WorldWideScience

Sample records for wing pitch reversal

  1. The Effect of Pitching Phase on the Vortex Circulation for a Flapping Wing During Stroke Reversal

    Science.gov (United States)

    Burge, Matthew; Ringuette, Matthew

    2017-11-01

    We study the effect of pitching-phase on the circulation behavior for the 3D flow structures produced during stroke reversal for a 2-degree-of-freedom flapping wing executing hovering kinematics. Previous research has related the choice in pitching-phase with respect to the wing rotation during stroke reversal (advanced vs. symmetric pitch-timing) to a lift peak preceding stroke reversal. However, results from experiments on the time-varying circulation contributions from the 3D vortex structures across the span produced by both rotation and pitching are lacking. The objective of this research is to quantitatively examine how the spanwise circulation of these structures is affected by the pitching-phase for several reduced pitching frequencies. We employ a scaled wing model in a glycerin-water mixture and measure the time-varying velocity using multiple planes of stereo digital particle image velocimetry. Data-plane positions along the wing span are informed by the unsteady behavior of the 3D vortex structures found in our prior flow visualization movies. Individual vortices are identified to calculate their circulation. This work is aimed at understanding how the behavior of the vortex structures created during stroke reversal vary with key motion parameters. This work is supported by the National Science Foundation, Award Number 1336548, supervised by Dr. Ronald Joslin.

  2. Wing-pitching mechanism of hovering Ruby-throated hummingbirds

    International Nuclear Information System (INIS)

    Song, Jialei; Luo, Haoxiang; Hedrick, Tyson L

    2015-01-01

    In hovering flight, hummingbirds reverse the angle of attack of their wings through pitch reversal in order to generate aerodynamic lift during both downstroke and upstroke. In addition, the wings may pitch during translation to further enhance lift production. It is not yet clear whether these pitching motions are caused by the wing inertia or actuated through the musculoskeletal system. Here we perform a computational analysis of the pitching dynamics by incorporating the realistic wing kinematics to determine the inertial effects. The aerodynamic effect is also included using the pressure data from a previous three-dimensional computational fluid dynamics simulation of a hovering hummingbird. The results show that like many insects, pitch reversal of the hummingbird is, to a large degree, caused by the wing inertia. However, actuation power input at the root is needed in the beginning of pronation to initiate a fast pitch reversal and also in mid-downstroke to enable a nose-up pitching motion for lift enhancement. The muscles on the wing may not necessarily be activated for pitching of the distal section. Finally, power analysis of the flapping motion shows that there is no requirement for substantial elastic energy storage or energy absorption at the shoulder joint. (paper)

  3. Wing-pitching mechanism of hovering Ruby-throated hummingbirds.

    Science.gov (United States)

    Song, Jialei; Luo, Haoxiang; Hedrick, Tyson L

    2015-01-19

    In hovering flight, hummingbirds reverse the angle of attack of their wings through pitch reversal in order to generate aerodynamic lift during both downstroke and upstroke. In addition, the wings may pitch during translation to further enhance lift production. It is not yet clear whether these pitching motions are caused by the wing inertia or actuated through the musculoskeletal system. Here we perform a computational analysis of the pitching dynamics by incorporating the realistic wing kinematics to determine the inertial effects. The aerodynamic effect is also included using the pressure data from a previous three-dimensional computational fluid dynamics simulation of a hovering hummingbird. The results show that like many insects, pitch reversal of the hummingbird is, to a large degree, caused by the wing inertia. However, actuation power input at the root is needed in the beginning of pronation to initiate a fast pitch reversal and also in mid-downstroke to enable a nose-up pitching motion for lift enhancement. The muscles on the wing may not necessarily be activated for pitching of the distal section. Finally, power analysis of the flapping motion shows that there is no requirement for substantial elastic energy storage or energy absorption at the shoulder joint.

  4. Optimal pitching axis location of flapping wings for efficient hovering flight.

    Science.gov (United States)

    Wang, Q; Goosen, J F L; van Keulen, F

    2017-09-01

    Flapping wings can pitch passively about their pitching axes due to their flexibility, inertia, and aerodynamic loads. A shift in the pitching axis location can dynamically alter the aerodynamic loads, which in turn changes the passive pitching motion and the flight efficiency. Therefore, it is of great interest to investigate the optimal pitching axis for flapping wings to maximize the power efficiency during hovering flight. In this study, flapping wings are modeled as rigid plates with non-uniform mass distribution. The wing flexibility is represented by a linearly torsional spring at the wing root. A predictive quasi-steady aerodynamic model is used to evaluate the lift generated by such wings. Two extreme power consumption scenarios are modeled for hovering flight, i.e. the power consumed by a drive system with and without the capacity of kinetic energy recovery. For wings with different shapes, the optimal pitching axis location is found such that the cycle-averaged power consumption during hovering flight is minimized. Optimization results show that the optimal pitching axis is located between the leading edge and the mid-chord line, which shows close resemblance to insect wings. An optimal pitching axis can save up to 33% of power during hovering flight when compared to traditional wings used by most of flapping wing micro air vehicles (FWMAVs). Traditional wings typically use the straight leading edge as the pitching axis. With the optimized pitching axis, flapping wings show higher pitching amplitudes and start the pitching reversals in advance of the sweeping reversals. These phenomena lead to higher lift-to-drag ratios and, thus, explain the lower power consumption. In addition, the optimized pitching axis provides the drive system higher potential to recycle energy during the deceleration phases as compared to their counterparts. This observation underlines the particular importance of the wing pitching axis location for energy-efficient FWMAVs when

  5. Unsteady Flow Interactions Between Pitching Wings In Schooling Arrangements

    Science.gov (United States)

    Kurt, Melike; Moored, Keith

    2017-11-01

    In nature, many fish aggregate into large groups or schools for protection against predators, for social interactions and to save energy during migrations. Regardless of their prime motivation, fish experience three-dimensional flow interactions amongst themselves that can improve or hamper swimming performance and give rise to fluid-mediated forces between individuals. To date, the unsteady, three-dimensional flow interactions among schooling fish remains relatively unexplored. In order to study these interactions, the caudal fins of two interacting fish are idealized as two finite span pitching wings arranged in mixtures of canonical in-line and side-by-side arrangements. The forces and moments acting on the wings in the streamwise and cross-stream directions are quantified as the arrangement and the phase delay between the wings is altered. Particle image velocimetry is employed to characterize the flow physics during high efficiency locomotion. Finally, the forces and flowfields of two-dimensional pitching wings are compared with three-dimensional wings to distinguish how three-dimensionality alters the flow interactions in schools of fish.

  6. Understanding the unsteady aerodynamics of a revolving wing with pitching-flapping perturbations

    Science.gov (United States)

    Chen, Long; Wu, Jianghao; Zhou, Chao; Hsu, Shih-Jung; Eslam Panah, Azar; Cheng, Bo

    2017-11-01

    Revolving wings become less efficient for lift generation at low Reynolds numbers. Unlike flying insects using reciprocating revolving wings to exploit unsteady mechanisms for lift enhancement, an alternative that introduces unsteadiness through vertical flapping perturbation, is studied via experiments and simulations. Substantial drag reduction, linearly dependent on Strouhal number, is observed for a flapping-perturbed revolving wing at zero angle of attack (AoA), which can be explained by changes in the effective angle of attack and formation of reverse Karman vortex streets. When the AoA increases, flapping perturbations improve the maximum lift coefficient attainable by the revolving wing, with minor increases of drag or even minor drag reductions depending on Strouhal number and normalized flapping amplitude. When the pitching perturbations are further introduced, more substantial drag reduction and lift enhancement can be achieved in zero and positive AoAs, respectively. As the flapping-perturbed wings are less efficient compared with revolving wings in terms of power loading, the pitching-flapping perturbations can achieve a higher power loading at 20°AoA and thus have potential applications in micro air vehicle designs. This research was supported by NSF, DURIP, NSFC and Penn State Multi-Campus SEED Grant.

  7. HYDRODYNAMICS OF OSCILLATING WING ON THE PITCH ANGLE

    Directory of Open Access Journals (Sweden)

    Vitalii Korobov

    2017-07-01

    Full Text Available Purpose: research of the hydrodynamic characteristics of a wing in a nonstationary stream. Methods: The experimental studies of the hydrodynamic load acting on the wing of 1.5 elongation, wich harmonically oscillated respect to the transversal axis in the frequency range of 0.2-2.5 Hz. The flow speed in the hydrodynamic tunnel ranged of 0.2-1.5 m/s. Results: The instantaneous values of the coefficients of lift and drag / thrust on the pitch angle at unsteady flow depends on the Strouhal number.Discussion: with increasing oscillation frequency coefficients of hydrodynamic force components significantly higher than the data for the stationary blowing out of the wing.

  8. Pitch, roll, and yaw moment generator for insect-like tailless flapping-wing MAV

    Science.gov (United States)

    Phan, Hoang Vu; Park, Hoon Cheol

    2016-04-01

    In this work, we proposed a control moment generator, which is called Trailing Edge Change (TEC) mechanism, for attitudes change in hovering insect-like tailless flapping-wing MAV. The control moment generator was installed to the flapping-wing mechanism to manipulate the wing kinematics by adjusting the wing roots location symmetrically or asymmetrically. As a result, the mean aerodynamic force center of each wing is relocated and control moments are generated. The three-dimensional wing kinematics captured by three synchronized high-speed cameras showed that the flapping-wing MAV can properly modify the wing kinematics. In addition, a series of experiments were performed using a multi-axis load cell to evaluate the forces and moments generation. The measurement demonstrated that the TEC mechanism produced reasonable amounts of pitch, roll and yaw moments by shifting position of the trailing edges at the wing roots of the flapping-wing MAV.

  9. Unsteady aerodynamics of a pitching-flapping-perturbed revolving wing at low Reynolds number

    Science.gov (United States)

    Chen, Long; Wu, Jianghao; Zhou, Chao; Hsu, Shih-Jung; Cheng, Bo

    2018-05-01

    Due to adverse viscous effects, revolving wings suffer universally from low efficiency at low Reynolds number (Re). By reciprocating wing revolving motion, natural flyers flying at low Re successfully exploit unsteady effects to augment force production and efficiency. Here we investigate the aerodynamics of an alternative, i.e., a revolving wing with concomitant unsteady pitching and vertical flapping perturbations (a pitching-flapping-perturbed revolving wing). The current work builds upon a previous study on flapping-perturbed revolving wings (FP-RWs) and focuses on combined effects of pitching-flapping perturbation on force generation and vortex behaviors. The results show that, compared with a FR-RW, pitching motion further (1) reduces the external driving torque for rotating at 0° angle of attack (α0) and (2) enhances lift and leads to a self-rotating equilibrium at α0 = 20°. The power loading of a revolving wing at α0 = 20° can be improved using pitching-flapping perturbations with large pitching amplitude but small Strouhal number. Additionally, an advanced pitching improves the reduction of external driving torque, whereas a delayed pitching weakens both the lift enhancement and the reduction of external driving torque. Further analysis shows that pitching effects can be mainly decomposed into the Leading-Edge-Vortex (LEV)-mediated pressure component and geometric projection component, together they determine the force performance. LEV circulation is found to be determined by the instantaneous effective angle of attack but could be affected asymmetrically between upstroke and downstroke depending on the nominal angle of attack. Pitching-flapping perturbation thus can potentially inspire novel mechanisms to improve the aerodynamic performance of rotary wing micro air vehicles.

  10. The Influence of Second Harmonic Phase and Amplitude Variation in Cyclically Pitching Wings

    Science.gov (United States)

    Culler, Ethan; Farnsworth, John

    2017-11-01

    From wind tunnel testing of a cyber-physical wing model, it has been found that the pitch trajectory for stall flutter is described by an array of higher harmonic frequencies with decaying energy content. These frequencies distort the stall flutter motion from that of a pure sinusoidal oscillation in pitch and can have a significant effect on the resulting force production. In order to understand how these higher harmonic frequencies contribute to the overall pitching moment characteristics of a wing in stall flutter, a rigid finite span wing model, with aspect ratio four, was pitched in the wind tunnel. The prescribed motion of the pitch cycle was varied by changing the amplitude ratio and phase of the second harmonic of the oscillation frequency. The second harmonic represents the second highest energy mode in the pitching cycle spectra. Pitching moment and planar particle image velocimetry data was collected. From these pitching trajectories, a significant dependence of pitching moment on both the phase and amplitude of the prescribed waveforms was found. Specifically, for the same amplitude ratio, variations in the phase produced changes of approximately 30 percent in the phase averaged pitching moment.

  11. Aerodynamics power consumption for mechanical flapping wings undergoing flapping and pitching motion

    Science.gov (United States)

    Razak, N. A.; Dimitriadis, G.; Razaami, A. F.

    2017-07-01

    Lately, due to the growing interest in Micro Aerial Vehicles (MAV), interest in flapping flight has been rekindled. The reason lies in the improved performance of flapping wing flight at low Reynolds number regime. Many studies involving flapping wing flight focused on the generation of unsteady aerodynamic forces such as lift and thrust. There is one aspect of flapping wing flight that received less attention. The aspect is aerodynamic power consumption. Since most mechanical flapping wing aircraft ever designed are battery powered, power consumption is fundamental in improving flight endurance. This paper reports the results of experiments carried out on mechanical wings under going active root flapping and pitching in the wind tunnel. The objective of the work is to investigate the effect of the pitch angle oscillations and wing profile on the power consumption of flapping wings via generation of unsteady aerodynamic forces. The experiments were repeated for different airspeeds, flapping and pitching kinematics, geometric angle of attack and wing sections with symmetric and cambered airfoils. A specially designed mechanical flapper modelled on large migrating birds was used. It will be shown that, under pitch leading conditions, less power is required to overcome the unsteady aerodnamics forces. The study finds less power requirement for downstroke compared to upstroke motion. Overall results demonstrate power consumption depends directly on the unsteady lift force.

  12. Transport Mechanisms Governing initial Leading-Edge Vortex Development on a Pitching Wing

    Science.gov (United States)

    Wabick, Kevin; Berdon, Randall; Buchholz, James; Johnson, Kyle; Thurow, Brian

    2017-11-01

    The formation and evolution of Leading Edge Vortices (LEVs) are ubiquitous in natural fliers and maneuvering wings, and have a profound impact on aerodynamic loads. The formation of an LEV is experimentally investigated on a pitching flat-plate wing of aspect-ratio 2, and dimensionless pitch rates of k = Ωc / 2 U of 0.1, 0.2, and 0.5, at a Reynolds number of 104. The sources and sinks of vorticity that contribute to the growth and evolution of the LEV are investigated at spanwise regions of interest, and their relative balance is compared to other wing kinematics, and the case of a two-dimensional pitching wing. This work is supported by the Air Force Office of Scientific Research (Grant Number FA9550-16-1-0107, Dr. Douglas Smith, program manager).

  13. 14 CFR 35.21 - Variable and reversible pitch propellers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Variable and reversible pitch propellers. 35.21 Section 35.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS Design and Construction § 35.21 Variable and...

  14. Supersonic flow over a pitching delta wing using surface pressure measurements and numerical simulations

    Directory of Open Access Journals (Sweden)

    Mostafa HADIDOOLABI

    2018-01-01

    Full Text Available Experimental and numerical methods were applied to investigating high subsonic and supersonic flows over a 60° swept delta wing in fixed state and pitching oscillation. Static pressure coefficient distributions over the wing leeward surface and the hysteresis loops of pressure coefficient versus angle of attack at the sensor locations were obtained by wind tunnel tests. Similar results were obtained by numerical simulations which agreed well with the experiments. Flow structure around the wing was also demonstrated by the numerical simulation. Effects of Mach number and angle of attack on pressure distribution curves in static tests were investigated. Effects of various oscillation parameters including Mach number, mean angle of attack, pitching amplitude and frequency on hysteresis loops were investigated in dynamic tests and the associated physical mechanisms were discussed. Vortex breakdown phenomenon over the wing was identified at high angles of attack using the pressure coefficient curves and hysteresis loops, and its effects on the flow features were discussed.

  15. Pitching motion control of a butterfly-like 3D flapping wing-body model

    Science.gov (United States)

    Suzuki, Kosuke; Minami, Keisuke; Inamuro, Takaji

    2014-11-01

    Free flights and a pitching motion control of a butterfly-like flapping wing-body model are numerically investigated by using an immersed boundary-lattice Boltzmann method. The model flaps downward for generating the lift force and backward for generating the thrust force. Although the model can go upward against the gravity by the generated lift force, the model generates the nose-up torque, consequently gets off-balance. In this study, we discuss a way to control the pitching motion by flexing the body of the wing-body model like an actual butterfly. The body of the model is composed of two straight rigid rod connected by a rotary actuator. It is found that the pitching angle is suppressed in the range of +/-5° by using the proportional-plus-integral-plus-derivative (PID) control for the input torque of the rotary actuator.

  16. An Adjoint-Based Approach to Study a Flexible Flapping Wing in Pitching-Rolling Motion

    Science.gov (United States)

    Jia, Kun; Wei, Mingjun; Xu, Min; Li, Chengyu; Dong, Haibo

    2017-11-01

    Flapping-wing aerodynamics, with advantages in agility, efficiency, and hovering capability, has been the choice of many flyers in nature. However, the study of bio-inspired flapping-wing propulsion is often hindered by the problem's large control space with different wing kinematics and deformation. The adjoint-based approach reduces largely the computational cost to a feasible level by solving an inverse problem. Facing the complication from moving boundaries, non-cylindrical calculus provides an easy extension of traditional adjoint-based approach to handle the optimization involving moving boundaries. The improved adjoint method with non-cylindrical calculus for boundary treatment is first applied on a rigid pitching-rolling plate, then extended to a flexible one with active deformation to further increase its propulsion efficiency. The comparison of flow dynamics with the initial and optimal kinematics and deformation provides a unique opportunity to understand the flapping-wing mechanism. Supported by AFOSR and ARL.

  17. Wing-pitch modulation in maneuvering fruit flies is explained by an interplay between aerodynamics and a torsional spring

    Science.gov (United States)

    Beatus, Tsevi; Cohen, Itai

    2015-08-01

    While the wing kinematics of many flapping insects have been well characterized, understanding the underlying sensory, neural, and physiological mechanisms that determine these kinematics is still a challenge. Two main difficulties in understanding the physiological mechanisms arise from the complexity of the interaction between a flapping wing and its own unsteady flow, as well as the intricate mechanics of the insect wing hinge, which is among the most complicated joints in the animal kingdom. These difficulties call for the application of reduced-order approaches. Here this strategy is used to model the torques exerted by the wing hinge along the wing-pitch axis of maneuvering fruit flies as a damped torsional spring with elastic and damping coefficients as well as a rest angle. Furthermore, we model the air flows using simplified quasistatic aerodynamics. Our findings suggest that flies take advantage of the passive coupling between aerodynamics and the damped torsional spring to indirectly control their wing-pitch kinematics by modulating the spring parameters. The damped torsional-spring model explains the changes measured in wing-pitch kinematics during roll correction maneuvers through modulation of the spring damping and elastic coefficients. These results, in conjunction with the previous literature, indicate that flies can accurately control their wing-pitch kinematics on a sub-wing-beat time scale by modulating all three effective spring parameters on longer time scales.

  18. The role of resonance in propulsion of an elastic pitching wing with or without inertia

    Science.gov (United States)

    Zhang, Yang; Zhou, Chunhua; Luo, Haoxiang; Luo Team; Zhou Team

    2016-11-01

    Flapping wings of insects and undulating fins of fish both experience significant elastic deformations during propulsion, and it has been shown that in both cases, the deformations are beneficial to force enhancement and power efficiency. In fish swimming, the inertia of the fin structure is negligible and the hydrodynamic force is solely responsible for the deformation. However, in insect flight, both the wing inertia and aerodynamic force can be important factors leading to wing deformation. This difference raises the question about the role of the system (fluid-structure) resonance in the performance of propulsion. In this study, we use a 2D pitching foil as a model wing and vary its bending rigidity, pitching frequency, and mass ratio to investigate the fluid-structure interaction near resonance. The results show that at low mass ratios, i.e., a scenario of swimming, the system resonance greatly enhances thrust production and power efficiency, which is consistent with previous experimental results. However, at high mass ratios, i.e., a scenario of flying, the system resonance leads to overly large deformation that actually does not bring benefit any more. This conclusion thus suggests that resonance plays different roles in flying and in swimming. Supported by the NNSF of China and the NSF of US.

  19. The investment strategies of sovereign wealth funds: A reverse engineered pitch

    Directory of Open Access Journals (Sweden)

    Stanislav Martínek

    2017-12-01

    Full Text Available This letter describes personal reflection based on the utilization of the Faff’s (2017, Pitching Research pitch template for a reverse engineering technique in order to summarize, evaluate and properly interpret information from articles in respected scientific journals which represents key or seminal scientific research work upon which a researcher built his/her scientific work.

  20. Coupled Rolling and Pitching Oscillation Effects on Transonic Shock-Induced Vortex-Breakdown Flow of a Delta Wing

    Science.gov (United States)

    Kandil, Osama A.; Menzies, Margaret A.

    1996-01-01

    Unsteady, transonic vortex dominated flow over a 65 deg. sharp edged, cropped-delta wing of zero thickness undergoing forced coupled pitching and rolling oscillations is investigated computationally. The wing mean angle of attack is 20 deg. and the free stream Mach number and Reynolds number are 0.85 and 3.23 x 10(exp 6), respectively. The initial condition of the flow is characterized by a transverse terminating shock and vortex breakdown of the leading edge vortex cores. The computational investigation uses the time-accurate solution of the laminar, unsteady, compressible, full Navier-Stokes equations with the implicit, upwind, Roe flux-difference splitting, finite volume scheme. The main focus is to analyze the effects of coupled motion on the wing response and vortex breakdown flow by varying oscillation frequency and phase angle while the maximum pitch and roll amplitude is kept constant at 4.0 deg. Four cases demonstrate the following: simultaneous motion at a frequency of 1(pi), motion with a 90 deg. phase lead in pitch, motion with a rolling frequency of twice the pitching frequency, and simultaneous motion at a frequency of 2(pi). Comparisons with single mode motion at these frequencies complete this study and illustrate the effects of coupling the oscillations.

  1. Effects of Coupled Rolling and Pitching Oscillations on Transonic Shock-Induced Vortex-Breakdown Flow of a Delta Wing

    Science.gov (United States)

    Kandil, Osama A.; Menzies, Margaret A.

    1996-01-01

    Unsteady, transonic vortex-breakdown flow over a 65 deg. sharp edged, cropped-delta wing of zero thickness undergoing forced coupled pitching and rolling oscillations is investigated computationally. The initial condition of the flow is characterized by a transverse terminating shock which induces of the leading edge vortex cores to breakdown. The computational investigation uses the time-accurate solution of the laminar, unsteady, compressible, full Navier-Stokes equations with the implicit, upwind, Roe flux-difference splitting, finite-volume scheme. The main focus is to analyze the effects of coupled motion on the wing response and vortex-breakdown flow by varying oscillation frequency and phase angle while keeping the maximum pitch and roll amplitude equal.

  2. Why Pteropods Flap Their Wings, Periodically Pitch Their Shell, and Swim in a Sawtooth-like Trajectory

    Science.gov (United States)

    Adhikari, D.; Webster, D. R.; Yen, J.

    2016-02-01

    Antarctic pteropods (Limacina helicina antarctica), which are currently threatened by ocean acidification, swim in seawater with a pair of gelatinous parapodia (or "wings") via a distinctive propulsion mechanism. By flapping their parapodia in a way that resembles insect flight, they exhibit a unique shell wobble (or periodic shell pitching) motion and sawtooth-like trajectory. We present three-dimensional kinematics and volumetric fluid velocity fields for upward-swimming pteropods. Time-resolved data were collected with a unique infrared tomographic particle image velocimetry (tomo-PIV) system that was transported to Palmer Station, Antarctica. Both power and recovery strokes of the parapodia propel the pteropod (1.5 - 5 mm in size) upward in a sawtooth-like trajectory with average speed of 14 - 30 mm/s and periodically pitch the shell at 1.9 - 3 Hz with up to 110° difference in pitching angle. The pitch motion effectively positions the parapodia such that they stroke downward during both the power and recovery strokes. We use the kinematics measurement to illustrate the relationship between flapping, swimming and pitching, where the corresponding Reynolds numbers (i.e. Ref, ReU, and ReΩ) characterize the motion of the pteropod. For example, when Ref aquatic variations.

  3. Auditory event-related potentials associated with perceptual reversals of bistable pitch motion.

    Science.gov (United States)

    Davidson, Gray D; Pitts, Michael A

    2014-01-01

    Previous event-related potential (ERP) experiments have consistently identified two components associated with perceptual transitions of bistable visual stimuli, the "reversal negativity" (RN) and the "late positive complex" (LPC). The RN (~200 ms post-stimulus, bilateral occipital-parietal distribution) is thought to reflect transitions between neural representations that form the moment-to-moment contents of conscious perception, while the LPC (~400 ms, central-parietal) is considered an index of post-perceptual processing related to accessing and reporting one's percept. To explore the generality of these components across sensory modalities, the present experiment utilized a novel bistable auditory stimulus. Pairs of complex tones with ambiguous pitch relationships were presented sequentially while subjects reported whether they perceived the tone pairs as ascending or descending in pitch. ERPs elicited by the tones were compared according to whether perceived pitch motion changed direction or remained the same across successive trials. An auditory reversal negativity (aRN) component was evident at ~170 ms post-stimulus over bilateral fronto-central scalp locations. An auditory LPC component (aLPC) was evident at subsequent latencies (~350 ms, fronto-central distribution). These two components may be auditory analogs of the visual RN and LPC, suggesting functionally equivalent but anatomically distinct processes in auditory vs. visual bistable perception.

  4. Thrust reverser design studies for an over-the-wing STOL transport

    Science.gov (United States)

    Ammer, R. C.; Sowers, H. D.

    1977-01-01

    Aerodynamic and acoustics analytical studies were conducted to evaluate three thrust reverser designs for potential use on commercial over-the-wing STOL transports. The concepts were: (1) integral D nozzle/target reverser, (2) integral D nozzle/top arc cascade reverser, and (3) post exit target reverser integral with wing. Aerodynamic flowpaths and kinematic arrangements for each concept were established to provide a 50% thrust reversal capability. Analytical aircraft stopping distance/noise trade studies conducted concurrently with flow path design showed that these high efficiency reverser concepts are employed at substantially reduced power settings to meet noise goals of 100 PNdB on a 152.4 m sideline and still meet 609.6 m landing runway length requirements. From an overall installation standpoint, only the integral D nozzle/target reverser concept was found to penalize nacelle cruise performance; for this concept a larger nacelle diameter was required to match engine cycle effective area demand in reverse thrust.

  5. Reverse Engineering Tone-Deafness: Disrupting Pitch-Matching by Creating Temporary Dysfunctions in the Auditory-Motor Network

    Directory of Open Access Journals (Sweden)

    Anja Hohmann

    2018-01-01

    Full Text Available Perceiving and producing vocal sounds are important functions of the auditory-motor system and are fundamental to communication. Prior studies have identified a network of brain regions involved in pitch production, specifically pitch matching. Here we reverse engineer the function of the auditory perception-production network by targeting specific cortical regions (e.g., right and left posterior superior temporal (pSTG and posterior inferior frontal gyri (pIFG with cathodal transcranial direct current stimulation (tDCS—commonly found to decrease excitability in the underlying cortical region—allowing us to causally test the role of particular nodes in this network. Performance on a pitch-matching task was determined before and after 20 min of cathodal stimulation. Acoustic analyses of pitch productions showed impaired accuracy after cathodal stimulation to the left pIFG and the right pSTG in comparison to sham stimulation. Both regions share particular roles in the feedback and feedforward motor control of pitched vocal production with a differential hemispheric dominance.

  6. Reversible thermochromic response based on photonic crystal structure in butterfly wing

    Science.gov (United States)

    Wang, Wanlin; Wang, Guo Ping; Zhang, Wang; Zhang, Di

    2018-01-01

    Subtle responsive properties can be achieved by the photonic crystal (PC) nanostructures of butterfly based on thermal expansion effect. The studies focused on making the sample visually distinct. However, the response is restricted by limited thermal expansion coefficients. We herein report a new class of reversible thermochromic response achieved by controlling the ambient refractive index in butterfly PC structure. The photonic ethanol-filled nanoarchitecture sample is simply assembled by sealing liquid ethanol filling Papilio ulysses butterfly wing. Volatile ethanol is used to modulate the ambient refractive index. The sample is sealed with glasses to ensure reversibility. Liquid ethanol filling butterfly wing demonstrated significant allochroic response to ambient refractive index, which can be controlled by the liquefaction and vaporization of ethanol. This design is capable of converting thermal energy into visual color signals. The mechanism of this distinct response is simulated and proven by band theory. The response properties are performed with different filled chemicals and different structure parameters. Thus, the reversible thermochromic response design might have potential use in the fields such as detection, photonic switch, displays, and so forth.

  7. Pitch programming of the ZT-S reversed-field pinch experiment

    International Nuclear Information System (INIS)

    Jacobson, A.; Burkhardt, L.C.; Baker, D.A.; Howell, R.B.; Schofield, A.E.; Sgro, A.G.

    1979-01-01

    Pitch programming is only realizable in the non-ideal case and as such is tried on ZT-S. Once the resistivity profile in the plasma is determined along with the appropriate thermal conductivity, then q(t) at the wall possesses a fairly simple mapping to a q(r) for a given time as shown in the experimental results. Thus the resulting q(r) profiles are qualitatively similar to ones desirable from the point of MHD stability theory. The results of this initial investigation indicate that pitch programming should be pursued further as a possible means of setting up desirable equilibrium profiles in an RFP

  8. An experimental and three-dimensional computational study on the aerodynamic contribution to the passive pitching motion of flapping wings in hovering flies

    International Nuclear Information System (INIS)

    Ishihara, D; Horie, T; Niho, T

    2014-01-01

    The relative importance of the wing’s inertial and aerodynamic forces is the key to revealing how the kinematical characteristics of the passive pitching motion of insect flapping wings are generated, which is still unclear irrespective of its importance in the design of insect-like micro air vehicles. Therefore, we investigate three species of flies in order to reveal this, using a novel fluid-structure interaction analysis that consists of a dynamically scaled experiment and a three-dimensional finite element analysis. In the experiment, the dynamic similarity between the lumped torsional flexibility model as a first approximation of the dipteran wing and the actual insect is measured by the Reynolds number Re, the Strouhal number St, the mass ratio M, and the Cauchy number Ch. In the computation, the three-dimension is important in order to simulate the stable leading edge vortex and lift force in the present Re regime over 254. The drawback of the present experiment is the difficulty in satisfying the condition of M due to the limitation of available solid materials. The novelty of the present analysis is to complement this drawback using the computation. We analyze the following two cases: (a) The equilibrium between the wing’s elastic and fluid forces is dynamically similar to that of the actual insect, while the wing’s inertial force can be ignored. (b) All forces are dynamically similar to those of the actual insect. From the comparison between the results of cases (a) and (b), we evaluate the contributions of the equilibrium between the aerodynamic and the wing’s elastic forces and the wing’s inertial force to the passive pitching motion as 80–90% and 10–20%, respectively. It follows from these results that the dipteran passive pitching motion will be based on the equilibrium between the wing’s elastic and aerodynamic forces, while it will be enhanced by the wing’s inertial force. (paper)

  9. Do hummingbirds use a different mechanism than insects to flip and twist their wings?

    Science.gov (United States)

    Song, Jialei; Luo, Haoxiang; Hedrick, Tyson

    2014-11-01

    Hovering hummingbirds flap their wings in an almost horizontal stroke plane and flip the wings to invert the angle of attack after stroke reversal, a strategy also utilized by many hovering insects such as fruit flies. However, unlike insects whose wing actuation mechanism is only located at the base, hummingbirds have a vertebrate musculoskeletal system and their wings contain bones and muscles and thus, they may be capable of both actively flipping and twisting their wings. To investigate this issue, we constructed a hummingbird wing model and study its pitching dynamics. The wing kinematics are reconstructed from high-speed imaging data, and the inertial torques are calculated in a rotating frame of reference using mass distribution data measured from dissections of hummingbird wings. Pressure data from a previous CFD study of the same wing kinematics are used to calculate the aerodynamic torque. The results show that like insect wings, the hummingbird wing pitching is driven by its own inertia during reversal, and the aerodynamic torque is responsible for wing twist during mid-stroke. In conclusion, our study suggests that their wing dynamics are very similar even though their actuation systems are entirely different. This research was supported by the NSF.

  10. Quiet Clean Short-haul Experimental Engine (QCSEE): The aerodynamic and mechanical design of the QCSEE under-the-wing fan

    Science.gov (United States)

    1977-01-01

    The design, fabrication, and testing of two experimental high bypass geared turbofan engines and propulsion systems for short haul passenger aircraft are described. The aerodynamic and mechanical design of a variable pitch 1.34 pressure ratio fan for the under the wing (UTW) engine are included. The UTW fan was designed to permit rotation of the 18 composite fan blades into the reverse thrust mode of operation through both flat pitch and stall pitch directions.

  11. An Experimental Investigation of the Effect of a Canard Control on the Lift, Drag, and Pitching Moment of an Aspect-Ratio 2.0 Triangular Wing Incorporating a Form of Conical Camber

    Science.gov (United States)

    Menees, Gene P.; Boyd, John W.

    1959-01-01

    The results of an experimental investigation to determine the effect of a canard control on the lift, drag, and pitching-moment characteristics of an aspect-ratio-2.0 triangular wing incorporating a form of conical camber are presented. The canard had a triangular plan form of aspect ratio 2.0 and was mounted in the extended chord plane of the wing. The ratio of the area of the exposed canard panels to the total wing area was 6.9 percent, and the ratio of the total areas was 12.9 percent. Data were obtained at Mach numbers from 0.70 to 2.22 through an angle-of-attack range from -6 deg to +18 deg with the canard on, and with the canard off. To provide a basis for comparison, the canard was also tested with a symmetrical wing having the same plan form, aspect ratio, and thickness distribution as the cambered wing. The results of the investigation showed that at the high subsonic speeds the gain in maximum lift-drag ratio achieved by camber was considerably reduced by the addition of a canard. At the supersonic speeds, the addition of the canard did not change the effect of camber on the maximum lift-drag ratios.

  12. Shrinking wings for ultrasonic pitch production: hyperintense ultra-short-wavelength calls in a new genus of neotropical katydids (Orthoptera: Tettigoniidae.

    Directory of Open Access Journals (Sweden)

    Fabio A Sarria-S

    Full Text Available This article reports the discovery of a new genus and three species of predaceous katydid (Insecta: Orthoptera from Colombia and Ecuador in which males produce the highest frequency ultrasonic calling songs so far recorded from an arthropod. Male katydids sing by rubbing their wings together to attract distant females. Their song frequencies usually range from audio (5 kHz to low ultrasonic (30 kHz. However, males of Supersonus spp. call females at 115 kHz, 125 kHz, and 150 kHz. Exceeding the human hearing range (50 Hz-20 kHz by an order of magnitude, these insects also emit their ultrasound at unusually elevated sound pressure levels (SPL. In all three species these calls exceed 110 dB SPL rms re 20 µPa (at 15 cm. Males of Supersonus spp. have unusually reduced forewings (<0.5 mm(2. Only the right wing radiates appreciable sound, the left bears the file and does not show a particular resonance. In contrast to most katydids, males of Supersonus spp. position and move their wings during sound production so that the concave aspect of the right wing, underlain by the insect dorsum, forms a contained cavity with sharp resonance. The observed high SPL at extreme carrier frequencies can be explained by wing anatomy, a resonant cavity with a membrane, and cuticle deformation.

  13. Flexible wings in flapping flight

    Science.gov (United States)

    Moret, Lionel; Thiria, Benjamin; Zhang, Jun

    2007-11-01

    We study the effect of passive pitching and flexible deflection of wings on the forward flapping flight. The wings are flapped vertically in water and are allowed to move freely horizontally. The forward speed is chosen by the flapping wing itself by balance of drag and thrust. We show, that by allowing the wing to passively pitch or by adding a flexible extension at its trailing edge, the forward speed is significantly increased. Detailed measurements of wing deflection and passive pitching, together with flow visualization, are used to explain our observations. The advantage of having a wing with finite rigidity/flexibility is discussed as we compare the current results with our biological inspirations such as birds and fish.

  14. Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight

    Science.gov (United States)

    Bomphrey, Richard J.; Nakata, Toshiyuki; Phillips, Nathan; Walker, Simon M.

    2017-03-01

    Mosquitoes exhibit unusual wing kinematics; their long, slender wings flap at remarkably high frequencies for their size (>800 Hz)and with lower stroke amplitudes than any other insect group. This shifts weight support away from the translation-dominated, aerodynamic mechanisms used by most insects, as well as by helicopters and aeroplanes, towards poorly understood rotational mechanisms that occur when pitching at the end of each half-stroke. Here we report free-flight mosquito wing kinematics, solve the full Navier-Stokes equations using computational fluid dynamics with overset grids, and validate our results with in vivo flow measurements. We show that, although mosquitoes use familiar separated flow patterns, much of the aerodynamic force that supports their weight is generated in a manner unlike any previously described for a flying animal. There are three key features: leading-edge vortices (a well-known mechanism that appears to be almost ubiquitous in insect flight), trailing-edge vortices caused by a form of wake capture at stroke reversal, and rotational drag. The two new elements are largely independent of the wing velocity, instead relying on rapid changes in the pitch angle (wing rotation) at the end of each half-stroke, and they are therefore relatively immune to the shallow flapping amplitude. Moreover, these mechanisms are particularly well suited to high aspect ratio mosquito wings.

  15. Quad-thopter: Tailless Flapping Wing Robot with 4 Pairs of Wings

    NARCIS (Netherlands)

    de Wagter, C.; Karasek, M.; de Croon, G.C.H.E.; J.-M. Moschetta G. Hattenberger, H. de Plinval

    2017-01-01

    We present a novel design of a tailless flapping wing Micro Air Vehicle (MAV), which uses four independently driven pairs of flapping wings in order to fly and perform agile maneuvers. The wing pairs are arranged such that differential thrust generates the desired roll and pitch moments, similar to

  16. Pitch Fork

    DEFF Research Database (Denmark)

    Williams, Peter Leslie; Overholt, Daniel

    2017-01-01

    Pitch Fork is a prototype of an alternate, actuated digital musical instrument (DMI). It uses 5 infra-red and 4 piezoelectric sensors to control an additive synthesis engine. Iron bars are used as the physical point of contact in interaction with the aim of using this materials natural acoustic p...... properties as a control signal for aspects of the digitally produced sound. This choice of material was also chosen to affect player experience. Sensor readings are relayed to a Macbook via an Arduino Mega. Mappings and audio output signal is carried out with Pure Data Extended....

  17. Biomimetic propulsion under random heaving conditions, using active pitch control

    Science.gov (United States)

    Politis, Gerasimos; Politis, Konstantinos

    2014-05-01

    Marine mammals travel long distances by utilizing and transforming wave energy to thrust through proper control of their caudal fin. On the other hand, manmade ships traveling in a wavy sea store large amounts of wave energy in the form of kinetic energy for heaving, pitching, rolling and other ship motions. A natural way to extract this energy and transform it to useful propulsive thrust is by using a biomimetic wing. The aim of this paper is to show how an actively pitched biomimetic wing could achieve this goal when it performs a random heaving motion. More specifically, we consider a biomimetic wing traveling with a given translational velocity in an infinitely extended fluid and performing a random heaving motion with a given energy spectrum which corresponds to a given sea state. A formula is invented by which the instantaneous pitch angle of the wing is determined using the heaving data of the current and past time steps. Simulations are then performed for a biomimetic wing at different heave energy spectra, using an indirect Source-Doublet 3-D-BEM, together with a time stepping algorithm capable to track the random motion of the wing. A nonlinear pressure type Kutta condition is applied at the trailing edge of the wing. With a mollifier-based filtering technique, the 3-D unsteady rollup pattern created by the random motion of the wing is calculated without any simplifying assumptions regarding its geometry. Calculated unsteady forces, moments and useful power, show that the proposed active pitch control always results in thrust producing motions, with significant propulsive power production and considerable beneficial stabilizing action to ship motions. Calculation of the power required to set the pitch angle prove it to be a very small percentage of the useful power and thus making the practical application of the device very tractable.

  18. Avian Wings

    Science.gov (United States)

    Liu, Tianshu; Kuykendoll, K.; Rhew, R.; Jones, S.

    2004-01-01

    This paper describes the avian wing geometry (Seagull, Merganser, Teal and Owl) extracted from non-contact surface measurements using a three-dimensional laser scanner. The geometric quantities, including the camber line and thickness distribution of airfoil, wing planform, chord distribution, and twist distribution, are given in convenient analytical expressions. Thus, the avian wing surfaces can be generated and the wing kinematics can be simulated. The aerodynamic characteristics of avian airfoils in steady inviscid flows are briefly discussed. The avian wing kinematics is recovered from videos of three level-flying birds (Crane, Seagull and Goose) based on a two-jointed arm model. A flapping seagull wing in the 3D physical space is re-constructed from the extracted wing geometry and kinematics.

  19. Softball Pitching and Injury.

    Science.gov (United States)

    Lear, Aaron; Patel, Niraj

    2016-01-01

    The windmill softball pitch generates considerable forces about the athlete's shoulder and elbow. The injury pattern of softball pitchers seems to be primarily overuse injury, and they seem not to suffer the same volume of injury that baseball pitchers do. This article will explore softball pitching techniques, kinetics and kinematics of the windmill pitch, epidemiology of softball pitchers, and discuss possible etiologies of softball pitching injuries.

  20. Attitude control system for a lightweight flapping wing MAV.

    Science.gov (United States)

    Tijmons, Sjoerd; Karásek, Matěj; de Croon, G C H E

    2018-03-14

    Robust attitude control is an essential aspect of research on autonomous flight of flapping wing Micro Air Vehicles. The mechanical solutions by which the necessary control moments are realised come at the price of extra weight and possible loss of aerodynamic efficiency. Stable flight of these vehicles has been shown by several designs using a conventional tail, but also by tailless designs that use active control of the wings. In this study a control mechanism is proposed that provides active control over the wings. The mechanism improves vehicle stability and agility by generation of control moments for roll, pitch and yaw. Its effectiveness is demonstrated by static measurements around all the three axes. Flight test results confirm that the attitude of the test vehicle, including a tail, can be successfully controlled in slow forward flight conditions. Furthermore, the flight envelope is extended with robust hovering and the ability to reverse the flight direction using a small turn space. This capability is very important for autonomous flight capabilities such as obstacle avoidance. Finally, it is demonstrated that the proposed control mechanism allows for tailless hovering flight. © 2018 IOP Publishing Ltd.

  1. Microneurolysis and decompression of long thoracic nerve injury are effective in reversing scapular winging: Long-term results in 50 cases

    Directory of Open Access Journals (Sweden)

    Lyons Andrew B

    2007-03-01

    Full Text Available Abstract Background Long thoracic nerve injury leading to scapular winging is common, often caused by closed trauma through compression, stretching, traction, direct extrinsic force, penetrating injury, or neuritides such as Parsonage-Turner syndrome. We undertook the largest series of long thoracic nerve decompression and neurolysis yet reported to demonstrate the usefulness of long thoracic nerve decompression. Methods Winging was bilateral in 3 of the 47 patients (26 male, 21 female, yielding a total of 50 procedures. The mean age of the patients was 33.4 years, ranging from 24–57. Causation included heavy weight-lifting (31 patients, repetitive throwing (5 patients, deep massage (2 patients, repetitive overhead movement (1 patient, direct trauma (1 patient, motor bike accident (1 patient, and idiopathic causes (9 patients. Decompression and microneurolysis of the long thoracic nerve were performed in the supraclavicular space. Follow-up (average of 25.7 months consisted of physical examination and phone conversations. The degree of winging was measured by the operating surgeon (RKN. Patients also answered questions covering 11 quality-of-life facets spanning four domains of the World Health Organization Quality of Life questionnaire. Results Thoracic nerve decompression and neurolysis improved scapular winging in 49 (98% of the 50 cases, producing "good" or "excellent" results in 46 cases (92%. At least some improvement occurred in 98% of cases that were less than 10 years old. Pain reduction through surgery was good or excellent in 43 (86% cases. Shoulder instability affected 21 patients preoperatively and persisted in 5 of these patients after surgery, even in the 5 patients with persistent instability who experienced some relief from the winging itself. Conclusion Surgical decompression and neurolysis of the long thoracic nerve significantly improve scapular winging in appropriate patients, for whom these techniques should be considered

  2. Subsonic aerodynamic characteristic of semispan commercial transport model with wing-mounted advanced ducted propeller operating in reverse thrust. [conducted in the Langley 14 by 22 foot subsonic wind tunnel

    Science.gov (United States)

    Applin, Zachary T.; Jones, Kenneth M.; Gile, Brenda E.; Quinto, P. Frank

    1994-01-01

    A test was conducted in the Langley 14 by 22 Foot Subsonic Tunnel to determine the effect of the reverse-thrust flow field of a wing-mounted advanced ducted propeller on the aerodynamic characteristics of a semispan subsonic high-lift transport model. The advanced ducted propeller (ADP) model was mounted separately in position alongside the wing so that only the aerodynamic interference of the propeller and nacelle affected the aerodynamic performance of the transport model. Mach numbers ranged from 0.14 to 0.26; corresponding Reynolds numbers ranged from 2.2 to 3.9 x 10(exp 6). The reverse-thrust flow field of the ADP shielded a portion of the wing from the free-stream airflow and reduced both lift and drag. The reduction in lift and drag was a function of ADP rotational speed and free-stream velocity. Test results included ground effects data for the transport model and ADP configuration. The ground plane caused a beneficial increase in drag and an undesirable slight increase in lift. The ADP and transport model performance in ground effect was similar to performance trends observed for out of ground effect. The test results form a comprehensive data set that supports the application of the ADP engine and airplane concept on the next generation of advanced subsonic transports. Before this investigation, the engine application was predicted to have detrimental ground effect characteristics. Ground effect test measurements indicated no critical problems and were the first step in proving the viability of this engine and airplane configuration.

  3. High coking value pitch

    Science.gov (United States)

    Miller, Douglas J.; Chang, Ching-Feng; Lewis, Irwin C.; Lewis, Richard T.

    2014-06-10

    A high coking value pitch prepared from coal tar distillate and has a low softening point and a high carbon value while containing substantially no quinoline insolubles is disclosed. The pitch can be used as an impregnant or binder for producing carbon and graphite articles.

  4. Perfect pitch reconsidered.

    Science.gov (United States)

    Moulton, Calum

    2014-10-01

    Perfect pitch, or absolute pitch (AP), is defined as the ability to identify or produce the pitch of a sound without need for a reference pitch, and is generally regarded as a valuable asset to the musician. However, there has been no recent review of the literature examining its aetiology and its utility taking into account emerging scientific advances in AP research, notably in functional imaging. This review analyses the key empirical research on AP, focusing on genetic and neuroimaging studies. The review concludes that: AP probably has a genetic predisposition, although this is based on limited evidence; early musical training is almost certainly essential for AP acquisition; and, although there is evidence that it may be relevant to speech processing, AP can interfere with relative pitch, an ability on which humans rely to communicate effectively. The review calls into question the value of AP to musicians and non-musicians alike. © 2014 Royal College of Physicians.

  5. Factors affecting relative pitch perception

    OpenAIRE

    McClaskey, Carolyn Marie

    2016-01-01

    Sounds that evoke a sense of pitch are ubiquitous in our environment and important for speech, music, and auditory scene analysis. The frequencies of these sounds rarely remain constant, however, and the direction and extent of pitch change is often more important than the exact pitches themselves. This dissertation examines the mechanisms underlying how we perceive relative pitch distance, focusing on two types of stimuli: continuous pitch changes and discrete pitch changes. In a series of e...

  6. Switching between pitch surfaces

    DEFF Research Database (Denmark)

    Rago, Vincenzo; Silva, João R; Brito, João

    2018-01-01

    Soccer training and completion is conventionally practiced on natural grass (NG) or artificial turf (AT). Recently, AT pitches for training / competition, and of unstable surfaces for injury prevention training has increased. Therefore, soccer players are frequently exposed to variations in pitch...... surface during either training or competition. These ground changes may impact physical and physiological responses, adaptations as well as the injury. The aim of this review was to summarize the acute physical and physiological responses, chronic adaptations, and injury risk associated with exercising...... on different pitch surfaces in soccer. Eligible studies were published in English, had pitch surface as an independent variable, and had physical, physiological or epidemiological information as outcome variables. Specific data extracted from the articles included the training response, training adaptations...

  7. Consonance and pitch.

    Science.gov (United States)

    McLachlan, Neil; Marco, David; Light, Maria; Wilson, Sarah

    2013-11-01

    To date, no consensus exists in the literature as to theories of consonance and dissonance. Experimental data collected over the last century have raised questions about the dominant theories that are based on frequency relationships between the harmonics of music chords. This study provides experimental evidence that strongly challenges these theories and suggests a new theory of dissonance based on relationships between pitch perception and recognition. Experiment 1 shows that dissonance does not increase with increasing numbers of harmonics in chords as predicted by Helmholtz's (1863/1954) roughness theory, nor does it increase with fewer pitch-matching errors as predicted by Stumpf's (1898) tonal fusion theory. Dissonance was strongly correlated with pitch-matching error for chords, which in turn was reduced by chord familiarity and greater music training. This led to the proposition that long-term memory templates for common chords assist the perception of pitches in chords by providing an estimate of the chord intervals from spectral information. When recognition mechanisms based on these templates fail, the spectral pitch estimate is inconsistent with the period of the waveform, leading to cognitive incongruence and the negative affect of dissonance. The cognitive incongruence theory of dissonance was rigorously tested in Experiment 2, in which nonmusicians were trained to match the pitches of a random selection of 2-pitch chords. After 10 training sessions, they rated the chords they had learned to pitch match as less dissonant than the unlearned chords, irrespective of their tuning, providing strong support for a cognitive mechanism of dissonance. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  8. Aeroelastic Flutter of Subsonic Aircraft Wing Section with Control Surface

    Directory of Open Access Journals (Sweden)

    Aeroelastic Flutter of Subsonic Aircraft Wing Section with Control Surface

    2015-12-01

    Full Text Available Aeroelastic flutter in aircraft mechanisms is unavoidable, essentially in the wing and control surface. In this work a three degree-of-freedom aeroelastic wing section with trailing edge flap is modeled numerically and theoretically. FLUENT code based on the steady finite volume is used for the prediction of the steady aerodynamic characteristics (lift, drag, pitching moment, velocity, and pressure distribution as well as the Duhamel formulation is used to model the aerodynamic loads theoretically. The system response (pitch, flap pitch and plunge was determined by integration the governing equations using MATLAB with a standard Runge–Kutta algorithm in conjunction with Henon’s method. The results are compared with previous experimental data. The results show that the aerodynamic loads and wing-flap system response are increased when increasing the flow speed. On the other hand the aeroelastic response led up to limit cycle oscillation when the flow equals or more than flutter speed.

  9. Temperature-dependent sex-reversal by a transformer-2 gene-edited mutation in the spotted wing drosophila, Drosophila suzukii

    Science.gov (United States)

    Female to male sex reversal was achieved in an emerging agricultural insect pest, Drosophila suzukii, by creating a temperature-sensitive point mutation in the sex-determination gene, transformer-2 (tra-2) using CRISPR/Cas9 (clustered regularly interspaced palindromic repeats/ CRISPR-associated) hom...

  10. Pitch Based Sound Classification

    DEFF Research Database (Denmark)

    Nielsen, Andreas Brinch; Hansen, Lars Kai; Kjems, U

    2006-01-01

    A sound classification model is presented that can classify signals into music, noise and speech. The model extracts the pitch of the signal using the harmonic product spectrum. Based on the pitch estimate and a pitch error measure, features are created and used in a probabilistic model with soft......-max output function. Both linear and quadratic inputs are used. The model is trained on 2 hours of sound and tested on publicly available data. A test classification error below 0.05 with 1 s classification windows is achieved. Further more it is shown that linear input performs as well as a quadratic......, and that even though classification gets marginally better, not much is achieved by increasing the window size beyond 1 s....

  11. Design and stable flight of a 21 g insect-like tailless flapping wing micro air vehicle with angular rates feedback control.

    Science.gov (United States)

    Phan, Hoang Vu; Kang, Taesam; Park, Hoon Cheol

    2017-04-04

    An insect-like tailless flapping wing micro air vehicle (FW-MAV) without feedback control eventually becomes unstable after takeoff. Flying an insect-like tailless FW-MAV is more challenging than flying a bird-like tailed FW-MAV, due to the difference in control principles. This work introduces the design and controlled flight of an insect-like tailless FW-MAV, named KUBeetle. A combination of four-bar linkage and pulley-string mechanisms was used to develop a lightweight flapping mechanism that could achieve a high flapping amplitude of approximately 190°. Clap-and-flings at dorsal and ventral stroke reversals were implemented to enhance vertical force. In the absence of a control surface at the tail, adjustment of the location of the trailing edges at the wing roots to modulate the rotational angle of the wings was used to generate control moments for the attitude control. Measurements by a 6-axis load cell showed that the control mechanism produced reasonable pitch, roll and yaw moments according to the corresponding control inputs. The control mechanism was integrated with three sub-micro servos to realize the pitch, roll and yaw controls. A simple PD feedback controller was implemented for flight stability with an onboard microcontroller and a gyroscope that sensed the pitch, roll and yaw rates. Several flight tests demonstrated that the tailless KUBeetle could successfully perform a vertical climb, then hover and loiter within a 0.3 m ground radius with small variations in pitch and roll body angles.

  12. Pitch memory and exposure effects.

    Science.gov (United States)

    Ben-Haim, Moshe Shay; Eitan, Zohar; Chajut, Eran

    2014-02-01

    Recent studies indicate that the ability to represent absolute pitch values in long-term memory, long believed to be the possession of a small minority of trained musicians endowed with "absolute pitch," is in fact shared to some extent by a considerable proportion of the population. The current study examined whether this newly discovered ability affects aspects of music and auditory cognition, particularly pitch learning and evaluation. Our starting points are two well-established premises: (1) frequency of occurrence has an influence on the way we process stimuli; (2) in Western music, some pitches and musical keys are much more frequent than others. Based on these premises, we hypothesize that if absolute pitch values are indeed represented in long-term memory, pitch frequency of occurrence in music would significantly affect cognitive processes, in particular pitch learning and evaluation. Two experiments were designed to test this hypothesis in participants with no absolute pitch, most with little or no musical training. Experiment 1 demonstrated a faster response and a learning advantage for frequent pitches over infrequent pitches in an identification task. In Experiment 2, participants evaluated infrequent pitches as more pleasing than frequent pitches when presented in isolation. These results suggest that absolute pitch representation in memory may play a substantial, hitherto unacknowledged role in auditory (and specifically musical) cognition. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  13. Half pitch lower sound perception caused by carbamazepine.

    Science.gov (United States)

    Konno, Shyu; Yamazaki, Etsuko; Kudoh, Masako; Abe, Takashi; Tohgi, Hideo

    2003-09-01

    We report a 16-year-old woman with secondary generalization of partial seizure, who complained of an auditory disturbance after carbamazepine (CBZ) administration. She had been taking sodium valproate (VPA) from the age of 15. However, her seizures remained poorly controlled. We changed her antiepileptic drug from VPA to CBZ. At 1 week after CBZ administration, she noticed that electone musical performances were heard as a semitone lower. When oral administration of CBZ was stopped, her pitch perception returned to normal. If she had not been able to discern absolute pitch, she might have been unable to recognize her lowered pitch perception. Auditory disturbance caused by CBZ is reversible and very rare.

  14. Norwegian Pitched Roof Defects

    Directory of Open Access Journals (Sweden)

    Lars Gullbrekken

    2016-06-01

    Full Text Available The building constructions investigated in this work are pitched wooden roofs with exterior vertical drainpipes and wooden load-bearing system. The aim of this research is to further investigate the building defects of pitched wooden roofs and obtain an overview of typical roof defects. The work involves an analysis of the building defect archive from the research institute SINTEF Building and Infrastructure. The findings from the SINTEF archive show that moisture is a dominant exposure factor, especially in roof constructions. In pitched wooden roofs, more than half of the defects are caused by deficiencies in design, materials, or workmanship, where these deficiencies allow moisture from precipitation or indoor moisture into the structure. Hence, it is important to increase the focus on robust and durable solutions to avoid defects both from exterior and interior moisture sources in pitched wooden roofs. Proper design of interior ventilation and vapour retarders seem to be the main ways to control entry from interior moisture sources into attic and roof spaces.

  15. Vocal Pitch Shift in Congenital Amusia (Pitch Deafness)

    Science.gov (United States)

    Hutchins, Sean; Peretz, Isabelle

    2013-01-01

    We tested whether congenital amusics, who exhibit pitch perception deficits, nevertheless adjust the pitch of their voice in response to a sudden pitch shift applied to vocal feedback. Nine amusics and matched controls imitated their own previously-recorded speech or singing, while the online feedback they received was shifted mid-utterance by 25…

  16. Optimisation of the Sekwa blended-wing-Body research UAV

    CSIR Research Space (South Africa)

    Broughton, BA

    2008-10-01

    Full Text Available qualities constraints during the aerodynamic design process. NOMENCLATURE g2009g2868g3013 zero-lift angle of attack AoA α, angle of attack AR aspect ratio BWB blended-wing-body g1829g3005,g2868 zero-lift drag coefficient g1829g3005,g3036 induced drag... coefficient g1829g3005,g3047 total drag coefficient g1829g3040,g2868 zero-lift pitching moment coefficient CG centre of gravity F objective function to be minimised g1845actual actual wing area g1845 reference wing area, as projected into xy-plane 1...

  17. Temperature-dependent sex-reversal by a transformer-2 gene-edited mutation in the spotted wing drosophila, Drosophila suzukii.

    Science.gov (United States)

    Li, Jianwei; Handler, Alfred M

    2017-09-28

    Female to male sex reversal was achieved in an emerging agricultural insect pest, Drosophila suzukii, by creating a temperature-sensitive point mutation in the sex-determination gene, transformer-2 (tra-2), using CRISPR/Cas9 (clustered regularly interspaced palindromic repeats/CRISPR-associated) homology-directed repair gene-editing. Ds-tra-2 ts2 mutants developed as normal fertile XX and XY adults at permissive temperatures below 20 °C, but at higher restrictive temperatures (26 to 29 °C) chromosomal XX females developed as sterile intersexuals with a predominant male phenotype, while XY males developed with normal morphology, but were sterile. The temperature-dependent function of the Ds-TRA-2 ts2 protein was also evident by the up- and down-regulation of female-specific Ds-Yolk protein 1 (Ds-Yp1) gene expression by temperature shifts during adulthood. This study confirmed the temperature-dependent function of a gene-edited mutation and provides a new method for the more general creation of conditional mutations for functional genomic analysis in insects, and other organisms. Furthermore, it provides a temperature-dependent system for creating sterile male populations useful for enhancing the efficacy of biologically-based programs, such as the sterile insect technique (SIT), to control D. suzukii and other insect pest species of agricultural and medical importance.

  18. Experimental Investigation of a Wing-in-Ground Effect Craft

    Directory of Open Access Journals (Sweden)

    M. Mobassher Tofa

    2014-01-01

    Full Text Available The aerodynamic characteristics of the wing-in-ground effect (WIG craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future.

  19. Experimental investigation of a wing-in-ground effect craft.

    Science.gov (United States)

    Tofa, M Mobassher; Maimun, Adi; Ahmed, Yasser M; Jamei, Saeed; Priyanto, Agoes; Rahimuddin

    2014-01-01

    The aerodynamic characteristics of the wing-in-ground effect (WIG) craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM) wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future.

  20. Numerical study on aerodynamics of banked wing in ground effect

    Directory of Open Access Journals (Sweden)

    Qing Jia

    2016-03-01

    Full Text Available Unlike conventional airplane, a WIG craft experiences righting moment and adverse yaw moment in banked turning in ground effect. Numerical simulations are carried out to study the aerodynamics of banked wing in ground effect. Configurations of rectangular wing and delta wing are considered, and performance of endplates and ailerons during banking are also studied. The study shows that righting moment increase nonlinearly with heeling angle, and endplates enhance the righting. The asymmetric aerodynamic distribution along span of wing with heeling angle introduces adverse yaw moment. Heeling in ground effect with small ground clearance increases the vertical aerodynamic force and makes WIG craft climb. Deflections of ailerons introduce lift decrease and a light pitching motion. Delta wing shows advantage in banked turning for smaller righting moment and adverse yaw moment during banking.

  1. Scapular winging

    International Nuclear Information System (INIS)

    Mozolova, D.

    2013-01-01

    We present the case of a boy who, up to the age of 16, was an active football and floorball player. In the recent 2 years, he experienced increasing muscle weakness and knee pain. Examinations revealed osteoid osteoma of the distal femur and proximal tibia bilaterally and a lesion of the right medial meniscus. The neurological exam revealed no pathology and EMG revealed the myopathic picture. At our first examination, small, cranially displaced scapulae looking like wings and exhibiting atypical movements were apparent (see movie). Genetic analysis confirmed facioscapulohumeral muscle dystrophy (FSHMD). Facial and particularly humeroscapular muscles are affected in this condition. Bulbar, extra ocular and respiratory muscles are spared. The genetic defect is a deletion in the subtelomeric region of the 4-th chromosome (4q35) resulting in 1-10 instead of the 11-150 D4Z4 tandem repeats. Inheritance is autosomal dominant and thus carries a 50% risk for the offspring of affected subjects. (author)

  2. Crackle Pitch Rises Progressively during Inspiration in Pneumonia, CHF, and IPF Patients

    OpenAIRE

    Vyshedskiy, Andrey; Murphy, Raymond

    2012-01-01

    Objective. It is generally accepted that crackles are due to sudden opening of airways and that larger airways produce crackles of lower pitch than smaller airways do. As larger airways are likely to open earlier in inspiration than smaller airways and the reverse is likely to be true in expiration, we studied crackle pitch as a function of crackle timing in inspiration and expiration. Our goal was to see if the measurement of crackle pitch was consistent with this theory. Methods. Patient...

  3. Lung studies with spiral CT. pitch 1 versus pitch 2

    International Nuclear Information System (INIS)

    Sartoni Galloni, S.; Miceli, M.; Lipparino, M.; Burzi, M.; Gigli, F.; Rossi, M.S.; Santoli, G.; Guidarelli, G.

    1999-01-01

    In Spiral CT, the pitch is the ratio of the distance to tabletop travels per 360 degrees rotation to nominal slice width, expressed in mm. Performing Spiral CT examination with pitch 2 allows to reduce examination time, exposure and contrast dose, and X-ray tube overload. The authors investigated the yield of pitch 2 in lung parenchyma studies, particular relative to diagnostic image quality [it

  4. Human vertical eye movement responses to earth horizontal pitch

    Science.gov (United States)

    Wall, C. 3rd; Petropoulos, A. E.

    1993-01-01

    The vertical eye movements in humans produced in response to head-over-heels constant velocity pitch rotation about a horizontal axis resemble those from other species. At 60 degrees/s these are persistent and tend to have non-reversing slow components that are compensatory to the direction of rotation. In most, but not all subjects, the slow component velocity was well characterized by a rapid build-up followed by an exponential decay to a non-zero baseline. Super-imposed was a cyclic or modulation component whose frequency corresponded to the time for one revolution and whose maximum amplitude occurred during a specific head orientation. All response components (exponential decay, baseline and modulation) were larger during pitch backward compared to pitch forward runs. Decay time constants were shorter during the backward runs, thus, unlike left to right yaw axis rotation, pitch responses display significant asymmetries between paired forward and backward runs.

  5. A novel mechanism for emulating insect wing kinematics

    International Nuclear Information System (INIS)

    Seshadri, Pranay; Benedict, Moble; Chopra, Inderjit

    2012-01-01

    A novel dual-differential four-bar flapping mechanism that can accurately emulate insect wing kinematics in all three degrees of freedom (translation, rotation and stroke plane deviation) is developed. The mechanism is specifically designed to be simple and scalable such that it can be utilized on an insect-based flapping wing micro air vehicle. Kinematic formulations for the wing stroke position, pitch angle and coning angle for this model are derived from first principles and compared with a 3D simulation. A benchtop flapping mechanism based on this model was designed and built, which was also equipped with a balance for force measurements. 3D motion capture tests were conducted on this setup to demonstrate the capability of generating complex figure-of-eight flapping motions along with dynamic pitching. The dual-differential four-bar mechanism was implemented on a light-weight vehicle that demonstrated tethered hover. (paper)

  6. Pitch memory and exposure effects.

    OpenAIRE

    Ben-Haim, Moshe Shay; Eitan, Zohar; Chajut, Eran

    2014-01-01

    Recent studies indicate that the ability to represent absolute pitch values in long-term memory (LTM), long believed to be the possession of a small minority of trained musicians endowed with "absolute pitch" (AP), is in fact shared to some extent by a considerable proportion of the population. The current study examined whether this newly-discovered ability affects aspects of music and auditory cognition, particularly pitch learning and evaluation. Our starting points are two well establishe...

  7. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.

    Science.gov (United States)

    Nakata, Toshiyuki; Liu, Hao

    2012-02-22

    Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated computational model of a hovering insect with rigid and flexible wings. Aerodynamic performance of flapping wings with passive deformation or prescribed deformation is evaluated in terms of aerodynamic force, power and efficiency. Our results reveal that wing flexibility can increase downwash in wake and hence aerodynamic force: first, a dynamic wing bending is observed, which delays the breakdown of leading edge vortex near the wing tip, responsible for augmenting the aerodynamic force-production; second, a combination of the dynamic change of wing bending and twist favourably modifies the wing kinematics in the distal area, which leads to the aerodynamic force enhancement immediately before stroke reversal. Moreover, an increase in hovering efficiency of the flexible wing is achieved as a result of the wing twist. An extensive study of wing stiffness effect on aerodynamic performance is further conducted through a tuning of Young's modulus and thickness, indicating that insect wing structures may be optimized not only in terms of aerodynamic performance but also dependent on many factors, such as the wing strength, the circulation capability of wing veins and the control of wing movements.

  8. Fast pitch softball injuries.

    Science.gov (United States)

    Meyers, M C; Brown, B R; Bloom, J A

    2001-01-01

    The popularity of fast pitch softball in the US and throughout the world is well documented. Along with this popularity, there has been a concomitant increase in the number of injuries. Nearly 52% of cases qualify as major disabling injuries requiring 3 weeks or more of treatment and 2% require surgery. Interestingly, 75% of injuries occur during away games and approximately 31% of traumas occur during nonpositional and conditioning drills. Injuries range from contusions and tendinitis to ligamentous disorders and fractures. Although head and neck traumas account for 4 to 12% of cases, upper extremity traumas account for 23 to 47% of all injuries and up to 19% of cases involve the knee. Approximately 34 to 42% of injuries occur when the athlete collides with another individual or object. Other factors involved include the quality of playing surface, athlete's age and experience level, and the excessive physical demands associated with the sport. Nearly 24% of injuries involve base running and are due to poor judgement, sliding technique, current stationary base design, unorthodox joint and extremity position during ground impact and catching of cleats. The increasing prevalence of overtraining syndrome among athletes has been attributed to an unclear definition of an optimal training zone, poor communication between player and coach, and the limited ability of bone and connective tissue to quickly respond to match the demands of the sport. This has led routinely to arm, shoulder and lumbar instability, chronic nonsteroidal anti-inflammatory drug (NSAID) use and time loss injuries in 45% of pitching staff during a single season. Specific attention to a safer playing environment, coaching and player education, and sport-specific training and conditioning would reduce the risk, rate and severity of fast pitch traumas. Padding of walls, backstops, rails and dugout areas, as well as minimising use of indoor facilities, is suggested to decrease the number of collision

  9. Musical Activity Tunes Up Absolute Pitch Ability

    DEFF Research Database (Denmark)

    Dohn, Anders; Garza-Villarreal, Eduardo A.; Ribe, Lars Riisgaard

    2014-01-01

    Absolute pitch (AP) is the ability to identify or produce pitches of musical tones without an external reference. Active AP (i.e., pitch production or pitch adjustment) and passive AP (i.e., pitch identification) are considered to not necessarily coincide, although no study has properly compared...

  10. Aerodynamic tricks for pitching oscillation and visual stabilization in a hovering bird

    Science.gov (United States)

    Su, Jian-Yuan; Ting, Shang-Chieh; Yang, Jing-Tang

    2010-11-01

    We experimentally investigate how small birds attain a stabilized vision and body posture during hovering. Wing-beats of finches and passerines executing asymmetrical hovering provide lift merely during the downstroke. The downstroke lift is significantly greater than the bird weight, thereby causing a pitch-up swing of the bird body. A hovering bird skillfully and unceasingly tunes the position and orientation of lift force to stabilize its vision, so that the eye displacement is approximately one-tenth less than the tail, causing an illusion that the bird body is rotating about the eye. The hovering birds also spread and fold periodically their tail with an evident phase relationship with respect to the beating wings. We found that hovering birds use their tail to intercept the strong downward air-flow induced by the downstroking wings, and sophisticatedly spread their tail upon the arrival of the downward air-flow, rendering a pitch-up moment that effectively counteracts the pitch-down body rotation. Hence during hovering the bird essentially undergoes a dynamically-stable pitching oscillation, and concurrently attains a stabilized vision.

  11. Rapid area change in pitch-up manoeuvres of small perching birds.

    Science.gov (United States)

    Polet, D T; Rival, D E

    2015-10-26

    Rapid pitch-up has been highlighted as a mechanism to generate large lift and drag during landing manoeuvres. However, pitching rates had not been measured previously in perching birds, and so the direct applicability of computations and experiments to observed behaviour was not known. We measure pitch rates in a small, wild bird (the black-capped chickadee; Poecile atricapillus), and show that these rates are within the parameter range used in experiments. Pitching rates were characterized by the shape change number, a metric comparing the rate of frontal area increase to acceleration. Black-capped chickadees increase the shape change number during perching in direct proportion to their total kinetic and potential energy at the start of the manoeuvre. The linear relationship between dissipated energy and shape change number is in accordance with a simple analytical model developed for two-dimensional pitching and decelerating airfoils. Black-capped chickadees use a wing pitch-up manoeuvre during perching to dissipate energy quickly while maintaining lift and drag through rapid area change. It is suggested that similar pitch-and-decelerate manoeuvres could be used to aid in the controlled, precise landings of small manoeuvrable air vehicles.

  12. Generation of the pitch moment during the controlled flight after takeoff of fruitflies.

    Directory of Open Access Journals (Sweden)

    Mao Wei Chen

    Full Text Available In the present paper, the controlled flight of fruitflies after voluntary takeoff is studied. Wing and body kinematics of the insects after takeoff are measured using high-speed video techniques, and the aerodynamic force and moment are calculated by the computational fluid dynamics method based on the measured data. How the control moments are generated is analyzed by correlating the computed moments with the wing kinematics. A fruit-fly has a large pitch-up angular velocity owing to the takeoff jump and the fly controls its body attitude by producing pitching moments. It is found that the pitching moment is produced by changes in both the aerodynamic force and the moment arm. The change in the aerodynamic force is mainly due to the change in angle of attack. The change in the moment arm is mainly due to the change in the mean stroke angle and deviation angle, and the deviation angle plays a more important role than the mean stroke angle in changing the moment arm (note that change in deviation angle implies variation in the position of the aerodynamic stroke plane with respect to the anatomical stroke plane. This is unlike the case of fruitflies correcting pitch perturbations in steady free flight, where they produce pitching moment mainly by changes in mean stroke angle.

  13. Generation of the pitch moment during the controlled flight after takeoff of fruitflies.

    Science.gov (United States)

    Chen, Mao Wei; Wu, Jiang Hao; Sun, Mao

    2017-01-01

    In the present paper, the controlled flight of fruitflies after voluntary takeoff is studied. Wing and body kinematics of the insects after takeoff are measured using high-speed video techniques, and the aerodynamic force and moment are calculated by the computational fluid dynamics method based on the measured data. How the control moments are generated is analyzed by correlating the computed moments with the wing kinematics. A fruit-fly has a large pitch-up angular velocity owing to the takeoff jump and the fly controls its body attitude by producing pitching moments. It is found that the pitching moment is produced by changes in both the aerodynamic force and the moment arm. The change in the aerodynamic force is mainly due to the change in angle of attack. The change in the moment arm is mainly due to the change in the mean stroke angle and deviation angle, and the deviation angle plays a more important role than the mean stroke angle in changing the moment arm (note that change in deviation angle implies variation in the position of the aerodynamic stroke plane with respect to the anatomical stroke plane). This is unlike the case of fruitflies correcting pitch perturbations in steady free flight, where they produce pitching moment mainly by changes in mean stroke angle.

  14. VLSI implementation of an AMDF pitch detector

    OpenAIRE

    Smith, Tony; Gittel, Falko; Schwarzbacher, Andreas; Hilt, E.; Timoney, Joseph

    2003-01-01

    Pitch detectors are used in a variety of speech processing applications such as speech recognition systems where the pitch of the speaker is used as one parameter for identification purposes. Furthermore, pitch detectors are also sued with adaptive filters to achieve high quality adaptive noise cancellation of speech signals. In voice conversion systems, pitch detection is an essential step since the pitch of the modified signal is altered to model the target voice. This paper describes a ...

  15. Vortexlet models of flapping flexible wings show tuning for force production and control

    International Nuclear Information System (INIS)

    Mountcastle, A M; Daniel, T L

    2010-01-01

    Insect wings are compliant structures that experience deformations during flight. Such deformations have recently been shown to substantially affect induced flows, with appreciable consequences to flight forces. However, there are open questions related to the aerodynamic mechanisms underlying the performance benefits of wing deformation, as well as the extent to which such deformations are determined by the boundary conditions governing wing actuation together with mechanical properties of the wing itself. Here we explore aerodynamic performance parameters of compliant wings under periodic oscillations, subject to changes in phase between wing elevation and pitch, and magnitude and spatial pattern of wing flexural stiffness. We use a combination of computational structural mechanics models and a 2D computational fluid dynamics approach to ask how aerodynamic force production and control potential are affected by pitch/elevation phase and variations in wing flexural stiffness. Our results show that lift and thrust forces are highly sensitive to flexural stiffness distributions, with performance optima that lie in different phase regions. These results suggest a control strategy for both flying animals and engineering applications of micro-air vehicles.

  16. Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes

    International Nuclear Information System (INIS)

    Park, Hyungmin; Choi, Haecheon

    2012-01-01

    In the present study, we conduct an experiment using a one-paired dynamically scaled model of an insect wing, to investigate how asymmetric strokes with different wing kinematic parameters are used to control the aerodynamics of a dragonfly-like inclined flapping wing in still fluid. The kinematic parameters considered are the angles of attack during the mid-downstroke (α md ) and mid-upstroke (α mu ), and the duration (Δτ) and time of initiation (τ p ) of the pitching rotation. The present dragonfly-like inclined flapping wing has the aerodynamic mechanism of unsteady force generation similar to those of other insect wings in a horizontal stroke plane, but the detailed effect of the wing kinematics on the force control is different due to the asymmetric use of the angle of attack during the up- and downstrokes. For example, high α md and low α mu produces larger vertical force with less aerodynamic power, and low α md and high α mu is recommended for horizontal force (thrust) production. The pitching rotation also affects the aerodynamics of a flapping wing, but its dynamic rotational effect is much weaker than the effect from the kinematic change in the angle of attack caused by the pitching rotation. Thus, the influences of the duration and timing of pitching rotation for the present inclined flapping wing are found to be very different from those for a horizontal flapping wing. That is, for the inclined flapping motion, the advanced and delayed rotations produce smaller vertical forces than the symmetric one and the effect of pitching duration is very small. On the other hand, for a specific range of pitching rotation timing, delayed rotation requires less aerodynamic power than the symmetric rotation. As for the horizontal force, delayed rotation with low α md and high α mu is recommended for long-duration flight owing to its high efficiency, and advanced rotation should be employed for hovering flight for nearly zero horizontal force. The present

  17. Tinnitus pitch and acoustic trauma

    Energy Technology Data Exchange (ETDEWEB)

    Cahani, M; Paul, G; Shahar, A

    1983-01-01

    Fifty-six subjects complaining of tinnitus underwent an audiometric test and a test for identifying the analogous pitch of their tinnitus. All of the subjects reported that they had been exposed to noise in the past. The subjects were divided into two groups on the basis of their audiometric test results. Group P was composed of subjects who showed a sensorineural hearing loss typical of acoustic trauma. Group N was composed of subjects whose hearing was within normal limits. The pitch of the tinnitus in group P was concentrated in the high-frequency range, whereas in group N tinnitus pitch values were distributed over the low and mid-audiometric frequency spectrum. It was deduced that different processes are involved in the generation of tinnitus in the two groups.

  18. Disorders of pitch production in tone deafness

    Directory of Open Access Journals (Sweden)

    Simone eDalla Bella

    2011-07-01

    Full Text Available Singing is as natural as speaking for the majority of people. Yet some individuals (i.e., 10-15% are inaccurate singers, typically performing or imitating pitches and melodies inaccurately. This condition, commonly referred to as tone deafness, has been observed both in the presence and absence of deficient pitch perception. In this article we review the existing literature concerning normal singing, poor-pitch singing, and, briefly, the sources of this condition. Considering that pitch plays a prominent role in the structure of both music and speech we also focus on the possibility that pitch production (or imitation is similarly impaired in poor-pitch singers. Preliminary evidence from our laboratory on poor-pitch singing suggests that pitch imitation may be selectively inaccurate in the music domain without being affected in speech. This finding points to separability of mechanisms subserving pitch production in music and language.

  19. Difficulties with Pitch Discrimination Influences Pitch Memory Performance: Evidence from Congenital Amusia

    OpenAIRE

    Jiang, Cunmei; Lim, Vanessa K.; Wang, Hang; Hamm, Jeff P.

    2013-01-01

    Music processing is influenced by pitch perception and memory. Additionally these features interact, with pitch memory performance decreasing as the perceived distance between two pitches decreases. This study examined whether or not the difficulty of pitch discrimination influences pitch retention by testing individuals with congenital amusia. Pitch discrimination difficulty was equated by determining an individual's threshold with a two down one up staircase procedure and using this to crea...

  20. A study on forces acting on a flapping wing

    Directory of Open Access Journals (Sweden)

    Cetiner O.

    2013-04-01

    Full Text Available In order to study the forces acting on a flapping wing, an experimental investigation is performed in steady water flow. In this study, a SD7003 airfoil undergoes combined pitching and plunging motion which simulates the forward flight of small birds. The frequency of pitching motion is equal to the frequency of plunging motion and pitch leads the plunge by a phase angle of 90 degrees. The experiments are conducted at Reynolds numbers of 2500 ≤ Re ≤ 13700 and the vortex formation is recorded using the digital particle image velocimetry (DPIV technique. A prediction of thrust force and efficiency is calculated from the average wake deficit of DPIV data, the near-wake vorticity patterns and time dependent velocity vectors are determined to comment on the thrust and drag indication. Direct force measurements are attempted using a Force/Torque sensor which is capable of measuring forces and moments in three axial directions.

  1. Force measurements of flexible tandem wings in hovering and forward flights

    International Nuclear Information System (INIS)

    Zheng, Yingying; Wu, Yanhua; Tang, Hui

    2015-01-01

    Aerodynamic forces, power consumptions and efficiencies of flexible and rigid tandem wings undergoing combined plunging/pitching motion were measured in a hovering flight and two forward flights with Strouhal numbers of 0.6 and 0.3. Three flexible dragonfly-like tandem wing models termed Wing I, Wing II, and Wing III which are progressively less flexible, as well as a pair of rigid wings as the reference were operated at three phase differences of 0°, 90° and 180°. The results showed that both the flexibility and phase difference have significant effects on the aerodynamic performances. In both hovering and forward flights at a higher oscillation frequency of 1 Hz (St = 0.6), the Wing III model outperformed the other wing models with larger total horizontal force coefficient and efficiency. In forward flight at the lower frequency of 0.5 Hz (St = 0.3), Wing III, rigid wings and Wing II models performed best at 0°, 90° and 180° phase difference, respectively. From the time histories of force coefficients of fore- and hind-wings, different peak values, phase lags, and secondary peaks were found to be the important reasons to cause the differences in the average horizontal force coefficients. Particle image velocimetry and deformation measurements were performed to provide the insights into how the flexibility affects the aerodynamic performance of the tandem wings. The spanwise bending deformation was found to contribute to the horizontal force, by offering a more beneficial position to make LEV more attached to the wing model in both hovering and forward flights, and inducing a higher-velocity region in forward flight. (paper)

  2. Reliable Fluid Power Pitch Systems

    DEFF Research Database (Denmark)

    Liniger, Jesper; Pedersen, Henrik Clemmensen; Soltani, Mohsen

    2015-01-01

    The key objectives of wind turbine manufactures and buyers are to reduce the Total Cost of Ownership and Total Cost of Energy. Among others, low downtime of a wind turbine is important to increase the amount of energy produced during its lifetime. Historical data indicate that pitch systems accou...

  3. Crackle Pitch Rises Progressively during Inspiration in Pneumonia, CHF, and IPF Patients.

    Science.gov (United States)

    Vyshedskiy, Andrey; Murphy, Raymond

    2012-01-01

    Objective. It is generally accepted that crackles are due to sudden opening of airways and that larger airways produce crackles of lower pitch than smaller airways do. As larger airways are likely to open earlier in inspiration than smaller airways and the reverse is likely to be true in expiration, we studied crackle pitch as a function of crackle timing in inspiration and expiration. Our goal was to see if the measurement of crackle pitch was consistent with this theory. Methods. Patients with a significant number of crackles were examined using a multichannel lung sound analyzer. These patients included 34 with pneumonia, 38 with heart failure, and 28 with interstitial fibrosis. Results. Crackle pitch progressively increased during inspirations in 79% of all patients. In these patients crackle pitch increased by approximately 40 Hz from the early to midinspiration and by another 40 Hz from mid to late-inspiration. In 10% of patients, crackle pitch did not change and in 11% of patients crackle pitch decreased. During expiration crackle pitch progressively decreased in 72% of patients and did not change in 28% of patients. Conclusion. In the majority of patients, we observed progressive crackle pitch increase during inspiration and decrease during expiration. Increased crackle pitch at larger lung volumes is likely a result of recruitment of smaller diameter airways. An alternate explanation is that crackle pitch may be influenced by airway tension that increases at greater lung volume. In any case improved understanding of the mechanism of production of these common lung sounds may help improve our understanding of pathophysiology of these disorders.

  4. Butterfly wing colours : scale beads make white pierid wings brighter

    NARCIS (Netherlands)

    Stavenga, DG; Stowe, S; Siebke, K; Zeil, J; Arikawa, K

    2004-01-01

    The wing-scale morphologies of the pierid butterflies Pieris rapae (small white) and Delias nigrina (common jezabel), and the heliconine Heliconius melpomene are compared and related to the wing-reflectance spectra. Light scattering at the wing scales determines the wing reflectance, but when the

  5. Flow structure and aerodynamic performance of a hovering bristled wing in low Re

    Science.gov (United States)

    Lee, Seunghun; Lahooti, Mohsen; Kim, Daegyoum

    2017-11-01

    Previous studies on a bristled wing have mainly focused on simple kinematics of the wing such as translation or rotation. The aerodynamic performance of a bristled wing in a quasi-steady phase is known to be comparable to that of a smooth wing without a gap because shear layers in the gaps of the bristled wing are sufficiently developed to block the gaps. However, we point out that, in the starting transient phase where the shear layers are not fully developed, the force generation of a bristled wing is not as efficient as that of a quasi-steady state. The performance in the transient phase is important to understand the aerodynamics of a bristled wing in an unsteady motion. In the hovering motion, due to repeated stroke reversals, the formation and development of shear layers inside the gaps is repeated in each stroke. In this study, a bristled wing in hovering is numerically investigated in the low Reynolds number of O(10). We especially focus on the development of shear layers during a stroke reversal and its effect on the overall propulsive performance. Although the aerodynamic force generation is slightly reduced due to the gap vortices, the asymmetric behavior of vortices in a gap between bristles during a stroke reversal makes the bristled wing show higher lift to drag ratio than a smooth wing.

  6. Linear quadratic regulator design for an unpowered, winged re-entry vehicle

    NARCIS (Netherlands)

    Mooij, E.

    1998-01-01

    This report describes the design of an attitude controller for an unpowered, winged re-entry vehicle. The decoupling of the symmetric and asymmetric motion makes it possible to design two separate controllers, one for the pitch mot ion and one for the lateral motion. The design of the controller, a

  7. Cross-Cultural Perspectives on Pitch Memory

    Science.gov (United States)

    Trehub, Sandra E.; Schellenberg, E. Glenn; Nakata, Takayuki

    2008-01-01

    We examined effects of age and culture on children's memory for the pitch level of familiar music. Canadian 9- and 10-year-olds distinguished the original pitch level of familiar television theme songs from foils that were pitch-shifted by one semitone, whereas 5- to 8-year-olds failed to do so (Experiment 1). In contrast, Japanese 5- and…

  8. Pitch perception prior to cortical maturation

    Science.gov (United States)

    Lau, Bonnie K.

    Pitch perception plays an important role in many complex auditory tasks including speech perception, music perception, and sound source segregation. Because of the protracted and extensive development of the human auditory cortex, pitch perception might be expected to mature, at least over the first few months of life. This dissertation investigates complex pitch perception in 3-month-olds, 7-month-olds and adults -- time points when the organization of the auditory pathway is distinctly different. Using an observer-based psychophysical procedure, a series of four studies were conducted to determine whether infants (1) discriminate the pitch of harmonic complex tones, (2) discriminate the pitch of unresolved harmonics, (3) discriminate the pitch of missing fundamental melodies, and (4) have comparable sensitivity to pitch and spectral changes as adult listeners. The stimuli used in these studies were harmonic complex tones, with energy missing at the fundamental frequency. Infants at both three and seven months of age discriminated the pitch of missing fundamental complexes composed of resolved and unresolved harmonics as well as missing fundamental melodies, demonstrating perception of complex pitch by three months of age. More surprisingly, infants in both age groups had lower pitch and spectral discrimination thresholds than adult listeners. Furthermore, no differences in performance on any of the tasks presented were observed between infants at three and seven months of age. These results suggest that subcortical processing is not only sufficient to support pitch perception prior to cortical maturation, but provides adult-like sensitivity to pitch by three months.

  9. Quantification of wing and body kinematics in connection to torque generation during damselfly yaw turn

    Science.gov (United States)

    Zeyghami, Samane; Bode-Oke, Ayodeji T.; Dong, HaiBo

    2017-01-01

    This study provides accurate measurements of the wing and body kinematics of three different species of damselflies in free yaw turn flights. The yaw turn is characterized by a short acceleration phase which is immediately followed by an elongated deceleration phase. Most of the heading change takes place during the latter stage of the flight. Our observations showed that yaw turns are executed via drastic rather than subtle changes in the kinematics of all four wings. The motion of the inner and outer wings were found to be strongly linked through their orientation as well as their velocities with the inner wings moving faster than the outer wings. By controlling the pitch angle and wing velocity, a damselfly adjusts the angle of attack. The wing angle of attack exerted the strongest influence on the yaw torque, followed by the flapping and deviation velocities of the wings. Moreover, no evidence of active generation of counter torque was found in the flight data implying that deceleration and stopping of the maneuver is dominated by passive damping. The systematic analysis carried out on the free flight data advances our understanding of the mechanisms by which these insects achieve their observed maneuverability. In addition, the inspiration drawn from this study can be employed in the design of low frequency flapping wing micro air vehicles (MAV's).

  10. Pitching Airfoil Boundary Layer Investigations

    OpenAIRE

    Raffel, Markus; Richard, Hugues; Richter, Kai; Bosbach, Johannes; Geißler, Wolfgang

    2006-01-01

    The present paper describes an experiment performed in a transonic wind tunnel facility where a new test section has been developed especially for the investigation of the unsteady flow above oscillating airfoils under dynamic stall conditions. Dynamic stall is characterized by the development, movement and shedding of one or more concentrated vortices on the airfoils upper surface. The hysteresis loops of lift-, drag- and pitching moment are highly influenced by these vortices. To understand...

  11. Variable Pitch Darrieus Water Turbines

    Science.gov (United States)

    Kirke, Brian; Lazauskas, Leo

    In recent years the Darrieus wind turbine concept has been adapted for use in water, either as a hydrokinetic turbine converting the kinetic energy of a moving fluid in open flow like an underwater wind turbine, or in a low head or ducted arrangement where flow is confined, streamtube expansion is controlled and efficiency is not subject to the Betz limit. Conventional fixed pitch Darrieus turbines suffer from two drawbacks, (i) low starting torque and (ii) shaking due to cyclical variations in blade angle of attack. Ventilation and cavitation can also cause problems in water turbines when blade velocities are high. Shaking can be largely overcome by the use of helical blades, but these do not produce large starting torque. Variable pitch can produce high starting torque and high efficiency, and by suitable choice of pitch regime, shaking can be minimized but not entirely eliminated. Ventilation can be prevented by avoiding operation close to a free surface, and cavitation can be prevented by limiting blade velocities. This paper summarizes recent developments in Darrieus water turbines, some problems and some possible solutions.

  12. Absolute pitch: a case study.

    Science.gov (United States)

    Vernon, P E

    1977-11-01

    The auditory skill known as 'absolute pitch' is discussed, and it is shown that this differs greatly in accuracy of identification or reproduction of musical tones from ordinary discrimination of 'tonal height' which is to some extent trainable. The present writer possessed absolute pitch for almost any tone or chord over the normal musical range, from about the age of 17 to 52. He then started to hear all music one semitone too high, and now at the age of 71 it is heard a full tone above the true pitch. Tests were carried out under controlled conditions, in which 68 to 95 per cent of notes were identified as one semitone or one tone higher than they should be. Changes with ageing seem more likely to occur in the elasticity of the basilar membrane mechanisms than in the long-term memory which is used for aural analysis of complex sounds. Thus this experience supports the view that some resolution of complex sounds takes place at the peripheral sense organ, and this provides information which can be incorrect, for interpretation by the cortical centres.

  13. Perceiving pitch absolutely: Comparing absolute and relative pitch possessors in a pitch memory task

    Directory of Open Access Journals (Sweden)

    Schlaug Gottfried

    2009-08-01

    Full Text Available Abstract Background The perceptual-cognitive mechanisms and neural correlates of Absolute Pitch (AP are not fully understood. The aim of this fMRI study was to examine the neural network underlying AP using a pitch memory experiment and contrasting two groups of musicians with each other, those that have AP and those that do not. Results We found a common activation pattern for both groups that included the superior temporal gyrus (STG extending into the adjacent superior temporal sulcus (STS, the inferior parietal lobule (IPL extending into the adjacent intraparietal sulcus (IPS, the posterior part of the inferior frontal gyrus (IFG, the pre-supplementary motor area (pre-SMA, and superior lateral cerebellar regions. Significant between-group differences were seen in the left STS during the early encoding phase of the pitch memory task (more activation in AP musicians and in the right superior parietal lobule (SPL/intraparietal sulcus (IPS during the early perceptual phase (ITP 0–3 and later working memory/multimodal encoding phase of the pitch memory task (more activation in non-AP musicians. Non-significant between-group trends were seen in the posterior IFG (more in AP musicians and the IPL (more anterior activations in the non-AP group and more posterior activations in the AP group. Conclusion Since the increased activation of the left STS in AP musicians was observed during the early perceptual encoding phase and since the STS has been shown to be involved in categorization tasks, its activation might suggest that AP musicians involve categorization regions in tonal tasks. The increased activation of the right SPL/IPS in non-AP musicians indicates either an increased use of regions that are part of a tonal working memory (WM network, or the use of a multimodal encoding strategy such as the utilization of a visual-spatial mapping scheme (i.e., imagining notes on a staff or using a spatial coding for their relative pitch height for pitch

  14. Disorders of pitch production in tone deafness.

    Science.gov (United States)

    Bella, Simone Dalla; Berkowska, Magdalena; Sowiński, Jakub

    2011-01-01

    Singing is as natural as speaking for the majority of people. Yet some individuals (i.e., 10-15%) are poor singers, typically performing or imitating pitches and melodies inaccurately. This condition, commonly referred to as "tone deafness," has been observed both in the presence and absence of deficient pitch perception. In this article we review the existing literature concerning normal singing, poor-pitch singing, and, briefly, the sources of this condition. Considering that pitch plays a prominent role in the structure of both music and speech we also focus on the possibility that speech production (or imitation) is similarly impaired in poor-pitch singers. Preliminary evidence from our laboratory suggests that pitch imitation may be selectively inaccurate in the music domain without being affected in speech. This finding points to separability of mechanisms subserving pitch production in music and language.

  15. Tone language fluency impairs pitch discrimination

    Directory of Open Access Journals (Sweden)

    Isabelle ePeretz

    2011-07-01

    Full Text Available Here we present evidence that native speakers of a tone language, in which pitch contributes to word meaning, are impaired in the discrimination of falling pitches in tone sequences, as compared to speakers of a non-tone language. Both groups were presented with monotonic and isochronous sequences of five tones (i.e., constant pitch and intertone interval. They were required to detect when the fourth tone was displaced in pitch or time. While speakers of a tone language performed more poorly in the detection of downward pitch changes, they did not differ from non-tone language speakers in their perception of upward pitch changes or in their perception of subtle time changes. Moreover, this impairment cannot be attributed to low musical aptitude since the impairment remains unchanged when individual differences in musical pitch-based processing is taken into account. Thus, the impairment appears highly specific and may reflect the influence of statistical regularities of tone languages.

  16. Disorders of Pitch Production in Tone Deafness

    Science.gov (United States)

    Bella, Simone Dalla; Berkowska, Magdalena; Sowiński, Jakub

    2011-01-01

    Singing is as natural as speaking for the majority of people. Yet some individuals (i.e., 10–15%) are poor singers, typically performing or imitating pitches and melodies inaccurately. This condition, commonly referred to as “tone deafness,” has been observed both in the presence and absence of deficient pitch perception. In this article we review the existing literature concerning normal singing, poor-pitch singing, and, briefly, the sources of this condition. Considering that pitch plays a prominent role in the structure of both music and speech we also focus on the possibility that speech production (or imitation) is similarly impaired in poor-pitch singers. Preliminary evidence from our laboratory suggests that pitch imitation may be selectively inaccurate in the music domain without being affected in speech. This finding points to separability of mechanisms subserving pitch production in music and language. PMID:21811479

  17. Static and Dynamic Flow Visualization Studies of Two Double-Delta Wing Models at High Angles of Attack

    Science.gov (United States)

    1992-03-01

    body, ft U.= free-stream velocity, ft/sec In the case of a wing pitching about its mid-chord location, it can be interpreted as the ratio of the...Over Moderately Swept Delta Wings," HTP -5 Workshop On Vortical Flow Breakdown and Structural Interactions, NASA Langley Research Center, August 15-16...January 6- 9,1992/Reno,Nevada. 18. User’s Manual , Flow Visualization Water Tunnel Operation for Model 1520, Eidelic International, Inc., Torrance

  18. Vortex Lattice Simulations of Attached and Separated Flows around Flapping Wings

    Directory of Open Access Journals (Sweden)

    Thomas Lambert

    2017-04-01

    Full Text Available Flapping flight is an increasingly popular area of research, with applications to micro-unmanned air vehicles and animal flight biomechanics. Fast, but accurate methods for predicting the aerodynamic loads acting on flapping wings are of interest for designing such aircraft and optimizing thrust production. In this work, the unsteady vortex lattice method is used in conjunction with three load estimation techniques in order to predict the aerodynamic lift and drag time histories produced by flapping rectangular wings. The load estimation approaches are the Katz, Joukowski and simplified Leishman–Beddoes techniques. The simulations’ predictions are compared to experimental measurements from wind tunnel tests of a flapping and pitching wing. Three types of kinematics are investigated, pitch-leading, pure flapping and pitch lagging. It is found that pitch-leading tests can be simulated quite accurately using either the Katz or Joukowski approaches as no measurable flow separation occurs. For the pure flapping tests, the Katz and Joukowski techniques are accurate as long as the static pitch angle is greater than zero. For zero or negative static pitch angles, these methods underestimate the amplitude of the drag. The Leishman–Beddoes approach yields better drag amplitudes, but can introduce a constant negative drag offset. Finally, for the pitch-lagging tests the Leishman–Beddoes technique is again more representative of the experimental results, as long as flow separation is not too extensive. Considering the complexity of the phenomena involved, in the vast majority of cases, the lift time history is predicted with reasonable accuracy. The drag (or thrust time history is more challenging.

  19. Difficulties with pitch discrimination influences pitch memory performance: evidence from congenital amusia.

    Science.gov (United States)

    Jiang, Cunmei; Lim, Vanessa K; Wang, Hang; Hamm, Jeff P

    2013-01-01

    Music processing is influenced by pitch perception and memory. Additionally these features interact, with pitch memory performance decreasing as the perceived distance between two pitches decreases. This study examined whether or not the difficulty of pitch discrimination influences pitch retention by testing individuals with congenital amusia. Pitch discrimination difficulty was equated by determining an individual's threshold with a two down one up staircase procedure and using this to create conditions where two pitches (the standard and the comparison tones) differed by 1x, 2x, and 3x the threshold setting. For comparison with the literature a condition that employed a constant pitch difference of four semitones was also included. The results showed that pitch memory performance improved as the discrimination between the standard and the comparison tones was made easier for both amusic and control groups, and more importantly, that amusics did not show any pitch retention deficits when the discrimination difficulty was equated. In contrast, consistent with previous literature, amusics performed worse than controls when the physical pitch distance was held constant at four semitones. This impaired performance has been interpreted as evidence for pitch memory impairment in the past. However, employing a constant pitch distance always makes the difference closer to the discrimination threshold for the amusic group than for the control group. Therefore, reduced performance in this condition may simply reflect differences in the perceptual difficulty of the discrimination. The findings indicate the importance of equating the discrimination difficulty when investigating memory.

  20. Difficulties with pitch discrimination influences pitch memory performance: evidence from congenital amusia.

    Directory of Open Access Journals (Sweden)

    Cunmei Jiang

    Full Text Available Music processing is influenced by pitch perception and memory. Additionally these features interact, with pitch memory performance decreasing as the perceived distance between two pitches decreases. This study examined whether or not the difficulty of pitch discrimination influences pitch retention by testing individuals with congenital amusia. Pitch discrimination difficulty was equated by determining an individual's threshold with a two down one up staircase procedure and using this to create conditions where two pitches (the standard and the comparison tones differed by 1x, 2x, and 3x the threshold setting. For comparison with the literature a condition that employed a constant pitch difference of four semitones was also included. The results showed that pitch memory performance improved as the discrimination between the standard and the comparison tones was made easier for both amusic and control groups, and more importantly, that amusics did not show any pitch retention deficits when the discrimination difficulty was equated. In contrast, consistent with previous literature, amusics performed worse than controls when the physical pitch distance was held constant at four semitones. This impaired performance has been interpreted as evidence for pitch memory impairment in the past. However, employing a constant pitch distance always makes the difference closer to the discrimination threshold for the amusic group than for the control group. Therefore, reduced performance in this condition may simply reflect differences in the perceptual difficulty of the discrimination. The findings indicate the importance of equating the discrimination difficulty when investigating memory.

  1. Individual Pitch Control Using LIDAR Measurements

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Henriksen, Lars Christian; Poulsen, Niels Kjølstad

    2012-01-01

    In this work the problem of individual pitch control of a variable-speed variable-pitch wind turbine in the full load region is considered. Model predictive control (MPC) is used to solve the problem. However as the plant is nonlinear and time varying, a new approach is proposed to simplify......-of-plane blade root bending moments and a better transient response compared to a benchmark PI individual pitch controller....

  2. Heavy vehicle pitch dynamics and suspension tuning

    OpenAIRE

    Cao, Dongpu; Rakheja, Subhash; Su, Chun-Yi

    2008-01-01

    The influence of suspension tuning of passenger cars on bounce and pitch ride performance has been explored in a number of studies, while only minimal efforts have been made for establishing similar rules for heavy vehicles. This study aims to explore pitch dynamics and suspension tunings of a two-axle heavy vehicle with unconnected suspension, which could also provide valuable information for heavy vehicles with coupled suspensions. Based on a generalised pitch-plane model of a two-axle heav...

  3. Vortex Dynamics around Pitching Plates

    Science.gov (United States)

    2014-04-29

    electrical signals are A/D converted in an ATI NetBox interface and recorded using a Java application, and are filtered in three steps. The first is a low...the plate while staying attached to the corners of the leading edge. During this process, a second vortex loop, created by the quick angular ...is a spike in CL centered around t = 0 due to non-circulatory6 effects from the angular acceleration of the wing. The amplitude of the peak is

  4. Pitch Discrimination Learning: Specificity for Pitch and Harmonic Resolvability, and Electrophysiological Correlates

    OpenAIRE

    Carcagno, Samuele; Plack, Christopher J.

    2011-01-01

    Multiple-hour training on a pitch discrimination task dramatically decreases the threshold for detecting a pitch difference between two harmonic complexes. Here, we investigated the specificity of this perceptual learning with respect to the pitch and the resolvability of the trained harmonic complex, as well as its cortical electrophysiological correlates. We trained 24 participants for 12 h on a pitch discrimination task using one of four different harmonic complexes. The complexes differed...

  5. Falling with Style: Bats Perform Complex Aerial Rotations by Adjusting Wing Inertia.

    Directory of Open Access Journals (Sweden)

    Attila J Bergou

    Full Text Available The remarkable maneuverability of flying animals results from precise movements of their highly specialized wings. Bats have evolved an impressive capacity to control their flight, in large part due to their ability to modulate wing shape, area, and angle of attack through many independently controlled joints. Bat wings, however, also contain many bones and relatively large muscles, and thus the ratio of bats' wing mass to their body mass is larger than it is for all other extant flyers. Although the inertia in bat wings would typically be associated with decreased aerial maneuverability, we show that bat maneuvers challenge this notion. We use a model-based tracking algorithm to measure the wing and body kinematics of bats performing complex aerial rotations. Using a minimal model of a bat with only six degrees of kinematic freedom, we show that bats can perform body rolls by selectively retracting one wing during the flapping cycle. We also show that this maneuver does not rely on aerodynamic forces, and furthermore that a fruit fly, with nearly massless wings, would not exhibit this effect. Similar results are shown for a pitching maneuver. Finally, we combine high-resolution kinematics of wing and body movements during landing and falling maneuvers with a 52-degree-of-freedom dynamical model of a bat to show that modulation of wing inertia plays the dominant role in reorienting the bat during landing and falling maneuvers, with minimal contribution from aerodynamic forces. Bats can, therefore, use their wings as multifunctional organs, capable of sophisticated aerodynamic and inertial dynamics not previously observed in other flying animals. This may also have implications for the control of aerial robotic vehicles.

  6. Pigeons produce aerodynamic torques through changes in wing trajectory during low speed aerial turns.

    Science.gov (United States)

    Ros, Ivo G; Badger, Marc A; Pierson, Alyssa N; Bassman, Lori C; Biewener, Andrew A

    2015-02-01

    The complexity of low speed maneuvering flight is apparent from the combination of two critical aspects of this behavior: high power and precise control. To understand how such control is achieved, we examined the underlying kinematics and resulting aerodynamic mechanisms of low speed turning flight in the pigeon (Columba livia). Three birds were trained to perform 90 deg level turns in a stereotypical fashion and detailed three-dimensional (3D) kinematics were recorded at high speeds. Applying the angular momentum principle, we used mechanical modeling based on time-varying 3D inertia properties of individual sections of the pigeon's body to separate angular accelerations of the torso based on aerodynamics from those based on inertial effects. Directly measured angular accelerations of the torso were predicted by aerodynamic torques, justifying inferences of aerodynamic torque generation based on inside wing versus outside wing kinematics. Surprisingly, contralateral asymmetries in wing speed did not appear to underlie the 90 deg aerial turns, nor did contralateral differences in wing area, angle of attack, wingbeat amplitude or timing. Instead, torso angular accelerations into the turn were associated with the outside wing sweeping more anteriorly compared with a more laterally directed inside wing. In addition to moving through a relatively more retracted path, the inside wing was also more strongly pronated about its long axis compared with the outside wing, offsetting any difference in aerodynamic angle of attack that might arise from the observed asymmetry in wing trajectories. Therefore, to generate roll and pitch torques into the turn, pigeons simply reorient their wing trajectories toward the desired flight direction. As a result, by acting above the center of mass, the net aerodynamic force produced by the wings is directed inward, generating the necessary torques for turning. © 2015. Published by The Company of Biologists Ltd.

  7. Hemispheric lateralization for early auditory processing of lexical tones: dependence on pitch level and pitch contour.

    Science.gov (United States)

    Wang, Xiao-Dong; Wang, Ming; Chen, Lin

    2013-09-01

    In Mandarin Chinese, a tonal language, pitch level and pitch contour are two dimensions of lexical tones according to their acoustic features (i.e., pitch patterns). A change in pitch level features a step change whereas that in pitch contour features a continuous variation in voice pitch. Currently, relatively little is known about the hemispheric lateralization for the processing of each dimension. To address this issue, we made whole-head electrical recordings of mismatch negativity in native Chinese speakers in response to the contrast of Chinese lexical tones in each dimension. We found that pre-attentive auditory processing of pitch level was obviously lateralized to the right hemisphere whereas there is a tendency for that of pitch contour to be lateralized to the left. We also found that the brain responded faster to pitch level than to pitch contour at a pre-attentive stage. These results indicate that the hemispheric lateralization for early auditory processing of lexical tones depends on the pitch level and pitch contour, and suggest an underlying inter-hemispheric interactive mechanism for the processing. © 2013 Elsevier Ltd. All rights reserved.

  8. Independently controlled wing stroke patterns in the fruit fly Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Soma Chakraborty

    Full Text Available Flies achieve supreme flight maneuverability through a small set of miniscule steering muscles attached to the wing base. The fast flight maneuvers arise from precisely timed activation of the steering muscles and the resulting subtle modulation of the wing stroke. In addition, slower modulation of wing kinematics arises from changes in the activity of indirect flight muscles in the thorax. We investigated if these modulations can be described as a superposition of a limited number of elementary deformations of the wing stroke that are under independent physiological control. Using a high-speed computer vision system, we recorded the wing motion of tethered flying fruit flies for up to 12,000 consecutive wing strokes at a sampling rate of 6250 Hz. We then decomposed the joint motion pattern of both wings into components that had the minimal mutual information (a measure of statistical dependence. In 100 flight segments measured from 10 individual flies, we identified 7 distinct types of frequently occurring least-dependent components, each defining a kinematic pattern (a specific deformation of the wing stroke and the sequence of its activation from cycle to cycle. Two of these stroke deformations can be associated with the control of yaw torque and total flight force, respectively. A third deformation involves a change in the downstroke-to-upstroke duration ratio, which is expected to alter the pitch torque. A fourth kinematic pattern consists in the alteration of stroke amplitude with a period of 2 wingbeat cycles, extending for dozens of cycles. Our analysis indicates that these four elementary kinematic patterns can be activated mutually independently, and occur both in isolation and in linear superposition. The results strengthen the available evidence for independent control of yaw torque, pitch torque, and total flight force. Our computational method facilitates systematic identification of novel patterns in large kinematic datasets.

  9. Independently controlled wing stroke patterns in the fruit fly Drosophila melanogaster.

    Science.gov (United States)

    Chakraborty, Soma; Bartussek, Jan; Fry, Steven N; Zapotocky, Martin

    2015-01-01

    Flies achieve supreme flight maneuverability through a small set of miniscule steering muscles attached to the wing base. The fast flight maneuvers arise from precisely timed activation of the steering muscles and the resulting subtle modulation of the wing stroke. In addition, slower modulation of wing kinematics arises from changes in the activity of indirect flight muscles in the thorax. We investigated if these modulations can be described as a superposition of a limited number of elementary deformations of the wing stroke that are under independent physiological control. Using a high-speed computer vision system, we recorded the wing motion of tethered flying fruit flies for up to 12,000 consecutive wing strokes at a sampling rate of 6250 Hz. We then decomposed the joint motion pattern of both wings into components that had the minimal mutual information (a measure of statistical dependence). In 100 flight segments measured from 10 individual flies, we identified 7 distinct types of frequently occurring least-dependent components, each defining a kinematic pattern (a specific deformation of the wing stroke and the sequence of its activation from cycle to cycle). Two of these stroke deformations can be associated with the control of yaw torque and total flight force, respectively. A third deformation involves a change in the downstroke-to-upstroke duration ratio, which is expected to alter the pitch torque. A fourth kinematic pattern consists in the alteration of stroke amplitude with a period of 2 wingbeat cycles, extending for dozens of cycles. Our analysis indicates that these four elementary kinematic patterns can be activated mutually independently, and occur both in isolation and in linear superposition. The results strengthen the available evidence for independent control of yaw torque, pitch torque, and total flight force. Our computational method facilitates systematic identification of novel patterns in large kinematic datasets.

  10. Incremental Nonlinear Dynamic Inversion and Multihole Pressure Probes for Disturbance Rejection Control of Fixed-wing Micro Air Vehicles

    NARCIS (Netherlands)

    Smeur, E.J.J.; Remes, B.D.W.; de Wagter, C.; Chu, Q.; J.-M. Moschetta G. Hattenberger, H. de Plinval

    2017-01-01

    Maintaining stable flight during high turbulence intensities is challenging for fixed-wing micro air vehicles (MAV). Two methods are proposed
    to improve the disturbance rejection performance of the MAV: incremental nonlinear dynamic inversion (INDI) control and phaseadvanced pitch probes. INDI

  11. Anomalous capillary flow of coal tar pitches

    Energy Technology Data Exchange (ETDEWEB)

    Saint Romain, J.L.; Lahaye, J.; Ehrburger, P.; Couderc, P.

    1986-06-01

    Capillary flow of liquid coal tar pitch into a coke bed was studied. Anomalies in the flow could not be attributed to a plugging effect for mesophase content lower than 20 wt%. The flow behaviour of small pitch droplets can be correlated with the change in physicochemical properties, as measured by the glass transition temperature, on penetration into the coke bed. 4 references.

  12. Ideomotor effects of pitch on continuation tapping.

    Science.gov (United States)

    Ammirante, Paolo; Thompson, William F; Russo, Frank A

    2011-02-01

    The ideomotor principle predicts that perception will modulate action where overlap exists between perceptual and motor representations of action. This effect is demonstrated with auditory stimuli. Previous perceptual evidence suggests that pitch contour and pitch distance in tone sequences may elicit tonal motion effects consistent with listeners' implicit awareness of the lawful dynamics of locomotive bodies. To examine modulating effects of perception on action, participants in a continuation tapping task produced a steady tempo. Auditory tones were triggered by each tap. Pitch contour randomly and persistently varied within trials. Pitch distance between successive tones varied between trials. Although participants were instructed to ignore them, tones systematically affected finger dynamics and timing. Where pitch contour implied positive acceleration, the following tap and the intertap interval (ITI) that it completed were faster. Where pitch contour implied negative acceleration, the following tap and the ITI that it completed were slower. Tempo was faster with greater pitch distance. Musical training did not predict the magnitude of these effects. There were no generalized effects on timing variability. Pitch contour findings demonstrate how tonal motion may elicit the spontaneous production of accents found in expressive music performance.

  13. Longitudinal Aerodynamic Characteristics and Wing Pressure Distributions of a Blended-Wing-Body Configuration at Low and High Reynolds Numbers

    Science.gov (United States)

    Re, Richard J.

    2005-01-01

    Force balance and wing pressure data were obtained on a 0.017-Scale Model of a blended-wing-body configuration (without a simulated propulsion system installation) to validate the capability of computational fluid dynamic codes to predict the performance of such thick sectioned subsonic transport configurations. The tests were conducted in the National Transonic Facility of the Langley Research Center at Reynolds numbers from 3.5 to 25.0 million at Mach numbers from 0.25 to 0.86. Data were obtained in the pitch plane only at angles of attack from -1 to 8 deg at Mach numbers greater than 0.25. A configuration with winglets was tested at a Reynolds number of 25.0 million at Mach numbers from 0.83 to 0.86.

  14. Oblique-wing research airplane motion simulation with decoupling control laws

    Science.gov (United States)

    Kempel, Robert W.; Mc Neill, Walter E.; Maine, Trindel A.

    1988-01-01

    A large piloted vertical motion simulator was used to assess the performance of a preliminary decoupling control law for an early version of the F-8 oblique wing research demonstrator airplane. Evaluations were performed for five discrete flight conditions, ranging from low-altitude subsonic Mach numbers to moderate-altitude supersonic Mach numbers. Asymmetric sideforce as a function of angle of attack was found to be the primary cause of both the lateral acceleration noted in pitch and the tendency to roll into left turns and out of right turns. The flight control system was shown to be effective in generally decoupling the airplane and reducing the lateral acceleration in pitch maneuvers.

  15. Characterization of pitches by differential scanning calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ehrburger, P.; Martin, C.; Lahaye, J.; Saint-Romain, J.L.; Couderc, P.

    1988-12-01

    Pitch materials have generally a very complex composition with molecular mass ranging from a few hundred to several thousands units. In order to characterize these materials their properties related to the glassy transformation, in particular to enthalpy relaxation, have been investigated. Solvent soluble fractions have been characterized by differential scanning calorimetry (DSC). As with polymeric materials, enthalpy relaxation can provide information about pitches and the interactions occurring between the different types of molecules present in the pitch: mean molecular size, structural factor, molecular-size distribution. The determination of glass transition properties provides a useful means for the characterization of pitch and of their solvent extracts. It also permits insight into the complex reactions which occur when pitch materials are heat-treated. 7 refs., 2 figs., 3 tabs.

  16. Memory for vocal tempo and pitch.

    Science.gov (United States)

    Boltz, Marilyn G

    2017-11-01

    Two experiments examined the ability to remember the vocal tempo and pitch of different individuals, and the way this information is encoded into the cognitive system. In both studies, participants engaged in an initial familiarisation phase while attending was systematically directed towards different aspects of speakers' voices. Afterwards, they received a tempo or pitch recognition task. Experiment 1 showed that tempo and pitch are both incidentally encoded into memory at levels comparable to intentional learning, and no performance deficit occurs with divided attending. Experiment 2 examined the ability to recognise pitch or tempo when the two dimensions co-varied and found that the presence of one influenced the other: performance was best when both dimensions were positively correlated with one another. As a set, these findings indicate that pitch and tempo are automatically processed in a holistic, integral fashion [Garner, W. R. (1974). The processing of information and structure. Potomac, MD: Erlbaum.] which has a number of cognitive implications.

  17. The Influence of Chordwise Flexibility on the Flow Structure and Streamwise Force of a Sinusoidally Pitching Airfoil

    Science.gov (United States)

    Olson, David Arthur

    Many natural flyers and swimmers need to exploit unsteady mechanisms in order to generate sufficient aerodynamic forces for sustained flight and propulsion. This is, in part, due to the low speed and length scales at which they typically operate. In this low Reynolds number regime, there are many unanswered questions on how existing aerodynamic theory for both steady and unsteady flows can be applied. Additionally, most of these natural flyers and swimmers have deformable wing/fin structures, three dimensional wing planforms, and exhibit complex kinematics during motion. While some biologically-inspired studies seek to replicate these complex structures and kinematics in the laboratory or in numerical simulations, it becomes difficult to draw explicit connections to the existing knowledge base of classical unsteady aerodynamic theory due to the complexity of the problems. In this experimental study, wing kinematics, structure, and planform are greatly simplified to investigate the effect of chordwise flexibility on the streamwise force (thrust) and wake behavior of a sinusoidally pitching airfoil. The study of flexibility in the literature has typically utilized flat plates with varying thicknesses or lengths to change their chordwise flexibility. This choice introduces additional complexities when comparing to the wealth of knowledge originally developed on streamlined aerodynamic shapes. The current study capitalizes on the recent developments in 3D printer technology to create accurate shapes out of materials with varying degrees of flexibility by creating two standard NACA 0009 airfoils: one rigid and one flexible. Each of the two airfoils are sinusoidally pitched about the quarter chord over a range of oscillation amplitudes and frequencies while monitoring the deformation of the airfoil. The oscillation amplitude is selected to be small enough such that leading edge vortices do not form, and the vortical structures in the wake are formed from the trailing

  18. A Neuronal Network Model for Pitch Selectivity and Representation

    OpenAIRE

    Huang, Chengcheng; Rinzel, John

    2016-01-01

    Pitch is a perceptual correlate of periodicity. Sounds with distinct spectra can elicit the same pitch. Despite the importance of pitch perception, understanding the cellular mechanism of pitch perception is still a major challenge and a mechanistic model of pitch is lacking. A multi-stage neuronal network model is developed for pitch frequency estimation using biophysically-based, high-resolution coincidence detector neurons. The neuronal units respond only to highly coincident input among c...

  19. Unsteady fluid dynamics around a hovering wing

    Science.gov (United States)

    Krishna, Swathi; Green, Melissa; Mulleners, Karen

    2017-11-01

    The unsteady flow around a hovering flat plate wing has been investigated experimentally using particle image velocimetry and direct force measurements. The measurements are conducted on a wing that rotates symmetrically about the stroke reversal at a reduced frequency of k = 0.32 and Reynolds number of Re = 220 . The Lagrangian finite-time Lyapunov exponent method is used to analyse the unsteady flow fields by identifying dynamically relevant flow features such as the primary leading edge vortex (LEV), secondary vortices, and topological saddles, and their evolution within a flapping cycle. The flow evolution is divided into four stages that are characterised by the LEV (a)emergence, (b)growth, (c)lift-off, and (d)breakdown and decay. Tracking saddle points is shown to be helpful in defining the LEV lift-off which occurs at the maximum stroke velocity. The flow fields are correlated with the aerodynamic forces revealing that the maximum lift and drag are observed just before LEV lift-off. The end of wing rotation in the beginning of the stroke stimulates a change in the direction of the LEV growth and the start of rotation at the end of the stroke triggers the breakdown of the LEV.

  20. Pitch memory, labelling and disembedding in autism.

    Science.gov (United States)

    Heaton, Pamela

    2003-05-01

    Autistic musical savants invariably possess absolute pitch ability and are able to disembed individual musical tones from chords. Enhanced pitch discrimination and memory has been found in non-savant individuals with autism who also show superior performance on visual disembedding tasks. These experiments investigate the extent that enhanced disembedding ability will be found within the musical domain in autism. High-functioning children with autism, together with age- and intelligence-matched controls, participated in three experiments testing pitch memory, labelling and chord disembedding. The findings from experiment 1 showed enhanced pitch memory and labelling in the autism group. In experiment 2, when subjects were pre-exposed to labelled individual tones, superior chord segmentation was also found. However, in experiment 3, when disembedding performance was less reliant on pitch memory, no group differences emerged and the children with autism, like controls, perceived musical chords holistically. These findings indicate that pitch memory and labelling is superior in autism and can facilitate performance on musical disembedding tasks. However, when task performance does not rely on long-term pitch memory, autistic children, like controls, succumb to the Gestalt qualities of chords.

  1. Timing matters: the processing of pitch relations

    Science.gov (United States)

    Weise, Annekathrin; Grimm, Sabine; Trujillo-Barreto, Nelson J.; Schröger, Erich

    2014-01-01

    The human central auditory system can automatically extract abstract regularities from a variant auditory input. To this end, temporarily separated events need to be related. This study tested whether the timing between events, falling either within or outside the temporal window of integration (~350 ms), impacts the extraction of abstract feature relations. We utilized tone pairs for which tones within but not across pairs revealed a constant pitch relation (e.g., pitch of second tone of a pair higher than pitch of first tone, while absolute pitch values varied across pairs). We measured the mismatch negativity (MMN; the brain’s error signal to auditory regularity violations) to second tones that rarely violated the pitch relation (e.g., pitch of second tone lower). A Short condition in which tone duration (90 ms) and stimulus onset asynchrony between the tones of a pair were short (110 ms) was compared to two conditions, where this onset asynchrony was long (510 ms). In the Long Gap condition, the tone durations were identical to Short (90 ms), but the silent interval was prolonged by 400 ms. In Long Tone, the duration of the first tone was prolonged by 400 ms, while the silent interval was comparable to Short (20 ms). Results show a frontocentral MMN of comparable amplitude in all conditions. Thus, abstract pitch relations can be extracted even when the within-pair timing exceeds the integration period. Source analyses indicate MMN generators in the supratemporal cortex. Interestingly, they were located more anterior in Long Gap than in Short and Long Tone. Moreover, frontal generator activity was found for Long Gap and Long Tone. Thus, the way in which the system automatically registers irregular abstract pitch relations depends on the timing of the events to be linked. Pending that the current MMN data mirror established abstract rule representations coding the regular pitch relation, neural processes building these templates vary with timing. PMID:24966823

  2. Timing matters: The processing of pitch relations

    Directory of Open Access Journals (Sweden)

    Annekathrin eWeise

    2014-06-01

    Full Text Available The human central auditory system can automatically extract abstract regularities from a variant auditory input. To this end, temporarily separated events need to be related. This study tested whether the timing between events, falling either within or outside the temporal window of integration (~350 ms, impacts the extraction of abstract feature relations. We utilized tone pairs for which tones within but not across pairs revealed a constant pitch relation (e.g. pitch of 2nd tone of a pair higher than pitch of 1st tone, while absolute pitch values varied across pairs. We measured the Mismatch Negativity (MMN; the brain’s error signal to auditory regularity violations to 2nd tones that rarely violated the pitch relation (e.g. pitch of 2nd tone lower. A Short condition in which tone duration (90 ms and stimulus onset asynchrony between the tones of a pair were short (110 ms was compared to two conditions, where this onset asynchrony was long (510 ms. In the Long Gap condition the tone durations were identical to Short (90 ms, but the silent interval was prolonged by 400 ms. In Long Tone the duration of the first tone was prolonged by 400 ms, while the silent interval was comparable to Short (20 ms. Results show a frontocentral MMN of comparable amplitude in all conditions. Thus, abstract pitch relations can be extracted even when the within-pair timing exceeds the integration period. Source analyses indicate MMN generators in the supratemporal cortex. Interestingly, they were located more anterior in Long Gap than in Short and Long Tone. Moreover, frontal generator activity was found for Long Gap and Long Tone. Thus, the way in which the system automatically registers irregular abstract pitch relations depends on the timing of the events to be linked. Pending that the current MMN data mirror established abstract rule representations coding the regular pitch relation, neural processes building these templates vary with timing.

  3. Reverse Algols

    Science.gov (United States)

    Leung, K. C.

    1989-01-01

    Reverse Algols, binary systems with a semidetached configuration in which the more massive component is in contact with the critical equipotential surface, are examined. Observational evidence for reverse Algols is presented and the parameters of seven reverse Algols are listed. The evolution of Algols and reverse Algols is discussed. It is suggested that, because reverse Algols represent the premass-reversal semidetached phase of close binary evolution, the evolutionary time scale between regular and reverse Algols is the ratio of the number of confirmed systems of these two Algol types.

  4. Pitch-to-Pitch Correlation in Location, Velocity, and Movement ant Its Role in Predicting Strikeout Rate

    OpenAIRE

    Zhao, Shiyuan

    2015-01-01

    We evaluate a model for pitch sequencing in baseball that is defined by pitch-to-pitch correlation in location, velocity, and movement. The correlations quantify the average similarity of consecutive pitches and provide a measure of the batter's ability to predict the properties of the upcoming pitch. We examine the characteristics of the model for a set of major league pitchers using PITCHf/x data for nearly three million pitches thrown over seven major league seasons. After partitioning the...

  5. Imperfect pitch: Gabor's uncertainty principle and the pitch of extremely brief sounds.

    Science.gov (United States)

    Hsieh, I-Hui; Saberi, Kourosh

    2016-02-01

    How brief must a sound be before its pitch is no longer perceived? The uncertainty tradeoff between temporal and spectral resolution (Gabor's principle) limits the minimum duration required for accurate pitch identification or discrimination. Prior studies have reported that pitch can be extracted from sinusoidal pulses as brief as half a cycle. This finding has been used in a number of classic papers to develop models of pitch encoding. We have found that phase randomization, which eliminates timbre confounds, degrades this ability to chance, raising serious concerns over the foundation on which classic pitch models have been built. The current study investigated whether subthreshold pitch cues may still exist in partial-cycle pulses revealed through statistical integration in a time series containing multiple pulses. To this end, we measured frequency-discrimination thresholds in a two-interval forced-choice task for trains of partial-cycle random-phase tone pulses. We found that residual pitch cues exist in these pulses but discriminating them requires an order of magnitude (ten times) larger frequency difference than that reported previously, necessitating a re-evaluation of pitch models built on earlier findings. We also found that as pulse duration is decreased to less than two cycles its pitch becomes biased toward higher frequencies, consistent with predictions of an auto-correlation model of pitch extraction.

  6. Pitch modelling for the Nguni languages

    CSIR Research Space (South Africa)

    Govender, N

    2007-06-01

    Full Text Available Govender ngovender@csir.co.za, Etienne Barnard ebarnard@csir.co.za, Marelie Davel mdavel@csir.co.za by varying the levels of pitch, intensity and duration in the voice. An overview of intonation as observed in a variety of languages is provided in [1... nature of laryngograph data in voiced speech) and thus either could be used as the basis for the experiments. The pitch values extracted by Yin for all the laryngograph databases was consequently used as the basis for our comparisons. Pitch...

  7. Forced pitch motion of wind turbines

    Science.gov (United States)

    Leble, V.; Barakos, G.

    2016-09-01

    The possibility of a wind turbine entering vortex ring state during pitching oscillations is explored in this paper. The aerodynamic performance of the rotor was computed using the Helicopter Multi-Block flow solver. This code solves the Navier-Stokes equations in integral form using the arbitrary Lagrangian-Eulerian formulation for time-dependent domains with moving boundaries. A 10-MW wind turbine was put to perform yawing and pitching oscillations suggesting the partial vortex ring state during pitching motion. The results also show the strong effect of the frequency and amplitude of oscillations on the wind turbine performance.

  8. Forced pitch motion of wind turbines

    International Nuclear Information System (INIS)

    Leble, V; Barakos, G

    2016-01-01

    The possibility of a wind turbine entering vortex ring state during pitching oscillations is explored in this paper. The aerodynamic performance of the rotor was computed using the Helicopter Multi-Block flow solver. This code solves the Navier-Stokes equations in integral form using the arbitrary Lagrangian-Eulerian formulation for time-dependent domains with moving boundaries. A 10-MW wind turbine was put to perform yawing and pitching oscillations suggesting the partial vortex ring state during pitching motion. The results also show the strong effect of the frequency and amplitude of oscillations on the wind turbine performance. (paper)

  9. Lateralization of the Huggins pitch

    Science.gov (United States)

    Zhang, Peter Xinya; Hartmann, William M.

    2004-05-01

    The lateralization of the Huggins pitch (HP) was measured using a direct estimation method. The background noise was initially N0 or Nπ, and then the laterality of the entire stimulus was varied with a frequency-independent interaural delay, ranging from -1 to +1 ms. Two versions of the HP boundary region were used, stepped phase and linear phase. When presented in isolation, without the broadband background, the stepped boundary can be lateralized on its own but the linear boundary cannot. Nevertheless, the lateralizations of both forms of HP were found to be almost identical functions both of the interaural delay and of the boundary frequency over a two-octave range. In a third experiment, the same listeners lateralized sine tones in quiet as a function of interaural delay. Good agreement was found between lateralizations of the HP and of the corresponding sine tones. The lateralization judgments depended on the boundary frequency according to the expected hyperbolic law except when the frequency-independent delay was zero. For the latter case, the dependence on boundary frequency was much slower than hyperbolic. [Work supported by the NIDCD grant DC 00181.

  10. Reverse Logistics

    OpenAIRE

    Kulikova, Olga

    2016-01-01

    This thesis was focused on the analysis of the concept of reverse logistics and actual reverse processes which are implemented in mining industry and finding solutions for the optimization of reverse logistics in this sphere. The objective of this paper was the assessment of the development of reverse logistics in mining industry on the example of potash production. The theoretical part was based on reverse logistics and mining waste related literature and provided foundations for further...

  11. Wake patterns of the wings and tail of hovering hummingbirds

    Science.gov (United States)

    Altshuler, Douglas L.; Princevac, Marko; Pan, Hansheng; Lozano, Jesse

    The flow fields of slowly flying bats and fasterflying birds differ in that bats produce two vortex loops during each stroke, one per wing, and birds produce a single vortex loop per stroke. In addition, the circulation at stroke transition approaches zero in bats but remains strong in birds. It is unknown if these difference derive from fundamental differences in wing morphology or are a consequence of flight speed. Here, we present an analysis of the horizontal flow field underneath hovering Anna's hummingbirds (Calypte anna) to describe the wake of a bird flying at zero forward velocity. We also consider how the hummingbird tail interacts with the wake generated by the wings. High-speed image recording and analysis from three orthogonal perspectives revealed that the wing tips reach peak velocities in the middle of each stroke and approach zero velocity at stroke transition. Hummingbirds use complex tail kinematic patterns ranging from in phase to antiphase cycling with respect to the wings, covering several phase shifted patterns. We employed particle image velocimetry to attain detailed horizontal flow measurements at three levels with respect to the tail: in the tail, at the tail tip, and just below the tail. The velocity patterns underneath the wings indicate that flow oscillates along the ventral-dorsal axis in response to the down- and up-strokes and that the sideways flows with respect to the bird are consistently from the lateral to medial. The region around the tail is dominated by axial flows in dorsal to ventral direction. We propose that these flows are generated by interaction between the wakes of the two wings at the end of the upstroke, and that the tail actively defects flows to generate moments that contribute to pitch stability. The flow fields images also revealed distinct vortex loops underneath each wing, which were generated during each stroke. From these data, we propose a model for the primary flow structures of hummingbirds that more

  12. Engineering of Fast and Robust Adaptive Control for Fixed-Wing Unmanned Aircraft

    Science.gov (United States)

    2017-06-01

    evaluate the use of adaptive control on fixed-wing unmanned aircraft . The growing demand for unmanned systems will inherit the costs associated with...aerospace environment . 2.2 Classical Feedback vs Adaptive Control Control of a system can be categorized into two required elements; the requirement to...stabilize the system in the presence of: 1. disturbances that affect the controlled states and outputs (pitch rate perturbation caused by environmental

  13. Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures.

    Science.gov (United States)

    Jenett, Benjamin; Calisch, Sam; Cellucci, Daniel; Cramer, Nick; Gershenfeld, Neil; Swei, Sean; Cheung, Kenneth C

    2017-03-01

    We describe an approach for the discrete and reversible assembly of tunable and actively deformable structures using modular building block parts for robotic applications. The primary technical challenge addressed by this work is the use of this method to design and fabricate low density, highly compliant robotic structures with spatially tuned stiffness. This approach offers a number of potential advantages over more conventional methods for constructing compliant robots. The discrete assembly reduces manufacturing complexity, as relatively simple parts can be batch-produced and joined to make complex structures. Global mechanical properties can be tuned based on sub-part ordering and geometry, because local stiffness and density can be independently set to a wide range of values and varied spatially. The structure's intrinsic modularity can significantly simplify analysis and simulation. Simple analytical models for the behavior of each building block type can be calibrated with empirical testing and synthesized into a highly accurate and computationally efficient model of the full compliant system. As a case study, we describe a modular and reversibly assembled wing that performs continuous span-wise twist deformation. It exhibits high performance aerodynamic characteristics, is lightweight and simple to fabricate and repair. The wing is constructed from discrete lattice elements, wherein the geometric and mechanical attributes of the building blocks determine the global mechanical properties of the wing. We describe the mechanical design and structural performance of the digital morphing wing, including their relationship to wind tunnel tests that suggest the ability to increase roll efficiency compared to a conventional rigid aileron system. We focus here on describing the approach to design, modeling, and construction as a generalizable approach for robotics that require very lightweight, tunable, and actively deformable structures.

  14. Methods for the characterization of impregnating pitches

    Energy Technology Data Exchange (ETDEWEB)

    Compin, S.; Ben Aim, R.; Couderc, P.; Saint-Romain, J.L.

    1987-11-01

    This paper discusses modification of the impregnation performance of various pitches. The filtration ability, which expresses the impregnation performance, was studied using gel permeation chromatography and scanning electron microscopy. 16 refs., 5 figs., 2 tabs.

  15. Pitch Synchronous Segmentation of Speech Signals

    Data.gov (United States)

    National Aeronautics and Space Administration — The Pitch Synchronous Segmentation (PSS) that accelerates speech without changing its fundamental frequency method could be applied and evaluated for use at NASA....

  16. Coal tar pitch. Interrelations between properties and utilization of coal tar pitch

    Energy Technology Data Exchange (ETDEWEB)

    Collin, G; Koehler, H [Ruetgerswerke A.G., Duisburg (Germany, F.R.)

    1977-06-01

    Coal tar pitch is won as a highly aromatic, thermoplastic residue by destillating coal tar. In this paper the structure as well as the chemical and physical data of this pitch are introduced. In addition to this the actual as well as possible applications are indicated. For example, the pitch can be used for the production of binders, e.g. for electrodes and road construction as well as in combination with plastics for the production of insulating material and corrosion protection material.

  17. Major League Baseball pitch velocity and pitch type associated with risk of ulnar collateral ligament injury.

    Science.gov (United States)

    Keller, Robert A; Marshall, Nathan E; Guest, John-Michael; Okoroha, Kelechi R; Jung, Edward K; Moutzouros, Vasilios

    2016-04-01

    The number of Major League Baseball (MLB) pitchers requiring ulnar collateral ligament (UCL) reconstructions is increasing. Recent literature has attempted to correlate specific stresses placed on the throwing arm to risk for UCL injury, with limited results. Eighty-three MLB pitchers who underwent primary UCL reconstruction were evaluated. Pitching velocity and percent of pitch type thrown (fastball, curve ball, slider, and change-up) were evaluated 2 years before and after surgery. Data were compared with control pitchers matched for age, position, size, innings pitched, and experience. The evaluation of pitch velocity compared with matched controls found no differences in pre-UCL reconstruction pitch velocities for fastballs (91.5 vs. 91.2 miles per hour [mph], P = .69), curveballs (78.2 vs. 77.9 mph, P = .92), sliders (83.3 vs. 83.5 mph, P = .88), or change-ups (83.9 vs. 83.8 mph, P = .96). When the percentage of pitches thrown was evaluated, UCL reconstructed pitchers pitch significantly more fastballs than controls (46.7% vs. 39.4%, P = .035). This correlated to a 2% increase in risk for UCL injury for every 1% increase in fastballs thrown. Pitching more than 48% fastballs was a significant predictor of UCL injury, because pitchers over this threshold required reconstruction (P = .006). MLB pitchers requiring UCL reconstruction do not pitch at higher velocities than matched controls, and pitch velocity does not appear to be a risk factor for UCL reconstruction. However, MLB pitchers who pitch a high percentage of fastballs may be at increased risk for UCL injury because pitching a higher percent of fastballs appears to be a risk factor for UCL reconstruction. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  18. Effects of culture on musical pitch perception.

    Directory of Open Access Journals (Sweden)

    Patrick C M Wong

    Full Text Available The strong association between music and speech has been supported by recent research focusing on musicians' superior abilities in second language learning and neural encoding of foreign speech sounds. However, evidence for a double association--the influence of linguistic background on music pitch processing and disorders--remains elusive. Because languages differ in their usage of elements (e.g., pitch that are also essential for music, a unique opportunity for examining such language-to-music associations comes from a cross-cultural (linguistic comparison of congenital amusia, a neurogenetic disorder affecting the music (pitch and rhythm processing of about 5% of the Western population. In the present study, two populations (Hong Kong and Canada were compared. One spoke a tone language in which differences in voice pitch correspond to differences in word meaning (in Hong Kong Cantonese, /si/ means 'teacher' and 'to try' when spoken in a high and mid pitch pattern, respectively. Using the On-line Identification Test of Congenital Amusia, we found Cantonese speakers as a group tend to show enhanced pitch perception ability compared to speakers of Canadian French and English (non-tone languages. This enhanced ability occurs in the absence of differences in rhythmic perception and persists even after relevant factors such as musical background and age were controlled. Following a common definition of amusia (5% of the population, we found Hong Kong pitch amusics also show enhanced pitch abilities relative to their Canadian counterparts. These findings not only provide critical evidence for a double association of music and speech, but also argue for the reconceptualization of communicative disorders within a cultural framework. Along with recent studies documenting cultural differences in visual perception, our auditory evidence challenges the common assumption of universality of basic mental processes and speaks to the domain generality of

  19. Effects of Culture on Musical Pitch Perception

    Science.gov (United States)

    Wong, Patrick C. M.; Ciocca, Valter; Chan, Alice H. D.; Ha, Louisa Y. Y.; Tan, Li-Hai; Peretz, Isabelle

    2012-01-01

    The strong association between music and speech has been supported by recent research focusing on musicians' superior abilities in second language learning and neural encoding of foreign speech sounds. However, evidence for a double association—the influence of linguistic background on music pitch processing and disorders—remains elusive. Because languages differ in their usage of elements (e.g., pitch) that are also essential for music, a unique opportunity for examining such language-to-music associations comes from a cross-cultural (linguistic) comparison of congenital amusia, a neurogenetic disorder affecting the music (pitch and rhythm) processing of about 5% of the Western population. In the present study, two populations (Hong Kong and Canada) were compared. One spoke a tone language in which differences in voice pitch correspond to differences in word meaning (in Hong Kong Cantonese, /si/ means ‘teacher’ and ‘to try’ when spoken in a high and mid pitch pattern, respectively). Using the On-line Identification Test of Congenital Amusia, we found Cantonese speakers as a group tend to show enhanced pitch perception ability compared to speakers of Canadian French and English (non-tone languages). This enhanced ability occurs in the absence of differences in rhythmic perception and persists even after relevant factors such as musical background and age were controlled. Following a common definition of amusia (5% of the population), we found Hong Kong pitch amusics also show enhanced pitch abilities relative to their Canadian counterparts. These findings not only provide critical evidence for a double association of music and speech, but also argue for the reconceptualization of communicative disorders within a cultural framework. Along with recent studies documenting cultural differences in visual perception, our auditory evidence challenges the common assumption of universality of basic mental processes and speaks to the domain generality of culture

  20. Effects of culture on musical pitch perception.

    Science.gov (United States)

    Wong, Patrick C M; Ciocca, Valter; Chan, Alice H D; Ha, Louisa Y Y; Tan, Li-Hai; Peretz, Isabelle

    2012-01-01

    The strong association between music and speech has been supported by recent research focusing on musicians' superior abilities in second language learning and neural encoding of foreign speech sounds. However, evidence for a double association--the influence of linguistic background on music pitch processing and disorders--remains elusive. Because languages differ in their usage of elements (e.g., pitch) that are also essential for music, a unique opportunity for examining such language-to-music associations comes from a cross-cultural (linguistic) comparison of congenital amusia, a neurogenetic disorder affecting the music (pitch and rhythm) processing of about 5% of the Western population. In the present study, two populations (Hong Kong and Canada) were compared. One spoke a tone language in which differences in voice pitch correspond to differences in word meaning (in Hong Kong Cantonese, /si/ means 'teacher' and 'to try' when spoken in a high and mid pitch pattern, respectively). Using the On-line Identification Test of Congenital Amusia, we found Cantonese speakers as a group tend to show enhanced pitch perception ability compared to speakers of Canadian French and English (non-tone languages). This enhanced ability occurs in the absence of differences in rhythmic perception and persists even after relevant factors such as musical background and age were controlled. Following a common definition of amusia (5% of the population), we found Hong Kong pitch amusics also show enhanced pitch abilities relative to their Canadian counterparts. These findings not only provide critical evidence for a double association of music and speech, but also argue for the reconceptualization of communicative disorders within a cultural framework. Along with recent studies documenting cultural differences in visual perception, our auditory evidence challenges the common assumption of universality of basic mental processes and speaks to the domain generality of culture

  1. Perceptual pitch deficits coexist with pitch production difficulties in music but not Mandarin speech

    Science.gov (United States)

    Yang, Wu-xia; Feng, Jie; Huang, Wan-ting; Zhang, Cheng-xiang; Nan, Yun

    2014-01-01

    Congenital amusia is a musical disorder that mainly affects pitch perception. Among Mandarin speakers, some amusics also have difficulties in processing lexical tones (tone agnosics). To examine to what extent these perceptual deficits may be related to pitch production impairments in music and Mandarin speech, eight amusics, eight tone agnosics, and 12 age- and IQ-matched normal native Mandarin speakers were asked to imitate music note sequences and Mandarin words of comparable lengths. The results indicated that both the amusics and tone agnosics underperformed the controls on musical pitch production. However, tone agnosics performed no worse than the amusics, suggesting that lexical tone perception deficits may not aggravate musical pitch production difficulties. Moreover, these three groups were all able to imitate lexical tones with perfect intelligibility. Taken together, the current study shows that perceptual musical pitch and lexical tone deficits might coexist with musical pitch production difficulties. But at the same time these perceptual pitch deficits might not affect lexical tone production or the intelligibility of the speech words that were produced. The perception-production relationship for pitch among individuals with perceptual pitch deficits may be, therefore, domain-dependent. PMID:24474944

  2. Perceptual Pitch Deficits Coexist with Pitch Production Difficulties in Music but Not Mandarin Speech

    Directory of Open Access Journals (Sweden)

    Wu-xia eYang

    2014-01-01

    Full Text Available Congenital amusia is a musical disorder that mainly affects pitch perception. Among Mandarin speakers, some amusics also have difficulties in processing lexical tones (tone agnosics. To examine to what extent these perceptual deficits may be related to pitch production impairments in music and Mandarin speech, 8 amusics, 8 tone agnosics, and 12 age- and IQ-matched normal native Mandarin speakers were asked to imitate music note sequences and Mandarin words of comparable lengths. The results indicated that both the amusics and tone agnosics underperformed the controls on musical pitch production. However, tone agnosics performed no worse than the amusics, suggesting that lexical tone perception deficits may not aggravate musical pitch production difficulties. Moreover, these three groups were all able to imitate lexical tones with perfect intelligibility. Taken together, the current study shows that perceptual musical pitch and lexical tone deficits might coexist with musical pitch production difficulties. But at the same time these perceptual pitch deficits might not affect lexical tone production or the intelligibility of the speech words that were produced. The perception-production relationship for pitch among individuals with perceptual pitch deficits may be, therefore, domain-dependent.

  3. Aeroelastic Wing Shaping Using Distributed Propulsion

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor); Reynolds, Kevin Wayne (Inventor); Ting, Eric B. (Inventor)

    2017-01-01

    An aircraft has wings configured to twist during flight. Inboard and outboard propulsion devices, such as turbofans or other propulsors, are connected to each wing, and are spaced along the wing span. A flight controller independently controls thrust of the inboard and outboard propulsion devices to significantly change flight dynamics, including changing thrust of outboard propulsion devices to twist the wing, and to differentially apply thrust on each wing to change yaw and other aspects of the aircraft during various stages of a flight mission. One or more generators can be positioned upon the wing to provide power for propulsion devices on the same wing, and on an opposite wing.

  4. Butterflies regulate wing temperatures using radiative cooling

    Science.gov (United States)

    Tsai, Cheng-Chia; Shi, Norman Nan; Ren, Crystal; Pelaez, Julianne; Bernard, Gary D.; Yu, Nanfang; Pierce, Naomi

    2017-09-01

    Butterfly wings are live organs embedded with multiple sensory neurons and, in some species, with pheromoneproducing cells. The proper function of butterfly wings demands a suitable temperature range, but the wings can overheat quickly in the sun due to their small thermal capacity. We developed an infrared technique to map butterfly wing temperatures and discovered that despite the wings' diverse visible colors, regions of wings that contain live cells are the coolest, resulting from the thickness of the wings and scale nanostructures. We also demonstrated that butterflies use behavioral traits to prevent overheating of their wings.

  5. Pitch discrimination learning: specificity for pitch and harmonic resolvability, and electrophysiological correlates.

    Science.gov (United States)

    Carcagno, Samuele; Plack, Christopher J

    2011-08-01

    Multiple-hour training on a pitch discrimination task dramatically decreases the threshold for detecting a pitch difference between two harmonic complexes. Here, we investigated the specificity of this perceptual learning with respect to the pitch and the resolvability of the trained harmonic complex, as well as its cortical electrophysiological correlates. We trained 24 participants for 12 h on a pitch discrimination task using one of four different harmonic complexes. The complexes differed in pitch and/or spectral resolvability of their components by the cochlea, but were filtered into the same spectral region. Cortical-evoked potentials and a behavioral measure of pitch discrimination were assessed before and after training for all the four complexes. The change in these measures was compared to that of two control groups: one trained on a level discrimination task and one without any training. The behavioral results showed that learning was partly specific to both pitch and resolvability. Training with a resolved-harmonic complex improved pitch discrimination for resolved complexes more than training with an unresolved complex. However, we did not find evidence that training with an unresolved complex leads to specific learning for unresolved complexes. Training affected the P2 component of the cortical-evoked potentials, as well as a later component (250-400 ms). No significant changes were found on the mismatch negativity (MMN) component, although a separate experiment showed that this measure was sensitive to pitch changes equivalent to the pitch discriminability changes induced by training. This result suggests that pitch discrimination training affects processes not measured by the MMN, for example, processes higher in level or parallel to those involved in MMN generation.

  6. Reverse Osmosis

    Indian Academy of Sciences (India)

    many applications, one of which is desalination of seawater. The inaugural Nobel Prize in Chemistry was awarded in 1901 to van 't Hoff for his seminal work in this area. The present article explains the principle of osmosis and reverse osmosis. Osmosis and Reverse Osmosis. As the name suggests, reverse osmosis is the ...

  7. Inertial attitude control of a bat-like morphing-wing air vehicle

    International Nuclear Information System (INIS)

    Colorado, J; Barrientos, A; Rossi, C; Parra, C

    2013-01-01

    This paper presents a novel bat-like unmanned aerial vehicle inspired by the morphing-wing mechanism of bats. The goal of this paper is twofold. Firstly, a modelling framework is introduced for analysing how the robot should manoeuvre by means of changing wing morphology. This allows the definition of requirements for achieving forward and turning flight according to the kinematics of the wing modulation. Secondly, an attitude controller named backstepping+DAF is proposed. Motivated by biological evidence about the influence of wing inertia on the production of body accelerations, the attitude control law incorporates wing inertia information to produce desired roll (φ) and pitch (θ) acceleration commands (desired angular acceleration function (DAF)). This novel control approach is aimed at incrementing net body forces (F net ) that generate propulsion. Simulations and wind-tunnel experimental results have shown an increase of about 23% in net body force production during the wingbeat cycle when the wings are modulated using the DAF as a part of the backstepping control law. Results also confirm accurate attitude tracking in spite of high external disturbances generated by aerodynamic loads at airspeeds up to 5 ms −1 . (paper)

  8. Aerodynamic efficiency of a bioinspired flapping wing rotor at low Reynolds number.

    Science.gov (United States)

    Li, H; Guo, S

    2018-03-01

    This study investigates the aerodynamic efficiency of a bioinspired flapping wing rotor kinematics which combines an active vertical flapping motion and a passive horizontal rotation induced by aerodynamic thrust. The aerodynamic efficiencies for producing both vertical lift and horizontal thrust of the wing are obtained using a quasi-steady aerodynamic model and two-dimensional (2D) CFD analysis at Reynolds number of 2500. The calculated efficiency data show that both efficiencies (propulsive efficiency- η p , and efficiency for producing lift- P f ) of the wing are optimized at Strouhal number ( St ) between 0.1 and 0.5 for a range of wing pitch angles (upstroke angle of attack α u less than 45°); the St for high P f ( St  = 0.1 ∼ 0.3) is generally lower than for high η p ( St  = 0.2 ∼ 0.5), while the St for equilibrium rotation states lies between the two. Further systematic calculations show that the natural equilibrium of the passive rotating wing automatically converges to high-efficiency states: above 85% of maximum P f can be obtained for a wide range of prescribed wing kinematics. This study provides insight into the aerodynamic efficiency of biological flyers in cruising flight, as well as practical applications for micro air vehicle design.

  9. Inertial attitude control of a bat-like morphing-wing air vehicle.

    Science.gov (United States)

    Colorado, J; Barrientos, A; Rossi, C; Parra, C

    2013-03-01

    This paper presents a novel bat-like unmanned aerial vehicle inspired by the morphing-wing mechanism of bats. The goal of this paper is twofold. Firstly, a modelling framework is introduced for analysing how the robot should manoeuvre by means of changing wing morphology. This allows the definition of requirements for achieving forward and turning flight according to the kinematics of the wing modulation. Secondly, an attitude controller named backstepping+DAF is proposed. Motivated by biological evidence about the influence of wing inertia on the production of body accelerations, the attitude control law incorporates wing inertia information to produce desired roll (ϕ) and pitch (θ) acceleration commands (desired angular acceleration function (DAF)). This novel control approach is aimed at incrementing net body forces (F(net)) that generate propulsion. Simulations and wind-tunnel experimental results have shown an increase of about 23% in net body force production during the wingbeat cycle when the wings are modulated using the DAF as a part of the backstepping control law. Results also confirm accurate attitude tracking in spite of high external disturbances generated by aerodynamic loads at airspeeds up to 5 ms⁻¹.

  10. Analysis of Asymmetric Aircraft Aerodynamics Due to an Experimental Wing Glove

    Science.gov (United States)

    Hartshorn, Fletcher

    2011-01-01

    Aerodynamic analysis on a business jet with a wing glove attached to one wing is presented and discussed. If a wing glove is placed over a portion of one wing, there will be asymmetries in the aircraft as well as overall changes in the forces and moments acting on the aircraft. These changes, referred to as deltas, need to be determined and quantified to make sure the wing glove does not have a drastic effect on the aircraft flight characteristics. TRANAIR, a non-linear full potential solver was used to analyze a full aircraft, with and without a glove, at a variety of flight conditions and angles of attack and sideslip. Changes in the aircraft lift, drag and side force, along with roll, pitch and yawing moment are presented. Span lift and moment distributions are also presented for a more detailed look at the effects of the glove on the aircraft. Aerodynamic flow phenomena due to the addition of the glove and its fairing are discussed. Results show that the glove used here does not present a drastic change in forces and moments on the aircraft, but an added torsional moment around the quarter-chord of the wing may be a cause for some structural concerns.

  11. Stiffness of desiccating insect wings

    International Nuclear Information System (INIS)

    Mengesha, T E; Vallance, R R; Mittal, R

    2011-01-01

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 μN mm -1 h -1 . For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm -1 . (communication)

  12. Stiffness of desiccating insect wings

    Energy Technology Data Exchange (ETDEWEB)

    Mengesha, T E; Vallance, R R [Department of Mechanical Engineering, The George Washington University, 738 Phillips Hall, 801 22nd St NW, Washington, DC 20052 (United States); Mittal, R, E-mail: vallance@gwu.edu [Department of Mechanical Engineering, Johns Hopkins University, 126 Latrobe Hall, 3400 N Charles Street, Baltimore, MD 21218 (United States)

    2011-03-15

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 {mu}N mm{sup -1} h{sup -1}. For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm{sup -1}. (communication)

  13. Physicochemical characterization of pitches by differential scanning calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Lahaye, J.; Ehrburger, P.; Saint-Romain, J.L.; Couderc, P.

    1987-11-01

    The glass transition characterization of pitches has been studied by differential scanning calorimetry (d.s.c.). Experimental results and theoretical considerations indicate that: (1) the average molecular mass of pitches can be characterized by the apparent activation energy of the relaxation phenomenon of pitch molecules; (2) the molecular polydispersity is correlated with the width of the glass transition. Characterization of pitch by d.s.c. is well adapted to follow pitch transformation during heat treatment. 6 refs., 6 figs., 4 tabs.

  14. Sensorimotor Mismapping in Poor-pitch Singing.

    Science.gov (United States)

    He, Hao; Zhang, Wei-Dong

    2017-09-01

    This study proposes that there are two types of sensorimotor mismapping in poor-pitch singing: erroneous mapping and no mapping. We created operational definitions for the two types of mismapping based on the precision of pitch-matching and predicted that in the two types of mismapping, phonation differs in terms of accuracy and the dependence on the articulation consistency between the target and the intended vocal action. The study aimed to test this hypothesis by examining the reliability and criterion-related validity of the operational definitions. A within-subject design was used in this study. Thirty-two participants identified as poor-pitch singers were instructed to vocally imitate pure tones and to imitate their own vocal recordings with the same articulation as self-targets and with different articulation from self-targets. Definitions of the types of mismapping were demonstrated to be reliable with the split-half approach and to have good criterion-related validity with findings that pitch-matching with no mapping was less accurate and more dependent on the articulation consistency between the target and the intended vocal action than pitch-matching with erroneous mapping was. Furthermore, the precision of pitch-matching was positively associated with its accuracy and its dependence on articulation consistency when mismapping was analyzed on a continuum. Additionally, the data indicated that the self-imitation advantage was a function of articulation consistency. Types of sensorimotor mismapping lead to pitch-matching that differs in accuracy and its dependence on the articulation consistency between the target and the intended vocal action. Additionally, articulation consistency produces the self-advantage. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  15. Beetle wings are inflatable origami

    Science.gov (United States)

    Chen, Rui; Ren, Jing; Ge, Siqin; Hu, David

    2015-11-01

    Beetles keep their wings folded and protected under a hard shell. In times of danger, they must unfold them rapidly in order for them to fly to escape. Moreover, they must do so across a range of body mass, from 1 mg to 10 grams. How can they unfold their wings so quickly? We use high-speed videography to record wing unfolding times, which we relate to the geometry of the network of blood vessels in the wing. Larger beetles have longer unfolding times. Modeling of the flow of blood through the veins successfully accounts for the wing unfolding speed of large beetles. However, smaller beetles have anomalously short unfolding times, suggesting they have lower blood viscosity or higher driving pressure. The use of hydraulics to unfold complex objects may have implications in the design of micro-flying air vehicles.

  16. AERODYNAMICS OF WING TIP SAILS

    Directory of Open Access Journals (Sweden)

    MUSHTAK AL-ATABI

    2006-06-01

    Full Text Available Observers have always been fascinated by soaring birds. An interesting feature of these birds is the existence of few feathers extending from the tip of the wing. In this paper, small lifting surfaces were fitted to the tip of a NACA0012 wing in a fashion similar to that of wing tip feathers. Experimental measurements of induced drag, longitudinal static stability and trailing vortex structure were obtained.The tests showed that adding wing tip surfaces (sails decreased the induced drag factor and increased the longitudinal static stability. Results identified two discrete appositely rotated tip vortices and showed the ability of wing tip surfaces to break them down and to diffuse them.

  17. Numerical and experimental investigations on unsteady aerodynamics of flapping wings

    Science.gov (United States)

    Yu, Meilin

    The development of a dynamic unstructured grid high-order accurate spectral difference (SD) method for the three dimensional compressible Navier-Stokes (N-S) equations and its applications in flapping-wing aerodynamics are carried out in this work. Grid deformation is achieved via an algebraic blending strategy to save computational cost. The Geometric Conservation Law (GCL) is imposed to ensure that grid deformation will not contaminate the flow physics. A low Mach number preconditioning procedure is conducted in the developed solver to handle the bio-inspired flow. The capability of the low Mach number preconditioned SD solver is demonstrated by a series of two dimensional (2D) and three dimensional (3D) simulations of the unsteady vortex dominated flow. Several topics in the flapping wing aerodynamics are numerically and experimentally investigated in this work. These topics cover some of the cutting-edge issues in flapping wing aerodynamics, including the wake structure analysis, airfoil thickness and kinematics effects on the aerodynamic performances, vortex structure analysis around 3D flapping wings and the kinematics optimization. Wake structures behind a sinusoidally pitching NACA0012 airfoil are studied with both experimental and numerical approaches. The experiments are carried out with Particle Image Velocimetry (PIV) and two types of wake transition processes, namely the transition from a drag-indicative wake to a thrust-indicative wake and that from the symmetric wake to the asymmetric wake are distinguished. The numerical results from the developed SD solver agree well with the experimental results. It is numerically found that the deflective direction of the asymmetric wake is determined by the initial conditions, e.g. initial phase angle. As most insects use thin wings (i. e., wing thickness is only a few percent of the chord length) in flapping flight, the effects of airfoil thickness on thrust generation are numerically investigated by simulating

  18. A Neuronal Network Model for Pitch Selectivity and Representation.

    Science.gov (United States)

    Huang, Chengcheng; Rinzel, John

    2016-01-01

    Pitch is a perceptual correlate of periodicity. Sounds with distinct spectra can elicit the same pitch. Despite the importance of pitch perception, understanding the cellular mechanism of pitch perception is still a major challenge and a mechanistic model of pitch is lacking. A multi-stage neuronal network model is developed for pitch frequency estimation using biophysically-based, high-resolution coincidence detector neurons. The neuronal units respond only to highly coincident input among convergent auditory nerve fibers across frequency channels. Their selectivity for only very fast rising slopes of convergent input enables these slope-detectors to distinguish the most prominent coincidences in multi-peaked input time courses. Pitch can then be estimated from the first-order interspike intervals of the slope-detectors. The regular firing pattern of the slope-detector neurons are similar for sounds sharing the same pitch despite the distinct timbres. The decoded pitch strengths also correlate well with the salience of pitch perception as reported by human listeners. Therefore, our model can serve as a neural representation for pitch. Our model performs successfully in estimating the pitch of missing fundamental complexes and reproducing the pitch variation with respect to the frequency shift of inharmonic complexes. It also accounts for the phase sensitivity of pitch perception in the cases of Schroeder phase, alternating phase and random phase relationships. Moreover, our model can also be applied to stochastic sound stimuli, iterated-ripple-noise, and account for their multiple pitch perceptions.

  19. Pitch-verticality and pitch-size cross-modal interactions

    DEFF Research Database (Denmark)

    Bonetti, Leonardo; Costa, Marco

    2017-01-01

    Two studies were conducted on cross-modal matching between pitch and sound source localization on the vertical axis, and pitch and size. In the first study 100 Hz, 200 Hz, 600 Hz, and 800 Hz tones were emitted by a loudspeaker positioned 60 cm above or below to the participant’s ear level. Using...

  20. Measurement of pitch in speech : an implementation of Goldstein's theory of pitch perception

    NARCIS (Netherlands)

    Duifhuis, H.; Willems, L.F.; Sluyter, R.J.

    1982-01-01

    Recent developments in hearing theory have resulted in the rather general acceptance of the idea that the perception of pitch of complex sounds is the result of the psychological pattern recognition process. The pitch is supposedly mediated by the fundamental of the harmonic spectrum which fits the

  1. Method of producing pitch (distillation residue)

    Energy Technology Data Exchange (ETDEWEB)

    Stepanenko, M.A.; Belkina, T.V.; Krysin, V.P.

    1979-08-15

    A method is proposed for producing pitch by mixing hard coal pitch with anthracene fraction and thermal treatment of the mixture. The method is distinguished in that in order to increase the quality of the pitch, the anthracene fraction is subjected to thermal treatment at 250-300/sup 0/ for 10-13 hours in the presence of air. This duration of heat treatment allows one to build up in the anthracene fraction up to 20-24% of material which is not soluble and toluene, without the formation of products which are not soluble in quinoline. The fraction prepared in this manner is inserted into the initial pitch in the ratio 1:2 up to 1:9, the mixture is subject to heat treatment at temperature 360-380/sup 0/ and air consumption 7-91/kgX hours until the production of pitch with softening temperature of 85-90/sup 0/. As the initial raw material we used pitch with softening temperature of 60/sup 0/, content of substances which are not soluble in quinoline, 2.0% which are not soluble and toluene 20.6% and coking residue of 49.2%. Example. 80 grams of anthracene fraction is added to 320 grams of pitch. The anthracene fraction is subjected previously to heat treatment at 300/sup 0/ for 13 hours in the presence of air, supplied in the amount of 9 liters per hour. As a result of the heat treatment of the content of materials which are not soluble in toluence in the anthracene fraction is 24.0%, in quinoline it is 0.1%. The ratio of a pitch and thermally treated anthracene fraction in the mixture was 4:l. The produced mixture was subjected to heat treatment at 360/sup 0/ for 1.5 hours with air supply in the amount of 7 liters/ kilograms/hours. Pitch is produced with the following characteristics: softening temperature 88/sup 0/, content of substances which are not soluble in toluene 32.5%, in quinilone, 6.0%, coking residue, 56.7%. The invention can be used in the chemical coking and petrochemical industry.

  2. Limitations of fixed pitch Darrieus hydrokinetic turbines and the challenge of variable pitch

    Energy Technology Data Exchange (ETDEWEB)

    Kirke, B.K. [Sustainable Energy Centre, University of South Australia, Mawson Lakes, SA 5095 (Australia); Lazauskas, L. [Cyberiad, 25/65 King William Street, Adelaide, SA 5000 (Australia)

    2011-03-15

    Small Darrieus hydrokinetic turbines with fixed pitch blades typically suffer from poor starting torque, low efficiency and shaking due to large fluctuations in both radial and tangential force with azimuth angle. Efficiency improves as size increases, since adequate blade chord Reynolds numbers can be maintained with low solidity. Shaking can be eliminated by using helical blades, or reduced by using multiple blades. Starting torque can be marginally improved by the use of cambered blade profiles but may still be inadequate to overcome drive train friction for self-starting. Variable pitch can generate high starting torque, high efficiency and reduced shaking but active pitch control systems add considerably to complexity and cost, while passive systems must have effective pitch control to achieve higher efficiency than fixed pitch systems. (author)

  3. Memory for pitch in congenital amusia: beyond a fine-grained pitch discrimination problem.

    Science.gov (United States)

    Williamson, Victoria Jane; Stewart, Lauren

    2010-08-01

    Congenital amusia is a disorder that affects the perception and production of music. While amusia has been associated with deficits in pitch discrimination, several reports suggest that memory deficits also play a role. The present study investigated short-term memory span for pitch-based and verbal information in 14 individuals with amusia and matched controls. Analogous adaptive-tracking procedures were used to generate tone and digit spans using stimuli that exceeded psychophysically measured pitch perception thresholds. Individuals with amusia had significantly smaller tone spans, whereas their digits spans were a similar size to those of controls. An automated operation span task was used to determine working memory capacity. Working memory deficits were seen in only a small subgroup of individuals with amusia. These findings support the existence of a pitch-specific component within short-term memory and suggest that congenital amusia is more than a disorder of fine-grained pitch discrimination.

  4. Quiet Clean Short-haul Experimental Engine (QCSEE). The aerodynamic and mechanical design of the QCSEE over-the-wing fan

    Science.gov (United States)

    1976-01-01

    The aerodynamic and mechanical design of a fixed-pitch 1.36 pressure ratio fan for the over-the-wing (OTW) engine is presented. The fan has 28 blades. Aerodynamically, the fan blades were designed for a composite blade, but titanium blades were used in the experimental fan as a cost savings measure.

  5. Effects of harmonic roving on pitch discrimination

    DEFF Research Database (Denmark)

    Santurette, Sébastien; de Kérangal, Mathilde le Gal; Joshi, Suyash Narendra

    2015-01-01

    Performance in pitch discrimination tasks is limited by variability intrinsic to listeners which may arise from peripheral auditory coding limitations or more central noise sources. The present study aimed at quantifying such “internal noise” by estimating the amount of harmonic roving required...... to impair pitch discrimination performance. Fundamental-frequency difference limens (F0DLs) were obtained in normal-hearing listeners with and without musical training for complex tones filtered between 1.5 and 3.5 kHz with F0s of 300 Hz (resolved harmonics) and 75 Hz (unresolved harmonics). The harmonicity...... that could be used to quantify the internal noise and provide strong constraints for physiologically inspired models of pitch perception....

  6. Analysis of Pitch Gear Deterioration using Indicators

    DEFF Research Database (Denmark)

    Nielsen, Jannie Jessen; Sørensen, John Dalsgaard

    2011-01-01

    This work concerns a case study in the context of risk-based operation and maintenance of offshore wind turbines. For wind turbines with electrical pitch systems, deterioration can generally be observed at the pitch gear teeth; especially at the point where the blades are located during normal...... of the damage, and can be used for Bayesian updating of a damage model used for risk-based decision making. For this decision problem, the risk of failure should be compared to the cost of preventive maintenance. The hypothesis that the maximum pitch motor torque is an indicator of the damage size is supported...... changes in the temperature are the primary cause of the decrease. A model is established to remove the effect of the explained variation, and it is investigated if deterioration can be detected as changes in the peak torque. A small increase could be detected after the maintenance, but before...

  7. Multi-pitch Estimation using Semidefinite Programming

    DEFF Research Database (Denmark)

    Jensen, Tobias Lindstrøm; Vandenberghe, Lieven

    2017-01-01

    assuming a Nyquist sampled signal by adding an additional semidefinite constraint. We show that the proposed estimator has superior performance compared to state- of-the-art methods for separating two closely spaced fundamentals and approximately achieves the asymptotic Cramér-Rao lower bound.......Multi-pitch estimation concerns the problem of estimating the fundamental frequencies (pitches) and amplitudes/phases of multiple superimposed harmonic signals with application in music, speech, vibration analysis etc. In this paper we formulate a complex-valued multi-pitch estimator via...... a semidefinite programming representation of an atomic decomposition over a continuous dictionary of complex exponentials and extend this to real-valued data via a real semidefinite pro-ram with the same dimensions (i.e. half the size). We further impose a continuous frequency constraint naturally occurring from...

  8. Structural Analysis of a Dragonfly Wing

    NARCIS (Netherlands)

    Jongerius, S.R.; Lentink, D.

    2010-01-01

    Dragonfly wings are highly corrugated, which increases the stiffness and strength of the wing significantly, and results in a lightweight structure with good aerodynamic performance. How insect wings carry aerodynamic and inertial loads, and how the resonant frequency of the flapping wings is tuned

  9. Mechanisms of Wing Beat Sound in Flapping Wings of Beetles

    Science.gov (United States)

    Allen, John

    2017-11-01

    While the aerodynamic aspects of insect flight have received recent attention, the mechanisms of sound production by flapping wings is not well understood. Though the harmonic structure of wing beat frequency modulation has been reported with respect to biological implications, few studies have rigorously quantified it with respect directionality, phase coupling and vortex tip scattering. Moreover, the acoustic detection and classification of invasive species is both of practical as well scientific interest. In this study, the acoustics of the tethered flight of the Coconut Rhinoceros Beetle (Oryctes rhinoceros) is investigated with four element microphone array in conjunction with complementary optical sensors and high speed video. The different experimental methods for wing beat determination are compared in both the time and frequency domain. Flow visualization is used to examine the vortex and sound generation due to the torsional mode of the wing rotation. Results are compared with related experimental studies of the Oriental Flower Beetle. USDA, State of Hawaii.

  10. Effect of outer wing separation on lift and thrust generation in a flapping wing system

    International Nuclear Information System (INIS)

    Mahardika, Nanang; Viet, Nguyen Quoc; Park, Hoon Cheol

    2011-01-01

    We explore the implementation of wing feather separation and lead-lagging motion to a flapping wing. A biomimetic flapping wing system with separated outer wings is designed and demonstrated. The artificial wing feather separation is implemented in the biomimetic wing by dividing the wing into inner and outer wings. The features of flapping, lead-lagging, and outer wing separation of the flapping wing system are captured by a high-speed camera for evaluation. The performance of the flapping wing system with separated outer wings is compared to that of a flapping wing system with closed outer wings in terms of forward force and downward force production. For a low flapping frequency ranging from 2.47 to 3.90 Hz, the proposed biomimetic flapping wing system shows a higher thrust and lift generation capability as demonstrated by a series of experiments. For 1.6 V application (lower frequency operation), the flapping wing system with separated wings could generate about 56% higher forward force and about 61% less downward force compared to that with closed wings, which is enough to demonstrate larger thrust and lift production capability of the separated outer wings. The experiments show that the outer parts of the separated wings are able to deform, resulting in a smaller amount of drag production during the upstroke, while still producing relatively greater lift and thrust during the downstroke.

  11. DIAGNOSIS OF PITCH AND LOAD DEFECTS

    DEFF Research Database (Denmark)

    2009-01-01

    The invention relates to a method, system and computer readable code for diagnosis of pitch and/or load defects of e.g. wind turbines as well as wind turbines using said diagnosis method and/or comprising said diagnosis system.......The invention relates to a method, system and computer readable code for diagnosis of pitch and/or load defects of e.g. wind turbines as well as wind turbines using said diagnosis method and/or comprising said diagnosis system....

  12. Clap-and-fling mechanism in a hovering insect-like two-winged flapping-wing micro air vehicle.

    Science.gov (United States)

    Phan, Hoang Vu; Au, Thi Kim Loan; Park, Hoon Cheol

    2016-12-01

    This study used numerical and experimental approaches to investigate the role played by the clap-and-fling mechanism in enhancing force generation in hovering insect-like two-winged flapping-wing micro air vehicle (FW-MAV). The flapping mechanism was designed to symmetrically flap wings at a high flapping amplitude of approximately 192°. The clap-and-fling mechanisms were thereby implemented at both dorsal and ventral stroke reversals. A computational fluid dynamic (CFD) model was constructed based on three-dimensional wing kinematics to estimate the force generation, which was validated by the measured forces using a 6-axis load cell. The computed forces proved that the CFD model provided reasonable estimation with differences less than 8%, when compared with the measured forces. The measurement indicated that the clap and flings at both the stroke reversals augmented the average vertical force by 16.2% when compared with the force without the clap-and-fling effect. In the CFD simulation, the clap and flings enhanced the vertical force by 11.5% and horizontal drag force by 18.4%. The observations indicated that both the fling and the clap contributed to the augmented vertical force by 62.6% and 37.4%, respectively, and to the augmented horizontal drag force by 71.7% and 28.3%, respectively. The flow structures suggested that a strong downwash was expelled from the opening gap between the trailing edges during the fling as well as the clap at each stroke reversal. In addition to the fling phases, the influx of air into the low-pressure region between the wings from the leading edges also significantly contributed to augmentation of the vertical force. The study conducted for high Reynolds numbers also confirmed that the effect of the clap and fling was insignificant when the minimum distance between the two wings exceeded 1.2c (c = wing chord). Thus, the clap and flings were successfully implemented in the FW-MAV, and there was a significant improvement in the

  13. Research of Morphing Wing Efficiency

    National Research Council Canada - National Science Library

    Komarov, Valery

    2004-01-01

    This report results from a contract tasking Samara State Aerospace University (SSAU) as follows: The contractor will develop and investigate aerodynamic and structural weight theories associated with morphing wing technology...

  14. Drag Performance of Twist Morphing MAV Wing

    Directory of Open Access Journals (Sweden)

    Ismail N.I.

    2016-01-01

    Full Text Available Morphing wing is one of latest evolution found on MAV wing. However, due to few design problems such as limited MAV wing size and complicated morphing mechanism, the understanding of its aerodynamic behaviour was not fully explored. In fact, the basic drag distribution induced by a morphing MAV wing is still remained unknown. Thus, present work is carried out to compare the drag performance between a twist morphing wing with membrane and rigid MAV wing design. A quasi-static aeroelastic analysis by using the Ansys-Fluid Structure Interaction (FSI method is utilized in current works to predict the drag performance a twist morphing MAV wing design. Based on the drag pattern study, the results exhibits that the morphing wing has a partial similarities in overall drag pattern with the baseline (membrane and rigid wing. However, based CD analysis, it shows that TM wing induced higher CD magnitude (between 25% to 82% higher than to the baseline wing. In fact, TM wing also induced the largest CD increment (about 20% to 27% among the wings. The visualization on vortex structure revealed that TM wing also produce larger tip vortex structure (compared to baseline wings which presume to promote higher induce drag component and subsequently induce its higher CD performance.

  15. Effect of Tempo on Pitch Perception.

    Science.gov (United States)

    Duke, Robert A.; And Others

    1988-01-01

    Presents a study which investigated the perception of music majors and nonmusic majors concerning their ability to discriminate the way in which altered musical excerpts differed in pitch or tempo (or both) from preceding presentations. Concludes that both groups responded similarly across conditions and replications, and that tempo changes were…

  16. Lower extremity muscle activation during baseball pitching.

    Science.gov (United States)

    Campbell, Brian M; Stodden, David F; Nixon, Megan K

    2010-04-01

    The purpose of this study was to investigate muscle activation levels of select lower extremity muscles during the pitching motion. Bilateral surface electromyography data on 5 lower extremity muscles (biceps femoris, rectus femoris, gluteus maximus, vastus medialis, and gastrocnemius) were collected on 11 highly skilled baseball pitchers and compared with individual maximal voluntary isometric contraction (MVIC) data. The pitching motion was divided into 4 distinct phases: phase 1, initiation of pitching motion to maximum stride leg knee height; phase 2, maximum stride leg knee height to stride foot contact (SFC); phase 3, SFC to ball release; and phase 4, ball release to 0.5 seconds after ball release (follow-through). Results indicated that trail leg musculature elicited moderate to high activity levels during phases 2 and 3 (38-172% of MVIC). Muscle activity levels of the stride leg were moderate to high during phases 2-4 (23-170% of MVIC). These data indicate a high demand for lower extremity strength and endurance. Specifically, coaches should incorporate unilateral and bilateral lower extremity exercises for strength improvement or maintenance and to facilitate dynamic stabilization of the lower extremities during the pitching motion.

  17. Pitch-catch only ultrasonic fluid densitometer

    Science.gov (United States)

    Greenwood, M.S.; Harris, R.V.

    1999-03-23

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.

  18. Pitch and timbre : definition, meaning and use

    NARCIS (Netherlands)

    Houtsma, A.J.M.

    1997-01-01

    Pitch and timbre are terms frequently used in studies on sound perception. Despite the existence of formal definitions, these terms are often used ambiguously in the literature. This paper is intended as a review of the ANSI definitions and their shortcomings, of modern ways to define the concepts

  19. Coal Tar and Coal-Tar Pitch

    Science.gov (United States)

    Learn about coal-tar products, which can raise your risk of skin cancer, lung cancer, and other types of cancer. Examples of coal-tar products include creosote, coal-tar pitch, and certain preparations used to treat skin conditions such as eczema, psoriasis, and dandruff.

  20. Silvical characteristics of pitch pine (Pinus rigida)

    Science.gov (United States)

    S. Little

    1959-01-01

    Pitch pine (Pinus rigida Mill.) grows over a wide geographical range - from central Maine to New York and extreme southeastern Ontario, south to Virginia and southern Ohio, and in the mountains to eastern Tennessee, northern Georgia, and western South Carolina. Because it grows mostly on the poorer soils, its distribution is spotty.

  1. Establishment of expanded and streamlined pipeline of PITCh knock-in - a web-based design tool for MMEJ-mediated gene knock-in, PITCh designer, and the variations of PITCh, PITCh-TG and PITCh-KIKO.

    Science.gov (United States)

    Nakamae, Kazuki; Nishimura, Yuki; Takenaga, Mitsumasa; Nakade, Shota; Sakamoto, Naoaki; Ide, Hiroshi; Sakuma, Tetsushi; Yamamoto, Takashi

    2017-05-04

    The emerging genome editing technology has enabled the creation of gene knock-in cells easily, efficiently, and rapidly, which has dramatically accelerated research in the field of mammalian functional genomics, including in humans. We recently developed a microhomology-mediated end-joining-based gene knock-in method, termed the PITCh system, and presented various examples of its application. Since the PITCh system only requires very short microhomologies (up to 40 bp) and single-guide RNA target sites on the donor vector, the targeting construct can be rapidly prepared compared with the conventional targeting vector for homologous recombination-based knock-in. Here, we established a streamlined pipeline to design and perform PITCh knock-in to further expand the availability of this method by creating web-based design software, PITCh designer ( http://www.mls.sci.hiroshima-u.ac.jp/smg/PITChdesigner/index.html ), as well as presenting an experimental example of versatile gene cassette knock-in. PITCh designer can automatically design not only the appropriate microhomologies but also the primers to construct locus-specific donor vectors for PITCh knock-in. By using our newly established pipeline, a reporter cell line for monitoring endogenous gene expression, and transgenesis (TG) or knock-in/knockout (KIKO) cell line can be produced systematically. Using these new variations of PITCh, an exogenous promoter-driven gene cassette expressing fluorescent protein gene and drug resistance gene can be integrated into a safe harbor or a specific gene locus to create transgenic reporter cells (PITCh-TG) or knockout cells with reporter knock-in (PITCh-KIKO), respectively.

  2. Establishment of expanded and streamlined pipeline of PITCh knock-in – a web-based design tool for MMEJ-mediated gene knock-in, PITCh designer, and the variations of PITCh, PITCh-TG and PITCh-KIKO

    Science.gov (United States)

    Nakamae, Kazuki; Nishimura, Yuki; Takenaga, Mitsumasa; Sakamoto, Naoaki; Ide, Hiroshi; Sakuma, Tetsushi; Yamamoto, Takashi

    2017-01-01

    ABSTRACT The emerging genome editing technology has enabled the creation of gene knock-in cells easily, efficiently, and rapidly, which has dramatically accelerated research in the field of mammalian functional genomics, including in humans. We recently developed a microhomology-mediated end-joining-based gene knock-in method, termed the PITCh system, and presented various examples of its application. Since the PITCh system only requires very short microhomologies (up to 40 bp) and single-guide RNA target sites on the donor vector, the targeting construct can be rapidly prepared compared with the conventional targeting vector for homologous recombination-based knock-in. Here, we established a streamlined pipeline to design and perform PITCh knock-in to further expand the availability of this method by creating web-based design software, PITCh designer (http://www.mls.sci.hiroshima-u.ac.jp/smg/PITChdesigner/index.html), as well as presenting an experimental example of versatile gene cassette knock-in. PITCh designer can automatically design not only the appropriate microhomologies but also the primers to construct locus-specific donor vectors for PITCh knock-in. By using our newly established pipeline, a reporter cell line for monitoring endogenous gene expression, and transgenesis (TG) or knock-in/knockout (KIKO) cell line can be produced systematically. Using these new variations of PITCh, an exogenous promoter-driven gene cassette expressing fluorescent protein gene and drug resistance gene can be integrated into a safe harbor or a specific gene locus to create transgenic reporter cells (PITCh-TG) or knockout cells with reporter knock-in (PITCh-KIKO), respectively. PMID:28453368

  3. An analytical model and scaling of chordwise flexible flapping wings in forward flight.

    Science.gov (United States)

    Kodali, Deepa; Kang, Chang-Kwon

    2016-12-13

    Aerodynamic performance of biological flight characterized by the fluid structure interaction of a flapping wing and the surrounding fluid is affected by the wing flexibility. One of the main challenges to predict aerodynamic forces is that the wing shape and motion are a priori unknown. In this study, we derive an analytical fluid-structure interaction model for a chordwise flexible flapping two-dimensional airfoil in forward flight. A plunge motion is imposed on the rigid leading-edge (LE) of teardrop shape and the flexible tail dynamically deforms. The resulting unsteady aeroelasticity is modeled with the Euler-Bernoulli-Theodorsen equation under a small deformation assumption. The two-way coupling is realized by considering the trailing-edge deformation relative to the LE as passive pitch, affecting the unsteady aerodynamics. The resulting wing deformation and the aerodynamic performance including lift and thrust agree well with high-fidelity numerical results. Under the dynamic balance, the aeroelastic stiffness decreases, whereas the aeroelastic stiffness increases with the reduced frequency. A novel aeroelastic frequency ratio is derived, which scales with the wing deformation, lift, and thrust. Finally, the dynamic similarity between flapping in water and air is established.

  4. Design of a new VTOL UAV by combining cycloidal blades and FanWing propellers

    Science.gov (United States)

    Li, Daizong

    Though the propelling principles of Cycloidal Blades and FanWing propellers are totally different, their structures are similar. Therefore, it is possible to develop an aircraft which combines both types of the propulsion modes of Cyclogyro and FanWing aircrafts. For this kind of aircraft, Cycloidal Blades Mode provides capabilities of Vertical Take-Off and Landing, Instantly Alterable Vector Thrusting, and Low Noise. The FanWing Mode provides capabilities of High Efficiency, Energy-Saving, and Cannot-Stall Low-Speed Cruising. Besides, because both of these propellers are observably better than conventional screw propeller in terms of efficiency, so this type of VTOL UAV could fly with Long Endurance. Furthermore, the usage of flying-wing takes advantage of high structure utilization and high aerodynamic efficiency, eliminates the interference of fuselage and tail, and overcomes flying wing's shortcomings of pitching direction instability and difficulty of control. A new magnetic suspension track-type cycloidal propulsion system is also presented in the paper to solve problems of heavy structure, high mechanical resistance, and low reliability in the traditional cycloidal propellers. The further purpose of this design is to trying to make long-endurance VTOL aircraft and Practical Flying Cars possible in reality, and to bring a new era to the aviation industry.

  5. Replication of cicada wing's nano-patterns by hot embossing and UV nanoimprinting

    International Nuclear Information System (INIS)

    Hong, Sung-Hoon; Hwang, Jaeyeon; Lee, Heon

    2009-01-01

    The hydrophobicity of the cicada wing originates from its naturally occurring, surface nano-structure. The nano-structure of the cicada wing consists of an array of nano-sized pillars, 100 nm in diameter and 300 nm in height. In this study, the nano-structure of the cicada wing was successfully duplicated by using hot embossing lithography and UV nanoimprint lithography (NIL). The diameter and pitch of replication were the same as those of the original cicada wing and the height was a little smaller than that of the original master. The transmittance of the hot embossed PVC film was increased by 2-6% compared with that of the bare PVC film. The hydrophobicity was measured by water contact angle measurements. The water contact angle of the replica, made of UV cured polymer, was 132 0 ± 2 0 , which was slightly lower than that of the original cicada wing (138 0 ± 2 0 ), but much higher than that of the UV cured polymer surface without any nano-sized pillars (86 0 ).

  6. Complex-tone pitch representations in the human auditory system

    DEFF Research Database (Denmark)

    Bianchi, Federica

    in listeners with SNHL, it is likely that HI listeners rely on the enhanced envelope cues to retrieve the pitch of unresolved harmonics. Hence, the relative importance of pitch cues may be altered in HI listeners, whereby envelope cues may be used instead of TFS cues to obtain a similar performance in pitch......Understanding how the human auditory system processes the physical properties of an acoustical stimulus to give rise to a pitch percept is a fascinating aspect of hearing research. Since most natural sounds are harmonic complex tones, this work focused on the nature of pitch-relevant cues...... that are necessary for the auditory system to retrieve the pitch of complex sounds. The existence of different pitch-coding mechanisms for low-numbered (spectrally resolved) and high-numbered (unresolved) harmonics was investigated by comparing pitch-discrimination performance across different cohorts of listeners...

  7. Adaptive pitch control for variable speed wind turbines

    Science.gov (United States)

    Johnson, Kathryn E [Boulder, CO; Fingersh, Lee Jay [Westminster, CO

    2012-05-08

    An adaptive method for adjusting blade pitch angle, and controllers implementing such a method, for achieving higher power coefficients. Average power coefficients are determined for first and second periods of operation for the wind turbine. When the average power coefficient for the second time period is larger than for the first, a pitch increment, which may be generated based on the power coefficients, is added (or the sign is retained) to the nominal pitch angle value for the wind turbine. When the average power coefficient for the second time period is less than for the first, the pitch increment is subtracted (or the sign is changed). A control signal is generated based on the adapted pitch angle value and sent to blade pitch actuators that act to change the pitch angle of the wind turbine to the new or modified pitch angle setting, and this process is iteratively performed.

  8. WINGS Data Release

    DEFF Research Database (Denmark)

    Moretti, A.; Poggianti, B. M.; Fasano, G.

    2014-01-01

    . We provide the scientific community with the entire set of wide-field images. Furthermore, the published database contains photometry of 759 024 objects and surface brightness analysis for 42 275 and 41 463 galaxies in the V and B band, respectively. The completeness depends on the image quality......, and on the cluster redshift, reaching on average 90% at V ≲ 21.7. Near-infrared photometric catalogs for 26 (in K) and 19 (in J) clusters are part of the database and the number of sources is 962 344 in K and 628 813 in J. Here again the completeness depends on the data quality, but it is on average higher than 90......Context. To effectively investigate galaxy formation and evolution, it is of paramount importance to exploit homogeneous data for large samples of galaxies in different environments. Aims. The WIde-field Nearby Galaxy-cluster Survey (WINGS) project aim is to evaluate physical properties of galaxies...

  9. Subcortical plasticity following perceptual learning in a pitch discrimination task

    OpenAIRE

    Carcagno, Samuele; Plack, Christopher J.

    2011-01-01

    Practice can lead to dramatic improvements in the discrimination of auditory stimuli. In this study, we investigated changes of the frequency-following response (FFR), a subcortical component of the auditory evoked potentials, after a period of pitch discrimination training. Twenty-seven adult listeners were trained for 10 h on a pitch discrimination task using one of three different complex tone stimuli. One had a static pitch contour, one had a rising pitch contour, and one had a falling pi...

  10. Application of unsteady airfoil theory to rotary wings

    Science.gov (United States)

    Kaza, K. R. V.; Kvaternik, R. G.

    1981-01-01

    A clarification is presented on recent work concerning the application of unsteady airfoil theory to rotary wings. The application of this theory may be seen as consisting of four steps: (1) the selection of an appropriate unsteady airfoil theory; (2) the resolution of that velocity which is the resultant of aerodynamic and dynamic velocities at a point on the elastic axis into radial, tangential and perpendicular components, and the angular velocity of a blade section about the deformed axis; (3) the expression of lift and pitching moments in terms of the three components; and (4) the derivation of explicit expressions for the components in terms of flight velocity, induced flow, rotor rotational speed, blade motion variables, etc.

  11. Dynamic Longitudinal and Directional Stability Derivatives for a 45 deg. Sweptback-Wing Airplane Model at Transonic Speeds

    Science.gov (United States)

    Bielat, Ralph P.; Wiley, Harleth G.

    1959-01-01

    An investigation was made at transonic speeds to determine some of the dynamic stability derivatives of a 45 deg. sweptback-wing airplane model. The model was sting mounted and was rigidly forced to perform a single-degree-of-freedom angular oscillation in pitch or yaw of +/- 2 deg. The investigation was made for angles of attack alpha, from -4 deg. to 14 deg. throughout most of the transonic speed range for values of reduced-frequency parameter from 0.015 to 0.040 based on wing mean aerodynamic chord and from 0.04 to 0.14 based on wing span. The results show that reduced frequency had only a small effect on the damping-in-pitch derivative and the oscillatory longitudinal stability derivative for all Mach numbers M and angles of attack with the exception of the values of damping coefficient near M = 1.03 and alpha = 8 deg. to 14 deg. In this region, the damping coefficient changed rapidly with reduced frequency and negative values of damping coefficient were measured at low values of reduced frequency. This abrupt variation of pitch damping with reduced frequency was a characteristic of the complete model or wing-body-vertical-tail combination. The damping-in-pitch derivative varied considerably with alpha and M for the horizontal-tail-on and horizontal-tail-off configurations, and the damping was relatively high at angles of attack corresponding to the onset of pitch-up for both configurations. The damping-in-yaw derivative was generally independent of reduced frequency and M at alpha = -4 deg. to 4 deg. At alpha = 8 deg. to 14 deg., the damping derivative increased with an increase in reduced frequency and alpha for the configurations having the wing, whereas the damping derivative was either independent of or decreased with increase in reduced frequency for the configuration without the wing. The oscillatory directional stability derivative for all configurations generally decreased with an increase in the reduced-frequency parameter, and, in some instances

  12. Flight mechanics of a tailless articulated wing aircraft

    International Nuclear Information System (INIS)

    Paranjape, Aditya A; Chung, Soon-Jo; Selig, Michael S

    2011-01-01

    This paper investigates the flight mechanics of a micro aerial vehicle without a vertical tail in an effort to reverse-engineer the agility of avian flight. The key to stability and control of such a tailless aircraft lies in the ability to control the incidence angles and dihedral angles of both wings independently. The dihedral angles can be varied symmetrically on both wings to control aircraft speed independently of the angle of attack and flight path angle, while asymmetric dihedral can be used to control yaw in the absence of a vertical stabilizer. It is shown that wing dihedral angles alone can effectively regulate sideslip during rapid turns and generate a wide range of equilibrium turn rates while maintaining a constant flight speed and regulating sideslip. Numerical continuation and bifurcation analysis are used to compute trim states and assess their stability. This paper lays the foundation for design and stability analysis of a flapping wing aircraft that can switch rapidly from flapping to gliding flight for agile manoeuvring in a constrained environment.

  13. Dynamic control of a bistable wing under aerodynamic loading

    International Nuclear Information System (INIS)

    Bilgen, Onur; Arrieta, Andres F; Friswell, Michael I; Hagedorn, Peter

    2013-01-01

    The aerodynamic evaluation of a dynamic control technique applied to a bistable unsymmetrical cross-ply composite plate with surface bonded piezoelectric actuators is presented. The plate is clamped on one end to form a low-aspect-ratio wing. A previously proposed dynamic control method, utilizing bending resonance in different stable equilibrium positions, is used to induce snap-through between the two equilibrium states. Compared to quasi-static actuation, driving the bistable plate near resonance using surface bonded piezoelectric materials requires, theoretically, a lower peak excitation voltage to achieve snap-through. First, a set of extensive wind tunnel experiments are conducted on the passive bistable wing to understand the change in the dynamic behavior under various aerodynamic conditions. The passive wing demonstrated sufficient bending stiffness to sustain its shape under aerodynamic loading while preserving the desired bistable behavior. Next, by the use of the resonant control technique, the plate is turned into an effectively monostable structure, or alternatively, both stable equilibrium positions can be reached actively from the other stable equilibrium. Dynamic forward and reverse snap-through is demonstrated in the wind tunnel which shows both the effectiveness of the piezoelectric actuation as well as the load carrying capability of both states of the bistable wing. (paper)

  14. Flight mechanics of a tailless articulated wing aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Paranjape, Aditya A; Chung, Soon-Jo; Selig, Michael S, E-mail: sjchung@illinois.edu [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2011-06-15

    This paper investigates the flight mechanics of a micro aerial vehicle without a vertical tail in an effort to reverse-engineer the agility of avian flight. The key to stability and control of such a tailless aircraft lies in the ability to control the incidence angles and dihedral angles of both wings independently. The dihedral angles can be varied symmetrically on both wings to control aircraft speed independently of the angle of attack and flight path angle, while asymmetric dihedral can be used to control yaw in the absence of a vertical stabilizer. It is shown that wing dihedral angles alone can effectively regulate sideslip during rapid turns and generate a wide range of equilibrium turn rates while maintaining a constant flight speed and regulating sideslip. Numerical continuation and bifurcation analysis are used to compute trim states and assess their stability. This paper lays the foundation for design and stability analysis of a flapping wing aircraft that can switch rapidly from flapping to gliding flight for agile manoeuvring in a constrained environment.

  15. Thermosetting behavior of pitch-resin from heavy residue

    Energy Technology Data Exchange (ETDEWEB)

    Qingfang, Z.; Yansheng, G.; Baohua, H.; Yuzhen, Z. [China Univ. of Petroleum, Dongying, Shandong (China). State Key LAboratory of Heavy Oil Processing, Heavy Oil Research Inst.

    2006-07-01

    Thermosetting resins are widely employed as a basic matrix for c/c composites in carbon materials production. A new type of synthesized thermosetting resin is called pitch resin. Pitch resin is a cheaper resin and possesses a potential opportunity for future use. However, the thermosetting behavior of pitch resin is not very clear. The hardening process and conditions for thermosetting are very important for future use of pitch resin. B-stage pitch resin is a soluble and meltable inter-media condensed polymer, which is not fully reacted and is of a low molecular weight. The insoluble and unmelted pitch resin can only be obtained from synthesized B-stage resin after a hardening stage. This paper presented an experiment that synthesized B-stage pitch resin with a link agent (PXG) under catalyst action from fluid catalytic cracking (FCC) of the slurry's aromatic enriched component (FCCDF). The paper discussed the experiment, including the synthesis of pitch resin and thermosetting of pitch resin. Two kinds of thermosetting procedures were used in the study called one-step thermosetting and two-step thermosetting. It was concluded that the B-stage pitch resin could be hardened after a thermosetting procedure by heat treatment. The thermosetting pitch resin from 2-step thermosetting possesses was found to have better thermal resistant properties than that of the 1-step thermosetting pitch resin. 13 refs., 2 tabs., 6 figs.

  16. Relating binaural pitch perception to the individual listener's auditory profile.

    Science.gov (United States)

    Santurette, Sébastien; Dau, Torsten

    2012-04-01

    The ability of eight normal-hearing listeners and fourteen listeners with sensorineural hearing loss to detect and identify pitch contours was measured for binaural-pitch stimuli and salience-matched monaurally detectable pitches. In an effort to determine whether impaired binaural pitch perception was linked to a specific deficit, the auditory profiles of the individual listeners were characterized using measures of loudness perception, cognitive ability, binaural processing, temporal fine structure processing, and frequency selectivity, in addition to common audiometric measures. Two of the listeners were found not to perceive binaural pitch at all, despite a clear detection of monaural pitch. While both binaural and monaural pitches were detectable by all other listeners, identification scores were significantly lower for binaural than for monaural pitch. A total absence of binaural pitch sensation coexisted with a loss of a binaural signal-detection advantage in noise, without implying reduced cognitive function. Auditory filter bandwidths did not correlate with the difference in pitch identification scores between binaural and monaural pitches. However, subjects with impaired binaural pitch perception showed deficits in temporal fine structure processing. Whether the observed deficits stemmed from peripheral or central mechanisms could not be resolved here, but the present findings may be useful for hearing loss characterization.

  17. A piloted evaluation of an oblique-wing research aircraft motion simulation with decoupling control laws

    Science.gov (United States)

    Kempel, Robert W.; Mcneill, Walter E.; Gilyard, Glenn B.; Maine, Trindel A.

    1988-01-01

    The NASA Ames Research Center developed an oblique-wing research plane from NASA's digital fly-by-wire airplane. Oblique-wing airplanes show large cross-coupling in control and dynamic behavior which is not present on conventional symmetric airplanes and must be compensated for to obtain acceptable handling qualities. The large vertical motion simulator at NASA Ames-Moffett was used in the piloted evaluation of a proposed flight control system designed to provide decoupled handling qualities. Five discrete flight conditions were evaluated ranging from low altitude subsonic Mach numbers to moderate altitude supersonic Mach numbers. The flight control system was effective in generally decoupling the airplane. However, all participating pilots objected to the high levels of lateral acceleration encountered in pitch maneuvers. In addition, the pilots were more critical of left turns (in the direction of the trailing wingtip when skewed) than they were of right turns due to the tendency to be rolled into the left turns and out of the right turns. Asymmetric side force as a function of angle of attack was the primary cause of lateral acceleration in pitch. Along with the lateral acceleration in pitch, variation of rolling and yawing moments as functions of angle of attack caused the tendency to roll into left turns and out of right turns.

  18. Nonlinear analysis and enhancement of wing-based piezoaeroelastic energy harvesters

    KAUST Repository

    Abdelkefi, Abdessattar

    2014-01-01

    We investigate the level of harvested power from aeroelastic vibrations for an elastically mounted wing supported by nonlinear springs. The energy is harvested by attaching a piezoelectric transducer to the plunge degree of freedom. The considered wing has a low-aspect ratio and hence three dimensional aerodynamic effects cannot be neglected. To this end, the three dimensional unsteady vortex lattice method for the prediction of the unsteady aerodynamic loads is developed. A strong coupling scheme that is based on Hamming\\'s fourth-order predictor-corrector method and accounts for the interaction between the aerodynamic loads and the motion of the wing is employed. The effects of the electrical load resistance, nonlinear torsional spring and eccentricity between the elastic axis and the gravity axis on the level of the harvested power, pitch and plunge amplitudes are investigated for a range of operating wind speeds. The results show that there is a specific wind speed beyond which the pitch motion does not pick any further energy from the incident flow. As such, the displacement in the plunge direction grows significantly and causes enhanced energy harvesting. The results also show that the nonlinear torsional spring plays an important role in enhancing the level of the harvested power. Furthermore, the harvested power can be increased by an order of magnitude by properly choosing the eccentricity and the load resistance. This analysis is helpful in designing piezoaeroelastic energy harvesters that can operate optimally at specific wind speeds. © 2013 Elsevier Ltd.

  19. Nano-mechanical properties and structural of a 3D-printed biodegradable biomimetic micro air vehicle wing

    Science.gov (United States)

    Salami, E.; Montazer, E.; Ward, T. A.; Ganesan, P. B.

    2017-06-01

    The biomimetic micro air vehicles (BMAV) are unmanned, micro-scaled aircraft that are bio-inspired from flying organisms to achieve the lift and thrust by flapping their wings. The main objectives of this study are to design a BMAV wing (inspired from the dragonfly) and analyse its nano-mechanical properties. In order to gain insights into the flight mechanics of dragonfly, reverse engineering methods were used to establish three-dimensional geometrical models of the dragonfly wings, so we can make a comparative analysis. Then mechanical test of the real dragonfly wings was performed to provide experimental parameter values for mechanical models in terms of nano-hardness and elastic modulus. The mechanical properties of wings were measured by nanoindentre. Finally, a simplified model was designed and the dragonfly-like wing frame structure was bio-mimicked and fabricated using a 3D printer. Then mechanical test of the BMAV wings was performed to analyse and compare the wings under a variety of simplified load regimes that are concentrated force, uniform line-load and a torque. This work opened up the possibility towards developing an engineering basis for the biomimetic design of BMAV wings.

  20. Attending to pitch information inhibits processing of pitch information: the curious case of amusia.

    Science.gov (United States)

    Zendel, Benjamin Rich; Lagrois, Marie-Élaine; Robitaille, Nicolas; Peretz, Isabelle

    2015-03-04

    In normal listeners, the tonal rules of music guide musical expectancy. In a minority of individuals, known as amusics, the processing of tonality is disordered, which results in severe musical deficits. It has been shown that the tonal rules of music are neurally encoded, but not consciously available in amusics. Previous neurophysiological studies have not explicitly controlled the level of attention in tasks where participants ignored the tonal structure of the stimuli. Here, we test whether access to tonal knowledge can be demonstrated in congenital amusia when attention is controlled. Electric brain responses were recorded while asking participants to detect an individually adjusted near-threshold click in a melody. In half the melodies, a note was inserted that violated the tonal rules of music. In a second task, participants were presented with the same melodies but were required to detect the tonal deviation. Both tasks required sustained attention, thus conscious access to the rules of tonality was manipulated. In the click-detection task, the pitch deviants evoked an early right anterior negativity (ERAN) in both groups. In the pitch-detection task, the pitch deviants evoked an ERAN and P600 in controls but not in amusics. These results indicate that pitch regularities are represented in the cortex of amusics, but are not consciously available. Moreover, performing a pitch-judgment task eliminated the ERAN in amusics, suggesting that attending to pitch information interferes with perception of pitch. We propose that an impaired top-down frontotemporal projection is responsible for this disorder. Copyright © 2015 the authors 0270-6474/15/353815-10$15.00/0.

  1. Single organic microtwist with tunable pitch.

    Science.gov (United States)

    Chen, Hai-Bo; Zhou, Yan; Yin, Jie; Yan, Jing; Ma, Yuguo; Wang, Lei; Cao, Yong; Wang, Jian; Pei, Jian

    2009-05-19

    A facile synthesis of previously unknown, well-separated, uniform chiral microstructures from achiral pi-conjugated organic molecules was developed by simple solution process. Detailed characterization and formation mechanism were presented. By simple structure modification or temperature change, the pitch of the chiral structure can be fine tuned. Our result opens new possibilities for novel materials in which structure chirality is coupled to device performance.

  2. Voice pitch influences perceptions of sexual infidelity.

    Science.gov (United States)

    O'Connor, Jillian J M; Re, Daniel E; Feinberg, David R

    2011-02-28

    Sexual infidelity can be costly to members of both the extra-pair and the paired couple. Thus, detecting infidelity risk is potentially adaptive if it aids in avoiding cuckoldry or loss of parental and relationship investment. Among men, testosterone is inversely related to voice pitch, relationship and offspring investment, and is positively related to the pursuit of short-term relationships, including extra-pair sex. Among women, estrogen is positively related to voice pitch, attractiveness, and the likelihood of extra-pair involvement. Although prior work has demonstrated a positive relationship between men's testosterone levels and infidelity, this study is the first to investigate attributions of infidelity as a function of sexual dimorphism in male and female voices. We found that men attributed high infidelity risk to feminized women's voices, but not significantly more often than did women. Women attributed high infidelity risk to masculinized men's voices at significantly higher rates than did men. These data suggest that voice pitch is used as an indicator of sexual strategy in addition to underlying mate value. The aforementioned attributions may be adaptive if they prevent cuckoldry and/or loss of parental and relationship investment via avoidance of partners who may be more likely to be unfaithful.

  3. Voice Pitch Influences Perceptions of Sexual Infidelity

    Directory of Open Access Journals (Sweden)

    Jillian J.M. O'Connor

    2011-01-01

    Full Text Available Sexual infidelity can be costly to members of both the extra-pair and the paired couple. Thus, detecting infidelity risk is potentially adaptive if it aids in avoiding cuckoldry or loss of parental and relationship investment. Among men, testosterone is inversely related to voice pitch, relationship and offspring investment, and is positively related to the pursuit of short-term relationships, including extra-pair sex. Among women, estrogen is positively related to voice pitch, attractiveness, and the likelihood of extra-pair involvement. Although prior work has demonstrated a positive relationship between men's testosterone levels and infidelity, this study is the first to investigate attributions of infidelity as a function of sexual dimorphism in male and female voices. We found that men attributed high infidelity risk to feminized women's voices, but not significantly more often than did women. Women attributed high infidelity risk to masculinized men's voices at significantly higher rates than did men. These data suggest that voice pitch is used as an indicator of sexual strategy in addition to underlying mate value. The aforementioned attributions may be adaptive if they prevent cuckoldry and/or loss of parental and relationship investment via avoidance of partners who may be more likely to be unfaithful.

  4. Pitched Blade Turbine Efficiency at Particle Suspension

    Directory of Open Access Journals (Sweden)

    D. Ceres

    2010-01-01

    Full Text Available Mixing suspensions is a very important hydraulic operation. The pitched six-blade turbine is a widely-used axial-flow impeller. This paper deals with effect relative impeller size and particle content on theefficiency of a pitched six-blade turbine at particle suspension. Two pitched six-blade turbines were used in model measurements of just suspension impeller speed. The ratios of the vessel to agitator diameter D/d were 3 and 4.5. The measurements were carried out in a dish-bottomed vessel 300 mm in diameter. The just suspension impeller speeds were measured using an electrochemical method, and were checked visually. A 2.5 % NaCl water solution was used as the liquid phase, and glass particles with four equivalent diameters between 0.18 and 0.89 mmand volumetric concentration from 2.5 % to 40% were usedasthesolid phase. The criterion values πs=Po√Fr'3(d/D7 were calculated from the particle suspension and power consumption measurements. The dependencies of πs on particle content cv show that larger agitators are more efficient for higher particle content.

  5. Feedback brake distribution control for minimum pitch

    Science.gov (United States)

    Tavernini, Davide; Velenis, Efstathios; Longo, Stefano

    2017-06-01

    The distribution of brake forces between front and rear axles of a vehicle is typically specified such that the same level of brake force coefficient is imposed at both front and rear wheels. This condition is known as 'ideal' distribution and it is required to deliver the maximum vehicle deceleration and minimum braking distance. For subcritical braking conditions, the deceleration demand may be delivered by different distributions between front and rear braking forces. In this research we show how to obtain the optimal distribution which minimises the pitch angle of a vehicle and hence enhances driver subjective feel during braking. A vehicle model including suspension geometry features is adopted. The problem of the minimum pitch brake distribution for a varying deceleration level demand is solved by means of a model predictive control (MPC) technique. To address the problem of the undesirable pitch rebound caused by a full-stop of the vehicle, a second controller is designed and implemented independently from the braking distribution in use. An extended Kalman filter is designed for state estimation and implemented in a high fidelity environment together with the MPC strategy. The proposed solution is compared with the reference 'ideal' distribution as well as another previous feed-forward solution.

  6. Auditory processing in absolute pitch possessors

    Science.gov (United States)

    McKetton, Larissa; Schneider, Keith A.

    2018-05-01

    Absolute pitch (AP) is a rare ability in classifying a musical pitch without a reference standard. It has been of great interest to researchers studying auditory processing and music cognition since it is seldom expressed and sheds light on influences pertaining to neurodevelopmental biological predispositions and the onset of musical training. We investigated the smallest frequency that could be detected or just noticeable difference (JND) between two pitches. Here, we report significant differences in JND thresholds in AP musicians and non-AP musicians compared to non-musician control groups at both 1000 Hz and 987.76 Hz testing frequencies. Although the AP-musicians did better than non-AP musicians, the difference was not significant. In addition, we looked at neuro-anatomical correlates of musicianship and AP using structural MRI. We report increased cortical thickness of the left Heschl's Gyrus (HG) and decreased cortical thickness of the inferior frontal opercular gyrus (IFO) and circular insular sulcus volume (CIS) in AP compared to non-AP musicians and controls. These structures may therefore be optimally enhanced and reduced to form the most efficient network for AP to emerge.

  7. Individual blade pitch for yaw control

    International Nuclear Information System (INIS)

    Navalkar, S T; Van Wingerden, J W; Van Kuik, G A M

    2014-01-01

    Individual pitch control (IPC) for reducing blade loads has been investigated and proven successful in recent literature. For IPC, the multi-blade co-ordinate (MBC) transformation is used to process the blade load signals from the rotating to a stationary frame of reference. In the stationary frame of reference, the yaw error of a turbine can be appended to generate IPC actions that are able to achieve turbine yaw control for a turbine in free yaw. In this paper, IPC for yaw control is tested on a high-fidelity numerical model of a commercially produced wind turbine in free yaw. The tests show that yaw control using IPC has the distinct advantage that the yaw system loads and support structure loading are substantially reduced. However, IPC for yaw control also shows a reduction in IPC blade load reduction potential and causes a slight increase in pitch activity. Thus, the key contribution of this paper is the concept demonstration of IPC for yaw control. Further, using IPC for yaw as a tuning parameter, it is shown how the best trade-off between blade loading, pitch activity and support structure loading can be achieved for wind turbine design

  8. A fundamental residue pitch perception bias for tone language speakers

    Science.gov (United States)

    Petitti, Elizabeth

    A complex tone composed of only higher-order harmonics typically elicits a pitch percept equivalent to the tone's missing fundamental frequency (f0). When judging the direction of residue pitch change between two such tones, however, listeners may have completely opposite perceptual experiences depending on whether they are biased to perceive changes based on the overall spectrum or the missing f0 (harmonic spacing). Individual differences in residue pitch change judgments are reliable and have been associated with musical experience and functional neuroanatomy. Tone languages put greater pitch processing demands on their speakers than non-tone languages, and we investigated whether these lifelong differences in linguistic pitch processing affect listeners' bias for residue pitch. We asked native tone language speakers and native English speakers to perform a pitch judgment task for two tones with missing fundamental frequencies. Given tone pairs with ambiguous pitch changes, listeners were asked to judge the direction of pitch change, where the direction of their response indicated whether they attended to the overall spectrum (exhibiting a spectral bias) or the missing f0 (exhibiting a fundamental bias). We found that tone language speakers are significantly more likely to perceive pitch changes based on the missing f0 than English speakers. These results suggest that tone-language speakers' privileged experience with linguistic pitch fundamentally tunes their basic auditory processing.

  9. Pitch Counts in Youth Baseball and Softball: A Historical Review.

    Science.gov (United States)

    Feeley, Brian T; Schisel, Jessica; Agel, Julie

    2018-07-01

    Pitching injuries are getting increased attention in the mass media. Many references are made to pitch counts and the role they play in injury prevention. The original purpose of regulating the pitch count in youth baseball was to reduce injury and fatigue to pitchers. This article reviews the history and development of the pitch count limit in baseball, the effect it has had on injury, and the evidence regarding injury rates on softball windmill pitching. Literature search through PubMed, mass media, and organizational Web sites through June 2015. Pitch count limits and rest recommendations were introduced in 1996 after a survey of 28 orthopedic surgeons and baseball coaches showed injuries to baseball pitchers' arms were believed to be from the number of pitches thrown. Follow-up research led to revised recommendations with more detailed guidelines in 2006. Since that time, data show a relationship between innings pitched and upper extremity injury, but pitch type has not clearly been shown to affect injury rates. Current surveys of coaches and players show that coaches, parents, and athletes often do not adhere to these guidelines. There are no pitch count guidelines currently available in softball. The increase in participation in youth baseball and softball with an emphasis on early sport specialization in youth sports activities suggests that there will continue to be a rise in injury rates to young throwers. The published pitch counts are likely to positively affect injury rates but must be adhered to by athletes, coaches, and parents.

  10. A perceptual pitch boundary in a non-human primate

    Directory of Open Access Journals (Sweden)

    Olivier eJoly

    2014-09-01

    Full Text Available Pitch is an auditory percept critical to the perception of music and speech, and for these harmonic sounds, pitch is closely related to the repetition rate of the acoustic wave. This paper reports a test of the assumption that non-human primates and especially rhesus monkeys perceive the pitch of these harmonic sounds much as humans do. A new procedure was developed to train macaques to discriminate the pitch of harmonic sounds and thereby demonstrate that the lower limit for pitch perception in macaques is close to 30 Hz, as it is in humans. Moreover, when the phases of successive harmonics are alternated to cause a pseudo-doubling of the repetition rate, the lower pitch boundary in macaques decreases substantially, as it does in humans. The results suggest that both species use neural firing times to discriminate pitch, at least for sounds with relatively low repetition rates.

  11. Conceptual Study of Rotary-Wing Microrobotics

    National Research Council Canada - National Science Library

    Chabak, Kelson D

    2008-01-01

    This thesis presents a novel rotary-wing micro-electro-mechanical systems (MEMS) robot design. Two MEMS wing designs were designed, fabricated and tested including one that possesses features conducive to insect level aerodynamics...

  12. Low Aspect-Ratio Wings for Wing-Ships

    DEFF Research Database (Denmark)

    Filippone, Antonino; Selig, M.

    1998-01-01

    Flying on ground poses technical and aerodynamical challenges. The requirements for compactness, efficiency, manouverability, off-design operation,open new areas of investigations in the fieldof aerodynamic analysis and design. A review ofthe characteristics of low-aspect ratio wings, in- and out...

  13. A fully-coupled approach to simulate three-dimensional flexible flapping wings

    Science.gov (United States)

    Yang, Tao; Wei, Mingjun

    2010-11-01

    The algorithm in this study is based on a combined Eulerian description of both fluid flow and solid structure which then can be solved in a monolithic manner. Thus, the algorithm is especially suitable to solve fluid-structure interaction problems involving large and nonlinear deformation. In fact, we have successfully applied the same approach to our previous study of two-dimensional pitching-and-plunging problems and found many unique features from the passive pitching introduced by wing flexibility. With the current non-trivial extension of the algorithm to three-dimensional configuration, we can eventually reveal the complex vortex and structural dynamics behind the amazing performance of nature's fliers such as hummingbirds.

  14. Vowel identity between note labels confuses pitch identification in non-absolute pitch possessors.

    Directory of Open Access Journals (Sweden)

    Alfredo Brancucci

    Full Text Available The simplest and likeliest assumption concerning the cognitive bases of absolute pitch (AP is that at its origin there is a particularly skilled function which matches the height of the perceived pitch to the verbal label of the musical tone. Since there is no difference in sound frequency resolution between AP and non-AP (NAP musicians, the hypothesis of the present study is that the failure of NAP musicians in pitch identification relies mainly in an inability to retrieve the correct verbal label to be assigned to the perceived musical note. The primary hypothesis is that, when asked to identify tones, NAP musicians confuse the verbal labels to be attached to the stimulus on the basis of their phonetic content. Data from two AP tests are reported, in which subjects had to respond in the presence or in the absence of visually presented verbal note labels (fixed Do solmization. Results show that NAP musicians confuse more frequently notes having a similar vowel in the note label. They tend to confuse e.g. a 261 Hz tone (Do more often with Sol than, e.g., with La. As a second goal, we wondered whether this effect is lateralized, i.e. whether one hemisphere is more responsible than the other in the confusion of notes with similar labels. This question was addressed by observing pitch identification during dichotic listening. Results showed that there is a right hemispheric disadvantage, in NAP but not AP musicians, in the retrieval of the verbal label to be assigned to the perceived pitch. The present results indicate that absolute pitch has strong verbal bases, at least from a cognitive point of view.

  15. [Factors influencing the pitch and loudness of tinnitus].

    Science.gov (United States)

    Ueda, S; Asoh, S; Watanabe, Y

    1992-11-01

    Pitch match and loudness balance tests were given to 397 cases with tinnitus. The factors which influenced tinnitus pitch and loudness were analyzed statistically from the clinical point of view. The results obtained were as follows: 1) Onomatopoeia of tinnitus, either [Keeeen] or [Jeeeen], were observed in a majority of cases. 2) Significantly sharp sounding onomatopoeia such as [Keeeen] or [Meeeen] had high pitches, over 4kHz, and dull sounds like [Gooooh] or [Buuuun] had low pitches, below 500Hz. 3) Acute stage tinnitus, within one month of onset, had a significantly depressed pitch and walked loudness, above 6dB. 4) The pitches observed in cases with Meniere's disease and chronic otitis media were distributed evenly from low frequencies to high. In other cases, especially presbyacusis and noise deafness, high pitch tinnitus (above 4kHz) was frequently noted. The loudness of tinnitus without hearing loss was significantly greater than in other diseases. 5) As a rule the more deteriorated the hearing level was, the lower the frequency of the pitch, and the smaller the loudness in tinnitus. 6) A high pitch of tinnitus nearly corresponded with hearing type, that is, the pitch of tinnitus was also in accordance with the disturbed frequency in the hearing threshold.

  16. Wings: Women Entrepreneurs Take Flight.

    Science.gov (United States)

    Baldwin, Fred D.

    1997-01-01

    Women's Initiative Networking Groups (WINGS) provides low- and moderate-income women in Appalachian Kentucky with training in business skills, contacts, and other resources they need to succeed as entrepreneurs. The women form informal networks to share business know-how and support for small business startup and operations. The program plans to…

  17. Adaptive computations of flow around a delta wing with vortex breakdown

    Science.gov (United States)

    Modiano, David L.; Murman, Earll M.

    1993-01-01

    An adaptive unstructured mesh solution method for the three-dimensional Euler equations was used to simulate the flow around a sharp edged delta wing. Emphasis was on the breakdown of the leading edge vortex at high angle of attack. Large values of entropy, which indicate vortical regions of the flow, specified the region in which adaptation was performed. The aerodynamic normal force coefficients show excellent agreement with wind tunnel data measured by Jarrah, and demonstrate the importance of adaptation in obtaining an accurate solution. The pitching moment coefficient and the location of vortex breakdown are compared with experimental data measured by Hummel and Srinivasan, showing good agreement in cases in which vortex breakdown is located over the wing.

  18. A theoretical analysis of pitch stability during gliding in flying snakes.

    Science.gov (United States)

    Jafari, Farid; Ross, Shane D; Vlachos, Pavlos P; Socha, John J

    2014-06-01

    Flying snakes use their entire body as a continuously morphing 'wing' to produce lift and shallow their glide trajectory. Their dominant behavior during gliding is aerial undulation, in which lateral waves are sent posteriorly down the body. This highly dynamic behavior, which is unique among animal gliders, should have substantial effects on the flight dynamics and stability of the snakes, resulting from the continuous redistribution of mass and aerodynamic forces. In this study, we develop two-dimensional theoretical models to assess the stability characteristics of snakes in the pitch direction. Previously measured force coefficients are used to simulate aerodynamic forces acting on the models, and undulation is simulated by varying mass. Model 1 is a simple three-airfoil representation of the snake's body that possesses a passively stable equilibrium solution, whose basin of stability contains initial conditions observed in experimental gliding trajectories. Model 2 is more sophisticated, with more degrees of freedom allowing for postural changes to better represent the snake's real kinematics; in addition, a restoring moment is added to simulate potential active control. The application of static and dynamic stability criteria show that Model 2 is passively unstable, but can be stabilized with a restoring moment. Overall, these models suggest that undulation does not contribute to stability in pitch, and that flying snakes require a closed-loop control system formed around a passively stable dynamical framework.

  19. Wake vortex properties and thrust production of a harmonically-pitching flexible airfoil at low Reynolds number

    Science.gov (United States)

    Olson, David; Naguib, Ahmed; Koochesfahani, Manoochehr

    2017-11-01

    Many of the natural flyers have deformable wing structures and exhibit complex kinematics in order to produce lift and thrust. Replicating all of these conditions in the laboratory (or in simulations) is extremely difficult, and drawing explicit connections to basic unsteady aerodynamics models and theories is even more complicated. Therefore, simplified wing structure and kinematics are typically used to facilitate drawing out these connections. In this work, measurements are conducted using a rigid and a chordwise-flexible NACA 0009 airfoils when harmonically pitched about the quarter chord point. Molecular tagging velocimetry is used to characterize the wake and estimate the thrust based on the momentum integral equation as function of the reduced frequency and the pitching amplitude. The results obtained using the two different airfoils are compared in order to examine the influence of structural flexibility. Consistent with the literature, chordwise flexibility is found to enhance thrust production and the circulation of the vortices shed into the wake, for a certain range of frequencies and amplitudes. Additional characterizations are undertaken of the wake vortex structure and its scaling. This work was supported by AFOSR Award Number FA9550-10-1-0342.

  20. Multi-Channel Maximum Likelihood Pitch Estimation

    DEFF Research Database (Denmark)

    Christensen, Mads Græsbøll

    2012-01-01

    In this paper, a method for multi-channel pitch estimation is proposed. The method is a maximum likelihood estimator and is based on a parametric model where the signals in the various channels share the same fundamental frequency but can have different amplitudes, phases, and noise characteristics....... This essentially means that the model allows for different conditions in the various channels, like different signal-to-noise ratios, microphone characteristics and reverberation. Moreover, the method does not assume that a certain array structure is used but rather relies on a more general model and is hence...

  1. Review Results on Wing-Body Interference

    Directory of Open Access Journals (Sweden)

    Frolov Vladimir

    2016-01-01

    Full Text Available The paper presents an overview of results for wing-body interference, obtained by the author for varied wing-body combinations. The lift-curve slopes of the wing-body combinations are considered. In this paper a discrete vortices method (DVM and 2D potential model for cross-flow around fuselage are used. The circular and elliptical cross-sections of the fuselage and flat wings of various forms are considered. Calculations showed that the value of the lift-curve slopes of the wing-body combinations may exceed the same value for an isolated wing. This result confirms an experimental data obtained by other authors earlier. Within a framework of the used mathematical models the investigations to optimize the wing-body combination were carried. The present results of the optimization problem for the wing-body combination allowed to select the optimal geometric characteristics for configuration to maximize the values of the lift-curve slopes of the wing-body combination. It was revealed that maximums of the lift-curve slopes for the optimal mid-wing configuration with elliptical cross-section body had a sufficiently large relative width of the body (more than 30% of the span wing.

  2. Left-hemisphere activation is associated with enhanced vocal pitch error detection in musicians with absolute pitch

    Science.gov (United States)

    Behroozmand, Roozbeh; Ibrahim, Nadine; Korzyukov, Oleg; Robin, Donald A.; Larson, Charles R.

    2014-01-01

    The ability to process auditory feedback for vocal pitch control is crucial during speaking and singing. Previous studies have suggested that musicians with absolute pitch (AP) develop specialized left-hemisphere mechanisms for pitch processing. The present study adopted an auditory feedback pitch perturbation paradigm combined with ERP recordings to test the hypothesis whether the neural mechanisms of the left-hemisphere enhance vocal pitch error detection and control in AP musicians compared with relative pitch (RP) musicians and non-musicians (NM). Results showed a stronger N1 response to pitch-shifted voice feedback in the right-hemisphere for both AP and RP musicians compared with the NM group. However, the left-hemisphere P2 component activation was greater in AP and RP musicians compared with NMs and also for the AP compared with RP musicians. The NM group was slower in generating compensatory vocal reactions to feedback pitch perturbation compared with musicians, and they failed to re-adjust their vocal pitch after the feedback perturbation was removed. These findings suggest that in the earlier stages of cortical neural processing, the right hemisphere is more active in musicians for detecting pitch changes in voice feedback. In the later stages, the left-hemisphere is more active during the processing of auditory feedback for vocal motor control and seems to involve specialized mechanisms that facilitate pitch processing in the AP compared with RP musicians. These findings indicate that the left hemisphere mechanisms of AP ability are associated with improved auditory feedback pitch processing during vocal pitch control in tasks such as speaking or singing. PMID:24355545

  3. A developmental study of latent absolute pitch memory.

    Science.gov (United States)

    Jakubowski, Kelly; Müllensiefen, Daniel; Stewart, Lauren

    2017-03-01

    The ability to recall the absolute pitch level of familiar music (latent absolute pitch memory) is widespread in adults, in contrast to the rare ability to label single pitches without a reference tone (overt absolute pitch memory). The present research investigated the developmental profile of latent absolute pitch (AP) memory and explored individual differences related to this ability. In two experiments, 288 children from 4 to12 years of age performed significantly above chance at recognizing the absolute pitch level of familiar melodies. No age-related improvement or decline, nor effects of musical training, gender, or familiarity with the stimuli were found in regard to latent AP task performance. These findings suggest that latent AP memory is a stable ability that is developed from as early as age 4 and persists into adulthood.

  4. Processing of Binaural Pitch Stimuli in Hearing-Impaired Listeners

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten

    2009-01-01

    Binaural pitch is a tonal sensation produced by introducing a frequency-dependent interaural phase shift in binaurally presented white noise. As no spectral cues are present in the physical stimulus, binaural pitch perception is assumed to rely on accurate temporal fine structure coding and intact...... binaural integration mechanisms. This study investigated to what extent basic auditory measures of binaural processing as well as cognitive abilities are correlated with the ability of hearing-impaired listeners to perceive binaural pitch. Subjects from three groups (1: normal-hearing; 2: cochlear...... hearingloss; 3: retro-cochlear impairment) were asked to identify the pitch contour of series of five notes of equal duration, ranging from 523 to 784 Hz, played either with Huggins’ binaural pitch stimuli (BP) or perceptually similar, but monaurally detectable, pitches (MP). All subjects from groups 1 and 2...

  5. Illusory conjunctions of pitch and duration in unfamiliar tone sequences.

    Science.gov (United States)

    Thompson, W F; Hall, M D; Pressing, J

    2001-02-01

    In 3 experiments, the authors examined short-term memory for pitch and duration in unfamiliar tone sequences. Participants were presented a target sequence consisting of 2 tones (Experiment 1) or 7 tones (Experiments 2 and 3) and then a probe tone. Participants indicated whether the probe tone matched 1 of the target tones in both pitch and duration. Error rates were relatively low if the probe tone matched 1 of the target tones or if it differed from target tones in pitch, duration, or both. Error rates were remarkably high, however, if the probe tone combined the pitch of 1 target tone with the duration of a different target tone. The results suggest that illusory conjunctions of these dimensions frequently occur. A mathematical model is presented that accounts for the relative contribution of pitch errors, duration errors, and illusory conjunctions of pitch and duration.

  6. Shoulder and Scapular Kinematics during the Windmill Softball Pitch

    OpenAIRE

    Backus, Sherry I.; Kraszewski, Andrew; Kontaxis, Andreas; Gibbons, Mandi; Bido, Jennifer; Graziano, Jessica; Hafer, Jocelyn; Jones, Kristofer J.; Hillstrom, Howard; Fealy, Stephen

    2013-01-01

    Objectives: Pitch count has been studied extensively in the overhand throwing athlete. However, pitch count and fatigue have not been systematically evaluated in the female windmill (underhand) throwing athlete. Direct kinematic measurements of the glenohumeral and scapulo-thoracic joint have not to be correlated and determined. The purpose is to measure scapular kinematics for the high school female windmill softball pitcher and identify kinematic adaptions and changes in pitching performanc...

  7. Kinematics changes in technique of a softball pitch

    OpenAIRE

    Tomášek, Petr

    2007-01-01

    Headline: Kinematic changes in technique of a softball pitch. Aims of thesis: I will compare the pitches ofprofessinal european softball wonam pitchers and then I will compare their technique with professional czech woman pitcher. Methods: Results: Key words: For examination of different techniques, I choosed thease professinal european softball wonam pitchers 3 Italians and 2 Greeks. Videotape was taken on European championship 2005 in Prague. For description of softball pitch I used a metho...

  8. Pitch-Responsive Cortical Regions in Congenital Amusia.

    Science.gov (United States)

    Norman-Haignere, Sam V; Albouy, Philippe; Caclin, Anne; McDermott, Josh H; Kanwisher, Nancy G; Tillmann, Barbara

    2016-03-09

    Congenital amusia is a lifelong deficit in music perception thought to reflect an underlying impairment in the perception and memory of pitch. The neural basis of amusic impairments is actively debated. Some prior studies have suggested that amusia stems from impaired connectivity between auditory and frontal cortex. However, it remains possible that impairments in pitch coding within auditory cortex also contribute to the disorder, in part because prior studies have not measured responses from the cortical regions most implicated in pitch perception in normal individuals. We addressed this question by measuring fMRI responses in 11 subjects with amusia and 11 age- and education-matched controls to a stimulus contrast that reliably identifies pitch-responsive regions in normal individuals: harmonic tones versus frequency-matched noise. Our findings demonstrate that amusic individuals with a substantial pitch perception deficit exhibit clusters of pitch-responsive voxels that are comparable in extent, selectivity, and anatomical location to those of control participants. We discuss possible explanations for why amusics might be impaired at perceiving pitch relations despite exhibiting normal fMRI responses to pitch in their auditory cortex: (1) individual neurons within the pitch-responsive region might exhibit abnormal tuning or temporal coding not detectable with fMRI, (2) anatomical tracts that link pitch-responsive regions to other brain areas (e.g., frontal cortex) might be altered, and (3) cortical regions outside of pitch-responsive cortex might be abnormal. The ability to identify pitch-responsive regions in individual amusic subjects will make it possible to ask more precise questions about their role in amusia in future work. Copyright © 2016 the authors 0270-6474/16/362986-09$15.00/0.

  9. Absolute Pitch: Effects of Timbre on Note-Naming Ability

    OpenAIRE

    Vanzella, Patr?cia; Schellenberg, E. Glenn

    2010-01-01

    Background Absolute pitch (AP) is the ability to identify or produce isolated musical tones. It is evident primarily among individuals who started music lessons in early childhood. Because AP requires memory for specific pitches as well as learned associations with verbal labels (i.e., note names), it represents a unique opportunity to study interactions in memory between linguistic and nonlinguistic information. One untested hypothesis is that the pitch of voices may be difficult for AP poss...

  10. Preliminary Results Obtained from Flight Test of a 1/7-Scale Rocket-Powered Model of the Grumman XF10F Airplane Configuration in the Swept-Wing Condition, TED No. NACA DE 354

    Science.gov (United States)

    Gardner, William N.

    1951-01-01

    A flight investigation of a 1/7-scale rocket-powered model of the XF10F Grumman XFl0F airplane in the swept-wing configuration has been made. The purpose of this test was to determine the static longitudinal stability, damping in pitch, and longitudinal control effectiveness of the airplane with the center of gravity at 20 percent of the wing mean aerodynamic chord. Only a small amount of data was obtained from the test because, immediately after booster separation at a Mach number of 0.88, the configuration was directionally unstable and diverged in sideslip. Simultaneous with the sideslip divergence, the model became longitudinally unstable at 3 degree angle of attack and -6 degree sideslip and diverged in pitch to a high angle of attack. During the pitch-up the free-floating horizontal tail became unstable at 5 degree angle of attack and the tail drifted against its positive deflection limit.

  11. Pitch Correlogram Clustering for Fast Speaker Identification

    Directory of Open Access Journals (Sweden)

    Nitin Jhanwar

    2004-12-01

    Full Text Available Gaussian mixture models (GMMs are commonly used in text-independent speaker identification systems. However, for large speaker databases, their high computational run-time limits their use in online or real-time speaker identification situations. Two-stage identification systems, in which the database is partitioned into clusters based on some proximity criteria and only a single-cluster GMM is run in every test, have been suggested in literature to speed up the identification process. However, most clustering algorithms used have shown limited success, apparently because the clustering and GMM feature spaces used are derived from similar speech characteristics. This paper presents a new clustering approach based on the concept of a pitch correlogram that captures frame-to-frame pitch variations of a speaker rather than short-time spectral characteristics like cepstral coefficient, spectral slopes, and so forth. The effectiveness of this two-stage identification process is demonstrated on the IVIE corpus of 110 speakers. The overall system achieves a run-time advantage of 500% as well as a 10% reduction of error in overall speaker identification.

  12. Representational momentum in memory for pitch.

    Science.gov (United States)

    Freyd, J J; Kelly, M H; DeKay, M L

    1990-11-01

    When a visual pattern is displayed at successively different orientations such that a rotation or translation is implied, an observer's memory for the final position is displaced forward. This phenomenon of representational momentum shares some similarities with physical momentum. For instance, the amount of memory shift is proportional to the implied velocity of the inducing display; representational momentum is specifically proportional to the final, not the average, velocity; representational momentum follows a continuous stopping function for the first 250 ms or so of the retention interval. In a previous paper (Kelly & Freyd, 1987) we demonstrated a forward memory asymmetry using implied changes in pitch, for subjects without formal musical training. In the current paper we replicate our earlier finding and show that the forward memory asymmetry occurs for subjects with formal musical training as well (Experiment 1). We then show the structural similarity between representational momentum in memory for pitch with previous reports of parametric effects using visual stimuli. We report a velocity effect for auditory momentum (Experiment 2), we demonstrate specifically that the velocity effect depends on the implied acceleration (Experiment 3), and we show that the stopping function for auditory momentum is qualitatively the same as that for visual momentum (Experiment 4). We consider the implications of these results for theories of mental representation.

  13. AFM study of structure influence on butterfly wings coloration

    OpenAIRE

    Dallaeva, Dinara; Tománek, Pavel

    2012-01-01

    This study describes the structural coloration of the butterfly Vanessa Atalanta wings and shows how the atomic force microscopy (AFM) can be applied to the study of wings morphology and wings surface behavior under the temperature. The role of the wings morphology in colors was investigated. Different colors of wings have different topology and can be identified by them. AFM in semi-contact mode was used to study the wings surface. The wing surface area, which is close to the butterfly body,...

  14. Impaired short-term memory for pitch in congenital amusia.

    Science.gov (United States)

    Tillmann, Barbara; Lévêque, Yohana; Fornoni, Lesly; Albouy, Philippe; Caclin, Anne

    2016-06-01

    Congenital amusia is a neuro-developmental disorder of music perception and production. The hypothesis is that the musical deficits arise from altered pitch processing, with impairments in pitch discrimination (i.e., pitch change detection, pitch direction discrimination and identification) and short-term memory. The present review article focuses on the deficit of short-term memory for pitch. Overall, the data discussed here suggest impairments at each level of processing in short-term memory tasks; starting with the encoding of the pitch information and the creation of the adequate memory trace, the retention of the pitch traces over time as well as the recollection and comparison of the stored information with newly incoming information. These impairments have been related to altered brain responses in a distributed fronto-temporal network, associated with decreased connectivity between these structures, as well as in abnormalities in the connectivity between the two auditory cortices. In contrast, amusic participants׳ short-term memory abilities for verbal material are preserved. These findings show that short-term memory deficits in congenital amusia are specific to pitch, suggesting a pitch-memory system that is, at least partly, separated from verbal memory. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Statistically Efficient Methods for Pitch and DOA Estimation

    DEFF Research Database (Denmark)

    Jensen, Jesper Rindom; Christensen, Mads Græsbøll; Jensen, Søren Holdt

    2013-01-01

    , it was recently considered to estimate the DOA and pitch jointly. In this paper, we propose two novel methods for DOA and pitch estimation. They both yield maximum-likelihood estimates in white Gaussian noise scenar- ios, where the SNR may be different across channels, as opposed to state-of-the-art methods......Traditionally, direction-of-arrival (DOA) and pitch estimation of multichannel, periodic sources have been considered as two separate problems. Separate estimation may render the task of resolving sources with similar DOA or pitch impossible, and it may decrease the estimation accuracy. Therefore...

  16. Language experience enhances early cortical pitch-dependent responses

    Science.gov (United States)

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Ananthakrishnan, Saradha; Vijayaraghavan, Venkatakrishnan

    2014-01-01

    Pitch processing at cortical and subcortical stages of processing is shaped by language experience. We recently demonstrated that specific components of the cortical pitch response (CPR) index the more rapidly-changing portions of the high rising Tone 2 of Mandarin Chinese, in addition to marking pitch onset and sound offset. In this study, we examine how language experience (Mandarin vs. English) shapes the processing of different temporal attributes of pitch reflected in the CPR components using stimuli representative of within-category variants of Tone 2. Results showed that the magnitude of CPR components (Na-Pb and Pb-Nb) and the correlation between these two components and pitch acceleration were stronger for the Chinese listeners compared to English listeners for stimuli that fell within the range of Tone 2 citation forms. Discriminant function analysis revealed that the Na-Pb component was more than twice as important as Pb-Nb in grouping listeners by language affiliation. In addition, a stronger stimulus-dependent, rightward asymmetry was observed for the Chinese group at the temporal, but not frontal, electrode sites. This finding may reflect selective recruitment of experience-dependent, pitch-specific mechanisms in right auditory cortex to extract more complex, time-varying pitch patterns. Taken together, these findings suggest that long-term language experience shapes early sensory level processing of pitch in the auditory cortex, and that the sensitivity of the CPR may vary depending on the relative linguistic importance of specific temporal attributes of dynamic pitch. PMID:25506127

  17. Pitch discrimination associated with phonological awareness: Evidence from congenital amusia.

    Science.gov (United States)

    Sun, Yanan; Lu, Xuejing; Ho, Hao Tam; Thompson, William Forde

    2017-03-13

    Research suggests that musical skills are associated with phonological abilities. To further investigate this association, we examined whether phonological impairments are evident in individuals with poor music abilities. Twenty individuals with congenital amusia and 20 matched controls were assessed on a pure-tone pitch discrimination task, a rhythm discrimination task, and four phonological tests. Amusic participants showed deficits in discriminating pitch and discriminating rhythmic patterns that involve a regular beat. At a group level, these individuals performed similarly to controls on all phonological tests. However, eight amusics with severe pitch impairment, as identified by the pitch discrimination task, exhibited significantly worse performance than all other participants in phonological awareness. A hierarchical regression analysis indicated that pitch discrimination thresholds predicted phonological awareness beyond that predicted by phonological short-term memory and rhythm discrimination. In contrast, our rhythm discrimination task did not predict phonological awareness beyond that predicted by pitch discrimination thresholds. These findings suggest that accurate pitch discrimination is critical for phonological processing. We propose that deficits in early-stage pitch discrimination may be associated with impaired phonological awareness and we discuss the shared role of pitch discrimination for processing music and speech.

  18. Perception of words and pitch patterns in song and speech

    Directory of Open Access Journals (Sweden)

    Julia eMerrill

    2012-03-01

    Full Text Available This fMRI study examines shared and distinct cortical areas involved in the auditory perception of song and speech at the level of their underlying constituents: words, pitch and rhythm. Univariate and multivariate analyses were performed on the brain activity patterns of six conditions, arranged in a subtractive hierarchy: sung sentences including words, pitch and rhythm; hummed speech prosody and song melody containing only pitch patterns and rhythm; as well as the pure musical or speech rhythm.Systematic contrasts between these balanced conditions following their hierarchical organization showed a great overlap between song and speech at all levels in the bilateral temporal lobe, but suggested a differential role of the inferior frontal gyrus (IFG and intraparietal sulcus (IPS in processing song and speech. The left IFG was involved in word- and pitch-related processing in speech, the right IFG in processing pitch in song.Furthermore, the IPS showed sensitivity to discrete pitch relations in song as opposed to the gliding pitch in speech. Finally, the superior temporal gyrus and premotor cortex coded for general differences between words and pitch patterns, irrespective of whether they were sung or spoken. Thus, song and speech share many features which are reflected in a fundamental similarity of brain areas involved in their perception. However, fine-grained acoustic differences on word and pitch level are reflected in the activity of IFG and IPS.

  19. Latitudinal gradient effect on the wing geometry of Auca coctei (Guérin(Lepidoptera, Nymphalidae

    Directory of Open Access Journals (Sweden)

    María-José Sanzana

    2013-12-01

    Full Text Available Latitudinal gradient effect on the wing geometry of Auca coctei (Guérin (Lepidoptera, Nymphalidae. When the environmental conditions change locally, the organisms and populations may also change in response to the selection pressure, so that the development of individuals may become affected in different degrees. There have been only a few studies in which the patterns of wing morphology variation have been looked into along a latitudinal gradient by means of geometric morphometrics. The aim of this work was to assess the morphologic differentiation of wing among butterfly populations of the species Auca coctei. For this purpose, 9 sampling locations were used which are representative of the distribution range of the butterfly and cover a wide latitudinal range in Chile. The wing morphology was studied in a total of 202 specimens of A. coctei (150 males and 52 females, based on digitization of 17 morphologic landmarks. The results show variation of wing shape in both sexes; however, for the centroid size there was significant variation only in females. Females show smaller centroid size at higher latitudes, therefore in this study the Bergmann reverse rule is confirmed for females of A. coctei. Our study extends morphologic projections with latitude, suggesting that wing variation is an environmental response from diverse origins and may influence different characteristics of the life history of a butterfly.

  20. The influence of music-elicited emotions and relative pitch on absolute pitch memory for familiar melodies.

    Science.gov (United States)

    Jakubowski, Kelly; Müllensiefen, Daniel

    2013-01-01

    Levitin's findings that nonmusicians could produce from memory the absolute pitches of self-selected pop songs have been widely cited in the music psychology literature. These findings suggest that latent absolute pitch (AP) memory may be a more widespread trait within the population than traditional AP labelling ability. However, it has been left unclear what factors may facilitate absolute pitch retention for familiar pieces of music. The aim of the present paper was to investigate factors that may contribute to latent AP memory using Levitin's sung production paradigm for AP memory and comparing results to the outcomes of a pitch labelling task, a relative pitch memory test, measures of music-induced emotions, and various measures of participants' musical backgrounds. Our results suggest that relative pitch memory and the quality and degree of music-elicited emotions impact on latent AP memory.

  1. A Drosophila wing spot test

    International Nuclear Information System (INIS)

    Ayaki, Toshikazu; Yoshikawa, Isao; Niikawa, Norio; Hoshi, Masaharu.

    1986-01-01

    A Drosophila wing spot test system was used to investigate the effects of low doses of X-rays, gamma rays, and both 2.3 and 14.1 MeV neutrons on somatic chromosome mutation (SCM) induction. The incidence of SCM was significantly increased with any type of radiation, with evident linear dose-response relationship within the range of 3 to 20 cGy. It was estimated that relative biological effectiveness value for SCM induction of 2.3 MeV neutrons to X-rays and gamma rays is much higher than that of 14.1 MeV neutrons to those photons (2.4 vs 8.0). The Drosophila wing spot test system seems to become a promising in vivo experimental method for higher animals in terms of the lack of necessity for a marvelously large number of materials required in conventional test system. (Namekawa, K.)

  2. Subcortical plasticity following perceptual learning in a pitch discrimination task.

    Science.gov (United States)

    Carcagno, Samuele; Plack, Christopher J

    2011-02-01

    Practice can lead to dramatic improvements in the discrimination of auditory stimuli. In this study, we investigated changes of the frequency-following response (FFR), a subcortical component of the auditory evoked potentials, after a period of pitch discrimination training. Twenty-seven adult listeners were trained for 10 h on a pitch discrimination task using one of three different complex tone stimuli. One had a static pitch contour, one had a rising pitch contour, and one had a falling pitch contour. Behavioral measures of pitch discrimination and FFRs for all the stimuli were measured before and after the training phase for these participants, as well as for an untrained control group (n = 12). Trained participants showed significant improvements in pitch discrimination compared to the control group for all three trained stimuli. These improvements were partly specific for stimuli with the same pitch modulation (dynamic vs. static) and with the same pitch trajectory (rising vs. falling) as the trained stimulus. Also, the robustness of FFR neural phase locking to the sound envelope increased significantly more in trained participants compared to the control group for the static and rising contour, but not for the falling contour. Changes in FFR strength were partly specific for stimuli with the same pitch modulation (dynamic vs. static) of the trained stimulus. Changes in FFR strength, however, were not specific for stimuli with the same pitch trajectory (rising vs. falling) as the trained stimulus. These findings indicate that even relatively low-level processes in the mature auditory system are subject to experience-related change.

  3. Auditory deficits in amusia extend beyond poor pitch perception.

    Science.gov (United States)

    Whiteford, Kelly L; Oxenham, Andrew J

    2017-05-01

    Congenital amusia is a music perception disorder believed to reflect a deficit in fine-grained pitch perception and/or short-term or working memory for pitch. Because most measures of pitch perception include memory and segmentation components, it has been difficult to determine the true extent of pitch processing deficits in amusia. It is also unclear whether pitch deficits persist at frequencies beyond the range of musical pitch. To address these questions, experiments were conducted with amusics and matched controls, manipulating both the stimuli and the task demands. First, we assessed pitch discrimination at low (500Hz and 2000Hz) and high (8000Hz) frequencies using a three-interval forced-choice task. Amusics exhibited deficits even at the highest frequency, which lies beyond the existence region of musical pitch. Next, we assessed the extent to which frequency coding deficits persist in one- and two-interval frequency-modulation (FM) and amplitude-modulation (AM) detection tasks at 500Hz at slow (f m =4Hz) and fast (f m =20Hz) modulation rates. Amusics still exhibited deficits in one-interval FM detection tasks that should not involve memory or segmentation. Surprisingly, amusics were also impaired on AM detection, which should not involve pitch processing. Finally, direct comparisons between the detection of continuous and discrete FM demonstrated that amusics suffer deficits in both coding and segmenting pitch information. Our results reveal auditory deficits in amusia extending beyond pitch perception that are subtle when controlling for memory and segmentation, and are likely exacerbated in more complex contexts such as musical listening. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effects of wing locations on wing rock induced by forebody vortices

    Directory of Open Access Journals (Sweden)

    Ma Baofeng

    2016-10-01

    Full Text Available Previous studies have shown that asymmetric vortex wakes over slender bodies exhibit a multi-vortex structure with an alternate arrangement along a body axis at high angle of attack. In this investigation, the effects of wing locations along a body axis on wing rock induced by forebody vortices was studied experimentally at a subcritical Reynolds number based on a body diameter. An artificial perturbation was added onto the nose tip to fix the orientations of forebody vortices. Particle image velocimetry was used to identify flow patterns of forebody vortices in static situations, and time histories of wing rock were obtained using a free-to-roll rig. The results show that the wing locations can affect significantly the motion patterns of wing rock owing to the variation of multi-vortex patterns of forebody vortices. As the wing locations make the forebody vortices a two-vortex pattern, the wing body exhibits regularly divergence and fixed-point motion with azimuthal variations of the tip perturbation. If a three-vortex pattern exists over the wing, however, the wing-rock patterns depend on the impact of the highest vortex and newborn vortex. As the three vortices together influence the wing flow, wing-rock patterns exhibit regularly fixed-points and limit-cycled oscillations. With the wing moving backwards, the newborn vortex becomes stronger, and wing-rock patterns become fixed-points, chaotic oscillations, and limit-cycled oscillations. With further backward movement of wings, the vortices are far away from the upper surface of wings, and the motions exhibit divergence, limit-cycled oscillations and fixed-points. For the rearmost location of the wing, the wing body exhibits stochastic oscillations and fixed-points.

  5. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles

    International Nuclear Information System (INIS)

    Shang, J K; Finio, B M; Wood, R J; Combes, S A

    2009-01-01

    The development of flapping-wing micro air vehicles (MAVs) demands a systematic exploration of the available design space to identify ways in which the unsteady mechanisms governing flapping-wing flight can best be utilized for producing optimal thrust or maneuverability. Mimicking the wing kinematics of biological flight requires examining the potential effects of wing morphology on flight performance, as wings may be specially adapted for flapping flight. For example, insect wings passively deform during flight, leading to instantaneous and potentially unpredictable changes in aerodynamic behavior. Previous studies have postulated various explanations for insect wing complexity, but there lacks a systematic approach for experimentally examining the functional significance of components of wing morphology, and for determining whether or not natural design principles can or should be used for MAVs. In this work, a novel fabrication process to create centimeter-scale wings of great complexity is introduced; via this process, a wing can be fabricated with a large range of desired mechanical and geometric characteristics. We demonstrate the versatility of the process through the creation of planar, insect-like wings with biomimetic venation patterns that approximate the mechanical properties of their natural counterparts under static loads. This process will provide a platform for studies investigating the effects of wing morphology on flight dynamics, which may lead to the design of highly maneuverable and efficient MAVs and insight into the functional morphology of natural wings.

  6. Assessment of rail long-pitch corrugation

    Science.gov (United States)

    Valehrach, Jan; Guziur, Petr; Riha, Tomas; Plasek, Otto

    2017-09-01

    The paper focuses on defects of the running surface of the rail, namely the rail corrugation defect and specifically long-pitch corrugation in curves of small radii. These defects cause a shorter life of the rails, greater maintenance costs and increase the noise and vibration pollution. Therefore, it is very important to understand the formation and development of the imperfection of the rails. In the paper, various sections of railway tracks in the Czech Republic are listed, each of them completed with comparison of defect development, the particular track superstructure, rolling stock, axle load, traffic load etc. Based on performed measurements, defect development has been proved as different on sections with similar (or even same) parameters. The paper assumes that a train velocity is the significant circumstance for defect development rates. Assessment of track section with under sleeper pads, which are expected to be the one of the possible ways to suppress the corrugation defect development, is included in evaluation.

  7. Role of wing morphing in thrust generation

    Directory of Open Access Journals (Sweden)

    Mehdi Ghommem

    2014-01-01

    Full Text Available In this paper, we investigate the role of morphing on flight dynamics of two birds by simulating the flow over rigid and morphing wings that have the characteristics of two different birds, namely the Giant Petrel and Dove Prion. The simulation of a flapping rigid wing shows that the root of the wing should be placed at a specific angle of attack in order to generate enough lift to balance the weight of the bird. However, in this case the generated thrust is either very small, or even negative, depending on the wing shape. Further, results show that morphing of the wing enables a significant increase in the thrust and propulsive efficiency. This indicates that the birds actually utilize some sort of active wing twisting and bending to produce enough thrust. This study should facilitate better guidance for the design of flapping air vehicles.

  8. Analysis of pitch system data for condition monitoring

    DEFF Research Database (Denmark)

    Nielsen, Jannie Sønderkær; van de Pieterman, René P.; Sørensen, John Dalsgaard

    2014-01-01

    with a theoretical model based on aeroelastic simulations. The blade moment is found to have only minor influence on the friction in the blade bearing. The main factors affecting the static friction are the temperature and time after the latest pitch movement. Pitch motor current and torque are proportional...

  9. Pitch Systems and Curwen Hand Signs: A Review of Literature

    Science.gov (United States)

    Frey-Clark, Marta

    2017-01-01

    Learning to sing from notation is a complex task, and accurately performing pitches without an external reference can be particularly challenging. As such, the use of mnemonic devices to reinforce tonal relationships is a long-standing practice among musicians. Chief among these mnemonic devices are pitch syllable systems and Curwen hand signs.…

  10. Autistic Traits and Enhanced Perceptual Representation of Pitch and Time

    Science.gov (United States)

    Stewart, Mary E.; Griffiths, Timothy D.; Grube, Manon

    2018-01-01

    Enhanced basic perceptual discrimination has been reported for pitch in individuals with autism spectrum conditions. We test whether there is a correlational pattern of enhancement across the broader autism phenotype and whether this correlation occurs for the discrimination of pitch, time and loudness. Scores on the Autism-Spectrum Quotient…

  11. Binaural Pitch Fusion in Bilateral Cochlear Implant Users.

    Science.gov (United States)

    Reiss, Lina A J; Fowler, Jennifer R; Hartling, Curtis L; Oh, Yonghee

    Binaural pitch fusion is the fusion of stimuli that evoke different pitches between the ears into a single auditory image. Individuals who use hearing aids or bimodal cochlear implants (CIs) experience abnormally broad binaural pitch fusion, such that sounds differing in pitch by as much as 3-4 octaves are fused across ears, leading to spectral averaging and speech perception interference. The goal of this study was to determine if adult bilateral CI users also experience broad binaural pitch fusion. Stimuli were pulse trains delivered to individual electrodes. Fusion ranges were measured using simultaneous, dichotic presentation of reference and comparison stimuli in opposite ears, and varying the comparison stimulus to find the range that fused with the reference stimulus. Bilateral CI listeners had binaural pitch fusion ranges varying from 0 to 12 mm (average 6.1 ± 3.9 mm), where 12 mm indicates fusion over all electrodes in the array. No significant correlations of fusion range were observed with any subject factors related to age, hearing loss history, or hearing device history, or with any electrode factors including interaural electrode pitch mismatch, pitch match bandwidth, or within-ear electrode discrimination abilities. Bilateral CI listeners have abnormally broad fusion, similar to hearing aid and bimodal CI listeners. This broad fusion may explain the variability of binaural benefits for speech perception in quiet and in noise in bilateral CI users.

  12. Pointed and plateau-shaped pitch accents in North Frisian

    DEFF Research Database (Denmark)

    Niebuhr, Oliver; Hoekstra, Jarich

    2015-01-01

    for language documentation and conservation purposes. We selected a small part of this corpus – interviews of 10 elderly speakers – and conducted multiparametric F0 and duration measurements, focusing on nuclear rising-falling pitch accent patterns. We found strong evidence for a phonological pitch...

  13. The Association Between Pitch Conditions and the Incidence of ...

    African Journals Online (AJOL)

    shown to influence incidence of rugby injuries. Harsh weather conditions and detrimental effect on poor Kenyan rugby pitches create a unique environment for injury exposure. We conducted a whole population prospective cohort study to determine the association of pitch conditions with injury incidence and severity.

  14. Sparse Multi-Pitch and Panning Estimation of Stereophonic Signals

    DEFF Research Database (Denmark)

    Kronvall, Ted; Jakobsson, Andreas; Hansen, Martin Weiss

    2016-01-01

    In this paper, we propose a novel multi-pitch estimator for stereophonic mixtures, allowing for pitch estimation on multi-channel audio even if the amplitude and delay panning parameters are unknown. The presented method does not require prior knowledge of the number of sources present in the mix...

  15. Pitch identification and discrimination for complex tones with many harmonics

    NARCIS (Netherlands)

    Houtsma, A.J.M.; Smurzyński, J.

    1990-01-01

    Four experiments are reported that deal with pitch perception of harmonic complex tones containing up to 11 successive harmonics. In particular, the question is raised whether the pitch percept of the missing fundamental is mediated only by low-order resolvable harmonics, or whether it can also be

  16. Pitch Perception, Working Memory, and Second-Language Phonological Production

    Science.gov (United States)

    Posedel, James; Emery, Lisa; Souza, Benjamin; Fountain, Catherine

    2012-01-01

    Previous research has suggested that training on a musical instrument is associated with improvements in working memory and musical pitch perception ability. Good working memory and musical pitch perception ability, in turn, have been linked to certain aspects of language production. The current study examines whether working memory and/or pitch…

  17. Estimates of pitch strength for musicians and nonmusicians

    Science.gov (United States)

    Clarkson, Marsha G.; Zettler, Cynthia M.; Follmer, Michelle J.; Faulk, Margaret; Takagi, Michael J.

    2003-04-01

    To measure the strength of the pitch of iterated rippled noise (IRN), 19 adults were tested in an operant conditioning procedure. Seven adults had music training and currently played an instrument; 12 adults had no training and did not currently play an instrument. To generate IRN, a 500-ms Gaussian noise stimulus was delayed by 5 or 6 ms (pitches of 200 or 166 Hz) and added to the original for 16 iterations. IRN stimuli having one delay were presented repeatedly. On signal trials the delay changed for 6 s. Stimulus level roved from 63-67 dBA (background of 28 dBA). Adults learned to press a button when the stimulus changed. Testing started with IRN stimuli having 0-dB attenuation (i.e., maximal pitch strength). Stimuli having weaker pitches (i.e., progressively greater attenuation applied to the delayed noise) followed. Strength of pitch was quantified as the maximum attenuation for which pitch was discerned. For each subject, threshold attenuation for pitch strength was extrapolated as the 71% point on a psychometric function depicting percent correct performance as a function of attenuation. Mean thresholds revealed that the pitch percept was similar for both nonmusically trained (18.70 dB) and musically trained adults (18.73 dB).

  18. Pulping Variables, Storage Time and Pitch Deposit | Ogunwusi ...

    African Journals Online (AJOL)

    Pulp resin is also influenced by effective alkali concentration of the pulping medium. With increase in effective alkali concentration from 13% to 15%, pulp pitch is reduced. The interaction effect of storage and effective alkali concentration was not significant indicating that reduction in pulp pitch caused by effective alkali ...

  19. Shoulder joint velocity during fastball pitching in baseball

    NARCIS (Netherlands)

    Gasparutto, X.; van der Graaff, E; van der Helm, F.C.T.; Veeger, H.E.J.; Colloud, F.; Domalain, M.; Monnet, T.

    2015-01-01

    The purpose of this study was to assess the rotation and translation velocity of the shoulder complex during fastball pitching in baseball. 8 pitchers from the Dutch AAA team performed each 3 fastball pitches. Their motion was recorded by an opto-electronic device. Kinematic computation was

  20. Comprehensive modeling and control of flexible flapping wing micro air vehicles

    Science.gov (United States)

    Nogar, Stephen Michael

    importance of considering coupled aeroelastic and actuator dynamics in closed-loop control of flapping wings. A controller is developed that decouples the normal form of the vehicle dynamics, which accounts for coupling of the forces and moments acting on the vehicle and enables enhanced tuning capabilities. This controller, using the same control design model as the baseline controller, stabilizes the system despite the uncertainty between the control design and evaluation models. The controller is able to stabilize cases with significant wing flexibility and limited actuator capabilities, despite a reduction in control effectiveness. Additionally, to achieve a minimally actuated vehicle, the wing bias mechanism is removed. Using the same control design methodology, increased performance is observed compared to the baseline controller. However, due to the dependence on the split-cycle mechanism to generate a pitching moment instead of wing bias, the controller is more susceptible to instability from wing flexibility and limited actuator capacity. This work highlights the importance of coupled dynamics in the design and control of flapping wing micro air vehicles. Future enhancements to this work should focus on the reduced order structural and aerodynamics models. Applications include using the developed dynamics model to evaluate other kinematics and control schemes, ultimately enabling improved vehicle and control design.

  1. Aerodynamic performance enhancement of a flying wing using nanosecond pulsed DBD plasma actuator

    Directory of Open Access Journals (Sweden)

    Han Menghu

    2015-04-01

    Full Text Available Experimental investigation of aerodynamic control on a 35° swept flying wing by means of nanosecond dielectric barrier discharge (NS-DBD plasma was carried out at subsonic flow speed of 20–40 m/s, corresponding to Reynolds number of 3.1 × 105–6.2 × 105. In control condition, the plasma actuator was installed symmetrically on the leading edge of the wing. Lift coefficient, drag coefficient, lift-to-drag ratio and pitching moment coefficient were tested with and without control for a range of angles of attack. The tested results indicate that an increase of 14.5% in maximum lift coefficient, a decrease of 34.2% in drag coefficient, an increase of 22.4% in maximum lift-to-drag ratio and an increase of 2° at stall angle of attack could be achieved compared with the baseline case. The effects of pulsed frequency, amplitude and chord Reynolds number were also investigated. And the results revealed that control efficiency demonstrated strong dependence on pulsed frequency. Moreover, the results of pitching moment coefficient indicated that the breakdown of leading edge vortices could be delayed by plasma actuator at low pulsed frequencies.

  2. Experimental investigation of lift enhancement for flying wing aircraft using nanosecond DBD plasma actuators

    Science.gov (United States)

    Yao, Junkai; Zhou, Danjie; He, Haibo; He, Chengjun; Shi, Zhiwei; Du, Hai

    2017-04-01

    The effects of the arrangement position and control parameters of nanosecond dielectric barrier discharge (NS-DBD) plasma actuators on lift enhancement for flying wing aircraft were investigated through wind tunnel experiments at a flow speed of 25 m s-1. The aerodynamic forces and moments were obtained by a six-component balance at angles of attack ranging from -4° to 28°. The lift, drag and pitching moment coefficients were compared for the cases with and without plasma control. The results revealed that the maximum control effect was achieved by placing the actuator at the leading edge of the inner and middle wing, for which the maximum lift coefficient increased by 37.8% and the stall angle of attack was postponed by 8° compared with the plasma-off case. The effects of modulation frequency and discharge voltage were also investigated. The results revealed that the lift enhancement effect of the NS-DBD plasma actuators was strongly influenced by the modulation frequency. Significant control effects were obtained at f = 70 Hz, corresponding to F + ≈ 1. The result for the pitching moment coefficient demonstrated that the plasma actuator can induce the reattachment of the separation flows when it is actuated. However, the results indicated that the discharge voltage had a negligible influence on the lift enhancement effect.

  3. Problem of Vortex Turbulence behind Wings (II),

    Science.gov (United States)

    1980-09-23

    these winglets would give a resultant aerodynamic force directed towards the front which would decrease the wing drag. Such winglets will affect the...Fig. 30 Whitcomb winglets Pig. 31 Set of winglets for wake dissipation Surfaces on wing tips, winglets (Fig. 30), proposed by Whitcomb to diminish...anyway - to decrease the induced drag of the wing by putting some winglets at a certain angle in different planes, as shown in Fig. 31. The total

  4. Free flight simulations of a dragonfly-like flapping wing-body model using the immersed boundary-lattice Boltzmann method

    International Nuclear Information System (INIS)

    Minami, Keisuke; Suzuki, Kosuke; Inamuro, Takaji

    2015-01-01

    Free flights of the dragonfly-like flapping wing-body model are numerically investigated using the immersed boundary-lattice Boltzmann method. The governing parameters of the problem are the Reynolds number Re, the Froude number Fr, and the non-dimensional mass m, and we set the parameters at Re = 200, Fr = 15, and m = 51. First, we simulate free flights of the model without the pitching rotation for various values of the phase lag angle ϕ between the forewing and the hindwing motions. We find that the wing-body model goes forward in spite of ϕ, and the model with ϕ = 0 ∘ and 90 ∘ goes upward against gravity. The model with ϕ =180 ∘ goes almost horizontally, and the model with ϕ =270 ∘ goes downward. That is, the moving direction of the model depends on the phase lag angle ϕ. Secondly, we simulate free flights with the pitching rotation for various values of the phase lag angle ϕ. It is found that in spite of ϕ the wing-body model turns gradually in the nose-up direction and goes back and down as the pitching angle Θ c increases. That is, the wing-body model cannot make a stable forward flight without control. Finally, we show a way to control the pitching motion by changing the lead–lag angle γ(t). We propose a simple proportional controller of γ(t) which makes stable flights within Θ c =±5 ∘ and works well even for a large disturbance. (paper)

  5. H-Darrieus Wind Turbine with Blade Pitch Control

    Directory of Open Access Journals (Sweden)

    I. Paraschivoiu

    2009-01-01

    Full Text Available A procedure for computing the optimal variation of the blades' pitch angle of an H-Darrieus wind turbine that maximizes its torque at given operational conditions is proposed and presented along with the results obtained on a 7 kW prototype. The CARDAAV code, based on the “Double-Multiple Streamtube” model developed by the first author, is used to determine the performances of the straight-bladed vertical axis wind turbine. This was coupled with a genetic algorithm optimizer. The azimuthal variation of the blades' pitch angle is modeled with an analytical function whose coefficients are used as variables in the optimization process. Two types of variations were considered for the pitch angle: a simple sinusoidal one and one which is more general, relating closely the blades' pitch to the local flow conditions along their circular path. A gain of almost 30% in the annual energy production was obtained with the polynomial optimal pitch control.

  6. Unsteady force characteristics on foils undergoing pitching motion

    International Nuclear Information System (INIS)

    Yang, Chang Jo

    2006-01-01

    In the present study the unsteady forces acting on the pitching foils such as a flat plate, NACA0010, NACA0020, NACA65-0910 and BTE have been measured by using a six-axis sensor in a circulating water tunnel at a low Reynolds number region. The unsteady characteristics of the dynamic drag and lift have been compared to the quasi-steady ones which are measured under the stationary condition. The pitching motion is available for keeping the lift higher after the separation occurs. Especially, the characteristics of the dynamic lift are quite different from the quasi-steady one at high pitching frequency regions. As the pitching frequency deceases, the amplitude of the dynamic lift becomes closer to the quasi-steady one. However, the phase remains different between the steady and unsteady conditions even at low pitching frequencies. On the other hand, the dynamic drag is governed strongly by the angle of attack

  7. Wind turbine pitch control using ICPSO-PID algorithm

    DEFF Research Database (Denmark)

    Xu, Chang; Tian, Qiangqiang; Shen, Wen Zhong

    2013-01-01

    For the traditional simplified first-order pitch-control system model, it is difficult to describe a real dynamic characteristic of a variable pitch action system, thus a complete high order mathematical model has to be developed for the pitch control of wind turbine generation (WTG). In the paper...... controller parameters quickly; and the feed-forward controller for wind speed can improve dynamics of a pitch-control system; additionally the power controller can allow a wind turbine to have a constant power output as a wind speed is over the rated one. Compared with a conventional PID, the controller...... with ICPSO-PID algorithm has a smaller overshoot, a shorter tuning time and better robustness. The design method proposed in the paper can be applied in a practical electro-hydraulic pitch control system for WTG....

  8. Two LQRI based Blade Pitch Controls for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Yoonsu Nam

    2012-06-01

    Full Text Available As the wind turbine size has been increasing and their mechanical components are built lighter, the reduction of the structural loads becomes a very important task of wind turbine control in addition to maximum wind power capture. In this paper, we present a separate set of collective and individual pitch control algorithms. Both pitch control algorithms use the LQR control technique with integral action (LQRI, and utilize Kalman filters to estimate system states and wind speed. Compared to previous works in this area, our pitch control algorithms can control rotor speed and blade bending moments at the same time to improve the trade-off between rotor speed regulation and load reduction, while both collective and individual pitch controls can be designed separately. Simulation results show that the proposed collective and individual pitch controllers achieve very good rotor speed regulation and significant reduction of blade bending moments.

  9. Veins improve fracture toughness of insect wings.

    Directory of Open Access Journals (Sweden)

    Jan-Henning Dirks

    Full Text Available During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect's flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material's resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m. However, the cross veins increase the wing's toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm. This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically 'optimal' solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial 'venous' wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species.

  10. Subtractive Structural Modification of Morpho Butterfly Wings.

    Science.gov (United States)

    Shen, Qingchen; He, Jiaqing; Ni, Mengtian; Song, Chengyi; Zhou, Lingye; Hu, Hang; Zhang, Ruoxi; Luo, Zhen; Wang, Ge; Tao, Peng; Deng, Tao; Shang, Wen

    2015-11-11

    Different from studies of butterfly wings through additive modification, this work for the first time studies the property change of butterfly wings through subtractive modification using oxygen plasma etching. The controlled modification of butterfly wings through such subtractive process results in gradual change of the optical properties, and helps the further understanding of structural optimization through natural evolution. The brilliant color of Morpho butterfly wings is originated from the hierarchical nanostructure on the wing scales. Such nanoarchitecture has attracted a lot of research effort, including the study of its optical properties, its potential use in sensing and infrared imaging, and also the use of such structure as template for the fabrication of high-performance photocatalytic materials. The controlled subtractive processes provide a new path to modify such nanoarchitecture and its optical property. Distinct from previous studies on the optical property of the Morpho wing structure, this study provides additional experimental evidence for the origination of the optical property of the natural butterfly wing scales. The study also offers a facile approach to generate new 3D nanostructures using butterfly wings as the templates and may lead to simpler structure models for large-scale man-made structures than those offered by original butterfly wings. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Analysis of bat wings for morphing

    Science.gov (United States)

    Leylek, Emily A.; Manzo, Justin E.; Garcia, Ephrahim

    2008-03-01

    The morphing of wings from three different bat species is studied using an extension of the Weissinger method. To understand how camber affects performance factors such as lift and lift to drag ratio, XFOIL is used to study thin (3% thickness to chord ratio) airfoils at a low Reynolds number of 100,000. The maximum camber of 9% yielded the largest lift coefficient, and a mid-range camber of 7% yielded the largest lift to drag ratio. Correlations between bat wing morphology and flight characteristics are covered, and the three bat wing planforms chosen represent various combinations of morphological components and different flight modes. The wings are studied using the extended Weissinger method in an "unmorphed" configuration using a thin, symmetric airfoil across the span of the wing through angles of attack of 0°-15°. The wings are then run in the Weissinger method at angles of attack of -2° to 12° in a "morphed" configuration modeled after bat wings seen in flight, where the camber of the airfoils comprising the wings is varied along the span and a twist distribution along the span is introduced. The morphed wing configurations increase the lift coefficient over 1000% from the unmorphed configuration and increase the lift to drag ratio over 175%. The results of the three different species correlate well with their flight in nature.

  12. Reversible Statistics

    DEFF Research Database (Denmark)

    Tryggestad, Kjell

    2004-01-01

    The study aims is to describe how the inclusion and exclusion of materials and calculative devices construct the boundaries and distinctions between statistical facts and artifacts in economics. My methodological approach is inspired by John Graunt's (1667) Political arithmetic and more recent work...... within constructivism and the field of Science and Technology Studies (STS). The result of this approach is here termed reversible statistics, reconstructing the findings of a statistical study within economics in three different ways. It is argued that all three accounts are quite normal, albeit...... in different ways. The presence and absence of diverse materials, both natural and political, is what distinguishes them from each other. Arguments are presented for a more symmetric relation between the scientific statistical text and the reader. I will argue that a more symmetric relation can be achieved...

  13. Do Musicians with Perfect Pitch Have More Autism Traits than Musicians without Perfect Pitch? An Empirical Study

    DEFF Research Database (Denmark)

    Dohn, Anders; Garza-Villarreal, Eduardo A.; Heaton, Pamela

    2012-01-01

    Perfect pitch, also known as absolute pitch (AP), refers to the rare ability to identify or produce a musical tone correctly without the benefit of an external reference. AP is often considered to reflect musical giftedness, but it has also been associated with certain disabilities due to increas...

  14. Long-term memory for pitch in six-month-old infants.

    Science.gov (United States)

    Plantinga, Judy; Trainor, Laurel J

    2003-11-01

    We examined 6-month-old infants' long-term memory representations for the pitch of familiar melodies. Infants remembered the relative pitch of the melodies, but the absolute pitch was either not remembered or not a particularly salient attribute.

  15. Quantitative-genetic analysis of wing form and bilateral asymmetry ...

    Indian Academy of Sciences (India)

    Unknown

    lines; Procrustes analysis; wing shape; wing size. ... Models of stochastic gene expression pre- dict that intrinsic noise ... Quantitative parameters of wing size and shape asymmetries ..... the residuals of a regression on centroid size produced.

  16. Research on Biomimetic Models and Nanomechanical Behaviour of Membranous Wings of Chinese Bee Apis cerana cerana Fabricius

    Directory of Open Access Journals (Sweden)

    Yanru Zhao

    2018-01-01

    Full Text Available The structures combining the veins and membranes of membranous wings of the Chinese bee Apis cerana cerana Fabricius into a whole have excellent load-resisting capacity. The membranous wings of Chinese bees were taken as research objects and the mechanical properties of a biomimetic model of membranous wings as targets. In order to understand and learn from the biosystem and then make technical innovation, the membranous wings of Chinese bees were simulated and analysed with reverse engineering and finite element method. The deformations and stress states of the finite element model of membranous wings were researched under the concentrated force, uniform load, and torque. It was found that the whole model deforms evenly and there are no unusual deformations arising. The displacements and deformations are small and transform uniformly. It was indicated that the veins and membranes combine well into a whole to transmit loads effectively, which illustrates the membranous wings of Chinese bees having excellent integral mechanical behaviour and structure stiffness. The realization of structure models of the membranous wings of Chinese bees and analysis of the relativity of structures and performances or functions will provide an inspiration for designing biomimetic thin-film materials with superior load-bearing capacity.

  17. Adaptive wing : Investigations of passive wing technologies for loads reduction in the cleansky smart fixed wing aircraft (SFWA) project

    NARCIS (Netherlands)

    Kruger, W.R.; Dillinger, J; De Breuker, R.; Reyes, M.; Haydn, K.

    2016-01-01

    In the work package “Adaptive Wing” in the Clean-Sky “Smart Fixed Wing Aircraft” (SFWA) project, design processes and solutions for aircraft wings have been created, giving optimal response with respect to loads, comfort and performance by the introduction of passive and active concepts. Central

  18. Novel four-wing and eight-wing attractors using coupled chaotic Lorenz systems

    International Nuclear Information System (INIS)

    Grassi, Giuseppe

    2008-01-01

    This paper presents the problem of generating four-wing (eight-wing) chaotic attractors. The adopted method consists in suitably coupling two (three) identical Lorenz systems. In analogy with the original Lorenz system, where the two wings of the butterfly attractor are located around the two equilibria with the unstable pair of complex-conjugate eigenvalues, this paper shows that the four wings (eight wings) of these novel attractors are located around the four (eight) equilibria with two (three) pairs of unstable complex-conjugate eigenvalues. (general)

  19. Tune That Beer! Listening for the Pitch of Beer

    Directory of Open Access Journals (Sweden)

    Felipe Reinoso Carvalho

    2016-11-01

    Full Text Available We report two experiments designed to assess the key sensory drivers underlying people’s association of a specific auditory pitch with Belgian beer. In particular, we assessed if people would rely mostly on the differences between beers in terms of their relative alcohol strength, or on the contrast between the most salient taste attributes of the different beers. In Experiment 1, the participants rated three bitter beers (differing in alcohol content, using a narrow range of pitch choices (50–500 Hz. The results revealed that the beers were all rated around the same pitch (Mean = 232 Hz, SD = 136 Hz. In Experiment 2, a wider range of pitch choices (50–1500 Hz, along with the addition of a much sweeter beer, revealed that people mostly tend to match beers with bitter-range profiles at significantly lower pitch ranges when compared to the average pitch of a much sweeter beer. These results therefore demonstrate that clear differences in taste attributes lead to distinctly different matches in terms of pitch. Having demonstrated the robustness of the basic crossmodal matching, future research should aim to uncover the basis for such matches and better understand the perceptual effects of matching/non-matching tones on the multisensory drinking experience.

  20. Discriminating male and female voices: differentiating pitch and gender.

    Science.gov (United States)

    Latinus, Marianne; Taylor, Margot J

    2012-04-01

    Gender is salient, socially critical information obtained from faces and voices, yet the brain processes underlying gender discrimination have not been well studied. We investigated neural correlates of gender processing of voices in two ERP studies. In the first, ERP differences were seen between female and male voices starting at 87 ms, in both spatial-temporal and peak analyses, particularly the fronto-central N1 and P2. As pitch differences may drive gender differences, the second study used normal, high- and low-pitch voices. The results of these studies suggested that differences in pitch produced early effects (27-63 ms). Gender effects were seen on N1 (120 ms) with implicit pitch processing (study 1), but were not seen with manipulations of pitch (study 2), demonstrating that N1 was modulated by attention. P2 (between 170 and 230 ms) discriminated male from female voices, independent of pitch. Thus, these data show that there are two stages in voice gender processing; a very early pitch or frequency discrimination and a later more accurate determination of gender at the P2 latency.

  1. Kinematics and kinetics of elite windmill softball pitching.

    Science.gov (United States)

    Werner, Sherry L; Jones, Deryk G; Guido, John A; Brunet, Michael E

    2006-04-01

    A significant number of time-loss injuries to the upper extremity in elite windmill softball pitchers has been documented. The number of outings and pitches thrown in 1 week for a softball pitcher is typically far in excess of those seen in baseball pitchers. Shoulder stress in professional baseball pitching has been reported to be high and has been linked to pitching injuries. Shoulder distraction has not been studied in an elite softball pitching population. The stresses on the throwing shoulder of elite windmill pitchers are similar to those found for professional baseball pitchers. Descriptive laboratory study. Three-dimensional, high-speed (120 Hz) video data were collected on rise balls from 24 elite softball pitchers during the 1996 Olympic Games. Kinematic parameters related to pitching mechanics and resultant kinetics on the throwing shoulder were calculated. Multiple linear regression analysis was used to relate shoulder stress and pitching mechanics. Shoulder distraction stress averaged 80% of body weight for the Olympic pitchers. Sixty-nine percent of the variability in shoulder distraction can be explained by a combination of 7 parameters related to pitching mechanics. Excessive distraction stress at the throwing shoulder is similar to that found in baseball pitchers, which suggests that windmill softball pitchers are at risk for overuse injuries. Normative information regarding upper extremity kinematics and kinetics for elite softball pitchers has been established.

  2. Auditory working memory predicts individual differences in absolute pitch learning.

    Science.gov (United States)

    Van Hedger, Stephen C; Heald, Shannon L M; Koch, Rachelle; Nusbaum, Howard C

    2015-07-01

    Absolute pitch (AP) is typically defined as the ability to label an isolated tone as a musical note in the absence of a reference tone. At first glance the acquisition of AP note categories seems like a perceptual learning task, since individuals must assign a category label to a stimulus based on a single perceptual dimension (pitch) while ignoring other perceptual dimensions (e.g., loudness, octave, instrument). AP, however, is rarely discussed in terms of domain-general perceptual learning mechanisms. This is because AP is typically assumed to depend on a critical period of development, in which early exposure to pitches and musical labels is thought to be necessary for the development of AP precluding the possibility of adult acquisition of AP. Despite this view of AP, several previous studies have found evidence that absolute pitch category learning is, to an extent, trainable in a post-critical period adult population, even if the performance typically achieved by this population is below the performance of a "true" AP possessor. The current studies attempt to understand the individual differences in learning to categorize notes using absolute pitch cues by testing a specific prediction regarding cognitive capacity related to categorization - to what extent does an individual's general auditory working memory capacity (WMC) predict the success of absolute pitch category acquisition. Since WMC has been shown to predict performance on a wide variety of other perceptual and category learning tasks, we predict that individuals with higher WMC should be better at learning absolute pitch note categories than individuals with lower WMC. Across two studies, we demonstrate that auditory WMC predicts the efficacy of learning absolute pitch note categories. These results suggest that a higher general auditory WMC might underlie the formation of absolute pitch categories for post-critical period adults. Implications for understanding the mechanisms that underlie the

  3. Aerodynamic characteristics of wings designed with a combined-theory method to cruise at a Mach number of 4.5

    Science.gov (United States)

    Mack, Robert J.

    1988-01-01

    A wind-tunnel study was conducted to determine the capability of a method combining linear theory and shock-expansion theory to design optimum camber surfaces for wings that will fly at high-supersonic/low-hypersonic speeds. Three force models (a flat-plate reference wing and two cambered and twisted wings) were used to obtain aerodynamic lift, drag, and pitching-moment data. A fourth pressure-orifice model was used to obtain surface-pressure data. All four wing models had the same planform, airfoil section, and centerbody area distribution. The design Mach number was 4.5, but data were also obtained at Mach numbers of 3.5 and 4.0. Results of these tests indicated that the use of airfoil thickness as a theoretical optimum, camber-surface design constraint did not improve the aerodynamic efficiency or performance of a wing as compared with a wing that was designed with a zero-thickness airfoil (linear-theory) constraint.

  4. Nonlinear Dynamics of Wind Turbine Wings

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther

    , large wind turbines become increasingly flexible and dynamically sensitive. This project focuses on the structural analysis of highly flexible wind turbine wings, and the aerodynamic loading of wind turbine wings under large changes in flow field due to elastic deformations and changing wind conditions....

  5. Pitch Angle Control for Variable Speed Wind Turbines

    Directory of Open Access Journals (Sweden)

    Mouna Ben Smida

    2015-08-01

    Full Text Available Abstract.Pitch control is a practical technique for power regulation above the rated wind speed it is considered as the most efficient and popular power control method. As conventional pitch control usually use PI controller, the mathematical model of the system should be known well.This paper deals with the operation and the control of the direct driven permanent magnet synchronous generator (PMSG.Different conventional strategies of pitch angle control are described and validated through simulation results under Matlab\\Simulink.

  6. Fault Detection and Isolation for Wind Turbine Electric Pitch System

    DEFF Research Database (Denmark)

    Zhu, Jiangsheng; Ma, Kuichao; Hajizadeh, Amin

    2017-01-01

    This paper presents a model-based fault detection and isolation scheme applied on electric pitch system of wind turbines. Pitch system is one of the most critical components due to its effect on the operational safety and the dynamics of wind turbines. Faults in this system should be precisely...... detected to prevent failures and decrease downtime. To detect faults of electric pitch actuators and sensors, an extended kalman filter (EKF) based multiple model adaptive estimation (MMAE) designed to estimate the states of the system. The proposed method is demonstrated in case studies. The simulation...

  7. Risk-based Comparative Study of Fluid Power Pitch Concepts

    DEFF Research Database (Denmark)

    Liniger, Jesper; Pedersen, Henrik Clemmensen; N. Soltani, Mohsen

    2017-01-01

    Proper functioning of the pitch system is essential to both normal operation and safety critical shut down of modern multi megawatt wind turbines. Several studies on field failure rates for such turbines show that pitch systems are a major contributor to failures which entails an increased risk....... Thus, more reliable and safe concepts are needed. A review of patents and patent applications covering fluid power pitch concepts, reveals that many propose closed-type hydraulic systems. This paper proposes a closed-type concept with a bootstrap reservoir. In contrary to a conventional system where...

  8. Polyphonic pitch detection and instrument separation

    Science.gov (United States)

    Bay, Mert; Beauchamp, James W.

    2005-09-01

    An algorithm for polyphonic pitch detection and musical instrument separation is presented. Each instrument is represented as a time-varying harmonic series. Spectral information is obtained from a monaural input signal using a spectral peak tracking method. Fundamental frequencies (F0s) for each time frame are estimated from the spectral data using an Expectation Maximization (EM) algorithm with a Gaussian mixture model representing the harmonic series. The method first estimates the most predominant F0, suppresses its series in the input, and then the EM algorithm is run iteratively to estimate each next F0. Collisions between instrument harmonics, which frequently occur, are predicted from the estimated F0s, and the resulting corrupted harmonics are ignored. The amplitudes of these corrupted harmonics are replaced by harmonics taken from a library of spectral envelopes for different instruments, where the spectrum which most closely matches the important characteristics of each extracted spectrum is chosen. Finally, each voice is separately resynthesized by additive synthesis. This algorithm is demonstrated for a trio piece that consists of 3 different instruments.

  9. Self-propulsion of a pitching foil

    Science.gov (United States)

    Das, Anil; Shukla, Ratnesh; Govardhan, Raghuraman

    2017-11-01

    Undulatory motions serve as a fundamental mechanism for bio-locomotion at moderate and high Reynolds numbers. An understanding of the interactions between self-propelling undulatory motions and the surrounding fluid, not only provides insight into the efficiency of bio-locomotion, but also yields valuable pointers for the design of autonomous under-water and micro-aerial vehicles. Here, we investigate a simplified model of a self-propelling pitching foil that undergoes time-periodic oscillations about its quarter chord. We consider two-dimensional configurations in which the foil is free to propel along only longitudinal and both transverse and longitudinal directions. In both the configurations, the time-averaged self-propelling velocity increases monotonically with the Reynolds number Re (based on trailing edge speed and chord as the characteristic velocity and length). The rate of increase is particularly pronounced in the low Re regime (Re spaced wake vortices dissipate within a few chord lengths. At moderate and high Re, the wake exhibits increasingly complex structure in both the configurations. For a fixed Re, the foil with a single translational degree of freedom propels at a higher speed for a higher input power requirement. Differences between the two configurations will be discussed within the context of undulatory self-propulsion observed in nature.

  10. Wing rock suppression using forebody vortex control

    Science.gov (United States)

    Ng, T. T.; Ong, L. Y.; Suarez, C. J.; Malcolm, G. N.

    1991-01-01

    Static and free-to-roll tests were conducted in a water tunnel with a configuration that consisted of a highly-slender forebody and 78-deg sweep delta wings. Flow visualization was performed and the roll angle histories were obtained. The fluid mechanisms governing the wing rock of this configuration were identified. Different means of suppressing wing rock by controlling the forebody vortices using small blowing jets were also explored. Steady blowing was found to be capable of suppressing wing rock, but significant vortex asymmetries had to be induced at the same time. On the other hand, alternating pulsed blowing on the left and right sides of the forebody was demonstrated to be potentially an effective means of suppressing wing rock and eliminating large asymmetric moments at high angles of attack.

  11. Experimental Surface Pressure Data Obtained on 65 deg Delta Wing Across Reynolds Number and Mach Number Ranges. Volume 2; Small-Radius Leading Edge

    Science.gov (United States)

    Chu, Julio; Luckring, James M.

    1996-01-01

    An experimental wind tunnel test of a 65 deg. delta wing model with interchangeable leading edges was conducted in the Langley National Transonic Facility (NTF). The objective was to investigate the effects of Reynolds and Mach numbers on slender-wing leading-edge vortex flows with four values of wing leading-edge bluntness. Experimentally obtained pressure data are presented without analysis in tabulated and graphical formats across a Reynolds number range of 6 x 10(exp 6) to 84 x 10(exp 6) at a Mach number of 0.85 and across a Mach number range of 0.4 to 0.9 at Reynolds numbers of 6 x 10(exp 6) and 60 x 10(exp 6). Normal-force and pitching-moment coefficient plots for these Reynolds number and Mach number ranges are also presented.

  12. Experimental Investigation on Aerodynamic Control of a Wing with Distributed Plasma Actuators

    International Nuclear Information System (INIS)

    Han Menghu; Li Jun; Liang Hua; Zhao Guangyin; Niu Zhongguo

    2015-01-01

    Experimental investigation of active flow control on the aerodynamic performance of a flying wing is conducted. Subsonic wind tunnel tests are performed using a model of a 35° swept flying wing with an nanosecond dielectric barrier discharge (NS-DBD) plasma actuator, which is installed symmetrically on the wing leading edge. The lift and drag coefficient, lift-to-drag ratio and pitching moment coefficient are tested by a six-component force balance for a range of angles of attack. The results indicate that a 44.5% increase in the lift coefficient, a 34.2% decrease in the drag coefficient and a 22.4% increase in the maximum lift-to-drag ratio can be achieved as compared with the baseline case. The effects of several actuation parameters are also investigated, and the results show that control efficiency demonstrates a strong dependence on actuation location and frequency. Furthermore, we highlight the use of distributed plasma actuators at the leading edge to enhance the aerodynamic performance, giving insight into the different mechanism of separation control and vortex control, which shows tremendous potential in practical flow control for a broad range of angles of attack. (paper)

  13. Investors prefer entrepreneurial ventures pitched by attractive men.

    Science.gov (United States)

    Brooks, Alison Wood; Huang, Laura; Kearney, Sarah Wood; Murray, Fiona E

    2014-03-25

    Entrepreneurship is a central path to job creation, economic growth, and prosperity. In the earliest stages of start-up business creation, the matching of entrepreneurial ventures to investors is critically important. The entrepreneur's business proposition and previous experience are regarded as the main criteria for investment decisions. Our research, however, documents other critical criteria that investors use to make these decisions: the gender and physical attractiveness of the entrepreneurs themselves. Across a field setting (three entrepreneurial pitch competitions in the United States) and two experiments, we identify a profound and consistent gender gap in entrepreneur persuasiveness. Investors prefer pitches presented by male entrepreneurs compared with pitches made by female entrepreneurs, even when the content of the pitch is the same. This effect is moderated by male physical attractiveness: attractive males were particularly persuasive, whereas physical attractiveness did not matter among female entrepreneurs.

  14. Joint Pitch and DOA Estimation Using the ESPRIT method

    DEFF Research Database (Denmark)

    Wu, Yuntao; Amir, Leshem; Jensen, Jesper Rindom

    2015-01-01

    In this paper, the problem of joint multi-pitch and direction-of-arrival (DOA) estimation for multi-channel harmonic sinusoidal signals is considered. A spatio-temporal matrix signal model for a uniform linear array is defined, and then the ESPRIT method based on subspace techniques that exploits...... the invariance property in the time domain is first used to estimate the multi pitch frequencies of multiple harmonic signals. Followed by the estimated pitch frequencies, the DOA estimations based on the ESPRIT method are also presented by using the shift invariance structure in the spatial domain. Compared...... to the existing stateof-the-art algorithms, the proposed method based on ESPRIT without 2-D searching is computationally more efficient but performs similarly. An asymptotic performance analysis of the DOA and pitch estimation of the proposed method are also presented. Finally, the effectiveness of the proposed...

  15. Meet you in the elevator! Pitching yourself and your research

    NARCIS (Netherlands)

    Scheffel, Maren; Börner, Dirk

    2013-01-01

    Scheffel, M., & Börner, D. (2013, 31 May). Meet you in the elevator! Pitching yourself and your research. Workshop presentation at the 9th Joint European Summer School on Technology Enhanced Learning, Limassol, Cyprus.

  16. Association of the pitch canker pathogen Fusarium circinatum with ...

    African Journals Online (AJOL)

    Association of the pitch canker pathogen Fusarium circinatum with grass hosts in commercial pine production areas of South Africa. Cassandra L Swett, Bernice Porter, Gerda Fourie, Emma T Steenkamp, Thomas R Gordon, Michael J Wingfield ...

  17. A Computationally Efficient Method for Polyphonic Pitch Estimation

    Directory of Open Access Journals (Sweden)

    Ruohua Zhou

    2009-01-01

    Full Text Available This paper presents a computationally efficient method for polyphonic pitch estimation. The method employs the Fast Resonator Time-Frequency Image (RTFI as the basic time-frequency analysis tool. The approach is composed of two main stages. First, a preliminary pitch estimation is obtained by means of a simple peak-picking procedure in the pitch energy spectrum. Such spectrum is calculated from the original RTFI energy spectrum according to harmonic grouping principles. Then the incorrect estimations are removed according to spectral irregularity and knowledge of the harmonic structures of the music notes played on commonly used music instruments. The new approach is compared with a variety of other frame-based polyphonic pitch estimation methods, and results demonstrate the high performance and computational efficiency of the approach.

  18. Pitch Angle Control for Variable Speed Wind Turbines

    DEFF Research Database (Denmark)

    Chen, Zhe; Zhang, Jianzhong; Cheng, M

    2008-01-01

    Pitch angle control is the most common means for adjusting the aerodynamic torque of the wind turbine when wind speed is above rated speed and various controlling variables may be chosen, such as wind speed, generator speed and generator power. As conventional pitch control usually use PI...... controller, the mathematical model of the system should be known well. A fuzzy logic pitch angle controller is developed in this paper, in which it does not need well known about the system and the mean wind speed is used to compensate the non-linear sensitivity. The fuzzy logic control strategy may have...... the potential when the system contains strong non-linearity, such as wind turbulence is strong, or the control objectives include fatigue loads. The design of the fuzzy logic controller and the comparisons with conversional pitch angle control strategies with various controlling variables are carried out...

  19. Series pid pitch controller of large wind turbines generator

    Directory of Open Access Journals (Sweden)

    Micić Aleksandar D.

    2015-01-01

    Full Text Available For this stable process with oscillatory dynamics, characterized with small damping ratio and dominant transport delay, design of the series PID pitch controller is based on the model obtained from the open-loop process step response, filtered with the second-order Butterworth filter Fbw. Performance of the series PID pitch controller, with the filter Fbw, is analyzed by simulations of the set-point and input/output disturbance responses, including simulations with a colored noise added to the control variable. Excellent performance/robustness tradeoff is obtained, compared to the recently proposed PI pitch controllers and to the modified internal model pitch controller, developed here, which has a natural mechanism to compensate effect of dominant transport delay. [Projekat Ministarstva nauke Republike Srbije, br. III 47016

  20. Development in children's interpretation of pitch cues to emotions.

    Science.gov (United States)

    Quam, Carolyn; Swingley, Daniel

    2012-01-01

    Young infants respond to positive and negative speech prosody (A. Fernald, 1993), yet 4-year-olds rely on lexical information when it conflicts with paralinguistic cues to approval or disapproval (M. Friend, 2003). This article explores this surprising phenomenon, testing one hundred eighteen 2- to 5-year-olds' use of isolated pitch cues to emotions in interactive tasks. Only 4- to 5-year-olds consistently interpreted exaggerated, stereotypically happy or sad pitch contours as evidence that a puppet had succeeded or failed to find his toy (Experiment 1) or was happy or sad (Experiments 2, 3). Two- and 3-year-olds exploited facial and body-language cues in the same task. The authors discuss the implications of this late-developing use of pitch cues to emotions, relating them to other functions of pitch. © 2011 The Authors. Child Development © 2011 Society for Research in Child Development, Inc.

  1. Thermal transformations of pitch and its compositions with thermoanthracite

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, T.V.; Ulanovskii, M.L.; Krysin, V.P.

    1983-01-01

    Derivatogrphy is used to investigate the character of thermal transformations of hard coal pitch in compositions with thermoanthracite. It was shown that losses in mass during thermal transformations of hard coal pitch in the temperature interval 200-1000 C occur in two stages, at a varying rate in the 200-600 C range and at a constant rate in the 600-1000 C range. The rate of loss in the 200-600 C range is determined primarily by the rate of diffusion of volatile components and products of pitch conversion and in the 600-1000 C range mainly by the rate of the elemental chemical event. The thermal transformation is essentially unchanged in the presence of thermoanthracite. Silica intensifies the synthesis and increases the solid residue yield. Increasing the rate of heating of the pitch-thermoanthracite brings about incomplete separation of volatile products and a corresponding increase in the solid residue yield. (9 refs.)

  2. An Approximate Method for Pitch-Damping Prediction

    National Research Council Canada - National Science Library

    Danberg, James

    2003-01-01

    ...) method for predicting the pitch-damping coefficients has been employed. The CFD method provides important details necessary to derive the correlation functions that are unavailable from the current experimental database...

  3. Determination of pitch rotation in a spherical birefringent microparticle

    Science.gov (United States)

    Roy, Basudev; Ramaiya, Avin; Schäffer, Erik

    2018-03-01

    Rotational motion of a three dimensional spherical microscopic object can happen either in pitch, yaw or roll fashion. Among these, the yaw motion has been conventionally studied using the intensity of scattered light from birefringent microspheres through crossed polarizers. Up until now, however, there is no way to study the pitch motion in spherical microspheres. Here, we suggest a new method to study the pitch motion of birefringent microspheres under crossed polarizers by measuring the 2-fold asymmetry in the scattered signal either using video microscopy or with optical tweezers. We show a couple of simple examples of pitch rotation determination using video microscopy for a microsphere attached with a kinesin molecule while moving along a microtubule and of a particle diffusing freely in water.

  4. Hovering hummingbird wing aerodynamics during the annual cycle. II. Implications of wing feather moult

    Science.gov (United States)

    Sapir, Nir; Elimelech, Yossef

    2018-01-01

    Birds usually moult their feathers in a particular sequence which may incur aerodynamic, physiological and behavioural implications. Among birds, hummingbirds are unique species in their sustained hovering flight. Because hummingbirds frequently hover-feed, they must maintain sufficiently high flight capacities even when moulting their flight feathers. A hummingbird wing consists of 10 primary flight feathers whose absence during moult may strongly affect wing performance. Using dynamic similarity rules, we compared time-accurate aerodynamic loads and flow field measurements over several wing geometries that follow the natural feather moult sequence of Calypte anna, a common hummingbird species in western North America. Our results suggest a drop of more than 20% in lift production during the early stages of the moult sequence in which mid-wing flight feathers are moulted. We also found that the wing's ability to generate lift strongly depended on the morphological integrity of the outer primaries and leading-edge. These findings may explain the evolution of wing morphology and moult attributes. Specifically, the high overlap between adjacent wing feathers, especially at the wing tip, and the slow sequential replacement of the wing feathers result in a relatively small reduction in wing surface area during moult with limited aerodynamic implications. We present power and efficiency analyses for hover flight during moult under several plausible scenarios, suggesting that body mass reduction could be a compensatory mechanism that preserves the energetic costs of hover flight. PMID:29515884

  5. Stimulating Thinking at the Design Pitch: Storytelling Approach and Impact

    OpenAIRE

    Parkinson, David; Warwick, Laura

    2017-01-01

    This paper presents findings from doctoral research to propose that next, we should look to understand storytelling at the design pitch in terms of the relationship between approaches taken and their impacts. A review of literature highlighted the following as desirable impacts for a design pitch: ‘Delivering Understanding’, ‘Demonstrating Value’, ‘Stimulating Critique’, and ‘Encouraging more Holistic Thinking’. These impacts were used to focus a series of semi-structured interviews conducted...

  6. A kinetic study of pyrolysis in pitch impregnated electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kocaefe, D.; Charette, A.; Ferland, J.; Couderc, P.; Saint-Romain, J.L. (Universite du Quebec a Chicoutini, Chicoutini, PQ (Canada))

    1990-12-01

    A study was conducted on carbon electrodes which were impregnated with three different pitches. The focus of the study was to investigate the pyrolysis of pitch impregnated electrodes. For the purposes of the research an experimental technique and calculation procedure were developed. A kinetic model was used to interpret the data, comparison of model predictions and experimental data showed good agreement. 17 refs., 10 figs., 2 tabs.

  7. Pitch range variations improve cognitive processing of audio messages

    OpenAIRE

    Rodero Antón, Emma; Potter, Rob F.; Prieto Vives, Pilar, 1965-

    2017-01-01

    This study explores the effect of different speaker intonation strategies in audio messages on attention, autonomic arousal, and memory. An experiment was conducted in which participants listened to 16 radio commercials produced to vary in pitch range across sentences. Dependent variables were self-reported effectiveness and adequacy, psychophysiological arousal and attention, immediate word recall and recognition of information. Results showed that messages conveyed with pitch variations ach...

  8. A Method for Low-Delay Pitch Tracking and Smoothing

    DEFF Research Database (Denmark)

    Christensen, Mads Græsbøll

    2012-01-01

    . In the second step, a Kalman filter is used to smooth the estimates and separate the pitch into a slowly varying component and a rapidly varying component. The former represents the mean pitch while the latter represents vibrato, slides and other fast changes. The method is intended for use in applica- tions...... that require fast and sample-by-sample estimates, like tuners for musical instruments, transcription tasks requiring details like vi- brato, and real-time tracking of voiced speech....

  9. Jet meandering by a foil pitching in quiescent fluid

    Science.gov (United States)

    Shinde, Sachin Y.; Arakeri, Jaywant H.

    2013-04-01

    The flow produced by a rigid symmetric NACA0015 airfoil purely pitching at a fixed location in quiescent fluid (the limiting case of infinite Strouhal number) is studied using visualizations and particle image velocimetry. A weak jet is generated whose inclination changes continually with time. This meandering is observed to be random and independent of the initial conditions, over a wide range of pitching parameters.

  10. Pitch Sequence Complexity and Long-Term Pitcher Performance

    Directory of Open Access Journals (Sweden)

    Joel R. Bock

    2015-03-01

    Full Text Available Winning one or two games during a Major League Baseball (MLB season is often the difference between a team advancing to post-season play, or “waiting until next year”. Technology advances have made it feasible to augment historical data with in-game contextual data to provide managers immediate insights regarding an opponent’s next move, thereby providing a competitive edge. We developed statistical models of pitcher behavior using pitch sequences thrown during three recent MLB seasons (2011–2013. The purpose of these models was to predict the next pitch type, for each pitcher, based on data available at the immediate moment, in each at-bat. Independent models were developed for each player’s most frequent four pitches. The overall predictability of next pitch type is 74:5%. Additional analyses on pitcher predictability within specific game situations are discussed. Finally, using linear regression analysis, we show that an index of pitch sequence predictability may be used to project player performance in terms of Earned Run Average (ERA and Fielding Independent Pitching (FIP over a longer term. On a restricted range of the independent variable, reducing complexity in selection of pitches is correlated with higher values of both FIP and ERA for the players represented in the sample. Both models were significant at the α = 0.05 level (ERA: p = 0.022; FIP: p = 0.0114. With further development, such models may reduce risk faced by management in evaluation of potential trades, or to scouts assessing unproven emerging talent. Pitchers themselves might benefit from awareness of their individual statistical tendencies, and adapt their behavior on the mound accordingly. To our knowledge, the predictive model relating pitch-wise complexity and long-term performance appears to be novel.

  11. Petrographic characterization of the solid products of coal- pitch coprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Potter, J.; Kybett, B.D.; McDougall, W.J.; Nambudiri, E.M.V.; Rahimi, P.; Price, J.T.

    1986-06-01

    Petrographic studies were conducted on four solid residues resulting from the hydrogenation process of 1) Forestburg sub- bituminous coal alone, 2) the coal with a non-coking solvent (anthracene oil), 3) pitch (Cold Lake vacuum-bottom deposits), and 4) a mixture of coal and pitch. The purpose was to determine the amounts of coal and pitch-derived solids in the residues. All the residues were produced under identical severe conditions of liquefaction to promote the formation of solids. The coal processed with anthracene oil gives a residue consisting mainly of isotropic huminitic solids. If the coal is hydrogenated under similar conditions but without a solvent, the predominant residual solids are anisotropic semicokes displaying coarse mosaic textures, which form from vitroplast. The residual products from the hydrogenated Cold Lake vacuum- bottom deposits are also dominantly anisotropic semicokes; these display coarse mosaics and flow textures, and form by the growth and coalescence of mesophase spherules. Both coal- and pitch-derived solids are identified in a residue produced by coprocessing the Forestburg coal with the pitch from the Cold Lake vacuum-bottom deposits. It is concluded that the huminite macerals in the coal generate the fine-grained, mosaic-textured semicokes, whereas the pitch produces the coarse mosaics and flow-textured semicokes.

  12. Spectral Envelope Transformation in Singing Voice for Advanced Pitch Shifting

    Directory of Open Access Journals (Sweden)

    José L. Santacruz

    2016-11-01

    Full Text Available The aim of the present work is to perform a step towards more natural pitch shifting techniques in singing voice for its application in music production and entertainment systems. In this paper, we present an advanced method to achieve natural modifications when applying a pitch shifting process to singing voice by modifying the spectral envelope of the audio excerpt. To this end, an all-pole model has been selected to model the spectral envelope, which is estimated using a constrained non-linear optimization. The analysis of the global variations of the spectral envelope was carried out by identifying changes of the parameters of the model along with the changes of the pitch. With the obtained spectral envelope transformation functions, we applied our pitch shifting scheme to some sustained vowels in order to compare results with the same transformation made by using the Flex Pitch plugin of Logic Pro X and pitch synchronous overlap and add technique (PSOLA. This comparison has been carried out by means of both an objective and a subjective evaluation. The latter was done with a survey open to volunteers on our website.

  13. Semi-automated quantitative Drosophila wings measurements.

    Science.gov (United States)

    Loh, Sheng Yang Michael; Ogawa, Yoshitaka; Kawana, Sara; Tamura, Koichiro; Lee, Hwee Kuan

    2017-06-28

    Drosophila melanogaster is an important organism used in many fields of biological research such as genetics and developmental biology. Drosophila wings have been widely used to study the genetics of development, morphometrics and evolution. Therefore there is much interest in quantifying wing structures of Drosophila. Advancement in technology has increased the ease in which images of Drosophila can be acquired. However such studies have been limited by the slow and tedious process of acquiring phenotypic data. We have developed a system that automatically detects and measures key points and vein segments on a Drosophila wing. Key points are detected by performing image transformations and template matching on Drosophila wing images while vein segments are detected using an Active Contour algorithm. The accuracy of our key point detection was compared against key point annotations of users. We also performed key point detection using different training data sets of Drosophila wing images. We compared our software with an existing automated image analysis system for Drosophila wings and showed that our system performs better than the state of the art. Vein segments were manually measured and compared against the measurements obtained from our system. Our system was able to detect specific key points and vein segments from Drosophila wing images with high accuracy.

  14. Insect Wing Displacement Measurement Using Digital Holography

    International Nuclear Information System (INIS)

    Aguayo, Daniel D.; Mendoza Santoyo, Fernando; Torre I, Manuel H. de la; Caloca Mendez, Cristian I.

    2008-01-01

    Insects in flight have been studied with optical non destructive techniques with the purpose of using meaningful results in aerodynamics. With the availability of high resolution and large dynamic range CCD sensors the so called interferometric digital holographic technique was used to measure the surface displacement of in flight insect wings, such as butterflies. The wings were illuminated with a continuous wave Verdi laser at 532 nm, and observed with a CCD Pixelfly camera that acquire images at a rate of 11.5 frames per second at a resolution of 1392x1024 pixels and 12 Bit dynamic range. At this frame rate digital holograms of the wings were captured and processed in the usual manner, namely, each individual hologram is Fourier processed in order to find the amplitude and phase corresponding to the digital hologram. The wings displacement is obtained when subtraction between two digital holograms is performed for two different wings position, a feature applied to all consecutive frames recorded. The result of subtracting is seen as a wrapped phase fringe pattern directly related to the wing displacement. The experimental data for different butterfly flying conditions and exposure times are shown as wire mesh plots in a movie of the wings displacement

  15. In the wings of physics

    CERN Document Server

    Jacob, Maurice René Michel

    1995-01-01

    In physics research, many activities occur backstage or to continue the theatrical metaphor, in the wings of physics. This book focuses on two such activities: the editing of physics journals and the operation of physical societies. The author was editor of Physics Letters B for particle physics and then of Physics Reports for a total of 18 years, as well as being president of the French Physical Society and later of the European Physical Society. This book puts together papers dealing with such activities which he has written at various times in his career. It takes the reader into the inner circles of scientific editing and of physical societies. Each introduced by a foreword, these papers can be read separately.

  16. Detection and identification of monaural and binaural pitch contours in dyslexic listeners

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten; Poelmans, Hanne

    2010-01-01

    found that a majority of dyslexic subjects were unable to hear binaural pitch, the latter obtained a clear response of dyslexic listeners to Huggins’ pitch (HP) (Cramer and Huggins, 1958). The present study clarified whether impaired binaural pitch perception is found in dyslexia. Results from a pitch...

  17. Moveable Leading Edge Device for a Wing

    Science.gov (United States)

    Pitt, Dale M. (Inventor); Eckstein, Nicholas Stephen (Inventor)

    2013-01-01

    A method and apparatus for managing a flight control surface system. A leading edge section on a wing of an aircraft is extended into a deployed position. A deformable section connects the leading edge section to a trailing section. The deformable section changes from a deformed shape to an original shape when the leading edge section is moved into the deployed position. The leading edge section on the wing is moved from the deployed position to an undeployed position. The deformable section changes to the deformed shape inside of the wing.

  18. Generic Wing-Body Aerodynamics Data Base

    Science.gov (United States)

    Holst, Terry L.; Olsen, Thomas H.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    The wing-body aerodynamics data base consists of a series of CFD (Computational Fluid Dynamics) simulations about a generic wing body configuration consisting of a ogive-circular-cylinder fuselage and a simple symmetric wing mid-mounted on the fuselage. Solutions have been obtained for Nonlinear Potential (P), Euler (E) and Navier-Stokes (N) solvers over a range of subsonic and transonic Mach numbers and angles of attack. In addition, each solution has been computed on a series of grids, coarse, medium and fine to permit an assessment of grid refinement errors.

  19. Thin tailored composite wing for civil tiltrotor

    Science.gov (United States)

    Rais-Rohani, Masoud

    1994-01-01

    The tiltrotor aircraft is a flight vehicle which combines the efficient low speed (i.e., take-off, landing, and hover) characteristics of a helicopter with the efficient cruise speed of a turboprop airplane. A well-known example of such vehicle is the Bell-Boeing V-22 Osprey. The high cruise speed and range constraints placed on the civil tiltrotor require a relatively thin wing to increase the drag-divergence Mach number which translates into lower compressibility drag. It is required to reduce the wing maximum thickness-to-chord ratio t/c from 23% (i.e., V-22 wing) to 18%. While a reduction in wing thickness results in improved aerodynamic efficiency, it has an adverse effect on the wing structure and it tends to reduce structural stiffness. If ignored, the reduction in wing stiffness leads to susceptibility to aeroelastic and dynamic instabilities which may consequently cause a catastrophic failure. By taking advantage of the directional stiffness characteristics of composite materials the wing structure may be tailored to have the necessary stiffness, at a lower thickness, while keeping the weight low. The goal of this study is to design a wing structure for minimum weight subject to structural, dynamic and aeroelastic constraints. The structural constraints are in terms of strength and buckling allowables. The dynamic constraints are in terms of wing natural frequencies in vertical and horizontal bending and torsion. The aeroelastic constraints are in terms of frequency placement of the wing structure relative to those of the rotor system. The wing-rotor-pylon aeroelastic and dynamic interactions are limited in this design study by holding the cruise speed, rotor-pylon system, and wing geometric attributes fixed. To assure that the wing-rotor stability margins are maintained a more rigorous analysis based on a detailed model of the rotor system will need to ensue following the design study. The skin-stringer-rib type architecture is used for the wing

  20. AFM Study of Structure Influence on Butterfly Wings Coloration

    Directory of Open Access Journals (Sweden)

    Dinara Sultanovna Dallaeva

    2012-01-01

    Full Text Available This study describes the structural coloration of the butterfly Vanessa Atalanta wings and shows how the atomic force microscopy (AFM can be applied to the study of wings morphology and wings surface behavior under the temperature. The role of the wings morphology in colors was investigated. Different colors of wings have different topology and can be identified by them. AFM in semi-contact mode was used to study the wings surface. The wing surface area, which is close to the butterfly body, has shiny brown color and the peak of surface roughness is about 600 nm. The changing of morphology at different temperatures is shown.

  1. Performance Demands in Softball Pitching: A Comprehensive Muscle Fatigue Study.

    Science.gov (United States)

    Corben, Jeffrey S; Cerrone, Sara A; Soviero, Julie E; Kwiecien, Susan Y; Nicholas, Stephen J; McHugh, Malachy P

    2015-08-01

    Monitoring pitch count is standard practice in minor league baseball but not in softball because of the perception that fast-pitch softball pitching is a less stressful motion. To examine muscle fatigue after fast-pitch softball performances to provide an assessment of performance demand. Descriptive laboratory study. Bilateral strength measurements (handheld dynamometer) were made on 19 female softball pitchers (mean age [±SD], 15.2 ± 1.2 years) before and after pitching a game (mean number of pitches, 99 ± 21; mean innings pitched, 5 ± 1). A total of 20 tests were performed on the dominant and nondominant sides: forearm (grip, wrist flexion/extension, pronation/supination, elbow flexion/extension), shoulder (flexion, abduction/adduction, external/internal rotation, empty can test), scapula (middle/lower trapezius, rhomboid), and hip (hip flexion/extension, abduction/adduction). Fatigue (percentage strength loss) was categorized based on bilateral versus unilateral presentation using paired t tests: bilateral symmetric (significant on dominant and nondominant and not different between sides), bilateral asymmetric (significant on dominant and nondominant but significantly greater on dominant), unilateral asymmetric (significant on dominant only and significantly greater than nondominant), or unilateral equivocal (significant on dominant only but not different from nondominant). Bilateral symmetric fatigue was evident for all hip (dominant, 19.3%; nondominant, 15.2%) and scapular tests (dominant, 19.2%; nondominant, 19.3%). In general, shoulder tests exhibited bilateral asymmetric fatigue (dominant, 16.9%; nondominant, 11.6%). Forearm tests were more variable, with bilateral symmetric fatigue in the elbow flexors (dominant, 22.5%; nondominant, 19.2%), and wrist flexors (dominant, 21.6%; nondominant, 19.0%), bilateral asymmetric fatigue in the supinators (dominant, 21.8%; nondominant, 15.5%), unilateral asymmetric fatigue in the elbow extensors (dominant, 22

  2. High-pitch metal-on-glass technology for pad pitch adaptation between detectors and readout electronics

    CERN Document Server

    Ullán, Miguel; Campabadal, Francesca; Fleta, Celeste; Garcia, Carmen; Gonzalez, Francisco; Bernabeu, Jose

    2004-01-01

    Modern high-energy physics and astrophysics strip detectors have increased channel density to levels at which their connection with readout electronics has become very complex due to high pad pitch. Also, direct wire bonding is prevented by the fact that typically detector's pad pitch and electronics' pad pitch do not match. A high- pitch metal-on-glass technology is presented, that allows pad pitch adaptation between detectors and readout electronics. It consists of high-density metal lines on top of an insulating glass substrate. A photoresist layer is deposited covering the metal tracks for passivation and protection The technology is tested for conductivity, bondability, bonding pull force, peel off, and radiation hardness, and it is an established technology in the clean room of the CNM Institute in Barcelona. This technology has been chosen by the ATLAS Collaboration for the pad pitch adapters (PPA) of the SCT Endcap Modules, by a Compton camera project, and by other HEP groups for interconnection betwe...

  3. Dynamics of fluidic devices with applications to rotor pitch links

    Science.gov (United States)

    Scarborough, Lloyd H., III

    Coupling a Fluidic Flexible Matrix Composite (F2MC) to an air-pressurized fluid port produces a fundamentally new class of tunable vibration isolator. This fluidlastic device provides significant vibration reduction at an isolation frequency that can be tuned over a broad frequency range. The material properties and geometry of the F2MC element, as well as the port inertance, determine the isolation frequency. A unique feature of this device is that the port inertance depends on pressure so the isolation frequency can be adjusted by changing the air pressure. For constant port inertance, the isolation frequency is largely independent of the isolated mass so the device is robust to changes in load. A nonlinear model is developed to predict isolator length and port inertance. The model is linearized and the frequency response calculated. Experiments agree with theory, demonstrating a tunable isolation range from 9 Hz to 36 Hz and transmitted force reductions of up to 60 dB at the isolation frequency. Replacing rigid pitch links on rotorcraft with coupled fluidic devices has the potential to reduce the aerodynamic blade loads transmitted through the pitch links to the swashplate. Analytical models of two fluidic devices coupled with three different fluidic circuits are derived. These passive fluidlastic systems are tuned, by varying the fluid inertances and capacitances of each fluidic circuit, to reduce the transmitted pitch-link loads. The different circuit designs result in transmitted pitch link loads reduction at up to three main rotor harmonics. The simulation results show loads reduction at the targeted out-of-phase and in-phase harmonics of up to 88% and 93%, respectively. Experimental validation of two of the fluidic circuits demonstrates loads reduction of up to 89% at the out-of-phase isolation frequencies and up to 81% at the in-phase isolation frequencies. Replacing rigid pitch links on rotorcraft with fluidic pitch links changes the blade torsional

  4. Wings as impellers: honey bees co-opt flight system to induce nest ventilation and disperse pheromones.

    Science.gov (United States)

    Peters, Jacob M; Gravish, Nick; Combes, Stacey A

    2017-06-15

    Honey bees ( Apis mellifera ) are remarkable fliers that regularly carry heavy loads of nectar and pollen, supported by a flight system - the wings, thorax and flight muscles - that one might assume is optimized for aerial locomotion. However, honey bees also use this system to perform other crucial tasks that are unrelated to flight. When ventilating the nest, bees grip the surface of the comb or nest entrance and fan their wings to drive airflow through the nest, and a similar wing-fanning behavior is used to disperse volatile pheromones from the Nasonov gland. In order to understand how the physical demands of these impeller-like behaviors differ from those of flight, we quantified the flapping kinematics and compared the frequency, amplitude and stroke plane angle during these non-flight behaviors with values reported for hovering honey bees. We also used a particle-based flow visualization technique to determine the direction and speed of airflow generated by a bee performing Nasonov scenting behavior. We found that ventilatory fanning behavior is kinematically distinct from both flight and scenting behavior. Both impeller-like behaviors drive flow parallel to the surface to which the bees are clinging, at typical speeds of just under 1 m s -1 We observed that the wings of fanning and scenting bees frequently contact the ground during the ventral stroke reversal, which may lead to wing wear. Finally, we observed that bees performing Nasonov scenting behavior sometimes display 'clap-and-fling' motions, in which the wings contact each other during the dorsal stroke reversal and fling apart at the start of the downstroke. We conclude that the wings and flight motor of honey bees comprise a multifunctional system, which may be subject to competing selective pressures because of its frequent use as both a propeller and an impeller. © 2017. Published by The Company of Biologists Ltd.

  5. Experimental and numerical analysis of the wing rock characteristics of a 'wing-body-tail' configuration

    Science.gov (United States)

    Suarez, Carlos J.; Smith, Brooke C.; Malcolm, Gerald N.

    1993-01-01

    Free-to-roll wind tunnel tests were conducted and a computer simulation exercise was performed in an effort to investigate in detail the mechanism of wing rock on a configuration that consisted of a highly-slender forebody and a 78 deg swept delta wing. In the wind tunnel test, the roll angle and wing surface pressures were measured during the wing rock motion. A limit cycle oscillation was observed for angles of attack between 22 deg and 30 deg. In general, the wind tunnel test confirmed that the main flow phenomena responsible for the wing-body-tail wing rock are the interactions between the forebody and the wing vortices. The variation of roll acceleration (determined from the second derivative of the roll angle time history) with roll angle clearly showed the energy balance necessary to sustain the limit cycle oscillation. Pressure measurements on the wing revealed the hysteresis of the wing rock process. First, second and nth order models for the aerodynamic damping were developed and examined with a one degree of freedom computer simulation. Very good agreement with the observed behavior from the wind tunnel was obtained.

  6. The leading-edge vortex of swift-wing shaped delta wings

    Science.gov (United States)

    Muir, Rowan; Arredondo-Galeana, Abel; Viola, Ignazio Maria

    2017-11-01

    Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the Leading-Edge Vortex (LEV) for lift generation in a variety of flight conditions. In this investigation, a model non-slender delta shaped wing with a sharp leading-edge is tested at low Reynolds Number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus. The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the un-modified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift-wing shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds Number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta shaped wing. This work received funding from the Engineering and Physical Sciences Research Council [EP/M506515/1] and the Consejo Nacional de Ciencia y Tecnología (CONACYT).

  7. Influence of Pitch Height on the Perception of Submissiveness and Threat in Musical Passages

    Directory of Open Access Journals (Sweden)

    David Huron

    2006-09-01

    Full Text Available Bolinger, Ohala, Morton and others have established that vocal pitch height is perceived to be associated with social signals of dominance and submissiveness: higher vocal pitch is associated with submissiveness, whereas lower vocal pitch is associated with social dominance. An experiment was carried out to test this relationship in the perception of non-vocal melodies. Results show a parallel situation in music: higher-pitched melodies sound more submissive (less threatening than lower-pitched melodies.

  8. The effect of pitch in multislice spiral/helical CT

    International Nuclear Information System (INIS)

    Wang, G.; Vannier, M.W.

    2000-01-01

    The purpose of this study is to understand the effect of pitch on raw data interpolation in multislice spiral/helical computed tomography (CT) and provide guidelines for scanner design and protocol optimization. Multislice spiral CT is mainly characterized by the three parameters: the number of detector arrays, the detector collimation, and the table increment per x-ray source rotation. The pitch in multislice spiral CT is defined as the ratio of the table increment over the detector collimation in this study. In parallel to the current framework for studying longitudinal image resolution, the central fan-beam rays of direct and opposite directions are considered, assuming a narrow cone-beam angle. Generally speaking, sampling in the Radon domain by the direct and opposite central rays is nonuniform along the longitudinal axis. Using a recently developed methodology for quantifying the sensibility of signal reconstruction from non-uniformly sampled finite points, the effect of pitch on raw data interpolation is analyzed in multislice spiral CT. Unlike single-slice spiral CT, in which image quality decreases monotonically as the pitch increases, the sensibility of raw data interpolation in multislice spiral CT increases, suggesting that image quality does not decrease monotonically in this case. The most favorable pitch can be found from the sensitivity-slice spiral CT is provided. The study on the effect of pitch using the sensitivity analysis approach reveals the fundamental characteristics of raw data interpolation in multislice spiral CT, and gives insights into interaction between pitch and image quality. These results may be valuable for design of multislice spiral CT scanners and imaging protocol optimization in clinical applications. (authors)

  9. Learning for pitch and melody discrimination in congenital amusia.

    Science.gov (United States)

    Whiteford, Kelly L; Oxenham, Andrew J

    2018-03-23

    Congenital amusia is currently thought to be a life-long neurogenetic disorder in music perception, impervious to training in pitch or melody discrimination. This study provides an explicit test of whether amusic deficits can be reduced with training. Twenty amusics and 20 matched controls participated in four sessions of psychophysical training involving either pure-tone (500 Hz) pitch discrimination or a control task of lateralization (interaural level differences for bandpass white noise). Pure-tone pitch discrimination at low, medium, and high frequencies (500, 2000, and 8000 Hz) was measured before and after training (pretest and posttest) to determine the specificity of learning. Melody discrimination was also assessed before and after training using the full Montreal Battery of Evaluation of Amusia, the most widely used standardized test to diagnose amusia. Amusics performed more poorly than controls in pitch but not localization discrimination, but both groups improved with practice on the trained stimuli. Learning was broad, occurring across all three frequencies and melody discrimination for all groups, including those who trained on the non-pitch control task. Following training, 11 of 20 amusics no longer met the global diagnostic criteria for amusia. A separate group of untrained controls (n = 20), who also completed melody discrimination and pretest, improved by an equal amount as trained controls on all measures, suggesting that the bulk of learning for the control group occurred very rapidly from the pretest. Thirty-one trained participants (13 amusics) returned one year later to assess long-term maintenance of pitch and melody discrimination. On average, there was no change in performance between posttest and one-year follow-up, demonstrating that improvements on pitch- and melody-related tasks in amusics and controls can be maintained. The findings indicate that amusia is not always a life-long deficit when using the current standard

  10. Faster decline of pitch memory over time in congenital amusia.

    Science.gov (United States)

    Williamson, Victoria J; McDonald, Claire; Deutsch, Diana; Griffiths, Timothy D; Stewart, Lauren

    2010-04-26

    Congenital amusia (amusia, hereafter) is a developmental disorder that impacts negatively on the perception of music. Psychophysical testing suggests that individuals with amusia have above average thresholds for detection of pitch change and pitch direction discrimination; however, a low-level auditory perceptual problem cannot completely explain the disorder, since discrimination of melodies is also impaired when the constituent intervals are suprathreshold for perception. The aim of the present study was to test pitch memory as a function of (a) time and (b) tonal interference, in order to determine whether pitch traces are inherently weaker in amusic individuals. Memory for the pitch of single tones was compared using two versions of a paradigm developed by Deutsch (1970a). In both tasks, participants compared the pitch of a standard (S) versus a comparison (C) tone. In the time task, the S and C tones were presented, separated in time by 0, 1, 5, 10, and 15 s (blocked presentation). In the interference task, the S and C tones were presented with a fixed time interval (5 s) but with a variable number of irrelevant tones in between 0, 2, 4, 6, and 8 tones (blocked presentation). In the time task, control performance remained high for all time intervals, but amusics showed a performance decrement over time. In the interference task, controls and amusics showed a similar performance decrement with increasing number of irrelevant tones. Overall, the results suggest that the pitch representations of amusic individuals are less stable and more prone to decay than those of matched non-amusic individuals.

  11. Neural mechanisms underlying melodic perception and memory for pitch.

    Science.gov (United States)

    Zatorre, R J; Evans, A C; Meyer, E

    1994-04-01

    The neural correlates of music perception were studied by measuring cerebral blood flow (CBF) changes with positron emission tomography (PET). Twelve volunteers were scanned using the bolus water method under four separate conditions: (1) listening to a sequence of noise bursts, (2) listening to unfamiliar tonal melodies, (3) comparing the pitch of the first two notes of the same set of melodies, and (4) comparing the pitch of the first and last notes of the melodies. The latter two conditions were designed to investigate short-term pitch retention under low or high memory load, respectively. Subtraction of the obtained PET images, superimposed on matched MRI scans, provides anatomical localization of CBF changes associated with specific cognitive functions. Listening to melodies, relative to acoustically matched noise sequences, resulted in CBF increases in the right superior temporal and right occipital cortices. Pitch judgments of the first two notes of each melody, relative to passive listening to the same stimuli, resulted in right frontal-lobe activation. Analysis of the high memory load condition relative to passive listening revealed the participation of a number of cortical and subcortical regions, notably in the right frontal and right temporal lobes, as well as in parietal and insular cortex. Both pitch judgment conditions also revealed CBF decreases within the left primary auditory cortex. We conclude that specialized neural systems in the right superior temporal cortex participate in perceptual analysis of melodies; pitch comparisons are effected via a neural network that includes right prefrontal cortex, but active retention of pitch involves the interaction of right temporal and frontal cortices.

  12. Parametric structural modeling of insect wings

    International Nuclear Information System (INIS)

    Mengesha, T E; Vallance, R R; Barraja, M; Mittal, R

    2009-01-01

    Insects produce thrust and lift forces via coupled fluid-structure interactions that bend and twist their compliant wings during flapping cycles. Insight into this fluid-structure interaction is achieved with numerical modeling techniques such as coupled finite element analysis and computational fluid dynamics, but these methods require accurate and validated structural models of insect wings. Structural models of insect wings depend principally on the shape, dimensions and material properties of the veins and membrane cells. This paper describes a method for parametric modeling of wing geometry using digital images and demonstrates the use of the geometric models in constructing three-dimensional finite element (FE) models and simple reduced-order models. The FE models are more complete and accurate than previously reported models since they accurately represent the topology of the vein network, as well as the shape and dimensions of the veins and membrane cells. The methods are demonstrated by developing a parametric structural model of a cicada forewing.

  13. Left-Wing Extremism: The Current Threat

    Energy Technology Data Exchange (ETDEWEB)

    Karl A. Seger

    2001-04-30

    Left-wing extremism is ''alive and well'' both in the US and internationally. Although the current domestic terrorist threat within the U. S. is focused on right-wing extremists, left-wing extremists are also active and have several objectives. Leftist extremists also pose an espionage threat to U.S. interests. While the threat to the U.S. government from leftist extremists has decreased in the past decade, it has not disappeared. There are individuals and organizations within the U.S. who maintain the same ideology that resulted in the growth of left-wing terrorism in this country in the 1970s and 1980s. Some of the leaders from that era are still communicating from Cuba with their followers in the U.S., and new leaders and groups are emerging.

  14. HC-130 Wing Life Raft Replacement Study

    National Research Council Canada - National Science Library

    Scher, Bob

    1997-01-01

    The U.S. Coast Guard (USCG) uses HC-130 aircraft for search and rescue (SAR) and other missions. The aircraft are presently equipped with two to four 20 person inflatable life rafts, stowed in cells in the wings...

  15. The depletion properties of silicon microstrip detectors with variable strip pitch

    International Nuclear Information System (INIS)

    Krizmanic, J.F.

    1994-01-01

    We have investigated the depletion properties of trapezoidal shaped silicon microstrip detectors which have variable strip pitch. Four types of detectors were examined: three detectors have constant strip width and a fourth has a varying strip width. The detectors are single sided with readout performed via p + strips. The depletion properties of the devices were measured using two different methods. The first used capacitance versus voltage measurements, while the second used a 1060 nm wavelength laser coupled to a single mode fiber with a mode field diameter less than 10 μm. The small laser spot size allowed for the depletion depth to be measured in a localized area of the detector. The laser induced charge on an electrode was measured as a function of reverse bias voltage using a sensitive charge preamplifier. The depletion voltages of the detectors demonstrate a strong dependence upon the ratio of strip width to strip pitch. Moreover, these measurements show that a large value of this ratio yields a lower depletion voltage and vice versa. (orig.)

  16. Effect of Pitching Consecutive Days in Youth Fast-Pitch Softball Tournaments on Objective Shoulder Strength and Subjective Shoulder Symptoms.

    Science.gov (United States)

    Skillington, S Andrew; Brophy, Robert H; Wright, Rick W; Smith, Matthew V

    2017-05-01

    The windmill pitching motion has been associated with risk for shoulder injury. Because there are no pitching limits on youth fast-pitch softball pitchers, these athletes often pitch multiple games across consecutive days. Strength changes, fatigue levels, and shoulder pain that develop among female fast-pitch pitchers over the course of consecutive days of pitching have not been investigated. Over the course of 2- and 3-day fast-pitch softball tournaments, pitchers will develop progressive objective weakness and increased subjective shoulder fatigue and pain without complete recovery between days. Cross-sectional study; Level of evidence, 3. Fourteen female fast-pitch softball pitchers between the ages of 14 and 18 years were evaluated for strength and fatigue changes across 2- and 3-day tournaments. At the beginning and end of each day of tournament play, pitchers were asked to quantify shoulder fatigue and shoulder pain levels of their dominant throwing arm using a 10-point visual analog scale (VAS). Shoulder abduction, flexion, external rotation, internal rotation, elbow flexion, and elbow extension strength measurements were gathered using a handheld dynamometer. Over the course of an average single day of tournament participation, pitchers developed significant increases in VAS scores for shoulder fatigue (median, 2.0; 95% CI, 1.3-3.0) and pain (median, 1.3; 95% CI, 0.5-2.3) and significant strength loss in all tested motions. Pitchers also developed significant increases in VAS shoulder fatigue (median, 3.5; 95% CI, 1.5-5.5), VAS shoulder pain (median, 2.5; 95% CI, 1.0-4.5), and strength loss in all tested motions over the entire tournament. Shoulder pain, fatigue, and strength do not fully recover between days. The accumulation of subjective shoulder pain and fatigue over the course of tournament play were closely correlated. Among youth female fast-pitch softball pitchers, there is a progressive increase in shoulder fatigue, pain, and weakness over the

  17. Butterfly wing color: A photonic crystal demonstration

    Science.gov (United States)

    Proietti Zaccaria, Remo

    2016-01-01

    We have theoretically modeled the optical behavior of a natural occurring photonic crystal, as defined by the geometrical characteristics of the Teinopalpus Imperialis butterfly. In particular, following a genetic algorithm approach, we demonstrate how its wings follow a triclinic crystal geometry with a tetrahedron unit base. By performing both photonic band analysis and transmission/reflection simulations, we are able to explain the characteristic colors emerging by the butterfly wings, thus confirming their crystal form.

  18. Butterflies: Photonic Crystals on the Wing

    Science.gov (United States)

    2007-03-22

    green hairstreak , Callophrys rubi, suggested that the scales have a 3D cubic network organization (Fig. 9). An extensive analysis of the scales of a...Fig. 9. a Ventral side of the wings of the green hairstreak , Callophrys rubi. b Transmission electron micrograph of a small area of a single...Report 3. DATES COVERED (From – To) 15 March 2006 - 08-Jun-07 4. TITLE AND SUBTITLE Butterflies : Photonic Crystals on the Wing 5a. CONTRACT

  19. New methodologies for calculation of flight parameters on reduced scale wings models in wind tunnel =

    Science.gov (United States)

    Ben Mosbah, Abdallah

    In order to improve the qualities of wind tunnel tests, and the tools used to perform aerodynamic tests on aircraft wings in the wind tunnel, new methodologies were developed and tested on rigid and flexible wings models. A flexible wing concept is consists in replacing a portion (lower and/or upper) of the skin with another flexible portion whose shape can be changed using an actuation system installed inside of the wing. The main purpose of this concept is to improve the aerodynamic performance of the aircraft, and especially to reduce the fuel consumption of the airplane. Numerical and experimental analyses were conducted to develop and test the methodologies proposed in this thesis. To control the flow inside the test sections of the Price-Paidoussis wind tunnel of LARCASE, numerical and experimental analyses were performed. Computational fluid dynamics calculations have been made in order to obtain a database used to develop a new hybrid methodology for wind tunnel calibration. This approach allows controlling the flow in the test section of the Price-Paidoussis wind tunnel. For the fast determination of aerodynamic parameters, new hybrid methodologies were proposed. These methodologies were used to control flight parameters by the calculation of the drag, lift and pitching moment coefficients and by the calculation of the pressure distribution around an airfoil. These aerodynamic coefficients were calculated from the known airflow conditions such as angles of attack, the mach and the Reynolds numbers. In order to modify the shape of the wing skin, electric actuators were installed inside the wing to get the desired shape. These deformations provide optimal profiles according to different flight conditions in order to reduce the fuel consumption. A controller based on neural networks was implemented to obtain desired displacement actuators. A metaheuristic algorithm was used in hybridization with neural networks, and support vector machine approaches and their

  20. Membrane wing aerodynamics for micro air vehicles

    Science.gov (United States)

    Lian, Yongsheng; Shyy, Wei; Viieru, Dragos; Zhang, Baoning

    2003-10-01

    The aerodynamic performance of a wing deteriorates considerably as the Reynolds number decreases from 10 6 to 10 4. In particular, flow separation can result in substantial change in effective airfoil shape and cause reduced aerodynamic performance. Lately, there has been growing interest in developing suitable techniques for sustained and robust flight of micro air vehicles (MAVs) with a wingspan of 15 cm or smaller, flight speed around 10 m/ s, and a corresponding Reynolds number of 10 4-10 5. This paper reviews the aerodynamics of membrane and corresponding rigid wings under the MAV flight conditions. The membrane wing is observed to yield desirable characteristics in delaying stall as well as adapting to the unsteady flight environment, which is intrinsic to the designated flight speed. Flow structures associated with the low Reynolds number and low aspect ratio wing, such as pressure distribution, separation bubble and tip vortex are reviewed. Structural dynamics in response to the surrounding flow field is presented to highlight the multiple time-scale phenomena. Based on the computational capabilities for treating moving boundary problems, wing shape optimization can be conducted in automated manners. To enhance the lift, the effect of endplates is evaluated. The proper orthogonal decomposition method is also discussed as an economic tool to describe the flow structure around a wing and to facilitate flow and vehicle control.

  1. Modeling unsteady forces and pressures on a rapidly pitching airfoil

    Science.gov (United States)

    Schiavone, Nicole K.; Dawson, Scott T. M.; Rowley, Clarence W.; Williams, David R.

    2014-11-01

    This work develops models to quantify and understand the unsteady aerodynamic forces arising from rapid pitching motion of a NACA0012 airfoil at a Reynolds number of 50 000. The system identification procedure applies a generalized DMD-type algorithm to time-resolved wind tunnel measurements of the lift and drag forces, as well as the pressure at six locations on the suction surface of the airfoil. Models are identified for 5-degree pitch-up and pitch-down maneuvers within the overall range of 0-20 degrees. The identified models can accurately capture the effects of flow separation and leading-edge vortex formation and convection. We demonstrate that switching between different linear models can give accurate prediction of the nonlinear behavior that is present in high-amplitude maneuvers. The models are accurate for a wide-range of motions, including pitch-and-hold, sinusoidal, and pseudo-random pitching maneuvers. Providing the models access to a subset of the measured data channels can allow for improved estimates of the remaining states via the use of a Kalman filter, suggesting that the modeling framework could be useful for aerodynamic control applications. This work was supported by the Air Force Office of Scientific Research, under Award No. FA9550-12-1-0075.

  2. Study of Pumping Capacity of Pitched Blade Impellers

    Directory of Open Access Journals (Sweden)

    I. Fořt

    2002-01-01

    Full Text Available A study was made of the pumping capacity of pitched blade impellers in a cylindrical pilot plant vessel with four standard radial baffles at the wall under a turbulent regime of flow. The pumping capacity was calculated from the radial profile of the axial flow, under the assumption of axial symmetry of the discharge flow. The mean velocity was measured using laser Doppler anemometry in a transparent vessel of diameter T = 400 mm, provided with a standard dished bottom. Three and six blade pitched blade impellers (the pitch angle varied within the interval a Îá24°; 45°ń of impeller/vessel diameter ratio D/T = 0.36, as well as a three blade pitched blade impeller with folded blades of the same diameter, were tested. The calculated results were compared with the results of experiments mentioned in the literature, above all in cylindrical vessels with a flat bottom. Both arrangements of the agitated system were described by the impeller energetic efficiency, i.e, a criterion including in dimensionless form both the impeller energy consumption (impeller power input and the impeller pumping effect (impeller pumping capacity. It follows from the results obtained with various geometrical configurations that the energetic efficiency of pitched blade impellers is significantly lower for configurations suitable for mixing solid-liquid suspensions (low impeller off bottom clearances than for blending miscible liquids in mixing (higher impeller off bottom clearances.

  3. A Novel Degradation Identification Method for Wind Turbine Pitch System

    Science.gov (United States)

    Guo, Hui-Dong

    2018-04-01

    It’s difficult for traditional threshold value method to identify degradation of operating equipment accurately. An novel degradation evaluation method suitable for wind turbine condition maintenance strategy implementation was proposed in this paper. Based on the analysis of typical variable-speed pitch-to-feather control principle and monitoring parameters for pitch system, a multi input multi output (MIMO) regression model was applied to pitch system, where wind speed, power generation regarding as input parameters, wheel rotation speed, pitch angle and motor driving currency for three blades as output parameters. Then, the difference between the on-line measurement and the calculated value from the MIMO regression model applying least square support vector machines (LSSVM) method was defined as the Observed Vector of the system. The Gaussian mixture model (GMM) was applied to fitting the distribution of the multi dimension Observed Vectors. Applying the model established, the Degradation Index was calculated using the SCADA data of a wind turbine damaged its pitch bearing retainer and rolling body, which illustrated the feasibility of the provided method.

  4. The leading-edge vortex of swift wing-shaped delta wings.

    Science.gov (United States)

    Muir, Rowan Eveline; Arredondo-Galeana, Abel; Viola, Ignazio Maria

    2017-08-01

    Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the leading-edge vortex (LEV) for lift generation in a variety of flight conditions. A well-documented example of an LEV is that generated by aircraft with highly swept, delta-shaped wings. While the wing aerodynamics of a manoeuvring aircraft, a bird gliding and a bird in flapping flight vary significantly, it is believed that this existing knowledge can serve to add understanding to the complex aerodynamics of natural fliers. In this investigation, a model non-slender delta-shaped wing with a sharp leading edge is tested at low Reynolds number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus . The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the unmodified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift wing-shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta-shaped wing.

  5. Geology of dolomite-hosted uranium deposits at the Pitch Mine, Saguache County, Colorado

    International Nuclear Information System (INIS)

    Nash, J.T.

    1981-01-01

    Newly documented uranium ore in the Pitch mine occurs chiefly in brecciated Mississippian Leadville Dolomite along the Chester upthrust zone, and to a lesser extent in sandstone, siltstone, and carbonaceous shale of the Pennsylvanian Belden Formation and in Precambrian granitic rocks and schist. Uranium-mineralized zones are generally thicker, more consistent, and of higher grade in dolomite than in other hosts, and roughly 50 percent of the new reserves are in dolomite. Strong physical control by dolomite is evident, as this is the only rock type that is pervasively brecciated within the fault slices that make up the footwall of the reverse-fault zone. Other rocks tended to either remain unbroken or undergo ductile deformation. Chemical controls on uranium deposition are subtle and appear chiefly to involve coprecipitation of FeS 2 as pyrite and marcasite, suggesting that sulfide ion may be the reductant

  6. Wing stridulation in a Jurassic katydid (Insecta, Orthoptera) produced low-pitched musical calls to attract females.

    Science.gov (United States)

    Gu, Jun-Jie; Montealegre-Z, Fernando; Robert, Daniel; Engel, Michael S; Qiao, Ge-Xia; Ren, Dong

    2012-03-06

    Behaviors are challenging to reconstruct for extinct species, particularly the nature and origins of acoustic communication. Here we unravel the song of Archaboilus musicus Gu, Engel and Ren sp. nov., a 165 million year old stridulating katydid. From the exceptionally preserved morphology of its stridulatory apparatus in the forewings and phylogenetic comparison with extant species, we reveal that A. musicus radiated pure-tone (musical) songs using a resonant mechanism tuned at a frequency of 6.4 kHz. Contrary to previous scenarios, musical songs were an early innovation, preceding the broad-bandwidth songs of extant katydids. Providing an accurate insight into paleoacoustic ecology, the low-frequency musical song of A. musicus was well-adapted to communication in the lightly cluttered environment of the mid-Jurassic forest produced by coniferous trees and giant ferns, suggesting that reptilian, amphibian, and mammalian insectivores could have also heard A. musicus' song.

  7. Wings: A New Paradigm in Human-Centered Design

    Science.gov (United States)

    Schutte, Paul C.

    1997-01-01

    Many aircraft accidents/incidents investigations cite crew error as a causal factor (Boeing Commercial Airplane Group 1996). Human factors experts suggest that crew error has many underlying causes and should be the start of an accident investigation and not the end. One of those causes, the flight deck design, is correctable. If a flight deck design does not accommodate the human's unique abilities and deficits, crew error may simply be the manifestation of this mismatch. Pilots repeatedly report that they are "behind the aircraft" , i.e., they do not know what the automated aircraft is doing or how the aircraft is doing it until after the fact. Billings (1991) promotes the concept of "human-centered automation"; calling on designers to allocate appropriate control and information to the human. However, there is much ambiguity regarding what it mean's to be human-centered. What often are labeled as "human-centered designs" are actually designs where a human factors expert has been involved in the design process or designs where tests have shown that humans can operate them. While such designs may be excellent, they do not represent designs that are systematically produced according to some set of prescribed methods and procedures. This paper describes a design concept, called Wings, that offers a clearer definition for human-centered design. This new design concept is radically different from current design processes in that the design begins with the human and uses the human body as a metaphor for designing the aircraft. This is not because the human is the most important part of the aircraft (certainly the aircraft would be useless without lift and thrust), but because he is the least understood, the least programmable, and one of the more critical elements. The Wings design concept has three properties: a reversal in the design process, from aerodynamics-, structures-, and propulsion-centered to truly human-centered; a design metaphor that guides function

  8. Experiments on the ZT-S reversed-field pinch, August--December 1978

    International Nuclear Information System (INIS)

    Jacobson, A.R.

    1979-06-01

    During the latter half of 1978 the ZT-S reversed-field pinch was used to explore the utility of pitch-programming techniques in setting up stable diffuse pinch profiles. Several experimental observations relating to this goal are presented

  9. Aeroelasticity of morphing wings using neural networks

    Science.gov (United States)

    Natarajan, Anand

    In this dissertation, neural networks are designed to effectively model static non-linear aeroelastic problems in adaptive structures and linear dynamic aeroelastic systems with time varying stiffness. The use of adaptive materials in aircraft wings allows for the change of the contour or the configuration of a wing (morphing) in flight. The use of smart materials, to accomplish these deformations, can imply that the stiffness of the wing with a morphing contour changes as the contour changes. For a rapidly oscillating body in a fluid field, continuously adapting structural parameters may render the wing to behave as a time variant system. Even the internal spars/ribs of the aircraft wing which define the wing stiffness can be made adaptive, that is, their stiffness can be made to vary with time. The immediate effect on the structural dynamics of the wing, is that, the wing motion is governed by a differential equation with time varying coefficients. The study of this concept of a time varying torsional stiffness, made possible by the use of active materials and adaptive spars, in the dynamic aeroelastic behavior of an adaptable airfoil is performed here. Another type of aeroelastic problem of an adaptive structure that is investigated here, is the shape control of an adaptive bump situated on the leading edge of an airfoil. Such a bump is useful in achieving flow separation control for lateral directional maneuverability of the aircraft. Since actuators are being used to create this bump on the wing surface, the energy required to do so needs to be minimized. The adverse pressure drag as a result of this bump needs to be controlled so that the loss in lift over the wing is made minimal. The design of such a "spoiler bump" on the surface of the airfoil is an optimization problem of maximizing pressure drag due to flow separation while minimizing the loss in lift and energy required to deform the bump. One neural network is trained using the CFD code FLUENT to

  10. Modeling and Closed Loop Flight Testing of a Fixed Wing Micro Air Vehicle

    Directory of Open Access Journals (Sweden)

    Harikumar Kandath

    2018-03-01

    Full Text Available This paper presents the nonlinear six degrees of freedom dynamic modeling of a fixed wing micro air vehicle. The static derivatives of the micro air vehicle are obtained through the wind tunnel testing. The propeller effects on the lift, drag, pitching moment and side force are quantified through wind tunnel testing. The dynamic derivatives are obtained through empirical relations available in the literature. The trim conditions are computed for a straight and constant altitude flight condition. The linearized longitudinal and lateral state space models are obtained about trim conditions. The variations in short period mode, phugoid mode, Dutch roll mode, roll subsidence mode and spiral mode with respect to different trim operating conditions is presented. A stabilizing static output feedback controller is designed using the obtained model. Successful closed loop flight trials are conducted with the static output feedback controller.

  11. Effects of external stores on the air combat capability of a delta wing fighter

    Science.gov (United States)

    Spearman, M. L.; Sawyer, W. C.

    1977-01-01

    Delta wing point-design fighters with two pylon mounted missiles and aft tail controls (similar to several Soviet designs) have been investigated for a Mach number range from about 0.6 to 2.0. Whereas minimum drag penalties that are expected with the addition of external stores do occur, the effects at higher lifts, corresponding to maneuvering flight, are less severe and often favorable. The drag-due-to-lift factor is less with stores on although the lift curve slope is unaffected. The longitudinal stability level is reduced by the addition of stores while the pitch control effectiveness is unchanged. The directional stability was generally reduced at subsonic speeds and increased at supersonic speeds by the addition of stores but sufficiently high stability levels are obtainable that are compatible with the longitudinal maneuvering limits. Some examples of the potential maneuvering capability in terms of normal acceleration and turn radius are included.

  12. Managing Reverse Logistics or Reversing Logistics Management?

    OpenAIRE

    Brito, Marisa

    2004-01-01

    textabstractIn the past, supply chains were busy fine-tuning the logistics from raw material to the end customer. Today an increasing flow of products is going back in the chain. Thus, companies have to manage reverse logistics as well.This thesis contributes to a better understanding of reverse logistics. The thesis brings insights on reverse logistics decision-making and it lays down theoretical principles for reverse logistics as a research field.In particular it puts together a framework ...

  13. Hovering hummingbird wing aerodynamics during the annual cycle. I. Complete wing.

    Science.gov (United States)

    Achache, Yonathan; Sapir, Nir; Elimelech, Yossef

    2017-08-01

    The diverse hummingbird family (Trochilidae) has unique adaptations for nectarivory, among which is the ability to sustain hover-feeding. As hummingbirds mainly feed while hovering, it is crucial to maintain this ability throughout the annual cycle-especially during flight-feather moult, in which wing area is reduced. To quantify the aerodynamic characteristics and flow mechanisms of a hummingbird wing throughout the annual cycle, time-accurate aerodynamic loads and flow field measurements were correlated over a dynamically scaled wing model of Anna's hummingbird ( Calypte anna ). We present measurements recorded over a model of a complete wing to evaluate the baseline aerodynamic characteristics and flow mechanisms. We found that the vorticity concentration that had developed from the wing's leading-edge differs from the attached vorticity structure that was typically found over insects' wings; firstly, it is more elongated along the wing chord, and secondly, it encounters high levels of fluctuations rather than a steady vortex. Lift characteristics resemble those of insects; however, a 20% increase in the lift-to-torque ratio was obtained for the hummingbird wing model. Time-accurate aerodynamic loads were also used to evaluate the time-evolution of the specific power required from the flight muscles, and the overall wingbeat power requirements nicely matched previous studies.

  14. Populists in Parliament : Comparing Left-Wing and Right-Wing Populism in the Netherlands

    NARCIS (Netherlands)

    Otjes, Simon; Louwerse, Tom

    2015-01-01

    In parliament, populist parties express their positions almost every day through voting. There is great diversity among them, for instance between left-wing and right-wing populist parties. This gives rise to the question: is the parliamentary behaviour of populists motivated by their populism or by

  15. Electrically tuned photoluminescence in large pitch cholesteric liquid crystal

    International Nuclear Information System (INIS)

    Middha, Manju; Kumar, Rishi; Raina, K. K.

    2014-01-01

    Cholesteric liquid crystals are known as 1-D photonic band gap materials due to their periodic helical supramolecular structure and larger birefringence. Depending upon the helical twisted pitch length, they give the characteristic contrast due to selective Bragg reflections when viewed through the polarizing optical microscope and hence affect the electro-optic properties. So the optimization of chiral dopant concentration in nematic liquid crystal leads to control the transmission of polarized light through the microscope. Hence transmission based polarizing optical microscope is used for the characterization of helical pitch length in the optical texture. The unwinding of helical pitch was observed with the application of electric field which affects the intensity of photoluminescence

  16. Microstructure and properties of lignite tar and pitch. Part II

    Energy Technology Data Exchange (ETDEWEB)

    Walther, H

    1954-01-01

    Photomicrographs reveal the presence of crystalline wax which affects the working properties in lignite tars and pitch. The crystals are large needles after slow cooling and small after rapid cooling. The crystals are paraffinic in character. All samples were nonhomogeneous. Thus the properties of lignite tar and pitch are varied by the source of the lignite and history of the specimen, neither softening point nor dropping point seems to satisfactorily characterize these tars. The samples exhibit thixotropic behavior characteristic of a structural viscosity and show hysteresis loops on varying the working rate. The variations have hindered use of lignite tars and pitches except where solubility in a solvent such as coal tar oil can be used to advantage.

  17. Tonal Scales and Minimal Simple Pitch Class Cycles

    DEFF Research Database (Denmark)

    Meredith, David

    2011-01-01

    Numerous studies have explored the special mathematical properties of the diatonic set. However, much less attention has been paid to the sets associated with the other scales that play an important rôle in Western tonal music, such as the harmonic minor scale and ascending melodic minor scale....... This paper focuses on the special properties of the class, T, of sets associated with the major and minor scales (including the harmonic major scale). It is observed that T is the set of pitch class sets associated with the shortest simple pitch class cycles in which every interval between consecutive pitch...... classes is either a major or a minor third, and at least one of each type of third appears in the cycle. Employing Rothenberg’s definition of stability and propriety, T is also the union of the three most stable inversional equivalence classes of proper 7-note sets. Following Clough and Douthett’s concept...

  18. Numerical Prediction of Hydromechanical Behaviour of Controllable Pitch Propeller

    Directory of Open Access Journals (Sweden)

    Saman Tarbiat

    2014-01-01

    Full Text Available The research described in this paper was carried out to predict hydrodynamic and frictional forces of controllable pitch propeller (CPP that bring about fretting problems in a blade bearing. The governing equations are Reynolds-averaged Navier-Stokes (RANS and are solved by OpenFOAM solver for hydrodynamic forces behind the ship’s wake. Frictional forces are calculated by practical mechanical formulae. Different advance velocities with constant rotational speed for blades are used to achieve hydrodynamic coefficients in open water and the wake behind the propeller. Results are compared at four different pitches. Detailed numerical results of 3D modelling of the propeller, hydrodynamic characteristics, and probability of the fretting motion in the propeller are presented. Results show that the probability of the fretting movement is related to the pitch.

  19. Vortex scale of unsteady separation on a pitching airfoil.

    Science.gov (United States)

    Fuchiwaki, Masaki; Tanaka, Kazuhiro

    2002-10-01

    The streaklines of unsteady separation on two kinds of pitching airfoils, the NACA65-0910 and a blunt trailing edge airfoil, were studied by dye flow visualization and by the Schlieren method. The latter visualized the discrete vortices shed from the leading edge. The results of these visualization studies allow a comparison between the dynamic behavior of the streakline of unsteady separation and that of the discrete vortices shed from the leading edge. The influence of the airfoil configuration on the flow characteristics was also examined. Furthermore, the scale of a discrete vortex forming the recirculation region was investigated. The non-dimensional pitching rate was k = 0.377, the angle of attack alpha(m) = 16 degrees and the pitching amplitude was fixed to A = +/-6 degrees for Re = 4.0 x 10(3) in this experiment.

  20. Reynolds number scalability of bristled wings performing clap and fling

    Science.gov (United States)

    Jacob, Skyler; Kasoju, Vishwa; Santhanakrishnan, Arvind

    2017-11-01

    Tiny flying insects such as thrips show a distinctive physical adaptation in the use of bristled wings. Thrips use wing-wing interaction kinematics for flapping, in which a pair of wings clap together at the end of upstroke and fling apart at the beginning of downstroke. Previous studies have shown that the use of bristled wings can reduce the forces needed for clap and fling at Reynolds number (Re) on the order of 10. This study examines if the fluid dynamic advantages of using bristled wings also extend to higher Re on the order of 100. A robotic clap and fling platform was used for this study, in which a pair of physical wing models were programmed to execute clap and fling kinematics. Force measurements were conducted on solid (non-bristled) and bristled wing pairs. The results show lift and drag forces were both lower for bristled wings when compared to solid wings for Re ranging from 1-10, effectively increasing peak lift to peak drag ratio of bristled wings. However, peak lift to peak drag ratio was lower for bristled wings at Re =120 as compared to solid wings, suggesting that bristled wings may be uniquely advantageous for Re on the orders of 1-10. Flow structures visualized using particle image velocimetry (PIV) and their impact on force production will be presented.

  1. Temperature and saturation dependence in the vapor sensing of butterfly wing scales

    International Nuclear Information System (INIS)

    Kertész, K.; Piszter, G.; Jakab, E.; Bálint, Zs.; Vértesy, Z.; Biró, L.P.

    2014-01-01

    The sensing of gasses/vapors in the ambient air is the focus of attention due to the need to monitor our everyday environment. Photonic crystals are sensing materials of the future because of their strong light-manipulating properties. Natural photonic structures are well-suited materials for testing detection principles because they are significantly cheaper than artificial photonic structures and are available in larger sizes. Additionally, natural photonic structures may provide new ideas for developing novel artificial photonic nanoarchitectures with improved properties. In the present paper, we discuss the effects arising from the sensor temperature and the vapor concentration in air during measurements with a photonic crystal-type optical gas sensor. Our results shed light on the sources of discrepancy between simulated and experimental sensing behaviors of photonic crystal-type structures. Through capillary condensation, the vapors will condensate to a liquid state inside the nanocavities. Due to the temperature and radius of curvature dependence of capillary condensation, the measured signals are affected by the sensor temperature as well as by the presence of a nanocavity size distribution. The sensing materials used are natural photonic nanoarchitectures present in the wing scales of blue butterflies. - Highlights: • We report optical gas sensing on blue butterfly wing scale nanostructures. • The sample temperature decrease effects a reversible break-down in the measured spectra. • The break-down is connected with the vapor condensation in the scales and wing surface. • Capillary condensation occurs in the wing scales

  2. Temperature and saturation dependence in the vapor sensing of butterfly wing scales

    Energy Technology Data Exchange (ETDEWEB)

    Kertész, K., E-mail: kertesz.krisztian@ttk.mta.hu [Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, 1525 Budapest, PO Box 49 (Hungary); Piszter, G. [Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, 1525 Budapest, PO Box 49 (Hungary); Jakab, E. [Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1525 Budapest, P O Box 17 (Hungary); Bálint, Zs. [Hungarian Natural History Museum, H-1088, Budapest, Baross utca 13 (Hungary); Vértesy, Z.; Biró, L.P. [Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, 1525 Budapest, PO Box 49 (Hungary)

    2014-06-01

    The sensing of gasses/vapors in the ambient air is the focus of attention due to the need to monitor our everyday environment. Photonic crystals are sensing materials of the future because of their strong light-manipulating properties. Natural photonic structures are well-suited materials for testing detection principles because they are significantly cheaper than artificial photonic structures and are available in larger sizes. Additionally, natural photonic structures may provide new ideas for developing novel artificial photonic nanoarchitectures with improved properties. In the present paper, we discuss the effects arising from the sensor temperature and the vapor concentration in air during measurements with a photonic crystal-type optical gas sensor. Our results shed light on the sources of discrepancy between simulated and experimental sensing behaviors of photonic crystal-type structures. Through capillary condensation, the vapors will condensate to a liquid state inside the nanocavities. Due to the temperature and radius of curvature dependence of capillary condensation, the measured signals are affected by the sensor temperature as well as by the presence of a nanocavity size distribution. The sensing materials used are natural photonic nanoarchitectures present in the wing scales of blue butterflies. - Highlights: • We report optical gas sensing on blue butterfly wing scale nanostructures. • The sample temperature decrease effects a reversible break-down in the measured spectra. • The break-down is connected with the vapor condensation in the scales and wing surface. • Capillary condensation occurs in the wing scales.

  3. Boosting pitch encoding with audiovisual interactions in congenital amusia.

    Science.gov (United States)

    Albouy, Philippe; Lévêque, Yohana; Hyde, Krista L; Bouchet, Patrick; Tillmann, Barbara; Caclin, Anne

    2015-01-01

    The combination of information across senses can enhance perception, as revealed for example by decreased reaction times or improved stimulus detection. Interestingly, these facilitatory effects have been shown to be maximal when responses to unisensory modalities are weak. The present study investigated whether audiovisual facilitation can be observed in congenital amusia, a music-specific disorder primarily ascribed to impairments of pitch processing. Amusic individuals and their matched controls performed two tasks. In Task 1, they were required to detect auditory, visual, or audiovisual stimuli as rapidly as possible. In Task 2, they were required to detect as accurately and as rapidly as possible a pitch change within an otherwise monotonic 5-tone sequence that was presented either only auditorily (A condition), or simultaneously with a temporally congruent, but otherwise uninformative visual stimulus (AV condition). Results of Task 1 showed that amusics exhibit typical auditory and visual detection, and typical audiovisual integration capacities: both amusics and controls exhibited shorter response times for audiovisual stimuli than for either auditory stimuli or visual stimuli. Results of Task 2 revealed that both groups benefited from simultaneous uninformative visual stimuli to detect pitch changes: accuracy was higher and response times shorter in the AV condition than in the A condition. The audiovisual improvements of response times were observed for different pitch interval sizes depending on the group. These results suggest that both typical listeners and amusic individuals can benefit from multisensory integration to improve their pitch processing abilities and that this benefit varies as a function of task difficulty. These findings constitute the first step towards the perspective to exploit multisensory paradigms to reduce pitch-related deficits in congenital amusia, notably by suggesting that audiovisual paradigms are effective in an appropriate

  4. Frogs Call at a Higher Pitch in Traffic Noise

    Directory of Open Access Journals (Sweden)

    Kirsten M. Parris

    2009-06-01

    Full Text Available Male frogs call to attract females for mating and to defend territories from rival males. Female frogs of some species prefer lower-pitched calls, which indicate larger, more experienced males. Acoustic interference occurs when background noise reduces the active distance or the distance over which an acoustic signal can be detected. Birds are known to call at a higher pitch or frequency in urban noise, decreasing acoustic interference from low-frequency noise. Using Bayesian linear regression, we investigated the effect of traffic noise on the pitch of advertisement calls in two species of frogs, the southern brown tree frog (Litoria ewingii and the common eastern froglet (Crinia signifera. We found evidence that L. ewingii calls at a higher pitch in traffic noise, with an average increase in dominant frequency of 4.1 Hz/dB of traffic noise, and a total effect size of 123 Hz. This frequency shift is smaller than that observed in birds, but is still large enough to be detected by conspecific frogs and confer a significant benefit to the caller. Mathematical modelling predicted a 24% increase in the active distance of a L. ewingii call in traffic noise with a frequency shift of this size. Crinia signifera may also call at a higher pitch in traffic noise, but more data are required to be confident of this effect. Because frog calls are innate rather than learned, the frequency shift demonstrated by L. ewingii may represent an evolutionary adaptation to noisy conditions. The phenomenon of frogs calling at a higher pitch in traffic noise could therefore constitute an intriguing trade-off between audibility and attractiveness to potential mates.

  5. Wing Torsional Stiffness Tests of the Active Aeroelastic Wing F/A-18 Airplane

    Science.gov (United States)

    Lokos, William A.; Olney, Candida D.; Crawford, Natalie D.; Stauf, Rick; Reichenbach, Eric Y.

    2002-01-01

    The left wing of the Active Aeroelastic Wing (AAW) F/A-18 airplane has been ground-load-tested to quantify its torsional stiffness. The test has been performed at the NASA Dryden Flight Research Center in November 1996, and again in April 2001 after a wing skin modification was performed. The primary objectives of these tests were to characterize the wing behavior before the first flight, and provide a before-and-after measurement of the torsional stiffness. Two streamwise load couples have been applied. The wing skin modification is shown to have more torsional flexibility than the original configuration has. Additionally, structural hysteresis is shown to be reduced by the skin modification. Data comparisons show good repeatability between the tests.

  6. An advanced pitch change mechanism incorporating a hybrid traction drive

    Science.gov (United States)

    Steinetz, B. M.; Loewenthal, S. H.; Sargisson, D. F.; White, G.

    1984-01-01

    A design of a propeller pitch control mechanism is described that meets the demanding requirements of a high-power, advanced turboprop. In this application, blade twisting moment torque can be comparable to that of the main reduction gearbox output: precise pitch control, reliability and compactness are all at a premium. A key element in the design is a compact, high-ratio hybrid traction drive which offers low torque ripple and high torsional stiffness. The traction drive couples a high speed electric motor/alternator unit to a ball screw that actuates the blade control links. The technical merits of this arrangement and the performance characteristics of the traction drive are discussed.

  7. Automatic pitch detection for a computer game interface

    International Nuclear Information System (INIS)

    Fonseca Solis, Juan M.

    2015-01-01

    A software able to recognize notes played by musical instruments is created through automatic pitch recognition. A pitch recognition algorithm is embedded into a software project, using the C implementation of SWIPEP. A memory game is chosen for project. A sequence of notes is listened and played by user to the computer, using a soprano recorder flute. The basic concepts to understand the acoustic phenomena involved are explained. The paper is aimed for all students with basic programming knowledge and want to incorporate sound processing to their projects. (author) [es

  8. Computationally Efficient and Noise Robust DOA and Pitch Estimation

    DEFF Research Database (Denmark)

    Karimian-Azari, Sam; Jensen, Jesper Rindom; Christensen, Mads Græsbøll

    2016-01-01

    Many natural signals, such as voiced speech and some musical instruments, are approximately periodic over short intervals. These signals are often described in mathematics by the sum of sinusoids (harmonics) with frequencies that are proportional to the fundamental frequency, or pitch. In sensor...... a joint DOA and pitch estimator. In white Gaussian noise, we derive even more computationally efficient solutions which are designed using the narrowband power spectrum of the harmonics. Numerical results reveal the performance of the estimators in colored noise compared with the Cram\\'{e}r-Rao lower...

  9. Adaptive sliding mode back-stepping pitch angle control of a variable-displacement pump controlled pitch system for wind turbines.

    Science.gov (United States)

    Yin, Xiu-xing; Lin, Yong-gang; Li, Wei; Liu, Hong-wei; Gu, Ya-jing

    2015-09-01

    A variable-displacement pump controlled pitch system is proposed to mitigate generator power and flap-wise load fluctuations for wind turbines. The pitch system mainly consists of a variable-displacement hydraulic pump, a fixed-displacement hydraulic motor and a gear set. The hydraulic motor can be accurately regulated by controlling the pump displacement and fluid flows to change the pitch angle through the gear set. The detailed mathematical representation and dynamic characteristics of the proposed pitch system are thoroughly analyzed. An adaptive sliding mode pump displacement controller and a back-stepping stroke piston controller are designed for the proposed pitch system such that the resulting pitch angle tracks its desired value regardless of external disturbances and uncertainties. The effectiveness and control efficiency of the proposed pitch system and controllers have been verified by using realistic dataset of a 750 kW research wind turbine. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Managing Reverse Logistics or Reversing Logistics Management?

    NARCIS (Netherlands)

    M.P. de Brito (Marisa)

    2004-01-01

    textabstractIn the past, supply chains were busy fine-tuning the logistics from raw material to the end customer. Today an increasing flow of products is going back in the chain. Thus, companies have to manage reverse logistics as well.This thesis contributes to a better understanding of reverse

  11. Flow field of flexible flapping wings

    Science.gov (United States)

    Sallstrom, Erik

    The agility and maneuverability of natural fliers would be desirable to incorporate into engineered micro air vehicles (MAVs). However, there is still much for engineers to learn about flapping flight in order to understand how such vehicles can be built for efficient flying. The goal of this study is to develop a methodology for capturing high quality flow field data around flexible flapping wings in a hover environment and to interpret it to gain a better understanding of how aerodynamic forces are generated. The flow field data was captured using particle image velocimetry (PIV) and required that measurements be taken around a repeatable flapping motion to obtain phase-averaged data that could be studied throughout the flapping cycle. Therefore, the study includes the development of flapping devices with a simple repeatable single degree of freedom flapping motion. The acquired flow field data has been examined qualitatively and quantitatively to investigate the mechanisms behind force production in hovering flight and to relate it to observations in previous research. Specifically, the flow fields have been investigated around a rigid wing and several carbon fiber reinforced flexible membrane wings. Throughout the whole study the wings were actuated with either a sinusoidal or a semi-linear flapping motion. The semi-linear flapping motion holds the commanded angular velocity nearly constant through half of each half-stroke while the sinusoidal motion is always either accelerating or decelerating. The flow fields were investigated by examining vorticity and vortex structures, using the Q criterion as the definition for the latter, in two and three dimensions. The measurements were combined with wing deflection measurements to demonstrate some of the key links in how the fluid-structure interactions generated aerodynamic forces. The flow fields were also used to calculate the forces generated by the flapping wings using momentum balance methods which yielded

  12. Aerodynamics of wings at low Reynolds numbers: Boundary layer separation and reattachment

    Science.gov (United States)

    McArthur, John

    the drag increase is really caused by the formation of a laminar separation bubble. The results clearly indicate that the reverse is true, and that the subsequent drag decrease is caused by the laminar separation bubble. Part III. The leading edge vortex. Four wings with different sweep angles were studied at Reynolds number 5x104: sweep angles of 0, 20, 40, and 60 degrees. The wings had a simple cambered plate airfoil similar to the cambered airfoil of part I above. Each wing was built to have the same aspect ratio, wing area, and streamwise airfoil shape. Previous studies on bird wings speculate that simply sweeping the wings can cause a leading edge vortex to form, which could cause substantial improvements in performance. However, these studies were not well controlled, and were conducted from a biological perspective. Qualitative and quantitative flow field measurements were combined with force measurements to conduct a well controlled engineering experiment on the formation and effect of a leading edge vortex on simple swept wings. A stable vortex was found to form over the 60 degree swept wing at one particular angle of attack, but it was not similar to the traditional notion of a leading edge vortex. The vortex has a small radius, and extends over little of the span. Force measurements indicate that the vortex has no significant impact on the forces measured. Thus, simply sweeping a wing is not sufficient to form a significant leading edge vortex, and other effects must be considered.

  13. Development of advanced blade pitching kinematics for cycloturbines and cyclorotors

    Science.gov (United States)

    Adams, Zachary Howard

    Cycloturbines and cyclorotors are established concepts for extracting freesteam fluid energy and producing thrust which promise to exceed the performance of traditional horizontal axis turbines and rotors while maintaining unique operational advantages. However, their potential is not yet realized in widespread applications. A central barrier to their proliferation is the lack of fundamental understanding of the aerodynamic interaction between the turbine and the freestream flow. In particular, blade pitch must be precisely actuated throughout the revolution to achieve the proper blade angle of attack and maximize performance. So far, there is no adequate method for determining or implementing the optimal blade pitching kinematics for cyclorotors or cycloturbines. This dissertation bridges the pitching deficiency by introducing a novel low order model to predict improved pitch kinematics, experimentally demonstrating improved performance, and evaluating flow physics with a high order Navier-Stokes computational code. The foundation for developing advanced blade pitch motions is a low order model named Fluxline Theory. Fluid calculations are performed in a coordinate system fixed to streamlines whose spatial locations are not pre-described in order to capture the flow expansion/contraction and bending through the turbine. A transformation then determines the spatial location of streamlines through the rotor disk and finally blade element method integrations determine the power and forces produced. Validation against three sets of extant cycloturbine experimental data demonstrates improvement over other existing streamtube models. Fluxline Theory was extended by removing dependence on a blade element model to better understand how turbine-fluid interaction impacts thrust and power production. This pure momentum variation establishes a cycloturbine performance limit similar to the Betz Limit for horizontal axis wind turbines, as well as the fluid deceleration required

  14. [Wing 1 radiation survey and contamination report

    International Nuclear Information System (INIS)

    Olsen, K.

    1991-01-01

    We have completed the 5480.11 survey for Wing 1. All area(s)/item(s) requested by the 5480.11 committee have been thoroughly surveyed and documented. Decontamination/disposal of contaminated items has been accomplished. The wing 1 survey was started on 8/13/90 and completed 9/18/90. However, the follow-up surveys were not completed until 2/18/91. We received the final set of smear samples for wing 1 on 1/13/91. A total of 5,495 smears were taken from wing 1 and total of 465 smears were taken during the follow-up surveys. There were a total 122 items found to have fixed contamination and 4 items with smearable contamination in excess of the limits specified in DOE ORDER 5480.11 (AR 3-7). The following area(s)/item(s) were not included in the 5480.11 survey: Hallways, Access panels, Men's and women's change rooms, Janitor closets, Wall lockers and item(s) stored in wing 1 hallways and room 1116. If our contract is renewed, we will include those areas in our survey according to your request of April 15, 1991

  15. Reversible Thermoset Adhesives

    Science.gov (United States)

    Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)

    2016-01-01

    Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.

  16. Gliding swifts attain laminar flow over rough wings.

    Directory of Open Access Journals (Sweden)

    David Lentink

    Full Text Available Swifts are among the most aerodynamically refined gliding birds. However, the overlapping vanes and protruding shafts of their primary feathers make swift wings remarkably rough for their size. Wing roughness height is 1-2% of chord length on the upper surface--10,000 times rougher than sailplane wings. Sailplanes depend on extreme wing smoothness to increase the area of laminar flow on the wing surface and minimize drag for extended glides. To understand why the swift does not rely on smooth wings, we used a stethoscope to map laminar flow over preserved wings in a low-turbulence wind tunnel. By combining laminar area, lift, and drag measurements, we show that average area of laminar flow on swift wings is 69% (n = 3; std 13% of their total area during glides that maximize flight distance and duration--similar to high-performance sailplanes. Our aerodynamic analysis indicates that swifts attain laminar flow over their rough wings because their wing size is comparable to the distance the air travels (after a roughness-induced perturbation before it transitions from laminar to turbulent. To interpret the function of swift wing roughness, we simulated its effect on smooth model wings using physical models. This manipulation shows that laminar flow is reduced and drag increased at high speeds. At the speeds at which swifts cruise, however, swift-like roughness prolongs laminar flow and reduces drag. This feature gives small birds with rudimentary wings an edge during the evolution of glide performance.

  17. Effect of Blade Pitch Angle on the Aerodynamic Characteristics of a Straight-bladed Vertical Axis Wind Turbine Based on Experiments and Simulations

    Directory of Open Access Journals (Sweden)

    Yanzhao Yang

    2018-06-01

    Full Text Available The blade pitch angle has a significant influence on the aerodynamic characteristics of horizontal axis wind turbines. However, few research results have revealed its impact on the straight-bladed vertical axis wind turbine (Sb-VAWT. In this paper, wind tunnel experiments and CFD simulations were performed at the Sb-VAWT to investigate the effect of different blade pitch angles on the pressure distribution on the blade surface, the torque coefficient, and the power coefficient. In this study, the airfoil type was NACA0021 with two blades. The Sb-VAWT had a rotor radius of 1.0 m with a spanwise length of 1.2 m. The simulations were based on the k-ω Shear Stress Transport (SST turbulence model and the wind tunnel experiments were carried out using a high-speed multiport pressure device. As a result, it was found that the maximum pressure difference on the blade surface was obtained at the blade pitch angle of β = 6° in the upstream region. However, the maximum pressure coefficient was shown at the blade pitch angle of β = 8° in the downstream region. The torque coefficient acting on a single blade reached its maximum value at the blade pitch angle of β = 6°. As the tip speed ratio increased, the power coefficient became higher and reached the optimum level. Subsequently, further increase of the tip speed ratio only led to a quick reversion of the power coefficient. In addition, the results from CFD simulations had also a good agreement with the results from the wind tunnel experiments. As a result, the blade pitch angle did not have a significant influence on the aerodynamic characteristics of the Sb-VAWT.

  18. Applicability of a panel method, which includes nonlinear effects, to a forward-swept-wing aircraft

    Science.gov (United States)

    Ross, J. C.

    1984-01-01

    The ability of a lower order panel method VSAERO, to accurately predict the lift and pitching moment of a complete forward-swept-wing/canard configuration was investigated. The program can simulate nonlinear effects including boundary-layer displacement thickness, wake roll up, and to a limited extent, separated wakes. The predictions were compared with experimental data obtained using a small-scale model in the 7- by 10- Foot Wind Tunnel at NASA Ames Research Center. For the particular configuration under investigation, wake roll up had only a small effect on the force and moment predictions. The effect of the displacement thickness modeling was to reduce the lift curve slope slightly, thus bringing the predicted lift into good agreement with the measured value. Pitching moment predictions were also improved by the boundary-layer simulation. The separation modeling was found to be sensitive to user inputs, but appears to give a reasonable representation of a separated wake. In general, the nonlinear capabilities of the code were found to improve the agreement with experimental data. The usefullness of the code would be enhanced by improving the reliability of the separated wake modeling and by the addition of a leading edge separation model.

  19. The Effects of Lexical Pitch Accent on Infant Word Recognition in Japanese

    Directory of Open Access Journals (Sweden)

    Mitsuhiko Ota

    2018-01-01

    Full Text Available Learners of lexical tone languages (e.g., Mandarin develop sensitivity to tonal contrasts and recognize pitch-matched, but not pitch-mismatched, familiar words by 11 months. Learners of non-tone languages (e.g., English also show a tendency to treat pitch patterns as lexically contrastive up to about 18 months. In this study, we examined if this early-developing capacity to lexically encode pitch variations enables infants to acquire a pitch accent system, in which pitch-based lexical contrasts are obscured by the interaction of lexical and non-lexical (i.e., intonational features. Eighteen 17-month-olds learning Tokyo Japanese were tested on their recognition of familiar words with the expected pitch or the lexically opposite pitch pattern. In early trials, infants were faster in shifting their eyegaze from the distractor object to the target object than in shifting from the target to distractor in the pitch-matched condition. In later trials, however, infants showed faster distractor-to-target than target-to-distractor shifts in both the pitch-matched and pitch-mismatched conditions. We interpret these results to mean that, in a pitch-accent system, the ability to use pitch variations to recognize words is still in a nascent state at 17 months.

  20. Long-term pitch memory for music recordings is related to auditory working memory precision.

    Science.gov (United States)

    Van Hedger, Stephen C; Heald, Shannon Lm; Nusbaum, Howard C

    2018-04-01

    Most individuals have reliable long-term memories for the pitch of familiar music recordings. This pitch memory (1) appears to be normally distributed in the population, (2) does not depend on explicit musical training and (3) only seems to be weakly related to differences in listening frequency estimates. The present experiment was designed to assess whether individual differences in auditory working memory could explain variance in long-term pitch memory for music recordings. In Experiment 1, participants first completed a musical note adjustment task that has been previously used to assess working memory of musical pitch. Afterward, participants were asked to judge the pitch of well-known music recordings, which either had or had not been shifted in pitch. We found that performance on the pitch working memory task was significantly related to performance in the pitch memory task using well-known recordings, even when controlling for overall musical experience and familiarity with each recording. In Experiment 2, we replicated these findings in a separate group of participants while additionally controlling for fluid intelligence and non-pitch-based components of auditory working memory. In Experiment 3, we demonstrated that participants could not accurately judge the pitch of unfamiliar recordings, suggesting that our method of pitch shifting did not result in unwanted acoustic cues that could have aided participants in Experiments 1 and 2. These results, taken together, suggest that the ability to maintain pitch information in working memory might lead to more accurate long-term pitch memory.

  1. Pitch and tonality in contemporary African music: Nigerian gospel ...

    African Journals Online (AJOL)

    Like melody, language and rhythm, pitch and tonality are major indicators of African identity in music. In traditional African musical forms, these elements are obvious, but in contemporary African musical expressions which are influenced by several external factors, it is necessary to know the extent to which the elements ...

  2. Distraction by novel and pitch-deviant sounds in children

    Directory of Open Access Journals (Sweden)

    Nicole Wetzel

    2016-12-01

    Full Text Available The control of attention is an important part of our executive functions and enables us to focus on relevant information and to ignore irrelevant information. The ability to shield against distraction by task-irrelevant sounds is suggested to mature during school age. The present study investigated the developmental time course of distraction in three groups of children aged 7 – 10 years. Two different types of distractor sounds that have been frequently used in auditory attention research – novel environmental and pitch-deviant sounds – were presented within an oddball paradigm while children performed a visual categorization task. Reaction time measurements revealed decreasing distractor-related impairment with age. Novel environmental sounds impaired performance in the categorization task more than pitch-deviant sounds. The youngest children showed a pronounced decline of novel-related distraction effects throughout the experimental session. Such a significant decline as a result of practice was not observed in the pitch-deviant condition and not in older children. We observed no correlation between cross-modal distraction effects and performance in standardized tests of concentration and visual distraction. Results of the cross-modal distraction paradigm indicate that separate mechanisms underlying the processing of novel environmental and pitch-deviant sounds develop with different time courses and that these mechanisms develop considerably within a few years in middle childhood.

  3. Embedded pitch adapters for the ATLAS Tracker Upgrade

    International Nuclear Information System (INIS)

    Ullan, Miguel; Benitez, Victor; Pellegrini, Giulio; Fleta, Celeste; Lozano, Manuel; Lacasta, Carlos; Soldevila, Urmila; Garcia, Carmen

    2013-01-01

    In the current ATLAS tracker modules, sensor bonding pads are placed on their corresponding strips and oriented along the strips. This creates a difference in pitch and orientation between sensor bond pads and readout electronics bond pads. Therefore, a pitch adapter (PA), or “fan-in”, is needed. The purpose of these PA is the electrical interconnection of every channel from the detector bonding pads to the read-out chips, adapting the different pad pitch. Our new approach is to build those PAs inside the sensor; this is what we call Embedded Pitch Adapters. The idea is to use an additional metal layer in order to define a new group of pads, connected to the strips via tracks with the second metal. The embedded PAs have been fabricated on 4-in. prototype sensors for the ATLAS-Upgrade Endcap Tracker to test their performance and suitability. The tests confirm proper fabrication of the second metal tracks, and no effects on detector performance. No indication of cross-talk between first and second metal channels has been observed. A small indication of possible signal pick-up from the bulk has been observed in a few channels, which needs to be further investigated

  4. Comparison of Two Independent LIDAR-Based Pitch Control Designs

    Energy Technology Data Exchange (ETDEWEB)

    Dunne, F.; Schlipf, D.; Pao, L. Y.

    2012-08-01

    Two different lidar-based feedforward controllers have previously been designed for the NREL 5 MW wind turbine model under separate studies. Feedforward controller A uses a finite-impulse-response design, with 5 seconds of preview, and three rotating lidar measurements. Feedforward controller B uses a static-gain design, with the preview time defined by the pitch actuator dynamics, a simulation of a real nacelle-based scanning lidar system, and a lowpass filter defined by the lidar configuration. These controllers are now directly compared under the same lidar configuration, in terms of fatigue load reduction, rotor speed regulation, and power capture. The various differences in design choices are discussed and compared. We also compare frequency plots of individual pitch feedforward and collective pitch feedforward load reductions, and we see that individual pitch feedforward is effective mainly at the once-per-revolution and twice-per-revolution frequencies. We also explain how to determine the required preview time by breaking it down into separate parts, and we then compare it to the expected preview time available.

  5. Pitch perception in children with autistic spectrum disorders

    NARCIS (Netherlands)

    Altgassen, A.M.; Kliegel, M.; Williams, T.I.

    2005-01-01

    This study investigated the accuracy of musical pitch detection in children with autistic spectrum disorders as compared with typically developing children. Seventeen children on the autistic spectrum (Mage=9.34, SDage=1.12) and 13 typically developing, chronological age-matched children (Mage=9.13,

  6. Relating binaural pitch perception to the individual listener's auditory profile

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten

    2012-01-01

    pitch perception showed deficits in temporal fine structure processing. Whether the observed deficits stemmed from peripheral or central mechanisms could not be resolved here, but the present findings may be useful for hearing loss characterization. (C) 2012 Acoustical Society of America. [http...

  7. Pixel size and pitch measurements of liquid crystal spatial light ...

    Indian Academy of Sciences (India)

    However, some departure from square pixel shape and pitch may result due to the manufacturing constraints and environmental changes like temperature or mechanical stresses. To our knowledge, we did not come across any detailed studies to accurately measure these variations (if any) in the available literature. We find ...

  8. Hydrodynamics of a flexible plate between pitching rigid plates

    Science.gov (United States)

    Kim, Junyoung; Kim, Daegyoum

    2017-11-01

    The dynamics of a flexible plate have been studied as a model problem in swimming and flying of animals and fluid-structure interaction of plants and flags. Motivated by fish schooling and an array of sea grasses, we investigate the dynamics of a flexible plate closely placed between two pitching rigid plates. In most studies on passive deformation of the flexible plate, the plate is immersed in a uniform flow or a wavy flow. However, in this study, the flexible plate experiences periodic deformation by the oscillatory flow generated by the prescribed pitching motion of the rigid plates. In our model, the pitching axes of the rigid plates and the clamping position of the flexible plate are aligned on the same line. The flexible plate shows various responses depending on length and pitching frequency of rigid plates, thickness of a flexible plate, and free-stream velocity. To find the effect of each variable on the response of the flexible plate, amplitude of a trailing edge and modal contribution of a flapping motion are compared, and flow structure around the flexible plate is examined.

  9. Pitch perception and retention: two cumulative benefits of selective attention.

    Science.gov (United States)

    Demany, Laurent; Montandon, Gaspard; Semal, Catherine

    2004-05-01

    By presenting, before a "chord" of three pure tones with remote frequencies, a tone relatively close in frequency to one component (T1) of the chord, one can direct the listener's attention onto T1 within the chord. In the first part of the present study, it was found that this increases the accuracy with which the pitch of T1 is perceived. The attentional cue improved the discrimination between the frequency of T1 and that of another tone (T2) presented immediately after the chord or very shortly (300 msec) after it. No improvement was found when T1 was presented alone instead of within a chord. A subsequent experiment, in which the chord and T2 were separated by either 300 msec or 4 sec, indicated that the attentional cue improved not only the perception, but also the memorization of the pitch of T1 (especially when T1 was the intermediate component of the chord). It is argued that the positive effect of attention on memory took place when the pitch percept was encoded into memory, rather than after the formation of the pitch memory trace.

  10. Bat Dynamics of Female Fast Pitch Softball Batters.

    Science.gov (United States)

    Messier, Stephen P.; Owen, Marjorie G.

    1984-01-01

    Female fast pitch softball batters served in an examination of the dynamic characteristics of the bat during the swing through the use of three-dimensional cinematographic analysis techniques. These results were compared with those from previous studies of baseball batting. Findings are listed. (Author/DF)

  11. The Relationship between Pitch and Space in Congenital Amusia

    Science.gov (United States)

    Williamson, Victoria J.; Cocchini, Gianna; Stewart, Lauren

    2011-01-01

    Congenital amusia manifests as a lifelong difficulty in making sense of musical sound. The extent to which this disorder is accompanied by deficits in visuo-spatial processing is an important question, bearing on the issue of whether pitch processing draws on supramodal spatial representations. The present study assessed different aspects of…

  12. Pitch and Loudness Tinnitus in Individuals with Presbycusis.

    Science.gov (United States)

    Seimetz, Bruna Macangnin; Teixeira, Adriane Ribeiro; Rosito, Leticia Petersen Schmidt; Flores, Leticia Sousa; Pappen, Carlos Henrique; Dall'igna, Celso

    2016-10-01

    Introduction  Tinnitus is a symptom that is often associated with presbycusis. Objective  This study aims to analyze the existence of association among hearing thresholds, pitch, and loudness of tinnitus in individuals with presbycusis, considering the gender variable. Methods  Cross-sectional, descriptive, and prospective study, whose sample consisted of individuals with tinnitus and diagnosis of presbycusis. For the evaluation, we performed anamnesis along with otoscopy, pure tone audiometry, and acuphenometry to analyze the psychoacoustic characteristics of tinnitus individuals. Results  The sample consisted of 49 subjects, with a mean age of 69.57 ± 6.53 years, who presented unilateral and bilateral tinnitus, therefore, a sample of 80 ears. In analyzing the results, as for acuphenometry, the loudness of tinnitus was more present at 0dB and the pitch was 6HKz and 8HKz. Regarding the analysis of the association between the frequency of greater hearing threshold and tinnitus pitch, no statistical significance ( p  = 0.862) was found. As for the association between the intensity of greater hearing threshold and tinnitus loudness, no statistical significance ( p  = 0.115) was found. Conclusion  There is no significant association between the hearing loss of patients with presbycusis and the pitch and loudness of tinnitus.

  13. Pitch and Loudness Tinnitus in Individuals with Presbycusis

    Directory of Open Access Journals (Sweden)

    Seimetz, Bruna Macangnin

    2016-02-01

    Full Text Available Introduction Tinnitus is a symptom that is often associated with presbycusis. Objective This study aims to analyze the existence of association among hearing thresholds, pitch, and loudness of tinnitus in individuals with presbycusis, considering the gender variable. Methods Cross-sectional, descriptive, and prospective study, whose sample consisted of individuals with tinnitus and diagnosis of presbycusis. For the evaluation, we performed anamnesis along with otoscopy, pure tone audiometry, and acuphenometry to analyze the psychoacoustic characteristics of tinnitus individuals. Results The sample consisted of 49 subjects, with a mean age of 69.57 ± 6.53 years, who presented unilateral and bilateral tinnitus, therefore, a sample of 80 ears. In analyzing the results, as for acuphenometry, the loudness of tinnitus was more present at 0dB and the pitch was 6HKz and 8HKz. Regarding the analysis of the association between the frequency of greater hearing threshold and tinnitus pitch, no statistical significance (p = 0.862 was found. As for the association between the intensity of greater hearing threshold and tinnitus loudness, no statistical significance (p = 0.115 was found. Conclusion There is no significant association between the hearing loss of patients with presbycusis and the pitch and loudness of tinnitus.

  14. The thermal transformations of pitch and its compositions with thermoanthracite

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, T.V.; Krysin, V.P.; Ulanovskii, M.L.

    1983-01-01

    The loss of mass in the thermal transformations of a hard-coal pitch and its compositions with thermoanthracite in the temperature interval of 200-1000/sup 0/C takes place in two main stages: with a variable rate in the 200-600/sup 0/C interval and at a constant rate in the 600-1000/sup 0/C interval. The rate of the mass loss process in the 200-600/sup 0/C interval is determined mainly by the rate of diffusion of the volatile components and also of the light products of the thermal transformations of the pitch from the bulk to the phase separation boundary, and in the 600-1000/sup 0/C interval predominantly by the rate of the actual elementary chemical reaction. In the presence of thermoanthracite, the nature of the thermal transformations of the pitch does not change appreciably, while in the presence of silica synthetic reactions are intensified, which leads to an increase in the yield of solid residue by approximately 4 mass %. (A rise in the rate of heating of pitch-thermoanthracite compositions leads to the incomplete elimination of volatile products in the first stage, which has a favorable action on the increase in the yield of solid residue.)

  15. Periodic Burning In Table Mountain-Pitch Pine Stands

    Science.gov (United States)

    Russell B. Randles; David H. van Lear; Thomas A. Waldrop; Dean M. Simon

    2002-01-01

    Abstract - The effects of multiple, low intensity burns on vegetation and wildlife habitat in Table Mountain (Pinus pungens Lamb.)-pitch (Pinus rigida Mill.) pine communities were studied in the Blue Ridge Mountains of North Carolina. Treatments consisted of areas burned from one to four times at 3-4 year...

  16. Influence of musical and psychoacoustical training on pitch discrimination.

    Science.gov (United States)

    Micheyl, Christophe; Delhommeau, Karine; Perrot, Xavier; Oxenham, Andrew J

    2006-09-01

    This study compared the influence of musical and psychoacoustical training on auditory pitch discrimination abilities. In a first experiment, pitch discrimination thresholds for pure and complex tones were measured in 30 classical musicians and 30 non-musicians, none of whom had prior psychoacoustical training. The non-musicians' mean thresholds were more than six times larger than those of the classical musicians initially, and still about four times larger after 2h of training using an adaptive two-interval forced-choice procedure; this difference is two to three times larger than suggested by previous studies. The musicians' thresholds were close to those measured in earlier psychoacoustical studies using highly trained listeners, and showed little improvement with training; this suggests that classical musical training can lead to optimal or nearly optimal pitch discrimination performance. A second experiment was performed to determine how much additional training was required for the non-musicians to obtain thresholds as low as those of the classical musicians from experiment 1. Eight new non-musicians with no prior training practiced the frequency discrimination task for a total of 14 h. It took between 4 and 8h of training for their thresholds to become as small as those measured in the classical musicians from experiment 1. These findings supplement and qualify earlier data in the literature regarding the respective influence of musical and psychoacoustical training on pitch discrimination performance.

  17. Multilingual evaluation of voice disability index using pitch rate

    Directory of Open Access Journals (Sweden)

    Shuji Shinohara

    2017-06-01

    Full Text Available We propose the use of the pitch rate of free-form speech recorded by smartphones as an index of voice disability. This research compares the effectiveness of pitch rate, jitter, shimmer, and harmonic-to-noise ratio (HNR as indices of voice disability in English, German, and Japanese. Normally, the evaluation of these indices is performed using long-vowel sounds; however, this study included the recitation of a set passage, which is more similar to free-form speech. The results showed that for English, the jitter, shimmer, and HNR were very effective indices for long-vowel sounds, but the shimmer and HNR for read speech were considerably worse. Although the effectiveness of jitter as an index was maintained for read speech, the pitch rate was better in distinguishing between healthy individuals and patients with illnesses affecting their voice. The read speech results in German, Japanese, and English were similar, and the pitch rate showed the greatest efficiency for identification. Nevertheless, compared to English, the identification efficiency for the other two languages was lower.

  18. Thrust generation and wake structure for flow across a pitching ...

    Indian Academy of Sciences (India)

    ... condition for the generation of thrust. The vortex strength is found to be invariant of the pitching frequency. Certain differences from the reported results are noted, which may be because of difference in the airfoil shape. These results can help improve understanding of the flow behavior as the low Reynolds number range ...

  19. LQG Controller Design for Pitch Regulated Variable Speed Wind Turbine

    DEFF Research Database (Denmark)

    Imran, Raja Muhammed; Hussain, Dil Muhammad Akbar; Chen, Zhe

    2014-01-01

    Variable speed wind turbine is a complex and nonlinear system, a sophisticated control is required to meet the challenges posed by these systems. This paper is presenting a pitch regulation strategy based on LQG (Linear Quadratic Gaussian) to regulate turbine at its rated power and to reject...

  20. Singing Video Games May Help Improve Pitch-Matching Accuracy

    Science.gov (United States)

    Paney, Andrew S.

    2015-01-01

    The purpose of this study was to investigate the effect of singing video games on the pitch-matching skills of undergraduate students. Popular games like "Rock Band" and "Karaoke Revolutions" rate players' singing based on the correctness of the frequency of their sung response. Players are motivated to improve their…

  1. Numerical investigation of unsteady vortex breakdown past 80°/65° double-delta wing

    Directory of Open Access Journals (Sweden)

    Liu Jian

    2014-06-01

    Full Text Available An improved delayed detached eddy simulation (IDDES method based on the k-ω-SST (shear stress transport turbulence model was applied to predict the unsteady vortex breakdown past an 80°/65° double-delta wing (DDW, where the angles of attack (AOAs range from 30° to 40°. Firstly, the IDDES model and the relative numerical methods were validated by simulating the massively separated flow around an NACA0021 straight wing at the AOA of 60°. The fluctuation properties of the lift and pressure coefficients were analyzed and compared with the available measurements. For the DDW case, the computations were compared with such measurements as the mean lift, drag, pitching moment, pressure coefficients and breakdown locations. Furthermore, the unsteady properties were investigated in detail, such as the frequencies of force and moments, pressure fluctuation on the upper surface, typical vortex breakdown patterns at three moments, and the distributions of kinetic turbulence energy at a stream wise section. Two dominated modes are observed, in which their Strouhal numbers are 1.0 at the AOAs of 30°, 32° and 34° and 0.7 at the AOAs of 36°, 38° and 40°. The breakdown vortex always moves upstream and downstream and its types change alternatively. Furthermore, the vortex can be identified as breakdown or not through the mean pressure, root mean square of pressure, or even through correlation analysis.

  2. Modeling and performance analysis of cambered wing-based piezoaeroelastic energy harvesters

    International Nuclear Information System (INIS)

    Abdelkefi, Abdessattar; Nuhait, Abdullah O

    2013-01-01

    We investigate the effects of aerodynamic loads on the performance of wing-based piezoaeroelastic energy harvesters. The rigid airfoil consists of pitch and plunge degrees of freedom supported by flexural and torsional springs with a piezoelectric coupling attached to the plunge degree of freedom. The effects of aerodynamic loads are investigated by considering a camber in the airfoil. A two-dimensional unsteady vortex-lattice method (UVLM) is used to model the unsteady aerodynamic loads. An iterative scheme based on Hamming’s fourth-order predictor–corrector method is employed to solve the governing equations simultaneously and interactively. The effects of varying the camber, its location, and the nonlinear torsional spring coefficient are determined. The results show that, for small values of the camber location, the flutter speed changes greatly on increasing the camber of the airfoil. On the other hand, for large values of the camber location, the variation of the flutter speed when changing the camber is very negligible. We demonstrate that the symmetric airfoil case is the best configuration to design enhanced wing-based piezoaeroelastic energy harvesters. Furthermore, the results show that an increase in the camber results in a decrease in the level of the harvested power. For cambered airfoils, we demonstrate that an increase in the camber location leads to an increase in the level of the harvested power. The results show that an increase in the airfoil camber delays the appearance of a secondary Hopf bifurcation. (paper)

  3. Twin Tail/Delta Wing Configuration Buffet Due to Unsteady Vortex Breakdown Flow

    Science.gov (United States)

    Kandil, Osama A.; Sheta, Essam F.; Massey, Steven J.

    1996-01-01

    The buffet response of the twin-tail configuration of the F/A-18 aircraft; a multidisciplinary problem, is investigated using three sets of equations on a multi-block grid structure. The first set is the unsteady, compressible, full Navier-Stokes equations. The second set is the coupled aeroelastic equations for bending and torsional twin-tail responses. The third set is the grid-displacement equations which are used to update the grid coordinates due to the tail deflections. The computational model consists of a 76 deg-swept back, sharp edged delta wing of aspect ratio of one and a swept-back F/A-18 twin-tails. The configuration is pitched at 32 deg angle of attack and the freestream Mach number and Reynolds number are 0.2 and 0.75 x 10(exp 6) respectively. The problem is solved for the initial flow conditions with the twin tail kept rigid. Next, the aeroelastic equations of the tails are turned on along with the grid-displacement equations to solve for the uncoupled bending and torsional tails response due to the unsteady loads produced by the vortex breakdown flow of the vortex cores of the delta wing. Two lateral locations of the twin tail are investigated. These locations are called the midspan and inboard locations.

  4. Development of a Pitch Discrimination Screening Test for Preschool Children.

    Science.gov (United States)

    Abramson, Maria Kulick; Lloyd, Peter J

    2016-04-01

    There is a critical need for tests of auditory discrimination for young children as this skill plays a fundamental role in the development of speaking, prereading, reading, language, and more complex auditory processes. Frequency discrimination is important with regard to basic sensory processing affecting phonological processing, dyslexia, measurements of intelligence, auditory memory, Asperger syndrome, and specific language impairment. This study was performed to determine the clinical feasibility of the Pitch Discrimination Test (PDT) to screen the preschool child's ability to discriminate some of the acoustic demands of speech perception, primarily pitch discrimination, without linguistic content. The PDT used brief speech frequency tones to gather normative data from preschool children aged 3 to 5 yrs. A cross-sectional study was used to gather data regarding the pitch discrimination abilities of a sample of typically developing preschool children, between 3 and 5 yrs of age. The PDT consists of ten trials using two pure tones of 100-msec duration each, and was administered in an AA or AB forced-choice response format. Data from 90 typically developing preschool children between the ages of 3 and 5 yrs were used to provide normative data. Nonparametric Mann-Whitney U-testing was used to examine the effects of age as a continuous variable on pitch discrimination. The Kruskal-Wallis test was used to determine the significance of age on performance on the PDT. Spearman rank was used to determine the correlation of age and performance on the PDT. Pitch discrimination of brief tones improved significantly from age 3 yrs to age 4 yrs, as well as from age 3 yrs to the age 4- and 5-yrs group. Results indicated that between ages 3 and 4 yrs, children's auditory discrimination of pitch improved on the PDT. The data showed that children can be screened for auditory discrimination of pitch beginning with age 4 yrs. The PDT proved to be a time efficient, feasible tool for

  5. Construction and Rescue of a Molecular Clone of Deformed Wing Virus (DWV.

    Directory of Open Access Journals (Sweden)

    Benjamin Lamp

    Full Text Available European honey bees are highly important in crop pollination, increasing the value of global agricultural production by billions of dollars. Current knowledge about virulence and pathogenicity of Deformed wing virus (DWV, a major factor in honey bee colony mortality, is limited. With this study, we close the gap between field research and laboratory investigations by establishing a complete in vitro model for DWV pathogenesis. Infectious DWV was rescued from a molecular clone of a DWV-A genome that induces DWV symptoms such as crippled wings and discoloration. The expression of DWV proteins, production of infectious virus progeny, and DWV host cell tropism could be confirmed using newly generated anti-DWV monoclonal antibodies. The recombinant RNA fulfills Koch's postulates circumventing the need of virus isolation and propagation of pure virus cultures. In conclusion, we describe the development and application of a reverse genetics system for the study of DWV pathogenesis.

  6. Fixed-Wing Micro Air Vehicles with Hovering Capabilities

    National Research Council Canada - National Science Library

    Bataille, Boris; Poinsot, Damien; Thipyopas, Chinnapat; Moschetta, Jean-Marc

    2007-01-01

    Fixed-wing micro air vehicles (MAV) are very attractive for outdoor surveillance missions since they generally offer better payload and endurance capabilities than rotorcraft or flapping-wing vehicles of equal size...

  7. Active Twist Control for a Compliant Wing Structure, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Blended wing body (BWB) aircraft provide an aerodynamically superior solution over traditional tube-and-wing designs for a number of mission profiles. These...

  8. Tubal Ligation Reversal

    Science.gov (United States)

    ... seal off the fallopian tubes, such as the Essure or Adiana systems, generally aren't reversible. Why ... electrocautery). Some types of sterilization, such as the Essure or Adiana systems, aren't considered reversible. Risks ...

  9. Pitch, roll, and yaw variations in patient positioning

    International Nuclear Information System (INIS)

    Kaiser, Adeel; Schultheiss, Timothy E.; Wong, Jeffrey Y.C.; Smith, David D.; Han, Chunhui; Vora, Nayana L.; Pezner, Richard D.; Chen Yijen; Radany, Eric H.

    2006-01-01

    Purpose: To use pretreatment megavoltage-computed tomography (MVCT) scans to evaluate positioning variations in pitch, roll, and yaw for patients treated with helical tomotherapy. Methods and Materials: Twenty prostate and 15 head-and-neck cancer patients were selected. Pretreatment MVCT scans were performed before every treatment fraction and automatically registered to planning kilovoltage CT (KVCT) scans by bony landmarks. Image registration data were used to adjust patient setups before treatment. Corrections for pitch, roll, and yaw were recorded after bone registration, and data from fractions 1-5 and 16-20 were used to analyze mean rotational corrections. Results: For prostate patients, the means and standard deviations (in degrees) for pitch, roll, and yaw corrections were -0.60 ± 1.42, 0.66 ± 1.22, and -0.33 ± 0.83. In head-and-neck patients, the means and standard deviations (in degrees) were -0.24 ± 1.19, -0.12 ± 1.53, and 0.25 ± 1.42 for pitch, roll, and yaw, respectively. No significant difference in rotational variations was observed between Weeks 1 and 4 of treatment. Head-and-neck patients had significantly smaller pitch variation, but significantly larger yaw variation, than prostate patients. No difference was found in roll corrections between the two groups. Overall, 96.6% of the rotational corrections were less than 4 deg. Conclusions: The initial rotational setup errors for prostate and head-and-neck patients were all small in magnitude, statistically significant, but did not vary considerably during the course of radiotherapy. The data are relevant to couch hardware design for correcting rotational setup variations. There should be no theoretical difference between these data and data collected using cone beam KVCT on conventional linacs

  10. Absolute pitch: effects of timbre on note-naming ability.

    Science.gov (United States)

    Vanzella, Patrícia; Schellenberg, E Glenn

    2010-11-11

    Absolute pitch (AP) is the ability to identify or produce isolated musical tones. It is evident primarily among individuals who started music lessons in early childhood. Because AP requires memory for specific pitches as well as learned associations with verbal labels (i.e., note names), it represents a unique opportunity to study interactions in memory between linguistic and nonlinguistic information. One untested hypothesis is that the pitch of voices may be difficult for AP possessors to identify. A musician's first instrument may also affect performance and extend the sensitive period for acquiring accurate AP. A large sample of AP possessors was recruited on-line. Participants were required to identity test tones presented in four different timbres: piano, pure tone, natural (sung) voice, and synthesized voice. Note-naming accuracy was better for non-vocal (piano and pure tones) than for vocal (natural and synthesized voices) test tones. This difference could not be attributed solely to vibrato (pitch variation), which was more pronounced in the natural voice than in the synthesized voice. Although starting music lessons by age 7 was associated with enhanced note-naming accuracy, equivalent abilities were evident among listeners who started music lessons on piano at a later age. Because the human voice is inextricably linked to language and meaning, it may be processed automatically by voice-specific mechanisms that interfere with note naming among AP possessors. Lessons on piano or other fixed-pitch instruments appear to enhance AP abilities and to extend the sensitive period for exposure to music in order to develop accurate AP.

  11. Absolute pitch: effects of timbre on note-naming ability.

    Directory of Open Access Journals (Sweden)

    Patrícia Vanzella

    2010-11-01

    Full Text Available Absolute pitch (AP is the ability to identify or produce isolated musical tones. It is evident primarily among individuals who started music lessons in early childhood. Because AP requires memory for specific pitches as well as learned associations with verbal labels (i.e., note names, it represents a unique opportunity to study interactions in memory between linguistic and nonlinguistic information. One untested hypothesis is that the pitch of voices may be difficult for AP possessors to identify. A musician's first instrument may also affect performance and extend the sensitive period for acquiring accurate AP.A large sample of AP possessors was recruited on-line. Participants were required to identity test tones presented in four different timbres: piano, pure tone, natural (sung voice, and synthesized voice. Note-naming accuracy was better for non-vocal (piano and pure tones than for vocal (natural and synthesized voices test tones. This difference could not be attributed solely to vibrato (pitch variation, which was more pronounced in the natural voice than in the synthesized voice. Although starting music lessons by age 7 was associated with enhanced note-naming accuracy, equivalent abilities were evident among listeners who started music lessons on piano at a later age.Because the human voice is inextricably linked to language and meaning, it may be processed automatically by voice-specific mechanisms that interfere with note naming among AP possessors. Lessons on piano or other fixed-pitch instruments appear to enhance AP abilities and to extend the sensitive period for exposure to music in order to develop accurate AP.

  12. The Effects of Horizontal-Tail Location and Wing Modifications on the High-Speed Stability and Control Characteristics of a 01.17-Scale Model of the McDonnell XF2H-1 Airplane (TED No, NACA DE336)

    Science.gov (United States)

    Emerson, Horace F.; Axelson, John A.

    1949-01-01

    An additional series of high-speed wind-tunnel tests of a modified 0.17-scale model of the McDonnell XF2H-1 airplane was conducted to evaluate the effects of a reduction in the thickness-to-chord ratios of the tail planes, the displacement of the horizontal tail relative to the vertical tail, and the extension of the trailing edge of the wing. Two tail-intersection fairings designed to improve the flow at the tail were also tested. The pitching-moment characteristics of the model were improved slightly by the use of the thinner tail sections. Rearward or rearward and downward displacements of the horizontal tail increased the critical Mach number at the tail intersection from 0.725 to a maximum of 0.80, but caused an excessive change in pitching-moment coefficient at the higher Mach numbers. Extending the trailing edge of the wing did not improve the static longitudinal-stability characteristics, but increased the pitching-down tendency between 0.725 and 0.825 Mach numbers prior to the pitching-up tendency. The extended wing did, however, increase the Mach numbers at which these tendencies occurred. The increase in the Mach numbers of divergence and the tuft studies indicate a probable increase in the buffet limit of the prototype airplane. No perceptible improvement of flow at the tail intersection was observed with the two fairings tested on the forward tail configuration.

  13. Stability and transition on swept wings

    Science.gov (United States)

    Stuckert, Greg; Herbert, Thorwald; Esfahanian, Vahid

    1993-01-01

    This paper describes the extension and application of the Parabolized Stability Equations (PSE) to the stability and transition of the supersonic three-dimensional laminar boundary layer on a swept wing. The problem formulation uses a general coordinate transformation for arbitrary curvilinear body-fitted computational grids. Some testing using these coordinates is briefly described to help validate the software used for the investigation. The disturbance amplitude ratios as a function of chord position for supersonic (Mach 1.5) boundary layers on untapered, untwisted wings of different sweep angles are then presented and compared with those obtained from local parallel analyses.

  14. Flutter analysis of low aspect ratio wings

    Science.gov (United States)

    Parnell, L. A.

    1986-01-01

    Several very low aspect ratio flat plate wing configurations are analyzed for their aerodynamic instability (flutter) characteristics. All of the wings investigated are delta planforms with clipped tips, made of aluminum alloy plate and cantilevered from the supporting vehicle body. Results of both subsonic and supersonic NASTRAN aeroelastic analyses as well as those from another version of the program implementing the supersonic linearized aerodynamic theory are presented. Results are selectively compared with the experimental data; however, supersonic predictions of the Mach Box method in NASTRAN are found to be erratic and erroneous, requiring the use of a separate program.

  15. Three-dimensional flow about penguin wings

    Science.gov (United States)

    Noca, Flavio; Sudki, Bassem; Lauria, Michel

    2012-11-01

    Penguins, contrary to airborne birds, do not need to compensate for gravity. Yet, the kinematics of their wings is highly three-dimensional and seems exceedingly complex for plain swimming. Is such kinematics the result of an evolutionary optimization or is it just a forced adaptation of an airborne flying apparatus to underwater swimming? Some answers will be provided based on flow dynamics around robotic penguin wings. Updates will also be presented on the development of a novel robotic arm intended to simulate penguin swimming and enable novel propulsion devices.

  16. Wing Leading Edge Concepts for Noise Reduction

    Science.gov (United States)

    Shmilovich, Arvin; Yadlin, Yoram; Pitera, David M.

    2010-01-01

    This study focuses on the development of wing leading edge concepts for noise reduction during high-lift operations, without compromising landing stall speeds, stall characteristics or cruise performance. High-lift geometries, which can be obtained by conventional mechanical systems or morphing structures have been considered. A systematic aerodynamic analysis procedure was used to arrive at several promising configurations. The aerodynamic design of new wing leading edge shapes is obtained from a robust Computational Fluid Dynamics procedure. Acoustic benefits are qualitatively established through the evaluation of the computed flow fields.

  17. 179 Extraction of Coal-tar Pitch by Supercritical Carbon Dioxide ...

    African Journals Online (AJOL)

    Meyer

    Several extractions of coal-tar pitch were performed using supercritical fluid ..... pressure and temperature, unlike exhaustive extraction, which involves a change in ... mechanism that is operative on extracting coal-tar pitch components with.

  18. Relating the absence of binaural pitch percept to retro-cochlear impairment

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten

    Binaural pitch stimuli, created by introducing an interaural phase difference over a narrow band of otherwise diotic white noise, produce an immediate tonal sensation with a pitch close to the centre of the phase-shifted band. In Santurette and Dau [Hear. Res. 223(1-2):29-47, 2007], it was shown...... that the salience of binaural pitch was affected by hearing impairment. Specifically, for subjects with a sensorineural impairment, binaural pitch perception was weaker than the normal-hearing average but the pitch sensation was immediately present. In contrast, no binaural pitch sensation at all was found...... for the (only) two subjects with damage at central stages. The aim of the present study is to clarify whether such a sharp distinction between levels of impairment can be made using binaural pitch stimuli. A pitch detection test was performed by three groups of subjects with: 1) normal hearing; 2) a cochlear...

  19. Facial Expression and Vocal Pitch Height: Evidence of an Intermodal Association

    Directory of Open Access Journals (Sweden)

    David Huron

    2009-11-01

    Full Text Available Forty-four participants were asked to sing moderate, high, and low pitches while their faces were photographed. In a two-alternative forced choice task, independent judges selected the high-pitch faces as more friendly than the low-pitch faces. When photographs were cropped to show only the eye region, judges still rated the high-pitch faces friendlier than the low-pitch faces. These results are consistent with prior research showing that vocal pitch height is used to signal aggression (low pitch or appeasement (high pitch. An analysis of the facial features shows a strong correlation between eyebrow position and sung pitch—consistent with the role of eyebrows in signaling aggression and appeasement. Overall, the results are consistent with an inter-modal linkage between vocal and facial expressions.

  20. New compliant strain gauges for self-sensing dynamic deformation of flapping wings on miniature air vehicles

    Science.gov (United States)

    Wissman, James; Perez-Rosado, Ariel; Edgerton, Alex; Levi, Benjamin M.; Karakas, Zeynep N.; Kujawski, Mark; Philipps, Alyssa; Papavizas, Nicholas; Fallon, Danielle; Bruck, Hugh A.; Smela, Elisabeth

    2013-08-01

    Over the past several years there has been an increasing interest in the development of miniature air vehicles (MAVs) with flapping wings. To allow these MAVs to adjust to changes in wind direction and to maximize their efficiency, it is desirable to monitor the deformation of the wing during flight. This paper presents a step in this direction, demonstrating the measurement of strain on the surface of the wing using minimally invasive compliant piezoresistive sensors. The strain gauges consisted of latex mixed with electrically conducting exfoliated graphite, and they were applied by spray coating. To calibrate the gauges, both static and dynamic testing up to 10 Hz were performed using cantilever structures. In tension the static sensitivity was a linear 0.4 Ω μɛ-1 and the gauge factor was 28; in compression, the gauge factor was -5. Although sensitivities in tension and compression differed by a factor of almost six, this was not reflected in the dynamic data, which followed the strain reversibly with little distortion. There was no attenuation with frequency, indicating a sufficiently small time constant for this application. The gauges were thin, compliant, and light enough to measure, without interference, deformations due to shape changes of the flexible wing associated with generating lift and thrust. During flapping the resistance closely tracked the generated thrust, measured on a test stand, with both signals tracing figure-8 loops as a function of wing position throughout each cycle.

  1. New compliant strain gauges for self-sensing dynamic deformation of flapping wings on miniature air vehicles

    International Nuclear Information System (INIS)

    Wissman, James; Perez-Rosado, Ariel; Edgerton, Alex; Levi, Benjamin M; Karakas, Zeynep N; Kujawski, Mark; Philipps, Alyssa; Papavizas, Nicholas; Fallon, Danielle; Bruck, Hugh A; Smela, Elisabeth

    2013-01-01

    Over the past several years there has been an increasing interest in the development of miniature air vehicles (MAVs) with flapping wings. To allow these MAVs to adjust to changes in wind direction and to maximize their efficiency, it is desirable to monitor the deformation of the wing during flight. This paper presents a step in this direction, demonstrating the measurement of strain on the surface of the wing using minimally invasive compliant piezoresistive sensors. The strain gauges consisted of latex mixed with electrically conducting exfoliated graphite, and they were applied by spray coating. To calibrate the gauges, both static and dynamic testing up to 10 Hz were performed using cantilever structures. In tension the static sensitivity was a linear 0.4 Ω με −1 and the gauge factor was 28; in compression, the gauge factor was −5. Although sensitivities in tension and compression differed by a factor of almost six, this was not reflected in the dynamic data, which followed the strain reversibly with little distortion. There was no attenuation with frequency, indicating a sufficiently small time constant for this application. The gauges were thin, compliant, and light enough to measure, without interference, deformations due to shape changes of the flexible wing associated with generating lift and thrust. During flapping the resistance closely tracked the generated thrust, measured on a test stand, with both signals tracing figure-8 loops as a function of wing position throughout each cycle. (paper)

  2. Spanwise transition section for blended wing-body aircraft

    Science.gov (United States)

    Hawley, Arthur V. (Inventor)

    1999-01-01

    A blended wing-body aircraft includes a central body, a wing, and a transition section which interconnects the body and the wing on each side of the aircraft. The two transition sections are identical, and each has a variable chord length and thickness which varies in proportion to the chord length. This enables the transition section to connect the thin wing to the thicker body. Each transition section has a negative sweep angle.

  3. Ornithopter Type Flapping Wings for Autonomous Micro Air Vehicles

    OpenAIRE

    Sutthiphong Srigrarom; Woei-Leong Chan

    2015-01-01

    In this paper, an ornithopter prototype that mimics the flapping motion of bird flight is developed, and the lift and thrust generation characteristics of different wing designs are evaluated. This project focused on the spar arrangement and material used for the wings that could achieves improved performance. Various lift and thrust measurement techniques are explored and evaluated. Various wings of insects and birds were evaluated to understand how these natural flyers with flapping wings a...

  4. Reverse logistics - a framework

    NARCIS (Netherlands)

    M.P. de Brito (Marisa); R. Dekker (Rommert)

    2002-01-01

    textabstractIn this paper we define and compare Reverse Logistics definitions. We start by giving an understanding framework of Reverse Logistics: the why-what-how. By this means, we put in context the driving forces for Reverse Logistics, a typology of return reasons, a classification of

  5. Variability of a "force signature" during windmill softball pitching and relationship between discrete force variables and pitch velocity.

    Science.gov (United States)

    Nimphius, Sophia; McGuigan, Michael R; Suchomel, Timothy J; Newton, Robert U

    2016-06-01

    This study assessed reliability of discrete ground reaction force (GRF) variables over multiple pitching trials, investigated the relationships between discrete GRF variables and pitch velocity (PV) and assessed the variability of the "force signature" or continuous force-time curve during the pitching motion of windmill softball pitchers. Intraclass correlation coefficient (ICC) for all discrete variables was high (0.86-0.99) while the coefficient of variance (CV) was low (1.4-5.2%). Two discrete variables were significantly correlated to PV; second vertical peak force (r(5)=0.81, p=0.03) and time between peak forces (r(5)=-0.79; p=0.03). High ICCs and low CVs support the reliability of discrete GRF and PV variables over multiple trials and significant correlations indicate there is a relationship between the ability to produce force and the timing of this force production with PV. The mean of all pitchers' curve-average standard deviation of their continuous force-time curves demonstrated low variability (CV=4.4%) indicating a repeatable and identifiable "force signature" pattern during this motion. As such, the continuous force-time curve in addition to discrete GRF variables should be examined in future research as a potential method to monitor or explain changes in pitching performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Pitch Tracking and Voiced/Unvoiced Detection in Noisy Environment using Optimat Sequence Estimation

    OpenAIRE

    Wasserblat, Moshe; Gainza, Mikel; Dorran, David; Domb, Yuval

    2008-01-01

    This paper addresses the problem of pitch tracking and voiced/unvoiced detection in noisy speech environments. An algorithm is presented which uses a number of variable thresholds to track pitch contour with minimal error. This is achieved by modeling the pitch tracking problem in such a way that allows the use of optimal estimation methods, such MLSE. The performance of the algorithm is evaluated using the Keele pitch detection database with realistic background noise. Results show best perf...

  7. Multidimensional analysis of Drosophila wing variation in Evolution ...

    Indian Academy of Sciences (India)

    2008-12-23

    Dec 23, 2008 ... the different components of phenotypic variation of a complex trait: the wing. ... of Drosophila wing variation in. Evolution Canyon. J. Genet. 87, 407–419]. Introduction ..... identify the effect of slope on wing shape (figure 2,c). All.

  8. Colors and pterin pigmentation of pierid butterfly wings

    NARCIS (Netherlands)

    Wijnen, B.; Leertouwer, H. L.; Stavenga, D. G.

    2007-01-01

    The reflectance of pierid butterfly wings is principally determined by the incoherent scattering of incident light and the absorption by pterin pigments in the scale structures. Coherent scattering causing iridescence is frequently encountered in the dorsal wings or wing tips of male pierids. We

  9. Spectral reflectance properties of iridescent pierid butterfly wings

    NARCIS (Netherlands)

    Wilts, Bodo D.; Pirih, Primoz; Stavenga, Doekele G.; Pirih, Primož

    The wings of most pierid butterflies exhibit a main, pigmentary colouration: white, yellow or orange. The males of many species have in restricted areas of the wing upper sides a distinct structural colouration, which is created by stacks of lamellae in the ridges of the wing scales, resulting in

  10. How swifts control their glide performance with morphing wings

    NARCIS (Netherlands)

    Lentink, D.; Muller, U. K.; Stamhuis, E. J.; de Kat, R.; van Gestel, W.; Veldhuis, L. L. M.; Henningsson, P.; Hedenstrom, A.; Videler, J. J.

    2007-01-01

    Gliding birds continually change the shape and size of their wings(1-6), presumably to exploit the profound effect of wing morphology on aerodynamic performance(7-9). That birds should adjust wing sweep to suit glide speed has been predicted qualitatively by analytical glide models(2,10), which

  11. Local and global pitch perception in L1 and L2 readers of Dutch

    NARCIS (Netherlands)

    de Jong, Chiara; Postma, Marie; Mos, Maria; Vedder, Kayleigh; Hendriks, Danielle; Maggiore, G.

    2017-01-01

    Prior research showed a relationship between reading skills and pitch perception, however the exact nature remained unclear. By means of reading tests and a pitch perception test, we examined the relation between reading abilities and local and global pitch perception for 92 native Dutch children

  12. Pitch and Time Processing in Speech and Tones: The Effects of Musical Training and Attention

    Science.gov (United States)

    Sares, Anastasia G.; Foster, Nicholas E. V.; Allen, Kachina; Hyde, Krista L.

    2018-01-01

    Purpose: Musical training is often linked to enhanced auditory discrimination, but the relative roles of pitch and time in music and speech are unclear. Moreover, it is unclear whether pitch and time processing are correlated across individuals and how they may be affected by attention. This study aimed to examine pitch and time processing in…

  13. Fundamental study on aerodynamic force of floating offshore wind turbine with cyclic pitch mechanism

    International Nuclear Information System (INIS)

    Li, Qing'an; Kamada, Yasunari; Maeda, Takao; Murata, Junsuke; Iida, Kohei; Okumura, Yuta

    2016-01-01

    Wind turbines mounted on floating platforms are subjected to completely different and soft foundation properties, rather than onshore wind turbines. Due to the flexibility of their mooring systems, floating offshore wind turbines are susceptible to large oscillations such as aerodynamic force of the wind and hydrodynamic force of the wave, which may compromise their performance and structural stability. This paper focuses on the evaluation of aerodynamic forces depending on suppressing undesired turbine's motion by a rotor thrust control which is controlled by pitch changes with wind tunnel experiments. In this research, the aerodynamic forces of wind turbine are tested at two kinds of pitch control system: steady pitch control and cyclic pitch control. The rotational speed of rotor is controlled by a variable speed generator, which can be measured by the power coefficient. Moment and force acts on model wind turbine are examined by a six-component balance. From cyclic pitch testing, the direction and magnitude of moment can be arbitrarily controlled by cyclic pitch control. Moreover, the fluctuations of thrust coefficient can be controlled by collective pitch control. The results of this analysis will help resolve the fundamental design of suppressing undesired turbine's motion by cyclic pitch control. - Highlights: • Offshore wind offers additional options in regions with low onshore potential. • Two kinds of pitch control system: Steady pitch control and Cyclic pitch control. • Performance curves and unsteady aerodynamics are investigated in wind tunnel. • Fluctuations of thrust coefficient can be controlled by collective pitch control.

  14. Congenital Amusia in linguistic and non-linguistic pitch perception - What behavior and reaction times reveal

    NARCIS (Netherlands)

    Pfeifer, J.; Hamann, S.; Exter, M.; Campbell, N.; Gibbon, D.; Hirst, D.

    2014-01-01

    Congenital Amusia is a developmental disorder that has a negative influence on pitch perception. While it used to be described as a disorder of musical pitch perception, recent studies indicate that congenital amusics also show deficits in linguistic pitch perception. This study investigates the

  15. Detection and identification of monaural and binaural pitch contours in dyslexic listeners

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Poelmans, Hanne; Luts, Heleen

    2010-01-01

    of dyslexic listeners to Huggins' pitch (HP). The present study clarified whether impaired binaural pitch perception is found in dyslexia. Results from a pitch contour identification test, performed in 31 dyslexic listeners and 31 matched controls, clearly showed that dyslexics perceived HP as well...

  16. Active Blade Pitch Control for Straight Bladed Darrieus Vertical Axis Wind Turbine of New Design

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.; Basu, Biswajit

    2013-01-01

    in a previous publication. Further, it is well know that the variation of the blade pitch angle during the rotation improves the power efficiency. A blade pitch variation is implemented by active blade pitch control, which operates as per wind speed and position of the blade with respect to the rotor. A double...

  17. Pitch and Time, Tonality and Meter: How Do Musical Dimensions Combine?

    Science.gov (United States)

    Prince, Jon B.; Thompson, William F.; Schmuckler, Mark A.

    2009-01-01

    The authors examined how the structural attributes of tonality and meter influence musical pitch-time relations. Listeners heard a musical context followed by probe events that varied in pitch class and temporal position. Tonal and metric hierarchies contributed additively to the goodness-of-fit of probes, with pitch class exerting a stronger…

  18. Major League pitching workload after primary ulnar collateral ligament reconstruction and risk for revision surgery.

    Science.gov (United States)

    Keller, Robert A; Mehran, Nima; Marshall, Nathan E; Okoroha, Kelechi R; Khalil, Lafi; Tibone, James E; Moutzouros, Vasilios

    2017-02-01

    Literature has attempted to correlate pitching workload with risk of ulnar collateral ligament (UCL) injury; however, limited data are available in evaluating workload and its relationship with the need for revision reconstruction in Major League Baseball (MLB) pitchers. We identified 29 MLB pitchers who underwent primary UCL reconstruction surgery and subsequently required revision reconstruction and compared them with 121 MLB pitchers who underwent primary reconstruction but did not later require revision surgery. Games pitched, pitch counts, and innings pitched were evaluated and compared for the seasons after returning from primary reconstruction and for the last season pitched before undergoing revision surgery. The difference in workload between pitchers who did and did not require revision reconstruction was not statistically significant in games pitched, innings pitched, and MLB-only pitch counts. The one significant difference in workload was in total pitch counts (combined MLB and minor league), with the pitchers who required revision surgery pitching less than those who did not (primary: 1413.6 pitches vs. revision: 959.0 pitches, P = .04). In addition, pitchers who required revision surgery underwent primary reconstruction at an early age (22.9 years vs. 27.3 years, P risk for injury after primary UCL reconstruction. However, correlations of risk may be younger age and less MLB experience at the time of the primary reconstruction. Copyright © 2017. Published by Elsevier Inc.

  19. 29 CFR 1910.1002 - Coal tar pitch volatiles; interpretation of term.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 6 2010-07-01 2010-07-01 false Coal tar pitch volatiles; interpretation of term. 1910.1002... Hazardous Substances § 1910.1002 Coal tar pitch volatiles; interpretation of term. As used in § 1910.1000 (Table Z-1), coal tar pitch volatiles include the fused polycyclic hydrocarbons which volatilize from the...

  20. Pitch Discrimination and Melodic Memory in Children with Autism Spectrum Disorders

    Science.gov (United States)

    Stanutz, Sandy; Wapnick, Joel; Burack, Jacob A.

    2014-01-01

    Background: Pitch perception is enhanced among persons with autism. We extended this finding to memory for pitch and melody among school-aged children. Objective: The purpose of this study was to investigate pitch memory in musically untrained children with autism spectrum disorders, aged 7-13 years, and to compare it to that of age- and…

  1. Morphing Wing: Experimental Boundary Layer Transition Determination and Wing Vibrations Measurements and Analysis =

    Science.gov (United States)

    Tondji Chendjou, Yvan Wilfried

    This Master's thesis is written within the framework of the multidisciplinary international research project CRIAQ MDO-505. This global project consists of the design, manufacture and testing of a morphing wing box capable of changing the shape of the flexible upper skin of a wing using an actuator system installed inside the wing. This changing of the shape generates a delay in the occurrence of the laminar to turbulent transition area, which results in an improvement of the aerodynamic performances of the morphed wing. This thesis is focused on the technologies used to gather the pressure data during the wind tunnel tests, as well as on the post processing methodologies used to characterize the wing airflow. The vibration measurements of the wing and their real-time graphical representation are also presented. The vibration data acquisition system is detailed, and the vibration data analysis confirms the predictions of the flutter analysis performed on the wing prior to wind tunnel testing at the IAR-NRC. The pressure data was collected using 32 highly-sensitive piezoelectric sensors for sensing the pressure fluctuations up to 10 KHz. These sensors were installed along two wing chords, and were further connected to a National Instrument PXI real-time acquisition system. The acquired pressure data was high-pass filtered, analyzed and visualized using Fast Fourier Transform (FFT) and Standard Deviation (SD) approaches to quantify the pressure fluctuations in the wing airflow, as these allow the detection of the laminar to turbulent transition area. Around 30% of the cases tested in the IAR-NRC wind tunnel were optimized for drag reduction by the morphing wing procedure. The obtained pressure measurements results were compared with results obtained by infrared thermography visualization, and were used to validate the numerical simulations. Two analog accelerometers able to sense dynamic accelerations up to +/-16g were installed in both the wing and the aileron boxes

  2. Effect of Various Modifications on Drag and Longitudinal Stability and Control Characteristics at Transonic Speeds of a Model of the XF7U-1 Tailless Airplane: NACA Wing-FLow Method, TED No. NACA DE 307

    Science.gov (United States)

    Sawyer, Richard H.; Trant, James P., Jr.

    1950-01-01

    An investigation was made by the NACA wing-flow method to determine the drag, pitching-moment, lift, and angle-of-attack characteristics at transonic speeds of various configurations of a semispan model of an early configuration of the XF7U-1 tailless airplane. The results of the tests indicated that for the basic configuration with undeflected ailavator, the zero-lift drag rise occurred at a Mach number of about 0.85 and that about a five-fold increase in drag occurred through the transonic speed range. The results of the tests also indicated that the drag increment produced by -8.0 degrees deflection of the ailavator increased with increase in normal-force coefficient and was smaller at speeds above than at speeds below the drag rise. The drag increment produced by 35 degree deflection of the speed brakes varied from 0.040 to 0.074 depending on the normal-force coefficient and Mach number. These values correspond to drag coefficients of about 0.40 and 0.75 based on speed-brake frontal area. Removal of the fin produced a small positive drag increment at a given normal-force coefficient at speeds during the drag rise. A large forward shift of the neutral-point location occurred at Mach numbers above about 0.90 upon removal of the fin, and also a considerable forward shift throughout the Mach number range occurred upon deflection of the speed brakes. Ailavator ineffectiveness or reversal at low deflections, similar to that determined in previous tests of the basic configuration of the model in the Mach number range from about 0.93 to 1.0, was found for the fin-off configuration and for the model equipped with skewed (more highly sweptback) hinge-line ailavators. With the speed brakes deflected, little or no loss in the incremental pitching moment produced by deflection of the ailavator from O degrees to -8.00 degrees occurred in the Mach number range from 0.85 to 1.0 in contrast to a considerable loss found in previous tests with the speed brakes off.

  3. Machine Learning for Flapping Wing Flight Control

    NARCIS (Netherlands)

    Goedhart, Menno; van Kampen, E.; Armanini, S.F.; de Visser, C.C.; Chu, Q.

    2018-01-01

    Flight control of Flapping Wing Micro Air Vehicles is challenging, because of their complex dynamics and variability due to manufacturing inconsistencies. Machine Learning algorithms can be used to tackle these challenges. A Policy Gradient algorithm is used to tune the gains of a

  4. Conceptual Study of Rotary-Wing Microrobotics

    Science.gov (United States)

    2008-03-27

    Low Frequency LIGA Lithographie Galvanoformung Abformung (German) LPCVD Low Pressure Chemical Vapor Deposition LRC Inductor- Resistor -Capacitor MAV...record MAV endurance flexible wing design first ever battery power MAV integrated sensor package piezo - electric unimorph actuators...capable of hovering piezo - electric actuators *Theoretical Value Only 2.5 Flying MEMS-Based Robots In 1993, Kubo, et al published a study on

  5. Can Wing Tip Vortices Be Accurately Simulated?

    Science.gov (United States)

    2011-07-01

    Aerodynamics , Flow Visualization, Numerical Investigation, Aero Suite 16. SECURITY CLASSIFICATION OF: Unclassified 17. LIMITATION OF ABSTRACT 18...additional tail buffeting.2 In commercial applications, winglets have been installed on passenger aircraft to minimize vortex formation and reduce lift...air. In military applications, wing tip In commercial applications, winglets have been installed on passenger aircraft to minimize increases with downstream distances.

  6. Oblique-Flying-Wing Supersonic Transport Airplane

    Science.gov (United States)

    Van Der Velden, Alexander J. M.

    1992-01-01

    Oblique-flying-wing supersonic airplane proposed as possible alternative to B747B (or equivalent). Tranports passengers and cargo as fast as twice speed of sound at same cost as current subsonic transports. Flies at same holding speeds as present supersonic transports but requires only half takeoff distance.

  7. Aerodynamic comparison of a butterfly-like flapping wing-body model and a revolving-wing model

    Science.gov (United States)

    Suzuki, Kosuke; Yoshino, Masato

    2017-06-01

    The aerodynamic performance of flapping- and revolving-wing models is investigated by numerical simulations based on an immersed boundary-lattice Boltzmann method. As wing models, we use (i) a butterfly-like model with a body and flapping-rectangular wings and (ii) a revolving-wing model with the same wings as the flapping case. Firstly, we calculate aerodynamic performance factors such as the lift force, the power, and the power loading of the two models for Reynolds numbers in the range of 50-1000. For the flapping-wing model, the power loading is maximal for the maximum angle of attack of 90°, a flapping amplitude of roughly 45°, and a phase shift between the flapping angle and the angle of attack of roughly 90°. For the revolving-wing model, the power loading peaks for an angle of attack of roughly 45°. In addition, we examine the ground effect on the aerodynamic performance of the revolving-wing model. Secondly, we compare the aerodynamic performance of the flapping- and revolving-wing models at their respective maximal power loadings. It is found that the revolving-wing model is more efficient than the flapping-wing model both when the body of the latter is fixed and where it can move freely. Finally, we discuss the relative agilities of the flapping- and revolving-wing models.

  8. On the Distinct Effects of Left-Wing and Right-Wing Populism on Democratic Quality

    OpenAIRE

    Huber, Robert A.; Schimpf, Christian H.

    2017-01-01

    This study examines the differences and commonalities of how populist parties of the left and right relate to democracy. The focus is narrowed to the relationship between these parties and two aspects of democratic quality, minority rights and mutual constraints. Our argument is twofold: first, we contend that populist parties can exert distinct influences on minority rights, depending on whether they are left-wing or right-wing populist parties. Second, by contrast, we propose that the assoc...

  9. Rotary balance data for a typical single-engine low-wing general aviation design for an angle-of-attack range of 30 deg to 90 deg

    Science.gov (United States)

    Bihrle, W., Jr.; Hultberg, R. S.; Mulcay, W.

    1978-01-01

    Aerodynamic characteristics obtained in a spinning flow environment utilizing a rotary balance located spin tunnel are presented in plotted form for a 1/5 scale single-engine low-wing general aviation airplane model. The configurations tested include the basic airplane, various airfoil shapes, tail designs, fuselage strakes and modifications as well as airplane components. Data are presented for pitch and roll angle ranges of 30 to 90 degrees and 10 to -10 degrees, respectively, and clockwise and counter-clockwise rotations covering an Omega b/2V range from 0 to .9. The data are presented without analysis.

  10. Flow-around modes for a rhomboid wing with a stall vortex in the shock layer

    Science.gov (United States)

    Zubin, M. A.; Maximov, F. A.; Ostapenko, N. A.

    2017-12-01

    The results of theoretical and experimental investigation of an asymmetrical hypersonic flow around a V-shaped wing with the opening angle larger than π on the modes with attached shockwaves on forward edges, when the stall flow is implemented on the leeward wing cantilever behind the kink point of the cross contour. In this case, a vortex of nonviscous nature is formed in which the velocities on the sphere exceeding the speed of sound and resulting in the occurrence of pressure shocks with an intensity sufficient for the separation of the turbulent boundary layer take place in the reverse flow according to the calculations within the framework of the ideal gas. It is experimentally established that a separation boundary layer can exist in the reverse flow, and its structure is subject to the laws inherent to the reverse flow in the separation region of the turbulent boundary layer arising in the supersonic conic flow under the action of a shockwave incident to the boundary layer.

  11. Language-dependent changes in pitch-relevant neural activity in the auditory cortex reflect differential weighting of temporal attributes of pitch contours

    Science.gov (United States)

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Xu, Yi; Suresh, Chandan H.

    2016-01-01

    There remains a gap in our knowledge base about neural representation of pitch attributes that occur between onset and offset of dynamic, curvilinear pitch contours. The aim is to evaluate how language experience shapes processing of pitch contours as reflected in the amplitude of cortical pitch-specific response components. Responses were elicited from three nonspeech, bidirectional (falling-rising) pitch contours representative of Mandarin Tone 2 varying in location of the turning point with fixed onset and offset. At the frontocentral Fz electrode site, Na–Pb and Pb–Nb amplitude of the Chinese group was larger than the English group for pitch contours exhibiting later location of the turning point relative to the one with the earliest location. Chinese listeners’ amplitude was also greater than that of English in response to those same pitch contours with later turning points. At lateral temporal sites (T7/T8), Na–Pb amplitude was larger in Chinese listeners relative to English over the right temporal site. In addition, Pb–Nb amplitude of the Chinese group showed a rightward asymmetry. The pitch contour with its turning point located about halfway of total duration evoked a rightward asymmetry regardless of group. These findings suggest that neural mechanisms processing pitch in the right auditory cortex reflect experience-dependent modulation of sensitivity to weighted integration of changes in acceleration rates of rising and falling sections and the location of the turning point. PMID:28713201

  12. Reversible flowchart languages and the structured reversible program theorem

    DEFF Research Database (Denmark)

    Yokoyama, Tetsuo; Axelsen, Holger Bock; Glück, Robert

    2008-01-01

    Many irreversible computation models have reversible counterparts, but these are poorly understood at present. We introduce reversible flowcharts with an assertion operator and show that any reversible flowchart can be simulated by a structured reversible flowchart using only three control flow...... operators. Reversible flowcharts are r- Turing-complete, meaning that they can simuluate reversible Turing machines without garbage data. We also demonstrate the injectivization of classical flowcharts into reversible flowcharts. The reversible flowchart computation model provides a theoretical...

  13. Speech emotion recognition based on statistical pitch model

    Institute of Scientific and Technical Information of China (English)

    WANG Zhiping; ZHAO Li; ZOU Cairong

    2006-01-01

    A modified Parzen-window method, which keep high resolution in low frequencies and keep smoothness in high frequencies, is proposed to obtain statistical model. Then, a gender classification method utilizing the statistical model is proposed, which have a 98% accuracy of gender classification while long sentence is dealt with. By separation the male voice and female voice, the mean and standard deviation of speech training samples with different emotion are used to create the corresponding emotion models. Then the Bhattacharyya distance between the test sample and statistical models of pitch, are utilized for emotion recognition in speech.The normalization of pitch for the male voice and female voice are also considered, in order to illustrate them into a uniform space. Finally, the speech emotion recognition experiment based on K Nearest Neighbor shows that, the correct rate of 81% is achieved, where it is only 73.85%if the traditional parameters are utilized.

  14. New SOFRADIR 10μm pixel pitch infrared products

    Science.gov (United States)

    Lefoul, X.; Pere-Laperne, N.; Augey, T.; Rubaldo, L.; Aufranc, Sébastien; Decaens, G.; Ricard, N.; Mazaleyrat, E.; Billon-Lanfrey, D.; Gravrand, Olivier; Bisotto, Sylvette

    2014-10-01

    Recent advances in miniaturization of IR imaging technology have led to a growing market for mini thermal-imaging sensors. In that respect, Sofradir development on smaller pixel pitch has made much more compact products available to the users. When this competitive advantage is mixed with smaller coolers, made possible by HOT technology, we achieved valuable reductions in the size, weight and power of the overall package. At the same time, we are moving towards a global offer based on digital interfaces that provides our customers simplifications at the IR system design process while freeing up more space. This paper discusses recent developments on hot and small pixel pitch technologies as well as efforts made on compact packaging solution developed by SOFRADIR in collaboration with CEA-LETI.

  15. Amusia for pitch caused by right middle cerebral artery infarct.

    Science.gov (United States)

    Hochman, M Seth; Abrams, Kevin J

    2014-01-01

    A 61-year-old right-handed man with hypertension and dyslipidemia noted that he was singing along to classic rock songs on his car radio, but his voice was off pitch. Six days later, a magnetic resonance imaging scan of his brain revealed a cerebral infarct of the right temporal parietal cortex and insula. Case reports of the precise anatomic correlates of disordered pitch musical processing have been few and fragmentary. The anatomic involvement of our case coincides with the areas of involvement in 3 previously reported cases. Increased awareness of amusia as a rare clinical presentation of stroke should lead to earlier stroke intervention. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  16. Congenital amusia: a disorder of fine-grained pitch discrimination.

    Science.gov (United States)

    Peretz, Isabelle; Ayotte, Julie; Zatorre, Robert J; Mehler, Jacques; Ahad, Pierre; Penhune, Virginia B; Jutras, Benoît

    2002-01-17

    We report the first documented case of congenital amusia. This disorder refers to a musical disability that cannot be explained by prior brain lesion, hearing loss, cognitive deficits, socioaffective disturbance, or lack of environmental stimulation. This musical impairment is diagnosed in a middle-aged woman, hereafter referred to as Monica, who lacks most basic musical abilities, including melodic discrimination and recognition, despite normal audiometry and above-average intellectual, memory, and language skills. The results of psychophysical tests show that Monica has severe difficulties with detecting pitch changes. The data suggest that music-processing difficulties may result from problems in fine-grained discrimination of pitch, much in the same way as many language-processing difficulties arise from deficiencies in auditory temporal resolution.

  17. Binaural pitch perception in hearing-impaired listeners

    DEFF Research Database (Denmark)

    Dau, Torsten; Santurette, Sébastien; Strelcyk, Olaf

    2007-01-01

    When two white noises differing only in phase in a particular frequency range are presented simultaneously each to one of our ears, a pitch sensation may be perceived inside the head. This phenomenon, called ’binaural pitch’ or ’dichotic pitch’, can be produced by frequency-dependent interaural...... phasedifference patterns. The evaluation of these interaural phase differences depends on the functionality of the binaural auditory system and the spectro-temporal information at its input. A melody recognition task was performed in the present study using pure-tone stimuli and six different types of noises...... that can generate a binaural pitch sensation. Normal-hearing listeners and hearing-impaired listeners with different kinds of hearing impairment participated in the experiment....

  18. Torque- and Speed Control of a Pitch Regulated Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Rasila, Mika

    2003-07-01

    Variable speed operated wind turbines has the potential to reduce fatigue loads, compared to fixed speed wind turbines. With pitch controllable rotor blades limitation of the power at high wind speeds is obtained. The thesis describes different controlling aspects concerning wind turbines and how these together can be used to optimize the system's performance. Torque control is used in order to achieve reduction on the mechanical loads on the drive-train for low wind speeds and limitation of power output for high wind speeds. In the high wind speed interval torque control is effective in order to limit the output power if a sufficiently fast pitch actuator is used. In the middle wind speed interval filter utilization can be used to give a reference signal to the controller in order to reduce speed and torque variations.

  19. Pitch adaptors of the ATLAS-SCT Endcap detector modules

    International Nuclear Information System (INIS)

    Ullan, M; Lozano, M; Campabadal, F; Fleta, C; Pellegrini, G; Garcia, C; Gonzalez, F

    2007-01-01

    Interconnection between detectors and electronics in modern High Energy Physics has become an issue of difficult solution due to the need to integrate both parts in the same module and the need for a low mass, simple connection. The Endcap section of the Semiconductor Tracker (SCT) of the ATLAS experiment at CERN has adopted the solution of using interface devices called pitch adaptors or fan-ins that, mounted on the modules, and using automatic wire bonding, connect the detector's multiple channels to the front-end electronics, adapting their different designs (pad pitch, dimensions, position). This paper describes the characteristics of these devices, the qualification tests that they have been submitted to, and the final results of their fabrication including quality assurance procedures

  20. Binaural fusion and the representation of virtual pitch in the human auditory cortex.

    Science.gov (United States)

    Pantev, C; Elbert, T; Ross, B; Eulitz, C; Terhardt, E

    1996-10-01

    The auditory system derives the pitch of complex tones from the tone's harmonics. Research in psychoacoustics predicted that binaural fusion was an important feature of pitch processing. Based on neuromagnetic human data, the first neurophysiological confirmation of binaural fusion in hearing is presented. The centre of activation within the cortical tonotopic map corresponds to the location of the perceived pitch and not to the locations that are activated when the single frequency constituents are presented. This is also true when the different harmonics of a complex tone are presented dichotically. We conclude that the pitch processor includes binaural fusion to determine the particular pitch location which is activated in the auditory cortex.

  1. Multiple cues for winged morph production in an aphid metacommunity.

    Directory of Open Access Journals (Sweden)

    Mohsen Mehrparvar

    Full Text Available Environmental factors can lead individuals down different developmental pathways giving rise to distinct phenotypes (phenotypic plasticity. The production of winged or unwinged morphs in aphids is an example of two alternative developmental pathways. Dispersal is paramount in aphids that often have a metapopulation structure, where local subpopulations frequently go extinct, such as the specialized aphids on tansy (Tanacetum vulgare. We conducted various experiments to further understand the cues involved in the production of winged dispersal morphs by the two dominant species of the tansy aphid metacommunity, Metopeurum fuscoviride and Macrosiphoniella tanacetaria. We found that the ant-tended M. fuscoviride produced winged individuals predominantly at the beginning of the season while the untended M. tanacetaria produced winged individuals throughout the season. Winged mothers of both species produced winged offspring, although in both species winged offspring were mainly produced by unwinged females. Crowding and the presence of predators, effects already known to influence wing production in other aphid species, increased the percentage of winged offspring in M. tanacetaria, but not in M. fuscoviride. We find there are also other factors (i.e. temporal effects inducing the production of winged offspring for natural aphid populations. Our results show that the responses of each aphid species are due to multiple wing induction cues.

  2. The biomechanical origin of extreme wing allometry in hummingbirds.

    Science.gov (United States)

    Skandalis, Dimitri A; Segre, Paolo S; Bahlman, Joseph W; Groom, Derrick J E; Welch, Kenneth C; Witt, Christopher C; McGuire, Jimmy A; Dudley, Robert; Lentink, David; Altshuler, Douglas L

    2017-10-19

    Flying animals of different masses vary widely in body proportions, but the functional implications of this variation are often unclear. We address this ambiguity by developing an integrative allometric approach, which we apply here to hummingbirds to examine how the physical environment, wing morphology and stroke kinematics have contributed to the evolution of their highly specialised flight. Surprisingly, hummingbirds maintain constant wing velocity despite an order of magnitude variation in body weight; increased weight is supported solely through disproportionate increases in wing area. Conversely, wing velocity increases with body weight within species, compensating for lower relative wing area in larger individuals. By comparing inter- and intraspecific allometries, we find that the extreme wing area allometry of hummingbirds is likely an adaptation to maintain constant burst flight capacity and induced power requirements with increasing weight. Selection for relatively large wings simultaneously maximises aerial performance and minimises flight costs, which are essential elements of humming bird life history.

  3. Raman microprobe study of heat-treated pitches

    Energy Technology Data Exchange (ETDEWEB)

    Cottinet, D.; Couderc, P.; Saint Romain, J.L.; Dhamelincourt, P.

    1988-01-01

    A series of heat-treated pitches from the same coal-tar precursor is investigated by means of a Raman microprobe. Separated Raman spectra are obtained for the isotropic phase and the mesophase. The evolutions observed are characteristic of the structural rearrangement change in the two phases. They correlate well with the observations reported in literature and obtained by using different methods of structural investigations.

  4. Improved Methods for Pitch Synchronous Linear Prediction Analysis of Speech

    OpenAIRE

    劉, 麗清

    2015-01-01

    Linear prediction (LP) analysis has been applied to speech system over the last few decades. LP technique is well-suited for speech analysis due to its ability to model speech production process approximately. Hence LP analysis has been widely used for speech enhancement, low-bit-rate speech coding in cellular telephony, speech recognition, characteristic parameter extraction (vocal tract resonances frequencies, fundamental frequency called pitch) and so on. However, the performance of the co...

  5. Buds enable pitch and shortleaf pines to recover from injury

    Science.gov (United States)

    S. Little; H. A. Somes

    1956-01-01

    Pitch and shortleaf pines often survive severe damage by fires, cutting, rabbits, or deer. Deer may take all but 2 inches of the 6- to 8-inch shoots of seedlings, and still these seedlings may live and develop new shoots. Fires may kill all the foliage and terminal shoots on sapling or pole-size stems, but still these trees may green up and develop new leaders. Many of...

  6. Context effects on pitch perception in musicians and nonmusicians

    DEFF Research Database (Denmark)

    Brattico, E; Naatanen, R; Tervaniemi, M

    2001-01-01

    concentrating on reading a book, were presented with sound stimuli that had an infrequent (p = 15 %) pitch shift of 144 Hz. In the familiar condition, the infrequent third-position deviant changed the mode (major vs. minor) of the five-tone pattern. In the unfamiliar condition, patterns were formed from five...... to sequential structured sound events, the auditory system reacts faster in musicians than in nonmusicians. Received December 8, 1999, accepted July 14, 2001....

  7. Pitch Fork: A Novel tactile Digital Musical Instrument

    OpenAIRE

    Williams, Peter; Overholt, Daniel

    2017-01-01

    Pitch Fork is a prototype of an alternate, actuated digital musical instrument (DMI). It uses 5 infra-red and 4 piezoelectric sensors to control an additive synthesis engine. Iron bars are used as the physical point of contact in interaction with the aim of using material computation to control aspects of the digitally produced sound. This choice of material was also chosen to affect player experience. Sensor readings are relayed to a Macbook via an Arduino Mega. Mappings and audio output sig...

  8. Design and fabrication of composite wing panels containing a production splice

    Science.gov (United States)

    Reed, D. L.

    1975-01-01

    Bolted specimens representative of both upper and lower wing surface splices of a transport aircraft were designed and manufactured for static and random load tension and compression fatigue testing including ground-air-ground load reversals. The specimens were fabricated with graphite-epoxy composite material. Multiple tests were conducted at various load levels and the results were used as input to a statistical wearout model. The statically designed specimens performed very well under highly magnified fatigue loadings. Two large panels, one tension and compression, were fabricated for testing by NASA-LRC.

  9. Spatial Rack Drives Pitch Configurations: Essence and Content

    Science.gov (United States)

    Abadjieva, Emilia; Abadjiev, Valentin; Naganawa, Akihiro

    2018-03-01

    The practical realization of all types of mechanical motions converters is preceded by solving the task of their kinematic synthesis. In this way, the determination of the optimal values of the constant geometrical parameters of the chosen structure of the created mechanical system is achieved. The searched result is a guarantee of the preliminary defined kinematic characteristics of the synthesized transmission and in the first place, to guarantee the law of motions transformation. The kinematic synthesis of mechanical transmissions is based on adequate mathematical modelling of the process of motions transformation and on the object, realizing this transformation. Basic primitives of the mathematical models for synthesis upon a pitch contact point are geometric and kinematic pitch configurations. Their dimensions and mutual position in space are the input parameters for the processes of design and elaboration of the synthesized mechanical device. The study presented here is a brief review of the theory of pitch configurations. It is an independent scientific branch of the spatial gearing theory (theory of hyperboloid gears). On this basis, the essence and content of the corresponding primitives, applicable to the synthesis of spatial rack drives, are defined.

  10. Pitching Emotions: The Interpersonal Effects of Emotions in Professional Baseball

    Directory of Open Access Journals (Sweden)

    Arik eCheshin

    2016-02-01

    Full Text Available Sports games are inherently emotional situations, but surprisingly little is known about the social consequences of these emotions. We examined the interpersonal effects of emotional expressions in professional baseball. Specifically, we investigated whether pitchers' facial displays influence how pitches are assessed and responded to. Using footage from MLB World Series finals, we isolated incidents where the pitcher's face was visible before a pitch. A pre-study indicated that participants consistently perceived anger, happiness, and worry in pitchers' facial displays. An independent sample then predicted pitch characteristics and batter responses based on the same perceived emotional displays. Participants expected pitchers perceived as happy to throw more accurate balls, pitchers perceived as angry to throw faster and more difficult balls, and pitchers perceived as worried to throw slower and less accurate balls. Batters were expected to approach (swing when faced with a pitcher perceived as happy and to avoid (no swing when faced with a pitcher perceived as worried. Whereas previous research focused on using emotional expressions as information regarding past and current situations, our work suggests that people also use perceived emotional expressions to predict future behavior. Our results attest to the impact perceived emotional expressions can have on professional sports.

  11. Physics of pitch angle scattering and velocity diffusion. I - Theory

    Science.gov (United States)

    Karimabadi, H.; Krauss-Varban, D.; Terasawa, T.

    1992-01-01

    A general theory for the pitch angle scattering and velocity diffusion of particles in the field of a spectrum of waves in a magnetized plasma is presented. The test particle theory is used to analyze the particle motion. The form of diffusion surfaces is examined, and analytical expressions are given for the resonance width and bounce frequency. The resonance widths are found to vary strongly as a function of harmonic number. The resulting diffusion can be quite asymmetric with respect to pitch angle of 90 deg. The conditions for the onset of pitch angle scattering and energy diffusion are explained in detail. Some of the known shortcomings of the standard quasi-linear theory are also addressed, and ways to overcome them are shown. In particular, the often stated quasi-linear gap at 90 deg is found to exist only under very special cases. For instance, oblique wave propagation can easily remove the gap. The conditions for the existence of the gap are described in great detail. A new diffusion equation which takes into account the finite resonance widths is also discussed. The differences between this new theory and the standard resonance broadening theory is explained.

  12. Examination of statistical noise in SPECT image and sampling pitch

    International Nuclear Information System (INIS)

    Takaki, Akihiro; Soma, Tsutomu; Murase, Kenya; Watanabe, Hiroyuki; Murakami, Tomonori; Kawakami, Kazunori; Teraoka, Satomi; Kojima, Akihiro; Matsumoto, Masanori

    2008-01-01

    Statistical noise in single photon emission computed tomography (SPECT) image was examined for its relation with total count and with sampling pitch by simulation and phantom experiment to obtain their projection data under defined conditions. The former SPECT simulation was performed on assumption of a virtual, homogeneous water column (20 cm diameter) as an absorbing mass. In the latter, used were 3D-Hoffman brain phantom (Data Spectrum Corp.) filled with 370 MBq of 99m Tc-pertechnetate solution and a facing 2-detector SPECT machine with a low-energy/high-resolution collimator, E-CAM (Siemens). Projected data by the two methods were reconstructed through the filtered back projection to make each transaxial image. The noise was evaluated by vision, by their root mean square uncertainty calculated from average count and standard deviation (SD) in the region of interest (ROI) defined in reconstructed images and by normalized mean squares calculated from the difference between the reference image obtained with common sampling pitch to and all of obtained slices of, the simulation and phantom. As a conclusion, the pitch was recommended to be set in the machine as to approximating the value calculated by the sampling theorem, though the projection counts per one angular direction were smaller with the same total time of data acquisition. (R.T.)

  13. Pitching Emotions: The Interpersonal Effects of Emotions in Professional Baseball.

    Science.gov (United States)

    Cheshin, Arik; Heerdink, Marc W; Kossakowski, Jolanda J; Van Kleef, Gerben A

    2016-01-01

    Sports games are inherently emotional situations, but surprisingly little is known about the social consequences of these emotions. We examined the interpersonal effects of emotional expressions in professional baseball. Specifically, we investigated whether pitchers' facial displays influence how pitches are assessed and responded to. Using footage from the Major League Baseball World Series finals, we isolated incidents where the pitcher's face was visible before a pitch. A pre-study indicated that participants consistently perceived anger, happiness, and worry in pitchers' facial displays. An independent sample then predicted pitch characteristics and batter responses based on the same perceived emotional displays. Participants expected pitchers perceived as happy to throw more accurate balls, pitchers perceived as angry to throw faster and more difficult balls, and pitchers perceived as worried to throw slower and less accurate balls. Batters were expected to approach (swing) when faced with a pitcher perceived as happy and to avoid (no swing) when faced with a pitcher perceived as worried. Whereas previous research focused on using emotional expressions as information regarding past and current situations, our work suggests that people also use perceived emotional expressions to predict future behavior. Our results attest to the impact perceived emotional expressions can have on professional sports.

  14. An investigation of spatial representation of pitch in individuals with congenital amusia.

    Science.gov (United States)

    Lu, Xuejing; Sun, Yanan; Thompson, William Forde

    2017-09-01

    Spatial representation of pitch plays a central role in auditory processing. However, it is unknown whether impaired auditory processing is associated with impaired pitch-space mapping. Experiment 1 examined spatial representation of pitch in individuals with congenital amusia using a stimulus-response compatibility (SRC) task. For amusic and non-amusic participants, pitch classification was faster and more accurate when correct responses involved a physical action that was spatially congruent with the pitch height of the stimulus than when it was incongruent. However, this spatial representation of pitch was not as stable in amusic individuals, revealed by slower response times when compared with control individuals. One explanation is that the SRC effect in amusics reflects a linguistic association, requiring additional time to link pitch height and spatial location. To test this possibility, Experiment 2 employed a colour-classification task. Participants judged colour while ignoring a concurrent pitch by pressing one of two response keys positioned vertically to be congruent or incongruent with the pitch. The association between pitch and space was found in both groups, with comparable response times in the two groups, suggesting that amusic individuals are only slower to respond to tasks involving explicit judgments of pitch.

  15. Analysis techniques for diagnosing runaway ion distributions in the reversed field pinch

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J., E-mail: jkim536@wisc.edu; Anderson, J. K.; Capecchi, W.; Bonofiglo, P. J.; Sears, S. H. [University of Wisconsin—Madison, Madison, Wisconsin 53706 (United States)

    2016-11-15

    An advanced neutral particle analyzer (ANPA) on the Madison Symmetric Torus measures deuterium ions of energy ranges 8-45 keV with an energy resolution of 2-4 keV and time resolution of 10 μs. Three different experimental configurations measure distinct portions of the naturally occurring fast ion distributions: fast ions moving parallel, anti-parallel, or perpendicular to the plasma current. On a radial-facing port, fast ions moving perpendicular to the current have the necessary pitch to be measured by the ANPA. With the diagnostic positioned on a tangent line through the plasma core, a chord integration over fast ion density, background neutral density, and local appropriate pitch defines the measured sample. The plasma current can be reversed to measure anti-parallel fast ions in the same configuration. Comparisons of energy distributions for the three configurations show an anisotropic fast ion distribution favoring high pitch ions.

  16. A Fröhlich effect and representational gravity in memory for auditory pitch.

    Science.gov (United States)

    Hubbard, Timothy L; Ruppel, Susan E

    2013-08-01

    Memory for the initial pitch of an auditory target that increased or decreased in auditory frequency was examined. Memory was displaced forward in the direction of pitch motion, and this is consistent with the Fröhlich effect previously observed for visual targets moving in visual physical space. The Fröhlich effect for pitch increased with faster target velocity and decreased if an auditory cue with the same pitch as the initial pitch of the target was presented before the target was presented. The Fröhlich effect was larger for descending pitch motion than for ascending pitch motion, and this is consistent with an influence of representational gravity. The data suggest that representation of auditory frequency space exhibits some of the same biases as representation of visual physical space, and implications for theories of attention in displacement and for crossmodal and multisensory representation of space are discussed. 2013 APA, all rights reserved

  17. Fine-grained pitch processing of music and speech in congenital amusia.

    Science.gov (United States)

    Tillmann, Barbara; Rusconi, Elena; Traube, Caroline; Butterworth, Brian; Umiltà, Carlo; Peretz, Isabelle

    2011-12-01

    Congenital amusia is a lifelong disorder of music processing that has been ascribed to impaired pitch perception and memory. The present study tested a large group of amusics (n=17) and provided evidence that their pitch deficit affects pitch processing in speech to a lesser extent: Fine-grained pitch discrimination was better in spoken syllables than in acoustically matched tones. Unlike amusics, control participants performed fine-grained pitch discrimination better for musical material than for verbal material. These findings suggest that pitch extraction can be influenced by the nature of the material (music vs speech), and that amusics' pitch deficit is not restricted to musical material, but extends to segmented speech events. © 2011 Acoustical Society of America

  18. Binaural pitch perception in normal-hearing and hearing-impaired listeners

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten

    2007-01-01

    The effects of hearing impairment on the perception of binaural-pitch stimuli were investigated. Several experiments were performed with normal-hearing and hearing-impaired listeners, including detection and discrimination of binaural pitch, and melody recognition using different types of binaural...... pitches. For the normal-hearing listeners, all types of binaural pitches could be perceived immediately and were musical. The hearing-impaired listeners could be divided into three groups based on their results: (a) some perceived all types of binaural pitches, but with decreased salience or musicality...... compared to normal-hearing listeners; (b) some could only perceive the strongest pitch types; (c) some were unable to perceive any binaural pitch at all. The performance of the listeners was not correlated with audibility. Additional experiments investigated the correlation between performance in binaural...

  19. Pitch and time, tonality and meter: how do musical dimensions combine?

    Science.gov (United States)

    Prince, Jon B; Thompson, William F; Schmuckler, Mark A

    2009-10-01

    The authors examined how the structural attributes of tonality and meter influence musical pitch-time relations. Listeners heard a musical context followed by probe events that varied in pitch class and temporal position. Tonal and metric hierarchies contributed additively to the goodness-of-fit of probes, with pitch class exerting a stronger influence than temporal position (Experiment 1), even when listeners attempted to ignore pitch (Experiment 2). Speeded classification tasks confirmed this asymmetry. Temporal classification was biased by tonal stability (Experiment 3), but pitch classification was unaffected by temporal position (Experiment 4). Experiments 5 and 6 ruled out explanations based on the presence of pitch classes and temporal positions in the context, unequal stimulus quantity, and discriminability. The authors discuss how typical Western music biases attention toward pitch and distinguish between dimensional discriminability and salience. PsycINFO Database Record (c) 2009 APA, all rights reserved.

  20. Rattleback dynamics and its reversal time of rotation

    Science.gov (United States)

    Kondo, Yoichiro; Nakanishi, Hiizu

    2017-06-01

    A rattleback is a rigid, semielliptic toy which exhibits unintuitive behavior; when it is spun in one direction, it soon begins pitching and stops spinning, then it starts to spin in the opposite direction, but in the other direction, it seems to spin just steadily. This puzzling behavior results from the slight misalignment between the principal axes for the inertia and those for the curvature; the misalignment couples the spinning with the pitching and the rolling oscillations. It has been shown that under the no-slip condition and without dissipation the spin can reverse in both directions, and Garcia and Hubbard obtained the formula for the time required for the spin reversal tr [Proc. R. Soc. Lond. A 418, 165 (1988), 10.1098/rspa.1988.0078]. In this work, we reformulate the rattleback dynamics in a physically transparent way and reduce it to a three-variable dynamics for spinning, pitching, and rolling. We obtain an expression of the Garcia-Hubbard formula for tr by a simple product of four factors: (1) the misalignment angle, (2) the difference in the inverses of inertia moment for the two oscillations, (3) that in the radii for the two principal curvatures, and (4) the squared frequency of the oscillation. We perform extensive numerical simulations to examine validity and limitation of the formula, and find that (1) the Garcia-Hubbard formula is good for both spinning directions in the small spin and small oscillation regime, but (2) in the fast spin regime especially for the steady direction, the rattleback may not reverse and shows a rich variety of dynamics including steady spinning, spin wobbling, and chaotic behavior reminiscent of chaos in a dissipative system.

  1. Introduction to reversible computing

    CERN Document Server

    Perumalla, Kalyan S

    2013-01-01

    Few books comprehensively cover the software and programming aspects of reversible computing. Filling this gap, Introduction to Reversible Computing offers an expanded view of the field that includes the traditional energy-motivated hardware viewpoint as well as the emerging application-motivated software approach. Collecting scattered knowledge into one coherent account, the book provides a compendium of both classical and recently developed results on reversible computing. It explores up-and-coming theories, techniques, and tools for the application of rever

  2. Effect of wing mass in free flight by a butterfly-like 3D flapping wing-body model

    Science.gov (United States)

    Suzuki, Kosuke; Okada, Iori; Yoshino, Masato

    2016-11-01

    The effect of wing mass in free flight of a flapping wing is investigated by numerical simulations based on an immersed boundary-lattice Boltzmann method. We consider a butterfly-like 3D flapping wing-model consisting of two square wings with uniform mass density connected by a rod-shaped body. We simulate free flights of the wing-body model with various mass ratios of the wing to the whole of the model. As a result, it is found that the lift and thrust forces decrease as the mass ratio increases, since the body with a large mass ratio experiences large vertical and horizontal oscillations in one period and consequently the wing tip speed relatively decreases. In addition, we find the critical mass ratio between upward flight and downward flight for various Reynolds numbers. This work was supported by JSPS KAKENHI Grant Number JP16K18012.

  3. Relationship of radiation dose and spiral pitch for multi-slice CT system

    International Nuclear Information System (INIS)

    Song Shaojuan; Wang Wei; Liu Chuanya

    2006-01-01

    Objective: To study the relations of radiation dose and spiral pitch for multi-slice CT system. Methods: 16 mm dose phantom with solidose 300/400 pen-style ion chamber inserted into each of five holes in turn was scanned with different spiral pitch by LightSpeed 16-slice CT and Sensation 16-slice and 64-slice CT and radiation dose. Results: CTDI vol of axial scan and spiral scan for the three types of CT system are: (1) LightSpeed 16-slice CT: 28.9 (axial), 51.4 (pitch 0.562), 30.8 (pitch 0.938) and 16.5 ( pitch 1.75 ); (2) Sensation 16-slice CT: 41.2(axial) and 40.3(pitch 0.5) ,41.5(pitch 1) and 43.2(pitch 1.5); (3) Sensation 64- slice CT: 41.2(axial) and 40.3(pitch 0.5),41.5(pitch 1),43.2(pitch 1.5). Conclusions: For LightSpeed 16-slice CT, the measured radiation dose decreased with the increase of spiral pitch, the image quality could keep constant only if we increase mAs. While for Sensation 16-slice and 64-slice CT system, the measured radiation dose was identical for different pitch, and the image quality was identical because of the use of mAs auto control technique The mAs should be adjusted in different way according to the type of CT system when the pitch is changed in daily operation. (authors)

  4. Pitch Angle Scattering of Energetic Electrons by Plasmaspheric Hiss Emissions

    Science.gov (United States)

    Tobita, M.; Omura, Y.; Summers, D.

    2017-12-01

    We study scattering of energetic electrons in pitch angles and kinetic energies through their resonance with plasmaspheric hiss emissions consisting of many coherent discrete whistler-mode wave packets with rising and falling frequencies [1,2,3]. Using test particle simulations, we evaluate the efficiency of scattering, which depends on the inhomogeneity ratio S of whistler mode wave-particle interaction [4]. The value of S is determined by the wave amplitude, frequency sweep rate, and the gradient of the background magnetic field. We first modulate those parameters and observe variations of pitch angles and kinetic energies of electrons with a single wave under various S values so as to obtain basic understanding. We then include many waves into the system to simulate plasmaspheric hiss emissions. As the wave packets propagate away from the magnetic equator, the nonlinear trapping potential at the resonance velocity is deformed, making a channel of gyrophase for untrapped electrons to cross the resonance velocity, and causing modulations in their pitch angles and kinetic energies. We find efficient scattering of pitch angles and kinetic energies because of coherent nonlinear wave-particle interaction, resulting in electron precipitations into the polar atmosphere. We compare the results with the bounce averaged pitch angle diffusion coefficient based on quasi-linear theory, and show that the nonlinear wave model with many coherent packets can cause scattering of resonant electrons much faster than the quasi-linear diffusion process. [1] Summers, D., Omura, Y., Nakamura, S., and C. A. Kletzing (2014), Fine structure of plasmaspheric hiss, J. Geophys. Res., 119, 9134-9149. [2] Omura, Y., Y. Miyashita, M. Yoshikawa, D. Summers, M. Hikishima, Y. Ebihara, and Y. Kubota (2015), Formation process of relativistic electron flux through interaction with chorus emissions in the Earth's inner magnetosphere, J. Geophys. Res. Space Physics, 120, 9545-9562. [3] Nakamura, S., Y

  5. Reversible airfoils for stopped rotors in high speed flight

    International Nuclear Information System (INIS)

    Niemiec, Robert; Jacobellis, George; Gandhi, Farhan

    2014-01-01

    This study starts with the design of a reversible airfoil rib for stopped-rotor applications, where the sharp trailing-edge morphs into the rounded leading-edge, and vice-versa. A NACA0012 airfoil is approximated in a piecewise linear manner and straight, rigid outer profile links used to define the airfoil contour. The end points of the profile links connect to control links, each set on a central actuation rod via an offset. Chordwise motion of the actuation rod moves the control and the profile links and reverses the airfoil. The paper describes the design methodology and evolution of the final design, based on which two reversible airfoil ribs were fabricated and used to assemble a finite span reversible rotor/wing demonstrator. The profile links were connected by Aluminum strips running in the spanwise direction which provided stiffness as well as support for a pre-tensioned elastomeric skin. An inter-rib connector with a curved-front nose piece supports the leading-edge. The model functioned well and was able to reverse smoothly back-and-forth, on application and reversal of a voltage to the motor. Navier–Stokes CFD simulations (using the TURNS code) show that the drag coefficient of the reversible airfoil (which had a 13% maximum thickness due to the thickness of the profile links) was comparable to that of the NACA0013 airfoil. The drag of a 16% thick elliptical airfoil was, on average, about twice as large, while that of a NACA0012 in reverse flow was 4–5 times as large, even prior to stall. The maximum lift coefficient of the reversible airfoil was lower than the elliptical airfoil, but higher than the NACA0012 in reverse flow operation. (paper)

  6. Numerical method for the unsteady potential flow about pitching airfoils

    International Nuclear Information System (INIS)

    Parrouffe, J.-M.; Paraschivoiu, I.

    1985-01-01

    This paper presents a numerical method for the unsteady potential flow about an aerodynamic profile and in its wake. This study has many applications such as airplane wings and propellers, guide vanes, subcavitant hydrofoils and wind turbine blades. Typical of such nonstationary configurations is the rotor of the Darrieus vertical-axis wind turbine whose blades are exposed to cyclic aerodynamic loads in the operating state

  7. A novel hovering type of fixed wing aircraft with stealth capability

    Directory of Open Access Journals (Sweden)

    Valeriu DRĂGAN

    2010-12-01

    Full Text Available The tactical need for fixed wing aircraft with hovering capably has long been recognized bythe military for two reasons: increased safety when landing on aircraft carriers and higher velocitiesthat the ones obtainable with rotary wing aircraft.Thus far, the only concept governing the field of vertical flight was to use thrust either from a liftfan-F35, puffer ducts –Harrier or smaller jet engines-D0 31 or Yak-141, i.e. direct lift thrust.In this paper we will look at the prospect of using a combination of the Coanda effect with theVenturi effect to generate lift by so- called “supercirculation”. This novel approach can yield manyadvantages to conventional vertical lifting by providing a more stable platform and requiring lowerpower settings – and thus lower fuel consumption.The aircraft has a fixed, negatively sweped wing that uses circulation control to achieve lift atzero air speed. The fluid used for supercirculation will come from the fan thrust reversers – which, ifcorrectly managed, can give a sufficient flow for lifting the craft and also a negative thrust componentto compensate for the positive thrust of the primary flow (not diverted.

  8. Reversibility of female sterilization.

    Science.gov (United States)

    Siegler, A M; Hulka, J; Peretz, A

    1985-04-01

    The discussion considers the current status of reversibility of sterilization in the US and describes clinical and experimental efforts for developing techniques designed for reversibility. It focuses on regret following sterilization, reversal potential of current sterilization techniques, patient selection, current reversal techniques, results of sterilization procedures, experimental approaches to reversal of current techniques of sterilization, and sterilization procedures devised for reversibility, in humans and in animals. Request is the 1st stage of reversal, but a request for sterilization reversal (SR) does not always mean regret for a decision made at the time. Frequently it is a wish to restore fertility because life circumstances have changed after a sterilization that was ppropriate at the time it was performed. Schwyhart and Kutner reviewed 22 studies published between 1949-69 in which they found that the percentage of patients regretting the procedure ranged from 1.3-15%. Requests for reversal remain low in most countries, but if sterilization becomes a more popular method of contraception, requests will also increase. The ideal operation considered as a reversaible method of sterilization should include an easy, reliable outpatient method of tubal occlusion with miniml risk or patient discomfort that subsequently could be reversed without the need for a major surgical intervention. Endoscopic methods have progressed toward the 1st objective. A recent search of the literature uncovered few series of SR of more than 50 cases. The 767 operations found were analyzed with regard to pregnancy outcome. The precent of live births varied from 74-78.8%, and the occurance of tubal pregnancies ranged from 1.7-6.5%. All of the confounding variables in patient selection and small numbers of reported procedures preclude any conclusion about the different techniques or the number of operations that give a surgeon a level of expertise. Few authors classify their

  9. The optimal design of UAV wing structure

    Science.gov (United States)

    Długosz, Adam; Klimek, Wiktor

    2018-01-01

    The paper presents an optimal design of UAV wing, made of composite materials. The aim of the optimization is to improve strength and stiffness together with reduction of the weight of the structure. Three different types of functionals, which depend on stress, stiffness and the total mass are defined. The paper presents an application of the in-house implementation of the evolutionary multi-objective algorithm in optimization of the UAV wing structure. Values of the functionals are calculated on the basis of results obtained from numerical simulations. Numerical FEM model, consisting of different composite materials is created. Adequacy of the numerical model is verified by results obtained from the experiment, performed on a tensile testing machine. Examples of multi-objective optimization by means of Pareto-optimal set of solutions are presented.

  10. Optimization of aerodynamic efficiency for twist morphing MAV wing

    Directory of Open Access Journals (Sweden)

    N.I. Ismail

    2014-06-01

    Full Text Available Twist morphing (TM is a practical control technique in micro air vehicle (MAV flight. However, TM wing has a lower aerodynamic efficiency (CL/CD compared to membrane and rigid wing. This is due to massive drag penalty created on TM wing, which had overwhelmed the successive increase in its lift generation. Therefore, further CL/CDmax optimization on TM wing is needed to obtain the optimal condition for the morphing wing configuration. In this paper, two-way fluid–structure interaction (FSI simulation and wind tunnel testing method are used to solve and study the basic wing aerodynamic performance over (non-optimal TM, membrane and rigid wings. Then, a multifidelity data metamodel based design optimization (MBDO process is adopted based on the Ansys-DesignXplorer frameworks. In the adaptive MBDO process, Kriging metamodel is used to construct the final multifidelity CL/CD responses by utilizing 23 multi-fidelity sample points from the FSI simulation and experimental data. The optimization results show that the optimal TM wing configuration is able to produce better CL/CDmax magnitude by at least 2% than the non-optimal TM wings. The flow structure formation reveals that low TV strength on the optimal TM wing induces low CD generation which in turn improves its overall CL/CDmax performance.

  11. Quantifying the dynamic wing morphing of hovering hummingbird.

    Science.gov (United States)

    Maeda, Masateru; Nakata, Toshiyuki; Kitamura, Ikuo; Tanaka, Hiroto; Liu, Hao

    2017-09-01

    Animal wings are lightweight and flexible; hence, during flapping flight their shapes change. It has been known that such dynamic wing morphing reduces aerodynamic cost in insects, but the consequences in vertebrate flyers, particularly birds, are not well understood. We have developed a method to reconstruct a three-dimensional wing model of a bird from the wing outline and the feather shafts (rachides). The morphological and kinematic parameters can be obtained using the wing model, and the numerical or mechanical simulations may also be carried out. To test the effectiveness of the method, we recorded the hovering flight of a hummingbird ( Amazilia amazilia ) using high-speed cameras and reconstructed the right wing. The wing shape varied substantially within a stroke cycle. Specifically, the maximum and minimum wing areas differed by 18%, presumably due to feather sliding; the wing was bent near the wrist joint, towards the upward direction and opposite to the stroke direction; positive upward camber and the 'washout' twist (monotonic decrease in the angle of incidence from the proximal to distal wing) were observed during both half-strokes; the spanwise distribution of the twist was uniform during downstroke, but an abrupt increase near the wrist joint was found during upstroke.

  12. Differential Recognition of Pitch Patterns in Discrete and Gliding Stimuli in Congenital Amusia: Evidence from Mandarin Speakers

    Science.gov (United States)

    Liu, Fang; Xu, Yi; Patel, Aniruddh D.; Francart, Tom; Jiang, Cunmei

    2012-01-01

    This study examined whether "melodic contour deafness" (insensitivity to the direction of pitch movement) in congenital amusia is associated with specific types of pitch patterns (discrete versus gliding pitches) or stimulus types (speech syllables versus complex tones). Thresholds for identification of pitch direction were obtained using discrete…

  13. CFD Analysis of UAV Flying Wing

    Directory of Open Access Journals (Sweden)

    Vasile PRISACARIU

    2016-09-01

    Full Text Available Numerical methods for solving equations describing the evolution of 3D fluid experienced a significant development closely related to the progress of information systems. Today, especially in the field of fluid mechanics, numerical simulations allow the study of gas-thermodynamic confirmed by experimental techniques in wind tunnel conditions and actual flight tests for modeling complex aircraft. The article shows a case of numerical analysis of the lifting surface on the UAV type flying wing.

  14. Mother Nature inspires new wind turbine wing

    DEFF Research Database (Denmark)

    Sønderberg Petersen, L.

    2007-01-01

    The sight of a bird of prey hanging immobile in the air while its wings continuously adjust themselves slightly in relation to the wind in order to keep the bird in the same position in the air, is a sight that most of us have admired, including the windenergy scientists at Risø DTU. They have...... started transferring the principle to wind turbine blades to make them adaptive...

  15. Topology Optimization of an Aircraft Wing

    Science.gov (United States)

    2015-06-11

    which selected as the most prevalent independent structure in the wing. The tank location and shape was interpreted from the high material volume...Engineering Inc., 1820 E. Big Beaver Rd, Troy, MI 48083, Optistruct 12.0 User’s Guide, 2013. 126 10. T. Megson and H. Gordon, Aircraft structures for...software enhances the design of transportation,” Forbes Online, 2013. 13. Altair Engineering Inc., 1820 E. Big Beaver Rd, Troy, MI 48083, Hypermesh

  16. Quantum reverse hypercontractivity

    Energy Technology Data Exchange (ETDEWEB)

    Cubitt, Toby [Department of Computer Science, University College London, London, United Kingdom and Centre for Quantum Information and Foundations, DAMTP, University of Cambridge, Cambridge (United Kingdom); Kastoryano, Michael [NBIA, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen (Denmark); Montanaro, Ashley [School of Mathematics, University of Bristol, Bristol (United Kingdom); Temme, Kristan [Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125 (United States)

    2015-10-15

    We develop reverse versions of hypercontractive inequalities for quantum channels. By generalizing classical techniques, we prove a reverse hypercontractive inequality for tensor products of qubit depolarizing channels. We apply this to obtain a rapid mixing result for depolarizing noise applied to large subspaces and to prove bounds on a quantum generalization of non-interactive correlation distillation.

  17. Atrioventricular Pacemaker Lead Reversal

    Directory of Open Access Journals (Sweden)

    Mehmet K Aktas, MD

    2007-01-01

    Full Text Available During cardiac surgery temporary epicardial atrial and ventricular leads are placed in case cardiac pacing is required postoperatively. We present the first reported series of patients with reversal of atrioventricular electrodes in the temporary pacemaker without any consequent deleterious hemodynamic effect. We review the electrocardiographic findings and discuss the findings that lead to the discovery of atrioventricular lead reversal.

  18. Tracing the evolution of avian wing digits.

    Science.gov (United States)

    Xu, Xing; Mackem, Susan

    2013-06-17

    It is widely accepted that birds are a subgroup of dinosaurs, but there is an apparent conflict: modern birds have been thought to possess only the middle three fingers (digits II-III-IV) of an idealized five-digit tetrapod hand based on embryological data, but their Mesozoic tetanuran dinosaur ancestors are considered to have the first three digits (I-II-III) based on fossil evidence. How could such an evolutionary quirk arise? Various hypotheses have been proposed to resolve this paradox. Adding to the confusion, some recent developmental studies support a I-II-III designation for avian wing digits whereas some recent paleontological data are consistent with a II-III-IV identification of the Mesozoic tetanuran digits. A comprehensive analysis of both paleontological and developmental data suggests that the evolution of the avian wing digits may have been driven by homeotic transformations of digit identity, which are more likely to have occurred in a partial and piecemeal manner. Additionally, recent genetic studies in mouse models showing plausible mechanisms for central digit loss invite consideration of new alternative possibilities (I-II-IV or I-III-IV) for the homologies of avian wing digits. While much progress has been made, some advances point to the complexity of the problem and a final resolution to this ongoing debate demands additional work from both paleontological and developmental perspectives, which will surely yield new insights on mechanisms of evolutionary adaptation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Selective attention to sound location or pitch studied with fMRI.

    Science.gov (United States)

    Degerman, Alexander; Rinne, Teemu; Salmi, Juha; Salonen, Oili; Alho, Kimmo

    2006-03-10

    We used 3-T functional magnetic resonance imaging to compare the brain mechanisms underlying selective attention to sound location and pitch. In different tasks, the subjects (N = 10) attended to a designated sound location or pitch or to pictures presented on the screen. In the Attend Location conditions, the sound location varied randomly (left or right), while the pitch was kept constant (high or low). In the Attend Pitch conditions, sounds of randomly varying pitch (high or low) were presented at a constant location (left or right). Both attention to location and attention to pitch produced enhanced activity (in comparison with activation caused by the same sounds when attention was focused on the pictures) in widespread areas of the superior temporal cortex. Attention to either sound feature also activated prefrontal and inferior parietal cortical regions. These activations were stronger during attention to location than during attention to pitch. Attention to location but not to pitch produced a significant increase of activation in the premotor/supplementary motor cortices of both hemispheres and in the right prefrontal cortex, while no area showed activity specifically related to attention to pitch. The present results suggest some differences in the attentional selection of sounds on the basis of their location and pitch consistent with the suggested auditory "what" and "where" processing streams.

  20. Prediction of HS Soderberg plant PAH emissions from a laboratory evaluation of a pitch

    Energy Technology Data Exchange (ETDEWEB)

    Castonguay, L.; Mirtchi, A. A.; Proulx, A. L.; Savard, G.; Simard, E.; Steward, N.; Tremblay, C. [Alcan International Ltd., Arvida Research and Development Centre, Jonquiere, PQ (Canada)

    1998-12-31

    The presence of certain polycyclic aromatic hydrocarbons (PAHs) in coal tar pitch has been identified as a possible limit to the long-term viability of horizontal stud (HS) Soderberg technology, a technology of importance in the aluminum industry. This paper presents the results of a comparative study of pitch PAH content and HS Soderberg cell emissions. Laboratory results are compared with plant emissions for two regular and low PAH pitches with the same softening points. The results indicate the existence of a correlation between pitch PAH content and cell emission, which is valid for regular tar pitches, low tar pitches, as well as for hybrid pitches. These findings make it possible to predict the quantity and distribution of HS Soderberg cell PAH emissions from the analysis of PAHs in the pitch. The results also justify the conclusion that the emission of genotoxic compounds from pitch in the HS Soderberg technology can be decreased by using a pitch with low PAH content. 4 refs., 5 tabs., 5 figs.