#### Sample records for windowed discrete fourier

1. 2D discrete Fourier transform on sliding windows.

Science.gov (United States)

Park, Chun-Su

2015-03-01

Discrete Fourier transform (DFT) is the most widely used method for determining the frequency spectra of digital signals. In this paper, a 2D sliding DFT (2D SDFT) algorithm is proposed for fast implementation of the DFT on 2D sliding windows. The proposed 2D SDFT algorithm directly computes the DFT bins of the current window using the precalculated bins of the previous window. Since the proposed algorithm is designed to accelerate the sliding transform process of a 2D input signal, it can be directly applied to computer vision and image processing applications. The theoretical analysis shows that the computational requirement of the proposed 2D SDFT algorithm is the lowest among existing 2D DFT algorithms. Moreover, the output of the 2D SDFT is mathematically equivalent to that of the traditional DFT at all pixel positions.

2. Discrete Fourier analysis of multigrid algorithms

NARCIS (Netherlands)

van der Vegt, Jacobus J.W.; Rhebergen, Sander

2011-01-01

The main topic of this report is a detailed discussion of the discrete Fourier multilevel analysis of multigrid algorithms. First, a brief overview of multigrid methods is given for discretizations of both linear and nonlinear partial differential equations. Special attention is given to the

3. Implementation of quantum and classical discrete fractional Fourier transforms

Science.gov (United States)

Weimann, Steffen; Perez-Leija, Armando; Lebugle, Maxime; Keil, Robert; Tichy, Malte; Gräfe, Markus; Heilmann, René; Nolte, Stefan; Moya-Cessa, Hector; Weihs, Gregor; Christodoulides, Demetrios N.; Szameit, Alexander

2016-01-01

Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools. PMID:27006089

4. Implementation of quantum and classical discrete fractional Fourier transforms.

Science.gov (United States)

Weimann, Steffen; Perez-Leija, Armando; Lebugle, Maxime; Keil, Robert; Tichy, Malte; Gräfe, Markus; Heilmann, René; Nolte, Stefan; Moya-Cessa, Hector; Weihs, Gregor; Christodoulides, Demetrios N; Szameit, Alexander

2016-03-23

Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools.

5. Geometric interpretations of the Discrete Fourier Transform (DFT)

Science.gov (United States)

Campbell, C. W.

1984-01-01

One, two, and three dimensional Discrete Fourier Transforms (DFT) and geometric interpretations of their periodicities are presented. These operators are examined for their relationship with the two sided, continuous Fourier transform. Discrete or continuous transforms of real functions have certain symmetry properties. The symmetries are examined for the one, two, and three dimensional cases. Extension to higher dimension is straight forward.

6. Discrete frequency identification using the HP 5451B Fourier analyser

International Nuclear Information System (INIS)

Holland, L.; Barry, P.

1977-01-01

The frequency analysis by the HP5451B discrete frequency Fourier analyser is studied. The advantages of cross correlation analysis to identify discrete frequencies in a background noise are discussed in conjuction with the elimination of aliasing and wraparound error. Discrete frequency identification is illustrated by a series of graphs giving the results of analysing 'electrical' and 'acoustical' white noise and sinusoidal signals [pt

7. Two-dimensional windowed Fourier frames for noise reduction in fringe pattern analysis

Science.gov (United States)

Kemao, Qian; Soon, Seah Hock

2005-07-01

The two-dimensional continuous windowed Fourier transform has been shown to be effective for fringe pattern analysis in our previous work. In this paper, we first estimate the sampling intervals, using frame theory, to discretize the transform. Suitable sampling intervals are estimated as 1/σx and 1/σy, which is verified by simulations. Noise reduction using windowed Fourier frames is then investigated and compared with that using the orthogonal wavelet transform. Due to the coherence of its kernels and fringe patterns and its redundancy, windowed Fourier frames are able to reduce noise more effectively, which is verified by processing both simulated and experimental fringe patterns. The relative errors are reduced by half, in various simulations, from those with orthogonal wavelet filtering.

8. On the physical relevance of the discrete Fourier transform

CSIR Research Space (South Africa)

Greben, JM

1991-11-01

Full Text Available This paper originated from the author's dissatisfaction with the way the discrete Fourier transform is usually presented in the literature. Although mathematically correct, the physical meaning of the common representation is unsatisfactory...

9. A discrete Fourier transform for virtual memory machines

Science.gov (United States)

Galant, David C.

1992-01-01

An algebraic theory of the Discrete Fourier Transform is developed in great detail. Examination of the details of the theory leads to a computationally efficient fast Fourier transform for the use on computers with virtual memory. Such an algorithm is of great use on modern desktop machines. A FORTRAN coded version of the algorithm is given for the case when the sequence of numbers to be transformed is a power of two.

10. Properties of the Simpson discrete fourier transform | Singh ...

African Journals Online (AJOL)

The Simpson discrete Fourier transform (SDFT) and its inverse are transformations relating the time and frequency domains. In this paper we state and prove the important properties of shift, circular convolution, conjugation, time reversal and Plancherel's theorem. In addition, we provide an alternative representation of the ...

11. Polyphase-discrete Fourier transform spectrum analysis for the Search for Extraterrestrial Intelligence sky survey

Science.gov (United States)

Zimmerman, G. A.; Gulkis, S.

1991-01-01

The sensitivity of a matched filter-detection system to a finite-duration continuous wave (CW) tone is compared with the sensitivities of a windowed discrete Fourier transform (DFT) system and an ideal bandpass filter-bank system. These comparisons are made in the context of the NASA Search for Extraterrestrial Intelligence (SETI) microwave observing project (MOP) sky survey. A review of the theory of polyphase-DFT filter banks and its relationship to the well-known windowed-DFT process is presented. The polyphase-DFT system approximates the ideal bandpass filter bank by using as few as eight filter taps per polyphase branch. An improvement in sensitivity of approx. 3 dB over a windowed-DFT system can be obtained by using the polyphase-DFT approach. Sidelobe rejection of the polyphase-DFT system is vastly superior to the windowed-DFT system, thereby improving its performance in the presence of radio frequency interference (RFI).

12. Discrete Fourier Transform Analysis in a Complex Vector Space

Science.gov (United States)

Dean, Bruce H.

2009-01-01

Alternative computational strategies for the Discrete Fourier Transform (DFT) have been developed using analysis of geometric manifolds. This approach provides a general framework for performing DFT calculations, and suggests a more efficient implementation of the DFT for applications using iterative transform methods, particularly phase retrieval. The DFT can thus be implemented using fewer operations when compared to the usual DFT counterpart. The software decreases the run time of the DFT in certain applications such as phase retrieval that iteratively call the DFT function. The algorithm exploits a special computational approach based on analysis of the DFT as a transformation in a complex vector space. As such, this approach has the potential to realize a DFT computation that approaches N operations versus Nlog(N) operations for the equivalent Fast Fourier Transform (FFT) calculation.

13. Discrete Fourier Transform in a Complex Vector Space

Science.gov (United States)

Dean, Bruce H. (Inventor)

2015-01-01

An image-based phase retrieval technique has been developed that can be used on board a space based iterative transformation system. Image-based wavefront sensing is computationally demanding due to the floating-point nature of the process. The discrete Fourier transform (DFT) calculation is presented in "diagonal" form. By diagonal we mean that a transformation of basis is introduced by an application of the similarity transform of linear algebra. The current method exploits the diagonal structure of the DFT in a special way, particularly when parts of the calculation do not have to be repeated at each iteration to converge to an acceptable solution in order to focus an image.

14. The discrete Fourier transform theory, algorithms and applications

CERN Document Server

Sundaraajan, D

2001-01-01

This authoritative book provides comprehensive coverage of practical Fourier analysis. It develops the concepts right from the basics and gradually guides the reader to the advanced topics. It presents the latest and practically efficient DFT algorithms, as well as the computation of discrete cosine and Walsh-Hadamard transforms. The large number of visual aids such as figures, flow graphs and flow charts makes the mathematical topic easy to understand. In addition, the numerous examples and the set of C-language programs (a supplement to the book) help greatly in understanding the theory and

15. A patch near-field acoustical holography procedure based on a generalized discrete Fourier series

Science.gov (United States)

Pasqual, A. M.

2017-06-01

Planar near-field acoustical holography (NAH) can be used to reconstruct a three-dimensional sound field from sound pressure data measured by a planar microphone array. The conventional planar NAH makes use of the discrete Fourier transform (DFT) to process the measured data, yielding a low computational cost. However, if the measurement aperture does not fully cover the sound source extension, the spatial windowing will lead to severe reconstruction errors. Many patch NAH methods have been proposed to allow measurement apertures smaller than the source size, such as the statistically optimized NAH (SONAH), which is not based on the DFT. These methods have proven to outperform the conventional NAH for small measurement apertures, but with an increased computation time and more complex implementation. This paper introduces an alternative patch procedure for planar NAH that replaces the DFT with a so-called "generalized discrete Fourier series" (GDFS). Unlike the DFT, the periods of the two-dimensional GDFS and the number of Fourier coefficients are made larger than the measurement aperture and the number of microphones, respectively. Then, the Fourier coefficients are evaluated in the least-norm sense. This reduces the spectral leakage due to the spatial windowing, improving the NAH results. As a numerical example, a simply supported plate driven by a point force is considered, and patches of the plate normal velocity are estimated from simulations of the radiated sound pressure on a small microphone array. It is shown that the GDFS-based method might lead to reconstructed velocity fields as accurate as SONAH, or even more accurate. However, unlike SONAH, the proposed method presents a low computational cost and a straightforward implementation. Therefore, it is a worthy alternative to the currently available patch procedures for planar NAH.

16. Preconditioners based on windowed Fourier frames applied to elliptic partial differential equations

NARCIS (Netherlands)

Bhowmik, S.K.; Stolk, C.C.

2011-01-01

We investigate the application of windowed Fourier frames to the numerical solution of partial differential equations, focussing on elliptic equations. The action of a partial differential operator (PDO) on a windowed plane wave is close to a multiplication, where the multiplication factor is given

17. The invariance of current energy fourier spectrum of discrete real signals on finite intervals

Directory of Open Access Journals (Sweden)

Ponomarev V. A.

2014-02-01

Full Text Available Digital spectral analysis of signals based on DFT has a number of advantages. However, the transition from analog to digital methods and techniques is accompanied by a number of undesirable effects. Signals in each subject area usually have their own specifics. Therefore, it is necessary to study these effects in applications of spectral Fourier analysis. Such research is important for three reasons. Firstly, DFT properties are accurate, have their own specificity and significantly differ from the properties of the Fourier transform of continuous signals. Secondly, signals in each subject area have their own specificity. Thirdly, researchers often have prevailing knowledge in some particular domain, rather than in the field of digital signal processing techniques. As a result, in practice, some of the processes and effects arising in applications of digital spectral analysis, unfortunately, escape the attention of researchers which can result in erroneous conclusions. The paper deals with the problems of measuring Fourier spectrum of signals in the base of discrete exponential functions. Methods and algorithms of sliding measurements of energy Fourier spectrum of signals on finite intervals were described. The invariance of current energy Fourier spectrum to moving discrete real signals (which are not periodic were investigated. The authors identify a new effect of digital spectral analysis — the effect of non-invariance of the current energy Fourier spectrum. Theoretical and practical results of analysis of invariance of current energy Fourier spectrum of tonal components are shown. The conducted studies allow us: — to see in a new light the measurement results on finite intervals of current Fourier spectrum and the current energy Fourier spectra of signals; give a numerical estimate of the non-invariance of the current energy Fourier spectrum of real tonal components. — to increase the effectiveness of digital spectral analysis in its

18. Discrete Fourier and wavelet transforms an introduction through linear algebra with applications to signal processing

CERN Document Server

Goodman, Roe W

2016-01-01

This textbook for undergraduate mathematics, science, and engineering students introduces the theory and applications of discrete Fourier and wavelet transforms using elementary linear algebra, without assuming prior knowledge of signal processing or advanced analysis.It explains how to use the Fourier matrix to extract frequency information from a digital signal and how to use circulant matrices to emphasize selected frequency ranges. It introduces discrete wavelet transforms for digital signals through the lifting method and illustrates through examples and computer explorations how these transforms are used in signal and image processing. Then the general theory of discrete wavelet transforms is developed via the matrix algebra of two-channel filter banks. Finally, wavelet transforms for analog signals are constructed based on filter bank results already presented, and the mathematical framework of multiresolution analysis is examined.

19. The quantum state vector in phase space and Gabor's windowed Fourier transform

International Nuclear Information System (INIS)

Bracken, A J; Watson, P

2010-01-01

Representations of quantum state vectors by complex phase space amplitudes, complementing the description of the density operator by the Wigner function, have been defined by applying the Weyl-Wigner transform to dyadic operators, linear in the state vector and anti-linear in a fixed 'window state vector'. Here aspects of this construction are explored, and a connection is established with Gabor's 'windowed Fourier transform'. The amplitudes that arise for simple quantum states from various choices of windows are presented as illustrations. Generalized Bargmann representations of the state vector appear as special cases, associated with Gaussian windows. For every choice of window, amplitudes lie in a corresponding linear subspace of square-integrable functions on phase space. A generalized Born interpretation of amplitudes is described, with both the Wigner function and a generalized Husimi function appearing as quantities linear in an amplitude and anti-linear in its complex conjugate. Schroedinger's time-dependent and time-independent equations are represented on phase space amplitudes, and their solutions described in simple cases.

20. Robust alignment of chromatograms by statistically analyzing the shifts matrix generated by moving window fast Fourier transform cross-correlation.

Science.gov (United States)

Zhang, Mingjing; Wen, Ming; Zhang, Zhi-Min; Lu, Hongmei; Liang, Yizeng; Zhan, Dejian

2015-03-01

Retention time shift is one of the most challenging problems during the preprocessing of massive chromatographic datasets. Here, an improved version of the moving window fast Fourier transform cross-correlation algorithm is presented to perform nonlinear and robust alignment of chromatograms by analyzing the shifts matrix generated by moving window procedure. The shifts matrix in retention time can be estimated by fast Fourier transform cross-correlation with a moving window procedure. The refined shift of each scan point can be obtained by calculating the mode of corresponding column of the shifts matrix. This version is simple, but more effective and robust than the previously published moving window fast Fourier transform cross-correlation method. It can handle nonlinear retention time shift robustly if proper window size has been selected. The window size is the only one parameter needed to adjust and optimize. The properties of the proposed method are investigated by comparison with the previous moving window fast Fourier transform cross-correlation and recursive alignment by fast Fourier transform using chromatographic datasets. The pattern recognition results of a gas chromatography mass spectrometry dataset of metabolic syndrome can be improved significantly after preprocessing by this method. Furthermore, the proposed method is available as an open source package at https://github.com/zmzhang/MWFFT2. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

1. A Parallel Framework with Block Matrices of a Discrete Fourier Transform for Vector-Valued Discrete-Time Signals

Directory of Open Access Journals (Sweden)

Pablo Soto-Quiros

2015-01-01

Full Text Available This paper presents a parallel implementation of a kind of discrete Fourier transform (DFT: the vector-valued DFT. The vector-valued DFT is a novel tool to analyze the spectra of vector-valued discrete-time signals. This parallel implementation is developed in terms of a mathematical framework with a set of block matrix operations. These block matrix operations contribute to analysis, design, and implementation of parallel algorithms in multicore processors. In this work, an implementation and experimental investigation of the mathematical framework are performed using MATLAB with the Parallel Computing Toolbox. We found that there is advantage to use multicore processors and a parallel computing environment to minimize the high execution time. Additionally, speedup increases when the number of logical processors and length of the signal increase.

2. An Efficient Algorithm for the Discrete Gabor Transform using full length Windows

DEFF Research Database (Denmark)

Søndergaard, Peter Lempel

2009-01-01

This paper extends the efficient factorization of the Gabor frame operator developed by Strohmer (1998) to the Gabor analysis/synthesis operator. This provides a fast method for computing the discrete Gabor transform (DGT) and several algorithms associated with it. The algorithm is used...... for the case when the involved window and signal have the same length....

3. Discrete fourier transform (DFT) analysis for applications using iterative transform methods

Science.gov (United States)

Dean, Bruce H. (Inventor)

2012-01-01

According to various embodiments, a method is provided for determining aberration data for an optical system. The method comprises collecting a data signal, and generating a pre-transformation algorithm. The data is pre-transformed by multiplying the data with the pre-transformation algorithm. A discrete Fourier transform of the pre-transformed data is performed in an iterative loop. The method further comprises back-transforming the data to generate aberration data.

4. Time dependent and asymptotic neutron number probability distribution calculation using discrete Fourier transform

International Nuclear Information System (INIS)

Humbert, Ph.

2005-01-01

In this paper we consider the probability distribution of neutrons in a multiplying assembly. The problem is studied using a space independent one group neutron point reactor model without delayed neutrons. We recall the generating function methodology and analytical results obtained by G.I. Bell when the c 2 approximation is used and we present numerical solutions in the general case, without this approximation. The neutron source induced distribution is calculated using the single initial neutron distribution which satisfies a master (Kolmogorov backward) equation. This equation is solved using the generating function method. The generating function satisfies a differential equation and the probability distribution is derived by inversion of the generating function. Numerical results are obtained using the same methodology where the generating function is the Fourier transform of the probability distribution. Discrete Fourier transforms are used to calculate the discrete time dependent distributions and continuous Fourier transforms are used to calculate the asymptotic continuous probability distributions. Numerical applications are presented to illustrate the method. (author)

5. Radial artery pulse waveform analysis based on curve fitting using discrete Fourier series.

Science.gov (United States)

Jiang, Zhixing; Zhang, David; Lu, Guangming

2018-04-19

Radial artery pulse diagnosis has been playing an important role in traditional Chinese medicine (TCM). For its non-invasion and convenience, the pulse diagnosis has great significance in diseases analysis of modern medicine. The practitioners sense the pulse waveforms in patients' wrist to make diagnoses based on their non-objective personal experience. With the researches of pulse acquisition platforms and computerized analysis methods, the objective study on pulse diagnosis can help the TCM to keep up with the development of modern medicine. In this paper, we propose a new method to extract feature from pulse waveform based on discrete Fourier series (DFS). It regards the waveform as one kind of signal that consists of a series of sub-components represented by sine and cosine (SC) signals with different frequencies and amplitudes. After the pulse signals are collected and preprocessed, we fit the average waveform for each sample using discrete Fourier series by least squares. The feature vector is comprised by the coefficients of discrete Fourier series function. Compared with the fitting method using Gaussian mixture function, the fitting errors of proposed method are smaller, which indicate that our method can represent the original signal better. The classification performance of proposed feature is superior to the other features extracted from waveform, liking auto-regression model and Gaussian mixture model. The coefficients of optimized DFS function, who is used to fit the arterial pressure waveforms, can obtain better performance in modeling the waveforms and holds more potential information for distinguishing different psychological states. Copyright © 2018 Elsevier B.V. All rights reserved.

6. Mastering the discrete Fourier transform in one, two or several dimensions pitfalls and artifacts

CERN Document Server

Amidror, Isaac

2013-01-01

The discrete Fourier transform (DFT) is an extremely useful tool that finds application in many different disciplines. However, its use requires caution. The aim of this book is to explain the DFT and its various artifacts and pitfalls and to show how to avoid these (whenever possible), or at least how to recognize them in order to avoid misinterpretations. This concentrated treatment of the DFT artifacts and pitfalls in a single volume is, indeed, new, and it makes this book a valuable source of information for the widest possible range of DFT users. Special attention is given to the one and

7. Introduction to the discrete Fourier series considering both mathematical and engineering aspects - A linear-algebra approach

Directory of Open Access Journals (Sweden)

Ludwig Kohaupt

2015-12-01

Full Text Available The discrete Fourier series is a valuable tool developed and used by mathematicians and engineers alike. One of the most prominent applications is signal processing. Usually, it is important that the signals be transmitted fast, for example, when transmitting images over large distances such as between the moon and the earth or when generating images in computer tomography. In order to achieve this, appropriate algorithms are necessary. In this context, the fast Fourier transform (FFT plays a key role which is an algorithm for calculating the discrete Fourier transform (DFT; this, in turn, is tightly connected with the discrete Fourier series. The last one itself is the discrete analog of the common (continuous-time Fourier series and is usually learned by mathematics students from a theoretical point of view. The aim of this expository/pedagogical paper is to give an introduction to the discrete Fourier series for both mathematics and engineering students. It is intended to expand the purely mathematical view; the engineering aspect is taken into account by applying the FFT to an example from signal processing that is small enough to be used in class-room teaching and elementary enough to be understood also by mathematics students. The MATLAB program is employed to do the computations.

8. Estimation of Interchannel Time Difference in Frequency Subbands Based on Nonuniform Discrete Fourier Transform

Directory of Open Access Journals (Sweden)

Qiu Bo

2008-01-01

Full Text Available Binaural cue coding (BCC is an efficient technique for spatial audio rendering by using the side information such as interchannel level difference (ICLD, interchannel time difference (ICTD, and interchannel correlation (ICC. Of the side information, the ICTD plays an important role to the auditory spatial image. However, inaccurate estimation of the ICTD may lead to the audio quality degradation. In this paper, we develop a novel ICTD estimation algorithm based on the nonuniform discrete Fourier transform (NDFT and integrate it with the BCC approach to improve the decoded auditory image. Furthermore, a new subjective assessment method is proposed for the evaluation of auditory image widths of decoded signals. The test results demonstrate that the NDFT-based scheme can achieve much wider and more externalized auditory image than the existing BCC scheme based on the discrete Fourier transform (DFT. It is found that the present technique, regardless of the image width, does not deteriorate the sound quality at the decoder compared to the traditional scheme without ICTD estimation.

9. Post-processing of EPR spectrum from dosimetric substances through filtering of Discrete Fourier Transform

International Nuclear Information System (INIS)

Vieira, Fabio P.B.; Bevilacqua, Joyce S.

2014-01-01

The use of electron paramagnetic resonance spectrometers - EPR - in radiation dosimetry is known for more than four decades. It is an important tool in the retrospective determination of doses absorbed. To estimate the dose absorbed by the sample, it is necessary to know the amplitude of the peak to peak signature of the substance in its EPR spectrum. This information can be compromised by the presence of spurious information: noise - of random and low intensity nature; and the behavior of the baseline - coming from the coupling between the resonator tube and the sample analyzed. Due to the intrinsic characteristics of the three main components of the signal, i.e. signature, noise, and baseline - the analysis in the frequency domain allows, through post-processing techniques to filter spurious information. In this work, an algorithm that retrieves the signature of a substance has been implemented. The Discrete Fourier Transform is applied to the signal and without user intervention, the noise is filtered. From the filtered signal, recovers the signature by Inverse Discrete Fourier Transform. The peak to peak amplitude, and the absorbed dose is calculated with an error of less than 1% for signals wherein the base line is linearized. Some more general cases are under investigation and with little user intervention, you can get the same error

10. Fourier techniques in X-ray timing

NARCIS (Netherlands)

van der Klis, M.

1988-01-01

Basic principles of Fourier techniques often used in X-ray time series analysis are reviewed. The relation between the discrete Fourier transform and the continuous Fourier transform is discussed to introduce the concepts of windowing and aliasing. The relation is derived between the power spectrum

11. Discrete Fourier transformation processor based on complex radix (−1 + j number system

Directory of Open Access Journals (Sweden)

2017-02-01

Full Text Available Complex radix (−1 + j allows the arithmetic operations of complex numbers to be done without treating the divide and conquer rules, which offers the significant speed improvement of complex numbers computation circuitry. Design and hardware implementation of complex radix (−1 + j converter has been introduced in this paper. Extensive simulation results have been incorporated and an application of this converter towards the implementation of discrete Fourier transformation (DFT processor has been presented. The functionality of the DFT processor have been verified in Xilinx ISE design suite version 14.7 and performance parameters like propagation delay and dynamic switching power consumption have been calculated by Virtuoso platform in Cadence. The proposed DFT processor has been implemented through conversion, multiplication and addition. The performance parameter matrix in terms of delay and power consumption offered a significant improvement over other traditional implementation of DFT processor.

12. Experimental demonstration of an OFDM receiver based on a silicon-nanophot onic discrete Fourier transform filter

DEFF Research Database (Denmark)

Da Ros, Francesco; Nolle, Markus; Meuer, C.

2014-01-01

We experimentally demonstrate the demultiplexing of 8×13.4 Gbaud OFDM-QPSK subcarriers using a silicon nanophotonic-based discrete Fourier transform (DFT) filter. All eight subcarriers showed less than 1.5 dB OSNR penalty compared to the theoretical limit.......We experimentally demonstrate the demultiplexing of 8×13.4 Gbaud OFDM-QPSK subcarriers using a silicon nanophotonic-based discrete Fourier transform (DFT) filter. All eight subcarriers showed less than 1.5 dB OSNR penalty compared to the theoretical limit....

13. Introduction to the Discrete Fourier Series Considering Both Mathematical and Engineering Aspects--A Linear Algebra Approach

Science.gov (United States)

Kohaupt, Ludwig

2015-01-01

The discrete Fourier series is a valuable tool developed and used by mathematicians and engineers alike. One of the most prominent applications is signal processing. Usually, it is important that the signals be transmitted fast, for example, when transmitting images over large distances such as between the moon and the earth or when generating…

14. Cell shape characterization and classification with discrete Fourier transforms and self-organizing maps.

Science.gov (United States)

Kriegel, Fabian L; Köhler, Ralf; Bayat-Sarmadi, Jannike; Bayerl, Simon; Hauser, Anja E; Niesner, Raluca; Luch, Andreas; Cseresnyes, Zoltan

2018-03-01

Cells in their natural environment often exhibit complex kinetic behavior and radical adjustments of their shapes. This enables them to accommodate to short- and long-term changes in their surroundings under physiological and pathological conditions. Intravital multi-photon microscopy is a powerful tool to record this complex behavior. Traditionally, cell behavior is characterized by tracking the cells' movements, which yields numerous parameters describing the spatiotemporal characteristics of cells. Cells can be classified according to their tracking behavior using all or a subset of these kinetic parameters. This categorization can be supported by the a priori knowledge of experts. While such an approach provides an excellent starting point for analyzing complex intravital imaging data, faster methods are required for automated and unbiased characterization. In addition to their kinetic behavior, the 3D shape of these cells also provide essential clues about the cells' status and functionality. New approaches that include the study of cell shapes as well may also allow the discovery of correlations amongst the track- and shape-describing parameters. In the current study, we examine the applicability of a set of Fourier components produced by Discrete Fourier Transform (DFT) as a tool for more efficient and less biased classification of complex cell shapes. By carrying out a number of 3D-to-2D projections of surface-rendered cells, the applied method reduces the more complex 3D shape characterization to a series of 2D DFTs. The resulting shape factors are used to train a Self-Organizing Map (SOM), which provides an unbiased estimate for the best clustering of the data, thereby characterizing groups of cells according to their shape. We propose and demonstrate that such shape characterization is a powerful addition to, or a replacement for kinetic analysis. This would make it especially useful in situations where live kinetic imaging is less practical or not

15. Performance measures for parameter extraction of sensor array point targets using the discrete chirp Fourier transform

Science.gov (United States)

Santiago, Nayda; Aceros Moreno, Cesar A.; Rodriguez, Domingo

2006-05-01

This work presents a new methodology for the formulation of discrete chirp Fourier transform (DCFT) algorithms and it discusses performance measures pertaining to the mapping of these algorithms to hardware computational structures (HCS) as well as the extraction of chirp rate estimation parameters of multicomponent nonstationary signals arriving from point targets. The methodology centers on the use of Kronecker products algebra, a branch of finite dimensional multilinear algebra, as a language to present a canonical formulation of the DCFT algorithm and its associated properties. The methodology also explains how to search for variants of this canonical formulation that contribute to enhance the mapping process to a target HCS. The parameter extraction technique uses time-frequency properties of the DCFT in a modeled delay-Doppler synthetic aperture radar (SAR) remote sensing and surveillance environment to treat multicomponent return signals of prime length, with additive Gaussian noise as background clutter, and extract associated chirp rate parameters. The fusion of time-frequency information, acquired from transformed chirp or linear frequency modulated (FM) signals using the DCFT, with information obtained when the signals are treated using the discrete ambiguity function acting as point target response, point spread function, or impulse response, is used to further enhance the estimation process. For the case of very long signals, parallel algorithm implementations have been obtained on cluster computers. A theoretical computer performance analysis was conducted on the cluster implementation based on a methodology that applies well-defined design of experiments methods to the identification of relations among different levels in the process of mapping computational operations to high-performance computing systems. The use of statistics for identification of relationships among factors has formalized the search for solutions to the mapping problem and this

16. Large-scale chromosome folding versus genomic DNA sequences: A discrete double Fourier transform technique.

Science.gov (United States)

Chechetkin, V R; Lobzin, V V

2017-08-07

Using state-of-the-art techniques combining imaging methods and high-throughput genomic mapping tools leaded to the significant progress in detailing chromosome architecture of various organisms. However, a gap still remains between the rapidly growing structural data on the chromosome folding and the large-scale genome organization. Could a part of information on the chromosome folding be obtained directly from underlying genomic DNA sequences abundantly stored in the databanks? To answer this question, we developed an original discrete double Fourier transform (DDFT). DDFT serves for the detection of large-scale genome regularities associated with domains/units at the different levels of hierarchical chromosome folding. The method is versatile and can be applied to both genomic DNA sequences and corresponding physico-chemical parameters such as base-pairing free energy. The latter characteristic is closely related to the replication and transcription and can also be used for the assessment of temperature or supercoiling effects on the chromosome folding. We tested the method on the genome of E. coli K-12 and found good correspondence with the annotated domains/units established experimentally. As a brief illustration of further abilities of DDFT, the study of large-scale genome organization for bacteriophage PHIX174 and bacterium Caulobacter crescentus was also added. The combined experimental, modeling, and bioinformatic DDFT analysis should yield more complete knowledge on the chromosome architecture and genome organization. Copyright © 2017 Elsevier Ltd. All rights reserved.

17. Discrete Fourier Transform-Based Multivariate Image Analysis: Application to Modeling of Aromatase Inhibitory Activity.

Science.gov (United States)

Barigye, Stephen J; Freitas, Matheus P; Ausina, Priscila; Zancan, Patricia; Sola-Penna, Mauro; Castillo-Garit, Juan A

2018-02-12

We recently generalized the formerly alignment-dependent multivariate image analysis applied to quantitative structure-activity relationships (MIA-QSAR) method through the application of the discrete Fourier transform (DFT), allowing for its application to noncongruent and structurally diverse chemical compound data sets. Here we report the first practical application of this method in the screening of molecular entities of therapeutic interest, with human aromatase inhibitory activity as the case study. We developed an ensemble classification model based on the two-dimensional (2D) DFT MIA-QSAR descriptors, with which we screened the NCI Diversity Set V (1593 compounds) and obtained 34 chemical compounds with possible aromatase inhibitory activity. These compounds were docked into the aromatase active site, and the 10 most promising compounds were selected for in vitro experimental validation. Of these compounds, 7419 (nonsteroidal) and 89 201 (steroidal) demonstrated satisfactory antiproliferative and aromatase inhibitory activities. The obtained results suggest that the 2D-DFT MIA-QSAR method may be useful in ligand-based virtual screening of new molecular entities of therapeutic utility.

18. Windows

DEFF Research Database (Denmark)

Heiselberg, Per; Svidt, Kjeld; Nielsen, Peter V.

In natural ventilation systems fresh air is often provided through opening of windows. However, the knowledge of the performance of windows is rather limited. Computation of natural ventilation air flow through windows is most commonly made using discharge coefficients, that are regarded as being...... constant. The reported results show that the discharge coefficient for a window opening cannot be regarded as a constant and that it varies considerably with the size of the opening area, the window type and the temperature difference. Therefore, the use of a constant value can lead to serious errors...

19. Numerical computation of the discrete Fourier transform and its applications in the statistic processing of experimental data

International Nuclear Information System (INIS)

1977-06-01

The Integral Fourier Transform has a large range of applications in such areas as communication theory, circuit theory, physics, etc. In order to perform discrete Fourier Transform the Finite Fourier Transform is defined; it operates upon N samples of a uniformely sampled continuous function. All the properties known in the continuous case can be found in the discrete case also. The first part of the paper presents the relationship between the Finite Fourier Transform and the Integral one. The computing of a Finite Fourier Transform is a problem in itself since in order to transform a set of N data we have to perform N 2 ''operations'' if the transformation relations are used directly. An algorithm known as the Fast Fourier Transform (FFT) reduces this figure from N 2 to a more reasonable Nlog 2 N, when N is a power of two. The original Cooley and Tuckey algorithm for FFT can be further improved when higher basis are used. The price to be paid in this case is the increase in complexity of such algorithms. The recurrence relations and a comparation among such algorithms are presented. The key point in understanding the application of FFT resides in the convolution theorem which states that the convolution (an N 2 type procedure) of the primitive functions is equivalent to the ordinar multiplication of their transforms. Since filtering is actually a convolution process we present several procedures to perform digital filtering by means of FFT. The best is the one using the segmentation of records and the transformation of pairs of records. In the digital processing of signals, besides digital filtering a special attention is paid to the estimation of various statistical characteristics of a signal as: autocorrelation and correlation functions, periodiograms, density power sepctrum, etc. We give several algorithms for the consistent and unbiased estimation of such functions, by means of FFT. (author)

20. A planar waveguide optical discrete Fourier transformer design for 160 Gb/s all-optical OFDM systems

Science.gov (United States)

Li, Wei; Liang, Xiaojun; Ma, Weidong; Zhou, Tianhong; Huang, Benxiong; Liu, Deming

2010-01-01

A cost-effective all-optical discrete Fourier transformer (ODFT) is designed based on a silicon planar lightwave circuit (PLC), which can be applied to all-optical orthogonal frequency division multiplexing (OFDM) transmission systems and can be achieved by current techniques. It consists of 2 × 2 directional couplers, phase shifters and optical delay lines. Metal-film heaters are used as phase shifters, according to the thermooptic effect of SiO 2. Based on the ODFT, a 160 Gb/s OFDM system is set up. Simulation results show excellent bit error rate (BER) and optical signal-to-noise ratio (OSNR) performances after 400 km transmission.

1. Secure Hashing of Dynamic Hand Signatures Using Wavelet-Fourier Compression with BioPhasor Mixing and Discretization

Directory of Open Access Journals (Sweden)

Wai Kuan Yip

2007-01-01

Full Text Available We introduce a novel method for secure computation of biometric hash on dynamic hand signatures using BioPhasor mixing and discretization. The use of BioPhasor as the mixing process provides a one-way transformation that precludes exact recovery of the biometric vector from compromised hashes and stolen tokens. In addition, our user-specific discretization acts both as an error correction step as well as a real-to-binary space converter. We also propose a new method of extracting compressed representation of dynamic hand signatures using discrete wavelet transform (DWT and discrete fourier transform (DFT. Without the conventional use of dynamic time warping, the proposed method avoids storage of user's hand signature template. This is an important consideration for protecting the privacy of the biometric owner. Our results show that the proposed method could produce stable and distinguishable bit strings with equal error rates (EERs of and for random and skilled forgeries for stolen token (worst case scenario, and for both forgeries in the genuine token (optimal scenario.

2. The geometric phase analysis method based on the local high resolution discrete Fourier transform for deformation measurement

International Nuclear Information System (INIS)

Dai, Xianglu; Xie, Huimin; Wang, Huaixi; Li, Chuanwei; Wu, Lifu; Liu, Zhanwei

2014-01-01

The geometric phase analysis (GPA) method based on the local high resolution discrete Fourier transform (LHR-DFT) for deformation measurement, defined as LHR-DFT GPA, is proposed to improve the measurement accuracy. In the general GPA method, the fundamental frequency of the image plays a crucial role. However, the fast Fourier transform, which is generally employed in the general GPA method, could make it difficult to locate the fundamental frequency accurately when the fundamental frequency is not located at an integer pixel position in the Fourier spectrum. This study focuses on this issue and presents a LHR-DFT algorithm that can locate the fundamental frequency with sub-pixel precision in a specific frequency region for the GPA method. An error analysis is offered and simulation is conducted to verify the effectiveness of the proposed method; both results show that the LHR-DFT algorithm can accurately locate the fundamental frequency and improve the measurement accuracy of the GPA method. Furthermore, typical tensile and bending tests are carried out and the experimental results verify the effectiveness of the proposed method. (paper)

3. Formal degrees of unipotent discrete series representations and the exotic Fourier transform

NARCIS (Netherlands)

Ciubotaru, D.; Opdam, E.

2015-01-01

We introduce a notion of elliptic fake degrees for unipotent elliptic representations of a semisimple p-adic group. We conjecture, and verify in some cases, that the relation between the formal degrees of unipotent discrete series representations of a semisimple p-adic group and the elliptic fake

4. Fourier transformation for pedestrians

CERN Document Server

Butz, Tilman

2015-01-01

This book is an introduction to Fourier Transformation with a focus on signal analysis, based on the first edition. It is well suited for undergraduate students in physics, mathematics, electronic engineering as well as for scientists in research and development. It gives illustrations and recommendations when using existing Fourier programs and thus helps to avoid frustrations. Moreover, it is entertaining and you will learn a lot unconsciously. Fourier series as well as continuous and discrete Fourier transformation are discussed with particular emphasis on window functions. Filter effects of digital data processing are illustrated. Two new chapters are devoted to modern applications. The first deals with data streams and fractional delays and the second with the back-projection of filtered projections in tomography. There are many figures and mostly easy to solve exercises with solutions.

5. High-order modulation on a single discrete eigenvalue for optical communications based on nonlinear Fourier transform.

Science.gov (United States)

Gui, Tao; Lu, Chao; Lau, Alan Pak Tao; Wai, P K A

2017-08-21

In this paper, we experimentally investigate high-order modulation over a single discrete eigenvalue under the nonlinear Fourier transform (NFT) framework and exploit all degrees of freedom for encoding information. For a fixed eigenvalue, we compare different 4 bit/symbol modulation formats on the spectral amplitude and show that a 2-ring 16-APSK constellation achieves optimal performance. We then study joint spectral phase, spectral magnitude and eigenvalue modulation and found that while modulation on the real part of the eigenvalue induces pulse timing drift and leads to neighboring pulse interactions and nonlinear inter-symbol interference (ISI), it is more bandwidth efficient than modulation on the imaginary part of the eigenvalue in practical settings. We propose a spectral amplitude scaling method to mitigate such nonlinear ISI and demonstrate a record 4 GBaud 16-APSK on the spectral amplitude plus 2-bit eigenvalue modulation (total 6 bit/symbol at 24 Gb/s) transmission over 1000 km.

6. Fast Fourier and discrete wavelet transforms applied to sensorless vector control induction motor for rotor bar faults diagnosis.

Science.gov (United States)

Talhaoui, Hicham; Menacer, Arezki; Kessal, Abdelhalim; Kechida, Ridha

2014-09-01

This paper presents new techniques to evaluate faults in case of broken rotor bars of induction motors. Procedures are applied with closed-loop control. Electrical and mechanical variables are treated using fast Fourier transform (FFT), and discrete wavelet transform (DWT) at start-up and steady state. The wavelet transform has proven to be an excellent mathematical tool for the detection of the faults particularly broken rotor bars type. As a performance, DWT can provide a local representation of the non-stationary current signals for the healthy machine and with fault. For sensorless control, a Luenberger observer is applied; the estimation rotor speed is analyzed; the effect of the faults in the speed pulsation is compensated; a quadratic current appears and used for fault detection. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

7. Optimized 1d-1v Vlasov-Poisson simulations using Fourier- Hermite spectral discretizations

Science.gov (United States)

1997-08-01

A 1d-1v spatially-periodic, Maxwellian-like, charged particle phase-space distribution f(x, v, t) is represented by one of two different Fourier-Hermite basis sets (asymmetric or symmetric Hermite normalization) and evolved with a similarly transformed and filtered Vlasov- Poisson set of equations. The set of coefficients fαmn(t) are advanced through time with an O(/Delta t2)-accurate splitting method,1 using a O(/Delta t4) Runge-Kutta time advancement scheme on the v∂xf and E∂vf terms separately, between which the self-consistent electric field is calculated. This method improves upon that of previous works by the combined use of two optimization techniques: exact Gaussian filtering2 and variable velocity-scaled3 Hermite basis functions.4 The filter width, vo, reduces the error introduced by the finite computational system, yet does not alter the low-order velocity modes; therefore, the self-consistent fields are not affected by the filtering. In addition, a variable velocity scale length U is introduced into the Hermite basis functions to provide improved spectral accuracy, yielding orders of magnitude reduction in the L2-norm error.5 The asymmetric Hermite algorithm conserves particles and momentum exactly, and total energy in the limit of continuous time. However, this method does not conserve the Casimir [/int/int] f2dxdu, and is, in fact, numerically unstable. The symmetric Hermite algorithm can either conserve particles and energy or momentum (in the limit of continuous time), depending on the parity of the highest-order Hermite function. Its conservation properties improve greatly with the use of velocity filtering. Also, the symmetric Hermite method conserves [/int/int] f2dxdu and, therefore, remains numerically stable. Relative errors with respect to linear Landau damping and linear bump-on-tail instability are shown to be less than 1% (orders of magnitude lower than those found in comparable Fourier-Fourier and PIC schemes). Varying the Hermite

8. Efficient algorithm for baseline wander and powerline noise removal from ECG signals based on discrete Fourier series.

Science.gov (United States)

Bahaz, Mohamed; Benzid, Redha

2018-03-01

Electrocardiogram (ECG) signals are often contaminated with artefacts and noises which can lead to incorrect diagnosis when they are visually inspected by cardiologists. In this paper, the well-known discrete Fourier series (DFS) is re-explored and an efficient DFS-based method is proposed to reduce contribution of both baseline wander (BW) and powerline interference (PLI) noises in ECG records. In the first step, the determination of the exact number of low frequency harmonics contributing in BW is achieved. Next, the baseline drift is estimated by the sum of all associated Fourier sinusoids components. Then, the baseline shift is discarded efficiently by a subtraction of its approximated version from the original biased ECG signal. Concerning the PLI, the subtraction of the contributing harmonics calculated in the same manner reduces efficiently such type of noise. In addition of visual quality results, the proposed algorithm shows superior performance in terms of higher signal-to-noise ratio and smaller mean square error when faced to the DCT-based algorithm.

9. An Efficient Algorithm for the Discrete Gabor Transform using full length Windows

DEFF Research Database (Denmark)

Søndergaard, Peter Lempel

2007-01-01

This paper extends the efficient factorization of the Gabor frame operator developed by Strohmer in [1] to the Gabor analysis/synthesis operator. This provides a fast method for computing the discrete Gabor transform (DGT) and several algorithms associated with it. The algorithm is used...

10. A discrete Fourier-encoded, diagonal-free experiment to simplify homonuclear 2D NMR correlations

Science.gov (United States)

Huang, Zebin; Guan, Quanshuai; Chen, Zhong; Frydman, Lucio; Lin, Yulan

2017-07-01

Nuclear magnetic resonance (NMR) spectroscopy has long served as an irreplaceable, versatile tool in physics, chemistry, biology, and materials sciences, owing to its ability to study molecular structure and dynamics in detail. In particular, the connectivity of chemical sites within molecules, and thereby molecular structure, becomes visible by multi-dimensional NMR. Homonuclear correlation experiments are a powerful tool for identifying coupled spins. Generally, diagonal peaks in these correlation spectra display the strongest intensities and do not offer any new information beyond the standard one-dimensional spectrum, whereas weaker, symmetrically placed cross peaks contain most of the coupling information. The cross peaks near the diagonal are often affected by the tails of strong diagonal peaks or even obscured entirely by the diagonal. In this paper, we demonstrate a homonuclear encoding approach based on imparting a discrete phase modulation of the targeted cross peaks and combine it with a site-selective sculpting scheme, capable of simplifying the patterns arising in these 2D correlation spectra. The theoretical principles of the new methods are laid out, and experimental observations are rationalized on the basis of theoretical analyses. The ensuing techniques provide a new way to retrieve 2D coupling information within homonuclear spin systems, with enhanced sensitivity, speed, and clarity.

11. A discrete Fourier-encoded, diagonal-free experiment to simplify homonuclear 2D NMR correlations.

Science.gov (United States)

Huang, Zebin; Guan, Quanshuai; Chen, Zhong; Frydman, Lucio; Lin, Yulan

2017-07-21

Nuclear magnetic resonance (NMR) spectroscopy has long served as an irreplaceable, versatile tool in physics, chemistry, biology, and materials sciences, owing to its ability to study molecular structure and dynamics in detail. In particular, the connectivity of chemical sites within molecules, and thereby molecular structure, becomes visible by multi-dimensional NMR. Homonuclear correlation experiments are a powerful tool for identifying coupled spins. Generally, diagonal peaks in these correlation spectra display the strongest intensities and do not offer any new information beyond the standard one-dimensional spectrum, whereas weaker, symmetrically placed cross peaks contain most of the coupling information. The cross peaks near the diagonal are often affected by the tails of strong diagonal peaks or even obscured entirely by the diagonal. In this paper, we demonstrate a homonuclear encoding approach based on imparting a discrete phase modulation of the targeted cross peaks and combine it with a site-selective sculpting scheme, capable of simplifying the patterns arising in these 2D correlation spectra. The theoretical principles of the new methods are laid out, and experimental observations are rationalized on the basis of theoretical analyses. The ensuing techniques provide a new way to retrieve 2D coupling information within homonuclear spin systems, with enhanced sensitivity, speed, and clarity.

12. Efficient Algorithms for the Discrete Gabor Transform with a Long Fir Window

DEFF Research Database (Denmark)

Søndergaard, Peter Lempel

2012-01-01

The Discrete Gabor Transform (DGT) is the most commonly used signal transform for signal analysis and synthesis using a linear frequency scale. The development of the Linear Time-Frequency Analysis Toolbox (LTFAT) has been based on a detailed study of many variants of the relevant algorithms....... As a side result of these systematic developments of the subject, two new methods are presented here. Comparisons are made with respect to the computational complexity, and the running time of optimised implementations in the C programming language. The new algorithms have the lowest known computational...

13. Study on time-varying velocity measurement with self-mixing laser diode based on Discrete Chirp-Fourier Transform

International Nuclear Information System (INIS)

Zhang Zhaoyun; Gao Yang; Zhao Xinghai; Zhao Xiang

2011-01-01

Laser's optical output power and frequency are modulated when the optical beam is back-scattered into the active cavity of the laser. By signal processing, the Doppler frequency can be acquired, and the target's velocity can be calculated. Based on these properties, an interferometry velocity sensor can be designed. When target move in time-varying velocity mode, it is difficult to extract the target's velocity. Time-varying velocity measurement by self-mixing laser diode is explored. A mathematics model was proposed for the time-varying velocity (invariable acceleration) measurement by self-mixing laser diode. Based on this model, a Discrete Chirp-Fourier Transform (DCFT) method was applied, DCFT is analogous to DFT. We show that when the signal length N is prime, the magnitudes of all the side lobes are 1, whereas the magnitudes of the main lobe is √N, And the coordinates of the main lobe shows the target's velocity and acceleration information. The simulation results prove the validity of the algorithm even in the situation of low SNR when N is prime.

14. Weak signal detection: A discrete window of opportunity for achieving 'Vision 90:90:90'?

Science.gov (United States)

Burman, Christopher J; Aphane, Marota; Delobelle, Peter

2016-01-01

UNAIDS' Vision 90:90:90 is a call to 'end AIDS'. Developing predictive foresight of the unpredictable changes that this journey will entail could contribute to the ambition of 'ending AIDS'. There are few opportunities for managing unpredictable changes. We introduce 'weak signal detection' as a potential opportunity to fill this void. Combining futures and complexity theory, we reflect on two pilot case studies that involved the Archetype Extraction technique and the SenseMaker(®) Collector(™) tool. Both the piloted techniques have the potentials to surface weak signals--but there is room for improvement. A management response to a complex weak signal requires pattern management, rather than an exclusive focus on behaviour management. Weak signal detection is a window of opportunity to improve resilience to unpredictable changes in the HIV/AIDS landscape that can both reduce the risk that emerges from the changes and increase the visibility of opportunities to exploit the unpredictable changes that could contribute to 'ending AIDS'.

15. Generating a Square Switching Window for Timing Jitter Tolerant 160 Gb/s Demultiplexing by the Optical Fourier Transform Technique

DEFF Research Database (Denmark)

Oxenløwe, Leif Katsuo; Galili, Michael; Clausen, A. T:

2006-01-01

A square spectrum is optically Fourier transformed into a square pulse in the time domain. This is used to demultiplex a 160 Gb/s data signal with a significant increase in jitter tolerance to 2.6 ps.......A square spectrum is optically Fourier transformed into a square pulse in the time domain. This is used to demultiplex a 160 Gb/s data signal with a significant increase in jitter tolerance to 2.6 ps....

16. Determination of radionuclide 'S' values for any voxel size, based on three-dimensional discrete Fourier Transform Convolution Method

International Nuclear Information System (INIS)

Gonzalez, J.; Calderon, C.; Rodriguez, M.

2007-01-01

The most widely extended method to determine the macroscopic non-uniform dose distribution at voxel level is the dose-point convolution method. The lack of tabulated S values for different combinations of voxel size used in SPECT and PET studies has limited the use of voxel S values as a method of choice for absorbed dose calculation at voxel level. The aim of this study was to describe and validate an approach for rapid determination of radionuclide S values for any voxel size used in SPECT or PET studies. An approach based on 3D Discrete Fourier Transform (3D-DFT) convolution method was used for generation of S values at voxel level from tabulated dose-point kernels. The method was verified by comparing our results with voxel S values derived from Monte Carlo EGS4 code radiation transport simulation and Monte Carlo volume integration methods. The method was validated by comparison of the mean dose calculation with those obtained from MCNP-4B Monte Carlo code for mathematical phantoms consisting of spheres of different size with uniform cumulated activity distribution. The voxel S values obtained by 3D-DFT convolution method shows good agreement with those derived from Monte Carlo EGS4 radiation transport simulation and Monte Carlo volume integration methods. The comparison of mean dose calculations shows an error less than 2% for selected mathematical phantoms. The voxel S values generated by 3D-DFT convolution method have a good accuracy and can be obtained in more computationally efficient manner than other published methods. The method can be used as method of choice to provide S values that correspond to any voxel geometry in SPECT or PET studies. (author)

17. Search for the periodicity of the prime Indian and American stock exchange indices using date-compensated discrete Fourier transform

International Nuclear Information System (INIS)

2015-01-01

The behaviour of Indian stock markets has a persistent close association with the behaviour of American stock exchange. The present work is an effort in this direction and the purpose of the present work is to investigate the periodicity of the two prime Indian stock market indices viz. SENSEX and NIFTY and the prime American stock market indices viz. DOW-JONES and S&P500. To serve the present purpose we have here used SENSEX logarithmic daily close data during the period from 1st January, 1990 to 31st December, 2013, NIFTY logarithmic daily close data during the period from 3rd July, 1990 to 31st December, 2013, DOW-JONES logarithmic daily close data during the period from 10th January, 1928 to 31st December, 2013 and S&P500 logarithmic daily close data during the period 3rd January, 1950 to 31st December, 2013. For the present analysis we have first used double exponential smoothing on all the four time series in order to remove the trend and next we have generated monthly averages of the smoothed time series in order to remove the irregular fluctuations. At the final stage Ferraz-Mello method of date-compensated discrete Fourier transform (DCDFT) has been applied on the present four double-smoothed monthly averaged time series. Study reveals periods for SENSEX of 11, 53 and 142 months; for NIFTY periods of 22, 38, 52 and 139 months; for DOW-JONES periods of 23, 25, 27, 30, 59, 107, 138, 194 and 494 months and for S&P500 periods of 28, 66, 74, 149 and 384 months. With this specific periodic behaviour we have also observed some pseudo-periods in the present four financial time series which certainly adds to the uncertainty in the process of prediction for the same

18. Beyond Fourier

Science.gov (United States)

Hoch, Jeffrey C.

2017-10-01

Non-Fourier methods of spectrum analysis are gaining traction in NMR spectroscopy, driven by their utility for processing nonuniformly sampled data. These methods afford new opportunities for optimizing experiment time, resolution, and sensitivity of multidimensional NMR experiments, but they also pose significant challenges not encountered with the discrete Fourier transform. A brief history of non-Fourier methods in NMR serves to place different approaches in context. Non-Fourier methods reflect broader trends in the growing importance of computation in NMR, and offer insights for future software development.

19. Beyond Fourier.

Science.gov (United States)

Hoch, Jeffrey C

2017-10-01

Non-Fourier methods of spectrum analysis are gaining traction in NMR spectroscopy, driven by their utility for processing nonuniformly sampled data. These methods afford new opportunities for optimizing experiment time, resolution, and sensitivity of multidimensional NMR experiments, but they also pose significant challenges not encountered with the discrete Fourier transform. A brief history of non-Fourier methods in NMR serves to place different approaches in context. Non-Fourier methods reflect broader trends in the growing importance of computation in NMR, and offer insights for future software development. Copyright © 2017 Elsevier Inc. All rights reserved.

20. On Fast Fourier Transform

digital methods of spectrum estimation which influenced the research in almost every field of engineering and science. In this article, we will first introduce the conti- nuous-time Fourier transform (eFT), discrete-time Fourier transform and discrete Fourier transform (DFT) and then present an example to illustrate the relation ...

1. From Fourier analysis to wavelets

CERN Document Server

Gomes, Jonas

2015-01-01

This text introduces the basic concepts of function spaces and operators, both from the continuous and discrete viewpoints.  Fourier and Window Fourier Transforms are introduced and used as a guide to arrive at the concept of Wavelet transform.  The fundamental aspects of multiresolution representation, and its importance to function discretization and to the construction of wavelets is also discussed. Emphasis is given on ideas and intuition, avoiding the heavy computations which are usually involved in the study of wavelets.  Readers should have a basic knowledge of linear algebra, calculus, and some familiarity with complex analysis.  Basic knowledge of signal and image processing is desirable. This text originated from a set of notes in Portuguese that the authors wrote for a wavelet course on the Brazilian Mathematical Colloquium in 1997 at IMPA, Rio de Janeiro.

2. Fourier photospectroscopy of Xe-C60 through a Xe 4d resonance window: theory versus recent experiment

International Nuclear Information System (INIS)

Patel, Aakash B; Chakraborty, Himadri S

2011-01-01

The photoionization cross section of endohedral Xe-C 60 over a Xe 4d giant resonance energy region, calculated in the time-dependent local density approximation, is compared with recent measurements (Kilcoyne et al 2010 Phys. Rev. Lett. 105 213001). An analysis based on the Fourier transforms of oscillatory cross sections is performed to derive a number of inherent similarities between the prediction and the data, including a large beating-type oscillation and several others of intermediate size. Results stress the need for more accurate measurements to access the wealth of information about the geometry of the system. (fast track communication)

3. Post-processing of EPR spectrum from dosimetric substances through filtering of Discrete Fourier Transform; Pos-processamento de espectros de RPE de substancias dosimetricas por filtragem da transformada discreta de Fourier

Energy Technology Data Exchange (ETDEWEB)

Vieira, Fabio P.B.; Bevilacqua, Joyce S., E-mail: fpbvieira@gmail.com, E-mail: joyce.bevilacqua@gmail.com [Universidade de Sao Paulo (IME/USP), Sao Paulo, SP (Brazil). Instituto de Matematica e Estatistica; Rodrigues Junior, Orlando, E-mail: rodrijr@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

2014-07-01

The use of electron paramagnetic resonance spectrometers - EPR - in radiation dosimetry is known for more than four decades. It is an important tool in the retrospective determination of doses absorbed. To estimate the dose absorbed by the sample, it is necessary to know the amplitude of the peak to peak signature of the substance in its EPR spectrum. This information can be compromised by the presence of spurious information: noise - of random and low intensity nature; and the behavior of the baseline - coming from the coupling between the resonator tube and the sample analyzed. Due to the intrinsic characteristics of the three main components of the signal, i.e. signature, noise, and baseline - the analysis in the frequency domain allows, through post-processing techniques to filter spurious information. In this work, an algorithm that retrieves the signature of a substance has been implemented. The Discrete Fourier Transform is applied to the signal and without user intervention, the noise is filtered. From the filtered signal, recovers the signature by Inverse Discrete Fourier Transform. The peak to peak amplitude, and the absorbed dose is calculated with an error of less than 1% for signals wherein the base line is linearized. Some more general cases are under investigation and with little user intervention, you can get the same error.

4. An Exact Method to Determine the Photonic Resonances of Quasicrystals Based on Discrete Fourier Harmonics of Higher-Dimensional Atomic Surfaces

Directory of Open Access Journals (Sweden)

2016-08-01

Full Text Available A rigorous method for obtaining the diffraction patterns of quasicrystals is presented. Diffraction patterns are an essential analytical tool in the study of quasicrystals, since they can be used to determine their photonic resonances. Previous methods for approximating the diffraction patterns of quasicrystals have relied on evaluating the Fourier transform of finite-sized super-lattices. Our approach, on the other hand, is exact in the sense that it is based on a technique that embeds quasicrystals into higher dimensional periodic hyper-lattices, thereby completely capturing the properties of the infinite structure. The periodicity of the unit cell in the higher dimensional space can be exploited to obtain the Fourier series expansion in closed-form of the corresponding atomic surfaces. The utility of the method is demonstrated by applying it to one-dimensional Fibonacci and two-dimensional Penrose quasicrystals. The results are verified by comparing them to those obtained by using the conventional super-lattice method. It is shown that the conventional super-cell approach can lead to inaccurate results due to the continuous nature of the Fourier transform, since quasicrystals have a discrete spectrum, whereas the approach introduced in this paper generates discrete Fourier harmonics. Furthermore, the conventional approach requires very large super-cells and high-resolution sampling of the reciprocal space in order to produce accurate results leading to a very large computational burden, whereas the proposed method generates accurate results with a relatively small number of terms. Finally, we propose how this approach can be generalized from the vertex model, which assumes identical particles at all vertices, to a more realistic case where the quasicrystal is composed of different atoms.

5. SU(2 and SU(1,1 Approaches to Phase Operators and Temporally Stable Phase States: Applications to Mutually Unbiased Bases and Discrete Fourier Transforms

Directory of Open Access Journals (Sweden)

Maurice R. Kibler

2010-07-01

Full Text Available We propose a group-theoretical approach to the generalized oscillator algebra Aκ recently investigated in J. Phys. A: Math. Theor. 2010, 43, 115303. The case κ ≥ 0 corresponds to the noncompact group SU(1,1 (as for the harmonic oscillator and the Pöschl-Teller systems while the case κ < 0 is described by the compact group SU(2 (as for the Morse system. We construct the phase operators and the corresponding temporally stable phase eigenstates for Aκ in this group-theoretical context. The SU(2 case is exploited for deriving families of mutually unbiased bases used in quantum information. Along this vein, we examine some characteristics of a quadratic discrete Fourier transform in connection with generalized quadratic Gauss sums and generalized Hadamard matrices.

6. Discrete Fourier Transform as applicable technique in electrochemical detection of hydrazine using multi-walled carbon nanotube/polyacrylonitrile ceramic fiber as working electrode.

Science.gov (United States)

2013-05-01

Effect of "Discrete Fourier Transform" (DFT) is studied for electrochemical detection of some electroactive species using multi-walled carbon nanotube/polyacrylonitrile ceramic fiber as ultra micro electrode. Based on DFT theory, two independent phases i.e. the imaginary and real phases are evaluated during the oxidation/reduction of the quasi-reversible or irreversible electroactive species, revealing the independent components of imaginary (IImaginary) and real (IReal) currents. The results show that, in different electrochemical modes such as cyclic voltammetry (CV), the contribution of DFT to the electrochemical signals significantly improves the detection limit of the electrochemical technique. More sensitive signals are obtained at high scan rates according to the combination of electrochemical techniques with the DFT theory. The reliability of DFT algorithm was evaluated for rapid determination of trace amount of hydrazine (N2H4) at a scan rate up to 800 V s(-1). In this study, the amounts of phase and amplitude were estimated to 1.69 and 31.57, respectively. The detection limit of hydrazine was 4.13×10(-9) M. The application of this technique was also evaluated for determination of hydrazine in different industrial wastewater samples. Copyright © 2013 Elsevier B.V. All rights reserved.

7. Generalized fiber Fourier optics.

Science.gov (United States)

Cincotti, Gabriella

2011-06-15

A twofold generalization of the optical schemes that perform the discrete Fourier transform (DFT) is given: new passive planar architectures are presented where the 2 × 2 3 dB couplers are replaced by M × M hybrids, reducing the number of required connections and phase shifters. Furthermore, the planar implementation of the discrete fractional Fourier transform (DFrFT) is also described, with a waveguide grating router (WGR) configuration and a properly modified slab coupler.

8. Discrete Fourier Transform IP Generator

National Research Council Canada - National Science Library

Nordin, Grace; Hoe, James C; Pueschel, Markus

2004-01-01

.... These static IP libraries do not allow the designers flexibility in customizing trade-offs. We propose a parameterized DSP IP generator that allows designers to specify the cost/performance tradeoff...

9. Principles of Fourier analysis

CERN Document Server

Howell, Kenneth B

2001-01-01

Fourier analysis is one of the most useful and widely employed sets of tools for the engineer, the scientist, and the applied mathematician. As such, students and practitioners in these disciplines need a practical and mathematically solid introduction to its principles. They need straightforward verifications of its results and formulas, and they need clear indications of the limitations of those results and formulas.Principles of Fourier Analysis furnishes all this and more. It provides a comprehensive overview of the mathematical theory of Fourier analysis, including the development of Fourier series, "classical" Fourier transforms, generalized Fourier transforms and analysis, and the discrete theory. Much of the author''s development is strikingly different from typical presentations. His approach to defining the classical Fourier transform results in a much cleaner, more coherent theory that leads naturally to a starting point for the generalized theory. He also introduces a new generalized theory based ...

10. Intra-Symbol Windowing for Egress Reduction in DMT Transmitters

Directory of Open Access Journals (Sweden)

Vanbleu Koen

2006-01-01

Full Text Available Discrete multitone (DMT uses an inverse discrete Fourier transform (IDFT to modulate data on the carriers. The high sidelobes of the IDFT filter bank used can lead to spurious emissions (egress in unauthorized frequency bands. Applying a window function within the DMT symbol can alleviate this. However, window functions either require additional redundancy or will introduce distortions that are generally not easy to compensate for. In this paper, a special class of window functions is constructed that corresponds to a precoding at the transmitter. These do not require any additional redundancy and need only a modest amount of additional processing at the receiver. The results can be used to increase the spectral containment of DMT-based wired communications such as ADSL and VDSL (i.e., asymmetric, resp., very-high-bitrate digital subscriber loop.

11. Intra-Symbol Windowing for Egress Reduction in DMT Transmitters

Science.gov (United States)

Cuypers, Gert; Vanbleu, Koen; Ysebaert, Geert; Moonen, Marc

2006-12-01

Discrete multitone (DMT) uses an inverse discrete Fourier transform (IDFT) to modulate data on the carriers. The high sidelobes of the IDFT filter bank used can lead to spurious emissions (egress) in unauthorized frequency bands. Applying a window function within the DMT symbol can alleviate this. However, window functions either require additional redundancy or will introduce distortions that are generally not easy to compensate for. In this paper, a special class of window functions is constructed that corresponds to a precoding at the transmitter. These do not require any additional redundancy and need only a modest amount of additional processing at the receiver. The results can be used to increase the spectral containment of DMT-based wired communications such as ADSL and VDSL (i.e., asymmetric, resp., very-high-bitrate digital subscriber loop).

12. Fourier transforms principles and applications

CERN Document Server

Hansen, Eric W

2014-01-01

Fourier Transforms: Principles and Applications explains transform methods and their applications to electrical systems from circuits, antennas, and signal processors-ably guiding readers from vector space concepts through the Discrete Fourier Transform (DFT), Fourier series, and Fourier transform to other related transform methods.  Featuring chapter end summaries of key results, over two hundred examples and four hundred homework problems, and a Solutions Manual this book is perfect for graduate students in signal processing and communications as well as practicing engineers.

13. Fourier Series, the DFT and Shape Modelling

DEFF Research Database (Denmark)

Skoglund, Karl

2004-01-01

This report provides an introduction to Fourier series, the discrete Fourier transform, complex geometry and Fourier descriptors for shape analysis. The content is aimed at undergraduate and graduate students who wish to learn about Fourier analysis in general, as well as its application to shape...

14. Digital Fourier analysis fundamentals

CERN Document Server

Kido, Ken'iti

2015-01-01

This textbook is a thorough, accessible introduction to digital Fourier analysis for undergraduate students in the sciences. Beginning with the principles of sine/cosine decomposition, the reader walks through the principles of discrete Fourier analysis before reaching the cornerstone of signal processing: the Fast Fourier Transform. Saturated with clear, coherent illustrations, "Digital Fourier Analysis - Fundamentals" includes practice problems and thorough Appendices for the advanced reader. As a special feature, the book includes interactive applets (available online) that mirror the illustrations.  These user-friendly applets animate concepts interactively, allowing the user to experiment with the underlying mathematics. For example, a real sine signal can be treated as a sum of clockwise and counter-clockwise rotating vectors. The applet illustration included with the book animates the rotating vectors and the resulting sine signal. By changing parameters such as amplitude and frequency, the reader ca...

15. Fourier analysis for rotating-element ellipsometers.

Science.gov (United States)

Cho, Yong Jai; Chegal, Won; Cho, Hyun Mo

2011-01-15

We introduce a Fourier analysis of the waveform of periodic light-irradiance variation to capture Fourier coefficients for multichannel rotating-element ellipsometers. In this analysis, the Fourier coefficients for a sample are obtained using a discrete Fourier transform on the exposures. The analysis gives a generic function that encompasses the discrete Fourier transform or the Hadamard transform, depending on the specific conditions. Unlike the Hadamard transform, a well-known data acquisition method that is used only for conventional multichannel rotating-element ellipsometers with line arrays with specific readout-mode timing, this Fourier analysis is applicable to various line arrays with either nonoverlap or overlap readout-mode timing. To assess the effects of the novel Fourier analysis, the Fourier coefficients for a sample were measured with a custom-built rotating-polarizer ellipsometer, using this Fourier analysis with various numbers of scans, integration times, and rotational speeds of the polarizer.

16. Fourier series

CERN Document Server

Tolstov, Georgi P

1962-01-01

Richard A. Silverman's series of translations of outstanding Russian textbooks and monographs is well-known to people in the fields of mathematics, physics, and engineering. The present book is another excellent text from this series, a valuable addition to the English-language literature on Fourier series.This edition is organized into nine well-defined chapters: Trigonometric Fourier Series, Orthogonal Systems, Convergence of Trigonometric Fourier Series, Trigonometric Series with Decreasing Coefficients, Operations on Fourier Series, Summation of Trigonometric Fourier Series, Double Fourie

17. Fourier analysis

CERN Document Server

2005-01-01

A reader-friendly, systematic introduction to Fourier analysis Rich in both theory and application, Fourier Analysis presents a unique and thorough approach to a key topic in advanced calculus. This pioneering resource tells the full story of Fourier analysis, including its history and its impact on the development of modern mathematical analysis, and also discusses essential concepts and today's applications. Written at a rigorous level, yet in an engaging style that does not dilute the material, Fourier Analysis brings two profound aspects of the discipline to the forefront: the wealth of ap

18. Adaptive synchrosqueezing based on a quilted short-time Fourier transform

Science.gov (United States)

Berrian, Alexander; Saito, Naoki

2017-08-01

In recent years, the synchrosqueezing transform (SST) has gained popularity as a method for the analysis of signals that can be broken down into multiple components determined by instantaneous amplitudes and phases. One such version of SST, based on the short-time Fourier transform (STFT), enables the sharpening of instantaneous frequency (IF) information derived from the STFT, as well as the separation of amplitude-phase components corresponding to distinct IF curves. However, this SST is limited by the time-frequency resolution of the underlying window function, and may not resolve signals exhibiting diverse time-frequency behaviors with sufficient accuracy. In this work, we develop a framework for an SST based on a "quilted" short-time Fourier transform (SST-QSTFT), which allows adaptation to signal behavior in separate time-frequency regions through the use of multiple windows. This motivates us to introduce a discrete reassignment frequency formula based on a finite difference of the phase spectrum, ensuring computational accuracy for a wider variety of windows. We develop a theoretical framework for the SST-QSTFT in both the continuous and the discrete settings, and describe an algorithm for the automatic selection of optimal windows depending on the region of interest. Using synthetic data, we demonstrate the superior numerical performance of SST-QSTFT relative to other SST methods in a noisy context. Finally, we apply SST-QSTFT to audio recordings of animal calls to demonstrate the potential of our method for the analysis of real bioacoustic signals.

19. Vector Radix 2 × 2 Sliding Fast Fourier Transform

Directory of Open Access Journals (Sweden)

Keun-Yung Byun

2016-01-01

Full Text Available The two-dimensional (2D discrete Fourier transform (DFT in the sliding window scenario has been successfully used for numerous applications requiring consecutive spectrum analysis of input signals. However, the results of conventional sliding DFT algorithms are potentially unstable because of the accumulated numerical errors caused by recursive strategy. In this letter, a stable 2D sliding fast Fourier transform (FFT algorithm based on the vector radix (VR 2 × 2 FFT is presented. In the VR-2 × 2 FFT algorithm, each 2D DFT bin is hierarchically decomposed into four sub-DFT bins until the size of the sub-DFT bins is reduced to 2 × 2; the output DFT bins are calculated using the linear combination of the sub-DFT bins. Because the sub-DFT bins for the overlapped input signals between the previous and current window are the same, the proposed algorithm reduces the computational complexity of the VR-2 × 2 FFT algorithm by reusing previously calculated sub-DFT bins in the sliding window scenario. Moreover, because the resultant DFT bins are identical to those of the VR-2 × 2 FFT algorithm, numerical errors do not arise; therefore, unconditional stability is guaranteed. Theoretical analysis shows that the proposed algorithm has the lowest computational requirements among the existing stable sliding DFT algorithms.

20. Comparison of discrete Fourier transform (DFT) and principal component analysis/DFT as forecasting tools for absorbance time series received by UV-visible probes installed in urban sewer systems.

Science.gov (United States)

Plazas-Nossa, Leonardo; Torres, Andrés

2014-01-01

The objective of this work is to introduce a forecasting method for UV-Vis spectrometry time series that combines principal component analysis (PCA) and discrete Fourier transform (DFT), and to compare the results obtained with those obtained by using DFT. Three time series for three different study sites were used: (i) Salitre wastewater treatment plant (WWTP) in Bogotá; (ii) Gibraltar pumping station in Bogotá; and (iii) San Fernando WWTP in Itagüí (in the south part of Medellín). Each of these time series had an equal number of samples (1051). In general terms, the results obtained are hardly generalizable, as they seem to be highly dependent on specific water system dynamics; however, some trends can be outlined: (i) for UV range, DFT and PCA/DFT forecasting accuracy were almost the same; (ii) for visible range, the PCA/DFT forecasting procedure proposed gives systematically lower forecasting errors and variability than those obtained with the DFT procedure; and (iii) for short forecasting times the PCA/DFT procedure proposed is more suitable than the DFT procedure, according to processing times obtained.

1. On discrete cosine transform | Zhou | Nigerian Journal of ...

African Journals Online (AJOL)

A new type of discrete cosine transform is proposed and its orthogonality is proved. Finally, we propose a generalized discrete W transform with three parameters, and prove its orthogonality for some new cases. Keywords: Discrete Fourier transform, discrete sine transform, discrete cosine transform, discrete W transform

2. Windows Azure

CERN Document Server

Johnson, Bruce; Chambers, James; Garber, Danny; Malik, Jamal; Fazio, Adam

2013-01-01

A collection of five must-have Azure titles, from some of the biggest names in the field Available individually, but at a discounted rate for the collection, this bundle of five e-books covers key developer and IT topics of Windows Azure, including ASP.NET, mobile services, web sites, data storage, and the hybrid cloud. A host of Microsoft employees and MPVs come together to cover the biggest challenges that professionals face when working with Windows Azure. The e-books included are as follows: Windows Azure and ASP.NET MVC MigrationWindows Azure Mobile ServicesWindows Azure Web SitesWindows

3. Discrete transforms

CERN Document Server

Firth, Jean M

1992-01-01

The analysis of signals and systems using transform methods is a very important aspect of the examination of processes and problems in an increasingly wide range of applications. Whereas the initial impetus in the development of methods appropriate for handling discrete sets of data occurred mainly in an electrical engineering context (for example in the design of digital filters), the same techniques are in use in such disciplines as cardiology, optics, speech analysis and management, as well as in other branches of science and engineering. This text is aimed at a readership whose mathematical background includes some acquaintance with complex numbers, linear differen­ tial equations, matrix algebra, and series. Specifically, a familiarity with Fourier series (in trigonometric and exponential forms) is assumed, and an exposure to the concept of a continuous integral transform is desirable. Such a background can be expected, for example, on completion of the first year of a science or engineering degree cour...

4. Program for the analysis of time series. [by means of fast Fourier transform algorithm

Science.gov (United States)

Brown, T. J.; Brown, C. G.; Hardin, J. C.

1974-01-01

A digital computer program for the Fourier analysis of discrete time data is described. The program was designed to handle multiple channels of digitized data on general purpose computer systems. It is written, primarily, in a version of FORTRAN 2 currently in use on CDC 6000 series computers. Some small portions are written in CDC COMPASS, an assembler level code. However, functional descriptions of these portions are provided so that the program may be adapted for use on any facility possessing a FORTRAN compiler and random-access capability. Properly formatted digital data are windowed and analyzed by means of a fast Fourier transform algorithm to generate the following functions: (1) auto and/or cross power spectra, (2) autocorrelations and/or cross correlations, (3) Fourier coefficients, (4) coherence functions, (5) transfer functions, and (6) histograms.

5. Finite Discrete Gabor Analysis

DEFF Research Database (Denmark)

Søndergaard, Peter Lempel

2007-01-01

on the real line to be well approximated by finite and discrete Gabor frames. This method of approximation is especially attractive because efficient numerical methods exists for doing computations with finite, discrete Gabor systems. This thesis presents new algorithms for the efficient computation of finite......, discrete Gabor coefficients. Reconstruction of a signal from its Gabor coefficients is done by the use of a so-called dual window. This thesis presents a number of iterative algorithms to compute dual and self-dual windows. The Linear Time Frequency Toolbox is a Matlab/Octave/C toolbox for doing basic...... discrete time/frequency and Gabor analysis. It is intended to be both an educational and a computational tool. The toolbox was developed as part of this Ph.D. project to provide a solid foundation for the field of computational Gabor analysis....

6. Multidimensional digital image representations using generalized Kaiser-Bessel window functions.

Science.gov (United States)

Lewitt, R M

1990-10-01

Inverse problems that require the solution of integral equations are inherent in a number of indirect imaging applications, such as computerized tomography. Numerical solutions based on discretization of the mathematical model of the imaging process, or on discretization of analytic formulas for iterative inversion of the integral equations, require a discrete representation of an underlying continuous image. This paper describes discrete image representations, in n-dimensional space, that are constructed by the superposition of shifted copies of a rotationally symmetric basis function. The basis function is constructed using a generalization of the Kaiser-Bessel window function of digital signal processing. The generalization of the window function involves going from one dimension to a rotationally symmetric function in n dimensions and going from the zero-order modified Bessel function of the standard window to a function involving the modified Bessel function of order m. Three methods are given for the construction, in n-dimensional space, of basis functions having a specified (finite) number of continuous derivatives, and formulas are derived for the Fourier transform, the x-ray transform, the gradient, and the Laplacian of these basis functions. Properties of the new image representations using these basis functions are discussed, primarily in the context of two-dimensional and three-dimensional image reconstruction from line-integral data by iterative inversion of the x-ray transform. Potential applications to three-dimensional image display are also mentioned.

7. Fourier Series

(Exercise !)) The subject of Fourier series finds a wide range of applications from crystallography to spectroscopy. It is one of the most powerful theories in the history of mathematics and has stimulated the .... satisfy the wave equation and following physical ideas Bernoulli suggested solutions of the form u ex,t) = l:ak ...

8. Fourier Series

assuming a lot of Lebesgue theory of integration. We would like to conclude this article with the following result. ofFejer which treats the class of continuous functions as a whole. As we know, given any point to there is a function in this class whose Fourier series diverges at that point. In 1904, the Hungarian mathematician ...

9. An optical Fourier transform coprocessor with direct phase determination.

Science.gov (United States)

Macfaden, Alexander J; Gordon, George S D; Wilkinson, Timothy D

2017-10-20

The Fourier transform is a ubiquitous mathematical operation which arises naturally in optics. We propose and demonstrate a practical method to optically evaluate a complex-to-complex discrete Fourier transform. By implementing the Fourier transform optically we can overcome the limiting O(nlogn) complexity of fast Fourier transform algorithms. Efficiently extracting the phase from the well-known optical Fourier transform is challenging. By appropriately decomposing the input and exploiting symmetries of the Fourier transform we are able to determine the phase directly from straightforward intensity measurements, creating an optical Fourier transform with O(n) apparent complexity. Performing larger optical Fourier transforms requires higher resolution spatial light modulators, but the execution time remains unchanged. This method could unlock the potential of the optical Fourier transform to permit 2D complex-to-complex discrete Fourier transforms with a performance that is currently untenable, with applications across information processing and computational physics.

10. Short time Fourier analysis of the electromyogram - Fast movements and constant contraction

Science.gov (United States)

Hannaford, Blake; Lehman, Steven

1986-01-01

Short-time Fourier analysis was applied to surface electromyograms (EMG) recorded during rapid movements, and during isometric contractions at constant forces. A portion of the data to be transformed by multiplying the signal by a Hamming window was selected, and then the discrete Fourier transform was computed. Shifting the window along the data record, a new spectrum was computed each 10 ms. The transformed data were displayed in spectograms or 'voiceprints'. This short-time technique made it possible to see time-dependencies in the EMG that are normally averaged in the Fourier analysis of these signals. Spectra of EMGs during isometric contractions at constant force vary in the short (10-20 ms) term. Short-time spectra from EMGs recorded during rapid movements were much less variable. The windowing technique picked out the typical 'three-burst pattern' in EMG's from both wrist and head movements. Spectra during the bursts were more consistent than those during isometric contractions. Furthermore, there was a consistent shift in spectral statistics in the course of the three bursts. Both the center frequency and the variance of the spectral energy distribution grew from the first burst to the second burst in the same muscle. The analogy between EMGs and speech signals is extended to argue for future applicability of short-time spectral analysis of EMG.

11. CAVE WINDOW

Science.gov (United States)

Levenson, M.

1960-10-25

A cave window is described. It is constructed of thick glass panes arranged so that interior panes have smaller windowpane areas and exterior panes have larger areas. Exterior panes on the radiation exposure side are remotely replaceable when darkened excessively. Metal shutters minimize exposure time to extend window life.

12. Window Stories

DEFF Research Database (Denmark)

Hauge, Bettina

This research project has investigated 17 households in Germany (cities and rural areas). The main aim was to learn about the significance of the window to these people: What they think of their windows, how, when and why they use them in their everyday life, if they have a favorite window and why......, as well as the opposite. The report also includes a special focus on overheating and people’s strategies against this. Knowing about what people appreciate in a window and their actual practices and the reasons for their behaviour may be useful in many different ways, for instance to inform public...... of ethnographic tools that required their involvement, such as making a diary of their heating experiences during a random week in the summer of 2014, taking photos of windows and sending postcards with specific tasks....

13. Orthogonal sets of data windows constructed from trigonometric polynomials

Science.gov (United States)

Greenhall, Charles A.

1990-01-01

Suboptimal, easily computable substitutes for the discrete prolate-spheroidal windows used by Thomson for spectral estimation are given. Trigonometric coefficients and energy leakages of the window polynomials are tabulated.

14. Window modelling in Syrthes

Energy Technology Data Exchange (ETDEWEB)

Manias, V.; Peniguel, C. [Electricite de France, 78 - Chatou (France); Rupp, I. [Simulog, N3S, Estet, Simail, 78 - Saint Quentin en Yvelyne (France)

1997-12-31

Developments to take into account windows from a thermal point of view have been implemented in SYRTHES. Windows are discretized along their lateral surfaces in several independent patches. Then a one-dimensional analytical model solves the semi-transparent radiation and conduction problem occurring across the window for each patch. The spectral dependence of the absorption coefficient (non grey medium) is taken into account through a multi-band model. This window model is coupled with the conduction and radiation capabilities already existing in SYRTHES. When convection is taking place, it is handled by ESTET. This development will be applied to an infra-red system designed to dry paper. The simplified test case presented here consists very schematically in two cavities separated by a window (vitro-ceramic). The top cavity contains a very hot tungsten wire (the infrared source) surrounded by a tube made of quartz. The bottom cavity is where the fast moving sheet of paper will be located. Of Course the real geometry is much more complex. (authors)

15. Error analysis and new dual-cosine window for estimating the sensor frequency response function from the step response data

Science.gov (United States)

Yang, Shuang-Long; Liang, Li-Ping; Liu, Hou-De; Xu, Ke-Jun

2018-03-01

Aiming at reducing the estimation error of the sensor frequency response function (FRF) estimated by the commonly used window-based spectral estimation method, the error models of interpolation and transient errors are derived in the form of non-parameter models. Accordingly, window effects on the errors are analyzed and reveal that the commonly used hanning window leads to smaller interpolation error which can also be significantly eliminated by the cubic spline interpolation method when estimating the FRF from the step response data, and window with smaller front-end value can restrain more transient error. Thus, a new dual-cosine window with its non-zero discrete Fourier transform bins at -3, -1, 0, 1, and 3 is constructed for FRF estimation. Compared with the hanning window, the new dual-cosine window has the equivalent interpolation error suppression capability and better transient error suppression capability when estimating the FRF from the step response; specifically, it reduces the asymptotic property of the transient error from O(N-2) of the hanning window method to O(N-4) while only increases the uncertainty slightly (about 0.4 dB). Then, one direction of a wind tunnel strain gauge balance which is a high order, small damping, and non-minimum phase system is employed as the example for verifying the new dual-cosine window-based spectral estimation method. The model simulation result shows that the new dual-cosine window method is better than the hanning window method for FRF estimation, and compared with the Gans method and LPM method, it has the advantages of simple computation, less time consumption, and short data requirement; the actual data calculation result of the balance FRF is consistent to the simulation result. Thus, the new dual-cosine window is effective and practical for FRF estimation.

16. Comparison of the Time Domain Windows Specified in the ISO 18431 Standards Used to Estimate Modal Parameters in Steel Plates

Directory of Open Access Journals (Sweden)

Jhonatan Camacho-Navarro

2016-01-01

Full Text Available The procedures used to estimate structural modal parameters as natural frequency, damping ratios, and mode shapes are generally based on frequency methods. However, methods of time-frequency analysis are highly sensible to the parameters used to calculate the discrete Fourier transform: windowing, resolution, and preprocessing. Thus, the uncertainty of the modal parameters is increased if a proper parameter selection is not considered. In this work, the influence of three different time domain windows functions (Hanning, flat-top, and rectangular used to estimate modal parameters are discussed in the framework of ISO 18431 standard. Experimental results are conducted over an AISI 1020 steel plate, which is excited by means of a hammer element. Vibration response is acquired by using acceleration records according to the ISO 7626-5 reference guides. The results are compared with a theoretical method and it is obtained that the flat-top window is the best function for experimental modal analysis.

17. Computing exact Fourier series coefficients of IC rectilinear polygons from low-resolution fast Fourier coefficients

Science.gov (United States)

Scheibler, Robin; Hurley, Paul

2012-03-01

We present a novel, accurate and fast algorithm to obtain Fourier series coefficients from an IC layer whose description consists of rectilinear polygons on a plane, and how to implement it using off-the-shelf hardware components. Based on properties of Fourier calculus, we derive a relationship between the Discrete Fourier Transforms of the sampled mask transmission function and its continuous Fourier series coefficients. The relationship leads to a straightforward algorithm for computing the continuous Fourier series coefficients where one samples the mask transmission function, compute its discrete Fourier transform and applies a frequency-dependent multiplicative factor. The algorithm is guaranteed to yield the exact continuous Fourier series coefficients for any sampling representing the mask function exactly. Computationally, this leads to significant saving by allowing to choose the maximal such pixel size and reducing the fast Fourier transform size by as much, without compromising accuracy. In addition, the continuous Fourier series is free from aliasing and follows closely the physical model of Fourier optics. We show that in some cases this can make a significant difference, especially in modern very low pitch technology nodes.

18. Discrete Mathematics

DEFF Research Database (Denmark)

Sørensen, John Aasted

2011-01-01

The objectives of Discrete Mathematics (IDISM2) are: The introduction of the mathematics needed for analysis, design and verification of discrete systems, including the application within programming languages for computer systems. Having passed the IDISM2 course, the student will be able...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics......; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...

19. Strategic Windows

DEFF Research Database (Denmark)

Risberg, Annette; King, David R.; Meglio, Olimpia

We examine the importance of speed and timing in acquisitions with a framework that identifies management considerations for three interrelated acquisition phases (selection, deal closure and integration) from an acquiring firm’s perspective. Using a process perspective, we pinpoint items within...... acquisition phases that relate to speed. In particular, we present the idea of time-bounded strategic windows in acquisitions consistent with the notion of kairòs, where opportunities appear and must be pursued at the right time for success to occur....

20. Window shopping

OpenAIRE

Oz Shy

2013-01-01

The terms "window shopping" and "showrooming" refer to the activity in which potential buyers visit a brick-and-mortar store to examine a product but end up either not buying it or buying the product from an online retailer. This paper analyzes potential buyers who differ in their preference for after-sale service that is not offered by online retailers. For some buyers, making a trip to the brick-and-mortar store is costly; however, going to the store to examine the product has the advantage...

1. Fourier series, Fourier transform and their applications to mathematical physics

CERN Document Server

Serov, Valery

2017-01-01

This text serves as an introduction to the modern theory of analysis and differential equations with applications in mathematical physics and engineering sciences.  Having outgrown from a series of half-semester courses given at University of Oulu, this book consists of four self-contained parts. The first part, Fourier Series and the Discrete Fourier Transform, is devoted to the classical one-dimensional trigonometric Fourier series with some applications to PDEs and signal processing.  The second part, Fourier Transform and Distributions, is concerned with distribution theory of L. Schwartz and its applications to the Schrödinger and magnetic Schrödinger operations.  The third part, Operator Theory and Integral Equations, is devoted mostly to the self-adjoint but unbounded operators in Hilbert spaces and their applications to integral equations in such spaces. The fourth and final part, Introduction to Partial Differential Equations, serves as an introduction to modern methods for classical theory o...

2. CMB in a box: Causal structure and the Fourier-Bessel expansion

International Nuclear Information System (INIS)

Abramo, L. Raul; Reimberg, Paulo H.; Xavier, Henrique S.

2010-01-01

This paper makes two points. First, we show that the line-of-sight solution to cosmic microwave anisotropies in Fourier space, even though formally defined for arbitrarily large wavelengths, leads to position-space solutions which only depend on the sources of anisotropies inside the past light cone of the observer. This foretold manifestation of causality in position (real) space happens order by order in a series expansion in powers of the visibility γ=e -μ , where μ is the optical depth to Thomson scattering. We show that the contributions of order γ N to the cosmic microwave background (CMB) anisotropies are regulated by spacetime window functions which have support only inside the past light cone of the point of observation. Second, we show that the Fourier-Bessel expansion of the physical fields (including the temperature and polarization momenta) is an alternative to the usual Fourier basis as a framework to compute the anisotropies. The viability of the Fourier-Bessel series for treating the CMB is a consequence of the fact that the visibility function becomes exponentially small at redshifts z>>10 3 , effectively cutting off the past light cone and introducing a finite radius inside which initial conditions can affect physical observables measured at our position x-vector=0 and time t 0 . Hence, for each multipole l there is a discrete tower of momenta k il (not a continuum) which can affect physical observables, with the smallest momenta being k 1l ∼l. The Fourier-Bessel modes take into account precisely the information from the sources of anisotropies that propagates from the initial value surface to the point of observation - no more, no less. We also show that the physical observables (the temperature and polarization maps), and hence the angular power spectra, are unaffected by that choice of basis. This implies that the Fourier-Bessel expansion is the optimal scheme with which one can compute CMB anisotropies.

3. Fourier-muunnoksesta

OpenAIRE

NIEMELÄ, EERO

2008-01-01

Tutkielman aiheena on Fourier-muunnoksen esittely. Tarkoituksena on erityisesti johdatella lukija Fourier-sarjan ja -muunnoksen käsitteisiin. Fourier-muunnosten teoria kuuluu yleisempään Fourier-analyysin aihepiiriin. Fourier-analyysin keskiössä on tulos, jonka mukaan tietyt ehdot täyttävää funktiota voidaan approksimoida mielivaltaisen tarkasti niin sanotun Fourier-sarjan avulla. Osoitamme, että 2\\pi-jaksollisen funktion Lebesgue-neliöintegroituvuus takaa suppenevan Fourier-sarjakehitelm...

4. Digital Discretion

DEFF Research Database (Denmark)

Busch, Peter Andre; Zinner Henriksen, Helle

2018-01-01

discretion is suggested to reduce this footprint by influencing or replacing their discretionary practices using ICT. What is less researched is whether digital discretion can cause changes in public policy outcomes, and under what conditions such changes can occur. Using the concept of public service values......This study reviews 44 peer-reviewed articles on digital discretion published in the period from 1998 to January 2017. Street-level bureaucrats have traditionally had a wide ability to exercise discretion stirring debate since they can add their personal footprint on public policies. Digital......, we suggest that digital discretion can strengthen ethical and democratic values but weaken professional and relational values. Furthermore, we conclude that contextual factors such as considerations made by policy makers on the macro-level and the degree of professionalization of street...

5. Discrete dynamical models

CERN Document Server

Salinelli, Ernesto

2014-01-01

This book provides an introduction to the analysis of discrete dynamical systems. The content is presented by an unitary approach that blends the perspective of mathematical modeling together with the ones of several discipline as Mathematical Analysis, Linear Algebra, Numerical Analysis, Systems Theory and Probability. After a preliminary discussion of several models, the main tools for the study of linear and non-linear scalar dynamical systems are presented, paying particular attention to the stability analysis. Linear difference equations are studied in detail and an elementary introduction of Z and Discrete Fourier Transform is presented. A whole chapter is devoted to the study of bifurcations and chaotic dynamics. One-step vector-valued dynamical systems are the subject of three chapters, where the reader can find the applications to positive systems, Markov chains, networks and search engines. The book is addressed mainly to students in Mathematics, Engineering, Physics, Chemistry, Biology and Economic...

6. Parenthetical Windows

DEFF Research Database (Denmark)

Lemi, Esther; Triantafyllidis, Georgios

2016-01-01

artificial from natural stimuli and detects common and individual needs by measuring heart pulse and body temperature. The focal point here is light and how light affects human perception while at the same time the perception of sound and how gesture can provide the best possible cognition of actual needs...... light is a form that adapts natures’ properties and modifies the artificial environment as a stage direction, implying at the same time mood and modifying it in collaboration with sound. Having evaluated how this affects the body and human perception in this particular time that we experience nowadays......Parenthetical Window is a project that engages scientific research in human perception providing a platform for users to experience their own limits and needs in their individual circadian rhythm. The presentation focuses on a case study in a community of dancers where the individual needs in light...

7. Discrete Mathematics

DEFF Research Database (Denmark)

Sørensen, John Aasted

2010-01-01

The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Spring 2010 Ectent: 5 ects Class size: 18......The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Spring 2010 Ectent: 5 ects Class size: 18...

8. Discrete Mathematics

DEFF Research Database (Denmark)

Sørensen, John Aasted

2010-01-01

The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Autumn 2010 Ectent: 5 ects Class size: 15......The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Autumn 2010 Ectent: 5 ects Class size: 15...

9. Fourier mode analysis of source iteration in spatially periodic media

International Nuclear Information System (INIS)

Zika, M.R.; Larsen, E.W.

1998-01-01

The standard Fourier mode analysis is an indispensable tool when designing acceleration techniques for transport iterations; however, it requires the assumption of a homogeneous infinite medium. For problems of practical interest, material heterogeneities may significantly impact iterative performance. Recent work has applied a Fourier analysis to the discretized two-dimensional transport operator with heterogeneous material properties. The results of these analyses may be difficult to interpret because the heterogeneity effects are inherently coupled to the discretization effects. Here, the authors describe a Fourier analysis of source iteration (SI) that allows the calculation of the eigenvalue spectrum for the one-dimensional continuous transport operator with spatially periodic heterogeneous media

10. Territorial discretion

Directory of Open Access Journals (Sweden)

Augusto Hernández Vidal

2011-12-01

Full Text Available In order to strengthen the concept of municipal autonomy, this essay proposes an extensive interpretation of administrative discretion. Discretion is the exercise of free judgment given by law to authorities for performing official acts. This legislative technique seems to be suitable whenever the legislative is intended to legislate over the essential core of municipal autonomy. This way, an eventual abuse of that autonomy could be avoided, for the disproportional restriction of the local faculty to oversee the local issues. This alternative is presented as a tool to provide with dynamism the performing of administrative activities as well, aiming to assimilate public administration new practices.

11. Discrete mechanics

International Nuclear Information System (INIS)

Lee, T.D.

1985-01-01

This paper reviews the role of time throughout all phases of mechanics: classical mechanics, non-relativistic quantum mechanics, and relativistic quantum theory. As an example of the relativistic quantum field theory, the case of a massless scalar field interacting with an arbitrary external current is discussed. The comparison between the new discrete theory and the usual continuum formalism is presented. An example is given of a two-dimensional random lattice and its duel. The author notes that there is no evidence that the discrete mechanics is more appropriate than the usual continuum mechanics

12. Discrete Mathematics

DEFF Research Database (Denmark)

Sørensen, John Aasted

2011-01-01

The objectives of Discrete Mathematics (IDISM2) are: The introduction of the mathematics needed for analysis, design and verification of discrete systems, including the application within programming languages for computer systems. Having passed the IDISM2 course, the student will be able....... Having completed this the student is able to carry out the following: Expressions and sets: Define a set; define a logic expression; negate a logic expression; combine logic expressions; construct a truth table for a logic expression; apply reduction rules for logic expressions. Apply these concepts...

13. Discrete mechanics

CERN Document Server

Caltagirone, Jean-Paul

2014-01-01

This book presents the fundamental principles of mechanics to re-establish the equations of Discrete Mechanics. It introduces physics and thermodynamics associated to the physical modeling.  The development and the complementarity of sciences lead to review today the old concepts that were the basis for the development of continuum mechanics. The differential geometry is used to review the conservation laws of mechanics. For instance, this formalism requires a different location of vector and scalar quantities in space. The equations of Discrete Mechanics form a system of equations where the H

14. On the Cooley-Turkey Fast Fourier algorithm for arbitrary factors ...

African Journals Online (AJOL)

Atonuje and Okonta in [1] developed the Cooley-Turkey Fast Fourier transform algorithm and its application to the Fourier transform of discretely sampled data points N, expressed in terms of a power y of 2. In this paper, we extend the formalism of [1] Cookey-Turkey Fast Fourier transform algorithm. The method is developed ...

15. Discrete torsion

International Nuclear Information System (INIS)

Sharpe, Eric

2003-01-01

In this article we explain discrete torsion. Put simply, discrete torsion is the choice of orbifold group action on the B field. We derive the classification H 2 (Γ,U(1)), the twisted sector phases appearing in string loop partition functions, Douglas's description of discrete torsion for D-branes in terms of a projective representation of the orbifold group, and outline how the results of Vafa and Witten fit into this framework. In addition, we observe that additional degrees of freedom (known as shift orbifolds) appear in describing orbifold group actions on B fields, in addition to those classified by H 2 (Γ,U(1)), and explain how these degrees of freedom appear in terms of twisted sector contributions to partition functions and in terms of orbifold actions on D-brane worldvolumes. This paper represents a technically simplified version of prior papers by the author on discrete torsion. We repeat here technically simplified versions of results from those papers, and have included some new material

16. Symmetric, discrete fractional splines and Gabor systems

DEFF Research Database (Denmark)

Søndergaard, Peter Lempel

2006-01-01

In this paper we consider fractional splines as windows for Gabor frames. We introduce two new types of symmetric, fractional splines in addition to one found by Unser and Blu. For the finite, discrete case we present two families of splines: One is created by sampling and periodizing the continu......In this paper we consider fractional splines as windows for Gabor frames. We introduce two new types of symmetric, fractional splines in addition to one found by Unser and Blu. For the finite, discrete case we present two families of splines: One is created by sampling and periodizing...... the continuous splines, and one is a truly finite, discrete construction. We discuss the properties of these splines and their usefulness as windows for Gabor frames and Wilson bases....

17. Dark discrete gauge symmetries

International Nuclear Information System (INIS)

Batell, Brian

2011-01-01

We investigate scenarios in which dark matter is stabilized by an Abelian Z N discrete gauge symmetry. Models are surveyed according to symmetries and matter content. Multicomponent dark matter arises when N is not prime and Z N contains one or more subgroups. The dark sector interacts with the visible sector through the renormalizable kinetic mixing and Higgs portal operators, and we highlight the basic phenomenology in these scenarios. In particular, multiple species of dark matter can lead to an unconventional nuclear recoil spectrum in direct detection experiments, while the presence of new light states in the dark sector can dramatically affect the decays of the Higgs at the Tevatron and LHC, thus providing a window into the gauge origin of the stability of dark matter.

18. Fourier Series Optimization Opportunity

Science.gov (United States)

Winkel, Brian

2008-01-01

This note discusses the introduction of Fourier series as an immediate application of optimization of a function of more than one variable. Specifically, it is shown how the study of Fourier series can be motivated to enrich a multivariable calculus class. This is done through discovery learning and use of technology wherein students build the…

19. Improvement of the chromatic dispersion tolerance in coherent optical OFDM systems using shifted DFT windows for ultra-long-haul optical transmission systems.

Science.gov (United States)

Sung, Minkyu; Kim, Hoon; Lee, Jaehoon; Jeong, Jichai

2014-09-22

In a high-capacity ultra-long-haul optical coherent orthogonal frequency-division multiplexing (CO-OFDM) system, the dispersion tolerance is determined by the length of cyclic extension (CE). In this paper, we propose a novel scheme to substantially improve the dispersion tolerance of CO-OFDM systems without increasing the CE length. Multiple time-shifted discrete Fourier transform (DFT) windows are exploited at the receiver, each demodulating only a part of the subcarriers. Effectively, the proposed scheme reduces the bandwidth of the OFDM signals under demodulation. Numerical simulations are performed to show the improved dispersion tolerance of the proposed scheme in comparison with the conventional CO-OFDM system. We show that the dispersion tolerance improves by a factor equal to the number of DFT windows. The tradeoff between the improved dispersion tolerance and increased receiver complexity is also presented.

20. Discrete optimization

CERN Document Server

Parker, R Gary

1988-01-01

This book treats the fundamental issues and algorithmic strategies emerging as the core of the discipline of discrete optimization in a comprehensive and rigorous fashion. Following an introductory chapter on computational complexity, the basic algorithmic results for the two major models of polynomial algorithms are introduced--models using matroids and linear programming. Further chapters treat the major non-polynomial algorithms: branch-and-bound and cutting planes. The text concludes with a chapter on heuristic algorithms.Several appendixes are included which review the fundamental ideas o

1. Windows 10 simplified

CERN Document Server

McFedries, Paul

2015-01-01

Learn Windows 10 quickly and painlessly with this beginner's guide Windows 10 Simplified is your absolute beginner's guide to the ins and outs of Windows. Fully updated to cover Windows 10, this highly visual guide covers all the new features in addition to the basics, giving you a one-stop resource for complete Windows 10 mastery. Every page features step-by-step screen shots and plain-English instructions that walk you through everything you need to know, no matter how new you are to Windows. You'll master the basics as you learn how to navigate the user interface, work with files, create

2. Windows 10 for dummies

CERN Document Server

Rathbone, Andy

2015-01-01

The fast and easy way to get up and running with Windows 10 Windows 10 For Dummies covers the latest version of Windows and gets you up and running with the changes and new features you'll find in this updated operating system. Packed with time-saving tips to help you get the most out of the software, this helpful Windows 10 guide shows you how to manage Windows tasks like navigating the interface with a mouse or touchscreen, connecting to the web, and troubleshooting problems and making quick fixes. Assuming no prior knowledge of the software, Windows 10 For Dummies addresses the updates to

3. On the Mathematics of Music: From Chords to Fourier Analysis

OpenAIRE

Lenssen, Nathan; Needell, Deanna

2013-01-01

Mathematics is a far reaching discipline and its tools appear in many applications. In this paper we discuss its role in music and signal processing by revisiting the use of mathematics in algorithms that can extract chord information from recorded music. We begin with a light introduction to the theory of music and motivate the use of Fourier analysis in audio processing. We introduce the discrete and continuous Fourier transforms and investigate their use in extracting important information...

4. Schematic Window Methodology Project

Data.gov (United States)

National Aeronautics and Space Administration — The aim of this IRAD is to produce a generic launch window analyzer (SWM) that allows for large-scale rapid analysis of a launch window and orbit design trade space....

5. A Short Biography of Joseph Fourier and Historical Development of Fourier Series and Fourier Transforms

Science.gov (United States)

Debnath, Lokenath

2012-01-01

This article deals with a brief biographical sketch of Joseph Fourier, his first celebrated work on analytical theory of heat, his first great discovery of Fourier series and Fourier transforms. Included is a historical development of Fourier series and Fourier transforms with their properties, importance and applications. Special emphasis is made…

6. Fourier Transform Spectrometer

Data.gov (United States)

National Aeronautics and Space Administration — The Fourier Transform Spectrometer project demonstrates the efficacy of a miniaturized spectrometer for flight applications.A spectrometer is an instrument used to...

7. Iterative algorithms to approximate canonieal Gabor windows: Computational aspects

DEFF Research Database (Denmark)

Janssen, A. J. E. M.; Søndergaard, Peter Lempel

2007-01-01

In this article we investigate the computational aspects of some recently proposed iterative methods for approximating the canonical tight and canonical dual window of a Gabor frame (g, a, b). The iterations start with the window g while the iteration steps comprise the window g, the k(th) iterand...... convergence constants. The iteratious, initially formulated for time-continuous Gabor systems, are considered and tested in a discrete setting in which one passes to the appropriately sampled-and-periodized windows and frame operators. Furthermore, they are compared with respect to accuracy and efficiency...

8. Iterative algorithms to approximate canonical Gabor windows: Computational aspects

DEFF Research Database (Denmark)

Janssen, A.J.E.M; Søndergaard, Peter Lempel

In this paper we investigate the computational aspects of some recently proposed iterative methods for approximating the canonical tight and canonical dual window of a Gabor frame (g,a,b). The iterations start with the window g while the iteration steps comprise the window g, the k^th iterand...... convergence constants. The iterations, initially formulated for time-continuous Gabor systems, are considered and tested in a discrete setting in which one passes to the appropriately sampled-and-periodized windows and frame operators. Furthermore, they are compared with respect to accuracy and efficiency...

9. Double Fourier analysis for Emotion Identification in Voiced Speech

International Nuclear Information System (INIS)

Sierra-Sosa, D.; Bastidas, M.; Ortiz P, D.; Quintero, O.L.

2016-01-01

We propose a novel analysis alternative, based on two Fourier Transforms for emotion recognition from speech. Fourier analysis allows for display and synthesizes different signals, in terms of power spectral density distributions. A spectrogram of the voice signal is obtained performing a short time Fourier Transform with Gaussian windows, this spectrogram portraits frequency related features, such as vocal tract resonances and quasi-periodic excitations during voiced sounds. Emotions induce such characteristics in speech, which become apparent in spectrogram time-frequency distributions. Later, the signal time-frequency representation from spectrogram is considered an image, and processed through a 2-dimensional Fourier Transform in order to perform the spatial Fourier analysis from it. Finally features related with emotions in voiced speech are extracted and presented. (paper)

10. Generalized Fourier transforms classes

DEFF Research Database (Denmark)

Berntsen, Svend; Møller, Steen

2002-01-01

The Fourier class of integral transforms with kernels $B(\\omega r)$ has by definition inverse transforms with kernel $B(-\\omega r)$. The space of such transforms is explicitly constructed. A slightly more general class of generalized Fourier transforms are introduced. From the general theory foll...... follows that integral transform with kernels which are products of a Bessel and a Hankel function or which is of a certain general hypergeometric type have inverse transforms of the same structure....

11. Pengaruh Window Level Dan Window Width Pada Lung Window Dan Mediastinum Window Pada Kualitas Citra CT-Scan Thorax

OpenAIRE

Gaol, Syahnaro Lumban

2015-01-01

This Research of image CT-SCAN thorax with influence of window level and window width, to obtain, get value of window level and optimal window width lung window and mediastinum window, so that get image of CT-SCAN thorax which with image quality. Image of CT-SCAN thorax obtained for mediastinum window use window width 350, 400, 450, 500 HU. And Window level 50,100,150 HU. While for lung window use window width 1000,1100 HU. The window level - 500-,600,-700,-800,-900,-1000 HU, by three observe...

12. Windows for Intel Macs

CERN Document Server

Ogasawara, Todd

2008-01-01

Even the most devoted Mac OS X user may need to use Windows XP, or may just be curious about XP and its applications. This Short Cut is a concise guide for OS X users who need to quickly get comfortable and become productive with Windows XP basics on their Macs. It covers: Security Networking ApplicationsMac users can easily install and use Windows thanks to Boot Camp and Parallels Desktop for Mac. Boot Camp lets an Intel-based Mac install and boot Windows XP on its own hard drive partition. Parallels Desktop for Mac uses virtualization technology to run Windows XP (or other operating systems

13. Windows® Internals

CERN Document Server

Russinovich, Mark E; Ionescu, Alex

2009-01-01

See how the core components of the Windows operating system work behind the scenes-guided by a team of internationally renowned internals experts. Fully updated for Windows Server 2008 and Windows Vista, this classic guide delivers key architectural insights on system design, debugging, performance, and support-along with hands-on experiments to experience Windows internal behavior firsthand.Delve inside Windows architecture and internals:Understand how the core system and management mechanisms work-from the object manager to services to the registryExplore internal system data structures usin

DEFF Research Database (Denmark)

Thomsen, Kirsten Engelund

2007-01-01

energy savings. In terms of energy, windows occupy a special position compared with other thermal envelope structures due to their many functions: 1) windows let daylight into the building and provide occupants with visual contact with their surroundings 2) windows protect against the outdoor climate 3......) windows transmit solar energy that may contribute to a reduction of energy consumption, but which may also lead to unpleasant overheating. In the following paragraphs the current use of windows is reviewed with an emphasis on energy, while special products like solar protection glazing and security......Windows should be paid special attention as they contribute a significant part of the total heat-loss coefficient of the building. Contrary to other parts of the thermal envelope the windows are not only heat loosers, but may gain heat in the day-time. Therefore there are possibilities for large...

15. High Power Coax Window

International Nuclear Information System (INIS)

Neubauer, M.L.; Dudas, A.; Sah, R.; Elliott, T.S.; Rimmer, R.A.; Stirbet, M.

2010-01-01

A superconducting RF (SRF) power coupler capable of handling 500 kW CW RF power is required for present and future storage rings and linacs. There are over 35 coupler designs for SRF cavities ranging in frequency from 325 to 1500 MHz. Coupler windows vary from cylinders to cones to disks, and RF power couplers are limited by the ability of ceramic windows to withstand the stresses due to heating and mechanical flexure. We propose a novel robust co-axial SRF coupler design which uses compressed window technology. This technology will allow the use of highly thermally conductive materials for cryogenic windows. Using compressed window techniques on disk co-axial windows will make significant improvements in the power handling of SRF couplers. We present the bench test results of two window assemblies back to back, as well as individual window VSWR in EIA3.125 coax. A vacuum test assembly was made and the windows baked out at 155C. The processes used to build windows is scalable to larger diameter coax and to higher power levels.

16. On frame properties for Fourier-like systems

DEFF Research Database (Denmark)

Christensen, Ole; Osgooei, Elnaz

2013-01-01

structure. An attractive class of frames is formed by letting the window functions be trigonometric polynomials, restricted to compact intervals. We prove, under weak conditions, that such systems generate a frame with a dual that is also generated by a trigonometric polynomial. For polynomial windows......, a result of this type does not hold. Throughout the paper the results are related to the well established theory for Gabor systems.......Fourier-like systems are formed by multiplying a class of exponentials with a set of window functions. Via the Fourier transform they are equivalent to shift-invariant systems. We present sufficient and easily verifiable conditions for such systems to form a frame with a dual frame having the same...

17. On Fourier re-expansions

OpenAIRE

Liflyand, E.

2012-01-01

We study an extension to Fourier transforms of the old problem on absolute convergence of the re-expansion in the sine (cosine) Fourier series of an absolutely convergent cosine (sine) Fourier series. The results are obtained by revealing certain relations between the Fourier transforms and their Hilbert transforms.

18. Windows 8 secrets

CERN Document Server

Thurrott, Paul

2012-01-01

Tips, tricks, treats, and secrets revealed on Windows 8 Microsoft is introducing a major new release of its Windows operating system, Windows 8, and what better way to learn all its ins and outs than from two internationally recognized Windows experts and Microsoft insiders, authors Paul Thurrott and Rafael Rivera? They cut through the hype to get at useful information you'll not find anywhere else, including what role this new OS plays in a mobile and tablet world. Regardless of your level of knowledge, you'll discover little-known facts about how things work, what's new and different, and h

19. Programming Windows Azure

CERN Document Server

Krishnan, Sriram

2010-01-01

Learn the nuts and bolts of cloud computing with Windows Azure, Microsoft's new Internet services platform. Written by a key member of the product development team, this book shows you how to build, deploy, host, and manage applications using Windows Azure's programming model and essential storage services. Chapters in Programming Windows Azure are organized to reflect the platform's buffet of services. The book's first half focuses on how to write and host application code on Windows Azure, while the second half explains all of the options you have for storing and accessing data on the plat

20. Windows Powershell Pocket Reference

CERN Document Server

Holmes, Lee

2009-01-01

This portable reference to Windows PowerShell summarizes both the command shell and scripting language, and provides a concise reference to the major tasks that make PowerShell so successful. Written by Microsoft PowerShell team member Lee Holmes, and excerpted from his Windows PowerShell Cookbook, Windows PowerShell Pocket Reference offers up-to-date coverage of PowerShell's 1.0 release. It's an ideal on-the-job tool for Windows administrators who don't have time to plow through huge books or search online.

1. Beginning Windows 8

CERN Document Server

Halsey, Mike

2012-01-01

Windows 8 has been described by Microsoft as its 'boldest' Windows release ever. Beginning Windows 8 takes you through the new features and helps you get more out of the familiar to reveal the possibilities for this amazing new operating system. You will learn, with non-technical language used throughout, how to get up and running in the new Windows interface, minimize downtime, maximize productivity, and harness the features you never knew existed to take control of your computer and enjoy the peace of mind and excitement that comes with it. From tips and tweaks to easy-to-follow guides and d

2. Mastering Windows 7 Deployment

CERN Document Server

Finn, Aidan; van Surksum, Kenneth

2011-01-01

Get professional-level instruction on Windows 7 deployment tools Enterprise-level operating system deployment is challenging and requires knowledge of specific tools. It is expected that Windows 7 will be extensively deployed in businesses worldwide. This comprehensive Sybex guide provides thorough coverage of the Microsoft deployment tools that were specifically created for Windows 7, preparing system administrators, MIS professionals, and corporate programmers to tackle the task effectively.Companies worldwide are expected to deploy Windows 7 as their enterprise operating system; system admi

3. Analog fourier transform channelizer and OFDM receiver

OpenAIRE

2007-01-01

An OFDM receiver having an analog multiplier based I-Q channelizing filter, samples and holds consecutive analog I-Q samples of an I-Q baseband, the I-Q basebands having OFDM sub-channels. A lattice of analog I-Q multipliers and analog I-Q summers concurrently receives the held analog I-Q samples, performs analog I-Q multiplications and analog I-Q additions to concurrently generate a plurality of analog I-Q output signals, representing an N-point discrete Fourier transform of the held analog ...

4. Weak signal detection: A discrete window of opportunity for ...

African Journals Online (AJOL)

weak signal detection' as a potential opportunity to fill this void. Method: Combining futures and complexity theory, we reflect on two pilot case studies that involved the Archetype Extraction technique and the SenseMakerw CollectorTM tool.

5. Fourier Transform Mass Spectrometry.

Science.gov (United States)

Gross, Michael L.; Rempel, Don L.

1984-01-01

Discusses the nature of Fourier transform mass spectrometry and its unique combination of high mass resolution, high upper mass limit, and multichannel advantage. Examines its operation, capabilities and limitations, applications (ion storage, ion manipulation, ion chemistry), and future applications and developments. (JN)

6. Fast Fourier orthogonalization

NARCIS (Netherlands)

L. Ducas (Léo); T. Prest; S.A. Abramov; E.V. Zima; X-S. Gao

2016-01-01

htmlabstractThe classical fast Fourier transform (FFT) allows to compute in quasi-linear time the product of two polynomials, in the {\\em circular convolution ring} R[x]/(x^d−1) --- a task that naively requires quadratic time. Equivalently, it allows to accelerate matrix-vector products when the

7. Discrete Curvatures and Discrete Minimal Surfaces

KAUST Repository

Sun, Xiang

2012-06-01

This thesis presents an overview of some approaches to compute Gaussian and mean curvature on discrete surfaces and discusses discrete minimal surfaces. The variety of applications of differential geometry in visualization and shape design leads to great interest in studying discrete surfaces. With the rich smooth surface theory in hand, one would hope that this elegant theory can still be applied to the discrete counter part. Such a generalization, however, is not always successful. While discrete surfaces have the advantage of being finite dimensional, thus easier to treat, their geometric properties such as curvatures are not well defined in the classical sense. Furthermore, the powerful calculus tool can hardly be applied. The methods in this thesis, including angular defect formula, cotangent formula, parallel meshes, relative geometry etc. are approaches based on offset meshes or generalized offset meshes. As an important application, we discuss discrete minimal surfaces and discrete Koenigs meshes.

8. Efficient Windows Collaborative

Energy Technology Data Exchange (ETDEWEB)

Nils Petermann

2010-02-28

The project goals covered both the residential and commercial windows markets and involved a range of audiences such as window manufacturers, builders, homeowners, design professionals, utilities, and public agencies. Essential goals included: (1) Creation of 'Master Toolkits' of information that integrate diverse tools, rating systems, and incentive programs, customized for key audiences such as window manufacturers, design professionals, and utility programs. (2) Delivery of education and outreach programs to multiple audiences through conference presentations, publication of articles for builders and other industry professionals, and targeted dissemination of efficient window curricula to professionals and students. (3) Design and implementation of mechanisms to encourage and track sales of more efficient products through the existing Window Products Database as an incentive for manufacturers to improve products and participate in programs such as NFRC and ENERGY STAR. (4) Development of utility incentive programs to promote more efficient residential and commercial windows. Partnership with regional and local entities on the development of programs and customized information to move the market toward the highest performing products. An overarching project goal was to ensure that different audiences adopt and use the developed information, design and promotion tools and thus increase the market penetration of energy efficient fenestration products. In particular, a crucial success criterion was to move gas and electric utilities to increase the promotion of energy efficient windows through demand side management programs as an important step toward increasing the market share of energy efficient windows.

9. The windows method

DEFF Research Database (Denmark)

Neighbour, Roger; Larsen, Jan-Helge

2017-01-01

through in sequence, each one opening a different viewpoint or window on the case. To experienced tutors, the windows method’s prescriptive structure may at first seem somewhat rigid. However, for learners with less experience of reflection and self-disclosure, it provides the security necessary...

10. Color Wheel Windows

Science.gov (United States)

Leonard, Stephanie

2012-01-01

In this article, the author describes a painting and drawing lesson which was inspired by the beautiful circular windows found in cathedrals and churches (also known as "rose windows"). This two-week lesson would reinforce both the concept of symmetry and students' understanding of the color wheel. (Contains 1 online resource.)

11. The Luminaire Window

DEFF Research Database (Denmark)

Hansen, Ellen Kathrine; Horóczi, Eszter

2017-01-01

integrated into the window. A qualitative experiment is carried out by integrating controllable LED in the frame of a façade window in a full-scale mock-up. It is examined how this set-up can support the colour spectrum and intensity of the daylight intake during the transmission time from daylight...

12. Air transparent soundproof window

Energy Technology Data Exchange (ETDEWEB)

Kim, Sang-Hoon, E-mail: shkim@mmu.ac.kr [Division of Marine Engineering, Mokpo National Maritime University, Mokpo 530-729, R. O. Korea (Korea, Republic of); Lee, Seong-Hyun [Korea Institute of Machinery and Materials, Yuseong-Gu, Daejeon 305-343, R. O. Korea (Korea, Republic of)

2014-11-15

A soundproof window or wall which is transparent to airflow is presented. The design is based on two wave theories: the theory of diffraction and the theory of acoustic metamaterials. It consists of a three-dimensional array of strong diffraction-type resonators with many holes centered on each individual resonator. The negative effective bulk modulus of the resonators produces evanescent wave, and at the same time the air holes with subwavelength diameter existed on the surfaces of the window for macroscopic air ventilation. The acoustic performance levels of two soundproof windows with air holes of 20mm and 50mm diameters were measured. The sound level was reduced by about 30 - 35dB in the frequency range of 400 - 5,000Hz with the 20mm window, and by about 20 - 35dB in the frequency range of 700 - 2,200Hz with the 50mm window. Multi stop-band was created by the multi-layers of the window. The attenuation length or the thickness of the window was limited by background noise. The effectiveness of the soundproof window with airflow was demonstrated by a real installation.

13. Air transparent soundproof window

Directory of Open Access Journals (Sweden)

Sang-Hoon Kim

2014-11-01

Full Text Available A soundproof window or wall which is transparent to airflow is presented. The design is based on two wave theories: the theory of diffraction and the theory of acoustic metamaterials. It consists of a three-dimensional array of strong diffraction-type resonators with many holes centered on each individual resonator. The negative effective bulk modulus of the resonators produces evanescent wave, and at the same time the air holes with subwavelength diameter existed on the surfaces of the window for macroscopic air ventilation. The acoustic performance levels of two soundproof windows with air holes of 20mm and 50mm diameters were measured. The sound level was reduced by about 30 - 35dB in the frequency range of 400 - 5,000Hz with the 20mm window, and by about 20 - 35dB in the frequency range of 700 - 2,200Hz with the 50mm window. Multi stop-band was created by the multi-layers of the window. The attenuation length or the thickness of the window was limited by background noise. The effectiveness of the soundproof window with airflow was demonstrated by a real installation.

14. Visual merchandising window display

Directory of Open Access Journals (Sweden)

Opris (Cas. Stanila M.

2013-12-01

Full Text Available Window display plays a major part in the selling strategies; it does not only include the simple display of goods, nowadays it is a form of art, also having the purpose of sustaining the brand image. This article wants to reveal the tools that are essential in creating a fabulous window display. Being a window designer is not an easy job, you have to always think ahead trends, to have a sense of colour, to know how to use light to attract customers in the store after only one glance at the window. The big store window displays are theatre scenes: with expensive backgrounds, special effects and high fashion mannequins. The final role of the displays is to convince customers to enter the store and trigger the purchasing act which is the final goal of the retail activity.

15. Selecting windows for energy efficiency

Energy Technology Data Exchange (ETDEWEB)

NONE

1997-05-01

New window technologies have increased energy benefits and comfort, and have provided more practical options for consumers. This selection guide will help homeowners, architects, and builders take advantage of the expanding window market. The guide contains three sections: an explanation of energy-related window characteristics, a discussion of window energy performance ratings, and a convenient checklist for window selection.

16. GA microwave window development

International Nuclear Information System (INIS)

Moeller, C.P.; Kasugai, A.; Sakamoto, K.; Takahashi, K.

1994-10-01

The GA prototype distributed window was tested in a 32 mm diam. waveguide system at a power density suitable for a MW gyrotron, using the JAERI/Toshiba 110 GHz long pulse internal converter gyrotron in the JAERI test stand. The presence of the untilted distributed window had no adverse effect on the gyrotron operation. A pulse length of 10 times the calculated thermal equilibrium time (1/e time) of 30 msec was reached, and the window passed at least 750 pulses greater than 30 msec and 343 pulses greater than 60 msec. Beyond 100 msec, the window calorimetry reached steady state, allowing the window dissipation to be measured in a single pulse. The measured loss of 4.0% agrees both with the estimated loss, on which the stress calculations are based, and with the attenuation measured at low power in the HE 11 mode. After the end of the tests, the window was examined; no evidence of arcing air coating was found in the part of the window directly illuminated by the microwaves, although there was discoloration in a recess containing an optical diagnostic which outgassed, causing a local discharge to occur in that recess. Finally, there was no failure of the metal-sapphire joints during a total operating time of 50 seconds consisting of pulses longer than 30 msec

17. On Fourier frames

OpenAIRE

Ortega-Cerda, Joaquim; Seip, Kristian

2000-01-01

We solve the problem of Duffin and Schaeffer (1952) of characterizing those sequences of real frequencies which generate Fourier frames. Equivalently, we characterize the sampling sequences for the Paley-Wiener space. The key step is to connect the problem with de Branges' theory of Hilbert spaces of entire functions. We show that our description of sampling sequences permits us to obtain a classical inequality of H. Landau as a consequence of Pavlov's description of Riesz bases of complex ex...

18. Classical Fourier analysis

CERN Document Server

Grafakos, Loukas

2014-01-01

The main goal of this text is to present the theoretical foundation of the field of Fourier analysis on Euclidean spaces. It covers classical topics such as interpolation, Fourier series, the Fourier transform, maximal functions, singular integrals, and Littlewood–Paley theory. The primary readership is intended to be graduate students in mathematics with the prerequisite including satisfactory completion of courses in real and complex variables. The coverage of topics and exposition style are designed to leave no gaps in understanding and stimulate further study. This third edition includes new Sections 3.5, 4.4, 4.5 as well as a new chapter on “Weighted Inequalities,” which has been moved from GTM 250, 2nd Edition. Appendices I and B.9 are also new to this edition.  Countless corrections and improvements have been made to the material from the second edition. Additions and improvements include: more examples and applications, new and more relevant hints for the existing exercises, new exercises, and...

Science.gov (United States)

Caulfield, H. John

2001-11-01

Since the early 1960s, a major part of optical computing systems has been Fourier pattern recognition, which takes advantage of high speed filter changes to enable powerful nonlinear discrimination in real time.' Because filter has a task quite independent of the tasks of the other filters, they can be applied and evaluated in parallel or, in a simple approach I describe, in sequence very rapidly. Thus I use the name ITFF (independent task Fourier filter). These filters can also break very complex discrimination tasks into easily handled parts, so the wonderful space invariance properties of Fourier filtering need not be sacrificed to achieve high discrimination and good generalizability even for ultracomplex discrimination problems. The training procedure proceeds sequentially, as the task for a given filter is defined a posteriori by declaring it to be the discrimination of particular members of set A from all members of set B with sufficient margin. That is, we set the threshold to achieve the desired margin and note the A members discriminated by that threshold. Discriminating those A members from all members of B becomes the task of that filter. Those A members are then removed from the set A, so no other filter will be asked to perform that already accomplished task.

20. Fourier techniques and applications

CERN Document Server

1985-01-01

The first systematic methods of Fourier analysis date from the early eighteenth century with the work of Joseph Fourier on the problem of the flow of heat. (A brief history is contained in the first paper.) Given the initial tempera­ ture at all points of a region, the problem was to determine the changes in the temperature distribution over time. Understanding and predicting these changes was important in such areas as the handling of metals and the determination of geological and atmospheric temperatures. Briefly, Fourier noticed that the solution of the heat diffusion problem was simple if the initial temperature dis­ tribution was sinusoidal. He then asserted that any distri­ bution can be decomposed into a sum of sinusoids, these being the harmonics of the original function. This meant that the general solution could now be obtained by summing the solu­ tions of the component sinusoidal problems. This remarkable ability of the series of sinusoids to describe all "reasonable" functions, the sine qua n...

1. The Efficient Windows Collaborative

Energy Technology Data Exchange (ETDEWEB)

Petermann, Nils

2006-03-31

The Efficient Windows Collaborative (EWC) is a coalition of manufacturers, component suppliers, government agencies, research institutions, and others who partner to expand the market for energy efficient window products. Funded through a cooperative agreement with the U.S. Department of Energy, the EWC provides education, communication and outreach in order to transform the residential window market to 70% energy efficient products by 2005. Implementation of the EWC is managed by the Alliance to Save Energy, with support from the University of Minnesota and Lawrence Berkeley National Laboratory.

2. Rails on Windows

CERN Document Server

Hibbs, Curt

2007-01-01

It's no secret that the entire Ruby onRails core team uses OS X as their preferreddevelopment environment. Becauseof this, it is very easy to findauthoritative information on the webabout using Rails on OS X. But the truthis that Windows developers using Railsprobably outnumber those using otherplatforms. A Windows development environmentcan be just as productive asany other platform. This is a guide to developing with Rubyon Rails under Windows. It won't teachyou how to write Ruby on Rails web applications,but it will show you what toolsto use and how to set them up to createa complete Rail

3. Windows 8 simplified

CERN Document Server

McFedries, Paul

2012-01-01

The easiest way for visual learners to get started with Windows 8 The popular Simplified series makes visual learning easier than ever, and with more than 360,000 copies sold, previous Windows editions are among the bestselling Visual books. This guide goes straight to the point with easy-to-follow, two-page tutorials for each task. With full-color screen shots and step-by-step directions, it gets beginners up and running on the newest version of Windows right away. Learn to work with the new interface and improved Internet Explorer, manage files, share your computer, and much more. Perfect fo

4. Windows 95 Beslutningsguide

DEFF Research Database (Denmark)

Sørensen, Jens Otto

1996-01-01

Mange virksomheder der bruger pc'er står netop nu over for valget: Skal vi fortsætte med DOS/Windows 3.x som operativsystem, eller skal vi skifte til efterfølgeren Windows 95? Skal vi/kan vi skifte successivt, eller skal det være en "alt eller intet beslutning". Hvornår er det rigtige tidspunkt...... at skifte? Denne artikel vil forsøge at give en baggrundsviden om Windows 95, der kan hjælpe virksomhederne igennem denne beslutningsfase....

5. Windows 7 resource kit

CERN Document Server

Northrup, Tony; Honeycutt, Jerry; Wilson, Ed

2009-01-01

In-depth and comprehensive, this RESOURCE KIT delivers the information you need to administer your Windows 7 system. You get authoritative technical guidance from those who know the technology best-Microsoft Most Valuable Professionals (MVPs) and the Windows 7 product team-along with essential scripts and resources. In addition, "Direct from the Source" sidebars offer deep insights and troubleshooting tips from the Windows 7 team. Get expert guidance on how to: Use Microsoft Deployment Toolkit best practices and tools. Plan user-state migration and test application compatibility.

6. Windows 10 Technical Preview

OpenAIRE

Jyväsjärvi, Teppo

2015-01-01

Tässä opinnäytetyössä tutustaan uuden kesällä 2015 virallisesti julkaistavan Windows 10 -käyttöjärjestelmän Technical Preview -kehitysversioon. Ensimmäinen Technical Preview -versio julkaistiin syksyllä 2014. Opinnäytetyössä tutustaan Windows 10:n uusin ominaisuuksiin ja tehdään vertailua aiemman Windows 8.1 -version kanssa. Työssä Windows 10 Technical Preview asennetaan virtuaalikoneelle, käydään läpi asennuksen eri vaiheet sekä suurimmat muutokset käyttöliittymässä ja sovelluksissa. Op...

7. SAF for Windows

DEFF Research Database (Denmark)

Hansen, Timme

2001-01-01

SAF for Windows er et computerprogram til parametrisk konstruktion af translationsskaller. Skaloverfladernes tredimensionelle, facetterede form fremkommer ved en kombination af to todimensionelle formbestemmende kurver, som kan vælges og redigeres af brugeren. Programmet kan udfolde de genererede...

8. Windows Security patch required

CERN Multimedia

3004-01-01

This concerns Windows PCs (XP, 2000, NT) which are NOT centrally managed at CERN for security patches, e.g. home PCs, experiment PCs, portables,... A security hole which can give full privileges on Windows systems needs to be URGENTLY patched. Details of the security hole and hotfix are at: http://cern.ch/it-div/news/hotfix-MS03-026.asp http://www.microsoft.com/technet/security/bulletin/MS03-026.asp

9. Delineating the conformal window

DEFF Research Database (Denmark)

Frandsen, Mads Toudal; Pickup, Thomas; Teper, Michael

2011-01-01

We identify and characterise the conformal window in gauge theories relevant for beyond the standard model building, e.g. Technicolour, using the criteria of metric confinement and causal analytic couplings, which are known to be consistent with the phase diagram of supersymmetric QCD from Seiberg...... duality. Using these criteria we find perturbation theory to be consistent throughout the predicted conformal window for several of these gauge theories and we discuss recent lattice results in the light of our findings....

10. Windows Security patch required

CERN Multimedia

2003-01-01

This concerns Windows PCs (XP, 2000, NT) which are NOT centrally managed at CERN for security patches, e.g. home PCs, experiment PCs, portables, ... A security hole which can give full privileges on Windows systems needs to be URGENTLY patched. Details of the security hole and hotfix are at: http://cern.ch/it-div/news/hotfix-MS03-026.asp http://www.microsoft.com/technet/security/bulletin/MS03-026.asp

11. Windows Security patch required

CERN Multimedia

2003-01-01

This concerns Windows PCs (XP, 2000, NT) which are NOT centrally managed at CERN for security patches, e.g. home PCs, experiment PCs, portables,... A security hole which can give full privileges on Windows systems needs to be URGENTLY patched. Details of the security hole and hotfix are at: http://cern.ch/it-div/news/hotfix-MS03-026.asp http://www.microsoft.com/technet/security/bulletin/MS03-026.asp

12. Window materials for high power gyrotron

Energy Technology Data Exchange (ETDEWEB)

Afsar, M.N.; Chi, H. [Tufts Univ., Medford, MA (United States)

1994-07-01

The room temperature application of sapphire as window material at higher frequencies is not feasible since its absorption coefficient increases almost linearly with increasing frequency in the millimeter wavelength region. At cryogenic temperature the absorption coefficient value decreases only by a few factors (factor of 2 to 3) in the 90-200 GHz region. The earlier reported temperature squared dependence (decrease) in the absorption coefficient or the loss tangent value is totally absent in the broad band continuous wave data the authors are reporting here (at 6.5 K, 35K, 77K and 300K) and one they reported at conferences earlier. These results are verified by another technique. The authors utilize their precision millimeter wave dispersive Fourier transform spectroscopic techniques at room temperature and at cryogenic temperatures. The extra high resistivity single crystal compensated silicon is no doubt the lowest loss material available at room temperature in the entire millimeter wavelength region. At higher millimeter wave frequencies an extra high resistivity silicon window or a window made with extra high resistivity silicon coated with diamond film would certainly make a better candidate in the future. A single free standing synthetic diamond window seems to have higher absorption coefficient values at millimeter wavelength region at this time although it is claimed that it possesses good mechanical strength and higher thermal conductivity characteristics. It certainly does not rule out the use of diamond film on a single crystal high resistivity silicon to improve its mechanical strength and thermal conductivity.

13. High Performance Window Retrofit

Energy Technology Data Exchange (ETDEWEB)

Shrestha, Som S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hun, Diana E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Desjarlais, Andre Omer [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

2013-12-01

The US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and Traco partnered to develop high-performance windows for commercial building that are cost-effective. The main performance requirement for these windows was that they needed to have an R-value of at least 5 ft2∙ F∙h/Btu. This project seeks to quantify the potential energy savings from installing these windows in commercial buildings that are at least 20 years old. To this end, we are conducting evaluations at a two-story test facility that is representative of a commercial building from the 1980s, and are gathering measurements on the performance of its windows before and after double-pane, clear-glazed units are upgraded with R5 windows. Additionally, we will use these data to calibrate EnergyPlus models that we will allow us to extrapolate results to other climates. Findings from this project will provide empirical data on the benefits from high-performance windows, which will help promote their adoption in new and existing commercial buildings. This report describes the experimental setup, and includes some of the field and simulation results.

14. Iterative wave-front reconstruction in the Fourier domain.

Science.gov (United States)

Bond, Charlotte Z; Correia, Carlos M; Sauvage, Jean-François; Neichel, Benoit; Fusco, Thierry

2017-05-15

The use of Fourier methods in wave-front reconstruction can significantly reduce the computation time for large telescopes with a high number of degrees of freedom. However, Fourier algorithms for discrete data require a rectangular data set which conform to specific boundary requirements, whereas wave-front sensor data is typically defined over a circular domain (the telescope pupil). Here we present an iterative Gerchberg routine modified for the purposes of discrete wave-front reconstruction which adapts the measurement data (wave-front sensor slopes) for Fourier analysis, fulfilling the requirements of the fast Fourier transform (FFT) and providing accurate reconstruction. The routine is used in the adaptation step only and can be coupled to any other Wiener-like or least-squares method. We compare simulations using this method with previous Fourier methods and show an increase in performance in terms of Strehl ratio and a reduction in noise propagation for a 40×40 SPHERE-like adaptive optics system. For closed loop operation with minimal iterations the Gerchberg method provides an improvement in Strehl, from 95.4% to 96.9% in K-band. This corresponds to ~ 40 nm improvement in rms, and avoids the high spatial frequency errors present in other methods, providing an increase in contrast towards the edge of the correctable band.

15. Groupoids, Discrete Mechanics, and Discrete Variation

International Nuclear Information System (INIS)

Guo Jiafeng; Jia Xiaoyu; Wu Ke; Zhao Weizhong

2008-01-01

After introducing some of the basic definitions and results from the theory of groupoid and Lie algebroid, we investigate the discrete Lagrangian mechanics from the viewpoint of groupoid theory and give the connection between groupoids variation and the methods of the first and second discrete variational principles

16. Comparison of Fourier transform and continuous wavelet transform to study echo-planar imaging flow maps

International Nuclear Information System (INIS)

Rodriguez G, A.; Bowtell, R.; Mansfield, P.

1998-01-01

Velocity maps were studied combining Doyle and Mansfield method (1986) with each of the following transforms: Fourier, window Fourier and wavelet (Mexican hat). Continuous wavelet transform was compared against the two Fourier transform to determine which technique is best suited to study blood maps generated by Half Fourier Echo-Planar Imaging. Coefficient images were calculated and plots of the pixel intensity variation are presented. Finally, contour maps are shown to visualize the behavior of the blood flow in the cardiac chambers for the wavelet technique. (Author)

17. Comparison of Fourier transform and continuous wavelet transform to study echo-planar imaging flow maps

Energy Technology Data Exchange (ETDEWEB)

Rodriguez G, A.; Bowtell, R.; Mansfield, P. [Area de Procesamiento Digital de Senales e Imagenes Biomedicas. Universidad Autonoma Metropolitana Iztapalapa. Mexico D.F. 09340 Mexico (Mexico)

1998-12-31

Velocity maps were studied combining Doyle and Mansfield method (1986) with each of the following transforms: Fourier, window Fourier and wavelet (Mexican hat). Continuous wavelet transform was compared against the two Fourier transform to determine which technique is best suited to study blood maps generated by Half Fourier Echo-Planar Imaging. Coefficient images were calculated and plots of the pixel intensity variation are presented. Finally, contour maps are shown to visualize the behavior of the blood flow in the cardiac chambers for the wavelet technique. (Author)

18. Thin Film & Deposition Systems (Windows)

Data.gov (United States)

Federal Laboratory Consortium — Coating Lab: Contains chambers for growing thin film window coatings. Plasma Applications Coating Lab: Contains chambers for growing thin film window coatings. Solar...

19. Fourier multispectral imaging.

Science.gov (United States)

Jia, Jie; Ni, Chuan; Sarangan, Andrew; Hirakawa, Keigo

2015-08-24

Current multispectral imaging systems use narrowband filters to capture the spectral content of a scene, which necessitates different filters to be designed for each application. In this paper, we demonstrate the concept of Fourier multispectral imaging which uses filters with sinusoidally varying transmittance. We designed and built these filters employing a single-cavity resonance, and made spectral measurements with a multispectral LED array. The measurements show that spectral features such as transmission and absorption peaks are preserved with this technique, which makes it a versatile technique than narrowband filters for a wide range of multispectral imaging applications.

20. Fourier Domain Sensing

Science.gov (United States)

Feldkhun, Daniel (Inventor); Wagner, Kelvin H. (Inventor)

2013-01-01

Methods and systems are disclosed of sensing an object. A first radiation is spatially modulated to generate a structured second radiation. The object is illuminated with the structured second radiation such that the object produces a third radiation in response. Apart from any spatially dependent delay, a time variation of the third radiation is spatially independent. With a single-element detector, a portion of the third radiation is detected from locations on the object simultaneously. At least one characteristic of a sinusoidal spatial Fourier-transform component of the object is estimated from a time-varying signal from the detected portion of the third radiation.

1. Fourier transforms in spectroscopy

CERN Document Server

Kauppinen, Jyrki

2000-01-01

This modern approach to the subject is clearly and logically structured, and gives readers an understanding of the essence of Fourier transforms and their applications. All important aspects are included with respect to their use with optical spectroscopic data. Based on popular lectures, the authors provide the mathematical fundamentals and numerical applications which are essential in practical use. The main part of the book is dedicated to applications of FT in signal processing and spectroscopy, with IR and NIR, NMR and mass spectrometry dealt with both from a theoretical and practical poi

2. Precise and fast spatial-frequency analysis using the iterative local Fourier transform.

Science.gov (United States)

Lee, Sukmock; Choi, Heejoo; Kim, Dae Wook

2016-09-19

The use of the discrete Fourier transform has decreased since the introduction of the fast Fourier transform (fFT), which is a numerically efficient computing process. This paper presents the iterative local Fourier transform (ilFT), a set of new processing algorithms that iteratively apply the discrete Fourier transform within a local and optimal frequency domain. The new technique achieves 210 times higher frequency resolution than the fFT within a comparable computation time. The method's superb computing efficiency, high resolution, spectrum zoom-in capability, and overall performance are evaluated and compared to other advanced high-resolution Fourier transform techniques, such as the fFT combined with several fitting methods. The effectiveness of the ilFT is demonstrated through the data analysis of a set of Talbot self-images (1280 × 1024 pixels) obtained with an experimental setup using grating in a diverging beam produced by a coherent point source.

3. TMS320C25 Digital Signal Processor For 2-Dimensional Fast Fourier Transform Computation

International Nuclear Information System (INIS)

Ardisasmita, M. Syamsa

1996-01-01

The Fourier transform is one of the most important mathematical tool in signal processing and analysis, which converts information from the time/spatial domain into the frequency domain. Even with implementation of the Fast Fourier Transform algorithms in imaging data, the discrete Fourier transform execution consume a lot of time. Digital signal processors are designed specifically to perform computation intensive digital signal processing algorithms. By taking advantage of the advanced architecture. parallel processing, and dedicated digital signal processing (DSP) instruction sets. This device can execute million of DSP operations per second. The device architecture, characteristics and feature suitable for fast Fourier transform application and speed-up are discussed

4. THREE-VARIABLE ALTERNATING TRIGONOMETRIC FUNCTIONS AND CORRESPONDING FOURIER TRANSFORMS

Directory of Open Access Journals (Sweden)

Agata Bezubik

2016-06-01

Full Text Available The common trigonometric functions admit generalizations to any higher dimension, the symmetric, antisymmetric and alternating ones. In this paper, we restrict ourselves to three dimensional generalization only, focusing on alternating case in detail. Many specific properties of this new class of special functions useful in applications are studied. Such are the orthogonalities, both the continuous one and the discrete one on the 3D lattice of any density, corresponding discrete and continuous Fourier transforms, and others. Rapidly increasing precision of the interpolation with increasing density of the 3D lattice is shown in an example.

Energy Technology Data Exchange (ETDEWEB)

Taheri, Bahman; Bodnar, Volodymyr

2011-12-31

Energy consumption by private and commercial sectors in the U.S. has steadily grown over the last decade. The uncertainty in future availability of imported oil, on which the energy consumption relies strongly, resulted in a dramatic increase in the cost of energy. About 20% of this consumption are used to heat and cool houses and commercial buildings. To reduce dependence on the foreign oil and cut down emission of greenhouse gases, it is necessary to eliminate losses and reduce total energy consumption by buildings. To achieve this goal it is necessary to redefine the role of the conventional windows. At a minimum, windows should stop being a source for energy loss. Ideally, windows should become a source of energy, providing net gain to reduce energy used to heat and cool homes. It is possible to have a net energy gain from a window if its light transmission can be dynamically altered, ideally electronically without the need of operator assistance, providing optimal control of the solar gain that varies with season and climate in the U.S. In addition, the window must not require power from the building for operation. Resolution of this problem is a societal challenge and of national interest and will have a broad global impact. For this purpose, the year-round, allclimate window solution to provide an electronically variable solar heat gain coefficient (SHGC) with a wide dynamic range is needed. AlphaMicron, Inc. (AMI) developed and manufactured 1ft × 1ft prototype panels for the world’s first auto-adjusting Adaptive Liquid Crystal Windows (ALCWs) that can operate from sunlight without the need for external power source and demonstrate an electronically adjustable SHGC. This novel windows are based on AlphaMicron’s patented e-Tint® technology, a guesthost liquid crystal system implemented on flexible, optically clear plastic films. This technology is suitable both for OEM and aftermarket (retro-fitting) lamination to new and existing windows. Low level of

6. Occupants' window opening behaviour

DEFF Research Database (Denmark)

Fabi, Valentina; Andersen, Rune Korsholm; Corgnati, Stefano

2012-01-01

systems is proposed, based on studies presented in literature and a general process leading to the effects on energy consumptions is identified.Existing studies on the topic of window opening behaviour are highlighted and a theoretical framework to deal with occupants' interactions with building controls......, aimed at improving or maintaining the preferred indoor environmental conditions, is elaborated. This approach is used to look into the drivers for the actions taken by the occupants (windows opening and closing) and to investigate the existing models in literature of these actions for both residential...... and office buildings. The analysis of the literature highlights how a shared approach on identifying the driving forces for occupants' window opening and closing behaviour has not yet been reached. However, the reporting of variables found not to be drivers may reveal contradictions in the obtained results...

7. Windows 8.1 bible

CERN Document Server

Boyce, Jim; Tidrow, Rob

2014-01-01

Windows 8.1 coverage that goes above and beyond all competitors? Serving as an evolutionary update to Windows 8, Windows 8.1 provides critical changes to parts of Windows 8, such as greater customization of the interface and boot operations, return of a 'start button' that reveals apps, greater integration between the two interfaces, and updates to apps. Weighing in at nearly 1000 pages, Windows 8.1 Bible provides deeper Windows insight than any other book on the market. It's valuable for both professionals needing a guide to the nooks and crannies of Windows and regular users wanting a wide

8. Windows Deployment Services : Esiasennuspalvelin

OpenAIRE

Ahonen, Arto

2010-01-01

Opinnäytetyöni aiheena on Windows Deployment Services, jonka tarkoituksena on toimia esiasennus-palvelimena Windows-käyttöjärjestelmien levykuvien jakamiseen sekä asentamiseen. Opinnäytetyö to-teutettiin yhteistyössä Concept.10 IT:n ja tuotannon kanssa. Concept.10:n tuotannon lähtökohtana on valmistaa ja asentaa Suomen markkinoille tietokonelaitteistoja ohjelmistoineen ja tukipalveluineen. Tuo-tantoon olennaisena osana kuuluu esiasennuspalvelin, jolla voidaan asentaa useita tietokoneita samaa...

9. Microsoft Windows networking essentials

CERN Document Server

Gibson, Darril

2011-01-01

The core concepts and technologies of Windows networking Networking can be a complex topic, especially for those new to the field of IT. This focused, full-color book takes a unique approach to teaching Windows networking to beginners by stripping down a network to its bare basics, thereby making each topic clear and easy to understand. Focusing on the new Microsoft Technology Associate (MTA) program, this book pares down to just the essentials, showing beginners how to gain a solid foundation for understanding networking concepts upon which more advanced topics and technologies can be built.

10. Windows Azure Platform

CERN Document Server

Redkar, Tejaswi

2010-01-01

The Azure Services Platform is a brand-new cloud-computing technology from Microsoft. It is composed of four core components-Windows Azure, .NET Services, SQL Services, and Live Services-each with a unique role in the functioning of your cloud service. It is the goal of this book to show you how to use these components, both separately and together, to build flawless cloud services. At its heart Windows Azure Platform is a down-to-earth, code-centric book. This book aims to show you precisely how the components are employed and to demonstrate the techniques and best practices you need to know

11. Microsoft Windows Security Essentials

CERN Document Server

Gibson, Darril

2011-01-01

Windows security concepts and technologies for IT beginners IT security can be a complex topic, especially for those new to the field of IT. This full-color book, with a focus on the Microsoft Technology Associate (MTA) program, offers a clear and easy-to-understand approach to Windows security risks and attacks for newcomers to the world of IT. By paring down to just the essentials, beginners gain a solid foundation of security concepts upon which more advanced topics and technologies can be built. This straightforward guide begins each chapter by laying out a list of topics to be discussed,

12. Fourier Transform Spectrometer System

Science.gov (United States)

Campbell, Joel F. (Inventor)

2014-01-01

A Fourier transform spectrometer (FTS) data acquisition system includes an FTS spectrometer that receives a spectral signal and a laser signal. The system further includes a wideband detector, which is in communication with the FTS spectrometer and receives the spectral signal and laser signal from the FTS spectrometer. The wideband detector produces a composite signal comprising the laser signal and the spectral signal. The system further comprises a converter in communication with the wideband detector to receive and digitize the composite signal. The system further includes a signal processing unit that receives the composite signal from the converter. The signal processing unit further filters the laser signal and the spectral signal from the composite signal and demodulates the laser signal, to produce velocity corrected spectral data.

13. Interpolation of the discrete logarithm in a finite field of characteristic two by Boolean functions

DEFF Research Database (Denmark)

Brandstaetter, Nina; Lange, Tanja; Winterhof, Arne

2005-01-01

We obtain bounds on degree, weight, and the maximal Fourier coefficient of Boolean functions interpolating the discrete logarithm in finite fields of characteristic two. These bounds complement earlier results for finite fields of odd characteristic.......We obtain bounds on degree, weight, and the maximal Fourier coefficient of Boolean functions interpolating the discrete logarithm in finite fields of characteristic two. These bounds complement earlier results for finite fields of odd characteristic....

14. Rainbow Fourier Transform

Science.gov (United States)

Alexandrov, Mikhail D.; Cairns, Brian; Mishchenko, Michael I.

2012-01-01

We present a novel technique for remote sensing of cloud droplet size distributions. Polarized reflectances in the scattering angle range between 135deg and 165deg exhibit a sharply defined rainbow structure, the shape of which is determined mostly by single scattering properties of cloud particles, and therefore, can be modeled using the Mie theory. Fitting the observed rainbow with such a model (computed for a parameterized family of particle size distributions) has been used for cloud droplet size retrievals. We discovered that the relationship between the rainbow structures and the corresponding particle size distributions is deeper than it had been commonly understood. In fact, the Mie theory-derived polarized reflectance as a function of reduced scattering angle (in the rainbow angular range) and the (monodisperse) particle radius appears to be a proxy to a kernel of an integral transform (similar to the sine Fourier transform on the positive semi-axis). This approach, called the rainbow Fourier transform (RFT), allows us to accurately retrieve the shape of the droplet size distribution by the application of the corresponding inverse transform to the observed polarized rainbow. While the basis functions of the proxy-transform are not exactly orthogonal in the finite angular range, this procedure needs to be complemented by a simple regression technique, which removes the retrieval artifacts. This non-parametric approach does not require any a priori knowledge of the droplet size distribution functional shape and is computationally fast (no look-up tables, no fitting, computations are the same as for the forward modeling).

15. Quadrature formulas for Fourier coefficients

KAUST Repository

Bojanov, Borislav

2009-09-01

We consider quadrature formulas of high degree of precision for the computation of the Fourier coefficients in expansions of functions with respect to a system of orthogonal polynomials. In particular, we show the uniqueness of a multiple node formula for the Fourier-Tchebycheff coefficients given by Micchelli and Sharma and construct new Gaussian formulas for the Fourier coefficients of a function, based on the values of the function and its derivatives. © 2009 Elsevier B.V. All rights reserved.

16. Ultrasonic Transducers for Fourier Analysis.

Science.gov (United States)

1995-01-01

Describes an experiment that uses the ultrasonic transducer for demonstrating the Fourier components of waveshapes such as the square and triangular waves produced by laboratory function generators. (JRH)

17. "Stained Glass" Landscape Windows

Science.gov (United States)

Vannata, Janine

2008-01-01

Both adults and children alike marvel at the grand vivid stained-glass windows created by American artist Louis Comfort Tiffany. Today he is commonly recognized as one of America's most influential designers and artists throughout the last nineteenth and early twentieth century. In the lesson described in this article, students created their own…

18. Exploring Shop Window Displays

Science.gov (United States)

Christopoulou, Martha

2011-01-01

Using visual resources from everyday life in art lessons can enrich students' knowledge about the creation of visual images, artifacts, and sites, and develop their critical understanding about the cultural impact of these images and their effects on people's lives. Through examining an exhibition in the windows of Selfridges department store in…

19. Opening the Literature Window

Science.gov (United States)

Jago, Carol

2012-01-01

Great literature gives students a window to other places and times, but it often requires students to step outside their comfort zones and take on challenges they wouldn't usually attempt. Unfortunately, research shows that many schools are not assigning literature that pushes students beyond their current reading level. Jago encourages teachers…

20. Simple cryogenic infrared window

NARCIS (Netherlands)

Hartemink, M.; Hartemink, M.; Godfried, H.P; Godfried, Herman

1991-01-01

A simple, cheap technique is reported that allows materials with both large and small thermal expansion coefficients to be mounted as windows in low temperature cryostats while at the same time avoiding thermal stresses. The construction may be thermally cycled many times with no change in its

1. Fourier-Hermite communications; where Fourier meets Hermite

NARCIS (Netherlands)

Korevaar, C.W.; Kokkeler, Andre B.J.; de Boer, Pieter-Tjerk; Smit, Gerardus Johannes Maria

A new signal set, based on the Fourier and Hermite signal bases, is introduced. It combines properties of the Fourier basis signals with the perfect time-frequency localization of the Hermite functions. The signal set is characterized by both a high spectral efficiency and good time-frequency

2. Fixed-point error analysis of Winograd Fourier transform algorithms

Science.gov (United States)

Patterson, R. W.; Mcclellan, J. H.

1978-01-01

The quantization error introduced by the Winograd Fourier transform algorithm (WFTA) when implemented in fixed-point arithmetic is studied and compared with that of the fast Fourier transform (FFT). The effect of ordering the computational modules and the relative contributions of data quantization error and coefficient quantization error are determined. In addition, the quantization error introduced by the Good-Winograd (GW) algorithm, which uses Good's prime-factor decomposition for the discrete Fourier transform (DFT) together with Winograd's short length DFT algorithms, is studied. Error introduced by the WFTA is, in all cases, worse than that of the FFT. In general, the WFTA requires one or two more bits for data representation to give an error similar to that of the FFT. Error introduced by the GW algorithm is approximately the same as that of the FFT.

3. Regularity of Dual Gabor Windows

Directory of Open Access Journals (Sweden)

Ole Christensen

2013-01-01

Full Text Available We present a construction of dual windows associated with Gabor frames with compactly supported windows. The size of the support of the dual windows is comparable to that of the given window. Under certain conditions, we prove that there exist dual windows with higher regularity than the canonical dual window. On the other hand, there are cases where no differentiable dual window exists, even in the overcomplete case. As a special case of our results, we show that there exists a common smooth dual window for an interesting class of Gabor frames. In particular, for any value of K∈ℕ, there is a smooth function h which simultaneously is a dual window for all B-spline generated Gabor frames {EmbTnBN(x/2}m,n∈ℕ for B-splines BN of order N=1,…,2K+1 with a fixed and sufficiently small value of b.

4. a pyramid algorithm for the haar discrete wavelet packet transform

African Journals Online (AJOL)

PROF EKWUEME

derivation of the fast Haar discrete wavelet packet transform (FHDWPT) and its inverse. It is found out that the. FHDWPT is computationally as efficient as the fast Fourier transform (FFT). KEYWORDS: Wavelet, Packets, Haar, Pyramid, Algorithm. INTRODUCTION. Wavelet-based digital signal processing techniques are ...

5. Deep Discrete Supervised Hashing

OpenAIRE

Jiang, Qing-Yuan; Cui, Xue; Li, Wu-Jun

2017-01-01

Hashing has been widely used for large-scale search due to its low storage cost and fast query speed. By using supervised information, supervised hashing can significantly outperform unsupervised hashing. Recently, discrete supervised hashing and deep hashing are two representative progresses in supervised hashing. On one hand, hashing is essentially a discrete optimization problem. Hence, utilizing supervised information to directly guide discrete (binary) coding procedure can avoid sub-opti...

6. Fourier analysis of numerical algorithms for the Maxwell equations

Science.gov (United States)

Liu, Yen

1993-01-01

The Fourier method is used to analyze the dispersive, dissipative, and isotropy errors of various spatial and time discretizations applied to the Maxwell equations on multi-dimensional grids. Both Cartesian grids and non-Cartesian grids based on hexagons and tetradecahedra are studied and compared. The numerical errors are quantitatively determined in terms of phase speed, wave number, propagation direction, gridspacings, and CFL number. The study shows that centered schemes are more efficient than upwind schemes. The non-Cartesian grids yield superior isotropy and higher accuracy than the Cartesian ones. For the centered schemes, the staggered grids produce less errors than the unstaggered ones. A new unstaggered scheme which has all the best properties is introduced. The study also demonstrates that a proper choice of time discretization can reduce the overall numerical errors due to the spatial discretization.

7. Fast fourier algorithms in spectral computation and analysis of vibrating machines

International Nuclear Information System (INIS)

Farooq, U.; Hafeez, T.; Khan, M.Z.; Amir, M.

2001-01-01

In this work we have discussed Fourier and its history series, relationships among various Fourier mappings, Fourier coefficients, transforms, inverse transforms, integrals, analyses, discrete and fast algorithms for data processing and analysis of vibrating systems. The evaluation of magnitude of the source signal at transmission time, related coefficient matrix, intensity, and magnitude at the receiving end (stations). Matrix computation of Fourier transform has been explained, and applications are presented. The fast Fourier transforms, new computational scheme. have been tested with an example. The work also includes digital programs for obtaining the frequency contents of time function. It has been explained that how the fast Fourier algorithms (FFT) has decreased computational work by several order of magnitudes and split the spectrum of a signal into two (even and odd modes) at every successive step. That fast quantitative processing for discrete Fourier transforms' computations as well as signal splitting and combination provides an efficient. and reliable tool for spectral analyses. Fourier series decompose the given variable into a sum of oscillatory functions each having a specific frequency. These frequencies, with their corresponding amplitude and phase angles, constitute the frequency contents of the original time functions. These fast processing achievements, signals decomposition and combination may be carried out by the principle of superposition and convolution for, even, signals of different frequencies. Considerable information about a machine or a structure can be derived from variable speed and frequency tests. (author)

8. Daylight Redirecting Window Films

Science.gov (United States)

2013-09-01

The open office area (Figure 9) is 48’ deep with a sloped ceiling designed to disperse light down into the cubicle workstations. The sloped ceiling...Ceiling Ht. 9’ , 10’* Window VT 40%, 70%* Office Furniture 60” Cubicle * Lighting Schedule ASHRAE 90.1* Blinds Control Always Closed, Automated...2829 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) ESTCP Program Office Dr. James

9. Fourier-correlation imaging

Science.gov (United States)

Braun, Daniel; Monjid, Younes; Rougé, Bernard; Kerr, Yann

2018-02-01

We investigated whether correlations between the Fourier components at slightly shifted frequencies of the fluctuations of the electric field measured with a one-dimensional antenna array on board a satellite flying over a plane allow one to measure the two-dimensional brightness temperature as a function of position in the plane. We found that the achievable spatial resolution that resulted from just two antennas is on the order of h χ , with χ = c / ( Δ r ω 0 ) , both in the direction of the flight of the satellite and in the direction perpendicular to it, where Δ r is the distance between the antennas, ω0 is the central frequency, h is the height of the satellite over the plane, and c is the speed of light. Two antennas separated by a distance of about 100 m on a satellite flying with a speed of a few km/s at a height of the order of 1000 km and a central frequency of order GHz allow, therefore, the imaging of the brightness temperature on the surface of Earth with a resolution of the order of 1 km. For a single point source, the relative radiometric resolution is on the order of √{ χ} , but, for a uniform temperature field in a half plane left or right of the satellite track, it is only on the order of 1 / χ 3 / 2 , which indicates that two antennas do not suffice for a precise reconstruction of the temperature field. Several ideas are discussed regarding how the radiometric resolution could be enhanced. In particular, having N antennas all separated by at least a distance on the order of the wave-length allows one to increase the signal-to-noise ratio by a factor of order N but requires averaging over N2 temperature profiles obtained from as many pairs of antennas.

10. Windows with improved energy performances

DEFF Research Database (Denmark)

Laustsen, Jacob Birck; Svendsen, Svend

2003-01-01

Heat loss through windows represents a considerable part of the total heat loss from houses. However, apart from providing daylight access and view, windows offer a unique potential for solar gain to be exploited during the heating season. Until now valuation of the energy performance of windows...... has primary focused on the heat loss coefficient, U-value. However, as the U-value, especially for the glazing part, has improved considerably during the last years, the total solar energy transmittance, g-value, has become equally important to the total energy performance of windows. Improved energy...... performance of windows can be reached by development of each element of the window, but to gain a considerable improvement in the overall energy performance all elements of the windows need to be examined together and the construction optimised. This paper describes potential improvements of window elements...

11. Spectrums Transform Operators in Bases of Fourier and Walsh Functions

Directory of Open Access Journals (Sweden)

V. V. Syuzev

2017-01-01

Full Text Available The problems of synthesis of the efficient algorithms for digital processing of discrete signals require transforming the signal spectra from one basis system into other. The rational solution to this problem is to construct the Fourier kernel, which is a spectrum of some basis functions, according to the system of functions of the other basis. However, Fourier kernel properties are not equally studied and described for all basis systems of practical importance. The article sets a task and presents an original way to solve the problem of mutual transformation of trigonometric Fourier spectrum into Walsh spectrum of different basis systems.The relevance of this theoretical and applied problem is stipulated, on the one hand, by the prevalence of trigonometric Fourier basis for harmonic representation of digital signals, and, on the other hand, by the fact that Walsh basis systems allow us to have efficient algorithms to simulate signals. The problem solution is achieved through building the Fourier kernel of a special structure that allows us to establish independent groups of Fourier and Walsh spectrum coefficients for further reducing the computational complexity of the transform algorithms.The article analyzes the properties of the system of trigonometric Fourier functions and shows its completeness. Considers the Walsh function basis systems in three versions, namely those of Hadamard, Paley, and Hartmut giving different ordering and analytical descriptions of the functions that make up the basis. Proves a completeness of these systems.Sequentially, for each of the three Walsh systems the analytical curves for the Fourier kernel components are obtained, and Fourier kernel themselves are built with binary rational number of samples of basis functions. The kernels are presented in matrix form and, as an example, recorded for a particular value of the discrete interval of N, equal to 8. The analysis spectral coefficients of the Fourier kernel

12. Understanding and Supporting Window Switching

NARCIS (Netherlands)

Tak, S.

2011-01-01

Switching between windows on a computer is a frequent activity, but finding and switching to the target window can be inefficient. This thesis aims to better un-derstand and support window switching. It explores two issues: (1) the lack of knowledge of how people currently interact with and switch

13. A Window-Washing Challenge

Science.gov (United States)

Roman, Harry T.

2010-01-01

Skyscrapers sure do have a lot of windows, and these windows are cleaned and checked regularly. All this takes time, money, and puts workers at potential risk. Might there be a better way to do it? In this article, the author discusses a window-washing challenge and describes how students can tackle this task, pick up the challenge, and creatively…

14. Fourier Analysis and Structure Determination: Part I: Fourier Transforms.

Science.gov (United States)

Chesick, John P.

1989-01-01

Provides a brief introduction with some definitions and properties of Fourier transforms. Shows relations, ways of understanding the mathematics, and applications. Notes proofs are not included but references are given. First of three part series. (MVL)

15. Fourier phase in Fourier-domain optical coherence tomography

Science.gov (United States)

Uttam, Shikhar; Liu, Yang

2015-01-01

Phase of an electromagnetic wave propagating through a sample-of-interest is well understood in the context of quantitative phase imaging in transmission-mode microscopy. In the past decade, Fourier-domain optical coherence tomography has been used to extend quantitative phase imaging to the reflection-mode. Unlike transmission-mode electromagnetic phase, however, the origin and characteristics of reflection-mode Fourier phase are poorly understood, especially in samples with a slowly varying refractive index. In this paper, the general theory of Fourier phase from first principles is presented, and it is shown that Fourier phase is a joint estimate of subresolution offset and mean spatial frequency of the coherence-gated sample refractive index. It is also shown that both spectral-domain phase microscopy and depth-resolved spatial-domain low-coherence quantitative phase microscopy are special cases of this general theory. Analytical expressions are provided for both, and simulations are presented to explain and support the theoretical results. These results are further used to show how Fourier phase allows the estimation of an axial mean spatial frequency profile of the sample, along with depth-resolved characterization of localized optical density change and sample heterogeneity. Finally, a Fourier phase-based explanation of Doppler optical coherence tomography is also provided. PMID:26831383

16. Fourier phase in Fourier-domain optical coherence tomography.

Science.gov (United States)

Uttam, Shikhar; Liu, Yang

2015-12-01

Phase of an electromagnetic wave propagating through a sample-of-interest is well understood in the context of quantitative phase imaging in transmission-mode microscopy. In the past decade, Fourier-domain optical coherence tomography has been used to extend quantitative phase imaging to the reflection-mode. Unlike transmission-mode electromagnetic phase, however, the origin and characteristics of reflection-mode Fourier phase are poorly understood, especially in samples with a slowly varying refractive index. In this paper, the general theory of Fourier phase from first principles is presented, and it is shown that Fourier phase is a joint estimate of subresolution offset and mean spatial frequency of the coherence-gated sample refractive index. It is also shown that both spectral-domain phase microscopy and depth-resolved spatial-domain low-coherence quantitative phase microscopy are special cases of this general theory. Analytical expressions are provided for both, and simulations are presented to explain and support the theoretical results. These results are further used to show how Fourier phase allows the estimation of an axial mean spatial frequency profile of the sample, along with depth-resolved characterization of localized optical density change and sample heterogeneity. Finally, a Fourier phase-based explanation of Doppler optical coherence tomography is also provided.

17. Discrete control systems

CERN Document Server

Okuyama, Yoshifumi

2014-01-01

Discrete Control Systems establishes a basis for the analysis and design of discretized/quantized control systemsfor continuous physical systems. Beginning with the necessary mathematical foundations and system-model descriptions, the text moves on to derive a robust stability condition. To keep a practical perspective on the uncertain physical systems considered, most of the methods treated are carried out in the frequency domain. As part of the design procedure, modified Nyquist–Hall and Nichols diagrams are presented and discretized proportional–integral–derivative control schemes are reconsidered. Schemes for model-reference feedback and discrete-type observers are proposed. Although single-loop feedback systems form the core of the text, some consideration is given to multiple loops and nonlinearities. The robust control performance and stability of interval systems (with multiple uncertainties) are outlined. Finally, the monograph describes the relationship between feedback-control and discrete ev...

18. Windows Home Server users guide

CERN Document Server

Edney, Andrew

2008-01-01

Windows Home Server brings the idea of centralized storage, backup and computer management out of the enterprise and into the home. Windows Home Server is built for people with multiple computers at home and helps to synchronize them, keep them updated, stream media between them, and back them up centrally. Built on a similar foundation as the Microsoft server operating products, it's essentially Small Business Server for the home.This book details how to install, configure, and use Windows Home Server and explains how to connect to and manage different clients such as Windows XP, Windows Vist

19. Teach yourself visually Windows 10

CERN Document Server

McFedries, Paul

2015-01-01

Learn Windows 10 visually with step-by-step instructions Teach Yourself VISUALLY Windows 10 is the visual learner's guide to the latest Windows upgrade. Completely updated to cover all the latest features, this book walks you step-by-step through over 150 essential Windows tasks. Using full color screen shots and clear instruction, you'll learn your way around the interface, set up user accounts, play media files, download photos from your camera, go online, set up email, and much more. You'll even learn how to customize Windows 10 to suit the way you work best, troubleshoot and repair common

20. Fourier analysis and stochastic processes

CERN Document Server

Brémaud, Pierre

2014-01-01

This work is unique as it provides a uniform treatment of the Fourier theories of functions (Fourier transforms and series, z-transforms), finite measures (characteristic functions, convergence in distribution), and stochastic processes (including arma series and point processes). It emphasises the links between these three themes. The chapter on the Fourier theory of point processes and signals structured by point processes is a novel addition to the literature on Fourier analysis of stochastic processes. It also connects the theory with recent lines of research such as biological spike signals and ultrawide-band communications. Although the treatment is mathematically rigorous, the convivial style makes the book accessible to a large audience. In particular, it will be interesting to anyone working in electrical engineering and communications, biology (point process signals) and econometrics (arma models). A careful review of the prerequisites (integration and probability theory in the appendix, Hilbert spa...

1. Sunlight Responsive Thermochromic Window System

Energy Technology Data Exchange (ETDEWEB)

Millett, F,A; Byker,H, J

2006-10-27

Pleotint has embarked on a novel approach with our Sunlight Responsive Thermochromic, SRT™, windows. We are integrating dynamic sunlight control, high insulation values and low solar heat gain together in a high performance window. The Pleotint SRT window is dynamic because it reversibly changes light transmission based on thermochromics activated directly by the heating effect of sunlight. We can achieve a window package with low solar heat gain coefficient (SHGC), a low U value and high insulation. At the same time our windows provide good daylighting. Our innovative window design offers architects and building designers the opportunity to choose their desired energy performance, excellent sound reduction, external pane can be self-cleaning, or a resistance to wind load, blasts, bullets or hurricanes. SRT windows would provide energy savings that are estimated at up to 30% over traditional window systems. Glass fabricators will be able to use existing equipment to make the SRT window while adding value and flexibility to the basic design. Glazing installers will have the ability to fit the windows with traditional methods without wires, power supplies and controllers. SRT windows can be retrofit into existing buildings,

2. Windows Azure web sites

CERN Document Server

Chambers, James

2013-01-01

A no-nonsense guide to maintaining websites in Windows Azure If you're looking for a straightforward, practical guide to get Azure websites up and running, then this is the book for you. This to-the-point guide provides you with the tools you need to move and maintain a website in the cloud. You'll discover the features that most affect developers and learn how they can be leveraged to work to your advantage. Accompanying projects enhance your learning experience and help you to walk away with a thorough understanding of Azure's supported technologies, site deployment, and manageme

3. Windows Terminal Servers Orchestration

Science.gov (United States)

Bukowiec, Sebastian; Gaspar, Ricardo; Smith, Tim

2017-10-01

Windows Terminal Servers provide application gateways for various parts of the CERN accelerator complex, used by hundreds of CERN users every day. The combination of new tools such as Puppet, HAProxy and Microsoft System Center suite enable automation of provisioning workflows to provide a terminal server infrastructure that can scale up and down in an automated manner. The orchestration does not only reduce the time and effort necessary to deploy new instances, but also facilitates operations such as patching, analysis and recreation of compromised nodes as well as catering for workload peaks.

4. Transparent aerogel Windows

DEFF Research Database (Denmark)

Jensen, Karsten Ingerslev; Schultz, Jørgen Munthe

In a recent EU FP5 project, monolithic silica aerogel was further developed with respect to the production process at pilot-scale, its properties and the application as transparent insulation material in highly insulating and transparent windows. The aerogel production process has been optimised......-value of 0.7 W/m²K for about 14 mm aerogel thickness, which for a 20 mm thickness corresponds to a U-value of approximately 0.5 W/m²K. No other known glazing exhibits such an excellent combination of solar transmittance and heat loss coefficient. At a Danish location and North facing, the energy balance...

5. Windows on animal minds.

Science.gov (United States)

Griffin, D R

1995-06-01

The simple kinds of conscious thinking that probably occur in nonhuman animals can be studied objectively by utilizing the same basic procedure that we use every day to infer what our human companions think and feel. This is to base such inferences on communicative behavior, broadly defined to include human language, nonverbal communication, and semantic communication in apes, dolphins, parrots, and honeybees. It seems likely that animals often experience something similar to the messages they communicate. Although this figurative window on other minds is obviously imperfect, it is already contributing significantly to our growing understanding and appreciation of animal mentality.

6. Invariant sets for Windows

CERN Document Server

Morozov, Albert D; Dragunov, Timothy N; Malysheva, Olga V

1999-01-01

This book deals with the visualization and exploration of invariant sets (fractals, strange attractors, resonance structures, patterns etc.) for various kinds of nonlinear dynamical systems. The authors have created a special Windows 95 application called WInSet, which allows one to visualize the invariant sets. A WInSet installation disk is enclosed with the book.The book consists of two parts. Part I contains a description of WInSet and a list of the built-in invariant sets which can be plotted using the program. This part is intended for a wide audience with interests ranging from dynamical

7. Windows Azure Platform

CERN Document Server

Redkar, Tejaswi

2011-01-01

The Windows Azure Platform has rapidly established itself as one of the most sophisticated cloud computing platforms available. With Microsoft working to continually update their product and keep it at the cutting edge, the future looks bright - if you have the skills to harness it. In particular, new features such as remote desktop access, dynamic content caching and secure content delivery using SSL make the latest version of Azure a more powerful solution than ever before. It's widely agreed that cloud computing has produced a paradigm shift in traditional architectural concepts by providin

8. Fourier reconstruction with sparse inversions

OpenAIRE

Zwartjes, P.M.

2005-01-01

In seismic exploration an image of the subsurface is generated from seismic data through various data processing algorithms. When the data is not acquired on an equidistantly spaced grid, artifacts may result in the final image. Fourier reconstruction is an interpolation technique that can reduce these artifacts by generating uniformly sampled data from such non-uniformly sampled data. The method works by estimating via least-squares inversion the Fourier coefficients that describe the non-un...

9. Fourier transform nuclear magnetic resonance

International Nuclear Information System (INIS)

Geick, R.

1981-01-01

This review starts with the basic principles of resonance phenomena in physical systems. Especially, the connection is shown between the properties of these systems and Fourier transforms. Next, we discuss the principles of nuclear magnetic resonance. Starting from the general properties of physical systems showing resonance phenomena and from the special properties of nuclear spin systems, the main part of this paper reviews pulse and Fourier methods in nuclear magnetic resonance. Among pulse methods, an introduction will be given to spin echoes, and, apart from the principle of Fourier transform nuclear magnetic resonance, an introduction to the technical problems of this method, e.g. resolution in the frequency domain, aliasing, phase and intensity errors, stationary state of the spin systems for repetitive measurements, proton decoupling, and application of Fourier methods to systems in a nonequilibrium state. The last section is devoted to special applications of Fourier methods and recent developments, e.g. measurement of relaxation times, solvent peak suppression, 'rapid scan'-method, methods for suppressing the effects of dipolar coupling in solids, two-dimensional Fourier transform nuclear magnetic resonance, and spin mapping or zeugmatography. (author)

10. Windows on the axion

International Nuclear Information System (INIS)

Turner, M.S.

1989-04-01

Peccei-Quinn symmetry with attendant axion is a most compelling, and perhaps the most minimal, extension of the standard model, as it provides a very elegant solution to the nagging strong CP-problem associated with the Θ vacuum structure of QCD. However, particle physics gives little guidance as to the axion mass; a priori, the plausible values span the range: 10/sup /minus/12/ eV /approx lt/ m/sub a/ /approx lt/ 10 6 eV, some 18 orders-of-magnitude. Axions have a host of interesting astrophysical and cosmological effects, including, modifying the evolution of stars of all types (our sun, red giants, white dwarfs, and neutron stars), contributing significantly to the mass density of the Universe today, and producing detectable line radiation through the decays of relic axions. Consideration of these effects has probed 14 orders-of-magnitude in axion mass, and has left open only two windows for further exploration: 10/sup /minus/6/ eV /approx lt/ m/sub a/ /approx lt/ 10/sup /minus/3/ eV and 1 eV /approx lt/ m/sub a/ /approx lt/ 5 eV (hadronic axions only). Both these windows are accessible to experiment, and a variety of very interesting experiments, all of which involve ''heavenly axions,'' are being planned or are underway. 58 refs., 6 figs., 1 tab

11. WINDOW-CLEANING

CERN Multimedia

Environmental Section / ST-TFM

2001-01-01

The two-month window-cleaning session on the Meyrin, Prévessin and LEP sites will soon begin. The cleaning contractors will work from Monday to Saturday, every week from 4.00 a.m. to 8.00 p.m. The work will be organised so as to disturb users as little as possible. In any event, a work notice will be left in each office 24 hours beforehand. To prevent any damage to documents or items which could occur despite the precautions taken, please clear completely the window-sills and the area immediately around them. If, however, for valid reasons, the work cannot be done on the scheduled day, please inform the Environmental Section by telephoning: 73753 / 74233 / 72242 If you are going to be absent during this two-month period, we should be grateful if you would clear the above mentioned areas before your departure. REMINDER To allow more thorough cleaning of the entrance doors to buildings and also facilitate the weekly work of the cleaning contractors, we ask you to make use of the notice boards at the...

12. Windows on the axion

Energy Technology Data Exchange (ETDEWEB)

Turner, M.S.

1989-04-01

Peccei-Quinn symmetry with attendant axion is a most compelling, and perhaps the most minimal, extension of the standard model, as it provides a very elegant solution to the nagging strong CP-problem associated with the THETA vacuum structure of QCD. However, particle physics gives little guidance as to the axion mass; a priori, the plausible values span the range: 10/sup /minus/12/ eV /approx lt/ m/sub a/ /approx lt/ 10/sup 6/ eV, some 18 orders-of-magnitude. Axions have a host of interesting astrophysical and cosmological effects, including, modifying the evolution of stars of all types (our sun, red giants, white dwarfs, and neutron stars), contributing significantly to the mass density of the Universe today, and producing detectable line radiation through the decays of relic axions. Consideration of these effects has probed 14 orders-of-magnitude in axion mass, and has left open only two windows for further exploration: 10/sup /minus/6/ eV /approx lt/ m/sub a/ /approx lt/ 10/sup /minus/3/ eV and 1 eV /approx lt/ m/sub a/ /approx lt/ 5 eV (hadronic axions only). Both these windows are accessible to experiment, and a variety of very interesting experiments, all of which involve ''heavenly axions,'' are being planned or are underway. 58 refs., 6 figs., 1 tab.

13. Working with Windows 7 at CERN (EN)

CERN Multimedia

CERN. Geneva

2010-01-01

Overview of new concepts and user interface changes in Windows 7 as compared with older versions of Windows: XP or Vista. Availability of Windows 7 at CERN and its integration with CERN Windows infrastructure will be discussed.

14. Discrete quantum gravity

International Nuclear Information System (INIS)

Williams, Ruth M

2006-01-01

A review is given of a number of approaches to discrete quantum gravity, with a restriction to those likely to be relevant in four dimensions. This paper is dedicated to Rafael Sorkin on the occasion of his sixtieth birthday

15. Discrete fractional calculus

CERN Document Server

Goodrich, Christopher

2015-01-01

This text provides the first comprehensive treatment of the discrete fractional calculus. Experienced researchers will find the text useful as a reference for discrete fractional calculus and topics of current interest. Students who are interested in learning about discrete fractional calculus will find this text to provide a useful starting point. Several exercises are offered at the end of each chapter and select answers have been provided at the end of the book. The presentation of the content is designed to give ample flexibility for potential use in a myriad of courses and for independent study. The novel approach taken by the authors includes a simultaneous treatment of the fractional- and integer-order difference calculus (on a variety of time scales, including both the usual forward and backwards difference operators). The reader will acquire a solid foundation in the classical topics of the discrete calculus while being introduced to exciting recent developments, bringing them to the frontiers of the...

16. Discrete Event Simulation

Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 1. Discrete Event Simulation. Matthew Jacob ... Keywords. Simulation; modelling; computer programming. Author Affiliations. Matthew Jacob1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012.

17. The Discrete Wavelet Transform

Science.gov (United States)

1991-06-01

B-1 ,.iii FIGURES 1.1 A wavelet filter bank structure ..................................... 2 2.1 Diagram illustrating the dialation and...abstract decompositions of discrete time series. Their wide sweeping significance, however, lies in their interpretation as wavelet transforms. In a general...parameter transform wn in the scale- time plane. Following terminology to be intro- duced, wi is the (decimated) discrete wavelet transform. become the

18. Discrete-Time Systems

\\;j t E ~. On the other hand, if the signal is defined only at discrete instants of time and not elsewhere i.e., t takes on only the discrete values t = kT for some range of integer values of k, the signal ... is applied to an electronic switch that is closed for a mo- ment every ... ture (T = 1 hour), banking transactions (T = ~ year), census.

19. Discrete computational structures

CERN Document Server

Korfhage, Robert R

1974-01-01

Discrete Computational Structures describes discrete mathematical concepts that are important to computing, covering necessary mathematical fundamentals, computer representation of sets, graph theory, storage minimization, and bandwidth. The book also explains conceptual framework (Gorn trees, searching, subroutines) and directed graphs (flowcharts, critical paths, information network). The text discusses algebra particularly as it applies to concentrates on semigroups, groups, lattices, propositional calculus, including a new tabular method of Boolean function minimization. The text emphasize

20. The workplace window view

DEFF Research Database (Denmark)

Lottrup, Lene Birgitte Poulsen; Stigsdotter, Ulrika K.; Meilby, Henrik

2015-01-01

Office workers’ job satisfaction and ability to work are two important factors for the viability and competitiveness of most companies, and existing studies in contexts other than workplaces show relationships between a view of natural elements and, for example, student performance...... and neighbourhood satisfaction. This study investigates whether relationships between window view, and work ability and job satisfaction also exist in the context of the workplace by focusing on office workers’ view satisfaction. The results showed that a view of natural elements was related to high view...... satisfaction, and that high view satisfaction was related to high work ability and high job satisfaction. Furthermore, the results indicated that job satisfaction mediated the effect of view satisfaction on work ability. These findings show that a view of a green outdoor environment at the workplace can...

1. Window observers for linear systems

Directory of Open Access Journals (Sweden)

2000-01-01

Full Text Available Given a linear system x ˙ = A x + B u with output y = C x and a window function ω ( t , i.e., ∀ t , ω ( t ∈ {0,1 }, and assuming that the window function is Lebesgue measurable, we refer to the following observer, x ˆ = A x + B u + ω ( t L C ( x − x ˆ as a window observer. The stability issue is treated in this paper. It is proven that for linear time-invariant systems, the window observer can be stabilized by an appropriate design under a very mild condition on the window functions, albeit for linear time-varying system, some regularity of the window functions is required to achieve observer designs with the asymptotic stability. The corresponding design methods are developed. An example is included to illustrate the possible applications

2. Beam line windows at LAMPF

International Nuclear Information System (INIS)

Brown, R.D.; Grisham, D.L.; Lambert, J.E.

1985-01-01

The A-6 main beam-line window at LAMPF separates the vacuum of the main beam line from the isotope production station, proton irradiation ports, and the beam stop, which operate in air. This window must withstand the design beam current of 1 mA at 800 MeV for periods of at least 3000 hours without failure. The window is water cooled and must be strong enough to withstand the 2.1 MPa (300 psig) cooling water pressure, as well as beam-induced thermal stresses. Two designs have been used to meet these goals, a stepped-plate window and a hemispherical window, both made from a precipitation-hardened nickel base alloy, Alloy 718. Calculations of the temperatures and stresses in each of these windows are presented

3. Windows with improved energy performance

DEFF Research Database (Denmark)

Noyé, Peter Anders; Laustsen, Jacob Birck; Svendsen, Svend

2002-01-01

. Heat loss through windows represents a considerably part of the total heat loss from houses. However windows provide a unique potential of solar energy gain to the building besides from providing daylight access and view. This results in a need for development of windows with improved energy...... performances. During the last 20 years the U-value of the glazing part of windows has been improved considerably, but the frame part has not followed the same development with respect to energy performance. Therefore an increasingly large part of the total heat loss through windows is relating to the frame...... part, for which reason, as far as energy efficiency and total economy are concerned, it has become more interesting to further develop frame structures. Traditionally, the energy performance of windows has primarily been characterised by the heat loss coefficient, U-value. However as the heat loss has...

4. Improved Windows for Cold Climates

DEFF Research Database (Denmark)

Laustsen, Jacob Birck; Svendsen, Svend

2005-01-01

A large part of the energy consumption in countries in Nordic and Arctic climates is used for space heating in buildings. In typical buildings the windows are responsible for a con-siderable part of the heat losses. Therefore there is a large potential for energy savings by developing and using...... windows with improved energy performance. Traditionally evaluation of the energy performance of windows has focused on the thermal transmittance, but as windows differ from the rest of the building envelope by allowing solar energy to enter the building, the total solar energy transmittance is equally...... important. In the heating season in cold climates the solar gain through windows can be utilized for space heating which results in a corresponding reduction in the energy production that is often based on fossil fuels. A suitable quantity for evaluating the energy performance of windows in a simple...

5. Windows 7 The Missing Manual

CERN Document Server

Pogue, David

2010-01-01

In early reviews, geeks raved about Windows 7. But if you're an ordinary mortal, learning what this new system is all about will be challenging. Fear not: David Pogue's Windows 7: The Missing Manual comes to the rescue. Like its predecessors, this book illuminates its subject with reader-friendly insight, plenty of wit, and hardnosed objectivity for beginners as well as veteran PC users. Windows 7 fixes many of Vista's most painful shortcomings. It's speedier, has fewer intrusive and nagging screens, and is more compatible with peripherals. Plus, Windows 7 introduces a slew of new features,

6. Subject Responses to Electrochromic Windows

Energy Technology Data Exchange (ETDEWEB)

Clear, Robert; Inkarojrit, Vorapat; Lee, Eleanor

2006-03-03

Forty-three subjects worked in a private office with switchable electrochromic windows, manually-operated Venetian blinds, and dimmable fluorescent lights. The electrochromic window had a visible transmittance range of approximately 3-60%. Analysis of subject responses and physical data collected during the work sessions showed that the electrochromic windows reduced the incidence of glare compared to working under a fixed transmittance (60%) condition. Subjects used the Venetian blinds less often and preferred the variable transmittance condition, but used slightly more electric lighting with it than they did when window transmittance was fixed.

7. Live histograms in moving windows

International Nuclear Information System (INIS)

Zhil'tsov, V.E.

1989-01-01

Application of computer graphics for specific hardware testing is discussed. The hardware is position sensitive detector (multiwire proportional chamber) which is used in high energy physics experiments, and real-out electronics for it. Testing program is described (XPERT), which utilises multi-window user interface. Data are represented as histograms in windows. The windows on the screen may be moved, reordered, their sizes may be changed. Histograms may be put to any window, and hardcopy may be made. Some program internals are discussed. The computer environment is quite simple: MS-DOS IBM PC/XT, 256 KB RAM, CGA, 5.25'' FD, Epson MX. 4 refs.; 7 figs

8. Thermal monitoring of gyrotron windows

International Nuclear Information System (INIS)

Huey, H.E.; Choi, E.; Hu, G.; Mundie, L.

1983-01-01

In a practical gyrotron device, the design of a reliable vacuum window to withstand high mean power densities is of utmost importance. Computer modelling of an actual window assumes a number of conditions including the power density profile, the electromagnetic wave attenuation constant of the window material and heat transfer coefficients. The last two factors can vary significantly with temperature. A technique for actually monitoring the real time temperature distribution over the window surface with an IR camera while the gyrotron is in operation has been developed. This measurement serves as an aid for developing the analysis of window designs. The ability to observe small hot spots due to tiny metallic specks on the window surface is also of great value in quality control and window failure prevention. The experimental arrangement involves an infrared camera (AGA780) with an indium antimonide detector (3-5 μm) observing the window through a grid pattern of tiny holes (cutoff for the 3rd harmonic of 60 GHz). A 12 0 FOV lens with a 12mm extension ring was used to defocus the grid. The thermal emissivity E /sub w/ approx. = 0.95. Thus, an IR measurement of the window is a surface temperature measurement. To minimize the problem of external reflections, the outside surface of the waveguide was painted black. This then requires a cool waveguide; room temperature is sufficient

9. Microsoft Windows Operating System Essentials

CERN Document Server

Carpenter, Tom

2012-01-01

A full-color guide to key Windows 7 administration concepts and topics Windows 7 is the leading desktop software, yet it can be a difficult concept to grasp, especially for those new to the field of IT. Microsoft Windows Operating System Essentials is an ideal resource for anyone new to computer administration and looking for a career in computers. Delving into areas such as fundamental Windows 7 administration concepts and various desktop OS topics, this full-color book addresses the skills necessary for individuals looking to break into a career in IT. Each chapter begins with a list of topi

10. Beginning Windows 8.1

CERN Document Server

Halsey, Mike

2013-01-01

Windows 8 has been described by Microsoft as its 'boldest' Windows release ever and the 8.1 update enhances the paradigm further. Beginning Windows 8.1 takes you through the new features and helps you get more out of the familiar to reveal the fullest possibilities for this amazing new operating system. You will learn, with non-technical language used throughout, how to get up and running in the new Windows interface, minimize downtime, maximize productivity, and harness the features you never knew existed to take control of your computer and enjoy the peace of mind and excitement that comes w

11. Windows 7 the definitive guide

CERN Document Server

Stanek, William R

2010-01-01

This book provides everything you need to manage and maintain Windows 7. You'll learn all of the features and enhancements in complete detail, along with specifics for configuring the operating system to put you in full control. Bestselling author and Windows expert William Stanek doesn't just show you the steps you need to follow, he also tells you how features work, why they work, and how you can customize them to meet your needs. Learn how to squeeze every bit of power out of Windows 7 to take full advantage of its features and programs. Set up, customize, and tune Windows 7-Optimize its

12. General Correlation Theorem for Trinion Fourier Transform

OpenAIRE

Bahri, Mawardi

2017-01-01

- The trinion Fourier transform is an extension of the Fourier transform in the trinion numbers setting. In this work we derive the correlation theorem for the trinion Fourier transform by using the relation between trinion convolution and correlation definitions in the trinion Fourier transform domains.

13. Novel properties of the Fourier decomposition of the sinogram

International Nuclear Information System (INIS)

Edholm, P.R.; Lewitt, R.M.; Lindholm, B.

1986-01-01

The double Fourier decomposition of the sinogram is obtained by first taking the Fourier transform of each parallel-ray projection and then calculating the coefficients of a Fourier series with respect to angle for each frequency component of the transformed projections. The values of these coefficients may be plotted on a two-dimensional map whose coordinates are spatial frequency ω (continuous) and angular harmonic number n (discrete). For absolute value of ω large, the Fourier coefficients on the line n=kω of slope k through the origin of the coefficient space are found to depend strongly on the contributions to the projection data that, for each view, come from a certain distance to the detector plane, where the distance is a linear function of k. The values of these coefficients depend only weakly on contributions from other distances from the detector. The theoretical basis of this property is presented in this paper and a potential application to emission computerized tomography is discussed

14. Open-geometry Fourier modal method: modeling nanophotonic structures in infinite domains

DEFF Research Database (Denmark)

Häyrynen, Teppo; de Lasson, Jakob Rosenkrantz; Gregersen, Niels

2016-01-01

We present an open-geometry Fourier modal method based on a new combination of open boundary conditions and an efficient k-space discretization. The open boundary of the computational domain is obtained using basis functions that expand the whole space, and the integrals subsequently appearing due...

15. On the finite Fourier transforms of functions with infinite discontinuities

Directory of Open Access Journals (Sweden)

Branko Saric

2002-01-01

Full Text Available The introductory part of the paper is provided to give a brief review of the stability theory of a matrix pencil for discrete linear time-invariant singular control systems, based on the causal relationship between Jordan's theorem from the theory of Fourier series and Laurent's theorem from the calculus of residues. The main part is concerned with the theory of the integral transforms, which has proved to be a powerful tool in the control systems theory. On the basis of a newly defined notion of the total value of improper integrals, throughout the main part of the paper, an attempt has been made to present the global theory of the integral transforms, which are slightly more general with respect to the Laplace and Fourier transforms. The paper ends with examples by which the results of the theory are verified.

16. Matrix-Vector Based Fast Fourier Transformations on SDR Architectures

Directory of Open Access Journals (Sweden)

Y. He

2008-05-01

Full Text Available Today Discrete Fourier Transforms (DFTs are applied in various radio standards based on OFDM (Orthogonal Frequency Division Multiplex. It is important to gain a fast computational speed for the DFT, which is usually achieved by using specialized Fast Fourier Transform (FFT engines. However, in face of the Software Defined Radio (SDR development, more general (parallel processor architectures are often desirable, which are not tailored to FFT computations. Therefore, alternative approaches are required to reduce the complexity of the DFT. Starting from a matrix-vector based description of the FFT idea, we will present different factorizations of the DFT matrix, which allow a reduction of the complexity that lies between the original DFT and the minimum FFT complexity. The computational complexities of these factorizations and their suitability for implementation on different processor architectures are investigated.

17. Fractional fourier-based filter for denoising elastograms.

Science.gov (United States)

Subramaniam, Suba R; Hon, Tsz K; Georgakis, Apostolos; Papadakis, George

2010-01-01

In ultrasound elastography, tissue axial strains are obtained through the differentiation of axial displacements. However, the application of the gradient operator amplifies the noise present in the displacement rendering unreadable axial strains. In this paper a novel denoising scheme based on repeated filtering in consecutive fractional Fourier transform domains is proposed for the accurate estimation of axial strains. The presented method generates a time-varying cutoff threshold that can accommodate the discrete non-stationarities present in the displacement signal. This is achieved by means of a filter circuit which is composed of a small number of ordinary linear low-pass filters and appropriate fractional Fourier transforms. We show that the proposed method can improve the contrast-to-noise ratio (CNR(e)) of the elastogram outperforming conventional low-pass filters.

18. Fast and accurate implementation of Fourier spectral approximations of nonlocal diffusion operators and its applications

International Nuclear Information System (INIS)

Du, Qiang; Yang, Jiang

2017-01-01

This work is concerned with the Fourier spectral approximation of various integral differential equations associated with some linear nonlocal diffusion and peridynamic operators under periodic boundary conditions. For radially symmetric kernels, the nonlocal operators under consideration are diagonalizable in the Fourier space so that the main computational challenge is on the accurate and fast evaluation of their eigenvalues or Fourier symbols consisting of possibly singular and highly oscillatory integrals. For a large class of fractional power-like kernels, we propose a new approach based on reformulating the Fourier symbols both as coefficients of a series expansion and solutions of some simple ODE models. We then propose a hybrid algorithm that utilizes both truncated series expansions and high order Runge–Kutta ODE solvers to provide fast evaluation of Fourier symbols in both one and higher dimensional spaces. It is shown that this hybrid algorithm is robust, efficient and accurate. As applications, we combine this hybrid spectral discretization in the spatial variables and the fourth-order exponential time differencing Runge–Kutta for temporal discretization to offer high order approximations of some nonlocal gradient dynamics including nonlocal Allen–Cahn equations, nonlocal Cahn–Hilliard equations, and nonlocal phase-field crystal models. Numerical results show the accuracy and effectiveness of the fully discrete scheme and illustrate some interesting phenomena associated with the nonlocal models.

19. Synthetic Fourier transform light scattering.

Science.gov (United States)

Lee, Kyeoreh; Kim, Hyeon-Don; Kim, Kyoohyun; Kim, Youngchan; Hillman, Timothy R; Min, Bumki; Park, Yongkeun

2013-09-23

We present synthetic Fourier transform light scattering, a method for measuring extended angle-resolved light scattering (ARLS) from individual microscopic samples. By measuring the light fields scattered from the sample plane and numerically synthesizing them in Fourier space, the angle range of the ARLS patterns is extended up to twice the numerical aperture of the imaging system with unprecedented sensitivity and precision. Extended ARLS patterns of individual microscopic polystyrene beads, healthy human red blood cells (RBCs), and Plasmodium falciparum-parasitized RBCs are presented.

20. Fourier series in orthogonal polynomials

CERN Document Server

Osilenker, Boris

1999-01-01

This book presents a systematic course on general orthogonal polynomials and Fourier series in orthogonal polynomials. It consists of six chapters. Chapter 1 deals in essence with standard results from the university course on the function theory of a real variable and on functional analysis. Chapter 2 contains the classical results about the orthogonal polynomials (some properties, classical Jacobi polynomials and the criteria of boundedness).The main subject of the book is Fourier series in general orthogonal polynomials. Chapters 3 and 4 are devoted to some results in this topic (classical

1. Weight-lattice discretization of Weyl-orbit functions

Energy Technology Data Exchange (ETDEWEB)

Hrivnák, Jiří, E-mail: jiri.hrivnak@fjfi.cvut.cz, E-mail: walton@uleth.ca [Department of Physics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, CZ-115 19 Prague (Czech Republic); Walton, Mark A., E-mail: jiri.hrivnak@fjfi.cvut.cz, E-mail: walton@uleth.ca [Department of Physics and Astronomy, University of Lethbridge, Lethbridge, Alberta T1K 3M4 (Canada)

2016-08-15

Weyl-orbit functions have been defined for each simple Lie algebra, and permit Fourier-like analysis on the fundamental region of the corresponding affine Weyl group. They have also been discretized, using a refinement of the coweight lattice, so that digitized data on the fundamental region can be Fourier-analyzed. The discretized orbit function has arguments that are redundant if related by the affine Weyl group, while its labels, the Weyl-orbit representatives, invoke the dual affine Weyl group. Here we discretize the orbit functions in a novel way, by using the weight lattice. A cleaner theory results with symmetry between the arguments and labels of the discretized orbit functions. Orthogonality of the new discretized orbit functions is proved, and leads to the construction of unitary, symmetric matrices with Weyl-orbit-valued elements. For one type of orbit function, the matrix coincides with the Kac-Peterson modular S matrix, important for Wess-Zumino-Novikov-Witten conformal field theory.

2. Windows forensic analysis toolkit advanced analysis techniques for Windows 7

CERN Document Server

Carvey, Harlan

2012-01-01

Now in its third edition, Harlan Carvey has updated "Windows Forensic Analysis Toolkit" to cover Windows 7 systems. The primary focus of this edition is on analyzing Windows 7 systems and on processes using free and open-source tools. The book covers live response, file analysis, malware detection, timeline, and much more. The author presents real-life experiences from the trenches, making the material realistic and showing the why behind the how. New to this edition, the companion and toolkit materials are now hosted online. This material consists of electronic printable checklists, cheat sheets, free custom tools, and walk-through demos. This edition complements "Windows Forensic Analysis Toolkit, 2nd Edition", (ISBN: 9781597494229), which focuses primarily on XP. It includes complete coverage and examples on Windows 7 systems. It contains Lessons from the Field, Case Studies, and War Stories. It features companion online material, including electronic printable checklists, cheat sheets, free custom tools, ...

3. Compressed Wideband Spectrum Sensing Based on Discrete Cosine Transform

Directory of Open Access Journals (Sweden)

Yulin Wang

2014-01-01

Full Text Available Discrete cosine transform (DCT is a special type of transform which is widely used for compression of speech and image. However, its use for spectrum sensing has not yet received widespread attention. This paper aims to alleviate the sampling requirements of wideband spectrum sensing by utilizing the compressive sampling (CS principle and exploiting the unique sparsity structure in the DCT domain. Compared with discrete Fourier transform (DFT, wideband communication signal has much sparser representation and easier implementation in DCT domain. Simulation result shows that the proposed DCT-CSS scheme outperforms the conventional DFT-CSS scheme in terms of MSE of reconstruction signal, detection probability, and computational complexity.

4. Fourier transform spectroscopy for future planetary missions

Science.gov (United States)

Brasunas, John C.; Hewagama, Tilak; Kolasinski, John R.; Kostiuk, Theodor

2015-11-01

Thermal-emission infrared spectroscopy is a powerful tool for exploring the composition, temperature structure, and dynamics of planetary atmospheres; and the temperature of solid surfaces. A host of Fourier transform spectrometers (FTS) such as Mariner IRIS, Voyager IRIS, and Cassini CIRS from NASA Goddard have made and continue to make important new discoveries throughout the solar system.Future FTS instruments will have to be more sensitive (when we concentrate on the colder, outer reaches of the solar system), and less massive and less power-hungry as we cope with decreasing resource allotments for future planetary science instruments. With this in mind, NASA Goddard was funded via the Planetary Instrument Definition and Development Progrem (PIDDP) to develop CIRS-lite, a smaller version of the CIRS FTS for future planetary missions. Following the initial validation of CIRS-lite operation in the laboratory, we have been acquiring atmospheric data in the 8-12 micron window at the 1.2 m telescope at the Goddard Geophysical and Astronomical Observatory (GGAO) in Greenbelt, MD. Targets so far have included Earth's atmosphere (in emission, and in absorption against the moon), and Venus.We will present the roadmap for making CIRS-lite a viable candidate for future planetary missions.

5. Fourier and electrophysiological analyses of acoustic communication in Acheta domesticus.

Science.gov (United States)

Counter, S A

1976-01-01

Waveform and spectral analysis were made on the call song of the cricket, Acheta domesticus.Sounds produced by unrestrained male crickets were led directly to a computer where discrete Fourier transforms were performed on selected segments of the call song. The findings revealed essentially pure tone carrier frequencies which result from the rate at which the individual teeth of the pars stridens are struck by the plectrum. An electrophysiologically determined audiogram showed good agreement with the dominant frequency of the call song, but was less sensitive and more broadly tuned than hearing curves of most field-crickets.

6. Learning Windows Azure Mobile Services for Windows 8 and Windows Phone 8

CERN Document Server

Webber-Cross, Geoff

2014-01-01

This book is based around a case study game which was written for the book. This means that the chapters progress in a logical way and build upon lessons learned as we go. Real-world examples are provided for each topic that are practical and not given out-of-context so they can be applied directly to other applications.If you are a developer who wishes to build Windows 8 and Phone 8 applications and integrate them with Windows Azure Mobile Services, this book is for you. Basic C# and JavaScript skills are advantageous, as well as some knowledge of building Windows 8 or Windows Phone 8 applica

7. Window prototypes during the project

DEFF Research Database (Denmark)

Schultz, Jørgen Munthe

1996-01-01

The conditions for the PASSYS test and the results of the measurements on one of the aerogel window prototypes are described.......The conditions for the PASSYS test and the results of the measurements on one of the aerogel window prototypes are described....

8. Thermal bridges of modern windows

DEFF Research Database (Denmark)

Hansen, Ernst Jan de Place; Møller, Eva B.; Nielsen, Anker

2013-01-01

With its focus on reduced energy consumption, contemporary housing construction requires a highly insulated and airtight building envelope with as few thermal bridges as possible.Windows must be carefully designed, as thermal bridges can lead to surface condensation or mold growth, even if the wi......With its focus on reduced energy consumption, contemporary housing construction requires a highly insulated and airtight building envelope with as few thermal bridges as possible.Windows must be carefully designed, as thermal bridges can lead to surface condensation or mold growth, even...... if the window has an U-factor of 1 W/(m2·K) or lower. This paper describes the development of modern, energy efficient Danish windows with reduced thermal bridges. It focuses on materials, geometry, and sealing of window panes based on a literature review. Examples of modern windows are presented. Experience...... been an important driver for the development of new window solutions in Denmark, increasing the inner-surface temperature at the sealing of window panes. However, it will not stop complaints fromconsumers, as this temperature is calculated under standardized conditions. Increasing requirements...

9. Inventions on Displaying and Resizing Windows

OpenAIRE

Mishra, Umakant

2014-01-01

Windows are used quite frequently in a GUI environment. The greatest advantage of using windows is that each window creates a virtual screen space. Hence, although the physical screen space is limited to a few inches, use of windows can create unlimited screen space to display innumerable items. The use of windows facilitates the user to open and interact with multiple programs or documents simultaneously in different windows. Sometimes a single program may also open multiple windows to displ...

10. Destiny's Earth Observation Window

Science.gov (United States)

2002-01-01

Astronaut Michael J. Bloomfield, STS-110 mission commander, looks through the Earth observation window in the Destiny laboratory aboard the International Space Station (ISS). The STS-110 mission prepared the ISS for future spacewalks by installing and outfitting the S0 (S-zero) truss and the Mobile Transporter. The 43-foot-long S0 Truss, weighing in at 27,000 pounds, was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the STS-110 mission included the first time the ISS robotic arm was used to maneuver spacewalkers around the Station and marked the first time all spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

11. Discrete systems and integrability

CERN Document Server

Hietarinta, J; Nijhoff, F W

2016-01-01

This first introductory text to discrete integrable systems introduces key notions of integrability from the vantage point of discrete systems, also making connections with the continuous theory where relevant. While treating the material at an elementary level, the book also highlights many recent developments. Topics include: Darboux and Bäcklund transformations; difference equations and special functions; multidimensional consistency of integrable lattice equations; associated linear problems (Lax pairs); connections with Padé approximants and convergence algorithms; singularities and geometry; Hirota's bilinear formalism for lattices; intriguing properties of discrete Painlevé equations; and the novel theory of Lagrangian multiforms. The book builds the material in an organic way, emphasizing interconnections between the various approaches, while the exposition is mostly done through explicit computations on key examples. Written by respected experts in the field, the numerous exercises and the thoroug...

12. Discrete-Event Simulation

Directory of Open Access Journals (Sweden)

Prateek Sharma

2015-04-01

Full Text Available Abstract Simulation can be regarded as the emulation of the behavior of a real-world system over an interval of time. The process of simulation relies upon the generation of the history of a system and then analyzing that history to predict the outcome and improve the working of real systems. Simulations can be of various kinds but the topic of interest here is one of the most important kind of simulation which is Discrete-Event Simulation which models the system as a discrete sequence of events in time. So this paper aims at introducing about Discrete-Event Simulation and analyzing how it is beneficial to the real world systems.

13. FOURIER SERIES MODELS THROUGH TRANSFORMATION

African Journals Online (AJOL)

DEPT

This study considers the application of Fourier series analysis (FSA) to seasonal time series data. The ultimate objective of the study is to construct an FSA model that can lead to reliable forecast. Specifically, the study evaluates data for the assumptions of time series analysis; applies the necessary transformation to the ...

14. Fourier reconstruction with sparse inversions

NARCIS (Netherlands)

Zwartjes, P.M.

2005-01-01

In seismic exploration an image of the subsurface is generated from seismic data through various data processing algorithms. When the data is not acquired on an equidistantly spaced grid, artifacts may result in the final image. Fourier reconstruction is an interpolation technique that can reduce

15. Uncertainty Principles and Fourier Analysis

Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 2. Uncertainty Principles and Fourier Analysis. Alladi Sitaram. General Article Volume 4 Issue 2 February 1999 pp 20-23. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/004/02/0020-0023 ...

16. Fourier Analysis of Musical Intervals

Science.gov (United States)

LoPresto, Michael C.

2008-01-01

Use of a microphone attached to a computer to capture musical sounds and software to display their waveforms and harmonic spectra has become somewhat commonplace. A recent article in "The Physics Teacher" aptly demonstrated the use of MacScope in just such a manner as a way to teach Fourier analysis. A logical continuation of this project is to…

17. Improved Windows for Cold Climates

DEFF Research Database (Denmark)

Laustsen, Jacob Birck; Svendsen, Svend

2005-01-01

considerably by reducing the frame width, which results in a larger transparent area causing a larger solar gain but still main-taining a low thermal transmittance. Using three layers of glass with large gaps, using very slim frame profiles, and omitting the edge constructions that normally causes thermal...... windows with improved energy performance. Traditionally evaluation of the energy performance of windows has focused on the thermal transmittance, but as windows differ from the rest of the building envelope by allowing solar energy to enter the building, the total solar energy transmittance is equally...... important. In the heating season in cold climates the solar gain through windows can be utilized for space heating which results in a corresponding reduction in the energy production that is often based on fossil fuels. A suitable quantity for evaluating the energy performance of windows in a simple...

18. Windows for tablets for dummies

CERN Document Server

Rathbone, Andy

2013-01-01

Just for you--Windows 8 from the tablet user's perspective If you're an experienced Windows user, you don't need a guide to everything that Windows 8 can do, just to those tools and functions that work on your tablet. And so here it is. This new book zeros in on what you need to know to work best on your tablet with Windows 8. Topics include navigating the new Windows 8 interface and how it works on a touchscreen, how to safely connect to the Internet, how to work with apps or share your tablet in a group, and much more. If you're a new tablet user, you'll particularly appre

19. Handbook on Windows and Energy

DEFF Research Database (Denmark)

Thomsen, Kirsten Engelund; Schultz, Jørgen Munthe; Svendsen, Sv Aa Højgaard

transmission through windows is described in detail including radiation, convection and conduction as well as solar transmittance of window glazing. The most used terms related to characterization of window energy performance are defined and calculation methods according to international standards...... flow and detailed calculation of light and solar transmittance is given.Different measurement techniques for characterization of window heat loss coefficient and total solar energy transmittance is described and references to interantional standards are given.Finally, the handbook includes...... a comprehensive list of window related standards and a list of Nordic research and development projects.Two programs are encloased in the handbook for calculation of solar radiation on inclined surfaces including a shadow correction and a simple program for evaluation of energy savings and risk of overtemperature....

20. Fast algorithm of adaptive Fourier series

Science.gov (United States)

Gao, You; Ku, Min; Qian, Tao

2018-05-01

Adaptive Fourier decomposition (AFD, precisely 1-D AFD or Core-AFD) was originated for the goal of positive frequency representations of signals. It achieved the goal and at the same time offered fast decompositions of signals. There then arose several types of AFDs. AFD merged with the greedy algorithm idea, and in particular, motivated the so-called pre-orthogonal greedy algorithm (Pre-OGA) that was proven to be the most efficient greedy algorithm. The cost of the advantages of the AFD type decompositions is, however, the high computational complexity due to the involvement of maximal selections of the dictionary parameters. The present paper offers one formulation of the 1-D AFD algorithm by building the FFT algorithm into it. Accordingly, the algorithm complexity is reduced, from the original $\\mathcal{O}(M N^2)$ to $\\mathcal{O}(M N\\log_2 N)$, where $N$ denotes the number of the discretization points on the unit circle and $M$ denotes the number of points in $[0,1)$. This greatly enhances the applicability of AFD. Experiments are carried out to show the high efficiency of the proposed algorithm.

1. Causal Correlation Functions and Fourier Transforms: Application in Calculating Pressure Induced Shifts

Science.gov (United States)

Ma, Q.; Tipping, R. H.; Lavrentieva, N. N.

2012-01-01

By adopting a concept from signal processing, instead of starting from the correlation functions which are even, one considers the causal correlation functions whose Fourier transforms become complex. Their real and imaginary parts multiplied by 2 are the Fourier transforms of the original correlations and the subsequent Hilbert transforms, respectively. Thus, by taking this step one can complete the two previously needed transforms. However, to obviate performing the Cauchy principal integrations required in the Hilbert transforms is the greatest advantage. Meanwhile, because the causal correlations are well-bounded within the time domain and band limited in the frequency domain, one can replace their Fourier transforms by the discrete Fourier transforms and the latter can be carried out with the FFT algorithm. This replacement is justified by sampling theory because the Fourier transforms can be derived from the discrete Fourier transforms with the Nyquis rate without any distortions. We apply this method in calculating pressure induced shifts of H2O lines and obtain more reliable values. By comparing the calculated shifts with those in HITRAN 2008 and by screening both of them with the pair identity and the smooth variation rules, one can conclude many of shift values in HITRAN are not correct.

2. False Windows - Yesterday and Today

Science.gov (United States)

Niewitecki, Stefan

2017-10-01

The article is concerned with a very interesting aspect of architectural design, namely, a contradiction between the building functions and the necessity of giving the building a desired external appearance. One of the possibilities of reconciling this contradiction is using pseudo windows that are visible on the elevation and generally have the form of a black painted recess accompanied by frames and sashes and often single glazing. Of course, there are no windows or openings in the corresponding places in the walls inside the building. The article discusses the differences between false windows and blind widows (German: blende), also known as blank windows, which, in fact, are shallow recesses in the wall having the external appearance of an arcade or a window and which had already been used in Gothic architecture mostly for aesthetic reasons and sometimes to reduce the load of the wall. Moreover, the article describes various false windows that appeared later than blind windows because they did not appear until the 17th century. Contemporary false windows are also discussed and it is shown that contrary to the common belief they are widely used. In his research, the author not only used the Internet data but also carried out his own in situ exploration. The false windows constitute very interesting albeit rare elements of the architectural design of buildings. They have been used successfully for a few hundred years. It might seem that they should have been discarded by now but this has not happened. Quite contrary, since the second half of the 20th century there has been a rapid development of glass curtain walls that serve a similar function in contemporary buildings as the false windows once did, only in a more extensive way.

3. Effects of window size and shape on accuracy of subpixel centroid estimation of target images

Science.gov (United States)

Welch, Sharon S.

1993-01-01

A new algorithm is presented for increasing the accuracy of subpixel centroid estimation of (nearly) point target images in cases where the signal-to-noise ratio is low and the signal amplitude and shape vary from frame to frame. In the algorithm, the centroid is calculated over a data window that is matched in width to the image distribution. Fourier analysis is used to explain the dependency of the centroid estimate on the size of the data window, and simulation and experimental results are presented which demonstrate the effects of window size for two different noise models. The effects of window shape were also investigated for uniform and Gaussian-shaped windows. The new algorithm was developed to improve the dynamic range of a close-range photogrammetric tracking system that provides feedback for control of a large gap magnetic suspension system (LGMSS).

4. Introductory discrete mathematics

CERN Document Server

Balakrishnan, V K

2010-01-01

This concise text offers an introduction to discrete mathematics for undergraduate students in computer science and mathematics. Mathematics educators consider it vital that their students be exposed to a course in discrete methods that introduces them to combinatorial mathematics and to algebraic and logical structures focusing on the interplay between computer science and mathematics. The present volume emphasizes combinatorics, graph theory with applications to some stand network optimization problems, and algorithms to solve these problems.Chapters 0-3 cover fundamental operations involv

5. Exclusive queueing model including the choice of service windows

Science.gov (United States)

Tanaka, Masahiro; Yanagisawa, Daichi; Nishinari, Katsuhiro

2018-01-01

In a queueing system involving multiple service windows, choice behavior is a significant concern. This paper incorporates the choice of service windows into a queueing model with a floor represented by discrete cells. We contrived a logit-based choice algorithm for agents considering the numbers of agents and the distances to all service windows. Simulations were conducted with various parameters of agent choice preference for these two elements and for different floor configurations, including the floor length and the number of service windows. We investigated the model from the viewpoint of transit times and entrance block rates. The influences of the parameters on these factors were surveyed in detail and we determined that there are optimum floor lengths that minimize the transit times. In addition, we observed that the transit times were determined almost entirely by the entrance block rates. The results of the presented model are relevant to understanding queueing systems including the choice of service windows and can be employed to optimize facility design and floor management.

6. Discrete-Time Systems

Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 2. Discrete-Time Systems - Why do We Celebrate Birthdays Once a Year? A Ramakalyan P Kavitha S Harini Vijayalakshmi. General Article Volume 5 Issue 2 February 2000 pp 39-49 ...

7. Windows 8 visual quick tips

CERN Document Server

McFedries, Paul

2012-01-01

Easy-in, easy-out format covers all the bells and whistles of Windows 8 If you want to learn how to work smarter and faster in Microsoft's Windows 8 operating system, this easy-to-use, compact guide delivers the goods. Designed for visual learners, it features short explanations and full-color screen shots on almost every page, and it's packed with timesaving tips and helpful productivity tricks. From enhancing performance and managing digital content to setting up security and much more, this handy guide will help you get more out of Windows 8. Uses full-color screen shots and short, step-by-

8. Transparent solar cell window module

Energy Technology Data Exchange (ETDEWEB)

Chau, Joseph Lik Hang; Chen, Ruei-Tang; Hwang, Gan-Lin; Tsai, Ping-Yuan [Nanopowder and Thin Film Technology Center, ITRI South, Industrial Technology Research Institute, Tainan County 709 (China); Lin, Chien-Chu [I-Lai Acrylic Corporation, Tainan City (China)

2010-03-15

A transparent solar cell window module based on the integration of traditional silicon solar cells and organic-inorganic nanocomposite material was designed and fabricated. The transparent solar cell window module was composed of a nanocomposite light-guide plate and traditional silicon solar cells. The preparation of the nanocomposite light-guide plate is easy without modification of the traditional casting process, the nanoparticles sol can be added directly to the polymethyl methacrylate (PMMA) monomer syrup during the process. The solar energy collected by this window can be used to power up small household electrical appliances. (author)

9. Big Book of Windows Hacks

CERN Document Server

Gralla, Preston

2008-01-01

Bigger, better, and broader in scope, the Big Book of Windows Hacks gives you everything you need to get the most out of your Windows Vista or XP system, including its related applications and the hardware it runs on or connects to. Whether you want to tweak Vista's Aero interface, build customized sidebar gadgets and run them from a USB key, or hack the "unhackable" screensavers, you'll find quick and ingenious ways to bend these recalcitrant operating systems to your will. The Big Book of Windows Hacks focuses on Vista, the new bad boy on Microsoft's block, with hacks and workarounds that

10. Windows Phone 7 Made Simple

CERN Document Server

Trautschold, Martin

2011-01-01

With Windows Phone 7, Microsoft has created a completely new smartphone operating system that focuses on allowing users to be productive with their smartphone in new ways, while offering seamless integration and use of Microsoft Office Mobile as well as other productivity apps available in the Microsoft App Store. Windows Phone 7 Made Simple offers a clear, visual, step-by-step approach to using your Windows Phone 7 smartphone, no matter what the manufacturer. Author Jon Westfall is an expert in mobile devices, recognized by Microsoft as a "Most Valuable Professional" with experience

11. Holography through optically active windows

Science.gov (United States)

Decker, A. J.

1979-01-01

By using two orthogonally polarized reference beams, holograms can be recorded through stressed windows and the reconstructed virtual image will show no stress pattern. As shown analytically, the stress-pattern-free hologram is recordable for any polarization state of the object illumination. Hence, the more efficient nondepolarizing diffuser can be used in performing holography through stressed windows if two reference beams are used. Results are presented for a pair of machined polysulfone windows intended for use in a holographic flow-visualization setup in a single-stage-compressor test rig.

12. Grab Windows training opportunities; check CERN Windows roadmap!

CERN Multimedia

IT Department

2011-01-01

CERN Operating Systems and Information Services group (IT-OIS) actively monitors market trends to check how new software products correspond to CERN needs. In the Windows world, Windows 7 has been a big hit, with over 1500 Windows 7 PCs within less than a year since its support was introduced at CERN. No wonder: Windows XP is nearly 10 years old and is steadily approaching the end of its life-cycle. At CERN, support for Windows XP will stop at the end of December 2012. Compared to Vista, Windows 7 has the same basic hardware requirements, but offers higher performance, so the decision to upgrade is rather straightforward. CERN support for Vista will end in June 2011. In the world of Microsoft Office, version 2007 offers better integration with the central services than the older version 2003. Progressive upgrade from 2003 to 2007 is planned to finish in September 2011, but users are encouraged to pro-actively upgrade at their convenience. Please note that Office 2007 brings an important change in the area of ...

13. Compact Microwave Fourier Spectrum Analyzer

Science.gov (United States)

Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry

2009-01-01

A compact photonic microwave Fourier spectrum analyzer [a Fourier-transform microwave spectrometer, (FTMWS)] with no moving parts has been proposed for use in remote sensing of weak, natural microwave emissions from the surfaces and atmospheres of planets to enable remote analysis and determination of chemical composition and abundances of critical molecular constituents in space. The instrument is based on a Bessel beam (light modes with non-zero angular momenta) fiber-optic elements. It features low power consumption, low mass, and high resolution, without a need for any cryogenics, beyond what is achievable by the current state-of-the-art in space instruments. The instrument can also be used in a wide-band scatterometer mode in active radar systems.

14. Uncertainty Principles and Fourier Analysis

analysis on the part of the reader. Those who are not fa- miliar with Fourier analysis are encouraged to look up Box. 1 along with [3]. (A) Heisenberg's inequality: Let us measure concentration in terms of standard deviation i.e. for a square integrable func-. 00 tion defined on 1R and normalized so that J If(x)12d,x = 1,. -00. 00.

15. A Moving Window Technique in Parallel Finite Element Time Domain Electromagnetic Simulation

Energy Technology Data Exchange (ETDEWEB)

Lee, Lie-Quan; Candel, Arno; Ng, Cho; Ko, Kwok; /SLAC

2010-06-07

A moving window technique for the finite element time domain (FETD) method is developed to simulate the propagation of electromagnetic waves induced by the transit of a charged particle beam inside large and long structures. The window moving along with the beam in the computational domain adopts high-order finite-element basis functions through p refinement and/or a high-resolution mesh through h refinement so that a sufficient accuracy is attained with substantially reduced computational costs. Algorithms to transfer discretized fields from one mesh to another, which are the key to implementing a moving window in a finite-element unstructured mesh, are presented. Numerical experiments are carried out using the moving window technique to compute short-range wakefields in long accelerator structures. The results are compared with those obtained from the normal FETD method and the advantages of using the moving window technique are discussed.

16. Infrared monitoring of gyrotron windows

International Nuclear Information System (INIS)

Huey, H.; Lopez, N.; Hu, G.; Choi, E.; Mundie, L.

1983-01-01

A technique for monitoring the gyrotron output window surface temperature with an infrared camera while the gyrotron is in operation has been developed. The IR camera views the window through a perforated waveguide wall, and serves both as a guide for the safe operation at high average power of the tube, as well as an aid in the analysis of new window designs. Window temperatures were studied as a function of a number of parameters, including gun anode voltage, beam current, magnetic field, coolant flow, and load matching. The IR technique is applicable to many types of high average power microwave and millimeter wave tubes. Successful operation of the Varian 60 GHz gyrotron to 214 kW CW was guided by the infrared camera. Analyses on 28, 56 and 60 GHz gyrotrons have led to a number of design changes. A comparison with computer calculations is also presented

17. An introduction to Fourier series and integrals

CERN Document Server

Seeley, Robert T

2006-01-01

This compact guide emphasizes the relationship between physics and mathematics, introducing Fourier series in the way that Fourier himself used them: as solutions of the heat equation in a disk. 1966 edition.

18. Nonuniform sampling and non-Fourier signal processing methods in multidimensional NMR.

Science.gov (United States)

Mobli, Mehdi; Hoch, Jeffrey C

2014-11-01

Beginning with the introduction of Fourier Transform NMR by Ernst and Anderson in 1966, time domain measurement of the impulse response (the free induction decay, FID) consisted of sampling the signal at a series of discrete intervals. For compatibility with the discrete Fourier transform (DFT), the intervals are kept uniform, and the Nyquist theorem dictates the largest value of the interval sufficient to avoid aliasing. With the proposal by Jeener of parametric sampling along an indirect time dimension, extension to multidimensional experiments employed the same sampling techniques used in one dimension, similarly subject to the Nyquist condition and suitable for processing via the discrete Fourier transform. The challenges of obtaining high-resolution spectral estimates from short data records using the DFT were already well understood, however. Despite techniques such as linear prediction extrapolation, the achievable resolution in the indirect dimensions is limited by practical constraints on measuring time. The advent of non-Fourier methods of spectrum analysis capable of processing nonuniformly sampled data has led to an explosion in the development of novel sampling strategies that avoid the limits on resolution and measurement time imposed by uniform sampling. The first part of this review discusses the many approaches to data sampling in multidimensional NMR, the second part highlights commonly used methods for signal processing of such data, and the review concludes with a discussion of other approaches to speeding up data acquisition in NMR. Copyright © 2014 Elsevier B.V. All rights reserved.

19. Large quantum Fourier transforms are never exactly realized by braiding conformal blocks

International Nuclear Information System (INIS)

Freedman, Michael H.; Wang, Zhenghan

2007-01-01

Fourier transform is an essential ingredient in Shor's factoring algorithm. In the standard quantum circuit model with the gate set {U(2), controlled-NOT}, the discrete Fourier transforms F N =(ω ij ) NxN , i,j=0,1,...,N-1, ω=e 2πi at ∼sol∼ at N , can be realized exactly by quantum circuits of size O(n 2 ), n=ln N, and so can the discrete sine or cosine transforms. In topological quantum computing, the simplest universal topological quantum computer is based on the Fibonacci (2+1)-topological quantum field theory (TQFT), where the standard quantum circuits are replaced by unitary transformations realized by braiding conformal blocks. We report here that the large Fourier transforms F N and the discrete sine or cosine transforms can never be realized exactly by braiding conformal blocks for a fixed TQFT. It follows that an approximation is unavoidable in the implementation of Fourier transforms by braiding conformal blocks

20. Modeling open nanophotonic systems using the Fourier modal method: generalization to 3D Cartesian coordinates.

Science.gov (United States)

Häyrynen, Teppo; Osterkryger, Andreas Dyhl; de Lasson, Jakob Rosenkrantz; Gregersen, Niels

2017-09-01

Recently, an open geometry Fourier modal method based on a new combination of an open boundary condition and a non-uniform k-space discretization was introduced for rotationally symmetric structures, providing a more efficient approach for modeling nanowires and micropillar cavities [J. Opt. Soc. Am. A33, 1298 (2016)JOAOD61084-752910.1364/JOSAA.33.001298]. Here, we generalize the approach to three-dimensional (3D) Cartesian coordinates, allowing for the modeling of rectangular geometries in open space. The open boundary condition is a consequence of having an infinite computational domain described using basis functions that expand the whole space. The strength of the method lies in discretizing the Fourier integrals using a non-uniform circular "dartboard" sampling of the Fourier k space. We show that our sampling technique leads to a more accurate description of the continuum of the radiation modes that leak out from the structure. We also compare our approach to conventional discretization with direct and inverse factorization rules commonly used in established Fourier modal methods. We apply our method to a variety of optical waveguide structures and demonstrate that the method leads to a significantly improved convergence, enabling more accurate and efficient modeling of open 3D nanophotonic structures.

1. A window on urban sustainability

International Nuclear Information System (INIS)

Stigt, Rien van; Driessen, Peter P.J.; Spit, Tejo J.M.

2013-01-01

Sustainable urban development requires the integration of environmental interests in urban planning. Although various methods of environmental assessment have been developed, plan outcomes are often disappointing due to the complex nature of decision-making in urban planning, which takes place in multiple arenas within multiple policy networks involving diverse stakeholders. We argue that the concept of ‘decision windows’ can structure this seemingly chaotic chain of interrelated decisions. First, explicitly considering the dynamics of the decision-making process, we further conceptualized decision windows as moments in an intricate web of substantively connected deliberative processes where issues are reframed within a decision-making arena, and interests may be linked within and across arenas. Adopting this perspective in two case studies, we then explored how decision windows arise, which factors determine their effectiveness and how their occurrence can be influenced so as to arrive at more sustainable solutions. We conclude that the integration of environmental interests in urban planning is highly dependent on the ability of the professionals involved to recognize and manipulate decision windows. Finally, we explore how decision windows may be opened. -- Highlights: • Decision-making about sustainable urban development occurs in networks. • The concept of ‘decision windows’ was further elaborated. • Decision windows help understand how environmental interests enter decision-making. • Decision windows can, to some extent, be influenced

2. Grid-Based Fourier Transform Phase Contrast Imaging

Science.gov (United States)

Low contrast in x-ray attenuation imaging between different materials of low electron density is a limitation of traditional x-ray radiography. Phase contrast imaging offers the potential to improve the contrast between such materials, but due to the requirements on the spatial coherence of the x-ray beam, practical implementation of such systems with tabletop (i.e. non-synchrotron) sources has been limited. One recently developed phase imaging technique employs multiple fine-pitched gratings. However, the strict manufacturing tolerances and precise alignment requirements have limited the widespread adoption of grating-based techniques. In this work, we have investigated a technique recently demonstrated by Bennett et al. that utilizes a single grid of much coarser pitch. Our system consisted of a low power 100 microm spot Mo source, a CCD with 22 microm pixel pitch, and either a focused mammography linear grid or a stainless steel woven mesh. Phase is extracted from a single image by windowing and comparing data localized about harmonics of the grid in the Fourier domain. A Matlab code was written to perform the image processing. For the first time, the effects on the diffraction phase contrast and scattering amplitude images of varying grid types and periods, and of varying the window function type used to separate the harmonics, and the window widths, were investigated. Using the wire mesh, derivatives of the phase along two orthogonal directions were obtained and new methods investigated to form improved phase contrast images.

3. Mastering Microsoft Windows Server 2008 R2

CERN Document Server

Minasi, Mark; Finn, Aidan

2010-01-01

The one book you absolutely need to get up and running with Windows Server 2008 R2. One of the world's leading Windows authorities and top-selling author Mark Minasi explores every nook and cranny of the latest version of Microsoft's flagship network operating system, Windows Server 2008 R2, giving you the most in-depth coverage in any book on the market.: Focuses on Windows Windows Server 2008 R2, the newest version of Microsoft's Windows' server line of operating system, and the ideal server for new Windows 7 clients; Author Mark Minasi is one of the world's leading Windows authorities and h

4. Discrete mathematics with applications

CERN Document Server

Koshy, Thomas

2003-01-01

This approachable text studies discrete objects and the relationsips that bind them. It helps students understand and apply the power of discrete math to digital computer systems and other modern applications. It provides excellent preparation for courses in linear algebra, number theory, and modern/abstract algebra and for computer science courses in data structures, algorithms, programming languages, compilers, databases, and computation.* Covers all recommended topics in a self-contained, comprehensive, and understandable format for students and new professionals * Emphasizes problem-solving techniques, pattern recognition, conjecturing, induction, applications of varying nature, proof techniques, algorithm development and correctness, and numeric computations* Weaves numerous applications into the text* Helps students learn by doing with a wealth of examples and exercises: - 560 examples worked out in detail - More than 3,700 exercises - More than 150 computer assignments - More than 600 writing projects*...

5. Lectures on discrete geometry

CERN Document Server

2002-01-01

Discrete geometry investigates combinatorial properties of configurations of geometric objects. To a working mathematician or computer scientist, it offers sophisticated results and techniques of great diversity and it is a foundation for fields such as computational geometry or combinatorial optimization. This book is primarily a textbook introduction to various areas of discrete geometry. In each area, it explains several key results and methods, in an accessible and concrete manner. It also contains more advanced material in separate sections and thus it can serve as a collection of surveys in several narrower subfields. The main topics include: basics on convex sets, convex polytopes, and hyperplane arrangements; combinatorial complexity of geometric configurations; intersection patterns and transversals of convex sets; geometric Ramsey-type results; polyhedral combinatorics and high-dimensional convexity; and lastly, embeddings of finite metric spaces into normed spaces. Jiri Matousek is Professor of Com...

6. Time Discretization Techniques

KAUST Repository

Gottlieb, S.

2016-10-12

The time discretization of hyperbolic partial differential equations is typically the evolution of a system of ordinary differential equations obtained by spatial discretization of the original problem. Methods for this time evolution include multistep, multistage, or multiderivative methods, as well as a combination of these approaches. The time step constraint is mainly a result of the absolute stability requirement, as well as additional conditions that mimic physical properties of the solution, such as positivity or total variation stability. These conditions may be required for stability when the solution develops shocks or sharp gradients. This chapter contains a review of some of the methods historically used for the evolution of hyperbolic PDEs, as well as cutting edge methods that are now commonly used.

7. Periodic transonic flow simulation using fourier-based algorithm

International Nuclear Information System (INIS)

2014-01-01

The present research simulates time-periodic unsteady transonic flow around pitching airfoils via the solution of unsteady Euler and Navier-Stokes equations, using time spectral method (TSM) and compares it with the traditional methods like BDF and explicit structured adaptive grid method. The TSM uses a Fourier representation in time and hence solves for the periodic state directly without resolving transients (which consume most of the resources in a time-accurate scheme). Mathematical tools used here are discrete Fourier transformations. The TSM has been validated with 2D external aerodynamics test cases. These test cases are NACA 64A010 (CT6) and NACA 0012 (CT1 and CT5) pitching airfoils. Because of turbulent nature of flow, Baldwin-Lomax turbulence model has been used in viscous flow analysis with large oscillation amplitude (CT5 type). The results presented by the TSM are compared with experimental data and the two other methods. By enforcing periodicity and using Fourier representation in time that has a spectral accuracy, tremendous reduction of computational cost has been obtained compared to the conventional time-accurate methods. Results verify the small number of time intervals per pitching cycle (just four time intervals) required to capture the flow physics with small oscillation amplitude (CT6) and large oscillation amplitude (CT5) as compared to the other two methods.

8. Discrete-Time Systems

the birth rate, d is the death rate and u(k) is the number of net immigrants entering the country in year k. We leave it to the reader to model the vacillating mathe- matician problem [3] as a discrete-time system. General Forms of Difference Equations. An nth order difference equation may be written, typically, either as y(k + n) + ...

9. Discrete Routh reduction

International Nuclear Information System (INIS)

Jalnapurkar, Sameer M; Leok, Melvin; Marsden, Jerrold E; West, Matthew

2006-01-01

This paper develops the theory of Abelian Routh reduction for discrete mechanical systems and applies it to the variational integration of mechanical systems with Abelian symmetry. The reduction of variational Runge-Kutta discretizations is considered, as well as the extent to which symmetry reduction and discretization commute. These reduced methods allow the direct simulation of dynamical features such as relative equilibria and relative periodic orbits that can be obscured or difficult to identify in the unreduced dynamics. The methods are demonstrated for the dynamics of an Earth orbiting satellite with a non-spherical J 2 correction, as well as the double spherical pendulum. The J 2 problem is interesting because in the unreduced picture, geometric phases inherent in the model and those due to numerical discretization can be hard to distinguish, but this issue does not appear in the reduced algorithm, where one can directly observe interesting dynamical structures in the reduced phase space (the cotangent bundle of shape space), in which the geometric phases have been removed. The main feature of the double spherical pendulum example is that it has a non-trivial magnetic term in its reduced symplectic form. Our method is still efficient as it can directly handle the essential non-canonical nature of the symplectic structure. In contrast, a traditional symplectic method for canonical systems could require repeated coordinate changes if one is evoking Darboux' theorem to transform the symplectic structure into canonical form, thereby incurring additional computational cost. Our method allows one to design reduced symplectic integrators in a natural way, despite the non-canonical nature of the symplectic structure

10. Discrete variational Hamiltonian mechanics

International Nuclear Information System (INIS)

Lall, S; West, M

2006-01-01

The main contribution of this paper is to present a canonical choice of a Hamiltonian theory corresponding to the theory of discrete Lagrangian mechanics. We make use of Lagrange duality and follow a path parallel to that used for construction of the Pontryagin principle in optimal control theory. We use duality results regarding sensitivity and separability to show the relationship between generating functions and symplectic integrators. We also discuss connections to optimal control theory and numerical algorithms

11. Discrete pseudo-integrals

Czech Academy of Sciences Publication Activity Database

Mesiar, Radko; Li, J.; Pap, E.

2013-01-01

Roč. 54, č. 3 (2013), s. 357-364 ISSN 0888-613X R&D Projects: GA ČR GAP402/11/0378 Institutional support: RVO:67985556 Keywords : concave integral * pseudo-addition * pseudo- multiplication Subject RIV: BA - General Mathematics Impact factor: 1.977, year: 2013 http://library.utia.cas.cz/separaty/2013/E/mesiar-discrete pseudo-integrals. pdf

12. Hamiltonian Mechanics on Discrete Manifolds

NARCIS (Netherlands)

Talasila, V.; Clemente Gallardo, J.; Schaft, A.J. van der

2004-01-01

The mathematical/geometric structure of discrete models of systems, whether these models are obtained after discretization of a smooth system or as a direct result of modeling at the discrete level, have not been studied much. Mostly one is concerned regarding the nature of the solutions, but not

13. Optimized Kaiser-Bessel Window Functions for Computed Tomography.

Science.gov (United States)

Nilchian, Masih; Ward, John Paul; Vonesch, Cedric; Unser, Michael

2015-11-01

Kaiser-Bessel window functions are frequently used to discretize tomographic problems because they have two desirable properties: 1) their short support leads to a low computational cost and 2) their rotational symmetry makes their imaging transform independent of the direction. In this paper, we aim at optimizing the parameters of these basis functions. We present a formalism based on the theory of approximation and point out the importance of the partition-of-unity condition. While we prove that, for compact-support functions, this condition is incompatible with isotropy, we show that minimizing the deviation from the partition of unity condition is highly beneficial. The numerical results confirm that the proposed tuning of the Kaiser-Bessel window functions yields the best performance.

14. Improved Fourier-transform profilometry

International Nuclear Information System (INIS)

Mao Xianfu; Chen Wenjing; Su Xianyu

2007-01-01

An improved optical geometry of the projected-fringe profilometry technique, in which the exit pupil of the projecting lens and the entrance pupil of the imaging lens are neither at the same height above the reference plane nor coplanar, is discussed and used in Fourier-transform profilometry. Furthermore, an improved fringe-pattern description and phase-height mapping formula based on the improved geometrical generalization is deduced. Employing the new optical geometry, it is easier for us to obtain the full-field fringe by moving either the projector or the imaging device. Therefore the new method offers a flexible way to obtain reliable height distribution of a measured object

15. Fourier-transform optical microsystems

Science.gov (United States)

Collins, S. D.; Smith, R. L.; Gonzalez, C.; Stewart, K. P.; Hagopian, J. G.; Sirota, J. M.

1999-01-01

The design, fabrication, and initial characterization of a miniature single-pass Fourier-transform spectrometer (FTS) that has an optical bench that measures 1 cm x 5 cm x 10 cm is presented. The FTS is predicated on the classic Michelson interferometer design with a moving mirror. Precision translation of the mirror is accomplished by microfabrication of dovetailed bearing surfaces along single-crystal planes in silicon. Although it is miniaturized, the FTS maintains a relatively high spectral resolution, 0.1 cm-1, with adequate optical throughput.

16. Fourier Transform Methods. Chapter 4

Science.gov (United States)

Kaplan, Simon G.; Quijada, Manuel A.

2015-01-01

This chapter describes the use of Fourier transform spectrometers (FTS) for accurate spectrophotometry over a wide spectral range. After a brief exposition of the basic concepts of FTS operation, we discuss instrument designs and their advantages and disadvantages relative to dispersive spectrometers. We then examine how common sources of error in spectrophotometry manifest themselves when using an FTS and ways to reduce the magnitude of these errors. Examples are given of applications to both basic and derived spectrophotometric quantities. Finally, we give recommendations for choosing the right instrument for a specific application, and how to ensure the accuracy of the measurement results..

17. Fourier analysis and its applications

CERN Document Server

Folland, Gerald B

2009-01-01

This book presents the theory and applications of Fourier series and integrals, eigenfunction expansions, and related topics, on a level suitable for advanced undergraduates. It includes material on Bessel functions, orthogonal polynomials, and Laplace transforms, and it concludes with chapters on generalized functions and Green's functions for ordinary and partial differential equations. The book deals almost exclusively with aspects of these subjects that are useful in physics and engineering, and includes a wide variety of applications. On the theoretical side, it uses ideas from modern ana

18. Fourier Deconvolution Methods for Resolution Enhancement in Continuous-Wave EPR Spectroscopy.

Science.gov (United States)

Reed, George H; Poyner, Russell R

2015-01-01

An overview of resolution enhancement of conventional, field-swept, continuous-wave electron paramagnetic resonance spectra using Fourier transform-based deconvolution methods is presented. Basic steps that are involved in resolution enhancement of calculated spectra using an implementation based on complex discrete Fourier transform algorithms are illustrated. Advantages and limitations of the method are discussed. An application to an experimentally obtained spectrum is provided to illustrate the power of the method for resolving overlapped transitions. © 2015 Elsevier Inc. All rights reserved.

19. Switchable Materials for Smart Windows.

Science.gov (United States)

Wang, Yang; Runnerstrom, Evan L; Milliron, Delia J

2016-06-07

This article reviews the basic principles of and recent developments in electrochromic, photochromic, and thermochromic materials for applications in smart windows. Compared with current static windows, smart windows can dynamically modulate the transmittance of solar irradiation based on weather conditions and personal preferences, thus simultaneously improving building energy efficiency and indoor human comfort. Although some smart windows are commercially available, their widespread implementation has not yet been realized. Recent advances in nanostructured materials provide new opportunities for next-generation smart window technology owing to their unique structure-property relations. Nanomaterials can provide enhanced coloration efficiency, faster switching kinetics, and longer lifetime. In addition, their compatibility with solution processing enables low-cost and high-throughput fabrication. This review also discusses the importance of dual-band modulation of visible and near-infrared (NIR) light, as nearly 50% of solar energy lies in the NIR region. Some latest results show that solution-processable nanostructured systems can selectively modulate the NIR light without affecting the visible transmittance, thus reducing energy consumption by air conditioning, heating, and artificial lighting.

20. Fourier Spectroscopy: A Bayesian Way

Directory of Open Access Journals (Sweden)

Stefan Schmuck

2017-01-01

Full Text Available The concepts of standard analysis techniques applied in the field of Fourier spectroscopy treat fundamental aspects insufficiently. For example, the spectra to be inferred are influenced by the noise contribution to the interferometric data, by nonprobed spatial domains which are linked to Fourier coefficients above a certain order, by the spectral limits which are in general not given by the Nyquist assumptions, and by additional parameters of the problem at hand like the zero-path difference. To consider these fundamentals, a probabilistic approach based on Bayes’ theorem is introduced which exploits multivariate normal distributions. For the example application, we model the spectra by the Gaussian process of a Brownian bridge stated by a prior covariance. The spectra themselves are represented by a number of parameters which map linearly to the data domain. The posterior for these linear parameters is analytically obtained, and the marginalisation over these parameters is trivial. This allows the straightforward investigation of the posterior for the involved nonlinear parameters, like the zero-path difference location and the spectral limits, and hyperparameters, like the scaling of the Gaussian process. With respect to the linear problem, this can be interpreted as an implementation of Ockham’s razor principle.

1. 16 CFR 455.3 - Window form.

Science.gov (United States)

2010-01-01

... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Window form. 455.3 Section 455.3 Commercial... Window form. (a) Form given to buyer. Give the buyer of a used vehicle sold by you the window form...) Incorporated into contract. The information on the final version of the window form is incorporated into the...

2. Music@Microsoft.Windows: Composing Ambience

Science.gov (United States)

Rickert, Thomas

2010-01-01

It is well known, of course, that all Windows versions except for 3.1 have a brief (four to six second) piece of music indicating that Windows is booted and ready for use. While the music may indicate Windows has booted, it bears no immediately discernable relation to the various uses we might actually put Windows to--working, gaming,…

3. Windows Server 2012 R2 administrator cookbook

CERN Document Server

Krause, Jordan

2015-01-01

This book is intended for system administrators and IT professionals with experience in Windows Server 2008 or Windows Server 2012 environments who are looking to acquire the skills and knowledge necessary to manage and maintain the core infrastructure required for a Windows Server 2012 and Windows Server 2012 R2 environment.

4. Travailler avec Windows 7 au CERN (FR)

CERN Multimedia

CERN. Geneva

2010-01-01

Vue d'ensemble des nouveaux concepts et des changements dans l'interface utilisateur survenus dans Windows 7 depuis les versions antérieures de Windows (XP ou Vista). La mise à disposition de Windows 7 au CERN et son intégration dans l’infrastructure de Windows au CERN seront présentées.

5. Discrete epidemic models.

Science.gov (United States)

Brauer, Fred; Feng, Zhilan; Castillo-Chavez, Carlos

2010-01-01

The mathematical theory of single outbreak epidemic models really began with the work of Kermack and Mackendrick about decades ago. This gave a simple answer to the long-standing question of why epidemics woould appear suddenly and then disappear just as suddenly without having infected an entire population. Therefore it seemed natural to expect that theoreticians would immediately proceed to expand this mathematical framework both because the need to handle recurrent single infectious disease outbreaks has always been a priority for public health officials and because theoreticians often try to push the limits of exiting theories. However, the expansion of the theory via the inclusion of refined epidemiological classifications or through the incorporation of categories that are essential for the evaluation of intervention strategies, in the context of ongoing epidemic outbreaks, did not materialize. It was the global threat posed by SARS in that caused theoreticians to expand the Kermack-McKendrick single-outbreak framework. Most recently, efforts to connect theoretical work to data have exploded as attempts to deal with the threat of emergent and re-emergent diseases including the most recent H1N1 influenza pandemic, have marched to the forefront of our global priorities. Since data are collected and/or reported over discrete units of time, developing single outbreak models that fit collected data naturally is relevant. In this note, we introduce a discrete-epidemic framework and highlight, through our analyses, the similarities between single-outbreak comparable classical continuous-time epidemic models and the discrete-time models introduced in this note. The emphasis is on comparisons driven by expressions for the final epidemic size.

6. Discrete Dynamics Lab

Science.gov (United States)

Wuensche, Andrew

DDLab is interactive graphics software for creating, visualizing, and analyzing many aspects of Cellular Automata, Random Boolean Networks, and Discrete Dynamical Networks in general and studying their behavior, both from the time-series perspective — space-time patterns, and from the state-space perspective — attractor basins. DDLab is relevant to research, applications, and education in the fields of complexity, self-organization, emergent phenomena, chaos, collision-based computing, neural networks, content addressable memory, genetic regulatory networks, dynamical encryption, generative art and music, and the study of the abstract mathematical/physical/dynamical phenomena in their own right.

7. Oscillatory integration windows in neurons

Science.gov (United States)

Gupta, Nitin; Singh, Swikriti Saran; Stopfer, Mark

2016-01-01

Oscillatory synchrony among neurons occurs in many species and brain areas, and has been proposed to help neural circuits process information. One hypothesis states that oscillatory input creates cyclic integration windows: specific times in each oscillatory cycle when postsynaptic neurons become especially responsive to inputs. With paired local field potential (LFP) and intracellular recordings and controlled stimulus manipulations we directly test this idea in the locust olfactory system. We find that inputs arriving in Kenyon cells (KCs) sum most effectively in a preferred window of the oscillation cycle. With a computational model, we show that the non-uniform structure of noise in the membrane potential helps mediate this process. Further experiments performed in vivo demonstrate that integration windows can form in the absence of inhibition and at a broad range of oscillation frequencies. Our results reveal how a fundamental coincidence-detection mechanism in a neural circuit functions to decode temporally organized spiking. PMID:27976720

8. Teach yourself visually Windows 8

CERN Document Server

McFedries, Paul

2012-01-01

A practical guide for visual learners eager to get started with Windows 8 If you learn more quickly when you can see how things are done, this Visual guide is the easiest way to get up and running on Windows 8. It covers more than 150 essential Windows tasks, using full-color screen shots and step-by-step instructions to show you just what to do. Learn your way around the interface and how to install programs, set up user accounts, play music and other media files, download photos from your digital camera, go online, set up and secure an e-mail account, and much more. The tried-and-true format

9. Windows Server 2012 : Uudet ominaisuudet ja muutokset

OpenAIRE

Oksanen, Joni

2013-01-01

Tämän opintyön tarkoituksena on valottaa Windows Server 2012 -käyttöjärjestelmän muutoksia verrattuna vanhaan Windows Server 2008 R2 -versioon. Työ aloitettiin ennen Windows Server 2012 -julkaisua Release Candidate -version testauksella ja myöhemmin julkaisun jälkeen Windows Serverin kokeiluversiolla. Työssä on silti ajankohtaista tietoa Windows Server 2012:sta. Aluksi käsitellään Windows Servereiden kehityskaarta lyhyesti ja käsitellään uusinta Windows Serveriä tuotteena se...

10. Discrete mechanics Based on Finite Element Methods

OpenAIRE

Chen, Jing-bo; Guo, Han-Ying; Wu, Ke

2002-01-01

Discrete Mechanics based on finite element methods is presented in this paper. We also explore the relationship between this discrete mechanics and Veselov discrete mechanics. High order discretizations are constructed in terms of high order interpolations.

11. Windows 7 is supported at CERN

CERN Multimedia

IT Department

2010-01-01

The new version of the Windows operating system - Windows 7 - is now officially supported at CERN. Windows 7 32-bit is now the default operating system for the new computers at CERN. What’s new in Windows 7 Users of Windows XP will find many new features and options. Users of Windows Vista will feel very familiar with one major difference: higher performance and better responsiveness of the operating system. Other enhancements include: refined Aero desktop that makes it easier to navigate between your different application windows; new snapping windows that allows user to resize a window simply by dragging it to the edge of the screen and “pin” that allows grouping and arranging often accessed applications on the taskbar. Windows 7 introduces the new concept of libraries – containers for user files that have links to different local or network folders. By default, users can see four libraries: Documents, Music, Pictures and Videos. These libraries point to the cor...

12. Techniques for Handling and Removal of Spectral Channels in Fourier Transform Synchrotron-Based Spectra

International Nuclear Information System (INIS)

Ibrahim, Amr; Predoi-Cross, Adriana; Teillet, Philippe M.

2010-01-01

Channel spectra are a big problem for those attempting to use synchrotron-based Fourier transform spectra for spectral lineshape studies. Due to the layout of the optical system at the CLS far-infrared beamline, the synchrotron beam undergoes unavoidable multiple reflections on the steering mirrors, beam splitter, several sets of windows, and filters. We present a method for eliminating channel spectra and compare the results of our technique with other methods available in the literature.

13. *New* CRITICAL Windows Security patch

CERN Multimedia

2003-01-01

On 10 September 2003, Microsoft issued a new CRITICAL security patch, MS03-039. It must be URGENTLY applied on ALL WINDOWS systems, which are not centrally managed for security patches. This includes Experiment computers, Home computers and Windows Portable and Desktop systems not running NICE. Details of the security hole and patch for MS03-039 (which also includes MS03-026) are at: http://cern.ch/it-div/news/hotfix-MS03-039.asp http://www.microsoft.com/technet/security/bulletin/MS03-039.asp

14. *New*: CRITICAL Windows Security patch

CERN Multimedia

2003-01-01

On 10 September 2003, Microsoft issued a new CRITICAL security patch, MS03-039. It must be URGENTLY applied on ALL WINDOWS systems, which are not centrally managed for security patches. This includes Experiment computers, Home computers and Windows Portable and Desktop systems not running NICE. Details of the security hole and patch for MS03-039 (which also includes MS03-026) are at: http://cern.ch/it-div/news/hotfix-MS03-039.asp http://www.microsoft.com/technet/security/bulletin/MS03-039.asp

15. Advanced Control of Electrochromic Windows

OpenAIRE

Scartezzini, Jean-Louis; Zarkadis, Nikos; Morel, Nicolas

2013-01-01

In our research we use the technology of electrochromic (EC) glazing to maximize the use of daylight and minimize the energy consumption in buildings while preserving visual and thermal comfort of the users. We propose an advanced automatic control of EC windows coupled with an anidolic daylighting system (ADS), blinds and dimmable fluorescent lights. EC windows with a visible transmittance range (Tv) of 0.15 – 0.50 were installed on the southern façade of an office room of the LESO experimen...

16. What's New in Windows Vista?

CERN Document Server

Culp, Brian

2006-01-01

Get ready for a quick blast through this significant change to Windows! This guide will give you a quick look at many of the most significant new features in Vista, Microsoft's first revision of Windows in nearly six years. Starting with the changes to the interface, introducing Aero, and showing you some visuals, we then move on to the completely revamped search options. The new task scheduler and printing gadgets, are next with some cool new changes. Probably the most significant changes, however, come in the area of security and this guide takes a look at them from user priveleges, to

17. Windows Vista Administrator's Pocket Guide

CERN Document Server

Stanek, William R

2007-01-01

Portable and precise, this pocket-sized guide delivers immediate answers for the day-to-day administration of Windows Vista. Zero in on core support and maintenance tasks using quick-reference tables, instructions, and lists. You'll get the precise information you need to solve problems and get the job done-whether you're at your desk or in the field! Get fast facts to: Install and configure Windows Vista-and optimize the user workspaceMaintain operating system components, hardware devices, and driversCreate user and group accounts-and control rights and permissionsAdminister group policy se

18. SNS Proton Beam Window Disposal

Directory of Open Access Journals (Sweden)

Popova Irina

2017-01-01

Full Text Available In order to support the disposal of the proton beam window assembly of the Spallation Neutron Source beamline to the target station, waste classification analyses are performed. The window has a limited life-time due to radiation-induced material damage. Analyses include calculation of the radionuclide inventory and shielding analyses for the transport package/container to ensure that the container is compliant with the transportation and waste management regulations. In order to automate this procedure and minimize manual work a script in Perl language was written.

19. Microsoft Windows Server Administration Essentials

CERN Document Server

Carpenter, Tom

2011-01-01

The core concepts and technologies you need to administer a Windows Server OS Administering a Windows operating system (OS) can be a difficult topic to grasp, particularly if you are new to the field of IT. This full-color resource serves as an approachable introduction to understanding how to install a server, the various roles of a server, and how server performance and maintenance impacts a network. With a special focus placed on the new Microsoft Technology Associate (MTA) certificate, the straightforward, easy-to-understand tone is ideal for anyone new to computer administration looking t

20. Forensic Analysis of Windows Registry Against Intrusion

OpenAIRE

Haoyang Xie; Keyu Jiang; Xiaohong Yuan

2012-01-01

Windows Registry forensics is an important branch of computer and network forensics. Windows Registry is often considered as the heart of Windows Operating Systems because it contains allof the configuration setting of specific users, groups, hardware, software, and networks. Therefore, Windows Registry can be viewed as a gold mine of forensic evidences which could be used in courts. This paper introduces the basics of Windows Registry, describes its structure and its keys and subkeys thathav...

1. Finite discrete field theory

International Nuclear Information System (INIS)

Souza, Manoelito M. de

1997-01-01

We discuss the physical meaning and the geometric interpretation of implementation in classical field theories. The origin of infinities and other inconsistencies in field theories is traced to fields defined with support on the light cone; a finite and consistent field theory requires a light-cone generator as the field support. Then, we introduce a classical field theory with support on the light cone generators. It results on a description of discrete (point-like) interactions in terms of localized particle-like fields. We find the propagators of these particle-like fields and discuss their physical meaning, properties and consequences. They are conformally invariant, singularity-free, and describing a manifestly covariant (1 + 1)-dimensional dynamics in a (3 = 1) spacetime. Remarkably this conformal symmetry remains even for the propagation of a massive field in four spacetime dimensions. We apply this formalism to Classical electrodynamics and to the General Relativity Theory. The standard formalism with its distributed fields is retrieved in terms of spacetime average of the discrete field. Singularities are the by-products of the averaging process. This new formalism enlighten the meaning and the problem of field theory, and may allow a softer transition to a quantum theory. (author)

2. Discretization of time series data.

Science.gov (United States)

Dimitrova, Elena S; Licona, M Paola Vera; McGee, John; Laubenbacher, Reinhard

2010-06-01

An increasing number of algorithms for biochemical network inference from experimental data require discrete data as input. For example, dynamic Bayesian network methods and methods that use the framework of finite dynamical systems, such as Boolean networks, all take discrete input. Experimental data, however, are typically continuous and represented by computer floating point numbers. The translation from continuous to discrete data is crucial in preserving the variable dependencies and thus has a significant impact on the performance of the network inference algorithms. We compare the performance of two such algorithms that use discrete data using several different discretization algorithms. One of the inference methods uses a dynamic Bayesian network framework, the other-a time-and state-discrete dynamical system framework. The discretization algorithms are quantile, interval discretization, and a new algorithm introduced in this article, SSD. SSD is especially designed for short time series data and is capable of determining the optimal number of discretization states. The experiments show that both inference methods perform better with SSD than with the other methods. In addition, SSD is demonstrated to preserve the dynamic features of the time series, as well as to be robust to noise in the experimental data. A C++ implementation of SSD is available from the authors at http://polymath.vbi.vt.edu/discretization .

3. FFT-BM, Code Accuracy Evaluations with the 1D Fast Fourier Transform (FFT) Methodology

International Nuclear Information System (INIS)

D'Auria, F.

2004-01-01

1 - Description of program or function: FFT-BM is an integrated version of the programs package performing code accuracy evaluations with the 1D Fast Fourier Transform (FFT) methodology. It contains two programs: - CASEM: Takes care of the complete manipulation of data in order to evaluate the quantities through which the FFT method quantifies the code accuracy. - AAWFTO completes the evaluation of the average accuracy (AA) and related weighted frequency (WF) values in order to obtain the AAtot and WFtot values characterising the global calculation performance. 2 - Methods: The Fast Fourier Transform, or FFT, which is based on the Fourier analysis method is an optimised method for calculating the amplitude Vs frequency, of functions or experimental or computed data. In order to apply this methodology, after selecting the parameters to be analyzed, it is necessary to choose the following parameters: - number of curves (exp + calc) to be analyzed; - number of time windows to be analyzed; - sampling frequency; - cut frequency; - time begin and time end of each time window. 3 - Restrictions on the complexity of the problem: Up to 30 curves (exp + calc) and 5 time windows may be analyzed

4. Computing the continuous discretely

CERN Document Server

Beck, Matthias

2015-01-01

This richly illustrated textbook explores the amazing interaction between combinatorics, geometry, number theory, and analysis which arises in the interplay between polyhedra and lattices. Highly accessible to advanced undergraduates, as well as beginning graduate students, this second edition is perfect for a capstone course, and adds two new chapters, many new exercises, and updated open problems. For scientists, this text can be utilized as a self-contained tooling device. The topics include a friendly invitation to Ehrhart’s theory of counting lattice points in polytopes, finite Fourier analysis, the Frobenius coin-exchange problem, Dedekind sums, solid angles, Euler–Maclaurin summation for polytopes, computational geometry, magic squares, zonotopes, and more. With more than 300 exercises and open research problems, the reader is an active participant, carried through diverse but tightly woven mathematical fields that are inspired by an innocently elementary question: What are the relationships betwee...

5. Discrete Exterior Calculus Discretization of Incompressible Navier-Stokes Equations

KAUST Repository

Mohamed, Mamdouh S.

2017-05-23

A conservative discretization of incompressible Navier-Stokes equations over surface simplicial meshes is developed using discrete exterior calculus (DEC). Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy otherwise. The mimetic character of many of the DEC operators provides exact conservation of both mass and vorticity, in addition to superior kinetic energy conservation. The employment of barycentric Hodge star allows the discretization to admit arbitrary simplicial meshes. The discretization scheme is presented along with various numerical test cases demonstrating its main characteristics.

6. Linear and nonlinear Stability analysis for finite difference discretizations of higher order Boussinesq equations

DEFF Research Database (Denmark)

Fuhrmann, David R.; Bingham, Harry B.; Madsen, Per A.

2004-01-01

This paper considers a method of lines stability analysis for finite difference discretizations of a recently published Boussinesq method for the study of highly nonlinear and extremely dispersive water waves. The analysis demonstrates the near-equivalence of classical linear Fourier (von Neumann...

7. Dual Comb Fourier Transform Spectroscopy

Science.gov (United States)

Hänsch, T. W.; Picqué, N.

2010-06-01

The advent of laser frequency combs a decade ago has already revolutionized optical frequency metrology and precision spectroscopy. Extensions of laser combs from the THz region to the extreme ultraviolet and soft x-ray frequencies are now under exploration. Such laser combs have become enabling tools for a growing tree of applications, from optical atomic clocks to attosecond science. Recently, the millions of precisely controlled laser comb lines that can be produced with a train of ultrashort laser pulses have been harnessed for highly multiplexed molecular spectroscopy. Fourier multi-heterodyne spectroscopy, dual comb spectroscopy, or asynchronous optical sampling spectroscopy with frequency combs are emerging as powerful new spectroscopic tools. Even the first proof-of-principle experiments have demonstrated a very exciting potential for ultra-rapid and ultra-sensitive recording of complex molecular spectra. Compared to conventional Fourier transform spectroscopy, recording times could be shortened from seconds to microseconds, with intriguing prospects for spectroscopy of short lived transient species. Longer recording times allow high resolution spectroscopy of molecules with extreme precision, since the absolute frequency of each laser comb line can be known with the accuracy of an atomic clock. The spectral structure of sharp lines of a laser comb can be very useful even in the recording of broadband spectra without sharp features, as they are e.g. encountered for molecular gases or in the liquid phase. A second frequency comb of different line spacing permits the generation of a comb of radio frequency beat notes, which effectively map the optical spectrum into the radio frequency regime, so that it can be recorded with a single fast photodetector, followed by digital signal analysis. In the time domain, a pulse train of a mode-locked femtosecond laser excites some molecular medium at regular time intervals. A second pulse train of different repetition

8. The use of Fourier eigen transform to the boundary element method for transient elastodynamic problems

International Nuclear Information System (INIS)

Ji, X.; Chen, Y.M.

1989-01-01

The boundary element method (BEM) is developed from the boundary integral equation method and the discretization techniques. Compared with other numerical method, BEM has been shown to be a versatile and efficient method for a wide variety of engineering problems, including the wave propagation in elastic media. The first formulation and solution of the transient elastodynamic problem by combining BEM and Laplace transform is due to Cruse. Further improvement was achieved by introducing Durbin's method instead of Papoulis method of numerical Laplace inverse transform. However, a great deal of computer time is still needed for the inverse transformation. The alternative integral transform approach is BEM combining with Fourier transform. The numerical Fourier inverse transformation is also computer time consuming, even if the fast Fourier transform is used. In the present paper, the authors use BEM combining with Fourier transform and Fourier eigen transform (FET). The new approach is very attractive in saving on computer time. This paper illustrates the application of FET to BEM of 2-dimensional transient elastodynamic problem. The example of a half plane subjected to a discontinuous boundary load is solved on ELXSI 6400 computer. The CPU time is less than one minute. If Laplace or Fourier transform is adopted, the CPU time will be more than 10 minutes

9. Exceptional and Spinorial Conformal Windows

DEFF Research Database (Denmark)

Mojaza, Matin; Pica, Claudio; Ryttov, Thomas

2012-01-01

We study the conformal window of gauge theories containing fermionic matter fields, where the gauge group is any of the exceptional groups with the fermions transforming according to the fundamental and adjoint representations and the orthogonal groups where the fermions transform according...

10. Applications of Fourier transforms to generalized functions

CERN Document Server

Rahman, M

2011-01-01

This book explains how Fourier transforms can be applied to generalized functions. The generalized function is one of the important branches of mathematics and is applicable in many practical fields. Its applications to the theory of distribution and signal processing are especially important. The Fourier transform is a mathematical procedure that can be thought of as transforming a function from its time domain to the frequency domain.The book contains six chapters and three appendices. Chapter 1 deals with preliminary remarks on Fourier series from a general point of view and also contains an introduction to the first generalized function. Chapter 2 is concerned with the generalized functions and their Fourier transforms. Chapter 3 contains the Fourier transforms of particular generalized functions. The author has stated and proved 18 formulas dealing with the Fourier transforms of generalized functions, and demonstrated some important problems of practical interest. Chapter 4 deals with the asymptotic esti...

11. Structure in the 3D Galaxy Distribution. III. Fourier Transforming the Universe: Phase and Power Spectra

Science.gov (United States)

Scargle, Jeffrey D.; Way, M. J.; Gazis, P. G.

2017-01-01

We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier transform of galaxy coordinates derived from redshift surveys. Numerical demonstrations of this approach are carried out on a volume-limited sample of the Sloan Digital Sky Survey redshift survey. The direct unbinned transform yields a complex 3D data cube quite similar to that from the Fast Fourier Transform of finely binned galaxy positions. In both cases, deconvolution of the sampling window function yields estimates of the true transform. Simple power spectrum estimates from these transforms are roughly consistent with those using more elaborate methods. The complex Fourier transform characterizes spatial distributional properties beyond the power spectrum in a manner different from (and we argue is more easily interpreted than) the conventional multipoint hierarchy. We identify some threads of modern large-scale inference methodology that will presumably yield detections in new wider and deeper surveys.

12. Poisson hierarchy of discrete strings

Energy Technology Data Exchange (ETDEWEB)

Ioannidou, Theodora, E-mail: ti3@auth.gr [Faculty of Civil Engineering, School of Engineering, Aristotle University of Thessaloniki, 54249, Thessaloniki (Greece); Niemi, Antti J., E-mail: Antti.Niemi@physics.uu.se [Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108, Uppsala (Sweden); Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fédération Denis Poisson, Université de Tours, Parc de Grandmont, F37200, Tours (France); Department of Physics, Beijing Institute of Technology, Haidian District, Beijing 100081 (China)

2016-01-28

The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed.

13. Poisson hierarchy of discrete strings

International Nuclear Information System (INIS)

Ioannidou, Theodora; Niemi, Antti J.

2016-01-01

The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed.

14. Advances in discrete differential geometry

CERN Document Server

2016-01-01

This is one of the first books on a newly emerging field of discrete differential geometry and an excellent way to access this exciting area. It surveys the fascinating connections between discrete models in differential geometry and complex analysis, integrable systems and applications in computer graphics. The authors take a closer look at discrete models in differential geometry and dynamical systems. Their curves are polygonal, surfaces are made from triangles and quadrilaterals, and time is discrete. Nevertheless, the difference between the corresponding smooth curves, surfaces and classical dynamical systems with continuous time can hardly be seen. This is the paradigm of structure-preserving discretizations. Current advances in this field are stimulated to a large extent by its relevance for computer graphics and mathematical physics. This book is written by specialists working together on a common research project. It is about differential geometry and dynamical systems, smooth and discrete theories, ...

15. Tunable fractional-order Fourier transformer

International Nuclear Information System (INIS)

Malyutin, A A

2006-01-01

A fractional two-dimensional Fourier transformer whose orders are tuned by means of optical quadrupoles is described. It is shown that in the optical scheme considered, the Fourier-transform order a element of [0,1] in one of the mutually orthogonal planes corresponds to the transform order (2-a) in another plane, i.e., to inversion and inverse Fourier transform of the order a. (laser modes and beams)

16. Fourier transform n.m.r. spectroscopy

International Nuclear Information System (INIS)

Shaw, D.

1976-01-01

This book is orientated to techniques rather than applications. The basic theory of n.m.r. is dealt with in a unified approach to the Fourier theory. The middle section of the book concentrates on the practical aspects of Fourier n.m.r., both instrumental and experimental. The final chapters briefly cover general application of n.m.r., but concentrate strongly on those areas where Fourier n.m.r. can give information which is not available by conventional techniques

17. Handbook of Fourier analysis & its applications

CERN Document Server

Marks, Robert J

2009-01-01

Fourier analysis has many scientific applications - in physics, number theory, combinatorics, signal processing, probability theory, statistics, option pricing, cryptography, acoustics, oceanography, optics and diffraction, geometry, and other areas. In signal processing and related fields, Fourier analysis is typically thought of as decomposing a signal into its component frequencies and their amplitudes. This practical, applications-based professional handbook comprehensively covers the theory and applications of Fourier Analysis, spanning topics from engineering mathematics, signal process

18. Seismic signal time-frequency analysis based on multi-directional window using greedy strategy

Science.gov (United States)

Chen, Yingpin; Peng, Zhenming; Cheng, Zhuyuan; Tian, Lin

2017-08-01

Wigner-Ville distribution (WVD) is an important time-frequency analysis technology with a high energy distribution in seismic signal processing. However, it is interfered by many cross terms. To suppress the cross terms of the WVD and keep the concentration of its high energy distribution, an adaptive multi-directional filtering window in the ambiguity domain is proposed. This begins with the relationship of the Cohen distribution and the Gabor transform combining the greedy strategy and the rotational invariance property of the fractional Fourier transform in order to propose the multi-directional window, which extends the one-dimensional, one directional, optimal window function of the optimal fractional Gabor transform (OFrGT) to a two-dimensional, multi-directional window in the ambiguity domain. In this way, the multi-directional window matches the main auto terms of the WVD more precisely. Using the greedy strategy, the proposed window takes into account the optimal and other suboptimal directions, which also solves the problem of the OFrGT, called the local concentration phenomenon, when encountering a multi-component signal. Experiments on different types of both the signal models and the real seismic signals reveal that the proposed window can overcome the drawbacks of the WVD and the OFrGT mentioned above. Finally, the proposed method is applied to a seismic signal's spectral decomposition. The results show that the proposed method can explore the space distribution of a reservoir more precisely.

19. Metasurface Enabled Wide-Angle Fourier Lens.

Science.gov (United States)

Liu, Wenwei; Li, Zhancheng; Cheng, Hua; Tang, Chengchun; Li, Junjie; Zhang, Shuang; Chen, Shuqi; Tian, Jianguo

2018-04-19

Fourier optics, the principle of using Fourier transformation to understand the functionalities of optical elements, lies at the heart of modern optics, and it has been widely applied to optical information processing, imaging, holography, etc. While a simple thin lens is capable of resolving Fourier components of an arbitrary optical wavefront, its operation is limited to near normal light incidence, i.e., the paraxial approximation, which puts a severe constraint on the resolvable Fourier domain. As a result, high-order Fourier components are lost, resulting in extinction of high-resolution information of an image. Other high numerical aperture Fourier lenses usually suffer from the bulky size and costly designs. Here, a dielectric metasurface consisting of high-aspect-ratio silicon waveguide array is demonstrated experimentally, which is capable of performing 1D Fourier transform for a large incident angle range and a broad operating bandwidth. Thus, the device significantly expands the operational Fourier space, benefitting from the large numerical aperture and negligible angular dispersion at large incident angles. The Fourier metasurface will not only facilitate efficient manipulation of spatial spectrum of free-space optical wavefront, but also be readily integrated into micro-optical platforms due to its compact size. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

20. Fourier's law: insight from a simple derivation.

Science.gov (United States)

Dubi, Y; Di Ventra, M

2009-04-01

The onset of Fourier's law in a one-dimensional quantum system is addressed via a simple model of weakly coupled quantum systems in contact with thermal baths at their edges. Using analytical arguments we show that the crossover from the ballistic (invalid Fourier's law) to diffusive (valid Fourier's law) regimes is characterized by a thermal length scale, which is directly related to the profile of the local temperature. In the same vein, dephasing is shown to give rise to classical Fourier's law, similarly to the onset of Ohm's law in mesoscopic conductors.

1. Immigration and Prosecutorial Discretion.

Science.gov (United States)

Apollonio, Dorie; Lochner, Todd; Heddens, Myriah

Immigration has become an increasingly salient national issue in the US, and the Department of Justice recently increased federal efforts to prosecute immigration offenses. This shift, however, relies on the cooperation of US attorneys and their assistants. Traditionally federal prosecutors have enjoyed enormous discretion and have been responsive to local concerns. To consider how the centralized goal of immigration enforcement may have influenced federal prosecutors in regional offices, we review their prosecution of immigration offenses in California using over a decade's worth of data. Our findings suggest that although centralizing forces influence immigration prosecutions, individual US attorneys' offices retain distinct characteristics. Local factors influence federal prosecutors' behavior in different ways depending on the office. Contrary to expectations, unemployment rates did not affect prosecutors' willingness to pursue immigration offenses, nor did local popular opinion about illegal immigration.

2. Discrete Minimal Surface Algebras

Directory of Open Access Journals (Sweden)

Joakim Arnlind

2010-05-01

Full Text Available We consider discrete minimal surface algebras (DMSA as generalized noncommutative analogues of minimal surfaces in higher dimensional spheres. These algebras appear naturally in membrane theory, where sequences of their representations are used as a regularization. After showing that the defining relations of the algebra are consistent, and that one can compute a basis of the enveloping algebra, we give several explicit examples of DMSAs in terms of subsets of sl_n (any semi-simple Lie algebra providing a trivial example by itself. A special class of DMSAs are Yang-Mills algebras. The representation graph is introduced to study representations of DMSAs of dimension d ≤ 4, and properties of representations are related to properties of graphs. The representation graph of a tensor product is (generically the Cartesian product of the corresponding graphs. We provide explicit examples of irreducible representations and, for coinciding eigenvalues, classify all the unitary representations of the corresponding algebras.

3. Discrete Pearson distributions

Energy Technology Data Exchange (ETDEWEB)

Bowman, K.O. [Oak Ridge National Lab., TN (United States); Shenton, L.R. [Georgia Univ., Athens, GA (United States); Kastenbaum, M.A. [Kastenbaum (M.A.), Basye, VA (United States)

1991-11-01

These distributions are generated by a first order recursive scheme which equates the ratio of successive probabilities to the ratio of two corresponding quadratics. The use of a linearized form of this model will produce equations in the unknowns matched by an appropriate set of moments (assumed to exist). Given the moments we may find valid solutions. These are two cases; (1) distributions defined on the non-negative integers (finite or infinite) and (2) distributions defined on negative integers as well. For (1), given the first four moments, it is possible to set this up as equations of finite or infinite degree in the probability of a zero occurrence, the sth component being a product of s ratios of linear forms in this probability in general. For (2) the equation for the zero probability is purely linear but may involve slowly converging series; here a particular case is the discrete normal. Regions of validity are being studied. 11 refs.

4. On the spectral analysis of iterative solutions of the discretized one-group transport equation

International Nuclear Information System (INIS)

Sanchez, Richard

2004-01-01

We analyze the Fourier-mode technique used for the spectral analysis of iterative solutions of the one-group discretized transport equation. We introduce a direct spectral analysis for the iterative solution of finite difference approximations for finite slabs composed of identical layers, providing thus a complementary analysis that is more appropriate for reactor applications. Numerical calculations for the method of characteristics and with the diamond difference approximation show the appearance of antisymmetric modes generated by the iteration on boundary data. We have also utilized the discrete Fourier transform to compute the spectrum for a periodic slab containing N identical layers and shown that at the limit N → ∞ one obtains the familiar Fourier-mode solution

5. Principles of discrete time mechanics

CERN Document Server

Jaroszkiewicz, George

2014-01-01

Could time be discrete on some unimaginably small scale? Exploring the idea in depth, this unique introduction to discrete time mechanics systematically builds the theory up from scratch, beginning with the historical, physical and mathematical background to the chronon hypothesis. Covering classical and quantum discrete time mechanics, this book presents all the tools needed to formulate and develop applications of discrete time mechanics in a number of areas, including spreadsheet mechanics, classical and quantum register mechanics, and classical and quantum mechanics and field theories. A consistent emphasis on contextuality and the observer-system relationship is maintained throughout.

6. Quantitative assessment of time trends: influence of time window selection

International Nuclear Information System (INIS)

Prosek, A.; Mavko, B.

2004-01-01

Quantitative assessment of thermalhydraulic system code predictions is today indispensable for code verification and validation. It is also needed for standard nuclear power plant nodalization development and qualification. Initially the Fast Fourier Transform Based Method (FFTBM) was proposed for accuracy quantification. Later a few new methods were proposed like Automated Code Assessment Program (ACAP) and Stochastic Approximation Ratio Based Method (SARBM). Recently, the review of FFTBM applications was done and reference FFTBM database was proposed consisting of most accurate international standard problems, standard problem exercises or organization calculations as judged by FFTBM. The calculations were presented by primary pressure average amplitude and total accuracy for the whole transient duration. The objective of this study was to investigate how the time window selection influences on the results. For the quantitative assessment various BETHSY experiments and Mochovce plant transient were selected and calculations obtained by RELAP5/MOD3.2 and RELAP5/MOD3.2.2 code, respectively. In the accuracy analysis each transient is subdivided into phases that define the time window and time interval. The time window is time duration of phase. The time interval is time window from the start time of first phase to the end time of selected phase. The analysis was performed for moving time window (sequence of narrow time windows) and increasing time interval (sequence of time intervals). The results for moving time window showed that accuracy measures were very time dependent and they efficiently showed the instantaneous discrepancies occurring in the calculated signal. They also give picture how complex is the transient. The average amplitude (AA) was compared with relative error function (the difference between calculated and measured signal divided by measured signal) and SARBM results. The trends for accuracy measures were similar. These results suggest that for

7. Using the fast fourier transform in binding free energy calculations.

Science.gov (United States)

Nguyen, Trung Hai; Zhou, Huan-Xiang; Minh, David D L

2018-04-30

According to implicit ligand theory, the standard binding free energy is an exponential average of the binding potential of mean force (BPMF), an exponential average of the interaction energy between the unbound ligand ensemble and a rigid receptor. Here, we use the fast Fourier transform (FFT) to efficiently evaluate BPMFs by calculating interaction energies when rigid ligand configurations from the unbound ensemble are discretely translated across rigid receptor conformations. Results for standard binding free energies between T4 lysozyme and 141 small organic molecules are in good agreement with previous alchemical calculations based on (1) a flexible complex ( R≈0.9 for 24 systems) and (2) flexible ligand with multiple rigid receptor configurations ( R≈0.8 for 141 systems). While the FFT is routinely used for molecular docking, to our knowledge this is the first time that the algorithm has been used for rigorous binding free energy calculations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

8. Closed form fourier-based transmit beamforming for MIMO radar

KAUST Repository

Lipor, John J.

2014-05-01

In multiple-input multiple-output (MIMO) radar setting, it is often desirable to design correlated waveforms such that power is transmitted only to a given set of locations, a process known as beampattern design. To design desired beam-pattern, current research uses iterative algorithms, first to synthesize the waveform covariance matrix, R, then to design the actual waveforms to realize R. In contrast to this, we present a closed form method to design R that exploits discrete Fourier transform and Toeplitz matrix. The resulting covariance matrix fulfills the practical constraints and performance is similar to that of iterative methods. Next, we present a radar architecture for the desired beampattern that does not require the synthesis of covariance matrix nor the design of correlated waveforms. © 2014 IEEE.

9. Removable Window System for Space Vehicles

Science.gov (United States)

2015-01-01

A window system for a platform comprising a window pane, a retention frame, and a biasing system. The window pane may be configured to contact a sealing system. The retention frame may be configured to contact the sealing system and hold the window pane against the support frame. The biasing system may be configured to bias the retention frame toward the support frame while the support frame and the retention frame are in a configuration that holds the window pane. Removal of the biasing system may cause the retention frame and the window pane to be removable.

10. On the FACR( l) algorithm for the discrete Poisson equation

Science.gov (United States)

Temperton, Clive

1980-03-01

Direct methods for the solution of the discrete Poisson equation over a rectangle are commonly based either on Fourier transforms or on block-cyclic reduction. The relationship between these two approaches is demonstrated explicitly, and used to derive the FACR( l) algorithm in which the Fourier transform approach is combined with l preliminary steps of cyclic reduction. It is shown that the optimum choice of l leads to an algorithm for which the operation count per mesh point is almost independent of the mesh size. Numerical results concerning timing and round-off error are presented for the N × N Dirichlet problem for various values of N and l. Extensions to more general problems, and to implementation on parallel or vector computers are briefly discussed.

11. *NEW* CRITICAL Windows Security patches

CERN Multimedia

2003-01-01

On 3 October and 10 September 2003, Microsoft issued new CRITICAL security patches MS03-040 and MS03-039. They must be URGENTLY applied on ALL WINDOWS systems, which are not centrally managed for security patches. This includes Experiment computers, Home computers and Windows Portable and Desktop systems not running NICE. Details of the security holes and patches are at: MS03-039: http://cern.ch/it-div/news/hotfix-MS03-039.asp http://www.microsoft.com/technet/security/bulletin/MS03-039.asp MS03-040: http://cern.ch/it-div/news/hotfix-MS03-040.asp http://www.microsoft.com/technet/security/bulletin/MS03-040.asp

12. Finite strain discrete dislocation plasticity

NARCIS (Netherlands)

Deshpande, VS; Needleman, A; Van der Giessen, E

2003-01-01

A framework for carrying out finite deformation discrete dislocation plasticity calculations is presented. The discrete dislocations are presumed to be adequately represented by the singular linear elastic fields so that the large deformations near dislocation cores are not modeled. The finite

13. Multiscale expansions in discrete world

... multiscale expansions discretely. The power of this manageable method is confirmed by applying it to two selected nonlinear Schrödinger evolution equations. This approach can also be applied to other nonlinear discrete evolution equations. All the computations have been made with Maple computer packet program.

14. Multiscale expansions in discrete world

This approach can also be applied to other nonlinear discrete evolution equations. All the computations have been made with Maple computer packet program. Keywords. Multiscale expansion; discrete evolution equation; modified nonlinear Schrödinger equation; third-order nonlinear Schrödinger equation; KdV equation.

15. Discrete Mathematics and Its Applications

Science.gov (United States)

Oxley, Alan

2010-01-01

The article gives ideas that lecturers of undergraduate Discrete Mathematics courses can use in order to make the subject more interesting for students and encourage them to undertake further studies in the subject. It is possible to teach Discrete Mathematics with little or no reference to computing. However, students are more likely to be…

16. Fourier analysis and synthesis tomography.

Energy Technology Data Exchange (ETDEWEB)

Wagner, Kelvin H. (University of Colorado at Boulder, Boulder, CO); Sinclair, Michael B.; Feldkuhn, Daniel (University of Colorado at Boulder, Boulder, CO)

2010-05-01

Most far-field optical imaging systems rely on a lens and spatially-resolved detection to probe distinct locations on the object. We describe and demonstrate a novel high-speed wide-field approach to imaging that instead measures the complex spatial Fourier transform of the object by detecting its spatially-integrated response to dynamic acousto-optically synthesized structured illumination. Tomographic filtered backprojection is applied to reconstruct the object in two or three dimensions. This technique decouples depth-of-field and working-distance from resolution, in contrast to conventional imaging, and can be used to image biological and synthetic structures in fluoresced or scattered light employing coherent or broadband illumination. We discuss the electronically programmable transfer function of the optical system and its implications for imaging dynamic processes. Finally, we present for the first time two-dimensional high-resolution image reconstructions demonstrating a three-orders-of-magnitude improvement in depth-of-field over conventional lens-based microscopy.

17. Fourier Spectroscopy: A Simple Analysis Technique

Science.gov (United States)

Oelfke, William C.

1975-01-01

Presents a simple method of analysis in which the student can integrate, point by point, any interferogram to obtain its Fourier transform. The manual technique requires no special equipment and is based on relationships that most undergraduate physics students can derive from the Fourier integral equations. (Author/MLH)

18. Electrochromic Windows: Advanced Processing Technology

Energy Technology Data Exchange (ETDEWEB)

SAGE Electrochromics, Inc

2006-12-13

This project addresses the development of advanced fabrication capabilities for energy saving electrochromic (EC) windows. SAGE EC windows consist of an inorganic stack of thin films deposited onto a glass substrate. The window tint can be reversibly changed by the application of a low power dc voltage. This property can be used to modulate the amount of light and heat entering buildings (or vehicles) through the glazings. By judicious management of this so-called solar heat gain, it is possible to derive significant energy savings due to reductions in heating lighting, and air conditioning (HVAC). Several areas of SAGE’s production were targeted during this project to allow significant improvements to processing throughput, yield and overall quality of the processing, in an effort to reduce the cost and thereby improve the market penetration. First, the overall thin film process was optimized to allow a more robust set of operating points to be used, thereby maximizing the yield due to the thin film deposition themselves. Other significant efforts aimed at improving yield were relating to implementing new procedures and processes for the manufacturing process, to improve the quality of the substrate preparation, and the quality of the IGU fabrication. Furthermore, methods for reworking defective devices were developed, to enable devices which would otherwise be scrapped to be made into useful product. This involved the in-house development of some customized equipment. Finally, the improvements made during this project were validated to ensure that they did not impact the exceptional durability of the SageGlass® products. Given conservative estimates for cost and market penetration, energy savings due to EC windows in residences in the US are calculated to be of the order 0.026 quad (0.026×1015BTU/yr) by the year 2017.

19. Non-Harmonic Fourier Analysis for bladed wheels damage detection

Science.gov (United States)

Neri, P.; Peeters, B.

2015-11-01

The interaction between bladed wheels and the fluid distributed by the stator vanes results in cyclic loading of the rotating components. Compressors and turbines wheels are subject to vibration and fatigue issues, especially when resonance conditions are excited. Even if resonance conditions can be often predicted and avoided, high cycle fatigue failures can occur, causing safety issues and economic loss. Rigorous maintenance programs are then needed, forcing the system to expensive shut-down. Blade crack detection methods are beneficial for condition-based maintenance. While contact measurement systems are not always usable in exercise conditions (e.g. high temperature), non-contact methods can be more suitable. One (or more) stator-fixed sensor can measure all the blades as they pass by, in order to detect the damaged ones. The main drawback in this situation is the short acquisition time available for each blade, which is shortened by the high rotational speed of the components. A traditional Discrete Fourier Transform (DFT) analysis would result in a poor frequency resolution. A Non-Harmonic Fourier Analysis (NHFA) can be executed with an arbitrary frequency resolution instead, allowing to obtain frequency information even with short-time data samples. This paper shows an analytical investigation of the NHFA method. A data processing algorithm is then proposed to obtain frequency shift information from short time samples. The performances of this algorithm are then studied by experimental and numerical tests.

20. The flexibility window in zeolites.

Science.gov (United States)

Sartbaeva, Asel; Wells, Stephen A; Treacy, M M J; Thorpe, M F

2006-12-01

Today synthetic zeolites are the most important catalysts in petrochemical refineries because of their high internal surface areas and molecular-sieving properties. There have been considerable efforts to synthesize new zeolites with specific pore geometries, to add to the 167 available at present. Millions of hypothetical structures have been generated on the basis of energy minimization, and there is an ongoing search for criteria capable of predicting new zeolite structures. Here we show, by geometric simulation, that all realizable zeolite framework structures show a flexibility window over a range of densities. We conjecture that this flexibility window is a necessary structural feature that enables zeolite synthesis, and therefore provides a valuable selection criterion when evaluating hypothetical zeolite framework structures as potential synthetic targets. We show that it is a general feature that experimental densities of silica zeolites lie at the low-density edge of this window--as the pores are driven to their maximum volume by Coulomb inflation. This is in contrast to most solids, which have the highest density consistent with the local chemical and geometrical constraints.

1. Modern approaches to discrete curvature

CERN Document Server

Romon, Pascal

2017-01-01

This book provides a valuable glimpse into discrete curvature, a rich new field of research which blends discrete mathematics, differential geometry, probability and computer graphics. It includes a vast collection of ideas and tools which will offer something new to all interested readers. Discrete geometry has arisen as much as a theoretical development as in response to unforeseen challenges coming from applications. Discrete and continuous geometries have turned out to be intimately connected. Discrete curvature is the key concept connecting them through many bridges in numerous fields: metric spaces, Riemannian and Euclidean geometries, geometric measure theory, topology, partial differential equations, calculus of variations, gradient flows, asymptotic analysis, probability, harmonic analysis, graph theory, etc. In spite of its crucial importance both in theoretical mathematics and in applications, up to now, almost no books have provided a coherent outlook on this emerging field.

2. Rugged Ceramic Window for RF Applications

International Nuclear Information System (INIS)

Neubauer, Michael; Johnson, Rolland P.; Rimmer, Robert; Elliot, Tom; Stirbet, Mircea

2009-01-01

High-current RF cavities that are needed for many accelerator applications are often limited by the power transmission capability of the pressure barriers (windows) that separate the cavity from the power source. Most efforts to improve RF window design have focused on alumina ceramic, the most popular historical choice, and have not taken advantage of new materials. Alternative window materials have been investigated using a novel Merit Factor comparison and likely candidates have been tested for the material properties which will enable construction in the self-matched window configuration. Window assemblies have also been modeled and fabricated using compressed window techniques which have proven to increase the power handling capability of waveguide windows. Candidate materials have been chosen to be used in fabricating a window for high power testing at Thomas Jefferson National Accelerator Facility.

3. Teaching Fourier optics through ray matrices

International Nuclear Information System (INIS)

Moreno, I; Sanchez-Lopez, M M; Ferreira, C; Davis, J A; Mateos, F

2005-01-01

In this work we examine the use of ray-transfer matrices for teaching and for deriving some topics in a Fourier optics course, exploiting the mathematical simplicity of ray matrices compared to diffraction integrals. A simple analysis of the physical meaning of the elements of the ray matrix provides a fast derivation of the conditions to obtain the optical Fourier transform. We extend this derivation to fractional Fourier transform optical systems, and derive the order of the transform from the ray matrix. Some examples are provided to stress this point of view, both with classical and with graded index lenses. This formulation cannot replace the complete explanation of Fourier optics provided by the wave theory, but it is a complementary tool useful to simplify many aspects of Fourier optics and to relate them to geometrical optics

4. Microsoft Windows Intune 20 Quickstart Administration

CERN Document Server

Overton, David

2012-01-01

This book is a concise and practical tutorial that shows you how to plan, set up and maintain Windows Intune and manage a group of PCs. If you are an administrator or partner who wants to plan, set up and maintain Windows Intune and manage a group of PCs then this book is for you . You should have a basic understanding of Windows administration, however, knowledge of Windows Intune would not be required.

5. Beryllium window for an APS diagnostics beamline

International Nuclear Information System (INIS)

Sheng, I.C.; Yang, B.X.; Sharma, Y.S.

1997-01-01

A beryllium (Be) window for an Advanced Photon Source (APS) diagnostics beamline has been designed and built. The window, which has a double concave axisymmetrical profile with a thickness of 0.5 mm at the center, receives 160 W/mm 2 (7 GeV/100 mA stored beam) from an undulator beam. The window design as well as thermal and thermomechanical analyses, including thermal buckling of the Be window, are presented

6. Fast Discrete Fourier Transform Computations Using the Reduced Adder Graph Technique

Directory of Open Access Journals (Sweden)

Dempster Andrew G

2007-01-01

Full Text Available It has recently been shown that the -dimensional reduced adder graph (RAG- technique is beneficial for many DSP applications such as for FIR and IIR filters, where multipliers can be grouped in multiplier blocks. This paper highlights the importance of DFT and FFT as DSP objects and also explores how the RAG- technique can be applied to these algorithms. This RAG- DFT will be shown to be of low complexity and possess an attractively regular VLSI data flow when implemented with the Rader DFT algorithm or the Bluestein chirp- algorithm. ASIC synthesis data are provided and demonstrate the low complexity and high speed of the design when compared to other alternatives.

7. Fast Discrete Fourier Transform Computations Using the Reduced Adder Graph Technique

Directory of Open Access Journals (Sweden)

Andrew G. Dempster

2007-01-01

Full Text Available It has recently been shown that the n-dimensional reduced adder graph (RAG-n technique is beneficial for many DSP applications such as for FIR and IIR filters, where multipliers can be grouped in multiplier blocks. This paper highlights the importance of DFT and FFT as DSP objects and also explores how the RAG-n technique can be applied to these algorithms. This RAG-n DFT will be shown to be of low complexity and possess an attractively regular VLSI data flow when implemented with the Rader DFT algorithm or the Bluestein chirp-z algorithm. ASIC synthesis data are provided and demonstrate the low complexity and high speed of the design when compared to other alternatives.

8. A dispersion-balanced Discrete Fourier Transform of repetitive pulse sequences using temporal Talbot effect

Science.gov (United States)

Fernández-Pousa, Carlos R.

2017-11-01

We propose a processor based on the concatenation of two fractional temporal Talbot dispersive lines with balanced dispersion to perform the DFT of a repetitive electrical sequence, for its use as a controlled source of optical pulse sequences. The electrical sequence is used to impart the amplitude and phase of a coherent train of optical pulses by use of a modulator placed between the two Talbot lines. The proposal has been built on a representation of the action of fractional Talbot effect on repetitive pulse sequences and a comparison with related results and proposals. It is shown that the proposed system is reconfigurable within a few repetition periods, has the same processing rate as the input optical pulse train, and requires the same technical complexity in terms of dispersion and pulse width as the standard, passive pulse-repetition rate multipliers based on fractional Talbot effect.

9. Fourier-Based Transmit Beampattern Design Using MIMO Radar

KAUST Repository

Lipor, John

2014-05-01

In multiple-input multiple-output (MIMO) radar settings, it is often desirable to transmit power only to a given location or set of locations defined by a beampattern. Transmit waveform design is a topic that has received much attention recently, involving synthesis of both the signal covariance matrix,, as well as the actual waveforms. Current methods involve a two-step process of designing via iterative solutions and then using to generate waveforms that fulfill practical constraints such as having a constant-envelope or drawing from a finite alphabet. In this paper, a closed-form method to design for a uniform linear array is proposed that utilizes the discrete Fourier transform (DFT) coefficients and Toeplitz matrices. The resulting covariance matrix fulfills the practical constraints such as positive semidefiniteness and the uniformelemental power constraint and provides performance similar to that of iterative methods, which require a much greater computation time. Next, a transmit architecture is presented that exploits the orthogonality of frequencies at discrete DFT values to transmit a sum of orthogonal signals from each antenna. The resulting waveforms provide a lower mean-square error than current methods at a much lower computational cost, and a simulated detection scenario demonstrates the performance advantages achieved.

10. Spatial scan statistics using elliptic windows

DEFF Research Database (Denmark)

Christiansen, Lasse Engbo; Andersen, Jens Strodl; Wegener, Henrik Caspar

2006-01-01

windows and propose a new way to present the information when a spatial point process is considered. This method gives smooth changes for smooth expansions of the set of clusters. A simulation study is used to show how the elliptic windows outperforms the usual circular windows. The proposed method...

11. Spatial scan statistics using elliptic windows

DEFF Research Database (Denmark)

Christiansen, Lasse Engbo; Andersen, Jens Strodl; Wegener, Henrik Caspar

of confocal elliptic windows and propose a new way to present the information when a spatial point process is considered. This method gives smooth changes for smooth expansions of the set of clusters. A simulation study is used to show how the elliptic windows outperforms the usual circular windows...

12. Travailler avec Windows 7 au CERN

CERN Multimedia

CERN. Geneva

2011-01-01

Vue d'ensemble des nouveaux concepts et des changements dans l'interface utilisateur survenus dans Windows 7 depuis les versions antérieures de Windows (XP ou Vista). Le plan de migration à Windows 7 sera aussi débattu.

13. Travailler avec Windows 7 au CERN

CERN Multimedia

CERN. Geneva

2012-01-01

Vue d'ensemble des nouveaux concepts et des changements dans l'interface utilisateur survenus dans Windows 7 depuis les versions antérieures de Windows (XP ou Vista). Le plan de migration à Windows 7 sera aussi débattu.

14. Modelling window opening behaviour in Danish dwellings

DEFF Research Database (Denmark)

Andersen, Rune Vinther; Olesen, Bjarne W.; Toftum, Jørn

2011-01-01

In this paper we present and analyse data from two studies of window opening behaviour in residential buildings in Denmark. Based on measurements of indoor environment, weather and window opening behaviour in 15 dwellings, we propose a model that will predict window opening behaviour. The data...

15. The Geostationary Fourier Transform Spectrometer

Science.gov (United States)

Key, Richard; Sander, Stanley; Eldering, Annmarie; Blavier, Jean-Francois; Bekker, Dmitriy; Manatt, Ken; Rider, David; Wu, Yen-Hung

2012-01-01

The Geostationary Fourier Transform Spectrometer (GeoFTS) is an imaging spectrometer designed for a geostationary orbit (GEO) earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. GEO allows GeoFTS to continuously stare at a region of the earth for frequent sampling to capture the variability of biogenic fluxes and anthropogenic emissions from city to continental spatial scales and temporal scales from diurnal, synoptic, seasonal to interannual. The measurement strategy provides a process based understanding of the carbon cycle from contiguous maps of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) collected many times per day at high spatial resolution (2.7kmx2.7km at nadir). The CO2/CH4/CO/CF measurement suite in the near infrared spectral region provides the information needed to disentangle natural and anthropogenic contributions to atmospheric carbon concentrations and to minimize uncertainties in the flow of carbon between the atmosphere and surface. The half meter cube size GeoFTS instrument is based on a Michelson interferometer design that uses all high TRL components in a modular configuration to reduce complexity and cost. It is self-contained and as independent of the spacecraft as possible with simple spacecraft interfaces, making it ideal to be a "hosted" payload on a commercial communications satellite mission. The hosted payload approach for measuring the major carbon-containing gases in the atmosphere from the geostationary vantage point will affordably advance the scientific understating of carbon cycle processes and climate change.

16. Discrete dynamics versus analytic dynamics

DEFF Research Database (Denmark)

Toxværd, Søren

2014-01-01

For discrete classical Molecular dynamics obtained by the “Verlet” algorithm (VA) with the time increment h there exists a shadow Hamiltonian H˜ with energy E˜(h) , for which the discrete particle positions lie on the analytic trajectories for H˜ . Here, we proof that there, independent of such a......For discrete classical Molecular dynamics obtained by the “Verlet” algorithm (VA) with the time increment h there exists a shadow Hamiltonian H˜ with energy E˜(h) , for which the discrete particle positions lie on the analytic trajectories for H˜ . Here, we proof that there, independent...... of such an analytic analogy, exists an exact hidden energy invariance E * for VA dynamics. The fact that the discrete VA dynamics has the same invariances as Newtonian dynamics raises the question, which of the formulations that are correct, or alternatively, the most appropriate formulation of classical dynamics....... In this context the relation between the discrete VA dynamics and the (general) discrete dynamics investigated by Lee [Phys. Lett. B122, 217 (1983)] is presented and discussed....

17. Statistics of primordial density perturbations from discrete seed masses

Science.gov (United States)

Scherrer, Robert J.; Bertschinger, Edmund

1991-01-01

The statistics of density perturbations for general distributions of seed masses with arbitrary matter accretion is examined. Formal expressions for the power spectrum, the N-point correlation functions, and the density distribution function are derived. These results are applied to the case of uncorrelated seed masses, and power spectra are derived for accretion of both hot and cold dark matter plus baryons. The reduced moments (cumulants) of the density distribution are computed and used to obtain a series expansion for the density distribution function. Analytic results are obtained for the density distribution function in the case of a distribution of seed masses with a spherical top-hat accretion pattern. More generally, the formalism makes it possible to give a complete characterization of the statistical properties of any random field generated from a discrete linear superposition of kernels. In particular, the results can be applied to density fields derived by smoothing a discrete set of points with a window function.

18. Meniscal tears: comparison of half-Fourier technique and conventional MR imaging

International Nuclear Information System (INIS)

Shabana, Wael; Maeseneer, Michel de; Machiels, Freddy; Ridder, Filip de; Osteaux, Michel

2003-01-01

Purpose: To determine whether half-Fourier MR image acquisition technique can provide similar information to that of conventional MR acquisition technique for evaluation of meniscal tears. Materials and methods: We studied 101 menisci in 52 patients who were referred for evaluation of meniscal tears. Sagittal MR images of the knee were obtained for all patients by using proton density and T2-weighted SE sequences on a 1-T clinical system. The half-Fourier technique and conventional technique were used for all patients. All other imaging parameters were identical for both sequences (TR/TE=2400/20,70; 3 mm slice thickness; 200x256 matrix; field of view, 200; one signal acquired). Both sets of images were filmed with standard window and level settings. Images were randomised and interpreted independently by two radiologists for the presence of meniscal tears. Images were also subjectively assessed for image quality using a five-point grading scale. Results: On half-Fourier images, Reader 1 interpreted 23 menisci as torn, compared to 28 for Reader 2. On conventional images, Reader 1 interpreted 24 menisci as torn, compared to 26 for Reader 2. Agreement between interpretation of the conventional and that of the half-Fourier images was 99% for Reader 1, and 98% for Reader 2. Agreement between readers for the half-Fourier images was 95%, and for the conventional images 96%. No statistically significant difference was found in the subjective evaluation of image quality between the conventional and half-Fourier images. Conclusion: The half-Fourier acquisition technique compares favourably with the conventional technique for the evaluation of meniscal tears

19. A Frequency Domain Analysis of the Linear Discrete Kalman Filter

Science.gov (United States)

1980-03-01

Non-Linear Measurements N• Non-linear measurements arise when observations are made in one coordinate sustem and the model requires that •he state be...Program available in most computer iibraries is generallw easw to use. However, the FFT Programs generallw require an exact Power of 2 for the number of...Research. Logistics Quartgeiy, Vol. 15, pp 157-168, June, 1968. 1 15, Harris, F.J,, "On the use of Windows for Harmonic Analisis with the Discrete

20. Fourier Analysis: Graphical Animation and Analysis of Experimental Data with Excel

Directory of Open Access Journals (Sweden)

Margarida Oliveira

2012-05-01

Full Text Available According to Fourier formulation, any function that can be represented in a graph may be approximated by the “sum” of infinite sinusoidal functions (Fourier series, termed as “waves”.The adopted approach is accessible to students of the first years of university studies, in which the emphasis is put on the understanding of mathematical concepts through illustrative graphic representations, the students being encouraged to prepare animated Excel-based computational modules (VBA-Visual Basic for Applications.Reference is made to the part played by both trigonometric and complex representations of Fourier series in the concept of discrete Fourier transform. Its connection with the continuous Fourier transform is demonstrated and a brief mention is made of the generalization leading to Laplace transform.As application, the example presented refers to the analysis of vibrations measured on engineering structures: horizontal accelerations of a one-storey building deriving from environment noise. This example is integrated in the curriculum of the discipline “Matemática Aplicada à Engenharia Civil” (Mathematics Applied to Civil Engineering, lectured at ISEL (Instituto Superior de Engenharia de Lisboa. In this discipline, the students have the possibility of performing measurements using an accelerometer and a data acquisition system, which, when connected to a PC, make it possible to record the accelerations measured in a file format recognizable by Excel.

1. Windows Command Line Administration Instant Reference

CERN Document Server

Mueller, John Paul

2010-01-01

The perfect companion to any book on Windows Server 2008 or Windows 7, and the quickest way to access critical information. Focusing just on the essentials of command-line interface (CLI), Windows Command-Line Administration Instant Reference easily shows how to quickly perform day-to-day tasks of Windows administration without ever touching the graphical user interface (GUI). Specifically designed for busy administrators, Windows Command-Line Administration Instant Reference replaces many tedious GUI steps with just one command at the command-line, while concise, easy to access answers provid

2. An Efficient Adaptive Window Size Selection Method for Improving Spectrogram Visualization

Directory of Open Access Journals (Sweden)

Shibli Nisar

2016-01-01

Full Text Available Short Time Fourier Transform (STFT is an important technique for the time-frequency analysis of a time varying signal. The basic approach behind it involves the application of a Fast Fourier Transform (FFT to a signal multiplied with an appropriate window function with fixed resolution. The selection of an appropriate window size is difficult when no background information about the input signal is known. In this paper, a novel empirical model is proposed that adaptively adjusts the window size for a narrow band-signal using spectrum sensing technique. For wide-band signals, where a fixed time-frequency resolution is undesirable, the approach adapts the constant Q transform (CQT. Unlike the STFT, the CQT provides a varying time-frequency resolution. This results in a high spectral resolution at low frequencies and high temporal resolution at high frequencies. In this paper, a simple but effective switching framework is provided between both STFT and CQT. The proposed method also allows for the dynamic construction of a filter bank according to user-defined parameters. This helps in reducing redundant entries in the filter bank. Results obtained from the proposed method not only improve the spectrogram visualization but also reduce the computation cost and achieves 87.71% of the appropriate window length selection.

3. An Efficient Adaptive Window Size Selection Method for Improving Spectrogram Visualization

Science.gov (United States)

Khan, Omar Usman

2016-01-01

Short Time Fourier Transform (STFT) is an important technique for the time-frequency analysis of a time varying signal. The basic approach behind it involves the application of a Fast Fourier Transform (FFT) to a signal multiplied with an appropriate window function with fixed resolution. The selection of an appropriate window size is difficult when no background information about the input signal is known. In this paper, a novel empirical model is proposed that adaptively adjusts the window size for a narrow band-signal using spectrum sensing technique. For wide-band signals, where a fixed time-frequency resolution is undesirable, the approach adapts the constant Q transform (CQT). Unlike the STFT, the CQT provides a varying time-frequency resolution. This results in a high spectral resolution at low frequencies and high temporal resolution at high frequencies. In this paper, a simple but effective switching framework is provided between both STFT and CQT. The proposed method also allows for the dynamic construction of a filter bank according to user-defined parameters. This helps in reducing redundant entries in the filter bank. Results obtained from the proposed method not only improve the spectrogram visualization but also reduce the computation cost and achieves 87.71% of the appropriate window length selection. PMID:27642291

4. Professional Windows Embedded Compact 7

CERN Document Server

Phung, Samuel; Joubert, Thierry; Hall, Mike

2011-01-01

Learn to program an array of customized devices and solutions As a compact, highly efficient, scalable operating system, Windows Embedded Compact 7 (WEC7) is one of the best options for developing a new generation of network-enabled, media-rich, and service-oriented devices. This in-depth resource takes you through the benefits and capabilities of WEC7 so that you can start using this performance development platform today. Divided into several major sections, the book begins with an introduction and then moves on to coverage of OS design, application development, advanced application developm

5. Windows 2012 Server network security securing your Windows network systems and infrastructure

CERN Document Server

Rountree, Derrick

2013-01-01

Windows 2012 Server Network Security provides the most in-depth guide to deploying and maintaining a secure Windows network. The book drills down into all the new features of Windows 2012 and provides practical, hands-on methods for securing your Windows systems networks, including: Secure remote access Network vulnerabilities and mitigations DHCP installations configuration MAC filtering DNS server security WINS installation configuration Securing wired and wireless connections Windows personal firewall

6. Exact analysis of discrete data

CERN Document Server

Hirji, Karim F

2005-01-01

Researchers in fields ranging from biology and medicine to the social sciences, law, and economics regularly encounter variables that are discrete or categorical in nature. While there is no dearth of books on the analysis and interpretation of such data, these generally focus on large sample methods. When sample sizes are not large or the data are otherwise sparse, exact methods--methods not based on asymptotic theory--are more accurate and therefore preferable.This book introduces the statistical theory, analysis methods, and computation techniques for exact analysis of discrete data. After reviewing the relevant discrete distributions, the author develops the exact methods from the ground up in a conceptually integrated manner. The topics covered range from univariate discrete data analysis, a single and several 2 x 2 tables, a single and several 2 x K tables, incidence density and inverse sampling designs, unmatched and matched case -control studies, paired binary and trinomial response models, and Markov...

7. Causal Dynamics of Discrete Surfaces

Directory of Open Access Journals (Sweden)

Pablo Arrighi

2014-03-01

Full Text Available We formalize the intuitive idea of a labelled discrete surface which evolves in time, subject to two natural constraints: the evolution does not propagate information too fast; and it acts everywhere the same.

8. Image annotation under X Windows

Science.gov (United States)

Pothier, Steven

1991-08-01

A mechanism for attaching graphic and overlay annotation to multiple bits/pixel imagery while providing levels of performance approaching that of native mode graphics systems is presented. This mechanism isolates programming complexity from the application programmer through software encapsulation under the X Window System. It ensures display accuracy throughout operations on the imagery and annotation including zooms, pans, and modifications of the annotation. Trade-offs that affect speed of display, consumption of memory, and system functionality are explored. The use of resource files to tune the display system is discussed. The mechanism makes use of an abstraction consisting of four parts; a graphics overlay, a dithered overlay, an image overly, and a physical display window. Data structures are maintained that retain the distinction between the four parts so that they can be modified independently, providing system flexibility. A unique technique for associating user color preferences with annotation is introduced. An interface that allows interactive modification of the mapping between image value and color is discussed. A procedure that provides for the colorization of imagery on 8-bit display systems using pixel dithering is explained. Finally, the application of annotation mechanisms to various applications is discussed.

9. The plant-window system

International Nuclear Information System (INIS)

Wood, R.T.; Mullens, J.A.; Naser, J.A.

1995-01-01

Power plant data, and the information that can be derived from it, provide the link to the plant through which the operations, maintenance and engineering staff understand and manage plant performance. The increasing use of computer technology in the U.S. nuclear power industry has greatly expanded the capability to obtain, analyze, and present data about the plant to station personnel. However, it is necessary to transform the vast quantity of available data into clear, concise, and coherent information that can be readily accessed and used throughout the plant. This need can be met by an integrated computer workstation environment that provides the necessary information and software applications, in a manner that can be easily understood and used, to the proper users throughout the plant. As part of a Cooperative Research and Development Agreement with the Electric Power Research Institute, the Oak Ridge National Laboratory has developed functional requirements for a Plant-Wide Integrated Environment Distributed On Workstations (Plant-Window) System. The Plant-Window System (PWS) can serve the needs of operations, engineering, and maintenance personnel at nuclear power stations by providing integrated data and software applications (e.g., monitoring, analysis, diagnosis, and control applications) within a common environment. The PWS requirements identify functional capabilities and provide guidelines for standardized hardware, software, and display interfaces to define a flexible computer environment that permits a tailored implementation of workstation capabilities and facilitates future upgrades

10. Content adaptive illumination for Fourier ptychography.

Science.gov (United States)

Bian, Liheng; Suo, Jinli; Situ, Guohai; Zheng, Guoan; Chen, Feng; Dai, Qionghai

2014-12-01

Fourier ptychography (FP) is a recently reported technique, for large field-of-view and high-resolution imaging. Specifically, FP captures a set of low-resolution images, under angularly varying illuminations, and stitches them together in the Fourier domain. One of FP's main disadvantages is its long capturing process, due to the requisite large number of incident illumination angles. In this Letter, utilizing the sparsity of natural images in the Fourier domain, we propose a highly efficient method, termed adaptive Fourier ptychography (AFP), which applies content adaptive illumination for FP, to capture the most informative parts of the scene's spatial spectrum. We validate the effectiveness and efficiency of the reported framework, with both simulated and real experiments. Results show that the proposed AFP could shorten the acquisition time of conventional FP, by around 30%-60%.

11. X-ray interferometric Fourier holography

International Nuclear Information System (INIS)

Balyan, M.K.

2016-01-01

The X-ray interferometric Fourier holography is proposed and theoretically investigated. Fourier The X-ray interferometric Young fringes and object image reconstruction are investigated. It is shown that the interference pattern of two slits formed on the exit surface of the crystal-analyzer (the third plate of the interferometer) is the X-ray interferometric Young fringes. An expression for X-ray interferometric Young fringes period is obtained. The subsequent reconstruction of the slit image as an object is performed by means of Fourier transform of the intensity distribution on the hologram. Three methods of reconstruction of the amplitude transmission complex function of the object are presented: analytical - approximate method, method of iteration and step by step method. As an example the X-ray Fourier interferometric hologram recording and the complex amplitude transmission function reconstruction for a beryllium circular wire are considered

12. Mountain Wave Analysis Using Fourier Methods

National Research Council Canada - National Science Library

2007-01-01

...) their requirements for only a coarse horizontal background state. Common traits of Fourier mountain wave models include use of the Boussinesq approximation and neglect of moisture and Coriolis terms...

13. Workshop to identify critical windows of exposure for children's health: neurobehavioral work group summary.

OpenAIRE

Adams, J; Barone, S; LaMantia, A; Philen, R; Rice, D C; Spear, L; Susser, E

2000-01-01

This paper summarizes the deliberations of a work group charged with addressing specific questions relevant to risk estimation in developmental neurotoxicology. We focused on eight questions. a) Does it make sense to think about discrete windows of vulnerability in the development of the nervous system? If it does, which time periods are of greatest importance? b) Are there cascades of developmental disorders in the nervous system? For example, are there critical points that determine the cou...

14. Applied discrete-time queues

CERN Document Server

Alfa, Attahiru S

2016-01-01

This book introduces the theoretical fundamentals for modeling queues in discrete-time, and the basic procedures for developing queuing models in discrete-time. There is a focus on applications in modern telecommunication systems. It presents how most queueing models in discrete-time can be set up as discrete-time Markov chains. Techniques such as matrix-analytic methods (MAM) that can used to analyze the resulting Markov chains are included. This book covers single node systems, tandem system and queueing networks. It shows how queues with time-varying parameters can be analyzed, and illustrates numerical issues associated with computations for the discrete-time queueing systems. Optimal control of queues is also covered. Applied Discrete-Time Queues targets researchers, advanced-level students and analysts in the field of telecommunication networks. It is suitable as a reference book and can also be used as a secondary text book in computer engineering and computer science. Examples and exercises are includ...

15. A discrete structure of the brain waves.

Science.gov (United States)

Dabaghian, Yuri; Perotti, Luca; oscillons in biological rhythms Collaboration; physics of biological rhythms Team

A physiological interpretation of the biological rhythms, e.g., of the local field potentials (LFP) depends on the mathematical approaches used for the analysis. Most existing mathematical methods are based on decomposing the signal into a set of primitives,'' e.g., sinusoidal harmonics, and correlating them with different cognitive and behavioral phenomena. A common feature of all these methods is that the decomposition semantics is presumed from the onset, and the goal of the subsequent analysis reduces merely to identifying the combination that best reproduces the original signal. We propose a fundamentally new method in which the decomposition components are discovered empirically, and demonstrate that it is more flexible and more sensitive to the signal's structure than the standard Fourier method. Applying this method to the rodent LFP signals reveals a fundamentally new structure of these brain waves.'' In particular, our results suggest that the LFP oscillations consist of a superposition of a small, discrete set of frequency modulated oscillatory processes, which we call oscillons''. Since these structures are discovered empirically, we hypothesize that they may capture the signal's actual physical structure, i.e., the pattern of synchronous activity in neuronal ensembles. Proving this hypothesis will help to advance our principal understanding of the neuronal synchronization mechanisms and reveal new structure within the LFPs and other biological oscillations. NSF 1422438 Grant, Houston Bioinformatics Endowment Fund.

16. Mapped Fourier Methods for stiff problems in toroidal geometry

OpenAIRE

Guillard , Herve

2014-01-01

Fourier spectral or pseudo-spectral methods are usually extremely efficient for periodic problems. However this efficiency is lost if the solutions have zones of rapid variations or internal layers. For these cases, a large number of Fourier modes are required and this makes the Fourier method unpractical in many cases. This work investigates the use of mapped Fourier method as a way to circumvent this problem. Mapped Fourier method uses instead of the usual Fourier interpolant the compositio...

17. Individua l tree identification in airborne LASER data BY inverse SEARCH window

Directory of Open Access Journals (Sweden)

Eric Bastos Gorgens

2015-03-01

Full Text Available The local maximum filtering performance is highly dependent of the window size definition. This paper proposes that the window size should be determined by an inverse relationship to the canopy height model, and test the hypothesis that a windowsize inversely proportional will have better performance than the window proportional to the canopy height model. The study area is located in the southeastern region of the State of British Columbia, Canada. The natural vegetation is the boreal type and is characterized by the dominance of two species Picea engelmannii Parry ex. Engelmann (Engelmann spruce and Abies lasiocarpa (Hook. Nutt. (sub-alpine fir. The relief is mountainous with altitudes ranging from 650-2400 meters. 62 plots with 256 square meters were measured in the field. The airborne LiDAR had discrete returns, 2 points per square meter density and small-footprint. The performance of the search windows was evaluated based on success percentage, absolute average error and also compared to the observed values of the field plots. The local maximum filter underestimated the number of trees per hectare for both window sizing methods. The use of the inverse proportional window size has resulted in superior results, particularly for regions with highest density of trees.

18. New design for photonic temporal integration with combined high processing speed and long operation time window.

Science.gov (United States)

Asghari, Mohammad H; Park, Yongwoo; Azaña, José

2011-01-17

We propose and experimentally prove a novel design for implementing photonic temporal integrators simultaneously offering a high processing bandwidth and a long operation time window, namely a large time-bandwidth product. The proposed scheme is based on concatenating in series a time-limited ultrafast photonic temporal integrator, e.g. implemented using a fiber Bragg grating (FBG), with a discrete-time (bandwidth limited) optical integrator, e.g. implemented using an optical resonant cavity. This design combines the advantages of these two previously demonstrated photonic integrator solutions, providing a processing speed as high as that of the time-limited ultrafast integrator and an operation time window fixed by the discrete-time integrator. Proof-of-concept experiments are reported using a uniform fiber Bragg grating (as the original time-limited integrator) connected in series with a bulk-optics coherent interferometers' system (as a passive 4-points discrete-time photonic temporal integrator). Using this setup, we demonstrate accurate temporal integration of complex-field optical signals with time-features as fast as ~6 ps, only limited by the processing bandwidth of the FBG integrator, over time durations as long as ~200 ps, which represents a 4-fold improvement over the operation time window (~50 ps) of the original FBG integrator.

19. Discrete Curvature Theories and Applications

KAUST Repository

Sun, Xiang

2016-08-25

Discrete Di erential Geometry (DDG) concerns discrete counterparts of notions and methods in di erential geometry. This thesis deals with a core subject in DDG, discrete curvature theories on various types of polyhedral surfaces that are practically important for free-form architecture, sunlight-redirecting shading systems, and face recognition. Modeled as polyhedral surfaces, the shapes of free-form structures may have to satisfy di erent geometric or physical constraints. We study a combination of geometry and physics { the discrete surfaces that can stand on their own, as well as having proper shapes for the manufacture. These proper shapes, known as circular and conical meshes, are closely related to discrete principal curvatures. We study curvature theories that make such surfaces possible. Shading systems of freeform building skins are new types of energy-saving structures that can re-direct the sunlight. From these systems, discrete line congruences across polyhedral surfaces can be abstracted. We develop a new curvature theory for polyhedral surfaces equipped with normal congruences { a particular type of congruences de ned by linear interpolation of vertex normals. The main results are a discussion of various de nitions of normality, a detailed study of the geometry of such congruences, and a concept of curvatures and shape operators associated with the faces of a triangle mesh. These curvatures are compatible with both normal congruences and the Steiner formula. In addition to architecture, we consider the role of discrete curvatures in face recognition. We use geometric measure theory to introduce the notion of asymptotic cones associated with a singular subspace of a Riemannian manifold, which is an extension of the classical notion of asymptotic directions. We get a simple expression of these cones for polyhedral surfaces, as well as convergence and approximation theorems. We use the asymptotic cones as facial descriptors and demonstrate the

20. Instant Windows PowerShell

CERN Document Server

Menon, Vinith

2013-01-01

Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. A practical, hands-on tutorial approach that explores the concepts of PowerShell in a friendly manner, taking an adhoc approach to each topic.If you are an administrator who is new to PowerShell or are looking to get a good grounding in these new features, this book is ideal for you. It's assumed that you will have some experience in PowerShell and Windows Server, as well being familiar with the PowerShell command-line.

1. Editorial - Opening windows onto data

Directory of Open Access Journals (Sweden)

Judith Winters

2012-05-01

Full Text Available One of Internet Archaeology's strengths and 'unique selling points' not yet replicated by (many other e-journals, is that data is integrated into articles rather than being 'supplementary' or offered for download. The aim has always been for the narrative to be a wave driving readers towards the underlying data. Opening windows onto the data from within the text is one of the things I think the journal does best and is a feature used throughout Emma Durham's article 'Depicting the gods: metal figurines in Roman Britain'. Archaeological data does not speak for itself. It needs a narrative. It needs context. But by intermeshing data with interpretation, readers can dip into the data and start to explore it while reading the article, allowing a more immediate understanding of the bigger picture.

2. Hybrid window layer for photovoltaic cells

Science.gov (United States)

Deng, Xunming

2010-02-23

A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

International Nuclear Information System (INIS)

Semkow, T.M.; Beach, S.E.; Khan, A.J.; Bari, A.; Bradt, C.J.; Haines, D.K.; Syed, U.-F.

2012-01-01

In counting of radioactivity, using for example gas proportional (GP) or liquid scintillation (LS) counters, one can set up two or more electronic windows, which can measure two or more radiation components. In this work, we derived general equations for n-window counting in matrix notation, including mutual crosstalk between the windows using both the ratio (not normalized) and the fraction (normalized) methods. A solution for n radiation components is presented. For the two-window measurements, we report complete statistical analysis of the results including propagation of all uncertainties. The decision-level and the detection-limit equations were derived including crosstalk correction, uncertainties of the variables, Gaussian continuity correction, interference correction, and the overdispersion correction. Numerical verifications of the two-window systems are presented, including conditions for the detection of a minor component in the presence of a major component. In addition, limited experimental verifications of the two-window systems using LS counting are reported.

4. Analysis of surface contaminants on beryllium windows

International Nuclear Information System (INIS)

Gmur, N.F.

1986-12-01

It is known that various crystalline and liquid compounds form on the downstream surfaces of beryllium windows exposed to air. It is also known that the integrity of such windows may be compromised resulting in leaks through the window. The purpose of this report is to document the occurrences described as they pertain to the NSLS and to analyze, where possible, the various substances formed

5. Conductive Hearing Loss Caused by Third-Window Lesions of the Inner Ear

Science.gov (United States)

Merchant, Saumil N.; Rosowski, John J.

2008-01-01

Background Various authors have described conductive hearing loss (CHL), defined as an air-bone gap on audiometry, in patients without obvious middle ear pathologic findings. Recent investigations have suggested that many of these cases are due to disorders of the inner ear, resulting in pathologic third windows. Objective To provide an overview of lesions of the inner ear resulting in a CHL due to a third-window mechanism. The mechanism of the CHL is explained along with a classification scheme for these disorders. We also discuss methods for diagnosis of these disorders. Data Sources The data were compiled from a review of the literature and recent published research on middle and inner ear mechanics from our laboratory. Conclusion A number of disparate disorders affecting the labyrinth can produce CHL by acting as a pathologic third window in the inner ear. The common denominator is that these conditions result in a mobile window on the scala vestibuli side of the cochlear partition. The CHL results by the dual mechanism of worsening of air conduction thresholds and improvement of bone conduction thresholds. Such lesions may be anatomically discrete or diffuse. Anatomically discrete lesions may be classified by location: semicircular canals (superior, lateral, or posterior canal dehiscence), bony vestibule (large vestibular aqueduct syndrome, other inner ear malformations), or the cochlea (carotid-cochlear dehiscence, X-linked deafness with stapes gusher, etc.). An example of an anatomically diffuse lesion is Paget disease, which may behave as a distributed or diffuse third window. Third-window lesions should be considered in the differential diagnosis of CHL in patients with an intact tympanic membrane and an aerated, otherwise healthy, middle ear. Clues to suspect such a lesion include a low-frequency air-bone gap with supranormal thresholds for bone conduction, and presence of acoustic reflexes, vestibular evoked myogenic responses, or otoacoustic emission

6. Analysis of Discrete Mittag - Leffler Functions

Directory of Open Access Journals (Sweden)

2015-03-01

Full Text Available Discrete Mittag - Leffler functions play a major role in the development of the theory of discrete fractional calculus. In the present article, we analyze qualitative properties of discrete Mittag - Leffler functions and establish sufficient conditions for convergence, oscillation and summability of the infinite series associated with discrete Mittag - Leffler functions.

7. Chaos in discrete fractional difference equations

2016-09-07

Sep 7, 2016 ... logistics map and discrete sine map [14,15]. In this paper, we analyse numerically the chaotic behaviour of three maps viz., discrete tent map, discrete 2x(mod1) map and discrete Gauss map. Study of these maps is important as they are standard one-dimensional maps, well known to show characteristic ...

8. Foundations of a discrete physics

International Nuclear Information System (INIS)

McGoveran, D.; Noyes, P.

1988-01-01

Starting from the principles of finiteness, discreteness, finite computability and absolute nonuniqueness, we develop the ordering operator calculus, a strictly constructive mathematical system having the empirical properties required by quantum mechanical and special relativistic phenomena. We show how to construct discrete distance functions, and both rectangular and spherical coordinate systems(with a discrete version of ''π''). The richest discrete space constructible without a preferred axis and preserving translational and rotational invariance is shown to be a discrete 3-space with the usual symmetries. We introduce a local ordering parameter with local (proper) time-like properties and universal ordering parameters with global (cosmological) time-like properties. Constructed ''attribute velocities'' connect ensembles with attributes that are invariant as the appropriate time-like parameter increases. For each such attribute, we show how to construct attribute velocities which must satisfy the '' relativistic Doppler shift'' and the ''relativistic velocity composition law,'' as well as the Lorentz transformations. By construction, these velocities have finite maximum and minimum values. In the space of all attributes, the minimum of these maximum velocities will predominate in all multiple attribute computations, and hence can be identified as a fundamental limiting velocity, General commutation relations are constructed which under the physical interpretation are shown to reduce to the usual quantum mechanical commutation relations. 50 refs., 18 figs

9. Aerodynamic window for a laser fusion device

International Nuclear Information System (INIS)

Masuda, Wataru

1983-01-01

Since the window of a laser system absorbs a part of the laser energy, the output power is determined by the characteristics of the window. The use of an aerodynamic window has been studied. The required characteristics are to keep the large pressure difference. An equation of motion of a vortex was presented and analyzed. The operation power of the system was studied. A multi-stage aerodynamic window was proposed to reduce the power. When the jet flow of 0.3 of the Mach number is used, the operation power will be several Megawatt, and the length of an optical path will be about 100 m. (Kato, T.)

10. Windows 7 Annoyances Tips, Secrets, and Solutions

CERN Document Server

Karp, David

2010-01-01

Windows 7 may be faster and more stable than Vista, but it's a far cry from problem-free. David A. Karp comes to the rescue with the latest in his popular Windows Annoyances series. This thorough guide gives you the tools you need to fix the troublesome parts of this operating system, plus the solutions, hacks, and timesaving tips to make the most of your PC. Streamline Windows Explorer, improve the Search tool, eliminate the Green Ribbon of Death, and tame User Account Control promptsExplore powerful Registry tips and tools, and use them to customize every aspect of Windows and solve its sho

11. Windows PowerShell 20 Bible

CERN Document Server

Lee, Thomas; Schill, Mark E; Tanasovski, Tome

2011-01-01

Here's the complete guide to Windows PowerShell 2.0 for administrators and developers Windows PowerShell is Microsoft's next-generation scripting and automation language. This comprehensive volume provides the background that IT administrators and developers need in order to start using PowerShell automation in exciting new ways. It explains what PowerShell is, how to use the language, and specific ways to apply PowerShell in various technologies. Windows PowerShell is Microsoft's standard automation tool and something that every Windows administrator will eventually have to understand; this b

12. Mastering Windows Server 2008 Networking Foundations

CERN Document Server

Minasi, Mark; Mueller, John Paul

2011-01-01

Find in-depth coverage of general networking concepts and basic instruction on Windows Server 2008 installation and management including active directory, DNS, Windows storage, and TCP/IP and IPv4 networking basics in Mastering Windows Server 2008 Networking Foundations. One of three new books by best-selling author Mark Minasi, this guide explains what servers do, how basic networking works (IP basics and DNS/WINS basics), and the fundamentals of the under-the-hood technologies that support staff must understand. Learn how to install Windows Server 2008 and build a simple network, security co

13. Windows 8.1 for dummies

CERN Document Server

Rathbone, Andy

2013-01-01

The bestselling book on Windows, now updated for the new 8.1 features Microsoft has fine-tuned Windows 8 with some important new features, and veteran author Andy Rathbone explains every one in this all-new edition of a long-time bestseller. Whether you're using Windows for the first time, upgrading from an older version, or just moving from Windows 8 to 8.1, here's what you need to know. Learn about the dual interfaces, the new Start button, how to customize the interface and boot operations, and how to work with programs and files, use the web and social media, manage music and photos, and

14. Manufacturing of diamond windows for synchrotron radiation

International Nuclear Information System (INIS)

Schildkamp, W.; Nikitina, L.

2012-01-01

A new diamond window construction is presented and explicit manufacturing details are given. This window will increase the power dissipation by about a factor of 4 over present day state of the art windows to absorb 600 W of power. This power will be generated by in-vacuum undulators with the storage ring ALBA operating at a design current of 400 mA. Extensive finite element (FE) calculations are included to predict the windows behavior accompanied by explanations for the chosen boundary conditions. A simple linear model was used to cross-check the FE calculations.

15. Energy Gaining Windows for Residental Buildings

DEFF Research Database (Denmark)

Kragh, Jesper; Laustsen, Jacob Birck; Svendsen, Svend

2008-01-01

This paper presents some of the research done during the last 8 years at the Technical University of Denmark developing improved low-energy window solutions. The focus has been on maximizing the net energy gain of windows for residential buildings. The net energy gain of windows is the solar gain...... window is made of fiber-reinforced plastic (plastic reinforced by fine fibers made of glass). This composite material is a weatherproof material with very low thermal conductivity and high mechanical strength. These properties make the material very suitable for frame profiles due to lower heat loss...

16. Microsoft Windows 7 Administration Instant Reference

CERN Document Server

Panek, William

2010-01-01

An on-the-spot reference for Windows 7 administrators. Hundreds of thousands of IT administrators, network administrators, and IT support technicians work daily with Windows 7. This well-organized, portable reference covers every facet of Windows 7, providing no-nonsense instruction that is readily accessible when you need it. Designed for busy administrators, it features thumb tabs and chapter outlines to make answers easy to find.: Windows 7 administrative and support personnel need quick answers to situations they confront each day; this Instant Reference is designed to provide information,

17. Scott Brothers Windows and Doors Information Sheet

Science.gov (United States)

Scott Brothers Windows and Doors (the Company) is located in Bridgeville, Pennsylvania. The settlement involves renovation activities conducted at property constructed prior to 1978, located in Pittsburgh, Pennsylvania.

18. Linear and non-linear stability analysis for finite difference discretizations of high-order Boussinesq equations

DEFF Research Database (Denmark)

Fuhrman, David R.; Bingham, Harry B.; Madsen, Per A.

2004-01-01

This paper considers a method of lines stability analysis for finite difference discretizations of a recently published Boussinesq method for the study of highly non-linear and extremely dispersive water waves. The analysis demonstrates the near-equivalence of classical linear Fourier (von Neumann...

19. Linear and non-linear stability analysis for finite difference discretizations of high-order Boussinesq equations

DEFF Research Database (Denmark)

Fuhrman, David R.; Bingham, Harry B.; Madsen, Per A.

2004-01-01

This paper considers a method of lines stability analysis for finite difference discretizations of a recently published Boussinesq method for the study of highly non-linear and extremely dispersive water waves. The analysis demonstrates the near-equivalence of classical linear Fourier (von Neuman...

20. A Fourier dimensionality reduction model for big data interferometric imaging

Science.gov (United States)

Vijay Kartik, S.; Carrillo, Rafael E.; Thiran, Jean-Philippe; Wiaux, Yves

2017-06-01

Data dimensionality reduction in radio interferometry can provide savings of computational resources for image reconstruction through reduced memory footprints and lighter computations per iteration, which is important for the scalability of imaging methods to the big data setting of the next-generation telescopes. This article sheds new light on dimensionality reduction from the perspective of the compressed sensing theory and studies its interplay with imaging algorithms designed in the context of convex optimization. We propose a post-gridding linear data embedding to the space spanned by the left singular vectors of the measurement operator, providing a dimensionality reduction below image size. This embedding preserves the null space of the measurement operator and hence its sampling properties are also preserved in light of the compressed sensing theory. We show that this can be approximated by first computing the dirty image and then applying a weighted subsampled discrete Fourier transform to obtain the final reduced data vector. This Fourier dimensionality reduction model ensures a fast implementation of the full measurement operator, essential for any iterative image reconstruction method. The proposed reduction also preserves the independent and identically distributed Gaussian properties of the original measurement noise. For convex optimization-based imaging algorithms, this is key to justify the use of the standard ℓ2-norm as the data fidelity term. Our simulations confirm that this dimensionality reduction approach can be leveraged by convex optimization algorithms with no loss in imaging quality relative to reconstructing the image from the complete visibility data set. Reconstruction results in simulation settings with no direction dependent effects or calibration errors show promising performance of the proposed dimensionality reduction. Further tests on real data are planned as an extension of the current work. matlab code implementing the

1. Fourier phasing with phase-uncertain mask

International Nuclear Information System (INIS)

Fannjiang, Albert; Liao, Wenjing

2013-01-01

Fourier phasing is the problem of retrieving Fourier phase information from Fourier intensity data. The standard Fourier phase retrieval (without a mask) is known to have many solutions which cause the standard phasing algorithms to stagnate and produce wrong or inaccurate solutions. In this paper Fourier phase retrieval is carried out with the introduction of a randomly fabricated mask in measurement and reconstruction. Highly probable uniqueness of solution, up to a global phase, was previously proved with exact knowledge of the mask. Here the uniqueness result is extended to the case where only rough information about the mask’s phases is assumed. The exponential probability bound for uniqueness is given in terms of the uncertainty-to-diversity ratio of the unknown mask. New phasing algorithms alternating between the object update and the mask update are systematically tested and demonstrated to have the capability of recovering both the object and the mask (within the object support) simultaneously, consistent with the uniqueness result. Phasing with a phase-uncertain mask is shown to be robust with respect to the correlation in the mask as well as the Gaussian and Poisson noises. (paper)

2. Degree distribution in discrete case

International Nuclear Information System (INIS)

Wang, Li-Na; Chen, Bin; Yan, Zai-Zai

2011-01-01

Vertex degree of many network models and real-life networks is limited to non-negative integer. By means of measure and integral, the relation of the degree distribution and the cumulative degree distribution in discrete case is analyzed. The degree distribution, obtained by the differential of its cumulative, is only suitable for continuous case or discrete case with constant degree change. When degree change is not a constant but proportional to degree itself, power-law degree distribution and its cumulative have the same exponent and the mean value is finite for power-law exponent greater than 1. -- Highlights: → Degree change is the crux for using the cumulative degree distribution method. → It suits for discrete case with constant degree change. → If degree change is proportional to degree, power-law degree distribution and its cumulative have the same exponent. → In addition, the mean value is finite for power-law exponent greater than 1.

3. Geometry of discrete quantum computing

Science.gov (United States)

Hanson, Andrew J.; Ortiz, Gerardo; Sabry, Amr; Tai, Yu-Tsung

2013-05-01

Conventional quantum computing entails a geometry based on the description of an n-qubit state using 2n infinite precision complex numbers denoting a vector in a Hilbert space. Such numbers are in general uncomputable using any real-world resources, and, if we have the idea of physical law as some kind of computational algorithm of the universe, we would be compelled to alter our descriptions of physics to be consistent with computable numbers. Our purpose here is to examine the geometric implications of using finite fields Fp and finite complexified fields \\mathbf {F}_{p^2} (based on primes p congruent to 3 (mod4)) as the basis for computations in a theory of discrete quantum computing, which would therefore become a computable theory. Because the states of a discrete n-qubit system are in principle enumerable, we are able to determine the proportions of entangled and unentangled states. In particular, we extend the Hopf fibration that defines the irreducible state space of conventional continuous n-qubit theories (which is the complex projective space \\mathbf {CP}^{2^{n}-1}) to an analogous discrete geometry in which the Hopf circle for any n is found to be a discrete set of p + 1 points. The tally of unit-length n-qubit states is given, and reduced via the generalized Hopf fibration to \\mathbf {DCP}^{2^{n}-1}, the discrete analogue of the complex projective space, which has p^{2^{n}-1} (p-1)\\,\\prod _{k=1}^{n-1} ( p^{2^{k}}+1) irreducible states. Using a measure of entanglement, the purity, we explore the entanglement features of discrete quantum states and find that the n-qubit states based on the complexified field \\mathbf {F}_{p^2} have pn(p - 1)n unentangled states (the product of the tally for a single qubit) with purity 1, and they have pn + 1(p - 1)(p + 1)n - 1 maximally entangled states with purity zero.

4. Group-invariant finite Fourier transforms

International Nuclear Information System (INIS)

Shenefelt, M.H.

1988-01-01

The computation of the finite Fourier transform of functions is one of the most used computations in crystallography. Since the Fourier transform involved in 3-dimensional, the size of the computation becomes very large even for relatively few sample points along each edge. In this thesis, there is a family of algorithms that reduce the computation of Fourier transform of functions respecting the symmetries. Some properties of these algorithms are: (1) The algorithms make full use of the group of symmetries of a crystal. (2) The algorithms can be factored and combined according to the prime factorization of the number of points in the sample space. (3) The algorithms are organized into a family using the group structure of the crystallographic groups to make iterative procedures possible

5. Practical Fourier analysis for multigrid methods

CERN Document Server

Wienands, Roman

2004-01-01

Before applying multigrid methods to a project, mathematicians, scientists, and engineers need to answer questions related to the quality of convergence, whether a development will pay out, whether multigrid will work for a particular application, and what the numerical properties are. Practical Fourier Analysis for Multigrid Methods uses a detailed and systematic description of local Fourier k-grid (k=1,2,3) analysis for general systems of partial differential equations to provide a framework that answers these questions.This volume contains software that confirms written statements about convergence and efficiency of algorithms and is easily adapted to new applications. Providing theoretical background and the linkage between theory and practice, the text and software quickly combine learning by reading and learning by doing. The book enables understanding of basic principles of multigrid and local Fourier analysis, and also describes the theory important to those who need to delve deeper into the detai...

6. Methods of Fourier analysis and approximation theory

CERN Document Server

Tikhonov, Sergey

2016-01-01

Different facets of interplay between harmonic analysis and approximation theory are covered in this volume. The topics included are Fourier analysis, function spaces, optimization theory, partial differential equations, and their links to modern developments in the approximation theory. The articles of this collection were originated from two events. The first event took place during the 9th ISAAC Congress in Krakow, Poland, 5th-9th August 2013, at the section “Approximation Theory and Fourier Analysis”. The second event was the conference on Fourier Analysis and Approximation Theory in the Centre de Recerca Matemàtica (CRM), Barcelona, during 4th-8th November 2013, organized by the editors of this volume. All articles selected to be part of this collection were carefully reviewed.

7. Fourier analysis and boundary value problems

CERN Document Server

Gonzalez-Velasco, Enrique A

1996-01-01

Fourier Analysis and Boundary Value Problems provides a thorough examination of both the theory and applications of partial differential equations and the Fourier and Laplace methods for their solutions. Boundary value problems, including the heat and wave equations, are integrated throughout the book. Written from a historical perspective with extensive biographical coverage of pioneers in the field, the book emphasizes the important role played by partial differential equations in engineering and physics. In addition, the author demonstrates how efforts to deal with these problems have lead to wonderfully significant developments in mathematics.A clear and complete text with more than 500 exercises, Fourier Analysis and Boundary Value Problems is a good introduction and a valuable resource for those in the field.Key Features* Topics are covered from a historical perspective with biographical information on key contributors to the field* The text contains more than 500 exercises* Includes practical applicati...

8. Two-dimensional Fourier analysis of the spongy medullary keratin of structurally coloured feather barbs

Science.gov (United States)

Prum, R. O.; Torres, R.; Williamson, S.; Dyck, J.

1999-01-01

We conducted two-dimensional (2D) discrete Fourier analyses of the spatial variation in refractive index of the spongy medullary keratin from four different colours of structurally coloured feather barbs from three species of bird: the rose-faced lovebird, Agapornis roseicollis (Psittacidae), the budgerigar, Melopsittacus undulatus (Psittacidae), and the Gouldian finch, Poephila guttata (Estrildidae). These results indicate that the spongy medullary keratin is a nanostructured tissue that functions as an array of coherent scatterers. The nanostructure of the medullary keratin is nearly uniform in all directions. The largest Fourier components of spatial variation in refractive index in the tissue are of the appropriate size to produce the observed colours by constructive interference alone. The peaks of the predicted reflectance spectra calculated from the 2D Fourier power spectra are congruent with the reflectance spectra measured by using microspectrophotometry. The alternative physical models for the production of these colours, the Rayleigh and Mie theories, hypothesize that medullary keratin is an incoherent array and that scattered waves are independent in phase. This assumption is falsified by the ring-like Fourier power spectra of these feathers, and the spacing of the scattering air vacuoles in the medullary keratin. Structural colours of avian feather barbs are produced by constructive interference of coherently scattered light waves from the optically heterogeneous matrix of keratin and air in the spongy medullary layer.

9. Nonuniform fast Fourier transform method for numerical diffraction simulation on tilted planes.

Science.gov (United States)

Xiao, Yu; Tang, Xiahui; Qin, Yingxiong; Peng, Hao; Wang, Wei; Zhong, Lijing

2016-10-01

The method, based on the rotation of the angular spectrum in the frequency domain, is generally used for the diffraction simulation between the tilted planes. Due to the rotation of the angular spectrum, the interval between the sampling points in the Fourier domain is not even. For the conventional fast Fourier transform (FFT)-based methods, a spectrum interpolation is needed to get the approximate sampling value on the equidistant sampling points. However, due to the numerical error caused by the spectrum interpolation, the calculation accuracy degrades very quickly as the rotation angle increases. Here, the diffraction propagation between the tilted planes is transformed into a problem about the discrete Fourier transform on the uneven sampling points, which can be evaluated effectively and precisely through the nonuniform fast Fourier transform method (NUFFT). The most important advantage of this method is that the conventional spectrum interpolation is avoided and the high calculation accuracy can be guaranteed for different rotation angles, even when the rotation angle is close to π/2. Also, its calculation efficiency is comparable with that of the conventional FFT-based methods. Numerical examples as well as a discussion about the calculation accuracy and the sampling method are presented.

10. Single-pixel non-imaging object recognition by means of Fourier spectrum acquisition

Science.gov (United States)

Chen, Huichao; Shi, Jianhong; Liu, Xialin; Niu, Zhouzhou; Zeng, Guihua

2018-04-01

Single-pixel imaging has emerged over recent years as a novel imaging technique, which has significant application prospects. In this paper, we propose and experimentally demonstrate a scheme that can achieve single-pixel non-imaging object recognition by acquiring the Fourier spectrum. In an experiment, a four-step phase-shifting sinusoid illumination light is used to irradiate the object image, the value of the light intensity is measured with a single-pixel detection unit, and the Fourier coefficients of the object image are obtained by a differential measurement. The Fourier coefficients are first cast into binary numbers to obtain the hash value. We propose a new method of perceptual hashing algorithm, which is combined with a discrete Fourier transform to calculate the hash value. The hash distance is obtained by calculating the difference of the hash value between the object image and the contrast images. By setting an appropriate threshold, the object image can be quickly and accurately recognized. The proposed scheme realizes single-pixel non-imaging perceptual hashing object recognition by using fewer measurements. Our result might open a new path for realizing object recognition with non-imaging.

11. Efficient pricing of Asian options under Lévy processes based on Fourier cosine expansions Part I : European-style products

NARCIS (Netherlands)

Zhang, B.; Oosterlee, C.W.

2011-01-01

We propose an efficient pricing method for arithmetic, and geometric, Asian options under Levy processes, based on Fourier cosine expansions and Clenshaw–Curtis quadrature. The pricing method is developed for both European–style and American–style Asian options, and for discretely and continuously

12. The Fourier-grid formalism: philosophy and application to scattering problems using R-matrix theory

International Nuclear Information System (INIS)

Layton, E.G.

1993-01-01

The Fourier-grid (FG) method is a recent L 2 variational treatment of the quantum mechanical eigenvalue problem that does not require the use of a set of basis functions; it is rather a discrete variable representation approach. In this article we restate the FG philosophy in more general terms, examine and compare this method with other approaches to the eigenvalue problem, and begin the development of an FG R-matrix method for scattering. The philosophy of the FG method is to use the simplest representation for each of the kinetic and potential energy operators of the Hamiltonian, and use a generalized Fourier transform to put the matrix elements of one of the above operators in the same representation as the other, so the Hamiltonian has a single representation. (author)

13. Efficient Discrimination of Some Moss Species by Fourier Transform Infrared Spectroscopy and Chemometrics

Directory of Open Access Journals (Sweden)

Zhen Cao

2014-01-01

Full Text Available Fourier transform infrared spectroscopy (FTIR technique was used to classify 16 species from three moss families (Mielichhoferiaceae, Bryaceae, and Mniaceae. The FTIR spectra ranging from 4000 cm−1 to 400 cm−1 of the 16 species were obtained. To group the spectra according to their spectral similarity in a dendrogram, cluster analysis and principal component analysis (PCA were performed. Cluster analysis combined with PCA was used to give a rough result of classification among the moss samples. However, some species belonging to the same genus exhibited very similar chemical components and similar FTIR spectra. Fourier self-deconvolution (FSD was used to enhance the differences of the spectra. Discrete wavelet transform (DWT was used to decompose the FTIR spectra of Mnium laevinerve and M. spinosum. Three scales were selected as the feature extracting space in the DWT domain. Results showed that FTIR spectroscopy combined with DWT was suitable for distinguishing different species of the same genus.

14. Detecting of copy-move forgery in digital images using fractional Fourier transform

Science.gov (United States)

Yang, Renqing; Bai, Zhengyao; Yin, Liguo; Gao, Hao

2015-07-01

Copy-move forgery is one of the most simple and commonly used forging methods, where a part of image itself is copied and pasted on another part of the same image. This paper presents a new approach for copy-move forgery detection where fractional Fourier transform (FRFT) is used. First, the 1-level discrete wavelet transform (DWT) of the forged image is to reduce its dimension. Next, the low frequency the sub-band is divided into overlapped blocks of equal size. The fractional Fourier transform of each block is calculated and the vector of the coefficients is constructed. All feature vectors are sorted using lexicographical order. Finally, the difference of adjacent feature vectors is evaluated and employed to locate the duplicated regions which have the same feature vectors. Experimental results show that the proposed method is effective in detection of the copy-move forgery regions.

15. Fourier analysis of cell-wise Block-Jacobi splitting in two-dimensional geometry

International Nuclear Information System (INIS)

Rosa, M.; Warsa, J. S.; Kelley, T. M.

2009-01-01

A Fourier analysis is conducted in two-dimensional (2D) geometry for the discrete ordinates (S N ) approximation of the neutron transport problem solved with Richardson iteration (Source Iteration) using the cell-wise Block-Jacobi (BJ) algorithm. The results of the Fourier analysis show that convergence of cell-wise BJ can degrade, leading to a spectral radius equal to 1, in problems containing optically thin cells. For problems containing cells that are optically thick, instead, the spectral radius tends to 0. Hence, in the optically thick-cell regime, cell-wise BJ is rapidly convergent even for problems that are scattering dominated, with a scattering ratio c close to 1. (authors)

16. On nonlinear Fourier transform: towards the nonlinear superposition

Science.gov (United States)

Saksida, Pavle

2017-01-01

In the paper we consider the nonlinear Fourier transform associated to the AKNSZS systems. In particular, we discuss the construction of the nonlinear Fourier modes of this transform by means of a perturbation scheme. The linearization of the AKNS-ZS nonlinear Fourier transform is the usual, linear Fourier transform and the linearization of a nonlinear Fourier mode of frequency d is the linear Fourier mode of the same frequency. We show that the first non-trivial term in the perturbation expression of any nonlinear Fourier mode is given by the dilogarithm function.

17. Global field synchronization in gamma range of the sleep EEG tracks sleep depth: Artifact introduced by a rectangular analysis window.

Science.gov (United States)

Rusterholz, Thomas; Achermann, Peter; Dürr, Roland; Koenig, Thomas; Tarokh, Leila

2017-06-01

Investigating functional connectivity between brain networks has become an area of interest in neuroscience. Several methods for investigating connectivity have recently been developed, however, these techniques need to be applied with care. We demonstrate that global field synchronization (GFS), a global measure of phase alignment in the EEG as a function of frequency, must be applied considering signal processing principles in order to yield valid results. Multichannel EEG (27 derivations) was analyzed for GFS based on the complex spectrum derived by the fast Fourier transform (FFT). We examined the effect of window functions on GFS, in particular of non-rectangular windows. Applying a rectangular window when calculating the FFT revealed high GFS values for high frequencies (>15Hz) that were highly correlated (r=0.9) with spectral power in the lower frequency range (0.75-4.5Hz) and tracked the depth of sleep. This turned out to be spurious synchronization. With a non-rectangular window (Tukey or Hanning window) these high frequency synchronization vanished. Both, GFS and power density spectra significantly differed for rectangular and non-rectangular windows. Previous papers using GFS typically did not specify the applied window and may have used a rectangular window function. However, the demonstrated impact of the window function raises the question of the validity of some previous findings at higher frequencies. We demonstrated that it is crucial to apply an appropriate window function for determining synchronization measures based on a spectral approach to avoid spurious synchronization in the beta/gamma range. Copyright © 2017 Elsevier B.V. All rights reserved.

18. Thermal Bridge Effects in Window Grooves

DEFF Research Database (Denmark)

Rose, Jørgen

1997-01-01

In this report thermal bridge effects in window grooves are analyzed. The analysis is performed using different thicknesses of the window groove insulation, to evaluate what the optimal solution is.All analysis in the report is performed using both 2- and 3-dimensional numerical analysis....

19. Supporting Multiple Pointing Devices in Microsoft Windows

DEFF Research Database (Denmark)

Westergaard, Michael

2002-01-01

In this paper the implementation of a Microsoft Windows driver including APIs supporting multiple pointing devices is presented. Microsoft Windows does not natively support multiple pointing devices controlling independent cursors, and a number of solutions to this have been implemented by us...

20. Characteristics of Air Flow through Windows

DEFF Research Database (Denmark)

Heiselberg, Per; Dam, Henrik; Sørensen, Lars C.

This paper describes the first results of a series of laboratory investigations that is performed to characterise three different window types. The results show the air flow conditions for different ventilation strategies and temperature differences. For one of the windows values of the discharge...

1. What are windows on language evolution?

NARCIS (Netherlands)

Botha, Rudolf

2008-01-01

This chapter offers an elucidation of the idea that certain phenomena provide windows on language evolution. Non-metaphorically, such windows are shown to be conceptual constructs used for making inferences about aspects of language evolution from data or assumptions about properties of

2. Humeral windows in revision total elbow arthroplasty.

Science.gov (United States)

Peach, Chris A; Salama, Amir; Stanley, David

2016-04-01

The use of cortical windows for revision elbow arthroplasty has not previously been widely reported. Their use aids safe revision of a well fixed humeral prosthesis and can be used in the setting of dislocation, periprosthetic fracture or aseptic loosening of the ulnar component. We describe our technique and results of cortical windows in the distal humerus for revision elbow arthroplasty surgery.

3. Automatic Water Sensor Window Opening System

KAUST Repository

Percher, Michael

2013-12-05

A system can automatically open at least one window of a vehicle when the vehicle is being submerged in water. The system can include a water collector and a water sensor, and when the water sensor detects water in the water collector, at least one window of the vehicle opens.

4. Fourier transforms and convolutions for the experimentalist

CERN Document Server

Jennison, RC

1961-01-01

Fourier Transforms and Convolutions for the Experimentalist provides the experimentalist with a guide to the principles and practical uses of the Fourier transformation. It aims to bridge the gap between the more abstract account of a purely mathematical approach and the rule of thumb calculation and intuition of the practical worker. The monograph springs from a lecture course which the author has given in recent years and for which he has drawn upon a number of sources, including a set of notes compiled by the late Dr. I. C. Browne from a series of lectures given by Mr. J . A. Ratcliffe of t

5. A Fourier analysis approach for capillary polarimetry.

Science.gov (United States)

Markov, Dmitry A; Swinney, Kelly; Norville, Kristin; Lu, David; Bornhop, Darryl J

2002-03-01

A new method of fringe interrogation based on Fourier analysis was implemented and tested for a capillary polarimetry detector. It has significant advantages over the previously employed depth of modulation (DOM) approach, including speed and alignment insensitivity. The new and old methods were compared using a set of interference fringes typically used to facilitate nanoliter volume polarimetric determinations. Polarimetric response was calculated with both methods over the range from 0 degrees to 180 degrees. The results were found to be in good agreement with Malus Law and indicate that an fast Fourier transform (fft) could be used for real-time capillary scale polarimetry in a probe volume of 40 nL.

6. Electro-optic imaging Fourier transform spectrometer

Science.gov (United States)

Chao, Tien-Hsin (Inventor); Znod, Hanying (Inventor)

2009-01-01

An Electro-Optic Imaging Fourier Transform Spectrometer (EOIFTS) for Hyperspectral Imaging is described. The EOIFTS includes an input polarizer, an output polarizer, and a plurality of birefringent phase elements. The relative orientations of the polarizers and birefringent phase elements can be changed mechanically or via a controller, using ferroelectric liquid crystals, to substantially measure the spectral Fourier components of light propagating through the EIOFTS. When achromatic switches are used as an integral part of the birefringent phase elements, the EIOFTS becomes suitable for broadband applications, with over 1 micron infrared bandwidth.

7. Interferogram analysis using Fourier transform techniques

Science.gov (United States)

Roddier, Claude; Roddier, Francois

1987-01-01

A method of interferogram analysis is described in which Fourier transform techniques are used to map the complex fringe visibility in several types of interferograms. Algorithms are developed for estimation of both the amplitude and the phase of the fringes (yielding the modulus and the phase of the holographically recorded object Fourier transform). The algorithms were applied to the reduction of interferometric seeing measurements (i.e., the estimation of the fringe amplitude only), and the reduction of interferometric tests (i.e., estimation of the fringe phase only). The method was used to analyze scatter-plate interferograms obtained at NOAO.

8. Android is the new Windows

CERN Multimedia

Computer Security Team

2013-01-01

Do you recall the early virus attacks in the early 2000s? “Blaster”, “I love you” and “Slammer” were attacking the pretty much unprotected Microsoft Windows operating system.   While Microsoft has been hit hard in the past, they have tried to improve and are now on a par with other software vendors. Today, they can even be happy that Android is taking over the baton - at least on mobile platforms. According to the Sophos 2013 Security Threat Report “Android [is] today’s the biggest target” and Android devices in Australia and the U.S. experienced even more malware attacks, whether successful or unsuccessful, than PCs during the past three months. The Kaspersky security company recently added that 99% of all mobile threats target Android. Lucky you if you use an iPhone, or a good old Nokia with no Internet connectivity at all. But why is that? It is partly down to the same fac...

9. Compact UHV valve with field replaceable windows

Energy Technology Data Exchange (ETDEWEB)

Johnson, E.D. (Brookhaven National Lab., Upton, NY (United States)); Freeman, J. (VAT, Inc., Woburn, MA (United States)); Powell, F. (Luxel, Inc., Friday Harbor, WA (United States))

1991-01-01

There are many applications in synchrotron radiation research where window valves can be usefully employed. Examples include gas cells for monochromator calibration, filters for high order light rejection, and as vacuum isolation elements between machine and experimental vacua. Often these devices are fairly expensive, and have only fixed (ie non-removable) windows. The development of a new type of seal technology by VAT for their series 01 valves provides a gate surface which is free from obstructions due to internal mechanical elements. This feature allows a threaded recess to be machined into the gate to receive a removable window frame which can carry standard size Luxel thin film windows. The combination of these features results in a DN 40 (2.75in. conflat flange) valve which provides a clear aperture of 21mm diameter for the window material. 8 refs., 2 figs.

10. Energy Gaining Windows for Residental Buildings

DEFF Research Database (Denmark)

Kragh, Jesper; Laustsen, Jacob Birck; Svendsen, Svend

2008-01-01

This paper presents some of the research done during the last 8 years at the Technical University of Denmark developing improved low-energy window solutions. The focus has been on maximizing the net energy gain of windows for residential buildings. The net energy gain of windows is the solar gain...... minus the heat loss integrated over the heating season. It is assumed that in northern cold climates all of the solar gain during the heating season can be utilized for space heating. Problems with overheating in the summer period must be solved with overhang or moveable solar shading devices. Two...... and longer durability of the window. The glazing in these fiber reinforced polyester windows is both unsealed and sealed triple glazing units. To increase the net energy gain slim frame profiles have been developed to increase the glazing area and thereby the solar gain. The challenge when developing slim...

11. Mastering Windows Server 2012 R2

CERN Document Server

Minasi, Mark; Booth, Christian; Butler, Robert; McCabe, John; Panek, Robert; Rice, Michael; Roth, Stefan

2013-01-01

Check out the new Hyper-V, find new and easier ways to remotely connect back into the office, or learn all about Storage Spaces-these are just a few of the features in Windows Server 2012 R2 that are explained in this updated edition from Windows authority Mark Minasi and a team of Windows Server experts led by Kevin Greene. This book gets you up to speed on all of the new features and functions of Windows Server, and includes real-world scenarios to put them in perspective. If you're a system administrator upgrading to, migrating to, or managing Windows Server 2012 R2, find what you need to

12. Least Squares Moving-Window Spectral Analysis.

Science.gov (United States)

Lee, Young Jong

2017-08-01

Least squares regression is proposed as a moving-windows method for analysis of a series of spectra acquired as a function of external perturbation. The least squares moving-window (LSMW) method can be considered an extended form of the Savitzky-Golay differentiation for nonuniform perturbation spacing. LSMW is characterized in terms of moving-window size, perturbation spacing type, and intensity noise. Simulation results from LSMW are compared with results from other numerical differentiation methods, such as single-interval differentiation, autocorrelation moving-window, and perturbation correlation moving-window methods. It is demonstrated that this simple LSMW method can be useful for quantitative analysis of nonuniformly spaced spectral data with high frequency noise.

13. Compact UHV valve with field replaceable windows

International Nuclear Information System (INIS)

Johnson, E.D.; Freeman, J.; Powell, F.

1991-01-01

There are many applications in synchrotron radiation research where window valves can be usefully employed. Examples include gas cells for monochromator calibration, filters for high order light rejection, and as vacuum isolation elements between machine and experimental vacua. Often these devices are fairly expensive, and have only fixed (ie non-removable) windows. The development of a new type of seal technology by VAT for their series 01 valves provides a gate surface which is free from obstructions due to internal mechanical elements. This feature allows a threaded recess to be machined into the gate to receive a removable window frame which can carry standard size Luxel thin film windows. The combination of these features results in a DN 40 (2.75in. conflat flange) valve which provides a clear aperture of 21mm diameter for the window material. 8 refs., 2 figs

14. Windows 8 app projects XAML and C#

CERN Document Server

Vermeir, Nico

2013-01-01

Become a leading Windows 8 app developer by using Windows 8 App Projects - XAML and C# Edition to learn techniques, tools, and ideas to create successful, 5-star apps. Windows 8 App Projects - XAML and C# Edition shows you the nuts and bolts of the Windows 8 development ecosystem. Then, through a series of example driven chapters, you'll discover how to leverage the platform's unique features. With each project, you'll be one step closer to building full-featured, responsive, and well designed apps that feel like they're a part of the operating system. Windows 8 App Projects - XAML and C# Edit

15. First characterization of a static Fourier transform spectrometer

Science.gov (United States)

Lacan, A.; Bréon, F.-M.; Rosak, A.; Pierangelo, C.

2017-11-01

A new instrument concept for a Static Fourier Transform Spectrometer has been developed and characterized by CNES. This spectrometer is based on a Michelson interferometer concept, but a system of stepped mirrors generates all interference path differences simultaneously, without any moving parts. The instrument permits high spectral resolution measurements (≍0.1 cm-1) adapted to the sounding and the monitoring of atmospheric gases. Moreover, its overall dimensions are compatible with a micro satellite platform. The stepped mirrors are glued using a molecular bonding technique. An interference filter selects a waveband only a few nanometers wide. It limits the number of sampling points (and consequently the steps number) necessary to achieve the high resolution. The instrument concept can be optimized for the detection and the monitoring of various atmospheric constituents. CNES has developed a version whose measurements are centered on the CO2 absorption lines at 1573 nm (6357 cm-1). This model has a theoretical resolution of 40 pm (0.15 cm-1) within a 5 nm (22.5 cm-1) wide spectral window. It is aimed at the feasibility demonstration for atmospheric CO2 column measurements with a very demanding accuracy of better than 1%. Preliminary measurements indicate that, although high quality spectra are obtained, the theoretical performances are not yet achieved. We discuss the causes for the achieved performances and describe foreseen methods for their improvements.

16. Remote detection of organics using Fourier transform infrared spectroscopy

International Nuclear Information System (INIS)

Demirgian, J.C.; Spurgash, S.M.

1990-01-01

Fourier transform infrared (FTIR) spectroscopy is an ideal technique for remote detection of organic emissions. There is an atmospheric window in the 1200 to 800 cm -1 region, which corresponds to the ''fingerprint'' region for organic molecules. Virtually all organic molecules have a unique absorption/emission pattern in the fingerprint region. A remote-passive FTIR relies on ambient emission of infrared energy from organics to obtain spectra. The instrumentation consists of inlet optics, and interferometer, a mercury cadmium telluride (MCT) detector, and an on-board computer. The transportable unit measures 40 cm by 50 cm and has been used to collect data while mounted on a helicopter or ground vehicle. Through the use of this FTIR combined with least squares software, it is possible to analyze qualitatively and quantitatively for organic vapors from either the air or ground. The data presented will include quantitative releases of common organics present in incinerator stacks, hazardous wastes, and illegal laboratories. Data will be presented for pure compounds, mixtures, and target analytes in the presence of interfering compounds. The sensitivity, reproducibility, and the potential of the technique will be discussed. 1 ref., 8 figs., 6 tabs

17. Modeling open nanophotonic systems using the Fourier modal method: Generalization to 3D Cartesian coordinates

DEFF Research Database (Denmark)

Häyrynen, Teppo; Østerkryger, Andreas Dyhl; de Lasson, Jakob Rosenkrantz

2017-01-01

Recently, an open geometry Fourier modal method based on a new combination ofan open boundary condition and a non-uniform $k$-space discretization wasintroduced for rotationally symmetric structures providing a more efficientapproach for modeling nanowires and micropillar cavities [J. Opt. Soc. Am....... A33, 1298 (2016)]. Here, we generalize the approach to three-dimensional (3D)Cartesian coordinates allowing for the modeling of rectangular geometries inopen space. The open boundary condition is a consequence of having an infinitecomputational domain described using basis functions that expand...... moreaccurate and efficient modeling of open 3D nanophotonic structures....

18. Modeling cavities exhibiting strong lateral confinement using open geometry Fourier modal method

DEFF Research Database (Denmark)

Häyrynen, Teppo; Gregersen, Niels

2016-01-01

We have developed a computationally eﬃcient Fourier-Bessel expansion based open geometry formalism for modeling the optical properties of rotationally symmetric photonic nanostructures. The lateral computation domain is assumed inﬁnite so that no artiﬁcial boundary conditions are needed. Instead......, the leakage of the modes due to an imperfect ﬁeld conﬁnement is taken into account by using a basis functions that expand the whole inﬁnite space. The computational eﬃciency is obtained by using a non-uniform discretization in the frequency space in which the lateral expansion modes are more densely sampled...

19. Error analysis in Fourier methods for option pricing for exponential Lévy processes

KAUST Repository

Crocce, Fabian

2015-01-07

We derive an error bound for utilising the discrete Fourier transform method for solving Partial Integro-Differential Equations (PIDE) that describe european option prices for exponential Lévy driven asset prices. We give sufficient conditions for the existence of a L? bound that separates the dynamical contribution from that arising from the type of the option n in question. The bound achieved does not rely on information of the asymptotic behaviour of option prices at extreme asset values. In addition, we demonstrate improved numerical performance for select examples of practical relevance when compared to established bounding methods.

20. The remarkable discreteness of being

2014-03-15

Mar 15, 2014 ... atomistic theory and give a simple, elegant explanation to all these laws. Around 1900 AD, Planck, ... In none of the cases reviewed here is it claimed that a simple discrete theory will explain all the phenomena. ..... of migration a decreasing function of the distance; (iii) due to random sampling from one ...

1. Path integrals as discrete sums

Science.gov (United States)

Bitar, Khalil; Khuri, N. N.; Ren, H. C.

1991-08-01

We present a new formulation of Feynman's path integral, based on Voronin's theorems on the universality of the Riemann zeta function. The result is a discrete sum over `paths,'' each given by a zeta function. A new measure which leads to the correct quantum mechanics is explicitly given.

2. Multiscale expansions in discrete world

Multiscale expansions in discrete world. ÖMER ÜNSAL, FILIZ TASCAN. ∗ and MEHMET NACI ÖZER. Eskisehir Osmangazi University, Art-Science Faculty, Department of Mathematics and Computer. Sciences, Eskisehir-Türkiye. ∗. Corresponding author. E-mail: ftascan@ogu.edu.tr. MS received 12 April 2013; accepted 16 ...

3. The remarkable discreteness of being

2014-03-15

Mar 15, 2014 ... ... examples where these facts play, or could play, important roles: the spatial distribution of species, the structuring of biodiversity and the. (Darwinian) evolution of altruistic behaviour. [Houchmandzadeh B 2014 The remarkable discreteness of being. J. Biosci. 39 249–258] DOI 10.1007/s12038-013-9350-7.

4. The remarkable discreteness of being

Life is a discrete, stochastic phenomenon: for a biological organism, the time of the two most important events of its life (reproduction and death) is random and these events change the number of individuals of the species by single units. These facts can have surprising, counterintuitive consequences. I review here three ...

5. Discrete tomography in neutron radiography

International Nuclear Information System (INIS)

Kuba, Attila; Rodek, Lajos; Kiss, Zoltan; Rusko, Laszlo; Nagy, Antal; Balasko, Marton

2005-01-01

Discrete tomography (DT) is an imaging technique for reconstructing discrete images from their projections using the knowledge that the object to be reconstructed contains only a few homogeneous materials characterized by known discrete absorption values. One of the main reasons for applying DT is that we will hopefully require relatively few projections. Using discreteness and some a priori information (such as an approximate shape of the object) we can apply two DT methods in neutron imaging by reducing the problem to an optimization task. The first method is a special one because it is only suitable if the object is composed of cylinders and sphere shapes. The second method is a general one in the sense that it can be used for reconstructing objects of any shape. Software was developed and physical experiments performed in order to investigate the effects of several reconstruction parameters: the number of projections, noise levels, and complexity of the object to be reconstructed. We give a summary of the experimental results and make a comparison of the results obtained using a classical reconstruction technique (FBP). The programs we developed are available in our DT reconstruction program package DIRECT

6. Simulating first order optical systems—algorithms for and composition of discrete linear canonical transforms

Science.gov (United States)

Healy, John J.

2018-01-01

The linear canonical transforms (LCTs) are a parameterised group of linear integral transforms. The LCTs encompass a number of well-known transformations as special cases, including the Fourier transform, fractional Fourier transform, and the Fresnel integral. They relate the scalar wave fields at the input and output of systems composed of thin lenses and free space, along with other quadratic phase systems. In this paper, we perform a systematic search of all algorithms based on up to five stages of magnification, chirp multiplication and Fourier transforms. Based on that search, we propose a novel algorithm, for which we present numerical results. We compare the sampling requirements of three algorithms. Finally, we discuss some issues surrounding the composition of discrete LCTs.

7. Fourier Series Formalization in ACL2(r

Directory of Open Access Journals (Sweden)

Cuong K. Chau

2015-09-01

Full Text Available We formalize some basic properties of Fourier series in the logic of ACL2(r, which is a variant of ACL2 that supports reasoning about the real and complex numbers by way of non-standard analysis. More specifically, we extend a framework for formally evaluating definite integrals of real-valued, continuous functions using the Second Fundamental Theorem of Calculus. Our extended framework is also applied to functions containing free arguments. Using this framework, we are able to prove the orthogonality relationships between trigonometric functions, which are the essential properties in Fourier series analysis. The sum rule for definite integrals of indexed sums is also formalized by applying the extended framework along with the First Fundamental Theorem of Calculus and the sum rule for differentiation. The Fourier coefficient formulas of periodic functions are then formalized from the orthogonality relations and the sum rule for integration. Consequently, the uniqueness of Fourier sums is a straightforward corollary. We also present our formalization of the sum rule for definite integrals of infinite series in ACL2(r. Part of this task is to prove the Dini Uniform Convergence Theorem and the continuity of a limit function under certain conditions. A key technique in our proofs of these theorems is to apply the overspill principle from non-standard analysis.

8. Fourier Series The Mathematics of Periodic Phenomena

Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 10. Fourier Series The Mathematics of Periodic Phenomena. S Thangavelu ... Author Affiliations. S Thangavelu1. Department of Mathematics and Statistics, University of New Mexico, Humanities Building 419, Albuquerque, NM 87131-1141, USA ...

9. An Uncertainty Principle for Quaternion Fourier Transform

OpenAIRE

BAHRI, Mawardi; HITZER, Eckhard S. M; HAYASHI, Akihisa; ASHINO, Ryuichi

2008-01-01

We review the quaternionic Fourier transform(QFT). Using the properties of the QFT we establish an uncertainty principle for the right-sided QFT.This uncertainty principle prescribes a lower bound on the product of the effective widths of quaternion-valued signals in the spatial and frequency domains. It is shown that only a Gaussian quaternion signal minimizes the uncertainty.

10. Fourier series models through transformation | Omekara | Global ...

African Journals Online (AJOL)

This study considers the application of Fourier series analysis (FSA) to seasonal time series data. The ultimate objective of the study is to construct an FSA model that can lead to reliable forecast. Specifically, the study evaluates data for the assumptions of time series analysis; applies the necessary transformation to the ...

11. Bernoulli Polynomials, Fourier Series and Zeta Numbers

DEFF Research Database (Denmark)

Scheufens, Ernst E

2013-01-01

Fourier series for Bernoulli polynomials are used to obtain information about values of the Riemann zeta function for integer arguments greater than one. If the argument is even we recover the well-known exact values, if the argument is odd we find integral representations and rapidly convergent...

12. Euler Polynomials, Fourier Series and Zeta Numbers

DEFF Research Database (Denmark)

Scheufens, Ernst E

2012-01-01

Fourier series for Euler polynomials is used to obtain information about values of the Riemann zeta function for integer arguments greater than one. If the argument is even we recover the well-known exact values, if the argument is odd we find integral representations and rapidly convergent series....

13. A Fourier analysis of extremal events

DEFF Research Database (Denmark)

Zhao, Yuwei

is the extremal periodogram. The extremal periodogram shares numerous asymptotic properties with the periodogram of a linear process in classical time series analysis: the asymptotic distribution of the periodogram ordinates at the Fourier frequencies have a similar form and smoothed versions of the periodogram...

14. The periodogram at the Fourier frequencies

NARCIS (Netherlands)

Kokoszka, P; Mikosch, T

In the time series literature one can often find the claim that the periodogram ordinates of an lid sequence at the Fourier frequencies behave like an lid standard exponential sequence. We review some results about functions of these periodogram ordinates, including the convergence of extremes,

15. Spatially incoherent single channel digital Fourier holography.

Science.gov (United States)

Kelner, Roy; Rosen, Joseph

2012-09-01

We present a new method for recording digital Fourier holograms under incoherent illumination. A single exposure recorded by a digital camera is sufficient to record a real-valued hologram that encodes the complete three-dimensional properties of an object.

16. Fast Fourier Transform Spectral Analysis Program

Science.gov (United States)

Daniel, J. A., Jr.; Graves, M. L.; Hovey, N. M.

1969-01-01

Fast Fourier Transform Spectral Analysis Program is used in frequency spectrum analysis of postflight, space vehicle telemetered trajectory data. This computer program with a digital algorithm can calculate power spectrum rms amplitudes and cross spectrum of sampled parameters at even time increments.

17. Fourier Multiplier Theorems Involving Type and Cotype

NARCIS (Netherlands)

Rozendaal, J.; Veraar, M.C.

2017-01-01

In this paper we develop the theory of Fourier multiplier operators (Formula presented.), for Banach spaces X and Y, (Formula presented.) and (Formula presented.) an operator-valued symbol. The case (Formula presented.) has been studied extensively since the 1980s, but far less is known for

18. Fourier Analysis Of Vibrations Of Round Structures

Science.gov (United States)

Davis, Gary A.

1990-01-01

Fourier-series representation developed for analysis of vibrations in complicated, round structures like turbopump impellers. Method eliminates guesswork involved in characterization of shapes of vibrational modes. Easy way to characterize complicated modes, leading to determination of responsiveness of given mode to various forcing functions. Used in conjunction with finite-element numerical simulation of vibrational modes of structure.

19. Fourier Analysis and the Rhythm of Conversation.

Science.gov (United States)

Dabbs, James M., Jr.

Fourier analysis, a common technique in engineering, breaks down a complex wave form into its simple sine wave components. Communication researchers have recently suggested that this technique may provide an index of the rhythm of conversation, since vocalizing and pausing produce a complex wave form pattern of alternation between two speakers. To…

20. Fourier phase demodulation of interferometric fiber sensor

Science.gov (United States)

Fu, Xin; Lu, Ping; Liu, Deming; Zhang, Jiangshan

2017-10-01

A novel demodulation method for interferometric fiber sensor is proposed in this paper. The physical parameters to be measured by the sensor is obtained by calculating the phase variation of the interference components. The phase variation is computed with the assist of the fast Fourier analysis. For fiber interferometers, most of the energy is contained in the few spatial frequencies corresponding to the components that produce the interference. Therefore, the information of the interference fringe can be presented by the Fourier results at those intrinsic frequencies. Based on this assumption, we proposed a novel method to interrogate the fiber interferometer by calculating the Fourier phase at the spatial frequency. Theoretical derivation proves that the Fourier phase variation is equal to the phase change of the interferometer. Simulation results demonstrate the ability of noise resistance of the proposed method since the information of all wavelength sampling points are adopted for the demodulation process. A Sagnac interferometer based on a section of polarization-maintaining photonic crystal fiber is utilized to verify the feasibility of the phase demodulation technique by lateral pressure sensing. Experimental results of -0.069rad/kPa is acquired.