WorldWideScience

Sample records for wing surface flow

  1. Supersonic flow over a pitching delta wing using surface pressure measurements and numerical simulations

    Directory of Open Access Journals (Sweden)

    Mostafa HADIDOOLABI

    2018-01-01

    Full Text Available Experimental and numerical methods were applied to investigating high subsonic and supersonic flows over a 60° swept delta wing in fixed state and pitching oscillation. Static pressure coefficient distributions over the wing leeward surface and the hysteresis loops of pressure coefficient versus angle of attack at the sensor locations were obtained by wind tunnel tests. Similar results were obtained by numerical simulations which agreed well with the experiments. Flow structure around the wing was also demonstrated by the numerical simulation. Effects of Mach number and angle of attack on pressure distribution curves in static tests were investigated. Effects of various oscillation parameters including Mach number, mean angle of attack, pitching amplitude and frequency on hysteresis loops were investigated in dynamic tests and the associated physical mechanisms were discussed. Vortex breakdown phenomenon over the wing was identified at high angles of attack using the pressure coefficient curves and hysteresis loops, and its effects on the flow features were discussed.

  2. Development of an aerodyanmic theory capable of predicting surface loads on slender wings with vortex flow

    Science.gov (United States)

    Gloss, B. B.; Johnson, F. T.

    1976-01-01

    The Boeing Commercial Airplane Company developed an inviscid three-dimensional lifting surface method that shows promise in being able to accurately predict loads, subsonic and supersonic, on wings with leading-edge separation and reattachment.

  3. Gliding swifts attain laminar flow over rough wings.

    Directory of Open Access Journals (Sweden)

    David Lentink

    Full Text Available Swifts are among the most aerodynamically refined gliding birds. However, the overlapping vanes and protruding shafts of their primary feathers make swift wings remarkably rough for their size. Wing roughness height is 1-2% of chord length on the upper surface--10,000 times rougher than sailplane wings. Sailplanes depend on extreme wing smoothness to increase the area of laminar flow on the wing surface and minimize drag for extended glides. To understand why the swift does not rely on smooth wings, we used a stethoscope to map laminar flow over preserved wings in a low-turbulence wind tunnel. By combining laminar area, lift, and drag measurements, we show that average area of laminar flow on swift wings is 69% (n = 3; std 13% of their total area during glides that maximize flight distance and duration--similar to high-performance sailplanes. Our aerodynamic analysis indicates that swifts attain laminar flow over their rough wings because their wing size is comparable to the distance the air travels (after a roughness-induced perturbation before it transitions from laminar to turbulent. To interpret the function of swift wing roughness, we simulated its effect on smooth model wings using physical models. This manipulation shows that laminar flow is reduced and drag increased at high speeds. At the speeds at which swifts cruise, however, swift-like roughness prolongs laminar flow and reduces drag. This feature gives small birds with rudimentary wings an edge during the evolution of glide performance.

  4. Rice- and butterfly-wing effect inspired self-cleaning and low drag micro/nanopatterned surfaces in water, oil, and air flow

    Science.gov (United States)

    Bixler, Gregory D.; Bhushan, Bharat

    2013-12-01

    In search of new solutions to complex challenges, researchers are turning to living nature for inspiration. For example, special surface characteristics of rice leaves and butterfly wings combine the shark skin (anisotropic flow leading to low drag) and lotus leaf (superhydrophobic and self-cleaning) effects, producing the so-called rice and butterfly wing effect. In this paper, we study four microstructured surfaces inspired by rice leaves and fabricated with photolithography techniques. We also present a method of creating such surfaces using a hot embossing procedure for scaled-up manufacturing. Fluid drag, self-cleaning, contact angle, and contact angle hysteresis data are presented to understand the role of sample geometrical dimensions. Conceptual modeling provides design guidance when developing novel low drag, self-cleaning, and potentially antifouling surfaces for medical, marine, and industrial applications.

  5. Flow field of flexible flapping wings

    Science.gov (United States)

    Sallstrom, Erik

    The agility and maneuverability of natural fliers would be desirable to incorporate into engineered micro air vehicles (MAVs). However, there is still much for engineers to learn about flapping flight in order to understand how such vehicles can be built for efficient flying. The goal of this study is to develop a methodology for capturing high quality flow field data around flexible flapping wings in a hover environment and to interpret it to gain a better understanding of how aerodynamic forces are generated. The flow field data was captured using particle image velocimetry (PIV) and required that measurements be taken around a repeatable flapping motion to obtain phase-averaged data that could be studied throughout the flapping cycle. Therefore, the study includes the development of flapping devices with a simple repeatable single degree of freedom flapping motion. The acquired flow field data has been examined qualitatively and quantitatively to investigate the mechanisms behind force production in hovering flight and to relate it to observations in previous research. Specifically, the flow fields have been investigated around a rigid wing and several carbon fiber reinforced flexible membrane wings. Throughout the whole study the wings were actuated with either a sinusoidal or a semi-linear flapping motion. The semi-linear flapping motion holds the commanded angular velocity nearly constant through half of each half-stroke while the sinusoidal motion is always either accelerating or decelerating. The flow fields were investigated by examining vorticity and vortex structures, using the Q criterion as the definition for the latter, in two and three dimensions. The measurements were combined with wing deflection measurements to demonstrate some of the key links in how the fluid-structure interactions generated aerodynamic forces. The flow fields were also used to calculate the forces generated by the flapping wings using momentum balance methods which yielded

  6. Three-dimensional flow about penguin wings

    Science.gov (United States)

    Noca, Flavio; Sudki, Bassem; Lauria, Michel

    2012-11-01

    Penguins, contrary to airborne birds, do not need to compensate for gravity. Yet, the kinematics of their wings is highly three-dimensional and seems exceedingly complex for plain swimming. Is such kinematics the result of an evolutionary optimization or is it just a forced adaptation of an airborne flying apparatus to underwater swimming? Some answers will be provided based on flow dynamics around robotic penguin wings. Updates will also be presented on the development of a novel robotic arm intended to simulate penguin swimming and enable novel propulsion devices.

  7. Aeroelastic Flutter of Subsonic Aircraft Wing Section with Control Surface

    Directory of Open Access Journals (Sweden)

    Aeroelastic Flutter of Subsonic Aircraft Wing Section with Control Surface

    2015-12-01

    Full Text Available Aeroelastic flutter in aircraft mechanisms is unavoidable, essentially in the wing and control surface. In this work a three degree-of-freedom aeroelastic wing section with trailing edge flap is modeled numerically and theoretically. FLUENT code based on the steady finite volume is used for the prediction of the steady aerodynamic characteristics (lift, drag, pitching moment, velocity, and pressure distribution as well as the Duhamel formulation is used to model the aerodynamic loads theoretically. The system response (pitch, flap pitch and plunge was determined by integration the governing equations using MATLAB with a standard Runge–Kutta algorithm in conjunction with Henon’s method. The results are compared with previous experimental data. The results show that the aerodynamic loads and wing-flap system response are increased when increasing the flow speed. On the other hand the aeroelastic response led up to limit cycle oscillation when the flow equals or more than flutter speed.

  8. Effect of Thickness-to-Chord Ratio on Flow Structure of Low Swept Delta Wing

    Science.gov (United States)

    Gulsacan, Burak; Sencan, Gizem; Yavuz, Mehmet Metin

    2017-11-01

    The effect of thickness-to-chord (t/C) ratio on flow structure of a delta wing with sweep angle of 35 degree is characterized in a low speed wind tunnel using laser illuminated smoke visualization, particle image velocimetry, and surface pressure measurements. Four different t/C ratio varying from 4.75% to 19% are tested at angles of attack 4, 6, 8, and 10 degrees for Reynolds numbers Re =10,000 and 35,000. The results indicate that the effect of thickness-to-chord ratio on flow structure is quite substantial, such that, as the wing thickness increases, the flow structure transforms from leading edge vortex to three-dimensional separated flow regime. The wing with low t/C ratio of 4.75% experiences pronounced surface separation at significantly higher angle of attack compared to the wing with high t/C ratio. The results might explain some of the discrepancies reported in previously conducted studies related to delta wings. In addition, it is observed that the thickness of the shear layer separated from windward side of the wing is directly correlated with the thickness of the wing. To conclude, the flow structure on low swept delta wing is highly affected by t/C ratio, which in turn might indicate the potential usage of wing thickness as an effective flow control parameter.

  9. Study on flow over finite wing with respect to F-22 raptor, Supermarine Spitfire, F-7 BG aircraft wing and analyze its stability performance and experimental values

    Science.gov (United States)

    Ali, Md. Nesar; Alam, Mahbubul

    2017-06-01

    A finite wing is a three-dimensional body, and consequently the flow over the finite wing is three-dimensional; that is, there is a component of flow in the span wise direction. The physical mechanism for generating lift on the wing is the existence of a high pressure on the bottom surface and a low pressure on the top surface. The net imbalance of the pressure distribution creates the lift. As a by-product of this pressure imbalance, the flow near the wing tips tends to curl around the tips, being forced from the high-pressure region just underneath the tips to the low-pressure region on top. This flow around the wing tips is shown in the front view of the wing. As a result, on the top surface of the wing, there is generally a span wise component of flow from the tip toward the wing root, causing the streamlines over the top surface to bend toward the root. On the bottom surface of the wing, there is generally a span wise component of flow from the root toward the tip, causing the streamlines over the bottom surface to bend toward the tip. Clearly, the flow over the finite wing is three-dimensional, and therefore we would expect the overall aerodynamic properties of such a wing to differ from those of its airfoil sections. The tendency for the flow to "leak" around the wing tips has another important effect on the aerodynamics of the wing. This flow establishes a circulatory motion that trails downstream of the wing; that is, a trailing vortex is created at each wing tip. The aerodynamics of finite wings is analyzed using the classical lifting line model. This simple model allows a closed-form solution that captures most of the physical effects applicable to finite wings. The model is based on the horseshoe-shaped vortex that introduces the concept of a vortex wake and wing tip vortices. The downwash induced by the wake creates an induced drag that did not exist in the two-dimensional analysis. Furthermore, as wingspan is reduced, the wing lift slope decreases

  10. Fundamental aerodynamic characteristics of delta wings with leading-edge vortex flows

    Science.gov (United States)

    Wood, R. M.; Miller, D. S.

    1985-01-01

    An investigation of the aerodynamics of sharp leading-edge delta wings at supersonic speeds has been conducted. The supporting experimental data for this investigation were taken from published force, pressure, and flow-visualization data in which the Mach number normal to the wing leading edge is always less than 1.0. The individual upper- and lower-surface nonlinear characteristics for uncambered delta wings are determined and presented in three charts. The upper-surface data show that both the normal-force coefficient and minimum pressure coefficient increase nonlinearly with a decreasing slope with increasing angle of attack. The lower-surface normal-force coefficient was shown to be independent of Mach number and to increase nonlinearly, with an increasing slope, with increasing angle of attack. These charts are then used to define a wing-design space for sharp leading-edge delta wings.

  11. Endplate effect on aerodynamic characteristics of three-dimensional wings in close free surface proximity

    Directory of Open Access Journals (Sweden)

    Jae Hwan Jung

    2012-12-01

    Full Text Available We investigated the aerodynamic characteristics of a three-dimensional (3D wing with an endplate in the vicinity of the free surface by solving incompressible Navier-Stokes equations with the turbulence closure model. The endplate causes a blockage effect on the flow, and an additional viscous effect especially near the endplate. These combined effects of the endplate significantly reduce the magnitudes of the velocities under the lower surface of the wing, thereby enhancing aerodynamic performance in terms of the force coefficients. The maximum lift-to-drag ratio of a wing with an endplate is increased 46% compared to that of wing without an endplate at the lowest clearance. The tip vortex of a wing-with-endplate (WWE moved laterally to a greater extent than that of a wing-without-endplate (WOE. This causes a decrease in the induced drag, resulting in a reduction in the total drag.

  12. Reactive Flow Control of Delta Wing Vortex (Postprint)

    Science.gov (United States)

    2006-08-01

    wing aircraft. A substantial amount of research has been dedicated to the control of aerodynamic flows using both passive and active control mechanisms...Passive vortex control devices such as vortex generators and winglets attach to the wing and require no energy input. Passive vortex control...leading edges is also effective for changing the aerodynamic characteristics of delta wings [2] [3]. Gutmark and Guillot [5] proposed controlling

  13. The flow over a 'high' aspect ratio gothic wing at supersonic speeds

    Science.gov (United States)

    Narayan, K. Y.

    1975-01-01

    Results are presented of an experimental investigation on a nonconical wing which supports an attached shock wave over a region of the leading edge near the vertex and a detached shock elsewhere. The shock detachment point is determined from planform schlieren photographs of the flow field and discrepancies are shown to exist between this and the one calculated by applying the oblique shock equations normal to the leading edge. On a physical basis, it is argued that the shock detachment has to obey the two-dimensional law normal to the leading edges. From this, and from other measurements on conical wings, it is thought that the planform schlieren technique may not be particularly satisfactory for detecting shock detachment. Surface pressure distributions are presented and are explained in terms of the flow over related delta wings which are identified as a vertex delta wing and a local delta wing.

  14. Computational Optimization of a Natural Laminar Flow Experimental Wing Glove

    Science.gov (United States)

    Hartshom, Fletcher

    2012-01-01

    Computational optimization of a natural laminar flow experimental wing glove that is mounted on a business jet is presented and discussed. The process of designing a laminar flow wing glove starts with creating a two-dimensional optimized airfoil and then lofting it into a three-dimensional wing glove section. The airfoil design process does not consider the three dimensional flow effects such as cross flow due wing sweep as well as engine and body interference. Therefore, once an initial glove geometry is created from the airfoil, the three dimensional wing glove has to be optimized to ensure that the desired extent of laminar flow is maintained over the entire glove. TRANAIR, a non-linear full potential solver with a coupled boundary layer code was used as the main tool in the design and optimization process of the three-dimensional glove shape. The optimization process uses the Class-Shape-Transformation method to perturb the geometry with geometric constraints that allow for a 2-in clearance from the main wing. The three-dimensional glove shape was optimized with the objective of having a spanwise uniform pressure distribution that matches the optimized two-dimensional pressure distribution as closely as possible. Results show that with the appropriate inputs, the optimizer is able to match the two dimensional pressure distributions practically across the entire span of the wing glove. This allows for the experiment to have a much higher probability of having a large extent of natural laminar flow in flight.

  15. Experimental study of flow field distribution over a generic cranked double delta wing

    Directory of Open Access Journals (Sweden)

    Mojtaba Dehghan Manshadi

    2016-10-01

    Full Text Available The flow fields over a generic cranked double delta wing were investigated. Pressure and velocity distributions were obtained using a Pitot tube and a hot wire anemometer. Two different leading edge shapes, namely “sharp” and “round”, were applied to the wing. The wing had two sweep angles of 55° and 30°. The experiments were conducted in a closed circuit wind tunnel at velocity 20 m/s and angles of attack of 5°–20° with the step of 5°. The Reynolds number of the model was about 2 × 105 according to the root chord. A dual vortex structure was formed above the wing surface. A pressure drop occurred at the vortex core and the root mean square of the measured velocity increased at the core of the vortices, reflecting the instability of the flow in that region. The magnitude of power spectral density increased strongly in spanwise direction and had the maximum value at the vortex core. By increasing the angle of attack, the pressure drop increased and the vortices became wider; the vortices moved inboard along the wing, and away from the surface; the flow separation was initiated from the outer portion of the wing and developed to its inner part. The vortices of the wing of the sharp leading edge were stronger than those of the round one.

  16. Unsteady transonic flow analysis for low aspect ratio, pointed wings.

    Science.gov (United States)

    Kimble, K. R.; Ruo, S. Y.; Wu, J. M.; Liu, D. Y.

    1973-01-01

    Oswatitsch and Keune's parabolic method for steady transonic flow is applied and extended to thin slender wings oscillating in the sonic flow field. The parabolic constant for the wing was determined from the equivalent body of revolution. Laplace transform methods were used to derive the asymptotic equations for pressure coefficient, and the Adams-Sears iterative procedure was employed to solve the equations. A computer program was developed to find the pressure distributions, generalized force coefficients, and stability derivatives for delta, convex, and concave wing planforms.

  17. Flow over 50º Delta Wings with Different Leading-Edge Radii

    NARCIS (Netherlands)

    Verhaagen, N.G.

    2011-01-01

    The experimental study focuses on the effects of the leading-edge radius on the flow over 50º swept delta wing models. Three models were tested, one model has a sharp leading edge and two other have a semi-circular leading edge of different radius. The vortical flow on and off the surface of the

  18. Flow structure and vorticity transport on a plunging wing

    Science.gov (United States)

    Eslam Panah, Azar

    due to spanwise flow was approximately half that of the shear layer flux because of the significantly greater three-dimensionality in the flow. Increased tilting at the 25% and 75% spanwise locations suggests increasing three-dimensionality at those locations compared to the symmetry plane of the arch (50% spanwise location). The deviation between the LEV circulation and integrated convective vorticity fluxes at the 50% spanwise location suggests that entrainment of secondary vorticity plays a similar role in regulating LEV circulation as in the 2D case. While the wing surface flux of vorticity could not be measured in that case, the significant difference between LEV circulation and the known integrated fluxes is comparable to that for the 2D plate, suggesting that a significant boundary flux of secondary vorticity may exist.

  19. Hydrodynamic characteristics for flow around wavy wings with different wave lengths

    Directory of Open Access Journals (Sweden)

    Mi Jeong Kim

    2012-12-01

    Full Text Available The present study numerically investigates the effect of the wavy leading edge on hydrodynamic characteristics for the flow of rectangular wings with the low aspect ratio of 1.5. Five different wave lengths at fixed wavy amplitude have been considered. Numerical simulations are performed at a wide range of the angle of attack (0° ≤α ≤ 40° at one Reynolds number of 106. The wavy wings considered in this study did not experience enough lift drop to be defined as the stall, comparing with the smooth wing. However, in the pre-stall region, the wavy wings reveal the considerable loss of the lift, compared to the smooth wing. In the post-stall, the lift coefficients of the smooth wing and the wavy wings are not much different. The pressure coefficient, limiting streamlines and the iso-surface of the spanwise vorticity are also highlighted to examine the effect of the wave length on the flow structures.

  20. Unsteady Flow Interactions Between Pitching Wings In Schooling Arrangements

    Science.gov (United States)

    Kurt, Melike; Moored, Keith

    2017-11-01

    In nature, many fish aggregate into large groups or schools for protection against predators, for social interactions and to save energy during migrations. Regardless of their prime motivation, fish experience three-dimensional flow interactions amongst themselves that can improve or hamper swimming performance and give rise to fluid-mediated forces between individuals. To date, the unsteady, three-dimensional flow interactions among schooling fish remains relatively unexplored. In order to study these interactions, the caudal fins of two interacting fish are idealized as two finite span pitching wings arranged in mixtures of canonical in-line and side-by-side arrangements. The forces and moments acting on the wings in the streamwise and cross-stream directions are quantified as the arrangement and the phase delay between the wings is altered. Particle image velocimetry is employed to characterize the flow physics during high efficiency locomotion. Finally, the forces and flowfields of two-dimensional pitching wings are compared with three-dimensional wings to distinguish how three-dimensionality alters the flow interactions in schools of fish.

  1. Avian Wings

    Science.gov (United States)

    Liu, Tianshu; Kuykendoll, K.; Rhew, R.; Jones, S.

    2004-01-01

    This paper describes the avian wing geometry (Seagull, Merganser, Teal and Owl) extracted from non-contact surface measurements using a three-dimensional laser scanner. The geometric quantities, including the camber line and thickness distribution of airfoil, wing planform, chord distribution, and twist distribution, are given in convenient analytical expressions. Thus, the avian wing surfaces can be generated and the wing kinematics can be simulated. The aerodynamic characteristics of avian airfoils in steady inviscid flows are briefly discussed. The avian wing kinematics is recovered from videos of three level-flying birds (Crane, Seagull and Goose) based on a two-jointed arm model. A flapping seagull wing in the 3D physical space is re-constructed from the extracted wing geometry and kinematics.

  2. Sensitivity Analysis of Transonic Flow over J-78 Wings

    Directory of Open Access Journals (Sweden)

    Alexander Kuzmin

    2015-01-01

    Full Text Available 3D transonic flow over swept and unswept wings with an J-78 airfoil at spanwise sections is studied numerically at negative and vanishing angles of attack. Solutions of the unsteady Reynolds-averaged Navier-Stokes equations are obtained with a finite-volume solver on unstructured meshes. The numerical simulation shows that adverse Mach numbers, at which the lift coefficient is highly sensitive to small perturbations, are larger than those obtained earlier for 2D flow. Due to the larger Mach numbers, there is an onset of self-exciting oscillations of shock waves on the wings. The swept wing exhibits a higher sensitivity to variations of the Mach number than the unswept one.

  3. Flow Measurements of a Plunging Wing in Unsteady Environment

    Science.gov (United States)

    Wengel, Jesse; Nathan, Rungun; Cheng, Bo; Eslam-Panah, Azar

    2017-11-01

    Despite the great progress in their design and control, Unmanned Aerial Vehicles (UAVs) are tremendously troubled while flying in turbulent environments, which are common in the lower atmospheric boundary layer (ABL). A nominally 2D plunging wing was developed and tested in the presence of unsteady wake to investigate the effect of the flow disturbances on vorticity fields. The experiments were conducted in a water channel facility with test section width of 0.76 m, and a water depth of 0.6 m. The unsteady wake in the form of von Kármán Vortex Street was generated by a cylinder located upstream of the plunging wing. The plunge amplitude and frequency of the oscillation were adjusted to bracket the range of Strouhal numbers relevant to the biological locomotion (0.25PIV) was employed to quantitatively study the effect of unsteady wake on the flow measurements of the plunging wing.

  4. Flow structures around a flapping wing considering ground effect

    Science.gov (United States)

    Van Truong, Tien; Kim, Jihoon; Kim, Min Jun; Park, Hoon Cheol; Yoon, Kwang Joon; Byun, Doyoung

    2013-07-01

    Over the past several decades, there has been great interest in understanding the aerodynamics of flapping flight, namely the two flight modes of hovering and forward flight. However, there has been little focus on the aerodynamic characteristics during takeoff of insects. In a previous study we found that the Rhinoceros Beetle ( Trypoxylusdichotomus) takes off without jumping, which is uncommon for other insects. In this study we built a scaled-up electromechanical model of a flapping wing and investigated fluid flow around the beetle's wing model. In particular, the present dynamically scaled mechanical model has the wing kinematics pattern achieved from the real beetle's wing kinematics during takeoff. In addition, we could systematically change the three-dimensional inclined motion of the flapping model through each stroke. We used digital particle image velocimetry with high spatial resolution, and were able to qualitatively and quantitatively study the flow field around the wing at a Reynolds number of approximately 10,000. The present results provide insight into the aerodynamics and the evolution of vortical structures, as well as the ground effect experienced by a beetle's wing during takeoff. The main unsteady mechanisms of beetles have been identified and intensively analyzed as the stability of the leading edge vortex (LEV) during strokes, the delayed stall during upstroke, the rotational circulation in pronation periods, and wake capture in supination periods. Due to the ground effect, the LEV was enhanced during half downstroke, and the lift force could thus be increased to lift the beetle during takeoff. This is useful for researchers in developing a micro air vehicle that has a beetle-like flapping wing motion.

  5. Internal-external flow integration for a thin ejector-flapped wing section

    Science.gov (United States)

    Woolard, H. W.

    1979-01-01

    Thin airfoil theories of an ejector flapped wing section are reviewed. The global matching of the external airfoil flow with the ejector internal flow and the overall ejector flapped wing section aerodynamic performance are examined. Mathematical models of the external and internal flows are presented. The delineation of the suction flow coefficient characteristics are discussed. The idealized lift performance of an ejector flapped wing relative to a jet augmented flapped wing are compared.

  6. CFD simulations of steady flows over the IAR 65o delta wing

    International Nuclear Information System (INIS)

    Benmeddour, A.; Mebarki, Y.; Huang, X.Z.

    2004-01-01

    Computational Fluid Dynamics (CFD) studies have been conducted to simulate vortical flows around the IAR 65 o delta wing with a sharp leading edge. The effects of the centerbody on the aerodynamic characteristics of the wing are also investigated. Two flow solvers have been employed to compute steady inviscid flows over with and without centerbody configurations of the wing. These two solvers are an IAR in-house code, FJ3SOLV, and the CFD-FASTRAN commercial software. The computed flow solutions of the two solvers have been compared and correlated against the IAR wind tunnel data, including Pressure Sensitive Paint (PSP) measurements. The major features of the primary vortex have been well captured and overall reasonable accuracy was obtained. In accordance with the experimental observations for the flow conditions considered, the CFD computations revealed no major global effects of the centerbody on the surface pressure distributions of the wing and on the lift coefficient. However, CFD-FASTRAN seems to predict a vortex breakdown, which is neither predicted by FJ3SOLV nor observed in the wind tunnel for the flow conditions considered. (author)

  7. Unsteady surface pressure measurements on a slender delta wing undergoing limit cycle wing rock

    Science.gov (United States)

    Arena, Andrew S., Jr.; Nelson, Robert C.

    1991-01-01

    An experimental investigation of slender wing limit cycle motion known as wing rock was investigated using two unique experimental systems. Dynamic roll moment measurements and visualization data on the leading edge vortices were obtained using a free to roll apparatus that incorporates an airbearing spindle. In addition, both static and unsteady surface pressure data was measured on the top and bottom surfaces of the model. To obtain the unsteady surface pressure data a new computer controller drive system was developed to accurately reproduce the free to roll time history motions. The data from these experiments include, roll angle time histories, vortex trajectory data on the position of the vortices relative to the model's surface, and surface pressure measurements as a function of roll angle when the model is stationary or undergoing a wing rock motion. The roll time history data was numerically differentiated to determine the dynamic roll moment coefficient. An analysis of these data revealed that the primary mechanism for the limit cycle behavior was a time lag in the position of the vortices normal to the wing surface.

  8. Electro-Magnetic Flow Control to Enable Natural Laminar Flow Wings

    Data.gov (United States)

    National Aeronautics and Space Administration — This research team has developed a solid-state electromagnetic device that, when embedded along the leading edge of an aircraft wing, can disrupt laminar air flow on...

  9. Effect of delta wing on the particle flow in a novel gas supersonic separator

    DEFF Research Database (Denmark)

    Wen, Chuang; Yang, Yan; Walther, Jens Honore

    2016-01-01

    The present work presents numerical simulations of the complex particle motion in a supersonic separator with a delta wing located in the supersonic flow. The effect of the delta wing on the strong swirling flow is analysed using the Discrete Particle Method. The results show that the delta wings...

  10. Flow Control Over Sharp-Edged Wings

    Science.gov (United States)

    2007-07-01

    Gad-el-Hak (2001) as the ability to actively or passively manipulate a flow field to effect a desired change. The challenge is to achieve that change...combinations. Been able to independently control both is a great challenge . These requirements may appear too stringent for the sharp- edged airfoils...06 0𔄁 08 09 lic Vlc Figure 22: Pressure distributions for Model B at a=13 °. Stations I (left); 2 (right) 1 , -2 1 F - [12 1 -6a -16 08 -08 06 -06

  11. Wind Tunnel Test of a Risk-Reduction Wing/Fuselage Model to Examine Juncture-Flow Phenomena

    Science.gov (United States)

    Kegerise, Michael A.; Neuhart, Dan H.

    2016-01-01

    A wing/fuselage wind-tunnel model was tested in the Langley 14- by 22-foot Subsonic Wind Tunnel in preparation for a highly-instrumented Juncture Flow Experiment to be conducted in the same facility. This test, which was sponsored by the NASA Transformational Tool and Technologies Project, is part of a comprehensive set of experimental and computational research activities to develop revolutionary, physics-based aeronautics analysis and design capability. The objectives of this particular test were to examine the surface and off-body flow on a generic wing/body combination to: 1) choose a final wing for a future, highly instrumented model, 2) use the results to facilitate unsteady pressure sensor placement on the model, 3) determine the area to be surveyed with an embedded laser-doppler velocimetry (LDV) system, 4) investigate the primary juncture corner- flow separation region using particle image velocimetry (PIV) to see if the particle seeding is adequately entrained and to examine the structure in the separated region, and 5) to determine the similarity of observed flow features with those predicted by computational fluid dynamics (CFD). This report documents the results of the above experiment that specifically address the first three goals. Multiple wing configurations were tested at a chord Reynolds number of 2.4 million. Flow patterns on the surface of the wings and in the region of the wing/fuselage juncture were examined using oil- flow visualization and infrared thermography. A limited number of unsteady pressure sensors on the fuselage around the wing leading and trailing edges were used to identify any dynamic effects of the horseshoe vortex on the flow field. The area of separated flow in the wing/fuselage juncture near the wing trailing edge was observed for all wing configurations at various angles of attack. All of the test objectives were met. The staff of the 14- by 22-foot Subsonic Wind Tunnel provided outstanding support and delivered

  12. Blowing jets as a circulation flow control to enhancement the lift of wing or generated power of wind turbine

    Directory of Open Access Journals (Sweden)

    Alexandru DUMITRACHE

    2014-06-01

    Full Text Available The goal of this paper is to provide a numerical flow analysis based on RANS equations in two directions: the study of augmented high-lift system for a cross-section airfoil of a wing up to transonic regime and the circulation control implemented by tangentially blowing jet over a highly curved surface due to Coanda effect on a rotor blade for a wind turbine. This study were analyzed the performance, sensitivities and limitations of the circulation control method based on blowing jet for a fixed wing as well as for a rotating wing. Directions of future research are identified and discussed.

  13. Flow around a corrugated wing over the range of dragonfly flight

    Science.gov (United States)

    Padinjattayil, Sooraj; Agrawal, Amit

    2017-11-01

    The dragonfly flight is very much affected by the corrugations on their wings. A PIV based study is conducted on a rigid corrugated wing for a range of Reynolds number 300-12000 and three different angles of attack (5°-15°) to understand the mechanism of dragonfly flight better. The study revealed that the shape of the corrugation plays a key role in generating vortices. The vortices trapped in the valleys of corrugation dictates the shape of a virtual airfoil around the corrugated wing. A fluid roller bearing effect is created over the virtual airfoil when the trapped vortices merge with each other. A travelling wave produced by the moving virtual boundary around the fluid roller bearings avoids the formation of boundary layer on the virtual surface, thereby leading to high aerodynamic performance. It is found that the lift coefficient increases as the number of vortices increases on the suction surface. Also, it is shown that the partially merged co- rotating vortices give higher lift as compared to fully merged vortices. Further, the virtual airfoil formed around the corrugated wing is compared with a superhydrophobic airfoil which exhibits slip on its surface; several similarities in their flow characteristics are observed. The corrugated airfoil performs superior to the superhydrophobic airfoil in the aerodynamic efficiency due to the virtual slip caused by the travelling wave.

  14. Analysis of Low Speed Stall Aerodynamics of a Swept Wing with Laminar Flow Glove

    Science.gov (United States)

    Bui, Trong T.

    2014-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.

  15. Analysis of Low-Speed Stall Aerodynamics of a Swept Wing with Laminar-Flow Glove

    Science.gov (United States)

    Bui, Trong T.

    2014-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.

  16. Large eddy simulation of a wing-body junction flow

    Science.gov (United States)

    Ryu, Sungmin; Emory, Michael; Campos, Alejandro; Duraisamy, Karthik; Iaccarino, Gianluca

    2014-11-01

    We present numerical simulations of the wing-body junction flow experimentally investigated by Devenport & Simpson (1990). Wall-junction flows are common in engineering applications but relevant flow physics close to the corner region is not well understood. Moreover, performance of turbulence models for the body-junction case is not well characterized. Motivated by the insufficient investigations, we have numerically investigated the case with Reynolds-averaged Naiver-Stokes equation (RANS) and Large Eddy Simulation (LES) approaches. The Vreman model applied for the LES and SST k- ω model for the RANS simulation are validated focusing on the ability to predict turbulence statistics near the junction region. Moreover, a sensitivity study of the form of the Vreman model will also be presented. This work is funded under NASA Cooperative Agreement NNX11AI41A (Technical Monitor Dr. Stephen Woodruff)

  17. Topological structures of vortex flow on a flying wing aircraft, controlled by a nanosecond pulse discharge plasma actuator

    Science.gov (United States)

    Du, Hai; Shi, Zhiwei; Cheng, Keming; Wei, Dechen; Li, Zheng; Zhou, Danjie; He, Haibo; Yao, Junkai; He, Chengjun

    2016-06-01

    Vortex control is a thriving research area, particularly in relation to flying wing or delta wing aircraft. This paper presents the topological structures of vortex flow on a flying wing aircraft controlled by a nanosecond plasma dielectric barrier discharge actuator. Experiments, including oil flow visualization and two-dimensional particle image velocimetry (PIV), were conducted in a wind tunnel with a Reynolds number of 0.5 × 106. Both oil and PIV results show that the vortex can be controlled. Oil topological structures on the aircraft surface coincide with spatial PIV flow structures. Both indicate vortex convergence and enhancement when the plasma discharge is switched on, leading to a reduced region of separated flow.

  18. Control of Flow Structure on Non-Slender Delta Wing: Bio-inspired Edge Modifications, Passive Bleeding, and Pulsed Blowing

    Science.gov (United States)

    Yavuz, Mehmet Metin; Celik, Alper; Cetin, Cenk

    2016-11-01

    In the present study, different flow control approaches including bio-inspired edge modifications, passive bleeding, and pulsed blowing are introduced and applied for the flow over non-slender delta wing. Experiments are conducted in a low speed wind tunnel for a 45 degree swept delta wing using qualitative and quantitative measurement techniques including laser illuminated smoke visualization, particle image velocimety (PIV), and surface pressure measurements. For the bio-inspired edge modifications, the edges of the wing are modified to dolphin fluke geometry. In addition, the concept of flexion ratio, a ratio depending on the flexible length of animal propulsors such as wings, is introduced. For passive bleeding, directing the free stream air from the pressure side of the planform to the suction side of the wing is applied. For pulsed blowing, periodic air injection through the leading edge of the wing is performed in a square waveform with 25% duty cycle at different excitation frequencies and compared with the steady and no blowing cases. The results indicate that each control approach is quite effective in terms of altering the overall flow structure on the planform. However, the success level, considering the elimination of stall or delaying the vortex breakdown, depends on the parameters in each method.

  19. Development of advanced stability theory suction prediction techniques for laminar flow control. [on swept wings

    Science.gov (United States)

    Srokowski, A. J.

    1978-01-01

    The problem of obtaining accurate estimates of suction requirements on swept laminar flow control wings was discussed. A fast accurate computer code developed to predict suction requirements by integrating disturbance amplification rates was described. Assumptions and approximations used in the present computer code are examined in light of flow conditions on the swept wing which may limit their validity.

  20. Insect Residue Contamination on Wing Leading Edge Surfaces: A Materials Investigation for Mitigation

    Science.gov (United States)

    Lorenzi, Tyler M.; Wohl, Christopher J.; Penner, Ronald K.; Smith, Joseph G.; Siochi, Emilie J.

    2011-01-01

    Flight tests have shown that residue from insect strikes on aircraft wing leading edge surfaces may induce localized transition of laminar to turbulent flow. The highest density of insect populations have been observed between ground level and 153 m during light winds (2.6 -- 5.1 m/s), high humidity, and temperatures from 21 -- 29 C. At a critical residue height, dependent on the airfoil and Reynolds number, boundary layer transition from laminar to turbulent results in increased drag and fuel consumption. Although this represents a minimal increase in fuel burn for conventional transport aircraft, future aircraft designs will rely on maintaining laminar flow across a larger portion of wing surfaces to reduce fuel burn during cruise. Thus, insect residue adhesion mitigation is most critical during takeoff and initial climb to maintain laminar flow in fuel-efficient aircraft configurations. Several exterior treatments investigated to mitigate insect residue buildup (e.g., paper, scrapers, surfactants, flexible surfaces) have shown potential; however, implementation has proven to be impractical. Current research is focused on evaluation of wing leading edge surface coatings that may reduce insect residue adhesion. Initial work under NASA's Environmentally Responsible Aviation Program focused on evaluation of several commercially available products (commercial off-the-shelf, COTS), polymers, and substituted alkoxy silanes that were applied to aluminum (Al) substrates. Surface energies of these coatings were determined from contact angle data and were correlated to residual insect excrescence on coated aluminum substrates using a custom-built "bug gun." Quantification of insect excrescence surface coverage was evaluated by a series of digital photographic image processing techniques.

  1. Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces

    Science.gov (United States)

    Bixler, Gregory D.; Bhushan, Bharat

    2013-08-01

    Researchers are continually inspired by living nature to solve complex challenges. For example, unique surface characteristics of rice leaves and butterfly wings combine the shark skin (anisotropic flow leading to low drag) and lotus leaf (superhydrophobic and self-cleaning) effects, producing the so-called rice and butterfly wing effect. In this paper, we present an overview of rice leaf and butterfly wing fluid drag and self-cleaning studies. In addition, we examine two other promising aquatic surfaces in nature known for such properties, including fish scales and shark skin. Morphology, drag, self-cleaning, contact angle, and contact angle hysteresis data are presented to understand the role of wettability, viscosity, and velocity. Liquid repellent coatings are utilized to recreate or combine various effects. Discussion is provided along with conceptual models describing the role of surface structures related to low drag, self-cleaning, and antifouling properties. Modeling provides design guidance when developing novel low drag and self-cleaning surfaces for applications in the medical, marine, and industrial fields.

  2. Vortical flows over delta wings and numerical prediction of vortex breakdown

    Science.gov (United States)

    Ekaterinaris, J. A.; Schiff, Lewis B.

    1990-01-01

    Navier-Stokes solutions of subsonic vortical flow over a 75 deg sweep delta wing with a sharp leading edge are presented. The sensitivity of the solution to the numerical scheme is examined using both a partially upwind scheme and a scheme with central differencing in all directions. At moderate angles of attack, no vortex breakdown is observed, whereas the higher angle-of-attack cases exhibit breakdown. The effect of numerical grid density is investigated, and solutions that are obtained with various grid densities are compared with experimental data. An embedded grid approach is implemented to enable higher resolution in selected isolated flow regions, such as the leeward-side surface, the leading-edge vortical flow, and the vortex breakdown region.

  3. Gliding Swifts Attain Laminar Flow over Rough Wings

    NARCIS (Netherlands)

    Lentink, D.; Kat, de R.

    2014-01-01

    Swifts are among the most aerodynamically refined gliding birds. However, the overlapping vanes and protruding shafts of their primary feathers make swift wings remarkably rough for their size. Wing roughness height is 1–2% of chord length on the upper surface—10,000 times rougher than sailplane

  4. Supersonic vortex breakdown over a delta wing in transonic flow

    Science.gov (United States)

    Kandil, Hamdy A.; Kandil, Osama A.; Liu, C. H.

    1993-01-01

    The effects of freestream Mach number and angle of attack on the leading-edge vortex breakdown due to the terminating shock on a 65-degree, sharp-edged, cropped delta wing are investigated computationally, using the time-accurate solution of the laminar unsteady compressible full Navier-Stokes equations with the implicit upwind flux-difference splitting, finite-volume scheme. A fine O-H grid consisting of 125 x 85 x 84 points in the wrap-around, normal, and axial directions, respectively, is used for all the flow cases. Keeping the Reynolds number fixed at 3.23 x 10 exp 6, the Mach number is varied from 0.85 to 0.9 and the angle of attack is varied from 20 to 24 deg. The results show that, at 20-deg angle of attack, the increase of the Mach number from 0.85 to 0.9 results in moving the location of the terminating shock downstream. The results also show that, at 0.85 Mach number, the increase of the angle of attack from 20 to 24 deg results in moving the location of the terminating shock upstream. The results are in good agreement with the experimental data.

  5. Cellular Structures in the Flow Over the Flap of a Two-Element Wing

    Science.gov (United States)

    Yon, Steven A.; Katz, Joseph

    1997-01-01

    Flow visualization information and time dependent pressure coefficients were recorded for the flow over a two-element wing. The investigation focused on the stall onset; particularly at a condition where the flow is attached on the main element but separated on the flap. At this condition, spanwise separation cells were visible in the flow over the flap, and time dependent pressure data was measured along the centerline of the separation cell. The flow visualizations indicated that the spanwise occurrence of the separation cells depends on the flap (and not wing) aspect ratio.

  6. 3-D flow and scour near a submerged wing dike: ADCP measurements on the Missouri River

    Science.gov (United States)

    Jamieson, E.C.; Rennie, C.D.; Jacobson, R.B.; Townsend, R.D.

    2011-01-01

    Detailed mapping of bathymetry and three-dimensional water velocities using a boat-mounted single-beam sonar and acoustic Doppler current profiler (ADCP) was carried out in the vicinity of two submerged wing dikes located in the Lower Missouri River near Columbia, Missouri. During high spring flows the wing dikes become submerged, creating a unique combination of vertical flow separation and overtopping (plunging) flow conditions, causing large-scale three-dimensional turbulent flow structures to form. On three different days and for a range of discharges, sampling transects at 5 and 20 m spacing were completed, covering the area adjacent to and upstream and downstream from two different wing dikes. The objectives of this research are to evaluate whether an ADCP can identify and measure large-scale flow features such as recirculating flow and vortex shedding that develop in the vicinity of a submerged wing dike; and whether or not moving-boat (single-transect) data are sufficient for resolving complex three-dimensional flow fields. Results indicate that spatial averaging from multiple nearby single transects may be more representative of an inherently complex (temporally and spatially variable) three-dimensional flow field than repeated single transects. Results also indicate a correspondence between the location of calculated vortex cores (resolved from the interpolated three-dimensional flow field) and the nearby scour holes, providing new insight into the connections between vertically oriented coherent structures and local scour, with the unique perspective of flow and morphology in a large river.

  7. Flow cytometry determination of ploidy level in winged bean ...

    African Journals Online (AJOL)

    Ploidy determination and mutation breeding of crop plants are inseparable twins given that mutation breeding is hinged majorly on polyploidization of crop's chromosome number. The present research was aimed at determining the ploidy level of 20 accessions of winged bean (Psophoscarpus tetragonolobus) using known ...

  8. Investigation of Surface Enhanced Coherent Raman Scattering on Nano-patterned Insect Wings

    Science.gov (United States)

    Ujj, Laszlo; Lawhead, Carlos

    2015-03-01

    Many insect wings (cicadas, butterflies, mosquitos) poses nano-patterned surface structure. Characterization of surface morphology and chemical composition of insect wings is important to understand the extreme mechanical properties and the biophysical functionalities of the wings. We have measured the image of the membrane of a cicada's wing with the help of Scanning Electron Microscopy (SEM). The results confirm the existing periodic structure of the wing measured previously. In order to identify the chemical composition of the wing, we have deposited silver nanoparticles on it and applied Coherent anti-Stokes Raman Spectroscopy to measure the vibrational spectra of the molecules comprising the wing for the first time. The measured spectra are consistent with the original assumption that the wing membrane is composed of protein, wax, and chitin. The results of these studies can be used to measure other nano-patterned surfaces and to make artificial materials in the future. Authors grateful for financial support from the Department of Physics of the College of Sciences Engineering and Health of UWF and the Pall Corporation for SEM imaging.

  9. Automatic analysis and characterization of the hummingbird wings motion using dense optical flow features

    International Nuclear Information System (INIS)

    Martínez, Fabio; Romero, Eduardo; Manzanera, Antoine

    2015-01-01

    A new method for automatic analysis and characterization of recorded hummingbird wing motion is proposed. The method starts by computing a multiscale dense optical flow field, which is used to segment the wings, i.e., pixels with larger velocities. Then, the kinematic and deformation of the wings were characterized as a temporal set of global and local measures: a global angular acceleration as a time function of each wing and a local acceleration profile that approximates the dynamics of the different wing segments. Additionally, the variance of the apparent velocity orientation estimates those wing foci with larger deformation. Finally a local measure of the orientation highlights those regions with maximal deformation. The approach was evaluated in a total of 91 flight cycles, captured using three different setups. The proposed measures follow the yaw turn hummingbird flight dynamics, with a strong correlation of all computed paths, reporting a standard deviation of 0.31 rad/frame 2 and 1.9 (rad/frame) 2 for the global angular acceleration and the global wing deformation respectively. (paper)

  10. Determination of aerodynamic sensitivity coefficients for wings in transonic flow

    Science.gov (United States)

    Carlson, Leland A.; El-Banna, Hesham M.

    1992-01-01

    The quasianalytical approach is applied to the 3-D full potential equation to compute wing aerodynamic sensitivity coefficients in the transonic regime. Symbolic manipulation is used to reduce the effort associated with obtaining the sensitivity equations, and the large sensitivity system is solved using 'state of the art' routines. The quasianalytical approach is believed to be reasonably accurate and computationally efficient for 3-D problems.

  11. Aerodynamic Interaction between Delta Wing and Hemisphere-Cylinder in Supersonic Flow

    Science.gov (United States)

    Nishino, Atsuhiro; Ishikawa, Takahumi; Nakamura, Yoshiaki

    As future space vehicles, Reusable Launch Vehicle (RLV) needs to be developed, where there are two kinds of RLV: Single Stage To Orbit (SSTO) and Two Stage To Orbit (TSTO). In the latter case, the shock/shock interaction and shock/boundary layer interaction play a key role. In the present study, we focus on the supersonic flow field with aerodynamic interaction between a delta wing and a hemisphere-cylinder, which imitate a TSTO, where the clearance, h, between the delta wing and hemisphere-cylinder is a key parameter. As a result, complicated flow patterns were made clear, including separation bubbles.

  12. Characterization of the Effect of Wing Surface Instrumentation on UAV Airfoil Performance

    Science.gov (United States)

    Ratnayake, Nalin A.

    2009-01-01

    Recently proposed flight research at NASA Dryden Flight Research Center (DFRC) has prompted study into the aerodynamic effects of modifications made to the surfaces of laminar airfoils. The research is focused on the high-aspect ratio, laminar-flow type wings commonly found on UAVs and other aircraft with a high endurance requirement. A broad range of instrumentation possibilities, such as structural, pressure, and temperature sensing devices may require the alteration of the airfoil outer mold line as part of the installation process. This study attempts to characterize the effect of installing this additiona1 instrumentation on key airfoil performance factors, such as transition location, lift and drag curves, and stall point. In particular, the general case of an airfoil that is channeled in the spanwise direction is considered, and the impact on key performance characteristics is assessed. Particular attention is focused on exploring the limits of channel depth and low-Reynolds number on performance and stall characteristics. To quantify the effect of increased skin friction due to premature transition caused by protruding or recessed instrumentation, two simplified, conservative scenarios are used to consider two potential sources of diaturbance: A) that leading edge alterations would cause linearly expanding areas (triangles) of turbulent flow on both surfaces of the wing upstream of the natural transition point, and B) that a channel or bump on the upper surface would trip turbulent flow across the whole upper surface upstream of the natural transition point. A potentially more important consideration than the skin friction drag increment is the change in overall airfoil performance due to the installation of instrumentation along most of the wingspan. To quantify this effect, 2D CFD simulations of the flow over a representative mid-span airfoil section were conducted in order to assess the change in lift and drag curves for the airfoil in the presence of

  13. Wing in Ground Effect over a Wavy Surface

    Directory of Open Access Journals (Sweden)

    Valentin Adrian Jean BUTOESCU

    2018-06-01

    Full Text Available A vortex method has been used to investigate the effect of a wavy ground on the aerodynamic forces acting on a wing that flies in its proximity. The air is considered inviscid and incompressible. The problem is obviously unsteady, and the solutions were found numerically.

  14. A study of high alpha dynamics and flow visualization for a 2.5-percent model of the F-18 HARV undergoing wing rock

    Science.gov (United States)

    Quast, Thomas; Nelson, Robert C.; Fisher, David F.

    1991-01-01

    Free-to-roll experiments and flow visualization studies have been conducted for a 2.5-percent model of the F-18 undergoing unsteady wing rock oscillations. Data have been acquired in the form of roll angle time histories as well as video recordings and 35 mm photography of the forebody and leading edge extension vortices. The time histories were differentiated to produce angular velocity and angular acceleration. From this the roll moment as a function of time and/or roll angle could be estimated. A thorough analysis of the data has revealed a genuine wing-rock phenomenon. Off-surface flow visualization was used to identiify the forebody and LEX vortex core positions and their interaction in both static and dynamic configurations. A direct correlation between the dynamic data and visualized vortex activity during the wing-rock motion has been made.

  15. Extension of analytical indicial aerodynamics to generic trapezoidal wings in subsonic flow

    Directory of Open Access Journals (Sweden)

    Andrea DA RONCH

    2018-04-01

    Full Text Available Analytical indicial aerodynamic functions are calculated for several trapezoidal wings in subsonic flow, with a Mach number 0.3 ≤ Ma ≤ 0.7. The formulation herein proposed extends well-known aerodynamic theories, which are limited to thin aerofoils in incompressible flow, to generic trapezoidal wing planforms. Firstly, a thorough study is executed to assess the accuracy and limitation of analytical predictions, using unsteady results from two state-of-the-art computational fluid dynamics solvers as cross-validated benchmarks. Indicial functions are calculated for a step change in the angle of attack and for a sharp-edge gust, each for four wing configurations and three Mach numbers. Then, analytical and computational indicial responses are used to predict dynamic derivatives and the maximum lift coefficient following an encounter with a one-minus-cosine gust. It is found that the analytical results are in excellent agreement with the computational results for all test cases. In particular, the deviation of the analytical results from the computational results is within the scatter or uncertainty in the data arising from using two computational fluid dynamics solvers. This indicates the usefulness of the developed analytical theories. Keywords: Analytical approach, CFD, Compressible flow, Gust response, Indicial aerodynamics, Trapezoidal wing

  16. Flow Structure and Surface Topology on a UCAV Planform

    Science.gov (United States)

    Elkhoury, Michel; Yavuz, Metin; Rockwell, Donald

    2003-11-01

    Flow past a X-45 UCAV planform involves the complex generation and interaction of vortices, their breakdown and occurrence of surface separation and stall. A cinema technique of high-image-density particle image velocimetry, in conjunction with dye visualization, allows characterization of the time-averaged and instantaneous states of the flow, in terms of critical points of the near-surface streamlines. These features are related to patterns of surface normal vorticity and velocity fluctuation. Spectral analysis of the naturally occurring unsteadiness of the flow allows definition of the most effective frequencies for small-amplitude perturbation of the wing, which leads to substantial alterations of the aforementioned patterns of flow structure and topology adjacent to the surface.

  17. Surface obstacles in pulsatile flow

    Science.gov (United States)

    Carr, Ian A.; Plesniak, Michael W.

    2017-11-01

    Flows past obstacles mounted on flat surfaces have been widely studied due to their ubiquity in nature and engineering. For nearly all of these studies, the freestream flow over the obstacle was steady, i.e., constant velocity, unidirectional flow. Unsteady, pulsatile flows occur frequently in biology, geophysics, biomedical engineering, etc. Our study is aimed at extending the comprehensive knowledge base that exists for steady flows to considerably more complex pulsatile flows. Characterizing the vortex and wake dynamics of flows around surface obstacles embedded in pulsatile flows can provide insights into the underlying physics in all wake and junction flows. In this study, we experimentally investigate the wake of two canonical obstacles: a cube and a circular cylinder with an aspect ratio of unity. Our previous studies of a surface-mounted hemisphere in pulsatile flow are used as a baseline for these two new, more complex geometries. Phase-averaged PIV and hot-wire anemometry are used to characterize the dynamics of coherent structures in the wake and at the windward junction of the obstacles. Complex physics occur during the deceleration phase of the pulsatile inflow. We propose a framework for understanding these physics based on self-induced vortex propagation, similar to the phenomena exhibited by vortex rings.

  18. Flow over riblet curved surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, J B R; Freire, A P Silva, E-mail: atila@mecanica.ufrj.br [Mechanical Engineering Program, Federal University of Rio de Janeiro (COPPE/UFRJ), C.P. 68503, 21.941-972, Rio de Janeiro, RJ (Brazil)

    2011-12-22

    The present work studies the mechanics of turbulent drag reduction over curved surfaces by riblets. The effects of surface modification on flow separation over steep and smooth curved surfaces are investigated. Four types of two-dimensional surfaces are studied based on the morphometric parameters that describe the body of a blue whale. Local measurements of mean velocity and turbulence profiles are obtained through laser Doppler anemometry (LDA) and particle image velocimetry (PIV).

  19. Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect

    International Nuclear Information System (INIS)

    Truong, Tien Van; Yoon, Kwang Joon; Byun, Doyoung; Kim, Min Jun; Park, Hoon Cheol

    2013-01-01

    The aim of this work is to provide an insight into the aerodynamic performance of the beetle during takeoff, which has been estimated in previous investigations. We employed a scaled-up electromechanical model flapping wing to measure the aerodynamic forces and the three-dimensional flow structures on the flapping wing. The ground effect on the unsteady forces and flow structures were also characterized. The dynamically scaled wing model could replicate the general stroke pattern of the beetle's hind wing kinematics during takeoff flight. Two wing kinematic models have been studied to examine the influences of wing kinematics on unsteady aerodynamic forces. In the first model, the angle of attack is asymmetric and varies during the translational motion, which is the flapping motion of the beetle's hind wing. In the second model, the angle of attack is constant during the translational motion. The instantaneous aerodynamic forces were measured for four strokes during the beetle's takeoff by the force sensor attached at the wing base. Flow visualization provided a general picture of the evolution of the three-dimensional leading edge vortex (LEV) on the beetle hind wing model. The LEV is stable during each stroke, and increases radically from the root to the tip, forming a leading-edge spiral vortex. The force measurement results show that the vertical force generated by the hind wing is large enough to lift the beetle. For the beetle hind wing kinematics, the total vertical force production increases 18.4% and 8.6% for the first and second strokes, respectively, due to the ground effect. However, for the model with a constant angle of attack during translation, the vertical force is reduced during the first stroke. During the third and fourth strokes, the ground effect is negligible for both wing kinematic patterns. This finding suggests that the beetle's flapping mechanism induces a ground effect that can efficiently lift its body from the ground during takeoff

  20. Experimental Investigations on Leading-Edge Vortex Structures for Flow over Non-Slender Delta Wings

    International Nuclear Information System (INIS)

    Jin-Jun, Wang; Wang, Zhang

    2008-01-01

    The dye injection and hydrogen bubble visualization techniques are used to investigate the dual-vortex structure including its development, breakdown and the spatial location of vortex core over nonslender delta wings. It is concluded that the dual-vortex structure can be affected significantly by sweep angle and Reynolds number, and generated only at small angle of attack. The angle between the projection of outer vortex core on delta wing surface and the root chord line has nothing to do with the Reynolds Number and angle of attack, but has simple linear relation with the sweep angle of the model tested. (fundamental areas of phenomenology (including applications))

  1. Hydrophobic durability characteristics of butterfly wing surface after freezing cycles towards the design of nature inspired anti-icing surfaces.

    Directory of Open Access Journals (Sweden)

    Tingkun Chen

    Full Text Available The hydrophobicity and anti-icing performance of the surfaces of some artificial hydrophobic coatings degraded after several icing and de-icing cycles. In this paper, the frost formation on the surfaces of butterfly wings from ten different species was observed, and the contact angles were measured after 0 to 6 frosting/defrosting cycles. The results show that no obvious changes in contact angle for the butterfly wing specimens were not obvious during the frosting/defrosting process. Further, the conclusion was inferred that the topography of the butterfly wing surface forms a special space structure which has a larger space inside that can accommodate more frozen droplets; this behavior prevents destruction of the structure. The findings of this study may provide a basis and new concepts for the design of novel industrially important surfaces to inhibit frost/ice growth, such as durable anti-icing coatings, which may decrease or prevent the socio-economic loss.

  2. Hydrophobic durability characteristics of butterfly wing surface after freezing cycles towards the design of nature inspired anti-icing surfaces.

    Science.gov (United States)

    Chen, Tingkun; Cong, Qian; Qi, Yingchun; Jin, Jingfu; Choy, Kwang-Leong

    2018-01-01

    The hydrophobicity and anti-icing performance of the surfaces of some artificial hydrophobic coatings degraded after several icing and de-icing cycles. In this paper, the frost formation on the surfaces of butterfly wings from ten different species was observed, and the contact angles were measured after 0 to 6 frosting/defrosting cycles. The results show that no obvious changes in contact angle for the butterfly wing specimens were not obvious during the frosting/defrosting process. Further, the conclusion was inferred that the topography of the butterfly wing surface forms a special space structure which has a larger space inside that can accommodate more frozen droplets; this behavior prevents destruction of the structure. The findings of this study may provide a basis and new concepts for the design of novel industrially important surfaces to inhibit frost/ice growth, such as durable anti-icing coatings, which may decrease or prevent the socio-economic loss.

  3. Surface flow measurements from drones

    Science.gov (United States)

    Tauro, Flavia; Porfiri, Maurizio; Grimaldi, Salvatore

    2016-09-01

    Drones are transforming the way we sense and interact with the environment. However, despite their increased capabilities, the use of drones in geophysical sciences usually focuses on image acquisition for generating high-resolution maps. Motivated by the increasing demand for innovative and high performance geophysical observational methodologies, we posit the integration of drone technology and optical sensing toward a quantitative characterization of surface flow phenomena. We demonstrate that a recreational drone can be used to yield accurate surface flow maps of sub-meter water bodies. Specifically, drone's vibrations do not hinder surface flow observations, and velocity measurements are in agreement with traditional techniques. This first instance of quantitative water flow sensing from a flying drone paves the way to novel observations of the environment.

  4. Divergence and gene flow in the globally distributed blue-winged ducks

    Science.gov (United States)

    Nelson, Joel; Wilson, Robert E.; McCracken, Kevin G.; Cumming, Graeme; Joseph, Leo; Guay, Patrick-Jean; Peters, Jeffrey

    2017-01-01

    The ability to disperse over long distances can result in a high propensity for colonizing new geographic regions, including uninhabited continents, and lead to lineage diversification via allopatric speciation. However, high vagility can also result in gene flow between otherwise allopatric populations, and in some cases, parapatric or divergence-with-gene-flow models might be more applicable to widely distributed lineages. Here, we use five nuclear introns and the mitochondrial control region along with Bayesian models of isolation with migration to examine divergence, gene flow, and phylogenetic relationships within a cosmopolitan lineage comprising six species, the blue-winged ducks (genus Anas), which inhabit all continents except Antarctica. We found two primary sub-lineages, the globally-distributed shoveler group and the New World blue-winged/cinnamon teal group. The blue-winged/cinnamon sub-lineage is composed of sister taxa from North America and South America, and taxa with parapatric distributions are characterized by low to moderate levels of gene flow. In contrast, our data support strict allopatry for most comparisons within the shovelers. However, we found evidence of gene flow from the migratory, Holarctic northern shoveler (A. clypeata) and the more sedentary, African Cape shoveler (A. smithii) into the Australasian shoveler (A. rhynchotis), although we could not reject strict allopatry. Given the diverse mechanisms of speciation within this complex, the shovelers and blue-winged/cinnamon teals can serve as an effective model system for examining how the genome diverges under different evolutionary processes and how genetic variation is partitioned among highly dispersive taxa.

  5. Navier-Stokes Computations of a Wing-Flap Model With Blowing Normal to the Flap Surface

    Science.gov (United States)

    Boyd, D. Douglas, Jr.

    2005-01-01

    A computational study of a generic wing with a half span flap shows the mean flow effects of several blown flap configurations. The effort compares and contrasts the thin-layer, Reynolds averaged, Navier-Stokes solutions of a baseline wing-flap configuration with configurations that have blowing normal to the flap surface through small slits near the flap side edge. Vorticity contours reveal a dual vortex structure at the flap side edge for all cases. The dual vortex merges into a single vortex at approximately the mid-flap chord location. Upper surface blowing reduces the strength of the merged vortex and moves the vortex away from the upper edge. Lower surface blowing thickens the lower shear layer and weakens the merged vortex, but not as much as upper surface blowing. Side surface blowing forces the lower surface vortex farther outboard of the flap edge by effectively increasing the aerodynamic span of the flap. It is seen that there is no global aerodynamic penalty or benefit from the particular blowing configurations examined.

  6. Adaptive computations of flow around a delta wing with vortex breakdown

    Science.gov (United States)

    Modiano, David L.; Murman, Earll M.

    1993-01-01

    An adaptive unstructured mesh solution method for the three-dimensional Euler equations was used to simulate the flow around a sharp edged delta wing. Emphasis was on the breakdown of the leading edge vortex at high angle of attack. Large values of entropy, which indicate vortical regions of the flow, specified the region in which adaptation was performed. The aerodynamic normal force coefficients show excellent agreement with wind tunnel data measured by Jarrah, and demonstrate the importance of adaptation in obtaining an accurate solution. The pitching moment coefficient and the location of vortex breakdown are compared with experimental data measured by Hummel and Srinivasan, showing good agreement in cases in which vortex breakdown is located over the wing.

  7. Flow Field Characteristics and Lift Changing Mechanism for Half-Rotating Wing in Hovering Flight

    Science.gov (United States)

    Li, Q.; Wang, X. Y.; Qiu, H.; Li, C. M.; Qiu, Z. Z.

    2017-12-01

    Half-rotating wing (HRW) is a new similar-flapping wing system based on half-rotating mechanism which could perform rotating-type flapping instead of oscillating-type flapping. The characteristics of flow field and lift changing mechanism for HRW in hovering flight are important theoretical basis to improve the flight capability of HRW aircraft. The driving mechanism and work process of HRW were firstly introduced in this paper. Aerodynamic simulation model of HRW in hovering flight was established and solved using XFlow software, by which lift changing rule of HRW was drawn from the simulation solution. On the other hand, the development and shedding of the distal vortex throughout one stroke would lead to the changes of the lift force. Based on analyzing distribution characteristics of vorticity, velocity and pressure around wing blade, the main features of the flow field for HRW were further given. The distal attached vortex led to the increase of the lift force, which would gradually shed into the wake with a decline of lift in the later downstroke. The wake ring directed by the distal end of the blade would generate the downward accelerating airflow which produced the upward anti-impulse to HRW. The research results mentioned above illustrated that the behavior characteristics of vortex formed in flow field were main cause of lift changing for HRW.

  8. Interactive boundary-layer calculations of a transonic wing flow

    Science.gov (United States)

    Kaups, Kalle; Cebeci, Tuncer; Mehta, Unmeel

    1989-01-01

    Results obtained from iterative solutions of inviscid and boundary-layer equations are presented and compared with experimental values. The calculated results were obtained with an Euler code and a transonic potential code in order to furnish solutions for the inviscid flow; they were interacted with solutions of two-dimensional boundary-layer equations having a strip-theory approximation. Euler code results are found to be in better agreement with the experimental data than with the full potential code, especially in the presence of shock waves, (with the sole exception of the near-tip region).

  9. Static and Dynamic Flow Visualization Studies of Two Double-Delta Wing Models at High Angles of Attack

    Science.gov (United States)

    1992-03-01

    body, ft U.= free-stream velocity, ft/sec In the case of a wing pitching about its mid-chord location, it can be interpreted as the ratio of the...Over Moderately Swept Delta Wings," HTP -5 Workshop On Vortical Flow Breakdown and Structural Interactions, NASA Langley Research Center, August 15-16...January 6- 9,1992/Reno,Nevada. 18. User’s Manual , Flow Visualization Water Tunnel Operation for Model 1520, Eidelic International, Inc., Torrance

  10. Flow-around modes for a rhomboid wing with a stall vortex in the shock layer

    Science.gov (United States)

    Zubin, M. A.; Maximov, F. A.; Ostapenko, N. A.

    2017-12-01

    The results of theoretical and experimental investigation of an asymmetrical hypersonic flow around a V-shaped wing with the opening angle larger than π on the modes with attached shockwaves on forward edges, when the stall flow is implemented on the leeward wing cantilever behind the kink point of the cross contour. In this case, a vortex of nonviscous nature is formed in which the velocities on the sphere exceeding the speed of sound and resulting in the occurrence of pressure shocks with an intensity sufficient for the separation of the turbulent boundary layer take place in the reverse flow according to the calculations within the framework of the ideal gas. It is experimentally established that a separation boundary layer can exist in the reverse flow, and its structure is subject to the laws inherent to the reverse flow in the separation region of the turbulent boundary layer arising in the supersonic conic flow under the action of a shockwave incident to the boundary layer.

  11. Blockage and flow studies of a generalized test apparatus including various wing configurations in the Langley 7-inch Mach 7 Pilot Tunnel

    Science.gov (United States)

    Albertson, C. W.

    1982-03-01

    A 1/12th scale model of the Curved Surface Test Apparatus (CSTA), which will be used to study aerothermal loads and evaluate Thermal Protection Systems (TPS) on a fuselage-type configuration in the Langley 8-Foot High Temperature Structures Tunnel (8 ft HTST), was tested in the Langley 7-Inch Mach 7 Pilot Tunnel. The purpose of the tests was to study the overall flow characteristics and define an envelope for testing the CSTA in the 8 ft HTST. Wings were tested on the scaled CSTA model to select a wing configuration with the most favorable characteristics for conducting TPS evaluations for curved and intersecting surfaces. The results indicate that the CSTA and selected wing configuration can be tested at angles of attack up to 15.5 and 10.5 degrees, respectively. The base pressure for both models was at the expected low level for most test conditions. Results generally indicate that the CSTA and wing configuration will provide a useful test bed for aerothermal pads and thermal structural concept evaluation over a broad range of flow conditions in the 8 ft HTST.

  12. EFFECT OF SWEEP ANGLE ON THE VORTICAL FLOW OVER DELTA WINGS AT AN ANGLE OF ATTACK OF 10°

    Directory of Open Access Journals (Sweden)

    JAMES BRETT

    2014-12-01

    Full Text Available CFD simulations have been used to analyse the vortical flows over sharp edged delta wings with differing sweep angles under subsonic conditions at an angle of attack of 10°. RANS simulations were validated against experimental data for a 65° sweep wing, with a flat cross-section, and the steadiness of the flow field was assessed by comparing the results against unsteady URANS and DES simulations. To assess the effect of sweep angle on the flow field, a range of sweep angles from 65° to 43° were simulated. For moderate sweep wings the primary vortex was observed to detach from the leading edge, undergoing vortex breakdown, and a weaker, replacement, "shadow" vortex was formed. The shadow vortex was observed for sweep angles of 50° and less, and resulted in reduced lift production near the wing tips loss of the stronger primary vortex.

  13. Forced Rolling Oscillation of a 65 deg-Delta Wing in Transonic Vortex-Breakdown Flow

    Science.gov (United States)

    Menzies, Margaret A.; Kandil, Osama A.; Kandil, Hamdy A.

    1996-01-01

    Unsteady, transonic, vortex dominated flow over a 65 deg. sharp-edged, cropped-delta wing of zero thickness undergoing forced rolling oscillations is investigated computationally. The wing angle of attack is 20 deg. and the free stream Mach number and Reynolds number are 0.85 and 3.23 x 10(exp 6), respectively. The initial condition of the flow is characterized by a transverse terminating shock which induces vortex breakdown of the leading edge vortex cores. The computational investigation uses the time accurate solution of the laminar, unsteady, compressible, full Navier-Stokes equations with the implicit, upwind, Roe flux difference splitting, finite-volume scheme. While the maximum roll amplitude is kept constant at 4.0 deg., both Reynolds number and roll frequency are varied covering three cases of forced sinusoidal rolling. First, the Reynolds number is held at 3.23 x 10(exp 6) and the wing is forced to oscillate in roll around the axis of geometric symmetry at a reduced frequency of 2(pi). Second, the Reynolds number is reduced to 0.5 x 10(exp 6) to observe the effects of added viscosity on the vortex breakdown. Third, with the Reynolds number held at 0.5 x 10(exp 6), the roll frequency is reduced to 1(pi) to complete the study.

  14. Anti-fouling properties of microstructured surfaces bio-inspired by rice leaves and butterfly wings.

    Science.gov (United States)

    Bixler, Gregory D; Theiss, Andrew; Bhushan, Bharat; Lee, Stephen C

    2014-04-01

    Material scientists often look to biology for new engineering solutions to materials science problems. For example, unique surface characteristics of rice leaves and butterfly wings combine the shark skin (antifouling) and lotus leaf (self-cleaning) effects, producing the so-called rice and butterfly wing effect. In this paper, we study antifouling properties of four microstructured surfaces inspired by rice leaves and fabricated with photolithography and hot embossing techniques. Anti-biofouling effectiveness is determined with bioassays using Escherichia coli whilst inorganic fouling with simulated dirt particles. Antifouling data are presented to understand the role of surface geometrical features resistance to fouling. Conceptual modeling provides design guidance when developing novel antifouling surfaces for applications in the medical, marine, and industrial fields. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Simulation of wing-body junction flows with hybrid RANS/LES methods

    International Nuclear Information System (INIS)

    Fu Song; Xiao Zhixiang; Chen Haixin; Zhang Yufei; Huang Jingbo

    2007-01-01

    In this paper, flows past two wing-body junctions, the Rood at zero angle of attack and NASA TN D-712 at 12.5 o angle of attack, are investigated with two Reynolds-Averaged Navier-Stokes (RANS) and large eddy simulation (LES) hybrid methods. One is detached eddy simulation (DES) and the other is delayed-DES, both are based on a weakly nonlinear two-equation k-ω model. While the RANS method can predict the mean flow behaviours reasonably accurately, its performance for the turbulent kinetic energy and shear stress, as compared with available experimental data, is not satisfactory. DES, through introducing a length scale in the dissipation terms of the turbulent kinetic energy equation, delivers flow separation, a vortex or the onset of vortex breakdown too early. DDES, with its delayed effect, shows a great improvement in flow structures and turbulence characteristics, and agrees well with measurements

  16. Flow structures in end-view plane of slender delta wing

    Directory of Open Access Journals (Sweden)

    Sahin Besir

    2017-01-01

    Full Text Available Present investigation focuses on unsteady flow structures in end-view planes at the trailing edge of delta wing, X/C=1.0, where consequences of vortex bursting and stall phenomena vary according to angles of attack over the range of 25° ≤ α ≤ 35° and yaw angles, β over the range of 0° ≤ β ≤ 20°. Basic features of counter rotating vortices in end-view planes of delta win with 70° sweep angle, Λ are examined both qualitatively and quantitatively using Rhodamine dye and the PIV system. In the light of present experiments it is seen that with increasing yaw angle, β symmetrical flow structure is disrupted continuously. Dispersed wind-ward side leading edge vortices cover a large part of flow domain, on the other hand, lee-ward side leading edge vortices cover only a small portion of flow domain.

  17. Effects of wing locations on wing rock induced by forebody vortices

    Directory of Open Access Journals (Sweden)

    Ma Baofeng

    2016-10-01

    Full Text Available Previous studies have shown that asymmetric vortex wakes over slender bodies exhibit a multi-vortex structure with an alternate arrangement along a body axis at high angle of attack. In this investigation, the effects of wing locations along a body axis on wing rock induced by forebody vortices was studied experimentally at a subcritical Reynolds number based on a body diameter. An artificial perturbation was added onto the nose tip to fix the orientations of forebody vortices. Particle image velocimetry was used to identify flow patterns of forebody vortices in static situations, and time histories of wing rock were obtained using a free-to-roll rig. The results show that the wing locations can affect significantly the motion patterns of wing rock owing to the variation of multi-vortex patterns of forebody vortices. As the wing locations make the forebody vortices a two-vortex pattern, the wing body exhibits regularly divergence and fixed-point motion with azimuthal variations of the tip perturbation. If a three-vortex pattern exists over the wing, however, the wing-rock patterns depend on the impact of the highest vortex and newborn vortex. As the three vortices together influence the wing flow, wing-rock patterns exhibit regularly fixed-points and limit-cycled oscillations. With the wing moving backwards, the newborn vortex becomes stronger, and wing-rock patterns become fixed-points, chaotic oscillations, and limit-cycled oscillations. With further backward movement of wings, the vortices are far away from the upper surface of wings, and the motions exhibit divergence, limit-cycled oscillations and fixed-points. For the rearmost location of the wing, the wing body exhibits stochastic oscillations and fixed-points.

  18. Fatty acid methyl ester profiles of bat wing surface lipids.

    Science.gov (United States)

    Pannkuk, Evan L; Fuller, Nathan W; Moore, Patrick R; Gilmore, David F; Savary, Brett J; Risch, Thomas S

    2014-11-01

    Sebocytes are specialized epithelial cells that rupture to secrete sebaceous lipids (sebum) across the mammalian integument. Sebum protects the integument from UV radiation, and maintains host microbial communities among other functions. Native glandular sebum is composed primarily of triacylglycerides (TAG) and wax esters (WE). Upon secretion (mature sebum), these lipids combine with minor cellular membrane components comprising total surface lipids. TAG and WE are further cleaved to smaller molecules through oxidation or host enzymatic digestion, resulting in a complex mixture of glycerolipids (e.g., TAG), sterols, unesterified fatty acids (FFA), WE, cholesteryl esters, and squalene comprising surface lipid. We are interested if fatty acid methyl ester (FAME) profiling of bat surface lipid could predict species specificity to the cutaneous fungal disease, white nose syndrome (WNS). We collected sebaceous secretions from 13 bat spp. using Sebutape(®) and converted them to FAME with an acid catalyzed transesterification. We found that Sebutape(®) adhesive patches removed ~6× more total lipid than Sebutape(®) indicator strips. Juvenile eastern red bats (Lasiurus borealis) had significantly higher 18:1 than adults, but 14:0, 16:1, and 20:0 were higher in adults. FAME profiles among several bat species were similar. We concluded that bat surface lipid FAME profiling does not provide a robust model predicting species susceptibility to WNS. However, these results provide baseline data that can be used for lipid roles in future ecological studies, such as life history, diet, or migration.

  19. Singularities in Free Surface Flows

    Science.gov (United States)

    Thete, Sumeet Suresh

    Free surface flows where the shape of the interface separating two or more phases or liquids are unknown apriori, are commonplace in industrial applications and nature. Distribution of drop sizes, coalescence rate of drops, and the behavior of thin liquid films are crucial to understanding and enhancing industrial practices such as ink-jet printing, spraying, separations of chemicals, and coating flows. When a contiguous mass of liquid such as a drop, filament or a film undergoes breakup to give rise to multiple masses, the topological transition is accompanied with a finite-time singularity . Such singularity also arises when two or more masses of liquid merge into each other or coalesce. Thus the dynamics close to singularity determines the fate of about-to-form drops or films and applications they are involved in, and therefore needs to be analyzed precisely. The primary goal of this thesis is to resolve and analyze the dynamics close to singularity when free surface flows experience a topological transition, using a combination of theory, experiments, and numerical simulations. The first problem under consideration focuses on the dynamics following flow shut-off in bottle filling applications that are relevant to pharmaceutical and consumer products industry, using numerical techniques based on Galerkin Finite Element Methods (GFEM). The second problem addresses the dual flow behavior of aqueous foams that are observed in oil and gas fields and estimates the relevant parameters that describe such flows through a series of experiments. The third problem aims at understanding the drop formation of Newtonian and Carreau fluids, computationally using GFEM. The drops are formed as a result of imposed flow rates or expanding bubbles similar to those of piezo actuated and thermal ink-jet nozzles. The focus of fourth problem is on the evolution of thinning threads of Newtonian fluids and suspensions towards singularity, using computations based on GFEM and experimental

  20. Vortex Lattice Simulations of Attached and Separated Flows around Flapping Wings

    Directory of Open Access Journals (Sweden)

    Thomas Lambert

    2017-04-01

    Full Text Available Flapping flight is an increasingly popular area of research, with applications to micro-unmanned air vehicles and animal flight biomechanics. Fast, but accurate methods for predicting the aerodynamic loads acting on flapping wings are of interest for designing such aircraft and optimizing thrust production. In this work, the unsteady vortex lattice method is used in conjunction with three load estimation techniques in order to predict the aerodynamic lift and drag time histories produced by flapping rectangular wings. The load estimation approaches are the Katz, Joukowski and simplified Leishman–Beddoes techniques. The simulations’ predictions are compared to experimental measurements from wind tunnel tests of a flapping and pitching wing. Three types of kinematics are investigated, pitch-leading, pure flapping and pitch lagging. It is found that pitch-leading tests can be simulated quite accurately using either the Katz or Joukowski approaches as no measurable flow separation occurs. For the pure flapping tests, the Katz and Joukowski techniques are accurate as long as the static pitch angle is greater than zero. For zero or negative static pitch angles, these methods underestimate the amplitude of the drag. The Leishman–Beddoes approach yields better drag amplitudes, but can introduce a constant negative drag offset. Finally, for the pitch-lagging tests the Leishman–Beddoes technique is again more representative of the experimental results, as long as flow separation is not too extensive. Considering the complexity of the phenomena involved, in the vast majority of cases, the lift time history is predicted with reasonable accuracy. The drag (or thrust time history is more challenging.

  1. An Ingenious Super Light Trapping Surface Templated from Butterfly Wing Scales

    Science.gov (United States)

    Han, Zhiwu; Li, Bo; Mu, Zhengzhi; Yang, Meng; Niu, Shichao; Zhang, Junqiu; Ren, Luquan

    2015-08-01

    Based on the super light trapping property of butterfly Trogonoptera brookiana wings, the SiO2 replica of this bionic functional surface was successfully synthesized using a simple and highly effective synthesis method combining a sol-gel process and subsequent selective etching. Firstly, the reflectivity of butterfly wing scales was carefully examined. It was found that the whole reflectance spectroscopy of the butterfly wings showed a lower level (less than 10 %) in the visible spectrum. Thus, it was confirmed that the butterfly wings possessed a super light trapping effect. Afterwards, the morphologies and detailed architectures of the butterfly wing scales were carefully investigated using the ultra-depth three-dimensional (3D) microscope and field emission scanning electronic microscopy (FESEM). It was composed by the parallel ridges and quasi-honeycomb-like structure between them. Based on the biological properties and function above, an exact SiO2 negative replica was fabricated through a synthesis method combining a sol-gel process and subsequent selective etching. At last, the comparative analysis of morphology feature size and the reflectance spectroscopy between the SiO2 negative replica and the flat plate was conducted. It could be concluded that the SiO2 negative replica inherited not only the original super light trapping architectures, but also the super light trapping characteristics of bio-template. This work may open up an avenue for the design and fabrication of super light trapping materials and encourage people to look for more super light trapping architectures in nature.

  2. Twin Tail/Delta Wing Configuration Buffet Due to Unsteady Vortex Breakdown Flow

    Science.gov (United States)

    Kandil, Osama A.; Sheta, Essam F.; Massey, Steven J.

    1996-01-01

    The buffet response of the twin-tail configuration of the F/A-18 aircraft; a multidisciplinary problem, is investigated using three sets of equations on a multi-block grid structure. The first set is the unsteady, compressible, full Navier-Stokes equations. The second set is the coupled aeroelastic equations for bending and torsional twin-tail responses. The third set is the grid-displacement equations which are used to update the grid coordinates due to the tail deflections. The computational model consists of a 76 deg-swept back, sharp edged delta wing of aspect ratio of one and a swept-back F/A-18 twin-tails. The configuration is pitched at 32 deg angle of attack and the freestream Mach number and Reynolds number are 0.2 and 0.75 x 10(exp 6) respectively. The problem is solved for the initial flow conditions with the twin tail kept rigid. Next, the aeroelastic equations of the tails are turned on along with the grid-displacement equations to solve for the uncoupled bending and torsional tails response due to the unsteady loads produced by the vortex breakdown flow of the vortex cores of the delta wing. Two lateral locations of the twin tail are investigated. These locations are called the midspan and inboard locations.

  3. Development of Advanced High Lift Leading Edge Technology for Laminar Flow Wings

    Science.gov (United States)

    Bright, Michelle M.; Korntheuer, Andrea; Komadina, Steve; Lin, John C.

    2013-01-01

    This paper describes the Advanced High Lift Leading Edge (AHLLE) task performed by Northrop Grumman Systems Corporation, Aerospace Systems (NGAS) for the NASA Subsonic Fixed Wing project in an effort to develop enabling high-lift technology for laminar flow wings. Based on a known laminar cruise airfoil that incorporated an NGAS-developed integrated slot design, this effort involved using Computational Fluid Dynamics (CFD) analysis and quality function deployment (QFD) analysis on several leading edge concepts, and subsequently down-selected to two blown leading-edge concepts for testing. A 7-foot-span AHLLE airfoil model was designed and fabricated at NGAS and then tested at the NGAS 7 x 10 Low Speed Wind Tunnel in Hawthorne, CA. The model configurations tested included: baseline, deflected trailing edge, blown deflected trailing edge, blown leading edge, morphed leading edge, and blown/morphed leading edge. A successful demonstration of high lift leading edge technology was achieved, and the target goals for improved lift were exceeded by 30% with a maximum section lift coefficient (Cl) of 5.2. Maximum incremental section lift coefficients ( Cl) of 3.5 and 3.1 were achieved for a blown drooped (morphed) leading edge concept and a non-drooped leading edge blowing concept, respectively. The most effective AHLLE design yielded an estimated 94% lift improvement over the conventional high lift Krueger flap configurations while providing laminar flow capability on the cruise configuration.

  4. Discrete-Roughness-Element-Enhanced Swept-Wing Natural Laminar Flow at High Reynolds Numbers

    Science.gov (United States)

    Malik, Mujeeb; Liao, Wei; Li, Fei; Choudhari, Meelan

    2015-01-01

    Nonlinear parabolized stability equations and secondary-instability analyses are used to provide a computational assessment of the potential use of the discrete-roughness-element technology for extending swept-wing natural laminar flow at chord Reynolds numbers relevant to transport aircraft. Computations performed for the boundary layer on a natural-laminar-flow airfoil with a leading-edge sweep angle of 34.6 deg, freestream Mach number of 0.75, and chord Reynolds numbers of 17 × 10(exp 6), 24 × 10(exp 6), and 30 × 10(exp 6) suggest that discrete roughness elements could delay laminar-turbulent transition by about 20% when transition is caused by stationary crossflow disturbances. Computations show that the introduction of small-wavelength stationary crossflow disturbances (i.e., discrete roughness element) also suppresses the growth of most amplified traveling crossflow disturbances.

  5. DRE-Enhanced Swept-Wing Natural Laminar Flow at High Reynolds Numbers

    Science.gov (United States)

    Malik, Mujeeb; Liao, Wei; Li, Fe; Choudhari, Meelan

    2013-01-01

    Nonlinear parabolized stability equations and secondary instability analyses are used to provide a computational assessment of the potential use of the discrete roughness elements (DRE) technology for extending swept-wing natural laminar flow at chord Reynolds numbers relevant to transport aircraft. Computations performed for the boundary layer on a natural laminar flow airfoil with a leading-edge sweep angle of 34.6deg, free-stream Mach number of 0.75 and chord Reynolds numbers of 17 x 10(exp 6), 24 x 10(exp 6) and 30 x 10(exp 6) suggest that DRE could delay laminar-turbulent transition by about 20% when transition is caused by stationary crossflow disturbances. Computations show that the introduction of small wavelength stationary crossflow disturbances (i.e., DRE) also suppresses the growth of most amplified traveling crossflow disturbances.

  6. Control-surface hinge-moment calculations for a high-aspect-ratio supercritical wing

    Science.gov (United States)

    Perry, B., III

    1978-01-01

    The hinge moments, at selected flight conditions, resulting from deflecting two trailing edge control surfaces (one inboard and one midspan) on a high aspect ratio, swept, fuel conservative wing with a supercritical airfoil are estimated. Hinge moment results obtained from procedures which employ a recently developed transonic analysis are given. In this procedure a three dimensional inviscid transonic aerodynamics computer program is combined with a two dimensional turbulent boundary layer program in order to obtain an interacted solution. These results indicate that trends of the estimated hinge moment as a function of deflection angle are similar to those from experimental hinge moment measurements made on wind tunnel models with swept supercritical wings tested at similar values of free stream Mach number and angle of attack.

  7. Pitot-pressure distributions of the flow field of a delta-wing orbiter

    Science.gov (United States)

    Cleary, J. W.

    1972-01-01

    Pitot pressure distributions of the flow field of a 0.0075-scale model of a typical delta wing shuttle orbiter are presented. Results are given for the windward and leeward sides on centerline in the angle-of-attack plane from wind tunnel tests conducted in air. Distributions are shown for three axial stations X/L = .35, .60, and .98 and for angles of attack from 0 to 60 deg. The tests were made at a Mach number of 7.4 and for Reynolds numbers based on body length from 1,500,000 to 9,000,000. The windward distributions at the two survey stations forward of the body boat tail demonstrate the compressive aspects of the flow from the shock wave to the body. Conversely, the distributions at the aft station display an expansion of the flow that is attributed to body boat tail. On the lee side, results are given at low angles of attack that illustrate the complicating aspects of the canopy on the flow field, while results are given to show the effects of flow separation at high angles of attack.

  8. A Test for Gene Flow among Sympatric and Allopatric Hawaiian Picture-Winged Drosophila.

    Science.gov (United States)

    Kang, Lin; Garner, Harold R; Price, Donald K; Michalak, Pawel

    2017-06-01

    The Hawaiian Drosophila are one of the most species-rich endemic groups in Hawaii and a spectacular example of adaptive radiation. Drosophila silvestris and D. heteroneura are two closely related picture-winged Drosophila species that occur sympatrically on Hawaii Island and are known to hybridize in nature, yet exhibit highly divergent behavioral and morphological traits driven largely through sexual selection. Their closest-related allopatric species, D. planitibia from Maui, exhibits hybrid male sterility and reduced behavioral reproductive isolation when crossed experimentally with D. silvestris or D. heteroneura. A modified four-taxon test for gene flow was applied to recently obtained genomes of the three Hawaiian Drosophila species. The analysis indicates recent gene flow in sympatry, but also, although less extensive, between allopatric species. This study underscores the prevalence of gene flow, even in taxonomic groups considered classic examples of allopatric speciation on islands. The potential confounding effects of gene flow in phylogenetic and population genetics inference are discussed, as well as the implications for conservation.

  9. A PIV Study of Baseline and Controlled Flow over the Highly Deflected Flap of a Generic Low Aspect Ratio Trapezoidal Wing

    Science.gov (United States)

    Tewes, Philipp; Genschow, Konstantin; Little, Jesse; Wygnanski, Israel

    2017-11-01

    A detailed flow survey using PIV was conducted over a highly-deflected flap (55°) of a low-aspect ratio trapezoidal wing. The wing section is a NACA 0012 with 45° sweep at both the leading and trailing edges, an aspect ratio of 1.5 and a taper ratio of 0.27. The main element is equipped with 7 equally spaced fluidic oscillators, covering the inner 60 % of the span, located near the flap hinge. Experiments were carried out at 0° and 8° incidence at a Reynolds number of 1.7 .106 for both baseline and active flow control (AFC) cases. Velocity ISO-surfaces, x-vorticity and streamlines are analyzed / discussed. A flap leading edge vortex governs the baseline flow field for 0°. This vortical structure interacts with the jets emitted by the actuators (Cμ = 1 %). Its development is hampered and the vortex is redirected toward the trailing edge resulting in a CL increase. At 8°, the dominant flap leading edge vortex could not be detected and is believed to have already merged with the tip vortex. AFC attached the flow over the flap and enhanced the lift by up to 20 % while maintaining longitudinal stability. The dominant flow features in the AFC cases are actuator-generated streamwise vortices which appear stronger at 8°. This work was supported by the Office of Naval Research under ONR Grant No. N00014-14-1-0387.

  10. Flow structure and aerodynamic performance of a hovering bristled wing in low Re

    Science.gov (United States)

    Lee, Seunghun; Lahooti, Mohsen; Kim, Daegyoum

    2017-11-01

    Previous studies on a bristled wing have mainly focused on simple kinematics of the wing such as translation or rotation. The aerodynamic performance of a bristled wing in a quasi-steady phase is known to be comparable to that of a smooth wing without a gap because shear layers in the gaps of the bristled wing are sufficiently developed to block the gaps. However, we point out that, in the starting transient phase where the shear layers are not fully developed, the force generation of a bristled wing is not as efficient as that of a quasi-steady state. The performance in the transient phase is important to understand the aerodynamics of a bristled wing in an unsteady motion. In the hovering motion, due to repeated stroke reversals, the formation and development of shear layers inside the gaps is repeated in each stroke. In this study, a bristled wing in hovering is numerically investigated in the low Reynolds number of O(10). We especially focus on the development of shear layers during a stroke reversal and its effect on the overall propulsive performance. Although the aerodynamic force generation is slightly reduced due to the gap vortices, the asymmetric behavior of vortices in a gap between bristles during a stroke reversal makes the bristled wing show higher lift to drag ratio than a smooth wing.

  11. Effects of Coupled Rolling and Pitching Oscillations on Transonic Shock-Induced Vortex-Breakdown Flow of a Delta Wing

    Science.gov (United States)

    Kandil, Osama A.; Menzies, Margaret A.

    1996-01-01

    Unsteady, transonic vortex-breakdown flow over a 65 deg. sharp edged, cropped-delta wing of zero thickness undergoing forced coupled pitching and rolling oscillations is investigated computationally. The initial condition of the flow is characterized by a transverse terminating shock which induces of the leading edge vortex cores to breakdown. The computational investigation uses the time-accurate solution of the laminar, unsteady, compressible, full Navier-Stokes equations with the implicit, upwind, Roe flux-difference splitting, finite-volume scheme. The main focus is to analyze the effects of coupled motion on the wing response and vortex-breakdown flow by varying oscillation frequency and phase angle while keeping the maximum pitch and roll amplitude equal.

  12. Ventilation and internal structure effects on naturally induced flows in a static aircraft wing

    International Nuclear Information System (INIS)

    Moore, Daithi; Newport, David; Egan, Vanessa; Lacarac, Vesna

    2012-01-01

    The ventilation performance within an aircraft wing leading edge is investigated for a number of enclosure and ventilation configurations. The natural convection regime present is found to be highly sensitive to enclosure conditions, particularly the introduction of a partition. The presence of a partition reduced the overall heat exhausted from the cavity by up to 60%. The optimum ventilation strategy is also changed from a forward biased vent orientation (found for the unpartitioned case), to one where both the rear and front vents within the enclosure had the same open area. Cylinder plume effects dominate within the enclosure and were the main driver of the convective regime, with steady-state enclosure conditions highly dependent upon cylinder placement and plume orientation. An externally heated enclosure with internal heat source, combined with ventilation and an internal structure produced a complex natural convection regime which is sensitive to enclosure conditions. Hence an adequate knowledge of such conditions is necessary in order to fully appreciate the convective regime. - Highlights: → Optimum ventilation strategy changed between unpartitioned and partitioned cases. → Flow path and plume orientation are important to consider when analysing ventilation. → Bleed duct placement significantly alters flow path and temperature distribution. → Enclosure partitioning reduced heat exhaustion by 60%.

  13. The Aerodynamic Behavior of a Harmonically Oscillating Finite Sweptback Wing in Supersonic Flow

    National Research Council Canada - National Science Library

    Chang, Chieh-Chien

    1951-01-01

    By an extension of Evvard's "diaphragm" concept outside the wing tip, the present paper presents two approximate methods for calculating the aerodynamic behavior of harmonically oscillating, sweptback...

  14. The role of flow field structure in determining the aerodynamic response of a delta wing

    Science.gov (United States)

    Addington, Gregory Alan

    Delta wings have long been known to exhibit nonlinear aerodynamic responses as a result of the presence of helical leading-edge vortices. This nonlinearity, found under both steady-state and unsteady conditions, is particularly profound in the presence of vortex burst. Modeling such aerodynamic responses with the Nonlinear Indicial Response (NIR) methodology provides a means of simulating these nonlinearities through its inclusion of motion history in addition to superposition. The NIR model also includes provisions for a finite number of discrete locations where the aerodynamic response is discontinuous with response to a state variable. These critical states also separate regions of states where the unsteady aerodynamic responses are potentially of highly-disparate characters. Although these critical states have been found in the past, their relationship with flow field bifurcation is uncertain. The purpose of this dissertation is to explore the relationship between nonlinear aerodynamic responses, critical states and flow field bifurcations from an experimental approach. This task has been accomplished by comparing a comprehensive database of skin-friction line topologies with static and unsteady aerodynamic responses. These data were collected using a 65sp° delta wing which rolled about an inclined longitudinal body axis. In this study, compelling, but not conclusive, evidence was found to suggest that a bifurcation in the skin-friction line topology was a necessary condition for the presence of a critical state. Although the presence of critical states was well predicted through careful observation and analysis of highly-resolved static loading data alone, their precise placement as a function of the independent variable was aided through the consideration of the locations of skin-friction line bifurcations. Furthermore, these static data were found to contain indications of the basic lagged or unlagged behavior of the unsteady aerodynamic response. This

  15. Subsonic and transonic pressure measurements on a high-aspect-ratio supercritical-wing model with oscillating control surfaces

    Science.gov (United States)

    Sandford, M. C.; Ricketts, R. H.; Watson, J. J.

    1981-01-01

    A high aspect ratio supercritical wing with oscillating control surfaces is described. The semispan wing model was instrumented with 252 static orifices and 164 in situ dynamic pressure gases for studying the effects of control surface position and sinusoidal motion on steady and unsteady pressures. Data from the present test (this is the second in a series of tests on this model) were obtained in the Langley Transonic Dynamics Tunnel at Mach numbers of 0.60 and 0.78 and are presented in tabular form.

  16. Simulation of gas compressible flow by free surface water flow

    International Nuclear Information System (INIS)

    Altafini, C.R.; Silva Ferreira, R.T. da

    1981-01-01

    The analogy between the water flow with a free surface and the compressible fluid flow, commonly called hydraulic analogy, is analyzed and its limitations are identified. The water table is the equipment used for this simulation, which allows the quatitative analysis of subsonic and supersonic flow with a low cost apparatus. The hydraulic analogy is applied to subsonic flow around circular cylinders and supersonic flow around cones. The results are compared with available theoretical and experimental data and a good agreement is achieved. (Author) [pt

  17. On fluttering modes for aircraft wing model in subsonic air flow.

    Science.gov (United States)

    Shubov, Marianna A

    2014-12-08

    The paper deals with unstable aeroelastic modes for aircraft wing model in subsonic, incompressible, inviscid air flow. In recent author's papers asymptotic, spectral and stability analysis of the model has been carried out. The model is governed by a system of two coupled integrodifferential equations and a two-parameter family of boundary conditions modelling action of self-straining actuators. The Laplace transform of the solution is given in terms of the 'generalized resolvent operator', which is a meromorphic operator-valued function of the spectral parameter λ, whose poles are called the aeroelastic modes. The residues at these poles are constructed from the corresponding mode shapes. The spectral characteristics of the model are asymptotically close to the ones of a simpler system, which is called the reduced model. For the reduced model, the following result is shown: for each value of subsonic speed, there exists a radius such that all aeroelastic modes located outside the circle of this radius centred at zero are stable. Unstable modes, whose number is always finite, can occur only inside this 'circle of instability'. Explicit estimate of the 'instability radius' in terms of model parameters is given.

  18. Unsteady Aerodynamics of Flapping Wing of a Bird

    Directory of Open Access Journals (Sweden)

    M. Agoes Moelyadi

    2013-04-01

    Full Text Available The unsteady flow behavior and time-dependent aerodynamic characteristics of the flapping motion of a bird’s wing were investigated using a computational method. During flapping, aerodynamic interactions between bird wing surfaces and surrounding flow may occur, generating local time-dependent flow changes in the flow field and aerodynamic load of birds. To study the effect of flapping speed on unsteady aerodynamic load, two kinds of computational simulations were carried out, namely a quasi-steady and an unsteady simulation. To mimic the movement of the down-stroke and the upstroke of a bird, the flapping path accorded to a sinus function, with the wing attitude changing in dihedral angle and time. The computations of time-dependent viscous flow were based on the solution of the Reynolds Averaged Navier-Stokes equations by applying the k-e turbulence model. In addition, the discretization for the computational domain around the model used multi-block structured grid to provide more accuracy in capturing viscous flow, especially in the vicinity of the wing and body surfaces, to obtain a proper wing-body geometry model. For this research, the seagull bird was chosen, which has high aspect ratio wings with pointed wing-tips and a high camber wing section. The results include mesh movement, velocity contours as well as aerodynamic coefficients of the flapping motion of the bird at various flapping frequencies.

  19. Coupled Rolling and Pitching Oscillation Effects on Transonic Shock-Induced Vortex-Breakdown Flow of a Delta Wing

    Science.gov (United States)

    Kandil, Osama A.; Menzies, Margaret A.

    1996-01-01

    Unsteady, transonic vortex dominated flow over a 65 deg. sharp edged, cropped-delta wing of zero thickness undergoing forced coupled pitching and rolling oscillations is investigated computationally. The wing mean angle of attack is 20 deg. and the free stream Mach number and Reynolds number are 0.85 and 3.23 x 10(exp 6), respectively. The initial condition of the flow is characterized by a transverse terminating shock and vortex breakdown of the leading edge vortex cores. The computational investigation uses the time-accurate solution of the laminar, unsteady, compressible, full Navier-Stokes equations with the implicit, upwind, Roe flux-difference splitting, finite volume scheme. The main focus is to analyze the effects of coupled motion on the wing response and vortex breakdown flow by varying oscillation frequency and phase angle while the maximum pitch and roll amplitude is kept constant at 4.0 deg. Four cases demonstrate the following: simultaneous motion at a frequency of 1(pi), motion with a 90 deg. phase lead in pitch, motion with a rolling frequency of twice the pitching frequency, and simultaneous motion at a frequency of 2(pi). Comparisons with single mode motion at these frequencies complete this study and illustrate the effects of coupling the oscillations.

  20. Hovering hummingbird wing aerodynamics during the annual cycle. II. Implications of wing feather moult

    Science.gov (United States)

    Sapir, Nir; Elimelech, Yossef

    2018-01-01

    Birds usually moult their feathers in a particular sequence which may incur aerodynamic, physiological and behavioural implications. Among birds, hummingbirds are unique species in their sustained hovering flight. Because hummingbirds frequently hover-feed, they must maintain sufficiently high flight capacities even when moulting their flight feathers. A hummingbird wing consists of 10 primary flight feathers whose absence during moult may strongly affect wing performance. Using dynamic similarity rules, we compared time-accurate aerodynamic loads and flow field measurements over several wing geometries that follow the natural feather moult sequence of Calypte anna, a common hummingbird species in western North America. Our results suggest a drop of more than 20% in lift production during the early stages of the moult sequence in which mid-wing flight feathers are moulted. We also found that the wing's ability to generate lift strongly depended on the morphological integrity of the outer primaries and leading-edge. These findings may explain the evolution of wing morphology and moult attributes. Specifically, the high overlap between adjacent wing feathers, especially at the wing tip, and the slow sequential replacement of the wing feathers result in a relatively small reduction in wing surface area during moult with limited aerodynamic implications. We present power and efficiency analyses for hover flight during moult under several plausible scenarios, suggesting that body mass reduction could be a compensatory mechanism that preserves the energetic costs of hover flight. PMID:29515884

  1. Clap and Fling Interaction of Bristled Wings: Effects of Varying Reynolds Number and Bristle Spacing on Force Generation and Flow Structures

    Science.gov (United States)

    Kasoju, Vishwa Teja

    The smallest flying insects with body lengths under 1 mm, such as thrips and fairyflies, typically show the presence of long bristles on their wings. Thrips have been observed to use wing-wing interaction via 'clap and fling' for flapping flight at low Reynolds number (Re) on the order of 10, where a wing pair comes into close contact at the end of upstroke and fling apart at the beginning of downstroke. We examined the effects of varying the following parameters on force generation and flow structures formed during clap and fling: (1) Re ranging from 5 to 15 for a bristled wing pair (G/D = 17) and a geometrically equivalent solid wing pair; and (2) ratio of spacing between bristles to bristle diameter (G/D) for Re = 10. The G/D ratio in 70 thrips species were quantified from published forewing images. Scaled-up physical models of three bristled wing pairs of varying G/D (5, 11, 17) and a solid wing pair (G/D = 0) were fabricated. A robotic model was used for this study, in which a wing pair was immersed in an aquarium tank filled with glycerin and driven by stepper motors to execute clap and fling kinematics. Dimensionless lift and drag coefficients were determined from strain gauge measurements. Phase-locked particle image velocimetry (PIV) measurements were used to examine flow through the bristles. Chordwise PIV was used to visualize the leading edge vortex (LEV) and trailing edge vortex (TEV) formed over the wings during clap and fling. With increasing G/D, larger reduction was observed in peak drag coefficients as compared to reduction in peak lift coefficients. Net circulation, defined as the difference in circulation (strength) of LEV and TEV, diminished with increasing G/D. Reduction in net circulation resulted in reducing lift generated by bristled wings as compared to solid wings. Leaky, recirculating flow through the bristles provided large drag reduction during fling of a bristled wing pair. If flight efficiency is defined as the ratio of lift to drag

  2. Flutter analysis of hybrid metal-composite low aspect ratio trapezoidal wings in supersonic flow

    Directory of Open Access Journals (Sweden)

    Shokrollahi Saeed

    2017-02-01

    Full Text Available An effective 3D supersonic Mach box approach in combination with non-classical hybrid metal-composite plate theory has been used to investigate flutter boundaries of trapezoidal low aspect ratio wings. The wing structure is composed of two main components including aluminum material (in-board section and laminated composite material (out-board section. A global Ritz method is used with simple polynomials being employed as the trial functions. The most important objective of the present research is to study the effect of composite to metal proportion of hybrid wing structure on flutter boundaries in low supersonic regime. In addition, the effect of some important geometrical parameters such as sweep angle, taper ratio and aspect ratio on flutter boundaries were studied. The results obtained by present approach for special cases like pure metallic wings and results for high supersonic regime based on piston theory show a good agreement with those obtained by other investigators.

  3. Experimental and Computational Study of the Flow past a Simplified Geometry of an Engine/Pylon/Wing Installation at low velocity/moderate incidence flight conditions

    Science.gov (United States)

    Bury, Yannick; Lucas, Matthieu; Bonnaud, Cyril; Joly, Laurent; ISAE Team; Airbus Team

    2014-11-01

    We study numerically and experimentally the vortices that develop past a model geometry of a wing equipped with pylon-mounted engine at low speed/moderate incidence flight conditions. For such configuration, the presence of the powerplant installation under the wing initiates a complex, unsteady vortical flow field at the nacelle/pylon/wing junctions. Its interaction with the upper wing boundary layer causes a drop of aircraft performances. In order to decipher the underlying physics, this study is initially conducted on a simplified geometry at a Reynolds number of 200000, based on the chord wing and on the freestream velocity. Two configurations of angle of attack and side-slip angle are investigated. This work relies on unsteady Reynolds Averaged Navier Stokes computations, oil flow visualizations and stereoscopic Particle Image Velocimetry measurements. The vortex dynamics thus produced is described in terms of vortex core position, intensity, size and turbulent intensity thanks to a vortex tracking approach. In addition, the analysis of the velocity flow fields obtained from PIV highlights the influence of the longitudinal vortex initiated at the pylon/wing junction on the separation process of the boundary layer near the upper wing leading-edge.

  4. Radionuclide transfer onto ground surface in surface water flow, 1

    International Nuclear Information System (INIS)

    Mukai, Masayuki; Takebe, Shinichi; Komiya, Tomokazu; Kamiyama, Hideo

    1991-07-01

    Radionuclides migration in ground surface water flow is considered to be one of the important path way in the scenario for environmental migration of radionuclides leaked from low level radioactive waste repository. Simulating the slightly sloped surface on which contaminated solution is flowing downward, testing for radionuclide migration on ground surface had been started. As it's first step, an experiment was carried out under the condition of restricted infiltration in order to elucidate the adsorption behavior of radionuclides onto the loamy soil surface in related with hydraulic conditions. Radionuclides concentration change in effluent solution with time and a concentration distribution of radionuclides adsorbed on the ground surface were obtained from several experimental conditions combining the rate and the duration time of the water flow. The radionuclides concentration in the effluent solution was nearly constant during each experimental period, and was reduced under the condition of lower flow rate. The surface distribution of radionuclides concentration showed two distinctive regions. The one was near the inlet vessel where the concentration was promptly reducing, and the other was following the former where the concentration was nearly constant. The characteristic surface distribution of radionuclides concentration can be explained by a two dimensional diffusion model with a first order adsorption reaction, based on the advection of flow rate distribution in perpendicular direction. (author)

  5. Free surface flows: coalescence, spreading and dewetting

    NARCIS (Netherlands)

    Hernandez Sanchez, J.F.

    2015-01-01

    Capillary and wetting phenomena are an essential part of nature. Its presence is noticed in many circumstances where solid and liquid surfaces come into contact. In this thesis different types of capillary free surface flows are studied. The topics discussed are mainly the coalescence of viscous

  6. Comparison of analytical and experimental subsonic steady and unsteady pressure distributions for a high-aspect-ratio-supercritical wing model with oscillating control surfaces

    Science.gov (United States)

    Mccain, W. E.

    1982-01-01

    The results of a comparative study using the unsteady aerodynamic lifting surface theory, known as the Doublet Lattice method, and experimental subsonic steady- and unsteady-pressure measurements, are presented for a high-aspect-ratio supercritical wing model. Comparisons of pressure distributions due to wing angle of attack and control-surface deflections were made. In general, good correlation existed between experimental and theoretical data over most of the wing planform. The more significant deviations found between experimental and theoretical data were in the vicinity of control surfaces for both static and oscillatory control-surface deflections.

  7. Large CYBER-205-model of the Euler equations for vortex-stretched turbulent flow around Delta wings

    International Nuclear Information System (INIS)

    Rizzi, A.; Purcell, C.J.

    1985-01-01

    The large-scale numerical simulation of fluid flow is described as a discipline within the field of software engineering. As an example of such work, a vortex flow field is analyzed for its essential physical flow features, an appropriate mathematical description is presented (the Euler equations with an artificial viscosity model), a numerical algorithm to solve mathematical equations is described, and the programming methodology which allows us to attain a very high degree of vectorization on the CYBER 205 is discussed. Four simulated flowfields with vorticity shed from wing edges are computed with up to as many as one million grid points and verify the realism of the simulation model. The computed solutions show all of the qualitative features that are expected in these flows. The twisted cranked-and-cropped delta case is one where the leading-edge vortex is highly stretched and unstable, displaying ultimately inviscid large-scale turbulent-like phenomena

  8. Review of Constructed Subsurface Flow vs. Surface Flow Wetlands

    International Nuclear Information System (INIS)

    HALVERSON, NANCY

    2004-01-01

    The purpose of this document is to use existing documentation to review the effectiveness of subsurface flow and surface flow constructed wetlands in treating wastewater and to demonstrate the viability of treating effluent from Savannah River Site outfalls H-02 and H-04 with a subsurface flow constructed wetland to lower copper, lead and zinc concentrations to within National Pollutant Discharge Elimination System (NPDES) Permit limits. Constructed treatment wetlands are engineered systems that have been designed and constructed to use the natural functions of wetlands for wastewater treatment. Constructed wetlands have significantly lower total lifetime costs and often lower capital costs than conventional treatment systems. The two main types of constructed wetlands are surface flow and subsurface flow. In surface flow constructed wetlands, water flows above ground. Subsurface flow constructed wetlands are designed to keep the water level below the top of the rock or gravel media, thus minimizing human and ecological exposure. Subsurface flow wetlands demonstrate higher rates of contaminant removal per unit of land than surface flow (free water surface) wetlands, therefore subsurface flow wetlands can be smaller while achieving the same level of contaminant removal. Wetlands remove metals using a variety of processes including filtration of solids, sorption onto organic matter, oxidation and hydrolysis, formation of carbonates, formation of insoluble sulfides, binding to iron and manganese oxides, reduction to immobile forms by bacterial activity, and uptake by plants and bacteria. Metal removal rates in both subsurface flow and surface flow wetlands can be high, but can vary greatly depending upon the influent concentrations and the mass loading rate. Removal rates of greater than 90 per cent for copper, lead and zinc have been demonstrated in operating surface flow and subsurface flow wetlands. The constituents that exceed NPDES limits at outfalls H-02 a nd H

  9. Experimental and numerical analysis of the wing rock characteristics of a 'wing-body-tail' configuration

    Science.gov (United States)

    Suarez, Carlos J.; Smith, Brooke C.; Malcolm, Gerald N.

    1993-01-01

    Free-to-roll wind tunnel tests were conducted and a computer simulation exercise was performed in an effort to investigate in detail the mechanism of wing rock on a configuration that consisted of a highly-slender forebody and a 78 deg swept delta wing. In the wind tunnel test, the roll angle and wing surface pressures were measured during the wing rock motion. A limit cycle oscillation was observed for angles of attack between 22 deg and 30 deg. In general, the wind tunnel test confirmed that the main flow phenomena responsible for the wing-body-tail wing rock are the interactions between the forebody and the wing vortices. The variation of roll acceleration (determined from the second derivative of the roll angle time history) with roll angle clearly showed the energy balance necessary to sustain the limit cycle oscillation. Pressure measurements on the wing revealed the hysteresis of the wing rock process. First, second and nth order models for the aerodynamic damping were developed and examined with a one degree of freedom computer simulation. Very good agreement with the observed behavior from the wind tunnel was obtained.

  10. Polygon formation and surface flow on a rotating fluid surface

    DEFF Research Database (Denmark)

    Bergmann, Raymond; Tophøj, Laust Emil Hjerrild; Homan, T. A. M.

    2011-01-01

    We present a study of polygons forming on the free surface of a water flow confined to a stationary cylinder and driven by a rotating bottom plate as described by Jansson et al. (Phys. Rev. Lett., vol. 96, 2006, 174502). In particular, we study the case of a triangular structure, either completely...... there the symmetry breaking proceeds like a low-dimensional linear instability. We show that the circular state and the unstable manifold connecting it with the polygon solution are universal in the sense that very different initial conditions lead to the same circular state and unstable manifold. For a wet triangle......, we measure the surface flows by particle image velocimetry (PIV) and show that there are three vortices present, but that the strength of these vortices is far too weak to account for the rotation velocity of the polygon. We show that partial blocking of the surface flow destroys the polygons and re...

  11. A comparison of multicopter and fixed-wing unmanned aerial systems (UAS) applied to mapping debris flows in small alpine catchments

    Science.gov (United States)

    Sotier, Bernadette; Lechner, Veronika

    2016-04-01

    The use of unmanned aerial systems (UAS) for documenting natural hazard events (e.g. debris flows) is becoming increasingly popular, as UAS allow on-demand, flexible and cost-efficient data acquisition. In this paper, we present the results of a comparison of multicopter and fixed-wing UAS. They were employed in the summer of 2015 to map two small alpine catchments located in Western Austria, where debris flows had occurred recently: The first event took place in the Seigesbach (Tyrol), the second occurred in the Plojergraben (Salzburg). For the Seigesbach mission, a fixed-wing UAS (Multiplex Mentor), equipped with a Sony NEX5 (50 mm prime lens, 14 MP sensor resolution) was employed to acquire approximately 4,000 images. In the Plojergraben an AustroDrones X18 octocopter was used, carrying a Sony ILCE-7R (35 mm prime lens, 36 MP sensor resolution) to record 1,700 images. Both sites had a size of approximately 2km². 20 ground control points (GCP) were distributed within both catchments, and their location was measured (Trimble GeoXT, expected accuracy 0.15 m). Using standard structure-from-motion photogrammetry software (AgiSoft PhotoScan Pro, v. 1.1.6), orthophotos (5 cm ground sampling distance - GSD) and digital surface models (DSM) (20 cm GSD) were calculated. Volume differences caused by the debris flow (i.e. deposition heights and erosion depths) computed by subtracting post-event from pre-event DSMs. Even though the terrain conditions in the two catchments were comparable, the challenges during the field campaign and the evaluation of the aerial images were very different. The main difference between the two campaigns was the number of flights required to cover the catchment: only four were needed by the fixed-wing UAS, while the multicopter required eleven in the Plojergraben. The fixed-wing UAS is specially designed for missions in hardly accessible regions, requiring only two people to carry the whole equipment, while in this case a car was needed for the

  12. Surface roughness effects on turbulent Couette flow

    Science.gov (United States)

    Lee, Young Mo; Lee, Jae Hwa

    2017-11-01

    Direct numerical simulation of a turbulent Couette flow with two-dimensional (2-D) rod roughness is performed to examine the effects of the surface roughness. The Reynolds number based on the channel centerline laminar velocity (Uco) and channel half height (h) is Re =7200. The 2-D rods are periodically arranged with a streamwise pitch of λ = 8 k on the bottom wall, and the roughness height is k = 0.12 h. It is shown that the wall-normal extent for the logarithmic layer is significantly shortened in the rough-wall turbulent Couette flow, compared to a turbulent Couette flow with smooth wall. Although the Reynolds stresses are increased in a turbulent channel flow with surface roughness in the outer layer due to large-scale ejection motions produced by the 2-D rods, those of the rough-wall Couette flow are decreased. Isosurfaces of the u-structures averaged in time suggest that the decrease of the turbulent activity near the centerline is associated with weakened large-scale counter-rotating roll modes by the surface roughness. This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A09000537) and the Ministry of Science, ICT & Future Planning (NRF-2017R1A5A1015311).

  13. Transonic steady- and unsteady-pressure measurements on a high-aspect-ratio supercritical-wing model with oscillating control surfaces

    Science.gov (United States)

    Sandford, M. C.; Ricketts, R. H.; Cazier, F. W., Jr.

    1980-01-01

    A supercritical wing with an aspect ratio of 10.76 and with two trailing-edge oscillating control surfaces is described. The semispan wing is instrumented with 252 static orifices and 164 in situ dynamic-pressure gages for studying the effects of control-surface position and motion on steady- and unsteady-pressures at transonic speeds. Results from initial tests conducted in the Langley Transonic Dynamics Tunnel at two Reynolds numbers are presented in tabular form.

  14. Surface-acoustic-wave (SAW) flow sensor

    Science.gov (United States)

    Joshi, Shrinivas G.

    1991-03-01

    The use of a surface-acoustic-wave (SAW) device to measure the rate of gas flow is described. A SAW oscillator heated to a suitable temperature above ambient is placed in the path of a flowing gas. Convective cooling caused by the gas flow results in a change in the oscillator frequency. A 73-MHz oscillator fabricated on 128 deg rotated Y-cut lithium niobate substrate and heated to 55 C above ambient shows a frequency variation greater than 142 kHz for flow-rate variation from 0 to 1000 cu cm/min. The output of the sensor can be calibrated to provide a measurement of volume flow rate, pressure differential across channel ports, or mass flow rate. High sensitivity, wide dynamic range, and direct digital output are among the attractive features of this sensor. Theoretical expressions for the sensitivity and response time of the sensor are derived. It is shown that by using ultrasonic Lamb waves propagating in thin membranes, a flow sensor with faster response than a SAW sensor can be realized.

  15. POD Analysis of Flow Behind a Four-wing Vortex Generator

    Science.gov (United States)

    Hosseinali, Mahdi; Wilkins, Stephen; Hall, Joseph

    2015-11-01

    Wing-tip vortices that persist long after the passage of large aircraft are of major concern to aircraft controllers and are responsible for considerable delays between aircraft take-off times. Understanding these vortices is extremely important, with the ultimate goal to reduce or eliminate delays altogether. Simple theoretical models of vortices can be studied experimentally using a four-wing vortex generator. The cross-stream planes are measured with a two-component Particle Image Velocimetry (PIV) system, and the resulting vector fields were analyzed with a Proper Orthogonal Decomposition (POD) via the method of snapshots. POD analysis will be employed both before and after removing vortex core meandering to investigate the meandering effect on POD modes for a better understanding of it.

  16. Turbulent flow simulations around the front wing of a racing car

    OpenAIRE

    Liang, Chen

    2010-01-01

    Aerodynamics has played a more and more important role in motorsports for maximising the race car performance. Amongst all the aerodynamic devices of race car, the front wing plays a vital role. In order to evaluate aerodynamic forces and develop new solutions for the race car, Computational Fluid Dynamics (CFD) has become a powerful tool. The most classical numerical simulations are based on solving the Reynolds Averaged Navier-Stokes (RANS) equations. In this project, the ...

  17. Variable Camber Continuous Aerodynamic Control Surfaces and Methods for Active Wing Shaping Control

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor)

    2016-01-01

    An aerodynamic control apparatus for an air vehicle improves various aerodynamic performance metrics by employing multiple spanwise flap segments that jointly form a continuous or a piecewise continuous trailing edge to minimize drag induced by lift or vortices. At least one of the multiple spanwise flap segments includes a variable camber flap subsystem having multiple chordwise flap segments that may be independently actuated. Some embodiments also employ a continuous leading edge slat system that includes multiple spanwise slat segments, each of which has one or more chordwise slat segment. A method and an apparatus for implementing active control of a wing shape are also described and include the determination of desired lift distribution to determine the improved aerodynamic deflection of the wings. Flap deflections are determined and control signals are generated to actively control the wing shape to approximate the desired deflection.

  18. Are atmospheric surface layer flows ergodic?

    Science.gov (United States)

    Higgins, Chad W.; Katul, Gabriel G.; Froidevaux, Martin; Simeonov, Valentin; Parlange, Marc B.

    2013-06-01

    The transposition of atmospheric turbulence statistics from the time domain, as conventionally sampled in field experiments, is explained by the so-called ergodic hypothesis. In micrometeorology, this hypothesis assumes that the time average of a measured flow variable represents an ensemble of independent realizations from similar meteorological states and boundary conditions. That is, the averaging duration must be sufficiently long to include a large number of independent realizations of the sampled flow variable so as to represent the ensemble. While the validity of the ergodic hypothesis for turbulence has been confirmed in laboratory experiments, and numerical simulations for idealized conditions, evidence for its validity in the atmospheric surface layer (ASL), especially for nonideal conditions, continues to defy experimental efforts. There is some urgency to make progress on this problem given the proliferation of tall tower scalar concentration networks aimed at constraining climate models yet are impacted by nonideal conditions at the land surface. Recent advancements in water vapor concentration lidar measurements that simultaneously sample spatial and temporal series in the ASL are used to investigate the validity of the ergodic hypothesis for the first time. It is shown that ergodicity is valid in a strict sense above uniform surfaces away from abrupt surface transitions. Surprisingly, ergodicity may be used to infer the ensemble concentration statistics of a composite grass-lake system using only water vapor concentration measurements collected above the sharp transition delineating the lake from the grass surface.

  19. Comparison of Experimental Surface and Flow Field Measurements to Computational Results of the Juncture Flow Model

    Science.gov (United States)

    Roozeboom, Nettie H.; Lee, Henry C.; Simurda, Laura J.; Zilliac, Gregory G.; Pulliam, Thomas H.

    2016-01-01

    Wing-body juncture flow fields on commercial aircraft configurations are challenging to compute accurately. The NASA Advanced Air Vehicle Program's juncture flow committee is designing an experiment to provide data to improve Computational Fluid Dynamics (CFD) modeling in the juncture flow region. Preliminary design of the model was done using CFD, yet CFD tends to over-predict the separation in the juncture flow region. Risk reduction wind tunnel tests were requisitioned by the committee to obtain a better understanding of the flow characteristics of the designed models. NASA Ames Research Center's Fluid Mechanics Lab performed one of the risk reduction tests. The results of one case, accompanied by CFD simulations, are presented in this paper. Experimental results suggest the wall mounted wind tunnel model produces a thicker boundary layer on the fuselage than the CFD predictions, resulting in a larger wing horseshoe vortex suppressing the side of body separation in the juncture flow region. Compared to experimental results, CFD predicts a thinner boundary layer on the fuselage generates a weaker wing horseshoe vortex resulting in a larger side of body separation.

  20. Free surface flows under compensated gravity conditions

    CERN Document Server

    Dreyer, Miachel E

    2007-01-01

    This book considers the behavior of fluids in a low-gravity environment with special emphasis on application in PMD (propellant management device) systems . In the compensated gravity environment of a spacecraft, the hydrostatic pressure decreases to very low values depending on the residual acceleration, and surface tension forces become dominant. Consequently, surface tension can be used to transport and position liquids if the residual acceleration and the resulting hydrostatic pressure are small compared to the capillary pressure. One prominent application is the use of PMDs in surface-tension satellite tanks. PMDs must ensure that the tank outlet is covered with liquid whenever outflow is demanded. Furthermore, PMDs are used to ensure expulsion and refilling of tanks for liquids and gases for life support, reactants, and experiment supplies. Since most of the PMD designs are not testable on ground and thus rely on analytical or numerical concepts, this book treats three different flow problems with analy...

  1. Surface Effects on Nanoscale Gas Flows

    Science.gov (United States)

    Beskok, Ali; Barisik, Murat

    2010-11-01

    3D MD simulations of linear Couette flow of argon gas confined within nano-scale channels are performed in the slip, transition and free molecular flow regimes. The velocity and density profiles show deviations from the kinetic theory based predictions in the near wall region that typically extends three molecular diameters (s) from each surface. Utilizing the Irwin-Kirkwood theorem, stress tensor components for argon gas confined in nano-channels are investigated. Outside the 3s region, three normal stress components are identical, and equal to pressure predicted using the ideal gas law, while the shear stress is a constant. Within the 3s region, the normal stresses become anisotropic and the shear stress shows deviations from its bulk value due to the surface virial effects. Utilizing the kinetic theory and MD predicted shear stress values, the tangential momentum accommodation coefficient for argon gas interacting with FCC structured walls (100) plane facing the fluid is calculated to be 0.75; this value is independent of the Knudsen number. Results show emergence of the 3s region as an additional characteristic length scale in nano-confined gas flows.

  2. AFM study of structure influence on butterfly wings coloration

    OpenAIRE

    Dallaeva, Dinara; Tománek, Pavel

    2012-01-01

    This study describes the structural coloration of the butterfly Vanessa Atalanta wings and shows how the atomic force microscopy (AFM) can be applied to the study of wings morphology and wings surface behavior under the temperature. The role of the wings morphology in colors was investigated. Different colors of wings have different topology and can be identified by them. AFM in semi-contact mode was used to study the wings surface. The wing surface area, which is close to the butterfly body,...

  3. A new unified approach for analyzing wing-body-tail configurations with control surfaces

    Science.gov (United States)

    Tseng, K.; Morino, L.

    1976-01-01

    A general theory for steady and unsteady, subsonic and supersonic potential aerodynamics for complex configurations is presented. Special attention is given to the theoretical formulation and the corresponding numerical implementation for coplanar interfering surfaces. Applying the Green's function method to the equation of the velocity potential and discretizing the spatial problem by using the finite-element technique, yields a set of differential-delay equations in time relating the potential to the normal wash. For fully unsteady flow, the motion is assumed to consist of constant subsonic or supersonic speed for time t less than or equal to 0 (steady state) and of small perturbations around the steady state for time t greater than 0; the solution is obtained in the Laplace domain. From the potential, the aerodynamic pressure and the generalized forces are evaluated. The program SOUSSA (Steady, Oscillatory and Unsteady Subsonic and Supersonic Aerodynamics) is briefly described. Numerical results obtained with SOUSSA are presented.

  4. Wind tunnel investigation of the interaction and breakdown characteristics of slender wing vortices at subsonic, transonic, and supersonic speeds

    Science.gov (United States)

    Erickson, Gary E.

    1991-01-01

    The vortex dominated aerodynamic characteristics of a generic 65 degree cropped delta wing model were studied in a wind tunnel at subsonic through supersonic speeds. The lee-side flow fields over the wing-alone configuration and the wing with leading edge extension (LEX) added were observed at M (infinity) equals 0.40 to 1.60 using a laser vapor screen technique. These results were correlated with surface streamline patterns, upper surface static pressure distributions, and six-component forces and moments. The wing-alone exhibited vortex breakdown and asymmetry of the breakdown location at the subsonic and transonic speeds. An earlier onset of vortex breakdown over the wing occurred at transonic speeds due to the interaction of the leading edge vortex with the normal shock wave. The development of a shock wave between the vortex and wing surface caused an early separation of the secondary boundary layer. With the LEX installed, wing vortex breakdown asymmetry did not occur up to the maximum angle of attack in the present test of 24 degrees. The favorable interaction of the LEX vortex with the wing flow field reduced the effects of shock waves on the wing primary and secondary vortical flows. The direct interaction of the wing and LEX vortex cores diminished with increasing Mach number. The maximum attainable vortex-induced pressure signatures were constrained by the vacuum pressure limit at the transonic and supersonic speeds.

  5. Aeroelasticity of morphing wings using neural networks

    Science.gov (United States)

    Natarajan, Anand

    In this dissertation, neural networks are designed to effectively model static non-linear aeroelastic problems in adaptive structures and linear dynamic aeroelastic systems with time varying stiffness. The use of adaptive materials in aircraft wings allows for the change of the contour or the configuration of a wing (morphing) in flight. The use of smart materials, to accomplish these deformations, can imply that the stiffness of the wing with a morphing contour changes as the contour changes. For a rapidly oscillating body in a fluid field, continuously adapting structural parameters may render the wing to behave as a time variant system. Even the internal spars/ribs of the aircraft wing which define the wing stiffness can be made adaptive, that is, their stiffness can be made to vary with time. The immediate effect on the structural dynamics of the wing, is that, the wing motion is governed by a differential equation with time varying coefficients. The study of this concept of a time varying torsional stiffness, made possible by the use of active materials and adaptive spars, in the dynamic aeroelastic behavior of an adaptable airfoil is performed here. Another type of aeroelastic problem of an adaptive structure that is investigated here, is the shape control of an adaptive bump situated on the leading edge of an airfoil. Such a bump is useful in achieving flow separation control for lateral directional maneuverability of the aircraft. Since actuators are being used to create this bump on the wing surface, the energy required to do so needs to be minimized. The adverse pressure drag as a result of this bump needs to be controlled so that the loss in lift over the wing is made minimal. The design of such a "spoiler bump" on the surface of the airfoil is an optimization problem of maximizing pressure drag due to flow separation while minimizing the loss in lift and energy required to deform the bump. One neural network is trained using the CFD code FLUENT to

  6. Aerodynamic characteristics of a wing near its tip using panel method. Panel ho ni yoru tandokuyoku yokutan fukin no kuryoku tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J [Nagoya University, Nagoya (Japan); Sugiyama, Y [Nagoya University, Nagoya (Japan). Faculty of Engineering

    1992-01-05

    The study described in this paper is intended to evaluate the aerodynamic characteristics of a turbo machine wing or an aircraft wing near its tip, using the panel method. The paper describes the case of a rectangular wing with a large aspect ratio. The introduced linear simultaneous equation was solved using a computer, and compared with the experimental result. The result may be summarized as follows: The distribution of pressure on the wing near its tip using the panel method takes the same shape as that for the experimental result; the negative pressure calculated close to the wing's trailing edge near the wing tip is a result of a three-dimensional effect of the flow along the wing width; the calculation and the experiment showed an increase in local lift coefficient and locally induced resistance coefficient in the vicinity of wing tip; the speed component in the y'' direction explains the structure of the wing surface velocity forming wing backwash vortex given by the lift linearity theory; and the result of calculation on the pressure distribution in the wing chord direction near the wing tip is very close to the experimental result except for the wing flank in the close vicinity of the wing tip upstream of the wing chord middle point. 11 refs., 13 figs.

  7. Mean flow characteristics of two-dimensional wings in ground effect

    Directory of Open Access Journals (Sweden)

    Jae Hwan Jung

    2012-06-01

    Full Text Available The present study numerically investigates the aerodynamic characteristics of two-dimensional wings in the vicinity of the ground by solving two-dimensional steady incompressible Navier-Stokes equations with the turbulence closure model of the realizable k-ε model. Numerical simulations are performed at a wide range of the normalized ground clearance by the chord length (0.1≤h/C ≤ 1.25 for the angles of attack (0° ≤ α ≤ 10° in the pre-stall regime at a Reynolds number (Re of 2×106 based on free stream velocity U∞ and the chord length. As the physical model of this study, a cambered airfoil of NACA 4406 has been selected by a performance test for various airfoils. The maximum lift-to-drag ratio is achieved at α = 4° and h/C = 0.1. Under the conditions of α = 4° and h/C = 0.1, the effect of the Reynolds number on the aerodynamic characteristics of NACA 4406 is investigated in the range of 2× 10 5 ≤ Re ≤ 2× 109. As Re increases, Cl and Cd augments and decreases, respectively, and the lift-to-drag ratio increases linearly.

  8. A further note on the force discrepancy for wing theory in Euler flow

    Indian Academy of Sciences (India)

    The Euler equations use the assumption that the fluid does not impart any resistance ... viscosity, the kinetic energy associated with these flow fields is now bounded, ..... Combining all the results together from Appendices B, C and D we get.

  9. Time Accurate Euler Calculations of Vortical Flow over a Delta Wing in Rolling Motion

    National Research Council Canada - National Science Library

    Fritz, W

    2003-01-01

    .... An important component of the program were the Common Exercises (CE), which promoted the exchange of knowledge between the participating nations and aided the development of computational methods to predict vortical flows...

  10. The evaluation of hierarchical structured superhydrophobic coatings for the alleviation of insect residue to aircraft laminar flow surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kok, Mariana [Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick, Limerick (Ireland); Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Young, Trevor M., E-mail: Trevor.Young@ul.ie [Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick, Limerick (Ireland); Materials and Surface Science Institute, University of Limerick, Limerick (Ireland)

    2014-09-30

    Surface contamination caused by insects on laminar flow wing surfaces causes a disruption of the flow, resulting in an increase in drag and fuel consumption. Consequently, the use of superhydrophobic coatings to mitigate insect residue adhesion was investigated. A range of hierarchical superhydrophobic coatings with different surface chemistry and topography was examined. Candidate coatings were characterized in terms of their morphology and hydrophobic properties by scanning electron microscopy (SEM) and static and dynamic contact angle measurements, respectively. Arithmetic mean surface roughness (R{sub a}) values were measured using profilometry. Only superhydrophobic coatings with a specific topography showed complete mitigation against insect residue adhesion. A surface which exhibited a specific microstructure (R{sub a} = 5.26 μm) combined with a low sliding angle (SA = 7.6°) showed the best anti-contamination properties. The dynamics of an insect impact event and its influence on the wetting and adhesion mechanisms of insect residue to a surface were discussed.

  11. Preliminary Axial Flow Turbine Design and Off-Design Performance Analysis Methods for Rotary Wing Aircraft Engines. Part 2; Applications

    Science.gov (United States)

    Chen, Shu-cheng, S.

    2009-01-01

    In this paper, preliminary studies on two turbine engine applications relevant to the tilt-rotor rotary wing aircraft are performed. The first case-study is the application of variable pitch turbine for the turbine performance improvement when operating at a substantially lower shaft speed. The calculations are made on the 75 percent speed and the 50 percent speed of operations. Our results indicate that with the use of the variable pitch turbines, a nominal (3 percent (probable) to 5 percent (hypothetical)) efficiency improvement at the 75 percent speed, and a notable (6 percent (probable) to 12 percent (hypothetical)) efficiency improvement at the 50 percent speed, without sacrificing the turbine power productions, are achievable if the technical difficulty of turning the turbine vanes and blades can be circumvented. The second casestudy is the contingency turbine power generation for the tilt-rotor aircraft in the One Engine Inoperative (OEI) scenario. For this study, calculations are performed on two promising methods: throttle push and steam injection. By isolating the power turbine and limiting its air mass flow rate to be no more than the air flow intake of the take-off operation, while increasing the turbine inlet total temperature (simulating the throttle push) or increasing the air-steam mixture flow rate (simulating the steam injection condition), our results show that an amount of 30 to 45 percent extra power, to the nominal take-off power, can be generated by either of the two methods. The methods of approach, the results, and discussions of these studies are presented in this paper.

  12. Aerodynamic control of NASP-type vehicles through vortex manipulation. Volume 3: Wing rock experiments

    Science.gov (United States)

    Suarez, Carlos J.; Smith, Brooke C.; Kramer, Brian R.; Ng, T. Terry; Ong, Lih-Yenn; Malcolm, Gerald N.

    1993-01-01

    Free-to-roll tests were conducted in water and wind tunnels in an effort to investigate the mechanisms of wing rock on a NASP-type vehicle. The configuration tested consisted of a highly-slender forebody and a 78 deg swept delta wing. In the water tunnel test, extensive flow visualization was performed and roll angle histories were obtained. In the wind tunnel test, the roll angle, forces and moments, and limited forebody and wing surface pressures were measured during the wing rock motion. A limit cycle oscillation was observed for angles of attack between 22 deg and 30 deg. In general, the experiments confirmed that the main flow phenomena responsible for the wing-body-tail wing rock are the interactions between the forebody and the wing vortices. The variation of roll acceleration (determined from the second derivative of the roll angle time history) with roll angle clearly slowed the energy balance necessary to sustain the limit cycle oscillation. Different means of suppressing wing rock by controlling the forebody vortices using small blowing jets were also explored. Steady blowing was found to be capable of suppressing wing rock, but significant vortex asymmetrices are created, causing the model to stop at a non-zero roll angle. On the other hand, alternating pulsed blowing on the left and right sides of the fore body was demonstrated to be a potentially effective means of suppressing wing rock and eliminating large asymmetric moments at high angles of attack.

  13. Flow Field Analysis of Fully Coupled Computations of a Flexible Wing undergoing Stall Flutter

    Science.gov (United States)

    2016-01-01

    Actuators for Active Flow Control,” Ann. Rev. Fluid Mech., Vol. 43, 2011, pp. 247–272. 10 Morton, S. A., McDaniel, D. R., Sears , D. R., Tillman, B., and... Sears , D. A., Tillmann, B., and Tuckey, T. R., “Rigid, Maneuvering, and Aeroelastic Results for Kestrel - A CREATE Simulation Tool,” AIAA Paper 2010-1233

  14. Experimental Surface Pressure Data Obtained on 65 deg Delta Wing Across Reynolds Number and Mach Number Ranges. Volume 2; Small-Radius Leading Edge

    Science.gov (United States)

    Chu, Julio; Luckring, James M.

    1996-01-01

    An experimental wind tunnel test of a 65 deg. delta wing model with interchangeable leading edges was conducted in the Langley National Transonic Facility (NTF). The objective was to investigate the effects of Reynolds and Mach numbers on slender-wing leading-edge vortex flows with four values of wing leading-edge bluntness. Experimentally obtained pressure data are presented without analysis in tabulated and graphical formats across a Reynolds number range of 6 x 10(exp 6) to 84 x 10(exp 6) at a Mach number of 0.85 and across a Mach number range of 0.4 to 0.9 at Reynolds numbers of 6 x 10(exp 6) and 60 x 10(exp 6). Normal-force and pitching-moment coefficient plots for these Reynolds number and Mach number ranges are also presented.

  15. Calculations of the flow past bluff bodies, including tilt-rotor wing sections at alpha = 90 deg

    Science.gov (United States)

    Raghavan, V.; Mccroskey, W. J.; Baeder, J. D.; Van Dalsem, W. R.

    1990-01-01

    An attempt was made to model in two dimensions the effects of rotor downwash on the wing of the tilt-rotor aircraft and to compute the drag force on airfoils at - 90 deg angle of attack, using a well-established Navier-Stokes code. However, neither laminar nor turbulent calculations agreed well with drag and base-pressure measurements at high Reynolds numbers. Therefore, further efforts were concentrated on bluff-body flows past various shapes at low Reynolds numbers, where a strong vortex shedding is observed. Good results were obtained for a circular cylinder, but the calculated drag of a slender ellipse at right angles to the freestream was significantly higher than experimental values reported in the literature for flat plates. Similar anomalous results were obtained on the tilt-rotor airfoils, although the qualitative effects of flap deflection agreed with the wind tunnel data. The ensemble of results suggest that there may be fundamental differences in the vortical wakes of circular cylinders and noncircular bluff bodies.

  16. An Experimental Investigation of the Flow Past an Idealized Wing-Body Junction

    Science.gov (United States)

    1990-07-01

    kilooras per meter cubed) x 1.120746 viscosity ( oeters squired per second) a !.63427SE-35 Atmospheric pressure (Pascals) ’: 95575 Velocity of...per oeter cubed) =1.106 viscosity (Neters squared per second) =1.65237E-05 Ataospheric pressure (Pascals) = 94000 Velocity of undisturbed free streac...system of the laser anemometer Flow tetoerature (degrees centigrade) =24.6 density (kilograms per Peter cubed) =1.105086 visa-sity ( oeters scuarec ner

  17. Boundary Layer Transition, Separation and Flow Control on Airfoils, Wings and Bodies in CFD, Wind-Tunnel and In-Flight Studies

    Czech Academy of Sciences Publication Activity Database

    Popelka, Lukáš; Matějka, M.; Šimurda, David; Součková, Natálie

    2011-01-01

    Roč. 35, č. 4 (2011), s. 97-104 ISSN 0744-8996 R&D Projects: GA MŠk(CZ) 1M06031; GA AV ČR IAA2076403; GA ČR GA101/08/1112 Institutional research plan: CEZ:AV0Z20760514 Keywords : airfoil * wing-fuselage interaction * flow control Subject RIV: BK - Fluid Dynamics

  18. Method for solving an inverse problem of wing type by using a simple panel method; Kanbenna panel ho ni yoru yokugata gyaku mondai no ichikaiho

    Energy Technology Data Exchange (ETDEWEB)

    Ando, J; Matsumoto, D; Maita, S; Nakatake, K [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1997-10-01

    This paper describes one method for solving an inverse problem of wing type based on the source and quasi continuous vortex lattice method (SQCM) in designing marine propellers and underwater wings. With the SQCM, vortices and control points are distributed on wing camber according to the QCM, and wing surface is divided into certain number of panels. This is the method to decide vortex intensity and blow-out intensity simultaneously from the condition that vertical speed on the camber and the wing surface is zero, upon having distributed blow-out with certain intensity inside the panel. The method solves the inverse problem with the following process: specific point distribution is so determined that the targeted velocity on the wing surface is satisfied when wing surface pressure distribution and uniform flow velocity are given; and then the panels are so rearranged as in parallel with direction of the flow on the surface of the wing calculated by using these specific points to derive the targeted wing shape. This paper describes the problem solving procedure in great detail. It also introduces examples of numerical calculations. It shows one method for solving the inverse problem in wing type using the SQCM as a simple panel method, whereas its good convergence and stability were verified. Considerations on effects of free surface and expansion of the method into three-dimensional problems will be implemented in the future. 11 refs., 8 figs.

  19. Surface roughness influences on the behaviour of flow inside microchannels

    Science.gov (United States)

    Farias, M. H.; Castro, C. S.; Garcia, D. A.; Henrique, J. S.

    2018-03-01

    This work discusses influence of the surface roughness on the behavior of liquids flowing inside microchannels. By measuring the flow profile using the micro-PIV technique, the flow of water inside two rectangular microchannels of different wall roughness and in a circular smooth microchannel was studied. Comparisons were made among the experimental results, showing that a metrological approach concerning surface characteristics of microdevices is required to ensure reliability of the measurements for flow analyses in microfluidic processes.

  20. Wing Tip Drag Reduction at Nominal Take-Off Mach Number: An Approach to Local Active Flow Control with a Highly Robust Actuator System

    Directory of Open Access Journals (Sweden)

    Matthias Bauer

    2016-10-01

    Full Text Available This paper discusses wind tunnel test results aimed at advancing active flow control technology to increase the aerodynamic efficiency of an aircraft during take-off. A model of the outer section of a representative civil airliner wing was equipped with two-stage fluidic actuators between the slat edge and wing tip, where mechanical high-lift devices fail to integrate. The experiments were conducted at a nominal take-off Mach number of M = 0.2. At this incidence velocity, separation on the wing section, accompanied by increased drag, is triggered by the strong slat edge vortex at high angles of attack. On the basis of global force measurements and local static pressure data, the effect of pulsed blowing on the complex flow is evaluated, considering various momentum coefficients and spanwise distributions of the actuation effort. It is shown that through local intensification of forcing, a momentum coefficient of less than c μ = 0.6 % suffices to offset the stall by 2.4°, increase the maximum lift by more than 10% and reduce the drag by 37% compared to the uncontrolled flow.

  1. Flow analysis of vortex generators on wing sections by stereoscopic particle image velocimetry measurements

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Hansen, Martin Otto Laver; Cavar, Dalibor

    2008-01-01

    a wind turbine blade. The low Reynolds number is chosen on the basis that this is a fundamental investigation of the structures of the flow induced by vortex generators and the fact that one obtains a thicker boundary layer and larger structures evoked by the actuating devices, which are easier...... generators are applied. The idea behind the experiments is that the results will be offered for validation of modeling of the effect of vortex generators using various numerical codes. Initial large eddy simulation (LES) computations have been performed that show the same qualitative behaviour...

  2. Aerodynamic Modeling of Oscillating Wing in Hypersonic Flow: a Numerical Study

    Science.gov (United States)

    Zhu, Jian; Hou, Ying-Yu; Ji, Chen; Liu, Zi-Qiang

    2016-06-01

    Various approximations to unsteady aerodynamics are examined for the unsteady aerodynamic force of a pitching thin double wedge airfoil in hypersonic flow. Results of piston theory, Van Dyke’s second-order theory, Newtonian impact theory, and CFD method are compared in the same motion and Mach number effects. The results indicate that, for this thin double wedge airfoil, Newtonian impact theory is not suitable for these Mach number, while piston theory and Van Dyke’s second-order theory are in good agreement with CFD method for Ma<7.

  3. Viscous flows stretching and shrinking of surfaces

    CERN Document Server

    Mehmood, Ahmer

    2017-01-01

    This authored monograph provides a detailed discussion of the boundary layer flow due to a moving plate. The topical focus lies on the 2- and 3-dimensional case, considering axially symmetric and unsteady flows. The author derives a criterion for the self-similar and non-similar flow, and the turbulent flow due to a stretching or shrinking sheet is also discussed. The target audience primarily comprises research experts in the field of boundary layer flow, but the book will also be beneficial for graduate students.

  4. Genetic toxicity in surface water from Guaiba Hydrographic Region under the influence of industrial, urban and agricultural sewage in the Drosophila Wing-Spot Test

    International Nuclear Information System (INIS)

    Souza do Amaral, Viviane; Sinigaglia, Marialva; Reguly, Maria Luiza; Rodrigues de Andrade, Heloisa Helena

    2006-01-01

    Mutagenic and recombinagenic activity of surface waters in the Guaiba Hydrographic Region (RS, Brazil) was investigated using the SMART in Drosophila melanogaster. Two positive results in Cai River (September 2000 and August 2001) and in Taquari River (August 2001 and February 2002) - linked to direct recombinagenic toxicants were observed. In Jacui samples, an indirect mutagenic and recombinagenic action was detected in a September 2000 collection and a direct recombinational activity was observed in February 2002. Also in February 2002 - samples from Diluvio Brook and Guaiba Lake (GPC) were able to induce wing spots by mitotic recombinagenesis. The former sampling site showed toxicants to have a direct action, and the latter an increment in mitotic recombination that depended on metabolic action. The SMART wing test shows that all positive responses were mainly related to homologous mitotic recombination. - Drosophila Wing-Spot Test can be used for detection of environmental mutagenesis

  5. Surface flow in severe plastic deformation of metals by sliding

    International Nuclear Information System (INIS)

    Mahato, A; Yeung, H; Chandrasekar, S; Guo, Y

    2014-01-01

    An in situ study of flow in severe plastic deformation (SPD) of surfaces by sliding is described. The model system – a hard wedge sliding against a metal surface – is representative of surface conditioning processes typical of manufacturing, and sliding wear. By combining high speed imaging and image analysis, important characteristics of unconstrained plastic flow inherent to this system are highlighted. These characteristics include development of large plastic strains on the surface and in the subsurface by laminar type flow, unusual fluid-like flow with vortex formation and surface folding, and defect and particle generation. Preferred conditions, as well as undesirable regimes, for surface SPD are demarcated. Implications for surface conditioning in manufacturing, modeling of surface deformation and wear are discussed

  6. High-performance flexible surface-enhanced Raman scattering substrates fabricated by depositing Ag nanoislands on the dragonfly wing

    Science.gov (United States)

    Wang, Yuhong; Wang, Mingli; Shen, Lin; Sun, Xin; Shi, Guochao; Ma, Wanli; Yan, Xiaoya

    2018-04-01

    Natural dragonfly wing (DW), as a template, was deposited on noble metal sliver (Ag) nanoislands by magnetron sputtering to fabricate a flexible, low-cost, large-scale and environment-friendly surface-enhanced Raman scattering (SERS) substrate (Ag/DW substrate). Generally, materials with regular surface nanostructures are chosen for the templates, the selection of our new material with irregular surface nanostructures for substrates provides a new idea for the preparation of high-performance SERS-active substrates and many biomimetic materials. The optimum sputtering time of metal Ag was also investigated at which the prepared SERS-active substrates revealed remarkable SERS activities to 4-aminothiophenol (4-ATP) and crystal violet (CV). Even more surprisingly, the Ag/DW substrate with such an irregular template had reached the enhancement factor (EF) of ∼1.05 × 105 and the detection limit of 10-10 M to 4-ATP. The 3D finite-different time-domain (3D-FDTD) simulation illustrated that the "hot spots" between neighbouring Ag nanoislands at the top of pillars played a most important role in generating electromagnetic (EM) enhancement and strengthening Raman signals.

  7. New advection schemes for free surface flows

    International Nuclear Information System (INIS)

    Pavan, Sara

    2016-01-01

    The purpose of this thesis is to build higher order and less diffusive schemes for pollutant transport in shallow water flows or 3D free surface flows. We want robust schemes which respect the main mathematical properties of the advection equation with relatively low numerical diffusion and apply them to environmental industrial applications. Two techniques are tested in this work: a classical finite volume method and a residual distribution technique combined with a finite element method. For both methods we propose a decoupled approach since it is the most advantageous in terms of accuracy and CPU time. Concerning the first technique, a vertex-centred finite volume method is used to solve the augmented shallow water system where the numerical flux is computed through an Harten-Lax-Van Leer-Contact Riemann solver. Starting from this solution, a decoupled approach is formulated and is preferred since it allows to compute with a larger time step the advection of a tracer. This idea was inspired by Audusse, E. and Bristeau, M.O. [13]. The Monotonic Upwind Scheme for Conservation Law, combined with the decoupled approach, is then used for the second order extension in space. The wetting and drying problem is also analysed and a possible solution is presented. In the second case, the shallow water system is entirely solved using the finite element technique and the residual distribution method is applied to the solution of the tracer equation, focusing on the case of time-dependent problems. However, for consistency reasons the resolution of the continuity equation must be considered in the numerical discretization of the tracer. In order to get second order schemes for unsteady cases a predictor-corrector scheme is used in this work. A first order but less diffusive version of the predictor-corrector scheme is also introduced. Moreover, we also present a new locally semi-implicit version of the residual distribution method which, in addition to good properties in

  8. A Level Set Discontinuous Galerkin Method for Free Surface Flows

    DEFF Research Database (Denmark)

    Grooss, Jesper; Hesthaven, Jan

    2006-01-01

    We present a discontinuous Galerkin method on a fully unstructured grid for the modeling of unsteady incompressible fluid flows with free surfaces. The surface is modeled by embedding and represented by a levelset. We discuss the discretization of the flow equations and the level set equation...

  9. Local grid refinement for free-surface flow simulations

    NARCIS (Netherlands)

    van der Plas, Peter

    2017-01-01

    The principal goal of the current study is to explore and investigate the potential of local grid refinement for increasing the numerical efficiency of free-surface flow simulations in a practical context. In this thesis we propose a method for local grid refinement in the free-surface flow model

  10. Transient disturbance growth in flows over convex surfaces

    Science.gov (United States)

    Karp, Michael; Hack, M. J. Philipp

    2017-11-01

    Flows over curved surfaces occur in a wide range of applications including airfoils, compressor and turbine vanes as well as aerial, naval and ground vehicles. In most of these applications the surface has convex curvature, while concave surfaces are less common. Since monotonic boundary-layer flows over convex surfaces are exponentially stable, they have received considerably less attention than flows over concave walls which are destabilized by centrifugal forces. Non-modal mechanisms may nonetheless enable significant disturbance growth which can make the flow susceptible to secondary instabilities. A parametric investigation of the transient growth and secondary instability of flows over convex surfaces is performed. The specific conditions yielding the maximal transient growth and strongest instability are identified. The effect of wall-normal and spanwise inflection points on the instability process is discussed. Finally, the role and significance of additional parameters, such as the geometry and pressure gradient, is analyzed.

  11. Influence of slip-surface geometry on earth-flow deformation, Montaguto earth flow, southern Italy

    Science.gov (United States)

    Guerriero, L.; Coe, Jeffrey A.; Revellio, P.; Grelle, G.; Pinto, F.; Guadagno, F.

    2016-01-01

    We investigated relations between slip-surface geometry and deformational structures and hydrologic features at the Montaguto earth flow in southern Italy between 1954 and 2010. We used 25 boreholes, 15 static cone-penetration tests, and 22 shallow-seismic profiles to define the geometry of basal- and lateral-slip surfaces; and 9 multitemporal maps to quantify the spatial and temporal distribution of normal faults, thrust faults, back-tilted surfaces, strike-slip faults, flank ridges, folds, ponds, and springs. We infer that the slip surface is a repeating series of steeply sloping surfaces (risers) and gently sloping surfaces (treads). Stretching of earth-flow material created normal faults at risers, and shortening of earth-flow material created thrust faults, back-tilted surfaces, and ponds at treads. Individual pairs of risers and treads formed quasi-discrete kinematic zones within the earth flow that operated in unison to transmit pulses of sediment along the length of the flow. The locations of strike-slip faults, flank ridges, and folds were not controlled by basal-slip surface topography but were instead dependent on earth-flow volume and lateral changes in the direction of the earth-flow travel path. The earth-flow travel path was strongly influenced by inactive earth-flow deposits and pre-earth-flow drainages whose positions were determined by tectonic structures. The implications of our results that may be applicable to other earth flows are that structures with strikes normal to the direction of earth-flow motion (e.g., normal faults and thrust faults) can be used as a guide to the geometry of basal-slip surfaces, but that depths to the slip surface (i.e., the thickness of an earth flow) will vary as sediment pulses are transmitted through a flow.

  12. Effects of external influences in subsonic delta wing vortices

    Science.gov (United States)

    Washburn, Anthony E.

    1992-01-01

    An experimental investigation was conducted to examine inconsistencies in reported studies for the vortical flow over highly-swept delta wings. A 76-deg swept delta wing was tested in three facilities with open and closed test sections and different model-support systems. The results obtained include surface oil-flow patterns, off-body laser-light-sheet flow visualization, and aerodynamic load measurements. Parameters such as the wall boundaries and model-support systems can drastically alter the loads. The effect of a high level of free-stream turbulence on the delta-wing flowfield was also examined and found to be significant. The increase in free-stream turbulence caused boundary-layer transition, unsteadiness in the vortex core positions, and altered the loads and moments.

  13. Recent developments in rotary-wing aerodynamic theory

    Science.gov (United States)

    Johnson, W.

    1986-01-01

    Current progress in the computational analysis of rotary-wing flowfields is surveyed, and some typical results are presented in graphs. Topics examined include potential theory, rotating coordinate systems, lifting-surface theory (moving singularity, fixed wing, and rotary wing), panel methods (surface singularity representations, integral equations, and compressible flows), transonic theory (the small-disturbance equation), wake analysis (hovering rotor-wake models and transonic blade-vortex interaction), limitations on computational aerodynamics, and viscous-flow methods (dynamic-stall theories and lifting-line theory). It is suggested that the present algorithms and advanced computers make it possible to begin working toward the ultimate goal of turbulent Navier-Stokes calculations for an entire rotorcraft.

  14. Grid-Free LES 3D Vortex Method for the Simulation of Tubulent Flows Over Advanced Lifting Surfaces, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Turbulent flows associated with advanced aerodynamic designs represent a considerable challenge for accurate prediction. For example, the flow past low-speed wings...

  15. Liquid flow along a solid surface reversibly alters interfacial chemistry.

    Science.gov (United States)

    Lis, Dan; Backus, Ellen H G; Hunger, Johannes; Parekh, Sapun H; Bonn, Mischa

    2014-06-06

    In nature, aqueous solutions often move collectively along solid surfaces (for example, raindrops falling on the ground and rivers flowing through riverbeds). However, the influence of such motion on water-surface interfacial chemistry is unclear. In this work, we combine surface-specific sum frequency generation spectroscopy and microfluidics to show that at immersed calcium fluoride and fused silica surfaces, flow leads to a reversible modification of the surface charge and subsequent realignment of the interfacial water molecules. Obtaining equivalent effects under static conditions requires a substantial change in bulk solution pH (up to 2 pH units), demonstrating the coupling between flow and chemistry. These marked flow-induced variations in interfacial chemistry should substantially affect our understanding and modeling of chemical processes at immersed surfaces. Copyright © 2014, American Association for the Advancement of Science.

  16. Global Skin-Friction Measurements Using Particle Image Surface FLow Visualization and a Luminescent Oil-Film

    Science.gov (United States)

    Husen, Nicholas; Roozeboom, Nettie; Liu, Tianshu; Sullivan, John P.

    2015-01-01

    A quantitative global skin-friction measurement technique is proposed. An oil-film is doped with a luminescent molecule and thereby made to fluoresce in order to resolve oil-film thickness, and Particle Image Surface Flow Visualization is used to resolve the velocity field of the surface of the oil-film. Skin-friction is then calculated at location x as (x )xh, where x is the displacement of the surface of the oil-film and is the dynamic viscosity of the oil. The data collection procedure and data analysis procedures are explained, and preliminary experimental skin-friction results for flow over the wing of the CRM are presented.

  17. Insect Analogue to the Lotus Leaf: A Planthopper Wing Membrane Incorporating a Low-Adhesion, Nonwetting, Superhydrophobic, Bactericidal, and Biocompatible Surface.

    Science.gov (United States)

    Watson, Gregory S; Green, David W; Cribb, Bronwen W; Brown, Christopher L; Meritt, Christopher R; Tobin, Mark J; Vongsvivut, Jitraporn; Sun, Mingxia; Liang, Ai-Ping; Watson, Jolanta A

    2017-07-19

    Nature has produced many intriguing and spectacular surfaces at the micro- and nanoscales. These small surface decorations act for a singular or, in most cases, a range of functions. The minute landscape found on the lotus leaf is one such example, displaying antiwetting behavior and low adhesion with foreign particulate matter. Indeed the lotus leaf has often been considered the "benchmark" for such properties. One could expect that there are animal counterparts of this self-drying and self-cleaning surface system. In this study, we show that the planthopper insect wing (Desudaba danae) exhibits a remarkable architectural similarity to the lotus leaf surface. Not only does the wing demonstrate a topographical likeness, but some surface properties are also expressed, such as nonwetting behavior and low adhering forces with contaminants. In addition, the insect-wing cuticle exhibits an antibacterial property in which Gram-negative bacteria (Porphyromonas gingivalis) are killed over many consecutive waves of attacks over 7 days. In contrast, eukaryote cell associations, upon contact with the insect membrane, lead to a formation of integrated cell sheets (e.g., among human stem cells (SHED-MSC) and human dermal fibroblasts (HDF)). The multifunctional features of the insect membrane provide a potential natural template for man-made applications in which specific control of liquid, solid, and biological contacts is desired and required. Moreover, the planthopper wing cuticle provides a "new" natural surface with which numerous interfacial properties can be explored for a range of comparative studies with both natural and man-made materials.

  18. Effect of the angle of attack of a rectangular wing on the heat transfer enhancement in channel flow at low Reynolds number

    Science.gov (United States)

    Khanjian, Assadour; Habchi, Charbel; Russeil, Serge; Bougeard, Daniel; Lemenand, Thierry

    2018-05-01

    Convective heat transfer enhancement can be achieved by generating secondary flow structures that are added to the main flow to intensify the fluid exchange between hot and cold regions. One method involves the use of vortex generators to produce streamwise and transverse vortices superimposed to the main flow. This study presents numerical computation results of laminar convection heat transfer in a rectangular channel whose bottom wall is equipped with one row of rectangular wing vortex generators. The governing equations are solved using finite volume method by considering steady state, laminar regime and incompressible flow. Three-dimensional numerical simulations are performed to study the effect of the angle of attack α of the wing on heat transfer and pressure drop. Different values are taken into consideration within the range 0° heat transfer enhancement, Nusselt number and the friction factor are studied on both local and global perspectives. Also, the location of the generated vortices within the channel is studied, as well as their effect on the heat transfer enhancement throughout the channel for all α values . Based on both local and global analysis, our results show that the angle of attack α has a direct impact on the heat transfer enhancement. By increasing its value, it leads to better enhancement until an optimal value is reached, beyond which the thermal performances decrease.

  19. AERO2S - SUBSONIC AERODYNAMIC ANALYSIS OF WINGS WITH LEADING- AND TRAILING-EDGE FLAPS IN COMBINATION WITH CANARD OR HORIZONTAL TAIL SURFACES (IBM PC VERSION)

    Science.gov (United States)

    Carlson, H. W.

    1994-01-01

    This code was developed to aid design engineers in the selection and evaluation of aerodynamically efficient wing-canard and wing-horizontal-tail configurations that may employ simple hinged-flap systems. Rapid estimates of the longitudinal aerodynamic characteristics of conceptual airplane lifting surface arrangements are provided. The method is particularly well suited to configurations which, because of high speed flight requirements, must employ thin wings with highly swept leading edges. The code is applicable to wings with either sharp or rounded leading edges. The code provides theoretical pressure distributions over the wing, the canard or horizontal tail, and the deflected flap surfaces as well as estimates of the wing lift, drag, and pitching moments which account for attainable leading edge thrust and leading edge separation vortex forces. The wing planform information is specified by a series of leading edge and trailing edge breakpoints for a right hand wing panel. Up to 21 pairs of coordinates may be used to describe both the leading edge and the trailing edge. The code has been written to accommodate 2000 right hand panel elements, but can easily be modified to accommodate a larger or smaller number of elements depending on the capacity of the target computer platform. The code provides solutions for wing surfaces composed of all possible combinations of leading edge and trailing edge flap settings provided by the original deflection multipliers and by the flap deflection multipliers. Up to 25 pairs of leading edge and trailing edge flap deflection schedules may thus be treated simultaneously. The code also provides for an improved accounting of hinge-line singularities in determination of wing forces and moments. To determine lifting surface perturbation velocity distributions, the code provides for a maximum of 70 iterations. The program is constructed so that successive runs may be made with a given code entry. To make additional runs, it is

  20. AERO2S - SUBSONIC AERODYNAMIC ANALYSIS OF WINGS WITH LEADING- AND TRAILING-EDGE FLAPS IN COMBINATION WITH CANARD OR HORIZONTAL TAIL SURFACES (CDC VERSION)

    Science.gov (United States)

    Darden, C. M.

    1994-01-01

    This code was developed to aid design engineers in the selection and evaluation of aerodynamically efficient wing-canard and wing-horizontal-tail configurations that may employ simple hinged-flap systems. Rapid estimates of the longitudinal aerodynamic characteristics of conceptual airplane lifting surface arrangements are provided. The method is particularly well suited to configurations which, because of high speed flight requirements, must employ thin wings with highly swept leading edges. The code is applicable to wings with either sharp or rounded leading edges. The code provides theoretical pressure distributions over the wing, the canard or horizontal tail, and the deflected flap surfaces as well as estimates of the wing lift, drag, and pitching moments which account for attainable leading edge thrust and leading edge separation vortex forces. The wing planform information is specified by a series of leading edge and trailing edge breakpoints for a right hand wing panel. Up to 21 pairs of coordinates may be used to describe both the leading edge and the trailing edge. The code has been written to accommodate 2000 right hand panel elements, but can easily be modified to accommodate a larger or smaller number of elements depending on the capacity of the target computer platform. The code provides solutions for wing surfaces composed of all possible combinations of leading edge and trailing edge flap settings provided by the original deflection multipliers and by the flap deflection multipliers. Up to 25 pairs of leading edge and trailing edge flap deflection schedules may thus be treated simultaneously. The code also provides for an improved accounting of hinge-line singularities in determination of wing forces and moments. To determine lifting surface perturbation velocity distributions, the code provides for a maximum of 70 iterations. The program is constructed so that successive runs may be made with a given code entry. To make additional runs, it is

  1. Flexible wings in flapping flight

    Science.gov (United States)

    Moret, Lionel; Thiria, Benjamin; Zhang, Jun

    2007-11-01

    We study the effect of passive pitching and flexible deflection of wings on the forward flapping flight. The wings are flapped vertically in water and are allowed to move freely horizontally. The forward speed is chosen by the flapping wing itself by balance of drag and thrust. We show, that by allowing the wing to passively pitch or by adding a flexible extension at its trailing edge, the forward speed is significantly increased. Detailed measurements of wing deflection and passive pitching, together with flow visualization, are used to explain our observations. The advantage of having a wing with finite rigidity/flexibility is discussed as we compare the current results with our biological inspirations such as birds and fish.

  2. Side Flow Effect on Surface Generation in Nano Cutting.

    Science.gov (United States)

    Xu, Feifei; Fang, Fengzhou; Zhang, Xiaodong

    2017-12-01

    The side flow of material in nano cutting is one of the most important factors that deteriorate the machined surface quality. The effects of the crystallographic orientation, feed, and the cutting tool geometry, including tool edge radius, rake angle and inclination angle, on the side flow are investigated employing molecular dynamics simulation. The results show that the stagnation region is formed in front of tool edge and it is characterized by the stagnation radius R s and stagnation height h s . The side flow is formed because the material at or under the stagnation region is extruded by the tool edge to flow to the side of the tool edge. Higher stagnation height would increase the size of the side flow. The anisotropic nature of the material which partly determines the stagnation region also influences the side flow due to the different deformation mechanism under the action of the tool edge. At different cutting directions, the size of the side flow has a great difference which would finally affect the machined surface quality. The cutting directions of {100} , {110} , and {110}  are beneficial to obtain a better surface quality with small side flow. Besides that, the side flow could be suppressed by reducing the feed and optimizing the cutting tool geometry. Cutting tool with small edge radius, large positive rake angle, and inclination angle would decrease the side flow and consequently improve the machined surface quality.

  3. Effect of external jet-flow deflector geometry on OTW aero-acoustic characteristics. [Over-The-Wing

    Science.gov (United States)

    Von Glahn, U.; Groesbeck, D.

    1976-01-01

    The effect of geometry variations in the design of external deflectors for use with OTW configurations was studied at model scale and subsonic jet velocities. Included in the variations were deflector size and angle as well as wing size and flap setting. A conical nozzle (5.2-cm diameter) mounted at 0.1 chord above and downstream of the wing leading edges was used. The data indicate that external deflectors provide satisfactory take-off and approach aerodynamic performance and acoustic characteristics for OTW configurations. These characteristics together with expected good cruise aerodynamics, since external deflectors are storable, may provide optimum OTW design configurations.

  4. On the computation of the turbulent flow near rough surface

    Science.gov (United States)

    Matveev, S. K.; Jaychibekov, N. Zh.; Shalabayeva, B. S.

    2018-05-01

    One of the problems in constructing mathematical models of turbulence is a description of the flows near a rough surface. An experimental study of such flows is also difficult because of the impossibility of measuring "inside" the roughness. The theoretical calculation is difficult because of the lack of equations describing the flow in this zone. In this paper, a new turbulence model based on the differential equation of turbulent viscosity balance was used to describe a turbulent flow near a rough surface. The difference between the new turbulence model and the previously known consists in the choice of constants and functions that determine the generation, dissipation and diffusion of viscosity.

  5. Surface roughness effects on heat transfer in Couette flow

    International Nuclear Information System (INIS)

    Elia, G.G.

    1981-01-01

    A cell theory for viscous flow with rough surfaces is applied to two basic illustrative heat transfer problems which occur in Couette flow. Couette flow between one adiabatic surface and one isothermal surface exhibits roughness effects on the adiabatic wall temperature. Two types of rough cell adiabatic surfaces are studied: (1) perfectly insulating (the temperature gradient vanishes at the boundary of each cell); (2) average insulating (each cell may gain or lose heat but the total heat flow at the wall is zero). The results for the roughness on a surface in motion are postulated to occur because of fluid entrainment in the asperities on the moving surface. The symmetry of the roughness effects on thermal-viscous dissipation is discussed in detail. Explicit effects of the roughness on each surface, including combinations of roughness values, are presented to enable the case where the two surfaces may be from different materials to be studied. The fluid bulk temperature rise is also calculated for Couette flow with two ideal adiabatic surfaces. The effect of roughness on thermal-viscous dissipation concurs with the viscous hydrodynamic effect. The results are illustrated by an application to lubrication. (Auth.)

  6. Applicability of linearized-theory attached-flow methods to design and analysis of flap systems at low speeds for thin swept wings with sharp leading edges

    Science.gov (United States)

    Carlson, Harry W.; Darden, Christine M.

    1987-01-01

    Low-speed experimental force and data on a series of thin swept wings with sharp leading edges and leading and trailing-edge flaps are compared with predictions made using a linearized-theory method which includes estimates of vortex forces. These comparisons were made to assess the effectiveness of linearized-theory methods for use in the design and analysis of flap systems in subsonic flow. Results demonstrate that linearized-theory, attached-flow methods (with approximate representation of vortex forces) can form the basis of a rational system for flap design and analysis. Even attached-flow methods that do not take vortex forces into account can be used for the selection of optimized flap-system geometry, but design-point performance levels tend to be underestimated unless vortex forces are included. Illustrative examples of the use of these methods in the design of efficient low-speed flap systems are included.

  7. Solution of Poisson equations for 3-dimensional grid generations. [computations of a flow field over a thin delta wing

    Science.gov (United States)

    Fujii, K.

    1983-01-01

    A method for generating three dimensional, finite difference grids about complicated geometries by using Poisson equations is developed. The inhomogenous terms are automatically chosen such that orthogonality and spacing restrictions at the body surface are satisfied. Spherical variables are used to avoid the axis singularity, and an alternating-direction-implicit (ADI) solution scheme is used to accelerate the computations. Computed results are presented that show the capability of the method. Since most of the results presented have been used as grids for flow-field computations, this is indicative that the method is a useful tool for generating three-dimensional grids about complicated geometries.

  8. AFM Study of Structure Influence on Butterfly Wings Coloration

    Directory of Open Access Journals (Sweden)

    Dinara Sultanovna Dallaeva

    2012-01-01

    Full Text Available This study describes the structural coloration of the butterfly Vanessa Atalanta wings and shows how the atomic force microscopy (AFM can be applied to the study of wings morphology and wings surface behavior under the temperature. The role of the wings morphology in colors was investigated. Different colors of wings have different topology and can be identified by them. AFM in semi-contact mode was used to study the wings surface. The wing surface area, which is close to the butterfly body, has shiny brown color and the peak of surface roughness is about 600 nm. The changing of morphology at different temperatures is shown.

  9. AERODYNAMICS OF WING TIP SAILS

    Directory of Open Access Journals (Sweden)

    MUSHTAK AL-ATABI

    2006-06-01

    Full Text Available Observers have always been fascinated by soaring birds. An interesting feature of these birds is the existence of few feathers extending from the tip of the wing. In this paper, small lifting surfaces were fitted to the tip of a NACA0012 wing in a fashion similar to that of wing tip feathers. Experimental measurements of induced drag, longitudinal static stability and trailing vortex structure were obtained.The tests showed that adding wing tip surfaces (sails decreased the induced drag factor and increased the longitudinal static stability. Results identified two discrete appositely rotated tip vortices and showed the ability of wing tip surfaces to break them down and to diffuse them.

  10. Structural Color Model Based on Surface Morphology of MORPHO Butterfly Wing Scale

    Science.gov (United States)

    Huang, Zhongjia; Cai, Congcong; Wang, Gang; Zhang, Hui; Huttula, Marko; Cao, Wei

    2016-05-01

    Color production through structural coloration is created by micrometer and sub-micrometer surface textures which interfere with visible light. The shiny blue of morpho menelaus is a typical example of structural coloring. Modified from morphology of the morpho scale, a structure of regular windows with two side offsets was constructed on glass substrates. Optical properties of the bioinspired structure were studied through numerical simulations of light scattering. Results show that the structure can generate monochromatic light scattering. Wavelength of scattered light is tunable via changing the spacing between window shelves. Compared to original butterfly model, the modified one possesses larger illumination scopes in azimuthal distributions despite being less in polar directions. Present bionic structure is periodically repeated and is easy to fabricate. It is hoped that the computational materials design work can inspire future experimental realizations of such a structure in photonics applications.

  11. Free-surface viscous flow solution methods for ship hydrodynamics

    NARCIS (Netherlands)

    Wackers, J.; Koren, B.; Raven, H.C.; Ploeg, van der A.; Starke, A.R.; Deng, G.; Queutey, P.; Visonneau, M.; Hino, T.; Ohashi, K.

    2011-01-01

    The simulation of viscous free-surface water flow is a subject that has reached a certain maturity and is nowadays used in industrial applications, like the simulation of the flow around ships. While almost all methods used are based on the Navier-Stokes equations, the discretisation methods for the

  12. Effect of surface wettability on flow patterns in vertical gas-liquid two-phase flow

    International Nuclear Information System (INIS)

    Nakamura, D.

    2005-01-01

    To examine the effect of the surface characteristics on the flow regime in two-phase flow, visualization study was performed using three test pipes, namely a no-coating pipe, a water-attracting coating pipe, a water-shedding coating pipe. Three flow regime maps were obtained based on the visual observation in the three pipes. In the water-attracting coating pipe, the slug flow-to-churn flow transition boundary was shifted to higher gas velocity at a given liquid velocity, whereas the churn flow-to-annular flow transition boundary was shifted to lower gas velocity at a given liquid velocity. In the water shedding coating pipe, the inverted-churn flow regime was observed in the region where the churn flow regime was to be observed in a no-coating pipe, whereas the droplet flow regime was observed in the region where the annular flow regime was to be observed in a no-coating pipe. The criteria for the slug flow-to-inverted-churn flow transition and the inverted-churn flow-to-droplet flow transition were modeled by force balance approaches. The modeled transition criteria could predict the observed flow transition boundaries reasonably well. (authors)

  13. Integrated Surface/subsurface flow modeling in PFLOTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Painter, Scott L [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-01

    Understanding soil water, groundwater, and shallow surface water dynamics as an integrated hydrological system is critical for understanding the Earth’s critical zone, the thin outer layer at our planet’s surface where vegetation, soil, rock, and gases interact to regulate the environment. Computational tools that take this view of soil moisture and shallow surface flows as a single integrated system are typically referred to as integrated surface/subsurface hydrology models. We extend the open-source, highly parallel, subsurface flow and reactive transport simulator PFLOTRAN to accommodate surface flows. In contrast to most previous implementations, we do not represent a distinct surface system. Instead, the vertical gradient in hydraulic head at the land surface is neglected, which allows the surface flow system to be eliminated and incorporated directly into the subsurface system. This tight coupling approach leads to a robust capability and also greatly simplifies implementation in existing subsurface simulators such as PFLOTRAN. Successful comparisons to independent numerical solutions build confidence in the approximation and implementation. Example simulations of the Walker Branch and East Fork Poplar Creek watersheds near Oak Ridge, Tennessee demonstrate the robustness of the approach in geometrically complex applications. The lack of a robust integrated surface/subsurface hydrology capability had been a barrier to PFLOTRAN’s use in critical zone studies. This work addresses that capability gap, thus enabling PFLOTRAN as a community platform for building integrated models of the critical zone.

  14. Analysis of energy flow during playground surface impacts.

    Science.gov (United States)

    Davidson, Peter L; Wilson, Suzanne J; Chalmers, David J; Wilson, Barry D; Eager, David; McIntosh, Andrew S

    2013-10-01

    The amount of energy dissipated away from or returned to a child falling onto a surface will influence fracture risk but is not considered in current standards for playground impact-attenuating surfaces. A two-mass rheological computer simulation was used to model energy flow within the wrist and surface during hand impact with playground surfaces, and the potential of this approach to provide insights into such impacts and predict injury risk examined. Acceleration data collected on-site from typical playground surfaces and previously obtained data from children performing an exercise involving freefalling with a fully extended arm provided input. The model identified differences in energy flow properties between playground surfaces and two potentially harmful surface characteristics: more energy was absorbed by (work done on) the wrist during both impact and rebound on rubber surfaces than on bark, and rubber surfaces started to rebound (return energy to the wrist) while the upper limb was still moving downward. Energy flow analysis thus provides information on playground surface characteristics and the impact process, and has the potential to identify fracture risks, inform the development of safer impact-attenuating surfaces, and contribute to development of new energy-based arm fracture injury criteria and tests for use in conjunction with current methods.

  15. The Influence of Slope Breaks on Lava Flow Surface Disruption

    Science.gov (United States)

    Glaze, Lori S.; Baloga, Stephen M.; Fagents, Sarah A.; Wright, Robert

    2014-01-01

    Changes in the underlying slope of a lava flow impart a significant fraction of rotational energy beyond the slope break. The eddies, circulation and vortices caused by this rotational energy can disrupt the flow surface, having a significant impact on heat loss and thus the distance the flow can travel. A basic mechanics model is used to compute the rotational energy caused by a slope change. The gain in rotational energy is deposited into an eddy of radius R whose energy is dissipated as it travels downstream. A model of eddy friction with the ambient lava is used to compute the time-rate of energy dissipation. The key parameter of the dissipation rate is shown to be rho R(sup 2/)mu, where ? is the lava density and mu is the viscosity, which can vary by orders of magnitude for different flows. The potential spatial disruption of the lava flow surface is investigated by introducing steady-state models for the main flow beyond the steepening slope break. One model applies to slow-moving flows with both gravity and pressure as the driving forces. The other model applies to fast-moving, low-viscosity, turbulent flows. These models provide the flow velocity that establishes the downstream transport distance of disrupting eddies before they dissipate. The potential influence of slope breaks is discussed in connection with field studies of lava flows from the 1801 Hualalai and 1823 Keaiwa Kilauea, Hawaii, and 2004 Etna eruptions.

  16. Proportional fuzzy feed-forward architecture control validation by wind tunnel tests of a morphing wing

    Directory of Open Access Journals (Sweden)

    Michel Joël Tchatchueng Kammegne

    2017-04-01

    Full Text Available In aircraft wing design, engineers aim to provide the best possible aerodynamic performance under cruise flight conditions in terms of lift-to-drag ratio. Conventional control surfaces such as flaps, ailerons, variable wing sweep and spoilers are used to trim the aircraft for other flight conditions. The appearance of the morphing wing concept launched a new challenge in the area of overall wing and aircraft performance improvement during different flight segments by locally altering the flow over the aircraft’s wings. This paper describes the development and application of a control system for an actuation mechanism integrated in a new morphing wing structure. The controlled actuation system includes four similar miniature electromechanical actuators disposed in two parallel actuation lines. The experimental model of the morphing wing is based on a full-scale portion of an aircraft wing, which is equipped with an aileron. The upper surface of the wing is a flexible one, being closed to the wing tip; the flexible skin is made of light composite materials. The four actuators are controlled in unison to change the flexible upper surface to improve the flow quality on the upper surface by delaying or advancing the transition point from laminar to turbulent regime. The actuators transform the torque into vertical forces. Their bases are fixed on the wing ribs and their top link arms are attached to supporting plates fixed onto the flexible skin with screws. The actuators push or pull the flexible skin using the necessary torque until the desired vertical displacement of each actuator is achieved. The four vertical displacements of the actuators, correlated with the new shape of the wing, are provided by a database obtained through a preliminary aerodynamic optimization for specific flight conditions. The control system is designed to control the positions of the actuators in real time in order to obtain and to maintain the desired shape of the

  17. Study of interaction of a pair of longitudinal vortices with a horseshoe vortex around a wing. 2nd Report. Behavior of the interacting flow field controlled passively; Tsubasa mawari no bateikei uzu to tateuzu no kansho ni kansuru kenkyu. 2. Judo seigyosareta nagareba no kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Hara, H. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan); Shizawa, T.; Honami, S. [Science University of Tokyo, Tokyo (Japan). Faculty of Engineering

    1999-12-25

    This paper presents the behavior of a passively controlled horseshoe vortex at the root of NACA0024 wing which is established on a turbulent boundary layer, A pair of vortex generators of half delta wing is installed upstream of the wing. The flow field of the optimally controlled horseshoe vortex both in case of Common Flow Up (CFUC) and Common Flow Down Configuration (CFDC) is carefully investigated by an X-array hot-wire. In case of CFUC, the horseshoe vortex is not shifted from the wing, because the longitudinal vortex is restrained. The interacted vortex presents a circular profile, in a optimally controlled case. In case of CFDC, the interacted vortex that has strong vorticity by the pairing process is shifted away from the wing. Then, the high momentum fluid flow penetrates between the wing and the vortex. (author)

  18. Local mesh refinement for incompressible fluid flow with free surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Terasaka, H.; Kajiwara, H.; Ogura, K. [Tokyo Electric Power Company (Japan)] [and others

    1995-09-01

    A new local mesh refinement (LMR) technique has been developed and applied to incompressible fluid flows with free surface boundaries. The LMR method embeds patches of fine grid in arbitrary regions of interest. Hence, more accurate solutions can be obtained with a lower number of computational cells. This method is very suitable for the simulation of free surface movements because free surface flow problems generally require a finer computational grid to obtain adequate results. By using this technique, one can place finer grids only near the surfaces, and therefore greatly reduce the total number of cells and computational costs. This paper introduces LMR3D, a three-dimensional incompressible flow analysis code. Numerical examples calculated with the code demonstrate well the advantages of the LMR method.

  19. Heat Flow In Cylindrical Bodies During Laser Surface Transformation Hardening

    Science.gov (United States)

    Sandven, Ole A.

    1980-01-01

    A mathematical model for the transient heat flow in cylindrical specimens is presented. The model predicts the temperature distribution in the vicinity of a moving ring-shaped laser spot around the periphery of the outer surface of a cylinder, or the inner surface of a hollow cylinder. It can be used to predict the depth of case in laser surface transformation hardening. The validity of the model is tested against experimental results obtained on SAE 4140 steel.

  20. Backward flow in a surface tension driven micropump

    International Nuclear Information System (INIS)

    Ju, Jongil; Park, Joong Yull; Lee, Sang-Hoon; Kim, Kyung Chun; Kim, Hyundong; Berthier, Erwin; Beebe, David J

    2008-01-01

    A surface tension driven micropump harnessing the pressure difference generated by drops of different curvature radii proves to be a simple and attractive passive method to drive fluid flow in microdevices. Here we observed the appearance of backward flow when the initial sizes of the droplets at the inlet and outlet ports are similar. To explain this phenomenon several hypotheses have been investigated. Consideration of the inertia of the fluid in the channel revealed that it alone is insufficient to explain the observed backward flow. We discovered that rotational flow inside the outlet droplet could be a source of inertia, explaining the generation of the backward flow. In addition, we have experimentally determined that the ratio of the volumes of the initial outlet drop and inlet drop correlates with the occurrence of the backward flow. (note)

  1. Core surface flow modelling from high-resolution secular variation

    DEFF Research Database (Denmark)

    Holme, R.; Olsen, Nils

    2006-01-01

    -flux hypothesis, but the spectrum of the SV implies that a conclusive test of frozen-flux is not possible. We parametrize the effects of diffusion as an expected misfit in the flow prediction due to departure from the frozen-flux hypothesis; at low spherical harmonic degrees, this contribution dominates...... the expected departure of the SV predictions from flow to the observed SV, while at high degrees the SV model uncertainty is dominant. We construct fine-scale core surface flows to model the SV. Flow non-uniqueness is a serious problem because the flows are sufficiently small scale to allow flow around non......-series of magnetic data and better parametrization of the external magnetic field....

  2. Instability and Transition of Flow at, and Near, an Attachment-line - Including Control by Surface Suction

    Science.gov (United States)

    Smith, A.

    1996-01-01

    Advances in aviation during and following the Second World War led to an enormous improvement in the performance of aircraft. The push for enhanced efficiency brought cruise speeds into the transonic range, where the associated drag rise due to the appearance of shock-waves became a limiting factor. Wing sweep was adopted to delay the onset of this drag rise, but with this development came several new and unforeseen problems. Preliminary theoretical work assumed that the boundary layer transition characteristics of a swept wing would be subject to the independence principle, so the chordwise transition position could be predicted from two-dimensional work Gas turbine development has now reached a point where additional increases in efficiency are both difficult and expensive to achieve. Consequently, aircraft manufacturers are looking elsewhere for ways to reduce Direct Operating Costs (DOC's) or increase military performance. The attention of industry is currently focusing on Hybrid Laminar Flow Control (HLFC) as a possible method of reducing DOC's for civil aircraft. Following this study and discussions with NASA Langley and Boeing a different series of questions have been addressed in the present work. There are five areas of interest: Relaminarisation of the attachment-line boundary layer when the value of R exceeds 600. The effects of large suction levels on transition in the attachment-line boundary layer (ie critical oversuction). The transition characteristics of a relaminarised attachment-line flow which encounters a non-porous surface. The effect of attachment-line suction on the spanwise propagation of gross disturbances emanating from the wing-fuselage junction. The attachment-line transition caused by surface blowing.

  3. Study on surface wave characteristics of free surface flow of liquid metal lithium for IFMIF

    International Nuclear Information System (INIS)

    Hoashi, Eiji; Sugiura, Hirokazu; Yoshihashi-Suzuki, Sachiko; Yamaoka, Nobuo; Horiike, Hiroshi; Kanemura, Takuji; Kondo, Hiroo

    2011-01-01

    The international fusion materials irradiation facility (IFMIF) presents an intense neutron source to develop fusion reactor materials. The free surface flow of a liquid metal Lithium (Li) is planned as a target irradiated by two deuteron beams to generate intense neutrons and it is thus important to obtain knowledge of the surface wave characteristic for the safety and the efficiency of system in the IFMIF. We have been studying on surface wave characteristics experimentally using the liquid metal Li circulation facility at Osaka University and numerically using computational fluid dynamics (CFD) code, FLUENT. This paper reports the results of the surface fluctuation, the wave height and the surface velocity in the free surface flow of the liquid metal Li examined experimentally and numerically. In the experiment, an electro-contact probe apparatus was used to obtain the surface fluctuation and the wave height, and a high speed video was used to measure the surface velocity. We resulted in knowledge of the surface wave growth mechanism. On the other hand, a CFD simulation was also conducted to obtain information on the relation of the free surface with the inner flow. In the simulation, the model included from a two-staged contraction nozzle to a flow channel with a free surface flow region and simulation results were compared with the experimental data. (author)

  4. Beetle wings are inflatable origami

    Science.gov (United States)

    Chen, Rui; Ren, Jing; Ge, Siqin; Hu, David

    2015-11-01

    Beetles keep their wings folded and protected under a hard shell. In times of danger, they must unfold them rapidly in order for them to fly to escape. Moreover, they must do so across a range of body mass, from 1 mg to 10 grams. How can they unfold their wings so quickly? We use high-speed videography to record wing unfolding times, which we relate to the geometry of the network of blood vessels in the wing. Larger beetles have longer unfolding times. Modeling of the flow of blood through the veins successfully accounts for the wing unfolding speed of large beetles. However, smaller beetles have anomalously short unfolding times, suggesting they have lower blood viscosity or higher driving pressure. The use of hydraulics to unfold complex objects may have implications in the design of micro-flying air vehicles.

  5. Measurements of the near-surface flow over a hill

    Science.gov (United States)

    Vosper, S. B.; Mobbs, S. D.; Gardiner, B. A.

    2002-10-01

    The near-surface flow over a hill with moderate slope and height comparable with the boundary-layer depth is investigated through field measurements of the mean flow (at 2 m), surface pressure, and turbulent momentum flux divergence between 8 and 15 m. The measurements were made along an east-west transect across the hill Tighvein (height 458 m, approximate width 8 km) on the Isle of Arran, south-west Scotland, during two separate periods, each of around three-weeks duration. Radiosonde ascents are used to determine the variation of a Froude number, FL = U/NL, where U is the wind speed at the middle-layer height, hm, N is the mean Brunt-Väisälä frequency below this height and L is a hill length-scale. Measurements show that for moderately stratified flows (for which FL 0.25) a minimum in the hill-induced surface-pressure perturbation occurs across the summit and this is accompanied by a maximum in the near-surface wind speed. In the more strongly stratified case (FL 0.25) the pressure field is more asymmetric and the lee-slope flow is generally stronger than on the windward slope. Such a flow pattern is qualitatively consistent with that predicted by stratified linear boundary-layer and gravity-wave theories. The near-surface momentum budget is analysed by evaluating the dominant terms in a Bernoulli equation suitable for turbulent flow. Measurements during periods of westerly flow are used to evaluate the dominant terms, and the equation is shown to hold to a reasonable approximation on the upwind slope of the hill and also on the downwind slope, away from the summit. Immediately downwind of the summit, however, the Bernoulli equation does not hold. Possible reasons for this, such as non-separated sheltering and flow separation, are discussed.

  6. Tidally-driven Surface Flow in a Georgia Estuarine Saltmarsh

    Science.gov (United States)

    Young, D.; Bruder, B. L.; Haas, K. A.; Webster, D. R.

    2016-02-01

    Estuarine saltmarshes are diverse, valuable, and productive ecosystems. Vegetation dampens wave and current energy, thereby allowing the estuaries to serve as a nursery habitat for shellfish and fish species. Tidally-driven flow transports nutrients into and out of the estuary, nourishing inshore and offshore vegetation and animals. The effects of vegetation on the marsh hydrodynamics and on the estuary creek and channel flow are, unfortunately, poorly understood, and the knowledge that does exist primarily originates from modeling studies. Field studies addressing marsh surface flows are limited due to the difficulty of accurately measuring the water surface elevation and acquiring concurrent velocity measurements in the dense marsh vegetation. This study partially bridges the gap between the model observations of marsh flow driven by water surface elevation gradients and flume studies of flow through vegetation. Three current meters and three pressure transducers were deployed for three days along a transect perpendicular to the main channel (Little Ogeechee River) in a saltmarsh adjacent to Rose Dhu Island (Savannah, Georgia, USA). The pressure transducer locations were surveyed daily with static GPS yielding highly accurate water surface elevation data. During flood and ebb tide, water surface elevation differences between the marsh and Little Ogeechee River were observed up to 15 cm and pressure gradients were observed up to 0.0017 m of water surface elevation drop per m of linear distance. The resulting channel-to-saltmarsh pressure gradients substantially affected tidal currents at all current meters. At one current meter, the velocity was nearly perpendicular to the Little Ogeechee River bank. The velocity at this location was effectively modeled as a balance between the pressure gradient and marsh vegetation-induced drag force using the Darcy-Weisbach/Lindner's equations developed for flow-through-vegetation analysis in open channel flow.

  7. Hydraulic investigation on free surface flow of windowless target

    International Nuclear Information System (INIS)

    Hu Chen; Gu Hanyang

    2015-01-01

    The formation and control of free surface are the most essential parts in the studies of windowless target in ACCELERATOR-DRIVEN sub-critical system (ADS). Water model experiments and 360° full scale three dimensional simulations were conducted. The experimental study demonstrates that the free surface is significantly affected by the inlet flow velocity and outlet pressure. The length of free surface decreases in the second order with the increase of inlet flow velocity, while it decreases linearly with the outlet pressure. The structure and feature of flow field were investigated. The results show that the free surface is vulnerable to the vortex movement. Transient simulations were performed with volume of fluid (VOF) method, large eddy simulation (LES) and the pressure implicit with splitting of operators (PISO) algorithm. The simulation results agree qualitatively well with the experimental data related to both free surface flow and flow field. These simulation models and methods are proved to be applicable in the hydraulic simulations of liquid heavy metal target. (authors)

  8. Instability of flow of liquid film over a heated surface

    International Nuclear Information System (INIS)

    Sha, W.T.

    1994-01-01

    Fundamental concepts and basic equations of a flowing thin liquid film cooling a heated surfaced by its vaporization and the effect of dry patches were treated. Stable film flow prior to the appearance of dry patches on the heated surface is maintained by a balance of various forces due to surface tension, shear stress, heat and mass transfer, and gravity. Film splitting at a critical film thickness produces dry patches due to perturbation by waves on a perfect surface, and often by surface imperfection and uneven heating. This work is primarily motivated by the design of next-generation nuclear reactors, which employ many novel passive heat-removal systems via natural circulation. These systems are design to prevent damage to the reactor core and containment without action by the reactor operators during or after a design basis accident such as a loss of coolant accident (LOCA) or a main steam-line break (MSLB) accident

  9. Fluid flow near the surface of earth's outer core

    Science.gov (United States)

    Bloxham, Jeremy; Jackson, Andrew

    1991-01-01

    This review examines the recent attempts at extracting information on the pattern of fluid flow near the surface of the outer core from the geomagnetic secular variation. Maps of the fluid flow at the core surface are important as they may provide some insight into the process of the geodynamo and may place useful constraints on geodynamo models. In contrast to the case of mantle convection, only very small lateral variations in core density are necessary to drive the flow; these density variations are, by several orders of magnitude, too small to be imaged seismically; therefore, the geomagnetic secular variation is utilized to infer the flow. As substantial differences exist between maps developed by different researchers, the possible underlying reasons for these differences are examined with particular attention given to the inherent problems of nonuniqueness.

  10. Dynamic surface-pressure instrumentation for rods in parallel flow

    International Nuclear Information System (INIS)

    Mulcahy, T.M.; Lawrence, W.

    1979-01-01

    Methods employed and experience gained in measuring random fluid boundary layer pressures on the surface of a small diameter cylindrical rod subject to dense, nonhomogeneous, turbulent, parallel flow in a relatively noise-contaminated flow loop are described. Emphasis is placed on identification of instrumentation problems; description of transducer construction, mounting, and waterproofing; and the pretest calibration required to achieve instrumentation capable of reliable data acquisition

  11. Dynamics and Instabilities of Free Surface and Vortex Flows

    DEFF Research Database (Denmark)

    Tophøj, Laust Emil Hjerrild

    2012-01-01

    This PhD thesis consists of two main parts. The first part describes the dynamics of an ideal fluid on a stationary free surface of a given shape. It turns out that one can formulate a set of self-contained equations of momentum conservation for the tangential flow, with no reference to the flow ......)]. Finally, an experimental work on elastic collisions of wet spheres is briefly discussed....

  12. Distribution of the characteristics of barbs and barbules on barn owl wing feathers.

    Science.gov (United States)

    Weger, Matthias; Wagner, Hermann

    2017-05-01

    Owls are known for the development of a silent flight. One conspicuous specialization of owl wings that has been implied in noise reduction and that has been demonstrated to change the aerodynamic behavior of the wing is a soft dorsal wing surface. The soft surface is a result of changes in the shape of feather barbs and barbules in owls compared with other bird species. We hypothesized that as the aerodynamic characteristics of a wing change along its chordwise and spanwise direction, so may the shape of the barbs and barbules. Therefore, we examined in detail the shapes of the barbs and barbules in chordwise and spanwise directions. The results showed changes in the shapes of barbs and barbules at the anterior and distal parts of the wing, but not at more posterior parts. The increased density of hook radiates at the distalmost wing position could serve to stiffen that vane part that is subject to the highest forces. The change of pennulum length in the anterior part of the wing and the uniformity further back could mean that a soft surface may be especially important in regions where flow separation may occur. © 2017 Anatomical Society.

  13. Radionuclide transfer onto ground surface in surface water flow. 2. Undisturbed tuff rock

    International Nuclear Information System (INIS)

    Mukai, Masayuki; Takebe, Shinichi; Komiya, Tomokazu

    1994-09-01

    Radionuclide migration with ground surface water flow is considered to be one of path ways in the scenario for environmental migration of the radionuclide leaked from LLRW depository. To study the radionuclide migration demonstratively, a ground surface radionuclide migration test was carried out by simulating radioactive solution flowing on the sloped tuff rock surface. Tuff rock sample of 240 cm in length taken from the Shimokita district was used to test the transfer of 60 Co, 85 Sr and 137 Cs onto the sample surface from the flowing radioactive solution under restricted infiltration condition at flow rates of 25, 80, 160ml/min and duration of 56h. The concentration change of the radionuclides in effluent was nearly constant as a function of elapsed time during the experimental period, but decreased with lower flow rates. Among the three radionuclides, 137 Cs was greatly decreased its concentration to 30% of the inflow. Adsorbed distribution of the radionuclides concentration on the ground surface decreased gradually with the distance from the inlet, and showed greater gradient at lower flow rate. Analyzing the result by the migration model, where a vertical advection distribution and two-dimensional diffusion in surface water are adopted with a first order adsorption reaction, value of migration parameters was obtained relating to the radionuclide adsorption and the surface water flow, and the measured distribution could be well simulated by adopting the value to the model. By comparing the values with the case of loamy soil layer, all values of the migration parameters showed not so great difference between two samples for 60 Co and 85 Sr. For 137 Cs, reflecting a few larger value of adsorption to the tuff rock, larger ability to reduce the concentration of flowing radioactive solution could be indicated than that to the loamy soil surface by estimation for long flowed distance. (author)

  14. Near-surface flow of volcanic gases on Io

    International Nuclear Information System (INIS)

    Lee, S.W.; Thomas, P.C.

    1980-01-01

    Significant near-surface flow of gas several hundred kilometers from Pele (Plume 1) on Io is indicated by a series of bright, elongate albedo markings. Particles produced at small, local vents are apparently carried as much as 70 km farther 'downwind' from Pele. The gas densities and velocities necessary to suspend 0.1 to 10 micron particles at such a distance imply mass flow rates of 10 to the 7th - 10 to the 9th g/sec. Such flow rates are consistent with other estimates of mass transport by the plume. The large flow rates so far from the source allow an estimate of the rate of resurfacing of Io by lava flows and pyroclastics that is independent of estimates based on meteorite flux or on the amount of solids carried within the plumes themselves

  15. Flow of viscous fluid along an exponentially stretching curved surface

    Directory of Open Access Journals (Sweden)

    N.F. Okechi

    Full Text Available In this paper, we present the boundary layer analysis of flow induced by rapidly stretching curved surface with exponential velocity. The governing boundary value problem is reduced into self-similar form using a new similarity transformation. The resulting equations are solved numerically using shooting and Runge-Kutta methods. The numerical results depicts that the fluid velocity as well as the skin friction coefficient increases with the surface curvature, similar trend is also observed for the pressure. The dimensionless wall shear stress defined for this problem is greater than that of a linearly stretching curved surface, but becomes comparably less for a surface stretching with a power-law velocity. In addition, the result for the plane surface is a special case of this study when the radius of curvature of the surface is sufficiently large. The numerical investigations presented in terms of the graphs are interpreted with the help of underlying physics of the fluid flow and the consequences arising from the curved geometry. Keywords: Boundary layer flow, Curved surface, Exponential stretching, Curvature

  16. Surface Runoff in Watershed Modeling—Turbulent or Laminar Flows?

    Directory of Open Access Journals (Sweden)

    Mark E. Grismer

    2016-05-01

    Full Text Available Determination of overland sheet flow depths, velocities and celerities across the hillslope in watershed modeling is important towards estimation of surface storage, travel times to streams and soil detachment rates. It requires careful characterization of the flow processes. Similarly, determination of the temporal variation of hillslope-riparian-stream hydrologic connectivity requires estimation of the shallow subsurface soil hydraulic conductivity and soil-water retention (i.e., drainable porosities parameters. Field rainfall and runoff simulation studies provide considerable information and insight into these processes; in particular, that sheet flows are likely laminar and that shallow hydraulic conductivities and storage can be determined from the plot studies. Here, using a 1 m by 2 m long runoff simulation flume, we found that for overland flow rates per unit width of roughly 30–60 mm2/s and bedslopes of 10%–66% with varying sand roughness depths that all flow depths were predicted by laminar flow equations alone and that equivalent Manning’s n values were depth dependent and quite small relative to those used in watershed modeling studies. Even for overland flow rates greater than those typically measured or modeled and using Manning’s n values of 0.30–0.35, often assumed in physical watershed model applications for relatively smooth surface conditions, the laminar flow velocities were 4–5 times greater, while the laminar flow depths were 4–5 times smaller. This observation suggests that travel times, surface storage volumes and surface shear stresses associated with erosion across the landscape would be poorly predicted using turbulent flow assumptions. Filling the flume with fine sand and conducting runoff studies, we were unable to produce sheet flow, but found that subsurface flows were onflow rate, soil depth and slope dependent and drainable porosities were only soil depth and slope dependent. Moreover, both the sand

  17. Flow profiling of a surface-acoustic-wave nanopump

    Science.gov (United States)

    Guttenberg, Z.; Rathgeber, A.; Keller, S.; Rädler, J. O.; Wixforth, A.; Kostur, M.; Schindler, M.; Talkner, P.

    2004-11-01

    The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing surface acoustic waves is investigated both experimentally and theoretically. Ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate a quadrupolar streaming pattern within the fluid. We use fluorescence correlation spectroscopy and fluorescence microscopy as complementary tools to investigate the resulting flow profile. The velocity was found to depend on the applied power approximately linearly and to decrease with the inverse third power of the distance from the ultrasound generator on the chip. The found properties reveal acoustic streaming as a promising tool for the controlled agitation during microarray hybridization.

  18. Biomolecular Nano-Flow-Sensor to Measure Near-Surface Flow

    Directory of Open Access Journals (Sweden)

    Noji Hiroyuki

    2009-01-01

    Full Text Available Abstract We have proposed and experimentally demonstrated that the measurement of the near-surface flow at the interface between a liquid and solid using a 10 nm-sized biomolecular motor of F1-ATPase as a nano-flow-sensor. For this purpose, we developed a microfluidic test-bed chip to precisely control the liquid flow acting on the F1-ATPase. In order to visualize the rotation of F1-ATPase, several hundreds nanometer-sized particle was immobilized at the rotational axis of F1-ATPase to enhance the rotation to be detected by optical microscopy. The rotational motion of F1-ATPase, which was immobilized on an inner surface of the test-bed chip, was measured to obtain the correlation between the near-surface flow and the rotation speed of F1-ATPase. As a result, we obtained the relationship that the rotation speed of F1-ATPase was linearly decelerated with increasing flow velocity. The mechanism of the correlation between the rotation speed and the near-surface flow remains unclear, however the concept to use biomolecule as a nano-flow-sensor was proofed successfully. (See supplementary material 1 Electronic supplementary material The online version of this article (doi:10.1007/s11671-009-9479-3 contains supplementary material, which is available to authorized users. Click here for file

  19. Flow structure from a horizontal cylinder coincident with a free surface in shallow water flow

    Directory of Open Access Journals (Sweden)

    Kahraman Ali

    2012-01-01

    Full Text Available Vortex formation from a horizontal cylinder coincident with a free surface of a shallow water flow having a depth of 25.4 [mm] was experimentally investigated using the PIV technique. Instantaneous and time-averaged flow patterns in the wake region of the cylinder were examined for three different cylinder diameter values under the fully developed turbulent boundary layer condition. Reynolds numbers were in the range of 1124£ Re£ 3374 and Froude numbers were in the range of 0.41 £ Fr £ 0.71 based on the cylinder diameter. It was found that a jet-like flow giving rise to increasing the flow entrainment between the core and wake regions depending on the cylinder diameter was formed between the lower surface of the cylinder and bottom surface of the channel. Vorticity intensity, Reynolds stress correlations and the primary recirculating bubble lengths were grown to higher values with increasing the cylinder diameter. On the other hand, in the case of the lowest level of the jet-like flow emanating from the beneath of the smallest cylinder, the variation of flow characteristics were attenuated significantly in a shorter distance. The variation of the reattachment location of the separated flow to the free-surface is a strong function of the cylinder diameter and the Froude number.

  20. Vortices generation in the reactive flow on the evaporative surface

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cha Ryeom; Lee, Chang Jin [Konkuk University, Seoul (Korea, Republic of)

    2015-02-15

    Vortices generation and flow dynamics are investigated by a numerical calculation with LES methodology on the evaporative surface including chemical reactions. For simplicity, fuel is radially injected from the surface in order to decouple pyrolysis of solid fuel from the governing equation and consideration of heat transfer balance. Nevertheless its simple treatment of chemical reactions and fuel pyrolysis, numerical results captured very fundamental understandings in terms of averaged temperature, velocity profile, and mixture fraction distribution. Results showed that a well-defined turbulent velocity profile at the inlet becomes twisted and highly wrinkled in the downstream reaching the maximum velocity at far above the surface, where the flame is located. And the thickness of boundary layer increases in the downstream due to the enhanced interaction of axial flow and mass injection from the surface. Also, chemical reaction appears highly active and partially concentrated along the plane where flow condition is in stoichiometric. In particular, flame front locates at the surface where mixture fraction Z equals to 0.07. Flame front severely wrinkles in the downstream by the interaction with turbulences in the flow. Partial reactions on the flame front contribute to produce hot spots periodically in the downstream attaining the max temperature at the center of each spot. This may take the role of additional unsteady heat generations and pressure perturbations in the downstream. Future study will focus on the evolution of hot spots and pressure perturbations in the post chamber of lab scale hybrid rocket motors.

  1. Flow profiling of a surface acoustic wave nanopump

    OpenAIRE

    Guttenberg, Z.; Rathgeber, A.; Keller, S.; Rädler, J. O.; Wixforth, A.; Kostur, M.; Schindler, M.; Talkner, P.

    2004-01-01

    The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing Surface Acoustic Waves is investigated both experimentally and theoretically. Such ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate an internal streaming within the fluid. Such acoustic streaming can be used for controlled agitation during, e.g., microarray hybridization. We use fluorescence correlation spectroscopy and fluorescence microsc...

  2. Mechanics of fluid flow over compliant wrinkled polymeric surfaces

    Science.gov (United States)

    Raayai, Shabnam; McKinley, Gareth; Boyce, Mary

    2014-03-01

    Skin friction coefficients (based on frontal area) of sharks and dolphins are lower than birds, fish and swimming beetles. By either exploiting flow-induced changes in their flexible skin or microscale textures, dolphins and sharks can change the structure of the fluid flow around them and thus reduce viscous drag forces on their bodies. Inspired by this ability, investigators have tried using compliant walls and riblet-like textures as drag reduction methods in aircraft and marine industries and have been able to achieve reductions up to 19%. Here we investigate flow-structure interaction and wrinkling of soft polymer surfaces that can emulate shark riblets and dolphin's flexible skin. Wrinkling arises spontaneously as the result of mismatched deformation of a thin stiff coating bound to a thick soft elastic substrate. Wrinkles can be fabricated by controlling the ratio of the stiffness of the coating and substrate, the applied displacement and the thickness of the coating. In this work we will examine the evolution in the kinematic structures associated with steady viscous flow over the polymer wrinkled surfaces and in particular compare the skin friction with corresponding results for flow over non-textured and rigid surfaces.

  3. Navier-Stokes prediction of a delta wing in roll with vortex breakdown

    Science.gov (United States)

    Chaderjian, Neal M.; Schiff, Lewis B.

    1993-01-01

    The three-dimensional, Reynolds-averaged, Navier-Stokes (RANS) equations are used to numerically simulate vortical flow about a 65 degree sweep delta wing. Subsonic turbulent flow computations are presented for this delta wing at 30 degrees angle of attack and static roll angles up to 42 degrees. This work is part of an on going effort to validate the RANS approach for predicting high-incidence vortical flows, with the eventual application to wing rock. The flow is unsteady and includes spiral-type vortex breakdown. The breakdown positions, mean surface pressures, rolling moments, normal forces, and streamwise center-of-pressure locations compare reasonably well with experiment. In some cases, the primary vortex suction peaks are significantly underpredicted due to grid coarseness. Nevertheless, the computations are able to predict the same nonlinear variation of rolling moment with roll angle that appeared in the experiment. This nonlinearity includes regions of local static roll instability, which is attributed to vortex breakdown.

  4. Heat transfer characteristics and entropy generation for wing-shaped-tubes with longitudinal external fins in cross-flow

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Sayed Ahmed E. Sayed; Mesalhy, Osama M.; Abdelatief, Mohamed A. [Zagazig University, Zagazig (Egypt)

    2016-06-15

    A numerical study is conducted to clarify heat transfer characteristics, effectiveness and entropy generation for a bundle of wingshaped-tubes attached to Longitudinal fins (LF) at downstream side. The air-side Re{sub a} ranged from 1.8 x 10{sup 3} to 9.7 x 10{sup 3} . The fin height (h{sub f}) and fin thickness (δ) have been changed as: (2 mm <= hf <= 12 mm) and (1.5 mm <= δ <= 3.5 mm). The analysis of entropy generation is based on the principle of minimizing the rate of total entropy generation that includes the generation of entropy due to heat transfer and friction losses. The temperature field around the wing-shaped-tubes with (LF) is predicted using commercial CFD FLUENT 6.3.26 software package. Correlations of Nu{sub a}, St{sub a}, and Bejan number (Be), as well as the irreversibility distribution ratio (Φ) in terms of Re{sub a} and design parameters for the studied bundle are presented. Results indicated that, installing fins with heights from 2 to 12 mm results in an increase in Nu{sub a} from 11 to 36% comparing with that of wing-shaped tubes without fins (NOF). The highest and lowest values of effectiveness(ε) at every value of the considered Re{sub a} range are occurred at hf = 6 mm and (NOF), espectively. The wing-shaped-tubes heat exchanger with hf = 6 mm has the highest values of (ε), efficiency index (η) and area goodness factor (G{sub a}) and also the lowest values of Φ and hence the best performance comparing with other arrangements. The minimum values of Φ are occurred at hf = 6 mm. (Be) decreases with increasing Re{sub a} for all studied hf. The heat transfer irreversibility predominates for (1800 <= Re{sub a} <= 4200) while the opposite is true for (6950 < Re{sub a} <= 9700). δ has negligible effect on Nu{sub a} and heat transfer irreversibility. Comparisons between the experimental and numerical results of the present study and those, previously, obtained for similar available studies showed good agreements.

  5. Heat transfer characteristics and entropy generation for wing-shaped-tubes with longitudinal external fins in cross-flow

    International Nuclear Information System (INIS)

    Ahmed, Sayed Ahmed E. Sayed; Mesalhy, Osama M.; Abdelatief, Mohamed A.

    2016-01-01

    A numerical study is conducted to clarify heat transfer characteristics, effectiveness and entropy generation for a bundle of wingshaped-tubes attached to Longitudinal fins (LF) at downstream side. The air-side Re a ranged from 1.8 x 10 3 to 9.7 x 10 3 . The fin height (h f ) and fin thickness (δ) have been changed as: (2 mm <= hf <= 12 mm) and (1.5 mm <= δ <= 3.5 mm). The analysis of entropy generation is based on the principle of minimizing the rate of total entropy generation that includes the generation of entropy due to heat transfer and friction losses. The temperature field around the wing-shaped-tubes with (LF) is predicted using commercial CFD FLUENT 6.3.26 software package. Correlations of Nu a , St a , and Bejan number (Be), as well as the irreversibility distribution ratio (Φ) in terms of Re a and design parameters for the studied bundle are presented. Results indicated that, installing fins with heights from 2 to 12 mm results in an increase in Nu a from 11 to 36% comparing with that of wing-shaped tubes without fins (NOF). The highest and lowest values of effectiveness(ε) at every value of the considered Re a range are occurred at hf = 6 mm and (NOF), espectively. The wing-shaped-tubes heat exchanger with hf = 6 mm has the highest values of (ε), efficiency index (η) and area goodness factor (G a ) and also the lowest values of Φ and hence the best performance comparing with other arrangements. The minimum values of Φ are occurred at hf = 6 mm. (Be) decreases with increasing Re a for all studied hf. The heat transfer irreversibility predominates for (1800 <= Re a <= 4200) while the opposite is true for (6950 < Re a <= 9700). δ has negligible effect on Nu a and heat transfer irreversibility. Comparisons between the experimental and numerical results of the present study and those, previously, obtained for similar available studies showed good agreements.

  6. Moving least squares simulation of free surface flows

    DEFF Research Database (Denmark)

    Felter, C. L.; Walther, Jens Honore; Henriksen, Christian

    2014-01-01

    In this paper a Moving Least Squares method (MLS) for the simulation of 2D free surface flows is presented. The emphasis is on the governing equations, the boundary conditions, and the numerical implementation. The compressible viscous isothermal Navier–Stokes equations are taken as the starting ...

  7. Numerical simulations of viscoelastic flows with free surfaces

    DEFF Research Database (Denmark)

    Comminal, Raphaël; Spangenberg, Jon; Hattel, Jesper Henri

    2013-01-01

    We present a new methodology to simulate viscoelastic flows with free-surfaces. These simulations are motivated by the modelling of polymers manufacturing techniques, such as extrusion and injection moulding. One of the consequences of viscoelasticity is that polymeric materials have a “memory...

  8. Nitrogen Transformation and Removal in Horizontal Surface Flow ...

    African Journals Online (AJOL)

    The potential use of Constructed Mangrove Wetlands (CMWs) as a cheaper, effective and appropriate method for Nitrogen removal from domestic sewage of coastal zone in peri-urban cities was investigated from August 2007 to. September, 2008. Field investigations were made on horizontal surface flow constructed ...

  9. A surface-renewal model of cross-flow microfiltration

    Directory of Open Access Journals (Sweden)

    A. Hasan

    2013-03-01

    Full Text Available A mathematical model using classical cake-filtration theory and the surface-renewal concept is formulated for describing cross-flow microfiltration under dynamic and steady-state conditions. The model can predict the permeate flux and cake buildup in the filter. The three basic parameters of the model are the membrane resistance, specific cake resistance and rate of surface renewal. The model is able to correlate experimental permeate flow rate data in the microfiltration of fermentation broths in laboratory- and pilot-scale units with an average root-mean-square (RMS error of 4.6%. The experimental data are also compared against the critical-flux model of cross-flow microfiltration, which has average RMS errors of 6.3, 5.5 and 6.1% for the cases of cake filtration, intermediate blocking and complete blocking mechanisms, respectively.

  10. Design studies of Laminar Flow Control (LFC) wing concepts using superplastics forming and diffusion bonding (SPF/DB)

    Science.gov (United States)

    Wilson, V. E.

    1980-01-01

    Alternate concepts and design approaches were developed for suction panels and techniques were defined for integrating these panel designs into a complete LFC 200R wing. The design concepts and approaches were analyzed to assure that they would meet the strength, stability, and internal volume requirements. Cost and weight comparisions of the concepts were also made. Problems of integrating the concepts into a complete aircraft system were addressed. Methods for making splices both chordwise and spanwise, fuel light joints, and internal duct installations were developed. Manufacturing problems such as slot aligment, tapered slot spacing, production methods, and repair techniques were addressed. An assessment of the program was used to developed recommendations for additional research in the development of SPF/DB for LFC structure.

  11. Integral methods for shallow free-surface flows with separation

    DEFF Research Database (Denmark)

    Watanabe, S.; Putkaradze, V.; Bohr, Tomas

    2003-01-01

    eddy and separated flow. Assuming a variable radial velocity profile as in Karman-Pohlhausen's method, we obtain a system of two ordinary differential equations for stationary states that can smoothly go through the jump. Solutions of the system are in good agreement with experiments. For the flow down...... an inclined plane we take a similar approach and derive a simple model in which the velocity profile is not restricted to a parabolic or self-similar form. Two types of solutions with large surface distortions are found: solitary, kink-like propagating fronts, obtained when the flow rate is suddenly changed......, and stationary jumps, obtained, for instance, behind a sluice gate. We then include time dependence in the model to study the stability of these waves. This allows us to distinguish between sub- and supercritical flows by calculating dispersion relations for wavelengths of the order of the width of the layer....

  12. On the structure, interaction, and breakdown characteristics of slender wing vortices at subsonic, transonic, and supersonic speeds

    Science.gov (United States)

    Erickson, Gary E.; Schreiner, John A.; Rogers, Lawrence W.

    1989-01-01

    Slender wing vortex flows at subsonic, transonic, and supersonic speeds were investigated in a 6 x 6 ft wind tunnel. Test data obtained include off-body and surface flow visualizations, wing upper surface static pressure distributions, and six-component forces and moments. The results reveal the transition from the low-speed classical vortex regime to the transonic regime, beginning at a freestream Mach number of 0.60, where vortices coexist with shock waves. It is shown that the onset of core breakdown and the progression of core breakdown with the angle of attack were sensitive to the Mach number, and that the shock effects at transonic speeds were reduced by the interaction of the wing and the lead-edge extension (LEX) vortices. The vortex strengths and direct interaction of the wing and LEX cores (cores wrapping around each other) were found to diminish at transonic and supersonic speeds.

  13. Incompressible flows of superfluid films on multiply-connected surfaces

    International Nuclear Information System (INIS)

    Corrada-Emmanuel, A.

    1989-01-01

    The theory of Riemann surfaces is applied to the problem of constructing quantized vortex flows in closed surfaces of arbitrary but finite genus. An in principle procedure for obtaining the lowest energy flow is presented. It is shown that quantized vortices in non-zero genus surfaces are, in general, not isomorphic to a Coulomb gas. This failure has a geometrical origin: the appearance in non-zero genus surfaces of closed curves that are not the boundary of any area. A theorem of Riemann is applied to the genus one surface, the torus, to show quantitatively how to construct the quantized vortices. Because of the breakdown in the isomorphism between quantized vortices and charges, a novel effect is possible: the violation of Earnshaw's theorem. On a torus a single vortex can be placed in local stable equilibrium. The uniform flows around the holes of the torus also lead to a new result: a non-vortex mechanism for the destruction of superfluidity in the film. An explicit formula is derived showing this effect by considering the response of a helium film to a rotation of the torus. The author predicts that torii of dissimilar proportions will exhibit different superfluid densities at the same temperature

  14. CURVATURE-DRIVEN MOLECULAR FLOW ON MEMBRANE SURFACE.

    Science.gov (United States)

    Mikucki, Michael; Zhou, Y C

    2017-01-01

    This work presents a mathematical model for the localization of multiple species of diffusion molecules on membrane surfaces. Morphological change of bilayer membrane in vivo is generally modulated by proteins. Most of these modulations are associated with the localization of related proteins in the crowded lipid environments. We start with the energetic description of the distributions of molecules on curved membrane surface, and define the spontaneous curvature of bilayer membrane as a function of the molecule concentrations on membrane surfaces. A drift-diffusion equation governs the gradient flow of the surface molecule concentrations. We recast the energetic formulation and the related governing equations by using an Eulerian phase field description to define membrane morphology. Computational simulations with the proposed mathematical model and related numerical techniques predict (i) the molecular localization on static membrane surfaces at locations with preferred mean curvatures, and (ii) the generation of preferred mean curvature which in turn drives the molecular localization.

  15. Investigation of aluminum surface cleaning using cavitating fluid flow

    Energy Technology Data Exchange (ETDEWEB)

    Ralys, Aurimas; Striška, Vytautas; Mokšin, Vadim [Vilnius Gediminas Technical University, Faculty of Mechanics, Department of Machine Engineering, J. Basanavičiaus str.28, 03224, Vilnius (Lithuania)

    2013-12-16

    This paper investigates efficiency of specially designed atomizer used to spray water and cavitate microbubbles in water flow. Surface cleaning system was used to clean machined (grinded) aluminum surface from abrasive particles. It is established that cleaning efficiency depends on diameter of the diffuser, water pressure and distance between nozzle and metal surface. It is obtained that the best cleaning efficiency (100%) is achieved at pressure 36 bar, when diameter of diffuser is 0.4 mm and distance between nozzle and surface is 1 mm. It is also established that satisfactory cleaning efficiency (80%) is achieved not only when atomizer is placed closer to metal surface, but also at larger (120 mm) distances.

  16. Mechanisms of Wing Beat Sound in Flapping Wings of Beetles

    Science.gov (United States)

    Allen, John

    2017-11-01

    While the aerodynamic aspects of insect flight have received recent attention, the mechanisms of sound production by flapping wings is not well understood. Though the harmonic structure of wing beat frequency modulation has been reported with respect to biological implications, few studies have rigorously quantified it with respect directionality, phase coupling and vortex tip scattering. Moreover, the acoustic detection and classification of invasive species is both of practical as well scientific interest. In this study, the acoustics of the tethered flight of the Coconut Rhinoceros Beetle (Oryctes rhinoceros) is investigated with four element microphone array in conjunction with complementary optical sensors and high speed video. The different experimental methods for wing beat determination are compared in both the time and frequency domain. Flow visualization is used to examine the vortex and sound generation due to the torsional mode of the wing rotation. Results are compared with related experimental studies of the Oriental Flower Beetle. USDA, State of Hawaii.

  17. Characterizing developing adverse pressure gradient flows subject to surface roughness

    Science.gov (United States)

    Brzek, Brian; Chao, Donald; Turan, Özden; Castillo, Luciano

    2010-04-01

    An experimental study was conducted to examine the effects of surface roughness and adverse pressure gradient (APG) on the development of a turbulent boundary layer. Hot-wire anemometry measurements were carried out using single and X-wire probes in all regions of a developing APG flow in an open return wind tunnel test section. The same experimental conditions (i.e., T ∞, U ref, and C p) were maintained for smooth, k + = 0, and rough, k + = 41-60, surfaces with Reynolds number based on momentum thickness, 3,000 carefully designed such that the x-dependence in the flow field was known. Despite this fact, only a very small region of the boundary layer showed a balance of the various terms in the integrated boundary layer equation. The skin friction computed from this technique showed up to a 58% increase due to the surface roughness. Various equilibrium parameters were studied and the effect of roughness was investigated. The generated flow was not in equilibrium according to the Clauser (J Aero Sci 21:91-108, 1954) definition due to its developing nature. After a development region, the flow reached the equilibrium condition as defined by Castillo and George (2001), where Λ = const, is the pressure gradient parameter. Moreover, it was found that this equilibrium condition can be used to classify developing APG flows. Furthermore, the Zagarola and Smits (J Fluid Mech 373:33-79, 1998a) scaling of the mean velocity deficit, U ∞δ*/δ, can also be used as a criteria to classify developing APG flows which supports the equilibrium condition of Castillo and George (2001). With this information a ‘full APG region’ was defined.

  18. Free surface flow with moving rigid bodies. Part 1. Computational flow model

    International Nuclear Information System (INIS)

    Gubanov, O.I.; Mironova, L.A.; Kocabiyik, S.

    2005-01-01

    This paper was motivated by the study of Hirt and Sicilian, where the 'differential form' of the governing equations for the inviscid fluid flow (FAVOR equations) were obtained. We utilize mainly generalized differentiation to extend the Reynolds transport theorem over a control volume containing fluid interface for deriving the 'integral form' of governing equations for the incompressible viscous flow problems. This is done following the work by Farassat and the use of generalized function theory made this derivation straightforward, systematic and rigorous. The resulting equations are discretized by a finite-volume method using a staggered grid, after making use of the coarse-scale approximation. The resulting governing equations are valid for a class of flows including free surface flows with arbitrarily moving bodies and are consistent with Hirt and Sicilian's formulation in the inviscid fluid flow case. (author)

  19. AMELIA CESTOL Test: Acoustic Characteristics of Circulation Control Wing with Leading- and Trailing-Edge Slot Blowing

    Science.gov (United States)

    Horne, William C.; Burnside, Nathan J.

    2013-01-01

    The AMELIA Cruise-Efficient Short Take-off and Landing (CESTOL) configuration concept was developed to meet future requirements of reduced field length, noise, and fuel burn by researchers at Cal Poly, San Luis Obispo and Georgia Tech Research Institute under sponsorship by the NASA Fundamental Aeronautics Program (FAP), Subsonic Fixed Wing Project. The novel configuration includes leading- and trailing-edge circulation control wing (CCW), over-wing podded turbine propulsion simulation (TPS). Extensive aerodynamic measurements of forces, surfaces pressures, and wing surface skin friction measurements were recently measured over a wide range of test conditions in the Arnold Engineering Development Center(AEDC) National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Ft Wind Tunnel. Acoustic measurements of the model were also acquired for each configuration with 7 fixed microphones on a line under the left wing, and with a 48-element, 40-inch diameter phased microphone array under the right wing. This presentation will discuss acoustic characteristics of the CCW system for a variety of tunnel speeds (0 to 120 kts), model configurations (leading edge(LE) and/or trailing-edge(TE) slot blowing, and orientations (incidence and yaw) based on acoustic measurements acquired concurrently with the aerodynamic measurements. The flow coefficient, Cmu= mVSLOT/qSW varied from 0 to 0.88 at 40 kts, and from 0 to 0.15 at 120 kts. Here m is the slot mass flow rate, VSLOT is the slot exit velocity, q is dynamic pressure, and SW is wing surface area. Directivities at selected 1/3 octave bands will be compared with comparable measurements of a 2-D wing at GTRI, as will as microphone array near-field measurements of the right wing at maximum flow rate. The presentation will include discussion of acoustic sensor calibrations as well as characterization of the wind tunnel background noise environment.

  20. Review Results on Wing-Body Interference

    Directory of Open Access Journals (Sweden)

    Frolov Vladimir

    2016-01-01

    Full Text Available The paper presents an overview of results for wing-body interference, obtained by the author for varied wing-body combinations. The lift-curve slopes of the wing-body combinations are considered. In this paper a discrete vortices method (DVM and 2D potential model for cross-flow around fuselage are used. The circular and elliptical cross-sections of the fuselage and flat wings of various forms are considered. Calculations showed that the value of the lift-curve slopes of the wing-body combinations may exceed the same value for an isolated wing. This result confirms an experimental data obtained by other authors earlier. Within a framework of the used mathematical models the investigations to optimize the wing-body combination were carried. The present results of the optimization problem for the wing-body combination allowed to select the optimal geometric characteristics for configuration to maximize the values of the lift-curve slopes of the wing-body combination. It was revealed that maximums of the lift-curve slopes for the optimal mid-wing configuration with elliptical cross-section body had a sufficiently large relative width of the body (more than 30% of the span wing.

  1. Characterization of groundwater flow for near surface disposal facilities

    International Nuclear Information System (INIS)

    2001-02-01

    The main objective of this report is to provide a description of the site investigation techniques and modelling approaches that can be used to characterise the flow of subsurface water at near surface disposal facilities in relation to the various development stages of the repositories. As one of the main goals of defining groundwater flow is to establish the possible contaminant migration, certain aspects related to groundwater transport are also described. Secondary objectives are to discuss the implications of various groundwater conditions with regard to the performance of the isolation systems

  2. Surface and Flow Field Measurements on the FAITH Hill Model

    Science.gov (United States)

    Bell, James H.; Heineck, James T.; Zilliac, Gregory; Mehta, Rabindra D.; Long, Kurtis R.

    2012-01-01

    A series of experimental tests, using both qualitative and quantitative techniques, were conducted to characterize both surface and off-surface flow characteristics of an axisymmetric, modified-cosine-shaped, wall-mounted hill named "FAITH" (Fundamental Aero Investigates The Hill). Two separate models were employed: a 6" high, 18" base diameter machined aluminum model that was used for wind tunnel tests and a smaller scale (2" high, 6" base diameter) sintered nylon version that was used in the water channel facility. Wind tunnel and water channel tests were conducted at mean test section speeds of 165 fps (Reynolds Number based on height = 500,000) and 0.1 fps (Reynolds Number of 1000), respectively. The ratio of model height to boundary later height was approximately 3 for both tests. Qualitative techniques that were employed to characterize the complex flow included surface oil flow visualization for the wind tunnel tests, and dye injection for the water channel tests. Quantitative techniques that were employed to characterize the flow included Cobra Probe to determine point-wise steady and unsteady 3D velocities, Particle Image Velocimetry (PIV) to determine 3D velocities and turbulence statistics along specified planes, Pressure Sensitive Paint (PSP) to determine mean surface pressures, and Fringe Imaging Skin Friction (FISF) to determine surface skin friction (magnitude and direction). This initial report summarizes the experimental set-up, techniques used, data acquired and describes some details of the dataset that is being constructed for use by other researchers, especially the CFD community. Subsequent reports will discuss the data and their interpretation in more detail

  3. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing.

    Science.gov (United States)

    Phillips, Nathan; Knowles, Kevin; Bomphrey, Richard J

    2015-10-09

    Insect wing shapes are diverse and a renowned source of inspiration for the new generation of autonomous flapping vehicles, yet the aerodynamic consequences of varying geometry is not well understood. One of the most defining and aerodynamically significant measures of wing shape is the aspect ratio, defined as the ratio of wing length (R) to mean wing chord (c). We investigated the impact of aspect ratio, AR, on the induced flow field around a flapping wing using a robotic device. Rigid rectangular wings ranging from AR = 1.5 to 7.5 were flapped with insect-like kinematics in air with a constant Reynolds number (Re) of 1400, and a dimensionless stroke amplitude of 6.5c (number of chords traversed by the wingtip). Pseudo-volumetric, ensemble-averaged, flow fields around the wings were captured using particle image velocimetry at 11 instances throughout simulated downstrokes. Results confirmed the presence of a high-lift, separated flow field with a leading-edge vortex (LEV), and revealed that the conical, primary LEV grows in size and strength with increasing AR. In each case, the LEV had an arch-shaped axis with its outboard end originating from a focus-sink singularity on the wing surface near the tip. LEV detachment was observed for AR > 1.5 around mid-stroke at ~70% span, and initiated sooner over higher aspect ratio wings. At AR > 3 the larger, stronger vortex persisted under the wing surface well into the next half-stroke leading to a reduction in lift. Circulatory lift attributable to the LEV increased with AR up to AR = 6. Higher aspect ratios generated proportionally less lift distally because of LEV breakdown, and also less lift closer to the wing root due to the previous LEV's continuing presence under the wing. In nature, insect wings go no higher than AR ~ 5, likely in part due to architectural and physiological constraints but also because of the reducing aerodynamic benefits of high AR wings.

  4. Physics-based Morphology Analysis and Adjoint Optimization of Flexible Flapping Wings

    Science.gov (United States)

    2016-08-30

    production, power consumption , and efficiency. Novel tools for studying wing morphing during complicated flapping flights have been developed to...23 Figure 14. Transverse plane cut at mid-downstroke. (a) Cut through wing and body (b) Cut through the near wake (no wings...between wing surfaces and corresponding least square planes . The distances are normalized by wing mid chord length

  5. A waveless free surface flow past a submerged triangular obstacle in presence of surface tension

    Directory of Open Access Journals (Sweden)

    Hakima Sekhri

    2016-07-01

    Full Text Available We consider the Free surface flows passing a submerged triangular obstacle at the bottom of a channel. The problem is characterized by a nonlinear boundary condition on the surface of unknown configuration. The analytical exact solutions for these problems are not known. Following Dias and Vanden Broeck [6], we computed numerically the solutions via a series truncation method. These solutions depend on two parameters: the Weber number $\\alpha$ characterizing the strength of the surface tension and the angle $\\beta$ at the base characterizing the shape of the apex. Although free surface flows with surface tension admit capillary waves, it is found that solution exist only for values of the Weber number greater than $\\alpha_0$ for different configurations of the triangular obstacle.

  6. Turbulent flow over an interactive alternating land-water surface

    Science.gov (United States)

    Van Heerwaarden, C.; Mellado, J. P.

    2014-12-01

    The alternating land-water surface is a challenging surface to represent accurately in weather and climate models, but it is of great importance for the surface energy balance in polar regions. The complexity of this surface lies in the fact that secondary circulations, which form at the boundary of water and land, interact strongly with the surface energy balance. Due to its large heat capacity, the water temperature adapts slowly to the flow, thus the properties of the atmosphere determine the uptake of energy from the water. In order to study this complex system in a simpler way, retaining only the most essential physics, we have simplified the full surface energy balance including radiation. We have derived a boundary condition that mimics the full balance and can be formulated as a so-called Robin boundary condition: a linear combination of Dirichlet (fixed temperature) and Neumann (fixed temperature gradient) ones. By spatially varying the coefficients, we are able to express land and water using this boundary condition. We have done a series of direct numerical simulations in which we generate artificial land-water patterns from noise created from a Gaussian spectrum centered around a dominant wave number. This method creates realistic random patterns, but we are still in control of the length scales. We show that the system can manifest itself in three regimes: micro-, meso- and macro-scale. In the micro-scale, we find perfect mixing of the near-surface atmosphere that results in identical air properties over water and land. In the meso-scale, secondary circulations alter the heat exchange considerably by advecting air between land and water. In addition, they bring the surface temperature of the land closer to that of the air, thereby modulating the energy loss due to outgoing longwave radiation. In the macro-scale regime, the flow over land and water become independent of each other and only the large scale forcings determine the energy balance.

  7. Rarefaction effects in gas flows over curved surfaces

    Science.gov (United States)

    Dongari, Nishanth; White, Craig; Scanlon, Thomas J.; Zhang, Yonghao; Reese, Jason M.

    2012-11-01

    The fundamental test case of gas flow between two concentric rotating cylinders is considered in order to investigate rarefaction effects associated with the Knudsen layers over curved surfaces. We carry out direct simulation Monte Carlo simulations covering a wide range of Knudsen numbers and accommodation coefficients, and for various outer-to-inner cylinder radius ratios. Numerical data is compared with classical slip flow theory and a new power-law (PL) wall scaling model. The PL model incorporates Knudsen layer effects in near-wall regions by taking into account the boundary limiting effects on the molecular free paths. The limitations of both theoretical models are explored with respect to rarefaction and curvature effects. Torque and velocity profile comparisons also convey that mere prediction of integral flow parameters does not guarantee the accuracy of a theoretical model, and that it is important to ensure that prediction of the local flowfield is in agreement with simulation data.

  8. Heat Transfer Enhancement in Turbulent Flows by Blocked Surfaces

    Directory of Open Access Journals (Sweden)

    Onur YEMENİCİ

    2013-04-01

    Full Text Available In this study, the heat transfer analyses over flat and blocked surfaces were carried out in turbulent flow under the influence of the block height. A constant-temperature hot wire anemometer was used to the velocity and turbulent intensity measurements, while temperature values were measured by copper-constantan thermocouples. The average Stanton numbers for block heights of 15 and 25 mm were higher than those of flat surface by %38 and %84, respectively. The results showed that the presence of the blocks increased the heat transfer and the enhancement rose with block heights

  9. Flow and heat transfer regimes during quenching of hot surfaces

    International Nuclear Information System (INIS)

    Barnea, Y.; Elias, E.

    1993-05-01

    Reflooding experiments have been performed to study flow and heat transfer regimes in a heated annular vertical channel under supercooled inlet conditions. A gamma densitometer was employed to determine the void fraction as a function of the distance from the quench front. Surface heat fluxes were determined by fast measurements of the temperature spatial distribution. Two quench front is shown to lie in the transition boiling region which spreads into the dry and wet segments of the heated surface. (authors) 5 refs, 3 figs

  10. Measuring surface flow velocity with smartphones: potential for citizen observatories

    Science.gov (United States)

    Weijs, Steven V.; Chen, Zichong; Brauchli, Tristan; Huwald, Hendrik

    2014-05-01

    Stream flow velocity is an important variable for discharge estimation and research on sediment dynamics. Given the influence of the latter on rating curves (stage-discharge relations), and the relative scarcity of direct streamflow measurements, surface velocity measurements can offer important information for, e.g., flood warning, hydropower, and hydrological science and engineering in general. With the growing amount of sensing and computing power in the hands of more outdoorsy individuals, and the advances in image processing techniques, there is now a tremendous potential to obtain hydrologically relevant data from motivated citizens. This is the main focus of the interdisciplinary "WeSenseIt" project, a citizen observatory of water. In this subproject, we investigate the feasibility of stream flow surface velocity measurements from movie clips taken by (smartphone-) cameras. First results from movie-clip derived velocity information will be shown and compared to reference measurements.

  11. 3D surface reconstruction using optical flow for medical imaging

    International Nuclear Information System (INIS)

    Weng, Nan; Yang, Yee-Hong; Pierson, R.

    1996-01-01

    The recovery of a 3D model from a sequence of 2D images is very useful in medical image analysis. Image sequences obtained from the relative motion between the object and the camera or the scanner contain more 3D information than a single image. Methods to visualize the computed tomograms can be divided into two approaches: the surface rendering approach and the volume rendering approach. A new surface rendering method using optical flow is proposed. Optical flow is the apparent motion in the image plane produced by the projection of the real 3D motion onto 2D image. In this paper, the object remains stationary while the scanner undergoes translational motion. The 3D motion of an object can be recovered from the optical flow field using additional constraints. By extracting the surface information from 3D motion, it is possible to get an accurate 3D model of the object. Both synthetic and real image sequences have been used to illustrate the feasibility of the proposed method. The experimental results suggest that the proposed method is suitable for the reconstruction of 3D models from ultrasound medical images as well as other computed tomograms

  12. The Effect of Acoustic Forcing on Instabilities and Breakdown in Swept-Wing Flow over a Backward-Facing Step

    Science.gov (United States)

    Eppink, Jenna L.; Shishkov, Olga; Wlezien, Richard W.; King, Rudolph A.; Choudhari, Meelan

    2016-01-01

    Instability interaction and breakdown were experimentally investigated in the flow over a swept backward-facing step. Acoustic forcing was used to excite the Tollmien-Schlichting (TS) instability and to acquire phase-locked results. The phase-averaged results illustrate the complex nature of the interaction between the TS and stationary cross flow instabilities. The weak stationary cross flow disturbance causes a distortion of the TS wavefront. The breakdown process is characterized by large positive and negative spikes in velocity. The positive spikes occur near the same time and location as the positive part of the TS wave. Higher-order spectral analysis was used to further investigate the nonlinear interactions between the TS instability and the traveling cross flow disturbances. The results reveal that a likely cause for the generation of the spikes corresponds to nonlinear interactions between the TS, traveling cross flow, and stationary cross flow disturbances. The spikes begin at low amplitudes of the unsteady and steady disturbances (2-4% U (sub e) (i.e. boundary layer edge velocity)) but can achieve very large amplitudes (20-30 percent U (sub e) (i.e. boundary layer edge velocity)) that initiate an early, though highly intermittent, breakdown to turbulence.

  13. Body-surface pressure data on two monoplane-wing missile configurations with elliptical cross sections at Mach 2.50

    Science.gov (United States)

    Allen, J. M.; Hernandez, G.; Lamb, M.

    1983-01-01

    Tabulated body surface pressure data for two monoplane-wing missile configurations are presented and analyzed. Body pressure data are presented for body-alone, body-tail, and body-wing-tail combinations. For the lost combination, data are presented for tail-fin deflection angles of 0 deg and 30 deg to simulate pitch, yaw, and roll control for both configurations. The data cover angles of attack from -5 deg to 25 deg and angles of roll from 0 deg to 90 deg at a Mach number of 2.50 and a Reynolds number of 6.56 x 1,000,000 per meter. Very consistent, systematic trends with angle of attack and angle of roll were observed in the data, and very good symmetry was found at a roll angle of 0 deg. Body pressures depended strongly on the local body cross-section shape, with very little dependence on the upstream shape. Undeflected fins had only a small influence on the pressures on the aft end of the body; however, tail-fin deflections caused large changes in the pressures.

  14. Nonlinear Dynamics of Wind Turbine Wings

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther

    , large wind turbines become increasingly flexible and dynamically sensitive. This project focuses on the structural analysis of highly flexible wind turbine wings, and the aerodynamic loading of wind turbine wings under large changes in flow field due to elastic deformations and changing wind conditions....

  15. Problem of Vortex Turbulence behind Wings (II),

    Science.gov (United States)

    1980-09-23

    these winglets would give a resultant aerodynamic force directed towards the front which would decrease the wing drag. Such winglets will affect the...Fig. 30 Whitcomb winglets Pig. 31 Set of winglets for wake dissipation Surfaces on wing tips, winglets (Fig. 30), proposed by Whitcomb to diminish...anyway - to decrease the induced drag of the wing by putting some winglets at a certain angle in different planes, as shown in Fig. 31. The total

  16. Role of wing morphing in thrust generation

    Directory of Open Access Journals (Sweden)

    Mehdi Ghommem

    2014-01-01

    Full Text Available In this paper, we investigate the role of morphing on flight dynamics of two birds by simulating the flow over rigid and morphing wings that have the characteristics of two different birds, namely the Giant Petrel and Dove Prion. The simulation of a flapping rigid wing shows that the root of the wing should be placed at a specific angle of attack in order to generate enough lift to balance the weight of the bird. However, in this case the generated thrust is either very small, or even negative, depending on the wing shape. Further, results show that morphing of the wing enables a significant increase in the thrust and propulsive efficiency. This indicates that the birds actually utilize some sort of active wing twisting and bending to produce enough thrust. This study should facilitate better guidance for the design of flapping air vehicles.

  17. Entropy flow and generation in radiative transfer between surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.M.; Basu, S. [Georgia Institute of Technolgy, Atlanta, GA (United States). George W. Woodruff School of Mechanical Engineering

    2007-02-15

    Entropy of radiation has been used to derive the laws of blackbody radiation and determine the maximum efficiency of solar energy conversion. Along with the advancement in thermophotovoltaic technologies and nanoscale heat radiation, there is an urgent need to determine the entropy flow and generation in radiative transfer between nonideal surfaces when multiple reflections are significant. This paper investigates entropy flow and generation when incoherent multiple reflections are included, without considering the effects of interference and photon tunneling. The concept of partial equilibrium is applied to interpret the monochromatic radiation temperature of thermal radiation, T{sub l}(l,{omega}), which is dependent on both wavelength l and direction {omega}. The entropy flux and generation can thus be evaluated for nonideal surfaces. It is shown that several approximate expressions found in the literature can result in significant errors in entropy analysis even for diffuse-gray surfaces. The present study advances the thermodynamics of nonequilibrium thermal radiation and will have a significant impact on the future development of thermophotovoltaic and other radiative energy conversion devices. (author)

  18. Examination of the effect of blowing on the near-surface flow structure over a dimpled surface

    Science.gov (United States)

    Borchetta, C. G.; Martin, A.; Bailey, S. C. C.

    2018-03-01

    The near surface flow over a dimpled surface with flow injection through it was documented using time-resolved particle image velocimetry. The instantaneous flow structure, time-averaged statistics, and results from snapshot proper orthogonal decomposition were used to examine the coherent structures forming near the dimpled surface. In particular, the modifications made to the flow structures by the addition of flow injection through the surface were studied. It was observed that without flow injection, inclined flow structures with alternating vorticity from neighboring dimples are generated by the dimples and advect downstream. This behavior is coupled with fluid becoming entrained inside the dimples, recirculating and ejecting away from the surface. When flow injection was introduced through the surface, the flow structures became more disorganized, but some of the features of the semi-periodic structures observed without flow injection were preserved. The structures with flow injection appear in multiple wall-normal layers, formed from vortical structures shed from upstream dimples, with a corresponding increase in the size of the advecting structures. As a result of the more complex flow field observed with flow injection, there was an increase in turbulent kinetic energy and Reynolds shear stress, with the Reynolds shear stress representing an increase in vertical transport of momentum by sweeping and ejecting motions that were not present without flow injection.

  19. Validation of morphing wing methodologies on an unmanned aerial system and a wind tunnel technology demonstrator

    Science.gov (United States)

    Gabor, Oliviu Sugar

    , the spanwise number of actuation stations as well as the displacement limits were established. The performance improvements obtained and the limitations of the morphing wing concept were studied. To verify the optimization results, high-fidelity Computational Fluid Dynamics simulations were also performed, giving very accurate indications of the obtained gains. For the morphing model based on an aircraft wing tip, the skin shapes were optimized in order to control laminar flow on the upper surface. An automated structured mesh generation procedure was developed and implemented. To accurately capture the shape of the skin, a precision scanning procedure was done and its results were included in the numerical model. High-fidelity simulations were performed to determine the upper surface transition region and the numerical results were validated using experimental wind tunnel data.

  20. Preliminary Axial Flow Turbine Design and Off-Design Performance Analysis Methods for Rotary Wing Aircraft Engines. Part 1; Validation

    Science.gov (United States)

    Chen, Shu-cheng, S.

    2009-01-01

    For the preliminary design and the off-design performance analysis of axial flow turbines, a pair of intermediate level-of-fidelity computer codes, TD2-2 (design; reference 1) and AXOD (off-design; reference 2), are being evaluated for use in turbine design and performance prediction of the modern high performance aircraft engines. TD2-2 employs a streamline curvature method for design, while AXOD approaches the flow analysis with an equal radius-height domain decomposition strategy. Both methods resolve only the flows in the annulus region while modeling the impact introduced by the blade rows. The mathematical formulations and derivations involved in both methods are documented in references 3, 4 for TD2-2) and in reference 5 (for AXOD). The focus of this paper is to discuss the fundamental issues of applicability and compatibility of the two codes as a pair of companion pieces, to perform preliminary design and off-design analysis for modern aircraft engine turbines. Two validation cases for the design and the off-design prediction using TD2-2 and AXOD conducted on two existing high efficiency turbines, developed and tested in the NASA/GE Energy Efficient Engine (GE-E3) Program, the High Pressure Turbine (HPT; two stages, air cooled) and the Low Pressure Turbine (LPT; five stages, un-cooled), are provided in support of the analysis and discussion presented in this paper.

  1. Effect of non-equilibrium flow chemistry and surface catalysis on surface heating to AFE

    Science.gov (United States)

    Stewart, David A.; Henline, William D.; Chen, Yih-Kanq

    1991-01-01

    The effect of nonequilibrium flow chemistry on the surface temperature distribution over the forebody heat shield on the Aeroassisted Flight Experiment (AFE) vehicle was investigated using a reacting boundary-layer code. Computations were performed by using boundary-layer-edge properties determined from global iterations between the boundary-layer code and flow field solutions from a viscous shock layer (VSL) and a full Navier-Stokes solution. Surface temperature distribution over the AFE heat shield was calculated for two flight conditions during a nominal AFE trajectory. This study indicates that the surface temperature distribution is sensitive to the nonequilibrium chemistry in the shock layer. Heating distributions over the AFE forebody calculated using nonequilibrium edge properties were similar to values calculated using the VSL program.

  2. Flux surface shaping effects on tokamak edge turbulence and flows

    International Nuclear Information System (INIS)

    Kendl, A.; Scott, B.D.

    2004-01-01

    The influence of shaping of magnetic flux surfaces in tokamaks on gyro-fluid edge turbulence is studied numerically. Magnetic field shaping in tokamaks is mainly due to elongation, triangularity, shift and the presence of a divertor X-point. A series of tokamak configurations with varying elongation 1 ≤ κ ≥ 2 and triangularity 0 ≤ δ ≤ 0.4, and an actual ASDEX Upgrade divertor configuration are obtained with the equilibrium code HELENA and implemented into the gyro-fluid turbulence code GEM. The study finds minimal impact on the zonal flow physics itself, but strong impact on the turbulence and transport. (authors)

  3. Flux surface shaping effects on tokamak edge turbulence and flows

    Energy Technology Data Exchange (ETDEWEB)

    Kendl, A. [Innsbruck Univ., Institut fuer Theoretische Physik, Association EURATOM (Austria); Scott, B.D. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching bei Muenchen (Germany)

    2004-07-01

    The influence of shaping of magnetic flux surfaces in tokamaks on gyro-fluid edge turbulence is studied numerically. Magnetic field shaping in tokamaks is mainly due to elongation, triangularity, shift and the presence of a divertor X-point. A series of tokamak configurations with varying elongation 1 {<=} {kappa} {>=} 2 and triangularity 0 {<=} {delta} {<=} 0.4, and an actual ASDEX Upgrade divertor configuration are obtained with the equilibrium code HELENA and implemented into the gyro-fluid turbulence code GEM. The study finds minimal impact on the zonal flow physics itself, but strong impact on the turbulence and transport. (authors)

  4. Effects of flow separation and cove leakage on pressure and heat-transfer distributions along a wing-cove-elevon configuration at Mach 6.9. [Langley 8-ft high temperature tunnel test

    Science.gov (United States)

    Deveikis, W. D.

    1983-01-01

    External and internal pressure and cold-wall heating-rate distributions were obtained in hypersonic flow on a full-scale heat-sink representation of the space shuttle orbiter wing-elevon-cove configuration in an effort to define effects of flow separation on cove aerothermal environment as a function of cove seal leak area, ramp angle, and free-stream unit Reynolds number. Average free-stream Mach number from all tests was 6.9; average total temperature from all tests was 3360 R; free-stream dynamic pressure ranged from about 2 to 9 psi; and wing angle of attack was 5 deg (flow compression). For transitional and turbulent flow separation, increasing cove leakage progressively increased heating rates in the cove. When ingested mass flow was sufficient to force large reductions in extent of separation, increasing cove leakage reduced heating rates in the cove to those for laminar attached flow. Cove heating-rate distributions calculated with a method that assumed laminar developing channel flow agreed with experimentally obtained distributions within root-mean-square differences that varied between 11 and 36 percent where cove walls were parallel for leak areas of 50 and 100 percent.

  5. DIVERGENT HORIZONTAL SUB-SURFACE FLOWS WITHIN ACTIVE REGION 11158

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Kiran; Tripathy, S. C.; Hill, F., E-mail: kjain@nso.edu, E-mail: stripathy@nso.edu, E-mail: fhill@nso.edu [National Solar Observatory, 950 N Cherry Avenue, Tucson, AZ 85719 (United States)

    2015-07-20

    We measure the horizontal subsurface flow in a fast emerging active region (AR; NOAA 11158) using the ring-diagram technique and the Helioseismic and Magnetic Imager high spatial resolution Dopplergrams. This AR had a complex magnetic structure and displayed significant changes in morphology during its disk passage. Over a period of six days from 2011 February 11 to 16, the temporal variation in the magnitude of the total velocity is found to follow the trend of magnetic field strength. We further analyze regions of individual magnetic polarity within AR 11158 and find that the horizontal velocity components in these sub-regions have significant variation with time and depth. The leading and trailing polarity regions move faster than the mixed-polarity region. Furthermore, both zonal and meridional components have opposite signs for trailing and leading polarity regions at all depths showing divergent flows within the AR. We also find a sharp decrease in the magnitude of total horizontal velocity in deeper layers around major flares. It is suggested that the re-organization of magnetic fields during flares, combined with the sunspot rotation, decreases the magnitude of horizontal flows or that the flow kinetic energy has been converted into the energy released by flares. After the decline in flare activity and sunspot rotation, the flows tend to follow the pattern of magnetic activity. We also observe less variation in the velocity components near the surface but these tend to increase with depth, further demonstrating that the deeper layers are more affected by the topology of ARs.

  6. Correlations of Surface Deformation and 3D Flow Field in a Compliant Wall Turbulent Channel Flow.

    Science.gov (United States)

    Wang, Jin; Zhang, Cao; Katz, Joseph

    2015-11-01

    This study focuses on the correlations between surface deformation and flow features, including velocity, vorticity and pressure, in a turbulent channel flow over a flat, compliant Polydimethylsiloxane (PDMS) wall. The channel centerline velocity is 2.5 m/s, and the friction Reynolds number is 2.3x103. Analysis is based on simultaneous measurements of the time resolved 3D velocity and surface deformation using tomographic PIV and Mach-Zehnder Interferometry. The volumetric pressure distribution is calculated plane by plane by spatially integrating the material acceleration using virtual boundary, omni-directional method. Conditional sampling based on local high/low pressure and deformation events reveals the primary flow structures causing the deformation. High pressure peaks appear at the interface between sweep and ejection, whereas the negative deformations peaks (dent) appear upstream, under the sweeps. The persistent phase lag between flow and deformations are presumably caused by internal damping within the PDMS. Some of the low pressure peaks and strong ejections are located under the head of hairpin vortices, and accordingly, are associated with positive deformation (bump). Others bumps and dents are correlated with some spanwise offset large inclined quasi-streamwise vortices that are not necessarily associated with hairpins. Sponsored by ONR.

  7. Shape optimisation and performance analysis of flapping wings

    KAUST Repository

    Ghommem, Mehdi

    2012-09-04

    In this paper, shape optimisation of flapping wings in forward flight is considered. This analysis is performed by combining a local gradient-based optimizer with the unsteady vortex lattice method (UVLM). Although the UVLM applies only to incompressible, inviscid flows where the separation lines are known a priori, Persson et al. [1] showed through a detailed comparison between UVLM and higher-fidelity computational fluid dynamics methods for flapping flight that the UVLM schemes produce accurate results for attached flow cases and even remain trend-relevant in the presence of flow separation. As such, they recommended the use of an aerodynamic model based on UVLM to perform preliminary design studies of flapping wing vehicles Unlike standard computational fluid dynamics schemes, this method requires meshing of the wing surface only and not of the whole flow domain [2]. From the design or optimisation perspective taken in our work, it is fairly common (and sometimes entirely necessary, as a result of the excessive computational cost of the highest fidelity tools such as Navier-Stokes solvers) to rely upon such a moderate level of modelling fidelity to traverse the design space in an economical manner. The objective of the work, described in this paper, is to identify a set of optimised shapes that maximise the propulsive efficiency, defined as the ratio of the propulsive power over the aerodynamic power, under lift, thrust, and area constraints. The shape of the wings is modelled using B-splines, a technology used in the computer-aided design (CAD) field for decades. This basis can be used to smoothly discretize wing shapes with few degrees of freedom, referred to as control points. The locations of the control points constitute the design variables. The results suggest that changing the shape yields significant improvement in the performance of the flapping wings. The optimisation pushes the design to "bird-like" shapes with substantial increase in the time

  8. Topological Fluid Mechanics with Applications to Free Surfaces and Axisymmetric Flows

    DEFF Research Database (Denmark)

    Brøns, Morten

    1996-01-01

    Topological fluid mechanics is the study of qualitative features of fluid patterns. We discuss applications to the flow beneath a stagnant surface film, and to patterns in axisymmetric flow.......Topological fluid mechanics is the study of qualitative features of fluid patterns. We discuss applications to the flow beneath a stagnant surface film, and to patterns in axisymmetric flow....

  9. Turbulence modeling and surface heat transfer in a stagnation flow region

    Science.gov (United States)

    Wang, C. R.; Yeh, F. C.

    1987-01-01

    Analysis for the turbulent flow field and the effect of freestream turbulence on the surface heat transfer rate of a stagnation flow is presented. The emphasis is on modeling and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow.

  10. Increase of body surface temperature and blood flow by theanine

    International Nuclear Information System (INIS)

    Hasegawa, Takeo; Noguchi, Kenichi; Ando, Satoshi

    2002-01-01

    Suntheanine (Taiyo Kagaku Co.: Theanine) is the trade name for L-theanine which is a unique amino acid found almost solely in tea plants, responsible for the exotictaste of green tea. We investigated the effects of relate to relaxation, improves the taste of processed foods, radiation sensitization, and increase of body surface temperature in vivo study. The results of the present study confirmed, (1) Suntheanine is incorporated into the brain and induces the emission of α -waves an induced of relaxation. (2) Body surface temperature and blood flow on skin were increased after administration of Suntheanine. (3) There was effects of radiation sensitization in whole body irradiation of X-rays after Suntheanine IP injection on C3H mice. (4) Acute toxicity, subacute toxicity and mutagen testconfirm the safety Suntheanine in this study

  11. Non-integrability of geodesic flow on certain algebraic surfaces

    International Nuclear Information System (INIS)

    Waters, T.J.

    2012-01-01

    This Letter addresses an open problem recently posed by V. Kozlov: a rigorous proof of the non-integrability of the geodesic flow on the cubic surface xyz=1. We prove this is the case using the Morales–Ramis theorem and Kovacic algorithm. We also consider some consequences and extensions of this result. -- Highlights: ► The behaviour of geodesics on surfaces defined by algebraic expressions is studied. ► The non-integrability of the geodesic equations is rigorously proved using differential Galois theory. ► Morales–Ramis theory and Kovacic's algorithm is used and the normal variational equation is of Fuchsian type. ► Some extensions and limitations are discussed.

  12. SIPSON--simulation of interaction between pipe flow and surface overland flow in networks.

    Science.gov (United States)

    Djordjević, S; Prodanović, D; Maksimović, C; Ivetić, M; Savić, D

    2005-01-01

    The new simulation model, named SIPSON, based on the Preissmann finite difference method and the conjugate gradient method, is presented in the paper. This model simulates conditions when the hydraulic capacity of a sewer system is exceeded, pipe flow is pressurized, the water flows out from the piped system to the streets, and the inlets cannot capture all the runoff. In the mathematical model, buried structures and pipelines, together with surface channels, make a horizontally and vertically looped network involving a complex interaction of flows. In this paper, special internal boundary conditions related to equivalent inlets are discussed. Procedures are described for the simulation of manhole cover loss, basement flooding, the representation of street geometry, and the distribution of runoff hydrographs between surface and underground networks. All these procedures are built into the simulation model. Relevant issues are illustrated on a set of examples, focusing on specific parameters and comparison with field measurements of flooding of the Motilal ki Chal catchment (Indore, India). Satisfactory agreement of observed and simulated hydrographs and maximum surface flooding levels is obtained. It is concluded that the presented approach is an improvement compared to the standard "virtual reservoir" approach commonly applied in most of the models.

  13. Rotational accelerations stabilize leading edge vortices on revolving fly wings.

    Science.gov (United States)

    Lentink, David; Dickinson, Michael H

    2009-08-01

    The aerodynamic performance of hovering insects is largely explained by the presence of a stably attached leading edge vortex (LEV) on top of their wings. Although LEVs have been visualized on real, physically modeled, and simulated insects, the physical mechanisms responsible for their stability are poorly understood. To gain fundamental insight into LEV stability on flapping fly wings we expressed the Navier-Stokes equations in a rotating frame of reference attached to the wing's surface. Using these equations we show that LEV dynamics on flapping wings are governed by three terms: angular, centripetal and Coriolis acceleration. Our analysis for hovering conditions shows that angular acceleration is proportional to the inverse of dimensionless stroke amplitude, whereas Coriolis and centripetal acceleration are proportional to the inverse of the Rossby number. Using a dynamically scaled robot model of a flapping fruit fly wing to systematically vary these dimensionless numbers, we determined which of the three accelerations mediate LEV stability. Our force measurements and flow visualizations indicate that the LEV is stabilized by the ;quasi-steady' centripetal and Coriolis accelerations that are present at low Rossby number and result from the propeller-like sweep of the wing. In contrast, the unsteady angular acceleration that results from the back and forth motion of a flapping wing does not appear to play a role in the stable attachment of the LEV. Angular acceleration is, however, critical for LEV integrity as we found it can mediate LEV spiral bursting, a high Reynolds number effect. Our analysis and experiments further suggest that the mechanism responsible for LEV stability is not dependent on Reynolds number, at least over the range most relevant for insect flight (100wind turbines at much higher Reynolds numbers suggest that even large flying animals could potentially exploit LEV-based force augmentation during slow hovering flight, take-offs or landing

  14. Reynolds number scalability of bristled wings performing clap and fling

    Science.gov (United States)

    Jacob, Skyler; Kasoju, Vishwa; Santhanakrishnan, Arvind

    2017-11-01

    Tiny flying insects such as thrips show a distinctive physical adaptation in the use of bristled wings. Thrips use wing-wing interaction kinematics for flapping, in which a pair of wings clap together at the end of upstroke and fling apart at the beginning of downstroke. Previous studies have shown that the use of bristled wings can reduce the forces needed for clap and fling at Reynolds number (Re) on the order of 10. This study examines if the fluid dynamic advantages of using bristled wings also extend to higher Re on the order of 100. A robotic clap and fling platform was used for this study, in which a pair of physical wing models were programmed to execute clap and fling kinematics. Force measurements were conducted on solid (non-bristled) and bristled wing pairs. The results show lift and drag forces were both lower for bristled wings when compared to solid wings for Re ranging from 1-10, effectively increasing peak lift to peak drag ratio of bristled wings. However, peak lift to peak drag ratio was lower for bristled wings at Re =120 as compared to solid wings, suggesting that bristled wings may be uniquely advantageous for Re on the orders of 1-10. Flow structures visualized using particle image velocimetry (PIV) and their impact on force production will be presented.

  15. Scapular winging

    International Nuclear Information System (INIS)

    Mozolova, D.

    2013-01-01

    We present the case of a boy who, up to the age of 16, was an active football and floorball player. In the recent 2 years, he experienced increasing muscle weakness and knee pain. Examinations revealed osteoid osteoma of the distal femur and proximal tibia bilaterally and a lesion of the right medial meniscus. The neurological exam revealed no pathology and EMG revealed the myopathic picture. At our first examination, small, cranially displaced scapulae looking like wings and exhibiting atypical movements were apparent (see movie). Genetic analysis confirmed facioscapulohumeral muscle dystrophy (FSHMD). Facial and particularly humeroscapular muscles are affected in this condition. Bulbar, extra ocular and respiratory muscles are spared. The genetic defect is a deletion in the subtelomeric region of the 4-th chromosome (4q35) resulting in 1-10 instead of the 11-150 D4Z4 tandem repeats. Inheritance is autosomal dominant and thus carries a 50% risk for the offspring of affected subjects. (author)

  16. Effect of Energetic Plasma Flux on Flowing Liquid Lithium Surfaces

    Science.gov (United States)

    Kalathiparambil, Kishor; Jung, Soonwook; Christenson, Michael; Fiflis, Peter; Xu, Wenyu; Szott, Mathew; Ruzic, David

    2014-10-01

    An operational liquid lithium system with steady state flow driven by thermo-electric magneto-hydrodynamic force and capable of constantly refreshing the plasma exposed surface have been demonstrated at U of I. To evaluate the system performance in reactor relevant conditions, specifically to understand the effect of disruptive plasma events on the performance of the liquid metal PFCs, the setup was integrated to a pulsed plasma generator. A coaxial plasma generator drives the plasma towards a theta pinch which preferentially heats the ions, simulating ELM like flux, and the plasma is further guided towards the target chamber which houses the flowing lithium system. The effect of the incident flux is examined using diagnostic tools including triple Langmuir probe, calorimeter, rogowski coils, Ion energy analyzers, and fast frame spectral image acquisition with specific optical filters. The plasma have been well characterized and a density of ~1021 m-3, with electron temperature ~10 - 20 eV is measured, and final plasma velocities of 34 - 74 kms-1 have been observed. Calorimetric measurements using planar molybdenum targets indicate a maximum plasma energy (with 6 kV plasma gun and 20 kV theta pinch) of 0.08 MJm-2 with plasma divergence effects resulting in marginal reduction of 40 +/- 23 J in plasma energy. Further results from the other diagnostic tools, using the flowing lithium targets and the planar targets coated with lithium will be presented. DOE DE-SC0008587.

  17. Predictive model for convective flows induced by surface reactivity contrast

    Science.gov (United States)

    Davidson, Scott M.; Lammertink, Rob G. H.; Mani, Ali

    2018-05-01

    Concentration gradients in a fluid adjacent to a reactive surface due to contrast in surface reactivity generate convective flows. These flows result from contributions by electro- and diffusio-osmotic phenomena. In this study, we have analyzed reactive patterns that release and consume protons, analogous to bimetallic catalytic conversion of peroxide. Similar systems have typically been studied using either scaling analysis to predict trends or costly numerical simulation. Here, we present a simple analytical model, bridging the gap in quantitative understanding between scaling relations and simulations, to predict the induced potentials and consequent velocities in such systems without the use of any fitting parameters. Our model is tested against direct numerical solutions to the coupled Poisson, Nernst-Planck, and Stokes equations. Predicted slip velocities from the model and simulations agree to within a factor of ≈2 over a multiple order-of-magnitude change in the input parameters. Our analysis can be used to predict enhancement of mass transport and the resulting impact on overall catalytic conversion, and is also applicable to predicting the speed of catalytic nanomotors.

  18. Aerostructural optimization of a morphing wing for airborne wind energy applications

    Science.gov (United States)

    Fasel, U.; Keidel, D.; Molinari, G.; Ermanni, P.

    2017-09-01

    Airborne wind energy (AWE) vehicles maximize energy production by constantly operating at extreme wing loading, permitted by high flight speeds. Additionally, the wide range of wind speeds and the presence of flow inhomogeneities and gusts create a complex and demanding flight environment for AWE systems. Adaptation to different flow conditions is normally achieved by conventional wing control surfaces and, in case of ground generator-based systems, by varying the reel-out speed. These control degrees of freedom enable to remain within the operational envelope, but cause significant penalties in terms of energy output. A significantly greater adaptability is offered by shape-morphing wings, which have the potential to achieve optimal performance at different flight conditions by tailoring their airfoil shape and lift distribution at different levels along the wingspan. Hence, the application of compliant structures for AWE wings is very promising. Furthermore, active gust load alleviation can be achieved through morphing, which leads to a lower weight and an expanded flight envelope, thus increasing the power production of the AWE system. This work presents a procedure to concurrently optimize the aerodynamic shape, compliant structure, and composite layup of a morphing wing for AWE applications. The morphing concept is based on distributed compliance ribs, actuated by electromechanical linear actuators, guiding the deformation of the flexible—yet load-carrying—composite skin. The goal of the aerostructural optimization is formulated as a high-level requirement, namely to maximize the average annual power production per wing area of an AWE system by tailoring the shape of the wing, and to extend the flight envelope of the wing by actively alleviating gust loads. The results of the concurrent multidisciplinary optimization show a 50.7% increase of extracted power with respect to a sequentially optimized design, highlighting the benefits of morphing and the

  19. Continuous vs. pulsating flow boiling. Part 2: Statistical comparison using response surface methodology

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Elmegaard, Brian; Meyer, Knud Erik

    2016-01-01

    Response surface methodology is used to investigate an active method for flow boiling heat transfer enhancement by means of fluid flow pulsation. The flow pulsations are introduced by a flow modulating expansion device and compared with the baseline continuous flow provided by a stepper...

  20. Evaluation of the Thorax of Manduca Sexta for Flapping Wing Micro Air Vehicle Applications

    Science.gov (United States)

    2012-12-01

    subject to the effects of low Reynolds number flight. These effects extend from wind gusts to unstable aerodynamic flow and viscous dominated flow (Shyy...operate as a mechanical spring damper at resonance during flapping flight (Bolsman 2010). For wing actuation, the M.sexta has two fairly simple and...freshly eclosed moth a surface to climb up, which is an absolute necessity. The moth must climb off of the ground in order to pump fluids through

  1. Modelling of a free-surface ferrofluid flow

    Energy Technology Data Exchange (ETDEWEB)

    Habera, M., E-mail: habera@karlin.mff.cuni.cz; Hron, J., E-mail: hron@karlin.mff.cuni.cz

    2017-06-01

    The Cauchy's stress tensor of a ferrofluid exposed to an external magnetic field is subject to additional magnetic terms. For a linearly magnetizable medium, the terms result in interfacial magnetic force acting on the ferrofluid boundaries. This force changes the characteristics of many free-surface ferrofluid phenomena. The aim of this work is to implement this force into the incompressible Navier-Stokes equations and propose a numerical method to solve them. The interface of ferrofluid is tracked with the use of the characteristic level-set method and additional reinitialization step assures conservation of its volume. Incompressible Navier-Stokes equations are formulated for a divergence-free velocity fields while discrete interfacial forces are treated with continuous surface force model. Velocity-pressure coupling is implemented via the projection method. To predict the magnetic force effect quantitatively, Maxwell's equations for magnetostatics are solved in each time step. Finite element method is utilized for the spatial discretization. At the end of the work, equilibrium droplet shape are compared to known experimental results. - Highlights: • Incompressible Navier-Stokes equations are formulated for the problem of free-surface ferrofluid flow. • Computed equilibrium ferrofluid droplet shape is compared to known experimental result. • Magnetic field substantially changes the dynamics of ferrofluid dripping process.

  2. Frost Growth and Densification in Laminar Flow Over Flat Surfaces

    Science.gov (United States)

    Kandula, Max

    2011-01-01

    One-dimensional frost growth and densification in laminar flow over flat surfaces has been theoretically investigated. Improved representations of frost density and effective thermal conductivity applicable to a wide range of frost circumstances have been incorporated. The validity of the proposed model considering heat and mass diffusion in the frost layer is tested by a comparison of the predictions with data from various investigators for frost parameters including frost thickness, frost surface temperature, frost density and heat flux. The test conditions cover a range of wall temperature, air humidity ratio, air velocity, and air temperature, and the effect of these variables on the frost parameters has been exemplified. Satisfactory agreement is achieved between the model predictions and the various test data considered. The prevailing uncertainties concerning the role air velocity and air temperature on frost development have been elucidated. It is concluded that that for flat surfaces increases in air velocity have no appreciable effect on frost thickness but contribute to significant frost densification, while increase in air temperatures results in a slight increase the frost thickness and appreciable frost densification.

  3. DNS of flows over superhydrophobic surfaces with small texture

    Science.gov (United States)

    Fairhall, Chris; Garcia-Mayoral, Ricardo

    2015-11-01

    We present results from direct numerical simulations of turbulent flows over superhydrophobic surfaces with small texture sizes, comparable to those of practical application. Textures studied with DNS are usually much larger, as the cost of the simulations would otherwise be prohibitive. For this reason, a multi-block code that allows for finer resolution near the walls has been developed. We focus particularly on the pressure distribution at the wall. This distribution can cause the deformation of the gas pockets, which can ultimately lead to their loss and that of the drag reduction effect. The layout of the texture causes stagnation pressures which can contribute substantially to the wall pressure signal (Seo et al. JFM, under review). We study a range of different textures and their influence on these pressures.

  4. Membrane wing aerodynamics for micro air vehicles

    Science.gov (United States)

    Lian, Yongsheng; Shyy, Wei; Viieru, Dragos; Zhang, Baoning

    2003-10-01

    The aerodynamic performance of a wing deteriorates considerably as the Reynolds number decreases from 10 6 to 10 4. In particular, flow separation can result in substantial change in effective airfoil shape and cause reduced aerodynamic performance. Lately, there has been growing interest in developing suitable techniques for sustained and robust flight of micro air vehicles (MAVs) with a wingspan of 15 cm or smaller, flight speed around 10 m/ s, and a corresponding Reynolds number of 10 4-10 5. This paper reviews the aerodynamics of membrane and corresponding rigid wings under the MAV flight conditions. The membrane wing is observed to yield desirable characteristics in delaying stall as well as adapting to the unsteady flight environment, which is intrinsic to the designated flight speed. Flow structures associated with the low Reynolds number and low aspect ratio wing, such as pressure distribution, separation bubble and tip vortex are reviewed. Structural dynamics in response to the surrounding flow field is presented to highlight the multiple time-scale phenomena. Based on the computational capabilities for treating moving boundary problems, wing shape optimization can be conducted in automated manners. To enhance the lift, the effect of endplates is evaluated. The proper orthogonal decomposition method is also discussed as an economic tool to describe the flow structure around a wing and to facilitate flow and vehicle control.

  5. Near-field flow structures about subcritical surface roughness

    Science.gov (United States)

    Doolittle, Charles J.; Drews, Scott D.; Goldstein, David B.

    2014-12-01

    Laminar flow over a periodic array of cylindrical surface roughness elements is simulated with an immersed boundary spectral method both to validate the method for subsequent studies and to examine how persistent streamwise vortices are introduced by a low Reynolds number roughness element. Direct comparisons are made with prior studies at a roughness-based Reynolds number Rek (=U(k) k/ν) of 205 and a diameter to spanwise spacing ratio d/λ of 1/3. Downstream velocity contours match present and past experiments very well. The shear layer developed over the top of the roughness element produces the downstream velocity deficit. Upstream of the roughness element, the vortex topology is found to be consistent with juncture flow experiments, creating three cores along the recirculation line. Streamtraces stemming from these upstream cores, however, have unexpectedly little effect on the downstream flowfield as lateral divergence of the boundary layer quickly dissipates their vorticity. Long physical relaxation time of the recirculating wake behind the roughness remains a prominent issue for simulating this type of flowfield.

  6. Wing rock suppression using forebody vortex control

    Science.gov (United States)

    Ng, T. T.; Ong, L. Y.; Suarez, C. J.; Malcolm, G. N.

    1991-01-01

    Static and free-to-roll tests were conducted in a water tunnel with a configuration that consisted of a highly-slender forebody and 78-deg sweep delta wings. Flow visualization was performed and the roll angle histories were obtained. The fluid mechanisms governing the wing rock of this configuration were identified. Different means of suppressing wing rock by controlling the forebody vortices using small blowing jets were also explored. Steady blowing was found to be capable of suppressing wing rock, but significant vortex asymmetries had to be induced at the same time. On the other hand, alternating pulsed blowing on the left and right sides of the forebody was demonstrated to be potentially an effective means of suppressing wing rock and eliminating large asymmetric moments at high angles of attack.

  7. A Prototype Flux-Plate Heat-Flow Sensor for Venus Surface Heat-Flow Determinations

    Science.gov (United States)

    Morgan, Paul; Reyes, Celso; Smrekar, Suzanne E.

    2005-01-01

    Venus is the most Earth-like planet in the Solar System in terms of size, and the densities of the two planets are almost identical when selfcompression of the two planets is taken into account. Venus is the closest planet to Earth, and the simplest interpretation of their similar densities is that their bulk compositions are almost identical. Models of the thermal evolution of Venus predict interior temperatures very similar to those indicated for the regions of Earth subject to solid-state convection, but even global analyses of the coarse Pioneer Venus elevation data suggest Venus does not lose heat by the same primary heat loss mechanism as Earth, i.e., seafloor spreading. The comparative paucity of impact craters on Venus has been interpreted as evidence for relatively recent resurfacing of the planet associated with widespread volcanic and tectonic activity. The difference in the gross tectonic styles of Venus and Earth, and the origins of some of the enigmatic volcano-tectonic features on Venus, such as the coronae, appear to be intrinsically related to Venus heat loss mechanism(s). An important parameter in understanding Venus geological evolution, therefore, is its present surface heat flow. Before the complications of survival in the hostile Venus surface environment were tackled, a prototype fluxplate heat-flow sensor was built and tested for use under synthetic stable terrestrial surface conditions. The design parameters for this prototype were that it should operate on a conforming (sand) surface, with a small, self-contained power and recording system, capable of operating without servicing for at least several days. The precision and accuracy of the system should be < 5 mW/sq m. Additional information is included in the original extended abstract.

  8. Free-surface entrainment into a rimming flow containing surfactants

    Science.gov (United States)

    Thoroddsen, S. T.; Tan, Y.-K.

    2004-02-01

    We study experimentally the free-surface entrainment of tubes into a steady rimming flow formed inside a partially filled horizontally rotating cylinder. The liquid consists of a glycerin-water mixture containing surfactants (fatty acids). The phenomenon does not occur without the surfactants and the details are sensitive to their concentration. The entrainment of numerous closely spaced air tubes and/or surfactant columns can start intermittently along a two-dimensional stagnation line, but is usually associated with the appearance of an axially periodic vortex structure, the so-called shark teeth, which fixes the spanwise location of these tubes. The number of tubes is governed by the three-dimensional shape of the free surface, reducing from more than 10 to only two in each trough, as the rotation rate is increased. The tubes vary in diameter from 10-30 μm and can extend hundreds of diameters into the liquid layer before breaking up into a continuous stream of bubbles and/or drops. The tubes are driven through the stagnation line by the strong viscous shear and are stretched in the downstream direction. The entrainment starts when the Capillary number Ca=μωR/σ≃0.4.

  9. Free Surface Flows and Extensional Rheology of Polymer Solutions

    Science.gov (United States)

    Dinic, Jelena; Jimenez, Leidy Nallely; Biagioli, Madeleine; Estrada, Alexandro; Sharma, Vivek

    Free-surface flows - jetting, spraying, atomization during fuel injection, roller-coating, gravure printing, several microfluidic drop/particle formation techniques, and screen-printing - all involve the formation of axisymmetric fluid elements that spontaneously break into droplets by a surface-tension-driven instability. The growth of the capillary-driven instability and pinch-off dynamics are dictated by a complex interplay of inertial, viscous and capillary stresses for simple fluids. Additional contributions by elasticity, extensibility and extensional viscosity play a role for complex fluids. We show that visualization and analysis of capillary-driven thinning and pinch-off dynamics of the columnar neck in an asymmetric liquid bridge created by dripping-onto-substrate (DoS) can be used for characterizing the extensional rheology of complex fluids. Using a wide variety of complex fluids, we show the measurement of the extensional relaxation time, extensional viscosity, power-law index and shear viscosity. Lastly, we elucidate how polymer composition, flexibility, and molecular weight determine the thinning and pinch-off dynamics of polymeric complex fluids.

  10. Comparison of analytical and experimental steadyand unsteady-pressure distributions at Mach number 0.78 for a high-aspect-ratio supercritical wing model with oscillating control surfaces

    Science.gov (United States)

    Mccain, W. E.

    1984-01-01

    The unsteady aerodynamic lifting surface theory, the Doublet Lattice method, with experimental steady and unsteady pressure measurements of a high aspect ratio supercritical wing model at a Mach number of 0.78 were compared. The steady pressure data comparisons were made for incremental changes in angle of attack and control surface deflection. The unsteady pressure data comparisons were made at set angle of attack positions with oscillating control surface deflections. Significant viscous and transonic effects in the experimental aerodynamics which cannot be predicted by the Doublet Lattice method are shown. This study should assist development of empirical correction methods that may be applied to improve Doublet Lattice calculations of lifting surface aerodynamics.

  11. Hovering hummingbird wing aerodynamics during the annual cycle. I. Complete wing.

    Science.gov (United States)

    Achache, Yonathan; Sapir, Nir; Elimelech, Yossef

    2017-08-01

    The diverse hummingbird family (Trochilidae) has unique adaptations for nectarivory, among which is the ability to sustain hover-feeding. As hummingbirds mainly feed while hovering, it is crucial to maintain this ability throughout the annual cycle-especially during flight-feather moult, in which wing area is reduced. To quantify the aerodynamic characteristics and flow mechanisms of a hummingbird wing throughout the annual cycle, time-accurate aerodynamic loads and flow field measurements were correlated over a dynamically scaled wing model of Anna's hummingbird ( Calypte anna ). We present measurements recorded over a model of a complete wing to evaluate the baseline aerodynamic characteristics and flow mechanisms. We found that the vorticity concentration that had developed from the wing's leading-edge differs from the attached vorticity structure that was typically found over insects' wings; firstly, it is more elongated along the wing chord, and secondly, it encounters high levels of fluctuations rather than a steady vortex. Lift characteristics resemble those of insects; however, a 20% increase in the lift-to-torque ratio was obtained for the hummingbird wing model. Time-accurate aerodynamic loads were also used to evaluate the time-evolution of the specific power required from the flight muscles, and the overall wingbeat power requirements nicely matched previous studies.

  12. Using subdivision surfaces and adaptive surface simplification algorithms for modeling chemical heterogeneities in geophysical flows

    Science.gov (United States)

    Schmalzl, JöRg; Loddoch, Alexander

    2003-09-01

    We present a new method for investigating the transport of an active chemical component in a convective flow. We apply a three-dimensional front tracking method using a triangular mesh. For the refinement of the mesh we use subdivision surfaces which have been developed over the last decade primarily in the field of computer graphics. We present two different subdivision schemes and discuss their applicability to problems related to fluid dynamics. For adaptive refinement we propose a weight function based on the length of triangle edge and the sum of the angles of the triangle formed with neighboring triangles. In order to remove excess triangles we apply an adaptive surface simplification method based on quadric error metrics. We test these schemes by advecting a blob of passive material in a steady state flow in which the total volume is well preserved over a long time. Since for time-dependent flows the number of triangles may increase exponentially in time we propose the use of a subdivision scheme with diffusive properties in order to remove the small scale features of the chemical field. By doing so we are able to follow the evolution of a heavy chemical component in a vigorously convecting field. This calculation is aimed at the fate of a heavy layer at the Earth's core-mantle boundary. Since the viscosity variation with temperature is of key importance we also present a calculation with a strongly temperature-dependent viscosity.

  13. Free surface profiles in river flows: Can standard energy-based gradually-varied flow computations be pursued?

    Science.gov (United States)

    Cantero, Francisco; Castro-Orgaz, Oscar; Garcia-Marín, Amanda; Ayuso, José Luis; Dey, Subhasish

    2015-10-01

    Is the energy equation for gradually-varied flow the best approximation for the free surface profile computations in river flows? Determination of flood inundation in rivers and natural waterways is based on the hydraulic computation of flow profiles. This is usually done using energy-based gradually-varied flow models, like HEC-RAS, that adopts a vertical division method for discharge prediction in compound channel sections. However, this discharge prediction method is not so accurate in the context of advancements over the last three decades. This paper firstly presents a study of the impact of discharge prediction on the gradually-varied flow computations by comparing thirteen different methods for compound channels, where both energy and momentum equations are applied. The discharge, velocity distribution coefficients, specific energy, momentum and flow profiles are determined. After the study of gradually-varied flow predictions, a new theory is developed to produce higher-order energy and momentum equations for rapidly-varied flow in compound channels. These generalized equations enable to describe the flow profiles with more generality than the gradually-varied flow computations. As an outcome, results of gradually-varied flow provide realistic conclusions for computations of flow in compound channels, showing that momentum-based models are in general more accurate; whereas the new theory developed for rapidly-varied flow opens a new research direction, so far not investigated in flows through compound channels.

  14. The leading-edge vortex of swift-wing shaped delta wings

    Science.gov (United States)

    Muir, Rowan; Arredondo-Galeana, Abel; Viola, Ignazio Maria

    2017-11-01

    Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the Leading-Edge Vortex (LEV) for lift generation in a variety of flight conditions. In this investigation, a model non-slender delta shaped wing with a sharp leading-edge is tested at low Reynolds Number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus. The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the un-modified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift-wing shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds Number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta shaped wing. This work received funding from the Engineering and Physical Sciences Research Council [EP/M506515/1] and the Consejo Nacional de Ciencia y Tecnología (CONACYT).

  15. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 8 deg to 90 deg. 1: Low-wing model A. [fluid flow and vortices data for general aviation aircraft to determine aerodynamic characteristics for various designs

    Science.gov (United States)

    Hultberg, R. S.; Mulcay, W.

    1980-01-01

    Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance are presented in plotted form for a 1/5 scale, single engine, low-wing, general aviation airplane model. The configuration tested included the basic airplane, various control deflections, tail designs, fuselage shapes, and wing leading edges. Data are presented without analysis for an angle of attack range of 8 to 90 deg and clockwise and counterclockwise rotations covering a range from 0 to 0.85.

  16. Effects of confinement & surface roughness in electrorheological flows

    Science.gov (United States)

    Helal, Ahmed; Telleria, Maria J.; Wang, Julie; Strauss, Marc; Murphy, Mike; McKinley, Gareth; Hosoi, A. E.

    2014-11-01

    Electrorheological (ER) fluids are dielectric suspensions that exhibit a fast, reversible change in rheological properties with the application of an external electric field. Upon the application of the electric field, the material develops a field-dependent yield stress that is typically modeled using a Bingham plastic model. ER fluids are promising for designing small, cheap and rapidly actuated hydraulic devices such as rapidly-switchable valves, where fluid flowing in a microchannel can be arrested by applying an external electric field. In the lubrication limit, for a Bingham plastic fluid, the maximum pressure the channel can hold, before yielding, is a function of the field-dependent yield stress, the length of the channel and the electrode gap. In practice, the finite width of the channel and the surface roughness of the electrodes could affect the maximum yield pressure but a quantitative understanding of these effects is currently lacking. In this study, we experimentally investigate the effects of the channel aspect ratio (width/height) and the effects of electrode roughness on the performance of ER valves. Based on this quantitative analysis, we formulate new performance metrics for ER valves as well as design rules for ER valves that will help guide and optimize future designs.

  17. Modeling sheet-flow sand transport under progressive surface waves

    NARCIS (Netherlands)

    Kranenburg, Wouter

    2013-01-01

    In the near-shore zone, energetic sea waves generate sheet-flow sand transport. In present day coastal models, wave-induced sheet-flow sand transport rates are usually predicted with semi-empirical transport formulas, based on extensive research on this phenomenon in oscillatory flow tunnels.

  18. Experimental calibration and validation of sewer/surface flow exchange equations in steady and unsteady flow conditions

    Science.gov (United States)

    Rubinato, Matteo; Martins, Ricardo; Kesserwani, Georges; Leandro, Jorge; Djordjević, Slobodan; Shucksmith, James

    2017-09-01

    The linkage between sewer pipe flow and floodplain flow is recognised to induce an important source of uncertainty within two-dimensional (2D) urban flood models. This uncertainty is often attributed to the use of empirical hydraulic formulae (the one-dimensional (1D) weir and orifice steady flow equations) to achieve data-connectivity at the linking interface, which require the determination of discharge coefficients. Because of the paucity of high resolution localised data for this type of flows, the current understanding and quantification of a suitable range for those discharge coefficients is somewhat lacking. To fulfil this gap, this work presents the results acquired from an instrumented physical model designed to study the interaction between a pipe network flow and a floodplain flow. The full range of sewer-to-surface and surface-to-sewer flow conditions at the exchange zone are experimentally analysed in both steady and unsteady flow regimes. Steady state measured discharges are first analysed considering the relationship between the energy heads from the sewer flow and the floodplain flow; these results show that existing weir and orifice formulae are valid for describing the flow exchange for the present physical model, and yield new calibrated discharge coefficients for each of the flow conditions. The measured exchange discharges are also integrated (as a source term) within a 2D numerical flood model (a finite volume solver to the 2D Shallow Water Equations (SWE)), which is shown to reproduce the observed coefficients. This calibrated numerical model is then used to simulate a series of unsteady flow tests reproduced within the experimental facility. Results show that the numerical model overestimated the values of mean surcharge flow rate. This suggests the occurrence of additional head losses in unsteady conditions which are not currently accounted for within flood models calibrated in steady flow conditions.

  19. Determination of averaged axisymmetric flow surfaces according to results obtained by numerical simulation of flow in turbomachinery

    Directory of Open Access Journals (Sweden)

    Bogdanović-Jovanović Jasmina B.

    2012-01-01

    Full Text Available In the increasing need for energy saving worldwide, the designing process of turbomachinery, as an essential part of thermal and hydroenergy systems, goes in the direction of enlarging efficiency. Therefore, the optimization of turbomachinery designing strongly affects the energy efficiency of the entire system. In the designing process of turbomachinery blade profiling, the model of axisymmetric fluid flows is commonly used in technical practice, even though this model suits only the profile cascades with infinite number of infinitely thin blades. The actual flow in turbomachinery profile cascades is not axisymmetric, and it can be fictively derived into the axisymmetric flow by averaging flow parameters in the blade passages according to the circular coordinate. Using numerical simulations of flow in turbomachinery runners, its operating parameters can be preliminarily determined. Furthermore, using the numerically obtained flow parameters in the blade passages, averaged axisymmetric flow surfaces in blade profile cascades can also be determined. The method of determination of averaged flow parameters and averaged meridian streamlines is presented in this paper, using the integral continuity equation for averaged flow parameters. With thus obtained results, every designer can be able to compare the obtained averaged flow surfaces with axisymmetric flow surfaces, as well as the specific work of elementary stages, which are used in the procedure of blade designing. Numerical simulations of flow in an exemplary axial flow pump, used as a part of the thermal power plant cooling system, were performed using Ansys CFX. [Projekat Ministarstva nauke Republike Srbije, br. TR33040: Revitalization of existing and designing new micro and mini hydropower plants (from 100 kW to 1000 kW in the territory of South and Southeast Serbia

  20. Upper Meter Processes: Short Wind Waves, Surface Flow, and Micro-Turbulence

    National Research Council Canada - National Science Library

    Jaehne, Bernd

    2000-01-01

    The primary goal of this project was to advance the knowledge of small-scale air-sea interaction processes at the ocean surface, focussing on the dynamics of short waves, the surface flow field and the micro-turbulence...

  1. Modeling Surface Water Flow in the Atchafalaya Basin

    Science.gov (United States)

    Liu, K.; Simard, M.

    2017-12-01

    While most of the Mississippi River Delta is sinking due to insufficient sediment supply and subsidence, the stable wetlands and the prograding delta systems in the Atchafalaya Basin provide a unique opportunity to study the constructive interactions between riverine and marine forcings and their impacts upon coastal morphology. To better understand the hydrodynamics in this region, we developed a numerical modeling system for the water flow through the river channel - deltas - wetlands networks in the Atchafalaya Basin. Determining spatially varying model parameters for a large area composed of such diverse land cover types poses a challenge to developing an accurate numerical model. For example, the bottom friction coefficient can not be measured directly and the available elevation maps for the wetlands in the basin are inaccurate. To overcome these obstacles, we developed the modeling system in three steps. Firstly, we modeled river bathymetry based on in situ sonar transects and developed a simplified 1D model for the Wax Lake Outlet using HEC-RAS. Secondly, we used a Bayesian approach to calibrate the model automatically and infer important unknown parameters such as riverbank elevation and bottom friction coefficient through Markov Chain Monte Carlo (MCMC) simulations. We also estimated the wetland elevation based on the distribution of different vegetation species in the basin. Thirdly, with the lessons learnt from the 1D model, we developed a depth-averaged 2D model for the whole Atchafalaya Basin using Delft3D. After calibrations, the model successfully reproduced the water levels measured at five gauges in the Wax Lake Outlet and the modeled water surface profile along the channel agreed reasonably well with our LIDAR measurements. In addition, the model predicted a one-hour delay in tidal phase from the Wax Lake Delta to the upstream gauge. In summary, this project presents a procedure to initialize hydrology model parameters that integrates field

  2. Effects of Inner Surface Roughness and Asymmetric Pipe Flow on Accuracy of Profile Factor for Ultrasonic Flow Meter

    International Nuclear Information System (INIS)

    Michitsugu Mori; Kenichi Tezuka; Yasushi Takeda

    2006-01-01

    Flow profile factors (PFs), which adjust measurements to real flow rates, also strongly depend on flow profiles. To determine profile factors for actual power plants, manufactures of flowmeters usually conduct factory calibration tests under ambient flow conditions. Indeed, flow measurements with high accuracy for reactor feedwater require them to conduct calibration tests under real conditions, such as liquid conditions and piping layouts. On the contrary, as nuclear power plants are highly aging, readings of flowmeters for reactor feedwater systems drift due to the changes of flow profiles. The causes of those deviations are affected by the change of wall roughness of inner surface of pipings. We have conducted experiments to quantify the effects of flow patterns on the PFs due to pipe roughness and asymmetric flow, and the results of our experiments have shown the effects of elbows and pipe inner roughness, which strongly affect to the creation of the flow patterns. Those changes of flow patterns lead to large errors in measurements with transit time (time-of-flight: TOF) ultrasonic flow meters. In those experiments, changes of pipe roughness result in the changes of PFs with certain errors. Therefore, we must take into account those effects in order to measure the flow rates of feedwater with better accuracy in actual power plants. (authors)

  3. Heat transfer effect of an extended surface in downward-facing subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Abdul R., E-mail: khan@vis.t.u-tokyo.ac.jp [Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Erkan, Nejdet, E-mail: erkan@vis.t.u-tokyo.ac.jp [Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata, Tokai-mura, Ibaraki, 319-1188 (Japan); Okamoto, Koji, E-mail: okamoto@n.t.u-tokyo.ac.jp [Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata, Tokai-mura, Ibaraki, 319-1188 (Japan)

    2015-12-15

    Highlights: • Compare downward-facing flow boiling results from bare and extended surfaces. • Upstream and downstream temperatures were measured on the extended surface. • Downstream temperatures exceed upstream temperatures for all flow rates. • Bubble accumulation occurs downstream on extended surface. • Extended surface heat transfer lower than bare surface as flow rate reduced. - Abstract: New BWR containment designs are considering cavity flooding as an accident management strategy. Unlike the PWR, the BWR has many Control Rod Guide Tube (CRGT) penetrations in the lower head. During a severe accident scenario with core melt in the lower plenum along with cavity flooding, the penetrations may affect the heat transfer on the ex-vessel surface and disrupt fluid flow during the boiling process. A small-scale experiment was performed to investigate the issues existing in downward-facing boiling phenomenon with an extended surface. The results were compared with a bare (flat) surface. The mass flux of 244 kg/m{sup 2} s, 215 kg/m{sup 2} s, and 177 kg/m{sup 2} s were applied in this study. CHF conditions were observed only for the 177 kg/m{sup 2} s case. The boiling curves for both types of surfaces and all flow rates were obtained. The boiling curves for the highest flow rate showed lower surface temperatures for the extended surface experiments when compared to the bare surface. The downstream location on the extended surface yielded the highest surface temperatures as the flow rate was reduced. The bubble accumulation and low velocity in the wake produced by flow around the extended surface was believed to have caused the elevated temperatures in the downstream location. Although an extended surface may enhance the overall heat transfer, a reduction in the local heat transfer was observed in the current experiments.

  4. Enteric and indicator virus removal by surface flow wetlands.

    Science.gov (United States)

    Rachmadi, Andri T; Kitajima, Masaaki; Pepper, Ian L; Gerba, Charles P

    2016-01-15

    We investigated the occurrence and attenuation of several human enteric viruses (i.e., norovirus, adenovirus, Aichi virus 1, polyomaviruses, and enterovirus) as well as a plant virus, pepper mild mottle virus (PMMoV), at two surface flow wetlands in Arizona. The retention time in one of the wetlands was seven days, whereas in the other wetland it could not be defined. Water samples were collected at the inlet and outlet from the wetlands over nine months, and concentration of viral genomes was determined by quantitative polymerase chain reaction (qPCR). Of the human enteric viruses tested, adenovirus and Aichi virus 1 were found in the greatest prevalence in treated wastewater (i.e., inlet of the wetlands). Reduction efficiencies of enteric viruses by the wetlands ranged from 1 to 3 log10. Polyomaviruses were generally removed to below detection limit, indicating at least 2 to 4 log10 removal. PMMoV was detected in a greater concentration in the inlet of both wetlands for all the viruses tested (10(4) to 10(7) genome copies/L), but exhibited little or no removal (1 log10 or less). To determine the factors associated with virus genome attenuation (as determined by qPCR), the persistence of PMMoV and poliovirus type 1 (an enterovirus) was studied in autoclaved and natural wetland water, and deionized water incubated under three different temperatures for 21 days. A combination of elevated water temperature and biological activities reduced poliovirus by 1 to 4 log10, while PMMoV was not significantly reduced during this time period. Overall, PMMoV showed much greater persistence than human viruses in the wetland treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The initial study on supercritical water flow and heat transfer in square rod bundle channel with mixing vane

    International Nuclear Information System (INIS)

    Zuo Guoping; Cao Can; Yu Tao

    2010-01-01

    Three-dimensional rectangular channel with the mixing wine in supercritical water reactor was studied in the paper using the FLUENT software. The mixing wing elevation influence on temperature distribution and flow field were studied in the model. The results showed the mixing wing caused fluid circumferential flow, making flow hot and cold fluids mixed and fluid temperature uniform distribution, effectively improved the fuel rod surface temperature distribution and reduced hot temperature. Among the four cases of mixing wing elevation of 15, 30, 45 and 50 angle, 30 angle is the best case in improving temperature distribution. (authors)

  6. Moveable Leading Edge Device for a Wing

    Science.gov (United States)

    Pitt, Dale M. (Inventor); Eckstein, Nicholas Stephen (Inventor)

    2013-01-01

    A method and apparatus for managing a flight control surface system. A leading edge section on a wing of an aircraft is extended into a deployed position. A deformable section connects the leading edge section to a trailing section. The deformable section changes from a deformed shape to an original shape when the leading edge section is moved into the deployed position. The leading edge section on the wing is moved from the deployed position to an undeployed position. The deformable section changes to the deformed shape inside of the wing.

  7. Characteristics of Nitrogen Loss through Surface-Subsurface Flow on Red Soil Slopes of Southeast China

    Science.gov (United States)

    Zheng, Haijin; Liu, Zhao; Zuo, Jichao; Wang, Lingyun; Nie, Xiaofei

    2017-12-01

    Soil nitrogen (N) loss related to surface flow and subsurface flow (including interflow and groundwater flow) from slope lands is a global issue. A lysimetric experiment with three types of land cover (grass cover, GC; litter cover, LC; and bare land, BL) were carried out on a red soil slope land in southeast China. Total Nitrogen (TN) loss through surface flow, interflow and groundwater flow was observed under 28 natural precipitation events from 2015 to 2016. TN concentrations from subsurface flow on BL and LC plots were, on average, 2.7-8.2 and 1.5-4.4 times greater than TN concentrations from surface flow, respectively; the average concentration of TN from subsurface flow on GC was about 36-56% of that recorded from surface flow. Surface flow, interflow and groundwater flow contributed 0-15, 2-9 and 76-96%, respectively, of loss load of TN. Compared with BL, GC and LC intercepted 83-86% of TN loss through surface runoff; GC intercepted 95% of TN loss through subsurface flow while TN loss through subsurface flow on LC is 2.3 times larger than that on BL. In conclusion, subsurface flow especially groundwater flow is the dominant hydrological rout for N loss that is usually underestimated. Grass cover has the high retention of N runoff loss while litter mulch will increase N leaching loss. These findings provide scientific support to control N runoff loss from the red soil slope lands by using suitable vegetation cover and mulching techniques.

  8. Retention mechanisms and the flow wetted surface - implications for safety analysis

    International Nuclear Information System (INIS)

    Elert, M.

    1997-02-01

    The purpose of this report is to document the state-of-the-art concerning the flow wetted surface, its importance for radionuclide transport in the geosphere and review various suggestions on how to increase the present knowledge. Definitions are made of the various concepts used for the flow wetted surface as well as the various model parameters used. In the report methods proposed to assess the flow wetted surface are reviewed and discussed, tracer tests, tunnel and borehole investigations, geochemical studies, heat transport studies and theoretical modelling. Furthermore, a review is made of how the flow wetted surface has been treated in various safety analyses. Finally, an overall discussion with recommendations is presented, where it is concluded that at present no individual method for estimating the flow wetted surface can be selected that satisfies all requirements concerning giving relevant values, covering relevant distances and being practical to apply. Instead a combination of methods must be used. In the long-term research as well as in the safety assessment modelling focus should be put on assessing the ratio between flow wetted surface and water flux. The long-term research should address both the detailed flow within the fractures and the effective flow wetted surface along the flow paths. 55 refs

  9. An experimental investigation into the deployment of 3-D, finned wing and shape memory alloy vortex generators in a forced air convection heat pipe fin stack

    International Nuclear Information System (INIS)

    Aris, M.S.; McGlen, R.; Owen, I.; Sutcliffe, C.J.

    2011-01-01

    Forced air convection heat pipe cooling systems play an essential role in the thermal management of electronic and power electronic devices such as microprocessors and IGBT's (Integrated Gate Bipolar Transistors). With increasing heat dissipation from these devices, novel methods of improving the thermal performance of fin stacks attached to the heat pipe condenser section are required. The current work investigates the use of a wing type surface protrusions in the form of 3-D delta wing tabs adhered to the fin surface, thin wings punched-out of the fin material and TiNi shape memory alloy delta wings which changed their angles of attack based on the fin surface temperature. The longitudinal vortices generated from the wing designs induce secondary mixing of the cooler free stream air entering the fin stack with the warmer fluid close to the fin surfaces. The change in angle of the attack of the active delta wings provide heat transfer enhancement while managing flow pressure losses across the fin stack. A heat transfer enhancement of 37% compared to a plain fin stack was obtained from the 3-D tabs in a staggered arrangement. The punched-out delta wings in the staggered and inline arrangements provided enhancements of 30% and 26% respectively. Enhancements from the active delta wings were lower at 16%. However, as these devices reduce the pressure drop through the fin stack by approximately 19% in the de-activate position, over the activated position, a reduction in fan operating cost may be achieved for systems operating with inlet air temperatures below the maximum inlet temperature specification for the device. CFD analysis was also carried out to provide additional detail of the local heat transfer enhancement effects. The CFD results corresponded well with previously published reports and were consistent with the experimental findings. - Highlights: → Heat transfer enhancements of heat pipe fin stacks was successfully achieved using fixed and active delta

  10. Free surface flow of a suspension of rigid particles in a non-Newtonian fluid

    DEFF Research Database (Denmark)

    Svec, Oldrich; Skocek, Jan; Stang, Henrik

    2012-01-01

    A numerical framework capable of predicting the free surface flow of a suspension of rigid particles in a non-Newtonian fluid is described. The framework is a combination of the lattice Boltzmann method for fluid flow, the mass tracking algorithm for free surface representation, the immersed...

  11. Turbulent oscillating channel flow subjected to a free-surface stress.

    NARCIS (Netherlands)

    Kramer, W.; Clercx, H.J.H.; Armenio, V.

    2010-01-01

    The channel flow subjected to a wind stress at the free surface and an oscillating pressure gradient is investigated using large-eddy simulations. The orientation of the surface stress is parallel with the oscillating pressure gradient and a purely pulsating mean flow develops. The Reynolds number

  12. Convective heat transfer from rough surfaces with two-dimensional ribs - transitional and laminar flow

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Meyer, L.

    1978-01-01

    Measurements of friction factor and heat transfer coefficients for two rods of 18.9 mm 0.D. with two-dimensional roughness, each in two different outer smooth tubes have been performed in turbulent and laminar flow. The turbulent flow results indicate that the flow was not thermally fully established, the isothermal data however agree reasonably well with our previously obtained general correlation. Laminar flow results can be correlated best when the Reynolds and Greatz numbers are evaluated at the temperature average between the temperature of the inner rod surface and of the outer smooth surface of the annulus, the average being weighted over the two surfaces. (orig.) [de

  13. The leading-edge vortex of swift wing-shaped delta wings.

    Science.gov (United States)

    Muir, Rowan Eveline; Arredondo-Galeana, Abel; Viola, Ignazio Maria

    2017-08-01

    Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the leading-edge vortex (LEV) for lift generation in a variety of flight conditions. A well-documented example of an LEV is that generated by aircraft with highly swept, delta-shaped wings. While the wing aerodynamics of a manoeuvring aircraft, a bird gliding and a bird in flapping flight vary significantly, it is believed that this existing knowledge can serve to add understanding to the complex aerodynamics of natural fliers. In this investigation, a model non-slender delta-shaped wing with a sharp leading edge is tested at low Reynolds number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus . The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the unmodified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift wing-shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta-shaped wing.

  14. Measurement of the interaction between the flow and the free surface of a liquid

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Koji [Univ. of Tokyo, Ibaraki (Japan); Schmidl, W.D.; Philip, O.G. [Texas A& M Univ., College Station, TX (United States)

    1995-09-01

    The interaction between the flow and free surface was evaluated measuring the velocity distribution and surface movement simultaneously. The test section was a rectangular tank having a free surface. A rectangular nozzle was set near the free surface, causing the wavy free surface condition. The flow under the free surface was visualized by a laser light sheet and small tracer particles. With image processing techniques, the movement of the free surface and the movement of the particles were simultaneously measured from the recorded images, resulting in the velocity distributions and surface locations. Then, the interactions between the flow and free surface were evaluated using the form of turbulent energy and surface-related turbulent values. By increasing the turbulent energy near the free surface, the fluctuations of the free surface height and the inclination of the free surface were increased. The higher fluctuation of horizontal velocity was related to the higher surface position and negative inclination. The image processing technique is found to be very useful to evaluate the interaction between free surface and flow.

  15. Measurement of the interaction between the flow and the free surface of a liquid

    International Nuclear Information System (INIS)

    Okamoto, Koji; Schmidl, W.D.; Philip, O.G.

    1995-01-01

    The interaction between the flow and free surface was evaluated measuring the velocity distribution and surface movement simultaneously. The test section was a rectangular tank having a free surface. A rectangular nozzle was set near the free surface, causing the wavy free surface condition. The flow under the free surface was visualized by a laser light sheet and small tracer particles. With image processing techniques, the movement of the free surface and the movement of the particles were simultaneously measured from the recorded images, resulting in the velocity distributions and surface locations. Then, the interactions between the flow and free surface were evaluated using the form of turbulent energy and surface-related turbulent values. By increasing the turbulent energy near the free surface, the fluctuations of the free surface height and the inclination of the free surface were increased. The higher fluctuation of horizontal velocity was related to the higher surface position and negative inclination. The image processing technique is found to be very useful to evaluate the interaction between free surface and flow

  16. Self-induced oscillation of free surface in a tank with circulating flow, 2

    International Nuclear Information System (INIS)

    Okamoto, Koji; Madarame, Haruki; Hagiwara, Tsuyoshi

    1991-01-01

    An energy supply mechanism to self-induced sloshing in a tank with circulating flow is proposed. The circulating flow impinges on the free surface making it swell partially. The amount of swell increases with increasing water level under the condition of growing sloshing. The change of the free surface contour by this effect supplies sufficient energy to the sloshing. The dependency of the sloshing growth on the flow rate and the water level is explained well by this model. (author)

  17. Heat transfer and forces on concave surfaces in free molecule flow.

    Science.gov (United States)

    Fan, C.

    1971-01-01

    A Monte Carlo modeling technique is described for mathematically simulating free molecular flows over a concave spherical surface and a concave cylindrical surface of finite length. The half-angle of the surfaces may vary from 0 to 90 degrees, and the incident flow may have an arbitrary speed ratio and an arbitrary angle of attack. Partial diffuse reflection and imperfect energy accommodation for molecules colliding with the surfaces are also considered. Results of heat transfer, drag and lift coefficients are presented for a variety of flow conditions. The present Monte Carlo results are shown to be in very good agreement with certain available theoretical solutions.

  18. Method of driving liquid flow at or near the free surface using magnetic microparticles

    Science.gov (United States)

    Snezhko, Oleksiy [Woodridge, IL; Aronson, Igor [Darien, IL; Kwok, Wai-Kwong [Evanston, IL; Belkin, Maxim V [Woodridge, IL

    2011-10-11

    The present invention provides a method of driving liquid flow at or near a free surface using self-assembled structures composed of magnetic particles subjected to an external AC magnetic field. A plurality of magnetic particles are supported at or near a free surface of liquid by surface tension or buoyancy force. An AC magnetic field traverses the free surface and dipole-dipole interaction between particles produces in self-assembled snake structures which oscillate at the frequency of the traverse AC magnetic field. The snake structures independently move across the free surface and may merge with other snake structures or break up and coalesce into additional snake structures experiencing independent movement across the liquid surface. During this process, the snake structures produce asymmetric flow vortices across substantially the entirety of the free surface, effectuating liquid flow across the free surface.

  19. Wings as impellers: honey bees co-opt flight system to induce nest ventilation and disperse pheromones.

    Science.gov (United States)

    Peters, Jacob M; Gravish, Nick; Combes, Stacey A

    2017-06-15

    Honey bees ( Apis mellifera ) are remarkable fliers that regularly carry heavy loads of nectar and pollen, supported by a flight system - the wings, thorax and flight muscles - that one might assume is optimized for aerial locomotion. However, honey bees also use this system to perform other crucial tasks that are unrelated to flight. When ventilating the nest, bees grip the surface of the comb or nest entrance and fan their wings to drive airflow through the nest, and a similar wing-fanning behavior is used to disperse volatile pheromones from the Nasonov gland. In order to understand how the physical demands of these impeller-like behaviors differ from those of flight, we quantified the flapping kinematics and compared the frequency, amplitude and stroke plane angle during these non-flight behaviors with values reported for hovering honey bees. We also used a particle-based flow visualization technique to determine the direction and speed of airflow generated by a bee performing Nasonov scenting behavior. We found that ventilatory fanning behavior is kinematically distinct from both flight and scenting behavior. Both impeller-like behaviors drive flow parallel to the surface to which the bees are clinging, at typical speeds of just under 1 m s -1 We observed that the wings of fanning and scenting bees frequently contact the ground during the ventral stroke reversal, which may lead to wing wear. Finally, we observed that bees performing Nasonov scenting behavior sometimes display 'clap-and-fling' motions, in which the wings contact each other during the dorsal stroke reversal and fling apart at the start of the downstroke. We conclude that the wings and flight motor of honey bees comprise a multifunctional system, which may be subject to competing selective pressures because of its frequent use as both a propeller and an impeller. © 2017. Published by The Company of Biologists Ltd.

  20. Insect Wing Displacement Measurement Using Digital Holography

    International Nuclear Information System (INIS)

    Aguayo, Daniel D.; Mendoza Santoyo, Fernando; Torre I, Manuel H. de la; Caloca Mendez, Cristian I.

    2008-01-01

    Insects in flight have been studied with optical non destructive techniques with the purpose of using meaningful results in aerodynamics. With the availability of high resolution and large dynamic range CCD sensors the so called interferometric digital holographic technique was used to measure the surface displacement of in flight insect wings, such as butterflies. The wings were illuminated with a continuous wave Verdi laser at 532 nm, and observed with a CCD Pixelfly camera that acquire images at a rate of 11.5 frames per second at a resolution of 1392x1024 pixels and 12 Bit dynamic range. At this frame rate digital holograms of the wings were captured and processed in the usual manner, namely, each individual hologram is Fourier processed in order to find the amplitude and phase corresponding to the digital hologram. The wings displacement is obtained when subtraction between two digital holograms is performed for two different wings position, a feature applied to all consecutive frames recorded. The result of subtracting is seen as a wrapped phase fringe pattern directly related to the wing displacement. The experimental data for different butterfly flying conditions and exposure times are shown as wire mesh plots in a movie of the wings displacement

  1. Flow control inside a molten Zn pot for improving surface quality of zinc plated strips

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.H. [Samsung Techwin Co., Ltd. (Korea); Koh, M.S.; Kim, S. [Pohang University of Science and Technology Graduate School, Pohang (Korea)

    2001-10-01

    The flow fields inside a molten Zn pot of continuous hot-chip galvanizing process were investigated experimentally. With varying several parameters including the strip speed V{sub s}, flow rate Q of induction heater, scrapper location and baffle configuration, instantaneous velocity fields were measured using a PIV velocity field measurement technique. Inside the strip region, counter-clockwise rotating flow is dominant. The general flow pattern inside the strip region is nearly not influenced by the trip speed V{sub 2}, flow rate Q and the scrapper location. In the exit region, the flow separated from the moving strip due to the existence of a stabilizing roll ascends to the free surface, for the cases of no scrapper and scrapper detached form the roll. On the other hand, the ascending flow to the free surface is decreased, as the flow rate Q of induction heater increases. By installing a baffle around the uprising strip, the flow moving up to the stabilizing roll decreases. In addition, B-type baffle is better than A-type baffle in reducing speed of flow around the stabilizing rolls. However, the flow ascended to the free surface is largely influenced by changing the flow rate Q, and the scrapper location, irrespective of the baffle type. (author). 14 refs., 11 figs.

  2. Wind-tunnel investigation of aerodynamic efficiency of three planar elliptical wings with curvature of quarter-chord line

    Science.gov (United States)

    Mineck, Raymond E.; Vijgen, Paul M. H. W.

    1993-01-01

    Three planar, untwisted wings with the same elliptical chord distribution but with different curvatures of the quarter-chord line were tested in the Langley 8-Foot Transonic Pressure Tunnel (8-ft TPT) and the Langley 7- by 10-Foot High-Speed Tunnel (7 x 10 HST). A fourth wing with a rectangular planform and the same projected area and span was also tested. Force and moment measurements from the 8-ft TPT tests are presented for Mach numbers from 0.3 to 0.5 and angles of attack from -4 degrees to 7 degrees. Sketches of the oil-flow patterns on the upper surfaces of the wings and some force and moment measurements from the 7 x 10 HST tests are presented at a Mach number of 0.5. Increasing the curvature of the quarter-chord line makes the angle of zero lift more negative but has little effect on the drag coefficient at zero lift. The changes in lift-curve slope and in the Oswald efficiency factor with the change in curvature of the quarter-chord line (wingtip location) indicate that the elliptical wing with the unswept quarter-chord line has the lowest lifting efficiency and the elliptical wing with the unswept trailing edge has the highest lifting efficiency; the crescent-shaped planform wing has an efficiency in between.

  3. CFD Analysis of a T-38 Wing Fence

    Science.gov (United States)

    2007-06-01

    or making major adjustments to the existing airframe. The answer lies in flow control. Flow control devices like vortex generators, winglets , and wing...fences have been used to improve the aerodynamic performance of hundreds of aircraft. Flow control is commonly added after the final phase of design...proposed by the Air Force Test Pilot School. The driving force for considering a wing fence as opposed to vane vortex generators or winglets 3 was a row of

  4. Experimental and numerical studies on free surface flow of windowless target

    International Nuclear Information System (INIS)

    Su, G.Y.; Gu, H.Y.; Cheng, X.

    2012-01-01

    Highlights: ► Experimental and CFD studies on free surface flow have been performed in a scaled windowless target. ► Flow structure inside spallation area can be divided into three typical zones. ► Under large Reynolds number, large scale vortex can be observed. ► CFD studies have been conducted by using both LES and RANS (k-ω SST) turbulence models. ► LES model provides better numerical prediction on free surface behavior and flow transient. - Abstract: The formation and control method of the coolant free surface is one of the key technologies for the design of windowless targets in the accelerator driven system (ADS). In the recent study, experimental and numerical investigations on the free surface flow have been performed in a scaled windowless target by using water as the model fluid. The planar laser induced fluorescence technique has been applied to visualize the free surface flow pattern inside the spallation area. Experiments have been carried out with the Reynolds number in the range of 30,000–50,000. The structure and features of flow vortex have been investigated. The experimental results show that the free surface is vulnerable to the vortex movement. In addition, CFD simulations have been performed under the experimental conditions, using LES and RANS (k-ω SST) turbulence models, respectively. The numerical results of LES model agree qualitatively well with the experimental data related to both flow pattern and free surface behavior.

  5. Impact of the surface wind flow on precipitation characteristics over the southern Himalayas: GPM observations

    Science.gov (United States)

    Zhang, Aoqi; Fu, Yunfei; Chen, Yilun; Liu, Guosheng; Zhang, Xiangdong

    2018-04-01

    The distribution and influence of precipitation over the southern Himalayas have been investigated on regional and global scales. However, previous studies have been limited by the insufficient emphasis on the precipitation triggers or the lack of droplet size distribution (DSD) data. Here, precipitating systems were identified using Global Precipitation Mission dual-frequency radar data, and then categorized into five classes according to surface flow from the European Centre for Medium-Range Weather Forecast Interim data. The surface flow is introduced to indicate the precipitation triggers, which is validated in this study. Using case and statistical analysis, we show that the precipitating systems with different surface flow had different precipitation characteristics, including spatio-temporal features, reflectivity profile, DSD, and rainfall intensity. Furthermore, the results show that the source of the surface flow influences the intensity and DSD of precipitation. The terrain exerts different impacts on the precipitating systems of five categories, leading to various distributions of precipitation characteristics over the southern Himalayas. Our results suggest that the introduction of surface flow and DSD for precipitating systems provides insight into the complex precipitation of the southern Himalayas. The different characteristics of precipitating systems may be caused by the surface flow. Therefore, future study on the orographic precipitations should take account the impact of the surface flow and its relevant dynamic mechanism.

  6. Correlation of Water Frost Porosity in Laminar Flow over Flat Surfaces

    Science.gov (United States)

    Kandula, Max

    2011-01-01

    A dimensionless correlation has been proposed for water frost porosity expressing its dependence on frost surface temperature and Reynolds number for laminar forced flow over a flat surface. The correlation is presented in terms of a dimensionless frost surface temperature scaled with the cold plate temperature, and the freezing temperature. The flow Reynolds number is scaled with reference to the critical Reynolds number for laminar-turbulent transition. The proposed correlation agrees satisfactorily with the simultaneous measurements of frost density and frost surface temperature covering a range of plate temperature, ambient air velocity, humidity, and temperature. It is revealed that the frost porosity depends primarily on the frost surface and the plate temperatures and the flow Reynolds number, and is only weakly dependent on the relative humidity. The results also point out the general character of frost porosity displaying a decrease with an increase in flow Reynolds number.

  7. Experimental study of lithium free-surface flow for IFMIF target design

    International Nuclear Information System (INIS)

    Kondo, H.; Fujisato, A.; Yamaoka, N.; Inoue, S.; Miyamoto, S.; Iida, T.; Nakamura, H.; Ida, M.; Matushita, I.; Muroga, T.; Horiike, H.

    2006-01-01

    Lithium free-surface flow experiments to verify the design of IFMIF target have been carried out at Osaka University. The present report summarizes experimental results of surface phenomena, and cavitation characteristics of the loop, so as to try to apply these results to design parameters. Waves on the lithium flow surface is similar to that on water, and can be predicted by a linear stability theory. The wave amplitude is measured by an electro-contact probe. Surface roughness on a target nozzle, caused for example by attached chemical compounds and/or wastages by erosion and corrosion, can lead to a significant loss of target flow stability as well as surface wakes. The need of a polishing manipulator or exchange of the nozzle may be anticipated. Cavitation characteristic of the loop was measured by an accelerometer. From the results, a friction factor could be estimated fort he lithium flow

  8. Micro-PIV/LIF measurements on electrokinetically-driven flow in surface modified microchannels

    International Nuclear Information System (INIS)

    Ichiyanagi, Mitsuhisa; Sasaki, Seiichi; Sato, Yohei; Hishida, Koichi

    2009-01-01

    Effects of surface modification patterning on flow characteristics were investigated experimentally by measuring electroosmotic flow velocities, which were obtained by micron-resolution particle image velocimetry using a confocal microscope. The depth-wise velocity was evaluated by using the continuity equation and the velocity data. The microchannel was composed of a poly(dimethylsiloxane) chip and a borosilicate cover-glass plate. Surface modification patterns were fabricated by modifying octadecyltrichlorosilane (OTS) on the glass surface. OTS can decrease the electroosmotic flow velocity compared to the velocity in the glass microchannel. For the surface charge varying parallel to the electric field, the depth-wise velocity was generated at the boundary area between OTS and the glass surfaces. For the surface charge varying perpendicular to the electric field, the depth-wise velocity did not form because the surface charge did not vary in the stream-wise direction. The surface charge pattern with the oblique stripes yielded a three-dimensional flow in a microchannel. Furthermore, the oblique patterning was applied to a mixing flow field in a T-shaped microchannel, and mixing efficiencies were evaluated from heterogeneity degree of fluorescent dye intensity, which was obtained by laser-induced fluorescence. It was found that the angle of the oblique stripes is an important factor to promote the span-wise and depth-wise momentum transport and contributes to the mixing flow in a microchannel

  9. Low-Flow Film Boiling Heat Transfer on Vertical Surfaces

    DEFF Research Database (Denmark)

    Munthe Andersen, J. G.; Dix, G. E.; Leonard, J. E.

    1976-01-01

    The phenomenon of film boiling heat transfer for high wall temperatures has been investigated. Based on the assumption of laminar flow for the film, the continuity, momentum, and energy equations for the vapor film are solved and a Bromley-type analytical expression for the heat transfer...... length, an average film boiling heat transfer coefficient is obtained....

  10. Mass transfer from smooth alabaster surfaces in turbulent flows

    Science.gov (United States)

    Opdyke, Bradley N.; Gust, Giselher; Ledwell, James R.

    1987-11-01

    The mass transfer velocity for alabaster plates in smooth-wall turbulent flow is found to vary with the friction velocity according to an analytic solution of the advective diffusion equation. Deployment of alabaster plates on the sea floor can perhaps be used to estimate the viscous stress, and transfer velocities for other species.

  11. Multiscale Finite Element Methods for Flows on Rough Surfaces

    KAUST Repository

    Efendiev, Yalchin

    2013-01-01

    In this paper, we present the Multiscale Finite Element Method (MsFEM) for problems on rough heterogeneous surfaces. We consider the diffusion equation on oscillatory surfaces. Our objective is to represent small-scale features of the solution via multiscale basis functions described on a coarse grid. This problem arises in many applications where processes occur on surfaces or thin layers. We present a unified multiscale finite element framework that entails the use of transformations that map the reference surface to the deformed surface. The main ingredients of MsFEM are (1) the construction of multiscale basis functions and (2) a global coupling of these basis functions. For the construction of multiscale basis functions, our approach uses the transformation of the reference surface to a deformed surface. On the deformed surface, multiscale basis functions are defined where reduced (1D) problems are solved along the edges of coarse-grid blocks to calculate nodalmultiscale basis functions. Furthermore, these basis functions are transformed back to the reference configuration. We discuss the use of appropriate transformation operators that improve the accuracy of the method. The method has an optimal convergence if the transformed surface is smooth and the image of the coarse partition in the reference configuration forms a quasiuniform partition. In this paper, we consider such transformations based on harmonic coordinates (following H. Owhadi and L. Zhang [Comm. Pure and Applied Math., LX(2007), pp. 675-723]) and discuss gridding issues in the reference configuration. Numerical results are presented where we compare the MsFEM when two types of deformations are used formultiscale basis construction. The first deformation employs local information and the second deformation employs a global information. Our numerical results showthat one can improve the accuracy of the simulations when a global information is used. © 2013 Global-Science Press.

  12. Analysis of Low-Speed Stall Aerodynamics of a Business Jets Wing Using STAR-CCM+

    Science.gov (United States)

    Bui, Trong

    2016-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted: to study the low-speed stall aerodynamics of a GIII aircrafts swept wing modified with (1) a laminar-flow wing glove, or (2) a seamless flap. The stall aerodynamics of these two different wing configurations were analyzed and compared with the unmodified baseline wing for low-speed flight. The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First AIAA CFD High-Lift Prediction Workshop.

  13. Optimization of aerodynamic efficiency for twist morphing MAV wing

    Directory of Open Access Journals (Sweden)

    N.I. Ismail

    2014-06-01

    Full Text Available Twist morphing (TM is a practical control technique in micro air vehicle (MAV flight. However, TM wing has a lower aerodynamic efficiency (CL/CD compared to membrane and rigid wing. This is due to massive drag penalty created on TM wing, which had overwhelmed the successive increase in its lift generation. Therefore, further CL/CDmax optimization on TM wing is needed to obtain the optimal condition for the morphing wing configuration. In this paper, two-way fluid–structure interaction (FSI simulation and wind tunnel testing method are used to solve and study the basic wing aerodynamic performance over (non-optimal TM, membrane and rigid wings. Then, a multifidelity data metamodel based design optimization (MBDO process is adopted based on the Ansys-DesignXplorer frameworks. In the adaptive MBDO process, Kriging metamodel is used to construct the final multifidelity CL/CD responses by utilizing 23 multi-fidelity sample points from the FSI simulation and experimental data. The optimization results show that the optimal TM wing configuration is able to produce better CL/CDmax magnitude by at least 2% than the non-optimal TM wings. The flow structure formation reveals that low TV strength on the optimal TM wing induces low CD generation which in turn improves its overall CL/CDmax performance.

  14. Patterning of a compound eye on an extinct dipteran wing

    OpenAIRE

    Dinwiddie, April; Rachootin, Stan

    2010-01-01

    We have discovered unexpected similarities between a novel and characteristic wing organ in an extinct biting midge from Baltic amber, Eohelea petrunkevitchi, and the surface of a dipteran's compound eye. Scanning electron microscope images now reveal vestigial mechanoreceptors between the facets of the organ. We interpret Eohelea's wing organ as the blending of these two developmental systems: the formation and patterning of the cuticle in the eye and of the wing.

  15. Experimental Study on Momentum Transfer of Surface Texture in Taylor-Couette Flow

    Science.gov (United States)

    Xue, Yabo; Yao, Zhenqiang; Cheng, De

    2017-05-01

    The behavior of Taylor-Couette (TC) flow has been extensively studied. However, no suitable torque prediction models exist for high-capacity fluid machinery. The Eckhardt-Grossmann-Lohse (EGL) theory, derived based on the Navier-Stokes equations, is proposed to model torque behavior. This theory suggests that surfaces are the significant energy transfer interfaces between cylinders and annular flow. This study mainly focuses on the effects of surface texture on momentum transfer behavior through global torque measurement. First, a power-law torque behavior model is built to reveal the relationship between dimensionless torque and the Taylor number based on the EGL theory. Second, TC flow apparatus is designed and built based on the CNC machine tool to verify the torque behavior model. Third, four surface texture films are tested to check the effects of surface texture on momentum transfer. A stereo microscope and three-dimensional topography instrument are employed to analyze surface morphology. Global torque behavior is measured by rotating a multi component dynamometer, and the effects of surface texture on the annular flow behavior are observed via images obtained using a high-speed camera. Finally, torque behaviors under four different surface conditions are fitted and compared. The experimental results indicate that surface textures have a remarkable influence on torque behavior, and that the peak roughness of surface texture enhances the momentum transfer by strengthening the fluctuation in the TC flow.

  16. Response of surface buoy moorings in steady and wave flows

    Digital Repository Service at National Institute of Oceanography (India)

    Anand, N.M.; Nayak, B.U.; SanilKumar, V.

    A numerical model has been developed to evaluate the dynamics of surface buoy mooring systems under wave and current loading. System tension response and variation of tension in the mooring line at various depths have been evaluated for deep water...

  17. Modelling free surface flows with smoothed particle hydrodynamics

    Directory of Open Access Journals (Sweden)

    L.Di G.Sigalotti

    2006-01-01

    Full Text Available In this paper the method of Smoothed Particle Hydrodynamics (SPH is extended to include an adaptive density kernel estimation (ADKE procedure. It is shown that for a van der Waals (vdW fluid, this method can be used to deal with free-surface phenomena without difficulties. In particular, arbitrary moving boundaries can be easily handled because surface tension is effectively simulated by the cohesive pressure forces. Moreover, the ADKE method is seen to increase both the accuracy and stability of SPH since it allows the width of the kernel interpolant to vary locally in a way that only the minimum necessary smoothing is applied at and near free surfaces and sharp fluid-fluid interfaces. The method is robust and easy to implement. Examples of its resolving power are given for both the formation of a circular liquid drop under surface tension and the nonlinear oscillation of excited drops.

  18. Rotating polygon instability of a swirling free surface flow

    DEFF Research Database (Denmark)

    Tophøj, Laust Emil Hjerrild; Bohr, Tomas; Mougel, J.

    2013-01-01

    We explain the rotating polygon instability on a swirling fluid surface [G. H. Vatistas, J. Fluid Mech. 217, 241 (1990)JFLSA70022-1120 and Jansson et al., Phys. Rev. Lett. 96, 174502 (2006)PRLTAO0031-9007] in terms of resonant interactions between gravity waves on the outer part of the surface...... behavior near the corners), and indeed we show that we can obtain the polygons transiently by violently stirring liquid nitrogen in a hot container....

  19. A New Method to Simulate Free Surface Flows for Viscoelastic Fluid

    Directory of Open Access Journals (Sweden)

    Yu Cao

    2015-01-01

    Full Text Available Free surface flows arise in a variety of engineering applications. To predict the dynamic characteristics of such problems, specific numerical methods are required to accurately capture the shape of free surface. This paper proposed a new method which combined the Arbitrary Lagrangian-Eulerian (ALE technique with the Finite Volume Method (FVM to simulate the time-dependent viscoelastic free surface flows. Based on an open source CFD toolbox called OpenFOAM, we designed an ALE-FVM free surface simulation platform. In the meantime, the die-swell flow had been investigated with our proposed platform to make a further analysis of free surface phenomenon. The results validated the correctness and effectiveness of the proposed method for free surface simulation in both Newtonian fluid and viscoelastic fluid.

  20. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio

    NARCIS (Netherlands)

    Kruyt, J.W.; Heijst, Van G.F.; Altshuler, D.L.; Lentink, David

    2015-01-01

    Airplanes and helicopters use high aspect ratio wings to reduce the power required to fly, but must operate at low angle of attack to prevent flow separation and stall. Animals capable of slow sustained flight, such as hummingbirds, have low aspect ratio wings and flap their wings at high angle

  1. Unified aeroacoustics analysis for high speed turboprop aerodynamics and noise. Volume 2: Development of theory for wing shielding

    Science.gov (United States)

    Amiet, R. K.

    1991-01-01

    A unified theory for aerodynamics and noise of advanced turboprops is presented. The theory and a computer code developed for evaluation at the shielding benefits that might be expected by an aircraft wing in a wing-mounted propeller installation are presented. Several computed directivity patterns are presented to demonstrate the theory. Recently with the advent of the concept of using the wing of an aircraft for noise shielding, the case of diffraction by a surface in a flow has been given attention. The present analysis is based on the case of diffraction of no flow. By combining a Galilean and a Lorentz transform, the wave equation with a mean flow can be reduced to the ordinary equation. Allowance is also made in the analysis for the case of a swept wing. The same combination of Galilean and Lorentz transforms lead to a problem with no flow but a different sweep. The solution procedures for the cases of leading and trailing edges are basically the same. Two normalizations of the solution are given by the computer program. FORTRAN computer programs are presented with detailed documentation. The output from these programs compares favorably with the results of other investigators.

  2. Flexible micro flow sensor for micro aerial vehicles

    Science.gov (United States)

    Zhu, Rong; Que, Ruiyi; Liu, Peng

    2017-12-01

    This article summarizes our studies on micro flow sensors fabricated on a flexible polyimide circuit board by a low-cost hybrid process of thin-film deposition and circuit printing. The micro flow sensor has merits of flexibility, structural simplicity, easy integrability with circuits, and good sensing performance. The sensor, which adheres to an object surface, can detect the surface flow around the object. In our study, we install the fabricated micro flow sensors on micro aerial vehicles (MAVs) to detect the surface flow variation around the aircraft wing and deduce the aerodynamic parameters of the MAVs in flight. Wind tunnel experiments using the sensors integrated with the MAVs are also conducted.

  3. Modeling of surface roughness effects on Stokes flow in circular pipes

    Science.gov (United States)

    Song, Siyuan; Yang, Xiaohu; Xin, Fengxian; Lu, Tian Jian

    2018-02-01

    Fluid flow and pressure drop across a channel are significantly influenced by surface roughness on a channel wall. The present study investigates the effects of periodically structured surface roughness upon flow field and pressure drop in a circular pipe at low Reynolds numbers. The periodic roughness considered exhibits sinusoidal, triangular, and rectangular morphologies, with the relative roughness (i.e., ratio of the amplitude of surface roughness to hydraulic diameter of the pipe) no more than 0.2. Based upon a revised perturbation theory, a theoretical model is developed to quantify the effect of roughness on fully developed Stokes flow in the pipe. The ratio of static flow resistivity and the ratio of the Darcy friction factor between rough and smooth pipes are expressed in four-order approximate formulations, which are validated against numerical simulation results. The relative roughness and the wave number are identified as the two key parameters affecting the static flow resistivity and the Darcy friction factor.

  4. Prediction of the surface roughness of AA6082 flow-formed tubes by design of experiments

    International Nuclear Information System (INIS)

    Srinivasulu, M.; Komaraiah, M.; Rao, C. S. Krishna Prasada

    2013-01-01

    Flow forming is a modern, chipless metal forming process that is employed for the production of thin-walled seamless tubes. Experiments are conducted on AA6082 alloy pre-forms to flow form into thin-walled tubes on a CNC flow-forming machine with a single roller. Design of experiments is used to predict the surface roughness of flow-formed tubes. The process parameters selected for this study are the roller axial feed, mandrel speed, and roller radius. A standard response surface methodology (RSM) called the Box Behnken design is used to perform the experimental runs. The regression model developed by RSM successfully predicts the surface roughness of AA6082 flow-formed tubes within the range of the selected process parameters.

  5. Prediction of the surface roughness of AA6082 flow-formed tubes by design of experiments

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasulu, M. [Government Polytechnic for Women Badangpet, Hyderabad (India); Komaraiah, M. [Sreenidhi Institute of Science and Technology, Hyderabad (India); Rao, C. S. Krishna Prasada [Bharat Dynamics Limited, Hyderabad (India)

    2013-06-15

    Flow forming is a modern, chipless metal forming process that is employed for the production of thin-walled seamless tubes. Experiments are conducted on AA6082 alloy pre-forms to flow form into thin-walled tubes on a CNC flow-forming machine with a single roller. Design of experiments is used to predict the surface roughness of flow-formed tubes. The process parameters selected for this study are the roller axial feed, mandrel speed, and roller radius. A standard response surface methodology (RSM) called the Box Behnken design is used to perform the experimental runs. The regression model developed by RSM successfully predicts the surface roughness of AA6082 flow-formed tubes within the range of the selected process parameters.

  6. Flow cytometry detection of planktonic cells with polycyclic aromatic hydrocarbons sorbed to cell surfaces

    KAUST Repository

    Cerezo, Maria I.; Linden, Matthew; Agusti, Susana

    2017-01-01

    Polycyclic aromatic hydrocarbons are very important components of oil pollution. These pollutants tend to sorb to cell surfaces, exerting toxic effects on organisms. Our study developed a flow cytometric method for the detection of PAHs sorbed

  7. A Variational Model for Two-Phase Immiscible Electroosmotic Flow at Solid Surfaces

    KAUST Repository

    Shao, Sihong; Qian, Tiezheng

    2012-01-01

    We develop a continuum hydrodynamic model for two-phase immiscible flows that involve electroosmotic effect in an electrolyte and moving contact line at solid surfaces. The model is derived through a variational approach based on the Onsager

  8. Direct numerical simulation of turbulent channel flow over a liquid-infused micro-grooved surface

    Science.gov (United States)

    Chang, Jaehee; Jung, Taeyong; Choi, Haecheon; Kim, John

    2016-11-01

    Recently a superhydrophobic surface has drawn much attention as a passive device to achieve high drag reduction. Despite the high performance promised at ideal conditions, maintaining the interface in real flow conditions is an intractable problem. A non-wetting surface, known as the slippery liquid-infused porous surface (SLIPS) or the lubricant-impregnated surface (LIS), has shown a potential for drag reduction, as the working fluid slips at the interface but cannot penetrate into the lubricant layer. In the present study, we perform direct numerical simulation of turbulent channel flow over a liquid-infused micro-grooved surface to investigate the effects of this surface on the interfacial slip and drag reduction. The flow rate of water is maintained constant corresponding to Reτ 180 in a fully developed turbulent channel flow, and the lubricant layer is shear-driven by the turbulent water flow. The lubricant layer is also simulated with the assumption that the interface is flat (i.e. the surface tension effect is neglected). The solid substrate in which the lubricant is infused is modelled as straight ridges using an immersed boundary method. DNS results show that drag reduction by the liquid-infused surface is highly dependent on the viscosity of the lubricant.

  9. Wind Characteristics of Coastal and Inland Surface Flows

    Science.gov (United States)

    Subramanian, Chelakara; Lazarus, Steven; Jin, Tetsuya

    2015-11-01

    Lidar measurements of the winds in the surface layer (up to 80 m) inland and near the beach are studied to better characterize the velocity profile and the effect of roughness. Mean and root-mean-squared profiles of horizontal and vertical wind components are analyzed. The effects of variable time (18, 60 and 600 seconds) averaging on the above profiles are discussed. The validity of common surface layer wind profile models to estimate skin friction drag is assessed in light of these measurements. Other turbulence statistics such as auto- and cross- correlations in spatial and temporal domains are also presented. The help of FIT DMES field measurement crew is acknowledged.

  10. A Kinematic Conservation Law in Free Surface Flow

    OpenAIRE

    Gavrilyuk , Sergey; Kalisch , Henrik; Khorsand , Zahra

    2015-01-01

    The Green-Naghdi system is used to model highly nonlinear weakly dispersive waves propagating at the surface of a shallow layer of a perfect fluid. The system has three associated conservation laws which describe the conservation of mass, momentum, and energy due to the surface wave motion. In addition, the system features a fourth conservation law which is the main focus of this note. It will be shown how this fourth conservation law can be interpreted in terms of a concrete kinematic quanti...

  11. Wind Tunnel Investigation of Passive Vortex Control and Vortex-Tail Interactions on a Slender Wing at Subsonic and Transonic Speeds

    Science.gov (United States)

    Erickson, Gary E.

    2013-01-01

    A wind tunnel experiment was conducted in the NASA Langley 8-Foot Transonic Pressure Tunnel to determine the effects of passive porosity on vortex flow interactions about a slender wing configuration at subsonic and transonic speeds. Flow-through porosity was applied in several arrangements to a leading-edge extension, or LEX, mounted to a 65-degree cropped delta wing as a longitudinal instability mitigation technique. Test data were obtained with LEX on and off in the presence of a centerline vertical tail and twin, wing-mounted vertical fins to quantify the sensitivity of the aerodynamics to tail placement and orientation. A close-coupled canard was tested as an alternative to the LEX as a passive flow control device. Wing upper surface static pressure distributions and six-component forces and moments were obtained at Mach numbers of 0.50, 0.85, and 1.20, unit Reynolds number of 2.5 million, angles of attack up to approximately 30 degrees, and angles of sideslip to +/-8 degrees. The off-surface flow field was visualized in cross planes on selected configurations using a laser vapor screen flow visualization technique. Tunnel-to-tunnel data comparisons and a Reynolds number sensitivity assessment were also performed. 15.

  12. A stereo vision method for tracking particle flow on the weld pool surface

    NARCIS (Netherlands)

    Zhao, C.X.; Richardson, I.M.; Kenjeres, S.; Kleijn, C.R.; Saldi, Z.

    2009-01-01

    The oscillation of a weld pool surface makes the fluid flow motion quite complex. Two-dimensional results cannot reflect enough information to quantitatively describe the fluid flow in the weld pool; however, there are few direct three-dimensional results available. In this paper, we describe a

  13. Aluminum-contaminant transport by surface runoff and bypass flow from an acid sulphate soil

    NARCIS (Netherlands)

    Minh, L.Q.; Tuong, T.P.; Mensvoort, van M.E.F.; Bouma, J.

    2002-01-01

    Quantifying the process and the amount of acid-contaminant released to the surroundings is important in assessing the environmental hazards associated with reclaiming acid sulphate soils (ASS). The roles of surface runoff and bypass flow (i.e. the rapid downward flow of free water along macropores

  14. Application of turbulence modeling to predict surface heat transfer in stagnation flow region of circular cylinder

    Science.gov (United States)

    Wang, Chi R.; Yeh, Frederick C.

    1987-01-01

    A theoretical analysis and numerical calculations for the turbulent flow field and for the effect of free-stream turbulence on the surface heat transfer rate of a stagnation flow are presented. The emphasis is on the modeling of turbulence and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow. The free stream is steady and incompressible with a Reynolds number of the order of 10 to the 5th power and turbulence intensity of less than 5 percent. For this analysis, the flow field is divided into three regions: (1) a uniform free-stream region where the turbulence is homogeneous and isotropic; (2) an external viscid flow region where the turbulence is distorted by the variation of the mean flow velocity; and, (3) an anisotropic turbulent boundary layer region over the cylinder surface. The turbulence modeling techniques used are the kappa-epsilon two-equation model in the external flow region and the time-averaged turbulence transport equation in the boundary layer region. The turbulence double correlations, the mean velocity, and the mean temperature within the boundary layer are solved numerically from the transport equations. The surface heat transfer rate is calculated as functions of the free-stream turbulence longitudinal microlength scale, the turbulence intensity, and the Reynolds number.

  15. Simultaneous calibration of surface flow and baseflow simulations: A revisit of the SWAT model calibration framework

    Science.gov (United States)

    Accurate analysis of water flow pathways from rainfall to streams is critical for simulating water use, climate change impact, and contaminant transport. In this study, we developed a new scheme to simultaneously calibrate surface flow (SF) and baseflow (BF) simulations of Soil and Water Assessment ...

  16. Simultaneous measurement of a fluid flow and the fluid's free surface using PIV

    International Nuclear Information System (INIS)

    Philip, O.G.; Hassan, Y.A.; Okamoto, K.

    1995-01-01

    The objective of this investigation is to study the interaction between a fluid flow and its free surface with an improved application of the flow measurement technique, particle image velocimetry (PIV). In this study, improvements in the data acquisition and tracking method of the PIV technique were developed

  17. An Investigation of the Effects of Discrete Wing Tip Jets on Wake Vortex Roll Up.

    Science.gov (United States)

    1983-08-01

    aerodynamic thrust of the winglet and the more efficient lift production of the main wing combine to give winglets a dramatic improvement in aerodynamic ...with winglets could possibly provide the needed flexibility. Ř’ . " % * .- *2,,~4 . ,.*.%~* CHAPT1ER III BACKGROUND: AERODYNAMIC JE7IS IN CROSS FLOW...outboard shift of the wing tip vortex indicated that discrete wing tip jets may be able to produce improved wing aerodynamics during cruise flight

  18. Can Wing Tip Vortices Be Accurately Simulated?

    Science.gov (United States)

    2011-07-01

    Aerodynamics , Flow Visualization, Numerical Investigation, Aero Suite 16. SECURITY CLASSIFICATION OF: Unclassified 17. LIMITATION OF ABSTRACT 18...additional tail buffeting.2 In commercial applications, winglets have been installed on passenger aircraft to minimize vortex formation and reduce lift...air. In military applications, wing tip In commercial applications, winglets have been installed on passenger aircraft to minimize increases with downstream distances.

  19. Advanced Instrumentation and Measurement Techniques for Near Surface Flows

    Science.gov (United States)

    Cadel, Daniel R.

    The development of aerodynamic boundary layers on wind turbine blades is an important consideration in their performance. It can be quite challenging to replicate full scale conditions in laboratory experiments, and advanced diagnostics become valuable in providing data not available from traditional means. A new variant of Doppler global velocimetry (DGV) known as cross-correlation DGV is developed to measure boundary layer profiles on a wind turbine blade airfoil in the large scale Virginia Tech Stability Wind Tunnel. The instrument provides mean velocity vectors with reduced sensitivity to external conditions, a velocity measurement range from 0 ms-1 to over 3000 ms-1, and an absolute uncertainty. Monte Carlo simulations with synthetic signals reveal that the processing routine approaches the Cramer-Rao lower bound in optimized conditions. A custom probe-beam technique is implanted to eliminate laser flare for measuring boundary layer profiles on a DU96-W-180 wind turbine airfoil model. Agreement is seen with laser Doppler velocimetry data within the uncertainty estimated for the DGV profile. Lessons learned from the near-wall flow diagnostics development were applied to a novel benchmark model problem incorporating the relevant physical mechanisms of the high amplitude periodic turbulent flow experienced by turbine blades in the field. The model problem is developed for experimentally motivated computational model development. A circular cylinder generates a periodic turbulent wake, in which a NACA 63215b airfoil with a chord Reynolds number Rec = 170,000 is embedded for a reduced frequency k = pi f c/V = 1.53. Measurements are performed with particle image velocimetry on the airfoil suction side and in highly magnified planes within the boundary layer. Outside of the viscous region, the Reynolds stress profile is consistent with the prediction of Rapid Distortion Theory (RDT), confirming that the redistribution of normal stresses is an inviscid effect. The

  20. Butterfly wing colours : scale beads make white pierid wings brighter

    NARCIS (Netherlands)

    Stavenga, DG; Stowe, S; Siebke, K; Zeil, J; Arikawa, K

    2004-01-01

    The wing-scale morphologies of the pierid butterflies Pieris rapae (small white) and Delias nigrina (common jezabel), and the heliconine Heliconius melpomene are compared and related to the wing-reflectance spectra. Light scattering at the wing scales determines the wing reflectance, but when the

  1. Free-surface flow around an appended hull

    International Nuclear Information System (INIS)

    Lungu, A; Pacuraru, F

    2010-01-01

    The prediction of the total drag experienced by an advancing ship is a complicated problem which requires a thorough understanding of the hydrodynamic forces acting on the hull, the physical processes from which these forces arise as well as their mutual interaction. A general numerical method to predict the hydrodynamic performance of a twin-propeller combatant ship is presented in the paper, which describes the solution of a RANS solver coupled with a body force method as an attempt in investigating the flow features around the ship hull equipped with rotating propellers and rudders. A special focus is made on the propeller non-symmetrical inflow field, aimed at obtaining the necessary data for the propulsive performances evaluation as well as for the propeller final design. The reported work allows not only the performance evaluation for the overall performances of a hull, but also leads to the development, implementation and validation of new concepts in modeling the turbulent vortical flows, with direct connection to the ship propulsion problem.

  2. Segregating photoelastic particles in free-surface granular flows

    Science.gov (United States)

    Thomas, Amalia; Vriend, Nathalie; Environmental; Industrial Fluid Dynamics Team

    2017-11-01

    We present results from a novel experimental set-up creating 2D avalanches of photoelastic discs. Two distinct hoppers supply either monodisperse or bidisperse particles at adjustable flow-rates into a 2 meter long, narrow acrylic chute inclined at 20°. For 20-40 seconds the avalanche maintains a steady-state that accelerates and thins downstream. The chute basal roughness is variable, allowing for different flow profiles. Using a set of polarizers and a high-speed camera, we visualize and quantify the forces due to dynamic interactions between the discs using photoelastic theory. Velocity and density profiles are derived from particle tracking at different distances from the discharge point and are coarse-grained to obtain continuous fields. With the access to both force information and dynamical properties via particle-tracking, we can experimentally validate existing mu(I) and non-local rheologies. As an extension, we probe the effect of granular segregation in bimodal mixtures by using the two separate inflow hoppers. We derive the state of segregation along the avalanche channel and measure the segregation velocities of each species. This provides insight in, and a unique validation of, the fundamental physical processes that drive segregation in avalanching geometries.

  3. Experimental Study of gas-liquid two-phase flow affected by wall surface wettability

    International Nuclear Information System (INIS)

    Takamasa, T.; Hazuku, T.; Hibiki, T.

    2008-01-01

    To evaluate the effect of wall surface wettability on the characteristics of upward gas-liquid two-phase flow in a vertical pipe, an experimental study was performed using three test pipes: an acrylic pipe, a hydrophilic pipe and a hydrophobic pipe. Basic flow characteristics such as flow patterns, pressure drop and void fraction were measured in these three pipes. In the hydrophilic pipe, a slug to churn flow transition boundary was shifted to a higher gas velocity at a given liquid velocity, whereas a churn to annular flow transition boundary was shifted to a lower gas velocity at a given liquid velocity. In the hydrophobic pipe, an inverted-churn flow regime was observed in the region where the churn flow regime was observed in the acrylic pipe, while a droplet flow regime was observed in the region where an annular flow regime was observed in the acrylic pipe. At a high gas flow rate, the mean void fraction in the hydrophobic pipe was higher than in the acrylic pipe. The effect of surface wettability on frictional pressure loss was confirmed to be insignificant under the present experimental conditions

  4. Surface optimization and new cavitation model for lubricated flow

    Directory of Open Access Journals (Sweden)

    Dalissier Eric

    2013-12-01

    Full Text Available Le système piston/chemise/segment est le siège d’une partie importante des pertes en frottement du moteur (de l’ordre de 7% de l’énergie fournie par le moteur [1]. Une des pistes étudiées pour diminuer ces frottements consiste à introduire des rugosités à la surface de la chemise. Ces rugosités servent localement de réservoir au lubrifiant et permettent de limiter les contacts entre les segments et la chemise et donc de diminuer le frottement. Un des buts de notre travail était d’optimiser ces rugosités de surface en modélisant le système segment/chemise en présence de lubrifiant.

  5. Prediction of incipient flow boiling from a uniformly heated surface

    International Nuclear Information System (INIS)

    Yin, S.T.; Abdelmessih, A.H.

    1977-01-01

    This study was undertaken to investigate the phenomenon of liquid superheat during incipient boiling in a uniformly heated forced convection channel. Experimental data were obtained using Freon 11 as the test medium. Based on existing theories, an analytical method was developed for predicting the point of termination of nucleate boiling, observed during a decreasing heat flux process with a nucleation activated surface. The method may also be used to predict the point of boiling incipience, observed during an increasing heat flux process with a non-activated surface; this point does not appear to have been treated analytically in previous work. It can be shown that some of the existing models are special cases of the present formulation

  6. Wind-tunnel Tests of a Hall High-life Wing

    Science.gov (United States)

    Weick, Fred E; Sanders, Robert

    1932-01-01

    Wind-tunnel tests have been made to find the lift, drag, and center-of-pressure characteristics of a Hall high-lift wing model. The Hall wing is essentially a split-flap airfoil with an internal air passage. Air enters the passage through an opening in the lower surface somewhat back of and parallel to the leading edge, and flows out through an opening made by deflecting the rear portion of the under surface downward as a flap. For ordinary flight conditions the front opening and the rear flap can be closed, providing in effect a conventional airfoil (the Clark Y in this case). The tests were made with various flap settings and with the entrance to the passage both open and closed. The highest lift coefficient found, C(sub L) = 2.08, was obtained with the passage closed.

  7. Fractal behaviour of flow of an inhomogeneous fluid over a smooth inclined surface

    International Nuclear Information System (INIS)

    Rouhani, S.; Maleki Jirsarani, N.; Ghane Motlagh, B.; Baradaran, S.; Shokrian, E.

    2001-01-01

    We have observed and analyzed fractal patterns made by the flow of an inhomogeneous fluid (a suspension) over an inclined smooth surface. We observed that if the angle of inclination is above a threshold (10 d eg C - 12 d eg C), the length of fractal clusters become infinity. We measured a fractal dimension of df=1.40 ± 0.05. This falls within the same general class of patterns of flow of water over an inhomogeneous surface. This observation is consistent with the results of theoretical modes for nonlinear fluid flow in random media

  8. Thermocouple Rakes for Measuring Boundary Layer Flows Extremely Close to Surface

    Science.gov (United States)

    Hwang, Danny P.; Fralick, Gustave C.; Martin, Lisa C.; Blaha, Charles A.

    2001-01-01

    Of vital interest to aerodynamic researchers is precise knowledge of the flow velocity profile next to the surface. This information is needed for turbulence model development and the calculation of viscous shear force. Though many instruments can determine the flow velocity profile near the surface, none of them can make measurements closer than approximately 0.01 in. from the surface. The thermocouple boundary-layer rake can measure much closer to the surface than conventional instruments can, such as a total pressure boundary layer rake, hot wire, or hot film. By embedding the sensors (thermocouples) in the region where the velocity is equivalent to the velocity ahead of a constant thickness strut, the boundary-layer flow profile can be obtained. The present device fabricated at the NASA Glenn Research Center microsystem clean room has a heater made of platinum and thermocouples made of platinum and gold. Equal numbers of thermocouples are placed both upstream and downstream of the heater, so that the voltage generated by each pair at the same distance from the surface is indicative of the difference in temperature between the upstream and downstream thermocouple locations. This voltage differential is a function of the flow velocity, and like the conventional total pressure rake, it can provide the velocity profile. In order to measure flow extremely close to the surface, the strut is made of fused quartz with extremely low heat conductivity. A large size thermocouple boundary layer rake is shown in the following photo. The latest medium size sensors already provide smooth velocity profiles well into the boundary layer, as close as 0.0025 in. from the surface. This is about 4 times closer to the surface than the previously used total pressure rakes. This device also has the advantage of providing the flow profile of separated flow and also it is possible to measure simultaneous turbulence levels within the boundary layer.

  9. Effects of surface roughness and electrokinetic heterogeneity on electroosmotic flow in microchannel

    Energy Technology Data Exchange (ETDEWEB)

    Masilamani, Kannan; Ganguly, Suvankar; Feichtinger, Christian; Bartuschat, Dominik; Rüde, Ulrich, E-mail: suva_112@yahoo.co.in [Department of Computer Science 10 University of Erlangen-Nuremberg, Cauerstr.11 91058 Erlangen (Germany)

    2015-06-15

    In this paper, a hybrid lattice-Boltzmann and finite-difference (LB-FD) model is applied to simulate the effects of three-dimensional surface roughness and electrokinetic heterogeneity on electroosmotic flow (EOF) in a microchannel. The lattice-Boltzmann (LB) method has been employed to obtain the flow field and a finite-difference (FD) method is used to solve the Poisson-Boltzmann (PB) equation for the electrostatic potential distribution. Numerical simulation of flow through a square cross-section microchannel with designed roughness is conducted and the results are critically analysed. The effects of surface heterogeneity on the electroosmotic transport are investigated for different roughness height, width, roughness interval spacing, and roughness surface potential. Numerical simulations reveal that the presence of surface roughness changes the nature of electroosmotic transport through the microchannel. It is found that the electroosmotic velocity decreases with the increase in roughness height and the velocity profile becomes asymmetric. For the same height of the roughness elements, the EOF velocity rises with the increase in roughness width. For the heterogeneously charged rough channel, the velocity profile shows a distinct deviation from the conventional plug-like flow pattern. The simulation results also indicate locally induced flow vortices which can be utilized to enhance the flow and mixing within the microchannel. The present study has important implications towards electrokinetic flow control in the microchannel, and can provide an efficient way to design a microfluidic system of practical interest. (paper)

  10. Phosphorus retention in surface-flow constructed wetlands targeting agricultural drainage water

    DEFF Research Database (Denmark)

    Dantas Mendes, Lipe Renato; Tonderski, Karin; Iversen, Bo Vangsø

    2018-01-01

    Surface-flow constructed wetlands (CWs) are potential cost-efficient solutions to mitigate phosphorus (P) loads from agricultural areas to surface waters. Hydraulic and phosphorus loading rates (HLR and PLR) are critical parameters that regulate P retention in these systems. The present study aim...

  11. Surface tension effects on vertical upward annular flows in a small diameter pipe

    Energy Technology Data Exchange (ETDEWEB)

    Sadatomi, Michio, E-mail: sadatomi@mech.kumamoto-u.ac.jp [Dept. of Advanced Mechanical Systems, Kumamoto Univ., 39-1, Kurokami 2-chome, Chuou-ku, Kumamoto 860-8555 (Japan); Kawahara, Akimaro [Dept. of Advanced Mechanical Systems, Kumamoto Univ., 39-1, Kurokami 2-chome, Chuou-ku, Kumamoto 860-8555 (Japan); Suzuki, Aruta [Plant Design & Engineering Dept., Environment, Energy & Plant Headquarters, Hitachi Zosen Corporation, 7-89, Nankokita 1-chome, Suminoe-ku, Osaka, 559-8559 (Japan)

    2016-12-15

    Highlights: • Surface tension effects were clarified on annular flow in a small diameter pipe. • The mean liquid film thickness became thinner with decreasing of surface tension. • The liquid droplet fraction and the interfacial shear stress became higher with it. • New prediction methods for the above parameters were developed and validated. - Abstract: Experiments were conducted to study the surface tension effects on vertical upward annular flows in a 5 mm I.D. pipe using water and low surface tension water with a little surfactant as the test liquid and air as the test gas. Firstly, the experimental results on the mean liquid film thickness, the liquid droplet fraction and the interfacial shear stress in annular flows together with some flow pictures are presented to clarify the surface tension effects. From these, the followings are clarified: In the low surface tension case, the liquid film surface becomes rough, the liquid film thickness thin, the liquid droplet fraction high, and the interfacial shear stress high. Secondary, correlations in literatures for the respective parameters are tested against the present data. The test results show that no correlation for the respective parameters could predict well the present data. Thus, correlations are revised by accounting for the surface tension effects. The results of the experiments, the correlations tests and their revisions mentioned above are presented in the present paper.

  12. Numerical simulation of cavitation flow characteristic on Pelton turbine bucket surface

    Science.gov (United States)

    Zeng, C. J.; Xiao, Y. X.; Zhu, W.; Yao, Y. Y.; Wang, Z. W.

    2015-01-01

    The internal flow in the rotating bucket of Pelton turbine is free water sheet flow with moving boundary. The runner operates under atmospheric and the cavitation in the bucket is still a controversial problem. While more and more field practice proved that there exists cavitation in the Pelton turbine bucket and the cavitation erosion may occur at the worst which will damage the bucket. So a well prediction about the cavitation flow on the bucket surface of Pelton turbine and the followed cavitation erosion characteristic can effectively guide the optimization of Pelton runner bucket and the stable operation of unit. This paper will investigate the appropriate numerical model and method for the unsteady 3D water-air-vapour multiphase cavitation flow which may occur on the Pelton bucket surface. The computational domain will include the nozzle pipe flow, semi-free surface jet and runner domain. Via comparing the numerical results of different turbulence, cavity and multiphase models, this paper will determine the suitable numerical model and method for the simulation of cavitation on the Pelton bucket surface. In order to investigate the conditions corresponding to the cavitation phenomena on the bucket surface, this paper will adopt the suitable model to simulate the various operational conditions of different water head and needle travel. Then, the characteristics of cavitation flow the development process of cavitation will be analysed in in great detail.

  13. Numerical simulation of cavitation flow characteristic on Pelton turbine bucket surface

    International Nuclear Information System (INIS)

    Zeng, C J; Xiao, Y X; Zhu, W; Yao, Y Y; Wang, Z W

    2015-01-01

    The internal flow in the rotating bucket of Pelton turbine is free water sheet flow with moving boundary. The runner operates under atmospheric and the cavitation in the bucket is still a controversial problem. While more and more field practice proved that there exists cavitation in the Pelton turbine bucket and the cavitation erosion may occur at the worst which will damage the bucket. So a well prediction about the cavitation flow on the bucket surface of Pelton turbine and the followed cavitation erosion characteristic can effectively guide the optimization of Pelton runner bucket and the stable operation of unit. This paper will investigate the appropriate numerical model and method for the unsteady 3D water-air-vapour multiphase cavitation flow which may occur on the Pelton bucket surface. The computational domain will include the nozzle pipe flow, semi-free surface jet and runner domain. Via comparing the numerical results of different turbulence, cavity and multiphase models, this paper will determine the suitable numerical model and method for the simulation of cavitation on the Pelton bucket surface. In order to investigate the conditions corresponding to the cavitation phenomena on the bucket surface, this paper will adopt the suitable model to simulate the various operational conditions of different water head and needle travel. Then, the characteristics of cavitation flow the development process of cavitation will be analysed in in great detail

  14. Numerical simulation of unsteady free surface flow and dynamic performance for a Pelton turbine

    International Nuclear Information System (INIS)

    Xiao, Y X; Wang, Z W; Yan, Z G; Cui, T

    2012-01-01

    Different from the reaction turbines, the hydraulic performance of the Pelton turbine is dynamic due to the unsteady free surface flow in the rotating buckets in time and space. This paper aims to present the results of investigations conducted on the free surface flow in a Pelton turbine rotating buckets. The unsteady numerical simulations were performed with the CFX code by using the Realizable k-ε turbulence model coupling the two-phase flow volume of fluid method. The unsteady free surface flow patterns and torque varying with the bucket rotating were analysed. The predicted relative performance at five operating conditions was compared with the field test results. The study was also conducted the interactions between the bucket rear and the water jet.

  15. Numerical simulation of unsteady free surface flow and dynamic performance for a Pelton turbine

    Science.gov (United States)

    Xiao, Y. X.; Cui, T.; Wang, Z. W.; Yan, Z. G.

    2012-11-01

    Different from the reaction turbines, the hydraulic performance of the Pelton turbine is dynamic due to the unsteady free surface flow in the rotating buckets in time and space. This paper aims to present the results of investigations conducted on the free surface flow in a Pelton turbine rotating buckets. The unsteady numerical simulations were performed with the CFX code by using the Realizable k-ε turbulence model coupling the two-phase flow volume of fluid method. The unsteady free surface flow patterns and torque varying with the bucket rotating were analysed. The predicted relative performance at five operating conditions was compared with the field test results. The study was also conducted the interactions between the bucket rear and the water jet.

  16. A study on the effects of heated surface wettability on nucleation characteristics in subcooled flow boiling

    International Nuclear Information System (INIS)

    Kajihara, Tomoyuki; Kaiho, Kazuhiro; Okawa, Tomio

    2014-01-01

    Subcooled flow boiling plays an important role in boiling water reactors because it influences the heat transfer performance from fuel rods, two-phase flow stabilities, and neutron moderation characteristics. In the present study, flow visualization of water subcooled flow boiling in a vertical heated channel was carried out to investigate the mechanisms of void fraction development. The two surfaces of distinctly different contact angles were used as the heated surface to investigate the effect of the surface wettability. It was observed that with an increase in the wall heat flux, more nucleation sites were activated and larger bubbles were produced at low-frequency. It was considered that formation of these large bubbles primarily contributed to the void fraction development. (author)

  17. Mode pattern of internal flow in a water droplet on a vibrating hydrophobic surface.

    Science.gov (United States)

    Kim, Hun; Lim, Hee-Chang

    2015-06-04

    The objective of this study is to understand the mode pattern of the internal flow in a water droplet placed on a hydrophobic surface that periodically and vertically vibrates. As a result, a water droplet on a vibrating hydrophobic surface has a typical shape that depends on each resonance mode, and, additionally, we observed a diversified lobe size and internal flows in the water droplet. The size of each lobe at the resonance frequency was relatively greater than that at the neighboring frequencies, and the internal flow of the nth order mode was also observed in the flow visualization. In general, large symmetrical flow streams were generated along the vertical axis in each mode, with a large circulating movement from the bottom to the top, and then to the triple contact line along the droplet surface. In contrast, modes 2 and 4 generated a Y-shaped flow pattern, in which the flow moved to the node point in the lower part of the droplet, but modes 6 and 8 had similar patterns, with only a little difference. In addition, as a result of the PIV measurement, while the flow velocity of mode 4 was faster than that of model 2, those of modes 6 and 8 were almost similar.

  18. MHD Flow Towards a Permeable Surface with Prescribed Wall Heat Flux

    International Nuclear Information System (INIS)

    Ishak, Anuar; Nazar, Roslinda; Pop, Ioan

    2009-01-01

    The steady magnetohydrodynamic (MHD) mixed convection flow towards a vertical permeable surface with prescribed heat flux is investigated. The governing partial differential equations are transformed into a system of ordinary differential equations, which is then solved numerically by a finite-difference method. The features of the flow and heat transfer characteristics for different values of the governing parameters are analysed and discussed. Both assisting and opposing flows are considered. It is found that dual solutions exist for the assisting flow, besides the solutions usually reported in the literature for the opposing fow

  19. Development of free surface flow between concentric cylinders with vertical axes

    International Nuclear Information System (INIS)

    Watanabe, T; Toya, Y; Nakamura, I

    2005-01-01

    Numerical and experimental studies are conducted on flows developing between two concentric cylinders with vertical axes. The inner cylinder rotates and the outer and the lower end wall are fixed. The upper boundary is a free surface. The flow is at rest in an initial state, and the inner cylinder impulsively begins to rotate or its rotation speed linearly increases to a prescribed value. The acceleration rate of the inner cylinder changes the formation processes of flows and/or the final flow modes. Time-dependent flows appear at higher Reynolds numbers, and the numerical and experimental results of the power spectra show some agreements. It is suggested that critical Reynolds numbers appear, at which the fluctuations in the displacement of the free surface and the kinetic energy of a velocity component steeply increase

  20. The effects of viscosity, surface tension, and flow rate on gasoil-water flow pattern in microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Boogar, Rahman Sadeghi; Gheshlaghi, Reza; Mahdavi, Mahmood Akhavan [Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)

    2013-01-15

    A microchannel was fabricated with glass tubes to investigate the effect of viscosity, surface tension, and flow rate on the liquid-liquid two-phase flow regime. Water and gasoil were selected as aqueous and organic working fluids, respectively. The two fluids were injected into the microchannel and created either slug or parallel profile depending on the applied conditions. The range of Reynolds and capillary numbers was chosen in such a way that neither inertia nor interfacial tension forces were negligible. Xanthan gum was used to increase viscosity and Triton X-100 (TX-100) and Sodium Dodecyl Sulfate (SDS) were used to reduce the interfacial tension. The results demonstrated that higher value of viscosity and flow rate increased interfacial area, but slug flow regime remained unchanged. The two surfactants showed different effects on the flow regime and interfacial area. Addition of TX-100 did not change the slug flow but decreased the interfacial area. In contrast, addition of SDS increased interfacial area by decreasing the slug’s length in the low concentrations and by switching from slug to parallel regime at high concentrations.

  1. Wing Leading Edge Concepts for Noise Reduction

    Science.gov (United States)

    Shmilovich, Arvin; Yadlin, Yoram; Pitera, David M.

    2010-01-01

    This study focuses on the development of wing leading edge concepts for noise reduction during high-lift operations, without compromising landing stall speeds, stall characteristics or cruise performance. High-lift geometries, which can be obtained by conventional mechanical systems or morphing structures have been considered. A systematic aerodynamic analysis procedure was used to arrive at several promising configurations. The aerodynamic design of new wing leading edge shapes is obtained from a robust Computational Fluid Dynamics procedure. Acoustic benefits are qualitatively established through the evaluation of the computed flow fields.

  2. WINGS Data Release

    DEFF Research Database (Denmark)

    Moretti, A.; Poggianti, B. M.; Fasano, G.

    2014-01-01

    . We provide the scientific community with the entire set of wide-field images. Furthermore, the published database contains photometry of 759 024 objects and surface brightness analysis for 42 275 and 41 463 galaxies in the V and B band, respectively. The completeness depends on the image quality......, and on the cluster redshift, reaching on average 90% at V ≲ 21.7. Near-infrared photometric catalogs for 26 (in K) and 19 (in J) clusters are part of the database and the number of sources is 962 344 in K and 628 813 in J. Here again the completeness depends on the data quality, but it is on average higher than 90......Context. To effectively investigate galaxy formation and evolution, it is of paramount importance to exploit homogeneous data for large samples of galaxies in different environments. Aims. The WIde-field Nearby Galaxy-cluster Survey (WINGS) project aim is to evaluate physical properties of galaxies...

  3. Passive control of flow structure interaction between a sphere and free-surface

    Directory of Open Access Journals (Sweden)

    Akilli Huseyin

    2012-04-01

    Full Text Available Flow characteristics for both a smooth and a vented sphere such as velocity vectors, patterns of streamlines, vorticity contours, stream-wise fluctuations, cross-stream velocity fluctuations and Reynolds stress correlations between a sphere and free-surface for various submerged ratio at Re =5,000 are studied by using dye visualization and the particle image velocimetry technique. Passive control of flow structure interaction between sphere and free surface was examined by using a modified geometry which has a 15% sphere diameter hole passing through the sphere equator. Both of the spheres were separately placed beneath the free surface with different positions from touching to the free surface to two sphere diameters below the free surface. It is demonstrated that reattachment point of the separated flow to the free surface varies for both of the sphere cases as the sphere position alters vertically through the water flow while the flow structure for the vented sphere occurs considerably symmetrical due to forming of a pair of counter-rotating ring vortices.

  4. Effective slip lengths for flows over surfaces with nanobubbles: the effects of finite slip

    International Nuclear Information System (INIS)

    Hendy, S C; Lund, N J

    2009-01-01

    We consider effective slip lengths for flows of simple liquids over surfaces contaminated by gaseous nanobubbles. In particular, we examine whether the effects of finite slip over the liquid-bubble interface are important in limiting effective slip lengths over such surfaces. Using an expression that interpolates between the perfect slip and finite slip regimes for flow over bubbles, we conclude that for the bubble dimensions and coverages typically reported in the literature the effects of finite slip are secondary, reducing effective slip lengths by only 10%. Further, we find that nanobubbles do not significantly increase slip lengths beyond those reported for bare hydrophobic surfaces.

  5. Initial adhesion of Listeria monocytogenes to solid surfaces under liquid flow

    DEFF Research Database (Denmark)

    Szlavik, Julie; Soares Paiva, Dionísio; Mørk, Nils

    2012-01-01

    .001) was observed but not of interactions between surface-shear stress. No correlation between surface hydrophobicity and IAR was observed. Addition of 5% NaCl during propagation resulted in a decrease in IAR whilst propagation in low nutrient media caused an increase indicating a general change in surface......Some strains of the food borne pathogen Listeria monocytogenes persist in food processing environments. The exact reason behind this phenomenon is not known, but strain differences in the ability to adhere to solid surfaces could offer an explanation. In the present work, initial adhesion of nine...... strains of L. monocytogenes was investigated under liquid flow at two levels of shear stress on six different surfaces using a flow chamber set-up with microscopy measurements. The surfaces tested were glass and PVC, and glass coated with beef extract, casein, and homogenised and unhomogenised milk...

  6. Shear flow generation and transport barrier formation on rational surface current sheets in tokamaks

    International Nuclear Information System (INIS)

    Wang Xiaogang; Xiao Chijie; Wang Jiaqi

    2009-01-01

    Full text: A thin current sheet with a magnetic field component in the same direction can form the electrical field perpendicularly pointing to the sheet, therefore an ExB flow with a strong shear across the current sheet. An electrical potential well is also found on the rational surface of RFP as well as the neutral sheet of the magnetotail with the E-field pointing to the rational (neutral) surface. Theoretically, a current singularity is found to be formed on the rational surface in ideal MHD. It is then very likely that the sheet current on the rational surfaces will generate the electrical potential well in its vicinity so the electrical field pointing to the sheet. It results in an ExB flow with a strong shear in the immediate neighborhood of the rational surface. It may be the cause of the transport barrier often seen near the low (m, n) rational surfaces with MHD signals. (author)

  7. [Studies on a sequential injection renewable surface reflectance spectrophotometric system using a microchip flow cell].

    Science.gov (United States)

    Wang, Jian-ya; Fang, Zhao-lun

    2002-02-01

    A microchip flow cell was developed for flow injection renewable surface assay by reflectance spectrophotometry. The flow cell was coupled to a sequential injection system and optical fiber photometric detection system. The flow cell featured a three-layer structure. The flow channel was cut into a silicone rubber membrance which formed the middle layer, and a porous filter was inlayed across a widened section of the channel to trap microbeads introduced into the flow cell. The area of the detection window of the flow cell was approximately 3.6 mm2, the volume of the bead trapped in the flow cell was 2.2 microL, the depth of the bead layer was 600 microns. A multistrand bifurcated optical fiber was coupled with incident light, detector and flow cell. The chromogenic reaction of Cr(VI) with 1,5-diphenylcarbohydrazide (DPC) which was adsorbed on trapped Polysorb C-18 beads was used as a model reaction to optimize the flow cell design and the experimental system. The reflectance of the renewable reaction surface was monitored at 540 nm. With 100 microL sample loaded and 1.0 mL.min-1 carrier flow rate, the linear response range was 0-0.6 microgram.mL-1 Cr(VI). A detection limit (3 sigma) of 6 ng.mL-1, precision of 1.5% RSD(n = 11), and a throughput of 64 samples per hour were achieved. Considerations in system and flow cell design, the influence of depth of the bead layer, weight of beads used, and the flow rates of carrier stream on the performance were discussed.

  8. Surface Tension Driven Instability in the Regime of Stokes Flow

    Science.gov (United States)

    Yao, Zhenwei; Bowick, Mark; Xing, Xiangjun

    2010-03-01

    A cylinder of liquid inside another liquid is unstable towards droplet formation. This instability is driven by minimization of surface tension energy and was analyzed first by [1,2] and then by [3]. We revisit this problem in the limit of small Laplace number, where the inertial of liquids can be completely ignored. The stream function is found to obey biharmonic equation, and its analytic solutions are found. We rederive Tomotika's main results, and also obtain many new analytic results about the velocity fields. We also apply our formalism to study the recent experiment on toroidal liquid droplet[4]. Our framework shall have many applications in micro-fluidics. [1] L.Rayleigh, On The Instability of A Cylinder of Viscous Liquid Under Capillary Force, Scientific Papers, Cambridge, Vol.III, 1902. [2] L.Rayleigh, On The Instability of Cylindrical Fluid Surfaces, Scientific Papers, Cambridge, Vol.III, 1902. [3] S.Tomotika, On the Instability of a Cylindrical Thread of a Viscous Liquid surround by Another Viscous Fluid, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Volume 150, Issue 870, pp. 322-337. [4] E.Pairam and A.Fern'andez-Nieves, Generation and Stability of Toroidal Droplets in a Viscous Liquid, Physical Review Letters 102, 234501 (2009).

  9. Numerical and Experimental Validation of the Optimization Methodologies for a Wing-Tip Structure Equipped with Conventional and Morphing Ailerons =

    Science.gov (United States)

    Koreanschi, Andreea

    In order to answer the problem of 'how to reduce the aerospace industry's environment footprint?' new morphing technologies were developed. These technologies were aimed at reducing the aircraft's fuel consumption through reduction of the wing drag. The morphing concept used in the present research consists of replacing the conventional aluminium upper surface of the wing with a flexible composite skin for morphing abilities. For the ATR-42 'Morphing wing' project, the wing models were manufactured entirely from composite materials and the morphing region was optimized for flexibility. In this project two rigid wing models and an active morphing wing model were designed, manufactured and wind tunnel tested. For the CRIAQ MDO 505 project, a full scale wing-tip equipped with two types of ailerons, conventional and morphing, was designed, optimized, manufactured, bench and wind tunnel tested. The morphing concept was applied on a real wing internal structure and incorporated aerodynamic, structural and control constraints specific to a multidisciplinary approach. Numerical optimization, aerodynamic analysis and experimental validation were performed for both the CRIAQ MDO 505 full scale wing-tip demonstrator and the ATR-42 reduced scale wing models. In order to improve the aerodynamic performances of the ATR-42 and CRIAQ MDO 505 wing airfoils, three global optimization algorithms were developed, tested and compared. The three algorithms were: the genetic algorithm, the artificial bee colony and the gradient descent. The algorithms were coupled with the two-dimensional aerodynamic solver XFoil. XFoil is known for its rapid convergence, robustness and use of the semi-empirical e n method for determining the position of the flow transition from laminar to turbulent. Based on the performance comparison between the algorithms, the genetic algorithm was chosen for the optimization of the ATR-42 and CRIAQ MDO 505 wing airfoils. The optimization algorithm was improved during

  10. MHD biconvective flow of Powell Eyring nanofluid over stretched surface

    Science.gov (United States)

    Naseem, Faiza; Shafiq, Anum; Zhao, Lifeng; Naseem, Anum

    2017-06-01

    The present work is focused on behavioral characteristics of gyrotactic microorganisms to describe their role in heat and mass transfer in the presence of magnetohydrodynamic (MHD) forces in Powell-Eyring nanofluids. Implications concerning stretching sheet with respect to velocity, temperature, nanoparticle concentration and motile microorganism density were explored to highlight influential parameters. Aim of utilizing microorganisms was primarily to stabilize the nanoparticle suspension due to bioconvection generated by the combined effects of buoyancy forces and magnetic field. Influence of Newtonian heating was also analyzed by taking into account thermophoretic mechanism and Brownian motion effects to insinuate series solutions mediated by homotopy analysis method (HAM). Mathematical model captured the boundary layer regime that explicitly involved contemporary non linear partial differential equations converted into the ordinary differential equations. To depict nanofluid flow characteristics, pertinent parameters namely bioconvection Lewis number Lb, traditional Lewis number Le, bioconvection Péclet number Pe, buoyancy ratio parameter Nr, bioconvection Rayleigh number Rb, thermophoresis parameter Nt, Hartmann number M, Grashof number Gr, and Eckert number Ec were computed and analyzed. Results revealed evidence of hydromagnetic bioconvection for microorganism which was represented by graphs and tables. Our findings further show a significant effect of Newtonian heating over a stretching plate by examining the coefficient values of skin friction, local Nusselt number and the local density number. Comparison was made between Newtonian fluid and Powell-Eyring fluid on velocity field and temperature field. Results are compared of with contemporary studies and our findings are found in excellent agreement with these studies.

  11. Mixed convection boundary layer flow over a vertical surface embedded in a thermally stratified porous medium

    International Nuclear Information System (INIS)

    Ishak, Anuar; Nazar, Roslinda; Pop, Ioan

    2008-01-01

    The mixed convection boundary layer flow through a stable stratified porous medium bounded by a vertical surface is investigated. The external velocity and the surface temperature are assumed to vary as x m , where x is measured from the leading edge of the vertical surface and m is a constant. Numerical solutions for the governing Darcy and energy equations are obtained. The results indicate that the thermal stratification significantly affects the surface shear stress as well as the surface heat transfer, besides delays the boundary layer separation

  12. Navier-Stokes Computations With One-Equation Turbulence Model for Flows Along Concave Wall Surfaces

    Science.gov (United States)

    Wang, Chi R.

    2005-01-01

    This report presents the use of a time-marching three-dimensional compressible Navier-Stokes equation numerical solver with a one-equation turbulence model to simulate the flow fields developed along concave wall surfaces without and with a downstream extension flat wall surface. The 3-D Navier- Stokes numerical solver came from the NASA Glenn-HT code. The one-equation turbulence model was derived from the Spalart and Allmaras model. The computational approach was first calibrated with the computations of the velocity and Reynolds shear stress profiles of a steady flat plate boundary layer flow. The computational approach was then used to simulate developing boundary layer flows along concave wall surfaces without and with a downstream extension wall. The author investigated the computational results of surface friction factors, near surface velocity components, near wall temperatures, and a turbulent shear stress component in terms of turbulence modeling, computational mesh configurations, inlet turbulence level, and time iteration step. The computational results were compared with existing measurements of skin friction factors, velocity components, and shear stresses of the developing boundary layer flows. With a fine computational mesh and a one-equation model, the computational approach could predict accurately the skin friction factors, near surface velocity and temperature, and shear stress within the flows. The computed velocity components and shear stresses also showed the vortices effect on the velocity variations over a concave wall. The computed eddy viscosities at the near wall locations were also compared with the results from a two equation turbulence modeling technique. The inlet turbulence length scale was found to have little effect on the eddy viscosities at locations near the concave wall surface. The eddy viscosities, from the one-equation and two-equation modeling, were comparable at most stream-wise stations. The present one

  13. Effects of graphite surface roughness on bypass flow computations for an HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Yu-Hsin, E-mail: touushin@gmail.com [Idaho National Laboratory, P.O. Box 1625, M.S. 3855, Idaho Falls, ID (United States); Johnson, Richard W., E-mail: Rich.Johnson@inl.gov [Idaho National Laboratory, P.O. Box 1625, M.S. 3855, Idaho Falls, ID (United States); Sato, Hiroyuki, E-mail: sato.hiroyuki09@jaea.go.jp [Idaho National Laboratory, P.O. Box 1625, M.S. 3855, Idaho Falls, ID (United States)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer CFD calculations are made of bypass flow between graphite blocks in HTGR. Black-Right-Pointing-Pointer Several turbulence models are employed to compare to friction and heat transfer correlations. Black-Right-Pointing-Pointer Parameters varied include bypass gap width and surface roughness. Black-Right-Pointing-Pointer Surface roughness causes increases in max fuel and coolant temperatures. Black-Right-Pointing-Pointer Surface roughness does not cause increase in outlet coolant temperature variation. - Abstract: Bypass flow in a prismatic high temperature gas reactor (HTGR) occurs between graphite blocks as they sit side by side in the core. Bypass flow is not intentionally designed to occur in the reactor, but is present because of tolerances in manufacture, imperfect installation and expansion and shrinkage of the blocks from heating and irradiation. It is desired to increase the knowledge of the effects of such flow; it has been suggested that it may be as much as 20% of the total helium coolant flow [INL Report 2007, INL/EXT-07-13289]. Computational fluid dynamic (CFD) simulations can provide estimates of the scale and impacts of bypass flow. Previous CFD calculations have examined the effects of bypass gap width, level and distribution of heat generation and effects of shrinkage. The present contribution examines the effects of graphite surface roughness on the bypass flow for different relative roughness factors for three gap widths. Such calculations should be validated using specific bypass flow measurements. While such experiments are currently underway for the specific reference prismatic HTGR design for the next generation nuclear plant (NGNP) program of the U.S. Dept. of Energy, the data are not yet available. To enhance confidence in the present calculations, wall shear stress and heat transfer results for several turbulence models and their associated wall treatments are first compared for steady flow in a

  14. Three-dimensional rotational plasma flows near solid surfaces in an axial magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Gorshunov, N. M., E-mail: gorshunov-nm@nrcki.ru; Potanin, E. P., E-mail: potanin45@yandex.ru [National Research Center Kurchatov Institute (Russian Federation)

    2016-11-15

    A rotational flow of a conducting viscous medium near an extended dielectric disk in a uniform axial magnetic field is analyzed in the magnetohydrodynamic (MHD) approach. An analytical solution to the system of nonlinear differential MHD equations of motion in the boundary layer for the general case of different rotation velocities of the disk and medium is obtained using a modified Slezkin–Targ method. A particular case of a medium rotating near a stationary disk imitating the end surface of a laboratory device is considered. The characteristics of a hydrodynamic flow near the disk surface are calculated within the model of a finite-thickness boundary layer. The influence of the magnetic field on the intensity of the secondary flow is studied. Calculations are performed for a weakly ionized dense plasma flow without allowance for the Hall effect and plasma compressibility. An MHD flow in a rotating cylinder bounded from above by a retarding cap is considered. The results obtained can be used to estimate the influence of the end surfaces on the main azimuthal flow, as well as the intensities of circulating flows in various devices with rotating plasmas, in particular, in plasma centrifuges and laboratory devices designed to study instabilities of rotating plasmas.

  15. Aerodynamics of wings at low Reynolds numbers: Boundary layer separation and reattachment

    Science.gov (United States)

    McArthur, John

    Due to advances in electronics technology, it is now possible to build small scale flying and swimming vehicles. These vehicles will have size and velocity scales similar to small birds and fish, and their characteristic Reynolds number will be between 104 and 105. Currently, these flying and swimming vehicles do not perform well, and very little research has been done to characterize them, or to explain why they perform so poorly. This dissertation documents three basic investigations into the performance of small scale lifting surfaces, with Reynolds numbers near 104. Part I. Low Reynolds number aerodynamics. Three airfoil shapes were studied at Reynolds numbers of 1 and 2x104: a flat plate airfoil, a circular arc cambered airfoil, and the Eppler 387 airfoil. Lift and drag force measurements were made on both 2D and 3D conditions, with the 3D wings having an aspect ratio of 6, and the 2D condition being approximated by placing end plates at the wing tips. Comparisons to the limited number of previous measurements show adequate agreement. Previous studies have been inconclusive on whether lifting line theory can be applied to this range of Re, but this study shows that lifting line theory can be applied when there are no sudden changes in the slope of the force curves. This is highly dependent on the airfoil shape of the wing, and explains why previous studies have been inconclusive. Part II. The laminar separation bubble. The Eppler 387 airfoil was studied at two higher Reynolds numbers: 3 and 6x10 4. Previous studies at a Reynolds number of 6x104 had shown this airfoil experiences a drag increase at moderate lift, and a subsequent drag decrease at high lift. Previous studies suggested that the drag increase is caused by a laminar separation bubble, but the experiments used to show this were conducted at higher Reynolds numbers and extrapolated down. Force measurements were combined with flow field measurements at Reynolds numbers 3 and 6x104 to determine whether

  16. Prediction of Aerodynamic Characteristics of Fighter Wings at High Angles of Attack.

    Science.gov (United States)

    1984-03-01

    potential distribution throughout the network of four points on a body surface great- ly facilitates the flow analysis procedure. Tangential velocity...expensive of computer time. For example, as quoted by McLean, using this coarsest grid network , each 0 surface of the 727-200 wing required 10 minutes of...1980. 19. Le Balleur, J.C. and Neron , M., "Calcul D’Ecoulements3 Visqueux Decolles sur Profils D’Ailes par une Approche de Couplage", AGARn CP-291

  17. Wing aeroelasticity analysis based on an integral boundary-layer method coupled with Euler solver

    Directory of Open Access Journals (Sweden)

    Ma Yanfeng

    2016-10-01

    Full Text Available An interactive boundary-layer method, which solves the unsteady flow, is developed for aeroelastic computation in the time domain. The coupled method combines the Euler solver with the integral boundary-layer solver (Euler/BL in a “semi-inverse” manner to compute flows with the inviscid and viscous interaction. Unsteady boundary conditions on moving surfaces are taken into account by utilizing the approximate small-perturbation method without moving the computational grids. The steady and unsteady flow calculations for the LANN wing are presented. The wing tip displacement of high Reynolds number aero-structural dynamics (HIRENASD Project is simulated under different angles of attack. The flutter-boundary predictions for the AGARD 445.6 wing are provided. The results of the interactive boundary-layer method are compared with those of the Euler method and experimental data. The study shows that viscous effects are significant for these cases and the further data analysis confirms the validity and practicability of the coupled method.

  18. Retention/Diffusivity Studies in Free-Surface Flowing Liquid Lithium

    International Nuclear Information System (INIS)

    R.A. Stubbers; G.H. Miley; M. Nieto; W. Olczak; D.N. Ruzic; A. Hassanein

    2004-01-01

    FLIRE was designed to measure the hydrogen and helium retention and diffusivity in a flowing stream of liquid lithium, and it has accomplished these goals. Retention coefficients for helium in the flowing liquid stream were 0.1-2% for flow speeds of 44 cm/s and implantation energies between 500 and 2000 eV. The energy dependence of retention is linear for the energy range considered, as expected, and the dependence of retention on flow velocity fits the expected square-root of flow speed dependence. Estimates of the helium diffusion coefficient in the flowing lithium stream were ∼ 4 x 10 -7 cm 2 /s, and are independent of implantation energy. This value is much lower than expected, which could be due to several factors, such as mixing, bubble formation or surface film formation. In the case of hydrogen, long term retention and release mechanisms are of greatest importance, since this relates to tritium inventory in flowing lithium PFCs for fusion applications. The amount of hydride formation was measured for flowing lithium exposed to neutral deuterium gas. Thermal desorption spectroscopy (TDS) measurements indicate that the hydride concentration was between 0.1 and 0.2% over a wide range of pressures (6.5 x 10 -5 to 1 Torr). This result implies that the deuterium absorption rate is limited by the surface dissociation rate, since deuterium (hydrogen/tritium) is absorbed in its atomic form, not its molecular form

  19. Retention/Diffusivity Studies in Free-Surface Flowing Liquid Lithium

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Stubbers; G.H. Miley; M. Nieto; W. Olczak; D.N. Ruzic; A. Hassanein

    2004-12-14

    FLIRE was designed to measure the hydrogen and helium retention and diffusivity in a flowing stream of liquid lithium, and it has accomplished these goals. Retention coefficients for helium in the flowing liquid stream were 0.1-2% for flow speeds of 44 cm/s and implantation energies between 500 and 2000 eV. The energy dependence of retention is linear for the energy range considered, as expected, and the dependence of retention on flow velocity fits the expected square-root of flow speed dependence. Estimates of the helium diffusion coefficient in the flowing lithium stream were {approx} 4 x 10{sup -7} cm{sup 2}/s, and are independent of implantation energy. This value is much lower than expected, which could be due to several factors, such as mixing, bubble formation or surface film formation. In the case of hydrogen, long term retention and release mechanisms are of greatest importance, since this relates to tritium inventory in flowing lithium PFCs for fusion applications. The amount of hydride formation was measured for flowing lithium exposed to neutral deuterium gas. Thermal desorption spectroscopy (TDS) measurements indicate that the hydride concentration was between 0.1 and 0.2% over a wide range of pressures (6.5 x 10{sup -5} to 1 Torr). This result implies that the deuterium absorption rate is limited by the surface dissociation rate, since deuterium (hydrogen/tritium) is absorbed in its atomic form, not its molecular form.

  20. Stability of surface plastic flow in large strain deformation of metals

    Science.gov (United States)

    Viswanathan, Koushik; Udapa, Anirduh; Sagapuram, Dinakar; Mann, James; Chandrasekar, Srinivasan

    We examine large-strain unconstrained simple shear deformation in metals using a model two-dimensional cutting system and high-speed in situ imaging. The nature of the deformation mode is shown to be a function of the initial microstructure state of the metal and the deformation geometry. For annealed metals, which exhibit large ductility and strain hardening capacity, the commonly assumed laminar flow mode is inherently unstable. Instead, the imposed shear is accommodated by a highly rotational flow-sinuous flow-with vortex-like components and large-amplitude folding on the mesoscale. Sinuous flow is triggered by a plastic instability on the material surface ahead of the primary region of shear. On the other hand, when the material is extensively strain-hardened prior to shear, laminar flow again becomes unstable giving way to shear banding. The existence of these flow modes is established by stability analysis of laminar flow. The role of the initial microstructure state in determining the change in stability from laminar to sinuous / shear-banded flows in metals is elucidated. The implications for cutting, forming and wear processes for metals, and to surface plasticity phenomena such as mechanochemical Rehbinder effects are discussed.

  1. Numerical and experimental investigation of the 3D free surface flow in a model Pelton turbine

    International Nuclear Information System (INIS)

    Fiereder, R; Riemann, S; Schilling, R

    2010-01-01

    This investigation focuses on the numerical and experimental analysis of the 3D free surface flow in a Pelton turbine. In particular, two typical flow conditions occurring in a full scale Pelton turbine - a configuration with a straight inlet as well as a configuration with a 90 degree elbow upstream of the nozzle - are considered. Thereby, the effect of secondary flow due to the 90 degree bending of the upstream pipe on the characteristics of the jet is explored. The hybrid flow field consists of pure liquid flow within the conduit and free surface two component flow of the liquid jet emerging out of the nozzle into air. The numerical results are validated against experimental investigations performed in the laboratory of the Institute of Fluid Mechanics (FLM). For the numerical simulation of the flow the in-house unstructured fully parallelized finite volume solver solver3D is utilized. An advanced interface capturing model based on the classic Volume of Fluid method is applied. In order to ensure sharp interface resolution an additional convection term is added to the transport equation of the volume fraction. A collocated variable arrangement is used and the set of non-linear equations, containing fluid conservation equations and model equations for turbulence and volume fraction, are solved in a segregated manner. For pressure-velocity coupling the SIMPLE and PISO algorithms are implemented. Detailed analysis of the observed flow patterns in the jet and of the jet geometry are presented.

  2. Numerical and experimental investigation of the 3D free surface flow in a model Pelton turbine

    Energy Technology Data Exchange (ETDEWEB)

    Fiereder, R; Riemann, S; Schilling, R, E-mail: fiereder@lhm.mw.tum.d [Department of Fluid Mechanics, Technische Universitaet Muenchen Bolzmannstrasse 15, Garching, 85748 (Germany)

    2010-08-15

    This investigation focuses on the numerical and experimental analysis of the 3D free surface flow in a Pelton turbine. In particular, two typical flow conditions occurring in a full scale Pelton turbine - a configuration with a straight inlet as well as a configuration with a 90 degree elbow upstream of the nozzle - are considered. Thereby, the effect of secondary flow due to the 90 degree bending of the upstream pipe on the characteristics of the jet is explored. The hybrid flow field consists of pure liquid flow within the conduit and free surface two component flow of the liquid jet emerging out of the nozzle into air. The numerical results are validated against experimental investigations performed in the laboratory of the Institute of Fluid Mechanics (FLM). For the numerical simulation of the flow the in-house unstructured fully parallelized finite volume solver solver3D is utilized. An advanced interface capturing model based on the classic Volume of Fluid method is applied. In order to ensure sharp interface resolution an additional convection term is added to the transport equation of the volume fraction. A collocated variable arrangement is used and the set of non-linear equations, containing fluid conservation equations and model equations for turbulence and volume fraction, are solved in a segregated manner. For pressure-velocity coupling the SIMPLE and PISO algorithms are implemented. Detailed analysis of the observed flow patterns in the jet and of the jet geometry are presented.

  3. Numerical and experimental investigation of the 3D free surface flow in a model Pelton turbine

    Science.gov (United States)

    Fiereder, R.; Riemann, S.; Schilling, R.

    2010-08-01

    This investigation focuses on the numerical and experimental analysis of the 3D free surface flow in a Pelton turbine. In particular, two typical flow conditions occurring in a full scale Pelton turbine - a configuration with a straight inlet as well as a configuration with a 90 degree elbow upstream of the nozzle - are considered. Thereby, the effect of secondary flow due to the 90 degree bending of the upstream pipe on the characteristics of the jet is explored. The hybrid flow field consists of pure liquid flow within the conduit and free surface two component flow of the liquid jet emerging out of the nozzle into air. The numerical results are validated against experimental investigations performed in the laboratory of the Institute of Fluid Mechanics (FLM). For the numerical simulation of the flow the in-house unstructured fully parallelized finite volume solver solver3D is utilized. An advanced interface capturing model based on the classic Volume of Fluid method is applied. In order to ensure sharp interface resolution an additional convection term is added to the transport equation of the volume fraction. A collocated variable arrangement is used and the set of non-linear equations, containing fluid conservation equations and model equations for turbulence and volume fraction, are solved in a segregated manner. For pressure-velocity coupling the SIMPLE and PISO algorithms are implemented. Detailed analysis of the observed flow patterns in the jet and of the jet geometry are presented.

  4. Recent progress in the analysis of iced airfoils and wings

    Science.gov (United States)

    Cebeci, Tuncer; Chen, Hsun H.; Kaups, Kalle; Schimke, Sue

    1992-01-01

    Recent work on the analysis of iced airfoils and wings is described. Ice shapes for multielement airfoils and wings are computed using an extension of the LEWICE code that was developed for single airfoils. The aerodynamic properties of the iced wing are determined with an interactive scheme in which the solutions of the inviscid flow equations are obtained from a panel method and the solutions of the viscous flow equations are obtained from an inverse three-dimensional finite-difference boundary-layer method. A new interaction law is used to couple the inviscid and viscous flow solutions. The newly developed LEWICE multielement code is amplified to a high-lift configuration to calculate the ice shapes on the slat and on the main airfoil and on a four-element airfoil. The application of the LEWICE wing code to the calculation of ice shapes on a MS-317 swept wing shows good agreement with measurements. The interactive boundary-layer method is applied to a tapered iced wing in order to study the effect of icing on the aerodynamic properties of the wing at several angles of attack.

  5. Shock/shock interactions between bodies and wings

    Directory of Open Access Journals (Sweden)

    Gaoxiang XIANG

    2018-02-01

    Full Text Available This paper examines the Shock/Shock Interactions (SSI between the body and wing of aircraft in supersonic flows. The body is simplified to a flat wedge and the wing is assumed to be a sharp wing. The theoretical spatial dimension reduction method, which transforms the 3D problem into a 2D one, is used to analyze the SSI between the body and wing. The temperature and pressure behind the Mach stem induced by the wing and body are obtained, and the wave configurations in the corner are determined. Numerical validations are conducted by solving the inviscid Euler equations in 3D with a Non-oscillatory and Non-free-parameters Dissipative (NND finite difference scheme. Good agreements between the theoretical and numerical results are obtained. Additionally, the effects of the wedge angle and sweep angle on wave configurations and flow field are considered numerically and theoretically. The influences of wedge angle are significant, whereas the effects of sweep angle on wave configurations are negligible. This paper provides useful information for the design and thermal protection of aircraft in supersonic and hypersonic flows. Keywords: Body and wing, Flow field, Hypersonic flow, Shock/shock interaction, Wave configurations

  6. Short revolving wings enable hovering animals to avoid stall and reduce drag

    Science.gov (United States)

    Lentink, David; Kruyt, Jan W.; Heijst, Gertjan F.; Altshuler, Douglas L.

    2014-11-01

    Long and slender wings reduce the drag of airplanes, helicopters, and gliding animals, which operate at low angle of attack (incidence). Remarkably, there is no evidence for such influence of wing aspect ratio on the energetics of hovering animals that operate their wings at much higher incidence. High incidence causes aircraft wings to stall, hovering animals avoid stall by generating an attached vortex along the leading edge of their wings that elevates lift. Hypotheses that explain this capability include the necessity for a short radial distance between the shoulder joint and wing tip, measured in chord lengths, instead of the long tip-to-tip distance that elevates aircraft performance. This stems from how hovering animals revolve their wings around a joint, a condition for which the precise effect of aspect ratio on stall performance is unknown. Here we show that the attachment of the leading edge vortex is determined by wing aspect ratio with respect to the center of rotation-for a suite of aspect ratios that represent both animal and aircraft wings. The vortex remains attached when the local radius is shorter than 4 chord lengths, and separates outboard on more slender wings. Like most other hovering animals, hummingbirds have wing aspect ratios between 3 and 4, much stubbier than helicopters. Our results show this makes their wings robust against flow separation, which reduces drag below values obtained with more slender wings. This revises our understanding of how aspect ratio improves performance at low Reynolds numbers.

  7. Comprehensive study of flow and heat transfer at the surface of circular cooling fin

    Science.gov (United States)

    Mityakov, V. Yu; Grekov, M. A.; Gusakov, A. A.; Sapozhnikov, S. Z.; Seroshtanov, V. V.; Bashkatov, A. V.; Dymkin, A. N.; Pavlov, A. V.; Milto, O. A.; Kalmykov, K. S.

    2017-11-01

    For the first time is proposed to combine heat flux measurements with thermal imaging and PIV (particle image velocimetry) for a comprehensive study of flow and heat transfer at the surface of the circular cooling fin. The investigated hollow fin is heated from within with saturated water steam; meanwhile the isothermal external surface simulates one of the perfect fin. Flow and heat transfer at the surface of the solid fin of the same size and shape, made of titanium alloy is investigated in the same regimes. Gradient Heat Flux Sensors (GHFS) were installed at different places of the fin surface. Velocity field around a cylinder, temperature field at the surface of the fin and heat flux for each rated time were obtained. Comprehensive method including heat flux measurement, PIV and thermal imaging allow to study flow and heat transfer at the surface of the fin in real time regime. The possibility to study flow and heat transfer for non-isothermal fins is shown; it is allow to improve traditional calculation of the cooling fins.

  8. A wind tunnel study of flows over idealised urban surfaces with roughness sublayer corrections

    Science.gov (United States)

    Ho, Yat-Kiu; Liu, Chun-Ho

    2017-10-01

    Dynamics in the roughness (RSLs) and inertial (ISLs) sublayers in the turbulent boundary layers (TBLs) over idealised urban surfaces are investigated analytically and experimentally. In this paper, we derive an analytical solution to the mean velocity profile, which is a continuous function applicable to both RSL and ISL, over rough surfaces in isothermal conditions. Afterwards, a modified mixing-length model for RSL/ISL transport is developed that elucidates how surface roughness affects the turbulence motions. A series of wind tunnel experiments are conducted to measure the vertical profiles of mean and fluctuating velocities, together with momentum flux over various configurations of surface-mounted ribs in cross flows using hot-wire anemometry (HWA). The analytical solution agrees well with the wind tunnel result that improves the estimate to mean velocity profile over urban surfaces and TBL dynamics as well. The thicknesses of RSL and ISL are calculated by monitoring the convergence/divergence between the temporally averaged and spatio-temporally averaged profiles of momentum flux. It is found that the height of RSL/ISL interface is a function of surface roughness. Examining the direct, physical influence of roughness elements on near-surface RSL flows reveals that the TBL flows over rough surfaces exhibit turbulence motions of two different length scales which are functions of the RSL and ISL structure. Conclusively, given a TBL, the rougher the surface, the higher is the RSL intruding upward that would thinner the ISL up to 50 %. Therefore, the conventional ISL log-law approximation to TBL flows over urban surfaces should be applied with caution.

  9. Unsteady fluid dynamics around a hovering wing

    Science.gov (United States)

    Krishna, Swathi; Green, Melissa; Mulleners, Karen

    2017-11-01

    The unsteady flow around a hovering flat plate wing has been investigated experimentally using particle image velocimetry and direct force measurements. The measurements are conducted on a wing that rotates symmetrically about the stroke reversal at a reduced frequency of k = 0.32 and Reynolds number of Re = 220 . The Lagrangian finite-time Lyapunov exponent method is used to analyse the unsteady flow fields by identifying dynamically relevant flow features such as the primary leading edge vortex (LEV), secondary vortices, and topological saddles, and their evolution within a flapping cycle. The flow evolution is divided into four stages that are characterised by the LEV (a)emergence, (b)growth, (c)lift-off, and (d)breakdown and decay. Tracking saddle points is shown to be helpful in defining the LEV lift-off which occurs at the maximum stroke velocity. The flow fields are correlated with the aerodynamic forces revealing that the maximum lift and drag are observed just before LEV lift-off. The end of wing rotation in the beginning of the stroke stimulates a change in the direction of the LEV growth and the start of rotation at the end of the stroke triggers the breakdown of the LEV.

  10. Low noise wing slat system with rigid cove-filled slat

    Science.gov (United States)

    Shmilovich, Arvin (Inventor); Yadlin, Yoram (Inventor)

    2013-01-01

    Concepts and technologies described herein provide for a low noise aircraft wing slat system. According to one aspect of the disclosure provided herein, a cove-filled wing slat is used in conjunction with a moveable panel rotatably attached to the wing slat to provide a high lift system. The moveable panel rotates upward against the rear surface of the slat during deployment of the slat, and rotates downward to bridge a gap width between the stowed slat and the lower wing surface, completing the continuous outer mold line shape of the wing, when the cove-filled slat is retracted to the stowed position.

  11. Development of Delta Wing Aerodynamics Research in Universiti Teknologi Malaysia Low Speed Wind Tunnel

    OpenAIRE

    Shabudin Mat; I. S. Ishak; Tholudin Mat Lazim; Shuhaimi Mansor; Mazuriah Said; Abdul Basid Abdul Rahman; Ahmad Shukeri Mohd. Kamaludim; Romain Brossay

    2014-01-01

    This paper presents wind tunnel experiment on two delta wing configurations which are differentiated by their leading edge profiles: sharp and round-edged wings. The experiments were performed as a part of the delta wing aerodynamics research development in Universiti Teknologi Malaysia, low speed tunnel (UTM-LST). Steady load balance and flow visualization tests were conducted at Reynolds numbers of 0.5, 1, and 1.5 × 106, respectively. The flow measurement at low Reynolds number was also per...

  12. Magnetohydrodynamic viscous flow over a nonlinearly moving surface: Closed-form solutions

    Science.gov (United States)

    Fang, Tiegang

    2014-05-01

    In this paper, the magnetohydrodynamic (MHD) flow over a nonlinearly (power-law velocity) moving surface is investigated analytically and solutions are presented for a few special conditions. The solutions are obtained in closed forms with hyperbolic functions. The effects of the magnetic, the wall moving, and the mass transpiration parameters are discussed. These solutions are important to show the flow physics as well as to be used as bench mark problems for numerical validation and development of new solution schemes.

  13. Conceptual design for a laminar-flying-wing aircraft

    Science.gov (United States)

    Saeed, T. I.

    The laminar-flying-wing aircraft appears to be an attractive long-term prospect for reducing the environmental impact of commercial aviation. In assessing its potential, a relatively straightforward initial step is the conceptual design of a version with restricted sweep angle. Such a design is the topic of this thesis. Subject to constraints, this research aims to; provide insight into the parameters affecting practical laminar-flow-control suction power requirements; identify a viable basic design specification; and, on the basis of this, an assessment of the fuel efficiency through a detailed conceptual design study. It is shown that there is a minimum power requirement independent of the suction system design, associated with the stagnation pressure loss in the boundary layer. This requirement increases with aerofoil section thickness, but depends only weakly on Mach number and (for a thick, lightly-loaded laminar flying wing) lift coefficient. Deviation from the optimal suction distribution, due to a practical chamber-based architecture, is found to have very little effect on the overall suction coefficient. In the spanwise direction, through suitable choice of chamber depth, the pressure drop due to frictional and inertial effects may be rendered negligible. Finally, it is found that the pressure drop from the aerofoil surface to the pump collector ducts determines the power penalty. To identify the viable basic design specification, a high-level exploration of the laminar flying wing design space is performed. The characteristics of the design are assessed as a function of three parameters: thickness-to-chord ratio, wingspan, and unit Reynolds number. A feasible specification, with 20% thickness-to-chord, 80 m span and a unit Reynolds number of 8 x 106 m-1, is identified; it corresponds to a 187 tonne aircraft which cruises at Mach 0.67 and altitude 22,500 ft, with lift coefficient 0.14. On the basis of this specification, a detailed conceptual design is

  14. Effect of texture randomization on the slip and interfacial robustness in turbulent flows over superhydrophobic surfaces

    Science.gov (United States)

    Seo, Jongmin; Mani, Ali

    2018-04-01

    Superhydrophobic surfaces demonstrate promising potential for skin friction reduction in naval and hydrodynamic applications. Recent developments of superhydrophobic surfaces aiming for scalable applications use random distribution of roughness, such as spray coating and etched process. However, most previous analyses of the interaction between flows and superhydrophobic surfaces studied periodic geometries that are economically feasible only in laboratory-scale experiments. In order to assess the drag reduction effectiveness as well as interfacial robustness of superhydrophobic surfaces with randomly distributed textures, we conduct direct numerical simulations of turbulent flows over randomly patterned interfaces considering a range of texture widths w+≈4 -26 , and solid fractions ϕs=11 %-25 % . Slip and no-slip boundary conditions are implemented in a pattern, modeling the presence of gas-liquid interfaces and solid elements. Our results indicate that slip of randomly distributed textures under turbulent flows is about 30 % less than those of surfaces with aligned features of the same size. In the small texture size limit w+≈4 , the slip length of the randomly distributed textures in turbulent flows is well described by a previously introduced Stokes flow solution of randomly distributed shear-free holes. By comparing DNS results for patterned slip and no-slip boundary against the corresponding homogenized slip length boundary conditions, we show that turbulent flows over randomly distributed posts can be represented by an isotropic slip length in streamwise and spanwise direction. The average pressure fluctuation on a gas pocket is similar to that of the aligned features with the same texture size and gas fraction, but the maximum interface deformation at the leading edge of the roughness element is about twice as large when the textures are randomly distributed. The presented analyses provide insights on implications of texture randomness on drag

  15. Solutal Marangoni flows of miscible liquids drive transport without surface contamination

    Science.gov (United States)

    Kim, Hyoungsoo; Muller, Koen; Shardt, Orest; Afkhami, Shahriar; Stone, Howard A.

    2017-11-01

    Mixing and spreading of different liquids are omnipresent in nature, life and technology, such as oil pollution on the sea, estuaries, food processing, cosmetic and beverage industries, lab-on-a-chip devices, and polymer processing. However, the mixing and spreading mechanisms for miscible liquids remain poorly characterized. Here, we show that a fully soluble liquid drop deposited on a liquid surface remains as a static lens without immediately spreading and mixing, and simultaneously a Marangoni-driven convective flow is generated, which are counterintuitive results when two liquids have different surface tensions. To understand the dynamics, we develop a theoretical model to predict the finite spreading time and length scales, the Marangoni-driven convection flow speed, and the finite timescale to establish the quasi-steady state for the Marangoni flow. The fundamental understanding of this solutal Marangoni flow may enable driving bulk flows and constructing an effective drug delivery and surface cleaning approach without causing surface contamination by immiscible chemical species.

  16. Effects of flow on corrosion and surface film formation on an alkali borosilicate glass

    International Nuclear Information System (INIS)

    Clark, D.E.; Christensen, H.; Hermansson, H.P.; Sundvall, S.B.; Werme, L.

    1984-01-01

    Samples of the Swedish KBS glass type ABS 39 have been leached in doubly distilled water for 28 days at 90 0 C under static and flow conditions. After leaching, pH, weight loss, and elemental mass loss were determined. Surface film formation was studied by using IRRS, SEM-EDS, and SIMS analyses. Increasing the flow rate resulted in a decreased attack on the glass surface. Na and B were depleted while Al, Fe, La, and U were enriched at the surfaces of all the samples. The depth of the extensively leached layer determined by SIMS was approximately 6 μm on the low-flow-rate sample and about 2 μm on the high-flow-rate sample. SEM analysis also showed some variations in the thickness of the leached layers, but in general, the thickness of the layer on the 0.5 mL/h samples was about 3 times greater than on the 90 mL/g samples. Small particles ( 2 for the static and 0.5 mL/h samples and 6 g/m 2 for the 90 mL/h samples. This factor of 3 difference in weight loss between the low and high flow rates correlates well with the factor of 3 difference in their leached depths. A model is proposed to explain the results based on the effectiveness of protective surface layers

  17. Surface representations of two- and three-dimensional fluid flow topology

    Science.gov (United States)

    Helman, James L.; Hesselink, Lambertus

    1990-01-01

    We discuss our work using critical point analysis to generate representations of the vector field topology of numerical flow data sets. Critical points are located and characterized in a two-dimensional domain, which may be either a two-dimensional flow field or the tangential velocity field near a three-dimensional body. Tangent curves are then integrated out along the principal directions of certain classes of critical points. The points and curves are linked to form a skeleton representing the two-dimensional vector field topology. When generated from the tangential velocity field near a body in a three-dimensional flow, the skeleton includes the critical points and curves which provide a basis for analyzing the three-dimensional structure of the flow separation. The points along the separation curves in the skeleton are used to start tangent curve integrations to generate surfaces representing the topology of the associated flow separations.

  18. Nanoscale surface modifications to control capillary flow characteristics in PMMA microfluidic devices

    Directory of Open Access Journals (Sweden)

    Mukhopadhyay Subhadeep

    2011-01-01

    Full Text Available Abstract Polymethylmethacrylate (PMMA microfluidic devices have been fabricated using a hot embossing technique to incorporate micro-pillar features on the bottom wall of the device which when combined with either a plasma treatment or the coating of a diamond-like carbon (DLC film presents a range of surface modification profiles. Experimental results presented in detail the surface modifications in the form of distinct changes in the static water contact angle across a range from 44.3 to 81.2 when compared to pristine PMMA surfaces. Additionally, capillary flow of water (dyed to aid visualization through the microfluidic devices was recorded and analyzed to provide comparison data between filling time of a microfluidic chamber and surface modification characteristics, including the effects of surface energy and surface roughness on the microfluidic flow. We have experimentally demonstrated that fluid flow and thus filling time for the microfluidic device was significantly faster for the device with surface modifications that resulted in a lower static contact angle, and also that the incorporation of micro-pillars into a fluidic device increases the filling time when compared to comparative devices.

  19. Numerical simulation of viscous flow and hydrodynamic noise in surface ship

    Directory of Open Access Journals (Sweden)

    YU Han

    2017-12-01

    Full Text Available [Objectives] The problem of noise caused by an unsteady flow field around a surface ship is a difficulty facing the stealth design of ship hulls, in which the existence of the free surface makes it different from submarine hydrodynamic noise calculation. To solve this problem,[Methods] the Volume of Fluid(VOF method and SST k-ω turbulence model are combined to simulate the unsteady flow field of the hull, and the free surface is given an air acoustic impedance to simulate the absorption boundary. The pulsating pressure of the hull surface is used as the source of the noise, and the underwater radiation noise of the surface ship is calculated with the acoustic finite element method.[Results] The results show high agreement with the experimental results and previous simulation results. The noise sources are mainly concentrated at the bow of the hull.[Conclusions] The results show that this calculation method can accurately simulate the flow field and sound field of a surface ship, and it can provides valuable reference for the acoustic stealth design of surface ships.

  20. Rational surfaces, ExB sheared flows and transport interplay in fusion plasmas

    International Nuclear Information System (INIS)

    Hidalgo, C.; Pedrosa, M.A.; Erents, K.

    2002-01-01

    Experimental evidence of a strong interplay between magnetic topology (rational surfaces) and the generation of ExB sheared flows has been observed in the plasma edge region of stellarator (TJ-II) and tokamak (JET) devices. Both constant and varying in time ExB sheared flows are close to the critical value to trigger the transition to improved confinement regimes, but below the power threshold to trigger the formation of transport barriers. Flows driven by fluctuations are candidates to explain these experimental results. (author)

  1. Rational surfaces, ExB sheared flows and transport interplay in fusion plasmas

    International Nuclear Information System (INIS)

    Hidalgo, Carlos; Pedrosa, Maria A.; Erents, Kevin

    2001-01-01

    Experimental evidence of a strong interplay between magnetic topology (rational surfaces) and the generation of ExB sheared flows has been observed in the plasma edge region of stellarator (TJ-II) and tokamak (JET) devices. Constant and varying in time ExB sheared flows are close to the critical value to trigger the transition to improved confinement regimes. The plasma conditions where this has been observed are clearly below the power threshold to trigger the formation of transport barriers. Flows driven by fluctuations are candidates to explain these experimental results. (author)

  2. Comparing two surface flow wetlands for removal of nutrients in agricultural drainage water

    DEFF Research Database (Denmark)

    Hoffmann, Carl Christian; Kjærgaard, Charlotte; Levesen, Bo

    In Denmark there is a growing interest for using constructed wetlands as a mean for removal of nutrients from agricultural run-off, such as drainage ditches and tile drainage systems. We have studied two surface flow constructed wetlands from district Vejle, Jutland, Denmark. The Vicarage Wetland.......020 mg P and unfiltered TP decreases with 75 % to 0.040 mg P l-1. The results from this study seem to indicate that constructed surface flow wetlands are able to remove nitrogen and retain phosphorus from agricultural drainage run-off although the nutrient concentrations are much lower as compared...

  3. Surface profiling of normally responding and nonreleasing basophils by flow cytometry

    DEFF Research Database (Denmark)

    Kistrup, Kasper; Poulsen, Lars Kærgaard; Jensen, Bettina Margrethe

    a maximum release blood mononuclear cells were purified by density centrifugation and using flow cytometry, basophils, defined as FceRIa+CD3-CD14-CD19-CD56-,were analysed for surface expression of relevant markers. All samples were compensated and analysed in logicle display. All gates......c, C3aR, C5aR CCR3, FPR1, ST2, CRTH2 on anti-IgE respondsive and nonreleasing basophils by flow cytometry, thereby generating a surface profile of the two phenotypes. Methods Fresh buffy coat blood (

  4. A new facility for studying plasma interacting with flowing liquid lithium surface

    International Nuclear Information System (INIS)

    Cao, X.; Ou, W.; Tian, S.; Wang, C.; Zhu, Z.; Wang, J.; Gou, F.; Yang, D.; Chen, S.

    2014-01-01

    A new facility to study plasmas interacting with flowing liquid lithium surface was designed and is constructing in Sichuan University. The integrated setup includes the liquid lithium circulating part and linear high density plasma generator. The circulating part is consisted of main loop, on-line monitor system, lithium purification system and temperature programmed desorption system. In our group a linear high density plasma generator was built in 2012. Three coils were mounted along the vessel to produce an axial magnetic field inside. The magnetic field strength is up to 0.45 T and work continuously. Experiments on plasmas interacting with free flowing liquid lithium surface will be performed

  5. On the link between ExB sheared flows and rational surfaces in fusion plasmas

    International Nuclear Information System (INIS)

    Hidalgo, C.; Erents, K.; Matthews, G.

    2000-11-01

    Experimental evidence of flattening in plasma profiles has been observed in the edge region of the JET tokamak. This observation has been interpreted in terms of the influence of rational surfaces on plasma profiles. In the framework of this interpretation, significant ExB sheared flows linked to rational surfaces have been identified. These ExB sheared flows are close to the critical value to trigger the transition to improved confinement regimes. These results can explain the link between the magnetic topology and the generation of transport barriers reported in fusion devices. (author)

  6. Shear induced hexagonal ordering observed in an ionic viscoelastic fluid in flow past a surface

    International Nuclear Information System (INIS)

    Hamilton, W.A.; Butler, P.D.; Baker, S.M.; Smith, G.S.; Hayter, J.B.; Magid, L.J.; Pynn, R.

    1994-01-01

    We present the first clear evidence of a shear induced hexagonal phase in a polyionic fluid in flow past a plane quartz surface. The dilute surfactant solution studied is viscoelastic due to the formation and entanglement of highly extended charged threadlike micelles many thousands of A long, which are known to align along the flow direction under shear. Small-angle neutron diffraction data show that in the high shear region within a few tens of microns of the surface these micelles not only align, but form a remarkably well ordered hexagonal array separated by 370 A, 8 times their 46 A diameter

  7. Theory for source-responsive and free-surface film modeling of unsaturated flow

    Science.gov (United States)

    Nimmo, J.R.

    2010-01-01

    A new model explicitly incorporates the possibility of rapid response, across significant distance, to substantial water input. It is useful for unsaturated flow processes that are not inherently diffusive, or that do not progress through a series of equilibrium states. The term source-responsive is used to mean that flow responds sensitively to changing conditions at the source of water input (e.g., rainfall, irrigation, or ponded infiltration). The domain of preferential flow can be conceptualized as laminar flow in free-surface films along the walls of pores. These films may be considered to have uniform thickness, as suggested by field evidence that preferential flow moves at an approximately uniform rate when generated by a continuous and ample water supply. An effective facial area per unit volume quantitatively characterizes the medium with respect to source-responsive flow. A flow-intensity factor dependent on conditions within the medium represents the amount of source-responsive flow at a given time and position. Laminar flow theory provides relations for the velocity and thickness of flowing source-responsive films. Combination with the Darcy-Buckingham law and the continuity equation leads to expressions for both fluxes and dynamic water contents. Where preferential flow is sometimes or always significant, the interactive combination of source-responsive and diffuse flow has the potential to improve prediction of unsaturated-zone fluxes in response to hydraulic inputs and the evolving distribution of soil moisture. Examples for which this approach is efficient and physically plausible include (i) rainstorm-generated rapid fluctuations of a deep water table and (ii) space- and time-dependent soil water content response to infiltration in a macroporous soil. ?? Soil Science Society of America.

  8. Computational Fluid Dynamic Simulation (CFD and Experimental Study on Wing-external Store Aerodynamic Interference of a Subsonic Fighter Aircraft

    Directory of Open Access Journals (Sweden)

    Tholudin Mat Lazim

    2003-01-01

    Full Text Available The main objective of the present work is to study the effect of an external store on a subsonic fighter aircraft. Generally most modern fighter aircrafts are designed with an external store installation. In this study, a subsonic fighter aircraft model has been manufactured using a computer numerical control machine for the purpose of studying the effect of the aerodynamic interference of the external store on the flow around the aircraft wing. A computational fluid dynamic (CFD simulation was also carried out on the same configuration. Both the CFD and the wind tunnel testing were carried out at a Reynolds number 1.86×105 to ensure that the aerodynamic characteristic can certify that the aircraft will not be face any difficulties in its stability and controllability. Both the experiments and the simulation were carried out at the same Reynolds number in order to verify each other. In the CFD simulation, a commercial CFD code was used to simulate the interference and aerodynamic characteristics of the model. Subsequently, the model together with an external store was tested in a low speed wind tunnel with a test section sized 0.45 m×0.45 m. Measured and computed results for the two-dimensional pressure distribution were satisfactorily comparable. There is only a 19% deviation between pressure distribution measured in wind tunnel testing and the result predicted by the CFD. The result shows that the effect of the external storage is only significant on the lower surface of the wing and almost negligible on the upper surface of the wing. Aerodynamic interference due to the external store was most evident on the lower surface of the wing and almost negligible on the upper surface at a low angle of attack. In addition, the area of influence on the wing surface by the store interference increased as the airspeed increased.

  9. Experimental investigation of the microscale rotor-stator cavity flow with rotating superhydrophobic surface

    Science.gov (United States)

    Wang, Chunze; Tang, Fei; Li, Qi; Wang, Xiaohao

    2018-03-01

    The flow characteristics of microscale rotor-stator cavity flow and the drag reduction mechanism of the superhydrophobic surface with high shearing stress were investigated. A microscale rotating flow testing system was established based on micro particle image velocimetry (micro-PIV), and the flow distribution under different Reynolds numbers (7.02 × 103 ≤ Re ≤ 3.51 × 104) and cavity aspect ratios (0.013 ≤ G ≤ 0.04) was measured. Experiments show that, for circumferential velocity, the flow field distributes linearly in rotating Couette flow in the case of low Reynolds number along the z-axis, while the boundary layer separates and forms Batchelor flow as the Reynolds number increases. The separation of the boundary layer is accelerated with the increase of cavity aspect ratio. The radial velocities distribute in an S-shape along the z-axis. As the Reynolds number and cavity aspect ratio increase, the maximum value of radial velocity increases, but the extremum position at rotating boundary remains at Z* = 0.85 with no obvious change, while the extremum position at the stationary boundary changes along the z-axis. The model for the generation of flow disturbance and the transmission process from the stationary to the rotating boundary was given by perturbation analysis. Under the action of superhydrophobic surface, velocity slip occurs near the rotating boundary and the shearing stress reduces, which leads to a maximum drag reduction over 51.4%. The contours of vortex swirling strength suggest that the superhydrophobic surface can suppress the vortex swirling strength and repel the vortex structures, resulting in the decrease of shearing Reynolds stress and then drag reduction.

  10. Surface pressure drag for hydrostatic two-layer flow over axisymmetric mountains

    Energy Technology Data Exchange (ETDEWEB)

    Leutbecher, M.

    2000-07-01

    The effect of partial reflections on surface pressure drag is investigated for hydrostatic gravity waves in two-layer flow with piecewise constant buoyancy frequency. The variation of normalized surface pressure drag with interface height is analyzed for axisymmetric mountains. The results are compared with the familiar solution for infinitely long ridges. The drag for the two-layer flow is normalized with the drag of one-layer flow, which has the buoyancy frequency of the lower layer. An analytical expression for the normalized drag of axisymmetric mountains is derived from linear theory of steady flow. Additionally, two-layer flow over finite-height axisymmetric mountains is simulated numerically for flow with higher stability in the upper layer. The temporal evolution of the surface pressure drag is examined in a series of experiments with different interface and mountain heights. The focus is on the linear regime and the nonlinear regime of nonbreaking gravity waves. The dispersion of gravity waves in flow over isolated mountains prevents that the entire wave spectrum is in resonance at the same interface height, which is the case in hydrostatic flow over infinitely long ridges. In consequence, the oscillation of the normalized drag with interface height is smaller for axisymmetric mountains than for infinitely long ridges. However, even for a reflection coefficient as low as 1/3 the drag of an axisymmetric mountain can be amplified by 50% and reduced by 40%. The nonlinear drag becomes steady in the numerical experiments in which no wave breaking occurs. The steady state nonlinear drag agrees quite well with the prediction of linear theory if the linear drag is computed for a slightly lowered interface. (orig.)

  11. The application of slip length models to larger textures in turbulent flows over superhydrophobic surfaces

    Science.gov (United States)

    Fairhall, Chris; Garcia-Mayoral, Ricardo

    2017-11-01

    We present results from direct numerical simulations of turbulent flows over superhydrophobic surfaces. We assess the validity of simulations where the surface is modelled as homogeneous slip lengths, comparing them to simulations where the surface texture is resolved. Our results show that once the coherent flow induced by the texture is removed from the velocity fields, the remaining flow sees the surface as homogeneous. We then investigate how the overlying turbulence is modified by the presence of surface texture. For small textures, we show that turbulence is shifted closer to the wall due to the presence of slip, but otherwise remains essentially unmodified. For larger textures, the texture interacts with the turbulent lengthscales, thereby modifying the overlying turbulence. We also show that the saturation of the effect of the spanwise slip length (Fukagata et al. 2006, Busse & Sandham 2012, Seo & Mani 2016), which is drag increasing, is caused by the impermeability imposed at the surface. This work was supported by the Engineering and Physical Sciences Research Council.

  12. Flapping and flexible wings for biological and micro air vehicles

    Science.gov (United States)

    Shyy, Wei; Berg, Mats; Ljungqvist, Daniel

    1999-07-01

    Micro air vehicles (MAVs) with wing spans of 15 cm or less, and flight speed of 30-60 kph are of interest for military and civilian applications. There are two prominent features of MAV flight: (i) low Reynolds number (10 4-10 5), resulting in unfavorable aerodynamic conditions to support controlled flight, and (ii) small physical dimensions, resulting in certain favorable scaling characteristics including structural strength, reduced stall speed, and low inertia. Based on observations of biological flight vehicles, it appears that wing motion and flexible airfoils are two key attributes for flight at low Reynolds number. The small size of MAVs corresponds in nature to small birds, which do not glide like large birds, but instead flap with considerable change of wing shape during a single flapping cycle. With flapping and flexible wings, birds overcome the deteriorating aerodynamic performance under steady flow conditions by employing unsteady mechanisms. In this article, we review both biological and aeronautical literatures to present salient features relevant to MAVs. We first summarize scaling laws of biological and micro air vehicles involving wing span, wing loading, vehicle mass, cruising speed, flapping frequency, and power. Next we discuss kinematics of flapping wings and aerodynamic models for analyzing lift, drag and power. Then we present issues related to low Reynolds number flows and airfoil shape selection. Recent work on flexible structures capable of adjusting the airfoil shape in response to freestream variations is also discussed.

  13. Development of Delta Wing Aerodynamics Research in Universiti Teknologi Malaysia Low Speed Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Shabudin Mat

    2014-07-01

    Full Text Available This paper presents wind tunnel experiment on two delta wing configurations which are differentiated by their leading edge profiles: sharp and round-edged wings. The experiments were performed as a part of the delta wing aerodynamics research development in Universiti Teknologi Malaysia, low speed tunnel (UTM-LST. Steady load balance and flow visualization tests were conducted at Reynolds numbers of 0.5, 1, and 1.5 × 106, respectively. The flow measurement at low Reynolds number was also performed at as low as speed of 5 m/s. During the experiments, laser with smoke flow visualizations test was performed on both wings. The study has identified interesting features of the interrelationship between the conventional leading edge primary vortex and the occurrence and development of the vortex breakdown above the delta wings. The results conclude the vortex characteristics are largely dependent on the Reynolds number, angle of attack, and leading-edge radii of the wing.

  14. Surface functionalization of SPR chip for specific molecular interaction analysis under flow condition

    Directory of Open Access Journals (Sweden)

    Tao Ma

    2017-03-01

    Full Text Available Surface functionalization of sensor chip for probe immobilization is crucial for the biosensing applications of surface plasmon resonance (SPR sensors. In this paper, we report a method circulating the dopamine aqueous solution to coat polydopamine film on sensing surface for surface functionalization of SPR chip. The polydopamine film with available thickness can be easily prepared by controlling the circulation time and the biorecognition elements can be immobilized on the polydopamine film for specific molecular interaction analysis. These operations are all performed under flow condition in the fluidic system, and have the advantages of easy implementation, less time consuming, and low cost, because the reagents and devices used in the operations are routinely applied in most laboratories. In this study, the specific absorption between the protein A probe immobilized on the sensing surface and human immunoglobulin G in the buffer is monitored based on this surface functionalization strategy to demonstrated its feasibility for SPR biosensing applications.

  15. Numerical Simulation of Turbulent Half-corrugated Channel Flow by Hydrophilic and Hydrophobic Surfaces

    Directory of Open Access Journals (Sweden)

    M. R. Rastan

    2018-03-01

    Full Text Available In the first part of the present study, a two dimensional half-corrugated channel flow is simulated at Reynolds number of 104, in no-slip condition (hydrophilic surfaces( using various low Reynolds turbulence models as well as standard k-ε model; and an appropriate turbulence model (k-ω 1998 model( is proposed. Then, in order to evaluate the proposed solution method in simulation of flow adjacent to hydrophobic surfaces, turbulent flow is simulated in simple channel and the results are compared with the literature. Finally, two dimensional half-corrugated channel flow at Reynolds number of 104 is simulated again in vicinity of hydrophobic surfaces for varoius slip lengths. The results show that this method is capable of drag reduction in such a way that an increase of 200 μm in slip length leads to a massive drag reduction up to 38%. In addition, to access a significant drag reduction in turbulent flows, the non-dimensionalized slip length should be larger than the minimum.

  16. Hydrodynamic modelling as a need for protection of the surface flows

    International Nuclear Information System (INIS)

    Popovska, Tsvetanka

    1997-01-01

    The problems of flow in the open flows, rivers and lakes especially today require serious access and its global solving. The choice of basic equations and the method of their solving is from the exceptional importance. Regardless of the fact whether two or three dimensional model is selected, as a global mathematical model it should have three phases: (i) hydrodynamic model with which the current picture is determined, (ii) transport-dispersive model with which the distribution of various physical-chemical parameters is determined and (iii) ecological model which uses the results from the first two phases, determines the situation of degradation and concentration of the various parameters and further provides measures for surpassing the negative situations. The flow in the open flows generally is a turbulent phenomena especially in the zones of emptying-releasing on the surface water currents and contaminants. Characteristic for turbulent flows is their stochastic nature, i.e. they lack and kind of regularity of the physic-hydraulic parameters. So, certain measuring are needed and within todays degree of pollution of our surface waters, we should say urgent. This kind of measuring from hydrodynamic aspect are concerned to the boundary and start conditions, or the conditions which rule on the surface, in the bottom and the coast. From the quality aspect, they need systematic measuring of the biological and chemical parameters. This points out to the need of multidisciplinary and not partial access in developing and application of the mathematical model

  17. An efficient multi-dimensional implementation of VSIAM3 and its applications to free surface flows

    Science.gov (United States)

    Yokoi, Kensuke; Furuichi, Mikito; Sakai, Mikio

    2017-12-01

    We propose an efficient multidimensional implementation of VSIAM3 (volume/surface integrated average-based multi-moment method). Although VSIAM3 is a highly capable fluid solver based on a multi-moment concept and has been used for a wide variety of fluid problems, VSIAM3 could not simulate some simple benchmark problems well (for instance, lid-driven cavity flows) due to relatively high numerical viscosity. In this paper, we resolve the issue by using the efficient multidimensional approach. The proposed VSIAM3 is shown to capture lid-driven cavity flows of the Reynolds number up to Re = 7500 with a Cartesian grid of 128 × 128, which was not capable for the original VSIAM3. We also tested the proposed framework in free surface flow problems (droplet collision and separation of We = 40 and droplet splashing on a superhydrophobic substrate). The numerical results by the proposed VSIAM3 showed reasonable agreements with these experiments. The proposed VSIAM3 could capture droplet collision and separation of We = 40 with a low numerical resolution (8 meshes for the initial diameter of droplets). We also simulated free surface flows including particles toward non-Newtonian flow applications. These numerical results have showed that the proposed VSIAM3 can robustly simulate interactions among air, particles (solid), and liquid.

  18. Method and apparatus for reducing the drag of flows over surfaces

    Science.gov (United States)

    Keefe, Laurence R. (Inventor)

    1998-01-01

    An apparatus, and its accompanying method, for reducing the drag of flows over a surface includes arrays of small disks and sensors. The arrays are embedded in the surface and may extend above, or be depressed below, the surface, provided they remain hydraulically smooth either when operating or when inactive. The disks are arranged in arrays of various shapes, and spaced according to the cruising speed of the vehicle on which the arrays are installed. For drag reduction at speeds of the order of 30 meters/second, preferred embodiments include disks that are 0.2 millimeter in diameter and spaced 0.4 millimeter apart. For drag reduction at speeds of the order of 300 meters/second, preferred embodiments include disks that are 0.045 millimeter in diameter and spaced 0.09 millimeter apart. Smaller and larger dimensions for diameter and spacing are also possible. The disks rotate in the plane of the surface, with their rotation axis substantially perpendicular to the surface. The rotating disks produce velocity perturbations parallel to the surface in the overlying boundary layer. The sensors sense the flow at the surface and connect to control circuitry that adjusts the rotation rates and duty cycles of the disks accordingly. Suction and blowing holes can be interspersed among, or made coaxial with, the disks for creating general three-component velocity perturbations in the near-surface region. The surface can be a flat, planar surface or a nonplanar surface, such as a triangular riblet surface. The present apparatus and method have potential applications in the field of aeronautics for improving performance and efficiency of commercial and military aircraft, and in other industries where drag is an obstacle, including gas and oil delivery through long-haul pipelines.

  19. Internal flow and evaporation characteristic inside a water droplet on a vertical vibrating hydrophobic surface

    International Nuclear Information System (INIS)

    Kim Hun; Lim, Hee Chang

    2015-01-01

    This study aims to understand the internal flow and the evaporation characteristics of a deionized water droplet subjected to vertical forced vibrations. To predict and evaluate its resonance frequency, the theories of Lamb, Strani, and Sabetta have been applied. To visualize the precise mode, shape, and internal flow inside a droplet, the experiment utilizes a combination of a high-speed camera, macro lens, and continuous laser. As a result, a water droplet on a hydrophobic surface has its typical shape at each mode, and complicated vortices are observed inside the droplet. In particular, large symmetrical flow streams are generated along the vertical axis at each mode, with a large circulating movement from the bottom to the top and then to the triple contact line along the droplet surface. In addition, a bifurcation-shaped flow pattern is formed at modes 2 and 4, whereas a large ellipsoid-shape flow pattern forms at modes 6 and 8. Mode 4 has the fastest internal flow speed and evaporation rate, followed by modes 8 then 6, with 2 having the slowest of these properties. Each mode has the fastest evaporation rate amongst its neighboring frequencies. Finally, the droplet evaporation under vertical vibration would lead to more rapid evaporation, particularly for mode 4

  20. A review of surface heat-flow data of the northern Middle Atlas (Morocco)

    Science.gov (United States)

    Chiozzi, Paolo; Barkaoui, Alae-Eddine; Rimi, Abdelkrim; Verdoya, Massimo; Zarhloule, Yassine

    2017-12-01

    We revised thermal data available from water and oil wells in the northern sector of the Middle Atlas region. To avoid biased estimation of surface heat flow caused by advection likely occurring in shallow aquifers, temperature measurements in water boreholes were carefully inspected and selected. The heat flow in the oil wells was inferred by taking into account the porosity variation with depth, the temperature effect on thermal conductivity of the matrix and the pore fluid, together with the contribution of the radiogenic heat production. Moreover, the possible bias in heat flow caused by convection occurring in confined carbonate aquifers was evaluated. The results of heat flow slightly modify the picture reported in previous investigations. The heat flow value over the investigated region is rather uniform (about 80 mW m-2) and is similar in oil wells and in water boreholes. Geothermal calculations indicate that such a surface heat flow is compatible with a ∼70 km thick thermal lithosphere and normal thermal conditions in the asthenospheric mantle.

  1. Internal flow and evaporation characteristic inside a water droplet on a vertical vibrating hydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Kim Hun; Lim, Hee Chang [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2015-07-15

    This study aims to understand the internal flow and the evaporation characteristics of a deionized water droplet subjected to vertical forced vibrations. To predict and evaluate its resonance frequency, the theories of Lamb, Strani, and Sabetta have been applied. To visualize the precise mode, shape, and internal flow inside a droplet, the experiment utilizes a combination of a high-speed camera, macro lens, and continuous laser. As a result, a water droplet on a hydrophobic surface has its typical shape at each mode, and complicated vortices are observed inside the droplet. In particular, large symmetrical flow streams are generated along the vertical axis at each mode, with a large circulating movement from the bottom to the top and then to the triple contact line along the droplet surface. In addition, a bifurcation-shaped flow pattern is formed at modes 2 and 4, whereas a large ellipsoid-shape flow pattern forms at modes 6 and 8. Mode 4 has the fastest internal flow speed and evaporation rate, followed by modes 8 then 6, with 2 having the slowest of these properties. Each mode has the fastest evaporation rate amongst its neighboring frequencies. Finally, the droplet evaporation under vertical vibration would lead to more rapid evaporation, particularly for mode 4.

  2. Surface ice flow velocity and tide retrieval of the amery ice shelf using precise point positioning

    DEFF Research Database (Denmark)

    Zhang, X.H.; Andersen, Ole Baltazar

    2006-01-01

    Five days of continuous GPS observation data were collected in the frontal zone of the Amery ice shelf and subsequently post-processed using precise point position (PPP) technology based on precise orbit and clock products from the International GNSS service. The surface ice flow velocity of the ...

  3. Free-Molecular Gas Flow in Channels (Pores) with Physico-Chemical Transformation on the Surface

    Czech Academy of Sciences Publication Activity Database

    Levdansky, V.V.; Smolík, Jiří; Moravec, Pavel

    2006-01-01

    Roč. 49, 13-14 (2006), s. 2356-2365 ISSN 0017-9310 Institutional research plan: CEZ:AV0Z40720504 Keywords : free-molecular flow * surface * spatial distribution Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.482, year: 2006

  4. Modified SIMPLE algorithm for the numerical analysis of incompressible flows with free surface

    International Nuclear Information System (INIS)

    Mok, Jin Ho; Hong, Chun Pyo; Lee, Jin Ho

    2005-01-01

    While the SIMPLE algorithm is most widely used for the simulations of flow phenomena that take place in the industrial equipment or the manufacturing processes, it is less adopted for the simulations of the free surface flow. Though the SIMPLE algorithm is free from the limitation of time step, the free surface behavior imposes the restriction on the time step. As a result, the explicit schemes are faster than the implicit scheme in terms of computation time when the same time step is applied to, since the implicit scheme includes the numerical method to solve the simultaneous equations in its procedure. If the computation time of SIMPLE algorithm can be reduced when it is applied to the unsteady free surface flow problems, the calculation can be carried out in the more stable way and, in the design process, the process variables can be controlled based on the more accurate data base. In this study, a modified SIMPLE algorithm is presented for the free surface flow. The broken water column problem is adopted for the validation of the modified algorithm (MoSIMPLE) and for comparison to the conventional SIMPLE algorithm

  5. Practical computational aeroacoustics for compact surfaces in low mach number flows

    DEFF Research Database (Denmark)

    Pradera-Mallabiabarrena, Ainara; Keith, Graeme; Jacobsen, Finn

    2011-01-01

    compared to the wavelength of interest. This makes it possible to focus on the surface source term of the Ffowcs Williams-Hawkings equation. In this paper, in order to illustrate the basic method for storing and utilizing data from the CFD analysis, the flow past a circular cylinder at a Reynolds number...

  6. Turbulent flows over superhydrophobic surfaces with shear-dependent slip length

    Science.gov (United States)

    Khosh Aghdam, Sohrab; Seddighi, Mehdi; Ricco, Pierre

    2015-11-01

    Motivated by recent experimental evidence, shear-dependent slip length superhydrophobic surfaces are studied. Lyapunov stability analysis is applied in a 3D turbulent channel flow and extended to the shear-dependent slip-length case. The feedback law extracted is recognized for the first time to coincide with the constant-slip-length model widely used in simulations of hydrophobic surfaces. The condition for the slip parameters is found to be consistent with the experimental data and with values from DNS. The theoretical approach by Fukagata (PoF 18.5: 051703) is employed to model the drag-reduction effect engendered by the shear-dependent slip-length surfaces. The estimated drag-reduction values are in very good agreement with our DNS data. For slip parameters and flow conditions which are potentially realizable in the lab, the maximum computed drag reduction reaches 50%. The power spent by the turbulent flow on the walls is computed, thereby recognizing the hydrophobic surfaces as a passive-absorbing drag-reduction method, as opposed to geometrically-modifying techniques that do not consume energy, e.g. riblets, hence named passive-neutral. The flow is investigated by visualizations, statistical analysis of vorticity and strain rates, and quadrants of the Reynolds stresses. Part of this work was funded by Airbus Group. Simulations were performed on the ARCHER Supercomputer (UKTC Grant).

  7. DNS of Turbulent Flow and Heat Transfer in a Channel with Surface Mounted Cubes

    NARCIS (Netherlands)

    Verstappen, R.W.C.P.; Velde, R.M. van der; Veldman, A.E.P.

    2000-01-01

    The turbulent flow and heat transfer in a channel with surface mounted cubical obstacles forms a generic example of a problem that occurs in many engineering applications, for instance in the design of cooling devices. We have performed a numerical simulation of it without using any turbulence

  8. DNS of turbulent flow and heat transfer in a channel with surface mounted cubes

    NARCIS (Netherlands)

    Verstappen, R.W.C.P.; Velde, R.M. van der; Veldman, A.E.P.

    2000-01-01

    The turbulent flow and heat transfer in a channel with surface mounted cubical obstacles forms a generic example of a problem that occurs in many engineering applications, for instance in the design of cooling devices. We have performed a numerical simulation of it without using any turbulence

  9. Near-surface geophysical characterization of Holocene faults conducive to geothermal flow near Pyramid Lake, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Dudley, Colton; Dorsey, Alison; Louie, John [UNR; Schwering, Paul; Pullammanappallil, Satish

    2016-08-01

    Colton Dudley, Alison Dorsey, Paul Opdyke, Dustin Naphan, Marlon Ramos, John Louie, Paul Schwering, and Satish Pullammanappallil, 2013, Near-surface geophysical characterization of Holocene faults conducive to geothermal flow near Pyramid Lake, Nevada: presented at Amer. Assoc. Petroleum Geologists, Pacific Section Annual Meeting, Monterey, Calif., April 19-25.

  10. Should blood flow during cardiopulmonary bypass be individualized more than to body surface area?

    DEFF Research Database (Denmark)

    Thomassen, Sisse Anette; Larsson, A; Andreasen, Jan Jesper

    Blood flow during cardiopulmonary bypass (CPB) is calculated on body surface area (BSA). Increasing comorbidity, age and weight of today's cardiac patients question this calculation as it may not reflect individual metabolic requirement. The hypothesis was that a measured cardiac index (CI) prior...

  11. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water

    NARCIS (Netherlands)

    Van Der Grift, B.; Rozemeijer, J. C.; Griffioen, J.; Van Der Velde, Y.

    2014-01-01

    The retention of phosphorus in surface waters through co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and P immobilization along the flow-path from

  12. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water.

    NARCIS (Netherlands)

    Grift, van der B.; Rozemeijer, J.C.; Griffioen, J.; Velde, van der Y.

    2014-01-01

    The retention of phosphorus in surface waters though co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and 5 P immobilization along the flow-path

  13. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water

    NARCIS (Netherlands)

    van der Grift, B.; Rozemeijer, J. C.; Griffioen, J.; van der Velde, Y.

    2014-01-01

    The retention of phosphorus in surface waters though co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and P immobilization along the flow-path from

  14. Free surface modeling of contacting solid metal flows employing the ALE formulation

    NARCIS (Netherlands)

    van der Stelt, A.A.; Bor, Teunis Cornelis; Geijselaers, Hubertus J.M.; Akkerman, Remko; Huetink, Han; Merklein, M.; Hagenah, H.

    2012-01-01

    In this paper, a numerical problem with contacting solid metal flows is presented and solved with an arbitrary Lagrangian-Eulerian (ALE) finite element method. The problem consists of two domains which mechanically interact with each other. For this simulation a new free surface boundary condition

  15. Patterning of a compound eye on an extinct dipteran wing.

    Science.gov (United States)

    Dinwiddie, April; Rachootin, Stan

    2011-04-23

    We have discovered unexpected similarities between a novel and characteristic wing organ in an extinct biting midge from Baltic amber, Eohelea petrunkevitchi, and the surface of a dipteran's compound eye. Scanning electron microscope images now reveal vestigial mechanoreceptors between the facets of the organ. We interpret Eohelea's wing organ as the blending of these two developmental systems: the formation and patterning of the cuticle in the eye and of the wing. Typically, only females in the genus carry this distinctive, highly organized structure. Two species were studied (E. petrunkevitchi and E. sinuosa), and the structure differs in form between them. We examine Eohelea's wing structures for modes of fabrication, material properties and biological functions, and the effective ecological environment in which these midges lived. We argue that the current view of the wing organ's function in stridulation has been misconstrued since it was described half a century ago.

  16. F-8 supercritical wing flight pressure, Boundary layer, and wake measurements and comparisons with wind tunnel data

    Science.gov (United States)

    Montoya, L. C.; Banner, R. D.

    1977-01-01

    Data for speeds from Mach 0.50 to Mach 0.99 are presented for configurations with and without fuselage area-rule additions, with and without leading-edge vortex generators, and with and without boundary-layer trips on the wing. The wing pressure coefficients are tabulated. Comparisons between the airplane and model data show that higher second velocity peaks occurred on the airplane wing than on the model wing. The differences were attributed to wind tunnel wall interference effects that caused too much rear camber to be designed into the wing. Optimum flow conditions on the outboard wing section occurred at Mach 0.98 at an angle of attack near 4 deg. The measured differences in section drag with and without boundary-layer trips on the wing suggested that a region of laminar flow existed on the outboard wing without trips.

  17. Drag-reducing performance of obliquely aligned superhydrophobic surface in turbulent channel flow

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Sho; Fukagata, Koji [Department of Mechanical Engineering, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522 (Japan); Mamori, Hiroya, E-mail: fukagata@mech.keio.ac.jp [Department of Mechanical Engineering, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585 (Japan)

    2017-04-15

    Friction drag reduction effect by superhydrophobic surfaces in a turbulent channel flow is investigated by means of direct numerical simulation. The simulations are performed under a constant pressure gradient at the friction Reynolds number of 180. A special focus is laid upon the influence of the angle of microridge structure to flow direction, while the gas area fraction on the surface is kept at 50% and the groove width is kept constant at 33.75 wall units. Larger drag reduction effect is observed for a smaller angle: the bulk-mean velocity is increased about 15% when the microridge is parallel to the flow. The drag reduction effect is found to deteriorate rapidly with the microridge angle due to a decrease in the slip velocity. The Reynolds stress budgets show that the modification in each physical effect is qualitatively similar but more pronounced when the microridge is aligned with the stream. (paper)

  18. Numerical investigation of thermally stratified Williamson fluid flow over a cylindrical surface via Keller box method

    Science.gov (United States)

    Bilal, S.; Rehman, Khalil Ur; Malik, M. Y.

    Present study is addressed to express the implementation of Keller-Box technique on physical problem in the field of fluid rheology, for this purpose the Williamson fluid flow is considered along a cylindrical stretching surface manifested with temperature stratification. The flow model is translated mathematically in terms of differential equations. Numerical simulation is executed to trace out the solution structure of developed differential system. The graphical outcomes for the flow regime of two different geometries (i-e cylindrical and plane surface) are reported and examined towards involved physical parameters. Furthermore, the local skin friction coefficient and local Nusselt number are computed numerically. A remarkable agreement of present study is noticed with the previously published results, which confirms the implementation and validation of Keller-Box scheme and it will serve as a helping source for the future correspondence.

  19. Numerical Modeling of Surface and Volumetric Cooling using Optimal T- and Y-shaped Flow Channels

    Science.gov (United States)

    Kosaraju, Srinivas

    2017-11-01

    The layout of T- and V-shaped flow channel networks on a surface can be optimized for minimum pressure drop and pumping power. The results of the optimization are in the form of geometric parameters such as length and diameter ratios of the stem and branch sections. While these flow channels are optimized for minimum pressure drop, they can also be used for surface and volumetric cooling applications such as heat exchangers, air conditioning and electronics cooling. In this paper, an effort has been made to study the heat transfer characteristics of multiple T- and Y-shaped flow channel configurations using numerical simulations. All configurations are subjected to same input parameters and heat generation constraints. Comparisons are made with similar results published in literature.

  20. Time-dependent liquid metal flows with free convection and free surfaces

    International Nuclear Information System (INIS)

    McClelland, M.A.

    1990-11-01

    A finite element analysis is given for time-dependent liquid metal flows with free convection and free surfaces. Consideration is given to a two-dimensional shallow trough with vertical walls maintained at different temperatures. The spatial formulation incorporates mixed Lagrangian approximations to the velocity, pressure, temperature, and interface position. The time integration method is performed using the Trapezoid Rule with step-size control. The Galerkin method is employed to reduce the problem to a set of nonlinear algebraic equations which are solved with the Newton-Raphson method. Calculations are performed for conditions relevant to the electron beam vaporization of refractory metals. The Prandtl number is 0.015, and Grashof numbers are in the transition region between laminar and turbulent flow. The results reveal the effects of flow intensity, surface-tension gradients, and mesh and time-step refinement

  1. Hydrodynamics of free surface flows modelling with the finite element method

    CERN Document Server

    Hervouet, Jean-Michel

    2007-01-01

    A definitive guide for accurate state-of-the-art modelling of free surface flows Understanding the dynamics of free surface flows is the starting point of many environmental studies, impact studies, and waterworks design. Typical applications, once the flows are known, are water quality, dam impact and safety, pollutant control, and sediment transport. These studies used to be done in the past with scale models, but these are now being replaced by numerical simulation performed by software suites called "hydro-informatic systems". The Telemac system is the leading software package worldwide, and has been developed by Electricité de France and Jean-Michel Hervouet, who is the head and main developer of the Telemac project. Written by a leading authority on Computational Fluid Dynamics, the book aims to provide environmentalists, hydrologists, and engineers using hydro-informatic systems such as Telemac and the finite element method, with the knowledge of the basic principles, capabilities, different hypothese...

  2. Large-eddy simulation of open channel flow with surface cooling

    International Nuclear Information System (INIS)

    Walker, R.; Tejada-Martínez, A.E.; Martinat, G.; Grosch, C.E.

    2014-01-01

    Highlights: • Open channel flow comparable to a shallow tidal ocean flow is simulated using LES. • Unstable stratification is imposed by a constant surface cooling flux. • Full-depth, convection-driven, rotating supercells develop when cooling is applied. • Strengthening of cells occurs corresponding to an increasing of the Rayleigh number. - Abstract: Results are presented from large-eddy simulations of an unstably stratified open channel flow, driven by a uniform pressure gradient and with zero surface shear stress and a no-slip lower boundary. The unstable stratification is applied by a constant cooling flux at the surface and an adiabatic bottom wall, with a constant source term present to ensure the temperature reaches a statistically steady state. The structure of the turbulence and the turbulence statistics are analyzed with respect to the Rayleigh number (Ra τ ) representative of the surface buoyancy relative to shear. The impact of the surface cooling-induced buoyancy on mean and root mean square of velocity and temperature, budgets of turbulent kinetic energy (and components), Reynolds shear stress and vertical turbulent heat flux will be investigated. Additionally, colormaps of velocity fluctuations will aid the visualization of turbulent structures on both vertical and horizontal planes in the flow. Under neutrally stratified conditions the flow is characterized by weak, full-depth, streamwise cells similar to but less coherent than Couette cells in plane Couette flow. Increased Ra τ and thus increased buoyancy effects due to surface cooling lead to full-depth convection cells of significantly greater spanwise size and coherence, thus termed convective supercells. Full-depth convective cell structures of this magnitude are seen for the first time in this open channel domain, and may have important implications for turbulence analysis in a comparable tidally-driven ocean boundary layer. As such, these results motivate further study of the

  3. Abnormal high surface heat flow caused by the Emeishan mantle plume

    Science.gov (United States)

    Jiang, Qiang; Qiu, Nansheng; Zhu, Chuanqing

    2016-04-01

    It is commonly believed that increase of heat flow caused by a mantle plume is small and transient. Seafloor heat flow data near the Hawaiian hotspot and the Iceland are comparable to that for oceanic lithosphere elsewhere. Numerical modeling of the thermal effect of the Parana large igneous province shows that the added heat flow at the surface caused by the magmatic underplating is less than 5mW/m2. However, the thermal effect of Emeishan mantle plume (EMP) may cause the surface hear-flow abnormally high. The Middle-Late Emeishan mantle plume is located in the western Yangtze Craton. The Sichuan basin, to the northeast of the EMP, is a superimposed basin composed of Paleozoic marine carbonate rocks and Mesozoic-Cenozoic terrestrial clastic rocks. The vitrinite reflectance (Ro) data as a paleogeothermal indicator records an apparent change of thermal regime of the Sichuan basin. The Ro profiles from boreholes and outcrops which are close to the center of the basalt province exhibit a 'dog-leg' style at the unconformity between the Middle and Upper Permian, and they show significantly higher gradients in the lower subsection (pre-Middle Permian) than the Upper subsection (Upper Permian to Mesozoic). Thermal history inversion based on these Ro data shows that the lower subsection experienced a heat flow peak much higher than that of the upper subsection. The abnormal heat flow in the Sichuan basin is consistent with the EMP in temporal and spatial distribution. The high-temperature magmas from deep mantle brought heat to the base of the lithosphere, and then large amount of heat was conducted upwards, resulting in the abnormal high surface heat flow.

  4. The Flow of a Variable Viscosity Fluid down an Inclined Plane with a Free Surface

    Directory of Open Access Journals (Sweden)

    M. S. Tshehla

    2013-01-01

    Full Text Available The effect of a temperature dependent variable viscosity fluid flow down an inclined plane with a free surface is investigated. The fluid film is thin, so that lubrication approximation may be applied. Convective heating effects are included, and the fluid viscosity decreases exponentially with temperature. In general, the flow equations resulting from the variable viscosity model must be solved numerically. However, when the viscosity variation is small, then an asymptotic approximation is possible. The full solutions for the temperature and velocity profiles are derived using the Runge-Kutta numerical method. The flow controlling parameters such as the nondimensional viscosity variation parameter, the Biot and the Brinkman numbers, are found to have a profound effect on the resulting flow profiles.

  5. How Important Is Connectivity for Surface Water Fluxes? A Generalized Expression for Flow Through Heterogeneous Landscapes

    Science.gov (United States)

    Larsen, Laurel G.; Ma, Jie; Kaplan, David

    2017-10-01

    How important is hydrologic connectivity for surface water fluxes through heterogeneous floodplains, deltas, and wetlands? While significant for management, this question remains poorly addressed. Here we adopt spatial resistance averaging, based on channel and patch configuration metrics quantifiable from aerial imagery, to produce an upscaled rate law for discharge. Our model suggests that patch coverage largely controls discharge sensitivity, with smaller effects from channel connectivity and vegetation patch fractal dimension. However, connectivity and patch configuration become increasingly important near the percolation threshold and at low water levels. These effects can establish positive feedbacks responsible for substantial flow change in evolving landscapes (14-36%, in our Everglades case study). Connectivity also interacts with other drivers; flow through poorly connected hydroscapes is less resilient to perturbations in other drivers. Finally, we found that flow through heterogeneous patches is alone sufficient to produce non-Manning flow-depth relationships commonly observed in wetlands but previously attributed to depth-varying roughness.

  6. Practice in multi-disciplinary computing. Transonic aero-structural dynamics of semi-monocoque wing

    International Nuclear Information System (INIS)

    Onishi, Ryoichi; Guo, Zhihong; Kimura, Toshiya; Iwamiya, Toshiyuki

    2000-01-01

    Japan Atomic Energy Research Institute is currently involved in expanding the application areas of its distributed parallel computing facility. One of the most anticipated areas of applications is multi-disciplinary interaction problem. This paper introduces the status quo of the system for fluid-structural interaction analysis on the institute's parallel computers by exploring multi-disciplinary engineering methodology. Current application is focused on a transonic aero-elastic analysis of a three dimensional wing. The distinctive features of the system are: (1) Simultaneous executions of fluid and structural codes by exploiting distributed-and-parallel processing technologies. (2) Construction of a computational fluid (aero)-structural dynamics model which combines flow-field grid with a wing structure composed of the external surface and the internal reinforcements. The purpose of this paper is to summarize the basic concepts, analytical methods, and their implementations along with the computed aero-structural properties of a swept-back wing at March, 7 flow condition. (author)

  7. Surface wave propagation in an ideal Hall-magnetohydrodynamic plasma jet in flowing environment

    International Nuclear Information System (INIS)

    Sikka, Himanshu; Kumar, Nagendra; Zhelyazkov, Ivan

    2004-01-01

    The behavior of the Hall-magnetohydrodynamic (Hall-MHD) sausage and kink waves is studied in the presence of steady flow. The influence of the flow both inside and outside the plasma slab is taken into account. The plasma in the environment is considered to be cold and moves with the different flow velocity outside the slab. In the limit of parallel propagation, dispersion relation is derived to discuss the propagation of both the modes. Numerical results for the propagation characteristics are obtained for different Alfvenic Mach number ratios inside and outside the slab. It is found that the dispersion curves for both surface modes, namely, the sausage and kink ones in cold plasma show complexities in their behavior in terms of multivalued portions of the curves. These multivalued portions correspond to the different normalized phase velocities for the same value of Alfvenic Mach number. In contrast to the conventional MHD surface waves which are assumed to be pure surface waves or pseudosurface waves, surface waves are obtained which are bulk waves for very small dimensionless wave numbers, then turn to leaky waves and finally transform to pure surface waves for values of dimensionless wave number greater than one

  8. Design of a High Viscosity Couette Flow Facility for Patterned Surface Drag Measurements

    Science.gov (United States)

    Johnson, Tyler; Lang, Amy

    2009-11-01

    Direct drag measurements can be difficult to obtain with low viscosity fluids such as air or water. In this facility, mineral oil is used as the working fluid to increase the shear stress across the surface of experimental models. A mounted conveyor creates a flow within a plexiglass tank. The experimental model of a flat or patterned surface is suspended above a moving belt. Within the gap between the model and moving belt a Couette flow with a linear velocity profile is created. PIV measurements are used to determine the exact velocities and the Reynolds numbers for each experiment. The model is suspended by bars that connect to the pillow block housing of each bearing. Drag is measured by a force gauge connected to linear roller bearings that slide along steel rods. The patterned surfaces, initially consisting of 2-D cavities, are embedded in a plexiglass plate so as to keep the total surface area constant for each experiment. First, the drag across a flat plate is measured and compared to theoretical values for laminar Couette flow. The drag for patterned surfaces is then measured and compared to a flat plate.

  9. Supercavitating flow around high-speed underwater projectile near free surface induced by air entrainment

    Directory of Open Access Journals (Sweden)

    Chang Xu

    2018-03-01

    Full Text Available Cavitating flow near free surface is a complicated issue and may provide new inspiration on high-speed surface cruising. This study observes stable supercavitating flow as a new phenomenon in a launch experiment of axisymmetric projectile when the upper side of the projectile coincides with the free surface. A numerical approach is established using large eddy-simulation and volume-of-fluid methods, and good agreements are achieved between numerical and experimental results. Supercavity formation mechanism is revealed by analyzing the experiment photographs and the iso-surface of 90% water volume fraction in numerical results. The entrainment of a large amount of air into the cavity can cause the pressure inside the cavity to similarly increase with the pressure outside the cavity, which makes the actual cavitation number close to zero and is similar to supercavitation. Cases with various headforms of the projectile and cavitation numbers on the cavitating flow, as well as the drag reduction effects are further examined. Results indicate that the present strategy near the free surface could possibly be a new effective approach for high-speed cruising after vigorous design optimization in the future.

  10. Verification of surface source's characteristics using large-area 2π gas flow counter

    International Nuclear Information System (INIS)

    Abu Naser Waheed, M.M.; Mikami, S.; Kobayashi, H.; Noda, K.

    1998-09-01

    Power Reactor and Nuclear Fuel Development Corporation (PNC) has large-area 2π gas flow counter for the purpose of measuring activity of surface sources of alpha or beta ray emitter. Surface sources are used for the calibration of radiation measuring equipment for radiation control. Due to sequent use of sources, the surface of these sources are inclined to go in bad condition because of unwanted accidental incidents. For the better calibration achievement of radiation measuring instruments the rate of emission of these sources are to be checked periodically by the large-area 2π gas flow counter. In this paper described that eight U 3 O 8 surface sources were selected from many sources of PNC Tokai Works and activity of these sources was measured by the 2π gas flow counter. The results were compared with the values certified by Japan Radio Isotope Association (JRIA). It is evident from the result of comparison that the surface sources are in good condition, i.e., the sources are reliable to calibrate the radiation control instruments. (author)

  11. Process Parameter Identification in Thin Film Flows Driven by a Stretching Surface

    Directory of Open Access Journals (Sweden)

    Satyananda Panda

    2014-01-01

    Full Text Available The flow of a thin liquid film over a heated stretching surface is considered in this study. Due to a potential nonuniform temperature distribution on the stretching sheet, a temperature gradient occurs in the fluid which produces surface tension gradient at the free surface of the thin film. As a result, the free surface deforms and these deformations are advected by the flow in the stretching direction. This work focuses on the inverse problem of reconstructing the sheet temperature distribution and the sheet stretch rate from observed free surface variations. This work builds on the analysis of Santra and Dandapat (2009 who, based on the long-wave expansion of the Navier-Stokes equations, formulate a partial differential equation which describes the evolution of the thickness of a film over a nonisothermal stretched surface. In this work, we show that after algebraic manipulation of a discrete form of the governing equations, it is possible to reconstruct either the unknown temperature field on the sheet and hence the resulting heat transfer or the stretching rate of the underlying surface. We illustrate the proposed methodology and test its applicability on a range of test problems.

  12. Continuous processing of polymers in repetitively pulsed atmospheric pressure discharges with moving surfaces and gas flow

    Energy Technology Data Exchange (ETDEWEB)

    Bhoj, Ananth N [Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL 61801 (United States); Kushner, Mark J [Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011 (United States)

    2007-11-21

    Atmospheric pressure corona discharges are industrially employed to treat large areas of commodity polymer sheets by creating new surface functional groups. The most common processes use oxygen containing discharges to affix oxygen to hydrocarbon polymers, thereby increasing their surface energy and wettability. The process is typically continuous and is carried out in a web configuration with film speeds of tens to hundreds of cm s{sup -1}. The densities and relative abundances of functional groups depend on the gas composition, gas flow rate and residence time of the polymer in the discharge zone which ultimately determine the magnitude and mole fractions of reactive fluxes to the surface. In this paper, results are discussed from a two-dimensional computational investigation of the atmospheric pressure plasma functionalization of a moving polypropylene sheet in repetitively pulsed He/O{sub 2}/H{sub 2}O discharges. O and OH typically initiate surface processing by hydrogen abstraction. These species are regenerated during every plasma pulse but are also largely consumed during the inter-pulse period. Longer-lived species such as O{sub 3} accumulate over many pulses and convect downstream with the gas flow. Optimizing the interplay between local rapid reactions, such as H abstraction which occurs dominantly in the discharge zone, and non-local slower processes, such as surface-surface reactions, may enable the customization of the relative abundance of surface functional groups.

  13. Viscous surface flow induced on Ti-based bulk metallic glass by heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kun [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Hu, Zheng [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Science and Technology on Vehicle Transmission Laboratory, China North Vehicle Research Institute, Beijing 100072 (China); Li, Fengjiang [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Wei, Bingchen, E-mail: weibc@imech.ac.cn [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-12-30

    Highlights: • Obvious smoothing and roughening phases on the Ti-based MG surface resulted, which correspond respectively to the normal and off-normal incidence angles. • Atomic force microscopy confirms two types of periodic ripples distributed evenly over the rough surface. • The irradiation-induced viscosity of MG is about 4×10{sup 12} Pa·s, which accords with the theoretical prediction for metallic glasses close to glass transition temperature. • Surface-confined viscous flow plays a dominant quantitative role, which is due to radiation-induced softening of the low-viscosity surface layer. - Abstract: Ti-based bulk metallic glass was irradiated by a 20 MeV Cl{sup 4+} ion beam under liquid-nitrogen cooling, which produced remarkable surface smoothing and roughening that respectively correspond to normal and off-normal incidence angles of irradiation. Atomic force microscopy confirms two types of periodic ripples distributed evenly over the rough glass surface. In terms of mechanism, irradiation-induced viscosity agrees with the theoretical prediction for metallic glasses near glass transition temperature. Here, a model is introduced, based on relaxation of confined viscous flow with a thin liquid-like layer, that explains both surface smoothing and ripple formation. This study demonstrates that bulk metallic glass has high morphological instability and low viscosity under ion irradiation, which assets can pave new paths for metallic glass applications.

  14. Continuous processing of polymers in repetitively pulsed atmospheric pressure discharges with moving surfaces and gas flow

    International Nuclear Information System (INIS)

    Bhoj, Ananth N; Kushner, Mark J

    2007-01-01

    Atmospheric pressure corona discharges are industrially employed to treat large areas of commodity polymer sheets by creating new surface functional groups. The most common processes use oxygen containing discharges to affix oxygen to hydrocarbon polymers, thereby increasing their surface energy and wettability. The process is typically continuous and is carried out in a web configuration with film speeds of tens to hundreds of cm s -1 . The densities and relative abundances of functional groups depend on the gas composition, gas flow rate and residence time of the polymer in the discharge zone which ultimately determine the magnitude and mole fractions of reactive fluxes to the surface. In this paper, results are discussed from a two-dimensional computational investigation of the atmospheric pressure plasma functionalization of a moving polypropylene sheet in repetitively pulsed He/O 2 /H 2 O discharges. O and OH typically initiate surface processing by hydrogen abstraction. These species are regenerated during every plasma pulse but are also largely consumed during the inter-pulse period. Longer-lived species such as O 3 accumulate over many pulses and convect downstream with the gas flow. Optimizing the interplay between local rapid reactions, such as H abstraction which occurs dominantly in the discharge zone, and non-local slower processes, such as surface-surface reactions, may enable the customization of the relative abundance of surface functional groups

  15. Shock tunnel measurements of surface pressures in shock induced separated flow field using MEMS sensor array

    International Nuclear Information System (INIS)

    Sriram, R; Jagadeesh, G; Ram, S N; Hegde, G M; Nayak, M M

    2015-01-01

    Characterized not just by high Mach numbers, but also high flow total enthalpies—often accompanied by dissociation and ionization of flowing gas itself—the experimental simulation of hypersonic flows requires impulse facilities like shock tunnels. However, shock tunnel simulation imposes challenges and restrictions on the flow diagnostics, not just because of the possible extreme flow conditions, but also the short run times—typically around 1 ms. The development, calibration and application of fast response MEMS sensors for surface pressure measurements in IISc hypersonic shock tunnel HST-2, with a typical test time of 600 μs, for the complex flow field of strong (impinging) shock boundary layer interaction with separation close to the leading edge, is delineated in this paper. For Mach numbers 5.96 (total enthalpy 1.3 MJ kg −1 ) and 8.67 (total enthalpy 1.6 MJ kg −1 ), surface pressures ranging from around 200 Pa to 50 000 Pa, in various regions of the flow field, are measured using the MEMS sensors. The measurements are found to compare well with the measurements using commercial sensors. It was possible to resolve important regions of the flow field involving significant spatial gradients of pressure, with a resolution of 5 data points within 12 mm in each MEMS array, which cannot be achieved with the other commercial sensors. In particular, MEMS sensors enabled the measurement of separation pressure (at Mach 8.67) near the leading edge and the sharply varying pressure in the reattachment zone. (paper)

  16. Rainfall variability and its influence on surface flow regimes. Examples from the central highlands of Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Osman, M. [Debre Zeit (Ethiopia); Sauerborn, P. [Seminar fuer Geographie und ihre Didaktik, Univ. zu Koeln, Koeln (Germany)

    2002-07-01

    The article shows results of an international and interdisciplinary project with the title 'Rainfall and its Erosivity in Ethiopia'. Rainfall variability affects the water resource management of Ethiopia. The influence of rainfall variability on flow regimes was investigated using five gauging stations with data availability from 1982-1997. It was confirmed that the variability in rainfall has a direct implication for surface runoff. Surface runoff declined at most of the gauging stations investigated. Therefore, effective water resource management is recommended for the study area. Future research should focus on watershed management which includes land-use and land cover. The question posed here is whether the variability in rainfall significantly affected surface flow in the study area. (orig.)

  17. Numerical analysis of special-shaped surface in abrasive flow machining

    Science.gov (United States)

    Li, Junye; Zhou, Zengwei; Wu, Guiling; Lu, Hui; Sun, Zhihuai

    2018-03-01

    Solid-liquid two-phase abrasive flow machining is a method to effectively polish the surface of Special-shaped surface parts. Based on the processing characteristics of the abrasive flow machining. The standard model and the pressure-coupled SIMPLEC algorithm are used. The shear force and velocity of the near-wall surface of the runner of the solid-liquid two-phase abrasive machining with different inlet pressure are analyzed. The numerical simulation results show that the inlet pressure has little effect on the velocity, and the shear force has a linear relationship with the inlet pressure. To obtain a better polishing effect, the outlet pressure can be appropriately increased.

  18. A novel algorithm for delineating wetland depressions and mapping surface hydrologic flow pathways using LiDAR data

    Science.gov (United States)

    In traditional watershed delineation and topographic modeling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM) to enforce flow continuity of water across the topographic surface to the watershed outlets. In re...

  19. Viscous wing theory development. Volume 1: Analysis, method and results

    Science.gov (United States)

    Chow, R. R.; Melnik, R. E.; Marconi, F.; Steinhoff, J.

    1986-01-01

    Viscous transonic flows at large Reynolds numbers over 3-D wings were analyzed using a zonal viscid-inviscid interaction approach. A new numerical AFZ scheme was developed in conjunction with the finite volume formulation for the solution of the inviscid full-potential equation. A special far-field asymptotic boundary condition was developed and a second-order artificial viscosity included for an improved inviscid solution methodology. The integral method was used for the laminar/turbulent boundary layer and 3-D viscous wake calculation. The interaction calculation included the coupling conditions of the source flux due to the wing surface boundary layer, the flux jump due to the viscous wake, and the wake curvature effect. A method was also devised incorporating the 2-D trailing edge strong interaction solution for the normal pressure correction near the trailing edge region. A fully automated computer program was developed to perform the proposed method with one scalar version to be used on an IBM-3081 and two vectorized versions on Cray-1 and Cyber-205 computers.

  20. The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Kim, Ki Jae; Kim, Young-Jun; Kim, Jae-Hun; Park, Min-Sik

    2011-01-01

    Highlights: ► We observed the physical and chemical changes on the surface of carbon felts after various surface modifications. ► The surface area and chemistry of functional groups formed on the surface of carbon felt are critical to determine the kinetics of the redox reactions of vanadium ions. ► By incorporation of the surface modifications into the electrode preparation, the electrochemical activity of carbon felts could be notably enhanced. - Abstract: The surface of carbon felt electrodes has been modified for improving energy efficiency of vanadium redox flow batteries. For comparative purposes, the effects of various surface modifications such as mild oxidation, plasma treatment, and gamma-ray irradiation on the electrochemical properties of carbon felt electrodes were investigated at optimized conditions. The cell energy efficiency was improved from 68 to 75% after the mild oxidation of the carbon felt at 500 °C for 5 h. This efficiency improvement could be attributed to the increased surface area of the carbon felt electrode and the formation of functional groups on its surface as a result of the modification. On the basis of various structural and electrochemical characterizations, a relationship between the surface nature and electrochemical activity of the carbon felt electrodes is discussed.

  1. Studies on surface tension effect for free surface flow around floating models; Futai mokei mawari no jiyu hyomenryu ni oyobosu hyomen choryoku no eikyo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K [Yokohama National Univ., Yokohama (Japan). Faculty of Engineering; Akiba, H [Toyo Construction Co. Ltd., Tokyo (Japan)

    1997-12-31

    The effect of surface tension on free surface flow around floating models is discussed experimentally and numerically. Three-dimensional free surface flow around vertical circular cylinders floating in a circulating water channel was visually observed, where a surface-active agent was added to water. The results are analyzed using Weber number. The numerical analysis was done for vertical cylinder and CY100 models using the Rankine source method. Weber number of at least around 120 is necessary to eliminate the effect of surface tension from free surface flow around the CY100 model. The numerical analysis for the cylinder model needs simulation with wavelength shorter than that of free surface wave used by the Rankine source method. The model for the resistance test should be at least around 7m long to eliminate the effect of surface tension at Froude number of 0.1 or higher. 15 refs., 12 figs., 2 tabs.

  2. Studies on surface tension effect for free surface flow around floating models; Futai mokei mawari no jiyu hyomenryu ni oyobosu hyomen choryoku no eikyo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K. [Yokohama National Univ., Yokohama (Japan). Faculty of Engineering; Akiba, H. [Toyo Construction Co. Ltd., Tokyo (Japan)

    1996-12-31

    The effect of surface tension on free surface flow around floating models is discussed experimentally and numerically. Three-dimensional free surface flow around vertical circular cylinders floating in a circulating water channel was visually observed, where a surface-active agent was added to water. The results are analyzed using Weber number. The numerical analysis was done for vertical cylinder and CY100 models using the Rankine source method. Weber number of at least around 120 is necessary to eliminate the effect of surface tension from free surface flow around the CY100 model. The numerical analysis for the cylinder model needs simulation with wavelength shorter than that of free surface wave used by the Rankine source method. The model for the resistance test should be at least around 7m long to eliminate the effect of surface tension at Froude number of 0.1 or higher. 15 refs., 12 figs., 2 tabs.

  3. Application of slender wing benefits to military aircraft

    Science.gov (United States)

    Polhamus, E. C.

    1983-01-01

    A review is provided of aerodynamic research conducted at the Langley Research Center with respect to the application of slender wing benefits in the design of high-speed military aircraft, taking into account the supersonic performance and leading-edge vortex flow associated with very highly sweptback wings. The beginning of the development of modern classical swept wing jet aircraft is related to the German Me 262 project during World War II. In the U.S., a theoretical study conducted by Jones (1945) pointed out the advantages of the sweptback wing concept. Developments with respect to variable sweep wings are discussed, taking into account early research in 1946, a joint program of the U.S. with the United Kingdom, the tactical aircraft concept, and the important part which the Langley variable-sweep research program played in the development of the F-111, F-14, and B-1. Attention is also given to hybrid wings, vortex flow theory development, and examples of flow design technology.

  4. A flexible and stable surface-enhanced Raman scattering (SERS) substrate based on Au nanoparticles/Graphene oxide/Cicada wing array

    Science.gov (United States)

    Shi, Guochao; Wang, Mingli; Zhu, Yanying; Shen, Lin; Wang, Yuhong; Ma, Wanli; Chen, Yuee; Li, Ruifeng

    2018-04-01

    In this work, we presented an eco-friendly and low-cost method to fabricate a kind of flexible and stable Au nanoparticles/graphene oxide/cicada wing (AuNPs/GO/CW) substrate. By controlling the ratio of reactants, the optimum SERS substrate with average AuNPs size of 65 nm was obtained. The Raman enhancement factor for rhodamine 6G (R6G) was 1.08 ×106 and the limit of detection (LOD) was as low as 10-8 M. After calibrating the Raman peak intensities of R6G, it could be quantitatively detected. In order to better understand the experimental results, the 3D finite-different time-domain simulation was used to simulate the AuNPs/GO/CW-1 (the diameter of the AuNPs was 65 nm) to further investigate the SERS enhancement effect. More importantly, the AuNPs/GO/CW-1 substrates not only can provide strong enhancement factors but also can be stable and reproducible. This SERS substrates owned a good stability for the SERS intensity which was reduced only by 25% after the aging time of 60 days and the relative standard deviation was lower than 20%, revealing excellent uniformity and reproducibility. Our positive findings can pave a new way to optimize the application of SERS substrate as well as provide more SERS platforms for quantitative detection of organic contaminants vestige, which makes it very promising in the trace detection of biological molecules.

  5. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method

    International Nuclear Information System (INIS)

    Tay, W B; Van Oudheusden, B W; Bijl, H

    2014-01-01

    The numerical simulation of an insect-sized ‘X-wing’ type biplane flapping wing configuration is performed in 3D using an immersed boundary method solver at Reynolds numbers equal to 1000 (1 k) and 5 k, based on the wing's root chord length. This X-wing type flapping configuration draws its inspiration from Delfly, a bio-inspired ornithopter MAV which has two pairs of wings flapping in anti-phase in a biplane configuration. The objective of the present investigation is to assess the aerodynamic performance when the original Delfly flapping wing micro-aerial vehicle (FMAV) is reduced to the size of an insect. Results show that the X-wing configuration gives more than twice the average thrust compared with only flapping the upper pair of wings of the X-wing. However, the X-wing's average thrust is only 40% that of the upper wing flapping at twice the stroke angle. Despite this, the increased stability which results from the smaller lift and moment variation of the X-wing configuration makes it more suited for sharp image capture and recognition. These advantages make the X-wing configuration an attractive alternative design for insect-sized FMAVS compared to the single wing configuration. In the Reynolds number comparison, the vorticity iso-surface plot at a Reynolds number of 5 k revealed smaller, finer vortical structures compared to the simulation at 1 k, due to vortices’ breakup. In comparison, the force output difference is much smaller between Re = 1 k and 5 k. Increasing the body inclination angle generates a uniform leading edge vortex instead of a conical one along the wingspan, giving higher lift. Understanding the force variation as the body inclination angle increases will allow FMAV designers to optimize the thrust and lift ratio for higher efficiency under different operational requirements. Lastly, increasing the spanwise flexibility of the wings increases the thrust slightly but decreases the efficiency. The thrust result is similar

  6. Estimating the Ocean Flow Field from Combined Sea Surface Temperature and Sea Surface Height Data

    Science.gov (United States)

    Stammer, Detlef; Lindstrom, Eric (Technical Monitor)

    2002-01-01

    This project was part of a previous grant at MIT that was moved over to the Scripps Institution of Oceanography (SIO) together with the principal investigator. The final report provided here is concerned only with the work performed at SIO since January 2000. The primary focus of this project was the study of the three-dimensional, absolute and time-evolving general circulation of the global ocean from a combined analysis of remotely sensed fields of sea surface temperature (SST) and sea surface height (SSH). The synthesis of those two fields was performed with other relevant physical data, and appropriate dynamical ocean models with emphasis on constraining ocean general circulation models by a combination of both SST and SSH data. The central goal of the project was to improve our understanding and modeling of the relationship between the SST and its variability to internal ocean dynamics, and the overlying atmosphere, and to explore the relative roles of air-sea fluxes and internal ocean dynamics in establishing anomalies in SST on annual and longer time scales. An understanding of those problems will feed into the general discussion on how SST anomalies vary with time and the extend to which they interact with the atmosphere.

  7. The effects of surface topography control using liquid crystal elastomers on bodies in flow

    Science.gov (United States)

    Settle, Michael; Guin, Tyler; Beblo, Richard; White, Timothy; Reich, Gregory

    2018-03-01

    Surface topography control has use across many applications including delayed separation of flow via selective boundary-layer tripping. Recently, advances with liquid crystal elastomers (LCE) have been leveraged for controlled, repeatable, out-of-plane deformations that could enable these topographical changes. An aligned LCE deforms when heated, associated with a loss in order. Circumferential patterns fabricated through the thickness of the LCE film yield a predictable conical out-of-plane deformation that can control surface topography. This study focuses on the experimental investigation of LCE behavior for flow control. Initially, the deformations of LCE samples 1/2" in diameter and 50 µm thick were characterized using Digital Image Correlation under uniform positive and negative gauge pressures at various temperatures. Surface topography showed strong dependence on boundary conditions, sample dimensions, and pattern location relative to the applied boundary conditions, informing adjustment of the LCE of the chemistry to produce higher modulus and glassy materials. As an initial demonstration of the ability to control flow, Then, to demonstrate the potential for flow control, 3D printed cylinders with varying arrangements of representative topographical features were characterized in a wind tunnel with Particle Image Velocimetry. Results showed that features with a maximum deflection height of 1.5 mm in a two-row arrangement can form an asymmetric wake about a 73 mm diameter cylinder that reduces drag while generating lift. These results inform subsequent investigation of active LCE elements on a cylinder that are currently under examination.

  8. Numerical investigation of aerodynamic flow actuation produced by surface plasma actuator on 2D oscillating airfoil

    Directory of Open Access Journals (Sweden)

    Minh Khang Phan

    2016-08-01

    Full Text Available Numerical simulation of unsteady flow control over an oscillating NACA0012 airfoil is investigated. Flow actuation of a turbulent flow over the airfoil is provided by low current DC surface glow discharge plasma actuator which is analytically modeled as an ion pressure force produced in the cathode sheath region. The modeled plasma actuator has an induced pressure force of about 2 kPa under a typical experiment condition and is placed on the airfoil surface at 0% chord length and/or at 10% chord length. The plasma actuator at deep-stall angles (from 5° to 25° is able to slightly delay a dynamic stall and to weaken a pressure fluctuation in down-stroke motion. As a result, the wake region is reduced. The actuation effect varies with different plasma pulse frequencies, actuator locations and reduced frequencies. A lift coefficient can increase up to 70% by a selective operation of the plasma actuator with various plasma frequencies and locations as the angle of attack changes. Active flow control which is a key advantageous feature of the plasma actuator reveals that a dynamic stall phenomenon can be controlled by the surface plasma actuator with less power consumption if a careful control scheme of the plasma actuator is employed with the optimized plasma pulse frequency and actuator location corresponding to a dynamic change in reduced frequency.

  9. Comparison of Flow Characteristics of Different Sphere Geometries Under the Free Surface Effect

    Directory of Open Access Journals (Sweden)

    Sahin B.

    2013-04-01

    Full Text Available Comparison of the experimental results of turbulent flow structures between a smooth sphere and a sphere with a vent hole, roughened, and o-ring is presented in the presence of a free-surface. Dye visualization and particle image velocimetry (PIV techniques were performed to examine effects of passive control methods on the sphere wake for Reynolds number Re = 5000 based on the sphere diameter with a 42.5mm in an open water channel. Instantaneous and time-averaged flow patterns in the wake region of the sphere were examined from point of flow physics for the different sphere locations in the range of 0≤h/D≤2.0 where h was the space between the top point of the sphere and the free surface. The ratio of ventilation hole to sphere diameter was 0.15, o-ring was located at 55° with a 2 mm from front stagnation point of the sphere and roughened surface was formed by means of totally 410 circular holes with a 3 mm diameter and around 2 mm depth in an equilateral triangle arrangement. The flow characteristics of instantaneous velocity vectors, vorticity contours, time-averaged streamline patterns, Reynolds stress correlations and streamwise and cross-stream velocity fluctuations for both the smooth and passively controlled sphere were interpreted.

  10. Heat transfer enhancement of free surface MHD-flow by a protrusion wall

    International Nuclear Information System (INIS)

    Hulin Huang; Bo Li

    2010-01-01

    Due to the magnetohydrodynamic (MHD) effect on the flow, which degrades heat transfer coefficients by pulsation suppression of external magnetic field on the flow, a hemispherical protrusion wall is applied to free surface MHD-flow system as a heat transfer enhancement, because the hemispherical protrusion wall has some excellent characteristics including high heat transfer coefficients, low friction factors and high overall thermal performances. So, the characteristics of the fluid flow and heat transfer of the free surface MHD-flow with hemispherical protrusion wall are simulated numerically and the influence of some parameters, such as protrusion height δ/D, and Hartmann number, are also discussed in this paper. It is found that, in the range of Hartmann number 30 ≤ Ha ≤ 70, the protrusion wall assemblies can achieve heat transfer enhancements (Nu/Nu 0 ) of about 1.3-2.3 relative to the smooth channel, while the friction loss (f/f 0 ) increases by about 1.34-1.45. Thus, the high Nusselt number can be obtained when the protrusion wall with a radically lower friction loss increase, which may help get much higher overall thermal performances.

  11. Spatial characteristics of secondary flow in a turbulent boundary layer over longitudinal surface roughness

    Science.gov (United States)

    Hwang, Hyeon Gyu; Lee, Jae Hwa

    2017-11-01

    Direct numerical simulations of turbulent boundary layers (TBLs) over spanwise heterogeneous surface roughness are performed to investigate the characteristics of secondary flow. The longitudinal surface roughness, which features lateral change in bed elevation, is described by immersed boundary method. The Reynolds number based on the momentum thickness is varied in the range of Reθ = 300-900. As the TBLs over the roughness elements spatially develop in the streamwise direction, a secondary flow emerges in a form of counter-rotating vortex pair. As the spanwise spacing between the roughness elements and roughness width vary, it is shown that the size of the secondary flow is determined by the valley width between the roughness elements. In addition, the strength of the secondary flow is mostly affected by the spanwise distance between the cores of the secondary flow. Analysis of the Reynolds-averaged turbulent kinetic energy transport equation reveals that the energy redistribution terms in the TBLs over-the ridge type roughness play an important role to derive low-momentum pathways with upward motion over the roughness crest, contrary to the previous observation with the strip-type roughness. This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A09000537) and the Ministry of Science, ICT & Future Planning (NRF-2017R1A5A1015311).

  12. Constructal tree-shaped two-phase flow for cooling a surface

    Energy Technology Data Exchange (ETDEWEB)

    Zamfirescu, C.; Bejan, A. [Duke University, Durham, NC (United States). Dept. of Mechanical Engineering and Materials Science

    2003-07-01

    This paper documents the strong relation that exists between the changing architecture of a complex flow system and the maximization of global performance under constraints. The system is a surface with uniform heating per unit area, which is cooled by a network with evaporating two-phase flow. Illustrations are based on the design of the cooling network for a skating rink. The flow structure is optimized as a sequence of building blocks, which starts with the smallest (elemental volume of fixed size), and continues with assemblies of stepwise larger sizes (first construct, second construct, etc.). The optimized flow network is tree shaped. Three features of the elemental volume are optimized: the cross-sectional shape, the elemental tube diameter, and the shape of the elemental area viewed from above. The tree that emerges at larger scales is optimized for minimal amount of header material and fixed pressure drop. The optimal number of constituents in each new (larger) construct decreases as the size and complexity of the construct increase. Constructs of various levels of complexity compete: the paper shows how to select the optimal flow structure subject to fixed size (cooled surface), pressure drop and amount of header material. (author)

  13. Asymmetric flows over symmetric surfaces: capacitive coupling in induced-charge electro-osmosis

    Energy Technology Data Exchange (ETDEWEB)

    Mansuripur, T S [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Pascall, A J; Squires, T M [Department of Chemical Engineering, University of California, Santa Barbara, CA 93106 (United States)], E-mail: squires@engineering.ucsb.edu

    2009-07-15

    We report curious asymmetric induced-charge electro-osmotic (ICEO) flows over a symmetric, planar gate electrode under applied ac electric fields, whereas symmetric, counter-rotating rolls are expected. Furthermore, the asymmetric component of the flow is consistently directed towards the grounded electrode. We propose that capacitive coupling of the gate electrode to the microscope stage-a comparatively large equipotential surface that acts effectively as a ground-is responsible for this symmetry breaking. This stray capacitance drives the formation of a double layer whose zeta potential is proportional to the potential drop from the electrolyte directly above the gate electrode to the external stage. Therefore, the charge in this 'stray' double layer varies in phase with the driving field, resulting in a rectified, steady flow as with standard ICEO. We experimentally vary the stray capacitance, the electric potential of the stage and the location of the gate electrode, and find that the effect on the stray flow is qualitatively consistent with the predictions of the proposed mechanism. In the process, we demonstrate that capacitive coupling offers an additional means of manipulating fluid flow over a polarizable surface.

  14. Asymmetric flows over symmetric surfaces: capacitive coupling in induced-charge electro-osmosis

    International Nuclear Information System (INIS)

    Mansuripur, T S; Pascall, A J; Squires, T M

    2009-01-01

    We report curious asymmetric induced-charge electro-osmotic (ICEO) flows over a symmetric, planar gate electrode under applied ac electric fields, whereas symmetric, counter-rotating rolls are expected. Furthermore, the asymmetric component of the flow is consistently directed towards the grounded electrode. We propose that capacitive coupling of the gate electrode to the microscope stage-a comparatively large equipotential surface that acts effectively as a ground-is responsible for this symmetry breaking. This stray capacitance drives the formation of a double layer whose zeta potential is proportional to the potential drop from the electrolyte directly above the gate electrode to the external stage. Therefore, the charge in this 'stray' double layer varies in phase with the driving field, resulting in a rectified, steady flow as with standard ICEO. We experimentally vary the stray capacitance, the electric potential of the stage and the location of the gate electrode, and find that the effect on the stray flow is qualitatively consistent with the predictions of the proposed mechanism. In the process, we demonstrate that capacitive coupling offers an additional means of manipulating fluid flow over a polarizable surface.

  15. Optimized aerodynamic design process for subsonic transport wing fitted with winglets. [wind tunnel model

    Science.gov (United States)

    Kuhlman, J. M.

    1979-01-01

    The aerodynamic design of a wind-tunnel model of a wing representative of that of a subsonic jet transport aircraft, fitted with winglets, was performed using two recently developed optimal wing-design computer programs. Both potential flow codes use a vortex lattice representation of the near-field of the aerodynamic surfaces for determination of the required mean camber surfaces for minimum induced drag, and both codes use far-field induced drag minimization procedures to obtain the required spanloads. One code uses a discrete vortex wake model for this far-field drag computation, while the second uses a 2-D advanced panel wake model. Wing camber shapes for the two codes are very similar, but the resulting winglet camber shapes differ widely. Design techniques and considerations for these two wind-tunnel models are detailed, including a description of the necessary modifications of the design geometry to format it for use by a numerically controlled machine for the actual model construction.

  16. Development and Application of a Flow Reactor Cell for Studies of Surface Chemistry

    Science.gov (United States)

    Algrim, L. B.; Pagonis, D.; Price, D.; Day, D. A.; De Gouw, J. A.; Jimenez, J. L.; Ziemann, P. J.

    2017-12-01

    We have designed, constructed, characterized, and employed a flow reactor cell that can be used to investigate the interaction of gaseous species such as volatile organic compounds (VOCs), oxidants, acids, and water vapor with authentic and model surfaces that are present in indoor and outdoor environments. The 3.9 L rectangular cell is made of FEP-coated aluminum and has one open face that can be sealed to the surface of interest. An internal plunger is raised (lowered) to expose (cover) the surface while various probe chemicals are added to the flow. To date we have exposed painted surfaces to O3, OH radicals (made from reaction of O3 with tetramethylethene and from photolysis of methyl nitrate/NO mixtures), and NO3 radicals (made from thermal decomposition N2O5) and analyzed the emitted oxidation products with a proton transfer reaction mass spectrometer (PTR-MS) and chemical ionization mass spectrometer (CIMS) equipped with an iodide reagent ion source. Further studies have included the reaction of oxidants with surfaces coated with organic films such as squalene and polyethylene glycol, as well as uptake of ketones and acids from the gas-phase to painted surfaces. The cell was also recently deployed at the University of Colorado-Boulder Art Museum during spring of 2017 to investigate the oxidation products released from the museum walls and floors. Results from all of these studies will be presented.

  17. On the Surface Breakup of a Non-turbulent Round Liquid Jet in Cross-flow

    Science.gov (United States)

    Behzad, Mohsen; Ashgriz, Nasser

    2011-11-01

    The atomization of a non-turbulent liquid jet injected into a subsonic cross-flow consists of two parts: (1) primary breakup and (2) secondary breakup. Two distinct regimes for the liquid jet primary breakup have been recognized; the so called column breakup and surface breakup. In the column breakup mode, the entire liquid jet undergoes disintegration into large liquid lumps. Quiet differently in the surface breakup regime, liquid fragments with various sizes and shapes are separated from the surface of the jet. Despite many experimental studies the mechanisms of jet surface breakup is not fully understood. Thus this study aims at providing useful observations regarding the underlying physics involving the surface breakup mechanism of a liquid jet in cross-flow, using detailed numerical simulations. The results show that a two-stage mechanism can be responsible for surface breakup. In the first stage, a sheet-like structure extrudes towards the downstream, and in the second stage it disintegrates into ligaments and droplets due to aerodynamic instability.

  18. Separation control on the wing by jet actuators

    Science.gov (United States)

    Karyakin, O. M.; Nalivaiko, A. G.; Ustinov, M. V.; Flaxman, Ja. Sh.

    2018-05-01

    Use of jet actuators to eliminate flow separation is experimentally investigated on a straight wing with a NACA 0012 airfoil. It is shown that under the influence of synthetic jets the size of separation zone greatly reduces and the flow separation point displaces downstream. In addition, lift coefficient increases by more than 10%.

  19. Statistical Analysis of Nitrogen in the Soil of Constructed Wetland with Horizontal Sub-Surface Flow

    Directory of Open Access Journals (Sweden)

    Jakubaszek Anita

    2014-06-01

    Full Text Available The removal of nitrogen compounds in constructed wetlands depends on various physical, chemical and biomechanical factors as well as on conditions of the environment. The paper presents the results of a statistical analysis of the depositing of nitrogen at HSSF (horizontal subsurface flow construcred wetland. The results of the substrate showed that the highest contents of nitrogen existed in the surface soil layer up to 20 cm of the depth. Nitrogen accumulation decreased in the deposit with depth, and in the direction of the wastewater flow.

  20. FLOW VISUALIZATION OF RECTANGULAR SLOT AIR JET IMPINGEMENT ON FLAT SURFACES

    OpenAIRE

    Satheesha V *1, B. K. Muralidhra2, Abhilash N3, C. K. Umesh4

    2018-01-01

    Jet impingement near the mid-chord of the gas turbine blade is treated as a flat plate. Experimental and numerical investigations are carried out for a single slot air jet impinging on flat surface for two different rectangular slots of dimension (3mm x 65 mm) and (5mm x 65 mm). Experimentation is done to study the flow pattern topography on the flat target plate, with varying the flow rate from 20 LPM to 50 LPM by varying the nozzle to plate distance from 9 mm to 24 mm for slot jet of 3mm an...

  1. From Geodesic Flow on a Surface of Negative Curvature to Electronic Generator of Robust Chaos

    Science.gov (United States)

    Kuznetsov, Sergey P.

    2016-12-01

    Departing from the geodesic flow on a surface of negative curvature as a classic example of the hyperbolic chaotic dynamics, we propose an electronic circuit operating as a generator of rough chaos. Circuit simulation in NI Multisim software package and numerical integration of the model equations are provided. Results of computations (phase trajectories, time dependencies of variables, Lyapunov exponents and Fourier spectra) show good correspondence between the chaotic dynamics on the attractor of the proposed system and of the Anosov dynamics for the original geodesic flow.

  2. Plasma flow to a surface using the iterative Monte Carlo method

    International Nuclear Information System (INIS)

    Pitcher, C.S.

    1994-01-01

    The iterative Monte Carlo (IMC) method is applied to a number of one-dimensional plasma flow problems, which encompass a wide range of conditions typical of those present in the boundary of magnetic fusion devices. The kinetic IMC method of solving plasma flow to a surface consists of launching and following particles within a grid of 'bins' into which weights are left according to the time a particle spends within a bin. The density and potential distributions within the plasma are iterated until the final solution is arrived at. The IMC results are compared with analytical treatments of these problems and, in general, good agreement is obtained. (author)

  3. A coupled surface/subsurface flow model accounting for air entrapment and air pressure counterflow

    DEFF Research Database (Denmark)

    Delfs, Jens Olaf; Wang, Wenqing; Kalbacher, Thomas

    2013-01-01

    wave) shallow flow and two-phase flow in a porous medium. The simultaneous mass transfer between the soil, overland, and atmosphere compartments is achieved by upgrading a fully established leakance concept for overland-soil liquid exchange to an air exchange flux between soil and atmosphere. In a new...... algorithm, leakances operate as a valve for gas pressure in a liquid-covered porous medium facilitating the simulation of air out-break events through the land surface. General criteria are stated to guarantee stability in a sequential iterative coupling algorithm and, in addition, for leakances to control...

  4. Numerical analysis of free-surface flows by using OpenFOAM

    International Nuclear Information System (INIS)

    Uzawa, Ken; Watanabe, Tadashi; Nishida, Akemi; Takemiya, Hiroshi

    2010-01-01

    Laminar and turbulent free-surface flows induced by three-dimensional dam break are numerically investigated. It is found that a Second-order Moment Closure (SMC) model is in good agreement with experimental results. An eddy viscosity model becomes less effective because the turbulent dissipation rate is overestimated in the eddy viscosity model. The impact on a vertical wall resulting from a dam break flow is also investigated. The maximum pressure on the wall in the SMC model is higher than that in the laminar model, whereas averaged pressure on the wall in the SMC model is lower than that in the laminar model. (author)

  5. Comparative Analysis of Uninhibited and Constrained Avian Wing Aerodynamics

    Science.gov (United States)

    Cox, Jordan A.

    The flight of birds has intrigued and motivated man for many years. Bird flight served as the primary inspiration of flying machines developed by Leonardo Da Vinci, Otto Lilienthal, and even the Wright brothers. Avian flight has once again drawn the attention of the scientific community as unmanned aerial vehicles (UAV) are not only becoming more popular, but smaller. Birds are once again influencing the designs of aircraft. Small UAVs operating within flight conditions and low Reynolds numbers common to birds are not yet capable of the high levels of control and agility that birds display with ease. Many researchers believe the potential to improve small UAV performance can be obtained by applying features common to birds such as feathers and flapping flight to small UAVs. Although the effects of feathers on a wing have received some attention, the effects of localized transient feather motion and surface geometry on the flight performance of a wing have been largely overlooked. In this research, the effects of freely moving feathers on a preserved red tailed hawk wing were studied. A series of experiments were conducted to measure the aerodynamic forces on a hawk wing with varying levels of feather movement permitted. Angle of attack and air speed were varied within the natural flight envelope of the hawk. Subsequent identical tests were performed with the feather motion constrained through the use of externally-applied surface treatments. Additional tests involved the study of an absolutely fixed geometry mold-and-cast wing model of the original bird wing. Final tests were also performed after applying surface coatings to the cast wing. High speed videos taken during tests revealed the extent of the feather movement between wing models. Images of the microscopic surface structure of each wing model were analyzed to establish variations in surface geometry between models. Recorded aerodynamic forces were then compared to the known feather motion and surface

  6. A finite area scheme for shallow granular flows on three-dimensional surfaces

    Science.gov (United States)

    Rauter, Matthias

    2017-04-01

    Shallow granular flow models have become a popular tool for the estimation of natural hazards, such as landslides, debris flows and avalanches. The shallowness of the flow allows to reduce the three-dimensional governing equations to a quasi two-dimensional system. Three-dimensional flow fields are replaced by their depth-integrated two-dimensional counterparts, which yields a robust and fast method [1]. A solution for a simple shallow granular flow model, based on the so-called finite area method [3] is presented. The finite area method is an adaption of the finite volume method [4] to two-dimensional curved surfaces in three-dimensional space. This method handles the three dimensional basal topography in a simple way, making the model suitable for arbitrary (but mildly curved) topography, such as natural terrain. Furthermore, the implementation into the open source software OpenFOAM [4] is shown. OpenFOAM is a popular computational fluid dynamics application, designed so that the top-level code mimics the mathematical governing equations. This makes the code easy to read and extendable to more sophisticated models. Finally, some hints on how to get started with the code and how to extend the basic model will be given. I gratefully acknowledge the financial support by the OEAW project "beyond dense flow avalanches". Savage, S. B. & Hutter, K. 1989 The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics 199, 177-215. Ferziger, J. & Peric, M. 2002 Computational methods for fluid dynamics, 3rd edn. Springer. Tukovic, Z. & Jasak, H. 2012 A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow. Computers & fluids 55, 70-84. Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in physics 12(6), 620-631.

  7. Calculation of three-dimensional fluid flow with multiple free surfaces

    International Nuclear Information System (INIS)

    Vander Vorst, M.J.; Chan, R.K.C.

    1978-01-01

    This paper presents a method for computing incompressible fluid flows with multiple free surfaces which are not restricted in their orientation. The method is presented in the context of the three-dimensional flow in a Mark I reactor pressure suppression system immediately following a postulated loss of coolant accident. The assumption of potential flow is made. The numerical method is a mixed Eulerian-Lagrangian formulation with the interior treated as Eulerian and the free surfaces as Lagrangian. The accuracy of solution hinges on the careful treatment of two important aspects. First, the Laplace equation for the potential is solved at interior points of the Eulerian finite difference mesh using a three-dimensional ''irregular star'' so that boundary conditions can be imposed at the exact position of the free surface. Second, the Lagrangian free surfaces are composed of triangular elements, upon each vertex of which is applied the fully nonlinear Bernoulli equation. One result of these calculations is the transient load on the suppression vessel during the vent clearing and bubble formation events of a loss of coolant accident

  8. Demonstrating electromagnetic control of free-surface, liquid-metal flows relevant to fusion reactors

    Science.gov (United States)

    Hvasta, M. G.; Kolemen, E.; Fisher, A. E.; Ji, H.

    2018-01-01

    Plasma-facing components (PFC’s) made from solid materials may not be able to withstand the large heat and particle fluxes that will be produced within next-generation fusion reactors. To address the shortcomings of solid PFC’s, a variety of liquid-metal (LM) PFC concepts have been proposed. Many of the suggested LM-PFC designs rely on electromagnetic restraint (Lorentz force) to keep free-surface, liquid-metal flows adhered to the interior surfaces of a fusion reactor. However, there is very little, if any, experimental data demonstrating that free-surface, LM-PFC’s can actually be electromagnetically controlled. Therefore, in this study, electrical currents were injected into a free-surface liquid-metal that was flowing through a uniform magnetic field. The resultant Lorentz force generated within the liquid-metal affected the velocity and depth of the flow in a controllable manner that closely matched theoretical predictions. These results show the promise of electromagnetic control for LM-PFC’s and suggest that electromagnetic control could be further developed to adjust liquid-metal nozzle output, prevent splashing within a tokamak, and alter heat transfer properties for a wide-range of liquid-metal systems.

  9. Numerical analysis of high-speed liquid lithium free-surface flow

    International Nuclear Information System (INIS)

    Gordeev, Sergej; Heinzel, Volker; Stieglitz, Robert

    2012-01-01

    Highlights: ► The free surface behavior of a high speed lithium jet is investigated by means of a CFD LES analysis. ► The study is aiming to validate adequate LES technique. ► The Osaka University experiments with liquid lithium jet have been simulated. ► Four cases with jet flow velocities of 4, 9, 13 and 15 m/s are analyzed. ► Calculation results show a good qualitative and a quantitative agreement with the experimental data. - Abstract: The free-surface stability of the target of the International Fusion Material Irradiation Facility (IFMIF) is one of the crucial issues, since the spatio-temporal behavior of the free-surface determines the neutron flux to be generated. This article investigates the relation between the evolution of a wall boundary layer in a convergent nozzle and the free surface shape of a high speed lithium jet by means of a CFD LES analysis using the Osaka University experiments. The study is aiming to validate adequate LES technique to analyze the individual flow phenomena observed. Four cases with jet flow velocities of 4, 9, 13 and 15 m/s are analyzed. First analyses of calculation results show that the simulation exhibits a good qualitative and a quantitative agreement with the experimental data, which allows in the future a more realistic prediction of the IFMIF target behavior.

  10. An extended validation of the last generation of particle finite element method for free surface flows

    Science.gov (United States)

    Gimenez, Juan M.; González, Leo M.

    2015-03-01

    In this paper, a new generation of the particle method known as Particle Finite Element Method (PFEM), which combines convective particle movement and a fixed mesh resolution, is applied to free surface flows. This interesting variant, previously described in the literature as PFEM-2, is able to use larger time steps when compared to other similar numerical tools which implies shorter computational times while maintaining the accuracy of the computation. PFEM-2 has already been extended to free surface problems, being the main topic of this paper a deep validation of this methodology for a wider range of flows. To accomplish this task, different improved versions of discontinuous and continuous enriched basis functions for the pressure field have been developed to capture the free surface dynamics without artificial diffusion or undesired numerical effects when different density ratios are involved. A collection of problems has been carefully selected such that a wide variety of Froude numbers, density ratios and dominant dissipative cases are reported with the intention of presenting a general methodology, not restricted to a particular range of parameters, and capable of using large time-steps. The results of the different free-surface problems solved, which include: Rayleigh-Taylor instability, sloshing problems, viscous standing waves and the dam break problem, are compared to well validated numerical alternatives or experimental measurements obtaining accurate approximations for such complex flows.

  11. Heat transfer analysis for unsteady MHD flow past a non-isothermal stretching surface

    International Nuclear Information System (INIS)

    Mukhopadhyay, Swati

    2011-01-01

    Highlights: ► Unsteady boundary layer flow and heat transfer over a non-isothermal stretching sheet in a magnetic field are studied. ► Fluid velocity and temperature decrease for increasing unsteadiness parameter. ► Fluid velocity decreases but temperature increases with the increasing values of the Hartman number. ► The sheet temperature in respect of distance and time has analogous effects on the heat transfer. - Abstract: An analysis is made for the unsteady two-dimensional magneto-hydrodynamic flow of an incompressible viscous and electrically conducting fluid over a stretching surface having a variable and general form of surface temperature which removes the restrictions of the particular forms of prescribed surface temperature. Similarity solutions for the transformed governing equations are obtained. The transformed boundary layer equations are solved numerically for some values of the involved parameters, namely the unsteadiness parameter, magnetic parameter, the temperature exponent parameters. The features of the flow and heat transfer characteristics for different values of the governing parameters are analysed and discussed. It is found that the fluid velocity and temperature decrease for increasing unsteadiness parameter. Fluid velocity decreases with the increasing values of the Hartman number resulting an increase in the temperature field in steady as well in unsteady case. It is observed that the variation of the sheet temperature in respect of distance and time has analogous effects both on the free surface temperature and on the heat transfer rate (Nusselt number) at the sheet.

  12. A Variational Model for Two-Phase Immiscible Electroosmotic Flow at Solid Surfaces

    KAUST Repository

    Shao, Sihong

    2012-01-01

    We develop a continuum hydrodynamic model for two-phase immiscible flows that involve electroosmotic effect in an electrolyte and moving contact line at solid surfaces. The model is derived through a variational approach based on the Onsager principle of minimum energy dissipation. This approach was first presented in the derivation of a continuum hydrodynamic model for moving contact line in neutral two-phase immiscible flows (Qian, Wang, and Sheng, J. Fluid Mech. 564, 333-360 (2006)). Physically, the electroosmotic effect can be formulated by the Onsager principle as well in the linear response regime. Therefore, the same variational approach is applied here to the derivation of the continuum hydrodynamic model for charged two-phase immiscible flows where one fluid component is an electrolyte exhibiting electroosmotic effect on a charged surface. A phase field is employed to model the diffuse interface between two immiscible fluid components, one being the electrolyte and the other a nonconductive fluid, both allowed to slip at solid surfaces. Our model consists of the incompressible Navier-Stokes equation for momentum transport, the Nernst-Planck equation for ion transport, the Cahn-Hilliard phase-field equation for interface motion, and the Poisson equation for electric potential, along with all the necessary boundary conditions. In particular, all the dynamic boundary conditions at solid surfaces, including the generalized Navier boundary condition for slip, are derived together with the equations of motion in the bulk region. Numerical examples in two-dimensional space, which involve overlapped electric double layer fields, have been presented to demonstrate the validity and applicability of the model, and a few salient features of the two-phase immiscible electroosmotic flows at solid surface. The wall slip in the vicinity of moving contact line and the Smoluchowski slip in the electric double layer are both investigated. © 2012 Global-Science Press.

  13. Surface Patterning: Controlling Fluid Flow Through Dolphin and Shark Skin Biomimicry

    Science.gov (United States)

    Gamble, Lawren; Lang, Amy; Bradshaw, Michael; McVay, Eric

    2013-11-01

    Dolphin skin is characterized by circumferential ridges, perpendicular to fluid flow, present from the crest of the head until the tail fluke. When observing a cross section of skin, the ridges have a sinusoidal pattern. Sinusoidal grooves have been proven to induce vortices in the cavities that can help control flow separation which can reduce pressure drag. Shark skin, however, is patterned with flexible scales that bristle up to 50 degrees with reversed flow. Both dolphin ridges and shark scales are thought to help control fluid flow and increase swimming efficiency by delaying the separation of the boundary layer. This study investigates how flow characteristics can be altered with bio-inspired surface patterning. A NACA 4412 hydrofoil was entirely patterned with transverse sinusoidal grooves, inspired by dolphin skin but scaled so the cavities on the model have the same Reynolds number as the cavities on a swimming shark. Static tests were conducted at a Reynolds number of approximately 100,000 and at varying angles of attack. The results were compared to the smooth hydrofoil case. The flow data was quantified using Digital Particle Image Velocimetry (DPIV). The results of this study demonstrated that the patterned hydrofoil experienced greater separation than the smooth hydrofoil. It is hypothesize that this could be remediated if the pattern was placed only after the maximum thickness of the hydrofoil. Funding through NSF REU grant 1062611 is gratefully acknowledged.

  14. Preliminary study of the effect of the turbulent flow field around complex surfaces on their acoustic characteristics

    Science.gov (United States)

    Olsen, W. A.; Boldman, D.

    1978-01-01

    Fairly extensive measurements have been conducted of the turbulent flow around various surfaces as a basis for a study of the acoustic characteristics involved. In the experiments the flow from a nozzle was directed upon various two-dimensional surface configurations such as the three-flap model. A turbulent flow field description is given and an estimate of the acoustic characteristics is provided. The developed equations are based upon fundamental theories for simple configurations having simple flows. Qualitative estimates are obtained regarding the radiation pattern and the velocity power law. The effect of geometry and turbulent flow distribution on the acoustic emission from simple configurations are discussed.

  15. A computational study on the influence of insect wing geometry on bee flight mechanics

    Directory of Open Access Journals (Sweden)

    Jeffrey Feaster

    2017-12-01

    Full Text Available Two-dimensional computational fluid dynamics (CFD is applied to better understand the effects of wing cross-sectional morphology on flow field and force production. This study investigates the influence of wing cross-section on insect scale flapping flight performance, for the first time, using a morphologically representative model of a bee (Bombus pensylvanicus wing. The bee wing cross-section was determined using a micro-computed tomography scanner. The results of the bee wing are compared with flat and elliptical cross-sections, representative of those used in modern literature, to determine the impact of profile variation on aerodynamic performance. The flow field surrounding each cross-section and the resulting forces are resolved using CFD for a flight speed range of 1 to 5 m/s. A significant variation in vortex formation is found when comparing the ellipse and flat plate with the true bee wing. During the upstroke, the bee and approximate wing cross-sections have a much shorter wake structure than the flat plate or ellipse. During the downstroke, the flat plate and elliptical cross-sections generate a single leading edge vortex, while the approximate and bee wings generate numerous, smaller structures that are shed throughout the stroke. Comparing the instantaneous aerodynamic forces on the wing, the ellipse and flat plate sections deviate progressively with velocity from the true bee wing. Based on the present findings, a simplified cross-section of an insect wing can misrepresent the flow field and force production. We present the first aerodynamic study using a true insect wing cross-section and show that the wing corrugation increases the leading edge vortex formation frequency for a given set of kinematics.

  16. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio.

    Science.gov (United States)

    Kruyt, Jan W; van Heijst, GertJan F; Altshuler, Douglas L; Lentink, David

    2015-04-06

    Airplanes and helicopters use high aspect ratio wings to reduce the power required to fly, but must operate at low angle of attack to prevent flow separation and stall. Animals capable of slow sustained flight, such as hummingbirds, have low aspect ratio wings and flap their wings at high angle of attack without stalling. Instead, they generate an attached vortex along the leading edge of the wing that elevates lift. Previous studies have demonstrated that this vortex and high lift can be reproduced by revolving the animal wing at the same angle of attack. How do flapping and revolving animal wings delay stall and reduce power? It has been hypothesized that stall delay derives from having a short radial distance between the shoulder joint and wing tip, measured in chord lengths. This non-dimensional measure of wing length represents the relative magnitude of inertial forces versus rotational accelerations operating in the boundary layer of revolving and flapping wings. Here we show for a suite of aspect ratios, which represent both animal and aircraft wings, that the attachment of the leading edge vortex on a revolving wing is determined by wing aspect ratio, defined with respect to the centre of revolution. At high angle of attack, the vortex remains attached when the local radius is shorter than four chord lengths and separates outboard on higher aspect ratio wings. This radial stall limit explains why revolving high aspect ratio wings (of helicopters) require less power compared with low aspect ratio wings (of hummingbirds) at low angle of attack and vice versa at high angle of attack. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. Flow and heat transfer over a rotating disk with surface roughness

    International Nuclear Information System (INIS)

    Yoon, Myung Sup; Hyun, Jae Min; Park, Jun Sang

    2007-01-01

    A numerical study is made of flow and heat transfer near an infinite disk, which rotates steadily about the longitudinal axis. The surface of the disk is characterized by axisymmetric, sinusoidally-shaped roughness. The representative Reynolds number is large. Numerical solutions are acquired to the governing boundary-layer-type equations. The present numerical results reproduce the previous data for a flat disk. For a wavy surface disk, the radial distributions of local skin friction coefficient and local Nusselt number show double periodicity, which is in accord with the previous results. Physical explanations are provided for this finding. The surface-integrated torque coefficient and average Nusselt number increase as the surface roughness parameter increases. The effect of the Rossby number is also demonstrated

  18. Wake patterns of the wings and tail of hovering hummingbirds

    Science.gov (United States)

    Altshuler, Douglas L.; Princevac, Marko; Pan, Hansheng; Lozano, Jesse

    The flow fields of slowly flying bats and fasterflying birds differ in that bats produce two vortex loops during each stroke, one per wing, and birds produce a single vortex loop per stroke. In addition, the circulation at stroke transition approaches zero in bats but remains strong in birds. It is unknown if these difference derive from fundamental differences in wing morphology or are a consequence of flight speed. Here, we present an analysis of the horizontal flow field underneath hovering Anna's hummingbirds (Calypte anna) to describe the wake of a bird flying at zero forward velocity. We also consider how the hummingbird tail interacts with the wake generated by the wings. High-speed image recording and analysis from three orthogonal perspectives revealed that the wing tips reach peak velocities in the middle of each stroke and approach zero velocity at stroke transition. Hummingbirds use complex tail kinematic patterns ranging from in phase to antiphase cycling with respect to the wings, covering several phase shifted patterns. We employed particle image velocimetry to attain detailed horizontal flow measurements at three levels with respect to the tail: in the tail, at the tail tip, and just below the tail. The velocity patterns underneath the wings indicate that flow oscillates along the ventral-dorsal axis in response to the down- and up-strokes and that the sideways flows with respect to the bird are consistently from the lateral to medial. The region around the tail is dominated by axial flows in dorsal to ventral direction. We propose that these flows are generated by interaction between the wakes of the two wings at the end of the upstroke, and that the tail actively defects flows to generate moments that contribute to pitch stability. The flow fields images also revealed distinct vortex loops underneath each wing, which were generated during each stroke. From these data, we propose a model for the primary flow structures of hummingbirds that more

  19. The role of bed surface configuration on river response under increasing flows

    Science.gov (United States)

    Ferrer-Boix, Carles; Elgueta, María A.; Hassan, Marwan A.

    2017-04-01

    This research aims to explore how bed surface configuration influence channel evolution, vertical and downstream sediment sorting, and sediment transport in gravel bed streams under varying flows. While a significant body of research has been focused on channel evolution under constant flow regimes, few studies have focused on the impacts of flow variations in channel adjustments. Particularly, we are interested in examining the impact of the degree of bed surface coarsening and particle arrangement on channel adjustments and sediment transport rates. To this end, we conducted a set of experiments in a 0.55 m-wide, 5 m-long tilting flume. Flow discharge during the runs was initially held constant at 25 l/s for a period of time after which discharge was gradually increased at steps of certain duration. Flow rates during the rising limb of the hydrographs ranged from 26 l/s to 40 l/s. Initial bed slope was 0.04 m/m for all runs. Some of the experiments were conducted under no feed conditions while others were carried out with sediment supply, which ranged from 1 kg/h to 10 kg/h. The feed texture in these latter runs was identical to that of the original mixture (Dg = 5.65 mm and σg = 3.05). Bed slopes and surface configuration were obtained after varying times of conditioning under constant flow and no feed. Data acquisition included: 1) bed surface images covering the entire flume, 2) bed scans at 2 mm resolution of the whole flume and 3) real-time measurements of bedload transport (rate and texture) at the outlet of the flume. This set up allows us to obtain fractional particle mobility, i.e. how much bed area covered by a particular grain size changed at a given time and to link to sediment transport rates. Data gathered from this study 1) will contribute to better understanding of river dynamics under unsteady flow conditions (floods) and 2) will help us improve sediment transport predictions under such conditions.

  20. Lattice Boltzmann model for thermal free surface flows with liquid-solid phase transition

    International Nuclear Information System (INIS)

    Attar, Elham; Koerner, Carolin

    2011-01-01

    Purpose: The main objective of this work is to develop an algorithm to use the Lattice Boltzmann method for solving free surface thermal flow problems with solid/liquid phase changes. Approach: A multi-distribution function model is applied to simulate hydrodynamic flow and the coupled thermal diffusion-convection problem. Findings: The free surface problem, i.e. the reconstruction of the missing distribution functions at the interface, can be solved by applying a physical transparent momentum and heat flux based methodology. The developed method is subsequently applied to some test cases in order to assess its computational potentials. Practical implications: Many industrial processes involve problems where non-isothermal motion and simultaneous solidification of fluids with free surface is important. Examples are all castings processes and especially foaming processes which are characterized by a huge and strongly changing surface. Value: A reconstruction algorithm to treat a thermal hydrodynamic problem with free surfaces is presented which is physically transparent and easy to implement.