transport the vehicle to a Terminal Area Energy Management (TAEM) region. During actual flight, the computed trajectory is used as the reference to be flown by a more traditional guidance method.

  15. Structural Analysis of a Dragonfly Wing

    NARCIS (Netherlands)

    Jongerius, S.R.; Lentink, D.

    2010-01-01

    Dragonfly wings are highly corrugated, which increases the stiffness and strength of the wing significantly, and results in a lightweight structure with good aerodynamic performance. How insect wings carry aerodynamic and inertial loads, and how the resonant frequency of the flapping wings is tuned

  16. Effect of outer wing separation on lift and thrust generation in a flapping wing system

    International Nuclear Information System (INIS)

    Mahardika, Nanang; Viet, Nguyen Quoc; Park, Hoon Cheol

    2011-01-01

    We explore the implementation of wing feather separation and lead-lagging motion to a flapping wing. A biomimetic flapping wing system with separated outer wings is designed and demonstrated. The artificial wing feather separation is implemented in the biomimetic wing by dividing the wing into inner and outer wings. The features of flapping, lead-lagging, and outer wing separation of the flapping wing system are captured by a high-speed camera for evaluation. The performance of the flapping wing system with separated outer wings is compared to that of a flapping wing system with closed outer wings in terms of forward force and downward force production. For a low flapping frequency ranging from 2.47 to 3.90 Hz, the proposed biomimetic flapping wing system shows a higher thrust and lift generation capability as demonstrated by a series of experiments. For 1.6 V application (lower frequency operation), the flapping wing system with separated wings could generate about 56% higher forward force and about 61% less downward force compared to that with closed wings, which is enough to demonstrate larger thrust and lift production capability of the separated outer wings. The experiments show that the outer parts of the separated wings are able to deform, resulting in a smaller amount of drag production during the upstroke, while still producing relatively greater lift and thrust during the downstroke.

  17. Some aspects of hybrid-zeppelins. [optimization of delta wings for airships

    Science.gov (United States)

    Mackrodt, P. A.

    1975-01-01

    To increase an airship's maneuverability and payload capacity as well as to save bouyant gas it is proposed to outfit it with a slender delta-wing, which carries about one half of the total take-off weight of the vehicle. An optimization calculation based on the data of LZ 129 (the last airship, which saw passenger-service) leads to a Hybrid-Zeppelin with a wing of aspect-ratio 1.5 and 105 m span. The vehicle carries a payload of 40% of it's total take-off weight and consumes 0.8 t fuel per ton payload over a distance of 10000 km.

  18. Performance evaluation and design of flight vehicle control systems

    CERN Document Server

    Falangas, Eric T

    2015-01-01

    This book will help students, control engineers and flight dynamics analysts to model and conduct sophisticated and systemic analyses of early flight vehicle designs controlled with multiple types of effectors and to design and evaluate new vehicle concepts in terms of satisfying mission and performance goals. Performance Evaluation and Design of Flight Vehicle Control Systems begins by creating a dynamic model of a generic flight vehicle that includes a range of elements from airplanes and launch vehicles to re-entry vehicles and spacecraft. The models may include dynamic effects dealing with structural flexibility, as well as dynamic coupling between structures and actuators, propellant sloshing, and aeroelasticity, and they are typically used for control analysis and design. The book shows how to efficiently combine different types of effectors together, such as aero-surfaces, TVC, throttling engines and RCS, to operate as a system by developing a mixing logic atrix. Methods of trimming a vehicle controll...

  19. A Systems Engineering Approach in Providing Air Defense Support to Ground Combat Vehicle Maneuver Forces

    Science.gov (United States)

    2015-03-01

    SLAMRAAM surface launched advanced medium range air-to-air missile SME subject matter expert SOS system of systems UAV unmanned aerial vehicle UCAV ...threats of fixed wing aircraft and attack helicopters, unmanned aerial vehicles (UAVs) and unmanned combat aerial vehicles ( UCAVs ) are fast becoming a... UCAVs and capable of conducting offensive attacks. UAVs/ UCAVs are physically smaller in size compared to fixed wing aircraft or attack helicopters and

  20. INTERMITTENT ANTIARYTHMIC THERAPY OF ARIOVENTICULAR NODAL REENTRY TACHYCARDIA IN CHILDREN

    Directory of Open Access Journals (Sweden)

    Boris Djindjic

    2008-04-01

    Full Text Available Until recent advances in pharmacology and clinical cardiology regarding farmacodynamics of antiarrhythmic drugs and their efficiency in patients with refractory paroxysmal supraventricular tachycardia, chronic prophylactic therapy was the only treatment option for patients refusing catheter ablation. Another treatment option, also known by eponym “pill in pocket” have been shown to be equally useful and efficacious.The aim of our study was prospective examination of children with refractory atrioventricular nodal reentry tachycardia (AVNRT who were withdrawn from chronic antiarrhythmic prophylactic therapy and started with intermittent oral beta blocker treatment (propranolol at dosage 1 mg/kg - max 80 mg.Twelve children (8 boys and 4 girls with AVNRT were included in the study. Four children did not have arrhythmia during first six months after withdrawal and 7 were successfully treated without complication.Intermittent antiarrhythmic therapy in children with AVNRT could be very efficacious and useful treatment option which significantly improves their quality of life.

  1. Processing near-infrared imagery of hypersonic space shuttle reentries

    Science.gov (United States)

    Spisz, Thomas S.; Taylor, Jeff C.; Gibson, David M.; Osei-Wusu, Kwame; Horvath, Thomas J.; Zalameda, Joseph N.; Tomek, Deborah M.; Tietjen, Alan B.; Tack, Steve; Schwartz, Richard J.

    2010-05-01

    High-resolution, calibrated, near-infrared imagery of the Space Shuttle during reentry has been obtained by a US Navy NP-3D Orion aircraft as part of NASA's HYTHIRM (Hypersonic Thermodynamic InfraRed Measurements) project. The long-range optical sensor package is called Cast Glance. Three sets of imagery have been processed thus far: 1) STS- 119 when Shuttle Discovery was at 52 km away at Mach 8.4, 2) STS-125 when Shuttle Atlantis was 71 km away at Mach 14.3, and 3) STS-128 when Shuttle Discovery was at 80 km away at Mach 14.7. The challenges presented in processing a manually-tracked high-angular rate, air-to-air image data collection include management of significant frame-to-frame motions, motion-induced blurring, changing orientations and ranges, daylight conditions, and sky backgrounds (including some cirrus clouds). This paper describes processing the imagery to estimate Shuttle surface temperatures. Our goal is to reduce the detrimental effects due to motions (sensor and Shuttle), vibration, and atmospherics for image quality improvement, without compromising the quantitative integrity of the data, especially local intensity variations. Our approach is to select and utilize only the highest quality images, register many cotemporal image frames to a single image frame, and then add the registered frames to improve image quality and reduce noise. These registered and averaged intensity images are converted to temperatures on the Shuttle's windward surface using a series of steps starting with preflight calibration data. Comparisons with thermocouples at different points along the space Shuttle and between the three reentries will be shown.

  2. Research of Morphing Wing Efficiency

    National Research Council Canada - National Science Library

    Komarov, Valery

    2004-01-01

    This report results from a contract tasking Samara State Aerospace University (SSAU) as follows: The contractor will develop and investigate aerodynamic and structural weight theories associated with morphing wing technology...

  3. Drag Performance of Twist Morphing MAV Wing

    Directory of Open Access Journals (Sweden)

    Ismail N.I.

    2016-01-01

    Full Text Available Morphing wing is one of latest evolution found on MAV wing. However, due to few design problems such as limited MAV wing size and complicated morphing mechanism, the understanding of its aerodynamic behaviour was not fully explored. In fact, the basic drag distribution induced by a morphing MAV wing is still remained unknown. Thus, present work is carried out to compare the drag performance between a twist morphing wing with membrane and rigid MAV wing design. A quasi-static aeroelastic analysis by using the Ansys-Fluid Structure Interaction (FSI method is utilized in current works to predict the drag performance a twist morphing MAV wing design. Based on the drag pattern study, the results exhibits that the morphing wing has a partial similarities in overall drag pattern with the baseline (membrane and rigid wing. However, based CD analysis, it shows that TM wing induced higher CD magnitude (between 25% to 82% higher than to the baseline wing. In fact, TM wing also induced the largest CD increment (about 20% to 27% among the wings. The visualization on vortex structure revealed that TM wing also produce larger tip vortex structure (compared to baseline wings which presume to promote higher induce drag component and subsequently induce its higher CD performance.

  4. Coupling Existing Software Paradigms for Thermal Control System Analysis of Re-Entry Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation proposed is the unification of existing and operational high fidelity simulation software tools into an integrated framework with which to predict...

  5. Strategic Defense Initiative Demonstration/Validation Program Environmental Assessment. Exoatmospheric Reentry Vehicle Interception System (ERIS),

    Science.gov (United States)

    1987-08-01

    2; - 4; C i O Ga. ; . ft* .4 .4 ~I A la 4. a d .4 . - aa .3 r U. AM 0SP0 o~~0 0.ei. ’U4 Is .~ -4 -- I r ’M .0. ~ aDa id .40 *l - 3~.4 144 0.U .4z- z... Lovelace , Norm, Environmental Protection Agency, Permit Programs, Micronesia, Region IX, San Francisco, California. 27 May 1987. Tele- phone...Defense Initiative Organization. 98. Vall, Lieutenant General John F., U.S. Department of the Army. 27 July 1987. Letter to Lieutenant General James A

  6. MM III/Mk 12A Reentry Vehicle Carbon/Carbon Nosetip Production Program.

    Science.gov (United States)

    1980-05-28

    P/N 7731108-1. Machined 7075-T73 aluminum . This element has the attaching threads for the nosetip assembly. Manufactured at Avco/SD. b. Shield, Nose...at 50001F. After a specified time, it i r~mve 0 and drained, placed into a carboniz~ing kiln and heat-treated to 1200O F in .- graphitiz.(d at 47000... recycled while the bonded assembly (P/N 773111A-I) becomes available for final machining. All requirei.ncnts pertaining to preparation of the surfaces

  7. Si-O-C Aerogels for TPS of Reentry Vehicles, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has expressed a need to identify and develop breakthrough technologies that have potential to provide increased scientific return at lower cost, and to enable...

  8. The reusable reentry satellite: A new capability for NASA - A vehicle for international cooperation

    Science.gov (United States)

    Ballard, Rodney W.; Morey-Holton, Emily; Gilbreath, William P.; Halstead, Thora; Richardson, Michael L.

    1989-01-01

    NASA's LifeSat program, which is designed to study biological systems, is described. The program is also designed to understand how living organisms respond to microgravity as low as 0.00001 G, various levels of artificial gravity up to 1.5 G, and cosmic radiation. Modules to be developed for LifeSat missions include specialized modules to support animals, plants, cells, and tissues.

  9. Flight mechanics of a tailless articulated wing aircraft.

    Science.gov (United States)

    Paranjape, Aditya A; Chung, Soon-Jo; Selig, Michael S

    2011-06-01

    This paper investigates the flight mechanics of a micro aerial vehicle without a vertical tail in an effort to reverse-engineer the agility of avian flight. The key to stability and control of such a tailless aircraft lies in the ability to control the incidence angles and dihedral angles of both wings independently. The dihedral angles can be varied symmetrically on both wings to control aircraft speed independently of the angle of attack and flight path angle, while asymmetric dihedral can be used to control yaw in the absence of a vertical stabilizer. It is shown that wing dihedral angles alone can effectively regulate sideslip during rapid turns and generate a wide range of equilibrium turn rates while maintaining a constant flight speed and regulating sideslip. Numerical continuation and bifurcation analysis are used to compute trim states and assess their stability. This paper lays the foundation for design and stability analysis of a flapping wing aircraft that can switch rapidly from flapping to gliding flight for agile manoeuvring in a constrained environment.

  10. Development of Variable Camber Continuous Trailing Edge Flap for Performance Adaptive Aeroelastic Wing

    Science.gov (United States)

    Nguyen, Nhan; Kaul, Upender; Lebofsky, Sonia; Ting, Eric; Chaparro, Daniel; Urnes, James

    2015-01-01

    This paper summarizes the recent development of an adaptive aeroelastic wing shaping control technology called variable camber continuous trailing edge flap (VCCTEF). As wing flexibility increases, aeroelastic interactions with aerodynamic forces and moments become an increasingly important consideration in aircraft design and aerodynamic performance. Furthermore, aeroelastic interactions with flight dynamics can result in issues with vehicle stability and control. The initial VCCTEF concept was developed in 2010 by NASA under a NASA Innovation Fund study entitled "Elastically Shaped Future Air Vehicle Concept," which showed that highly flexible wing aerodynamic surfaces can be elastically shaped in-flight by active control of wing twist and bending deflection in order to optimize the spanwise lift distribution for drag reduction. A collaboration between NASA and Boeing Research & Technology was subsequently funded by NASA from 2012 to 2014 to further develop the VCCTEF concept. This paper summarizes some of the key research areas conducted by NASA during the collaboration with Boeing Research and Technology. These research areas include VCCTEF design concepts, aerodynamic analysis of VCCTEF camber shapes, aerodynamic optimization of lift distribution for drag minimization, wind tunnel test results for cruise and high-lift configurations, flutter analysis and suppression control of flexible wing aircraft, and multi-objective flight control for adaptive aeroelastic wing shaping control.

  11. Local elasticity and adhesion of nanostructures on Drosophila melanogaster wing membrane studied using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Ryan, E-mail: rbwagner@purdue.edu [School of Mechanical Engineering, Purdue University, West Lafayette (United States); Brick Nanotechnology Center, Purdue University, West Lafayette (United States); Pittendrigh, Barry R. [Department of Entomology, University of Illinois, Champaign (United States); Raman, Arvind, E-mail: raman@purdue.edu [School of Mechanical Engineering, Purdue University, West Lafayette (United States); Brick Nanotechnology Center, Purdue University, West Lafayette (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer We studied the wing membrane of Drosophila melanogaster with atomic force microscopy. Black-Right-Pointing-Pointer We report the structure, elasticity, and adhesion on the wing membrane in air and nitrogen environments. Black-Right-Pointing-Pointer Results provide insight into the nature of the wing membrane enabling the development of biomimetic surface and micro air vehicles. - Abstract: Insect wings have a naturally occurring, complex, functional, hierarchical microstructure and nanostructure, which enable a remarkably water-resistant and self-cleaning surface. Insect wings are used as a basis for engineering biomimetic materials; however, the material properties of these nanostructures such as local elastic modulus and adhesion are poorly understood. We studied the wings of the Canton-S strain of Drosophila melanogaster (hereafter referred to as Drosophila) with atomic force microscopy (AFM) to quantify the local material properties of Drosophila wing surface nanostructures. The wings are found to have a hierarchical structure of 10-20 {mu}m long, 0.5-1 {mu}m diameter hair, and at a much smaller scale, 100 nm diameter and 30-60 nm high bumps. The local properties of these nanoscale bumps were studied under ambient and dry conditions with force-volume AFM. The wing membrane was found to have a elastic modulus on the order of 1000 MPa and the work of adhesion between the probe and wing membrane surface was found to be on the order of 100 mJ/m{sup 2}, these properties are the same order of magnitude as common thermoplastic polymers such as polyethylene. The difference in work of adhesion between the nanoscale bump and membrane does not change significantly between ambient (relative humidity of 30%) or dry conditions. This suggests that the nanoscale bumps and the surrounding membrane are chemically similar and only work to increase hydrophobicity though surface roughening or the geometric lotus effect.

  12. Local elasticity and adhesion of nanostructures on Drosophila melanogaster wing membrane studied using atomic force microscopy

    International Nuclear Information System (INIS)

    Wagner, Ryan; Pittendrigh, Barry R.; Raman, Arvind

    2012-01-01

    Highlights: ► We studied the wing membrane of Drosophila melanogaster with atomic force microscopy. ► We report the structure, elasticity, and adhesion on the wing membrane in air and nitrogen environments. ► Results provide insight into the nature of the wing membrane enabling the development of biomimetic surface and micro air vehicles. - Abstract: Insect wings have a naturally occurring, complex, functional, hierarchical microstructure and nanostructure, which enable a remarkably water-resistant and self-cleaning surface. Insect wings are used as a basis for engineering biomimetic materials; however, the material properties of these nanostructures such as local elastic modulus and adhesion are poorly understood. We studied the wings of the Canton-S strain of Drosophila melanogaster (hereafter referred to as Drosophila) with atomic force microscopy (AFM) to quantify the local material properties of Drosophila wing surface nanostructures. The wings are found to have a hierarchical structure of 10–20 μm long, 0.5–1 μm diameter hair, and at a much smaller scale, 100 nm diameter and 30–60 nm high bumps. The local properties of these nanoscale bumps were studied under ambient and dry conditions with force-volume AFM. The wing membrane was found to have a elastic modulus on the order of 1000 MPa and the work of adhesion between the probe and wing membrane surface was found to be on the order of 100 mJ/m 2 , these properties are the same order of magnitude as common thermoplastic polymers such as polyethylene. The difference in work of adhesion between the nanoscale bump and membrane does not change significantly between ambient (relative humidity of 30%) or dry conditions. This suggests that the nanoscale bumps and the surrounding membrane are chemically similar and only work to increase hydrophobicity though surface roughening or the geometric lotus effect.

  13. The analysis of the flying wing in morphing concept

    Directory of Open Access Journals (Sweden)

    Ionică CÎRCIU

    2013-06-01

    Full Text Available The combination between the flying wing morphing concept and the use of modern command and control system offers exponential advantages having a leverage effect in the economy and research. The flying wing architecture has the advantage of low cost against efficiency, the morphing of this concept defining the new characteristic frontiers and aerodynamic performances which derive immediately. On designing an unmanned aerial vehicle for a various range of missions, its lifting surface needs to display optimal geometrical features, so that the UAV may maintain the induced drag and the moment coefficient at reasonable levels. The command and control of the lifting surfaces in morphing concept offer characteristics and in-flight performances at a superior level. The limits of the system depend on the reliability of the execution elements and the grade of accuracy for the control laws which are implemented in the calculation module. The paper aims at presenting an analysis regarding the robotic air systems of flying wing type through the aerodynamic analysis and with the help of specific software instruments. The performances and flight qualities depend directly on the geometry of the lifting surface of the aerial vehicle.

  14. Wing kinematics and flexibility for optimal manoeuvring and escape

    Science.gov (United States)

    Wong, Jaime Gustav

    Understanding how animals control the dynamic stall vortices in their wake is critical to developing micro-aerial vehicles and autonomous underwater vehicles, not to mention wind turbines, delta wings, and rotor craft that undergo similar dynamic stall processes. Applying this knowledge to biomimetic engineering problems requires progress in three areas: (i) understanding the flow physics of natural swimmers and flyers; (ii) developing flow measurement techniques to resolve this physics; and (iii) deriving low-cost models suitable for studying the vast parameter space observed in nature. This body of work, which consists of five research chapters, focuses on the leading-edge vortex (LEV) that forms on profiles undergoing rapid manoeuvres, delta wings, and similar devices. Lagrangian particle tracking is used throughout this thesis to track the mass and circulation transport in the LEV on manoeuvring profiles. The growth and development of the LEV is studied in relation to: flapping and plunging profile kinematics; spanwise flow from profile sweep and spanwise profile bending; and varying the angle-of-attack gradient along the profile span. Finally, scaling relationships derived from the observations above are used to develop a low-cost model for LEV growth, that is validated on a flat-plate delta wing. Together these results contribute to each of the three topics identified above, as a step towards developing robust, agile biomimetic swimmers and flyers.

  15. On the leading edge vortex of thin wings

    Science.gov (United States)

    Arredondo, Abel; Viola, Ignazio Maria

    2016-11-01

    On thin wings, the sharp leading edge triggers laminar separation followed by reattachment, forming a Leading Edge Vortex (LEV). This flow feature is of paramount importance because, if periodically shed, it leads to large amplitude load fluctuations, while if stably attached to the wing, it can provide lift augmentation. We found that on asymmetric-spinnaker-type yacht sails, the LEV can be stable despite the relatively low sweep (30°). This finding, which was recently predicted numerically by Viola et al., has been confirmed through current flume tests on a 1:115th model scale sail. Forces were measured and Particle Image Velocimetry was performed on four horizontal sail sections at a Reynolds number of 1.7x104. Vortex detection revealed that the LEV becomes progressively larger and more stable towards the highest sections, where its axis has a smaller angle with respect to the freestream velocity. Mapping the sail section on a rotating cylinder through a Joukowski transformation, we quantified the lift augmentation provided by the LEV on each sail section. These results open up new sail design strategies based on the manipulation of the LEV and can be applicable to the wings of unmanned aerial vehicles and underwater vehicles. Project funded by Conacyt.

  16. Hypersonic Cruise and Re-Entry Radio Frequency Blackout Mitigation: Alleviating the Communications Blackout Problem

    Science.gov (United States)

    Manning, Robert M.

    2017-01-01

    The work presented here will be a review of a NASA effort to provide a method to transmit and receive RF communications and telemetry through a re-entry plasma thus alleviating the classical RF blackout phenomenon.

  17. Use of a Re-entry Device in Left Subclavian Occlusion: Case Series.

    Science.gov (United States)

    Thomas, Wiliam Rhodri; Chick, Christopher; Goyal, Nimit

    2018-01-01

    To describe the use of a re-entry catheter in the endovascular treatment of left subclavian stenosis. We present three patients where initial attempts at re-vascularisation using standard techniques were unsuccessful. An OUTBACK catheter was employed to facilitate re-entry in these patients. True lumen re-entry was achieved in all patients, leading to successful treatment of all stenoses. There was a lack of filling of the left vertebral artery post-angioplasty in one patient; this was not clinically significant. The case series presented is encouraging for the use of a re-entry catheter in the treatment of subclavian occlusion. In our limited experience this has proved to be a safe technique for use in patients who fail re-vascularisation by standard methods; a larger study is required to confirm this.

  18. Limitations of the Outback LTD re-entry device in femoropopliteal chronic total occlusions.

    Science.gov (United States)

    Shin, Susanna H; Baril, Donald; Chaer, Rabih; Rhee, Robert; Makaroun, Michel; Marone, Luke

    2011-05-01

    Subintimal recanalization for the treatment of femoropopliteal chronic total occlusions (CTO) occasionally requires re-entry devices to access the true lumen distally, but limited information is available on factors predicting the success or failure of these devices. We evaluated the Outback LTD re-entry device (LuMend, Redwood City, Calif; acquired by Cordis Corp, Miami Lakes, Fla). A retrospective review of patients with femoropopliteal CTO from August 2006 to August 2009 was performed. Age, gender, occlusion length, site of re-entry, and the angle of the aortic bifurcation were recorded. Procedural angiograms were used to assign a calcification score (none, mild, moderate, severe) at the re-entry site. Univariate and multivariate logistic regression analyses were used to identify factors predicting failure of re-entry into the true lumen. Of 249 CTOs treated, the re-entry device was used 52 times (20.9%): 47 superficial femoral artery (SFA) occlusions and 5 combined SFA and popliteal artery occlusions (33 TransAtlantic InterSociety Consensus II type C and 18 type D lesions). Of 48 procedures with available angiograms for review, the target re-entry site was at the adductor canal in 30 (62.5%), the above-knee popliteal artery in 13 (27.1%), behind the knee joint in 4 (8.3%), and the mid-SFA in 2 (4.2%). Patients (54% men) were a mean age of 73.1 years. Re-entry was successful in 34 attempts (64.5%). Causes of failure included inability to re-enter the true lumen in 11 (61.1%), difficulty tracking the device over a wire in 3 (16.7%), acute angle of aortic bifurcation in 2 (11.1%), mechanical failure of the device in 1 (5.6%), and difficulty tracking the device through the lesion in 1 (5.6%). Moderate or severe calcification at the site of re-entry was the only significant predictor of failure (odds ratio, 6.3; 95% confidence interval, 1.45-24.48; P = .01). An aortic bifurcation angle ≥40° did trend toward predicting success (odds ratio, 0.23; 95% confidence

  19. Hayabusa Re-Entry: Trajectory Analysis and Observation Mission Design

    Science.gov (United States)

    Cassell, Alan M.; Winter, Michael W.; Allen, Gary A.; Grinstead, Jay H.; Antimisiaris, Manny E.; Albers, James; Jenniskens, Peter

    2011-01-01

    On June 13th, 2010, the Hayabusa sample return capsule successfully re-entered Earth s atmosphere over the Woomera Prohibited Area in southern Australia in its quest to return fragments from the asteroid 1998 SF36 Itokawa . The sample return capsule entered at a super-orbital velocity of 12.04 km/sec (inertial), making it the second fastest human-made object to traverse the atmosphere. The NASA DC-8 airborne observatory was utilized as an instrument platform to record the luminous portion of the sample return capsule re-entry (60 sec) with a variety of on-board spectroscopic imaging instruments. The predicted sample return capsule s entry state information at 200 km altitude was propagated through the atmosphere to generate aerothermodynamic and trajectory data used for initial observation flight path design and planning. The DC- 8 flight path was designed by considering safety, optimal sample return capsule viewing geometry and aircraft capabilities in concert with key aerothermodynamic events along the predicted trajectory. Subsequent entry state vector updates provided by the Deep Space Network team at NASA s Jet Propulsion Laboratory were analyzed after the planned trajectory correction maneuvers to further refine the DC-8 observation flight path. Primary and alternate observation flight paths were generated during the mission planning phase which required coordination with Australian authorities for pre-mission approval. The final observation flight path was chosen based upon trade-offs between optimal viewing requirements, ground based observer locations (to facilitate post-flight trajectory reconstruction), predicted weather in the Woomera Prohibited Area and constraints imposed by flight path filing deadlines. To facilitate sample return capsule tracking by the instrument operators, a series of two racetrack flight path patterns were performed prior to the observation leg so the instruments could be pointed towards the region in the star background where

  20. Right Atrial Dual-loop Reentry Tachycardia after Cardiac Surgery: Prevalence, Electrophysiologic Characteristics and Ablation Outcomes.

    Science.gov (United States)

    Yang, Jian-du; Sun, Qi; Guo, Xiao-Gang; Zhou, Gong-Bu; Liu, Xu; Luo, Bin; Wei, Hui-Qiang; Santangeli, Pasquale; Liang, Jackson J; Ma, Jian

    2018-04-03

    Right atrial dual-loop reentry tachycardia has been described in patients with open-heart surgery. However, the prevalence, electrophysiologic substrate and ablation outcomes have been poorly characterized. We aimed to investigate the prevalence, electrophysiologic substrate and ablation outcomes for RA dual-loop reentry tachycardia following cardiac surgery. We identified all patients with atrial tachycardia after cardiac surgery. We compared electrophysiologic findings and outcomes of those with RA dual-loop reentry tachycardia versus a control group of patients with RA macro-reentrant arrhythmias in the setting of linear RA free wall (FW) scar. Out of 127 patients with 152 post-surgical atrial tachycardias (ATs), 28 (18.4%) had diagnosis of RA dual-loop reentry and 24/28 (85.7%) had tricuspid annular (TA) reentry combined with FW incisional reentry. An incision length > 51.5mm along the FW predicted the substrate for a second loop. In 22/23 patients (95.7%) with initial ablation in the cavo-tricuspid isthmus, a change in the interval between Halo d to CS p could be recorded, while 15/23 patients (65.2%) had CS activation pattern change. Complete success was achieved in 25/28 (89.3%) and 64/69 (92.8%) in the dual-loop reentry and control groups, respectively. After mean follow-up of 33.9±24.2 months, 24/28 (85.7%) and 60/69 (86.95%) were free of arrhythmias after initial procedure in two groups. The prevalence of RA dual-loop reentry is 18.4% among ATs with prior atriotomy scar. A long incision should alert physician the possibility of the second loop at the FW. Halo and CS activation pattern are important clues for circuit transformation. Copyright © 2018. Published by Elsevier Inc.

  1. Utilizing Weather RADAR for Rapid Location of Meteorite Falls and Space Debris Re-Entry

    Science.gov (United States)

    Fries, Marc D.

    2016-01-01

    This activity utilizes existing NOAA weather RADAR imagery to locate meteorite falls and space debris falls. The near-real-time availability and spatial accuracy of these data allow rapid recovery of material from both meteorite falls and space debris re-entry events. To date, at least 22 meteorite fall recoveries have benefitted from RADAR detection and fall modeling, and multiple debris re-entry events over the United States have been observed in unprecedented detail.

  2. An activation-repolarization time metric to predict localized regions of high susceptibility to reentry

    OpenAIRE

    Child, Nicholas; Bishop, Martin J.; Hanson, Ben; Coronel, Ruben; Opthof, Tobias; Boukens, Bastiaan J.; Walton, Richard D.; Efimov, Igor R.; Bostock, Julian; Hill, Yolanda; Rinaldi, Christopher A.; Razavi, Reza; Gill, Jaswinder; Taggart, Peter

    2015-01-01

    BackgroundInitiation of reentrant ventricular tachycardia (VT) involves complex interactions between front and tail of the activation wave. Recent experimental work has identified the time interval between S2 repolarization proximal to a line of functional block and S2 activation at the adjacent distal side as a critical determinant of reentry. Objectives We hypothesized that (1) an algorithm could be developed to generate a spatial map of this interval ("reentry vulnerability index" [RVI]), ...

  3. Vehicle to Vehicle Services

    DEFF Research Database (Denmark)

    Brønsted, Jeppe Rørbæk

    2008-01-01

    As computing devices, sensors, and actuators pervade our surroundings, new applications emerge with accompanying research challenges. In the transportation domain vehicles are being linked by wireless communication and equipped with an array of sensors and actuators that make is possible to provide...... location aware infotainment, increase safety, and lessen environmental strain. This dissertation is about service oriented architecture for pervasive computing with an emphasis on vehicle to vehicle applications. If devices are exposed as services, applications can be created by composing a set of services......, mobility, and availability of services. The dissertation consists of two parts. Part I gives an overview of service oriented architecture for pervasive computing systems and describes the contributions of the publications listed in part II. We investigate architecture for vehicular technology applications...

  4. Structural design studies of a supersonic cruise arrow wing configuration

    Science.gov (United States)

    Sobieszczanski, J.; Mccullers, L. A.; Ricketts, R. H.; Santoro, N. J.; Beskenis, S. D.; Kurtze, W. L.

    1976-01-01

    Structural member cross sections were sized with a system of integrated computer programs to satisfy strength and flutter design requirements for several variants of the arrow wing supersonic cruise vehicle. The resulting structural weights provide a measure of the structural efficiency of the planform geometry, structural layout, type of construction, and type of material including composites. The material distribution was determined for a baseline metallic structure and the results indicate that an approximate fatigue constraint has an important effect on the structural weight required for strength but, in all cases, additional material had to be added to satisfy flutter requirements with lighter mass engines with minimum fuel onboard. The use of composite materials on the baseline configuration was explored and indicated increased structural efficiency. In the strength sizing, the all-composite construction provided a lower weight design than the hybrid construction which contained composites only in the wing cover skins. Subsequent flutter analyses indicated a corresponding lower flutter speed.

  5. Space Flight and Re-Entry Trajectories : International Symposium

    CERN Document Server

    Libby, Paul A

    1962-01-01

    In this and a following issue (Vol. VIII, 1962, Fasc. 2-3) of "Astronautica Acta" there will appear the papers presented at the first international symposium sponsored by the International Academy of Astronautics of the International Astronautical Federation. The theme of the meeting was "Space Flight and Re-Entry Trajectories." It was held at Louveciennes outside of Paris on June 19-21, 1961. Sixteen papers by authors from nine countries were presented; attendees numbered from 80 to 100. The organizing committee for the symposium was as follows: Prof. PAUL A. LIBBY, Polytechnic Institute of Brooklyn, U.S.A., Chairman; Prof. LuiGI BROGLIO, University of Rome, Italy; Prof. B. FRAEIJS DE VEUBEKE, University of Liege, Belgium; Dr. D. G. KING-HELE, Royal Aircraft Establishment, Farnborough, Rants, United Kingdom; Prof. J. M. J. KooY, Royal Military School, Breda, Netherlands; Prof. JEAN KovALEVSKY, Bureau des Longitudes, Paris, France; Prof. RuDOLF PESEK, Academy of Sciences, Prague, Czechoslovakia. The detailed ...

  6. Modeling, design and optimization of flapping wings for efficient hovering flighth

    NARCIS (Netherlands)

    Wang, Q.

    2017-01-01

    Inspired by insect flights, flapping wing micro air vehicles (FWMAVs) keep attracting attention from the scientific community. One of the design objectives is to reproduce the high power efficiency of insect flight. However, there is no clear answer yet to the question of how to design flapping

  7. Three-dimensional wake reconstruction of a flapping-wing MAV using a Kriging regression technique

    NARCIS (Netherlands)

    Percin, M.; De Baar, J.H.S.; Van Oudheusden, B.W.; Dwight, R.P.

    2013-01-01

    The work explores the three-dimensional unsteady wake of a flapping-wing Micro Air Vehicle (MAV) ‘DelFly II’, applying a Kriging regression technique for the spatial regression of time-resolved Stereoscopic Particle Image Velocimetry (Stereo-PIV) data. In the view of limited number of measurement

  8. Micro-Scale Flapping Wings for the Advancement of Flying MEMS

    Science.gov (United States)

    2009-03-01

    Then in 1959, Nobel Prize winner Richard Feynman would challenge the world to develop microsystems ranging from biological systems to computer data...of flapping wings for nano air vehicles,” tech. rep., FEB 2008. 3. R. P. Feynman , “There’s plenty of room at the bottom,” Journal of Microelec

  9. In-flight data acquisition and flight testing for system identification of flapping-wing MAVs

    NARCIS (Netherlands)

    Caetano, J. V.; Armanini, S.F.; Karasek, M.

    2017-01-01

    Although flapping-wing micro aerial vehicles have become a hot topic in academia, the knowledge we have of these systems, their force generation mechanisms and dynamics is still limited. Recent technological advances have allowed for the development of free flight test setups using on-board

  10. Conceptual Study of Rotary-Wing Microrobotics

    National Research Council Canada - National Science Library

    Chabak, Kelson D

    2008-01-01

    This thesis presents a novel rotary-wing micro-electro-mechanical systems (MEMS) robot design. Two MEMS wing designs were designed, fabricated and tested including one that possesses features conducive to insect level aerodynamics...

  11. Aerodynamic control with passively pitching wings

    Science.gov (United States)

    Gravish, Nick; Wood, Robert

    Flapping wings may pitch passively under aerodynamic and inertial loads. Such passive pitching is observed in flapping wing insect and robot flight. The effect of passive wing pitch on the control dynamics of flapping wing flight are unexplored. Here we demonstrate in simulation and experiment the critical role wing pitching plays in yaw control of a flapping wing robot. We study yaw torque generation by a flapping wing allowed to passively rotate in the pitch axis through a rotational spring. Yaw torque is generated through alternating fast and slow upstroke and and downstroke. Yaw torque sensitively depends on both the rotational spring force law and spring stiffness, and at a critical spring stiffness a bifurcation in the yaw torque control relationship occurs. Simulation and experiment reveal the dynamics of this bifurcation and demonstrate that anomalous yaw torque from passively pitching wings is the result of aerodynamic and inertial coupling between the pitching and stroke-plane dynamics.

  12. On the trade-off between electrical power consumption and flight performance in fixed-wing UAV autopilots

    OpenAIRE

    Bertran Albertí, Eduardo; Sanchez Cerda, Alex

    2016-01-01

    This paper sets out a study of the autopilot design for fixed wing Unmanned Aerial Vehicles (UAVs) taking into account the aircraft stability, as well as the power consumption as a function of the selected control strategy. To provide some generality to the outcomes of this study, construction of a reference small-UAV model, based on averaging the main aircraft defining parameters, is proposed. Using such a reference model of small, fixed-wing UAVs, different control strategies are assessed, ...

  13. Waving Wing Aerodynamics at Low Reynolds Numbers

    Science.gov (United States)

    2010-07-01

    wing. An attached leading edge vortex has been observed by multiple research groups on both mechanical wing flappers (8; 22; 21; 4) and revolving wing...observed by Ellington et al. (8) in their earlier experiments on the mechanical hawkmoth flapper at Re ≈ 10,000. In these experiments the spanwise flow...on mechanical wing flappers at similar Reynolds numbers, Re ≈ 1,000 and 1,400 respectively. Both sets of experiments revealed a stable attached

  14. Micro- and Nano-Air Vehicles: State of the Art

    Directory of Open Access Journals (Sweden)

    Luca Petricca

    2011-01-01

    Full Text Available Micro- and nano air vehicles are defined as “extremely small and ultra-lightweight air vehicle systems” with a maximum wingspan length of 15 cm and a weight less than 20 grams. Here, we provide a review of the current state of the art and identify the challenges of design and fabrication. Different configurations are evaluated, such as fixed wings, rotary wings, and flapping wings. The main advantages and drawbacks for each typology are identified and discussed. Special attention is given to rotary-wing vehicles (helicopter concept; including a review of their main structures, such as the airframe, energy storage, controls, and communications systems. In addition, a review of relevant sensors is also included. Examples of existing and future systems are also included. Micro- and nano-vehicles with rotary wings and rechargeable batteries are dominating. The flight times of current systems are typically around 1 hour or less due to the limited energy storage capabilities of the used rechargeable batteries. Fuel cells and ultra capacitors are promising alternative energy supply technologies for the future. Technology improvements, mainly based on micro- and nanotechnologies, are expected to continue in an evolutionary way to improve the capabilities of future micro- and nano air vehicles, giving improved flight times and payload capabilities.

  15. Shape optimisation and performance analysis of flapping wings

    KAUST Repository

    Ghommem, Mehdi

    2012-09-04

    In this paper, shape optimisation of flapping wings in forward flight is considered. This analysis is performed by combining a local gradient-based optimizer with the unsteady vortex lattice method (UVLM). Although the UVLM applies only to incompressible, inviscid flows where the separation lines are known a priori, Persson et al. [1] showed through a detailed comparison between UVLM and higher-fidelity computational fluid dynamics methods for flapping flight that the UVLM schemes produce accurate results for attached flow cases and even remain trend-relevant in the presence of flow separation. As such, they recommended the use of an aerodynamic model based on UVLM to perform preliminary design studies of flapping wing vehicles Unlike standard computational fluid dynamics schemes, this method requires meshing of the wing surface only and not of the whole flow domain [2]. From the design or optimisation perspective taken in our work, it is fairly common (and sometimes entirely necessary, as a result of the excessive computational cost of the highest fidelity tools such as Navier-Stokes solvers) to rely upon such a moderate level of modelling fidelity to traverse the design space in an economical manner. The objective of the work, described in this paper, is to identify a set of optimised shapes that maximise the propulsive efficiency, defined as the ratio of the propulsive power over the aerodynamic power, under lift, thrust, and area constraints. The shape of the wings is modelled using B-splines, a technology used in the computer-aided design (CAD) field for decades. This basis can be used to smoothly discretize wing shapes with few degrees of freedom, referred to as control points. The locations of the control points constitute the design variables. The results suggest that changing the shape yields significant improvement in the performance of the flapping wings. The optimisation pushes the design to "bird-like" shapes with substantial increase in the time

  16. Pre-X Experimental Re-Entry Lifting Body: Design of Flight Test Experiments for Critical Aerothermal Phenomena

    Science.gov (United States)

    2007-06-01

    PRE-X EXPERIMENTAL RE-ENTRY LIFTING BODY: DESIGN OF FLIGHT TEST EXPERIMENTS FOR CRITICAL AEROTHERMAL PHENOMENA Paolo Baiocco * * CNES...ACRONYMS ACS Attitude Control System AEDB Aero Dynamic Data Base AoA Angle of Attack ARD Atmospheric Re-entry Demonstrator ATD Aero Termo ...1 Baiocco, P. (2007) Pre-X Experimental Re-entry Lifting Body: Design of Flight Test Experiments for Critical Aerothermal Phenomena. In Flight

  17. Wing area, wing growth and wing loading of common sandpipers Actitis hypoleucos

    OpenAIRE

    Yalden, Derek; Yalden, D. W.

    2012-01-01

    This study investigates the changes in wing length, area and loading in Common Sandpipers as chicks grow, and as adults add extra mass (during egg-laying or before migration). Common Sandpiper chicks weigh about 17 g and have "hands" that are about 35 mm long at one week old, when the primaries are just emerging from their sheaths. They grow steadily to reach about 40 g, with hands about 85 mm long, at 19 days, when they are just about fledging. Their wings have roughly adult chord width at t...

  18. GPHS motion studies for heat pulse intervals of reentries from gravity-assist trajectories

    International Nuclear Information System (INIS)

    Lucero, E.F.; Sharbaugh, R.C.

    1990-03-01

    Motion studies of the General Purpose Heat Source Module, GPHS, were conducted in the heat pulse interval associated with entries from earth gravity assist trajectories. The APL six-degree-of-freedom reentry program designated TMAGRA6C was used. The objectives of the studies were to (1) determine the effect of ablation on GPHS motion, and (2) determine whether the GPHS module entering the earth's atmosphere from an earth-gravity-assist trajectory has a preferred orientation during the heat pulse phase of reentry. The results are given in summary form for easy visualization of the initial conditions investigated and to provide a quick-look of the resulting motion. Detail of the motion is also given for the parameters of interest for each case studied. Selected values of initial pitch rate, roll rate, and combinations of these within the range 0 degree to 1000 degrees/sec were investigated for initial reentry angles of -7 degrees (shallow) and -90 degrees (steep) and initial angles of attack of 0 degree (broadface to the wind) and 90 degrees. Although the studies are not exhaustive, a sufficient number of reentry conditions (initial altitude, reentry angle, angle of attack, rotational motion) have been investigated to deduce certain trends. The results also provide information on additional reentry conditions that need to be investigated. The present results show four GPHS orientations that predominate - all with some pitch oscillations and rolling motion. These are: angles of attack, α R of 0 degree, 30 degrees, 90 degrees and tumbling. It should be assumed that all these orientations are equally probable because only combinations of two initial reentry angles, γ 0 , and two values of α R . have been investigated. Further the probability for any given initial rate on orientation is not known

  19. A theoretical analysis of anatomical and functional intestinal slow wave re-entry.

    Science.gov (United States)

    Du, Peng; O'Grady, Gregory; Cheng, Leo K

    2017-07-21

    Intestinal bioelectrical slow waves are a key regulator of intestinal motility. Peripheral pacemakers, ectopic initiations and sustained periods of re-entrant activities have all been experimentally observed to be important factors in setting the frequency of intestinal slow waves, but the tissue-level mechanisms underpinning these activities are unclear. This theoretical analysis aimed to define the initiation, maintenance, and termination criteria of two classes of intestinal re-entrant activities: anatomical re-entry and functional re-entry. Anatomical re-entry was modeled in a three-dimensional (3D) cylindrical model, and functional rotor was modeled in a 2D rectangle model. A single-pulse stimulus was used to invoke an anatomical re-entry and a prolonged refractory block was used to invoke the rotor. In both cases, the simulated re-entrant activities operated at frequencies above the baseline entrainment frequency. The anatomical re-entry simulation results demonstrated that a temporary functional refractory block would be required to initiate the re-entrant activity in a single direction around the cylindrical model. The rotor could be terminated by a single-pulse stimulus delivered around the core of the rotor. In conclusion, the simulation results provide the following new insights into the mechanisms of intestinal re-entry: (i) anatomical re-entry is only maintained within a specific range of velocities, outside of which the re-entrant activities become either an ectopic activity or simultaneous activations of the intestinal wall; (ii) a maintained rotor entrained slow waves faster in the antegrade direction than in the retrograde direction. Simulations are shown to be a valuable tool for achieving novel insights into the mechanisms of intestinal slow wave dysrhythmia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. DEBRISK, a Tool for Re-Entry Risk Analysis

    Science.gov (United States)

    Omaly, P.; Spel, M.

    2012-01-01

    An act of French parliament, adopted in 2008, imposes satellite constructors to evaluate the end-of-life operations in order to assure the risk mitigation of their satellites. One important element in this evaluation is the estimation of the mass and impact energy of the satellite debris after atmospheric re-entry. For this purpose, CNES has developed the tool DEBRISK which allows the operator to simulate the re-entry phase and to study the demise altitudes or impact energy of the individual fragments of the original satellite. DEBRISK is based on the so called object based approach. Using this approach, a breakup altitude is assumed where the satellite disintegrates due to the pressure loads. This altitude is typically around 78 km. After breakup, the satellite structure is modelled by a parent-child approach, where each child has its birth criterion. In the simplest approach the child is born after demise of the parent object. This could be the case of an object A containing an object B which is in the interior of object A and thus not exposed to the atmosphere. Each object is defined by: - its shape, attitude and dimensions, - the material along with their physical properties - the state and velocity vectors. The shape, attitude and dimensions define the aerodynamic drag of the object which is input to the 3DOF trajectory modelling. The aerodynamic mass used in the equation of motion is defined as the sum of the object's own mass and the mass of the object's offspring. A new born object inherits the state vector of the parent object. The shape, attitude and dimensions also define the heating rates experienced by the object. The heating rate is integrated in time up to the point where the melting temperature is reached. The mass of melted material is computed from the excess heat and the material properties. After each step the amount of ablated material is determined using the lumped mass approach and is peeled off from the object, updating mass and shape of the

  1. Werner helicase wings DNA binding

    OpenAIRE

    Hoadley, Kelly A.; Keck, James L.

    2010-01-01

    In this issue of Structure, Kitano et al. describe the structure of the DNA-bound winged-helix domain from the Werner helicase. This structure of a RecQ/DNA complex offers insights into the DNA unwinding mechanisms of RecQ family helicases.

  2. On Wings: Aerodynamics of Eagles.

    Science.gov (United States)

    Millson, David

    2000-01-01

    The Aerodynamics Wing Curriculum is a high school program that combines basic physics, aerodynamics, pre-engineering, 3D visualization, computer-assisted drafting, computer-assisted manufacturing, production, reengineering, and success in a 15-hour, 3-week classroom module. (JOW)

  3. Randomized control study of the outback LTD reentry catheter versus manual reentry for the treatment of chronic total occlusions in the superficial femoral artery.

    Science.gov (United States)

    Gandini, Roberto; Fabiano, Sebastiano; Spano, Sergio; Volpi, Tommaso; Morosetti, Daniele; Chiaravalloti, Antonio; Nano, Giovanni; Simonetti, Giovanni

    2013-09-01

    To assess the efficacy and safety of the Outback device in patients with a chronic total occlusion (CTO) of the superficial femoral artery and evaluate its impact on fluoroscopy and procedural times. From October 2006 to March 2007, 52 patients affected by TASC II-D superficial femoral artery CTO were treated with subintimal recanalization. Clinical indications for endovascular recanalization were: claudication, tissue loss, and at rest leg pain with critical limb ischemia. In 26 patients the manual reentry technique was used and in 26 the OUTBACK(®) LTD Re-Entry Catheter was used. Total procedure time, fluoroscopy time and precision in targeting the expected reentry site have been compared. Technical success was achieved in all cases (100%). In group 2, the planned in-target re-entry was achieved in 11/26 cases (42.3%). The procedure was performed with a traditional antegrade approach in 23/26 (88.4%) cases and in three cases (11.6%) a combined antegrade/retrograde approach was necessary. In group 1, the in-target re-entry was achieved in 26/26 cases (100%). In group 2, the mean procedural time was 55.4 ± 14.2 min with a mean fluoroscopy time 39.6 ± 13.9 min compared to 36.0 ± 9.4 min and 29.8 ± 8.9 min, respectively, of group 1 (P Outback device grants high technical success rates and a significant reduction of procedural and fluoroscopy times. Copyright © 2013 Wiley Periodicals, Inc.

  4. Numerical simulation of weakly ionized hypersonic flow over reentry capsules

    Science.gov (United States)

    Scalabrin, Leonardo C.

    The mathematical and numerical formulation employed in the development of a new multi-dimensional Computational Fluid Dynamics (CFD) code for the simulation of weakly ionized hypersonic flows in thermo-chemical non-equilibrium over reentry configurations is presented. The flow is modeled using the Navier-Stokes equations modified to include finite-rate chemistry and relaxation rates to compute the energy transfer between different energy modes. The set of equations is solved numerically by discretizing the flowfield using unstructured grids made of any mixture of quadrilaterals and triangles in two-dimensions or hexahedra, tetrahedra, prisms and pyramids in three-dimensions. The partial differential equations are integrated on such grids using the finite volume approach. The fluxes across grid faces are calculated using a modified form of the Steger-Warming Flux Vector Splitting scheme that has low numerical dissipation inside boundary layers. The higher order extension of inviscid fluxes in structured grids is generalized in this work to be used in unstructured grids. Steady state solutions are obtained by integrating the solution over time implicitly. The resulting sparse linear system is solved by using a point implicit or by a line implicit method in which a tridiagonal matrix is assembled by using lines of cells that are formed starting at the wall. An algorithm that assembles these lines using completely general unstructured grids is developed. The code is parallelized to allow simulation of computationally demanding problems. The numerical code is successfully employed in the simulation of several hypersonic entry flows over space capsules as part of its validation process. Important quantities for the aerothermodynamics design of capsules such as aerodynamic coefficients and heat transfer rates are compared to available experimental and flight test data and other numerical results yielding very good agreement. A sensitivity analysis of predicted radiative

  5. A successful retrograde re-entry at aorta using the Outback LTD catheter for a bilateral common iliac artery occlusion.

    Science.gov (United States)

    Kim, Tae-Hoon; Ahn, Ji-Hun; Kim, Do-Hoi

    2013-05-01

    The Outback LTD re-entry catheter system has become a valuable tool for peripheral intervention and it has been widely used for variable peripheral chronic total occlusion (CTO). However, its use in the setting of the aorta was restricted because of concerns of bleeding risks resulting from re-entry puncture or ballooning. This report presents a case of successful re-entry using the Outback LTD Re-Entry Catheter (Cordis, Bridgewater, New Jersy) at the aorta in a patient with bilateral common iliac artery occlusion. Copyright © 2012 Wiley Periodicals, Inc.

  6. Drag Identification & Reduction Technology (DIRECT) for Elastically Shaped Air Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA and Boeing Phantom Works have been working on the Elastically Shaped Future Vehicle Concept (ESFVC) and have shown that aircraft with elastically shaped wings...

  7. Design and Control of Flapping Wing Micro Air Vehicles

    Science.gov (United States)

    2011-09-01

    haltere in Diptera . The halteres are small appendages, apparently evolved from the hindwing, that oscillate in flight at the same frequency as the...maneuverability of Diptera , though numerous other sufficiently agile taxa get by without them. Experiments on the pathways between these sensors and the flight...applicable, as MAVs are further miniaturized, they may be an attractive option given their high power density and low voltage requirements

  8. Review Results on Wing-Body Interference

    Directory of Open Access Journals (Sweden)

    Frolov Vladimir

    2016-01-01

    Full Text Available The paper presents an overview of results for wing-body interference, obtained by the author for varied wing-body combinations. The lift-curve slopes of the wing-body combinations are considered. In this paper a discrete vortices method (DVM and 2D potential model for cross-flow around fuselage are used. The circular and elliptical cross-sections of the fuselage and flat wings of various forms are considered. Calculations showed that the value of the lift-curve slopes of the wing-body combinations may exceed the same value for an isolated wing. This result confirms an experimental data obtained by other authors earlier. Within a framework of the used mathematical models the investigations to optimize the wing-body combination were carried. The present results of the optimization problem for the wing-body combination allowed to select the optimal geometric characteristics for configuration to maximize the values of the lift-curve slopes of the wing-body combination. It was revealed that maximums of the lift-curve slopes for the optimal mid-wing configuration with elliptical cross-section body had a sufficiently large relative width of the body (more than 30% of the span wing.

  9. Aerodynamic efficiency of a bioinspired flapping wing rotor at low Reynolds number.

    Science.gov (United States)

    Li, H; Guo, S

    2018-03-01

    This study investigates the aerodynamic efficiency of a bioinspired flapping wing rotor kinematics which combines an active vertical flapping motion and a passive horizontal rotation induced by aerodynamic thrust. The aerodynamic efficiencies for producing both vertical lift and horizontal thrust of the wing are obtained using a quasi-steady aerodynamic model and two-dimensional (2D) CFD analysis at Reynolds number of 2500. The calculated efficiency data show that both efficiencies (propulsive efficiency- η p , and efficiency for producing lift- P f ) of the wing are optimized at Strouhal number ( St ) between 0.1 and 0.5 for a range of wing pitch angles (upstroke angle of attack α u less than 45°); the St for high P f ( St  = 0.1 ∼ 0.3) is generally lower than for high η p ( St  = 0.2 ∼ 0.5), while the St for equilibrium rotation states lies between the two. Further systematic calculations show that the natural equilibrium of the passive rotating wing automatically converges to high-efficiency states: above 85% of maximum P f can be obtained for a wide range of prescribed wing kinematics. This study provides insight into the aerodynamic efficiency of biological flyers in cruising flight, as well as practical applications for micro air vehicle design.

  10. Outperforming hummingbirds' load-lifting capability with a lightweight hummingbird-like flapping-wing mechanism.

    Science.gov (United States)

    Leys, Frederik; Reynaerts, Dominiek; Vandepitte, Dirk

    2016-08-15

    The stroke-cam flapping mechanism presented in this paper closely mimics the wing motion of a hovering Rufous hummingbird. It is the only lightweight hummingbird-sized flapping mechanism which generates a harmonic wing stroke with both a high flapping frequency and a large stroke amplitude. Experiments on a lightweight prototype of this stroke-cam mechanism on a 50 mm-long wing demonstrate that a harmonic stroke motion is generated with a peak-to-peak stroke amplitude of 175° at a flapping frequency of 40 Hz. It generated a mass lifting capability of 5.1 g, which is largely sufficient to lift the prototype's mass of 3.39 g and larger than the mass-lifting capability of a Rufous hummingbird. The motor mass of a hummingbird-like robot which drives the stroke-cam mechanism is considerably larger (about five times) than the muscle mass of a hummingbird with comparable load-lifting capability. This paper presents a flapping wing nano aerial vehicle which is designed to possess the same lift- and thrust-generating principles of the Rufous hummingbird. The application is indoor flight. We give an overview of the wing kinematics and some specifications which should be met to develop an artificial wing, and also describe the applications of these in the mechanism which has been developed in this work. © 2016. Published by The Company of Biologists Ltd.

  11. Outperforming hummingbirds’ load-lifting capability with a lightweight hummingbird-like flapping-wing mechanism

    Directory of Open Access Journals (Sweden)

    Frederik Leys

    2016-08-01

    Full Text Available The stroke-cam flapping mechanism presented in this paper closely mimics the wing motion of a hovering Rufous hummingbird. It is the only lightweight hummingbird-sized flapping mechanism which generates a harmonic wing stroke with both a high flapping frequency and a large stroke amplitude. Experiments on a lightweight prototype of this stroke-cam mechanism on a 50 mm-long wing demonstrate that a harmonic stroke motion is generated with a peak-to-peak stroke amplitude of 175° at a flapping frequency of 40 Hz. It generated a mass lifting capability of 5.1 g, which is largely sufficient to lift the prototype's mass of 3.39 g and larger than the mass-lifting capability of a Rufous hummingbird. The motor mass of a hummingbird-like robot which drives the stroke-cam mechanism is considerably larger (about five times than the muscle mass of a hummingbird with comparable load-lifting capability. This paper presents a flapping wing nano aerial vehicle which is designed to possess the same lift- and thrust-generating principles of the Rufous hummingbird. The application is indoor flight. We give an overview of the wing kinematics and some specifications which should be met to develop an artificial wing, and also describe the applications of these in the mechanism which has been developed in this work.

  12. Underwater Vehicle

    National Research Council Canada - National Science Library

    Dick, James L

    2007-01-01

    There is thus provided an underwater vehicle having facility for maneuvering alongside a retrieving vehicle, as by manipulation of bow and stern planes, for engaging a hull surface of the retrieving...

  13. Aerostructural optimization of a morphing wing for airborne wind energy applications

    Science.gov (United States)

    Fasel, U.; Keidel, D.; Molinari, G.; Ermanni, P.

    2017-09-01

    Airborne wind energy (AWE) vehicles maximize energy production by constantly operating at extreme wing loading, permitted by high flight speeds. Additionally, the wide range of wind speeds and the presence of flow inhomogeneities and gusts create a complex and demanding flight environment for AWE systems. Adaptation to different flow conditions is normally achieved by conventional wing control surfaces and, in case of ground generator-based systems, by varying the reel-out speed. These control degrees of freedom enable to remain within the operational envelope, but cause significant penalties in terms of energy output. A significantly greater adaptability is offered by shape-morphing wings, which have the potential to achieve optimal performance at different flight conditions by tailoring their airfoil shape and lift distribution at different levels along the wingspan. Hence, the application of compliant structures for AWE wings is very promising. Furthermore, active gust load alleviation can be achieved through morphing, which leads to a lower weight and an expanded flight envelope, thus increasing the power production of the AWE system. This work presents a procedure to concurrently optimize the aerodynamic shape, compliant structure, and composite layup of a morphing wing for AWE applications. The morphing concept is based on distributed compliance ribs, actuated by electromechanical linear actuators, guiding the deformation of the flexible—yet load-carrying—composite skin. The goal of the aerostructural optimization is formulated as a high-level requirement, namely to maximize the average annual power production per wing area of an AWE system by tailoring the shape of the wing, and to extend the flight envelope of the wing by actively alleviating gust loads. The results of the concurrent multidisciplinary optimization show a 50.7% increase of extracted power with respect to a sequentially optimized design, highlighting the benefits of morphing and the

  14. A Drosophila wing spot test

    International Nuclear Information System (INIS)

    Ayaki, Toshikazu; Yoshikawa, Isao; Niikawa, Norio; Hoshi, Masaharu.

    1986-01-01

    A Drosophila wing spot test system was used to investigate the effects of low doses of X-rays, gamma rays, and both 2.3 and 14.1 MeV neutrons on somatic chromosome mutation (SCM) induction. The incidence of SCM was significantly increased with any type of radiation, with evident linear dose-response relationship within the range of 3 to 20 cGy. It was estimated that relative biological effectiveness value for SCM induction of 2.3 MeV neutrons to X-rays and gamma rays is much higher than that of 14.1 MeV neutrons to those photons (2.4 vs 8.0). The Drosophila wing spot test system seems to become a promising in vivo experimental method for higher animals in terms of the lack of necessity for a marvelously large number of materials required in conventional test system. (Namekawa, K.)

  15. Anisotropic conduction block and reentry in neonatal rat ventricular myocyte monolayers.

    Science.gov (United States)

    de Diego, Carlos; Chen, Fuhua; Xie, Yuanfang; Pai, Rakesh K; Slavin, Leonid; Parker, John; Lamp, Scott T; Qu, Zhilin; Weiss, James N; Valderrábano, Miguel

    2011-01-01

    Anisotropy can lead to unidirectional conduction block that initiates reentry. We analyzed the mechanisms in patterned anisotropic neonatal rat ventricular myocyte monolayers. Voltage and intracellular Ca (Ca(i)) were optically mapped under the following conditions: extrastimulus (S1S2) testing and/or tetrodotoxin (TTX) to suppress Na current availability; heptanol to reduce gap junction conductance; and incremental rapid pacing. In anisotropic monolayers paced at 2 Hz, conduction velocity (CV) was faster longitudinally than transversely, with an anisotropy ratio [AR = CV(L)/CV(T), where CV(L) and CV(T) are CV in the longitudinal and transverse directions, respectively], averaging 2.1 ± 0.8. Interventions decreasing Na current availability, such as S1S2 pacing and TTX, slowed CV(L) and CV(T) proportionately, without changing the AR. Conduction block preferentially occurred longitudinal to fiber direction, commonly initiating reentry. Interventions that decreased gap junction conductance, such as heptanol, decreased CV(T) more than CV(L), increasing the AR and causing preferential transverse conduction block and reentry. Rapid pacing resembled the latter, increasing the AR and promoting transverse conduction block and reentry, which was prevented by the Ca(i) chelator 1,2-bis oaminophenoxy ethane-N,N,N',N'-tetraacetic acid (BAPTA). In contrast to isotropic and uniformly anisotropic monolayers, in which reentrant rotors drifted and self-terminated, bidirectional anisotropy (i.e., an abrupt change in fiber direction exceeding 45°) caused reentry to anchor near the zone of fiber direction change in 77% of monolayers. In anisotropic monolayers, unidirectional conduction block initiating reentry can occur longitudinal or transverse to fiber direction, depending on whether the experimental intervention reduces Na current availability or decreases gap junction conductance, agreeing with theoretical predictions.

  16. M2-F1 in hangar with Pontiac tow vehicle

    Science.gov (United States)

    1963-01-01

    The M2-F1 Lifting Body is seen here in a hangar with its hotrod Pontiac convertible tow vehicle at the Flight Research Center (later the Dryden Flight Research Center), Edwards, California. The car was a 1963 Pontiac Catalina convertible, fitted with a 421-cubic-inch tripower engine like those being run at the Daytona 500 auto race. The vehicle also had a four-speed transmission and a heavy-duty suspension and cooling system. A roll bar was also added and the passenger seat turned around so an observer could watch the M2-F1 while it was being towed. The rear seat was removed and a second, side-facing seat installed. The lifting-body team used the Pontiac for all the ground-tow flights over the next three years. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey

  17. Aerodynamic effects of flexibility in flapping wings

    Science.gov (United States)

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P.

    2010-01-01

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re ≈ 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small robotic

  18. Aerodynamic effects of flexibility in flapping wings.

    Science.gov (United States)

    Zhao, Liang; Huang, Qingfeng; Deng, Xinyan; Sane, Sanjay P

    2010-03-06

    Recent work on the aerodynamics of flapping flight reveals fundamental differences in the mechanisms of aerodynamic force generation between fixed and flapping wings. When fixed wings translate at high angles of attack, they periodically generate and shed leading and trailing edge vortices as reflected in their fluctuating aerodynamic force traces and associated flow visualization. In contrast, wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the duration of the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing. We used a dynamically scaled mechanical model of flapping flight (Re approximately 2000) to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and centre of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. These experiments will also be useful for wing design for small

  19. Spanwise morphing trailing edge on a finite wing

    Science.gov (United States)

    Pankonien, Alexander M.; Inman, Daniel J.

    2015-04-01

    Unmanned Aerial Vehicles are prime targets for morphing implementation as they must adapt to large changes in flight conditions associated with locally varying wind or large changes in mass associated with payload delivery. The Spanwise Morphing Trailing Edge concept locally varies the trailing edge camber of a wing or control surface, functioning as a modular replacement for conventional ailerons without altering the spar box. Utilizing alternating active sections of Macro Fiber Composites (MFCs) driving internal compliant mechanisms and inactive sections of elastomeric honeycombs, the SMTE concept eliminates geometric discontinuities associated with shape change, increasing aerodynamic performance. Previous work investigated a representative section of the SMTE concept and investigated the effect of various skin designs on actuation authority. The current work experimentally evaluates the aerodynamic gains for the SMTE concept for a representative finite wing as compared with a conventional, articulated wing. The comparative performance for both wings is evaluated by measuring the drag penalty associated with achieving a design lift coefficient from an off-design angle of attack. To reduce experimental complexity, optimal control configurations are predicted with lifting line theory and experimentally measured control derivatives. Evaluated over a range of off-design flight conditions, this metric captures the comparative capability of both concepts to adapt or "morph" to changes in flight conditions. Even with this simplistic model, the SMTE concept is shown to reduce the drag penalty due to adaptation up to 20% at off-design conditions, justifying the increase in mass and complexity and motivating concepts capable of larger displacement ranges, higher fidelity modelling, and condition-sensing control.

  20. Effects of wing locations on wing rock induced by forebody vortices

    Directory of Open Access Journals (Sweden)

    Ma Baofeng

    2016-10-01

    Full Text Available Previous studies have shown that asymmetric vortex wakes over slender bodies exhibit a multi-vortex structure with an alternate arrangement along a body axis at high angle of attack. In this investigation, the effects of wing locations along a body axis on wing rock induced by forebody vortices was studied experimentally at a subcritical Reynolds number based on a body diameter. An artificial perturbation was added onto the nose tip to fix the orientations of forebody vortices. Particle image velocimetry was used to identify flow patterns of forebody vortices in static situations, and time histories of wing rock were obtained using a free-to-roll rig. The results show that the wing locations can affect significantly the motion patterns of wing rock owing to the variation of multi-vortex patterns of forebody vortices. As the wing locations make the forebody vortices a two-vortex pattern, the wing body exhibits regularly divergence and fixed-point motion with azimuthal variations of the tip perturbation. If a three-vortex pattern exists over the wing, however, the wing-rock patterns depend on the impact of the highest vortex and newborn vortex. As the three vortices together influence the wing flow, wing-rock patterns exhibit regularly fixed-points and limit-cycled oscillations. With the wing moving backwards, the newborn vortex becomes stronger, and wing-rock patterns become fixed-points, chaotic oscillations, and limit-cycled oscillations. With further backward movement of wings, the vortices are far away from the upper surface of wings, and the motions exhibit divergence, limit-cycled oscillations and fixed-points. For the rearmost location of the wing, the wing body exhibits stochastic oscillations and fixed-points.

  1. A New Concept for Atmospheric Reentry Optimal Guidance: An Inverse Problem Inspired Approach

    Directory of Open Access Journals (Sweden)

    Davood Abbasi

    2013-01-01

    Full Text Available This paper presents a new concept for atmospheric reentry online optimal guidance and control using a method called MARE G&C that exploits the different time scale featured by reentry dynamics. The new technique reaches a quasi-analytical solution and simplified computations, even considering both lift-to-drag ratio and aerodynamic roll as control variables; in addition, the paper offers a solution for the challenging path constraints issue, getting inspiration from the inverse problem methodology. The final resulting algorithm seems suitable for onboard predictive guidance, a new need for future space missions.

  2. Facilitation of school re-entry and peer acceptance of children with cancer

    DEFF Research Database (Denmark)

    Helms, A. S.; Schmiegelow, K.; Brok, J.

    2016-01-01

    reviewed using the PRISMA model for reporting reviews. Statistical calculations for the meta-analyses were done using Review Manager 5.2. The metaanalyses showed significant effects of school re-entry programmes in terms of enhancing academic achievement in children with cancer (P = 0.008) and lowering......Increased survival rates from childhood cancer call for efforts to reintegrate children with cancer back into their academic and social environments. The aims of this study were to: (1) review and analyse the existing literature on school re-entry interventions for children with cancer; and (2...

  3. On the Use of Atmosphere Models in Re-Entry Predictions

    Science.gov (United States)

    Klinkrad, H.

    1996-12-01

    The catalog of the Space Surveillance Network (SSN) of US Space Command (USSpaceCom) contains more than 7600 objects larger than 10 cm. On the average, one of these objects re-enters the earth atmosphere every day, and every second day there is a re-entry of a decommissioned spacecraft or upper stage (which together account for more than 40% of the catalog population). The vast majority of these re-entries is entailing an extremely low risk potential, since most of the structures are disintegrated and burnt up during an extended heat flux and g-load exposure under shallow entry angles. In some instances, however, a non negligible risk from ground impact or ground/atmosphere pollution may arise in case of very massive objects (e.g. Skylab with 75t and Salyut-7 with 40t), objects which were designed to survive re-entry (e.g. China-40 capsule), or spacecraft with hazardous payloads (e.g. Kosmos-954 and 1402 which were equipped with reactors containing 50kg of radioactive material). In such cases, ESOC performs re-entry predictions which are communicated to international points of contact as input to their emergency plans (if necessary). The prediction of uncontrolled re-entries is based on a propagation of the perturbed orbital motion of a spacecraft up to the point of disintegration (at about 80km altitude). The drag coefficient is determined from a least squares retro-fit over a history of observations of the semi-major axis. Apart from the attitude dynamics and associated cross-section variations, the major uncertainty in re-entry predictions is due to inadequate modeling of the atmosphere, and in particular of the air density. At standard operating altitudes of LEO satellites atmosphere models can be assumed accurate to within 10% to 15% rms in density for well known atmospheric parameters. Due to the lack of underlying data, density models become less reliable below 200km altitude where the critical phase of a re-entry begins. Moreover, in case of prediction

  4. Prisoner reentry: a public health or public safety issue for social work practice?

    Science.gov (United States)

    Patterson, George T

    2013-01-01

    A significant literature identifies the policy, economic, health, and social challenges that confront released prisoners. This literature also describes the public health and public safety risks associated with prisoner reentry, provides recommendations for improving the reentry process, and describes the effectiveness of prison-based programs on recidivism rates. Public health and public safety risks are particularly significant in communities where large numbers of prisoners are released and few evidence-based services exist. The purpose of this article is to describe the public health and public safety risks that released prisoners experience when they reenter communities, and to discuss the social justice issues relevant for social work practice.

  5. Re-Entry Point Targeting for LEO Spacecraft using Aerodynamic Drag

    Science.gov (United States)

    Omar, Sanny; Bevilacqua, Riccardo; Fineberg, Laurence; Treptow, Justin; Johnson, Yusef; Clark, Scott

    2016-01-01

    Most Low Earth Orbit (LEO) spacecraft do not have thrusters and re-enter atmosphere in random locations at uncertain times. Objects pose a risk to persons, property, or other satellites. Has become a larger concern with the recent increase in small satellites. Working on a NASA funded project to design a retractable drag device to expedite de-orbit and target a re-entry location through modulation of the drag area. Will be discussing the re-entry point targeting algorithm here.

  6. 8 CFR 211.3 - Expiration of immigrant visas, reentry permits, refugee travel documents, and Form I-551.

    Science.gov (United States)

    2010-01-01

    ... permits, refugee travel documents, and Form I-551. 211.3 Section 211.3 Aliens and Nationality DEPARTMENT... Expiration of immigrant visas, reentry permits, refugee travel documents, and Form I-551. An immigrant visa, reentry permit, refugee travel document, or Form I-551 shall be regarded as unexpired if the rightful...

  7. Relation of pace mapping QRS configuration and conduction delay to ventricular tachycardia reentry circuits in human infarct scars.

    Science.gov (United States)

    Stevenson, W G; Sager, P T; Natterson, P D; Saxon, L A; Middlekauff, H R; Wiener, I

    1995-08-01

    This study sought to determine the relation of the paced QRS configuration and conduction delay during pace mapping to reentry circuit sites in patients with ventricular tachycardia late after myocardial infarction. The QRS configuration produced by ventricular pacing during sinus rhythm (pace mapping) can locate focal idiopathic ventricular tachycardias during catheter mapping, but postinfarction reentry circuits may be relatively large and contain regions of slow conduction. We hypothesized that for postinfarction ventricular tachycardia, 1) pacing during sinus rhythm at reentry circuit sites distant from the exit from the scar would produce a QRS configuration different from the tachycardia; and 2) a stimulus to QRS delay during pace mapping may be a useful guide to reentry circuit slow conduction zones. Catheter mapping and ablation were performed in 18 consecutive patients with ventricular tachycardia after myocardial infarction. At 85 endocardial sites in 13 patients, 12-lead electrocardiograms (ECGs) were recorded during pace mapping, and participation of each site in a reentry circuit was then evaluated by entrainment techniques during induced ventricular tachycardia or by application of radiofrequency current. Pace maps resembled tachycardia at 40 ms was observed at > or = 70% of reentry circuit sites. At many sites in postinfarction ventricular reentry circuits, the QRS configuration during pace mapping does not resemble the ventricular tachycardia QRS complex, consistent with relatively large reentry circuits or regions of functional conduction block during ventricular tachycardia. A stimulus to QRS delay during pace mapping is consistent with slow conduction and may aid in targeting endocardial sites for further evaluation during tachycardia.

  8. The costae presenting in high-temperature-induced vestigial wings ...

    Indian Academy of Sciences (India)

    Most of the wings have defects in the wing blade and partially formed wing margin, which are the result of autonomous cell death in the ... [Yang D. 2007 The costae presenting in high-temperature-induced vestigial wings of Drosophila: implications for anterior wing margin formation. J. Genet. .... The relevant gene(s) may be.

  9. Users manual for Aerospace Nuclear Safety Program six-degree-of-freedom reentry simulation (TMAGRA6C)

    International Nuclear Information System (INIS)

    Sharbaugh, R.C.

    1990-02-01

    This report documents the updated six-degree-of-freedom reentry simulation TMAGRA6C used in the Aerospace Nuclear Safety Program, ANSP. The simulation provides for the inclusion of the effects of ablation on the aerodynamic stability and drag of reentry bodies, specifically the General Purpose Heat Source, GPHS. The existing six-degree-of-freedom reentry body simulations (TMAGRA6A and TMAGRA6B) used in the JHU/APL Nuclear Safety Program do not include aerodynamic effects resulting from geometric changes to the configuration due to ablation from reentry flights. A wind tunnel test was conducted in 1989 to obtain the effects of ablation on the hypersonic aerodynamics of the GPHS module. The analyzed data were used to form data sets which are included herein in tabular form. These are used as incremental aerodynamic inputs in the new TMAGRA6C six-degree-of-freedom reentry simulation. 20 refs., 13 figs., 2 tabs

  10. Aerodynamic and aeroelastic characteristics of the DARPA Smart Wing Phase II wind tunnel model

    Science.gov (United States)

    Sanders, Brian P.; Martin, Christopher A.; Cowan, David L.

    2001-06-01

    A wind tunnel demonstration was conducted on a scale model of an unmanned combat air vehicle (UCAV). The model was configured with traditional hinged control surfaces and control surfaces manufactured with embedded shape memory alloys. Control surfaces constructed with SMA wires enable a smooth and continuous deformation in both the spanwise and cordwise directions. This continuous shape results in some unique aerodynamic effects. Additionally, the stiffness distribution of the model was selected to understand the aeroelastic behavior of a wing designed with these control surfaces. The wind tunnel experiments showed that the aerodynamic performance of a wing constructed with these control surfaces is significantly improved. However, care must be taken when aeroelastic effects are considered since the wing will show a more rapid reduction in the roll moment due to increased moment arm about the elastic axis. It is shown, experimentally, that this adverse effect is easily counteracted using leading edge control surfaces.

  11. Variable Camber Continuous Aerodynamic Control Surfaces and Methods for Active Wing Shaping Control

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor)

    2016-01-01

    An aerodynamic control apparatus for an air vehicle improves various aerodynamic performance metrics by employing multiple spanwise flap segments that jointly form a continuous or a piecewise continuous trailing edge to minimize drag induced by lift or vortices. At least one of the multiple spanwise flap segments includes a variable camber flap subsystem having multiple chordwise flap segments that may be independently actuated. Some embodiments also employ a continuous leading edge slat system that includes multiple spanwise slat segments, each of which has one or more chordwise slat segment. A method and an apparatus for implementing active control of a wing shape are also described and include the determination of desired lift distribution to determine the improved aerodynamic deflection of the wings. Flap deflections are determined and control signals are generated to actively control the wing shape to approximate the desired deflection.

  12. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing.

    Science.gov (United States)

    Phillips, Nathan; Knowles, Kevin; Bomphrey, Richard J

    2015-10-09

    Insect wing shapes are diverse and a renowned source of inspiration for the new generation of autonomous flapping vehicles, yet the aerodynamic consequences of varying geometry is not well understood. One of the most defining and aerodynamically significant measures of wing shape is the aspect ratio, defined as the ratio of wing length (R) to mean wing chord (c). We investigated the impact of aspect ratio, AR, on the induced flow field around a flapping wing using a robotic device. Rigid rectangular wings ranging from AR = 1.5 to 7.5 were flapped with insect-like kinematics in air with a constant Reynolds number (Re) of 1400, and a dimensionless stroke amplitude of 6.5c (number of chords traversed by the wingtip). Pseudo-volumetric, ensemble-averaged, flow fields around the wings were captured using particle image velocimetry at 11 instances throughout simulated downstrokes. Results confirmed the presence of a high-lift, separated flow field with a leading-edge vortex (LEV), and revealed that the conical, primary LEV grows in size and strength with increasing AR. In each case, the LEV had an arch-shaped axis with its outboard end originating from a focus-sink singularity on the wing surface near the tip. LEV detachment was observed for AR > 1.5 around mid-stroke at ~70% span, and initiated sooner over higher aspect ratio wings. At AR > 3 the larger, stronger vortex persisted under the wing surface well into the next half-stroke leading to a reduction in lift. Circulatory lift attributable to the LEV increased with AR up to AR = 6. Higher aspect ratios generated proportionally less lift distally because of LEV breakdown, and also less lift closer to the wing root due to the previous LEV's continuing presence under the wing. In nature, insect wings go no higher than AR ~ 5, likely in part due to architectural and physiological constraints but also because of the reducing aerodynamic benefits of high AR wings.

  13. Analysis of bat wings for morphing

    Science.gov (United States)

    Leylek, Emily A.; Manzo, Justin E.; Garcia, Ephrahim

    2008-03-01

    The morphing of wings from three different bat species is studied using an extension of the Weissinger method. To understand how camber affects performance factors such as lift and lift to drag ratio, XFOIL is used to study thin (3% thickness to chord ratio) airfoils at a low Reynolds number of 100,000. The maximum camber of 9% yielded the largest lift coefficient, and a mid-range camber of 7% yielded the largest lift to drag ratio. Correlations between bat wing morphology and flight characteristics are covered, and the three bat wing planforms chosen represent various combinations of morphological components and different flight modes. The wings are studied using the extended Weissinger method in an "unmorphed" configuration using a thin, symmetric airfoil across the span of the wing through angles of attack of 0°-15°. The wings are then run in the Weissinger method at angles of attack of -2° to 12° in a "morphed" configuration modeled after bat wings seen in flight, where the camber of the airfoils comprising the wings is varied along the span and a twist distribution along the span is introduced. The morphed wing configurations increase the lift coefficient over 1000% from the unmorphed configuration and increase the lift to drag ratio over 175%. The results of the three different species correlate well with their flight in nature.

  14. Autonomous search and surveillance with small fixed wing aircraft

    Science.gov (United States)

    McGee, Timothy Garland

    Small unmanned aerial vehicles (UAVs) have the potential to act as low cost tools in a variety of both civilian and military applications including traffic monitoring, border patrol, and search and rescue. While most current operational UAV systems require human operators, advances in autonomy will allow these systems to reach their full potential as sensor platforms. This dissertation specifically focuses on developing advanced control, path planning, search, and image processing techniques that allow small fixed wing aircraft to autonomously collect data. The problems explored were motivated by experience with the development and experimental flight testing of a fleet of small autonomous fixed wing aircraft. These issues, which have not been fully addressed in past work done on ground vehicles or autonomous helicopters, include the influence of wind and turning rate constraints, the non-negligible velocity of ground targets relative to the aircraft velocity, and limitations on sensor size and processing power on small vehicles. Several contributions for the autonomous operation of small fixed wing aircraft are presented. Several sliding surface controllers are designed which extend previous techniques to include variable sliding surface coefficients and the use of spatial vehicle dynamics. These advances eliminate potential singularities in the control laws to follow spatially defined paths and allow smooth transition between controllers. The optimal solution for the problem of path planning through an ordered set of points for an aircraft with a bounded turning rate in the presence of a constant wind is then discussed. Path planning strategies are also explored to guarantee that a searcher will travel within sensing distance of a mobile ground target. This work assumes only a maximum velocity of the target and is designed to succeed for any possible path of the target. Closed-loop approximations of both the path planning and search techniques, using the sliding

  15. Exploration of the rotational power consumption of a rigid flapping wing

    Science.gov (United States)

    Truppel, Michael; Rossi, Lionel

    2011-10-01

    The development of Micro Air Vehicles with flapping wings is inspired from the observation and study of natural flyers such as insects and birds. This article explores the rotational power consumption of a flapping wing using a mechanical flapper at Re ≃ 4,500. This mechanical flapper is simplified to a 2D translation and a rotation in a water tank. Moreover, the wing kinematics are reduced to a linear translation and a rotation for the purpose of our study. We introduce the notion of non-ideal flapper and associated non-ideal rotational power. Such non-ideal devices are defined as consuming power for adding and removing mechanical power to and from the flow, respectively. First, we use a traditional symmetrical wing kinematic which is a simplified kinematic inspired from natural flyers. The lift coefficient of this flapping is about C L ≃ 1.5. This symmetrical wing kinematic is chosen as a reference. Further, wing kinematics with asymmetric rotations are then compared with this one. These new kinematics are built using a differential velocity defined according to the translational kinematics, a time lag and a distance, r kp. The analogy of this distance is discussed as a key point to follow along the chord. First, the wing kinematics are varied keeping a similar shape for the profiles of the angular velocity. It is shown that when compared to the reference wing kinematic, a 10% reduction in the rotational power is obtained whilst the lift is reduced by 9%. Second, we release the limitation to a similar shape for the profiles of the angular velocity leading to a novel shape for the angular velocity profile named here as "double bump" profile. With these new wing kinematics, we show that a 60% reduction in the non-ideal rotational power can be achieved whilst the lift coefficient is only reduced by 1.7%. Such "double bump kinematics" could then be of interest to increase the endurance of Micro Air Vehicles.

  16. Asymmetries in wing inertial and aerodynamic torques contribute to steering in flying insects.

    Science.gov (United States)

    Jankauski, Mark; Daniel, T L; Shen, I Y

    2017-06-08

    Maneuvering in both natural and artificial miniature flying systems is assumed to be dominated by aerodynamic phenomena. To explore this, we develop a flapping wing model integrating aero and inertial dynamics. The model is applied to an elliptical wing similar to the forewing of the Hawkmoth Manduca sexta and realistic kinematics are prescribed. We scrutinize the stroke deviation phase, as it relates to firing latency in airborne insect steering muscles which has been correlated to various aerial maneuvers. We show that the average resultant force production acting on the body largely arises from wing pitch and roll and is insensitive to the phase and amplitude of stroke deviation. Inclusion of stroke deviation can generate significant averaged aerodynamic torques at steady-state and adjustment of its phase can facilitate body attitude control. Moreover, averaged wing angular momentum varies with stroke deviation phase, implying a non-zero impulse during a time-dependent phase shift. Simulations show wing inertial and aerodynamic impulses are of similar magnitude during short transients whereas aerodynamic impulses dominate during longer transients. Additionally, inertial effects become less significant for smaller flying insects. Body yaw rates arising from these impulses are consistent with biologically measured values. Thus, we conclude (1) modest changes in stroke deviation can significantly affect steering and (2) both aerodynamic and inertial torques are critical to maneuverability, the latter of which has not widely been considered. Therefore, the addition of a control actuator modulating stroke deviation may decouple lift/thrust production from steering mechanisms in flapping wing micro aerial vehicles and increase vehicle dexterity through inertial trajectory shaping.

  17. Seismic Parameters of Mining-Induced Aftershock Sequences for Re-entry Protocol Development

    Science.gov (United States)

    Vallejos, Javier A.; Estay, Rodrigo A.

    2018-03-01

    A common characteristic of deep mines in hard rock is induced seismicity. This results from stress changes and rock failure around mining excavations. Following large seismic events, there is an increase in the levels of seismicity, which gradually decay with time. Restricting access to areas of a mine for enough time to allow this decay of seismic events is the main approach in re-entry strategies. The statistical properties of aftershock sequences can be studied with three scaling relations: (1) Gutenberg-Richter frequency magnitude, (2) the modified Omori's law (MOL) for the temporal decay, and (3) Båth's law for the magnitude of the largest aftershock. In this paper, these three scaling relations, in addition to the stochastic Reasenberg-Jones model are applied to study the characteristic parameters of 11 large magnitude mining-induced aftershock sequences in four mines in Ontario, Canada. To provide guidelines for re-entry protocol development, the dependence of the scaling relation parameters on the magnitude of the main event are studied. Some relations between the parameters and the magnitude of the main event are found. Using these relationships and the scaling relations, a space-time-magnitude re-entry protocol is developed. These findings provide a first approximation to concise and well-justified guidelines for re-entry protocol development applicable to the range of mining conditions found in Ontario, Canada.

  18. Detour from Nowhere: The Remarkable Journey of a Re-Entry College Woman.

    Science.gov (United States)

    Rodriguez, Sandria

    1996-01-01

    Reentry women generally face formidable barriers to educational success: they have primary responsibility for family matters; they suffer a disproportionate amount of stress, guilt, and anxiety; and their success is often dependent on family support. The article chronicles the empowerment that one woman found through her experience at a community…

  19. ENTRYSAT: A 3U Cubesat to Study the Re-Entry Atmospheric Environment

    Science.gov (United States)

    Garcia, R. F.; Chaix, J.; Mimoun, D.; EntrySat student Team

    2014-04-01

    The EntrySat is a 3U CubeSat designed to study the uncontrolled atmospheric re-entry. The project, developed by ISAE in collaboration with ONERA, is funded by CNES and is intended to be launched in January 2016, in the context of the QB50 network. The scientific goal is to relate the kinematics of the satellite with the aerothermodynamic environment during re-entry. In particular, data will be compared with the computations of MUSIC/FAST, a new 6-degree of freedom code developed by ONERA to predict the trajectory of space debris. According to these requirements, the satellite will measure the temperature, pressure, heat flux, and drag force during re-entry, as well as the trajectory and attitude of the satellite. One of the major technological challenges is the retrieval of data during the re-entry phase, which will be based on the Iridium satellite network. The system design is based on the use of commercial COTS components, and is mostly developed by students from ISAE. As such, the EntrySat has an important educational value in the formation of young engineers.

  20. Adaptive wing : Investigations of passive wing technologies for loads reduction in the cleansky smart fixed wing aircraft (SFWA) project

    NARCIS (Netherlands)

    Kruger, W.R.; Dillinger, J; De Breuker, R.; Reyes, M.; Haydn, K.

    2016-01-01

    In the work package “Adaptive Wing” in the Clean-Sky “Smart Fixed Wing Aircraft” (SFWA) project, design processes and solutions for aircraft wings have been created, giving optimal response with respect to loads, comfort and performance by the introduction of passive and active concepts. Central

  1. Experimental investigation of moving surfaces for boundary layer and circulation control of airfoils and wings

    Science.gov (United States)

    Vets, Robert

    to the class of fixed wing, Tier-1, Unmanned Aerial Vehicles (UAV).

  2. The hydraulic mechanism in the hind wing veins of Cybister japonicus Sharp (order: Coleoptera

    Directory of Open Access Journals (Sweden)

    Jiyu Sun

    2016-06-01

    Full Text Available The diving beetles (Dytiscidae, Coleoptera are families of water beetles. When they see light, they fly to the light source directly from the water. Their hind wings are thin and fragile under the protection of their elytra (forewings. When the beetle is at rest the hind wings are folded over the abdomen of the beetle and when in flight they unfold to provide the necessary aerodynamic forces. In this paper, the unfolding process of the hind wing of Cybister japonicus Sharp (order: Coleoptera was investigated. The motion characteristics of the blood in the veins of the structure system show that the veins have microfluidic control over the hydraulic mechanism of the unfolding process. A model is established, and the hind wing extending process is simulated. The blood flow and pressure changes are discussed. The driving mechanism for hydraulic control of the folding and unfolding actions of beetle hind wings is put forward. This can assist the design of new deployable micro air vehicles and bioinspired deployable systems.

  3. The hydraulic mechanism in the hind wing veins of Cybister japonicus Sharp (order: Coleoptera).

    Science.gov (United States)

    Sun, Jiyu; Wu, Wei; Ling, Mingze; Bhushan, Bharat; Tong, Jin

    2016-01-01

    The diving beetles (Dytiscidae, Coleoptera) are families of water beetles. When they see light, they fly to the light source directly from the water. Their hind wings are thin and fragile under the protection of their elytra (forewings). When the beetle is at rest the hind wings are folded over the abdomen of the beetle and when in flight they unfold to provide the necessary aerodynamic forces. In this paper, the unfolding process of the hind wing of Cybister japonicus Sharp (order: Coleoptera) was investigated. The motion characteristics of the blood in the veins of the structure system show that the veins have microfluidic control over the hydraulic mechanism of the unfolding process. A model is established, and the hind wing extending process is simulated. The blood flow and pressure changes are discussed. The driving mechanism for hydraulic control of the folding and unfolding actions of beetle hind wings is put forward. This can assist the design of new deployable micro air vehicles and bioinspired deployable systems.

  4. Dipteran wing motor-inspired flapping flight versatility and effectiveness enhancement.

    Science.gov (United States)

    Harne, R L; Wang, K W

    2015-03-06

    Insects are a prime source of inspiration towards the development of small-scale, engineered, flapping wing flight systems. To help interpret the possible energy transformation strategies observed in Diptera as inspiration for mechanical flapping flight systems, we revisit the perspective of the dipteran wing motor as a bistable click mechanism and take a new, and more flexible, outlook to the architectural composition previously considered. Using a representative structural model alongside biological insights and cues from nonlinear dynamics, our analyses and experimental results reveal that a flight mechanism able to adjust motor axial support stiffness and compression characteristics may dramatically modulate the amplitude range and type of wing stroke dynamics achievable. This corresponds to significantly more versatile aerodynamic force generation without otherwise changing flapping frequency or driving force amplitude. Whether monostable or bistable, the axial stiffness is key to enhance compressed motor load bearing ability and aerodynamic efficiency, particularly compared with uncompressed linear motors. These findings provide new foundation to guide future development of bioinspired, flapping wing mechanisms for micro air vehicle applications, and may be used to provide insight to the dipteran muscle-to-wing interface. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. Beneficial aerodynamic effect of wing scales on the climbing flight of butterflies.

    Science.gov (United States)

    Slegers, Nathan; Heilman, Michael; Cranford, Jacob; Lang, Amy; Yoder, John; Habegger, Maria Laura

    2017-01-30

    It is hypothesized that butterfly wing scale geometry and surface patterning may function to improve aerodynamic efficiency. In order to investigate this hypothesis, a method to measure butterfly flapping kinematics optically over long uninhibited flapping sequences was developed. Statistical results for the climbing flight flapping kinematics of 11 butterflies, based on a total of 236 individual flights, both with and without their wing scales, are presented. Results show, that for each of the 11 butterflies, the mean climbing efficiency decreased after scales were removed. Data was reduced to a single set of differences of climbing efficiency using are paired t-test. Results show a mean decrease in climbing efficiency of 32.2% occurred with a 95% confidence interval of 45.6%-18.8%. Similar analysis showed that the flapping amplitude decreased by 7% while the flapping frequency did not show a significant difference. Results provide strong evidence that butterfly wing scale geometry and surface patterning improve butterfly climbing efficiency. The authors hypothesize that the wing scale's effect in measured climbing efficiency may be due to an improved aerodynamic efficiency of the butterfly and could similarly be used on flapping wing micro air vehicles to potentially achieve similar gains in efficiency.

  6. Pegasus Rocket Wing and PHYSX Glove Being Prepared for Stress Loads Testing

    Science.gov (United States)

    1997-01-01

    A technician adjusts the Pegasus Hypersonic Experiment (PHYSX) Project's Pegasus rocket wing with attached PHYSX glove before a loads-test at Scaled Composites, Inc., in Mojave, California, in January 1997. For the test, technicians slowly filled water bags beneath the wing to create the pressure, or 'wing-loading,' required to determine whether the wing could withstand its design limit for stress. The wing sits in a wooden triangular frame which serves as the test-rig, mounted to the floor atop the waterbags. PHYSX was launched aboard a Pegasus rocket on October 22, 1998. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially; later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and

  7. Design of Reflective, Photonic Shields for Atmospheric Reentry

    Science.gov (United States)

    Komarevskiy, Nikolay; Shklover, Valery; Braginsky, Leonid; Hafner, Christian; Fabrichnaya, Olga; White, Susan; Lawson, John

    2010-01-01

    We present the design of one-dimensional photonic crystal structures, which can be used as omnidirectional reflecting shields against radiative heating of space vehicles entering the Earth's atmosphere. This radiation is approximated by two broad bands centered at visible and near-infrared energies. We applied two approaches to find structures with the best omnidirectional reflecting performance. The first approach is based on a band gap analysis and leads to structures composed of stacked Bragg mirrors. In the second approach, we optimize the structure using an evolutionary strategy. The suggested structures are compared with a simple design of two stacked Bragg mirrors. Choice of the constituent materials for the layers as well as the influence of interlayer diffusion at high temperatures are discussed.

  8. Artist's Concept of X-37 Re-entry

    Science.gov (United States)

    1999-01-01

    Pictured is an artist's concept of the experimental X-37 Reusable Launch Vehicle re-entering Earth`s atmosphere. NASA and the Boeing Company entered a cooperative agreement to develop and fly a new experimental space plane called the X-37 that would be ferried into orbit to test new technologies. The reusable space plane incorporated technologies aimed at significantly cutting the cost of space flight. The X-37 would be carried into orbit by the Space Shuttle or be launched by an expendable rocket. After the X-37 was deployed, it would remain in orbit up to 21 days, performing a variety of experiments before re-entering the Earth's atmosphere and landing. The X-37 program was discontinued in 2003.

  9. The Realization and Study of Optical Wings

    Science.gov (United States)

    Artusio-Glimpse, Alexandra Brae

    Consider the airfoil: a carefully designed structure capable of stable lift in a uniform air flow. It so happens that air pressure and radiation (light) pressure are similar phenomena because each transfer momentum to flow-disturbing objects. This, then, begs the question: does an optical analogue to the airfoil exist? Though an exceedingly small effect, scientists harness radiation pressure in a wide gamut of applications from micromanipulation of single biological particles to the propulsion of large spacecrafts called solar sails. We introduce a cambered, refractive rod that is subjected to optical forces analogous to those seen in aerodynamics, and I call this analogue the optical wing. Flight characteristics of optical wings are determined by wing shape and material in a uniform radiation field. Theory predicts the lift force and axial torque are functions of the wing's angle of attack with stable and unstable orientations. These structures can operate as intensity-dependent, parametrically driven oscillators. In two-dimensions, the wings exhibit bistability when analyzed in an accelerating frame. In three-dimensions, the motion of axially symmetric spinning hemispherical wings is analogous to a spinning top. Experiments on semi-buoyant wings in water found semicylindrically shaped, refractive microparticles traversed a laser beam and rotated to an illumination-dependent stable orientation. Preliminary tests aid in the development of a calibrated force measurement experiment to directly evaluate the optical forces and torque on these samples. A foundational study of the optical wing, this work contributes to future advancements of flight-by-light.

  10. The Crest Wing Wave Energy Device

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Antonishen, Michael Patrick

    This report presents the results of a continuation of an experimental study of the wave energy converting abilities of the Crest Wing wave energy converter (WEC), in the following referred to as ‘Phase 2'. The Crest Wing is a WEC that uses its movement in matching the shape of an oncoming wave...

  11. Effect of leading edge roundness on a delta wing in wing-rock motion

    Science.gov (United States)

    Ng, T. Terry; Malcolm, Gerald N.

    1990-01-01

    The effect of wing leading-edge roundness on wing rock was investigated using flow visualization in a water tunnel. Eighty degree delta wing models were tested on free-to-roll and forced oscillation rigs. The onset of wing rock was delayed by increasing the roundness of the leading edges. The wing rock amplitude and frequency results suggested that damping was increased at lower angles of attack but reduced at higher angles of attack. Vortex lift-off and vortex breakdown, especially during dynamic situations, were strongly affected by the leading edge roundness. Different forms of wing rock motion could be sustained by combinations of vortex breakdown and vortex lift-off. Behaviors of the wing and vortex motions were explained by the influence of leading edge roundness on the separation location, vortex trajectory, and vortex breakdown.

  12. Investigation of a robust tendon-sheath mechanism for flexible membrane wing application in mini-UAV

    Science.gov (United States)

    Lee, Shian; Tjahjowidodo, Tegoeh; Lee, Hsuchew; Lai, Benedict

    2017-02-01

    Two inherent issues manifest themselves in flying mini-unmanned aerial vehicles (mini-UAV) in the dense area at tropical climate regions, namely disturbances from gusty winds and limited space for deployment tasks. Flexible membrane wing (FMW) UAVs are seen to be potentials to mitigate these problems. FMWs are adaptable to gusty airflow as the wings are able to flex according to the gust load to reduce the effective angle-of-attack, thus, reducing the aerodynamic loads on the wing. On the other hand, the flexible structure is allowing the UAV to fold in a compact package, and later on, the mini-UAV can be deployed instantly from the storage tube, e.g. through a catapult mechanism. This paper discusses the development of an FMW UAV actuated by a tendon-sheath mechanism (TSM). This approach allows the wing to morph to generate a rolling moment, while still allowing the wing to fold. Dynamic characteristics of the mechanism that exhibits the strong nonlinear phenomenon of friction on TSM are modeled and compensated for. A feed-forward controller was implemented based on the identified nonlinear behavior to control the warping position of the wing. The proposed strategy is validated experimentally in a wind tunnel facility by creating a gusty environment that is imitating a realistic gusty condition based upon the results of computational fluid dynamics (CFD) simulation. The results demonstrate a stable and robust wing-warping actuation, even in gusty conditions. Accurate wing-warping can be achieved via the TSM, while also allowing the wings to fold.

  13. Aeroelasticity Benchmark Assessment: Subsonic Fixed Wing Program

    Science.gov (United States)

    Florance, Jennifer P.; Chwalowski, Pawel; Wieseman, Carol D.

    2010-01-01

    The fundamental technical challenge in computational aeroelasticity is the accurate prediction of unsteady aerodynamic phenomena and the effect on the aeroelastic response of a vehicle. Currently, a benchmarking standard for use in validating the accuracy of computational aeroelasticity codes does not exist. Many aeroelastic data sets have been obtained in wind-tunnel and flight testing throughout the world; however, none have been globally presented or accepted as an ideal data set. There are numerous reasons for this. One reason is that often, such aeroelastic data sets focus on the aeroelastic phenomena alone (flutter, for example) and do not contain associated information such as unsteady pressures and time-correlated structural dynamic deflections. Other available data sets focus solely on the unsteady pressures and do not address the aeroelastic phenomena. Other discrepancies can include omission of relevant data, such as flutter frequency and / or the acquisition of only qualitative deflection data. In addition to these content deficiencies, all of the available data sets present both experimental and computational technical challenges. Experimental issues include facility influences, nonlinearities beyond those being modeled, and data processing. From the computational perspective, technical challenges include modeling geometric complexities, coupling between the flow and the structure, grid issues, and boundary conditions. The Aeroelasticity Benchmark Assessment task seeks to examine the existing potential experimental data sets and ultimately choose the one that is viewed as the most suitable for computational benchmarking. An initial computational evaluation of that configuration will then be performed using the Langley-developed computational fluid dynamics (CFD) software FUN3D1 as part of its code validation process. In addition to the benchmarking activity, this task also includes an examination of future research directions. Researchers within the

  14. Analytical modeling and experimental evaluation of a passively morphing ornithopter wing

    Science.gov (United States)

    Wissa, Aimy A.

    Ornithopters or flapping wing Unmanned Aerial Vehicles (UAVs) have potential applications in both civil and military sectors. Amongst all categories of UAVs, ornithopters have a unique ability to fly in low Reynolds number flight regimes and have the agility and maneuverability of rotary wing aircraft. In nature, birds achieve such performance by exploiting various wing kinematics known as gaits. The objective of this work was to improve the steady level flight wing performance of an ornithopter by implementing the Continuous Vortex Gait (CVG) using a novel passive compliant spine. The CVG is a set of bio-inspired kinematics that natural flyers use to produce lift and thrust during steady level flight. A significant contribution of this work was the recognition that the CVG is an avian gait that could be achieved using a passive morphing mechanism. In contrast to rigid-link mechanisms and active approaches, reported by other researchers in the open literature, passive morphing mechanisms require no additional energy expenditure, while introducing minimal weight addition and complexity. During the execution of the CVG, the avian wing wrist is the primary joint responsible for the wing shape changes. Thus a compliant mechanism, called a compliant spine, was fabricated, and integrated in the ornithopter's wing leading edge spar where an avian wrist would normally exist, namely at 37% of the wing half span. Each compliant spine was designed to be flexible in bending during the wing upstroke and stiff in bending during the wing downstroke. Inserting a variable stiffness compliant mechanism in the leading edge (LE) spar of the ornithopter could affect its structural stability. An analytical model was developed to determine the structural stability of the ornithopter LE spar. The model was validated using experimental measurements. The LE spar equations of motion were then reformulated into Mathieu's equation and the LE spar was proven to be structurally stable with a

  15. Lightweight Ablative and Ceramic Thermal Protection System Materials for NASA Exploration Systems Vehicles

    Science.gov (United States)

    Valentine, Peter G.; Lawrence, Timothy W.; Gubert, Michael K.; Milos, Frank S.; Kiser, James D.; Ohlhorst, Craig W.; Koenig, John R.

    2006-01-01

    As a collaborative effort among NASA Centers, the "Lightweight Nonmetallic Thermal Protection Materials Technology" Project was set up to assist mission/vehicle design trade studies, to support risk reduction in thermal protection system (TPS) material selections, to facilitate vehicle mass optimization, and to aid development of human-rated TPS qualification and certification plans. Missions performing aerocapture, aerobraking, or direct aeroentry rely on advanced heatshields that allow reductions in spacecraft mass by minimizing propellant requirements. Information will be presented on candidate materials for such reentry approaches and on screening tests conducted (material property and space environmental effects tests) to evaluate viable candidates. Seventeen materials, in three classes (ablatives, tiles, and ceramic matrix composites), were studied. In additional to physical, mechanical, and thermal property tests, high heat flux laser tests and simulated-reentry oxidation tests were performed. Space environmental effects testing, which included exposures to electrons, atomic oxygen, and hypervelocity impacts, was also conducted.

  16. Vertical Take-Off and Landing Vehicle with Increased Cruise Efficiency

    Science.gov (United States)

    Fredericks, William J. (Inventor); Moore, Mark D. (Inventor); Busan, Ronald C. (Inventor); Rothhaar, Paul M. (Inventor); North, David D. (Inventor); Langford, William M. (Inventor); Laws, Christopher T. (Inventor); Hodges, William T. (Inventor); Johns, Zachary R. (Inventor); Webb, Sandy R. (Inventor)

    2016-01-01

    Systems, methods, and devices are provided that combine an advance vehicle configuration, such as an advanced aircraft configuration, with the infusion of electric propulsion, thereby enabling a four times increase in range and endurance while maintaining a full vertical takeoff and landing ("VTOL") and hover capability for the vehicle. Embodiments may provide vehicles with both VTOL and cruise efficient capabilities without the use of ground infrastructure. An embodiment vehicle may comprise a wing configured to tilt through a range of motion, a first series of electric motors coupled to the wing and each configured to drive an associated wing propeller, a tail configured to tilt through the range of motion, a second series of electric motors coupled to the tail and each configured to drive an associated tail propeller, and an electric propulsion system connected to the first series of electric motors and the second series of electric motors.

  17. Hovering hummingbird wing aerodynamics during the annual cycle. II. Implications of wing feather moult

    Science.gov (United States)

    Sapir, Nir; Elimelech, Yossef

    2018-01-01

    Birds usually moult their feathers in a particular sequence which may incur aerodynamic, physiological and behavioural implications. Among birds, hummingbirds are unique species in their sustained hovering flight. Because hummingbirds frequently hover-feed, they must maintain sufficiently high flight capacities even when moulting their flight feathers. A hummingbird wing consists of 10 primary flight feathers whose absence during moult may strongly affect wing performance. Using dynamic similarity rules, we compared time-accurate aerodynamic loads and flow field measurements over several wing geometries that follow the natural feather moult sequence of Calypte anna, a common hummingbird species in western North America. Our results suggest a drop of more than 20% in lift production during the early stages of the moult sequence in which mid-wing flight feathers are moulted. We also found that the wing's ability to generate lift strongly depended on the morphological integrity of the outer primaries and leading-edge. These findings may explain the evolution of wing morphology and moult attributes. Specifically, the high overlap between adjacent wing feathers, especially at the wing tip, and the slow sequential replacement of the wing feathers result in a relatively small reduction in wing surface area during moult with limited aerodynamic implications. We present power and efficiency analyses for hover flight during moult under several plausible scenarios, suggesting that body mass reduction could be a compensatory mechanism that preserves the energetic costs of hover flight. PMID:29515884

  18. An aerodynamic model for insect flapping wings in forward flight.

    Science.gov (United States)

    Han, Jong-Seob; Chang, Jo Won; Han, Jae-Hung

    2017-03-31

    This paper proposes a semi-empirical quasi-steady aerodynamic model of a flapping wing in forward flight. A total of 147 individual cases, which consisted of advance ratios J of 0 (hovering), 0.125, 0.25, 0.5, 0.75, 1 and  ∞, and angles of attack α of  -5 to 95° at intervals of 5°, were examined to extract the aerodynamic coefficients. The Polhamus leading-edge suction analogy and power functions were then employed to establish the aerodynamic model. In order to preserve the existing level of simplicity, K P and K V , the correction factors of the potential and vortex force models, were rebuilt as functions of J and α. The estimations were nearly identical to direct force/moment measurements which were obtained from both artificial and practical wingbeat motions of a hawkmoth. The model effectively compensated for the influences of J, particularly showing outstanding moment estimation capabilities. With this model, we found that using a lower value of α during the downstroke would be an effective strategy for generating adequate lift in forward flight. The rotational force and moment components had noticeable portions generating both thrust and counteract pitching moment during pronation. In the upstroke phase, the added mass component played a major role in generating thrust in forward flight. The proposed model would be useful for a better understanding of flight stability, control, and the dynamic characteristics of flapping wing flyers, and for designing flapping-wing micro air vehicles.

  19. Numerical and experimental investigations on unsteady aerodynamics of flapping wings

    Science.gov (United States)

    Yu, Meilin

    suggestions to the design of micro-air-vehicles (MAVs), 3D simulations of the flapping wings are carried out in this work. Both the rectangular and bio-inspired wings with different kinematics are investigated. The formation process of two-jet-like wake patterns behind the finite-span flapping wing is found to be closely related to the interaction between trailing edge vortices and tip vortices. Then the effects of the wing planforms on the aerodynamics performance of the finite-span flapping wings are elucidated in terms of the evolution and dynamic interaction of unsteady vortex structures.

  20. Semi-automated quantitative Drosophila wings measurements.

    Science.gov (United States)

    Loh, Sheng Yang Michael; Ogawa, Yoshitaka; Kawana, Sara; Tamura, Koichiro; Lee, Hwee Kuan

    2017-06-28

    Drosophila melanogaster is an important organism used in many fields of biological research such as genetics and developmental biology. Drosophila wings have been widely used to study the genetics of development, morphometrics and evolution. Therefore there is much interest in quantifying wing structures of Drosophila. Advancement in technology has increased the ease in which images of Drosophila can be acquired. However such studies have been limited by the slow and tedious process of acquiring phenotypic data. We have developed a system that automatically detects and measures key points and vein segments on a Drosophila wing. Key points are detected by performing image transformations and template matching on Drosophila wing images while vein segments are detected using an Active Contour algorithm. The accuracy of our key point detection was compared against key point annotations of users. We also performed key point detection using different training data sets of Drosophila wing images. We compared our software with an existing automated image analysis system for Drosophila wings and showed that our system performs better than the state of the art. Vein segments were manually measured and compared against the measurements obtained from our system. Our system was able to detect specific key points and vein segments from Drosophila wing images with high accuracy.

  1. Multi-Objective Trajectory Optimization of a Hypersonic Reconnaissance Vehicle with Temperature Constraints

    Science.gov (United States)

    2014-12-26

    Simulation,” NASA TM, NASA Ames- Dryden , Edwards, CA, 1987. [14] White, D., Bowers, A., Iliff, K., and Menousek, J., Flight, Propulsion, and Thermal...Navigation, and Control Conference. 2005. 6. Araki, John Jun. Reentry Dynamics and Handling Qualities of a Generic Hyper- sonic Vehicle. MS Thesis...Estimation via an Orthogonal Collocation Method”. Journal of Guidance, Control, and Dynamics, 29(6):1435– 1440, 2006. 9. Betts, John T. Practical

  2. Human Factors Lessons Learned from Flight Testing Wingless Lifting Body Vehicles

    Science.gov (United States)

    Merlin, Peter William

    2014-01-01

    Since the 1960s, NASA, the Air Force, and now private industry have attempted to develop an operational human crewed reusable spacecraft with a wingless, lifting body configuration. This type of vehicle offers increased mission flexibility and greater reentry cross range than capsule type craft, and is particularly attractive due to the capability to land on a runway. That capability, however, adds complexity to the human factors engineering requirements of developing such aircraft.

  3. Space Vehicle Flight Mechanics (La Mecanique du Vol des Vehicules Spatiaux)

    Science.gov (United States)

    1990-06-01

    art of trajectory optimization of aerospace vehicles is given with emphasis on applications to ARIANE V ascent trajectories and HERMES reentry...Figure 9 is art illustra- lion of TIFS. MIL Verifieation Simulators (FSL, SAIL). Tile Flight Systemis Laboratory (FSL), located in Downey, Califoria, was...partie souligne le lien qui existe entre la Mecanique Variatlonnelle et los m~thodes modernos d’Optimisation (Principe du Maximum do Conte nsou

  4. Lightweight Ultrahigh Temperature CMC-Encased C/C Structure for Reentry and Hypersonic Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The reentry spacecraft and hypersonic cruisers of the future will require advanced lightweight thermal protection systems that can provide the dual functionality of...

  5. Novel Control Effectors for Truss Braced Wing

    Science.gov (United States)

    White, Edward V.; Kapania, Rakesh K.; Joshi, Shiv

    2015-01-01

    At cruise flight conditions very high aspect ratio/low sweep truss braced wings (TBW) may be subject to design requirements that distinguish them from more highly swept cantilevered wings. High aspect ratio, short chord length and relative thinness of the airfoil sections all contribute to relatively low wing torsional stiffness. This may lead to aeroelastic issues such as aileron reversal and low flutter margins. In order to counteract these issues, high aspect ratio/low sweep wings may need to carry additional high speed control effectors to operate when outboard ailerons are in reversal and/or must carry additional structural weight to enhance torsional stiffness. The novel control effector evaluated in this study is a variable sweep raked wing tip with an aileron control surface. Forward sweep of the tip allows the aileron to align closely with the torsional axis of the wing and operate in a conventional fashion. Aft sweep of the tip creates a large moment arm from the aileron to the wing torsional axis greatly enhancing aileron reversal. The novelty comes from using this enhanced and controllable aileron reversal effect to provide roll control authority by acting as a servo tab and providing roll control through intentional twist of the wing. In this case the reduced torsional stiffness of the wing becomes an advantage to be exploited. The study results show that the novel control effector concept does provide roll control as described, but only for a restricted class of TBW aircraft configurations. For the configuration studied (long range, dual aisle, Mach 0.85 cruise) the novel control effector provides significant benefits including up to 12% reduction in fuel burn.

  6. Composite corrugated structures for morphing wing skin applications

    International Nuclear Information System (INIS)

    Thill, C; Etches, J A; Bond, I P; Potter, K D; Weaver, P M

    2010-01-01

    Composite corrugated structures are known for their anisotropic properties. They exhibit relatively high stiffness parallel (longitudinal) to the corrugation direction and are relatively compliant in the direction perpendicular (transverse) to the corrugation. Thus, they offer a potential solution for morphing skin panels (MSPs) in the trailing edge region of a wing as a morphing control surface. In this paper, an overview of the work carried out by the present authors over the last few years on corrugated structures for morphing skin applications is first given. The second part of the paper presents recent work on the application of corrugated sandwich structures. Panels made from multiple unit cells of corrugated sandwich structures are used as MSPs in the trailing edge region of a scaled morphing aerofoil section. The aerofoil section features an internal actuation mechanism that allows chordwise length and camber change of the trailing edge region (aft 35% chord). Wind tunnel testing was carried out to demonstrate the MSP concept but also to explore its limitations. Suggestions for improvements arising from this study were deduced, one of which includes an investigation of a segmented skin. The overall results of this study show that the MSP concept exploiting corrugated sandwich structures offers a potential solution for local morphing wing skins for low speed and small air vehicles

  7. Reentry planning: The technical basis for offsite recovery following warfare agent contamination

    Energy Technology Data Exchange (ETDEWEB)

    Watson, A.P.; Munro, N.B.

    1990-04-01

    In the event on an unplanned release of chemical agent during any stage of Chemical Stockpile Disposal Program (CSDP), the potential exists for contamination of drinking water, forage crops, grains, garden produce and livestock. Persistent agents, such as VX or sulfur mustard, pose the greatest human health concern for reentry. The purpose of this technical support study is to provide information and analyses that can be used by federal, state and local emergency planners in determining the safety or reentry to, as well as the potential for recovery of, contaminated or suspect areas beyond the installation boundary. Guidelines for disposition of livestock, agricultural crops and personal/real property are summarized. Advisories for ingestion of food crops, water, meat and milk from the affected zones are proposed. This document does not address potential adverse effects to, or agent contamination of, wild species of plants or animals. 80 refs., 4 figs., 29 tabs.

  8. Wind Tunnel Aero-Heating and Material Destruction Tests for Improved Debris Re-Entry Analysis

    Science.gov (United States)

    Koppenwallner, G.; Lips, T.; Alwes, D.

    2009-03-01

    During the S/C re-entry destruction fragments of irregular geometry are released. One finds spheres, boxes and cylinders, which may be hollow and which are flying in tumbling motion. The experimental database on such bodies is limited. Therefore heat transfer test have been conducted in the hypersonic vacuum wind tunnel V2G of DLR Göttingen. With a special model support also rotating models could be tested.Another study objective was the thermal destruction of selected materials and CFRP components under simulated re-entry heat loads. In use are solid CFRP structures, honeycombs with CFRP facesheets, or thin walled titanium tanks with external CFRP reinforcements. The destruction of multilayer structures may be completely different to solid thick CFRP. Therefore samples of 12 CFRP and CFRP honeycombs have been tested in the LBK 2 arc jet facility of DLR.

  9. From the inside/out: Greene County jail inmates on restorative reentry.

    Science.gov (United States)

    Hass, Aida Y; Saxon, Caryn E

    2012-10-01

    The application of criminal justice sanctions is often misguided by a failure to recognize the need for a comprehensive approach in the transformation of offenders into law-abiding citizens. Restorative justice is a growing movement within criminal justice that recognizes the disconnect between offender rehabilitative measures and the social dynamics within which offender reentry takes place. By using restorative approaches to justice, what one hopes of these alternative processes is that the offenders become reconnected to the community and its values, something rarely seen in retributive models in which punishment is imposed and offenders can often experience further alienation from society. In this study, the authors wish to examine factors that contribute to failed prisoner reentry and reintegration and explore how restorative reintegration processes can address these factors as well as the needs, attitudes, and perceptions that help construct and maintain many of the obstacles and barriers returning inmates face when attempting to reintegrate into society.

  10. Tracks for Eastern/Western European Future Launch Vehicles Cooperation

    Science.gov (United States)

    Eymar, Patrick; Bertschi, Markus

    2002-01-01

    exclusively upon Western European elements indigenously produced. Yet some private initiatives took place successfully in the second half of the nineties (Eurockot and Starsem) bringing together companies from Western and Eastern Europe. Evolution of these JV's are already envisioned. But these ventures relied mostly on already existing vehicles. broadening the bases in order to enlarge the reachable world market appears attractive, even if structural difficulties are complicating the process. had recently started to analyze, with KSRC counterparts how mixing Russian and Western European based elements would provide potential competitive edges. and RKA in the frame of the new ESA's Future Launch Preparatory Programme (FLPP). main technical which have been considered as the most promising (reusable LOx/Hydrocarbon engine, experimental reentry vehicles or demonstrators and reusable launch vehicle first stage or booster. international approach. 1 patrick.eymar@lanceurs.aeromatra.com 2

  11. Canal switch and re-entry phenomenon in benign paroxysmal positional vertigo: difference between immediate and delayed occurrence.

    Science.gov (United States)

    Dispenza, F; DE Stefano, A; Costantino, C; Rando, D; Giglione, M; Stagno, R; Bennici, E

    2015-04-01

    This prospective study was designed to evaluate the differences between immediate and delayed canal re-entry of otoliths after therapeutic manoeuvres in patients with benign paroxysmal positional vertigo (BPPV). A total of 196 patients with BPPV were visited and 127 matched our inclusion criteria. The mean age was 54.74 years. The horizontal semicircular canal (HSC) was involved in 30 cases and the posterior semicircular canal (PSC) in 97 patients. Patients with hearing loss in the ear affected by BPPV have a more recurrent form, compared to those with normal hearing. An immediate canal re-entry was recorded in 3 patients with HSC BPPV, all with geotropic nystagmus. In 7 patients with PSC BPPV, the immediate canal re-entry was detected and the delayed form was noted in 5 patients. The patients with the delayed canal re-entry underwent more than 2 previous manoeuvres. The canal re-entry was not related to the manoeuvre performed. The timing of the Dix-Hallpike test to verify the resolution of the BPPV had a significant role in immediate canal re-entry. A recurrence in the follow-up at least one month after treatment was recorded in 20 patients and was more frequent in patients that had canal re-entry. The canal re-entry or canal switch is a clinical entity that should be kept in mind of the neurotologist when approaching BPPV patients. It is important to distinguish it from recurrence when delayed and from manoeuvre failure when immediate. The timing of manoeuvre performing, in particular the final verification test after therapeutic sessions, is important to prevent the immediate reflux of particles into canals.

  12. Generic Wing-Body Aerodynamics Data Base

    Science.gov (United States)

    Holst, Terry L.; Olsen, Thomas H.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    The wing-body aerodynamics data base consists of a series of CFD (Computational Fluid Dynamics) simulations about a generic wing body configuration consisting of a ogive-circular-cylinder fuselage and a simple symmetric wing mid-mounted on the fuselage. Solutions have been obtained for Nonlinear Potential (P), Euler (E) and Navier-Stokes (N) solvers over a range of subsonic and transonic Mach numbers and angles of attack. In addition, each solution has been computed on a series of grids, coarse, medium and fine to permit an assessment of grid refinement errors.

  13. Unemployment and Right-Wing Extremist Crime

    OpenAIRE

    Falk, Armin; Zweimüller, Josef

    2005-01-01

    Right-wing extremism is a serious problem in many societies. A prominent hypothesis states that unemployment plays a crucial role for the occurrence of right-wing extremist crime. In this paper we empirically test this hypothesis. We use a previously not used data set which includes all officially recorded right-wing criminal acts in Germany. These data are recorded by the German Federal Criminal Police Office on a monthly and state level basis. Our main finding is that there is in fact a sig...

  14. Robotic vehicle

    Science.gov (United States)

    Box, W. Donald

    1997-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  15. Abandoned vehicles

    CERN Multimedia

    Relations with the Host States Service

    2004-01-01

    The services in charge of managing the CERN site have recently noted an increase in the number of abandoned vehicles. This poses a risk from the point of view of safety and security and, on the eve of several important events in honour of CERN's fiftieth anniversary, is detrimental to the Organization's image. Owners of vehicles that have been left immobile for some time on the CERN site, including on the external car park by the flags, are therefore invited to contact the Reception and Access Control Service (service-parking-longterm@cern.ch) before 1st October 2004 and, where appropriate, move their vehicle to a designated long-term parking area. After this date, any vehicle whose owner has failed to respond to this request and which is without a number plate, has been stationary for several weeks or is out of service, may be impounded at the owner's risk and expense. Relations with the Host States Service Tel. 72848

  16. Subscale Winged Rocket Development and Application to Future Reusable Space Transportation

    Directory of Open Access Journals (Sweden)

    Koichi YONEMOTO

    2018-03-01

    Full Text Available Kyushu Institute of Technology has been studying unmanned suborbital winged rocket called WIRES (WInged REusable Sounding rocket and its research subjects concerning aerodynamics, NGC (Navigation, Guidance and Control, cryogenic composite tanks etc., and conducting flight demonstration of small winged rocket since 2005. WIRES employs the original aerodynamic shape of HIMES (HIghly Maneuverable Experimental Sounding rocket studied by ISAS (Institute of Space and Astronautical Science of JAXA (Japan Aerospace Exploration Agency in 1980s. This paper presents the preliminary design of subscale non-winged and winged rockets called WIRES#013 and WIRES#015, respectively, that are developed in collaboration with JAXA, USC (University of Southern California, UTEP (University of Texas at El Paso and Japanese industries. WIRES#013 is a conventional pre-test rocket propelled by two IPA-LOX (Isopropyl Alcohol and Liquid Oxygen engines under development by USC. It has the total length of 4.6m, and the weight of 1000kg to reach the altitude of about 6km. The flight objective is validation of the telemetry and ground communication system, recovery parachute system, and launch operation of liquid engine. WIRES#015, which has the same length of WIRES#013 and the weight of 1000kg, is a NGC technology demonstrator propelled by a fully expander-cycle LOX-Methane engine designed and developed by JAXA to reach the altitude more than 6km. The flight tests of both WIRES#013 and WIRES#015 will be conducted at the launch facility of FAR (Friends of Amateur Rocketry, Inc., which is located at Mojave Desert of California in United States of America, in May 2018 and March 2019 respectively. After completion of WIRES#015 flight tests, the suborbital demonstrator called WIRES-X will be developed and its first flight test well be performed in 2020. Its application to future fully reusable space transportation systems, such as suborbital space tour vehicles and two

  17. NPSAT1: Assessment Of Risk For Human Casualty From Atmospheric Reentry

    Science.gov (United States)

    2016-03-01

    7  Table 2.  Small Satellite Categories by Wet Mass ........................................ 27  Table 3.  NPSAT1 Material Properties... Small Satellite Categories by Wet Mass Satellite Class Qualifying Wet Mass (kg) Minisatellite 100 kg to 500 kg Microsatellite 10 kg to 100 kg...Earth. This thesis addresses both the survivability of the soon-to-be-launched NPSAT1 satellite on its eventual reentry into the earth’s atmosphere

  18. A national survey of 'inactive' physicians in the United States of America: enticements to reentry

    Directory of Open Access Journals (Sweden)

    Brotherton Sarah E

    2011-02-01

    Full Text Available Abstract Background Physicians leaving and reentering clinical practice can have significant medical workforce implications. We surveyed inactive physicians younger than typical retirement age to determine their reasons for clinical inactivity and what barriers, real or perceived, there were to reentry into the medical workforce. Methods A random sample of 4975 inactive physicians aged under 65 years was drawn from the Physician Masterfile of the American Medical Association in 2008. Physicians were mailed a survey about activity in medicine and perceived barriers to reentry. Chi-square statistics were used for significance tests of the association between categorical variables and t-tests were used to test differences between means. Results Our adjusted response rate was 36.1%. Respondents were fully retired (37.5%, not currently active in medicine (43.0% or now active (reentered, 19.4%. Nearly half (49.5% were in or had practiced primary care. Personal health was the top reason for leaving for fully retired physicians (37.8% or those not currently active in medicine (37.8% and the second highest reason for physicians who had reentered (28.8%. For reentered (47.8% and inactive (51.5% physicians, the primary reason for returning or considering returning to practice was the availability of part-time work or flexible scheduling. Retired and currently inactive physicians used similar strategies to explore reentry, and 83% of both groups thought it would be difficult; among those who had reentered practice, 35.9% reported it was difficult to reenter. Retraining was uncommon for this group (37.5%. Conclusion Availability of part-time work and flexible scheduling have a strong influence on decisions to leave or reenter clinical practice. Lack of retraining before reentry raises questions about patient safety and the clinical competence of reentered physicians.

  19. The effects of bedrest on crew performance during simulated shuttle reentry. Volume 2: Control task performance

    Science.gov (United States)

    Jex, H. R.; Peters, R. A.; Dimarco, R. J.; Allen, R. W.

    1974-01-01

    A simplified space shuttle reentry simulation performed on the NASA Ames Research Center Centrifuge is described. Anticipating potentially deleterious effects of physiological deconditioning from orbital living (simulated here by 10 days of enforced bedrest) upon a shuttle pilot's ability to manually control his aircraft (should that be necessary in an emergency) a comprehensive battery of measurements was made roughly every 1/2 minute on eight military pilot subjects, over two 20-minute reentry Gz vs. time profiles, one peaking at 2 Gz and the other at 3 Gz. Alternate runs were made without and with g-suits to test the help or interference offered by such protective devices to manual control performance. A very demanding two-axis control task was employed, with a subcritical instability in the pitch axis to force a high attentional demand and a severe loss-of-control penalty. The results show that pilots experienced in high Gz flying can easily handle the shuttle manual control task during 2 Gz or 3 Gz reentry profiles, provided the degree of physiological deconditioning is no more than induced by these 10 days of enforced bedrest.

  20. Analysis of Radio Frequency Blackout for a Blunt-Body Capsule in Atmospheric Reentry Missions

    Directory of Open Access Journals (Sweden)

    Yusuke Takahashi

    2016-01-01

    Full Text Available A numerical analysis of electromagnetic waves around the atmospheric reentry demonstrator (ARD of the European Space Agency (ESA in an atmospheric reentry mission was conducted. During the ARD mission, which involves a 70% scaled-down configuration capsule of the Apollo command module, radio frequency blackout and strong plasma attenuation of radio waves in communications with data relay satellites and air planes were observed. The electromagnetic interference was caused by highly dense plasma derived from a strong shock wave generated in front of the capsule because of orbital speed during reentry. In this study, the physical properties of the plasma flow in the shock layer and wake region of the ESA ARD were obtained using a computational fluid dynamics technique. Then, electromagnetic waves were expressed using a frequency-dependent finite-difference time-domain method using the plasma properties. The analysis model was validated based on experimental flight data. A comparison of the measured and predicted results showed good agreement. The distribution of charged particles around the ESA ARD and the complicated behavior of electromagnetic waves, with attenuation and reflection, are clarified in detail. It is suggested that the analysis model could be an effective tool for investigating radio frequency blackout and plasma attenuation in radio wave communication.

  1. FijiWings: an open source toolkit for semiautomated morphometric analysis of insect wings.

    Science.gov (United States)

    Dobens, Alexander C; Dobens, Leonard L

    2013-08-07

    Development requires coordination between cell proliferation and cell growth to pattern the proper size of tissues, organs, and whole organisms. The Drosophila wing has landmark features, such as the location of veins patterned by cell groups and trichome structures produced by individual cells, that are useful to examine the genetic contributions to both tissue and cell size. Wing size and trichome density have been measured manually, which is tedious and error prone, and although image processing and pattern-recognition software can quantify features in micrographs, this approach has not been applied to insect wings. Here we present FijiWings, a set of macros designed to perform semiautomated morphophometric analysis of a wing photomicrograph. FijiWings uses plug-ins installed in the Fiji version of ImageJ to detect and count trichomes and measure wing area either to calculate trichome density of a defined region selected by the user or generate a heat map of overall trichome densities. For high-throughput screens we have developed a macro that directs a trainable segmentation plug-in to detect wing vein locations either to measure trichome density in specific intervein regions or produce a heat map of relative intervein areas. We use wing GAL4 drivers and UAS-regulated transgenes to confirm the ability of these tools to detect changes in overall tissue growth and individual cell size. FijiWings is freely available and will be of interest to a broad community of fly geneticists studying both the effect of gene function on wing patterning and the evolution of wing morphology.

  2. The leading-edge vortex of swift-wing shaped delta wings

    Science.gov (United States)

    Muir, Rowan; Arredondo-Galeana, Abel; Viola, Ignazio Maria

    2017-11-01

    Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the Leading-Edge Vortex (LEV) for lift generation in a variety of flight conditions. In this investigation, a model non-slender delta shaped wing with a sharp leading-edge is tested at low Reynolds Number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus. The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the un-modified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift-wing shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds Number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta shaped wing. This work received funding from the Engineering and Physical Sciences Research Council [EP/M506515/1] and the Consejo Nacional de Ciencia y Tecnología (CONACYT).

  3. Fruit fly scale robots can hover longer with flapping wings than with spinning wings.

    Science.gov (United States)

    Hawkes, Elliot W; Lentink, David

    2016-10-01

    Hovering flies generate exceptionally high lift, because their wings generate a stable leading edge vortex. Micro flying robots with a similar wing design can generate similar high lift by either flapping or spinning their wings. While it requires less power to spin a wing, the overall efficiency depends also on the actuator system driving the wing. Here, we present the first holistic analysis to calculate how long a fly-inspired micro robot can hover with flapping versus spinning wings across scales. We integrate aerodynamic data with data-driven scaling laws for actuator, electronics and mechanism performance from fruit fly to hummingbird scales. Our analysis finds that spinning wings driven by rotary actuators are superior for robots with wingspans similar to hummingbirds, yet flapping wings driven by oscillatory actuators are superior at fruit fly scale. This crossover is driven by the reduction in performance of rotary compared with oscillatory actuators at smaller scale. Our calculations emphasize that a systems-level analysis is essential for trading-off flapping versus spinning wings for micro flying robots. © 2016 The Author(s).

  4. The right-wing also laughs. Graphic humor in the magazine El Caudillo de la Tercera Posición

    OpenAIRE

    Juan Luis Besoky

    2016-01-01

    This paper presents a study of graphic humor in the Peronist magazine El Caudillo de la Tercera Posición. This magazine was published between 1973 and 1975 as a weekly political news publication and it became a flagship vehicle of the right-wing Peronism. It fought and denounced the ‘infiltration’ of the left-wing. Since the early issues it included a continuous humor section with caricatures and comic strips. By analyzing the humor section, it is possible to grasp the political culture of th...

  5. Performance of direct-driven flapping-wing actuator with piezoelectric single-crystal PIN-PMN-PT

    Science.gov (United States)

    Ozaki, Takashi; Hamaguchi, Kanae

    2018-02-01

    We present a prototype flapping-wing actuator with a direct-driven mechanism to generate lift in micro- and nano-aerial vehicles. This mechanism has an advantage of simplicity because it has no transmission system between the actuator and wing. We fabricated the piezoelectric unimorph actuator from single-crystal PIN-PMN-PT, which achieved a lift force up to 1.45 mN, a value about 1.9 times larger than the mass of the actuator itself. This is the first reported demonstration of an insect-scale actuator with a direct-driven mechanism that can generate a lift force greater than its own weight.

  6. Combined particle-image velocimetry and force analysis of the three-dimensional fluid-structure interaction of a natural owl wing.

    Science.gov (United States)

    Winzen, A; Roidl, B; Schröder, W

    2016-04-01

    Low-speed aerodynamics has gained increasing interest due to its relevance for the design process of small flying air vehicles. These small aircraft operate at similar aerodynamic conditions as, e.g. birds which therefore can serve as role models of how to overcome the well-known problems of low Reynolds number flight. The flight of the barn owl is characterized by a very low flight velocity in conjunction with a low noise emission and a high level of maneuverability at stable flight conditions. To investigate the complex three-dimensional flow field and the corresponding local structural deformation in combination with their influence on the resulting aerodynamic forces, time-resolved stereoscopic particle-image velocimetry and force and moment measurements are performed on a prepared natural barn owl wing. Several spanwise positions are measured via PIV in a range of angles of attack [Formula: see text] 6° and Reynolds numbers 40 000 [Formula: see text] 120 000 based on the chord length. Additionally, the resulting forces and moments are recorded for -10° ≤ α ≤ 15° at the same Reynolds numbers. Depending on the spanwise position, the angle of attack, and the Reynolds number, the flow field on the wing's pressure side is characterized by either a region of flow separation, causing large-scale vortical structures which lead to a time-dependent deflection of the flexible wing structure or wing regions showing no instantaneous deflection but a reduction of the time-averaged mean wing curvature. Based on the force measurements the three-dimensional fluid-structure interaction is assumed to considerably impact the aerodynamic forces acting on the wing leading to a strong mechanical loading of the interface between the wing and body. These time-depending loads which result from the flexibility of the wing should be taken into consideration for the design of future small flying air vehicles using flexible wing structures.

  7. Flow Modulation and Force Control of Flapping Wings

    Science.gov (United States)

    2014-10-29

    tested on a flapping wing model in the oil tank. Robotic flapper equipped with DC motors drove the wing model, and the imbedded servo motor could flap...the overall wake structure on the hovering wings. Totally, two volumetric flow measurements were performed on two mechanical flappers with different...wing kinematics but similar wing geometry. On the flappers with small stroke angle and passive rotation, the general vortex wake structure

  8. Connected vehicle applications : safety.

    Science.gov (United States)

    2016-01-01

    Connected vehicle safety applications are designed to increase situational awareness : and reduce or eliminate crashes through vehicle-to-infrastructure, vehicle-to-vehicle, : and vehicle-to-pedestrian data transmissions. Applications support advisor...

  9. A Roll Controlling Approach for a Simple Dual-Actuated Flapping Aerial Vehicle Model

    Directory of Open Access Journals (Sweden)

    Labib Omar El-Farouk E.

    2016-01-01

    Full Text Available Aerial vehicles have been investigated recently in different contexts, due to their high potential of utilization in multiple application areas. Different mechanisms can be used for aerial vehicles actuation, such as the rotating multi-blade systems (Multi-Copters and more recently flapping wings. Flapping wing robots have attracted much attention from researchers in recent years. In this study, a simple dual-actuated flapping mechanism is proposed for actuating a flapping wing robot. The mechanism is designed, simulated and validated in both simulation and experiments. A roll controlling approach is proposed to control the roll angle of the robot via controlling the speeds of both motors actuating each of the wings. The results achieved are validated experimentally, and are promising opening the door for further investigation using our proposed system

  10. The hybrid bio-inspired aerial vehicle: Concept and SIMSCAPE flight simulation.

    Science.gov (United States)

    Tao Zhang; Su, Steven; Nguyen, Hung T

    2016-08-01

    This paper introduces a Silver Gull-inspired hybrid aerial vehicle, the Super Sydney Silver Gull (SSSG), which is able to vary its structure, under different manoeuvre requirements, to implement three flight modes: the flapping wing flight, the fixed wing flight, and the quadcopter flight (the rotary wing flight of Unmanned Air Vehicle). Specifically, through proper mechanism design and flight mode transition, the SSSG can imitate the Silver Gull's flight gesture during flapping flight, save power consuming by switching to the fixed wing flight mode during long-range cruising, and hover at targeted area when transferring to quadcopter flight mode. Based on the aerodynamic models, the Simscape, a product of MathWorks, is used to simulate and analyse the performance of the SSSG's flight modes. The entity simulation results indicate that the created SSSG's 3D model is feasible and ready to be manufactured for further flight tests.

  11. Left-Wing Extremism: The Current Threat

    Energy Technology Data Exchange (ETDEWEB)

    Karl A. Seger

    2001-04-30

    Left-wing extremism is ''alive and well'' both in the US and internationally. Although the current domestic terrorist threat within the U. S. is focused on right-wing extremists, left-wing extremists are also active and have several objectives. Leftist extremists also pose an espionage threat to U.S. interests. While the threat to the U.S. government from leftist extremists has decreased in the past decade, it has not disappeared. There are individuals and organizations within the U.S. who maintain the same ideology that resulted in the growth of left-wing terrorism in this country in the 1970s and 1980s. Some of the leaders from that era are still communicating from Cuba with their followers in the U.S., and new leaders and groups are emerging.

  12. A galactic microquasar mimicking winged radio galaxies.

    Science.gov (United States)

    Martí, Josep; Luque-Escamilla, Pedro L; Bosch-Ramon, Valentí; Paredes, Josep M

    2017-11-24

    A subclass of extragalactic radio sources known as winged radio galaxies has puzzled astronomers for many years. The wing features are detected at radio wavelengths as low-surface-brightness radio lobes that are clearly misaligned with respect to the main lobe axis. Different models compete to account for these peculiar structures. Here, we report observational evidence that the parsec-scale radio jets in the Galactic microquasar GRS 1758-258 give rise to a Z-shaped radio emission strongly reminiscent of the X and Z-shaped morphologies found in winged radio galaxies. This is the first time that such extended emission features are observed in a microquasar, providing a new analogy for its extragalactic relatives. From our observations, we can clearly favour the hydrodynamic backflow interpretation against other possible wing formation scenarios. Assuming that physical processes are similar, we can extrapolate this conclusion and suggest that this mechanism could also be at work in many extragalactic cases.

  13. Flow structure of vortex-wing interaction

    Science.gov (United States)

    McKenna, Christopher K.

    Impingement of a streamwise-oriented vortex upon a fin, tail, blade or wing represents a fundamental class of flow-structure interaction that extends across a range of applications. This interaction can give rise to time-averaged loading, as well as unsteady loading known as buffeting. The loading is sensitive to parameters of the incident vortex as well as the location of vortex impingement on the downstream aerodynamic surface, generically designated as a wing. Particle image velocimetry is employed to determine patterns of velocity, vorticity, swirl ratio, and streamlines on successive cross-flow planes upstream of and along the wing, which lead to volume representations and thereby characterization of the interaction. At locations upstream of the leading edge of the wing, the evolution of the incident vortex is affected by the presence of the wing, and is highly dependent on the spanwise location of vortex impingement. Even at spanwise locations of impingement well outboard of the wing tip, a substantial influence on the structure of the incident vortex at locations significantly upstream of the leading edge of the wing was observed. For spanwise locations close to or intersecting the vortex core, the effects of upstream influence of the wing on the vortex are to: decrease the swirl ratio; increase the streamwise velocity deficit; decrease the streamwise vorticity; increase the azimuthal vorticity; increase the upwash; decrease the downwash; and increase the root-mean-square fluctuations of both streamwise velocity and vorticity. The interrelationship between these effects is addressed, including the rapid attenuation of axial vorticity in presence of an enhanced defect of axial velocity in the central region of the vortex. Moreover, when the incident vortex is aligned with, or inboard of, the tip of the wing, the swirl ratio decreases to values associated with instability of the vortex, giving rise to enhanced values of azimuthal vorticity relative to the

  14. Aerodynamic study on wing and tail small UAV without runways

    Science.gov (United States)

    Soetanto, Maria F.; R., Randy; Alfan M., R.; Dzaldi

    2016-06-01

    This paper consists of the design and analysis of the aerodynamics of the profiles of wing and tail of a Small Unmanned Aerial Vehicle (UAV). UAV is a remote-controlled aircraft that can carry cameras, sensors and even weapons on an area that needed aerial photography or aerial video [1]. The aim of this small UAV is for used in situations where manned flight is considered too risky or difficult, such as fire fighting or surveillance, while the term 'small means the design of this UAV has to be relatively small and portable so that peoples are able to carry it during their operations [CASR Part 101.240: it is a UAV which is has a launch mass greater than 100 grams but less than 100 kilograms] [2]. Computational Fluid Dynamic (CFD) method was used to analyze the fluid flow characteristics around the aerofoil's profiles, such as the lift generation for each angle of attack and longitudinal stability caused by vortex generation on trailing edge. Based on the analysis and calculation process, Clark-Y MOD with aspect ratio, AR = 4.28 and taper ratio, λ = 0.65 was chosen as the wing aerofoil and SD 8020 with AR = 4.8 and λ = 0.5 was chosen as the horizontal tail, while SD 8020 with AR = 1.58 and λ = 0.5 was chosen as the vertical tail. The lift and drag forces generated for wing and tail surfaces can be determined from the Fluent 6.3 simulation. Results showed that until angle of attack of 6 degrees, the formation of flow separation is still going on behind the trailing edge, and the stall condition occurs at 14 degrees angle of attack which is characterized by the occurrence of flow separation at leading edge, with a maximum lift coefficient (Cl) obtained = 1.56. The results of flight tests show that this small UAV has successfully maneuvered to fly, such as take off, some acrobatics when cruising and landing smoothly, which means that the calculation and analysis of aerodynamic aerofoil's profile used on the wing and tail of the Small UAV were able to be validated.

  15. NASA Innovation Fund 2010 Project Elastically Shaped Future Air Vehicle Concept

    Science.gov (United States)

    Nguyen, Nhan

    2010-01-01

    This report describes a study conducted in 2010 under the NASA Innovation Fund Award to develop innovative future air vehicle concepts. Aerodynamic optimization was performed to produce three different aircraft configuration concepts for low drag, namely drooped wing, inflected wing, and squashed fuselage. A novel wing shaping control concept is introduced. This concept describes a new capability of actively controlling wing shape in-flight to minimize drag. In addition, a novel flight control effector concept is developed to enable wing shaping control. This concept is called a variable camber continuous trailing edge flap that can reduce drag by as much as 50% over a conventional flap. In totality, the potential benefits of fuel savings offered by these concepts can be significant.

  16. EntrySat: A 3U CubeStat to study the reentry atmospheric environment

    Science.gov (United States)

    Anthony, Sournac; Raphael, Garcia; David, Mimoun; Jeremie, Chaix

    2016-04-01

    ISAE France Entrysat has for main scientific objective the study of uncontrolled atmospheric re-entry. This project, is developed by ISAE in collaboration with ONERA and University of Toulouse, is funded by CNES, in the overall frame of the QB50 project. This nano-satellite is a 3U Cubesat measuring 34*10*10 cm3, similar to secondary debris produced during the break up of a spacecraft. EntrySat will collect the external and internal temperatures, pressure, heat flux, attitude variations and drag force of the satellite between ≈150 and 90 km before its destruction in the atmosphere, and transmit them during the re-entry using the IRIDIUM satellite network. The result will be compared with the computations of MUSIC/FAST, a new 6-degree of freedom code developed by ONERA to predict the trajectory of space debris. In order to fulfil the scientific objectives, the satellite will acquire 18 re-entry sensors signals, convert them and compress them, thanks to an electronic board developed by ISAE students in cooperation with EREMS. In order to transmit these data every second during the re-entry phase, the satellite will use an IRIDIUM connection. In order to keep a stable enough attitudes during this phase, a simple attitude orbit and control system using magnetotorquers and an inertial measurement unit (IMU) is developed at ISAE by students. A commercial GPS board is also integrated in the satellite into Entry Sat to determine its position and velocity which are necessary during the re-entry phase. This GPS will also be used to synchronize the on-board clock with the real-time UTC data. During the orbital phase (≈2 year) EntrySat measurements will be recorded transmitted through a more classical "UHF/VHF" connection. Preference for presentation: Poster Most suitable session: Author for correspondence: Dr Raphael F. Garcia ISAE 10, ave E. Belin, 31400 Toulouse, France Raphael.GARCIA@isae.fr +33 5 61 33 81 14

  17. The leading-edge vortex of swift wing-shaped delta wings.

    Science.gov (United States)

    Muir, Rowan Eveline; Arredondo-Galeana, Abel; Viola, Ignazio Maria

    2017-08-01

    Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the leading-edge vortex (LEV) for lift generation in a variety of flight conditions. A well-documented example of an LEV is that generated by aircraft with highly swept, delta-shaped wings. While the wing aerodynamics of a manoeuvring aircraft, a bird gliding and a bird in flapping flight vary significantly, it is believed that this existing knowledge can serve to add understanding to the complex aerodynamics of natural fliers. In this investigation, a model non-slender delta-shaped wing with a sharp leading edge is tested at low Reynolds number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus . The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the unmodified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift wing-shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta-shaped wing.

  18. Hypersonic vehicle control law development using H(infinity) and micron-synthesis

    Science.gov (United States)

    Gregory, Irene M.; Mcminn, John D.; Shaughnessy, John D.; Chowdhry, Rajiv S.

    1993-01-01

    Hypersonic vehicle control law development using H(infinity) and mu-synthesis is discussed. Airbreathing SSTO vehicles has a mutli-faceted mission that includes orbital operations, as well as re-entry and descent culminating in horizontal landing. However, the most challenging part of the operations is the ascent to orbit. The airbreathing propulsion requires lengthy atmospheric flight that may last as long as 30 minutes and take the vehicle half way around the globe. The vehicles's ascent is characterized by tight payload to orbit margins which translate into minimum fuel orbit as the performance criteria. Issues discussed include: SSTO airbreathing vehicle issues; control system performance requirements; robust control law framework; H(infinity) controller frequency analysis; and mu controller frequency analysis.

  19. Integrated Vehicle Health Management Project-Modeling and Simulation for Wireless Sensor Applications

    Science.gov (United States)

    Wallett, Thomas M.; Mueller, Carl H.; Griner, James H., Jr.

    2009-01-01

    This paper describes the efforts in modeling and simulating electromagnetic transmission and reception as in a wireless sensor network through a realistic wing model for the Integrated Vehicle Health Management project at the Glenn Research Center. A computer model in a standard format for an S-3 Viking aircraft was obtained, converted to a Microwave Studio software format, and scaled to proper dimensions in Microwave Studio. The left wing portion of the model was used with two antenna models, one transmitting and one receiving, to simulate radio frequency transmission through the wing. Transmission and reception results were inconclusive.

  20. Aeroelasticity of morphing wings using neural networks

    Science.gov (United States)

    Natarajan, Anand

    In this dissertation, neural networks are designed to effectively model static non-linear aeroelastic problems in adaptive structures and linear dynamic aeroelastic systems with time varying stiffness. The use of adaptive materials in aircraft wings allows for the change of the contour or the configuration of a wing (morphing) in flight. The use of smart materials, to accomplish these deformations, can imply that the stiffness of the wing with a morphing contour changes as the contour changes. For a rapidly oscillating body in a fluid field, continuously adapting structural parameters may render the wing to behave as a time variant system. Even the internal spars/ribs of the aircraft wing which define the wing stiffness can be made adaptive, that is, their stiffness can be made to vary with time. The immediate effect on the structural dynamics of the wing, is that, the wing motion is governed by a differential equation with time varying coefficients. The study of this concept of a time varying torsional stiffness, made possible by the use of active materials and adaptive spars, in the dynamic aeroelastic behavior of an adaptable airfoil is performed here. Another type of aeroelastic problem of an adaptive structure that is investigated here, is the shape control of an adaptive bump situated on the leading edge of an airfoil. Such a bump is useful in achieving flow separation control for lateral directional maneuverability of the aircraft. Since actuators are being used to create this bump on the wing surface, the energy required to do so needs to be minimized. The adverse pressure drag as a result of this bump needs to be controlled so that the loss in lift over the wing is made minimal. The design of such a "spoiler bump" on the surface of the airfoil is an optimization problem of maximizing pressure drag due to flow separation while minimizing the loss in lift and energy required to deform the bump. One neural network is trained using the CFD code FLUENT to

  1. Reentry response of the lightweight radioisotope heater unit resulting from a Cassini Venus-Venus-Earth-Jupiter gravity assist maneuver accident

    International Nuclear Information System (INIS)

    1996-12-01

    Reentry analyses consisting of ablation response, thermal response and thermal stress response have been conducted on the Lightweight Radioisotope Heater Unit (LWRHU) for Cassini/Venus-Venus-Earth-Jupiter-Gravity-Assist (VVEJGA) reentry conditions. Sequential ablation analyses of the LWRHU aeroshell, and the fuel pellet have been conducted in reentry regimes where the aeroshell has been deemed to fail. The failure criterion for ablation is generally assumed to be recession corresponding to 75% and 100% of the wall thickness. The 75% recession failure criteria allows for uncertainties that result mainly because of the high energies involved in the VVEJGA reentries compared to orbital decay reentries. Risk evaluations should consider the fact that for shallow flight paths the unit may disassemble at high-altitude as a result of ablation or may remain intact with a clad that had been molten. Within the limitations of the methodologies and assumptions of the analyses, the results indicate that: (1) For a side-on stable LWRHU reentry, aeroshell ablation failures occur for all reentry angles. (2)For a side-on spinning LWRHU reentry, aeroshell ablation failures are minimal. (3) For the tumbling LWRHU reentry, the aeroshell survives for most angles. (4) For the thermostructural analyses, using both a 1% and 5% allowable strain, all reentry angles and orientations examined resulted in small localized failures, but aeroshell breach is not predicted for any case. The analyses included in this report concentrate on VVEJGA reentry scenarios. Analyses reported previously have demonstrated that the LWRHU has adequate design margin to survive reentry from orbital decay scenarios and most injection scenarios at speeds up to escape speeds. The exception is a narrow range of flight path angles that produce multiple skip trajectories which may have excessive ablation

  2. Reentry response of the lightweight radioisotope heater unit resulting from a Cassini Venus-Venus-Earth-Jupiter gravity assist maneuver accident

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    Reentry analyses consisting of ablation response, thermal response and thermal stress response have been conducted on the Lightweight Radioisotope Heater Unit (LWRHU) for Cassini/Venus-Venus-Earth-Jupiter-Gravity-Assist (VVEJGA) reentry conditions. Sequential ablation analyses of the LWRHU aeroshell, and the fuel pellet have been conducted in reentry regimes where the aeroshell has been deemed to fail. The failure criterion for ablation is generally assumed to be recession corresponding to 75% and 100% of the wall thickness. The 75% recession failure criteria allows for uncertainties that result mainly because of the high energies involved in the VVEJGA reentries compared to orbital decay reentries. Risk evaluations should consider the fact that for shallow flight paths the unit may disassemble at high-altitude as a result of ablation or may remain intact with a clad that had been molten. Within the limitations of the methodologies and assumptions of the analyses, the results indicate that: (1) For a side-on stable LWRHU reentry, aeroshell ablation failures occur for all reentry angles. (2)For a side-on spinning LWRHU reentry, aeroshell ablation failures are minimal. (3) For the tumbling LWRHU reentry, the aeroshell survives for most angles. (4) For the thermostructural analyses, using both a 1% and 5% allowable strain, all reentry angles and orientations examined resulted in small localized failures, but aeroshell breach is not predicted for any case. The analyses included in this report concentrate on VVEJGA reentry scenarios. Analyses reported previously have demonstrated that the LWRHU has adequate design margin to survive reentry from orbital decay scenarios and most injection scenarios at speeds up to escape speeds. The exception is a narrow range of flight path angles that produce multiple skip trajectories which may have excessive ablation.

  3. Hovering hummingbird wing aerodynamics during the annual cycle. I. Complete wing.

    Science.gov (United States)

    Achache, Yonathan; Sapir, Nir; Elimelech, Yossef

    2017-08-01

    The diverse hummingbird family (Trochilidae) has unique adaptations for nectarivory, among which is the ability to sustain hover-feeding. As hummingbirds mainly feed while hovering, it is crucial to maintain this ability throughout the annual cycle-especially during flight-feather moult, in which wing area is reduced. To quantify the aerodynamic characteristics and flow mechanisms of a hummingbird wing throughout the annual cycle, time-accurate aerodynamic loads and flow field measurements were correlated over a dynamically scaled wing model of Anna's hummingbird ( Calypte anna ). We present measurements recorded over a model of a complete wing to evaluate the baseline aerodynamic characteristics and flow mechanisms. We found that the vorticity concentration that had developed from the wing's leading-edge differs from the attached vorticity structure that was typically found over insects' wings; firstly, it is more elongated along the wing chord, and secondly, it encounters high levels of fluctuations rather than a steady vortex. Lift characteristics resemble those of insects; however, a 20% increase in the lift-to-torque ratio was obtained for the hummingbird wing model. Time-accurate aerodynamic loads were also used to evaluate the time-evolution of the specific power required from the flight muscles, and the overall wingbeat power requirements nicely matched previous studies.

  4. Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-09-01

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).

  5. Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Septon, Kendall K [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-11

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).

  6. Design and analysis of biomimetic joints for morphing of micro air vehicles

    International Nuclear Information System (INIS)

    Grant, Daniel T; Abdulrahim, Mujahid; Lind, Rick

    2010-01-01

    Flight capability for micro air vehicles is rapidly maturing throughout the aviation community; however, mission capability has not yet matured at the same pace. Maintaining trim during a descent or in the presence of crosswinds remains challenging for fixed-wing aircraft but yet is routinely performed by birds. This paper presents an overview of designs that incorporate morphing to enhance their flight characteristics. In particular, a series of joints and structures is adopted from seagulls to alter either the dihedral or sweep of the wings and thus alter the flight characteristics. The resulting vehicles are able to trim with significantly increased angles of attack and sideslip compared to traditional fixed-wing vehicles.

  7. Aerodynamic Characteristics of a Revised Target Drone Vehicle at Mach Numbers from 1.60 to 2.86

    Science.gov (United States)

    Blair, A. B., Jr.; Babb, C. Donald

    1968-01-01

    An investigation has been conducted in the Langley Unitary Plan wind tunnel to determine the aerodynamic characteristics of a revised target drone vehicle through a Mach number range from 1.60 to 2.86. The vehicle had canard surfaces and a swept clipped-delta wing with twin tip-mounted vertical tails.

  8. Environmental Assessment for the Orbital Reentry Corridor for Generic Unmanned Lifting Entry Vehicle Landing at Edwards Air Force Base

    Science.gov (United States)

    2002-12-01

    botanical features that are unique and limited in distribution in Los Angeles County. They include the only good stands of mesquite ( Prosopis ... glandulosa ) in Los Angeles County. The area contains fine examples of creosote bush scrub, alkali sink, and the transition vegetation between the two

  9. Radiation risk from the nuclear power installation of space vehicle in case of reentry to the atmosphere

    International Nuclear Information System (INIS)

    Mikheenko, S.G.

    1994-01-01

    Main directions of space using of nuclear power are considered. Nuclear energy has found many applications in space projects. The first application is the use of nuclear energy for the production of electricity in space and the second main application is the use of nuclear power for propulsion purposes in space flight. History of usage nuclear power systems in space technic is shown. Today there are 54 satellites with NPS in space near the Earth. The main principle of radical solution of the problem of radiation safety is based on the accommodation of space objects with nuclear units in orbits, such that the ballistic lifetime is greater than the time necessary for complete decay of the accumulated radioactivity. Radiation safety on various stages of space nuclear systems exploitation is discussed. If Main System Ensuring Radiation Safety is failed, it must operates Reserved System Ensuring Radiation Safety. Concrete development of a booster system for nuclear unit and a system for the reactor destruction in order to ensure aerodynamic destruction of fuel has been realized in satellite of 'Cosmos' series. The investigations on reserved system ensuring radiation safety in Moscow Physical - Engineering Institute are discussed. The results show that we can in principle ensure the radiation safety in accordance to ICRP recommendations. (author)

  10. [Wing 1 radiation survey and contamination report

    International Nuclear Information System (INIS)

    Olsen, K.

    1991-01-01

    We have completed the 5480.11 survey for Wing 1. All area(s)/item(s) requested by the 5480.11 committee have been thoroughly surveyed and documented. Decontamination/disposal of contaminated items has been accomplished. The wing 1 survey was started on 8/13/90 and completed 9/18/90. However, the follow-up surveys were not completed until 2/18/91. We received the final set of smear samples for wing 1 on 1/13/91. A total of 5,495 smears were taken from wing 1 and total of 465 smears were taken during the follow-up surveys. There were a total 122 items found to have fixed contamination and 4 items with smearable contamination in excess of the limits specified in DOE ORDER 5480.11 (AR 3-7). The following area(s)/item(s) were not included in the 5480.11 survey: Hallways, Access panels, Men's and women's change rooms, Janitor closets, Wall lockers and item(s) stored in wing 1 hallways and room 1116. If our contract is renewed, we will include those areas in our survey according to your request of April 15, 1991

  11. Flapping wing aerodynamics: from insects to vertebrates.

    Science.gov (United States)

    Chin, Diana D; Lentink, David

    2016-04-01

    More than a million insects and approximately 11,000 vertebrates utilize flapping wings to fly. However, flapping flight has only been studied in a few of these species, so many challenges remain in understanding this form of locomotion. Five key aerodynamic mechanisms have been identified for insect flight. Among these is the leading edge vortex, which is a convergent solution to avoid stall for insects, bats and birds. The roles of the other mechanisms - added mass, clap and fling, rotational circulation and wing-wake interactions - have not yet been thoroughly studied in the context of vertebrate flight. Further challenges to understanding bat and bird flight are posed by the complex, dynamic wing morphologies of these species and the more turbulent airflow generated by their wings compared with that observed during insect flight. Nevertheless, three dimensionless numbers that combine key flow, morphological and kinematic parameters - the Reynolds number, Rossby number and advance ratio - govern flapping wing aerodynamics for both insects and vertebrates. These numbers can thus be used to organize an integrative framework for studying and comparing animal flapping flight. Here, we provide a roadmap for developing such a framework, highlighting the aerodynamic mechanisms that remain to be quantified and compared across species. Ultimately, incorporating complex flight maneuvers, environmental effects and developmental stages into this framework will also be essential to advancing our understanding of the biomechanics, movement ecology and evolution of animal flight. © 2016. Published by The Company of Biologists Ltd.

  12. 'What on earth can this possibly mean'? French reentry courts and experts' risk assessment.

    Science.gov (United States)

    Herzog-Evans, Martine

    2016-01-01

    Against the backdrop of ten years of punitive criminal justice policies, the number of cases in which risk assessments by psychiatrist experts are mandatory has considerably increased in France. Because of complex and deeply ingrained cultural factors, most experts and academics oppose the use of actuarial or other structured judgement tools, which they assimilate to these policy changes. Parallel to this, the reentry judges in charge of making release and other community sentence decisions have maintained a strong rehabilitative and desistance-focused culture. Drawing on interviews with these judges and experts, the author wanted to assess the judges' expectations of experts' reports, their opinion on actuarial tools, and how they perceived experts and their aptitude to assess risk. The study showed that French reentry judges manage to keep experts' conclusions at bay when they do not fit with their desistance goals, as they can draw upon their own expertise and that of probation services. They do not have much faith in the professionalism and methodology of experts, and would like them to better demonstrate how they reach their conclusions. Moreover, criminogenic needs assessment would be much more useful to them than static risk assessment, which raises the issue as to why this is not the French probation services' role. Reentry judges who never encountered a report which uses a structured tool are influenced by the French ideological debate; those who have read such reports are unanimously in favour of such tools. It thus seems clear that they would like experts to be more strongly guided by science, but are not yet fully aware of what this entails. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Re-entry devices in the treatment of peripheral chronic occlusions.

    Science.gov (United States)

    Smith, Marcus; Pappy, Reji; Hennebry, Thomas A

    2011-01-01

    Chronic occlusions are present in up to 40% of patients who undergo treatment for symptomatic peripheral arterial disease. The primary difficulty encountered during the treatment of chronic occlusions is inability to re-enter the true lumen after subintimal crossing of the occlusion. Two devices have been designed to mitigate this limitation via controlled re-entry. Herein, we report our experience with the Outback LTD catheter and the Pioneer Plus Catheter PPlus 120 in re-entering the true arterial lumen during percutaneous intentional extraluminal revascularization for peripheral chronic occlusions involving the superficial femoral artery. In reviewing our peripheral interventions performed from February 2006 through February 2009, we evaluated angiograms, patients' characteristics, presentations, types of lesions, procedural successes, complications, and symptom-free intervals. The total study population consisted of 23 patients. The Outback catheter was used in 15 patients and the Pioneer catheter in 8 patients.The procedure was successful in all 8 Pioneer cases (100%) and in 13 of the 15 Outback cases (87%). All 8 (100%) of the patients in the Pioneer group and 12 of the 14 patients in the Outback group (86%) remained asymptomatic at an average of 12 months. Overall, there were no procedural complications, amputations, or deaths. This single-center experience demonstrates that the Outback and Pioneer re-entry catheters are safe and effective in managing peripheral chronic occlusions, with an average symptom-free interval of 12 months. This management strategy proves to be reasonable when standard techniques fail to achieve true lumen re-entry.

  14. Support for school reentry and relationships between children with cancer, peers, and teachers.

    Science.gov (United States)

    Soejima, Takafumi; Sato, Iori; Takita, Junko; Koh, Katsuyoshi; Maeda, Miho; Ida, Kohmei; Kamibeppu, Kiyoko

    2015-12-01

    Returning to school after a cancer diagnosis can be socially challenging for children with cancer. This study investigated the form of support for school reentry and the associations with social support from peers and teachers. This was a multicenter cross-sectional study. Children with cancer and their guardians completed questionnaires. Their guardians also underwent a semi-structured interview to describe the background of support for school reentry. Thirty-nine children with cancer and guardian dyads completed questionnaires and three guardians underwent semi-structured interview. Peer visits and their understanding of hospital experiences and how to interact with children were related to social support from peers. Teachers' understanding of physical appearance, academic performance, hospital experience and of how to interact with children was related to social support from peers. Teachers' understanding of diagnosis/treatment, academic performance and their status as the liaison between doctors/nurses in hospitals and teachers in local schools were also related to social support from teachers. Furthermore, children with cancer were also encouraged to establish supportive relationships with peers and teachers as a result of school reentry support that (i) helped children to feel that they are still members of the local school; (ii) improved peer and teacher understanding of the long-term recovery process of children with cancer; and (iii) facilitated the children's own awareness that they are fighting the disease. The multidisciplinary team consisting of the children with cancer, their families, doctors, nurses and teachers in the local school need to communicate with peers regarding positive experiences of fighting, and overcoming, severe disease. © 2015 Japan Pediatric Society.

  15. Safe Reentry for False Aneurysm Operations in High-Risk Patients.

    Science.gov (United States)

    Martinelli, Gian Luca; Cotroneo, Attilio; Caimmi, Philippe Primo; Musica, Gabriele; Barillà, David; Stelian, Edmond; Romano, Angelo; Novelli, Eugenio; Renzi, Luca; Diena, Marco

    2017-06-01

    In the absence of a standardized safe surgical reentry strategy for high-risk patients with large or anterior postoperative aortic false aneurysm (PAFA), we aimed to describe an effective and safe approach for such patients. We prospectively analyzed patients treated for PAFA between 2006 and 2015. According to the preoperative computed tomography scan examination, patients were divided into two groups according to the anatomy and extension of PAFA: in group A, high-risk PAFA (diameter ≥3 cm) developed in the anterior mediastinum; in group B, low-risk PAFA (diameter <3 cm) was situated posteriorly. For group A, a safe surgical strategy, including continuous cerebral, visceral, and coronary perfusion was adopted before resternotomy; group B patients underwent conventional surgery. We treated 27 patients (safe reentry, n = 13; standard approach, n = 14). Mean age was 60 years (range, 29 to 80); 17 patients were male. Mean interval between the first operation and the last procedure was 4.3 years. Overall 30-day mortality rate was 7.4% (1 patient in each group). No aorta-related mortality was observed at 1 and 5 years in either group. The Kaplan-Meier overall survival estimates at 1 and 5 years were, respectively, 92.3% ± 7.4% and 73.4% ± 13.4% in group A, and 92.9% ± 6.9% and 72.2% ± 13.9% in group B (log rank test, p = 0.830). Freedom from reoperation for recurrent aortic disease was 100% at 1 year and 88% at 5 years. The safe reentry technique with continuous cerebral, visceral, and coronary perfusion for high-risk patients resulted in early and midterm outcomes similar to those observed for low-risk patients undergoing conventional surgery. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  16. X-38 on B-52 Wing Pylon - View from Observation Window

    Science.gov (United States)

    1997-01-01

    A unique, close-up view of the X-38 under the wing of NASA's B-52 mothership prior to launch of the lifting-body research vehicle. The photo was taken from the observation window of the B-52 bomber as it banked in flight. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In

  17. Lift and Power Required for Flapping Wing Hovering Flight on Mars

    Science.gov (United States)

    Pohly, Jeremy; Sridhar, Madhu; Bluman, James; Kang, Chang-Kwon; Landrum, D. Brian; Fahimi, Farbod; Aono, Hikaru; Liu, Hao

    2017-11-01

    Achieving flight on Mars is challenging due to the ultra-low density atmosphere. Bio-inspired flapping motion can generate sufficient lift if bumblebee-inspired wings are scaled up between 2 and 4 times their nominal size. However, due to this scaling, the inertial power required to sustain hover increases and dominates over the aerodynamic power. Our results show that a torsional spring placed at the wing root can reduce the flapping power required for hover by efficiently storing and releasing energy while operating at its resonance frequency. The spring assisted reduction in flapping power is demonstrated with a well-validated, coupled Navier-Stokes and flight dynamics solver. The total power is reduced by 79%, whereas the flapping power is reduced by 98%. Such a reduction in power paves the way for an efficient, realizable micro air vehicle capable of vertical takeoff and landing as well as sustained flight on Mars. Alabama Space Grant Consortium Fellowship.

  18. Principle of bio-inspired insect wing rotational hinge design

    Science.gov (United States)

    Fei, Fan

    A principle for designing and fabricating bio-inspired miniature artificial insect flapping wing using flexure rotational hinge design is presented. A systematic approach of selecting rotational hinge stiffness value is proposed. Based on the understanding of flapping wing aerodynamics, a dynamic simulation is constructed using the established quasi-steady model and the wing design. Simulations were performed to gain insight on how different parameters affect the wing rotational response. Based on system resonance a model to predict the optimal rotational hinge stiffness based on given wing parameter and flapping wing kinematic is proposed. By varying different wing parameters, the proposed method is shown to be applicable to a wide range of wing designs with different sizes and shapes. With the selected hinge stiffness value, aspects of the rotational joint design is discussed and an integrated wing-hinge structure design using laminated carbon fiber and polymer film is presented. Manufacturing process of such composite structure is developed to achieve high accuracy and repeatability. The yielded hinge stiffness is verified by measurements. To validate the proposed model, flapping wing experiments were conducted. A flapping actuation set up is built using DC motor and a controller is implemented on a microcontroller to track desired wing stroke kinematic. Wing stroke and rotation kinematic were extracted using a high speed camera and the lift generation is evaluated. A total of 49 flapping experiments were presented, experimental data shows good correlation with the model's prediction. With the wing rotational hinge stiffness designed so that the rotational resonant frequency is twice as the stroke frequency, the resulting wing rotation generates near optimal lift. With further simulation, the proposed model shows low sensitivity to wing parameter variation. As a result, giving a design parameter of a flapping wing robot platform, the proposed principle can

  19. OVERFLOW Simulations of Space Shuttle Orbiter Reentry Based on As-Built Geometry

    Science.gov (United States)

    Ma, Edward C.; Vicker, Darby J.; Campbell, Charles H.; Wilson, Brad; Pavek, Mike; Berger, Karen

    2012-01-01

    The Space Shuttle Orbiters Discovery and Endeavor have been digitally scanned to obtain outer mold line surfaces. Using these scans, the existing overset computational fluid dynamics (CFD) grid system will be modified by projecting the grid points to the scanned geometry. Simulations will be performed using the OVERFLOW solver and the results compared to previous OVERFLOW results on the theoretical geometry and the aerodynamic databook. The "bent airframe" term will be compared between the aerodynamic databook and the computations over a range of reentry conditions.

  20. Atrioventricular Nodal Re-entry Tachycardia in Identical Twins: A Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Walid Barake, MD MBBCh

    2013-01-01

    Full Text Available This report details the case of 17 year old identical twins who both presented with paroxysmal supraventricular tachycardia (PSVT. Electrophysiological studies revealed atrioventricular nodal reentry tachycardia (AVNRT in both twins. Successful but technically challenging slow pathway ablation was performed in both twins. This is the first reported case of confirmed AVNRT in identical twins which adds strong evidence to heritability of the dual AV node physiology and AVNRT. A review of the current literature regarding PSVT in monozygotic twins is provided.

  1. Behold, she stands at the door: Reentry, black women and the black church

    Directory of Open Access Journals (Sweden)

    Kathryn V. Stanley

    2016-07-01

    Full Text Available This paper examines the African American church’s response to the special problems of African American women who reenter the community post-incarceration. The first portion of the paper examines the impact of criminal justice policies on women of color and the attending problems of reentry which resulted. It then surveys the black church’s response to returning citizens, especially women. It concludes by proposing shifts in perspectives and theologies which create barriers to successful reintegration into the community at large, and the church in particular. The intended audience is individuals and faith communities who seek to work effectively with returning women.

  2. C/NOFS Thermospheric Research and Reentry Experiment (T-RREX)

    Science.gov (United States)

    Gentile, L. C.; Fesen, C. G.

    2015-12-01

    The Air Force Research Laboratory leveraged a unique opportunity with the Communication/Navigation Outage Forecasting System (C/NOFS) satellite to collect a comprehensive set of low-altitude measurements as the orbit decayed. C/NOFS flew in a 13-degree elliptical orbit for more than seven years from 2008 to 2015. The data collected during this final phase of the C/NOFS mission will advance our understanding of topside/bottomside dynamics and improve models currently used for trajectory propagation, orbital drag and uncontrolled reentry predictions.

  3. Gliding swifts attain laminar flow over rough wings.

    Directory of Open Access Journals (Sweden)

    David Lentink

    Full Text Available Swifts are among the most aerodynamically refined gliding birds. However, the overlapping vanes and protruding shafts of their primary feathers make swift wings remarkably rough for their size. Wing roughness height is 1-2% of chord length on the upper surface--10,000 times rougher than sailplane wings. Sailplanes depend on extreme wing smoothness to increase the area of laminar flow on the wing surface and minimize drag for extended glides. To understand why the swift does not rely on smooth wings, we used a stethoscope to map laminar flow over preserved wings in a low-turbulence wind tunnel. By combining laminar area, lift, and drag measurements, we show that average area of laminar flow on swift wings is 69% (n = 3; std 13% of their total area during glides that maximize flight distance and duration--similar to high-performance sailplanes. Our aerodynamic analysis indicates that swifts attain laminar flow over their rough wings because their wing size is comparable to the distance the air travels (after a roughness-induced perturbation before it transitions from laminar to turbulent. To interpret the function of swift wing roughness, we simulated its effect on smooth model wings using physical models. This manipulation shows that laminar flow is reduced and drag increased at high speeds. At the speeds at which swifts cruise, however, swift-like roughness prolongs laminar flow and reduces drag. This feature gives small birds with rudimentary wings an edge during the evolution of glide performance.

  4. Magnetic Launch Assist Vehicle-Artist's Concept

    Science.gov (United States)

    1999-01-01

    This artist's concept depicts a Magnetic Launch Assist vehicle clearing the track and shifting to rocket engines for launch into orbit. The system, formerly referred as the Magnetic Levitation (MagLev) system, is a launch system developed and tested by Engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using an off-board electric energy source and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  5. Moving Obstacle Avoidance for Unmanned Aerial Vehicles

    Science.gov (United States)

    Lin, Yucong

    There has been a vast increase in applications of Unmanned Aerial Vehicles (UAVs) in civilian domains. To operate in the civilian airspace, a UAV must be able to sense and avoid both static and moving obstacles for flight safety. While indoor and low-altitude environments are mainly occupied by static obstacles, risks in space of higher altitude primarily come from moving obstacles such as other aircraft or flying vehicles in the airspace. Therefore, the ability to avoid moving obstacles becomes a necessity for Unmanned Aerial Vehicles. Towards enabling a UAV to autonomously sense and avoid moving obstacles, this thesis makes the following contributions. Initially, an image-based reactive motion planner is developed for a quadrotor to avoid a fast approaching obstacle. Furthermore, A Dubin's curve based geometry method is developed as a global path planner for a fixed-wing UAV to avoid collisions with aircraft. The image-based method is unable to produce an optimal path and the geometry method uses a simplified UAV model. To compensate these two disadvantages, a series of algorithms built upon the Closed-Loop Rapid Exploratory Random Tree are developed as global path planners to generate collision avoidance paths in real time. The algorithms are validated in Software-In-the-Loop (SITL) and Hardware-In-the-Loop (HIL) simulations using a fixed-wing UAV model and in real flight experiments using quadrotors. It is observed that the algorithm enables a UAV to avoid moving obstacles approaching to it with different directions and speeds.

  6. Analysis of Limit Cycle Oscillation Data from the Aeroelastic Test of the SUGAR Truss-Braced Wing Model

    Science.gov (United States)

    Bartels, Robert E.; Funk, Christie; Scott, Robert C.

    2015-01-01

    Research focus in recent years has been given to the design of aircraft that provide significant reductions in emissions, noise and fuel usage. Increases in fuel efficiency have also generally been attended by overall increased wing flexibility. The truss-braced wing (TBW) configuration has been forwarded as one that increases fuel efficiency. The Boeing company recently tested the Subsonic Ultra Green Aircraft Research (SUGAR) Truss-Braced Wing (TBW) wind-tunnel model in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT). This test resulted in a wealth of accelerometer data. Other publications have presented details of the construction of that model, the test itself, and a few of the results of the test. This paper aims to provide a much more detailed look at what the accelerometer data says about the onset of aeroelastic instability, usually known as flutter onset. Every flight vehicle has a location in the flight envelope of flutter onset, and the TBW vehicle is not different. For the TBW model test, the flutter onset generally occurred at the conditions that the Boeing company analysis said it should. What was not known until the test is that, over a large area of the Mach number dynamic pressure map, the model displayed wing/engine nacelle aeroelastic limit cycle oscillation (LCO). This paper dissects that LCO data in order to provide additional insights into the aeroelastic behavior of the model.

  7. The role of wing kinematics of freely flying birds downstream the wake of flapping wings

    Science.gov (United States)

    Krishnan, Krishnamoorthy; Gurka, Roi

    2016-11-01

    Avian aerodynamics has been a topic of research for centuries. Avian flight features such as flapping, morphing and maneuvering make bird aerodynamics a complex system to study, analyze and understand. Aerodynamic performance of the flapping wings can be quantified by measuring the vortex structures present in the downstream wake. Still, the direct correlation between the flapping wing kinematics and the evolution of wake features need to be established. In this present study, near wake of three bird species (western sandpiper, European starling and American robin) have been measured experimentally. Long duration, time-resolved, particle image velocimetry technique has been used to capture the wake properties. Simultaneously, the bird kinematics have been captured using high speed camera. Wake structures are reconstructed from the collected PIV images for long chord distances downstream. Wake vorticities and circulation are expressed in the wake composites. Comparison of the wake features of the three birds shows similarities and some key differences are also found. Wing tip motions of the birds are extracted for four continuous wing beat cycle to analyze the wing kinematics. Kinematic parameters of all the three birds are compared to each other and similar trends exhibited by all the birds have been observed. A correlation between the wake evolutions with the wing motion is presented. It was found that the wings' motion generates unique flow patterns at the near wake, especially at the transition phases. At these locations, a drastic change in the circulation was observed.

  8. Investigating the Force Production of Functionally-Graded Flexible Wings in Flapping Wing Flight

    Science.gov (United States)

    Mudbhari, Durlav; Erdogan, Malcolm; He, Kai; Bateman, Daniel; Lipkis, Rory; Moored, Keith

    2015-11-01

    Birds, insects and bats oscillate their wings to propel themselves over long distances and to maneuver with unprecedented agility. A key element to achieve their impressive aerodynamic performance is the flexibility of their wings. Numerous studies have shown that homogeneously flexible wings can enhance force production, propulsive efficiency and lift efficiency. Yet, animal wings are not homogenously flexible, but instead have varying material properties. The aim of this study is to characterize the force production and energetics of functionally-graded flexible wings. A partially-flexible wing composed of a rigid section and a flexible section is used as a first-order model of functionally-graded materials. The flexion occurs in the spanwise direction and it is affected by the spanwise flexion ratio, that is, the ratio of the length of the rigid section compared to the total span length. By varying the flexion ratio as well as the material properties of the flexible section, the study aims to examine the force production and energetics of flapping flight with functionally-graded flexible wings. Supported by the Office of Naval Research under Program Director Dr. Bob Brizzolara, MURI grant number N00014-14-1-0533.

  9. Aeroelastic Analysis of Modern Complex Wings

    Science.gov (United States)

    Kapania, Rakesh K.; Bhardwaj, Manoj K.; Reichenbach, Eric; Guruswamy, Guru P.

    1996-01-01

    A process is presented by which aeroelastic analysis is performed by using an advanced computational fluid dynamics (CFD) code coupled with an advanced computational structural dynamics (CSD) code. The process is demonstrated on an F/A-18 Stabilator using NASTD (an in-house McDonnell Douglas Aerospace East CFD code) coupled with NASTRAN. The process is also demonstrated on an aeroelastic research wing (ARW-2) using ENSAERO (an in-house NASA Ames Research Center CFD code) coupled with a finite element wing-box structures code. Good results have been obtained for the F/A-18 Stabilator while results for the ARW-2 supercritical wing are still being obtained.

  10. Advanced Technology and Mitigation (ATDM) SPARC Re-Entry Code Fiscal Year 2017 Progress and Accomplishments for ECP.

    Energy Technology Data Exchange (ETDEWEB)

    Crozier, Paul [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howard, Micah [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rider, William J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Freno, Brian Andrew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bova, Steven W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carnes, Brian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    The SPARC (Sandia Parallel Aerodynamics and Reentry Code) will provide nuclear weapon qualification evidence for the random vibration and thermal environments created by re-entry of a warhead into the earth’s atmosphere. SPARC incorporates the innovative approaches of ATDM projects on several fronts including: effective harnessing of heterogeneous compute nodes using Kokkos, exascale-ready parallel scalability through asynchronous multi-tasking, uncertainty quantification through Sacado integration, implementation of state-of-the-art reentry physics and multiscale models, use of advanced verification and validation methods, and enabling of improved workflows for users. SPARC is being developed primarily for the Department of Energy nuclear weapon program, with additional development and use of the code is being supported by the Department of Defense for conventional weapons programs.

  11. Vehicle Controller

    Science.gov (United States)

    1985-01-01

    UNISTICK is an airplane-like joystick being developed by Johnson Engineering under NASA and VA sponsorship. It allows a driver to control a vehicle with one hand, and is based upon technology developed for the Apollo Lunar Landings of the 1970's. It allows severely handicapped drivers to operate an automobile or van easily. The system is expected to be in production by March 1986.

  12. Active Twist Control for a Compliant Wing Structure, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Blended wing body (BWB) aircraft provide an aerodynamically superior solution over traditional tube-and-wing designs for a number of mission profiles. These...

  13. Employment of hypersonic glide vehicles: Proposed criteria for use

    Energy Technology Data Exchange (ETDEWEB)

    Olguin, Abel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-07-01

    Hypersonic Glide Vehicles (HGVs) are a type of reentry vehicle that couples the high speed of ballistic missiles with the maneuverability of aircraft. The HGV has been in development since the 1970s, and its technology falls under the category of Conventional Prompt Global Strike (CPGS) weapons. As noted by James M. Acton, a senior associate in the Nuclear Policy Program at the Carnegie Endowment, CPGS is a “missile in search of a mission.” With the introduction of any significant new military capability, a doctrine for use—including specifics regarding how, when and where it would be used, as well as tactics, training and procedures—must be clearly defined and understood by policy makers, military commanders, and planners. In this paper, benefits and limitations of the HGV are presented. Proposed criteria and four scenarios illustrate a possible method for assessing when to use an HGV.

  14. Design verification and fabrication of active control systems for the DAST ARW-2 high aspect ratio wing, part 1

    Science.gov (United States)

    Mcgehee, C. R.

    1986-01-01

    A study was conducted under Drones for Aerodynamic and Structural Testing (DAST) program to accomplish the final design and hardware fabrication for four active control systems compatible with and ready for installation in the NASA Aeroelastic Research Wing No. 2 (ARW-2) and Firebee II drone flight test vehicle. The wing structure was designed so that Active Control Systems (ACS) are required in the normal flight envelope by integrating control system design with aerodynamics and structure technologies. The DAST ARW-2 configuration uses flutter suppression, relaxed static stability, and gust and maneuver load alleviation ACS systems, and an automatic flight control system. Performance goals and criteria were applied to individual systems and the systems collectively to assure that vehicle stability margins, flutter margins, flying qualities and load reductions are achieved.

  15. Nonlinear Dynamics of Wind Turbine Wings

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther

    Wind turbines with a nominal effect of 5MW with a rotor diameter of up to 126m are produced today. With the increasing size wind turbines also become more and more optimized with respect to structural dimensions and material usage, without increasing the stiffness proportionally. Consequently......, large wind turbines become increasingly flexible and dynamically sensitive. This project focuses on the structural analysis of highly flexible wind turbine wings, and the aerodynamic loading of wind turbine wings under large changes in flow field due to elastic deformations and changing wind conditions....

  16. Stability and transition on swept wings

    Science.gov (United States)

    Stuckert, Greg; Herbert, Thorwald; Esfahanian, Vahid

    1993-01-01

    This paper describes the extension and application of the Parabolized Stability Equations (PSE) to the stability and transition of the supersonic three-dimensional laminar boundary layer on a swept wing. The problem formulation uses a general coordinate transformation for arbitrary curvilinear body-fitted computational grids. Some testing using these coordinates is briefly described to help validate the software used for the investigation. The disturbance amplitude ratios as a function of chord position for supersonic (Mach 1.5) boundary layers on untapered, untwisted wings of different sweep angles are then presented and compared with those obtained from local parallel analyses.

  17. Wind tunnel tests of an 0.019-scale space shuttle integrated vehicle -2A configuration (model 14-OTS) in the NASA Ames 8 X 7 foot unitary wind tunnel, volume 2. [cold jet gas plumes and pressure distribution

    Science.gov (United States)

    Hardin, R. B.; Burrows, R. R.

    1975-01-01

    The purpose of the test was to determine the effects of cold jet gas plumes on (1) the integrated vehicle longitudinal and lateral-directional force data, (2) exposed wing hinge moment, (3) wing pressure distributions, (4) orbiter MPS external pressure distributions, and (5) model base pressures. An investigation was undertaken to determine the similarity between solid and gaseous plumes; fluorescent oil flow visualization studies were also conducted. Plotted wing pressure data is tabulated.

  18. Integrated multi-disciplinary design of a sailplane wing

    OpenAIRE

    Strauch, Gregory J.

    1985-01-01

    The objective of this research is to investigate the techniques and payoffs of integrated aircraft design. Lifting line theory and beam theory are used for the analysis of the aerodynamics and the structures of a composite sailplane wing. The wing is described by 33 - 34 design variables which involve the planform geometry, the twist distribution, and thicknesses of the spar caps, spar webs, and the skin at various stations along the wing. The wing design must satisfy 30 â ...

  19. Turboelectric Distributed Propulsion in a Hybrid Wing Body Aircraft

    Science.gov (United States)

    Felder, James L.; Brown, Gerald V.; DaeKim, Hyun; Chu, Julio

    2011-01-01

    The performance of the N3-X, a 300 passenger hybrid wing body (HWB) aircraft with turboelectric distributed propulsion (TeDP), has been analyzed to see if it can meet the 70% fuel burn reduction goal of the NASA Subsonic Fixed Wing project for N+3 generation aircraft. The TeDP system utilizes superconducting electric generators, motors and transmission lines to allow the power producing and thrust producing portions of the system to be widely separated. It also allows a small number of large turboshaft engines to drive any number of propulsors. On the N3-X these new degrees of freedom were used to (1) place two large turboshaft engines driving generators in freestream conditions to maximize thermal efficiency and (2) to embed a broad continuous array of 15 motor driven propulsors on the upper surface of the aircraft near the trailing edge. That location maximizes the amount of the boundary layer ingested and thus maximizes propulsive efficiency. The Boeing B777-200LR flying 7500 nm (13890 km) with a cruise speed of Mach 0.84 and an 118100 lb payload was selected as the reference aircraft and mission for this study. In order to distinguish between improvements due to technology and aircraft configuration changes from those due to the propulsion configuration changes, an intermediate configuration was included in this study. In this configuration a pylon mounted, ultra high bypass (UHB) geared turbofan engine with identical propulsion technology was integrated into the same hybrid wing body airframe. That aircraft achieved a 52% reduction in mission fuel burn relative to the reference aircraft. The N3-X was able to achieve a reduction of 70% and 72% (depending on the cooling system) relative to the reference aircraft. The additional 18% - 20% reduction in the mission fuel burn can therefore be attributed to the additional degrees of freedom in the propulsion system configuration afforded by the TeDP system that eliminates nacelle and pylon drag, maximizes boundary

  20. Reentry Program and Social Work Education: Training the Next Generation of Criminal Justice Social Workers.

    Science.gov (United States)

    Franke, Nancy D; Treglia, Dan; Cnaan, Ram A

    2017-01-01

    Social work plays a marginal role in opposing the trend of mass incarceration and high rates of recidivism, and social work education offers limited opportunities for students to specialize in working with people who are currently or were previously incarcerated. How to train students of social work to work against mass-incarceration is still challenging. The authors devised and implemented an in-school social service agency devoted to working with people pre and post release from a prison system. The agency is a field practicum setting where interested students study and practice reentry work. In this article, the authors describe and assess the educational merit of this in-school agency. Findings from surveys of students and alumni suggest that the program attained its educational goals of connecting classroom education to practice experience and training students for careers in the criminal justice system. The authors also discuss pending challenges. The experience of the Goldring Reentry Initiative suggests that by developing their own social work agencies, the authors may be able to heighten their students educational experience and expand their contribution to social work practice broadly.

  1. Effects of a reentry plasma sheath on the beam pointing properties of an array antenna

    Science.gov (United States)

    Bai, Bowen; Liu, Yanming; Lin, Xiaofang; Li, Xiaoping

    2018-03-01

    The reduction in the gain of an on-board antenna caused by a reentry plasma sheath is an important effect that contributes to the reentry "blackout" problem. Using phased array antenna and beamforming technology could provide higher gain and an increase in the communication signal intensity. The attenuation and phase delay of the electromagnetic (EM) waves transmitting through the plasma sheath are direction-dependent, and the radiation pattern of the phased array antenna is affected, leading to a deviation in the beam pointing. In this paper, the far-field pattern of a planar array antenna covered by a plasma sheath is deduced analytically by considering both refraction and mutual coupling effects. A comparison between the analytic results and the results from an electromagnetic simulation is carried out. The effect of the plasma sheath on the radiation pattern and the beam pointing errors of the phased array antenna is studied systematically, and the derived results could provide useful information for the correction of pointing errors.

  2. Thermographic Imaging of the Space Shuttle During Re-Entry Using a Near Infrared Sensor

    Science.gov (United States)

    Zalameda, Joseph N.; Horvath, Thomas J.; Kerns, Robbie V.; Burke, Eric R.; Taylor, Jeff C.; Spisz, Tom; Gibson, David M.; Shea, Edward J.; Mercer, C. David; Schwartz, Richard J.; hide

    2012-01-01

    High resolution calibrated near infrared (NIR) imagery of the Space Shuttle Orbiter was obtained during hypervelocity atmospheric re-entry of the STS-119, STS-125, STS-128, STS-131, STS-132, STS-133, and STS-134 missions. This data has provided information on the distribution of surface temperature and the state of the airflow over the windward surface of the Orbiter during descent. The thermal imagery complemented data collected with onboard surface thermocouple instrumentation. The spatially resolved global thermal measurements made during the Orbiter s hypersonic re-entry will provide critical flight data for reducing the uncertainty associated with present day ground-to-flight extrapolation techniques and current state-of-the-art empirical boundary-layer transition or turbulent heating prediction methods. Laminar and turbulent flight data is critical for the validation of physics-based, semi-empirical boundary-layer transition prediction methods as well as stimulating the validation of laminar numerical chemistry models and the development of turbulence models supporting NASA s next-generation spacecraft. In this paper we provide details of the NIR imaging system used on both air and land-based imaging assets. The paper will discuss calibrations performed on the NIR imaging systems that permitted conversion of captured radiant intensity (counts) to temperature values. Image processing techniques are presented to analyze the NIR data for vignetting distortion, best resolution, and image sharpness. Keywords: HYTHIRM, Space Shuttle thermography, hypersonic imaging, near infrared imaging, histogram analysis, singular value decomposition, eigenvalue image sharpness

  3. Distributed Turboelectric Propulsion for Hybrid Wing Body Aircraft

    Science.gov (United States)

    Kim, Hyun Dae; Brown, Gerald V.; Felder, James L.

    2008-01-01

    Meeting future goals for aircraft and air traffic system performance will require new airframes with more highly integrated propulsion. Previous studies have evaluated hybrid wing body (HWB) configurations with various numbers of engines and with increasing degrees of propulsion-airframe integration. A recently published configuration with 12 small engines partially embedded in a HWB aircraft, reviewed herein, serves as the airframe baseline for the new concept aircraft that is the subject of this paper. To achieve high cruise efficiency, a high lift-to-drag ratio HWB was adopted as the baseline airframe along with boundary layer ingestion inlets and distributed thrust nozzles to fill in the wakes generated by the vehicle. The distributed powered-lift propulsion concept for the baseline vehicle used a simple, high-lift-capable internally blown flap or jet flap system with a number of small high bypass ratio turbofan engines in the airframe. In that concept, the engine flow path from the inlet to the nozzle is direct and does not involve complicated internal ducts through the airframe to redistribute the engine flow. In addition, partially embedded engines, distributed along the upper surface of the HWB airframe, provide noise reduction through airframe shielding and promote jet flow mixing with the ambient airflow. To improve performance and to reduce noise and environmental impact even further, a drastic change in the propulsion system is proposed in this paper. The new concept adopts the previous baseline cruise-efficient short take-off and landing (CESTOL) airframe but employs a number of superconducting motors to drive the distributed fans rather than using many small conventional engines. The power to drive these electric fans is generated by two remotely located gas-turbine-driven superconducting generators. This arrangement allows many small partially embedded fans while retaining the superior efficiency of large core engines, which are physically separated

  4. Follow-up investigations of GPHS motion during heat pulse intervals of reentries from gravity-assist trajectories

    International Nuclear Information System (INIS)

    Sharbaugh, R.C.

    1992-01-01

    Motion studies of the General Purpose Heat Source Module, GPHS, which were conducted in the heat pulse intervals associated with entries from earth gravity assist trajectories. The APL six-degree-of-freedom reentry program designated TMAGRA6C was used. The objectives of the studies were to (1) determine whether the GPHS module entering the earth's atmosphere from an earth-gravity-assist trajectory has a preferred orientation during the heat pulse of reentry, (2) determine the effect of magnus force on the roll rate and angle of attack of the GPHS during an EGA entry, (3) determine the effect of the magnitude of pitch and roll damping on the GPHS motion

  5. The "Watchful Eye of God": The Role of Religion in the Rehabilitation and Reentry of Repentant Jewish Prisoners.

    Science.gov (United States)

    Morag, Michal; Teman, Elly

    2017-03-01

    Can participation in a religious rehabilitation program benefit a released prisoner's reentry into the community, and if so, how? Which elements of the religious worldview can be translated into tools for promoting desistance? Using a qualitative approach, we conducted 30 interviews with released prisoners from 3 months to 5 years beyond release who participated in a Jewish faith-based rehabilitation program administered by Israel's Prisoner Rehabilitation Authority. We interviewed participants in the Torah Rehabilitation Program about the role of religion in their lives and in their desistance from crime. We map out the spiritual, behavioral, and psychological tools they feel aided them in facing the challenges of reentry.

  6. Ready4Work "In Brief": Update on Outcomes; Reentry May Be Critical for States, Cities. P/PV In Brief. Issue 6

    Science.gov (United States)

    Farley, Chelsea; McClanahan, Wendy S.

    2007-01-01

    This issue of "P/PV In Brief" provides updated data from the Ready4Work prisoner reentry initiative, with a focus on the prison crisis occurring in many cities and states. While much more research is needed to understand the true, long-term impact of prisoner reentry initiatives, outcomes from Ready4Work were extremely promising in terms of…

  7. Use of wing morphometry for the discrimination of some Cerceris ...

    African Journals Online (AJOL)

    use

    2011-12-14

    Dec 14, 2011 ... Figure 12. Thin spline plate graphics for the species belonging to the genus Cerceris. Figure 13. Fore wing landmarks of the significant wing characteristics in the honeybee Apis mellifera. Linnaeus. stated as the traditional wing morphometry that enables the practical discrimination of the honeybee (Apis sp ...

  8. How swifts control their glide performance with morphing wings

    NARCIS (Netherlands)

    Lentink, D.; Muller, U. K.; Stamhuis, E. J.; de Kat, R.; van Gestel, W.; Veldhuis, L. L. M.; Henningsson, P.; Hedenstrom, A.; Videler, J. J.

    2007-01-01

    Gliding birds continually change the shape and size of their wings(1-6), presumably to exploit the profound effect of wing morphology on aerodynamic performance(7-9). That birds should adjust wing sweep to suit glide speed has been predicted qualitatively by analytical glide models(2,10), which

  9. Low Reynolds Number Wing Transients in Rotation and Translation

    Science.gov (United States)

    Jones, Anya; Schlueter, Kristy

    2012-11-01

    The unsteady aerodynamic forces and flow fields generated by a wing undergoing transient motions in both rotation and translation were investigated. An aspect ratio 2 flat plate wing at a 45 deg angle of attack was driven over 84 deg of rotation (3 chord-lengths of travel at 3/4 span) and 3 and 10 chord-lengths of translation in quiescent water at Reynolds numbers between 2,500 and 15,000. Flow visualization on the rotating wing revealed a leading edge vortex that lifted off of the wing surface, but remained in the vicinity of the wing for the duration of the wing stroke. A second spanwise vortex with strong axial flow was also observed. As the tip vortex grew, the leading edge vortex joined the tip vortex in a loop-like structure over the aft half of the wing. Near the leading edge, spanwise flow in the second vortex became entrained in the tip vortex near the corner of the wing. Unsteady force measurements revealed that lift coefficient increased through the constant-velocity portion of the wing stroke. Forces were compared for variations in wing acceleration and Reynolds number for both rotational and translational motions. The effect of tank blockage was investigated by repeating the experiments on multiple wings, varying the distance between the wing tip and tank wall. U.S. Air Force Research Laboratory, Summer Faculty Fellowship Program.

  10. Design considerations for honeycomb double-bubble tanks utilized in aerospace vehicles

    Science.gov (United States)

    Lentz, Christopher A.; Bush, Lance B.

    1990-01-01

    Future earth-to-orbit vehicles will utilize reusable internal fuel tanks requiring most of the vehicle volume. Because weight reduction and volumetric efficiency are essential, these tanks will be integral to the vehicle structure, and the vehicle cross section will dictate the size and shape of the tank. For a fuselage with a noncircular cross section, a multibubble tank configuration may be employed. Multibubble tanks offer a reduction in tank weight over a single-lobe tank or several cylindrical tanks in a noncircular cross section but sacrifice the efficiency of utilizing the entire fuselage cross section. This paper includes a general configuration analysis of a double-bubble tank, a materials and efficiency study, and a complete mission design analysis centers on sizing the tank to withstand ascent and reentry loads while minimizing the structural weight.

  11. Air Base Wing and Air Mobility Wing Consolidating on AMC-LED Joint Bases: A Delphi Study

    Science.gov (United States)

    2014-06-13

    AIR BASE WING AND AIR MOBILITY WING CONSOLIDATION ON AMC-LED JOINT BASES: A DELPHI STUDY GRADUATE RESEARCH PAPER Mason E. MacGarvey... DELPHI STUDY GRADUATE RESEARCH PAPER Presented to the Faculty Graduate School of Engineering Management Air Force Institute of Technology...iv AIR BASE WING AND AIR MOBILITY WING CONSOLIDATION ON AMC-LED JOINT BASES: A DELPHI STUDY Mason E. MacGarvey, BS, MBA

  12. Effect of a Parenting Intervention on Foster Care Reentry After Reunification Among Substance-Affected Families: A Quasi-Experimental Study.

    Science.gov (United States)

    Akin, Becci A; Brook, Jody; Lloyd, Margaret H; McDonald, Thomas P

    2017-08-01

    Although parental substance abuse has been identified as a risk factor for poor foster care outcomes, current research on effective interventions is limited. A few studies have shown that parenting interventions improved parenting skills and family functioning and decreased time to reunification among children in foster care due to parental substance abuse. However, more research is needed to evaluate whether these interventions positively impact reentry rates. Using propensity score analyses to establish a matched comparison group, survival analyses evaluated the relationship between participation in a parenting intervention, the Strengthening Families Program (SFP), and reentry among a sample of 493 children previously reunified with their parents. The overall reentry rate was 20.9%. Analyses indicated that there was no difference in reentry rates between the SFP (23.7%) and comparison groups (18.6%). Significant predictors of reentry were child behavior problems, family poverty, and reunification between 15 and 18 months from removal.

  13. Morphing Wing: Experimental Boundary Layer Transition Determination and Wing Vibrations Measurements and Analysis =

    Science.gov (United States)

    Tondji Chendjou, Yvan Wilfried

    This Master's thesis is written within the framework of the multidisciplinary international research project CRIAQ MDO-505. This global project consists of the design, manufacture and testing of a morphing wing box capable of changing the shape of the flexible upper skin of a wing using an actuator system installed inside the wing. This changing of the shape generates a delay in the occurrence of the laminar to turbulent transition area, which results in an improvement of the aerodynamic performances of the morphed wing. This thesis is focused on the technologies used to gather the pressure data during the wind tunnel tests, as well as on the post processing methodologies used to characterize the wing airflow. The vibration measurements of the wing and their real-time graphical representation are also presented. The vibration data acquisition system is detailed, and the vibration data analysis confirms the predictions of the flutter analysis performed on the wing prior to wind tunnel testing at the IAR-NRC. The pressure data was collected using 32 highly-sensitive piezoelectric sensors for sensing the pressure fluctuations up to 10 KHz. These sensors were installed along two wing chords, and were further connected to a National Instrument PXI real-time acquisition system. The acquired pressure data was high-pass filtered, analyzed and visualized using Fast Fourier Transform (FFT) and Standard Deviation (SD) approaches to quantify the pressure fluctuations in the wing airflow, as these allow the detection of the laminar to turbulent transition area. Around 30% of the cases tested in the IAR-NRC wind tunnel were optimized for drag reduction by the morphing wing procedure. The obtained pressure measurements results were compared with results obtained by infrared thermography visualization, and were used to validate the numerical simulations. Two analog accelerometers able to sense dynamic accelerations up to +/-16g were installed in both the wing and the aileron boxes

  14. Migration on Wings Aerodynamics and Energetics

    CERN Document Server

    Kantha, Lakshmi

    2012-01-01

    This book is an effort to explore the technical aspects associated with bird flight and migration on wings. After a short introduction on the birds migration, the book reviews the aerodynamics and Energetics of Flight and presents the calculation of the Migration Range. In addition, the authors explains aerodynamics of the formation flight and finally introduces great flight diagrams.

  15. Oblique-Flying-Wing Supersonic Transport Airplane

    Science.gov (United States)

    Van Der Velden, Alexander J. M.

    1992-01-01

    Oblique-flying-wing supersonic airplane proposed as possible alternative to B747B (or equivalent). Tranports passengers and cargo as fast as twice speed of sound at same cost as current subsonic transports. Flies at same holding speeds as present supersonic transports but requires only half takeoff distance.

  16. Chemical evaluation of winged beans ( Psophocarpus ...

    African Journals Online (AJOL)

    Chemical evaluation of winged beans ( Psophocarpus Tetragonolobus ), Pitanga cherries ( Eugenia uniflora) and orchid fruit ( Orchid fruit myristic a) ... The acid value ranged between 0.71 and 2.82 mg/KOH/g while iodine value ranged between 91.15 and 144.57. The refractive index ranged between 1.465 and 1.474 in all ...

  17. ``Schooling'' of wing pairs in flapping flight

    Science.gov (United States)

    Ramananarivo, Sophie; Zhang, Jun; Ristroph, Leif; AML, Courant Collaboration; Physics NYU Collaboration

    2015-11-01

    The experimental setup implements two independent flapping wings swimming in tandem. Both are driven with the same prescribed vertical heaving motion, but the horizontal motion is free, which means that the swimmers can take up any relative position and forward speed. Experiments show however clearly coordinated motions, where the pair of wings `crystallize' into specific stable arrangements. The follower wing locks into the path of the leader, adopting its speed, and with a separation distance that takes on one of several discrete values. By systematically varying the kinematics and wing size, we show that the set of stable spacings is dictated by the wavelength of the periodic wake structure. The forces maintaining the pair cohesion are characterized by applying an external force to the follower to perturb it away from the `stable wells'. These results show that hydrodynamics alone is sufficient to induce cohesive and coordinated collective locomotion through a fluid, and we discuss the hypothesis that fish schools and bird flocks also represent stable modes of motion.

  18. Aerodynamic comparison of a butterfly-like flapping wing-body model and a revolving-wing model

    Science.gov (United States)

    Suzuki, Kosuke; Yoshino, Masato

    2017-06-01

    The aerodynamic performance of flapping- and revolving-wing models is investigated by numerical simulations based on an immersed boundary-lattice Boltzmann method. As wing models, we use (i) a butterfly-like model with a body and flapping-rectangular wings and (ii) a revolving-wing model with the same wings as the flapping case. Firstly, we calculate aerodynamic performance factors such as the lift force, the power, and the power loading of the two models for Reynolds numbers in the range of 50-1000. For the flapping-wing model, the power loading is maximal for the maximum angle of attack of 90°, a flapping amplitude of roughly 45°, and a phase shift between the flapping angle and the angle of attack of roughly 90°. For the revolving-wing model, the power loading peaks for an angle of attack of roughly 45°. In addition, we examine the ground effect on the aerodynamic performance of the revolving-wing model. Secondly, we compare the aerodynamic performance of the flapping- and revolving-wing models at their respective maximal power loadings. It is found that the revolving-wing model is more efficient than the flapping-wing model both when the body of the latter is fixed and where it can move freely. Finally, we discuss the relative agilities of the flapping- and revolving-wing models.

  19. Paleozoic Nymphal Wing Pads Support Dual Model of Insect Wing Origins.

    Science.gov (United States)

    Prokop, Jakub; Pecharová, Martina; Nel, André; Hörnschemeyer, Thomas; Krzemińska, Ewa; Krzemiński, Wiesław; Engel, Michael S

    2017-01-23

    The appearance of wings in insects, early in their evolution [1], has been one of the more critical innovations contributing to their extraordinary diversity. Despite the conspicuousness and importance of wings, the origin of these structures has been difficult to resolve and represented one of the "abominable mysteries" in evolutionary biology [2]. More than a century of debate has boiled the matter down to two competing alternatives-one of wings representing an extension of the thoracic notum, the other stating that they are appendicular derivations from the lateral body wall. Recently, a dual model has been supported by genomic and developmental data [3-6], representing an amalgamation of elements from both the notal and pleural hypotheses. Here, we reveal crucial information from the wing pad joints of Carboniferous palaeodictyopteran insect nymphs using classical and high-tech techniques. These nymphs had three pairs of wing pads that were medially articulated to the thorax but also broadly contiguous with the notum anteriorly and posteriorly (details unobservable in modern insects), supporting their overall origin from the thoracic notum as well as the expected medial, pleural series of axillary sclerites. Our study provides support for the formation of the insect wing from the thoracic notum as well as the already known pleural elements of the arthropodan leg. These results support the unique, dual model for insect wing origins and the convergent reduction of notal fusion in more derived clades, presumably due to wing rotation during development, and they help to bring resolution to this long-standing debate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Characteristic Model-Based Robust Model Predictive Control for Hypersonic Vehicles with Constraints

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2017-06-01

    Full Text Available Designing robust control for hypersonic vehicles in reentry is difficult, due to the features of the vehicles including strong coupling, non-linearity, and multiple constraints. This paper proposed a characteristic model-based robust model predictive control (MPC for hypersonic vehicles with reentry constraints. First, the hypersonic vehicle is modeled by a characteristic model composed of a linear time-varying system and a lumped disturbance. Then, the identification data are regenerated by the accumulative sum idea in the gray theory, which weakens effects of the random noises and strengthens regularity of the identification data. Based on the regenerated data, the time-varying parameters and the disturbance are online estimated according to the gray identification. At last, the mixed H2/H∞ robust predictive control law is proposed based on linear matrix inequalities (LMIs and receding horizon optimization techniques. Using active tackling system constraints of MPC, the input and state constraints are satisfied in the closed-loop control system. The validity of the proposed control is verified theoretically according to Lyapunov theory and illustrated by simulation results.

  1. Multiple cues for winged morph production in an aphid metacommunity.

    Directory of Open Access Journals (Sweden)

    Mohsen Mehrparvar

    Full Text Available Environmental factors can lead individuals down different developmental pathways giving rise to distinct phenotypes (phenotypic plasticity. The production of winged or unwinged morphs in aphids is an example of two alternative developmental pathways. Dispersal is paramount in aphids that often have a metapopulation structure, where local subpopulations frequently go extinct, such as the specialized aphids on tansy (Tanacetum vulgare. We conducted various experiments to further understand the cues involved in the production of winged dispersal morphs by the two dominant species of the tansy aphid metacommunity, Metopeurum fuscoviride and Macrosiphoniella tanacetaria. We found that the ant-tended M. fuscoviride produced winged individuals predominantly at the beginning of the season while the untended M. tanacetaria produced winged individuals throughout the season. Winged mothers of both species produced winged offspring, although in both species winged offspring were mainly produced by unwinged females. Crowding and the presence of predators, effects already known to influence wing production in other aphid species, increased the percentage of winged offspring in M. tanacetaria, but not in M. fuscoviride. We find there are also other factors (i.e. temporal effects inducing the production of winged offspring for natural aphid populations. Our results show that the responses of each aphid species are due to multiple wing induction cues.

  2. The biomechanical origin of extreme wing allometry in hummingbirds.

    Science.gov (United States)

    Skandalis, Dimitri A; Segre, Paolo S; Bahlman, Joseph W; Groom, Derrick J E; Welch, Kenneth C; Witt, Christopher C; McGuire, Jimmy A; Dudley, Robert; Lentink, David; Altshuler, Douglas L

    2017-10-19

    Flying animals of different masses vary widely in body proportions, but the functional implications of this variation are often unclear. We address this ambiguity by developing an integrative allometric approach, which we apply here to hummingbirds to examine how the physical environment, wing morphology and stroke kinematics have contributed to the evolution of their highly specialised flight. Surprisingly, hummingbirds maintain constant wing velocity despite an order of magnitude variation in body weight; increased weight is supported solely through disproportionate increases in wing area. Conversely, wing velocity increases with body weight within species, compensating for lower relative wing area in larger individuals. By comparing inter- and intraspecific allometries, we find that the extreme wing area allometry of hummingbirds is likely an adaptation to maintain constant burst flight capacity and induced power requirements with increasing weight. Selection for relatively large wings simultaneously maximises aerial performance and minimises flight costs, which are essential elements of humming bird life history.

  3. An Exploration of Factors Reducing Recidivism Rates of Formerly Incarcerated Youth with Disabilities Participating in a Re-Entry Intervention

    Science.gov (United States)

    Unruh, Deanne K.; Gau, Jeff M.; Waintrup, Miriam G.

    2009-01-01

    Juvenile offenders are costly to our society in terms of the monetary and social expenditures from the legal system, victims' person costs, and incarceration. The re-entry and community reintegration outcomes for formerly incarcerated youth with a disabling condition are bleak compared to peers without disabilities. In this study, we examined the…

  4. Investigating a Novel Activation-Repolarisation Time Metric to Predict Localised Vulnerability to Reentry Using Computational Modelling

    NARCIS (Netherlands)

    Hill, Yolanda R.; Child, Nick; Hanson, Ben; Wallman, Mikael; Coronel, Ruben; Plank, Gernot; Rinaldi, Christopher A.; Gill, Jaswinder; Smith, Nicolas P.; Taggart, Peter; Bishop, Martin J.

    2016-01-01

    Exit sites associated with scar-related reentrant arrhythmias represent important targets for catheter ablation therapy. However, their accurate location in a safe and robust manner remains a significant clinical challenge. We recently proposed a novel quantitative metric (termed the Reentry

  5. Toward cardiac electrophysiological mapping based on micro-Tesla NMR: a novel modality for localizing the cardiac reentry

    Directory of Open Access Journals (Sweden)

    Kiwoong Kim

    2012-06-01

    Full Text Available Matching the proton magnetic resonance frequency to the frequency of a periodic electrophysiological excitation of myocardium enables direct localization of the cardiac reentry by magnetic resonance imaging techniques. The feasibility of this new idea has been demonstrated by conducting a numerical simulation based on a realistic heart model and experimental parameters in SQUID-based micro-Tesla NMR.

  6. Vocational Interest as a Correlate of Re-Entry of Girls into School in Edo State, Nigeria: Implications for Counselling

    Science.gov (United States)

    Alika, Ijeoma Henrietta; Egbochuku, Elizabeth Omotunde

    2012-01-01

    The study investigated the relationship between vocational interest socio-economic status and re-entry of girls into school in Edo State. The research design adopted was correlational because it sought to establish the relationship between the independent variable and the dependent variable. A sample size of 306 girls who re-enrolled in institutes…

  7. Does Offender Gambling on the inside Continue on the outside? Insights from Correctional Professionals on Gambling and Re-Entry

    Science.gov (United States)

    Williams, D. J.; Walker, Gordon J.

    2009-01-01

    This study brings to light a neglected topic of particular importance--offender gambling issues within the context of re-entry into the community. Fifteen correctional professionals from Nevada (high gambling availability) and Utah (no legalized gambling) participated in semi-structured interviews to provide insights into how gambling may impact…

  8. A model for roll stall and the inherent stability modes of low aspect ratio wings at low Reynolds numbers

    Science.gov (United States)

    Shields, Matt

    The development of Micro Aerial Vehicles has been hindered by the poor understanding of the aerodynamic loading and stability and control properties of the low Reynolds number regime in which the inherent low aspect ratio (LAR) wings operate. This thesis experimentally evaluates the static and damping aerodynamic stability derivatives to provide a complete aerodynamic model for canonical flat plate wings of aspect ratios near unity at Reynolds numbers under 1 x 105. This permits the complete functionality of the aerodynamic forces and moments to be expressed and the equations of motion to solved, thereby identifying the inherent stability properties of the wing. This provides a basis for characterizing the stability of full vehicles. The influence of the tip vortices during sideslip perturbations is found to induce a loading condition referred to as roll stall, a significant roll moment created by the spanwise induced velocity asymmetry related to the displacement of the vortex cores relative to the wing. Roll stall is manifested by a linearly increasing roll moment with low to moderate angles of attack and a subsequent stall event similar to a lift polar; this behavior is not experienced by conventional (high aspect ratio) wings. The resulting large magnitude of the roll stability derivative, Cl,beta and lack of roll damping, Cl ,rho, create significant modal responses of the lateral state variables; a linear model used to evaluate these modes is shown to accurately reflect the solution obtained by numerically integrating the nonlinear equations. An unstable Dutch roll mode dominates the behavior of the wing for small perturbations from equilibrium, and in the presence of angle of attack oscillations a previously unconsidered coupled mode, referred to as roll resonance, is seen develop and drive the bank angle? away from equilibrium. Roll resonance requires a linear time variant (LTV) model to capture the behavior of the bank angle, which is attributed to the

  9. Connected vehicle application : safety.

    Science.gov (United States)

    2015-01-01

    Connected vehicle safety applications are designed to increase situational awareness : and reduce or eliminate crashes through vehicle-to-infrastructure (V2I), vehicle-to-vehicle (V2V), and vehicle-to-pedestrian (V2P) data transmissions. Applications...

  10. Measurement of circulation around wing-tip vortices and estimation of lift forces using stereo PIV

    Science.gov (United States)

    Asano, Shinichiro; Sato, Haru; Sakakibara, Jun

    2017-11-01

    Applying the flapping flight to the development of an aircraft as Mars space probe and a small aircraft called MAV (Micro Air Vehicle) is considered. This is because Reynolds number assumed as the condition of these aircrafts is low and similar to of insects and small birds flapping on the earth. However, it is difficult to measure the flow around the airfoil in flapping flight directly because of its three-dimensional and unsteady characteristics. Hence, there is an attempt to estimate the flow field and aerodynamics by measuring the wake of the airfoil using PIV, for example the lift estimation method based on a wing-tip vortex. In this study, at the angle of attack including the angle after stall, we measured the wing-tip vortex of a NACA 0015 cross-sectional and rectangular planform airfoil using stereo PIV. The circulation of the wing-tip vortex was calculated from the obtained velocity field, and the lift force was estimated based on Kutta-Joukowski theorem. Then, the validity of this estimation method was examined by comparing the estimated lift force and the force balance data at various angles of attack. The experiment results are going to be presented in the conference.

  11. Control of wing-tip vortex using winglets at low Reynolds number

    Science.gov (United States)

    Cho, Seunghyun; Choi, Haecheon

    2014-11-01

    Winglets are considered as one of the effective devices for reducing induced drag, and thus many studies have been conducted, but mainly at high Reynolds numbers (Re ~106 ~107) for commercial airplanes. However, small-size unmanned air vehicles (UAV), operating at low Reynolds numbers (Re PIV measurements are conducted at several cross-flow planes for a few different angles of attack (α) . At high angles of attack (7° ~13°) , the winglets with the cant angle of 70° increase the aerodynamic performance, whereas at low angles of attack (2° ~6°) , the wing-tip extension (cant angle of 0°) shows better performances. The velocity fields measured from PIV indicate that, with the winglet, the wing-tip vortex moves away from the wing surface at α =12° , and the downwash motion in the wake behind the trailing edge is decreased, reducing the magnitude of the induced drag. A concept of changing the cant angle during flight is also suggested at this talk. Supported by 2011-0028032.

  12. Forestry Vehicle

    Science.gov (United States)

    1982-01-01

    Power Pack II provides an economical means of moving a power source into remote roadless forest areas. It was developed by Prof. Miles and his associates, working in cooperation with the University of California's Department of Forestry. The team combined its own design of an all-terrain vehicle with a suspension system based on the NASA load equalization technology. Result is an intermediate-sized unit which carries a power source and the powered tools to perform a variety of forest management tasks which cannot be done economically with current equipment. Power Pack II can traverse very rough terrain and climb a 60 degree slope; any one of the wheels can move easily over an obstacle larger than itself. Work is being done on a more advanced Power Pack III.

  13. Revascularization of an occluded brachiocephalic vein using Outback-LTD re-entry catheter.

    Science.gov (United States)

    Anil, Gopinathan; Taneja, Manish

    2010-10-01

    A 78-year-old man with end-stage renal disease and a right brachial-cephalic upper arm direct hemodialysis access presented with symptomatic central venous occlusion. The right brachiocephalic vein occlusion in this patient was refractory to wire traversal. Sharp recanalization of the central venous occlusion was done with an Outback LTD re-entry catheter (Cordis Corporation, a Johnson & Johnson Company, Miami, Fla). The track was balloon dilated and stented. When the conventional management options fail, this technique may be used to salvage a precious dialysis access and to relieve the patient from symptoms of central venous hypertension. Copyright © 2010 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  14. Characteristics of the GOCE Orbit in the Re-Entry Phase

    Science.gov (United States)

    Hamm, Johann; Lengsfeld, Alexander; Kekce, Ugur; Pape, Werner; Shabanloui, Akbar; Naeimi, Majid; Flury, Jakob

    2015-03-01

    The GOCE de-orbiting phase was started as the Ion thruster was switched off on 21st October 2013. Beginning with this, the transition from the Drag-Free and Attitude Control System (DFACS) to Fine Pointing Mode (FPM) started, so the Gradiometer was no longer in the attitude control loop. On 11th of November 2013, the de-orbiting phase ended with the re-entry of GOCE in the Earth’s atmosphere, near to the Falkland Islands. As a part of a research project, we analyzed the 20 days of the GOCE data during de-orbiting phase. We investigate: Electrostatic Gravity Gradiometer (EGG), DFACS Accelerometer data, Magneto-Torques Currents (MTR) data, Precise Science Orbits (PSO) data, Satellite to Satellite Tracking (SST) data and Atmospheric Models (MSISE-90, NRMSISE-00).

  15. Investigating a Novel Activation-Repolarisation Time Metric to Predict Localised Vulnerability to Reentry Using Computational Modelling.

    Directory of Open Access Journals (Sweden)

    Yolanda R Hill

    Full Text Available Exit sites associated with scar-related reentrant arrhythmias represent important targets for catheter ablation therapy. However, their accurate location in a safe and robust manner remains a significant clinical challenge. We recently proposed a novel quantitative metric (termed the Reentry Vulnerability Index, RVI to determine the difference between activation and repolarisation intervals measured from pairs of spatial locations during premature stimulation to accurately locate the critical site of reentry formation. In the clinic, the method showed potential to identify regions of low RVI corresponding to areas vulnerable to reentry, subsequently identified as ventricular tachycardia (VT circuit exit sites. Here, we perform an in silico investigation of the RVI metric in order to aid the acquisition and interpretation of RVI maps and optimise its future usage within the clinic. Within idealised 2D sheet models we show that the RVI produces lower values under correspondingly more arrhythmogenic conditions, with even low resolution (8 mm electrode separation recordings still able to locate vulnerable regions. When applied to models of infarct scars, the surface RVI maps successfully identified exit sites of the reentrant circuit, even in scenarios where the scar was wholly intramural. Within highly complex infarct scar anatomies with multiple reentrant pathways, the identified exit sites were dependent upon the specific pacing location used to compute the endocardial RVI maps. However, simulated ablation of these sites successfully prevented the reentry re-initiation. We conclude that endocardial surface RVI maps are able to successfully locate regions vulnerable to reentry corresponding to critical exit sites during sustained scar-related VT. The method is robust against highly complex and intramural scar anatomies and low resolution clinical data acquisition. Optimal location of all relevant sites requires RVI maps to be computed from

  16. Sex offender reentry courts: a cost effective proposal for managing sex offender risk in the community.

    Science.gov (United States)

    La Fond, John Q; Winick, Bruce J

    2003-06-01

    Recently enacted legal strategies to protect society from dangerous sex offenders generally use two very different approaches: Long-term incapacitation or outright release. The first strategy relies on harsh criminal sentences or indeterminate sexual predator commitment laws. The second relies primarily on registration and notification laws. Both strategies rely on prediction models of dangerousness. Authorities determine at a single moment the likelihood that an offender will sexually "recidivate" and then choose the appropriate type of control for an extended period. This paper reviews the problems of predicting sexual recidivism in the context of both strategies. It then proposes special sex offender reentry courts to manage the risk that sexual offenders will reoffend. Risk management allows decision makers to adjust calculations of individual risk on an ongoing basis in light of new information and to adjust the level of control. Drawing on Therapeutic Jurisprudence-a belief that legal rules, procedures, and legal roles can have positive or negative psychological impact on participants in the legal system-these courts can impose, and then adjust control over sex ofenders in the community. In a sex offender reentry court, the judge is a member of an interdisciplinary team that uses a community containment approach; the offender, as a condition for release, enters into a behavioral contract to engage in treatment and submit to periodic polygraph testing. This therapeutic jurisprudence approach creates incentives for offenders to change their behavior and attitudes, thereby reducing their recidivism risk and earning more freedom. It can also monitor compliance and manage risk more effectively.

  17. Novel Aerodynamic Design for Formula SAE Vehicles

    Science.gov (United States)

    Sentongo, Samuel; Carter, Austin; Cecil, Christopher; Feier, Ioan

    2017-11-01

    This paper identifies and evaluates the design characteristics of a novel airfoil that harnesses the Magnus Effect, applying a moving-surface boundary-layer control (MSBC) method to a Formula SAE Vehicle. The MSBC minimizes adverse pressure gradient and delays boundary layer separation through the use of a conveyor belt that interacts with the airfoil boundary layer. The MSBC allows dynamic control of the aerodynamic coefficients by variation of the belt speed, minimizing drag in high speed straights and maximizing downforce during vehicle cornering. A conveyer belt wing measuring approximately 0.9 x 0.9m in planform was designed and built to test the mechanical setup for such a MSBC wing. This study follows the relationship between inputted power and outputted surface velocity, with the goal being to maximize speed output vs. power input. The greatest hindrance to maximizing speed output is friction among belts, rollers, and stationary members. The maximum belt speed achieved during testing was 5.9 m/s with a power input of 48.8 W, which corresponds to 45.8 N of downforce based on 2D CFD results. Ongoing progress on this project is presented. United States Air Force Academy.

  18. Foster care re-entry: Exploring the role of foster care characteristics, in-home child welfare services and cross-sector services☆

    Science.gov (United States)

    Lee, Sangmoo; Jonson-Reid, Melissa; Drake, Brett

    2013-01-01

    This study seeks to advance our understanding of how modifiable and non-modifiable factors may impact the likelihood of re-entry into foster care. Children who entered foster care for the first time following at least one report of maltreatment and were then reunified were followed from exit to re-entry, age 18 or the end of the study period using longitudinal administrative data. Risk of re-entry was explored according to a range of modifiable and non-modifiable case and service characteristics. Children removed from homes with parents who had multiple risk factors (e.g., no high school diploma, mental health diagnosis, criminal record, or teen parents) or were receiving AFDC prior to entry were more likely to re-enter. The receipt of in-home child welfare services during or after foster care was associated with reduced risk of re-entry. Having the longest placement with a relative was associated with decreased risk of re-entry. In conclusion, both modifiable and non-modifiable factors are associated with re-entry into foster care. Among modifiable factors, services appear to have a particularly strong relationship to re-entry. Our data also suggest that in-home child welfare services provided during and after foster care may be associated with improved long-term permanency after return home. Given the continued import of caregiver risk factors even among reunified families, services provided to support reunification should include attention to caregiver needs outside parenting. PMID:23729947

  19. Small-scale fixed wing airplane software verification flight test

    Science.gov (United States)

    Miller, Natasha R.

    The increased demand for micro Unmanned Air Vehicles (UAV) driven by military requirements, commercial use, and academia is creating a need for the ability to quickly and accurately conduct low Reynolds Number aircraft design. There exist several open source software programs that are free or inexpensive that can be used for large scale aircraft design, but few software programs target the realm of low Reynolds Number flight. XFLR5 is an open source, free to download, software program that attempts to take into consideration viscous effects that occur at low Reynolds Number in airfoil design, 3D wing design, and 3D airplane design. An off the shelf, remote control airplane was used as a test bed to model in XFLR5 and then compared to flight test collected data. Flight test focused on the stability modes of the 3D plane, specifically the phugoid mode. Design and execution of the flight tests were accomplished for the RC airplane using methodology from full scale military airplane test procedures. Results from flight test were not conclusive in determining the accuracy of the XFLR5 software program. There were several sources of uncertainty that did not allow for a full analysis of the flight test results. An off the shelf drone autopilot was used as a data collection device for flight testing. The precision and accuracy of the autopilot is unknown. Potential future work should investigate flight test methods for small scale UAV flight.

  20. Jet Noise Shielding Provided by a Hybrid Wing Body Aircraft

    Science.gov (United States)

    Doty, Michael J.; Brooks, Thomas F.; Burley, Casey L.; Bahr, Christopher J.; Pope, Dennis S.

    2014-01-01

    One approach toward achieving NASA's aggressive N+2 noise goal of 42 EPNdB cumulative margin below Stage 4 is through the use of novel vehicle configurations like the Hybrid Wing Body (HWB). Jet noise measurements from an HWB acoustic test in NASA Langley's 14- by 22-Foot Subsonic Tunnel are described. Two dual-stream, heated Compact Jet Engine Simulator (CJES) units are mounted underneath the inverted HWB model on a traversable support to permit measurement of varying levels of shielding provided by the fuselage. Both an axisymmetric and low noise chevron nozzle set are investigated in the context of shielding. The unshielded chevron nozzle set shows 1 to 2 dB of source noise reduction (relative to the unshielded axisymmetric nozzle set) with some penalties at higher frequencies. Shielding of the axisymmetric nozzles shows up to 6.5 dB of reduction at high frequency. The combination of shielding and low noise chevrons shows benefits beyond the expected additive benefits of the two, up to 10 dB, due to the effective migration of the jet source peak noise location upstream for increased shielding effectiveness. Jet noise source maps from phased array results processed with the Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) algorithm reinforce these observations.