WorldWideScience

Sample records for wind-magnetosphere energy transfer

  1. The application of dimensional analysis to the problem of solar wind-magnetosphere energy coupling

    Science.gov (United States)

    Bargatze, L. F.; Mcpherron, R. L.; Baker, D. N.; Hones, E. W., Jr.

    1984-01-01

    The constraints imposed by dimensional analysis are used to find how the solar wind-magnetosphere energy transfer rate depends upon interplanetary parameters. The analyses assume that only magnetohydrodynamic processes are important in controlling the rate of energy transfer. The study utilizes ISEE-3 solar wind observations, the AE index, and UT from three 10-day intervals during the International Magnetospheric Study. Simple linear regression and histogram techniques are used to find the value of the magnetohydrodynamic coupling exponent, alpha, which is consistent with observations of magnetospheric response. Once alpha is estimated, the form of the solar wind energy transfer rate is obtained by substitution into an equation of the interplanetary variables whose exponents depend upon alpha.

  2. The Solar Wind - Magnetosphere Energy Coupling Function and Open Magnetic Flux Estimation: Two Science Aspects of the SMILE Mission

    Science.gov (United States)

    Wang, C.; Dai, L.; Sun, T.; Han, J.

    2015-12-01

    The Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) is a novel self-standing mission to observe solar wind - magnetosphere coupling via simultaneous in situ solar wind /magnetosheath plasma and magnetic field measurements, X-ray images of the magnetosphere, and UV images of global auroral distribution defining system - level consequences. The SMILE mission is jointly supported by ESA and CSA, and the launch date is expected to be in 2021. SMILE will address several key outstanding questions concerning how the solar wind interacts with the magnetospheres on a global level. Quantitatively estimating the energy input from the solar wind into the magnetosphere on a global scale is still an observational challenge. Using global MHD simulations, we derive a new solar wind - magnetosphere energy coupling function. The X-ray images of the magnetosphere from the SMILE mission will help estimate the energy transfer from the solar wind into the magnetosphere. A second aspect SMILE can address is the open magnetic flux, which is closely related to magnetic reconnections in the dayside magnetopause and magnetotail. In a similar way, we find that the open magnetic flux can be estimated through a combined parameter f, which is a function of the solar wind velocity, number density, the southern interplanetary magnetic field strength, and the ionospheric Pederson conductance. The UV auroral images from SMILE will be used to determine the open magnetic flux, which may serve as a key space weather forecast element in the future.

  3. Wide Field-of-View Soft X-Ray Imaging for Solar Wind-Magnetosphere Interactions

    Science.gov (United States)

    Walsh, B. M.; Collier, M. R.; Kuntz, K. D.; Porter, F. S.; Sibeck, D. G.; Snowden, S. L.; Carter, J. A.; Collado-Vega, Y.; Connor, H. K.; Cravens, T. E.; hide

    2016-01-01

    Soft X-ray imagers can be used to study the mesoscale and macroscale density structures that occur whenever and wherever the solar wind encounters neutral atoms at comets, the Moon, and both magnetized and unmagnetized planets. Charge exchange between high charge state solar wind ions and exospheric neutrals results in the isotropic emission of soft X-ray photons with energies from 0.1 to 2.0 keV. At Earth, this process occurs primarily within the magnetosheath and cusps. Through providing a global view, wide field-of-view imaging can determine the significance of the various proposed solar wind-magnetosphere interaction mechanisms by evaluating their global extent and occurrence patterns. A summary of wide field-of-view (several to tens of degrees) soft X-ray imaging is provided including slumped micropore microchannel reflectors, simulated images, and recent flight results.

  4. Coupled Solar Wind-Magnetosphere-Ionosphere-Thermosphere System by QFT

    Science.gov (United States)

    Chen, Shao-Guang

    shoot to Sun from the center of Galaxy. The dynamic balance of forces on the solar surface plasma at once is broken and the plasma will upwards eject as the solar wind with redundant negative charge, at the same time, the solar surface remain a cavity as a sunspot whorl with the positive electric potential relative to around. The whorl caused by that the reaction of plasma eject front and upwards with the different velocity at different latitude of solar rotation, leads to the cavity around in the downwards and backwards helix movement. The solar rotation more slow, when the cavity is filled by around plasma in the reverse turn direction, the Jupiter at front had been produced a new cavity, so that we had observe the sunspot pair with different whorl directions and different magnetic polarity. Jupiter possess half mass of all planets in solar system, its action to stop net nuν _{0} flux is primary, so that Jupiter’s period of 11.8 sidereal years accord basically with the period of sunspot eruptions. The solar wind is essentially the plasma with additional electrons flux ejected from the solar surface: its additional electrons come from the ionosphere again eject into the ionosphere and leads to the direct connect between the solar wind and the ionosphere; its magnetism from its redundant negative charge and leads to the connect between the solar wind and the magnetosphere; it possess the high temperature of the solar surface and ejecting kinetic energy leads to the thermo-exchange connect between the solar wind and the thermosphere. Through the solar wind ejecting into and cross over the outside atmosphere carry out the electromagnetic, particles material and thermal exchanges, the Coupled Solar Wind-Magnetosphere-Ionosphere-Thermosphere System to be came into being. This conclusion is inferred only by QFT.

  5. Combining global and multi-scale features in a description of the solar wind-magnetosphere coupling

    Directory of Open Access Journals (Sweden)

    A. Y. Ukhorskiy

    2003-09-01

    Full Text Available The solar wind-magnetosphere coupling during substorms exhibits dynamical features in a wide range of spatial and temporal scales. The goal of our work is to combine the global and multi-scale description of magnetospheric dynamics in a unified data-derived model. For this purpose we use deterministic methods of nonlinear dynamics, together with a probabilistic approach of statistical physics. In this paper we discuss the mathematical aspects of such a combined analysis. In particular we introduce a new method of embedding analysis based on the notion of a mean-field dimension. For a given level of averaging in the system the mean-filed dimension determines the minimum dimension of the embedding space in which the averaged dynamical system approximates the actual dynamics with the given accuracy. This new technique is first tested on a number of well-known autonomous and open dynamical systems with and without noise contamination. Then, the dimension analysis is carried out for the correlated solar wind-magnetosphere database using vBS time series as the input and AL index as the output of the system. It is found that the minimum embedding dimension of vBS - AL time series is a function of the level of ensemble averaging and the specified accuracy of the method. To extract the global component from the observed time series the ensemble averaging is carried out over the range of scales populated by a high dimensional multi-scale constituent. The wider the range of scales which are smoothed away, the smaller the mean-field dimension of the system. The method also yields a probability density function in the reconstructed phase space which provides the basis for the probabilistic modeling of the multi-scale dynamical features, and is also used to visualize the global portion of the solar wind-magnetosphere coupling. The structure of its input-output phase portrait reveals the existence of two energy levels in the system with non

  6. Combining global and multi-scale features in a description of the solar wind-magnetosphere coupling

    Directory of Open Access Journals (Sweden)

    A. Y. Ukhorskiy

    Full Text Available The solar wind-magnetosphere coupling during substorms exhibits dynamical features in a wide range of spatial and temporal scales. The goal of our work is to combine the global and multi-scale description of magnetospheric dynamics in a unified data-derived model. For this purpose we use deterministic methods of nonlinear dynamics, together with a probabilistic approach of statistical physics. In this paper we discuss the mathematical aspects of such a combined analysis. In particular we introduce a new method of embedding analysis based on the notion of a mean-field dimension. For a given level of averaging in the system the mean-filed dimension determines the minimum dimension of the embedding space in which the averaged dynamical system approximates the actual dynamics with the given accuracy. This new technique is first tested on a number of well-known autonomous and open dynamical systems with and without noise contamination. Then, the dimension analysis is carried out for the correlated solar wind-magnetosphere database using vBS time series as the input and AL index as the output of the system. It is found that the minimum embedding dimension of vBS - AL time series is a function of the level of ensemble averaging and the specified accuracy of the method. To extract the global component from the observed time series the ensemble averaging is carried out over the range of scales populated by a high dimensional multi-scale constituent. The wider the range of scales which are smoothed away, the smaller the mean-field dimension of the system. The method also yields a probability density function in the reconstructed phase space which provides the basis for the probabilistic modeling of the multi-scale dynamical features, and is also used to visualize the global portion of the solar wind-magnetosphere coupling. The structure of its input-output phase portrait reveals the existence of two energy

  7. Dexter energy transfer pathways.

    Science.gov (United States)

    Skourtis, Spiros S; Liu, Chaoren; Antoniou, Panayiotis; Virshup, Aaron M; Beratan, David N

    2016-07-19

    Energy transfer with an associated spin change of the donor and acceptor, Dexter energy transfer, is critically important in solar energy harvesting assemblies, damage protection schemes of photobiology, and organometallic opto-electronic materials. Dexter transfer between chemically linked donors and acceptors is bridge mediated, presenting an enticing analogy with bridge-mediated electron and hole transfer. However, Dexter coupling pathways must convey both an electron and a hole from donor to acceptor, and this adds considerable richness to the mediation process. We dissect the bridge-mediated Dexter coupling mechanisms and formulate a theory for triplet energy transfer coupling pathways. Virtual donor-acceptor charge-transfer exciton intermediates dominate at shorter distances or higher tunneling energy gaps, whereas virtual intermediates with an electron and a hole both on the bridge (virtual bridge excitons) dominate for longer distances or lower energy gaps. The effects of virtual bridge excitons were neglected in earlier treatments. The two-particle pathway framework developed here shows how Dexter energy-transfer rates depend on donor, bridge, and acceptor energetics, as well as on orbital symmetry and quantum interference among pathways.

  8. Energy imparted, energy transferred, and net energy transferred

    International Nuclear Information System (INIS)

    Attix, F.H.

    1983-01-01

    The ICRU-defined non-stochastic quantity absorbed dose is related to the stochastic quantity energy imparted. In the present paper the corresponding stochastic quantities energy transferred and net energy transferred are defined as precursors for kerma and collision kerma, respectively. This forms a rational fundamental framework for radiation dosimetry which facilitates its teaching and understanding. For neutrons collision kerma coincides with kerma, because the heavy secondaries do not lose significant energy by radiative processes (e.g., bremsstrahlung)

  9. Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond

    Indian Academy of Sciences (India)

    Ultrafast Dynamics of Chemical Reactions in Condensed Phase: Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond. Dipak K. Palit Radaition & Photochemistry Division Bhabha Atomic Research Centre Mumbai 400 085, India.

  10. Laser induced energy transfer

    International Nuclear Information System (INIS)

    Falcone, R.W.

    1979-01-01

    Two related methods of rapidly transferring stored energy from one excited chemical species to another are described. The first of these, called a laser induced collision, involves a reaction in which the energy balance is met by photons from an intense laser beam. A collision cross section of ca 10 - 17 cm 2 was induced in an experiment which demonstrated the predicted dependence of the cross section on wavelength and power density of the applied laser. A second type of laser induced energy transfer involves the inelastic scattering of laser radiation from energetically excited atoms, and subsequent absorption of the scattered light by a second species. The technique of producing the light, ''anti-Stokes Raman'' scattering of visible and infrared wavelength laser photons, is shown to be an efficient source of narrow bandwidth, high brightness, tunable radiation at vacuum ultraviolet wavelengths by using it to excite a rare gas transition at 583.7 A. In addition, this light source was used to make the first measurement of the isotopic shift of the helium metastable level at 601 A. Applications in laser controlled chemistry and spectroscopy, and proposals for new types of lasers using these two energy transfer methods are discussed

  11. ENERGY-TRANSFER SYSTEMS

    Science.gov (United States)

    Thonemann, P.C.; Cowhig, W.T.; Davenport, P.A.

    1963-04-01

    This patent relates to the transfer of energy in a traveling electromagnetic wave to direct-current electrical energy in a gaseous medium. The traveling wave is generated by means of a radio-frequency oscillator connected across a capacitance-loaded helix wound around a sealed tube enclosing the gaseous medium. The traveling wave causes the electrons within the medium to drift towards one end of the tube. The direct current appearing across electrodes placed at each end of the tube is then used by some electrical means. (AEC)

  12. Detailed dayside auroral morphology as a function of local time for southeast IMF orientation: implications for solar wind-magnetosphere coupling

    Directory of Open Access Journals (Sweden)

    P. E. Sandholt

    2004-11-01

    Full Text Available In two case studies we elaborate on spatial and temporal structures of the dayside aurora within 08:00-16:00 magnetic local time (MLT and discuss the relationship of this structure to solar wind-magnetosphere interconnection topology and the different stages of evolution of open field lines in the Dungey convection cycle. The detailed 2-D auroral morphology is obtained from continuous ground observations at Ny Ålesund (76° magnetic latitude (MLAT, Svalbard during two days when the interplanetary magnetic field (IMF is directed southeast (By>0; Bz<0. The auroral activity consists of the successive activations of the following forms: (i latitudinally separated, sunward moving, arcs/bands of dayside boundary plasma sheet (BPS origin, in the prenoon (08:00-11:00 MLT and postnoon (12:00-16:00 MLT sectors, within 70-75° MLAT, (ii poleward moving auroral forms (PMAFs emanating from the pre- and postnoon brightening events, and (iii a specific activity appearing in the 07:00-10:00 MLT/75-80° MLAT during the prevailing IMF By>0 conditions. The pre- and postnoon activations are separated by a region of strongly attenuated auroral activity/intensity within the 11:00-12:00 MLT sector, often referred to as the midday gap aurora. The latter aurora is attributed to the presence of component reconnection at the subsolar magnetopause where the stagnant magnetosheath flow lead to field-aligned currents (FACs which are of only moderate intensity. The much more active and intense aurorae in the prenoon (07:00-11:00 MLT and postnoon (12:00-16:00 MLT sectors originate in magnetopause reconnection events that are initiated well away from the subsolar point. The high-latitude auroral activity in the prenoon sector (feature iii is found to be accompanied by a convection channel at the polar cap boundary. The associated ground magnetic deflection (DPY is a Svalgaard-Mansurov effect. The convection channel is attributed to effective momentum transfer from the

  13. Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond

    Indian Academy of Sciences (India)

    Ultrafast Dynamics of Chemical Reactions in Condensed Phase: Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond · PowerPoint Presentation · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16 · Slide 17 · Slide 18 · Slide 19.

  14. Energy transfer properties and mechanisms

    International Nuclear Information System (INIS)

    Barker, J.R.

    1993-01-01

    Since no single experimental technique is the best method for energy transfer experiments, we have used both time-dependent infrared fluorescence (IRF) and time-dependent thermal lensing (TDTL) to study energy transfer in various systems. We are investigating pump-probe techniques employing resonance enhanced multiphoton ionization (REMPI). IRF was used to study benzene, azulene, and toluene. TDTL was used to study CS 2 and SO 2 (data not given for latter). Large molecule energy transfer mechanisms are discussed. 10 figs

  15. Energy transfer in compressible turbulence

    Science.gov (United States)

    Bataille, Francoise; Zhou, YE; Bertoglio, Jean-Pierre

    1995-01-01

    This letter investigates the compressible energy transfer process. We extend a methodology developed originally for incompressible turbulence and use databases from numerical simulations of a weak compressible turbulence based on Eddy-Damped-Quasi-Normal-Markovian (EDQNM) closure. In order to analyze the compressible mode directly, the well known Helmholtz decomposition is used. While the compressible component has very little influence on the solenoidal part, we found that almost all of the compressible turbulence energy is received from its solenoidal counterpart. We focus on the most fundamental building block of the energy transfer process, the triadic interactions. This analysis leads us to conclude that, at low turbulent Mach number, the compressible energy transfer process is dominated by a local radiative transfer (absorption) in both inertial and energy containing ranges.

  16. Stray energy transfer during endoscopy.

    Science.gov (United States)

    Jones, Edward L; Madani, Amin; Overbey, Douglas M; Kiourti, Asimina; Bojja-Venkatakrishnan, Satheesh; Mikami, Dean J; Hazey, Jeffrey W; Arcomano, Todd R; Robinson, Thomas N

    2017-10-01

    Endoscopy is the standard tool for the evaluation and treatment of gastrointestinal disorders. While the risk of complication is low, the use of energy devices can increase complications by 100-fold. The mechanism of increased injury and presence of stray energy is unknown. The purpose of the study was to determine if stray energy transfer occurs during endoscopy and if so, to define strategies to minimize the risk of energy complications. A gastroscope was introduced into the stomach of an anesthetized pig. A monopolar generator delivered energy for 5 s to a snare without contacting tissue or the endoscope itself. The endoscope tip orientation, energy device type, power level, energy mode, and generator type were varied to mimic in vivo use. The primary outcome (stray current) was quantified as the change in tissue temperature (°C) from baseline at the tissue closest to the tip of the endoscope. Data were reported as mean ± standard deviation. Using the 60 W coag mode while changing the orientation of the endoscope tip, tissue temperature increased by 12.1 ± 3.5 °C nearest the camera lens (p energy transfer (p = 0.04 and p = 0.002, respectively) as did utilizing the low-voltage cut mode (6.6 ± 0.5 °C, p energy transfer compared to a standard generator (1.5 ± 3.5 °C vs. 9.5 ± 0.8 °C, p energy is transferred within the endoscope during the activation of common energy devices. This could result in post-polypectomy syndrome, bleeding, or perforation outside of the endoscopist's view. Decreasing the power, utilizing low-voltage modes and/or an impedance-monitoring generator can decrease the risk of complication.

  17. Pumped energy transfer stations (STEP)

    International Nuclear Information System (INIS)

    Tournery, Jean-Francois

    2015-12-01

    As objectives of development are high for renewable energies (they are supposed to cover 50 per cent of new energy needs by 2035), pumped energy transfer stations are to play an important role in this respect. The author first discusses the consequences of the development of renewable energies on the exploitation of electric grids: issue of intermittency for some of them, envisaged solutions. Then, he addresses one of the solutions: the storage of electric power. He notices that increasing the potential energy of a volume of water is presently the most mature solution to face massive needs of the power system. Dams and pumped energy transfer stations represent now almost the whole installed storage power in the world. The author then presents these pumped energy transfer stations: principle, brief history (the first appeared in Italy and Switzerland at the end of the 1890's). He indicates the various parameters of assessment of such stations: maximum stored energy, installed power in pumping mode and turbine mode, time constant, efficiency, level of flexibility. He discusses economic issues. He describes and comments the operation of turbine-pump groups: ternary groups, reversible binary groups. He discusses barriers to be overcome and technical advances to be made for varying speed groups and for marine stations. He finally gives an overview (table with number of stations belonging to different power ranges, remarkable installations) of existing stations in China, USA, Japan, Germany, Austria, Spain, Portugal, Italy, Switzerland, France and UK, and indicate predictions regarding storage needs at the world level. Some data are finally indicated for the six existing French installations

  18. Diagnostic study of coupled solar wind-magnetosphere-ionosphere dynamics in D-region ionosphere via VLF signal propagation characteristic

    Science.gov (United States)

    Nwankwo, Victor U. J.; Chakrabarti, Sandip Kumar

    2016-07-01

    Geomagnetic disturbances and storms are known to produce significant global disturbances in the ionosphere, including the middle atmosphere and troposphere. There is little understanding about the mechanism and dynamics that drive these processes in lower ionosphere. The ionosphere is also thought to be sensitive to seismic events, and it is believed that it exhibits precursory characteristics as reported in studies via characteristic anomalies in VLF signal. However, distinguishing or separating seismically induced ionospheric fluctuations from those of other origins (e.g., Solar activity, planetary and tidal waves, stratospheric warming etc.) remain vital to robust conclusion, and challenging too. The unique propagation characteristic of VLF radio signal makes it an ideal tool for the study and diagnosis of variability of D-region ionosphere. In this work, we present the analysis of solar wind-magnetosphere-ionosphere coupling dynamics in D-region ionosphere using VLF signal characteristics, and performed an investigation of previously reported 'ionospheric precursors' to understand the true origins of measured anomalies.

  19. A survey of solar wind conditions at 5 AU: a tool for interpreting solar wind-magnetosphere interactions at Jupiter

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, Robert W. [Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX (United States); Bagenal, Fran [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO (United States); McComas, David J. [Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX (United States); Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX (United States); Fowler, Christopher M., E-mail: rebert@swri.edu [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO (United States)

    2014-09-19

    We examine Ulysses solar wind and interplanetary magnetic field (IMF) observations at 5 AU for two ~13 month intervals during the rising and declining phases of solar cycle 23 and the predicted response of the Jovian magnetosphere during these times. The declining phase solar wind, composed primarily of corotating interaction regions and high-speed streams, was, on average, faster, hotter, less dense, and more Alfvénic relative to the rising phase solar wind, composed mainly of slow wind and interplanetary coronal mass ejections. Interestingly, none of solar wind and IMF distributions reported here were bimodal, a feature used to explain the bimodal distribution of bow shock and magnetopause standoff distances observed at Jupiter. Instead, many of these distributions had extended, non-Gaussian tails that resulted in large standard deviations and much larger mean over median values. The distribution of predicted Jupiter bow shock and magnetopause standoff distances during these intervals were also not bimodal, the mean/median values being larger during the declining phase by ~1–4%. These results provide data-derived solar wind and IMF boundary conditions at 5 AU for models aimed at studying solar wind-magnetosphere interactions at Jupiter and can support the science investigations of upcoming Jupiter system missions. Here, we provide expectations for Juno, which is scheduled to arrive at Jupiter in July 2016. Accounting for the long-term decline in solar wind dynamic pressure reported by McComas et al. (2013a), Jupiter's bow shock and magnetopause is expected to be at least 8–12% further from Jupiter, if these trends continue.

  20. A survey of solar wind conditions at 5 AU: A tool for interpreting solar wind-magnetosphere interactions at Jupiter

    Directory of Open Access Journals (Sweden)

    Robert Wilkes Ebert

    2014-09-01

    Full Text Available We examine Ulysses solar wind and interplanetary magnetic field (IMF observations at 5 AU for two ~13 month intervals during the rising and declining phases of solar cycle 23 and the predicted response of the Jovian magnetosphere during these times. The declining phase solar wind, composed primarily of corotating interaction regions and high-speed streams, was, on average, faster, hotter, less dense, and more Alfvénic relative to the rising phase solar wind, composed mainly of slow wind and interplanetary coronal mass ejections. Interestingly, none of solar wind and IMF distributions reported here were bimodal, a feature used to explain the bimodal distribution of bow shock and magnetopause standoff distances observed at Jupiter. Instead, many of these distributions had extended, non-Gaussian tails that resulted in large standard deviations and much larger mean over median values. The distribution of predicted Jupiter bow shock and magnetopause standoff distances during these intervals were also not bimodal, the mean/median values being larger during the declining phase by ~1 – 4%. These results provide data-derived solar wind and IMF boundary conditions at 5 AU for models aimed at studying solar wind-magnetosphere interactions at Jupiter and can support the science investigations of upcoming Jupiter system missions. Here, we provide expectations for Juno, which is scheduled to arrive at Jupiter in July 2016. Accounting for the long-term decline in solar wind dynamic pressure reported by McComas et al. (2013, Jupiter’s bow shock and magnetopause is expected to be at least 8 – 12% further from Jupiter, if these trends continue.

  1. Energy Transfer in Rotating Turbulence

    Science.gov (United States)

    Cambon, Claude; Mansour, Nagi N.; Godeferd, Fabien S.; Rai, Man Mohan (Technical Monitor)

    1995-01-01

    The influence or rotation on the spectral energy transfer of homogeneous turbulence is investigated in this paper. Given the fact that linear dynamics, e.g. the inertial waves regime tackled in an RDT (Rapid Distortion Theory) fashion, cannot Affect st homogeneous isotropic turbulent flow, the study of nonlinear dynamics is of prime importance in the case of rotating flows. Previous theoretical (including both weakly nonlinear and EDQNM theories), experimental and DNS (Direct Numerical Simulation) results are gathered here and compared in order to give a self-consistent picture of the nonlinear effects of rotation on tile turbulence. The inhibition of the energy cascade, which is linked to a reduction of the dissipation rate, is shown to be related to a damping due to rotation of the energy transfer. A model for this effect is quantified by a model equation for the derivative-skewness factor, which only involves a micro-Rossby number Ro(sup omega) = omega'/(2(OMEGA))-ratio of rms vorticity and background vorticity as the relevant rotation parameter, in accordance with DNS and EDQNM results fit addition, anisotropy is shown also to develop through nonlinear interactions modified by rotation, in an intermediate range of Rossby numbers (Ro(omega) = (omega)' and Ro(omega)w greater than 1), which is characterized by a marco-Rossby number Ro(sup L) less than 1 and Ro(omega) greater than 1 which is characterized by a macro-Rossby number based on an integral lengthscale L and the micro-Rossby number previously defined. This anisotropy is mainly an angular drain of spectral energy which tends to concentrate energy in tile wave-plane normal to the rotation axis, which is exactly both the slow and the two-dimensional manifold. In Addition, a polarization of the energy distribution in this slow 2D manifold enhances horizontal (normal to the rotation axis) velocity components, and underlies the anisotropic structure of the integral lengthscales. Finally is demonstrated the

  2. Laser-Induced Energy Transfer in Solids

    NARCIS (Netherlands)

    Morsink, J.B.W.; Rullmann, Johan; Wiersma, Douwe

    1981-01-01

    Laser-induced energy transfer was observed and studied in the system pentacene doped into naphthalene. The transfer spectrum shows a remarkable correspondence with the host density of states function. The rate for laser-induced energy transfer is given and it is concluded that most likely,

  3. Electromechanical capacitor for energy transfer

    International Nuclear Information System (INIS)

    Carroll, T.A.; Chowdhuri, P.; Marshall, J.

    1983-01-01

    Inductive energy transfer between two magnets can be achieved with almost 100% efficiency with a transfer capacitor. However, the bulk and cost will be high, and reliability low if conventional capacitors are used. A homopolar machine, used as a capacitor, will be compact and economical. A homopolar machine was designed with counter-rotating copper disks completely immersed in a liquid metal (NaK-78) to work as a pulse capacitor. Absence of solid-brush collectors minimized wear and frictional losses. Wetting of the copper disks throughout the periphery by the liquid metal minimized the resistive losses at the collector interface. A liquid-metal collector would, however, introduce hydrodynamic and magnetohydrodynamic losses. The selected liquid metal, e.g., NaK-78 will produce the lowest of such losses among the available liquid metals. An electromechanical capacitor of this design was tested at various dc magnetic fields. Its measured capacitance was about 100 farads at a dc magnetic field of 1.15 tesla

  4. Insight into a reversible energy transfer system.

    Science.gov (United States)

    Gao, Ming Xuan; Zou, Hong Yan; Gao, Peng Fei; Liu, Yue; Li, Na; Li, Yuan Fang; Huang, Cheng Zhi

    2016-09-15

    Resonance energy transfer (RET) processes have wide applications; these processes involve a unidirectional energy transfer from a particular donor to a particular acceptor. Here, we report a plasmonic resonance energy transfer (PRET), which occurs from the surface of gold nanoparticles to fluorescent organic dyes, and coexists with a nanometal surface energy transfer (NSET) that operates in the reverse direction. The coexistence of both PRET and NSET in opposite directions means that the roles of both donor and acceptor can be interchanged, which could be identified by using spectrofluorometric measurements and light scattering dark field microscopic imaging. The experimental data could be further theoretically supported using Persson and Lang's model, the quasi-static approximation and finite-difference time-domain simulation. Moreover, disruption of the PRET process by altering the energy transfer pairs suggests that interactions occur inside the reversible energy transfer system, which manifest by increasing the fluorescence quenching efficiency of the NSET process.

  5. Energy traps of excited energy transfer processes in polymer solids

    International Nuclear Information System (INIS)

    Masahide Yamamoto; Kenji Hisada; Shinzaburo Ito

    1999-01-01

    In this report, the singlet and triplet exciton behaviors of the polymers containing carbazole (Cz) or phenanthrene (Ph) chromophores as the side group were studied in the solid state. The role of electronic energy traps in energy transfer process will be discussed and controlling factors of energy transfer processes will be given

  6. Energy transfer in (bio)molecular systems

    NARCIS (Netherlands)

    Milder, Maaike Theresia Wilhelmina

    This thesis reports, using a variety of optical techniques, the energy transfer pathways in different potential building blocks for molecular electronic devices, namely an antenna, a molecular wire and fluorescent switches. Using pump-probe spectroscopy the time constants of these transfer processes

  7. Interactive Joint Transfer of Energy and Information

    DEFF Research Database (Denmark)

    Popovski, Petar; Fouladgar, A. M.; Simeone, Osvaldo

    2013-01-01

    In some communication networks, such as passive RFID systems, the energy used to transfer information between a sender and a recipient can be reused for successive communication tasks. In fact, from known results in physics, any system that exchanges information via the transfer of given physical...

  8. Energy transfer in oligothiophene inclusion compounds

    NARCIS (Netherlands)

    Loi, M.A.; Mura, A.; Bongiovanni, G.; Botta, C.; Silvestro, G. Di; Tubino, R.

    2001-01-01

    Energy transfer between terthiophene and quinquethiophene oligomers embedded in the nanochannels of perhydrotriphenylene crystals is investigated by fs-time-resolved photoluminescence spectroscopy. Excitonic effects in these compounds are suppressed due to the large intermolecular distances imposed

  9. Optical Energy Transfer and Conversion System

    Science.gov (United States)

    Stone, William C. (Inventor); Hogan, Bartholomew P. (Inventor)

    2015-01-01

    An optical power transfer system comprising a fiber spooler, a fiber optic rotary joint mechanically connected to the fiber spooler, and an electrical power extraction subsystem connected to the fiber optic rotary joint with an optical waveguide. Optical energy is generated at and transferred from a base station through fiber wrapped around the spooler, through the rotary joint, and ultimately to the power extraction system at a remote mobility platform for conversion to another form of energy.

  10. Energy transfer in compressible magnetohydrodynamic turbulence

    Science.gov (United States)

    Grete, Philipp; O'Shea, Brian W.; Beckwith, Kris; Schmidt, Wolfram; Christlieb, Andrew

    2017-09-01

    Magnetic fields, compressibility, and turbulence are important factors in many terrestrial and astrophysical processes. While energy dynamics, i.e., how energy is transferred within and between kinetic and magnetic reservoirs, has been previously studied in the context of incompressible magnetohydrodynamic (MHD) turbulence, we extend shell-to-shell energy transfer analysis to the compressible regime. We derive four new transfer functions specifically capturing compressibility effects in the kinetic and magnetic cascade, and capturing energy exchange via magnetic pressure. To illustrate their viability, we perform and analyze four simulations of driven isothermal MHD turbulence in the sub- and supersonic regime with two different codes. On the one hand, our analysis reveals robust characteristics across regime and numerical method. For example, energy transfer between individual scales is local and forward for both cascades with the magnetic cascade being stronger than the kinetic one. Magnetic tension and magnetic pressure related transfers are less local and weaker than the cascades. We find no evidence for significant nonlocal transfer. On the other hand, we show that certain functions, e.g., the compressive component of the magnetic energy cascade, exhibit a more complex behavior that varies both with regime and numerical method. Having established a basis for the analysis in the compressible regime, the method can now be applied to study a broader parameter space.

  11. Targeting Low-Energy Ballistic Lunar Transfers

    Science.gov (United States)

    Parker, Jeffrey S.

    2010-01-01

    Numerous low-energy ballistic transfers exist between the Earth and Moon that require less fuel than conventional transfers, but require three or more months of transfer time. An entirely ballistic lunar transfer departs the Earth from a particular declination at some time in order to arrive at the Moon at a given time along a desirable approach. Maneuvers may be added to the trajectory in order to adjust the Earth departure to meet mission requirements. In this paper, we characterize the (Delta)V cost required to adjust a low-energy ballistic lunar transfer such that a spacecraft may depart the Earth at a desirable declination, e.g., 28.5(white bullet), on a designated date. This study identifies the optimal locations to place one or two maneuvers along a transfer to minimize the (Delta)V cost of the transfer. One practical application of this study is to characterize the launch period for a mission that aims to launch from a particular launch site, such as Cape Canaveral, Florida, and arrive at a particular orbit at the Moon on a given date using a three-month low-energy transfer.

  12. Wireless energy transfer between anisotropic metamaterials shells

    Energy Technology Data Exchange (ETDEWEB)

    Díaz-Rubio, Ana; Carbonell, Jorge; Sánchez-Dehesa, José, E-mail: jsdehesa@upv.es

    2014-06-15

    The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: •Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. •Exchange of electromagnetic energy between shells with high efficiency is analyzed. •Strong coupling is supported with high wireless transfer efficiency. •End-to-end energy transfer efficiencies higher than 83% can be predicted.

  13. Ultrafast intermolecular energy transfer in heavy water

    NARCIS (Netherlands)

    Piatkowski, L.; Eisenthal, K.B.; Bakker, H.J.

    2009-01-01

    We report on a study of the vibrational energy relaxation and resonant vibrational (Forster) energy transfer of the OD vibrations of D2O and mixtures of D2O and H2O using femtosecond mid-infrared spectroscopy. We observe the lifetime of the OD vibrations of bulk D2O to be 400 +/- 30 fs. The rate of

  14. Energy transfer in turbulence under rotation

    Science.gov (United States)

    Buzzicotti, Michele; Aluie, Hussein; Biferale, Luca; Linkmann, Moritz

    2018-03-01

    It is known that rapidly rotating turbulent flows are characterized by the emergence of simultaneous upscale and downscale energy transfer. Indeed, both numerics and experiments show the formation of large-scale anisotropic vortices together with the development of small-scale dissipative structures. However the organization of interactions leading to this complex dynamics remains unclear. Two different mechanisms are known to be able to transfer energy upscale in a turbulent flow. The first is characterized by two-dimensional interactions among triads lying on the two-dimensional, three-component (2D3C)/slow manifold, namely on the Fourier plane perpendicular to the rotation axis. The second mechanism is three-dimensional and consists of interactions between triads with the same sign of helicity (homochiral). Here, we present a detailed numerical study of rotating flows using a suite of high-Reynolds-number direct numerical simulations (DNS) within different parameter regimes to analyze both upscale and downscale cascade ranges. We find that the upscale cascade at wave numbers close to the forcing scale is generated by increasingly dominant homochiral interactions which couple the three-dimensional bulk and the 2D3C plane. This coupling produces an accumulation of energy in the 2D3C plane, which then transfers energy to smaller wave numbers thanks to the two-dimensional mechanism. In the forward cascade range, we find that the energy transfer is dominated by heterochiral triads and is dominated primarily by interaction within the fast manifold where kz≠0 . We further analyze the energy transfer in different regions in the real-space domain. In particular, we distinguish high-strain from high-vorticity regions and we uncover that while the mean transfer is produced inside regions of strain, the rare but extreme events of energy transfer occur primarily inside the large-scale column vortices.

  15. Energy transfer in crystalline alkali nitrates

    Energy Technology Data Exchange (ETDEWEB)

    Anan' ev, Vladimir [Department of Analytical Chemistry, Kemerovo State University, Krasnaya Str., 6, Kemerovo 650043 (Russian Federation)]. E-mail: eprlab@kemsu.ru

    2007-08-15

    The radiation annealing of peroxynitrite ions in pre-photolyzed (253.7nm) alkali nitrate crystals has been studied. This process is stated to be due to interaction with high-energy excited states of the nitrate ion symmetry E' than to low-energy excited states symmetry A{sub 1}{sup '}'. The distance of energy transfer has been found to be {approx}10nm.

  16. Energy technology transfer to developing countries

    International Nuclear Information System (INIS)

    Goldemberg, J.

    1991-01-01

    This paper gives some examples of how technology transfer can successfully be given to third world countries to allow them to benefit in their quest for economic growth and better standards of living through reduced energy consumption and environmental pollution. It also suggests methods by which obstacles such as high investment costs, lack of information, market demand, etc., can be overcome in order to motivate technological transfer by industrialized countries

  17. Nuclear energy technology transfer: the security barriers

    International Nuclear Information System (INIS)

    Rinne, R.L.

    1975-08-01

    The problems presented by security considerations to the transfer of nuclear energy technology are examined. In the case of fusion, the national security barrier associated with the laser and E-beam approaches is discussed; for fission, the international security requirements, due to the possibility of the theft or diversion of special nuclear materials or sabotage of nuclear facilities, are highlighted. The paper outlines the nuclear fuel cycle and terrorist threat, examples of security barriers, and the current approaches to transferring technology. (auth)

  18. Energy transfer in structured and unstructured environments

    DEFF Research Database (Denmark)

    Iles-Smith, Jake; Dijkstra, Arend G.; Lambert, Neill

    2016-01-01

    We explore excitonic energy transfer dynamics in a molecular dimer system coupled to both structured and unstructured oscillator environments. By extending the reaction coordinate master equation technique developed by Iles-Smith et al. [Phys. Rev. A 90, 032114 (2014)], we go beyond the commonly...... used Born-Markov approximations to incorporate system-environment correlations and the resultant non-Markovian dynamical effects. We obtain energy transfer dynamics for both underdamped and overdamped oscillator environments that are in perfect agreement with the numerical hierarchical equations....... We find that though an enhancement of the dimer energy transfer rate can be obtained when compared to an unstructured environment, its magnitude is rather sensitive to both the dimer-peak resonance conditions and the relative strengths of the underdamped and overdamped contributions. (C) 2016 AIP...

  19. Theory of coherent resonance energy transfer

    International Nuclear Information System (INIS)

    Jang, Seogjoo; Cheng, Y.-C.; Reichman, David R.; Eaves, Joel D.

    2008-01-01

    A theory of coherent resonance energy transfer is developed combining the polaron transformation and a time-local quantum master equation formulation, which is valid for arbitrary spectral densities including common modes. The theory contains inhomogeneous terms accounting for nonequilibrium initial preparation effects and elucidates how quantum coherence and nonequilibrium effects manifest themselves in the coherent energy transfer dynamics beyond the weak resonance coupling limit of the Foerster and Dexter (FD) theory. Numerical tests show that quantum coherence can cause significant changes in steady state donor/acceptor populations from those predicted by the FD theory and illustrate delicate cooperation of nonequilibrium and quantum coherence effects on the transient population dynamics.

  20. Rotational Energy Transfer in N2

    Science.gov (United States)

    Huo, Winifred M.

    1994-01-01

    Using the N2-N2 intermolecular potential of van der Avoird et al. rotational energy transfer cross sections have been calculated using both the coupled state (CS) and infinite order sudden (IOS) approximations. The rotational energy transfer rate constants at 300 K, calculated in the CS approximation, are in reasonable agreement with the measurements of Sitz and Farrow. The IOS approximation qualitatively reproduces the dependence of the rate constants on the rotational quantum numbers, but consistently overestimates their magnitudes. The treatment of exchange symmetry will be discussed.

  1. Intramolecular energy transfer reactions in polymetallic

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, J.

    1990-11-01

    This report is concerned with intramolecular, energy-transfer reactions. The concept of preparing synthetically a complex molecular species, capable of absorbing a photon at one metal center (antenna fragment), transferring that energy to a second metal center (reactive fragment) via a bridging ligand was first reported by our group in 1979. It is now apparent that a major emphasis in inorganic chemistry in the future will involve these types of molecular ensembles. Complexes discussed include Rh, Ru, and Cu complexes. 23 refs., 14 tabs.

  2. Optimal Low Energy Earth-Moon Transfers

    Science.gov (United States)

    Griesemer, Paul Ricord; Ocampo, Cesar; Cooley, D. S.

    2010-01-01

    The optimality of a low-energy Earth-Moon transfer is examined for the first time using primer vector theory. An optimal control problem is formed with the following free variables: the location, time, and magnitude of the transfer insertion burn, and the transfer time. A constraint is placed on the initial state of the spacecraft to bind it to a given initial orbit around a first body, and on the final state of the spacecraft to limit its Keplerian energy with respect to a second body. Optimal transfers in the system are shown to meet certain conditions placed on the primer vector and its time derivative. A two point boundary value problem containing these necessary conditions is created for use in targeting optimal transfers. The two point boundary value problem is then applied to the ballistic lunar capture problem, and an optimal trajectory is shown. Additionally, the ballistic lunar capture trajectory is examined to determine whether one or more additional impulses may improve on the cost of the transfer.

  3. Nonclassical energy transfer in photosynthetic FMO complex

    Directory of Open Access Journals (Sweden)

    Abramavicius Vytautas

    2013-03-01

    Full Text Available Excitation energy transfer in a photosynthetic FMO complex has been simulated using the stochastic Schrödinger equation. Fluctuating chromophore transition energies are simulated from the quantum correlation function which allows to properly include the finite temperature. The resulting excitation dynamics shows fast thermalization of chromophore occupations into proper thermal equilibrium. The relaxation process is characterized by entropy dynamics, which shows nonclassical behavior.

  4. Distance dependence of fluorescence resonance energy transfer

    Indian Academy of Sciences (India)

    Deviations from the usual -6 dependence of the rate of fluorescence resonance energy transfer (FRET) on the distance between the donor and the acceptor have been a common scenario in the recent times. In this paper, we present a critical analysis of the distance dependence of FRET, and try to illustrate the non--6 ...

  5. Risk transfer via energy savings insurance

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Evan

    2001-10-01

    Among the key barriers to investment in energy efficiency improvements are uncertainties about attaining projected energy savings and apprehension about potential disputes over these savings. The fields of energy management and risk management are thus intertwined. While many technical methods have emerged to manage performance risks (e.g. building commissioning), financial risk transfer techniques are less developed in the energy management arena than in other more mature segments of the economy. Energy Savings Insurance (ESI) - formal insurance of predicted energy savings - is one method of transferring financial risks away from the facility owner or energy services contractor. ESI offers a number of significant advantages over other forms of financial risk transfer, e.g. savings guarantees or performance bonds. ESI providers manage risk via pre-construction design review as well as post-construction commissioning and measurement and verification of savings. We found that the two mos t common criticisms of ESI - excessive pricing and onerous exclusions - are not born out in practice. In fact, if properly applied, ESI can potentially reduce the net cost of energy savings projects by reducing the interest rates charged by lenders, and by increasing the level of savings through quality control. Debt service can also be ensured by matching loan payments to projected energy savings while designing the insurance mechanism so that payments are made by the insurer in the event of a savings shortfall. We estimate the U.S. ESI market potential of $875 million/year in premium income. From an energy-policy perspective, ESI offers a number of potential benefits: ESI transfers performance risk from the balance sheet of the entity implementing the energy savings project, thereby freeing up capital otherwise needed to ''self-insure'' the savings. ESI reduces barriers to market entry of smaller energy services firms who do not have sufficiently strong balance

  6. Risk transfer via energy savings insurance; TOPICAL

    International Nuclear Information System (INIS)

    Mills, Evan

    2001-01-01

    Among the key barriers to investment in energy efficiency improvements are uncertainties about attaining projected energy savings and apprehension about potential disputes over these savings. The fields of energy management and risk management are thus intertwined. While many technical methods have emerged to manage performance risks (e.g. building commissioning), financial risk transfer techniques are less developed in the energy management arena than in other more mature segments of the economy. Energy Savings Insurance (ESI) - formal insurance of predicted energy savings - is one method of transferring financial risks away from the facility owner or energy services contractor. ESI offers a number of significant advantages over other forms of financial risk transfer, e.g. savings guarantees or performance bonds. ESI providers manage risk via pre-construction design review as well as post-construction commissioning and measurement and verification of savings. We found that the two mos t common criticisms of ESI - excessive pricing and onerous exclusions - are not born out in practice. In fact, if properly applied, ESI can potentially reduce the net cost of energy savings projects by reducing the interest rates charged by lenders, and by increasing the level of savings through quality control. Debt service can also be ensured by matching loan payments to projected energy savings while designing the insurance mechanism so that payments are made by the insurer in the event of a savings shortfall. We estimate the U.S. ESI market potential of$875 million/year in premium income. From an energy-policy perspective, ESI offers a number of potential benefits: ESI transfers performance risk from the balance sheet of the entity implementing the energy savings project, thereby freeing up capital otherwise needed to ''self-insure'' the savings. ESI reduces barriers to market entry of smaller energy services firms who do not have sufficiently strong balance sheets to self

  7. Risk transfer via energy-savings insurance

    International Nuclear Information System (INIS)

    Mills, Evan

    2003-01-01

    Among the key barriers to investment in energy efficiency are uncertainties about attaining projected energy savings and potential disputes over stipulated savings. The fields of energy management and risk management are thus intertwined. While many technical methods have emerged to manage performance risks (e.g. building diagnostics and commissioning), financial methods are less developed in the energy management arena than in other segments of the economy. Energy-savings insurance (ESI) - formal insurance of predicted energy savings - transfers and spreads both types of risk over a larger pool of energy efficiency projects and reduces barriers to market entry of smaller energy service firms who lack sufficiently strong balance sheets to self-insure the savings. ESI encourages those implementing energy-saving projects to go beyond standard measures and thereby achieve more significant levels of energy savings. Insurance providers are proponents of improved savings measurement and verification techniques, as well as maintenance, thereby contributing to national energy-saving objectives. If properly applied, ESI can potentially reduce the net cost of energy-saving projects by reducing the interest rates charged by lenders, and by increasing the level of savings through quality control. Governmental agencies have been pioneers in the use of ESI and could continue to play a role

  8. Perspective of energy transfer from light energy into biological energy

    OpenAIRE

    Xuan, Mingjun; Zhao, Jie; Shao, Jingxin; Li, Qi; Li, Junbai

    2016-01-01

    Energy has always been the most concerned topic in the world due to the large consumption. Various types of energy have been exploited and developed to enhance the output amount so that high requirements can be met. Like the hydro-energy, wind energy, and tidal energy, light energy as a renewable, clean, and widespread energy can be easily harvested. In microcosmic scale, some specific proteins and enzymes in green plants and bacteria play an important role in light harvest and energy convers...

  9. Low Energy Transfer to the Moon

    OpenAIRE

    Koon, W. S.; Lo, M. W.; Marsden, J. E.; Ross, S. D.

    2001-01-01

    In 1991, the Japanese Hiten mission used a low energy transfer with a ballistic capture at the Moon which required less Delta V than a standard Hohmann transfer. In this paper, we apply the dynamical systems techniques developed in our earlier work to reproduce systematically a Hiten-like mission. We approximate the Sun–Earth–Moon-spacecraft 4-body system as two 3-body systems. Using the invariant manifold structures of the Lagrange points of the 3-body systems, we are able to construct low e...

  10. Stochastic Modelling of Wireless Energy Transfer

    Science.gov (United States)

    Veilleux, Shaun; Almaghasilah, Ahmed; Abedi, Ali; Wilkerson, DeLisa

    2017-01-01

    This study investigates the efficiency of a new method of powering remote sensors by the means of wireless energy transfer. The increased use of sensors for data collection comes with the inherent cost of supplying power from sources such as power cables or batteries. Wireless energy transfer technology eliminates the need for power cables or periodic battery replacement. The time and cost of setting up or expanding a sensor network will be reduced while allowing sensors to be placed in areas where running power cables or battery replacement is not feasible. This paper models wireless channels for power and data separately. Smart scheduling for the data channel is proposed to avoid transmitting data on a noisy channel where the probability of data loss is high to improve power efficiency. Analytical models have been developed and verified using simulations.

  11. Energy and electron transfers in photosensitive chitosan.

    Science.gov (United States)

    Wu, Shuizhu; Zeng, Fang; Zhu, Hongping; Tong, Zhen

    2005-02-23

    Novel photosensitive chitosan was synthesized. The modified chitosan contains photoactive anthracene chromophore moieties. Because of the presence of anthracene chromophores, the polymer absorbs light in the UV-vis spectral region. Electronically excited polymeric chromophores could participate in energy and electron transfer processes to the suitable acceptor molecules. The photosensitive chitosan developed herein could could act as an efficient photosensitizer and lead to the application of the environmentally friendly photocatalytic system for an efficient degradation of a wide range of pollutants.

  12. Energy transfer problems of ball lightning

    Energy Technology Data Exchange (ETDEWEB)

    Egely, G.

    1986-04-01

    The paper analyzes the energy transport phenomenon of ball lightnings, but momentum and charge transport phenomena are considered as well. The physical properties as energy density and transfer are investigated using several observers' accounts of interactions with different objects. It is shown that contrary to previous assumptions the ball lightning has negative electric charge, and very high internal energy density. Both internal and external energy source models are analyzed, and it is shown that regardless to the details of a given model neither of them can explain actual observations. This has been validated by a well documented case study, and by several additional observations. An entirely new, testable model is suggested, which is able to stand for all observed properties of ball lightnings, and it explains the cause of rarity of ball lightnings, and the reasons of the unsuccessful experimental efforts. It is shown that the plasma sphere is just a visible side effect of a more important phenomenon.

  13. Resonance Energy Transfer Molecular Imaging Application in Biomedicine

    OpenAIRE

    NIE Da-hong1,2;TANG Gang-hua1,3

    2016-01-01

    Resonance energy transfer molecular imaging (RETI) can markedly improve signal intensity and tissue penetrating capacity of optical imaging, and have huge potential application in the deep-tissue optical imaging in vivo. Resonance energy transfer (RET) is an energy transition from the donor to an acceptor that is in close proximity, including non-radiative resonance energy transfer and radiative resonance energy transfer. RETI is an optical imaging technology that is based on RET. RETI mainly...

  14. Resonance Energy Transfer Molecular Imaging Application in Biomedicine

    Directory of Open Access Journals (Sweden)

    NIE Da-hong1,2;TANG Gang-hua1,3

    2016-11-01

    Full Text Available Resonance energy transfer molecular imaging (RETI can markedly improve signal intensity and tissue penetrating capacity of optical imaging, and have huge potential application in the deep-tissue optical imaging in vivo. Resonance energy transfer (RET is an energy transition from the donor to an acceptor that is in close proximity, including non-radiative resonance energy transfer and radiative resonance energy transfer. RETI is an optical imaging technology that is based on RET. RETI mainly contains fluorescence resonance energy transfer imaging (FRETI, bioluminescence resonance energy transfer imaging (BRETI, chemiluminescence resonance energy transfer imaging (CRETI, and radiative resonance energy transfer imaging (RRETI. RETI is the hot field of molecular imaging research and has been widely used in the fields of biology and medicine. This review mainly focuses on RETI principle and application in biomedicine.

  15. Energy transfer and kinetics in mechanochemistry.

    Science.gov (United States)

    Chen, Zhiliang; Lu, Shengyong; Mao, Qiongjing; Buekens, Alfons; Wang, Yuting; Yan, Jianhua

    2017-11-01

    Mechanochemistry (MC) exerts extraordinary degradation and decomposition effects on many chlorinated, brominated, and even fluorinated persistent organic pollutants (POPs). However, its application is still limited by inadequate study of its reaction kinetic aspects. In the present work, the ball motion and energy transfer in planetary ball mill are investigated in some detail. Almost all milling parameters are summarised in a single factor-total effective impact energy. Furthermore, the MC kinetic between calcium oxide/Al and hexachlorobenzene is well established and modelled. The results indicate that total effective impact energy and reagent ratio are the two factors sufficient for describing the MC degradation degree of POPs. The reaction rate constant only depends on the chemical properties of reactants, so it could be used as an important index to appraise the quality of MC additives. This model successfully predicts the reaction rate for different operating conditions, indicating that it could be suitably applied for conducting MC reactions in other reactors.

  16. The 1999 Conference on Molecular Energy Transfer (COMET XVI)

    National Research Council Canada - National Science Library

    1999-01-01

    The Final Proceedings for The 1999 Conference on Molecular Energy Transfer (COMET XVI), 20-25 June 1999. This is an interdisciplinary conference that concerns energy transfer in nonequilibrium gases and liquids...

  17. Wireless energy transfer through non-resonant magnetic coupling

    DEFF Research Database (Denmark)

    Peng, Liang; Breinbjerg, Olav; Mortensen, Asger

    2010-01-01

    We demonstrate by theoretical analysis and experimental verification that mid-range wireless energy transfer systems may take advantage of de-tuned coupling devices, without jeopardizing the energy transfer efficiency. Allowing for a modest de-tuning of the source coil, energy transfer systems co...

  18. Energy transfer during the hydroentanglement of fibres

    CSIR Research Space (South Africa)

    Moyo, D

    2012-10-01

    Full Text Available , an objective comparison was made. METHODOLOGY The hydroentangled nonwovens were produced from viscose and polylactic fibres according to the 3x3 Box-Behnken experimental design. The processing variables, namely, average fabric weight, machine speed... discharge coefficient, ?w is the water density = 1 000 kg/m3, and ni?li is the number of waterjets on the ith injector.1 Energy transfer during the hydroentanglement of fi bres D MOYO CSIR Materials Science and Manufacturing, PO Box 1124, Port Elizabeth...

  19. Energy transfer in the hybrid system dynamics (energy transfer in the axially moving double belt system)

    Energy Technology Data Exchange (ETDEWEB)

    Stevanovic-Hedrih, Katica R. [University of Nis, Mathematical Institute SANU, Belgrade, Faculty of Mechanical Engineering, Nis (RS)

    2009-07-15

    First, as an introduction, using the author's published references, a short survey of an analytical study of the energy transfer between two coupled subsystems, as well as between a linear and nonlinear oscillators of a hybrid system, in the free and forced vibrations of a different type of inter connections between subsystems is presented. Second, as author's new research result, an analytical study of the energy transfer between two coupled like-string belts interconnected by light pure elastic layer in the axially moving sandwich double belt system, in the free vibrations is presented. On the basis of the obtained analytical expressions for the kinetic and potential energy of the belts and potential energy of the of light pure elastic distributed layer numerous conclusions are derived. In the pure linear elastic double belt system no transfer energy between different eigen modes of transversal vibrations of the axially moving double belt system, but in every from of the set of the infinite numbers eigen modes, there are transfer energy between belts. Each of the eigen modes of the free transversal vibrations are like two-frequency. The change of the potential energy of the booth belts is four frequency, and interaction part of the potential energy is one frequency in the each eigen mode. Changes of the kinetic energy of the both belts of the sandwich double axially moving bet system is two frequency like oscillatory regimes with two time multiplicities of the eineg frequencies of the corresponding eigen amplitude mode. (orig.)

  20. Nanophotonics: Energy Transfer towards Enhanced Luminescent Chemosensing

    Directory of Open Access Journals (Sweden)

    Roy Aad

    2015-04-01

    Full Text Available We discuss a recently proposed novel photonic approach for enhancing the fluorescence of extremely thin chemosensing polymer layers. We present theoretical and experimental results demonstrating the concept of gain-assisted waveguided energy transfer (G-WET on a very thin polymer nanolayer spincoated on an active ZnO thin film. The G-WET approach is shown to result in an 8-fold increase in polymer fluorescence. We then extend the G-WET concept to nanostructured media. The benefits of using active nanostructured substrates on the sensitivity and fluorescence of chemosensing polymers are discussed. Preliminary theoretical results on enlarged sensing surface and photonic band-gap are presented.

  1. Fluorescence energy transfer on erythrocyte membranes

    International Nuclear Information System (INIS)

    Fuchs, H.M.; Hof, M.; Lawaczeck, R.

    1995-08-01

    Stationary and time-dependent fluorescence have been measured for a donor/acceptor (DA) pair bound to membrane proteins of bovine erythrocyte ghosts. The donor N-(p-(2-benzoxazolyl)phenyl)-maleimid (BMI) and the acceptor fluram bind to SH- and NH 2 -residues, respectively. The fluorescence spectra and the time-dependent emission are consistent with a radiationless fluorescence energy transfer (RET). The density of RET-effective acceptor binding sites c=0.072 nm -2 was calculated on the basis of the two-dimensional Foerster-kinetic. Band3 protein is the only membrane spanning protein with accessible SH-groups, and therefore only effective binding sites on the band3 protein are counted for the RET measurements performed. (author). 23 refs, 4 figs, 2 tabs

  2. Radiation energy transfer in RNA polymers

    Science.gov (United States)

    Kempner, E. S.; Salovey, R.; Bernstein, S. L.

    1996-11-01

    Ribozymes are a special class of polyribonucleotide (RNA) molecules which possess intrinsic catalytic activity, capable of cleaving nucleic acid substrates. RNA molecules were synthesized containing a hammerhead ribozyme moiety of 52 nucleotides linked to an inactive leader sequence, for total lengths of either 262 or 1226 nucleotides. These RNAs were frozen and irradiated with high energy electrons. Surviving ribozyme activity was determined, using the ability of the irradiated ribozymes to cleave a labeled substrate. From the same irradiated samples, the amount of intact RNA remaining was determined following denaturing gel electrophoresis. Radiation target analyses of these data revealed a structural target size of 80 kDa and a ribozyme activity target size of 15 kDa for the smaller ribozyme, and 319 and 16 kDa, respectively, for the larger ribozyme. The disparity in target size for activity vs structure indicates that, in contrast to proteins, there is no spread of radiation damage far from the primary site of ionization in RNA molecules. The smaller target size for activity indicates that only primary ionizations occurring in the specific active region are effective. This is similar to the case for oligosaccharides. It is concluded that the presence of the ribose sugar in the polymer chain restricts radiation damage to a small region and prevents major energy transfer throughout the molecule.

  3. Fluorescence resonance energy transfer from tryptophan in human ...

    Indian Academy of Sciences (India)

    TECS

    and free energy change for the process have been reported. The AODIQ–HSA complex results in fluores- cence resonance energy transfer (FRET) from the tryptophan moiety of HSA to the probe. The critical energy-transfer distance (R0) for FRET and the Stern–Volmer constant (Ksv) for the fluorescence quench- ing of the ...

  4. Energy Transfer and Triadic Interactions in Compressible Turbulence

    Science.gov (United States)

    1997-11-01

    No. 97-62 ANNIVERSARY Energy Transfer and Triadic Interactions in Compressible Turbulence F. Bataille INSA, Centre for Thermique de Lyon, France Ye...19480 November 1997 1997112 ENERGY TRANSFER AND TRIADIC INTERACTIONS IN COMPRESSIBLE TURBULENCE* F. BATAILLE t , YE ZHOU1 , AND JEAN-PIERRE BERTOGLIO...Abstract. Using a two-point closure theory, the Eddy-Damped-Quasi-Normal-Markovian (EDQNM) approximation, we have investigated the energy transfer

  5. The security energy encryption in wireless power transfer

    Science.gov (United States)

    Sadzali, M. N.; Ali, A.; Azizan, M. M.; Albreem, M. A. M.

    2017-09-01

    This paper presents a concept of security in wireless power transfer (WPT) by applying chaos theory. Chaos theory is applied as a security system in order to safeguard the transfer of energy from a transmitter to the intended receiver. The energy encryption of the wireless power transfer utilizes chaos theory to generate the possibility of a logistic map for the chaotic security key. The simulation for energy encryption wireless power transfer system was conducted by using MATLAB and Simulink. By employing chaos theory, the chaotic key ensures the transmission of energy from transmitter to its intended receiver.

  6. Auroral precipitating energy during long magnetic storms

    Science.gov (United States)

    Cardoso, F. R.; Alves, M. V.; Parks, G. K.; Fillingim, M. O.; Simões Junior, F. J. R.; Costa Junior, E.; Koga, D.

    2017-06-01

    The power energy input carried by precipitating electrons into the auroral zone is an important parameter for understanding the solar wind-magnetosphere energy transfer processes and magnetic storms triggering. Some magnetic storms present a peculiar long recovery phase, lasting for many days or even weeks, which can be associated with the intense and long-duration auroral activity named HILDCAA (High Intensity Long Duration Continuous AE Activity). The auroral energy input during HILDCAAs has been pointed out as an essential key issue, although there have been very few quantitative studies on this topic. In the present work, we have estimated the auroral electron precipitating energy during the events of long (LRP) and short (SRP) storm recovery phase. The energy has been calculated from the images produced by the Ultraviolet Imager (UVI) on board the Polar satellite. In order to obtain accurate energy values, we developed a dayglow estimate method to remove solar contamination from the UVI images, before calculating the energy. We compared the UVI estimate to the Hemispheric Power (HP), to the empirical power obtained from the AE index, and to the solar wind input power. Our results showed that the UVI electron precipitating power for the LRP events presented a quasiperiodic fluctuation, which has been confirmed by the other estimates. We found that the LRP events are a consequence of a directly driven system, where there is no long-term energy storage in the magnetosphere, and the auroral electrojets during these events are directly affected by the electron precipitating power.

  7. Forster resonance energy transfer and kinesin motor proteins

    NARCIS (Netherlands)

    Prevo, B.; Peterman, E.J.G.

    2014-01-01

    Förster Resonance Energy Transfer (FRET) is the phenomenon of non-radiative transfer of electronic excitations from a donor fluorophore to an acceptor, mediated by electronic dipole-dipole coupling. The transfer rate and, as a consequence, efficiency depend non-linearly on the distance between the

  8. Estimating and modeling charge transfer from the SAPT induction energy.

    Science.gov (United States)

    Deng, Shi; Wang, Qiantao; Ren, Pengyu

    2017-10-05

    Recent studies using quantum mechanics energy decomposition methods, for example, SAPT and ALMO, have revealed that the charge transfer energy may play an important role in short ranged inter-molecular interactions, and have a different distance dependence comparing with the polarization energy. However, the charge transfer energy component has been ignored in most current polarizable or non-polarizable force fields. In this work, first, we proposed an empirical decomposition of SAPT induction energy into charge transfer and polarization energy that mimics the regularized SAPT method (ED-SAPT). This empirical decomposition is free of the divergence issue, hence providing a good reference for force field development. Then, we further extended this concept in the context of AMOEBA polarizable force field, proposed a consistent approach to treat the charge transfer phenomenon. Current results show a promising application of this charge transfer model in future force field development. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Ultrafast Energy Transfer in an Artificial Photosynthetic Antenna

    Directory of Open Access Journals (Sweden)

    van Grondelle R.

    2013-03-01

    Full Text Available We temporally resolved energy transfer kinetics in an artificial light-harvesting dyad composed of a phthalocyanine covalently linked to a carotenoid. Upon carotenoid photo-excitation, energy transfers within ≈100fs (≈52% efficiency to the phthalocyanine.

  10. Reversible Triplet Energy Transfer between Neo- Alloocimene and Anthracene

    DEFF Research Database (Denmark)

    Gorman, A. A.; Hamblett, I.; Jensen, Niels-Henrik

    1984-01-01

    The rate constants for triplet energy transfer between neo-alloocimene and anthracene have been redetermined by a combination of pulsed laser photolysi......The rate constants for triplet energy transfer between neo-alloocimene and anthracene have been redetermined by a combination of pulsed laser photolysi...

  11. Significance of a Recurring Function in Energy Transfer

    Science.gov (United States)

    Mishra, Subodha

    2017-01-01

    The appearance of a unique function in the energy transfer from one system to the other in different physical situations such as electrical, mechanical, optical, and quantum mechanical processes is established in this work. Though the laws governing the energy transformation and its transfer from system to system are well known, here we notice a…

  12. Luminescence and energy transfer in hexavalent uranium compounds

    International Nuclear Information System (INIS)

    Krol, D.M.

    1980-01-01

    The author investigates the luminescence of uranate groups in uranates and examines the possible role of excitation energy transfer between the uranate groups in these compounds. Some uranyl compounds were investigated in order to compare the energy transfer in these compounds with that in the uranates. (G.T.H.)

  13. Mode-to-mode energy transfers in convective patterns

    Indian Academy of Sciences (India)

    Abstract. We investigate the energy transfer between various Fourier modes in a low- dimensional model for thermal convection. We have used the formalism of mode-to-mode energy transfer rate in our calculation. The evolution equations derived using this scheme is the same as those derived using the hydrodynamical ...

  14. Multiscale Molecular Dynamics Approach to Energy Transfer in Nanomaterials.

    Science.gov (United States)

    Espinosa-Duran, John M; Sereda, Yuriy V; Abi-Mansour, Andrew; Ortoleva, Peter

    2018-02-13

    After local transient fluctuations are dissipated, in an energy transfer process, a system evolves to a state where the energy density field varies slowly in time relative to the dynamics of atomic collisions and vibrations. Furthermore, the energy density field remains strongly coupled to the atomic scale processes (collisions and vibrations), and it can serve as the basis of a multiscale theory of energy transfer. Here, a method is introduced to capture the long scale energy density variations as they coevolve with the atomistic state in a way that yields insights into the basic physics and implies an efficient algorithm for energy transfer simulations. The approach is developed based on the N-atom Liouville equation and an interatomic force field and avoids the need for conjectured phenomenological equations for energy transfer and other processes. The theory is demonstrated for sodium chloride and silicon dioxide nanoparticles immersed in a water bath via molecular dynamics simulations of the energy transfer between a nanoparticle and its aqueous host fluid. The energy density field is computed for different sets of symmetric grid densities, and the multiscale theory holds when slowly varying energy densities at the nodes are obtained. Results strongly depend on grid density and nanoparticle constituent material. A nonuniform temperature distribution, larger thermal fluctuations in the nanoparticle than in the bath, and enhancement of fluctuations at the surface, which are expressed due to the atomic nature of the systems, are captured by this method rather than by phenomenological continuum energy transfer models.

  15. Energy technology transfer to developing countries

    International Nuclear Information System (INIS)

    Butera, F.; Farinelli, U.

    1992-01-01

    With the use of critical analyses of some examples of technology transfer by industrialized to third world countries, this paper illustrates the importance, in technology transfer, of giving due consideration to the specific social and marketing contexts of the targeted developing country and its physical and financial capability to acquire all the technology necessary to make the total realization of a desired industrial scheme feasible from the economic, technical and social points of view. It also indicates that the most effective transfers are those in which efforts are made to optimize local work force learning levels, process scheme efficiency and cost through the careful integration of innovative with conventional technologies

  16. Critical Role of Energy Transfer Between Terbium Ions for Suppression of Back Energy Transfer in Nonanuclear Terbium Clusters.

    Science.gov (United States)

    Omagari, Shun; Nakanishi, Takayuki; Kitagawa, Yuichi; Seki, Tomohiro; Fushimi, Koji; Ito, Hajime; Meijerink, Andries; Hasegawa, Yasuchika

    2016-11-15

    Lanthanide (Ln(III)) complexes form an important class of highly efficient luminescent materials showing characteristic line emission after efficient light absorption by the surrounding ligands. The efficiency is however lowered by back energy transfer from Ln(III) ion to the ligands, especially at higher temperatures. Here we report a new strategy to reduce back energy transfer losses. Nonanuclear lanthanide clusters containing terbium and gadolinium ions, Tb n Gd 9-n clusters ([Tb n Gd 9-n (μ-OH) 10 (butylsalicylate) 16 ] + NO 3 - , n = 0, 1, 2, 5, 8, 9), were synthesized to investigate the effect of energy transfer between Tb(III) ions on back energy transfer. The photophysical properties of Tb n Gd 9-n clusters were studied by steady-state and time-resolved spectroscopic techniques and revealed a longer emission lifetime with increasing number of Tb(III) ions in Tb n Gd 9-n clusters. A kinetic analysis of temperature dependence of the emission lifetime show that the energy transfer between Tb(III) ions competes with back energy transfer. The experimental results are in agreement with a theoretical rate equation model that confirms the role of energy transfer between Tb(III) ions in reducing back energy transfer losses. The results provide a new strategy in molecular design for improving the luminescence efficiency in lanthanide complexes which is important for potential applications as luminescent materials.

  17. Visual prosthesis wireless energy transfer system optimal modeling.

    Science.gov (United States)

    Li, Xueping; Yang, Yuan; Gao, Yong

    2014-01-16

    Wireless energy transfer system is an effective way to solve the visual prosthesis energy supply problems, theoretical modeling of the system is the prerequisite to do optimal energy transfer system design. On the basis of the ideal model of the wireless energy transfer system, according to visual prosthesis application condition, the system modeling is optimized. During the optimal modeling, taking planar spiral coils as the coupling devices between energy transmitter and receiver, the effect of the parasitic capacitance of the transfer coil is considered, and especially the concept of biological capacitance is proposed to consider the influence of biological tissue on the energy transfer efficiency, resulting in the optimal modeling's more accuracy for the actual application. The simulation data of the optimal model in this paper is compared with that of the previous ideal model, the results show that under high frequency condition, the parasitic capacitance of inductance and biological capacitance considered in the optimal model could have great impact on the wireless energy transfer system. The further comparison with the experimental data verifies the validity and accuracy of the optimal model proposed in this paper. The optimal model proposed in this paper has a higher theoretical guiding significance for the wireless energy transfer system's further research, and provide a more precise model reference for solving the power supply problem in visual prosthesis clinical application.

  18. ENERGY TRANSFERS IN THREE-FREQUENCY CIRCUITS WITH MAGNETIC COUPLING,

    Science.gov (United States)

    Efforts concern an analysis of frequency conversion systems. The energy transfers in three-frequency circuits coupled through a nonlinear magnetic...core are studied. Rules are given to determine the type of nonlinear characteristic needed to make energy transfers possible for given frequency...combinations. General energy relations of the Manley Rowe type are discussed, examining the validity and limitations of these relations for the practical

  19. The Grover energy transfer algorithm for relativistic speeds

    International Nuclear Information System (INIS)

    Garcia-Escartin, Juan Carlos; Chamorro-Posada, Pedro

    2010-01-01

    Grover's algorithm for quantum search can also be applied to classical energy transfer. The procedure takes a system in which the total energy is equally distributed among N subsystems and transfers most of it to one marked subsystem. We show that in a relativistic setting the efficiency of this procedure can be improved. We will consider the transfer of relativistic kinetic energy in a series of elastic collisions. In this case, the number of steps of the energy transfer procedure approaches 1 as the initial velocities of the objects become closer to the speed of light. This is a consequence of introducing nonlinearities in the procedure. However, the maximum attainable transfer will depend on the particular combination of speed and number of objects. In the procedure, we will use N elements, as in the classical non-relativistic case, instead of the log 2 (N) states of the quantum algorithm.

  20. Pair transfer processes probed at deep sub barrier energies

    International Nuclear Information System (INIS)

    Corradi, L.; Mason, P.; Fioretto, E.; Michelagnoli, C.; Stefanini, A.M.; Valiente-Dobon, J.J.; Szinler, S.; Jelavic-Malenica, D.; Soic, N.; Pollarolo, G.; Farnea, E.; Montagnoli, G.; Montanari, D.; Scarlassara, F.; Ur, C.A.; Gadea, A.; Haas, F.; Marginean, N.

    2011-01-01

    Multinucleon transfer cross sections in the system 40 Ca+ 96 Zr have been measured at bombarding energies ranging from the Coulomb barrier to ∼ 25% below. Target-like (lighter) recoils in inverse kinematics have been completely identified in A,Z and Q-value with the large solid angle magnetic spectrometer PRISMA. The experimental slopes of the neutron transfer probabilities at large internuclear separation are consistent with the values derived from the binding energies. A phenomenological interpretation of the transfer probabilities indicates the presence of enhanced values for the even number of neutron transfers. (authors)

  1. A planning framework for transferring building energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

    1990-07-01

    Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report presents key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (OBT). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some 60 example technology transfer activities; and documents the Advisory Group's recommendations. 37 refs., 3 figs., 12 tabs.

  2. Energy Transfer and Triadic Interactions in Compressible Turbulence

    Science.gov (United States)

    Bataille, F.; Zhou, Ye; Bertoglio, Jean-Pierre

    1997-01-01

    Using a two-point closure theory, the Eddy-Damped-Quasi-Normal-Markovian (EDQNM) approximation, we have investigated the energy transfer process and triadic interactions of compressible turbulence. In order to analyze the compressible mode directly, the Helmholtz decomposition is used. The following issues were addressed: (1) What is the mechanism of energy exchange between the solenoidal and compressible modes, and (2) Is there an energy cascade in the compressible energy transfer process? It is concluded that the compressible energy is transferred locally from the solenoidal part to the compressible part. It is also found that there is an energy cascade of the compressible mode for high turbulent Mach number (M(sub t) greater than or equal to 0.5). Since we assume that the compressibility is weak, the magnitude of the compressible (radiative or cascade) transfer is much smaller than that of solenoidal cascade. These results are further confirmed by studying the triadic energy transfer function, the most fundamental building block of the energy transfer.

  3. Spectral kinetic energy transfer in turbulent premixed reacting flows.

    Science.gov (United States)

    Towery, C A Z; Poludnenko, A Y; Urzay, J; O'Brien, J; Ihme, M; Hamlington, P E

    2016-05-01

    Spectral kinetic energy transfer by advective processes in turbulent premixed reacting flows is examined using data from a direct numerical simulation of a statistically planar turbulent premixed flame. Two-dimensional turbulence kinetic-energy spectra conditioned on the planar-averaged reactant mass fraction are computed through the flame brush and variations in the spectra are connected to terms in the spectral kinetic energy transport equation. Conditional kinetic energy spectra show that turbulent small-scale motions are suppressed in the burnt combustion products, while the energy content of the mean flow increases. An analysis of spectral kinetic energy transfer further indicates that, contrary to the net down-scale transfer of energy found in the unburnt reactants, advective processes transfer energy from small to large scales in the flame brush close to the products. Triadic interactions calculated through the flame brush show that this net up-scale transfer of energy occurs primarily at spatial scales near the laminar flame thermal width. The present results thus indicate that advective processes in premixed reacting flows contribute to energy backscatter near the scale of the flame.

  4. Energy efficient building design. A transfer guide for local governments

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The fundamental concepts of the building design process, energy codes and standards, and energy budgets are introduced. These tools were combined into Energy Design Guidelines and design contract requirements. The Guidelines were repackaged for a national audience and a videotape for selling the concept to government executives. An effort to test transfer of the Guidelines to outside agencies is described.

  5. Energy Transfer and a Recurring Mathematical Function

    Science.gov (United States)

    Atkin, Keith

    2013-01-01

    This paper extends the interesting work of a previous contributor concerning the analogies between physical phenomena such as mechanical collisions and the transfer of power in an electric circuit. Emphasis is placed on a mathematical function linking these different areas of physics. This unifying principle is seen as an exciting opportunity to…

  6. Light Emission and Energy Transfer in Nanoscale Semiconductor Photonic Devices

    National Research Council Canada - National Science Library

    Kolbas, Robert

    1997-01-01

    The overall objective of this experimental program is to control the light emission properties and energy transfer mechanisms in nanoscale semiconductor structures in order to realize new or improved photonic devices...

  7. Fluorescence and Intramolecular Energy Transfer in Polyphenylene Dendrimers

    NARCIS (Netherlands)

    Liu, Daojun; Feyter, Steven De; Cotlet, Mircea; Stefan, Alina; Wiesler, Uwe-Martin; Herrmann, Andreas; Grebel-Koehler, Dörthe; Qu, Jianqiang; Müllen, Klaus; Schryver, Frans C. De

    2003-01-01

    The fluorescence of polyphenylene dendrimers and the intramolecular energy transfer in polyphenylene dendrimers containing a perylenediimide core have been investigated in this paper. Polyphenylene dendrimers composed of tens or hundreds of out-of-plane twisted phenyl units exhibit strong

  8. Mechanism of Triplet Energy Transfer in Photosynthetic Bacterial Reaction Centers.

    Science.gov (United States)

    Mandal, Sarthak; Carey, Anne-Marie; Locsin, Joshua; Gao, Bing-Rong; Williams, JoAnn C; Allen, James P; Lin, Su; Woodbury, Neal W

    2017-07-13

    In purple bacterial reaction centers, triplet excitation energy transfer occurs from the primary donor P, a bacteriochlorophyll dimer, to a neighboring carotenoid to prevent photodamage from the generation of reactive oxygen species. The B B bacteriochlorophyll molecule that lies between P and the carotenoid on the inactive electron transfer branch is involved in triplet energy transfer between P and the carotenoid. To expand the high-resolution spectral and kinetic information available for describing the mechanism, we investigated the triplet excited state formation and energy transfer pathways in the reaction center of Rhodobacter sphaeroides using pump-probe transient absorption spectroscopy over a broad spectral region on the nanosecond to microsecond time scale at both room temperature and at 77 K. Wild-type reaction centers were compared with a reaction center mutant (M182HL) in which B B is replaced by a bacteriopheophytin (Φ), as well as to reaction centers that lack the carotenoid. In wild-type reaction centers, the triplet energy transfer efficiency from P to the carotenoid was essentially unity at room temperature and at 77 K. However, in the M182HL mutant reaction centers, both the rate and efficiency of triplet energy transfer were decreased at room temperature, and at 77 K, no triplet energy transfer was observed, attributable to a higher triplet state energy of the bacteriopheophytin that replaces bacteriochlorophyll in this mutant. Finally, detailed time-resolved spectral analysis of P, carotenoid, and B B (Φ in the M182HL mutant) reveals that the triplet state of the carotenoid is coupled fairly strongly to the bridging intermediate B B in wild-type and Φ in the M182HL mutant, a fact that is probably responsible for the lack of any obvious intermediate 3 B B / 3 Φ transient formation during triplet energy transfer.

  9. Energy transfers and magnetic energy growth in small-scale dynamo

    KAUST Repository

    Kumar, Rohit Raj

    2013-12-01

    In this letter we investigate the dynamics of magnetic energy growth in small-scale dynamo by studying energy transfers, mainly energy fluxes and shell-to-shell energy transfers. We perform dynamo simulations for the magnetic Prandtl number Pm = 20 on 10243 grid using the pseudospectral method. We demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers moves towards lower wave numbers as dynamo evolves, which is the reason why the integral scale of the magnetic field increases with time. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. Copyright © EPLA, 2013.

  10. Exciton Transfer in Carbon Nanotube Aggregates for Energy Harvesting Applications

    Science.gov (United States)

    Davoody, Amirhossein; Karimi, Farhad; Knezevic, Irena

    Carbon nanotubes (CNTs) are promising building blocks for organic photovoltaic devices, owing to their tunable band gap, mechanical and chemical stability. We study intertube excitonic energy transfer between pairs of CNTs with different orientations and band gaps. The optically bright and dark excitonic states in CNTs are calculated by solving the Bethe-Salpeter equation. We calculate the exciton transfer rates due to the direct and exchange Coulomb interactions, as well as the second-order phonon-assisted processes. We show the importance of phonons in calculating the transfer rates that match the measurements. In addition, we discuss the contribution of optically inactive excited states in the exciton transfer process, which is difficult to determine experimentally. Furthermore, we study the effects of sample inhomogeneity, impurities, and temperature on the exciton transfer rate. The inhomogeneity in the CNT sample dielectric function can increase the transfer rate by about a factor of two. We show that the exciton confinement by impurities has a detrimental effect on the transfer rate between pairs of similar CNTs. The exciton transfer rate increases monotonically with increasing temperature. Support by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0008712.

  11. On Kinetics Modeling of Vibrational Energy Transfer

    Science.gov (United States)

    Gilmore, John O.; Sharma, Surendra P.; Cavolowsky, John A. (Technical Monitor)

    1996-01-01

    Two models of vibrational energy exchange are compared at equilibrium to the elementary vibrational exchange reaction for a binary mixture. The first model, non-linear in the species vibrational energies, was derived by Schwartz, Slawsky, and Herzfeld (SSH) by considering the detailed kinetics of vibrational energy levels. This model recovers the result demanded at equilibrium by the elementary reaction. The second model is more recent, and is gaining use in certain areas of computational fluid dynamics. This model, linear in the species vibrational energies, is shown not to recover the required equilibrium result. Further, this more recent model is inconsistent with its suggested rate constants in that those rate constants were inferred from measurements by using the SSH model to reduce the data. The non-linear versus linear nature of these two models can lead to significant differences in vibrational energy coupling. Use of the contemporary model may lead to significant misconceptions, especially when integrated in computer codes considering multiple energy coupling mechanisms.

  12. Dependence of the energy transfer to graphene on the excitation energy

    Energy Technology Data Exchange (ETDEWEB)

    Mackowski, Sebastian, E-mail: mackowski@fizyka.umk.pl; Kamińska, Izabela [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland)

    2015-07-13

    Fluorescence studies of natural photosynthetic complexes on a graphene layer demonstrate pronounced influence of the excitation wavelength on the energy transfer efficiency to graphene. Ultraviolet light yields much faster decay of fluorescence, with average efficiencies of the energy transfer equal to 87% and 65% for excitation at 405 nm and 640 nm, respectively. This implies that focused light changes locally the properties of graphene affecting the energy transfer dynamics, in an analogous way as in the case of metallic nanostructures. Demonstrating optical control of the energy transfer is important for exploiting unique properties of graphene in photonic and sensing architectures.

  13. Energy transfer in porous anodic alumina/rhodamine 110 nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Elhouichet, H., E-mail: habib.elhouichet@fst.rnu.tn [Laboratoire de Physico-Chimie des Materiaux Mineraux et leurs Applications, Centre National de Recherches en Sciences des Materiaux, B.P. 95, Hammam-Lif 2050 (Tunisia); Departement de Physique, Faculte des Sciences de Tunis, University of Tunis Elmanar 2092 Tunis (Tunisia); Harima, N.; Koyama, H. [Hyogo University of Teacher Education, Kato, Hyogo 673-1494 (Japan); Gaponenko, N.V. [Belarusian State University of Informatics and Radioelectronics, P. Browki St. 6, 220013 Minsk (Belarus)

    2012-09-15

    We have used porous anodic alumina (PAA) films as templates for embedding rhodamine 110 (Rh110) molecules and examined their photoluminescence (PL) properties in detail. The analysis of the polarization memory (PM) of PL strongly suggests that there is a significant energy transfer from PAA to Rh110 molecules. The effect of annealing the PAA layer on the PL properties of the nanocomposite has been studied. The results show that the energy transfer becomes more efficient in annealed PAA. - Highlights: Black-Right-Pointing-Pointer Porous anodic alumina-rhodamine 110 nanocomposites are elaborated. Black-Right-Pointing-Pointer Efficient energy transfer from the host to Rh110 molecules is evidenced from measurements of photoluminescence and degree of polarization memory spectra. Black-Right-Pointing-Pointer Thermal annealing of porous anodic alumina can improve the process of excitation transfer.

  14. Energy transfers in dynamos with small magnetic Prandtl numbers

    KAUST Repository

    Kumar, Rohit

    2015-06-25

    We perform numerical simulation of dynamo with magnetic Prandtl number Pm = 0.2 on 10243 grid, and compute the energy fluxes and the shell-to-shell energy transfers. These computations indicate that the magnetic energy growth takes place mainly due to the energy transfers from large-scale velocity field to large-scale magnetic field and that the magnetic energy flux is forward. The steady-state magnetic energy is much smaller than the kinetic energy, rather than equipartition; this is because the magnetic Reynolds number is near the dynamo transition regime. We also contrast our results with those for dynamo with Pm = 20 and decaying dynamo. © 2015 Taylor & Francis.

  15. Energy transfer in scattering by rotating potentials

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    In this section we study bounds of the kinetic energy on incoming and outgoing scattering states. These bounds follow from ... Let H(t) = H0 + Vt be a self-adjoint family of operators which satisfies (2.1), (2.2) and generates a unitary propagator U(t,s) ...... Math. Soc. Transl. of Math. Monographs (RI: Providence) (1992) vol. 105.

  16. Energy transfer in scattering by rotating potentials

    Indian Academy of Sciences (India)

    Quantum mechanical scattering theory is studied for time-dependent Schrödinger operators, in particular for particles in a rotating potential. Under various assumptions about the decay rate at infinity we show uniform boundedness in time for the kinetic energy of scattering states, existence and completeness of wave ...

  17. Energy Transfer in Scattering by Rotating Potentials

    Indian Academy of Sciences (India)

    Quantum mechanical scattering theory is studied for time-dependent Schrödinger operators, in particular for particles in a rotating potential. Under various assumptions about the decay rate at infinity we show uniform boundedness in time for the kinetic energy of scattering states, existence and completeness of wave ...

  18. Energy transfer in scattering by rotating potentials

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. Quantum mechanical scattering theory is studied for time-dependent. Schrödinger operators, in particular for particles in a rotating potential. Under various assumptions about the decay rate at infinity we show uniform boundedness in time for the kinetic energy of scattering states, existence and completeness of ...

  19. The feasibility of coherent energy transfer in microtubules

    Science.gov (United States)

    Craddock, Travis John Adrian; Friesen, Douglas; Mane, Jonathan; Hameroff, Stuart; Tuszynski, Jack A.

    2014-01-01

    It was once purported that biological systems were far too ‘warm and wet’ to support quantum phenomena mainly owing to thermal effects disrupting quantum coherence. However, recent experimental results and theoretical analyses have shown that thermal energy may assist, rather than disrupt, quantum coherent transport, especially in the ‘dry’ hydrophobic interiors of biomolecules. Specifically, evidence has been accumulating for the necessary involvement of quantum coherent energy transfer between uniquely arranged chromophores in light harvesting photosynthetic complexes. The ‘tubulin’ subunit proteins, which comprise microtubules, also possess a distinct architecture of chromophores, namely aromatic amino acids, including tryptophan. The geometry and dipolar properties of these aromatics are similar to those found in photosynthetic units indicating that tubulin may support coherent energy transfer. Tubulin aggregated into microtubule geometric lattices may support such energy transfer, which could be important for biological signalling and communication essential to living processes. Here, we perform a computational investigation of energy transfer between chromophoric amino acids in tubulin via dipole excitations coupled to the surrounding thermal environment. We present the spatial structure and energetic properties of the tryptophan residues in the microtubule constituent protein tubulin. Plausibility arguments for the conditions favouring a quantum mechanism of signal propagation along a microtubule are provided. Overall, we find that coherent energy transfer in tubulin and microtubules is biologically feasible. PMID:25232047

  20. Triangulating Nucleic Acid Conformations Using Multicolor Surface Energy Transfer.

    Science.gov (United States)

    Riskowski, Ryan A; Armstrong, Rachel E; Greenbaum, Nancy L; Strouse, Geoffrey F

    2016-02-23

    Optical ruler methods employing multiple fluorescent labels offer great potential for correlating distances among several sites, but are generally limited to interlabel distances under 10 nm and suffer from complications due to spectral overlap. Here we demonstrate a multicolor surface energy transfer (McSET) technique able to triangulate multiple points on a biopolymer, allowing for analysis of global structure in complex biomolecules. McSET couples the competitive energy transfer pathways of Förster Resonance Energy Transfer (FRET) with gold-nanoparticle mediated Surface Energy Transfer (SET) in order to correlate systematically labeled points on the structure at distances greater than 10 nm and with reduced spectral overlap. To demonstrate the McSET method, the structures of a linear B-DNA and a more complex folded RNA ribozyme were analyzed within the McSET mathematical framework. The improved multicolor optical ruler method takes advantage of the broad spectral range and distances achievable when using a gold nanoparticle as the lowest energy acceptor. The ability to report distance information simultaneously across multiple length scales, short-range (10-50 Å), mid-range (50-150 Å), and long-range (150-350 Å), distinguishes this approach from other multicolor energy transfer methods.

  1. The feasibility of coherent energy transfer in microtubules.

    Science.gov (United States)

    Craddock, Travis John Adrian; Friesen, Douglas; Mane, Jonathan; Hameroff, Stuart; Tuszynski, Jack A

    2014-11-06

    It was once purported that biological systems were far too 'warm and wet' to support quantum phenomena mainly owing to thermal effects disrupting quantum coherence. However, recent experimental results and theoretical analyses have shown that thermal energy may assist, rather than disrupt, quantum coherent transport, especially in the 'dry' hydrophobic interiors of biomolecules. Specifically, evidence has been accumulating for the necessary involvement of quantum coherent energy transfer between uniquely arranged chromophores in light harvesting photosynthetic complexes. The 'tubulin' subunit proteins, which comprise microtubules, also possess a distinct architecture of chromophores, namely aromatic amino acids, including tryptophan. The geometry and dipolar properties of these aromatics are similar to those found in photosynthetic units indicating that tubulin may support coherent energy transfer. Tubulin aggregated into microtubule geometric lattices may support such energy transfer, which could be important for biological signalling and communication essential to living processes. Here, we perform a computational investigation of energy transfer between chromophoric amino acids in tubulin via dipole excitations coupled to the surrounding thermal environment. We present the spatial structure and energetic properties of the tryptophan residues in the microtubule constituent protein tubulin. Plausibility arguments for the conditions favouring a quantum mechanism of signal propagation along a microtubule are provided. Overall, we find that coherent energy transfer in tubulin and microtubules is biologically feasible. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  2. The mass energy transfer and mass absorption coefficients

    International Nuclear Information System (INIS)

    Tomljenovic, I.; Stankovic, S.; Ninkovic, M.

    2002-01-01

    The calculation of the mass energy transfer and the mass absorption coefficients is presented and data for their change by energy, in range from 0,01 MeV to 10 MeV, are given. Data are numerically and graphically presented for following materials: air, water, polyethylene, lucite and polystyrene (author)

  3. Nuclear response functions at large energy and momentum transfer

    International Nuclear Information System (INIS)

    Bertozzi, W.; Moniz, E.J.; Lourie, R.W.

    1991-01-01

    Quasifree nucleon processes are expected to dominate the nuclear electromagnetic response function for large energy and momentum transfers, i.e., for energy transfers large compared with nuclear single particle energies and momentum transfers large compared with typical nuclear momenta. Despite the evident success of the quasifree picture in providing the basic frame work for discussing and understanding the large energy, large momentum nuclear response, the limits of this picture have also become quite clear. In this article a selected set of inclusive and coincidence data are presented in order to define the limits of the quasifree picture more quantitatively. Specific dynamical mechanisms thought to be important in going beyond the quasifree picture are discussed as well. 75 refs, 37 figs

  4. Efficiency of pulse high-current generator energy transfer into plasma liner energy

    Science.gov (United States)

    Oreshkin, V. I.

    2013-08-01

    The efficiency of capacitor-bank energy transfer from a high-current pulse generator into kinetic energy of a plasma liner has been analyzed. The analysis was performed using a model including the circuit equations and equations of the cylindrical shell motion. High efficiency of the energy transfer into kinetic energy of the liner is shown to be achieved only by a low-inductance generator. We considered an "ideal" liner load in which the load current is close to zero in the final of the shell compression. This load provides a high (up to 80%) efficiency of energy transfer and higher stability when compressing the liner.

  5. Ultrafast energy transfer within the photosystem II core complex.

    Science.gov (United States)

    Pan, Jie; Gelzinis, Andrius; Chorošajev, Vladimir; Vengris, Mikas; Senlik, S Seckin; Shen, Jian-Ren; Valkunas, Leonas; Abramavicius, Darius; Ogilvie, Jennifer P

    2017-06-14

    We report 2D electronic spectroscopy on the photosystem II core complex (PSII CC) at 77 K under different polarization conditions. A global analysis of the high time-resolution 2D data shows rapid, sub-100 fs energy transfer within the PSII CC. It also reveals the 2D spectral signatures of slower energy equilibration processes occurring on several to hundreds of picosecond time scales that are consistent with previous work. Using a recent structure-based model of the PSII CC [Y. Shibata, S. Nishi, K. Kawakami, J. R. Shen and T. Renger, J. Am. Chem. Soc., 2013, 135, 6903], we simulate the energy transfer in the PSII CC by calculating auxiliary time-resolved fluorescence spectra. We obtain the observed sub-100 fs evolution, even though the calculated electronic energy shows almost no dynamics at early times. On the other hand, the electronic-vibrational interaction energy increases considerably over the same time period. We conclude that interactions with vibrational degrees of freedom not only induce population transfer between the excitonic states in the PSII CC, but also reshape the energy landscape of the system. We suggest that the experimentally observed ultrafast energy transfer is a signature of excitonic-polaron formation.

  6. Radiative energy transfer in molecular gases

    Science.gov (United States)

    Tiwari, Surendra N.

    1992-01-01

    Basic formulations, analyses, and numerical procedures are presented to study radiative interactions in gray as well as nongray gases under different physical and flow conditions. After preliminary fluid-dynamical considerations, essential governing equations for radiative transport are presented that are applicable under local and nonlocal thermodynamic equilibrium conditions. Auxiliary relations for relaxation times and spectral absorption models are also provided. For specific applications, several simple gaseous systems are analyzed. The first system considered consists of a gas bounded by two parallel plates having the same temperature. Within the gas there is a uniform heat source per unit volume. For this system, both vibrational nonequilibrium effects and radiation conduction interactions are studied. The second system consists of fully developed laminar flow and heat transfer in a parallel plate duct under the boundary condition of a uniform surface heat flux. For this system, effects of gray surface emittance are studied. With the single exception of a circular geometry, the third system is considered identical to the second system. Here, the influence of nongray walls is also studied.

  7. Paths to Förster's resonance energy transfer (FRET) theory

    Science.gov (United States)

    Masters, B. R.

    2014-02-01

    Theodor Förster (1910-1974) developed a phenomenological theory of nonradiative resonance energy transfer which proved to be transformative in the fields of chemistry, biochemistry, and biology. This paper explores the experimental and the theoretical antecedents of Förster's theory of resonance energy transfer (FRET). Early studies of sensitized fluorescence, fluorescence depolarization, and photosynthesis demonstrated the phenomena of long-range energy transfer. At the same time physicists developed theoretical models which contained common physical mechanisms and parameters: oscillating dipoles as models for the atoms or molecules, dipole-dipole coupling for the interaction, and a distance R0 that is optimal for resonance energy transfer. Early theories predicted R0 that was too large as compared to experiments. Finally, in 1946 Förster developed a classical theory and in 1948 he developed a quantum mechanical theory; both theories predicted an inverse sixth power dependence of the rate of energy transfer and a R0 that agreed with experiments. This paper attempts to determine why Förster succeeded when the other theoreticians failed to develop the correct theory. The putative roles of interdisciplinary education and collaborative research are discussed. Furthermore, I explore the role of science journals and their specific audiences in the popularization of FRET to a broad interdisciplinary community.

  8. Energy from Biomass Research and Technology Transfer Program

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Dorin

    2015-12-31

    The purpose of CPBR is to foster and facilitate research that will lead to commercial applications. The goals of CPBR’s Energy from Biomass Research and Technology Transfer Program are to bring together industry, academe, and federal resources to conduct research in plant biotechnology and other bio-based technologies and to facilitate the commercialization of the research results to: (1) improve the utilization of plants as energy sources; (2) reduce the cost of renewable energy production; (3) facilitate the replacement of petroleum by plant-based materials; (4) create an energy supply that is safer in its effect on the environment, and (5) contribute to U.S. energy independence.

  9. Hole-transfer induced energy transfer in perylene diimide dyads with a donor-spacer-acceptor motif.

    Science.gov (United States)

    Kölle, Patrick; Pugliesi, Igor; Langhals, Heinz; Wilcken, Roland; Esterbauer, Andreas J; de Vivie-Riedle, Regina; Riedle, Eberhard

    2015-10-14

    We investigate the photoinduced dynamics of perylene diimide dyads based on a donor-spacer-acceptor motif with polyyne spacers of varying length by pump-probe spectroscopy, time resolved fluorescence, chemical variation and quantum chemistry. While the dyads with pyridine based polyyne spacers undergo energy transfer with near-unity quantum efficiency, in the dyads with phenyl based polyyne spacers the energy transfer efficiency drops below 50%. This suggests the presence of a competing electron transfer process from the spacer to the energy donor as the excitation sink. Transient absorption spectra, however, reveal that the spacer actually mediates the energy transfer dynamics. The ground state bleach features of the polyyne spacers appear due to the electron transfer decay with the same time constant present in the rise of the ground state bleach and stimulated emission of the perylene energy acceptor. Although the electron transfer process initially quenches the fluorescence of the donor it does not inhibit energy transfer to the perylene energy acceptor. The transient signatures reveal that electron and energy transfer processes are sequential and indicate that the donor-spacer electron transfer state itself is responsible for the energy transfer. Through the introduction of a Dexter blocker unit into the spacer we can clearly exclude any through bond Dexter-type energy transfer. Ab initio calculations on the donor-spacer and the donor-spacer-acceptor systems reveal the existence of a bright charge transfer state that is close in energy to the locally excited state of the acceptor. Multipole-multipole interactions between the bright charge transfer state and the acceptor state enable the energy transfer. We term this mechanism coupled hole-transfer FRET. These dyads represent a first example that shows how electron transfer can be connected to energy transfer for use in novel photovoltaic and optoelectronic devices.

  10. Resonance Energy Transfer in Upconversion Nanoplatforms for Selective Biodetection.

    Science.gov (United States)

    Su, Qianqian; Feng, Wei; Yang, Dongpeng; Li, Fuyou

    2017-01-17

    Resonance energy transfer (RET) describes the process that energy is transferred from an excited donor to an acceptor molecule, leading to a reduction in the fluorescence emission intensity of the donor and an increase in that of the acceptor. By this technique, measurements with the good sensitivity can be made about distance within 1 to 10 nm under physiological conditions. For this reason, the RET technique has been widely used in polymer science, biochemistry, and structural biology. Recently, a number of RET systems incorporated with nanoparticles, such as quantum dots, gold nanoparticles, and upconversion nanoparticles, have been developed. These nanocrystals retain their optical superiority and can act as either a donor or a quencher, thereby enhancing the performance of RET systems and providing more opportunities in excitation wavelength selection. Notably, lanthanide-doped upconversion nanophosphors (UCNPs) have attracted considerable attention due to their inherent advantages of large anti-Stoke shifts, long luminescence lifetimes, and absence of autofluorescence under low energy near-infrared (NIR) light excitation. These nanoparticles are promising for the biodetection of various types of analytes. Undoubtedly, the developments of those applications usually rely on resonance energy transfer, which could be regarded as a flexible technology to mediate energy transfer from upconversion phosphor to acceptor for the design of luminescent functional nanoplatforms. Currently, researchers have developed many RET-based upconversion nanosystems (RET-UCNP) that respond to specific changes in the biological environments. Specifically, small organic molecules, biological molecules, metal-organic complexes, or inorganic nanoparticles were carefully selected and bound to the surface of upconversion nanoparticles for the preparation of RET-UCNP nanosystems. Benefiting from the advantage and versatility offered by this technology, the research of RET

  11. Forster energy transfer in chlorosomes of green photosynthetic bacteria

    Science.gov (United States)

    Causgrove, T. P.; Brune, D. C.; Blankenship, R. E.

    1992-01-01

    Energy transfer properties of whole cells and chlorosome antenna complexes isolated from the green sulfur bacteria Chlorobium limicola (containing bacteriochlorophyll c), Chlorobium vibrioforme (containing bacteriochlorophyll d) and Pelodictyon phaeoclathratiforme (containing bacteriochlorophyll e) were measured. The spectral overlap of the major chlorosome pigment (bacteriochlorophyll c, d or, e) with the bacteriochlorophyll a B795 chlorosome baseplate pigment is greatest for bacteriochlorophyll c and smallest for bacteriochlorophyll e. The absorbance and fluorescence spectra of isolated chlorosomes were measured, fitted to gaussian curves and the overlap factors with B795 calculated. Energy transfer times from the bacteriochlorophyll c, d or e to B795 were measured in whole cells and the results interpreted in terms of the Forster theory of energy transfer.

  12. A new energy transfer model for turbulent free shear flow

    Science.gov (United States)

    Liou, William W.-W.

    1992-01-01

    A new model for the energy transfer mechanism in the large-scale turbulent kinetic energy equation is proposed. An estimate of the characteristic length scale of the energy containing large structures is obtained from the wavelength associated with the structures predicted by a weakly nonlinear analysis for turbulent free shear flows. With the inclusion of the proposed energy transfer model, the weakly nonlinear wave models for the turbulent large-scale structures are self-contained and are likely to be independent flow geometries. The model is tested against a plane mixing layer. Reasonably good agreement is achieved. Finally, it is shown by using the Liapunov function method, the balance between the production and the drainage of the kinetic energy of the turbulent large-scale structures is asymptotically stable as their amplitude saturates. The saturation of the wave amplitude provides an alternative indicator for flow self-similarity.

  13. Advances in energy-transfer technology

    International Nuclear Information System (INIS)

    Terpstra, L.

    1992-01-01

    This paper discusses the technology of drying and curing inks, coatings and adhesives which is changing rapidly as converters and manufacturers strive to comply with regulations governing airborne emissions as well as discharge of liquid and solid wastes. Compliance with these regulations will become more difficult in the coming decade as the Clean Air Act's increasingly stringent limitations on emissions of volatile organic compounds are implemented to support the intentions of the Montreal protocol. Many of the customary solvents are being eliminated, and the volume of production for many others will be severely reduced. For some companies, the switch to the new materials means updating or replacing antiquated hot-air drying systems with high-velocity impingement ovens with higher temperature capabilities. Probably the least-expansive alternative to replacing the entire oven is to retrofit the installation with infrared (IR) energy in the form of separate predryers or postheaters or, in some cases, to install auxiliary IR heaters between the hot-air nozzles within the oven

  14. Electro-mechanical energy conversion system having a permanent magnet machine with stator, resonant transfer link and energy converter controls

    Science.gov (United States)

    Skeist, S. Merrill; Baker, Richard H.

    2006-01-10

    An electro-mechanical energy conversion system coupled between an energy source and an energy load comprising an energy converter device including a permanent magnet induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer to control the flow of power or energy through the permanent magnetic induction machine.

  15. Optimal Energy Transfer in Light-Harvesting Systems.

    Science.gov (United States)

    Chen, Lipeng; Shenai, Prathamesh; Zheng, Fulu; Somoza, Alejandro; Zhao, Yang

    2015-08-20

    Photosynthesis is one of the most essential biological processes in which specialized pigment-protein complexes absorb solar photons, and with a remarkably high efficiency, guide the photo-induced excitation energy toward the reaction center to subsequently trigger its conversion to chemical energy. In this work, we review the principles of optimal energy transfer in various natural and artificial light harvesting systems. We begin by presenting the guiding principles for optimizing the energy transfer efficiency in systems connected to dissipative environments, with particular attention paid to the potential role of quantum coherence in light harvesting systems. We will comment briefly on photo-protective mechanisms in natural systems that ensure optimal functionality under varying ambient conditions. For completeness, we will also present an overview of the charge separation and electron transfer pathways in reaction centers. Finally, recent theoretical and experimental progress on excitation energy transfer, charge separation, and charge transport in artificial light harvesting systems is delineated, with organic solar cells taken as prime examples.

  16. Collision Frequency for Energy Transfer in Unimolecular Reactions.

    Science.gov (United States)

    Matsugi, Akira

    2018-03-01

    Pressure dependence of unimolecular reaction rates is governed by the energy transfer in collisions of reactants with bath gas molecules. Pressure-dependent rate constants can be theoretically determined by solving master equations for unimolecular reactions. In general, master equation formulations describe energy transfer processes using a collision frequency and a probability distribution model of the energy transferred per collision. The present study proposes a novel method for determining the collision frequency from the results of classical trajectory calculations. Classical trajectories for collisions of several polyatomic molecules (ethane, methane, tetrafluoromethane, and cyclohexane) with monatomic colliders (Ar, Kr, and Xe) were calculated on potential energy surfaces described by the third-order density-functional tight-binding method in combination with simple pairwise interaction potentials. Low-order (including non-integer-order) moments of the energy transferred in deactivating collisions were extracted from the trajectories and compared with those derived using some probability distribution models. The comparison demonstrates the inadequacy of the conventional Lennard-Jones collision model for representing the collision frequency and suggests a robust method for evaluating the collision frequency that is consistent with a given probability distribution model, such as the exponential-down model. The resulting collision frequencies for the exponential-down model are substantially higher than the Lennard-Jones collision frequencies and are close to the (hypothetical) capture rate constants for dispersion interactions. The practical adequacy of the exponential-down model is also briefly discussed.

  17. Rotational Energy Transfer of N2 Gas Determined Using a New Ab Initio Potential Energy Surface

    Science.gov (United States)

    Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Rotational energy transfer between two N2 molecules is a fundamental process of some importance. Exchange is expected to play a role, but its importance is somewhat uncertain. Rotational energy transfer cross sections of N2 also have applications in many other fields including modeling of aerodynamic flows, laser operations, and linewidth analysis in nonintrusive laser diagnostics. A number of N2-N2 rigid rotor potential energy surface (PES) has been reported in the literature.

  18. Excitation energy transfer from dye molecules to doped graphene

    Indian Academy of Sciences (India)

    to graphene. Recent experiments that have been per- formed after our theoretical studies have infact found efficient energy transfer to graphene and the process was found to be useful in identifying graphene flakes both on substrates and in solution.4 Quenching by graphene was also found to be useful in obtaining good.

  19. Metaphors Describing Energy Transfer through Ecosystems: Helpful or Misleading?

    Science.gov (United States)

    Wernecke, Ulrike; Schwanewedel, Julia; Harms, Ute

    2018-01-01

    Energy transfer in ecosystems is an abstract and challenging topic for learners. Metaphors are widely used in scientific and educational discourse to communicate ideas about abstract phenomena. However, although considered valuable teaching tools, metaphors are ambiguous and can be misleading when used in educational contexts. Educational…

  20. Excitation energy transfer from dye molecules to doped graphene

    Indian Academy of Sciences (India)

    of energy transfer to graphene.15,16 We imagine that the. Fermi level is shifted into the conduction band to a level with magnitude of wave vector, kF . To keep the calcu- lations simple, we use the Dirac cone approximation, which allows us to get analytical expressions for the rate at large distances. We note that as we are ...

  1. Energy transfer in photosynthesis: experimental insights and quantitative models

    NARCIS (Netherlands)

    van Grondelle, R.; Novoderezhkin, V.

    2006-01-01

    We overview experimental and theoretical studies of energy transfer in the photosynthetic light-harvesting complexes LH1, LH2, and LHCII performed during the past decade since the discovery of high-resolution structure of these complexes. Experimental findings obtained with various spectroscopic

  2. Fluorescence resonance energy transfer (FRET) in chemistry and ...

    Indian Academy of Sciences (India)

    Abstract. Fluorescence resonance energy transfer (FRET) is a popular tool to study equilibrium and dynamical properties of polymers and biopolymers in condensed phases and is now widely used in conjunc- tion with single molecule spectroscopy. In the data analysis, one usually employs the Förster expression.

  3. Distance dependence of fluorescence resonance energy transfer

    Indian Academy of Sciences (India)

    Administrator

    type behaviour of the rate for the case of transfer from a localized electronic excitation on the donor, a dye molecule to three different energy acceptors with delocalized electronic excitations namely, graphene, a two-dimensional semiconducting sheet and the case of such a semiconducting sheet rolled to obtain a nanotube.

  4. Excitation energy transfer from dye molecules to doped graphene

    Indian Academy of Sciences (India)

    Recently, we have reported theoretical studies on the rate of energy transfer from an electronically excited molecule to graphene. It was found that graphene is a very efficient quencher of the electronically excited states and that the rate -4. The process was found to be effective up to 30 which is well beyond the ...

  5. Ultrafast fluorescence resonance energy transfer in a bile salt ...

    Indian Academy of Sciences (India)

    Fluorescence resonance energy transfer (FRET) from Coumarin 153 (C153) to Rhodamine 6G (R6G) in a secondary aggregate of a bile salt (sodium deoxycholate, NaDC) is studied by femtosecond up-conversion. The emission spectrum of C153 in NaDC is analysed in terms of two spectra-one with emission maximum at ...

  6. Nanophotonic control of the Forster resonance energy transfer efficiency

    NARCIS (Netherlands)

    Blum, Christian; Zijlstra, Niels; Lagendijk, Aart; Wubs, M.; Mosk, Allard; Subramaniam, Vinod; Vos, Willem L.

    2012-01-01

    We have studied the influence of the local density of optical states (LDOS) on the rate and efficiency of Förster resonance energy transfer (FRET) from a donor to an acceptor. The donors and acceptors are dye molecules that are separated by a short strand of double-stranded DNA. The LDOS is

  7. Energy transfer processes in rare-earth compounds

    International Nuclear Information System (INIS)

    Buijs, M.

    1987-01-01

    In this thesis the results are described of an investigation into the radiationless transfer of electronic excitation energies in various Eu 3+ and Tb 3+ compounds, which show structural peculiarities in the rare-earth sublattice. These peculiarities are an one-dimensional sublattice as well as two different crystallographic locations for the rare-earth ion. 154 refs.; 43 figs.; 12 tabs

  8. Femtosecond carotenoid to retinal energy transfer in xanthorhodopsin

    Czech Academy of Sciences Publication Activity Database

    Polívka, Tomáš; Balashov, S.P.; Chábera, P.; Imasheva, E.S.; Yartsev, A.; Sundström, V.; Lanyi, J.K.

    2009-01-01

    Roč. 96, č. 6 (2009), s. 2268-2277 ISSN 0006-3495 R&D Projects: GA AV ČR IAA608170604 Institutional research plan: CEZ:AV0Z50510513 Keywords : energy transfer * carotenoids * femtosecond spectroscopy Subject RIV: BO - Biophysics Impact factor: 4.390, year: 2009

  9. The charge transfer structure and effective energy transfer in multiplayer assembly film

    International Nuclear Information System (INIS)

    Li Mingqiang; Jian Xigao

    2005-01-01

    Charge transfer multiplayer films have been prepared by layer-by-layer self-assembly technique. The films incorporate the rare-earth-containing polyoxometalate K 11 [Eu{PW 11 O 39 } 2 ].nH 2 O and the rich electron polyelectrolyte poly(3-viny-1-methyl-pyridine) quaternary ammonium and display a linear increase in the absorption and film thickness with the number of deposition cycles. Ultraviolet and visible absorption spectra, atomic force micrographs, small-angle X-ray reflectivity measurements, and photoluminescence spectra were used to determine the structure of films. Linear and regular multilayer growth was observed. We can observe the formation of charge transfer complex compound in multiplayer by layer-by-layer assembly method. Most importantly, the luminescence spectra show the charge transfer band in assembly films, which suggest that energy could be effectively transferred to rare earth ions in assembly multiplayer films

  10. Light increases energy transfer efficiency in a boreal stream.

    Science.gov (United States)

    Lesutienė, Jūratė; Gorokhova, Elena; Stankevičienė, Daiva; Bergman, Eva; Greenberg, Larry

    2014-01-01

    Periphyton communities of a boreal stream were exposed to different light and nutrient levels to estimate energy transfer efficiency from primary to secondary producers using labeling with inorganic (13)C. In a one-day field experiment, periphyton grown in fast-flow conditions and dominated by opportunistic green algae were exposed to light levels corresponding to sub-saturating (forest shade) and saturating (open stream section) irradiances, and to N and P nutrient additions. In a two-week laboratory experiment, periphyton grown in low-flow conditions and dominated by slowly growing diatoms were incubated under two sub-saturating light and nutrient enrichment levels as well as grazed and non-grazed conditions. Light had significant positive effect on (13)C uptake by periphyton. In the field experiment, P addition had a positive effect on (13)C uptake but only at sub-saturating light levels, whereas in the laboratory experiment nutrient additions had no effect on the periphyton biomass, (13)C uptake, biovolume and community composition. In the laboratory experiment, the grazer (caddisfly) effect on periphyton biomass specific (13)C uptake and nutrient content was much stronger than the effects of light and nutrients. In particular, grazers significantly reduced periphyton biomass and increased biomass specific (13)C uptake and C:nutrient ratios. The energy transfer efficiency, estimated as a ratio between (13)C uptake by caddisfly and periphyton, was positively affected by light conditions, whereas the nutrient effect was not significant. We suggest that the observed effects on energy transfer were related to the increased diet contribution of highly palatable green algae, stimulated by higher light levels. Also, high heterotrophic microbial activity under low light levels would facilitate energy loss through respiration and decrease overall trophic transfer efficiency. These findings suggest that even a small increase in light intensity could result in community

  11. Higher order energy transfer. Quantum electrodynamical calculations and graphical representation

    International Nuclear Information System (INIS)

    Jenkins, R.D.

    2000-01-01

    In Chapter 1, a novel method of calculating quantum electrodynamic amplitudes is formulated using combinatorial theory. This technique is used throughout instead of conventional time-ordered methods. A variety of hyperspaces are discussed to highlight isomorphism between a number of A generalisation of Pascal's triangle is shown to be beneficial in determining the form of hyperspace graphs. Chapter 2 describes laser assisted resonance energy transfer (LARET), a higher order perturbative contribution to the well-known process resonance energy transfer, accommodating an off resonance auxiliary laser field to stimulate the migration. Interest focuses on energy exchanges between two uncorrelated molecular species, as in a system where molecules are randomly oriented. Both phase-weighted and standard isotropic averaging are required for the calculations. Results are discussed in terms of a laser intensity-dependent mechanism. Identifying the applied field regime where LARET should prove experimentally significant, transfer rate increases of up to 30% are predicted. General results for three-center energy transfer are elucidated in chapter 3. Cooperative and accretive mechanistic pathways are identified with theory formulated to elicit their role in a variety of energy transfer phenomena and their relative dominance. In multichromophoric the interplay of such factors is analysed with regard to molecular architectures. The alignments and magnitudes of donor and acceptor transition moments and polarisabilities prove to have profound effects on achievable pooling efficiency for linear configurations. Also optimum configurations are offered. In ionic lattices, although both mechanisms play significant roles in pooling and cutting processes, only the accretive is responsible for sensitisation. The local, microscopic level results are used to gauge the lattice response, encompassing concentration and structural effects. (author)

  12. Triplet-Triplet Energy Transfer Study in Hydrogen Bonding Systems.

    Science.gov (United States)

    Wang, Zhijia; Zhao, Jianzhang; Guo, Song

    2015-01-01

    The 2,6-diiodoBodipy-styrylBodipy hydrogen bonding system was prepared to study the effect of hydrogen bonding on the triplet-triplet-energy-transfer (TTET) process. 2,6-DiiodoBodipy linked with N-acetyl-2,6-diaminopyridine (D-2) was used as the triplet energy donor, and the styrylBodipy connected with thymine (A-1) was used as triplet energy acceptor, thus the TTET process was established upon photoexcitation. The photophysical processes of the hydrogen bonding system were studied with steady-state UV-vis absorption spectroscopy, fluorescence spectroscopy, fluorescence lifetime measurement and nanosecond time-resolved transient absorption spectroscopies. The TTET of the intramolecular/hydrogen bonding/intermolecular systems were compared through nanosecond transient absorption spectroscopy. The TTET process of the hydrogen bonding system is faster and more efficient (kTTET = 6.9 × 10(4) s(-1), ΦTTET = 94.0%) than intermolecular triplet energy transfer (kTTET = 6.0 × 10(4) s(-1), ΦTTET = 90.9%), but slower and less efficient than intramolecular triplet energy transfer (kTTET > 10(8) s(-1)). These results are valuable for designing self-assembly triplet photosensitizers and for the study of the TTET process of hydrogen bonding systems.

  13. The transfer of technologies for biomass energy utilization

    International Nuclear Information System (INIS)

    Schneiders, H.H.

    1995-01-01

    The first part of the paper presents the common perception of technology transfer as a trade relationship rather than a systematic approach to establish a complex technological capacity in a given field. It aims to correct this misperception by introducing some other ideas: (a) the need to support the people, adjust the relevant organizations and establish the capacities to provide the products and services; (b) the typical life cycles of technologies from the initial concept to the final stages of transfer and sustainable dissemination; (c) the needs and expectations of the groups targeted by the technologies for biomass energy utilization. The second part of the paper discusses one example of successful technology transfer: the use of large biomass-burning stoves for food preparation in public institutions and private restaurants in East Africa. The third part of the paper highlights two non-technological barriers to the transfer of biomass energy technologies: (a) weak market forces and business interests and a large number of State activities and projects and (b) conflicting interests of end-users, craftsmen, private and public project partners, which can threaten the success of the attempted technology transfer, even after local adaptation. Finally, suggestions are made for overcoming some of these problems. (author)

  14. Long range energy transfer in graphene hybrid structures

    International Nuclear Information System (INIS)

    Gonçalves, Hugo; Bernardo, César; Moura, Cacilda; Belsley, Michael; Schellenberg, Peter; Ferreira, R A S; André, P S; Stauber, Tobias

    2016-01-01

    In this work we quantify the distance dependence for the extraction of energy from excited chromophores by a single layer graphene flake over a large separation range. To this end hybrid structures were prepared, consisting of a thin (2 nm) layer of a polymer matrix doped with a well chosen strongly fluorescent organic molecule, followed by an un-doped spacer layer of well-defined thicknesses made of the same polymer material and an underlying single layer of pristine, undoped graphene. The coupling strength is assessed through the variation of the fluorescence decay kinetics as a function of distance between the graphene and the excited chromophore molecules. Non-radiative energy transfer to the graphene was observed at distances of up to 60 nm; a range much greater than typical energy transfer distances observed in molecular systems. (paper)

  15. Critical Role of Energy Transfer Between Terbium Ions for Suppression of Back Energy Transfer in Nonanuclear Terbium Clusters

    NARCIS (Netherlands)

    Omagari, Shun; Nakanishi, Takayuki; Kitagawa, Yuichi; Seki, Tomohiro; Fushimi, Koji; Ito, Hajime; Meijerink, A; Hasegawa, Yasuchika

    2016-01-01

    Lanthanide (Ln(III)) complexes form an important class of highly efficient luminescent materials showing characteristic line emission after efficient light absorption by the surrounding ligands. The efficiency is however lowered by back energy transfer from Ln(III) ion to the ligands, especially at

  16. State-of-the-Art Developments of Acoustic Energy Transfer

    Directory of Open Access Journals (Sweden)

    Md Rabiul Awal

    2016-01-01

    Full Text Available Acoustic energy transfer (AET technology has drawn significant industrial attention recently. This paper presents the reviews of the existing AETs sequentially, preferably, from the early stage. From the review, it is evident that, among all the classes of wireless energy transfer, AET is the safest technology to adopt. Thus, it is highly recommended for sensitive area and devices, especially implantable devices. Though, the efficiency for relatively long distances (i.e., >30 mm is less than that of inductive or capacitive power transfer; however, the trade-off between safety considerations and performances is highly suitable and better than others. From the presented statistics, it is evident that AET is capable of transmitting 1.068 kW and 5.4 W of energy through wall and in-body medium (implants, respectively. Progressively, the AET efficiency can reach up to 88% in extension to 8.6 m separation distance which is even superior to that of inductive and capacitive power transfer.

  17. Environmental Mechanics: Water, Mass and Energy Transfer in the Biosphere

    Science.gov (United States)

    Raats, Peter A. C.; Smiles, David; Warrick, Arthur W.

    Modern theories of mass and heat transfer in the biosphere, based on notions of a soil-plant-atmosphere thermodynamic continuum focused on water, were generally formulated by the mid-20th century. They tended to be reductionist and flow equations combined macroscopic laws of flow and of material and energy balance. They were difficult to solve because material transfer properties tend to be strongly related to the local concentration of an entity of concern, to the location, or to both. The architecture of the soil and the plant canopy also complicated their formulation, the scale of their application and their test.

  18. 2013 MOLECULAR ENERGY TRANSFER GORDON RESEARCH CONFERENCE (JANUARY 13-18, 2013 - VENTURA BEACH MARRIOTT, VENTURA CA

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Scott A. [Marquette University

    2012-10-18

    Sessions covered all areas of molecular energy transfer, with 10 sessions of talks and poster sessions covering the areas of :  Energy Transfer in Inelastic and Reactive Scattering  Energy Transfer in Photoinitiated and Unimolecular Reactions  Non-adiabatic Effects in Energy TransferEnergy Transfer at Surfaces and Interfaces  Energy Transfer in Clusters, Droplets, and Aerosols  Energy Transfer in Solution and Solid  Energy Transfer in Complex Systems  Energy Transfer: New vistas and horizons  Molecular Energy Transfer: Where Have We Been and Where are We Going?

  19. Energy and Charge Transfer in Dinuclear Ru-based Complexes

    Science.gov (United States)

    Kleiman, Valeria

    2014-03-01

    In this work, the excited state dynamics of a series of dinuclear compounds combining Ru based cromophores with M =Ru(II), Fe(II), Fe(III), Cr(III) are explored. Ru- μ-NC-M dimers are good candidates to investigate the competition between electron and energy transfer in arrays of chromophores. The presence of a μ-NC bridge affords a strong coupling between the moieties without providing acceptor states that might act as electron traps. Polypyridyl Ru based compounds play an important role on light-harvesting antennas for energy conversion. With proper knowledge of the excited state dynamics, multinuclear arrays of chromophores can be developed. Our studies focus on (i) energy/electron transfer from the Ru(II) to a 2nd M center through the cyanide bridge, and (ii) geometry changes due to the exchange of one of the Ru(II) polypiridyl ligands . Broadband ultrafast spectroscopy shows excited state dynamics in the psec time regime. These dynamics depend strongly on the nature of the acceptor and the orientation of the ligand involved in the photoinduced transition. Hence, the competition between energy and electron transfer across the bridge is modulated by the selective choice of the secondary M center. We conclude that transition metals from the 3rd row are good candidates for longer arrays since their lack of low-lying MC states precludes thermal deactivation. This work is based upon work supported by NSF (CHE-1058638) and CONICET.

  20. Efficient Radioisotope Energy Transfer by Gold Nanoclusters for Molecular Imaging.

    Science.gov (United States)

    Volotskova, Olga; Sun, Conroy; Stafford, Jason H; Koh, Ai Leen; Ma, Xiaowei; Cheng, Zhen; Cui, Bianxiao; Pratx, Guillem; Xing, Lei

    2015-08-26

    Beta-emitting isotopes Fluorine-18 and Yttrium-90 are tested for their potential to stimulate gold nanoclusters conjugated with blood serum proteins (AuNCs). AuNCs excited by either medical radioisotope are found to be highly effective ionizing radiation energy transfer mediators, suitable for in vivo optical imaging. AuNCs synthesized with protein templates convert beta-decaying radioisotope energy into tissue-penetrating optical signals between 620 and 800 nm. Optical signals are not detected from AuNCs incubated with Technetium-99m, a pure gamma emitter that is used as a control. Optical emission from AuNCs is not proportional to Cerenkov radiation, indicating that the energy transfer between the radionuclide and AuNC is only partially mediated by Cerenkov photons. A direct Coulombic interaction is proposed as a novel and significant mechanism of energy transfer between decaying radionuclides and AuNCs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Regulation control and energy management scheme for wireless power transfer

    Science.gov (United States)

    Miller, John M.

    2015-12-29

    Power transfer rate at a charging facility can be maximized by employing a feedback scheme. The state of charge (SOC) and temperature of the regenerative energy storage system (RESS) pack of a vehicle is monitored to determine the load due to the RESS pack. An optimal frequency that cancels the imaginary component of the input impedance for the output signal from a grid converter is calculated from the load of the RESS pack, and a frequency offset f* is made to the nominal frequency f.sub.0 of the grid converter output based on the resonance frequency of a magnetically coupled circuit. The optimal frequency can maximize the efficiency of the power transfer. Further, an optimal grid converter duty ratio d* can be derived from the charge rate of the RESS pack. The grid converter duty ratio d* regulates wireless power transfer (WPT) power level.

  2. Morphing continuum analysis of energy transfer in compressible turbulence

    Science.gov (United States)

    Cheikh, Mohamad Ibrahim; Wonnell, Louis B.; Chen, James

    2018-02-01

    A shock-preserving finite volume solver with the generalized Lax-Friedrichs splitting flux for morphing continuum theory (MCT) is presented and verified. The numerical MCT solver is showcased in a supersonic turbulent flow with Mach 2.93 over an 8∘ compression ramp. The simulation results validated MCT with experiments as an alternative for modeling compressible turbulence. The required size of the smallest mesh cell for the MCT simulation is shown to be almost an order larger than that in a similar direct numerical simulation study. The comparison shows MCT is a much more computationally friendly theory than the classical Navier-Stokes equations. The dynamics of energy cascade at the length scale of individual eddies is illuminated through the subscale rotation introduced by MCT. In this regard, MCT provides a statistical averaging procedure for capturing energy transfer in compressible turbulence, not found in classical fluid theories. Analysis of the MCT results show the existence of a statistical coupling of the internal and translational kinetic energy fluctuations with the corresponding eddy rotational energy fluctuations, indicating a multiscale transfer of energy. In conclusion, MCT gives a new characterization of the energy cascade within compressible turbulence without the use of excessive computational resources.

  3. Quantum dot-dye hybrid systems for energy transfer applications

    International Nuclear Information System (INIS)

    Ren, Ting

    2010-01-01

    In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems. In the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stoeber silica particles with an outer silica shell of thickness 2-24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. New QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD

  4. Quantum dot-dye hybrid systems for energy transfer applications

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ting

    2010-07-01

    In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems. In the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stoeber silica particles with an outer silica shell of thickness 2-24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. New QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD

  5. Homopolar machine for reversible energy storage and transfer systems

    International Nuclear Information System (INIS)

    Stillwagon, R.E.

    1978-01-01

    A homopolar machine designed to operate as a generator and motor in reversibly storing and transferring energy between the machine and a magnetic load coil for a thermonuclear reactor is described. The machine rotor comprises hollow thin-walled cylinders or sleeves which form the basis of the system by utilizing substantially all of the rotor mass as a conductor thus making it possible to transfer substantially all the rotor kinetic energy electrically to the load coil in a highly economical and efficient manner. The rotor is divided into multiple separate cylinders or sleeves of modular design, connected in series and arranged to rotate in opposite directions but maintain the supply of current in a single direction to the machine terminals

  6. Photosynthetic Energy Transfer at the Quantum/Classical Border.

    Science.gov (United States)

    Keren, Nir; Paltiel, Yossi

    2018-04-03

    Quantum mechanics diverges from the classical description of our world when very small scales or very fast processes are involved. Unlike classical mechanics, quantum effects cannot be easily related to our everyday experience and are often counterintuitive to us. Nevertheless, the dimensions and time scales of the photosynthetic energy transfer processes puts them close to the quantum/classical border, bringing them into the range of measurable quantum effects. Here we review recent advances in the field and suggest that photosynthetic processes can take advantage of the sensitivity of quantum effects to the environmental 'noise' as means of tuning exciton energy transfer efficiency. If true, this design principle could be a base for 'nontrivial' coherent wave property nano-devices. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Energy Transfer in Microhydrated Uracil, 5-Fluorouracil, and 5-Bromouracil

    Czech Academy of Sciences Publication Activity Database

    Poštulka, J.; Slavíček, P.; Fedor, Juraj; Fárník, Michal; Kočišek, Jaroslav

    2017-01-01

    Roč. 121, č. 38 (2017), s. 8965-8974 ISSN 1520-6106 R&D Projects: GA ČR GJ16-10995Y; GA ČR(CZ) GA17-04068S Institutional support: RVO:61388955 Keywords : Aromatic compounds * Electrons * Energy transfer Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.177, year: 2016

  8. Plasmon-Enhanced Energy Transfer in Photosensitive Nanocrystal Device.

    Science.gov (United States)

    Akhavan, Shahab; Akgul, Mehmet Zafer; Hernandez-Martinez, Pedro Ludwig; Demir, Hilmi Volkan

    2017-06-27

    Förster resonance energy transfer (FRET) interacted with localized surface plasmon (LSP) gives us the ability to overcome inadequate transfer of energy between donor and acceptor nanocrystals (NCs). In this paper, we show LSP-enhanced FRET in colloidal photosensors of NCs in operation, resulting in substantially enhanced photosensitivity. The proposed photosensitive device is a layered self-assembled colloidal platform consisting of separated monolayers of the donor and the acceptor colloidal NCs with an intermediate metal nanoparticle (MNP) layer made of gold interspaced by polyelectrolyte layers. Using LBL assembly, we fabricated and comparatively studied seven types of such NC-monolayer devices (containing only donor, only acceptor, Au MNP-donor, Au MNP-acceptor, donor-acceptor bilayer, donor-Au MNP-acceptor trilayer, and acceptor-Au MNP-donor reverse trilayer). In these structures, we revealed the effect of LSP-enhanced FRET and exciton interactions from the donor NCs layer to the acceptor NCs layer. Compared to a single acceptor NC device, we observed a significant extension in operating wavelength range and a substantial photosensitivity enhancement (2.91-fold) around the LSP resonance peak of Au MNPs in the LSP-enhanced FRET trilayer structure. Moreover, we present a theoretical model for the intercoupled donor-Au MNP-acceptor structure subject to the plasmon-mediated nonradiative energy transfer. The obtained numerical results are in excellent agreement with the systematic experimental studies done in our work. The potential to modify the energy transfer through mastering the exciton-plasmon interactions and its implication in devices make them attractive for applications in nanophotonic devices and sensors.

  9. Spatial propagation of excitonic coherence enables ratcheted energy transfer

    OpenAIRE

    Hoyer, Stephan; Ishizaki, Akihito; Whaley, K. Birgitta

    2011-01-01

    Experimental evidence shows that a variety of photosynthetic systems can preserve quantum beats in the process of electronic energy transfer, even at room temperature. However, whether this quantum coherence arises in vivo and whether it has any biological function have remained unclear. Here we present a theoretical model that suggests that the creation and recreation of coherence under natural conditions is ubiquitous. Our model allows us to theoretically demonstrate a mechanism for a ratch...

  10. Electromagnetic Energy Absorption due to Wireless Energy Transfer: A Brief Review

    Directory of Open Access Journals (Sweden)

    Syafiq A.

    2016-01-01

    Full Text Available This paper reviews an implementation of evaluating compliance of wireless power transfer systems with respect to human electromagnetic exposure limits. Methods for both numerical analysis and measurements are discussed. The objective is to evaluate the rate of which energy is absorbed by the human body when exposed to a wireless energy transfer, although it can be referred to the absorption of other forms of energy by tissue. An exposure assessment of a representative wireless power transfer system, under a limited set of operating conditions, is provided in order to estimate the maximum SAR levels. The aim of this review is to conclude the possible side effect to the human body when utilizing wireless charging in daily life so that an early severe action can be taken when using wireless transfer.

  11. Isotope separation process by transfer of vibrational energy

    International Nuclear Information System (INIS)

    Angelie, C.; Cauchetier, M.; Paris, J.

    1983-01-01

    This process consists in exciting A molecules by absorption of a pulsed light beam, then in exciting until their dissociation X molecules, present in several isotopic forms, by a vibrational transfer between the A molecules and the X molecules, the A molecules having a dissociation energy greater than that of the X molecules, the duration and energy of the light pulses being such that the absorption time by the A molecules is less than the excitation time of the X molecules and the temperature conditions such that the thermal width of the vibration rays is at the most near the isotopic difference between the resonance rays of the two isotopic varieties [fr

  12. Coherence and relaxation in energy transfer processes in condensed phases

    International Nuclear Information System (INIS)

    Shelby, R.M.

    1978-03-01

    Investigations of electronic triplet and vibrational energy transfer dynamics and relaxation processes are presented. Emphasis is placed on understanding the role of coherence and interactions which tend to destroy the coherence. In the case of triplet excitons at low temperatures, the importance of coherence in energy migration can be established, and the average coherence parameters can be experimentally determined. In the case of vibrational excitations, both picosecond spectroscopic studies of vibrational relaxation and spontaneous Raman spectroscopy are used to characterize the dynamics and give increased insight into the nature of the mechanisms responsible for vibrational dephasing. The design and operation of the picosecond apparatus used in these experiments is also described

  13. State-to-state dynamics of molecular energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Gentry, W.R.; Giese, C.F. [Univ. of Minnesota, Minneapolis (United States)

    1993-12-01

    The goal of this research program is to elucidate the elementary dynamical mechanisms of vibrational and rotational energy transfer between molecules, at a quantum-state resolved level of detail. Molecular beam techniques are used to isolate individual molecular collisions, and to control the kinetic energy of collision. Lasers are used both to prepare specific quantum states prior to collision by stimulated-emission pumping (SEP), and to measure the distribution of quantum states in the collision products by laser-induced fluorescence (LIF). The results are interpreted in terms of dynamical models, which may be cast in a classical, semiclassical or quantum mechanical framework, as appropriate.

  14. Analysis of the Coupling Coefficient in Inductive Energy Transfer Systems

    Directory of Open Access Journals (Sweden)

    Rafael Mendes Duarte

    2014-01-01

    Full Text Available In wireless energy transfer systems, the energy is transferred from a power source to an electrical load without the need of physical connections. In this scope, inductive links have been widely studied as a way of implementing these systems. Although high efficiency can be achieved when the system is operating in a static state, it can drastically decrease if changes in the relative position and in the coupling coefficient between the coils occur. In this paper, we analyze the coupling coefficient as a function of the distance between two planar and coaxial coils in wireless energy transfer systems. A simple equation is derived from Neumann’s equation for mutual inductance, which is then used to calculate the coupling coefficient. The coupling coefficient is computed using CST Microwave Studio and compared to calculation and experimental results for two coils with an excitation signal of up to 10 MHz. The results showed that the equation presents good accuracy for geometric parameters that do not lead the solution of the elliptic integral of the first kind to infinity.

  15. Resonance energy transfer and interface forces: quantum electrodynamical analysis

    Science.gov (United States)

    Bradshaw, David S.; Leeder, Jamie M.; Rodríguez, Justo; Andrews, David L.

    2007-01-01

    On the propagation of radiation with a suitably resonant optical frequency through a dense chromophoric system - a doped solid for example - photon capture is commonly followed by one or more near-field transfers of the resulting optical excitation, usually to closely neighboring chromophores. Since the process results in a change to the local electronic environment, it can be expected to also shift the electromagnetic interactions between the participant optical units, producing modified inter-particle forces. Significantly, it emerges that energy transfer, when it occurs between chromophores or particles with electronically dissimilar properties (such as differing polarizabilities), engenders hitherto unreported changes in the local potential energy landscape. This paper reports the results of quantum electrodynamical calculations which cast a new light on the physical link between these features. The theory also elucidates a significant relationship with Casimir-Polder forces; it transpires that there are clear and fundamental links between dispersion forces and resonance energy transfer. Based on the results, we highlight specific effects that can be anticipated when laser light propagates through an interface between two absorbing media. Both steady-state and pulsed excitation conditions are modeled and the consequences for interface forces are subjected to detailed analysis.

  16. Energy and charge transfer in ionized argon coated water clusters

    International Nuclear Information System (INIS)

    Kočišek, J.; Lengyel, J.; Fárník, M.; Slavíček, P.

    2013-01-01

    We investigate the electron ionization of clusters generated in mixed Ar-water expansions. The electron energy dependent ion yields reveal the neutral cluster composition and structure: water clusters fully covered with the Ar solvation shell are formed under certain expansion conditions. The argon atoms shield the embedded (H 2 O) n clusters resulting in the ionization threshold above ≈15 eV for all fragments. The argon atoms also mediate more complex reactions in the clusters: e.g., the charge transfer between Ar + and water occurs above the threshold; at higher electron energies above ∼28 eV, an excitonic transfer process between Ar + * and water opens leading to new products Ar n H + and (H 2 O) n H + . On the other hand, the excitonic transfer from the neutral Ar* state at lower energies is not observed although this resonant process was demonstrated previously in a photoionization experiment. Doubly charged fragments (H 2 O) n H 2 2+ and (H 2 O) n 2+ ions are observed and Intermolecular Coulomb decay (ICD) processes are invoked to explain their thresholds. The Coulomb explosion of the doubly charged cluster formed within the ICD process is prevented by the stabilization effect of the argon solvent

  17. Luminescence and energy transfer processes in rare earth compounds

    International Nuclear Information System (INIS)

    Vliet, J.P.M. van.

    1989-01-01

    In this thesis some studies are presented of the luminescence and energy transfer in compounds containing Eu 3+ , Pr 3+ and Gd 3+ ions. Ch. 2 deals with the energy migration in the system Gd 1 - xEu x(IO 3) 3. In ch 3 the luminescence properties of the Pr 3+ ion in the system La 1 - xPr xMgAl 1 10 1 9 are reported. Ch. 4 discusses the luminescence properties of alkali europium double tungstates and molybdates AEuW 20 8 and AEuMo 20 * (A + = alkali metal atom). The luminiscence and energy migration characteristics of the isostructural system LiGd 1 - xEu xF 4 and Gd 1 - xEu xNbO 4 are reported in ch. 5. In ch. 6 the mechanism of energy migration in (La,Gd)AlO 3 and (Gd,Eu)AlO 3 is discussed. Ch. 7 deals with the system Na 5(Gd,Eu) (WO 4) 4. In ch. 8 the luminescence and energy transfer properties of two europium tellurite anti-glass phases are reported. The two phases are Eu 1 . 7 9TeO x, which has a pseudotetragonal structure, and Eu 1 . 0 6TeO x, which has a monoclinic, ordered structure. (author). 201 refs.; 39 figs.; 8 tabs

  18. Model Property Based Material Balance and Energy Conservation Analysis for Process Industry Energy Transfer Systems

    Directory of Open Access Journals (Sweden)

    Fumin Ma

    2015-10-01

    Full Text Available Conventional historical data based material and energy balance analyses are static and isolated computations. Such methods cannot embody the cross-coupling effect of energy flow, material flow and information flow in the process industry; furthermore, they cannot easily realize the effective evaluation and comparison of different energy transfer processes by alternating the model module. In this paper, a novel method for material balance and energy conservation analysis of process industry energy transfer system is developed based on model property. Firstly, a reconfigurable energy transfer process model, which is independent of energy types and energy-consuming equipment, is presented from the viewpoint of the cross-coupling effect of energy flow, material flow and information flow. Thereafter the material balance determination is proposed based on both a dynamic incidence matrix and dynamic balance quantity. Moreover, the model-weighted conservation determination theorem is proved, and the energy efficiency analysis method is also discussed. Results confirmed the efficacy of the proposed methods, confirming its potential for use by process industry in energy efficiency analyses.

  19. Energy transfer and constrained simulations in isotropic turbulence

    Science.gov (United States)

    Jimenez, Javier

    1993-01-01

    The defining characteristic of turbulent flows is their ability to dissipate energy, even in the limit of zero viscosity. The Euler equations, if constrained in such a way that the velocity derivatives remain bounded, conserve energy. But when they arise as the limit of the Navier-Stokes (NS) equations, when the Reynolds number goes to infinity, there is persuasive empirical evidence that the gradients become singular as just the right function of Re for the dissipation to remain non-zero and to approach a well defined limit. It is generally believed that this limiting value of the dissipation is a property of the Euler equations themselves, independent of the particular dissipative mechanism involved, and that it can be normalized with the large scale properties of the turbulent flow (e.g. the kinetic energy per unit volume u'(exp 2)/2, and the integral scale L) without reference to the Reynolds number or to other dissipative quantities. This is usually taken to imply that the low wave number end of the energy spectrum, far from the dissipative range, is also independent of the particular mechanism chosen to dispose of the energy transfer. In the following sections, we present some numerical experiments on the effect of substituting different dissipation models into the truncated Euler equations. We will see that the effect is mainly felt in the 'near dissipation' range of the energy spectrum, but that this range can be quite wide in some cases, contaminating a substantial range of wave numbers. In the process, we will develop a 'practical' approximation to the subgrid energy transfer in isotropic turbulence, and we will gain insight into the structure of the nonlinear interactions among turbulent scales of comparable size, and into the nature of energy backscatter. Some considerations on future research directions are offered at the end.

  20. Heat transfer and flow in solar energy and bioenergy systems

    Science.gov (United States)

    Xu, Ben

    The demand for clean and environmentally benign energy resources has been a great concern in the last two decades. To alleviate the associated environmental problems, reduction of the use of fossil fuels by developing more cost-effective renewable energy technologies becomes more and more significant. Among various types of renewable energy sources, solar energy and bioenergy take a great proportion. This dissertation focuses on the heat transfer and flow in solar energy and bioenergy systems, specifically for Thermal Energy Storage (TES) systems in Concentrated Solar Power (CSP) plants and open-channel algal culture raceways for biofuel production. The first part of this dissertation is the discussion about mathematical modeling, numerical simulation and experimental investigation of solar TES system. First of all, in order to accurately and efficiently simulate the conjugate heat transfer between Heat Transfer Fluid (HTF) and filler material in four different solid-fluid TES configurations, formulas of an e?ective heat transfer coe?cient were theoretically developed and presented by extending the validity of Lumped Capacitance Method (LCM) to large Biot number, as well as verifications/validations to this simplified model. Secondly, to provide design guidelines for TES system in CSP plant using Phase Change Materials (PCM), a general storage tank volume sizing strategy and an energy storage startup strategy were proposed using the enthalpy-based 1D transient model. Then experimental investigations were conducted to explore a novel thermal storage material. The thermal storage performances were also compared between this novel storage material and concrete at a temperature range from 400 °C to 500 °C. It is recommended to apply this novel thermal storage material to replace concrete at high operating temperatures in sensible heat TES systems. The second part of this dissertation mainly focuses on the numerical and experimental study of an open-channel algae

  1. Energy-donor phosphorescence quenching study of triplet–triplet energy transfer between UV absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Azusa; Nakabai, Yuya [Department of Chemistry, Graduate School of Engineering, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan); Oguchi-Fujiyama, Nozomi; Miyazawa, Kazuyuki [Shiseido Research Center, Hayabuchi, Tsuzuki-ku, Yokohama 224-8558 (Japan); Yagi, Mikio, E-mail: yagimiki@ynu.ac.jp [Department of Chemistry, Graduate School of Engineering, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan)

    2015-10-15

    The intermolecular triplet–triplet energy transfer from a photounstable UV-A absorber, 4-tert-butyl-4′-methoxydibenzoylmethane (BMDBM), to UV-B absorbers, 2-ethylhexyl 4-methoxycinnamate (octyl methoxycinnamate, OMC), octocrylene (OCR) and dioctyl 4-methoxybenzylidenemalonate (DOMBM) has been observed using a 355 nm laser excitation in rigid solutions at 77 K. The decay curves of the energy-donor phosphorescence in the presence of the UV-B absorbers deviate from the exponential decay at the initial stage of the decay. The Stern–Volmer formulation is not valid in rigid solutions because molecular diffusion is impossible. The experimental results indicate that the rate constant of triplet–triplet energy transfer from BMDBM to the UV-B absorbers, k{sub T–T}, decreases in the following order: k{sub T–T} (BMDBM–DOMBM)>k{sub T–T} (BMDBM–OMC)≥k{sub T–T} (BMDBM–OCR). The presence of DOMBM enhances the photostability of the widely used combination of UV-A and UV-B absorbers, BMDBM and OCR. The effects of the triplet–triplet energy transfer on the photostability of BMDBM are discussed. - Highlights: • The intermolecular triplet–triplet energy transfer between UV absorbers was observed. • The phosphorescence decay deviates from exponential at the initial stage of decay. • The effects of triplet–triplet energy transfer on the photostability are discussed.

  2. New theory of radiative energy transfer in free electromagnetic fields

    International Nuclear Information System (INIS)

    Wolf, E.

    1976-01-01

    A new theory of radiative energy transfer in free, statistically stationary electromagnetic fields is presented. It provides a model for energy transport that is rigorous both within the framework of the stochastic theory of the classical field as well as within the framework of the theory of the quantized field. Unlike the usual phenomenological model of radiative energy transfer that centers around a single scalar quantity (the specific intensity of radiation), our theory brings into evidence the need for characterizing the energy transport by means of two (related) quantities: a scalar and a vector that may be identified, in a well-defined sense, with ''angular components'' of the average electromagnetic energy density and of the average Poynting vector, respectively. Both of them are defined in terms of invariants of certain new electromagnetic correlation tensors. In the special case when the field is statistically homogeneous, our model reduces to the usual one and our angular component of the average electromagnetic energy density, when multiplied by the vacuum speed of light, then acquires all the properties of the specific intensity of radiation. When the field is not statistically homogeneous our model approximates to the usual phenomenological one, provided that the angular correlations between plane wave modes of the field extend over a sufficiently small solid angle of directions about the direction of propagation of each mode. It is tentatively suggested that, when suitably normalized, our angular component of the average electromagnetic energy density may be interpreted as a quasi-probability (general quantum-mechancial phase-space distribution function, such as Wigner's) for the position and the momentum of a photon

  3. Membranes: A Variety of Energy Landscapes for Many Transfer Opportunities

    Science.gov (United States)

    2018-01-01

    A membrane can be represented by an energy landscape that solutes or colloids must cross. A model accounting for the momentum and the mass balances in the membrane energy landscape establishes a new way of writing for the Darcy law. The counter-pressure in the Darcy law is no longer written as the result of an osmotic pressure difference but rather as a function of colloid-membrane interactions. The ability of the model to describe the physics of the filtration is discussed in detail. This model is solved in a simplified energy landscape to derive analytical relationships that describe the selectivity and the counter-pressure from ab initio operating conditions. The model shows that the stiffness of the energy landscape has an impact on the process efficiency: a gradual increase in interactions (such as with hourglass pore shape) can reduce the separation energetic cost. It allows the introduction of a new paradigm to increase membrane efficiency: the accumulation that is inherent to the separation must be distributed across the membrane. Asymmetric interactions thus lead to direction-dependent transfer properties and the membrane exhibits diode behavior. These new transfer opportunities are discussed. PMID:29470440

  4. Western China energy development and west to east energy transfer: Application of the Western China Sustainable Energy Development Model

    International Nuclear Information System (INIS)

    Chen Wenying; Li Hualin; Wu Zongxin

    2010-01-01

    China is striving for coordinated regional economic development and to solve the energy shortage in eastern China through a western China development plan with one focus being energy development and west to east energy transfer. This paper describes Western China Sustainable Energy Development Model (WSED) to evaluate various energy development scenarios for western China. The model includes a Western China MARKAL model, a Computable General Equilibrium Model for Western China (WCGE), and an Energy Service Demand Projection Model (ESDP). The ESDP provides energy service demand projections for the Western China MARKAL model, while the WCGE provides macroeconomic inputs for the ESDP and analyzes the impact of different energy development scenarios on western China economy. A reference scenario and several different west to east energy transfer scenarios with and without consideration of the water constraints and the endogenous technology learning are presented. The modeling describes the energy consumption, carbon emissions, water consumption, energy investment cost, and the impact on western China GDP of the different scenarios through the year 2050. These results have implications on sustainable energy development policies and sustainable west to east energy transfer strategies.

  5. Information systems and technology transfer programs on geothermal energy and other renewable sources of energy

    Energy Technology Data Exchange (ETDEWEB)

    Lippmann, Marcelo J.; Antunez, Emilio u.

    1996-01-24

    In order to remain competitive it is necessary to stay informed and use the most advanced technologies available. Recent developments in communication, like the Internet and the World Wide Web, enormously facilitate worldwide data and technology transfer. A compilation of the most important sources of data on renewable energies, especially geothermal, as well as lists of relevant technology transfer programs are presented. Information on how to gain access to, and learn more about them is also given.

  6. Information systems and technology transfer programs on geothermal energy and other renewable sources of energy

    Energy Technology Data Exchange (ETDEWEB)

    Lippmann, M.J.; Antunez, E.

    1996-01-01

    In order to remain competitive, it is necessary to stay informed and use the most advanced technologies available. Recent developments in communication, like the Internet and the World Wide Web, enormously facilitate worldwide data and technology transfer. A compilation of the most important sources of data on renewable energies, especially geothermal, as well as lists of relevant technology transfer programs are presented. Information on how to gain access to, and learn more about them, is also given.

  7. Vibrational energy transfer in hydrogen liquid and its isotopes

    International Nuclear Information System (INIS)

    Gale, G.M.; Delalande, C.

    1978-01-01

    The transfer of vibrational energy (V-V) from H 2 to isotopic impurities (HD or D 2 ) has been studied in the liquid state, between 15 and 30 K. The subsequent ralaxation (V-T) of the excited impurity by the H 2 liquid host has also been measured and contrasted with the vibrational relaxation behaviour of pure H 2 and D 2 liquids. The isothermal density dependence of both V-V and V-T transfer has been investigated in the fluid state at 30 K. High density relaxation rates are also compared to the data in the pure gases and to other available gas phase results. Measurements in the solid, near the triple-point temperature, are equally reported for each process studied. (Auth.)

  8. Rotational Energy Transfer and Collisional Induced Raman Linewidths in N2 Gas. 1; Energy Transfer Rates

    Science.gov (United States)

    Huo, Winifred M.; Green, Sheldon; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Rotationally inelastic transitions of N2 have been studied in the coupled state (CS) and infinite-order-sudden (IOS) approximations, using the N2-N2 rigidrotor potential of van der Avoird et al. For benchmarking purposes, close coupling (CC) calculations have also been carried out over a limited energy range. The CC and CS cross sections have been obtained both with and without identical molecule exchange symmetry, whereas exchange was neglected in the IOS calculations. The CS results track the CC cross sections rather well; between 113 - 219 cm(exp -1) the average deviation is 14%. Comparison between the CS and IOS cross sections at the high energy end of the CS calculation, 500 - 680 cm(exp -1), shows that IOS is sensitive to the amount of inelasticity and the results for large DELTA J transitions are subject to larger errors. It is found that the state-to-state cross sections with even and odd exchange symmetry agree to better than 2% and are well represented as a sum of direct and exchange cross sections for distinguishable molecules, an indication of the applicability of a classical treatment for this system. This result, however, does not apply to partial cross sections for given total J, but arises from a near cancellation in summing over partial waves. In order to use rigid-rotor results for the calculation of effective rotational excitation rates of N2 in the v=1 vibrational level colliding with bath N2 molecules in the v=0 level, it is assumed that exchange scattering between molecules in different vibrational levels is negligible and direct scattering is independent of Y. Good agreement with room temperature experimental data is obtained. The effective rates determined using the IOS and energy corrected sudden (ECS) approximations are also in reasonable agreement with experiment, with the ECS results being somewhat better. The problem with a degeneracy factor in earlier cross section expressions for collisions between identical molecules is pointed out

  9. Transfer of mechanical energy during the shot put

    Directory of Open Access Journals (Sweden)

    Błażkiewicz Michalina

    2016-09-01

    Full Text Available The aim of this study was to analyse transfer of mechanical energy between body segments during the glide shot put. A group of eight elite throwers from the Polish National Team was analysed in the study. Motion analysis of each throw was recorded using an optoelectronic Vicon system composed of nine infrared camcorders and Kistler force plates. The power and energy were computed for the phase of final acceleration of the glide shot put. The data were normalized with respect to time using the algorithm of the fifth order spline and their values were interpolated with respect to the percentage of total time, assuming that the time of the final weight acceleration movement was different for each putter. Statistically significant transfer was found in the study group between the following segments: Right Knee – Right Hip (p = 0.0035, Left Hip - Torso (p = 0.0201, Torso – Right Shoulder (p = 0.0122 and Right Elbow – Right Wrist (p = 0.0001. Furthermore, the results of cluster analysis showed that the kinetic chain used during the final shot acceleration movement had two different models. Differences between the groups were revealed mainly in the energy generated by the hips and trunk.

  10. Conformation and energy transfer in single conjugated polymers.

    Science.gov (United States)

    Bolinger, Joshua C; Traub, Matthew C; Brazard, Johanna; Adachi, Takuji; Barbara, Paul F; Vanden Bout, David A

    2012-11-20

    In contrast to the detailed understanding of inorganic materials, researchers lack a comprehensive view of how the properties of bulk organic materials arise from their individual components. For conjugated polymers to eventually serve as low cost semiconductor layers in electronic devices, researchers need to better understand their functionality. For organics, traditional materials science measurements tend to destroy the species of interest, especially at low concentrations. However, fluorescence continues to be a remarkably flexible, relatively noninvasive tool for probing the properties of individual molecules and allows researchers to carry out a broad range of experiments based on a relatively simple concept. In addition, the sensitivity of single-molecule spectroscopy allows researchers to see the properties of an individual component that would be masked in the bulk phase. In this Account, we examine several photophysical properties of different conjugated polymers using single-molecule spectroscopy. In these experiments, we probed the relationship between the conformation of single conjugated polymer chains and the distance scale and efficiency of energy transfer within the polymer. Recent studies used polarization anisotropy measurements on single polymer chains to study chain folding following spin-casting from solution. This Account summarizes the effects of monomer regioregularity and backbone rigidity, by comparing a regiorandom phenylene vinylene (MEH-PPV) with both a regiorandom and regioregular thiophene (P3HT). Synthesis of novel polymers allowed us to explore the role of different conformation-directing inclusions in a PPV backbone. We showed that these inclusions control the conformation of individual chains and that molecular dynamics can predict these structural effects. In situ solvent vapor annealing studies explored the dynamics of polymer chains as well as the effect of solvent evaporation on the structural equilibrium of the polymer. We

  11. Cell Microtubules as Cavities Quantum Coherence and Energy Transfer?

    CERN Document Server

    Mavromatos, Nikolaos E

    2000-01-01

    A model is presented for dissipationless energy transfer in cell microtubules due to quantum coherent states. The model is based on conjectured (hydrated) ferroelectric properties of microtubular arrangements. Ferroelectricity is essential in providing the necessary isolation against thermal losses in thin interior regions, full of ordered water, near the tubulin dimer walls of the microtubule. These play the role of cavity regions, which are similar to electromagnetic cavities of quantum optics. As a result, the formation of (macroscopic) quantum coherent states of electric dipoles on the tubulin dimers may occur. Some experiments, inspired by quantum optics, are suggested for the falsification of this scenario.

  12. Nanoparticles for heat transfer and thermal energy storage

    Science.gov (United States)

    Singh, Dileep; Cingarapu, Sreeram; Timofeeva, Elena V.; Moravek, Michael

    2015-07-14

    An article of manufacture and method of preparation thereof. The article of manufacture and method of making the article includes an eutectic salt solution suspensions and a plurality of nanocrystalline phase change material particles having a coating disposed thereon and the particles capable of undergoing the phase change which provides increase in thermal energy storage. In addition, other articles of manufacture can include a nanofluid additive comprised of nanometer-sized particles consisting of copper decorated graphene particles that provide advanced thermal conductivity to heat transfer fluids.

  13. Energy-dependent applications of the transfer matrix method

    International Nuclear Information System (INIS)

    Oeztunali, O.I.; Aronson, R.

    1975-01-01

    The transfer matrix method is applied to energy-dependent neutron transport problems for multiplying and nonmultiplying media in one-dimensional plane geometry. Experimental cross sections are used for total, elastic, and inelastic scattering and fission. Numerical solutions are presented for the problem of a unit point isotropic source in an infinite medium of water and for the problem of the critical 235 U slab with finite water reflectors. No iterations were necessary in this method. Numerical results obtained are consistent with physical considerations and compare favorably with the moments method results for the problem of the unit point isotropic source in an infinite water medium. (U.S.)

  14. Single particle tracking and single molecule energy transfer

    CERN Document Server

    Bräuchle, Christoph; Michaelis, Jens

    2009-01-01

    Closing a gap in the literature, this handbook gathers all the information on single particle tracking and single molecule energy transfer. It covers all aspects of this hot and modern topic, from detecting virus entry to membrane diffusion, and from protein folding using spFRET to coupled dye systems, as well recent achievements in the field. Throughout, the first-class editors and top international authors present content of the highest quality, making this a must-have for physical chemists, spectroscopists, molecular physicists and biochemists.

  15. Manipulation of Energy Transfer Processes in Nano channels

    International Nuclear Information System (INIS)

    Devaux, A.; Calzaferri, G.

    2010-01-01

    The realisation of molecular assemblies featuring specific macroscopic properties is a prime example for the versatility of supramolecular organisation. Microporous materials such as zeolite L are well suited for the preparation of host-guest composites containing dyes, complexes, or clusters. This short tutorial focuses on the possibilities offered by zeolite L to study and influence Forster resonance energy transfer inside of its nano channels. The highly organised host-guest materials can in turn be structured on a larger scale to form macroscopic patterns, making it possible to create large-scale structures from small, highly organised building blocks for novel optical applications.

  16. Energy transfer mechanism in the hydroentaglement nonwoven process

    CSIR Research Space (South Africa)

    Moyo, D

    2010-09-01

    Full Text Available transfer mechanism in the hydroentaglement nonwoven process D MOYO AND R ANADJIWALA CSIR Material Science and Manufacturing, PO Box 395, Pretoria, 0001, South Africa Email: dmoyo@csir.co.za – www.csir.co.za NoNwoveNs Nonwoven fabrics are engineered... since no additional chemicals used • High productivity. reseArcH objecTives The main objective of the research is to address the high energy utilisation of the non-woven production process which has limited investment in this technology in south...

  17. Modular organization of cardiac energy metabolism: energy conversion, transfer and feedback regulation

    Science.gov (United States)

    Guzun, R.; Kaambre, T.; Bagur, R.; Grichine, A.; Usson, Y.; Varikmaa, M.; Anmann, T.; Tepp, K.; Timohhina, N.; Shevchuk, I.; Chekulayev, V.; Boucher, F.; Santos, P. Dos; Schlattner, U.; Wallimann, T.; Kuznetsov, A. V.; Dzeja, P.; Aliev, M.; Saks, V.

    2014-01-01

    To meet high cellular demands, the energy metabolism of cardiac muscles is organized by precise and coordinated functioning of intracellular energetic units (ICEUs). ICEUs represent structural and functional modules integrating multiple fluxes at sites of ATP generation in mitochondria and ATP utilization by myofibrillar, sarcoplasmic reticulum and sarcolemma ion-pump ATPases. The role of ICEUs is to enhance the efficiency of vectorial intracellular energy transfer and fine tuning of oxidative ATP synthesis maintaining stable metabolite levels to adjust to intracellular energy needs through the dynamic system of compartmentalized phosphoryl transfer networks. One of the key elements in regulation of energy flux distribution and feedback communication is the selective permeability of mitochondrial outer membrane (MOM) which represents a bottleneck in adenine nucleotide and other energy metabolite transfer and microcompartmentalization. Based on the experimental and theoretical (mathematical modelling) arguments, we describe regulation of mitochondrial ATP synthesis within ICEUs allowing heart workload to be linearly correlated with oxygen consumption ensuring conditions of metabolic stability, signal communication and synchronization. Particular attention was paid to the structure–function relationship in the development of ICEU, and the role of mitochondria interaction with cytoskeletal proteins, like tubulin, in the regulation of MOM permeability in response to energy metabolic signals providing regulation of mitochondrial respiration. Emphasis was given to the importance of creatine metabolism for the cardiac energy homoeostasis. PMID:24666671

  18. Protein Transfer Free Energy Obeys Entropy-Enthalpy Compensation.

    Science.gov (United States)

    Mills, Eric A; Plotkin, Steven S

    2015-11-05

    We have found significant entropy-enthalpy compensation for the transfer of a diverse set of two-state folding proteins from water into water containing a diverse set of cosolutes, including osmolytes, denaturants, and crowders. In extracting thermodynamic parameters from experimental data, we show the potential importance of accounting for the cosolute concentration-dependence of the heat capacity change upon unfolding, as well as the potential importance of the temperature-dependence of the heat capacity change upon unfolding. We introduce a new Monte Carlo method to estimate the experimental uncertainty in the thermodynamic data and use this to show by bootstrapping methods that entropy-enthalpy compensation is statistically significant, in spite of large, correlated scatter in the data. We show that plotting the data at the transition midpoint provides the most accurate experimental values by avoiding extrapolation errors due to uncertainty in the heat capacity, and that this representation exhibits the strongest evidence of compensation. Entropy-enthalpy compensation is still significant at lab temperature however. We also find that compensation is still significant when considering variations due to heat capacity models, as well as typical measurement discrepancies lab-to-lab when such data is available. Extracting transfer entropy and enthalpy along with their uncertainties can provide a valuable consistency check between experimental data and simulation models, which may involve tests of simulated unfolded ensembles and/or models of the transfer free energy; we include specific applications to cold shock protein and protein L.

  19. Heat transfer and energy efficiency in infrared paper dryers

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Magnus

    1999-11-01

    Infrared (IR) dryers are widely used in the paper industry, mainly in the production of coated paper grades. The thesis deals with various aspects of heat transfer and energy use in infrared heaters and dryers as employed in the paper industry. Both gas-fired and electric IR dryers are considered and compared. The thesis also provides an introduction to infrared heaters and infrared drying, including a review of recent literature in the field. The transport of thermal radiation inside a paper sheet was investigated and different IR dryers were compared in terms of their ability to transfer energy to the internal parts of a paper sheet. Although there were evident differences in the absorption of radiation between gas-fired and electric IR dryers, the distinction was found not to be as important as has generally been believed. The main differences appeared to be due to the choice of a one- or a two-sided dryer solution, rather than the spectral distributions emitted by the dryers. A method for evaluating the radiation efficiency of IR heaters was proposed. An electric IR heater was evaluated in the laboratory. The radiation efficiency of the heater was shown to be strongly dependent on the power level. The maximum efficiency, found at high power level, was close to 60 %. A procedure for evaluation of the total energy transfer efficiency of an infrared paper dryer was proposed and used in the evaluation of an electric IR dryer operating in an industrial coating machine. The efficiency of the dryer was roughly 40 %. A model for an electric IR heater was developed. The model includes non-grey radiative heat transfer between the different parts of the heater, as well as conduction in reflector material and convective cooling of the surfaces. Using IR module voltage as the only input, model predictions of temperatures and heat flux were found to agree well with experimental data both at steady state and under transient conditions. The model was also extended to include

  20. Light harvesting via energy transfer in the dye solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Siegers, Conrad

    2007-11-09

    The PhD-thesis ''Light Harvesting via Energy Transfer in the Dye Solar Cell'' (University of Freiburg, July 2007) describes the conceptual design, synthesis and testing of energy donor acceptor sensitizers for the dye solar cell (DSC). Under monochromatic illumination solar cells sensitized with the novel donor acceptor systems revealed a higher power conversion efficiency than cells containing exclusively the acceptor component. The following approach led to this conclusion: (i) the choice of suitable chromophores as energy donor and acceptor moieties according to the Foerster-theory, (ii) the synthesis of different donor acceptor systems, (iii) the development of a methodology allowing the quantification of energy transfer within dye solar cells, and (iv) the evaluation of characteristics of DSCs that were sensitized with the different donor acceptor systems. The acceptor chromophores used in this work were derived from [Ru(dcbpy)2acac]Cl (dcbpy = 4,4'-dicarboxy-2,2'-bipyridin, acac = acetylacetonato). This complex offered the opportunity to introduce substituents at the acac-ligand's terminal CH3 groups without significantly affecting its excellent photoelectrochemical properties. Alkylated 4-amino-1,8-naphthalimides (termed Fluorols in the following) were used as energy donor chromophores. This class of compounds fulfils the requirements for efficient energy transfer to [Ru(dcbpy)2acac]Cl. Covalently linking donor and acceptor chromophores to one another was achieved by two different concepts. A dyad comprising one donor and one acceptor chromophore was synthesized by subsequent hydrosilylation steps of an olefin-bearing donor and an acceptor precursor to the dihydrosilane HSiMe2-CH2CH2-SiMe2H. A series of polymers comprising multiple donor and acceptor units was made by the addition of alkyne-bearing chromophores to hyperbranched polyglycerol azide (''Click-chemistry''). In this series the donor acceptor

  1. Structure, assembly and energy transfer of plant photosystem II supercomplex.

    Science.gov (United States)

    Cao, Peng; Su, Xiaodong; Pan, Xiaowei; Liu, Zhenfeng; Chang, Wenrui; Li, Mei

    2018-03-14

    Around photosystem II (PSII), the peripheral antenna system absorbs sunlight energy and transfers it to the core complex where the water-splitting and oxygen-evolving reaction takes place. The peripheral antennae in plants are composed of various light-harvesting complexes II (LHCII). Recently, the three-dimensional structure of the C 2 S 2 M 2 -type PSII-LHCII supercomplex from Pisum sativum (PsPSII) has been solved at 2.7-Å resolution using the single-particle cryo-electron microscopy method. The large homodimeric supercomplex has a total molecular weight of >1400 kDa. Each monomer has a core complex surrounded by strongly and moderately bound LHCII trimers, as well as CP29, CP26, and CP24 monomers. Here, we review and present a detailed analysis of the structural features of this supramolecular machinery. Specifically, we discuss the structural differences around the oxygen-evolving center of PSII from different species. Furthermore, we summarize the existing knowledge of the structures and locations of peripheral antenna complexes, and dissect the excitation energy transfer pathways from the peripheral antennae to the core complex. This detailed high-resolution structural information provides a solid basis for understanding the functional behavior of plant PSII-LHCII supercomplex. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Ultrafast Single and Multiexciton Energy Transfer in Semiconductor Nanoplatelets

    Science.gov (United States)

    Schaller, Richard

    Photophysical processes such as fluorescence resonance energy transfer (FRET) enable optical antennas, wavelength down-conversion in light-emitting diodes (LEDs), and optical bio-sensing schemes. The rate and efficiency of this donor to acceptor transfer of excitation between chromophores dictates the utility of FRET and can unlock new device operation motifs including quantum-funnel solar cells and reduced gain thresholds. However, the fastest reported FRET time constants involving spherical quantum dots (QDs) (0.12-1 ns), do not outpace biexciton Auger recombination (0.01-0.1 ns), which impedes multiexciton-driven applications including electrically-pumped lasers and carrier-multiplication-enhanced photovoltaics. Precisely controlled, few-monolayer thick semiconductor nano-platelets with tens-of-nanometer diameters exhibit intense optical transitions and hundreds-of-picosecond Auger recombination, but heretofore lack FRET characterizations. We examine binary CdSe NPL solids and show that inter-plate FRET (~6-23 ps, presumably for co-facial arrangements) can occur 15-50 times faster than Auger recombination and demonstrate multiexcitonic FRET, making such materials ideal candidates for advanced technologies. This work was performed at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User Facility under Contract No. DE-AC02-06CH11357.

  3. Energy transfer mechanism in CsI:Eu crystal

    International Nuclear Information System (INIS)

    Yakovlev, V.; Trefilova, L.; Karnaukhova, A.; Ovcharenko, N.

    2014-01-01

    This paper studies the scintillation process in CsI:Eu crystal exposed to the pulse electron irradiation (E=0.25 MeV, t 1/2 =15 ns and W=0.003 J/cm 2 ). It has been proved that the energy transfer from the lattice to Eu 2+ ions in CsI:Eu occurs through the re-absorption of STE emission. The proposed model rests on the following experimental facts: (1) the activator emission at 2.68 eV rises gradually after the decay of the excitation pulse even at temperature lower than 90 K when V k centers are immobile; (2) the rise time of 2.68 eV emission and the decay time of STE emission have the same temperature dependences at T=78–300 K; (3) the excitation spectrum of 2.68 eV emission overlaps the emission spectrum of STE. -- Highlights: • The scintillation process in CsI:Eu was studied under pulsed electron irradiation. • A model of the energy transfer from the lattice to Eu 2+ ions in CsI:Eu was proposed. • Eu 2+ ions in CsI:Eu reabsorb the π-emission of self-trapped excitons

  4. Elementary Energy Transfer Pathways in Allochromatium vinosum Photosynthetic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Lüer, Larry; Carey, Anne-Marie; Henry, Sarah; Maiuri, Margherita; Hacking, Kirsty; Polli, Dario; Cerullo, Giulio; Cogdell, Richard J.

    2015-11-01

    Allochromatium vinosum (formerly Chromatium vinosum) purple bacteria are known to adapt their light-harvesting strategy during growth according to environmental factors such as temperature and average light intensity. Under low light illumination or low ambient temperature conditions, most of the LH2 complexes in the photosynthetic membranes form a B820 exciton with reduced spectral overlap with LH1. To elucidate the reason for this light and temperature adaptation of the LH2 electronic structure, we performed broadband femtosecond transient absorption spectroscopy as a function of excitation wavelength in A. vinosum membranes. A target analysis of the acquired data yielded individual rate constants for all relevant elementary energy transfer (ET) processes. We found that the ET dynamics in high-light-grown membranes was well described by a homogeneous model, with forward and backward rate constants independent of the pump wavelength. Thus, the overall B800→B850→B890→ Reaction Center ET cascade is well described by simple triexponential kinetics. In the low-light-grown membranes, we found that the elementary backward transfer rate constant from B890 to B820 was strongly reduced compared with the corresponding constant from B890 to B850 in high-light-grown samples. The ET dynamics of low-light-grown membranes was strongly dependent on the pump wavelength, clearly showing that the excitation memory is not lost throughout the exciton lifetime. The observed pump energy dependence of the forward and backward ET rate constants suggests exciton diffusion via B850→ B850 transfer steps, making the overall ET dynamics nonexponential. Our results show that disorder plays a crucial role in our understanding of low-light adaptation in A. vinosum.

  5. On the use of Lineal Energy Measurements to Estimate Linear Energy Transfer Spectra

    Science.gov (United States)

    Adams, David A.; Howell, Leonard W., Jr.; Adam, James H., Jr.

    2007-01-01

    This paper examines the error resulting from using a lineal energy spectrum to represent a linear energy transfer spectrum for applications in the space radiation environment. Lineal energy and linear energy transfer spectra are compared in three diverse but typical space radiation environments. Different detector geometries are also studied to determine how they affect the error. LET spectra are typically used to compute dose equivalent for radiation hazard estimation and single event effect rates to estimate radiation effects on electronics. The errors in the estimations of dose equivalent and single event rates that result from substituting lineal energy spectra for linear energy spectra are examined. It is found that this substitution has little effect on dose equivalent estimates in interplanetary quiet-time environment regardless of detector shape. The substitution has more of an effect when the environment is dominated by solar energetic particles or trapped radiation, but even then the errors are minor especially if a spherical detector is used. For single event estimation, the effect of the substitution can be large if the threshold for the single event effect is near where the linear energy spectrum drops suddenly. It is judged that single event rate estimates made from lineal energy spectra are unreliable and the use of lineal energy spectra for single event rate estimation should be avoided.

  6. Energy transfer from lower energy to higher-energy electrons mediated by whistler waves in the radiation belts

    Science.gov (United States)

    Shklyar, D. R.

    2017-01-01

    We study the problem of energy exchange between waves and particles, which leads to energization of the latter, in an unstable plasma typical of the radiation belts. The ongoing Van Allen Probes space mission brought this problem among the most discussed in space physics. A free energy which is present in an unstable plasma provides the indispensable condition for energy transfer from lower energy particles to higher-energy particles via resonant wave-particle interaction. This process is studied in detail by the example of electron interactions with whistler mode wave packets originated from lightning-induced emission. We emphasize that in an unstable plasma, the energy source for electron energization is the energy of other particles, rather than the wave energy as is often assumed. The way by which the energy is transferred from lower energy to higher-energy particles includes two processes that operate concurrently, in the same space-time domain, or sequentially, in different space-time domains, in which a given wave packet is located. In the first process, one group of resonant particles gives the energy to the wave. The second process consists in wave absorption by another group of resonant particles, whose energy therefore increases. We argue that this mechanism represents an efficient means of electron energization in the radiation belts.

  7. 78 FR 13661 - Energy Transfer Fuel, LP; Notice of Petition for Rate Approval

    Science.gov (United States)

    2013-02-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Energy Transfer Fuel, LP; Notice of Petition for Rate Approval Take notice that on February 15, 2013, Energy Transfer Fuel, LP filed for approval of rates for transportation...

  8. 76 FR 49764 - Steve Mason Enterprises, Inc., Green Energy Trans, LLC; Notice of Transfer of Exemption

    Science.gov (United States)

    2011-08-11

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Steve Mason Enterprises, Inc., Green Energy Trans, LLC; Notice of Transfer... transferred ownership of its exempted project property and facilities for Project No. 7742 to Green Energy...

  9. Photophysical properties and energy transfer mechanism of PFO/Fluorol 7GA hybrid thin films

    Energy Technology Data Exchange (ETDEWEB)

    Al-Asbahi, Bandar Ali, E-mail: alasbahibandar@gmail.com [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Department of Physics, Faculty of Science, Sana' a University (Yemen); Jumali, Mohammad Hafizuddin Haji, E-mail: hafizhj@ukm.my [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Yap, Chi Chin; Flaifel, Moayad Husein [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Salleh, Muhamad Mat [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia)

    2013-10-15

    Photophysical properties of poly (9,9′-di-n-octylfluorenyl-2.7-diyl) (PFO)/2-butyl-6- (butylamino)benzo [de] isoquinoline-1,3-dione (Fluorol 7GA) and energy transfer between them have been investigated. In this work, both PFO and Fluorol 7GA act as donor and acceptor, respectively. Based on the absorption and luminescence measurements, the photophysical and energy transfer properties such as fluorescence quantum yield (Φ{sub f}), fluorescence lifetime (τ), radiative rate constant (k{sub r}), non-radiative rate constant (k{sub nr}), quenching rate constant (k{sub SV}), energy transfer rate constant (k{sub ET}), energy transfer probability (P{sub DA}), energy transfer efficiency (η), critical concentration of acceptor (C{sub o}), energy transfer time (τ{sub ET}) and critical distance of energy transfer (R{sub o}) were calculated. Large values of k{sub SV}, k{sub ET} and R{sub o} suggested that Förster-type energy transfer was the dominant mechanism for the energy transfer between the excited donor and ground state acceptor molecules. It was observed that the Förster energy transfer together with the trapping process are crucial for performance improvement in ITO/(PFO/Fluorol7GA)/Al device. -- Highlights: • The efficient of energy transfer from PFO to Fluorol 7GA was evidenced. • The resonance energy transfer (Förster type) is the dominant mechanism. • Hsu et al. model was used to calculate Φ{sub f}, τ, k{sub r} and k{sub nr} of PFO thin film. • Several of the photophysical and energy transfer properties were calculated. • Trapping process and Förster energy transfer led to improve the device performance.

  10. The Clean Energy Transfer : preliminary assesment of the potential for a clean energy transfer between Manitoba and Ontario

    International Nuclear Information System (INIS)

    2004-09-01

    Ontario may have an electrical power shortfall of as much as 25,000 MW by 2020, due to phase-out of coal fired plants, a general increase in demand and existing plants reaching the end of their design lives. Manitoba has approximately 5,000 MW of new hydroelectric power potential which could help to reduce this shortfall. This document reports on a study between the Manitoba government, the Ontario government, Manitoba Hydro, Hydro One, and the Ontario Independent Electricity Market Operator to provide an incremental transfer capability of 1,500 MW between the provinces. This is known as the Clean Energy Transfer Initiative (CETI). The current east-west transmission grid is limited to about 200 MW and is thus not sufficient for this project. Three transmission options have been studied. The report claims that CETI would be the largest single project in terms of greenhouse gas reductions. It is also claimed to potentially benefit Aboriginal groups by increasing employment and business opportunities. Also, tax revenues would be substantial. The most likely alternative energy supply is considered to be the combined cycle gas turbine which, according to the study, would cost about the same amount per MWh, excluding environmental credits. 4 tabs., 11 figs

  11. Proxy studies of energy transfer to the magnetosphere

    International Nuclear Information System (INIS)

    Scurry, L.; Russell, C.T.

    1991-01-01

    The transfer of energy into the magnetosphere is studied using as proxy the Am geomagnetic index and multilinear regressions and correlations with solar wind data. In particular, the response of Am to the reconnection mechanism is examined in relation to the orientation of the interplanetary magnetic field as well as the upstream plasma parameters. A functional dependence of Am on clock angle, the orientation of the IMF in the plane perpendicular to the flow, is derived after first correcting the index for nonreconnection effects due to dynamic pressure and velocity. An examination of the effect of upstream magnetosonic Mach number shows the reconnection mechanism to become less efficient at high Mach numbers. The reconnection mechanism is shown to be slightly enhanced by higher dynamic pressures

  12. Unravelling radiative energy transfer in solid-state lighting

    Science.gov (United States)

    Melikov, Rustamzhon; Press, Daniel Aaron; Ganesh Kumar, Baskaran; Sadeghi, Sadra; Nizamoglu, Sedat

    2018-01-01

    Today, a wide variety of organic and inorganic luminescent materials (e.g., phosphors, quantum dots, etc.) are being used for lighting and new materials (e.g., graphene, perovskite, etc.) are currently under investigation. However, the understanding of radiative energy transfer is limited, even though it is critical to understand and improve the performance levels of solid-state lighting devices. In this study, we derived a matrix approach that includes absorption, reabsorption, inter-absorption and their iterative and combinatorial interactions for one and multiple types of fluorophores, which is simplified to an analytical matrix. This mathematical approach gives results that agree well with the measured spectral and efficiency characteristics of color-conversion light-emitting diodes. Moreover, it also provides a deep physical insight by uncovering the entire radiative interactions and their contribution to the output optical spectrum. The model is universal and applicable for all kinds of fluorophores.

  13. Variety in excitation energy transfer processes from phycobilisomes to photosystems I and II.

    Science.gov (United States)

    Ueno, Yoshifumi; Aikawa, Shimpei; Niwa, Kyosuke; Abe, Tomoko; Murakami, Akio; Kondo, Akihiko; Akimoto, Seiji

    2017-09-01

    The light-harvesting antennas of oxygenic photosynthetic organisms capture light energy and transfer it to the reaction centers of their photosystems. The light-harvesting antennas of cyanobacteria and red algae, called phycobilisomes (PBSs), supply light energy to both photosystem I (PSI) and photosystem II (PSII). However, the excitation energy transfer processes from PBS to PSI and PSII are not understood in detail. In the present study, the energy transfer processes from PBS to PSs in various cyanobacteria and red algae were examined in vivo by selectively exciting their PSs or PBSs, and measuring the resulting picosecond to nanosecond time-resolved fluorescences. By observing the delayed fluorescence spectrum of PBS-selective excitation in Arthrospira platensis, we demonstrated that energy transfer from PBS to PSI via PSII (PBS→PSII→PSI transfer) occurs even for PSI trimers. The contribution of PBS→PSII→PSI transfer was species dependent, being largest in the wild-type of red alga Pyropia yezoensis (formerly Porphyra yezoensis) and smallest in Synechococcus sp. PCC 7002. Comparing the time-resolved fluorescence after PSs- and PBS-selective excitation, we revealed that light energy flows from CP43 to CP47 by energy transfer between the neighboring PSII monomers in PBS-PSII supercomplexes. We also suggest two pathways of energy transfer: direct energy transfer from PBS to PSI (PBS→PSI transfer) and indirect transfer through PSII (PBS→PSII→PSI transfer). We also infer that PBS→PSI transfer conveys light energy to a lower-energy red chlorophyll than PBS→PSII→PSI transfer.

  14. Energy transfer in reactive and non-reactive H2 + OH collisions

    International Nuclear Information System (INIS)

    Rashed, O.; Brown, N.J.

    1985-04-01

    We have used the methods of quasi-classical dynamics to compute energy transfer properties of non-reactive and reactive H 2 + OH collisions. Energy transfer has been investigated as function of translational temperature, reagent rotational energy, and reagent vibrational energy. The energy transfer mechanism is complex with ten types of energy transfer possible, and evidence was found for all types. There is much more exchange between the translational degree of freedom and the H 2 vibrational degree of freedom than there is between translation and OH vibration. Translational energy is transferred to the rotational degrees of freedom of each molecule. There is a greater propensity for the transfer of translation to OH rotation than H 2 rotation. In reactive collisions, increases in reagent translational temperature predominantly appear as vibrational energy in the water molecule. Energy transfer in non-reactive and reactive collisions does not depend strongly on the initial angular momentum in either molecule. In non-reactive collisions, vibrational energy is transferred to translation, to the rotational degree of freedom of the same molecule, and to the rotational and vibrational degrees of freedom of the other molecule. In reactive collisions, the major effect of increasing the vibrational energy in reagent molecules is that, on the average, the vibrational energy of the reagents appears as product vibrational energy. 18 refs., 16 figs., 6 tabs

  15. Internal high linear energy transfer (LET) targeted radiotherapy for cancer

    International Nuclear Information System (INIS)

    Allen, Barry J

    2006-01-01

    High linear energy transfer (LET) radiation for internal targeted therapy has been a long time coming on to the medical therapy scene. While fundamental principles were established many decades ago, the clinical implementation has been slow. Localized neutron capture therapy, and more recently systemic targeted alpha therapy, are at the clinical trial stage. What are the attributes of these therapies that have led a band of scientists and clinicians to dedicate so much of their careers? High LET means high energy density, causing double strand breaks in DNA, and short-range radiation, sparing adjacent normal tissues. This targeted approach complements conventional radiotherapy and chemotherapy. Such therapies fail on several fronts. Foremost is the complete lack of progress for the control of primary GBM, the holy grail for cancer therapies. Next is the inability to regress metastatic cancer on a systemic basis. This has been the task of chemotherapy, but palliation is the major application. Finally, there is the inability to inhibit the development of lethal metastatic cancer after successful treatment of the primary cancer. This review charts, from an Australian perspective, the developing role of local and systemic high LET, internal radiation therapy. (review)

  16. Multiplex detection of collisional energy transfer using KCSFI.

    Science.gov (United States)

    Frerichs, Heiko; Lenzer, Thomas; Luther, Klaus; Schwarzer, Dirk

    2005-02-21

    A new detection method for obtaining collisional transition probabilities P(E',E) of highly vibrationally excited molecules in the gas phase is presented. The technique employs energy-selective probing of the time-dependent vibrational population distribution by "kinetically controlled selective fluorescence (KCSF)". We present experimental results for a test system, the collisional deactivation of toluene by argon, where we use the well-known "kinetically controlled selective ionization (KCSI)" scheme as a reference for comparison. A newly designed setup is employed that allows simultaneous detection of fluorescence and ionization signals under identical experimental conditions ("kinetically controlled selective fluorescence and ionization = KCSFI"). For the system toluene + argon it is demonstrated that KCSF and KCSI yield identical results. A rate-equation model is presented to understand common features and differences of both approaches. The fluorescence detection scheme shows promise for future investigations on collisional energy transfer. The experimental setup is simpler, because it requires no additional ionization wavelength. This will hopefully give access to the P(E',E) of systems where, e.g., ionization schemes are difficult to implement due to short wavelengths required for the ionization step. A few examples will be outlined briefly.

  17. Proton Linear Energy Transfer measurement using Emulsion Cloud Chamber

    Science.gov (United States)

    Shin, Jae-ik; Park, Seyjoon; Kim, Haksoo; Kim, Meyoung; Jeong, Chiyoung; Cho, Sungkoo; Lim, Young Kyung; Shin, Dongho; Lee, Se Byeong; Morishima, Kunihiro; Naganawa, Naotaka; Sato, Osamu; Kwak, Jungwon; Kim, Sung Hyun; Cho, Jung Sook; Ahn, Jung Keun; Kim, Ji Hyun; Yoon, Chun Sil; Incerti, Sebastien

    2015-04-01

    This study proposes to determine the correlation between the Volume Pulse Height (VPH) measured by nuclear emulsion and Linear Energy Transfer (LET) calculated by Monte Carlo simulation based on Geant4. The nuclear emulsion was irradiated at the National Cancer Center (NCC) with a therapeutic proton beam and was installed at 5.2 m distance from the beam nozzle structure with various thicknesses of water-equivalent material (PMMA) blocks to position with specific positions along the Bragg curve. After the beam exposure and development of the emulsion films, the films were scanned by S-UTS developed in Nagoya University. The proton tracks in the scanned films were reconstructed using the 'NETSCAN' method. Through this procedure, the VPH can be derived from each reconstructed proton track at each position along the Bragg curve. The VPH value indicates the magnitude of energy loss in proton track. By comparison with the simulation results obtained using Geant4, we found the correlation between the LET calculated by Monte Carlo simulation and the VPH measured by the nuclear emulsion.

  18. Proton Linear Energy Transfer measurement using Emulsion Cloud Chamber

    International Nuclear Information System (INIS)

    Shin, Jae-ik; Park, Seyjoon; Kim, Haksoo; Kim, Meyoung; Jeong, Chiyoung; Cho, Sungkoo; Lim, Young Kyung; Shin, Dongho; Lee, Se Byeong; Morishima, Kunihiro; Naganawa, Naotaka; Sato, Osamu; Kwak, Jungwon; Kim, Sung Hyun; Cho, Jung Sook; Ahn, Jung Keun; Kim, Ji Hyun; Yoon, Chun Sil; Incerti, Sebastien

    2015-01-01

    This study proposes to determine the correlation between the Volume Pulse Height (VPH) measured by nuclear emulsion and Linear Energy Transfer (LET) calculated by Monte Carlo simulation based on Geant4. The nuclear emulsion was irradiated at the National Cancer Center (NCC) with a therapeutic proton beam and was installed at 5.2 m distance from the beam nozzle structure with various thicknesses of water-equivalent material (PMMA) blocks to position with specific positions along the Bragg curve. After the beam exposure and development of the emulsion films, the films were scanned by S-UTS developed in Nagoya University. The proton tracks in the scanned films were reconstructed using the ‘NETSCAN’ method. Through this procedure, the VPH can be derived from each reconstructed proton track at each position along the Bragg curve. The VPH value indicates the magnitude of energy loss in proton track. By comparison with the simulation results obtained using Geant4, we found the correlation between the LET calculated by Monte Carlo simulation and the VPH measured by the nuclear emulsion

  19. Proton Linear Energy Transfer measurement using Emulsion Cloud Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jae-ik [Proton Therapy Center, National Cancer Center (Korea, Republic of); Division of Heavy Ion Clinical Research, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul (Korea, Republic of); Park, Seyjoon [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul (Korea, Republic of); Kim, Haksoo; Kim, Meyoung [Proton Therapy Center, National Cancer Center (Korea, Republic of); Jeong, Chiyoung [Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Cho, Sungkoo [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul (Korea, Republic of); Lim, Young Kyung; Shin, Dongho [Proton Therapy Center, National Cancer Center (Korea, Republic of); Lee, Se Byeong, E-mail: sblee@ncc.re.kr [Proton Therapy Center, National Cancer Center (Korea, Republic of); Morishima, Kunihiro; Naganawa, Naotaka; Sato, Osamu [Department of Physics, Nagoya University, Nagoya (Japan); Kwak, Jungwon [Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, Sung Hyun [Center for Underground Physics, Institute for Basic Science (IBS), Daejeon (Korea, Republic of); Cho, Jung Sook [Department of refinement education, Dongseo University, Busan (Korea, Republic of); Ahn, Jung Keun [Department of Physics, Korea University, Seoul (Korea, Republic of); Kim, Ji Hyun; Yoon, Chun Sil [Gyeongsang National University, Jinju (Korea, Republic of); Incerti, Sebastien [CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Université Bordeaux 1, CENBG, UMR 5797, F-33170 Gradignan (France)

    2015-04-15

    This study proposes to determine the correlation between the Volume Pulse Height (VPH) measured by nuclear emulsion and Linear Energy Transfer (LET) calculated by Monte Carlo simulation based on Geant4. The nuclear emulsion was irradiated at the National Cancer Center (NCC) with a therapeutic proton beam and was installed at 5.2 m distance from the beam nozzle structure with various thicknesses of water-equivalent material (PMMA) blocks to position with specific positions along the Bragg curve. After the beam exposure and development of the emulsion films, the films were scanned by S-UTS developed in Nagoya University. The proton tracks in the scanned films were reconstructed using the ‘NETSCAN’ method. Through this procedure, the VPH can be derived from each reconstructed proton track at each position along the Bragg curve. The VPH value indicates the magnitude of energy loss in proton track. By comparison with the simulation results obtained using Geant4, we found the correlation between the LET calculated by Monte Carlo simulation and the VPH measured by the nuclear emulsion.

  20. Can nanophotonics control the Förster resonance energy transfer efficiency?

    DEFF Research Database (Denmark)

    Blum, C.; Zijlstra, N.; Lagendijk, A.

    2013-01-01

    of the energy donor by the LDOS, the energy transfer efficiency can be enhanced or reduced. If a donor with unit quantum efficiency is placed in a 3D photonic bandgap, the energy transfer efficiency will approach 100 %, independent of the acceptor, and of the distances and orientations between the FRET partners....

  1. Metal-organic framework materials for light-harvesting and energy transfer.

    Science.gov (United States)

    So, Monica C; Wiederrecht, Gary P; Mondloch, Joseph E; Hupp, Joseph T; Farha, Omar K

    2015-02-28

    A critical review of the emerging field of MOFs for photon collection and subsequent energy transfer is presented. Discussed are examples involving MOFs for (a) light harvesting, using (i) MOF-quantum dots and molecular chromophores, (ii) chromophoric MOFs, and (iii) MOFs with light-harvesting properties, and (b) energy transfer, specifically via the (i) Förster energy transfer and (ii) Dexter exchange mechanism.

  2. Monthly Variations of Low-Energy Ballistic Transfers to Lunar Halo Orbits

    Science.gov (United States)

    Parker, Jeffrey S.

    2010-01-01

    The characteristics of low-energy transfers between the Earth and Moon vary from one month to the next largely due to the Earth's and Moon's non-circular, non-coplanar orbits in the solar system. This paper characterizes those monthly variations as it explores the trade space of low-energy lunar transfers across many months. Mission designers may use knowledge of these variations to swiftly design desirable low-energy lunar transfers in any given month.

  3. Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime Using Controlled Calorimetry

    International Nuclear Information System (INIS)

    Don W. Miller; Andrew Kauffmann; Eric Kreidler; Dongxu Li; Hanying Liu; Daniel Mills; Thomas D. Radcliff; Joseph Talnagi

    2001-01-01

    A comprehensive description of the accomplishments of the DOE grant titled, ''Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime using Controlled Calorimetry''

  4. Organic Solar Cells: Understanding the Role of Förster Resonance Energy Transfer

    Science.gov (United States)

    Feron, Krishna; Belcher, Warwick J.; Fell, Christopher J.; Dastoor, Paul C.

    2012-01-01

    Organic solar cells have the potential to become a low-cost sustainable energy source. Understanding the photoconversion mechanism is key to the design of efficient organic solar cells. In this review, we discuss the processes involved in the photo-electron conversion mechanism, which may be subdivided into exciton harvesting, exciton transport, exciton dissociation, charge transport and extraction stages. In particular, we focus on the role of energy transfer as described by Förster resonance energy transfer (FRET) theory in the photoconversion mechanism. FRET plays a major role in exciton transport, harvesting and dissociation. The spectral absorption range of organic solar cells may be extended using sensitizers that efficiently transfer absorbed energy to the photoactive materials. The limitations of Förster theory to accurately calculate energy transfer rates are discussed. Energy transfer is the first step of an efficient two-step exciton dissociation process and may also be used to preferentially transport excitons to the heterointerface, where efficient exciton dissociation may occur. However, FRET also competes with charge transfer at the heterointerface turning it in a potential loss mechanism. An energy cascade comprising both energy transfer and charge transfer may aid in separating charges and is briefly discussed. Considering the extent to which the photo-electron conversion efficiency is governed by energy transfer, optimisation of this process offers the prospect of improved organic photovoltaic performance and thus aids in realising the potential of organic solar cells. PMID:23235328

  5. Organic solar cells: understanding the role of Förster resonance energy transfer.

    Science.gov (United States)

    Feron, Krishna; Belcher, Warwick J; Fell, Christopher J; Dastoor, Paul C

    2012-12-12

    Organic solar cells have the potential to become a low-cost sustainable energy source. Understanding the photoconversion mechanism is key to the design of efficient organic solar cells. In this review, we discuss the processes involved in the photo-electron conversion mechanism, which may be subdivided into exciton harvesting, exciton transport, exciton dissociation, charge transport and extraction stages. In particular, we focus on the role of energy transfer as described by F¨orster resonance energy transfer (FRET) theory in the photoconversion mechanism. FRET plays a major role in exciton transport, harvesting and dissociation. The spectral absorption range of organic solar cells may be extended using sensitizers that efficiently transfer absorbed energy to the photoactive materials. The limitations of F¨orster theory to accurately calculate energy transfer rates are discussed. Energy transfer is the first step of an efficient two-step exciton dissociation process and may also be used to preferentially transport excitons to the heterointerface, where efficient exciton dissociation may occur. However, FRET also competes with charge transfer at the heterointerface turning it in a potential loss mechanism. An energy cascade comprising both energy transfer and charge transfer may aid in separating charges and is briefly discussed. Considering the extent to which the photo-electron conversion efficiency is governed by energy transfer, optimisation of this process offers the prospect of improved organic photovoltaic performance and thus aids in realising the potential of organic solar cells.

  6. Organic Solar Cells: Understanding the Role of Förster Resonance Energy Transfer

    Directory of Open Access Journals (Sweden)

    Paul C. Dastoor

    2012-12-01

    Full Text Available Organic solar cells have the potential to become a low-cost sustainable energy source. Understanding the photoconversion mechanism is key to the design of efficient organic solar cells. In this review, we discuss the processes involved in the photo-electron conversion mechanism, which may be subdivided into exciton harvesting, exciton transport, exciton dissociation, charge transport and extraction stages. In particular, we focus on the role of energy transfer as described by F¨orster resonance energy transfer (FRET theory in the photoconversion mechanism. FRET plays a major role in exciton transport, harvesting and dissociation. The spectral absorption range of organic solar cells may be extended using sensitizers that efficiently transfer absorbed energy to the photoactive materials. The limitations of F¨orster theory to accurately calculate energy transfer rates are discussed. Energy transfer is the first step of an efficient two-step exciton dissociation process and may also be used to preferentially transport excitons to the heterointerface, where efficient exciton dissociation may occur. However, FRET also competes with charge transfer at the heterointerface turning it in a potential loss mechanism. An energy cascade comprising both energy transfer and charge transfer may aid in separating charges and is briefly discussed. Considering the extent to which the photo-electron conversion efficiency is governed by energy transfer, optimisation of this process offers the prospect of improved organic photovoltaic performance and thus aids in realising the potential of organic solar cells.

  7. Shell thickness effects on quantum dot brightness and energy transfer.

    Science.gov (United States)

    Chern, Margaret; Nguyen, Thuy T; Mahler, Andrew H; Dennis, Allison M

    2017-11-02

    Heterostructured core/shell quantum dots (QDs) are prized in biomedical imaging and biosensing applications because of their bright, photostable emission and effectiveness as Förster resonance energy transfer (FRET) donors. However, as nanomaterials chemistry has progressed beyond traditional QDs to incorporate new compositions, ultra-thick shells, and alloyed structures, few of these materials have had their optical properties systematically characterized for effective application. For example, thick-shelled QDs, also known as 'giant' QDs (gQDs) are useful in single-particle tracking microscopy because of their reduced blinking, but we know only that CdSe/CdS gQDs are qualitatively brighter than thin-shelled CdSe/CdS in aqueous media. In this study, we quantify the impact of shell thickness on the nanoparticle molar extinction coefficient, quantum yield, brightness, and effectiveness as a FRET donor for CdSe/xCdS core/shell and CdSe/xCdS/ZnS core/shell/shell QDs, with variable thicknesses of the CdS shell (x). Molar extinction coefficients up to three orders of magnitude higher than conventional dyes and forty-fold greater than traditional QDs are reported. When thick CdS shells are combined with ZnS capping, quantum yields following thiol ligand exchange reach nearly 40%-5-10× higher than either the commercially available QDs or gQDs without ZnS caps treated the same way. These results clearly show that thick CdS shells and ZnS capping shells work in concert to provide the brightest possible CdSe-based QDs for bioimaging applications. We demonstrate that thicker shelled gQDs are over 50-fold brighter than their thin-shelled counterparts because of significant increases in their absorption cross-sections and higher quantum yield in aqueous milieu. Consistent with the point-dipole approximation commonly used for QD-FRET, these data show that thick shells contribute to the donor-acceptor distance, reducing FRET efficiency. Despite the reduction in FRET efficiency

  8. Exploiting energy transfer in hybrid metal and semiconductor nanoparticle systems for biosensing and energy harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Mayilo, Sergiy

    2009-06-19

    In this work, gold and semiconductor nanoparticles are used as building blocks for nanostructures, in which energy transfer is investigated. Fluorescence quenching by gold nanoparticles is investigated and used to develop novel immunoassays for medically relevant molecules. The influence of gold nanoparticles on radiative and non-radiative rates of Cy3 and Cy3B dyes is studied here. A competitive, homogeneous immunoassay for digoxigenin and digoxin, a drug used to cure heart diseases, is developed. The assay has a limit of detection of 0.5 nM in buffer and 50 nM in serum. Time resolved spectroscopy reveals that the quenching is due to energy transfer with an efficiency of 70%. A homogeneous sandwich immunoassay for cardiac troponin T, an indicator of damage to the heart muscle, is developed. Gold nanoparticles and fluorophores are functionalized with anti-troponin T antibodies. In the presence of troponin T the nanoparticles and fluorophores form a sandwich structure, in which the dye fluorescence is quenched by a gold nanoparticle. The limit of detection of the immunoassay in buffer is 0.02 nM and 0.11 nM in serum. Energy transfer is demonstrated in clusters of CdTe nanocrystals assembled using three methods. In the first method, clusters of differently-sized water soluble CdTe nanocrystals capped by negatively charged mercaptoacid stabilizers are produced through electrostatic interactions with positively charged Ca{sup 2+} cations. The two other methods employ covalent binding through dithiols and thiolated DNA as linkers between nanocrystals. Energy transfer from smaller nanocrystals to larger nanocrystals in aggregates is demonstrated by means of steady-state and time-resolved photoluminescence spectroscopy, paving the way for nanocrystal-based light harvesting structures in solution. Multi-shell onion-like CdSe/ZnS/CdSe/ZnS nanocrystals are presented. The shade of the white light can be controlled by annealing the particles. Evidence for intra

  9. Non-Radiative Energy Transfer Mediated by Hybrid Light-Matter States.

    Science.gov (United States)

    Zhong, Xiaolan; Chervy, Thibault; Wang, Shaojun; George, Jino; Thomas, Anoop; Hutchison, James A; Devaux, Eloise; Genet, Cyriaque; Ebbesen, Thomas W

    2016-05-17

    We present direct evidence of enhanced non-radiative energy transfer between two J-aggregated cyanine dyes strongly coupled to the vacuum field of a cavity. Excitation spectroscopy and femtosecond pump-probe measurements show that the energy transfer is highly efficient when both the donor and acceptor form light-matter hybrid states with the vacuum field. The rate of energy transfer is increased by a factor of seven under those conditions as compared to the normal situation outside the cavity, with a corresponding effect on the energy transfer efficiency. The delocalized hybrid states connect the donor and acceptor molecules and clearly play the role of a bridge to enhance the rate of energy transfer. This finding has fundamental implications for coherent energy transport and light-energy harvesting. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Magnetopause energy and mass transfer: results from a global MHD simulation

    Directory of Open Access Journals (Sweden)

    M. Palmroth

    2006-12-01

    Full Text Available We use the global MHD model GUMICS-4 to investigate the energy and mass transfer through the magnetopause and towards the closed magnetic field as a response to the interplanetary magnetic field (IMF clock angle θ=arctan (BY/BZ, IMF magnitude, and solar wind dynamic pressure. We find that the mass and energy transfer at the magnetopause are different both in spatial characteristics and in response to changes in the solar wind parameters. The energy transfer follows best the sin2 (θ/2 dependence, although there is more energy transfer after large energy input, and the reconnection line follows the IMF rotation with a delay. There is no clear clock angle dependence in the net mass transfer through the magnetopause, but the mass transfer through the dayside magnetopause and towards the closed field occurs preferably for northward IMF. The energy transfer occurs through areas at the magnetopause that are perpendicular to the subsolar reconnection line. In contrast, the mass transfer occurs consistently along the reconnection line, both through the magnetopause and towards the closed field. Both the energy and mass transfer are enhanced in response to increased solar wind dynamic pressure, while increasing the IMF magnitude does not affect the transfer quantities as much.

  11. Definition and determination of the triplet-triplet energy transfer reaction coordinate

    Energy Technology Data Exchange (ETDEWEB)

    Zapata, Felipe; Marazzi, Marco; Castaño, Obis; Frutos, Luis Manuel, E-mail: luisma.frutos@uah.es [Departamento de Química Física, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid (Spain); Acuña, A. Ulises [Instituto de Química Física “Rocasolano”, C.S.I.C., Serrano 119, 28006 Madrid (Spain)

    2014-01-21

    A definition of the triplet-triplet energy transfer reaction coordinate within the very weak electronic coupling limit is proposed, and a novel theoretical formalism is developed for its quantitative determination in terms of internal coordinates The present formalism permits (i) the separation of donor and acceptor contributions to the reaction coordinate, (ii) the identification of the intrinsic role of donor and acceptor in the triplet energy transfer process, and (iii) the quantification of the effect of every internal coordinate on the transfer process. This formalism is general and can be applied to classical as well as to nonvertical triplet energy transfer processes. The utility of the novel formalism is demonstrated here by its application to the paradigm of nonvertical triplet-triplet energy transfer involving cis-stilbene as acceptor molecule. In this way the effect of each internal molecular coordinate in promoting the transfer rate, from triplet donors in the low and high-energy limit, could be analyzed in detail.

  12. Definition and determination of the triplet-triplet energy transfer reaction coordinate.

    Science.gov (United States)

    Zapata, Felipe; Marazzi, Marco; Castaño, Obis; Acuña, A Ulises; Frutos, Luis Manuel

    2014-01-21

    A definition of the triplet-triplet energy transfer reaction coordinate within the very weak electronic coupling limit is proposed, and a novel theoretical formalism is developed for its quantitative determination in terms of internal coordinates The present formalism permits (i) the separation of donor and acceptor contributions to the reaction coordinate, (ii) the identification of the intrinsic role of donor and acceptor in the triplet energy transfer process, and (iii) the quantification of the effect of every internal coordinate on the transfer process. This formalism is general and can be applied to classical as well as to nonvertical triplet energy transfer processes. The utility of the novel formalism is demonstrated here by its application to the paradigm of nonvertical triplet-triplet energy transfer involving cis-stilbene as acceptor molecule. In this way the effect of each internal molecular coordinate in promoting the transfer rate, from triplet donors in the low and high-energy limit, could be analyzed in detail.

  13. Interaction mechanism for energy transfer from Ce to Tb ions in silica

    Energy Technology Data Exchange (ETDEWEB)

    Seed Ahmed, H.A.A. [Department of Physics, University of the Free State, Bloemfontein (South Africa); Department of Physics, University of Khartoum, Khartoum (Sudan); Chae, W.S. [Korea Basic Science Institute (KBSI), Gangneung (Korea, Republic of); Ntwaeaborwa, O.M. [Department of Physics, University of the Free State, Bloemfontein (South Africa); Kroon, R.E., E-mail: KroonRE@ufs.ac.za [Department of Physics, University of the Free State, Bloemfontein (South Africa)

    2016-01-01

    Energy transfer phenomena can play an important role in the development of luminescent materials. In this study, numerical simulations based on theoretical models of non-radiative energy transfer are compared to experimental results for Ce, Tb co-doped silica. Energy transfer from the donor (Ce) to the acceptor (Tb) resulted in a decrease in the Ce luminescence intensity and lifetime. The decrease in intensity corresponded best with the energy transfer models based on the exchange interaction and the dipole-dipole interaction. The critical transfer distance obtained from the fitting using both these models is around 2 nm. Since the exchange interaction requires a distance shorter than 1 nm to occur, the mechanism most likely to account for the energy transfer is concluded to be the dipole–dipole interaction. This is supported by an analysis of the lifetime data.

  14. Vibrational energy transfer in selectively excited diatomic molecules

    International Nuclear Information System (INIS)

    Dasch, C.J.

    1978-09-01

    Single rovibrational states of HCl(v=2), HBr(v=2), DCl(v=2), and CO(v=2) were excited with a pulsed optical parametric oscillator (OPO). Total vibrational relaxation rates near - resonance quenchers were measured at 295 0 K using time resolved infrared fluorescence. These rates are attributed primarily to V - V energy transfer, and they generally conform to a simple energy gap law. A small deviation was found for the CO(v) + DCl(v') relaxation rates. Upper limits for the self relaxation by V - R,T of HCl(v=2) and HBr(v=2) and for the two quantum exchange between HCl and HBr were determined. The HF dimer was detected at 295 0 K and 30 torr HF pressure with an optoacoustic spectrometer using the OPO. Pulsed and chopped, resonant and non-resonant spectrophones are analyzed in detail. From experiments and first order perturbation theory, these V - V exchange rates appear to behave as a first order perturbation in the vibrational coordinates. The rotational dynamics are known to be complicated however, and the coupled rotational - vibrational dynamics were investigated theoreticaly in infinite order by the Dillon and Stephenson and the first Magnus approximations. Large ΔJ transitions appear to be important, but these calculations differ by orders of magnitude on specific rovibrational transition rates. Integration of the time dependent semiclassical equations by a modified Gordon method and a rotationally distorted wave approximation are discussed as methods which would treat the rotational motion more accurately. 225 references

  15. Single-collision studies of energy transfer and chemical reaction

    Energy Technology Data Exchange (ETDEWEB)

    Valentini, J.J. [Columbia Univ., New York, NY (United States)

    1993-12-01

    The research focus in this group is state-to-state dynamics of reaction and energy transfer in collisions of free radicals such as H, OH, and CH{sub 3} with H{sub 2}, alkanes, alcohols and other hydrogen-containing molecules. The motivation for the work is the desire to provide a detailed understanding of the chemical dynamics of prototype reactions that are important in the production and utilization of energy sources, most importantly in combustion. The work is primarily experimental, but with an important and growing theoretical/computational component. The focus of this research program is now on reactions in which at least one of the reactants and one of the products is polyatomic. The objective is to determine how the high dimensionality of the reactants and products differentiates such reactions from atom + diatom reactions of the same kinematics and energetics. The experiments use highly time-resolved laser spectroscopic methods to prepare reactant states and analyze the states of the products on a single-collision time scale. The primary spectroscopic tool for product state analysis is coherent anti-Stokes Raman scattering (CARS) spectroscopy. CARS is used because of its generality and because the extraction of quantum state populations from CARS spectra is straightforward. The combination of the generality and easy analysis of CARS makes possible absolute cross section measurements (both state-to-state and total), a particularly valuable capability for characterizing reactive and inelastic collisions. Reactant free radicals are produced by laser photolysis of appropriate precursors. For reactant vibrational excitation stimulated Raman techniques are being developed and implemented.

  16. Low-energy charge transfer excitations in NiO

    International Nuclear Information System (INIS)

    Sokolov, V I; Yermakov, A Ye; Uimin, M A; Gruzdev, N B; Pustovarov, V A; Churmanov, V N; Ivanov, V Yu; Sokolov, P S; Baranov, A N; Moskvin, A S

    2012-01-01

    Comparative analysis of photoluminescence (PL) and photoluminescence excitation (PLE) spectra of NiO poly- and nanocrystals in the spectral range 2-5.5 eV reveals two PLE bands peaked near 3.7 and 4.6 eV with a dramatic rise in the low-temperature PLE spectral weight of the 3.7 eV PLE band in the nanocrystalline NiO as compared with its polycrystalline counterpart. In frames of a cluster model approach we assign the 3.7 eV PLE band to the low-energy bulk-forbidden p-d (t 1g (π)-e g ) charge transfer (CT) transition which becomes the allowed one in the nanocrystalline state while the 4.6 eV PLE band is related to a bulk allowed d-d (e g -e g ) CT transition scarcely susceptible to the nanocrystallization. The PLE spectroscopy of the nanocrystalline materials appears to be a novel informative technique for inspection of different CT transitions.

  17. Study of primary energy transfer process in ultrafast plastic scintillators

    International Nuclear Information System (INIS)

    Bengtson, B.; Moszynski, M.

    1978-01-01

    The study of the light-pulse shape, the initial delay of light pulses and the light yield of plastics prepared by a modification of the NE111 scintillator were performed. The NE111 scintillator doped with several quench agents, the plastics prepared as a solution of butyl PBD in PVT of different concentration and PVT alone were studied. The study confirmed that the light pulse shape from fast binary plastics is well described analytically by the convolution of the clipped Gaussian and exponential functions. The investigation of the PVT-butyl PBD plastics shows that even more than three times larger concentration of butyl PBD compared to that of PBD in the NE111 solution does not improve the rise of the light pulse. Thus the rise time seems to be not controlled by the intermolecular energy transfer process. Finally, the observed rise time of the light pulse from the PVT sample was also approximated well by the Gaussian function. Altogether it brought a strong support for the earlier hypothesis that the initial slow rise of light pulses from plastic scintillators may come from the deexcitation of several higher levels of the solvent molecules excited by nuclear particles. (Auth.)

  18. Fluorescence Resonance Energy Transfer Systems in Supramolecular Macrocyclic Chemistry

    Directory of Open Access Journals (Sweden)

    Xin-Yue Lou

    2017-09-01

    Full Text Available The fabrication of smart materials is gradually becoming a research focus in nanotechnology and materials science. An important criterion of smart materials is the capacity of stimuli-responsiveness, while another lies in selective recognition. Accordingly, supramolecular host-guest chemistry has proven a promising support for building intelligent, responsive systems; hence, synthetic macrocyclic hosts, such as calixarenes, cucurbiturils, cyclodextrins, and pillararenes, have been used as ideal building blocks. Meanwhile, manipulating and harnessing light artificially is always an intensive attempt for scientists in order to meet the urgent demands of technological developments. Fluorescence resonance energy transfer (FRET, known as a well-studied luminescent activity and also a powerful tool in spectroscopic area, has been investigated from various facets, of which the application range has been broadly expanded. In this review, the innovative collaboration between FRET and supramolecular macrocyclic chemistry will be presented and depicted with typical examples. Facilitated by the dynamic features of supramolecular macrocyclic motifs, a large variety of FRET systems have been designed and organized, resulting in promising optical materials with potential for applications in protein assembly, enzyme assays, diagnosis, drug delivery monitoring, sensing, photosynthesis mimicking and chemical encryption.

  19. Switching individual quantum dot emission through electrically controlling resonant energy transfer to graphene.

    Science.gov (United States)

    Lee, Jiye; Bao, Wei; Ju, Long; Schuck, P James; Wang, Feng; Weber-Bargioni, Alexander

    2014-12-10

    Electrically controlling resonant energy transfer of optical emitters provides a novel mechanism to switch nanoscale light sources on and off individually for optoelectronic applications. Graphene's optical transitions are tunable through electrostatic gating over a broad wavelength spectrum, making it possible to modulate energy transfer from a variety of nanoemitters to graphene at room temperature. We demonstrate photoluminescence switching of individual colloidal quantum dots by electrically tuning their energy transfer to graphene. The gate dependence of energy transfer modulation confirms that the transition occurs when the Fermi level is shifted over half the emitter's excitation energy. The modulation magnitude decreases rapidly with increasing emitter-graphene distance (d), following the 1/d(4) rate trend unique to the energy transfer process to two-dimensional materials.

  20. Efficient near-field wireless energy transfer using adiabatic system variations

    Science.gov (United States)

    Hamam, Rafif E; Karalis, Aristeidis; Joannopoulos, John D; Soljacic, Marin

    2014-09-16

    Disclosed is a method for transferring energy wirelessly including transferring energy wirelessly from a first resonator structure to an intermediate resonator structure, wherein the coupling rate between the first resonator structure and the intermediate resonator structure is .kappa..sub.1B, transferring energy wirelessly from the intermediate resonator structure to a second resonator structure, wherein the coupling rate between the intermediate resonator structure and the second resonator structure is .kappa..sub.B2, and during the wireless energy transfers, adjusting at least one of the coupling rates .kappa..sub.1B and .kappa..sub.B2 to reduce energy accumulation in the intermediate resonator structure and improve wireless energy transfer from the first resonator structure to the second resonator structure through the intermediate resonator structure.

  1. Cascade energy transfer and tunable emission from nanosheet hybrids: locating acceptor molecules through chiral doping.

    Science.gov (United States)

    Goudappagouda; Wakchaure, Vivek Chandrakant; Ranjeesh, Kayaramkodath Chandran; Abhai, Chalona Antony Ralph; Babu, Sukumaran Santhosh

    2017-06-27

    Light harvesting donor-acceptor assemblies are indispensable to efficiently tap photons. In an attempt to improve the light harvesting efficiency of an acceptor doped assembly, we design and synthesize a donor-acceptor-donor triad which exhibits an exceptional intramolecular energy transfer with excellent efficiency. Moreover, a facile cascade energy transfer (energy funnelling) is observed in the presence of a series of second acceptors (63-91% efficiency) with tunable emission colours. Self-assembled nanosheets formed by the triad in the presence of acceptors exhibit cascade energy transfer assisted tunable emission. In addition, use of chiral acceptors induces chirality to the triad and results in the formation of chiral nanosheets along with cascade energy transfer. Here chiral induction, nanosheet formation and cascade energy transfer in the presence of chiral acceptors are used as tools to probe the intercalation of acceptor molecules in the donor scaffold.

  2. Efficient near-field wireless energy transfer using adiabatic system variations

    Energy Technology Data Exchange (ETDEWEB)

    Hamam, Rafif E.; Karalis, Aristeidis; Joannopoulos, John D.; Soljacic, Marin

    2017-11-28

    Disclosed is a method for transferring energy wirelessly including transferring energy wirelessly from a first resonator structure to an intermediate resonator structure, wherein the coupling rate between the first resonator structure and the intermediate resonator structure is .kappa..sub.1B, transferring energy wirelessly from the intermediate resonator structure to a second resonator structure, wherein the coupling rate between the intermediate resonator structure and the second resonator structure is .kappa..sub.B2, and during the wireless energy transfers, adjusting at least one of the coupling rates .kappa..sub.1B and .kappa..sub.B2 to reduce energy accumulation in the intermediate resonator structure and improve wireless energy transfer from the first resonator structure to the second resonator structure through the intermediate resonator structure.

  3. Modeling the efficiency of Förster resonant energy transfer from energy relay dyes in dye-sensitized solar cells

    KAUST Repository

    Hoke, Eric T.

    2010-02-11

    Förster resonant energy transfer can improve the spectral breadth, absorption and energy conversion efficiency of dye sensitized solar cells. In this design, unattached relay dyes absorb the high energy photons and transfer the excitation to sensitizing dye molecules by Förster resonant energy transfer. We use an analytic theory to calculate the excitation transfer efficiency from the relay dye to the sensitizing dye accounting for dynamic quenching and relay dye diffusion. We present calculations for pores of cylindrical and spherical geometry and examine the effects of the Förster radius, the pore size, sensitizing dye surface concentration, collisional quenching rate, and relay dye lifetime. We find that the excitation transfer efficiency can easily exceed 90% for appropriately chosen dyes and propose two different strategies for selecting dyes to achieve record power conversion efficiencies. © 2010 Optical Society of America.

  4. Low-energy plasma immersion ion implantation to induce DNA transfer into bacterial E. coli

    International Nuclear Information System (INIS)

    Sangwijit, K.; Yu, L.D.; Sarapirom, S.; Pitakrattananukool, S.; Anuntalabhochai, S.

    2015-01-01

    Plasma immersion ion implantation (PIII) at low energy was for the first time applied as a novel biotechnology to induce DNA transfer into bacterial cells. Argon or nitrogen PIII at low bias voltages of 2.5, 5 and 10 kV and fluences ranging from 1 × 10 12 to 1 × 10 17 ions/cm 2 treated cells of Escherichia coli (E. coli). Subsequently, DNA transfer was operated by mixing the PIII-treated cells with DNA. Successes in PIII-induced DNA transfer were demonstrated by marker gene expressions. The induction of DNA transfer was ion-energy, fluence and DNA-size dependent. The DNA transferred in the cells was confirmed functioning. Mechanisms of the PIII-induced DNA transfer were investigated and discussed in terms of the E. coli cell envelope anatomy. Compared with conventional ion-beam-induced DNA transfer, PIII-induced DNA transfer was simpler with lower cost but higher efficiency.

  5. High resolution IR diode laser study of collisional energy transfer between highly vibrationally excited monofluorobenzene and CO2: the effect of donor fluorination on strong collision energy transfer.

    Science.gov (United States)

    Kim, Kilyoung; Johnson, Alan M; Powell, Amber L; Mitchell, Deborah G; Sevy, Eric T

    2014-12-21

    Collisional energy transfer between vibrational ground state CO2 and highly vibrationally excited monofluorobenzene (MFB) was studied using narrow bandwidth (0.0003 cm(-1)) IR diode laser absorption spectroscopy. Highly vibrationally excited MFB with E' = ∼41,000 cm(-1) was prepared by 248 nm UV excitation followed by rapid radiationless internal conversion to the electronic ground state (S1→S0*). The amount of vibrational energy transferred from hot MFB into rotations and translations of CO2 via collisions was measured by probing the scattered CO2 using the IR diode laser. The absolute state specific energy transfer rate constants and scattering probabilities for single collisions between hot MFB and CO2 were measured and used to determine the energy transfer probability distribution function, P(E,E'), in the large ΔE region. P(E,E') was then fit to a bi-exponential function and extrapolated to the low ΔE region. P(E,E') and the biexponential fit data were used to determine the partitioning between weak and strong collisions as well as investigate molecular properties responsible for large collisional energy transfer events. Fermi's Golden rule was used to model the shape of P(E,E') and identify which donor vibrational motions are primarily responsible for energy transfer. In general, the results suggest that low-frequency MFB vibrational modes are primarily responsible for strong collisions, and govern the shape and magnitude of P(E,E'). Where deviations from this general trend occur, vibrational modes with large negative anharmonicity constants are more efficient energy gateways than modes with similar frequency, while vibrational modes with large positive anharmonicity constants are less efficient at energy transfer than modes of similar frequency.

  6. Imaging and Manipulating Energy Transfer Among Quantum Dots at Individual Dot Resolution.

    Science.gov (United States)

    Nguyen, Duc; Nguyen, Huy A; Lyding, Joseph W; Gruebele, Martin

    2017-06-27

    Many processes of interest in quantum dots involve charge or energy transfer from one dot to another. Energy transfer in films of quantum dots as well as between linked quantum dots has been demonstrated by luminescence shift, and the ultrafast time-dependence of energy transfer processes has been resolved. Bandgap variation among dots (energy disorder) and dot separation are known to play an important role in how energy diffuses. Thus, it would be very useful if energy transfer could be visualized directly on a dot-by-dot basis among small clusters or within films of quantum dots. To that effect, we report single molecule optical absorption detected by scanning tunneling microscopy (SMA-STM) to image energy pooling from donor into acceptor dots on a dot-by-dot basis. We show that we can manipulate groups of quantum dots by pruning away the dominant acceptor dot, and switching the energy transfer path to a different acceptor dot. Our experimental data agrees well with a simple Monte Carlo lattice model of energy transfer, similar to models in the literature, in which excitation energy is transferred preferentially from dots with a larger bandgap to dots with a smaller bandgap.

  7. The 2H(e, e' p)n reaction at large energy transfers

    NARCIS (Netherlands)

    Willering, Hendrik Willem

    2003-01-01

    At the ELSA accelerator facillity in Bonn, Germany, we have measured the deutron "breakup" reaction 2H(e,e' p)n at four-momentum transfers around Q2 = -0 .20(GeV/c)2 with an electron beam energy of E0 = 1.6 GeV. The cross section has been determined for energy transfers extending from the

  8. Hybrid Systems Based on Layered Silicate and Organic Dyes for Cascade Energy Transfer

    Czech Academy of Sciences Publication Activity Database

    Belušáková, S.; Lang, Kamil; Bujdák, J.

    2015-01-01

    Roč. 119, č. 38 (2015), s. 21784-21794 ISSN 1932-7447 Institutional support: RVO:61388980 Keywords : Cascade energy transfers * Multicomponent films * Resonance energy transfer * Spectral properties * Steady state fluorescence * Time -resolved fluorescence spectroscopy Subject RIV: CA - Inorganic Chemistry Impact factor: 4.509, year: 2015

  9. Energy transfer in triton-X 100 micelles: a fluorescence study

    Science.gov (United States)

    Saha, D. C.; Ray, K.; Misra, T. N.

    2000-03-01

    The study of fluorescence energy transfer from the phenyl groups of the micellar triton X-100 (TX-100) to solubilised 1-pyrene butyric acid (PBA) has been carried out. Through the analysis of the donor fluorescence quenching energy transfer efficiency has been determined. The observed donor-acceptor separation suggests that pyrene molecules are distributed uniformly in the micellar core.

  10. Momentum and Energy Transfer in an Ionospheric Critical Ionization Velocity Experiment

    DEFF Research Database (Denmark)

    Bolin, O.; Brenning, N.; Swenson, C. M.

    1995-01-01

    We present new data from the subpayload of the GRIT II ionospheric active injection experiment. The analysis made possible by these data provides a good understanding of the momentum transfer between the injected ions and the ambient ionosphere. It resolves the conflict between the two competing...... models for the energy transfer from the newly created ions to hot electrons, while also giving a natural coupling between the energy and momentum transfer processes....

  11. Rapid Energy Transfer Enabling Control of Emission Polarization in Perylene Bisimide Donor-Acceptor Triads.

    Science.gov (United States)

    Menelaou, Christopher; ter Schiphorst, Jeroen; Kendhale, Amol M; Parkinson, Patrick; Debije, Michael G; Schenning, Albertus P H J; Herz, Laura M

    2015-04-02

    Materials showing rapid intramolecular energy transfer and polarization switching are of interest for both their fundamental photophysics and potential for use in real-world applications. Here, we report two donor-acceptor-donor triad dyes based on perylene-bisimide subunits, with the long axis of the donors arranged either parallel or perpendicular to that of the central acceptor. We observe rapid energy transfer (energy transfer rate for the linearly arranged triad but severely underestimates it for the orthogonal case. We show that the rapid energy transfer arises from a combination of through-bond coupling and through-space transfer between donor and acceptor units. As they allow energy cascading to an excited state with controllable polarization, these triad dyes show high potential for use in luminescent solar concentrator devices.

  12. Mutations to R. sphaeroides Reaction Center Perturb Energy Levels and Vibronic Coupling but Not Observed Energy Transfer Rates.

    Science.gov (United States)

    Flanagan, Moira L; Long, Phillip D; Dahlberg, Peter D; Rolczynski, Brian S; Massey, Sara C; Engel, Gregory S

    2016-03-10

    The bacterial reaction center is capable of both efficiently collecting and quickly transferring energy within the complex; therefore, the reaction center serves as a convenient model for both energy transfer and charge separation. To spectroscopically probe the interactions between the electronic excited states on the chromophores and their intricate relationship with vibrational motions in their environment, we examine coherences between the excited states. Here, we investigate this question by introducing a series of point mutations within 12 Å of the special pair of bacteriochlorophylls in the Rhodobacter sphaeroides reaction center. Using two-dimensional spectroscopy, we find that the time scales of energy transfer dynamics remain unperturbed by these mutations. However, within these spectra, we detect changes in the mixed vibrational-electronic coherences in these reaction centers. Our results indicate that resonance between bacteriochlorophyll vibrational modes and excitonic energy gaps promote electronic coherences and support current vibronic models of photosynthetic energy transfer.

  13. Rotational Energy Transfer of N2 Determined Using a New Ab Initio Potential Energy Surface

    Science.gov (United States)

    Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    A new N2-N2 rigid-rotor surface has been determined using extensive Ab Initio quantum chemistry calculations together with recent experimental data for the second virial coefficient. Rotational energy transfer is studied using the new potential energy surface (PES) employing the close coupling method below 200 cm(exp -1) and coupled state approximation above that. Comparing with a previous calculation based on the PES of van der Avoird et al.,3 it is found that the new PES generally gives larger cross sections for large (delta)J transitions, but for small (delta)J transitions the cross sections are either comparable or smaller. Correlation between the differences in the cross sections and the two PES will be attempted. The computed cross sections will also be compared with available experimental data.

  14. Efficient energy transfer and increase of energy density of magnetically charged flywheels

    International Nuclear Information System (INIS)

    Hinterdorfer, T.

    2014-01-01

    Flywheel Energy Storage Systems represent an ecologically and economically sustainable technology for decentralized energy storage. Compared to other storage technologies such as e.g. chemical accumulators, they offer longer life cycles without performance degradation over time and usage and need almost no systematic maintenance. Further, they are made of environmentally friendly materials. By means of the driving torque of an electric motor, the flywheel is accelerated and thus electrical energy is transformed to kinetic energy. The stored energy can be transfered back by the load torque of a generator when needed. Modern flywheel energy storage applications use magnetic bearings to minimize selfdischarge. To avoid bearing forces due to rotor eccentricity an unbalance control strategy is used. However, this leads to an off-centered run of the electric machines rotor which in turn generates undesirable forces. A force-compensating operation of the electric machine will minimize the influence on the magnetic bearings in the planned control scheme, thus increasing their efficiency. Different concepts will be developed and compared to each other by means of simulations. Validation of the simulation models is carried out on a specially constructed test setup under defined conditions. In addition, the electrical machine will be integrated into the concept of redundancy of the flywheel. A bearingless operation increases the reliability and enables a safe shutdown of the application in case of malfunction of the magnetic bearings. High strength composite materials are used to achieve high speeds. Based on existing results from past research activities, a disc-shaped rotor is optimized first. To increase material utilization and to maximize energy density a topology optimization is performed. Evolutionary and gradient based optimization algorithms are used. Thereby the unused strength potential of the material is exploited in order to increase the economic efficiency of

  15. Energy and Information Transfer Via Coherent Exciton Wave Packets

    Science.gov (United States)

    Zang, Xiaoning

    associated excitations were dubbed twisted excitons. Twisted exciton packets can be manipulated as they travel down molecular chains, and this has applications in quantum information science as well. In each setting considered, exciton dynamics were initially studied using a simple tight-binding formalism. This misses the actual many-body interactions and multiple energy levels associated real systems. To remedy this, I adapted an existing time-domain Density Functional Theory code and applied it to study the dynamics of exciton wave packets on quasi-one-dimensional systems. This required the use of high-performance computing and the construction of a number of key auxiliary codes. Establishing the requisite methodology constituted a substantial part of the entire thesis. Surprisingly, this effort uncovered a computational issue associated with Rabi oscillations that had been incorrectly characterized in the literature. My research elucidated the actual problem and a solution was found. This new methodology was an integral part of the overall computational analysis. The thesis then takes up the a detailed consideration of the prospect for creating systems that support a strong measure of transport coherence. While physical implementations include molecular assemblies, solid-state superlattices, and even optical lattices, I decided to focus on assemblies of nanometer-sized silicon quantum dots. First principles computational analysis was used to quantify reorganization within individual dots and excitonic coupling between dots. Quantum dot functionalizations were identified that make it plausible to maintain a measure of excitonic coherence even at room temperatures. Attention was then turned to the use of covalently bonded bridge material to join quantum dots in a way that facilitates efficient exciton transfer. Both carbon and silicon structures were considered by considering the way in which subunits might be best brought together. This resulted in a set of design criteria

  16. The medium reorganization energy for the charge transfer reactions in proteins.

    Science.gov (United States)

    Krishtalik, Lev I

    2011-11-01

    A low static dielectric permittivity of proteins causes the low reorganization energies for the charge transfer reactions inside them. This reorganization energy does not depend on the pre-existing intraprotein electric field. The charge transferred inside the protein interacts with its aqueous surroundings; for many globular proteins, the effect of this surroundings on the reorganization energy is comparable with the effect of reorganization of the protein itself while for the charge transfer in the middle of membrane the aqueous phase plays a minor role. Reorganization energy depends strongly on the system considered, and hence there is no sense to speak on the "protein reorganization energy" as some permanent characteristic parameter. We employed a simple algorithm for calculation of the medium reorganization energy using the numerical solution of the Poisson-Boltzmann equation. Namely, the reaction field energy was computed in two versions - all media having optical dielectric permittivity, and all the media with the static one; the difference of these two quantities gives the reorganization energy. We have calculated reorganization energies for electron transfer in cytochrome c, various ammine-ruthenated cytochromes c, azurin, ferredoxin, cytochrome c oxidase, complex of methylamine dehydrogenase with amicyanin, and for proton transfer in α-chymotrypsin. It is shown that calculation of the medium reorganization energy can be a useful tool in analysis of the mechanisms of the charge transfer reactions in proteins. 2011 Elsevier B.V. All rights reserved.

  17. Förster Resonance Energy Transfer between Core/Shell Quantum Dots and Bacteriorhodopsin

    Directory of Open Access Journals (Sweden)

    Mark H. Griep

    2012-01-01

    Full Text Available An energy transfer relationship between core-shell CdSe/ZnS quantum dots (QDs and the optical protein bacteriorhodopsin (bR is shown, demonstrating a distance-dependent energy transfer with 88.2% and 51.1% of the QD energy being transferred to the bR monomer at separation distances of 3.5 nm and 8.5 nm, respectively. Fluorescence lifetime measurements isolate nonradiative energy transfer, other than optical absorptive mechanisms, with the effective QD excited state lifetime reducing from 18.0 ns to 13.3 ns with bR integration, demonstrating the Förster resonance energy transfer contributes to 26.1% of the transferred QD energy at the 3.5 nm separation distance. The established direct energy transfer mechanism holds the potential to enhance the bR spectral range and sensitivity of energies that the protein can utilize, increasing its subsequent photocurrent generation, a significant potential expansion of the applicability of bR in solar cell, biosensing, biocomputing, optoelectronic, and imaging technologies.

  18. Determination of energy transfer parameters in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses

    NARCIS (Netherlands)

    Marshall, Christopher; Golding, Paul S.; Jackson, Stuart D.; King, Terence A.; Pollnau, Markus

    A detailed characterization of energy level lifetimes and energy-transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN bulk glasses is presented. Energy transfer upconversion parameters from the Er3+ 4I13/2 and 4I11/2 levels have been measured and are compared to energy transfer from Er3+ to

  19. Biomolecular interactions probed by fluorescence resonance energy transfer

    Science.gov (United States)

    Lange, Daniela Charlotte

    2000-09-01

    This thesis describes how a physical phenomenon, Fluorescence Resonance Energy Transfer (FRET), can be exploited for the study of interactions between biomolecules. The physical basis of this phenomenon is discussed and it is described how some of its characteristics can be exploited in measurement. A recently introduced method, photobleaching FRET microscopy, was implemented and its image analysis refined to suit our biological context. Further, a new technique is proposed, which combines FRET with confocal laser scanning microscopy to optimize resolution and to allow for 3D-studies in living cells. The first part of this thesis presents the application of FRET to the study of oligomerization of G-protein coupled receptors (GPCRs), which was performed at the Fraser Laboratories at McGill University in Montreal. It is demonstrated how FRET microscopy allowed us to circumvent problems of traditional biochemical approaches and provided the first direct evidence for GPCR oligomerization in intact cells. We found that somatostatin receptors (SSTRs) functionally interact by forming oligomers with their own kind, with different SSTR isoforms, and even with distantly related GPCRs, such as dopamine receptors, the latter of which is breaking with the dogma that GPCRs would only pair up with their own kind. The high sensitivity of the FRET technique allowed us to characterize these interactions under more physiological conditions, which lead to the observation that oligomerization is induced by receptor agonist. We further studied the differential effects of agonists and antagonists on receptor oligomerization, leading to a model for the molecular mechanism underlying agonist/antagonist function and receptor activation. The second part was carried out at the Neurobiology Laboratory of the VA Medical Center in Newington, CT. The objective was to further our understanding of Niemann- Pick type C disease, which is characterized by a defect in intracellular cholesterol

  20. Linear energy transfer incorporated intensity modulated proton therapy optimization

    Science.gov (United States)

    Cao, Wenhua; Khabazian, Azin; Yepes, Pablo P.; Lim, Gino; Poenisch, Falk; Grosshans, David R.; Mohan, Radhe

    2018-01-01

    The purpose of this study was to investigate the feasibility of incorporating linear energy transfer (LET) into the optimization of intensity modulated proton therapy (IMPT) plans. Because increased LET correlates with increased biological effectiveness of protons, high LETs in target volumes and low LETs in critical structures and normal tissues are preferred in an IMPT plan. However, if not explicitly incorporated into the optimization criteria, different IMPT plans may yield similar physical dose distributions but greatly different LET, specifically dose-averaged LET, distributions. Conventionally, the IMPT optimization criteria (or cost function) only includes dose-based objectives in which the relative biological effectiveness (RBE) is assumed to have a constant value of 1.1. In this study, we added LET-based objectives for maximizing LET in target volumes and minimizing LET in critical structures and normal tissues. Due to the fractional programming nature of the resulting model, we used a variable reformulation approach so that the optimization process is computationally equivalent to conventional IMPT optimization. In this study, five brain tumor patients who had been treated with proton therapy at our institution were selected. Two plans were created for each patient based on the proposed LET-incorporated optimization (LETOpt) and the conventional dose-based optimization (DoseOpt). The optimized plans were compared in terms of both dose (assuming a constant RBE of 1.1 as adopted in clinical practice) and LET. Both optimization approaches were able to generate comparable dose distributions. The LET-incorporated optimization achieved not only pronounced reduction of LET values in critical organs, such as brainstem and optic chiasm, but also increased LET in target volumes, compared to the conventional dose-based optimization. However, on occasion, there was a need to tradeoff the acceptability of dose and LET distributions. Our conclusion is that the

  1. Linear energy transfer incorporated intensity modulated proton therapy optimization.

    Science.gov (United States)

    Cao, Wenhua; Khabazian, Azin; Yepes, Pablo P; Lim, Gino; Poenisch, Falk; Grosshans, David R; Mohan, Radhe

    2017-12-19

    The purpose of this study was to investigate the feasibility of incorporating linear energy transfer (LET) into the optimization of intensity modulated proton therapy (IMPT) plans. Because increased LET correlates with increased biological effectiveness of protons, high LETs in target volumes and low LETs in critical structures and normal tissues are preferred in an IMPT plan. However, if not explicitly incorporated into the optimization criteria, different IMPT plans may yield similar physical dose distributions but greatly different LET, specifically dose-averaged LET, distributions. Conventionally, the IMPT optimization criteria (or cost function) only includes dose-based objectives in which the relative biological effectiveness (RBE) is assumed to have a constant value of 1.1. In this study, we added LET-based objectives for maximizing LET in target volumes and minimizing LET in critical structures and normal tissues. Due to the fractional programming nature of the resulting model, we used a variable reformulation approach so that the optimization process is computationally equivalent to conventional IMPT optimization. In this study, five brain tumor patients who had been treated with proton therapy at our institution were selected. Two plans were created for each patient based on the proposed LET-incorporated optimization (LETOpt) and the conventional dose-based optimization (DoseOpt). The optimized plans were compared in terms of both dose (assuming a constant RBE of 1.1 as adopted in clinical practice) and LET. Both optimization approaches were able to generate comparable dose distributions. The LET-incorporated optimization achieved not only pronounced reduction of LET values in critical organs, such as brainstem and optic chiasm, but also increased LET in target volumes, compared to the conventional dose-based optimization. However, on occasion, there was a need to tradeoff the acceptability of dose and LET distributions. Our conclusion is that the

  2. Photoinduced energy and electron transfer in rubrene-benzoquinone and rubrene-porphyrin systems

    KAUST Repository

    Khan, Jafar Iqbal

    2014-11-01

    Excited-state electron and energy transfer from singlet excited rubrene (Ru) to benzoquinone (BQ) and tetra-(4-aminophenyl) porphyrin (TAPP) were investigated by steady-state absorption and emission, time-resolved transient absorption, and femtosecond (fs)-nanosecond (ns) fluorescence spectroscopy. The low reduction potential of BQ provides the high probability of electron transfer from the excited Ru to BQ. Steady-state and time-resolved results confirm such an excited electron transfer scenario. On the other hand, strong spectral overlap between the emission of Ru and absorption of TAPP suggests that energy transfer is a possible deactivation pathway of the Ru excited state.

  3. Sequential energy and electron transfer in a three-component system aligned on a clay nanosheet.

    Science.gov (United States)

    Fujimura, Takuya; Ramasamy, Elamparuthi; Ishida, Yohei; Shimada, Tetsuya; Takagi, Shinsuke; Ramamurthy, Vaidhyanathan

    2016-02-21

    To achieve the goal of energy transfer and subsequent electron transfer across three molecules, a phenomenon often utilized in artificial light harvesting systems, we have assembled a light absorber (that also serves as an energy donor), an energy acceptor (that also serves as an electron donor) and an electron acceptor on the surface of an anionic clay nanosheet. Since neutral organic molecules have no tendency to adsorb onto the anionic surface of clay, a positively charged water-soluble organic capsule was used to hold neutral light absorbers on the above surface. A three-component assembly was prepared by the co-adsorption of a cationic bipyridinium derivative, cationic zinc porphyrin and cationic octaamine encapsulated 2-acetylanthracene on an exfoliated anionic clay surface in water. Energy and electron transfer phenomena were monitored by steady state fluorescence and picosecond time resolved fluorescence decay. The excitation of 2-acetylanthracene in the three-component system resulted in energy transfer from 2-acetylanthracene to zinc porphyrin with 71% efficiency. Very little loss due to electron transfer from 2-acetylanthracene in the cavitand to the bipyridinium derivative was noticed. Energy transfer was followed by electron transfer from the zinc porphyrin to the cationic bipyridinium derivative with 81% efficiency. Analyses of fluorescence decay profiles confirmed the occurrence of energy transfer and subsequent electron transfer. Merging the concepts of supramolecular chemistry and surface chemistry we realized sequential energy and electron transfer between three hydrophobic molecules in water. Exfoliated transparent saponite clay served as a matrix to align the three photoactive molecules at a close distance in aqueous solutions.

  4. Real-space investigation of energy transfer in heterogeneous molecular dimers.

    Science.gov (United States)

    Imada, Hiroshi; Miwa, Kuniyuki; Imai-Imada, Miyabi; Kawahara, Shota; Kimura, Kensuke; Kim, Yousoo

    2016-10-20

    Given its central role in photosynthesis and artificial energy-harvesting devices, energy transfer has been widely studied using optical spectroscopy to monitor excitation dynamics and probe the molecular-level control of energy transfer between coupled molecules. However, the spatial resolution of conventional optical spectroscopy is limited to a few hundred nanometres and thus cannot reveal the nanoscale spatial features associated with such processes. In contrast, scanning tunnelling luminescence spectroscopy has revealed the energy dynamics associated with phenomena ranging from single-molecule electroluminescence, absorption of localized plasmons and quantum interference effects to energy delocalization and intervalley electron scattering with submolecular spatial resolution in real space. Here we apply this technique to individual molecular dimers that comprise a magnesium phthalocyanine and a free-base phthalocyanine (MgPc and H 2 Pc) and find that locally exciting MgPc with the tunnelling current of the scanning tunnelling microscope generates a luminescence signal from a nearby H 2 Pc molecule as a result of resonance energy transfer from the former to the latter. A reciprocating resonance energy transfer is observed when exciting the second singlet state (S 2 ) of H 2 Pc, which results in energy transfer to the first singlet state (S 1 ) of MgPc and final funnelling to the S 1 state of H 2 Pc. We also show that tautomerization of H 2 Pc changes the energy transfer characteristics within the dimer system, which essentially makes H 2 Pc a single-molecule energy transfer valve device that manifests itself by blinking resonance energy transfer behaviour.

  5. Quantum transfer energy in the framework of time-dependent dipole-dipole interaction

    Science.gov (United States)

    El-Shishtawy, Reda M.; Haddon, Robert C.; Al-Heniti, Saleh H.; Raffah, Bahaaudin M.; Berrada, K.; Abdel-Khalek, S.; Al-Hadeethi, Yas F.

    2018-03-01

    In this work, we examine the process of the quantum transfer of energy considering time-dependent dipole-dipole interaction in a dimer system characterized by two-level atom systems. By taking into account the effect of the acceleration and speed of the atoms in the dimer coupling, we demonstrate that the improvement of the probability for a single-excitation transfer energy extremely benefits from the incorporation of atomic motion effectiveness and the energy detuning. We explore the relevance between the population and entanglement during the time-evolution and show that this kind of nonlocal correlation may be generated during the process of the transfer of energy. Our work may provide optimal conditions to implement realistic experimental scenario in the transfer of the quantum energy.

  6. Product distributions for some thermal energy charge transfer reactions of rare gas ions

    Science.gov (United States)

    Anicich, V. G.; Laudenslager, J. B.; Huntress, W. T., Jr.; Futrell, J. H.

    1977-01-01

    Ion cyclotron resonance methods were used to measure the product distributions for thermal-energy charge-transfer reactions of He(+), Ne(+), and Ar(+) ions with N2, O2, CO, NO, CO2, and N2O. Except for the He(+)-N2 reaction, no molecular ions were formed by thermal-energy charge transfer from He(+) and Ne(+) with these target molecules. The propensity for dissociative ionization channels in these highly exothermic charge-transfer reactions at thermal energies contrasts with the propensity for formation of parent molecular ions observed in photoionization experiments and in high-energy charge-transfer processes. This difference is explained in terms of more stringent requirements for energy resonance and favorable Franck-Condon factors at thermal ion velocities.

  7. Spectroscopic investigation on the energy transfer process in photosynthetic apparatus of cyanobacteria

    Science.gov (United States)

    Li, Ye; Wang, Bei; Ai, Xi-Cheng; Zhang, Xing-Kang; Zhao, Jing-Quan; Jiang, Li-Jin

    2004-06-01

    In this work, we employ cyanobacteria, Spirulina platensis, and separate their photosynthetic apparatus, phycobilisome (PBS), thylakoid membrane and phycobilisome-thylakoid membrane complex. The steady state absorption spectra, fluorescence spectra and corresponding deconvoluted spectra and picosecond time-resolved spectra are used to investigate the energy transfer process in phycobilisome-thylakoid membrane complex. The results on steady state spectra show chlorophylls of the photosystem II are able to transfer excitation energy to phycobilisome with Chl a molecules selectively excited. The decomposition of the steady state spectra further suggest the uphill energy transfer originate from chlorophylls of photosystem II to cores of phycobilisome, while rods and cores of phycobilisome cannot receive energy from the chlorophylls of photosystem I. The time constant for the back energy transfer process is 18 ps.

  8. Spectroscopic evidence of resonance energy transfer mechanism from PbS QDs to bulk silicon

    Directory of Open Access Journals (Sweden)

    Bernechea M.

    2013-06-01

    Full Text Available In this work, we study the efficiency of the resonance energy transfer from PbS quantum dots to bulk silicon. We present spectroscopic evidence that resonance energy transfer from PbS quantum dots to bulk silicon can be an efficient process for separation distances below 12 nm. Temperature measurements are also presented for PbS quantum dots deposited on glass and silicon with 5 nm and 20nm spacer thicknesses substrates. Our findings show that the resonance energy transfer efficiency remains constant over the 50K to 300K temperature range.

  9. Resonance Energy Transfer in Hybrid Devices in the Presence of a Surface

    DEFF Research Database (Denmark)

    Kopylov, Oleksii; Huck, Alexander; Kadkhodazadeh, Shima

    2014-01-01

    We have studied room-temperature, nonradiative resonant energy transfer from InGaN/GaN quantum wells to CdSe/ZnS nanocrystals separated by aluminum oxide layers of different thicknesses. Nonradiative energy transfer from the quantum wells to the nanocrystals at separation distances of up...... to approximately 10 nm was observed. By comparing the carrier dynamics of the quantum wells and the nanocrystals, we found that nonradiative recombination via surface states, generated during dry etching of the wafer, counteracts the nonradiative energy-transfer process to the nanocrystals and therefore decreases...

  10. Nanophotonic Control of the Förster Resonance Energy Transfer Efficiency

    DEFF Research Database (Denmark)

    Blum, Christian; Zijlstra, Niels; Lagendijk, Ad

    2012-01-01

    We have studied the influence of the local density of optical states (LDOS) on the rate and efficiency of Forster resonance energy transfer (FRET) from a donor to an acceptor. The donors and acceptors are dye molecules that are separated by a short strand of double-stranded DNA. The LDOS...... is controlled by carefully positioning the FRET pairs near a mirror. We find that the energy transfer efficiency changes with LDOS, and that, in agreement with theory, the energy transfer rate is independent of the LDOS, which allows one to quantitatively control FRET systems in a new way. Our results imply...

  11. Energy transfer of excitons between quantum wells separated by a wide barrier

    International Nuclear Information System (INIS)

    Lyo, S. K.

    2000-01-01

    We present a microscopic theory of the excitonic Stokes and anti-Stokes energy-transfer mechanisms between two widely separated unequal quantum wells with a large energy mismatch (Δ) at low temperatures (T). Several important intrinsic energy-transfer mechanisms have been examined, including dipolar coupling, real and virtual photon-exchange coupling, and over-barrier ionization of the excitons via exciton-exciton Auger processes. The transfer rate is calculated as a function of T and the center-to-center distance d between the wells. The rates depend sensitively on T for plane-wave excitons. For localized excitons, the rates depend on T only through the T dependence of the exciton localization radius. For Stokes energy transfer, the dominant energy transfer occurs through a photon-exchange interaction, which enables the excitons from the higher-energy wells to decay into free electrons and holes in the lower-energy wells. The rate has a slow dependence on d, yielding reasonable agreement with recent data from GaAs/Al x Ga 1-x As quantum wells. The dipolar rate is about an order of magnitude smaller for large d (e.g., d=175Aa) with a stronger range dependence proportional to d -4 . However, the latter can be comparable to the radiative rate for small d (e.g., d≤80Aa). For anti-Stokes transfer through exchange-type (e.g., dipolar and photon-exchange) interactions, we show that thermal activation proportional to exp(-Δ/k B T) is essential for the transfer, contradicting a recent nonactivated result based on the Fo''rster-Dexter's spectral-overlap theory. Phonon-assisted transfer yields a negligibly small rate. On the other hand, energy transfer through over-barrier ionization of excitons via Auger processes yields a significantly larger nonactivated rate which is independent of d. The result is compared with recent data

  12. Energy transfer and thermal studies of Pr 3+ doped cerium oxalate ...

    Indian Academy of Sciences (India)

    The analysis of energy level diagrams of cerium and praseodymium ions indicates that the energy gap between the sensitizer and the activator ions varies in a small range suggesting a possible energy transfer from the Ce3+ to Pr3+. The emission and absorption spectra of these crystals were recorded. The overlapping of ...

  13. 78 FR 2985 - Moretown Hydro Energy Company; Ampersand Moretown Hydro, LLC; Notice of Application for Transfer...

    Science.gov (United States)

    2013-01-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Moretown Hydro Energy Company; Ampersand Moretown Hydro, LLC; Notice of Application for Transfer of License, and Soliciting Comments and Motions To Intervene On September 25, 2012...

  14. A Simple Ligand for Lanthanide Energy Transfer Luminescence in ...

    African Journals Online (AJOL)

    NJD

    induced electron transfer (P.E.T.) fluorescent-based sensor that responds to the presence of Mg2+ ions by ... phenol tetraacetic acid (bapta).12,13 Owing to the similarity of the structures of bapta and apta, we decided to .... The protonation state can have a profound effect on the ability of the ligand to facilitate the formation of ...

  15. Energy transfer and thermal studies of Pr doped cerium oxalate ...

    Indian Academy of Sciences (India)

    Administrator

    transfer probabilities and thermal properties have been studied. Keywords. Optical materials; crystal growth; optical spectroscopy; thermal analysis. 1. Introduction. High quality, defect free crystals doped with trivalent lanthanides always attract attention of researchers because of their smart optical and spectroscopic proper-.

  16. Ultrafast electron and energy transfer in dye-sensitized iron oxide and oxyhydroxide nanoparticles

    DEFF Research Database (Denmark)

    Gilbert, Benjamin; Katz, Jordan E.; Huse, Nils

    2013-01-01

    –310 fs were found for all samples. Comparison between TA dynamics on uncoated and dye-sensitized hematite nanoparticles revealed the dye de-excitation pathway to consist of a competition between electron and energy transfer to the nanoparticles. We analyzed the TA data for hematite nanoparticles using...... a four-state model of the dye-sensitized system, finding electron and energy transfer to occur on the same ultrafast timescale. The interfacial electron transfer rates for iron oxides are very close to those previously reported for DCF-sensitized titanium dioxide (for which dye–oxide energy transfer...... photo-initiated interfacial electron transfer. This approach enables time-resolved study of the fate and mobility of electrons within the solid phase. However, complete analysis of the ultrafast processes following dye photoexcitation of the sensitized iron(iii) oxide nanoparticles has not been reported...

  17. Investigation of energy transfer between PM567:Rh610 dye mixture in modified poly (methyl methacrylate)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaohui, E-mail: lixiaohuihit@163.com [National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080 (China); Institute of Opto-electronics, Harbin Institute of Technology, Harbin 150080 (China); Fan, Rongwei; Yu, Xin [National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080 (China); Institute of Opto-electronics, Harbin Institute of Technology, Harbin 150080 (China); Chen, Deying, E-mail: dychen@hit.edu.cn [National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080 (China); Institute of Opto-electronics, Harbin Institute of Technology, Harbin 150080 (China)

    2014-01-15

    In this paper, solid dye samples were prepared by codoping laser dyes Pyrromethene 567 (PM567) as the energy donor and Rhodamine 610 (Rh610) as the energy acceptor into the ethanol modified poly (methyl methacrylate) matrix (MPMMA) to enhance the properties of the solid dye lasers. The fluorescence intensity of the acceptor was enhanced by up to 9 fold with the introduction of the donor molecules. The laser efficiency of the dye mixture doped samples was improved by up to 8 times relative to that of the samples solely doped with the acceptor, and the highest slope efficiency was obtained as 70.4%. The radiative and nonradiative energy transfer rate constants (K{sub R} and K{sub NR}) were calculated using the Stern–Volmer plots and the acceptor concentration dependence of the radiative and nonradiative transfer efficiencies were also obtained. The K{sub R} was three orders of magnitude higher than the K{sub NR}, indicating the dominance of the radiative energy transfer mechanism in the present system. The deviation of the Stern–Volmer plot from the linearity demonstrated that both the dynamic and transient quenching mechanism exist in the present energy transfer system. -- Highlights: • Energy transfer between PM567:Rh610 dye-mixture in MPMMA matrices studied. • Fluorescence intensity of acceptor was improved 9 fold due to the energy transfer. • Highest slope efficiency was 70.4%, 8 times of that of acceptor doped sample. • Energy transfer rate constants and efficiencies were investigated. • Dominant mechanism responsible for the energy transfer is radiative type.

  18. Chemical Dynamics Simulations of Intermolecular Energy Transfer: Azulene + N2 Collisions.

    Science.gov (United States)

    Kim, Hyunsik; Paul, Amit K; Pratihar, Subha; Hase, William L

    2016-07-14

    Chemical dynamics simulations were performed to investigate collisional energy transfer from highly vibrationally excited azulene (Az*) in a N2 bath. The intermolecular potential between Az and N2, used for the simulations, was determined from MP2/6-31+G* ab initio calculations. Az* is prepared with an 87.5 kcal/mol excitation energy by using quantum microcanonical sampling, including its 95.7 kcal/mol zero-point energy. The average energy of Az* versus time, obtained from the simulations, shows different rates of Az* deactivation depending on the N2 bath density. Using the N2 bath density and Lennard-Jones collision number, the average energy transfer per collision ⟨ΔEc⟩ was obtained for Az* as it is collisionally relaxed. By comparing ⟨ΔEc⟩ versus the bath density, the single collision limiting density was found for energy transfer. The resulting ⟨ΔEc⟩, for an 87.5 kcal/mol excitation energy, is 0.30 ± 0.01 and 0.32 ± 0.01 kcal/mol for harmonic and anharmonic Az potentials, respectively. For comparison, the experimental value is 0.57 ± 0.11 kcal/mol. During Az* relaxation there is no appreciable energy transfer to Az translation and rotation, and the energy transfer is to the N2 bath.

  19. Thermodynamic chemical energy transfer mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium chemical reactions

    International Nuclear Information System (INIS)

    Roh, Heui-Seol

    2015-01-01

    Chemical energy transfer mechanisms at finite temperature are explored by a chemical energy transfer theory which is capable of investigating various chemical mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium. Gibbs energy fluxes are obtained as a function of chemical potential, time, and displacement. Diffusion, convection, internal convection, and internal equilibrium chemical energy fluxes are demonstrated. The theory reveals that there are chemical energy flux gaps and broken discrete symmetries at the activation chemical potential, time, and displacement. The statistical, thermodynamic theory is the unification of diffusion and internal convection chemical reactions which reduces to the non-equilibrium generalization beyond the quasi-equilibrium theories of migration and diffusion processes. The relationship between kinetic theories of chemical and electrochemical reactions is also explored. The theory is applied to explore non-equilibrium chemical reactions as an illustration. Three variable separation constants indicate particle number constants and play key roles in describing the distinct chemical reaction mechanisms. The kinetics of chemical energy transfer accounts for the four control mechanisms of chemical reactions such as activation, concentration, transition, and film chemical reactions. - Highlights: • Chemical energy transfer theory is proposed for non-, quasi-, and equilibrium. • Gibbs energy fluxes are expressed by chemical potential, time, and displacement. • Relationship between chemical and electrochemical reactions is discussed. • Theory is applied to explore nonequilibrium energy transfer in chemical reactions. • Kinetics of non-equilibrium chemical reactions shows the four control mechanisms

  20. Numerical Simulations of the Kinetic Energy Transfer in the Bath of a BOF Converter

    Science.gov (United States)

    Zhou, Xiaobin; Ersson, Mikael; Zhong, Liangcai; Jönsson, Pär

    2016-02-01

    The paper focuses on the fundamental aspects of the kinetic energy transfer from a top and bottom gas injection to the bath of the basic oxygen furnace (BOF) by applying a mathematical model. The analyses revealed that the energy transfer is less efficient when top lance height is lowered or the flowrate is increased in the top blowing operations. However, an inverse trend was found that the kinetic energy transfer is increased when the bottom flowrate is increased for the current bottom blowing operation conditions. The kinetic energy transfer index results indicated that the energy transfer for the bottom blowing is much more efficient than that of the top blowing operations. To understand the effects of the upper buoyant phase on the energy dissipation of the bulk liquid in the bath, different mass and physical properties of slag and foam were considered in the bottom blowing simulations. The slag on top of the bath is found to dissipate by 6.6, 9.4, and 11.2 pct for slag mass values of 5, 9, and 15 t compared to the case without slag atop the surface of the bath, respectively. The results showed that the kinetic energy transfer is not largely influenced by the viscosity of the upper slag or the foaming phases.

  1. Bispectral experimental estimation of the nonlinear energy transfer in two-dimensional plasma turbulence

    DEFF Research Database (Denmark)

    Manz, P.; Ramisch, M.; Stroth, U.

    2008-01-01

    -wave turbulence. The density fluctuations, which at the realistic collisionality are advected as a passive scalar with the vorticity, show power transfer from large to small scales, while the spectral power in potential fluctuations, which represents the energy, is transferred as an inverse cascade to larger...

  2. Energy transfer in the major intrinsic light-harvesting complex from Amphidinium carterae

    Czech Academy of Sciences Publication Activity Database

    Polívka, Tomáš; van Stokkum, I.H.M.; Zigmantas, D.; van Grondelle, R.; Sundström, V.; Hiller, R.G.

    2006-01-01

    Roč. 45, - (2006), s. 8516-8526 ISSN 0006-2960 Institutional research plan: CEZ:AV0Z50510513 Keywords : Energy transfer * Amphidinium carterae Subject RIV: CE - Biochemistry Impact factor: 3.633, year: 2006

  3. Energy transfer in the major intrinsic light-harvesting complex from Amphidinium carterae

    Czech Academy of Sciences Publication Activity Database

    Polívka, Tomáš; van Stokkum, I.H.M.; Zigmantas, D.; van Grondelle, R.; Sundström, V.; Hiller, R.G.

    2006-01-01

    Roč. 45, č. 28 (2006), s. 8516-8526 ISSN 0006-2960 Institutional research plan: CEZ:AV0Z50510513 Keywords : carotenoids * Energy transfer Subject RIV: CE - Biochemistry Impact factor: 3.633, year: 2006

  4. Nonlocal interaction of inverse magnetic energy transfer in hall magnetohydrodynamic turbulence

    International Nuclear Information System (INIS)

    Araki, Keisuke; Miura, Hideaki

    2011-01-01

    A detailed analysis of forward and inverse energy transfer processes due to the Hall term effect in freely decaying, homogeneous, isotropic Hall magnetohydrodynamics (HMHD) turbulence is performed through Fourier and wavelet analyses. We analyzed three snapshot datasets that were taken from such a period to allow the turbulence to develop sufficiently with a nearly constant magnetic Reynolds number. Because the Fourier energy spectra in these snapshots show remarkable agreement after the normalization in terms of the dissipation rates and the diffusion coefficients, they are considered as a universal equilibrium state. By analyzing the numerical solutions that are generated without any external forcing, it is confirmed that the inverse energy transfer due to the Hall term effect is intrinsic to HMHD dynamics. Orthonormal divergence-free wavelet analysis reveals that nonlinear mode interactions contributing to the inverse energy transfer exhibit a nonlocal feature, while those for the forward transfer are dominated by a local feature. (author)

  5. Optogalvanic monitoring of collisional transfer of laser excitation energy in a neon RF plasma

    International Nuclear Information System (INIS)

    Armstrong, T.D.

    1994-01-01

    The optogalvanic signals produced by pulsed laser excitation of 1s5--2p8 and 1s5-2p9 (Paschen notation) transition by a ∼29 MHz radiofrequency (rf) discharge at ∼5 torr have been investigated. The optogalvanic signal produced by 1s5-2p9 excitations indicates that there is transfer of energy from the 2p9 state to some other state. The state to which this energy is transferred is believed to be mainly the 2p8 state because of the very small energy gap between the 2p9 and 2p8 states. To verify this transfer, the 1s5-2p8 transition was investigated. The similarity of the temporal profiles of the optogalvanic signals in both excitations confirms the collisional transfer of laser excitation energy from 2p9 to 2p8

  6. Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime Using Controlled Calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Don W. Miller; Andrew Kauffmann; Eric Kreidler; Dongxu Li; Hanying Liu; Daniel Mills; Thomas D. Radcliff; Joseph Talnagi

    2001-12-31

    A comprehensive description of the accomplishments of the DOE grant titled, ''Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime using Controlled Calorimetry''.

  7. Energy transfer in isolated LHC II studied by femtosecond pump-probe technique

    CERN Document Server

    Yang Yi; Liu Yuan; Liu Wei Min; Zhu Rong Yi; Qian Shi Xiong; Xu Chun He

    2003-01-01

    Excitation energy transfer in the isolated light-harvesting chlorophyll (Chl)-a/b protein complex of photosystem II (LHC II) was studied by the one-colour pump-probe technique with femtosecond time resolution. After exciting Chl-b by 638nm beam, the dynamic behaviour shows that the ultrafast energy transfer from Chl-b at positions of B2, B3, and B5 to the corresponding Chl-a molecules in monomeric subunit of LHC II is in the time scale of 230fs. While with the excitation of Chl-a at 678nm, the energy transfer between excitons of Chl-a molecules has the lifetime of about 370 fs, and two other slow decay components are due to the energy transfer between different Chl-a molecules in a monomeric subunit of LHC II or in different subunits, or due to change of molecular conformation. (20 refs).

  8. A bioluminescence resonance energy transfer (BRET) system: Application to interacting circadian clock proteins

    OpenAIRE

    Xu, Yao; Piston, David W.; Johnson, Carl Hirschie

    1999-01-01

    We describe a method for assaying protein interactions that offers some attractive advantages over previous assays. This method, called bioluminescence resonance energy transfer (BRET), uses a bioluminescent luciferase that is genetically fused to one candidate protein, and a green fluorescent protein mutant fused to another protein of interest. Interactions between the two fusion proteins can bring the luciferase and green fluorescent protein close enough for resonance energy transfer to occ...

  9. Argonne National Laboratory energy storage and transfer experimental program

    International Nuclear Information System (INIS)

    Kustom, R.L.; Wehrle, R.B.; Smith, R.P.; Fuja, R.E.

    1978-01-01

    Magnetic fusion reactor, equilibrium field, and ohmic heating (OH) coils require the coil energy to be cycled in relatively short periods of time. For large fusion reactor systems, the energy can be in the thousands of MJ range. These large amounts of energy cannot be removed from or returned to the power grid without having an adverse effect on the grid. Several schemes have been proposed which can minimize the amount of energy required from the power grid over a fusion-reactor cycle. They include the flying capacitor, the inductor-convertor bridge, the homopolar generator, and the motor-generator flywheel (MGF). The MGF is best understood and has been in use for this purpose for many years. It requires the least amount of development. The other schemes have not been applied to the energy buffering problem and require considerable development. Of the three remaining schemes, the homopolar generator and the inductor-convertor bridge seem to be the most desirable

  10. Energy transfer between a nanosystem and its host fluid: A multiscale factorization approach

    International Nuclear Information System (INIS)

    Sereda, Yuriy V.; Espinosa-Duran, John M.; Ortoleva, Peter J.

    2014-01-01

    Energy transfer between a macromolecule or supramolecular assembly and a host medium is considered from the perspective of Newton's equations and Lie-Trotter factorization. The development starts by demonstrating that the energy of the molecule evolves slowly relative to the time scale of atomic collisions-vibrations. The energy is envisioned to be a coarse-grained variable that coevolves with the rapidly fluctuating atomistic degrees of freedom. Lie-Trotter factorization is shown to be a natural framework for expressing this coevolution. A mathematical formalism and workflow for efficient multiscale simulation of energy transfer is presented. Lactoferrin and human papilloma virus capsid-like structure are used for validation

  11. Linker proteins enable ultrafast excitation energy transfer in the phycobilisome antenna system of Thermosynechococcus vulcanus.

    Science.gov (United States)

    Nganou, C; David, L; Adir, N; Mkandawire, M

    2016-01-01

    We applied a femtosecond flash method, using induced transient absorption changes, to obtain a time-resolved view of excitation energy transfer in intact phycobilisomes of Thermosynechococcus vulcanus at room temperature. Our measurement of an excitation energy transfer rate of 888 fs in phycobilisomes shows the existence of ultrafast kinetics along the phycocyanin rod subcomplex to the allophycocyanin core that is faster than expected for previous excitation energy transfer based on Förster theory in phycobilisomes. Allophycocyanin in the core further transfers energy to the terminal emitter(s) in 17 ps. In the phycobilisome, rod doublets composed of hexameric phycocyanin discs and internal linker proteins are arranged in a parallel fashion, facilitating direct rod-rod interactions. Excitonic splitting likely drives rod absorption at 635 nm as a result of strong coupling between β84 chromophores (20 ± 1 Å) in adjacent hexamers. In comparison to the absorbance of the phycobilisome antenna system of the cyanobacterium Acaryochloris marina, which possesses a single rod structure, the linkers in T. vulcanus rods induce a 17 nm red shift in the absorbance spectrum. Furthermore, the kinetics of 888 fs indicates that the presence of the linker protein induces ultrafast excitation energy transfer between phycocyanin and allophycocyanin inside the phycobilisome, which is faster than all previous excitation energy transfer in phycobilisome subunits or sub-complexes reported to date.

  12. Dynamical energy transfer in ac-driven quantum systems

    Science.gov (United States)

    Ludovico, María Florencia; Lim, Jong Soo; Moskalets, Michael; Arrachea, Liliana; Sánchez, David

    2014-04-01

    We analyze the time-dependent energy and heat flows in a resonant level coupled to a fermionic continuum. The level is periodically forced with an external power source that supplies energy into the system. Based on the tunneling Hamiltonian approach and scattering theory, we discuss the different contributions to the total energy flux. We then derive the appropriate expression for the dynamical dissipation, in accordance with the fundamental principles of thermodynamics. Remarkably, we find that the dissipated heat can be expressed as a Joule law with a universal resistance that is constant at all times.

  13. Solvent effect on bell-shaped energy gap dependence for charge transfer triplet exciplexes

    Science.gov (United States)

    Levin, P. P.; Raghavan, P. K. N.

    1991-08-01

    The decay kinetics of charge transfer triplet exciplexes—radical ion pairs formed by electron transfer from aromatic amines to the quinones in the triplet excited states in benzene, ethyl acetate and tert-amyl alcohol was studied by laser photolysis. The bell-shaped dependence for the intersystem electron transfer becomes more pronounced and narrow with the increasing polarity of the medium, which may be explained in terms of the single quantum mode approximation within the non-adiabatic multiphonon electron transfer theory by means of the decrease in the vibrational frequency of the quantum mode and in the quantum reorganization energy.

  14. Non-contact pumping of light emitters via non-radiative energy transfer

    Science.gov (United States)

    Klimov, Victor I.; Achermann, Marc

    2010-01-05

    A light emitting device is disclosed including a primary light source having a defined emission photon energy output, and, a light emitting material situated near to said primary light source, said light emitting material having an absorption onset equal to or less in photon energy than the emission photon energy output of the primary light source whereby non-radiative energy transfer from said primary light source to said light emitting material can occur yielding light emission from said light emitting material.

  15. Time Resolved Energy Transfer and Photodissociation of Vibrationally Excited Molecules

    National Research Council Canada - National Science Library

    Crim, F. F

    2007-01-01

    ...) in solution and in the gas phase. This second experiment is one of the few direct comparisons of intramolecular vibrational energy flow in a solvated molecule with that in the same molecule isolated in a gas...

  16. Numerical simulations of energy transfer in two collisionless interpenetrating plasmas

    Directory of Open Access Journals (Sweden)

    Davis S.

    2013-11-01

    Full Text Available Ion stream instabilities are essential for collisionless shock formation as seen in astrophysics. Weakly relativistic shocks are considered as candidates for sources of high energy cosmic rays. Laboratory experiments may provide a better understanding of this phenomenon. High intensity short pulse laser systems are opening possibilities for efficient ion acceleration to high energies. Their collision with a secondary target could be used for collisionless shock formation. In this paper, using particle-in-cell simulations we are studying interaction of a sub-relativistic, laser created proton beam with a secondary gas target. We show that the ion bunch initiates strong electron heating accompanied by the Weibel-like filamentation and ion energy losses. The energy repartition between ions, electrons and magnetic fields are investigated. This yields insight on the processes occurring in the interstellar medium (ISM and gamma-ray burst afterglows.

  17. Quantum coherent energy transfer over varying pathways in single light-harvesting complexes.

    Science.gov (United States)

    Hildner, Richard; Brinks, Daan; Nieder, Jana B; Cogdell, Richard J; van Hulst, Niek F

    2013-06-21

    The initial steps of photosynthesis comprise the absorption of sunlight by pigment-protein antenna complexes followed by rapid and highly efficient funneling of excitation energy to a reaction center. In these transport processes, signatures of unexpectedly long-lived coherences have emerged in two-dimensional ensemble spectra of various light-harvesting complexes. Here, we demonstrate ultrafast quantum coherent energy transfer within individual antenna complexes of a purple bacterium under physiological conditions. We find that quantum coherences between electronically coupled energy eigenstates persist at least 400 femtoseconds and that distinct energy-transfer pathways that change with time can be identified in each complex. Our data suggest that long-lived quantum coherence renders energy transfer in photosynthetic systems robust in the presence of disorder, which is a prerequisite for efficient light harvesting.

  18. Energy Transfer in Dye-Coupled Lanthanide-Doped Nanoparticles: From Design to Application.

    Science.gov (United States)

    Wang, Juan; Deng, Renren

    2018-03-16

    Surface modification with organic dye molecules is a useful strategy to manipulate the optical properties of lanthanide-doped nanoparticles (LnNPs). It enables energy transfer between dyes and LnNPs, which provides unprecedented possibilities to gain new optical phenomena from the dye-LnNPs composite systems. This has led to a wide range of emerging applications, such as biosensing, drug delivery, gene targeting, information storage, and photon energy conversion. Herein, the mechanism of energy transfer and the structural-dependent energy-transfer properties in dye-coupled LnNPs are reviewed. The design strategies for achieving effective dye-LnNP functionalization are presented. Recent advances in these composite nanomaterials in biomedicine and energy conversion applications are highlighted. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Carrier multiplication in semiconductor nanocrystals detected by energy transfer to organic dye molecules.

    Science.gov (United States)

    Xiao, Jun; Wang, Ying; Hua, Zheng; Wang, Xiaoyong; Zhang, Chunfeng; Xiao, Min

    2012-01-01

    Carrier multiplication describes an interesting optical phenomenon in semiconductors whereby more than one electron-hole pair, or exciton, can be simultaneously generated upon absorption of a single high-energy photon. So far, it has been highly debated whether the carrier multiplication efficiency is enhanced in semiconductor nanocrystals as compared with their bulk counterpart. The controversy arises from the fact that the ultrafast optical methods currently used need to correctly account for the false contribution of charged excitons to the carrier multiplication signals. Here we show that this charged exciton issue can be resolved in an energy transfer system, where biexcitons generated in the donor nanocrystals are transferred to the acceptor dyes, leading to an enhanced fluorescence from the latter. With the biexciton Auger and energy transfer lifetime measurements, an average carrier multiplication efficiency of ~17.1% can be roughly estimated in CdSe nanocrystals when the excitation photon energy is ~2.46 times of their energy gap.

  20. Calculated distance distributions of energy transfer events in irradiated liquid water

    International Nuclear Information System (INIS)

    Hamm, R.N.; Turner, J.E.; Wright, H.A.; Ritchie, R.H.

    1980-01-01

    Histories from a Monte Carlo electron transport calculation in liquid water are analyzed to obtain the distance distribution functions, t(x) and T(x), of energy transfer events. These functions, which give the average energy transferred within a distance x from an arbitrary transfer event, are presented for irradiation by monoenergetic electrons of several energies between 500 eV and 1 MeV, for monoenergetic photons of 10, 50, and 200 keV energy and for 65 kVp and 200 kVp x rays and 60 Coγ rays. The dose average lineal energy in spherical sites as a function of site radius is also presented for these same photon spectra

  1. Observation of the one- to six-neutron transfer reactions at sub-barrier energies

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, C.L.; Rehm, K.E.; Gehring, J. [and others

    1995-08-01

    It was suggested many years ago that when two heavy nuclei are in contact during a grazing collision, the transfer of several correlated neutron-pairs could occur. Despite considerable experimental effort, however, so far only cross sections for up to four-neutron transfers have been uniquely identified. The main difficulties in the study of multi-neutron transfer reactions are the small cross sections encountered at incident energies close to the barrier, and various experimental uncertainties which can complicate the analysis of these reactions. We have for the first time found evidence for multi-neutron transfer reactions covering the full sequence from one- to six-neutron transfer reactions at sub-barrier energies in the system {sup 58}Ni + {sup 100}Mo.

  2. The role of the concentration scale in the definition of transfer free energies.

    Science.gov (United States)

    Moeser, Beate; Horinek, Dominik

    2015-01-01

    The Gibbs free energy of transferring a solute at infinite dilution between two solvents quantifies differences in solute-solvent interactions - if the transfer takes place at constant molarity of the solute. Yet, many calculation formulae and measuring instructions that are commonly used to quantify solute-solvent interactions correspond to transfer processes in which not the molarity of the solute but its concentration measured in another concentration scale is constant. Here, we demonstrate that in this case, not only the change in solute-solvent interactions is quantified but also the entropic effect of a volume change during the transfer. Consequently, the "phenomenon" which is known as "concentration-scale dependence" of transfer free energies is simply explained by a volume-entropy effect. Our explanations are of high importance for the study of cosolvent effects on protein stability. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Heat transfer efficient thermal energy storage for steam generation

    International Nuclear Information System (INIS)

    Adinberg, R.; Zvegilsky, D.; Epstein, M.

    2010-01-01

    A novel reflux heat transfer storage (RHTS) concept for producing high-temperature superheated steam in the temperature range 350-400 deg. C was developed and tested. The thermal storage medium is a metallic substance, Zinc-Tin alloy, which serves as the phase change material (PCM). A high-temperature heat transfer fluid (HTF) is added to the storage medium in order to enhance heat exchange within the storage system, which comprises PCM units and the associated heat exchangers serving for charging and discharging the storage. The applied heat transfer mechanism is based on the HTF reflux created by a combined evaporation-condensation process. It was shown that a PCM with a fraction of 70 wt.% Zn in the alloy (Zn70Sn30) is optimal to attain a storage temperature of 370 deg. C, provided the heat source such as solar-produced steam or solar-heated synthetic oil has a temperature of about 400 deg. C (typical for the parabolic troughs technology). This PCM melts gradually between temperatures 200 and 370 deg. C preserving the latent heat of fusion, mainly of the Zn-component, that later, at the stage of heat discharge, will be available for producing steam. The thermal storage concept was experimentally studied using a lab scale apparatus that enabled investigating of storage materials (the PCM-HTF system) simultaneously with carrying out thermal performance measurements and observing heat transfer effects occurring in the system. The tests produced satisfactory results in terms of thermal stability and compatibility of the utilized storage materials, alloy Zn70Sn30 and the eutectic mixture of biphenyl and diphenyl oxide, up to a working temperature of 400 deg. C. Optional schemes for integrating the developed thermal storage into a solar thermal electric plant are discussed and evaluated considering a pilot scale solar plant with thermal power output of 12 MW. The storage should enable uninterrupted operation of solar thermal electric systems during additional hours

  4. Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton.

    Science.gov (United States)

    Shi, Jinwei; Lin, Meng-Hsien; Chen, I-Tung; Mohammadi Estakhri, Nasim; Zhang, Xin-Quan; Wang, Yanrong; Chen, Hung-Ying; Chen, Chun-An; Shih, Chih-Kang; Alù, Andrea; Li, Xiaoqin; Lee, Yi-Hsien; Gwo, Shangjr

    2017-06-26

    Atomically thin lateral heterostructures based on transition metal dichalcogenides have recently been demonstrated. In monolayer transition metal dichalcogenides, exciton energy transfer is typically limited to a short range (~1 μm), and additional losses may be incurred at the interfacial regions of a lateral heterostructure. To overcome these challenges, here we experimentally implement a planar metal-oxide-semiconductor structure by placing a WS 2 /MoS 2 monolayer heterostructure on top of an Al 2 O 3 -capped Ag single-crystalline plate. We find that the exciton energy transfer range can be extended to tens of microns in the hybrid structure mediated by an exciton-surface plasmon polariton-exciton conversion mechanism, allowing cascaded exciton energy transfer from one transition metal dichalcogenides region supporting high-energy exciton resonance to a different transition metal dichalcogenides region in the lateral heterostructure with low-energy exciton resonance. The realized planar hybrid structure combines two-dimensional light-emitting materials with planar plasmonic waveguides and offers great potential for developing integrated photonic and plasmonic devices.Exciton energy transfer in monolayer transition metal dichalcogenides is limited to short distances. Here, Shi et al. fabricate a planar metal-oxide-semiconductor structure and show that exciton energy transfer can be extended to tens of microns, mediated by an exciton-surface-plasmon-polariton-exciton conversion mechanism.

  5. Mid-range adiabatic wireless energy transfer via a mediator coil

    International Nuclear Information System (INIS)

    Rangelov, A.A.; Vitanov, N.V.

    2012-01-01

    A technique for efficient mid-range wireless energy transfer between two coils via a mediator coil is proposed. By varying the coil frequencies, three resonances are created: emitter–mediator (EM), mediator–receiver (MR) and emitter–receiver (ER). If the frequency sweeps are adiabatic and such that the EM resonance precedes the MR resonance, the energy flows sequentially along the chain emitter–mediator–receiver. If the MR resonance precedes the EM resonance, then the energy flows directly from the emitter to the receiver via the ER resonance; then the losses from the mediator are suppressed. This technique is robust against noise, resonant constraints and external interferences. - Highlights: ► Efficient and robust mid-range wireless energy transfer via a mediator coil. ► The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. ► Wireless energy transfer is insensitive to any resonant constraints. ► Wireless energy transfer is insensitive to noise in the neighborhood of the coils.

  6. Energy transfer from excited cyclobutane-t chemically activated by nuclear recoil reaction

    International Nuclear Information System (INIS)

    Nogar, N.S.

    1976-01-01

    Relative energy transfer efficiencies were determined for collisions between highly excited cyclobutane-t and a number of thermal bath gases, including nitrogen, tetrafluoromethane, the noble gases, and cyclobutane. The excited cyclobutane-t was produced with a broad spectrum of energies about a mean energy of 5 eV by replacement of hydrogen with nuclear recoil tritium. The distribution of cyclobutane-t included a fraction produced at such low energies that it was not subjected to unimolecular decomposition, a fraction always found as the decomposition product, ethylene-t, and a fraction subject to competitive stabilization-decomposition reactions. The fraction of cyclobutane-t produced at such extreme energies that it was not subject to competitive unimolecular reaction was determined by curve-fitting the pressure dependence of ratio of cyclobutane-t to ethylene-t. Subsequent examination of the composition dependence of the ratio of competitive cyclobutane-t and ethylene-t yields gave energy transfer efficiencies for C 4 H 8 , CF 4 , N 2 , He, Ne, Ar, Kr, and Xe of 1.00:1.05:0.40, 0.12, 0.23, 0.24, 0.31, 0.39. The relative efficiencies found in this system are similar to those found in high energy conventional chemical activation systems, supporting this method for determination of energy transfer efficiencies following nuclear recoil activation. Cascade deactivation is demonstrated for this system and discussed with respect to energy transfer in hot atom activated systems

  7. Manipulating Energy Transfer in Conjugated Polymers using Radical Mediators

    Science.gov (United States)

    Wilcox, Daniel; Mukherjee, Sanjoy; Boudouris, Bryan

    Previous efforts have demonstrated that polymers containing open-shell moieties can be used to improve the performance of organic electronic devices (e.g., organic field-effect transistors (OFETs) and photovoltaic devices). However, the exact mechanism of how these redox-active radical polymers improve the performance of these next-generation devices has yet to be described in full. Here, we take the first steps towards elucidating this full picture by demonstrating that the galvinoxyl radical can be used as an electron acceptor for a common electron-donating macromolecule. First, galvinoxyl was used as a fluorescence quencher for poly(3-hexylthiophene) (P3HT) with quenching performance on par with that of oft-used fullerene derivatives. This effect was caused by photoinduced electron transfer between the two materials. Additionally, the galvinoxyl radical was used as an active layer dopant for P3HT OFETs. By increasing the P3HT carrier density through spontaneous electron transfer, the behavior of the device was changed from that of an intrinsic semiconductor to that of a highly-doped semiconductor. Thus, these initial studies lay the foundation for a paradigm where open-shell entities are used to dope conjugated polymer semiconductors for high-performance device applications.

  8. Remote Electric Power Transfer Between Spacecrafts by Infrared Beamed Energy

    Science.gov (United States)

    Chertok, Boris E.; Evdokimov, Roman A.; Legostaev, Victor P.; Lopota, Vitaliy A.; Sokolov, Boris A.; Tugaenko, Vjacheslav Yu.

    2011-11-01

    High efficient wireless electric energy transmission (WET) technology between spacecrafts by laser channel is proposed. WET systems could be used for remote power supplying of different consumers in space. First of all, there are autonomous technology modules for microgravity experiments, micro and nano satellites, different equipment for explorations of planetary surfaces, space transport vehicles with electric rocket propulsion systems. The main components of the WET technology consist of radiation sources on the base of semiconductor IR laser diodes; systems for narrow laser beam creation; special photovoltaic receivers for conversion of monochromatic IR radiation with high energy density to electric power. The multistage space experiment for WET technology testing is described. During this experiment energy will be transmitted from International Space Station to another spacecrafts like cargo transport vehicles (Progress or/and ATV) and micro satellites.

  9. Solar-pumped electronic-to-vibrational energy transfer lasers

    Science.gov (United States)

    Harries, W. L.; Wilson, J. W.

    1981-01-01

    The possibility of using solar-pumped lasers as solar energy converters is examined. The absorbing media considered are halogens or halogen compounds, which are dissociated to yield excited atoms, which then hand over energy to a molecular lasing medium. Estimates of the temperature effects for a Br2-CO2-He system with He as the cooling gas are given. High temperatures can cause the lower energy levels of the CO2 laser transition to be filled. The inverted populations are calculated and lasing should be possible. However, the efficiency is less than 0.001. Examination of other halogen-molecular lasant combinations (where the rate coefficients are known) indicate efficiencies in all cases of less than 0.005.

  10. Probing resonant energy transfer in collisions of ammonia with Rydberg helium atoms by microwave spectroscopy

    Science.gov (United States)

    Zhelyazkova, V.; Hogan, S. D.

    2017-12-01

    We present the results of experiments demonstrating the spectroscopic detection of Förster resonance energy transfer from NH3 in the X1A1 ground electronic state to helium atoms in 1sns 3S1 Rydberg levels, where n = 37 and n = 40. For these values of n, the 1sns 3S1 → 1snp 3PJ transitions in helium lie close to resonance with the ground-state inversion transitions in NH3 and can be tuned through resonance using electric fields of less than 10 V/cm. In the experiments, energy transfer was detected by direct state-selective electric field ionization of the 3S1 and 3PJ Rydberg levels and by monitoring the population of the 3DJ levels following pulsed microwave transfer from the 3PJ levels. Detection by microwave spectroscopic methods represents a highly state selective, low-background approach to probing the collisional energy transfer process and the environment in which the atom-molecule interactions occur. The experimentally observed electric-field dependence of the resonant energy transfer process, probed both by direct electric field ionization and by microwave transfer, agrees well with the results of calculations performed using a simple theoretical model of the energy transfer process. For measurements performed in zero electric field with atoms prepared in the 1s40s 3S1 level, the transition from a regime in which a single energy transfer channel can be isolated for detection to one in which multiple collision channels begin to play a role has been identified as the NH3 density was increased.

  11. Probing resonant energy transfer in collisions of ammonia with Rydberg helium atoms by microwave spectroscopy.

    Science.gov (United States)

    Zhelyazkova, V; Hogan, S D

    2017-12-28

    We present the results of experiments demonstrating the spectroscopic detection of Förster resonance energy transfer from NH 3 in the X 1 A 1 ground electronic state to helium atoms in 1sns 3 S 1 Rydberg levels, where n = 37 and n = 40. For these values of n, the 1sns 3 S 1 → 1snp 3 P J transitions in helium lie close to resonance with the ground-state inversion transitions in NH 3 and can be tuned through resonance using electric fields of less than 10 V/cm. In the experiments, energy transfer was detected by direct state-selective electric field ionization of the 3 S 1 and 3 P J Rydberg levels and by monitoring the population of the 3 D J levels following pulsed microwave transfer from the 3 P J levels. Detection by microwave spectroscopic methods represents a highly state selective, low-background approach to probing the collisional energy transfer process and the environment in which the atom-molecule interactions occur. The experimentally observed electric-field dependence of the resonant energy transfer process, probed both by direct electric field ionization and by microwave transfer, agrees well with the results of calculations performed using a simple theoretical model of the energy transfer process. For measurements performed in zero electric field with atoms prepared in the 1s40s 3 S 1 level, the transition from a regime in which a single energy transfer channel can be isolated for detection to one in which multiple collision channels begin to play a role has been identified as the NH 3 density was increased.

  12. Utilizing Energy Transfer in Binary and Ternary Bulk Heterojunction Organic Solar Cells.

    Science.gov (United States)

    Feron, Krishna; Cave, James M; Thameel, Mahir N; O'Sullivan, Connor; Kroon, Renee; Andersson, Mats R; Zhou, Xiaojing; Fell, Christopher J; Belcher, Warwick J; Walker, Alison B; Dastoor, Paul C

    2016-08-17

    Energy transfer has been identified as an important process in ternary organic solar cells. Here, we develop kinetic Monte Carlo (KMC) models to assess the impact of energy transfer in ternary and binary bulk heterojunction systems. We used fluorescence and absorption spectroscopy to determine the energy disorder and Förster radii for poly(3-hexylthiophene-2,5-diyl), [6,6]-phenyl-C61-butyric acid methyl ester, 4-bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl]squaraine (DIBSq), and poly(2,5-thiophene-alt-4,9-bis(2-hexyldecyl)-4,9-dihydrodithieno[3,2-c:3',2'-h][1,5]naphthyridine-5,10-dione). Heterogeneous energy transfer is found to be crucial in the exciton dissociation process of both binary and ternary organic semiconductor systems. Circumstances favoring energy transfer across interfaces allow relaxation of the electronic energy level requirements, meaning that a cascade structure is not required for efficient ternary organic solar cells. We explain how energy transfer can be exploited to eliminate additional energy losses in ternary bulk heterojunction solar cells, thus increasing their open-circuit voltage without loss in short-circuit current. In particular, we show that it is important that the DIBSq is located at the electron donor-acceptor interface; otherwise charge carriers will be trapped in the DIBSq domain or excitons in the DIBSq domains will not be able to dissociate efficiently at an interface. KMC modeling shows that only small amounts of DIBSq (energy transfer.

  13. Energy transfer and thermal studies of Pr doped cerium oxalate ...

    Indian Academy of Sciences (India)

    Administrator

    crystals. R PRAGASH, GIJO JOSE, N V UNNIKRISHNAN and C SUDARSANAKUMAR*. School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, India ... also the relative orientation of the interacting dipoles and the donor and acceptor distance. Another important pheno- menon related with the energy ...

  14. Reorganisation Energy for Internal Electron Transfer in Multicopper Oxidases

    Czech Academy of Sciences Publication Activity Database

    Hu, L. H.; Farrokhnia, M.; Heimdal, J.; Shleev, S.; Rulíšek, Lubomír; Ryde, U.

    2011-01-01

    Roč. 115, č. 45 (2011), s. 13111-13126 ISSN 1520-6106 R&D Projects: GA MŠk LC512 Institutional research plan: CEZ:AV0Z40550506 Keywords : multi-copper oxidases * reorganization energy * QM/MM calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.696, year: 2011

  15. Hand-to-hand coupling and strategies to minimize unintentional energy transfer during laparoscopic surgery.

    Science.gov (United States)

    Overbey, Douglas M; Hilton, Sarah A; Chapman, Brandon C; Townsend, Nicole T; Barnett, Carlton C; Robinson, Thomas N; Jones, Edward L

    2017-11-01

    Energy-based devices are used in nearly every laparoscopic operation. Radiofrequency energy can transfer to nearby instruments via antenna and capacitive coupling without direct contact. Previous studies have described inadvertent energy transfer through bundled cords and nonelectrically active wires. The purpose of this study was to describe a new mechanism of stray energy transfer from the monopolar instrument through the operating surgeon to the laparoscopic telescope and propose practical measures to decrease the risk of injury. Radiofrequency energy was delivered to a laparoscopic L-hook (monopolar "bovie"), an advanced bipolar device, and an ultrasonic device in a laparoscopic simulator. The tip of a 10-mm telescope was placed adjacent but not touching bovine liver in a standard four-port laparoscopic cholecystectomy setup. Temperature increase was measured as tissue temperature from baseline nearest the tip of the telescope which was never in contact with the energy-based device after a 5-s open-air activation. The monopolar L-hook increased tissue temperature adjacent to the camera/telescope tip by 47 ± 8°C from baseline (P energy devices significantly reduced temperature change in comparison to the monopolar instrument (47 ± 8°C) for both the advanced bipolar (1.2 ± 0.5°C; P energy transfers from the monopolar "bovie" instrument through the operating surgeon to standard electrically inactive laparoscopic instruments. Hand-to-hand coupling describes a new form of capacitive coupling where the surgeon's body acts as an electrical conductor to transmit energy. Strategies to reduce stray energy transfer include avoiding the same surgeon holding the active electrode and laparoscopic camera or using alternative energy devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Drawing Lessons When Objectives Differ? Assessing Renewable Energy Policy Transfer from Germany to Morocco

    Directory of Open Access Journals (Sweden)

    Karoline Steinbacher

    2015-05-01

    Full Text Available Given the tremendous energy challenges Morocco faces, and its potential role as an exporter of green electricity to Europe, the country has been particularly targeted by Germany’s efforts to promote the uptake of renewable energies abroad. This paper explores whether ideas and policies in the field of renewable energy effectively traveled through transfer channels established between Germany and Morocco. In particular, the question of how Morocco’s policy objectives shaped the result of transfer processes is discussed, shedding light on a currently under-researched determinant for policy transfer. Drawing upon forty-five semi-structured interviews with Moroccan, German, and international stakeholders, as well as card-ranking exercises, the article provides first-hand insights into the dynamics and drivers of Morocco’s “energy transition”. Findings presented in the article show that differing policy objectives did not preclude the transfer of ideas between Germany and Morocco, but shaped its outcome with regard to policy instrument selection. While basic policy orientations in favour of renewable energies were facilitated by transferred knowledge, a perceived incompatibility between domestic policy objectives and the policy instruments used in the foreign model led to selective lesson-drawing from the German example. This finding underlines the importance for “senders” who wish to actively promote sustainable energy policies abroad to adapt outreach strategies to the policy objectives of potential followers.

  17. Efficient Energy Transfer from Near-Infrared Emitting Gold Nanoparticles to Pendant Ytterbium(III).

    Science.gov (United States)

    Crawford, Scott E; Andolina, Christopher M; Kaseman, Derrick C; Ryoo, Bo Hyung; Smith, Ashley M; Johnston, Kathryn A; Millstone, Jill E

    2017-12-13

    Here, we demonstrate efficient energy transfer from near-infrared-emitting ortho-mercaptobenzoic acid-capped gold nanoparticles (AuNPs) to pendant ytterbium(III) cations. These functional materials combine the high molar absorptivity (1.21 × 10 6 M -1 cm -1 ) and broad excitation features (throughout the UV and visible regions) of AuNPs with the narrow emissive properties of lanthanides. Interaction between the AuNP ligand shell and ytterbium is determined using both nuclear magnetic resonance and electron microscopy measurements. In order to identify the mechanism of this energy transfer process, the distance of the ytterbium(III) from the surface of the AuNPs is systematically modulated by changing the size of the ligand appended to the AuNP. By studying the energy transfer efficiency from the various AuNP conjugates to pendant ytterbium(III) cations, a Dexter-type energy transfer mechanism is suggested, which is an important consideration for applications ranging from catalysis to energy harvesting. Taken together, these experiments lay a foundation for the incorporation of emissive AuNPs in energy transfer systems.

  18. A Conceptual Change Model for Teaching Heat Energy, Heat Transfer and Insulation

    Science.gov (United States)

    Lee, C. K.

    2014-01-01

    This study examines the existing knowledge that pre-service elementary teachers (PSETs) have regarding heat energy, heat transfer and insulation. The PSETs' knowledge of heat energy was initially assessed by using an activity: determining which container would be best to keep hot water warm for the longest period of time. Results showed that PSETs…

  19. Rotational energy transfer of the A{sup 2}{Sigma}`({nu}`=1) state of OH

    Energy Technology Data Exchange (ETDEWEB)

    Beaud, P.; Radi, P.; Frey, H.B.; Mischler, B.; Tzannis, A.P.; Gerber, T. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Spectrally and temporally resolved laser excited fluorescence of OH is investigated in the picosecond time domain. The total rotational energy transfer (RET) rate from the excited state is determined from the experimental data. Simulated spectra obtained by modelling RET with the energy corrected sudden approximation agree well with the measured spectra. (author) 1 fig., 1 tab., 5 refs.

  20. Generating Excitement: Build Your Own Generator to Study the Transfer of Energy

    Science.gov (United States)

    Fletcher, Kurt; Rommel-Esham, Katie; Farthing, Dori; Sheldon, Amy

    2011-01-01

    The transfer of energy from one form to another can be difficult to understand. The electrical energy that turns on a lamp may come from the burning of coal, water falling at a hydroelectric plant, nuclear reactions, or gusts of wind caused by the uneven heating of the Earth. The authors have developed and tested an exciting hands-on activity to…

  1. Local shell-to-shell energy transfer via nonlocal interactions in fluid ...

    Indian Academy of Sciences (India)

    in a triad, and the energy exchanges between wave-number shells in incompressible fluid turbulence. The computation has been done using first-order perturbative field theory. In three dimensions, magnitude of triad interactions is large for nonlocal triads, and small for local triads. However, the shell-to-shell energy transfer ...

  2. Grid to vehicle and vehicle to grid energy transfer using single ...

    African Journals Online (AJOL)

    user

    The design of the various components of proposed configuration for energy transfer from grid to vehicle and vehicle to grid consists of a single phase half bridge boost AC-DC converter, a bidirectional DC-DC boost converter, and a battery energy storage system. The detailed design of each part is given in the following ...

  3. The impulsive effects of momentum transfer on the dynamics of a novel ocean wave energy converter

    Science.gov (United States)

    Diamond, Christopher A.; O'Reilly, Oliver M.; Savaş, Ömer

    2013-10-01

    In a recent paper by Orazov et al. [On the dynamics of a novel ocean wave energy converter. Journal of Sound and Vibration329 (24) (2010) 5058-5069], a wave energy converter (WEC) was proposed. The converter features a mass modulation scheme and a simple model was used to examine its efficacy. The simple model did not adequately account for the momentum transfer which takes place during the mass modulation. The purpose of the present paper is to account for this transfer and to show that the WEC equipped with a novel and more general mass modulation scheme has the potential to improve its energy harvesting capabilities.

  4. Noninvasive control of the power transferred to an implanted device by an ultrasonic transcutaneous energy transfer link.

    Science.gov (United States)

    Shmilovitz, Doron; Ozeri, Shaul; Wang, Chua-Chin; Spivak, Boaz

    2014-04-01

    Ultrasonic transcutaneous energy transfer is an effective method for powering implanted devices noninvasively. Nevertheless, the amount of power harvested by the implanted receiver is sensitive to the distance and orientation of the external transmitting transducer attached to the skin with respect to the implanted receiving transducer. This paper describes an ultrasonic power transfer link whose harvested power is controlled by an inductive link. A small (5 μF) storage capacitor voltage, which is part of the implanted unit, is allowed to swing between 3.8 and 3.5 V using hysteretic control. The two control states are indicated by excitation (while the implanted storage capacitor voltage decreases) or the absence of excitation of an implanted coil that is magnetically coupled to an external coil attached to the skin surface. A 35 mW Ultrasonic Transcutaneous Energy Transfer link was fabricated using two piezoelectric transducers of equal size (Fuji Ceramics C-2 PZT disc 15 mm × 3 mm) operated at a vibration frequency of 720 kHz. By applying the proposed hysteretic control, the captured power was effectively regulated for implantation depths of up to 85 mm.

  5. Ion-ion interaction and energy transfer of 4+ transuranium ions in cerium tetrafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Liu, G.K.; Beitz, J.V.

    1990-01-01

    Dynamics of excited 5f electron states of the transuranium ions Cm{sup 4+} and Bk{sup 4+} in CeF{sub 4} are compared. Based on time- and wavelength-resolved laser-induced fluorescence, excitation energy transfer processes have been probed. Depending on concentration and electronic energy level structure of the studied 4+ transuranium ion, the dominant energy transfer mechanisms were identified as cross relaxation, exciton-exciton annihilation, and trapping. Energy transfer rates derived from the fitting of the observed fluorescence decays to theoretical models, based on electric multipolar ion-ion interactions, are contrasted with prior studies of 4f states of 3+ lanthanide and 3d states of transition metal ions. 16 refs., 1 tab.

  6. Low-energy plasma immersion ion implantation to induce DNA transfer into bacterial E. coli

    Energy Technology Data Exchange (ETDEWEB)

    Sangwijit, K. [Biotechnology Unit, University of Phayao, Muang, Phayao 56000 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Sarapirom, S. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Bang Khen, Chiang Mai 50290 (Thailand); Pitakrattananukool, S. [School of Science, University of Phayao, Muang, Phayao 56000 (Thailand); Anuntalabhochai, S. [Biotechnology Unit, University of Phayao, Muang, Phayao 56000 (Thailand)

    2015-12-15

    Plasma immersion ion implantation (PIII) at low energy was for the first time applied as a novel biotechnology to induce DNA transfer into bacterial cells. Argon or nitrogen PIII at low bias voltages of 2.5, 5 and 10 kV and fluences ranging from 1 × 10{sup 12} to 1 × 10{sup 17} ions/cm{sup 2} treated cells of Escherichia coli (E. coli). Subsequently, DNA transfer was operated by mixing the PIII-treated cells with DNA. Successes in PIII-induced DNA transfer were demonstrated by marker gene expressions. The induction of DNA transfer was ion-energy, fluence and DNA-size dependent. The DNA transferred in the cells was confirmed functioning. Mechanisms of the PIII-induced DNA transfer were investigated and discussed in terms of the E. coli cell envelope anatomy. Compared with conventional ion-beam-induced DNA transfer, PIII-induced DNA transfer was simpler with lower cost but higher efficiency.

  7. Low-energy transfers to cislunar periodic orbits visiting triangular libration points

    Science.gov (United States)

    Lei, Hanlun; Xu, Bo

    2018-01-01

    This paper investigates the cislunar periodic orbits that pass through triangular libration points of the Earth-Moon system and studies the techniques on design low-energy transfer trajectories. In order to compute periodic orbits, families of impulsive transfers between triangular libration points are taken to generate the initial guesses of periodic orbits, and multiple shooting techniques are applied to solving the problem. Then, varieties of periodic orbits in cislunar space are obtained, and stability analysis shows that the majority of them are unstable. Among these periodic orbits, an unstable periodic orbit in near 3:2 resonance with the Moon is taken as the nominal orbit of an assumed mission. As the stable manifolds of the target orbit could approach the Moon, low-energy transfer trajectories can be designed by combining lunar gravity assist with the invariant manifold structure of the target orbit. In practice, both the natural and perturbed invariant manifolds are considered to obtain the low-energy transfers, which are further refined to the Sun-perturbed Earth-Moon system. Results indicate that (a) compared to the case of natural invariant manifolds, the optimal transfers using perturbed invariant manifolds could reduce flight time at least 50 days, (b) compared to the cheapest direct transfer, the optimal low-energy transfer obtained by combining lunar gravity assist and invariant manifolds could save on-board fuel consumption more than 200 m/s, and (c) by taking advantage of the gravitational perturbation of the Sun, the low-energy transfers could save more fuel consumption than the corresponding ones obtained in the Earth-Moon system.

  8. Photoexcited energy transfer in a weakly coupled dimer

    Science.gov (United States)

    Nelson, Tammie; Hernandez, Laura Alfonso; Tretiak, Sergei; Fernandez Alberti, Sebastian

    2015-03-01

    Cycloalkanes are important components in conventional fuels and oil shale derived fuels and the combustion of cyclohexane fuels leads to the production of benzene, a pollutant precursor. One of the pathways from cyclohexane to benzene is through sequential hydrogen loss, including the cyclohexyl radical as an intermediate. The ultraviolet (UV) photodissociation dynamics of the cyclohexyl (c-C6H11) radical was studied for the first time using the high- n Rydberg atom time-of-flight (HRTOF) technique in the range of 232-262 nm. The translational energy distributions of the H-atom loss product channel, P (ET) 's, show a large translational energy release and a large fraction of average translational energy in the total excess energy, , from 232-262 nm. The H-atom product angular distribution is anisotropic with a positive β parameter. The most likely H-atom loss pathway is an axial H ejection from the β-carbon in cyclohexyl to form cyclohexene + H, which along with the positive β parameter, indicates that the transition dipole moment, μ, is perpendicular to the ring. The P (ET) and anisotropy of the H-atom loss product channel are significantly larger than those expected for a statistical unimolecular dissociation of a hot radical, indicating a non-statistical dissociation mechanism. The dissociation mechanism is consistent with direct dissociation on a repulsive excited state surface or on the repulsive part of the ground state surface to produce cyclohexene + H, possibly mediated by a conical intersection. Cyclohexyl is the largest radical so far showing a direct dissociation mechanism.

  9. Successive energy transfer within multiple photosensitizers assembled in a hexameric hemoprotein scaffold.

    Science.gov (United States)

    Mashima, Tsuyoshi; Oohora, Koji; Hayashi, Takashi

    2018-01-31

    An assembly of multiple photosensitizers is demonstrated by development of a hexameric hemoprotein (HTHP) scaffold as a light harvesting model to replicate the successive energy transfer occuring within photosensitizer assemblies of natural systems. In our model, six zinc protoporphyrin IX (ZnPP) molecules are arrayed at the heme binding site of HTHP by supramolecular interactions and five fluorescein (Flu) molecules and one Texas Red (Tex) molecule as donor and acceptor photosensitizers, respectively, are attached to the HTHP protein surface with covalent linkages. The flow of excited energy from photoexcited Flu to Tex occurs via two pathways: direct energy transfer from Flu to Tex (path 1) and energy transfer via ZnPP (path 2). Steady state and time-resolved fluorescence measurements reveal that the energy transfer ratio of these pathways (path 1 : path 2) is 39 : 61. These findings indicate that the excited energy originating at five Flu and six ZnPP molecules is collected at one Tex molecule as a funnel-like bottom for light harvesting. The present system using the hexameric hemoprotein scaffold is a promising candidate for construction of an artificial light harvesting system having multiple photosensitizers to promote efficient use of solar energy.

  10. Mechanical energy generation and transfer in the racket arm during table tennis topspin backhands.

    Science.gov (United States)

    Iino, Yoichi; Kojima, Takeji

    2016-06-01

    The ability to generate a high racket speed and a large amount of racket kinetic energy on impact is important for table tennis players. The purpose of this study was to understand how mechanical energy is generated and transferred in the racket arm during table tennis backhands. Ten male advanced right-handed table tennis players hit topspin backhands against pre-impact topspin and backspin balls. The joint kinetics at the shoulder, elbow and wrist of the racket arm was determined using inverse dynamics. A majority of the mechanical energy of the racket arm acquired during forward swing (65 and 77% against topspin and backspin, respectively) was due to energy transfer from the trunk. Energy transfer by the shoulder joint force in the vertical direction was the largest contributor to the mechanical energy of the racket arm against both spins and was greater against backspin than against topspin (34 and 28%, respectively). The shoulder joint force directed to the right, which peaked just before impact, transferred additional energy to the racket. Our results suggest that the upward thrust of the shoulder and the late timing of the axial rotation of the upper trunk are important for an effective topspin backhand.

  11. Drawing Lessons When Objectives Differ? Assessing Renewable Energy Policy Transfer from Germany to Morocco

    OpenAIRE

    Karoline Steinbacher

    2015-01-01

    Given the tremendous energy challenges Morocco faces, and its potential role as an exporter of green electricity to Europe, the country has been particularly targeted by Germany’s efforts to promote the uptake of renewable energies abroad. This paper explores whether ideas and policies in the field of renewable energy effectively traveled through transfer channels established between Germany and Morocco. In particular, the question of how Morocco’s policy objectives shaped the result of trans...

  12. Light-Harvesting and Amplified Energy Transfer in Conjugated Polymer Nanoparticles.

    Science.gov (United States)

    Jiang, Yifei; McNeill, Jason

    2017-01-25

    Conjugated polymer nanoparticles are a class of nanoparticles with many useful and interesting properties, including very high fluorescence brightness, excellent photostability, and sensing capabilities. They also exhibit interesting and potentially useful phenomena, such as highly efficient energy transfer, anomalous single particle blinking, and twinkling phenomena associated with polaron motion. As little as one dye molecule per nanoparticle can efficiently quench the fluorescence of hundreds of polymer chromophore units. Similarly, loss of a single electron can result in quenching of hundreds of chromophores. These phenomena and properties are dictated by the nature of interactions between chromophores in this dense, nanoscale multichromophoric system, and are characterized as amplified energy transfer or multiple energy transfer. In this review, we summarize the key aspects of conjugated polymer nanoparticles optical properties and phenomena, and discuss the current understanding of exciton dynamics in these and related systems. In particular, our current understanding and theoretical models for amplified or multiple energy transfer based on exciton theory and Förster resonance energy transfer are explored.

  13. Internal structure-mediated ultrafast energy transfer in self-assembled polymer-blend dots.

    Science.gov (United States)

    Wang, Lei; Wu, Chang-Feng; Wang, Hai-Yu; Wang, Ya-Feng; Chen, Qi-Dai; Han, Wei; Qin, Wei-Ping; McNeill, Jason; Sun, Hong-Bo

    2013-08-21

    Applications of polymeric semiconductors in organic electronics and biosensors depend critically on the nature of energy transfer in these materials. Important questions arise as to how this long-range transport degrades in amorphous condensed solids which are most amenable to low-cost optoelectronic devices and how fast energy transfer could occur. Here, we address these in disordered, densely packed nanoparticles made from green-light-harvesting host polymers (PFBT) and deep-red-emitting dopant polymers (PF-DBT5). By femtosecond selective excitation of donor (BT) units, we study in detail the internal structure-mediated energy transfer to uniformly distributed, seldom acceptor (DBT) units. It has been unambiguously demonstrated that the creation of interchain species is responsible for the limitation of bulk exciton diffusion length in polymer materials. This interchain Förster resonance energy transfer (FRET) becomes a preferred and dominant channel, and near 100% energy transfer efficiency could be achieved at high acceptor concentrations (>10 wt%). Side-chain carboxylic acid groups in functionalized polymer-blend dots slightly slow down the FRET rate, but it could not affect the Förster radius and FRET efficiency. These findings imply that a greater understanding of the role of interchain species could be an efficient approach to improve the cell efficiency.

  14. An optimized surface plasmon photovoltaic structure using energy transfer between discrete nano-particles.

    Science.gov (United States)

    Lin, Albert; Fu, Sze-Ming; Chung, Yen-Kai; Lai, Shih-Yun; Tseng, Chi-Wei

    2013-01-14

    Surface plasmon enhancement has been proposed as a way to achieve higher absorption for thin-film photovoltaics, where surface plasmon polariton(SPP) and localized surface plasmon (LSP) are shown to provide dense near field and far field light scattering. Here it is shown that controlled far-field light scattering can be achieved using successive coupling between surface plasmonic (SP) nano-particles. Through genetic algorithm (GA) optimization, energy transfer between discrete nano-particles (ETDNP) is identified, which enhances solar cell efficiency. The optimized energy transfer structure acts like lumped-element transmission line and can properly alter the direction of photon flow. Increased in-plane component of wavevector is thus achieved and photon path length is extended. In addition, Wood-Rayleigh anomaly, at which transmission minimum occurs, is avoided through GA optimization. Optimized energy transfer structure provides 46.95% improvement over baseline planar cell. It achieves larger angular scattering capability compared to conventional surface plasmon polariton back reflector structure and index-guided structure due to SP energy transfer through mode coupling. Via SP mediated energy transfer, an alternative way to control the light flow inside thin-film is proposed, which can be more efficient than conventional index-guided mode using total internal reflection (TIR).

  15. Distance dependence of the energy transfer rate from a single semiconductor nanostructure to graphene.

    Science.gov (United States)

    Federspiel, François; Froehlicher, Guillaume; Nasilowski, Michel; Pedetti, Silvia; Mahmood, Ather; Doudin, Bernard; Park, Serin; Lee, Jeong-O; Halley, David; Dubertret, Benoît; Gilliot, Pierre; Berciaud, Stéphane

    2015-02-11

    The near-field Coulomb interaction between a nanoemitter and a graphene monolayer results in strong Förster-type resonant energy transfer and subsequent fluorescence quenching. Here, we investigate the distance dependence of the energy transfer rate from individual, (i) zero-dimensional CdSe/CdS nanocrystals and (ii) two-dimensional CdSe/CdS/ZnS nanoplatelets to a graphene monolayer. For increasing distances d, the energy transfer rate from individual nanocrystals to graphene decays as 1/d(4). In contrast, the distance dependence of the energy transfer rate from a two-dimensional nanoplatelet to graphene deviates from a simple power law but is well described by a theoretical model, which considers a thermal distribution of free excitons in a two-dimensional quantum well. Our results show that accurate distance measurements can be performed at the single particle level using graphene-based molecular rulers and that energy transfer allows probing dimensionality effects at the nanoscale.

  16. Climate friendly technology transfer in the energy sector: A case study of Iran

    International Nuclear Information System (INIS)

    Talaei, Alireza; Ahadi, Mohammad Sadegh; Maghsoudy, Soroush

    2014-01-01

    The energy sector is the biggest contributor of anthropogenic emissions of greenhouse gases into the atmosphere in Iran. However, abundant potential for implementing low-carbon technologies offers considerable emissions mitigation potential in this sector, and technology transfer is expected to play an important role in the widespread roll-out of these technologies. In the current work, globally existing low-carbon energy technologies that are compatible with the energy sector of Iran are identified and then prioritised against different criteria (i.e. Multi Criteria Decision Analysis). Results of technology prioritisation and a comprehensive literature review were then applied to conduct a SWOT analysis and develop a policy package aiming at facilitating the transfer of low carbon technologies to the country. Results of technology prioritisation suggest that the transport, oil and gas and electricity sectors are the highest priority sectors from technological needs perspective. In the policy package, while fuel price reform and environmental regulations are categorised as high priority policies, information campaigns and development of human resources are considered to have moderate effects on the process of technology transfer. - Highlights: • We examined the process of technology transfer in the energy sector of Iran. • Multi Criteria Decision Analysis techniques are used to prioritise the technological needs of the country. • Transportation, electricity and oil and gas sectors are found as recipients of new technologies. • A policy package was designed for facilitating technology transfer in the energy sector

  17. Energy transfer during freeze-drying in dual-chamber cartridges.

    Science.gov (United States)

    Korpus, Christoph; Haase, Thomas; Sönnichsen, Caren; Friess, Wolfgang

    2015-05-01

    Freeze-drying essentially requires knowledge about the heat and mass transfer characteristics to assure product quality. Whereas this understanding has been created for freeze-drying in vials, only limited information is available for state-of-the-art multiple compartment container systems such as dual-chamber cartridges (DCCs). Therefore, the aim of this study was to investigate the heat transfer characteristics of this novel container format. Sublimation tests were carried out using pure water at 60, 100, 150, and 200 mTorr chamber pressure at a shelf temperature of 0°C. Custom-made aluminum blocks were used as holder systems. Two heat transfer coefficients could be identified: the coefficient characterizing heat transfer between shelf and block, KAl , and between block and cartridge, KDCC . KAl was dependent on all three modes of heat transfer: contact conduction, gas conduction, and radiation. For KDCC , contact conduction was negligible. Radiation strongly influenced the overall energy transfer as it is the major mode of heat transfer for KDCC and contributes up to 44% to KAl . A third coefficient, Ktot , was defined as an overall heat transfer coefficient. This knowledge about heat transfer enables a purposeful development and control of optimized lyophilization processes for this novel container system. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. Possibility of a higher PSB to PS transfer energy

    CERN Document Server

    Hanke, K; Blas, A; Borburgh, J; Bozzini, D; Buzio, M; Capatina, O; Carli, C; Dobers, T; Fernandez, L; Findlay, A; Folch, R; Gilardoni, S; Gilbert, N; Hermanns, T; Mahner, E; Mikulec, B; Newborough, A; Nonis, M; Olek, S; Paoluzzi, M; Pittet, S; Ruehl, I; Rumolo, G; Steerenberg, R; Tan, J; Tommasini, D; Weterings, W; Widorski, M; Shaposhnikova, E

    2011-01-01

    Following the Chamonix 2010 workshop a task force has been set up to study the feasibility and the impact of an energy upgrade of the PS Booster from the present 1.4 GeV to about 2 GeV. The working group has confirmed the feasibility of such an upgrade, and analysed in detail the impact on the accelerator hardware along with a cost estimate and a tentative planning. The outcome of the task force will be summarized, with particular emphasis on the remaining limitations, risks and uncertainties.

  19. Pheophytinization of bacteriochlorophyll c and energy transfer in cells of Chlorobium tepidum

    DEFF Research Database (Denmark)

    Tokita, S; Hirota, M; Frigaard, N-U

    1999-01-01

    spectrum showed maxima at 775 and 810 nm, which correspond to emissions from BChl c and BChl a, respectively. This indicates energy transfer from BPhe c to BChl c and BChl a. In cells in which BChl c was completely pheophytinized, fluorescence measurements were indicative of direct energy transfer from......Bacteriochlorophyll (BChl) c in whole cells of Chlorobium tepidum grown at 46 degrees C changed into bacteriopheophytin (BPhe) c within 10 days after reaching full growth. When a small amount of C. tepidum cells in which BChl c had been completely pheophytinized were transferred to a new culture......640). These results indicate that C. tepidum can survive even when BChl c has been completely pheophytinized and that BChl c is newly synthesized in such cells when transferred to a new culture medium. In partly pheophytinized cells, upon excitation of BPhe c at 550 nm the fluorescence emission...

  20. Syntrophic growth with direct interspecies electron transfer as the primary mechanism for energy exchange

    DEFF Research Database (Denmark)

    Shrestha, Pravin Malla; Rotaru, Amelia-Elena; Aklujkar, Muktak

    2013-01-01

    Direct interspecies electron transfer (DIET) through biological electrical connections is an alternative to interspecies H2 transfer as a mechanism for electron exchange in syntrophic cultures. However, it has not previously been determined whether electrons received via DIET yield energy....... The lack of acetate metabolism resulted in less fumarate reduction and lower cell abundance of G. sulfurreducens. RNAseq analysis of transcript abundance was consistent with a lack of acetate metabolism in G. sulfurreducens and revealed gene expression levels for the uptake hydrogenase, formate...... dehydrogenase, the pilus-associated c-type cytochrome OmcS and pili consistent with electron transfer via DIET. These results suggest that electrons transferred via DIET can serve as the sole energy source to support anaerobic respiration....

  1. Dynamics of Energy Transfer in Quantum Dot Arrays

    Science.gov (United States)

    Al-Ahmadi, A. N.; Ulloa, S. E.

    2004-04-01

    Förster-type coupling is one of the most important mechanisms that influence the energy transport properties in a quantum dot array. We explore this mechanism by calculating the coupling strength V_F, and by studying the dynamics of the exciton state created in an array of quantum dots using the time evolution of the density matrix approach. We first estimate the coupling strength VF of Förster interaction based on microscopic descriptions of the exciton levels in the quantum dot. We study this parameter for different materials (CdS, CdSe,InP, and GaAs) as function of the dot size. The results show that the maximum value of VF depends on the specific sizes and that each material has optimal coupling for different pairs of quantum dot radii. Other key parameters that govern energy transport are determined for various materials and sizes of quantum dots. Second, we consider a model of coupled quantum dots with two exciton levels in each dot, one optically passive and another active. Analysis of the population of each level when the Förster channel is opened shows this is responsible for interesting physical behavior in different coupling regimes. Realistic parameters used to study the dynamics of the exciton state for dimer and trimer quantum dot clusters, allow us direct comparison with recent experiments by Klimov et al. Supported by US DOE, and Indiana 21^st Century Fund Research and Technology.

  2. Transfer of energy or charge between quasi-zero-dimensional nanostructures

    Czech Academy of Sciences Publication Activity Database

    Král, Karel; Menšík, Miroslav

    2016-01-01

    Roč. 45, č. 4 (2016), s. 243-255 ISSN 2332-4309 R&D Projects: GA ČR(CZ) GA14-05053S; GA MŠk(CZ) LD14011; GA MŠk LH12236 Institutional support: RVO:68378271 ; RVO:61389013 Keywords : charge transfer * electron-phonon interaction * energy transfer * nanostructures * quantum dots Subject RIV: BM - Solid Matter Physics ; Magnetism; CD - Macromolecular Chemistry (UMCH-V) Impact factor: 0.171, year: 2016

  3. Energy dependence of angular momentum transfer in post-collision interaction. Classical view

    Science.gov (United States)

    Gerchikov, L.; Sheinerman, S.

    2018-03-01

    A classical approach to the description of angular momentum transfer between the Auger electron and photoelectron in post-collision interaction is worked out. The results of the classical approach coincide with the quantum mechanical ones at the photoionization threshold. Besides, the approach developed provides a description of angular momentum transfer beyond the photoionization threshold. In particular, it is suitable in the energy region of comparable velocities of two emitted electrons.

  4. Recent development of organic light-emitting diode utilizing energy transfer from exciplex to phosphorescent emitter

    Science.gov (United States)

    Seo, Satoshi; Shitagaki, Satoko; Ohsawa, Nobuharu; Inoue, Hideko; Suzuki, Kunihiko; Nowatari, Hiromi; Takahashi, Tatsuyoshi; Hamada, Takao; Watabe, Takeyoshi; Yamada, Yui; Mitsumori, Satomi

    2016-09-01

    This study investigates an organic light-emitting diode (OLED) utilizing energy transfer from an excited complex (exciplex) comprising donor and acceptor molecules to a phosphorescent dopant. An exciplex has a very small energy gap between the lowest singlet and triplet excited states (S1 and T1). Thus, both S1 and T1 energies of the exciplex can be directly transferred to the T1 of the phosphorescent dopant by adjusting the emission energy of the exciplex to the absorption-edge energy of the dopant. Such an exciplex‒triplet energy transfer (ExTET) achieves high efficiency at low drive voltage because the electrical excitation energy of the exciplex approximates the T1 energy of the dopant. Furthermore, the efficiency of the reverse intersystem crossing (RISC) of the exciplex does not affect the external quantum efficiency (EQE) of the ExTET OLED. The RISC of the exciplex is inhibited when the T1 energy of either donor or acceptor molecules is close to or lower than that of the exciplex itself. Even in this case, however, the ExTET OLED maintains its high efficiency because the T1 energy of each component of the exciplex or the T1 energy of the exciplex itself can be transferred to the dopant. We also varied the emission colors of ExTET OLEDs from sky-blue to red by introducing various phosphorescent dopants. These devices achieved high EQEs (≍30%), low drive voltages (≍3 V), and extremely long lifetimes (e.g., 1 million hours for the orange OLED) at a luminance of 1,000 cd/m2.

  5. Regulation of excitation energy transfer in diatom PSII dimer: How does it change the destination of excitation energy?

    Science.gov (United States)

    Yokono, Makio; Nagao, Ryo; Tomo, Tatsuya; Akimoto, Seiji

    2015-10-01

    Energy transfer dynamics in dimeric photosystem II (PSII) complexes isolated from four diatoms, Chaetoceros gracilis, Cyclotella meneghiniana, Thalassiosira pseudonana, and Phaeodactylum tricornutum, are examined. Time-resolved fluorescence measurements were conducted in the range of 0-80ns. Delayed fluorescence spectra showed a clear difference between PSII monomer and PSII dimer isolated from the four diatoms. The difference can be interpreted as reflecting suppressed energy transfer between PSII monomers in the PSII dimer for efficient energy trapping at the reaction center. The observation was especially prominent in C. gracilis and T. pseudonana. The pathways seem to be suppressed under a low pH condition in isolated PSII complexes from C. gracilis, and excitation energy may be quenched with fucoxanthin chlorophyll a/c-binding protein (FCP) that was closely associated with PSII in C. gracilis. The energy transfer between PSII monomers in the PSII dimer may play a role in excitation energy regulation in diatoms. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Carotenoid-to-bacteriochlorophyll energy transfer through vibronic coupling in LH2 from Phaeosprillum molischianum.

    Science.gov (United States)

    Thyrhaug, Erling; Lincoln, Craig N; Branchi, Federico; Cerullo, Giulio; Perlík, Václav; Šanda, František; Lokstein, Heiko; Hauer, Jürgen

    2018-03-01

    The peripheral light-harvesting antenna complex (LH2) of purple photosynthetic bacteria is an ideal testing ground for models of structure-function relationships due to its well-determined molecular structure and ultrafast energy deactivation. It has been the target for numerous studies in both theory and ultrafast spectroscopy; nevertheless, certain aspects of the convoluted relaxation network of LH2 lack a satisfactory explanation by conventional theories. For example, the initial carotenoid-to-bacteriochlorophyll energy transfer step necessary on visible light excitation was long considered to follow the Förster mechanism, even though transfer times as short as 40 femtoseconds (fs) have been observed. Such transfer times are hard to accommodate by Förster theory, as the moderate coupling strengths found in LH2 suggest much slower transfer within this framework. In this study, we investigate LH2 from Phaeospirillum (Ph.) molischianum in two types of transient absorption experiments-with narrowband pump and white-light probe resulting in 100 fs time resolution, and with degenerate broadband 10 fs pump and probe pulses. With regard to the split Q x band in this system, we show that vibronically mediated transfer explains both the ultrafast carotenoid-to-B850 transfer, and the almost complete lack of transfer to B800. These results are beyond Förster theory, which predicts an almost equal partition between the two channels.

  7. Solar wind energy transfer through the magnetopause of an open magnetosphere

    International Nuclear Information System (INIS)

    Lee, L.C.; Roederer, J.G.

    1982-01-01

    An expression for the total power P/sub T/ transferred from the solar wind to an ''open'' magnetopause with a nonzero normal component of the magnetic field, which is identified as a rotational discontinuity. The total power P/sub T/ consists of (1) the power P/sub EM/ representing the electromagnetic energy transfer and (2) the power P/sub KE/ representing the rate of kinetic energy carried by particles penetrating into the magnetosphere. It is found that P/sub EM/approx. =V/sub SW/ B/sub SW/psi, P/sub KE/approx. =(1/2 M/sub A/-1) P/sub EM/ and P/sub T/approx. =1/2M/sub A/P/sub EM/, where V/sub SW/, B/sub SW/, and M/sub A/ are the velocity, magnetic field, and the Alfven--Mach number in the solar wind, respectively, and Psi is the open magnetic flux in the magnetosphere. The Alfven--Mach number of flow at the magnetopause determines the nature of the local energy transfer; the power per unit area transferred from the solar wind to the magnetosphere consists mainly of kinetic energy. The electromagnetic energy rate P/sub EM/ controls the near-earth magnetospheric activity, whereas the kinetic energy rate P/sub KE/(approx. =3--4 P/sub EM/) should dominate the dynamics of the distant magnetotail

  8. Bridging the Radiative Transfer Models for Meteorology and Solar Energy Applications

    Science.gov (United States)

    Xie, Y.; Sengupta, M.

    2017-12-01

    Radiative transfer models are used to compute solar radiation reaching the earth surface and play an important role in both meteorology and solar energy studies. Therefore, they are designed to meet the needs of specialized applications. For instance, radiative transfer models for meteorology seek to provide more accurate cloudy-sky radiation compared to models used in solar energy that are geared towards accuracy in clear-sky conditions associated with the maximum solar resource. However, models for solar energy applications are often computationally faster, as the complex solution of the radiative transfer equation is parameterized by atmospheric properties that can be acquired from surface- or satellite-based observations. This study introduces the National Renewable Energy Laboratory's (NREL's) recent efforts to combine the advantages of radiative transfer models designed for meteorology and solar energy applictions. A fast all-sky radiation model, FARMS-NIT, was developed to efficiently compute narrowband all-sky irradiances over inclined photovoltaic (PV) panels. This new model utilizes the optical preperties from a solar energy model, SMARTS, to computes surface radiation by considering all possible paths of photon transmission and the relevent scattering and absorption attenuation. For cloudy-sky conditions, cloud bidirectional transmittance functions (BTDFs) are provided by a precomputed lookup table (LUT) by LibRadtran. Our initial results indicate that FARMS-NIT has an accuracy that is similar to LibRadtran, a highly accurate multi-stream model, but is significantly more efficient. The development and validation of this model will be presented.

  9. Energy Transfer to the Hydrogen Bond in the (H2O)2+ H2O Collision.

    Science.gov (United States)

    Shin, H K

    2017-12-08

    Trajectory procedures are used to study the collision between the vibrationally excited H 2 O and the ground-state (H 2 O) 2 with particular reference to energy transfer to the hydrogen bond through the inter- and intramolecular pathways. In nearly 98% of the trajectories, energy transfer processes occur on a subpicosecond scale (≤0.7 ps). The H 2 O transfers approximately three-quarters of its excitation energy to the OH stretches of the dimer. The first step of the intramolecular pathway in the dimer involves a near-resonant first overtone transition from the OH stretch to the bending mode. The energy transfer probability in the presence of the 1:2 resonance is 0.61 at 300 K. The bending mode then redistributes its energy to low-frequency intermolecular vibrations in a series of small excitation steps, with the pathway which results in the hydrogen-bonding modes gaining most of the available energy. The hydrogen bonding in ∼50% of the trajectories ruptures on vibrational excitation, leaving one quantum in the bend of the monomer fragment. In a small fraction of trajectories, the duration of collision is longer than 1 ps, during which the dimer and H 2 O form a short-lived complex through a secondary hydrogen bond, which undergoes large amplitude oscillations.

  10. Collisional energy transfer rate between two species. Volume II. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Jr, R. A.; Hernquist, L. E.; Smith, T. M.; Stoenescu, M. L.

    1979-01-01

    A numerical formalism is developed for evaluating the collisional energy transfer rate between a general nonequilibrium species and a maxwellian speces. Two methods are described, one consists of a standard formulation based on a direct integration of the average energy transfer between one particle and a species during one collision, the second method consists of a matrix summation over particle flux rate in the velocity space. The methods are equivalent as far as physical results. Evaluations are presented for electrons colliding elastically with cesium or hydrogen atoms for maxwellian distributions of the heavy species. Integrations over an arbitrary electron distribution chosen to be maxwellian are performed in order to compare the results with the temperature dependence of the energy transfer rate between two maxwellian species, evaluated independently.

  11. Foreign Direct Investment and the Transfer of Technologies to Angola’s Energy Sector

    Directory of Open Access Journals (Sweden)

    Albert Edgar Manyuchi

    2016-01-01

    Full Text Available The relationship between foreign direct investment (FDI and the transfer of technology is undergoing a great deal of academic scrutiny and policy analysis. A growing body of literature shows that FDI can be a channel by which to transfer and/or acquire technology; however, there is a paucity of empirical studies on this as it relates to African economies. This article seeks to fill some of that gap by focusing on how FDI inflows are contributing to the transfer of technologies specifically into Angola’s energy sector. The analysis is based on qualitative research conducted in Angola in 2014 and reveals that energy production and distribution-technology infrastructure, including machinery and human skills, have been developed largely through FDI inflows. There is, however, no evidence that this FDI has enlarged Angola’s endogenous scientific and technological research capabilities in the energy sector; therefore, policies that promote these capabilities, especially manufacturing capabilities, should be introduced.

  12. Photosensitized, energy transfer-mediated organometallic catalysis through electronically excited nickel(II).

    Science.gov (United States)

    Welin, Eric R; Le, Chip; Arias-Rotondo, Daniela M; McCusker, James K; MacMillan, David W C

    2017-01-27

    Transition metal catalysis has traditionally relied on organometallic complexes that can cycle through a series of ground-state oxidation levels to achieve a series of discrete yet fundamental fragment-coupling steps. The viability of excited-state organometallic catalysis via direct photoexcitation has been demonstrated. Although the utility of triplet sensitization by energy transfer has long been known as a powerful activation mode in organic photochemistry, it is surprising to recognize that photosensitization mechanisms to access excited-state organometallic catalysts have lagged far behind. Here, we demonstrate excited-state organometallic catalysis via such an activation pathway: Energy transfer from an iridium sensitizer produces an excited-state nickel complex that couples aryl halides with carboxylic acids. Detailed mechanistic studies confirm the role of photosensitization via energy transfer. Copyright © 2017, American Association for the Advancement of Science.

  13. Electronic energy transfer through non-adiabatic vibrational-electronic resonance. I. Theory for a dimer.

    Science.gov (United States)

    Tiwari, Vivek; Peters, William K; Jonas, David M

    2017-10-21

    Non-adiabatic vibrational-electronic resonance in the excited electronic states of natural photosynthetic antennas drastically alters the adiabatic framework, in which electronic energy transfer has been conventionally studied, and suggests the possibility of exploiting non-adiabatic dynamics for directed energy transfer. Here, a generalized dimer model incorporates asymmetries between pigments, coupling to the environment, and the doubly excited state relevant for nonlinear spectroscopy. For this generalized dimer model, the vibrational tuning vector that drives energy transfer is derived and connected to decoherence between singly excited states. A correlation vector is connected to decoherence between the ground state and the doubly excited state. Optical decoherence between the ground and singly excited states involves linear combinations of the correlation and tuning vectors. Excitonic coupling modifies the tuning vector. The correlation and tuning vectors are not always orthogonal, and both can be asymmetric under pigment exchange, which affects energy transfer. For equal pigment vibrational frequencies, the nonadiabatic tuning vector becomes an anti-correlated delocalized linear combination of intramolecular vibrations of the two pigments, and the nonadiabatic energy transfer dynamics become separable. With exchange symmetry, the correlation and tuning vectors become delocalized intramolecular vibrations that are symmetric and antisymmetric under pigment exchange. Diabatic criteria for vibrational-excitonic resonance demonstrate that anti-correlated vibrations increase the range and speed of vibronically resonant energy transfer (the Golden Rule rate is a factor of 2 faster). A partial trace analysis shows that vibronic decoherence for a vibrational-excitonic resonance between two excitons is slower than their purely excitonic decoherence.

  14. Supramolecular Surface Photochemistry: Cascade Energy Transfer between Encapsulated Dyes Aligned on a Clay Nanosheet Surface.

    Science.gov (United States)

    Tsukamoto, Takamasa; Ramasamy, Elamparuthi; Shimada, Tetsuya; Takagi, Shinsuke; Ramamurthy, V

    2016-03-29

    Three coumarin derivatives (7-propoxy coumarin, coumarin-480, and coumarin-540a, 2, 3, and 4, respectively) having different absorption and emission spectra were encapsulated within a water-soluble organic capsule formed by the two positively charged ammonium-functionalized cavitand octaamine (OAm, 1). Guests 2, 3, and 4 absorb in ultraviolet, violet, and blue regions and emit in violet, blue, and green regions, respectively. Energy transfer between the above three coumarin@(OAm)2 complexes assembled on the surface of a saponite clay nanosheet was investigated by steady-state and time-resolved emission techniques. Judging from their emission and excitation spectra, we concluded that the singlet-singlet energy transfer proceeded from 2 to 3, from 2 to 4, and from 3 to 4 when OAm-encapsulated 2, 3, and 4 were aligned on a clay surface as two-component systems. Under such conditions, the energy transfer efficiencies for the paths 2* to 3, 2* to 4, and 3* to 4 were calculated to be 33, 36, and 50% in two-component systems. When all three coumarins were assembled on the surface and 2 was excited, the energy transfer efficiencies for the paths 2* to 3, 2* to 4, and 3* to 4 were estimated to be 32, 34, and 33%. A comparison of energy transfer efficiencies of the two-component and three-component systems revealed that excitation of 2 leads to emission from 4. Successful merging of supramolecular chemistry and surface chemistry by demonstrating novel multi-step energy transfer in a three-component dye encapsulated system on a clay surface opens up newer opportunities for exploring such systems in an artificial light-harvesting phenomenon.

  15. Fluorescence resonance energy transfer imaging of CFP/YFP labeled NDH in cyanobacterium cell

    International Nuclear Information System (INIS)

    Ji Dongmei; Lv Wei; Huang Zhengxi; Xia Andong; Xu Min; Ma Weimin; Mi Hualing; Ogawa Teruo

    2007-01-01

    The laser confocal scanning microscopy combined with time-correlated single photon counting imaging technique to obtain fluorescence intensity and fluorescence lifetime images for fluorescence resonance energy transfer measurement is reported. Both the fluorescence lifetime imaging microscopy (FLIM) and intensity images show inhomogeneous cyan fluorescent protein and yellow fluorescent protein (CFP /YFP) expression or inhomogeneous energy transfer between CFP and YFP over whole cell. The results presented in this work show that FLIM could be a potential method to reveal the structure-function behavior of NAD(P)H dehydrogenase complexes in living cell

  16. Continuous modeling of internal-energy transfers in rarefied-gas flows

    Science.gov (United States)

    Choquet, I.; Marmignon, C.

    A relationship between the mean probability and the instantaneous probability for energy transfer on the molecular scale in rarefied-gas flows is obtained, assuming that the effective collision cross section depends only on the relative velocity. A method for the exact solution of this equation is introduced which leads to Boyd's expressions for rotational-translation transfer and which extends the validity domain of the vibration-translation model. The results obtained demonstrate that it is necessary to take into account the internal-energy dependence of the effective collision cross section if a suitable equilibrium temperature is to be obtained.

  17. Chemically tuned linear energy transfer dependent quenching in a deformable, radiochromic 3D dosimeter

    DEFF Research Database (Denmark)

    Høye, Ellen Marie; Skyt, Peter Sandegaard; Balling, Peter

    2017-01-01

    the observed quenching in proton beams. The dependency of dose response on linear energy transfer, as calculated through Monte Carlo simulations of the dosimeter, was investigated in 60 MeV proton beams. We found that the amount of quenching varied with the chemical composition: peak-to-plateau ratios (1cm...... chemical compositions of the dosimeter showed dose-rate dependency; however this was not dependent on the linear energy transfer. Track-structure theory was used to explain the observed quenching effects. In conclusion, this study shows that the silicone-based dosimeter has potential for use in measuring 3...

  18. Energy dependence of the Coulomb-nuclear interference at small momentum transfers

    International Nuclear Information System (INIS)

    Selyugin, O.V.

    1997-01-01

    The analyzing power of the elastic proton-proton scattering at small momentum transfers and the effect of the Coulomb-nuclear interference are examined on the basis of the available experimental data at p L from 6 up to 200 GeV/c taking account of a phenomenological analysis at p L =6 GeV/c and of the dynamic high energy spin model. The structure of the spin-dependent elastic scattering amplitude at small momentum transfers is obtained. The predictions for the analyzing power at RHIC energies are made

  19. Amino-functionalized green fluorescent carbon dots as surface energy transfer biosensors for hyaluronidase.

    Science.gov (United States)

    Liu, Siyu; Zhao, Ning; Cheng, Zhen; Liu, Hongguang

    2015-04-21

    Amino-functionalized fluorescent carbon dots have been prepared by hydrothermal treatment of glucosamine with excess pyrophosphate. The produced carbon dots showed stabilized green emission fluorescence at various excitation wavelengths and pH environments. Herein, we demonstrate the surface energy transfer between the amino-functionalized carbon dots and negatively charged hyaluronate stabilized gold nanoparticles. Hyaluronidase can degrade hyaluronate and break down the hyaluronate stabilized gold nanoparticles to inhibit the surface energy transfer. The developed fluorescent carbon dot/gold nanoparticle system can be utilized as a biosensor for sensitive and selective detection of hyaluronidase by two modes which include fluorescence measurements and colorimetric analysis.

  20. Energy conversion and transfer for plasmas in a magnetic expansion configuration

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jiao [Beihang University, Beijing 100191 (China); Shanghai Engineering Center for Microsatellites, Shanghai 201203 (China); Tang, Hai-Bin, E-mail: thb@buaa.edu.cn [Beihang University, Beijing 100191 (China); York, Thomas M. [Aeronautical and Astronautical Engineering Department, Ohio State University, Columbus, Ohio 43210 (United States)

    2014-06-15

    A two-dimensional axisymmetric particle-in-cell code with Monte Carlo collision conditions has been used to study particle energy transfer in plasmas and conversion in applied magnetic and electric fields appropriate to coaxial acceleration. The research incorporates a computation scheme with: a model of single particle magnetic interactions; a model of single particle interactions in electric and magnetic fields; and a model of multi-particle collisional interactions in order to understand the energy transfer processes and conversion mechanisms of charged plasma particles. This approach predicts electron and ion motions along with their energy variations for physical conditions that occur in the related models; the results allow comparison with experimental data for magnetic field strengths of 0.01–0.05 T and electrode voltages of 22.0–32.0 V. With the incorporation of magnetic and electric field effects on charged particles, the multi-particle model includes electron-neutral ionization collisions, ion-neutral charge exchange collisions, and electron-ion Coulomb collisions. This research presents a new approach to achieve an underlying understanding of the plasma energy transfer and conversion in the external electric and magnetic fields that is not possible using magnetohydrodynamics continuum representations. Results indicate the following innovative conclusions: (1) Radial and azimuthal energies of magnetized electrons are converted into an axial electron energy component in the diverging magnetic field, and the azimuthal kinetic energy of unmagnetized ions is converted into axial and radial components. (2) In electric and magnetic fields, electric field energy is primarily converted into axial kinetic energy of magnetized electrons by the energy transformation effects of magnetic fields, and for unmagnetized ions, the radial kinetic energy component dominates in the conversion of electric field energy. (3) For the collisional plasma, electron kinetic

  1. Vibration excitation and energy transfer during ultrasonically assisted drilling

    Science.gov (United States)

    Babitsky, V. I.; Astashev, V. K.; Meadows, A.

    2007-12-01

    Successful application of ultrasonically assisted drilling needs dynamic matching of the transducer with the drill bit considered as a continuous system loaded by the nonlinear processing load. When using standard tools this leads to the compatible choice of the transducer and accurate matching of the transducer and tool. The principal dynamical features of this matching are considered. Optimal position of excitation cross section of the drill bit, which depends on the relationship between elasto-dissipative characteristics of the transducer, the drill bit and the work load, is found in general analytical form. The optimal matching preserves the resonant tuning of the transducer and compensates the additional energy losses in the drill bit and processing. This produces also an amplification of vibration amplitude. The effect is achieved through the generation and maintenance of a nonlinear resonant mode of vibration and by active matching of the oscillating system with the dynamic loads imposed by the cutting process with the help of the intelligent electronic feedback circuitry. A prototype of an ultrasonic drilling system has been designed, manufactured. and tested. Improvements of machining characteristics due to superposition of ultrasonic vibration are demonstrated. Substantial improvements in the cutting performance of drill bits lead to benefits in drilling performance, which include faster penetration rates, reduction of tool wear, improvements in the surface finish, roundness and straightness of holes and, in ductile materials, the reduction or even complete elimination of burrs on both the entrance and exit faces of plates. The reduction in the reactive force experienced also causes greatly reduced deformation when drilling through thin, flexible plates and helps to alleviate delamination hazard.

  2. 77 FR 73654 - Eau Galle Renewable Energy Company, Eau Galle Hydro, LLC; Notice of Transfer of Exemption

    Science.gov (United States)

    2012-12-11

    ... Renewable Energy Company, Eau Galle Hydro, LLC; Notice of Transfer of Exemption 1. By letter filed October 12, 2012, Eau Galle Renewable Energy Company informed the Commission that its exemption from... transferred to Eau Galle Renewable Energy Company by letter.\\2\\ The project is located on the Eau Galle River...

  3. 78 FR 27961 - Gordon Foster and Seneca Falls School, Deep Creek Energy LLC; Notice of Transfer of Exemption

    Science.gov (United States)

    2013-05-13

    ... Transfer of Exemption 1. By letter filed March 20, 2013, Mr. Brian Gogarty, Deep Creek Energy LLC informed... issued October 1, 1982,\\1\\ has been transferred to Deep Creek Energy LLC. The project is located on Deep... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal...

  4. Efficient estimation of energy transfer efficiency in light-harvesting complexes.

    Science.gov (United States)

    Shabani, A; Mohseni, M; Rabitz, H; Lloyd, S

    2012-07-01

    The fundamental physical mechanisms of energy transfer in photosynthetic complexes is not yet fully understood. In particular, the degree of efficiency or sensitivity of these systems for energy transfer is not known given their realistic with surrounding photonic and phononic environments. One major problem in studying light-harvesting complexes has been the lack of an efficient method for simulation of their dynamics in biological environments. To this end, here we revisit the second order time-convolution (TC2) master equation and examine its reliability beyond extreme Markovian and perturbative limits. In particular, we present a derivation of TC2 without making the usual weak system-bath coupling assumption. Using this equation, we explore the long-time behavior of exciton dynamics of Fenna-Matthews-Olson (FMO) portein complex. Moreover, we introduce a constructive error analysis to estimate the accuracy of TC2 equation in calculating energy transfer efficiency, exhibiting reliable performance for system-bath interactions with weak and intermediate memory and strength. Furthermore, we numerically show that energy transfer efficiency is optimal and robust for the FMO protein complex of green sulfur bacteria with respect to variations in reorganization energy and bath correlation time scales.

  5. Multiple LHCII antennae can transfer energy efficiently to a single Photosystem I.

    Science.gov (United States)

    Bos, Inge; Bland, Kaitlyn M; Tian, Lijin; Croce, Roberta; Frankel, Laurie K; van Amerongen, Herbert; Bricker, Terry M; Wientjes, Emilie

    2017-05-01

    Photosystems I and II (PSI and PSII) work in series to drive oxygenic photosynthesis. The two photosystems have different absorption spectra, therefore changes in light quality can lead to imbalanced excitation of the photosystems and a loss in photosynthetic efficiency. In a short-term adaptation response termed state transitions, excitation energy is directed to the light-limited photosystem. In higher plants a special pool of LHCII antennae, which can be associated with either PSI or PSII, participates in these state transitions. It is known that one LHCII antenna can associate with the PsaH site of PSI. However, membrane fractions were recently isolated in which multiple LHCII antennae appear to transfer energy to PSI. We have used time-resolved fluorescence-streak camera measurements to investigate the energy transfer rates and efficiency in these membrane fractions. Our data show that energy transfer from LHCII to PSI is relatively slow. Nevertheless, the trapping efficiency in supercomplexes of PSI with ~2.4 LHCIIs attached is 94%. The absorption cross section of PSI can thus be increased with ~65% without having significant loss in quantum efficiency. Comparison of the fluorescence dynamics of PSI-LHCII complexes, isolated in a detergent or located in their native membrane environment, indicates that the environment influences the excitation energy transfer rates in these complexes. This demonstrates the importance of studying membrane protein complexes in their natural environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Forster Energy Transfer Theory as Reflected in the Structures of Photosynthetic Light-Harvesting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sener, Melih [Univ. of Illinois, Urbana-Champaign, IL (United States); Strumpfer, Johan [Univ. of Illinois, Urbana-Champaign, IL (United States); Hsin, Jen [Univ. of Illinois, Urbana-Champaign, IL (United States); Chandler, Danielle [Univ. of Illinois, Urbana-Champaign, IL (United States); Scheuring, Simon [Institut National de la Sante Et Recherche Medicale, Paris (France); Hunter, C. Neil [Univ. of Sheffield (United Kingdom); Schulten, Klaus [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2011-02-22

    Förster's theory of resonant energy transfer underlies a fundamental process in nature, namely the harvesting of sunlight by photosynthetic life forms. The theoretical framework developed by Förster and others describes how electronic excitation migrates in the photosynthetic apparatus of plants, algae, and bacteria from light absorbing pigments to reaction centers where light energy is utilized for the eventual conversion into chemical energy. The demand for highest possible efficiency of light harvesting appears to have shaped the evolution of photosynthetic species from bacteria to plants which, despite a great variation in architecture, display common structural themes founded on the quantum physics of energy transfer as described first by Förster. Herein, Förster’s theory of excitation transfer is summarized, including recent extensions, and the relevance of the theory to photosynthetic systems as evolved in purple bacteria, cyanobacteria, and plants is demonstrated. Förster's energy transfer formula, as used widely today in many fields of science, is also derived.

  7. Applications of free-electron lasers to measurements of energy transfer in biopolymers and materials

    Science.gov (United States)

    Edwards, Glenn S.; Johnson, J. B.; Kozub, John A.; Tribble, Jerri A.; Wagner, Katrina

    1992-08-01

    Free-electron lasers (FELs) provide tunable, pulsed radiation in the infrared. Using the FEL as a pump beam, we are investigating the mechanisms for energy transfer between localized vibrational modes and between vibrational modes and lattice or phonon modes. Either a laser-Raman system or a Fourier transform infrared (FTIR) spectrometer will serve as the probe beam, with the attribute of placing the burden of detection on two conventional spectroscopic techniques that circumvent the limited response of infrared detectors. More specifically, the Raman effect inelastically shifts an exciting laser line, typically a visible frequency, by the energy of the vibrational mode; however, the shifted Raman lines also lie in the visible, allowing for detection with highly efficient visible detectors. With regards to FTIR spectroscopy, the multiplex advantage yields a distinct benefit for infrared detector response. Our group is investigating intramolecular and intermolecular energy transfer processes in both biopolymers and more traditional materials. For example, alkali halides contain a number of defect types that effectively transfer energy in an intermolecular process. Similarly, the functioning of biopolymers depends on efficient intramolecular energy transfer. Understanding these mechanisms will enhance our ability to modify biopolymers and materials with applications to biology, medecine, and materials science.

  8. Separating annihilation and excitation energy transfer dynamics in light harvesting systems.

    Science.gov (United States)

    Vengris, Mikas; Larsen, Delmar S; Valkunas, Leonas; Kodis, Gerdenis; Herrero, Christian; Gust, Devens; Moore, Thomas; Moore, Ana; van Grondelle, Rienk

    2013-09-26

    The dependence of excitation energy transfer kinetics on the electronic state of the acceptor (ground vs excited) has been resolved with a novel multipulse prePump-Pump-Probe spectroscopy. The primary energy transfer and annihilation dynamics in two model light-harvesting systems were explored: an artificially synthesized carotenoid-zinc-phthalocyanine dyad and a naturally occurring light-harvesting peridinin-chlorophyll protein complex from Amphidinium carterae. Both systems use carotenoid as the primary excitation energy donor with porphyrin chromophores as the acceptor molecules. The prePump-Pump-Probe transient signals were analyzed with Monte Carlo modeling to explicitly address the underlying step-by-step kinetics involved in both excitation migration and annihilation processes. Both energy transfer and annihilation dynamics were demonstrated to occur with approximately the same rate in both systems, regardless of the excitation status of the acceptor pigments. The possible reasons for these observations are discussed in the framework of the Förster energy transfer model.

  9. Transferring building energy technologies by linking government and private-sector programs

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B.C.

    1990-07-01

    The US Department of Energy's Office of Building Technologies (OBT) may wish to use existing networks and infrastructures wherever possible to transfer energy-efficiency technologies for buildings. The advantages of relying on already existing networks are numerous. These networks have in place mechanisms for reaching audiences interested in energy-efficiency technologies in buildings. Because staffs in trade and professional organizations and in state and local programs have responsibilities for brokering information for their members or client organizations, they are open to opportunities to improve their performance in information transfer. OBT, as an entity with primarily R D functions, is, by cooperating with other programs, spared the necessity of developing an extensive technology transfer program of its own, thus reinventing the wheel.'' Instead, OBT can minimize its investment in technology transfer by relying extensively on programs and networks already in place. OBT can work carefully with staff in other organizations to support and facilitate their efforts at information transfer and getting energy-efficiency tools and technologies into actual use. Consequently, representatives of some 22 programs and organizations were contacted, and face-to-face conversations held, to explore what the potential might be for transferring technology by linking with OBT. The briefs included in this document were derived from the discussions, the newly published Directory of Energy Efficiency Information Services for the Residential and Commercial Sectors, and other sources provided by respondents. Each brief has been sent to persons contacted for their review and comment one or more times, and each has been revised to reflect the review comments.

  10. MMS Observations of the Evolution of Ion-Scale Flux Transfer Events

    Science.gov (United States)

    Zhao, C.; Russell, C. T.; Strangeway, R. J.; Paterson, W.; Petrinec, S.; Zhou, M.; Anderson, B. J.; Baumjohann, W.; Bromund, K. R.; Chutter, M.; Fischer, D.; Gershman, D. J.; Giles, B. L.; Le, G.; Nakamura, R.; Plaschke, F.; Slavin, J. A.; Torbert, R. B.

    2017-12-01

    Flux transfer events are key processes in the solar wind-magnetosphere interaction. Previously, the observed flux transfer events have had scale sizes of 10,000 km radius in the cross-section and connect about 2 MWb magnetic flux from solar wind to the terrestrial magnetosphere. Recently, from the high-temporal resolution MMS magnetic field data, many ion-scale FTEs have been found. These FTEs contains only about 2 kWb magnetic flux and are believed to be in an early stage of FTE evolution. With the help of the well-calibrated MMS data, we are also able to determine the velocity profile and forces within the FTE events. We find that some ion-scale FTEs are expanding as we expect, but there are also contracting FTEs. We examine the differences between the two classes of FTEs and their differences with the larger previously studied class of FTE.

  11. Fast low-energy halo-to-halo transfers between Sun–planet systems

    Directory of Open Access Journals (Sweden)

    Shang Haibin

    2014-04-01

    Full Text Available In this paper, the problem of fast low-energy halo-to-halo transfers between Sun–planet systems is discussed under ephemeris constraints. According to the structure of an invariant manifold, employing an invariant manifold and planetary gravity assist to save fuel consumption is analyzed from the view of orbital energy. Then, a pseudo-manifold is introduced to replace the invariant manifold in such a way that more transfer opportunities are allowed. Fast escape and capture can be achieved along the pseudo-manifold. Furthermore, a global searching method that is based on patched-models is proposed to find an appropriate transfer trajectory. In this searching method, the trajectory is divided into several segments that can be designed under simple dynamical models, and an analytical algorithm is developed for connecting the segments. Earth–Mars and Earth–Venus halo-to-halo transfers are designed to demonstrate the proposed approach. Numerical results show that the transfers that combine the pseudo-manifolds and planetary gravity assist can offer significant fuel consumption and flight time savings over traditional transfer schemes.

  12. A schematic model for energy and charge transfer in the chlorophyll complex

    DEFF Research Database (Denmark)

    Bohr, Henrik; Malik, F.B.

    2011-01-01

    A theory for simultaneous charge and energy transfer in the carotenoid-chlorophyll-a complex is presented here and discussed. The observed charge transfer process in these chloroplast complexes is reasonably explained in terms of this theory. In addition, the process leads to a mechanism to drive...... an electron in a lower to a higher-energy state, thus providing a mechanism for the ejection of the electron to a nearby molecule (chlorophyll) or into the environment. The observed lifetimes of the electronically excited states are in accord/agreement with the investigations of Sundström et al....... and are in the range of pico-seconds and less. The change in electronic charge distribution in internuclear space as the system undergoes an electronic transition to a higher-energy state could, under appropriate physical conditions, lead to oscillating dipoles capable of transmitting energy from the carotenoid-chlorophylls...

  13. Efficient Exciton Diffusion and Resonance-Energy Transfer in Multi-Layered Organic Epitaxial Nanofibers

    DEFF Research Database (Denmark)

    Tavares, Luciana; Cadelano, Michele; Quochi, Francesco

    2015-01-01

    ) spectroscopy to quantify exciton diffusion and resonance-energy transfer (RET) processes in multi-layered nanofibers consisting of alternating layers of para-hexaphenyl (p6P) and α-sexithiophene (6T), serving as exciton donor and acceptor material, respectively. The high probability for RET processes......-to-6T resonance-energy transfer efficiency, and the observed weak PL temperature dependence of the 6T acceptor material together result in an exceptionally high optical emission performance of this all-organic material system, thus making it well suited for example for organic light-emitting devices....... is confirmed by Quantum Chemical calculations. The activation energy for exciton diffusion in p6P is determined to be as low as 19 meV, proving p6P epitaxial layers also as a very suitable donor material system. The small activation energy for exciton diffusion of the p6P donor material, the inferred high p6P...

  14. Study of energy transfer between molecules placed in the vicinity of a bimetal composite nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Daneshfar, Nader, E-mail: ndaneshfar@gmail.com, E-mail: ndaneshfar@razi.ac.ir [Department of Physics, Razi University, Kermanshah (Iran, Islamic Republic of)

    2015-10-15

    In this study, the problem of energy transfer between two molecules near a bimetallic composite nanoparticle is investigated. The influence of the interaction between metal particles on the intermolecular energy is studied, because when two metal nanoparticles are placed close to each other, their plasmons coupling giving rise to new features. On the other hand, we discuss the transfer of resonance energy between donor and acceptor molecules (a single donor and a single acceptor) in the presence of a nanocomposite containing gold and silver nanoparticles based on the Maxwell-Garnett effective medium theory and within the quasistatic limit. We show that the interaction energy strongly depends on the particle size, the filling factor of metal particles, the intermolecular distance (the distance between the donor and acceptor molecules), and the dielectric constant of host matrix.

  15. Energy transfer between a nanosystem and its host fluid: A multiscale factorization approach

    Energy Technology Data Exchange (ETDEWEB)

    Sereda, Yuriy V.; Espinosa-Duran, John M.; Ortoleva, Peter J., E-mail: ortoleva@indiana.edu [Center for Cell and Virus Theory, Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, Indiana 47405 (United States)

    2014-02-21

    Energy transfer between a macromolecule or supramolecular assembly and a host medium is considered from the perspective of Newton's equations and Lie-Trotter factorization. The development starts by demonstrating that the energy of the molecule evolves slowly relative to the time scale of atomic collisions-vibrations. The energy is envisioned to be a coarse-grained variable that coevolves with the rapidly fluctuating atomistic degrees of freedom. Lie-Trotter factorization is shown to be a natural framework for expressing this coevolution. A mathematical formalism and workflow for efficient multiscale simulation of energy transfer is presented. Lactoferrin and human papilloma virus capsid-like structure are used for validation.

  16. Experimental and theoretical investigations of rotational energy transfer in HBr + He collisions.

    Science.gov (United States)

    Kabir, Md Humayun; Antonov, Ivan O; Merritt, Jeremy M; Heaven, Michael C

    2010-10-28

    Rotational relaxation rates for HBr(v = 1) colliding with helium atoms at room temperature have been measured using a time-resolved optical-optical double resonance technique. Rotational state selective excitation of v = 1 for rotational levels in the range J = 1-9 was achieved by stimulated Raman pumping. The population decay in the prepared states and the transfer of population to nearby rotational states was monitored via 2 + 1 resonance-enhanced multiphoton ionization (REMPI) spectroscopy using the g(3)Σ(-)-X(1)Σ(+) (0-1) band. Collision-induced population evolution for transfer events with |ΔJ| ≤ 8 was observed at pressures near 0.7 Torr. The experimental data were analyzed using fitting and scaling functions to generate state-to-state rotational energy transfer rate constant matrices. Total depopulation rate constants were found to be in the range (1.3 to 2.0) × 10(-10) cm(3) s(-1). As a test of current computational methods, state-to-state rotational energy transfer rate constants were calculated using ab initio theory. The total removal rate constants were in good agreement with the measured values, but the transfer probabilities for events with |ΔJ| ≥ 3 were underestimated. Inspection of the anisotropic characteristics of the potential energy surface did not yield an obvious explanation for the discrepancies, but it is most likely that the problem stems from inaccuracies in the potential surface.

  17. Nanostructure enhanced near-field radiative heat transfer and designs for energy conversion devices

    Science.gov (United States)

    Wang, Bingnan; Lin, Chungwei; Teo, Koon Hoo

    2017-09-01

    Near-field radiative heat transfer can exceed the blackbody limit, and this property has been explored toward energy transfer and conversion applications, such as thermophtovoltaic (TPV) devices, radiative cooling devices, and thermoradiative (TR) devices. The coupling of resonant modes between two surfaces is important in near- field heat transfer and near-field TPV and TR systems. It was shown that the coupling of resonant modes enhances the transmissivity between two coupled objects, which further determines the radiative heat transfer and energy conversion. Surface plasmon polaritons (SPPs), which are surface resonances existing on metal surfaces, are commonly used for such systems. While the frequency of SPP resonance is fixed for a planar emitter, a nanostructured emitter supports additional resonances such as SPP or cavity modes with lower frequencies that are closer to the bandgap energy of a typical PV cell. We show that the nanostructured designs significantly improves the near-field radiative power transfer, and electric power output for a TR system.

  18. Toward understanding as photosynthetic biosignatures: light harvesting and energy transfer calculation

    Science.gov (United States)

    Komatsu, Y.; Umemura, M.; Shoji, M.; Shiraishi, K.; Kayanuma, M.; Yabana, K.

    2014-03-01

    Among several proposed biosignatures, red edge is a direct evidence of photosynthetic life if it is detected (Kiang et al 2007). Red edge is a sharp change in reflectance spectra of vegetation in NIR region (about 700-750 nm). The sign of red edge is observed by Earthshine or remote sensing (Wolstencroft & Raven 2002, Woolf et al 2002). But, why around 700-750 nm? The photosynthetic organisms on Earth have evolved to optimize the sunlight condition. However, if we consider about photosynthetic organism on extrasolar planets, they should have developed to utilize the spectra of its principal star. Thus, it is not strange even if it shows different vegetation spectra. In this study, we focused on the light absorption mechanism of photosynthetic organisms on Earth and investigated the fundamental properties of the light harvesting mechanisms, which is the first stage for the light absorption. Light harvesting complexes contain photosynthetic pigments like chlorophylls. Effective light absorption and the energy transfer are accomplished by the electronic excitations of collective photosynthetic pigments. In order to investigate this mechanism, we constructed an energy transfer model by using a dipole-dipole approximation for the interactions between electronic excitations. Transition moments and transition energies of each pigment are calculated at the time-dependent density functional theory (TDDFT) level (Marques & Gross 2004). Quantum dynamics simulation for the excitation energy transfer was calculated by the Liouvelle's equation. We adopted the model to purple bacteria, which has been studied experimentally and known to absorb lower energy. It is meaningful to focus on the mechanism of this bacteria, since in the future mission, M planets will become a important target. We calculated the oscillator strengths in one light harvesting complex and confirmed the validity by comparing to the experimental data. This complex is made of an inner and an outer ring. The

  19. Fluorescence resonance energy transfer between perylene and riboflavin in micellar solution and analytical application on determination of vitamin B2

    International Nuclear Information System (INIS)

    Bhattar, S.L.; Kolekar, G.B.; Patil, S.R.

    2008-01-01

    Fluorescence resonance energy transfer (FRET) between perylene and riboflavin is studied in micellar solution of sodium dodecyl sulfate. The fluorescence of perylene is quenched by riboflavin and quenching is in accordance with Stern-Volmer relation. The efficiency of energy transfer is found to depend on the concentration of riboflavin. The value of critical energy transfer distance (R 0 ) calculated by using Foster relation is 32.13 A, and as it is less than 50 A, it indicates efficient energy transfer in the present system. The analytical relation was established between extent of sensitization and concentration of riboflavin, which helped to estimate vitamin B 2 directly from pharmaceutical tablets

  20. Site-sensitive energy transfer modes in Ca3Al2O6: Ce(3+)/Tb(3+)/Mn(2+) phosphors.

    Science.gov (United States)

    Zhang, Jilin; He, Yani; Qiu, Zhongxian; Zhang, Weilu; Zhou, Wenli; Yu, Liping; Lian, Shixun

    2014-12-28

    Ce(3+)/Eu(2+), Tb(3+) and Mn(2+) co-doping in single-phase hosts is a common strategy to achieve white-light phosphors via energy transfer, which provides a high color rendering index (CRI) value and good color stability. However, not all hosts are suitable for white-light phosphors due to inefficient energy transfer. In this study, the site-sensitive energy transfer from different crystallographic sites of Ce(3+) to Tb(3+)/Mn(2+) in Ca3Al2O6 has been investigated in detail. The energy transfer from purplish-blue Ce(3+) to Tb(3+) is an electric dipole-dipole mode, and the calculated critical distance (Rc) suggests the existence of purplish-blue Ce(3+)-Tb(3+) clusters. No energy transfer is observed from purplish-blue Ce(3+) to Mn(2+). In co-doped phosphors based on greenish-blue Ce(3+), however, the radiative mode dominates the energy transfer from Ce(3+) to Tb(3+), and an electric dipole-quadrupole interaction is responsible for the energy transfer from Ce(3+) to Mn(2+). A detailed discussion on the site-sensitive energy transfer modes might provide a new aspect to discuss and understand the possibilities and mechanisms of energy transfer, according to certain crystallographic sites in a complex host with different cation sites, as well as provide a possible approach in searching for single-phase white-light-emitting phosphors.

  1. Collisional energy transfer in polyatomic molecules at high temperatures: Master equation analysis of vibrational relaxation of shock-heated alkanes

    Science.gov (United States)

    Matsugi, Akira

    2015-08-01

    Collisional energy transfer plays an important role in unimolecular reaction kinetics. This Letter presents classical trajectory calculations of the energy transfer processes in collisions between selected alkanes (ethane, propane, isobutane, and neopentane) and krypton at high temperature. The primary aim of this study was to elucidate the validity of the predicted energy transfer parameters by performing master equation analyses of their vibrational relaxation times and comparing the predicted values with the available experimental data. The results demonstrate the ability of classical trajectory calculations to accurately predict the parameters for vibrational energy transfer.

  2. Picosecond excitation energy transfer of allophycocyanin studied in solution and in crystals.

    Science.gov (United States)

    Ranjbar Choubeh, Reza; Sonani, Ravi R; Madamwar, Datta; Struik, Paul C; Bader, Arjen N; Robert, Bruno; van Amerongen, Herbert

    2018-03-01

    Cyanobacteria perform photosynthesis with the use of large light-harvesting antennae called phycobilisomes (PBSs). These hemispherical PBSs contain hundreds of open-chain tetrapyrrole chromophores bound to different peptides, providing an arrangement in which excitation energy is funnelled towards the PBS core from where it can be transferred to photosystem I and/or photosystem II. In the PBS core, many allophycocyanin (APC) trimers are present, red-light-absorbing phycobiliproteins that covalently bind phycocyanobilin (PCB) chromophores. APC trimers were amongst the first light-harvesting complexes to be crystallized. APC trimers have two spectrally different PCBs per monomer, a high- and a low-energy pigment. The crystal structure of the APC trimer reveals the close distance (~21 Å) between those two chromophores (the distance within one monomer is ~51 Å) and this explains the ultrafast (~1 ps) excitation energy transfer (EET) between them. Both chromophores adopt a somewhat different structure, which is held responsible for their spectral difference. Here we used spectrally resolved picosecond fluorescence to study EET in these APC trimers both in crystallized and in solubilized form. We found that not all closely spaced pigment couples consist of a low- and a high-energy pigment. In ~10% of the cases, a couple consists of two high-energy pigments. EET to a low-energy pigment, which can spectrally be resolved, occurs on a time scale of tens of picoseconds. This transfer turns out to be three times faster in the crystal than in the solution. The spectral characteristics and the time scale of this transfer component are similar to what have been observed in the whole cells of Synechocystis sp. PCC 6803, for which it was ascribed to EET from C-phycocyanin to APC. The present results thus demonstrate that part of this transfer should probably also be ascribed to EET within APC trimers.

  3. Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels

    OpenAIRE

    Dickman, Elizabeth M.; Newell, Jennifer M.; González, María J.; Vanni, Michael J.

    2008-01-01

    The efficiency of energy transfer through food chains [food chain efficiency (FCE)] is an important ecosystem function. It has been hypothesized that FCE across multiple trophic levels is constrained by the efficiency at which herbivores use plant energy, which depends on plant nutritional quality. Furthermore, the number of trophic levels may also constrain FCE, because herbivores are less efficient in using plant production when they are constrained by carnivores. These hypotheses have not ...

  4. Theoretical Analysis for Heat Transfer Optimization in Subcritical Electrothermal Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Peng Hu

    2017-02-01

    Full Text Available Electrothermal energy storage (ETES provides bulk electricity storage based on heat pump and heat engine technologies. A subcritical ETES is described in this paper. Based on the extremum principle of entransy dissipation, a geometry model is developed for heat transfer optimization for subcritical ETES. The exergy during the heat transfer process is deduced in terms of entropy production. The geometry model is validated by the extremum principle of entropy production. The theoretical analysis results show that the extremum principle of entransy dissipation is an effective criterion for the optimization, and the optimum heat transfer for different cases with the same mass flux or pressure has been discussed. The optimum heat transfer can be achieved by adjusting the mass flux and pressure of the working fluid. It also reveals that with the increase of mass flux, there is a minimum exergy in the range under consideration, and the exergy decreases with the increase of the pressure.

  5. Engineering Vibrationally Assisted Energy Transfer in a Trapped-Ion Quantum Simulator

    Science.gov (United States)

    Gorman, Dylan J.; Hemmerling, Boerge; Megidish, Eli; Moeller, Soenke A.; Schindler, Philipp; Sarovar, Mohan; Haeffner, Hartmut

    2018-01-01

    Many important chemical and biochemical processes in the condensed phase are notoriously difficult to simulate numerically. Often, this difficulty arises from the complexity of simulating dynamics resulting from coupling to structured, mesoscopic baths, for which no separation of time scales exists and statistical treatments fail. A prime example of such a process is vibrationally assisted charge or energy transfer. A quantum simulator, capable of implementing a realistic model of the system of interest, could provide insight into these processes in regimes where numerical treatments fail. We take a first step towards modeling such transfer processes using an ion-trap quantum simulator. By implementing a minimal model, we observe vibrationally assisted energy transport between the electronic states of a donor and an acceptor ion augmented by coupling the donor ion to its vibration. We tune our simulator into several parameter regimes and, in particular, investigate the transfer dynamics in the nonperturbative regime often found in biochemical situations.

  6. Förster Resonance Energy Transfer and Harvesting in II-VI Fractional Monolayer Structures

    Science.gov (United States)

    Shubina, T. V.; Semina, M. A.; Belyaev, K. G.; Rodina, A. V.; Toropov, A. A.; Ivanov, S. V.

    2017-07-01

    We report on Förster resonance energy transfer in the dense arrays of epitaxial quantum dots (QDs), formed by fractional monolayer CdSe insertions within a ZnSe matrix. In such arrays comprising the QDs of different sizes, the energy transfer can take place between the ground levels of small QDs and the excited levels of large radiating QDs, when these states are in resonance. This mechanism provides directional excitation of a limited number of the large QDs possessing the excited levels. It reveals itself by the shrinkage of photoluminescence (PL) bands and the appearance of the narrow single excitonic lines in micro-PL spectra. The strong shortening of characteristic PL decay times in the energy-donating QDs is observed when the distance between them and the energy-accepting QDs decreases. Photoluminescence excitation spectroscopy demonstrates the switching of the dominant energy transfer mechanism at the energy predicted by theoretical modeling of the excitonic levels in the QD arrays. Our results pave the way for engineering of the architecture of excitonic levels in the QD arrays to realize efficient nano-emitters.

  7. On the nature of intramolecular vibrational energy transfer in dense molecular environments

    Energy Technology Data Exchange (ETDEWEB)

    Benten, Rebekka S. von [Institut fuer Physikalische Chemie der Universitaet Goettingen, Tammannstrasse 6, D-37077 Goettingen (Germany); Abel, Bernd, E-mail: Bernd.Abel@uni-lepzig.de [Wilhelm-Ostwald-Institut fuer Physikalische und Theoretische Chemie, Universitaet Leipzig, Linne-Strasse 2, D-04103 Leipzig (Germany)

    2010-12-09

    Graphical abstract: Mechanisms of IVR in multi-tiers of intramolecular energy levels in different molecular environments are investigated. - Abstract: Transient femtosecond-IR-pump-UV-absorption probe-spectroscopy has been employed to shed light on the nature of intramolecular vibrational energy transfer (IVR) in dense molecular environments ranging from the diluted gas phase to the liquid. A general feature in our experiments and those of others is that IVR proceeds via multiple timescales if overtones or combination vibrations of high frequency modes are excited. It has been found that collisions enhance IVR if its (slower) timescales can compete with collisions. This enhancement is, however, much more weaker and rather inefficient as opposed to the effect of collisions on intermolecular energy transfer which is well known. In a series of experiments we found that IVR depends not significantly on the average energy transferred in a collision but rather on the number of collisions. The collisions are much less efficient in affecting IVR than VET. We conclude that collision induced broadening of vibrational energy levels reduces the energy gaps and enhances existing couplings between tiers. The present results are an important step forward to rationalize and understand apparently different and not consistent results from different groups on different molecular systems between gas and liquid phases.

  8. Controlling resonance energy transfer in nanostructure emitters by positioning near a mirror

    Science.gov (United States)

    Weeraddana, Dilusha; Premaratne, Malin; Gunapala, Sarath D.; Andrews, David L.

    2017-08-01

    The ability to control light-matter interactions in quantum objects opens up many avenues for new applications. We look at this issue within a fully quantized framework using a fundamental theory to describe mirror-assisted resonance energy transfer (RET) in nanostructures. The process of RET communicates electronic excitation between suitably disposed donor and acceptor particles in close proximity, activated by the initial excitation of the donor. Here, we demonstrate that the energy transfer rate can be significantly controlled by careful positioning of the RET emitters near a mirror. The results deliver equations that elicit new insights into the associated modification of virtual photon behavior, based on the quantum nature of light. In particular, our results indicate that energy transfer efficiency in nanostructures can be explicitly expedited or suppressed by a suitably positioned neighboring mirror, depending on the relative spacing and the dimensionality of the nanostructure. Interestingly, the resonance energy transfer between emitters is observed to "switch off" abruptly under suitable conditions of the RET system. This allows one to quantitatively control RET systems in a new way.

  9. Interphasial energy transfer and particle dissipation in particle-laden wall turbulence

    NARCIS (Netherlands)

    Zhao, L.; Andersson, H.I.; Gillissen, J.J.J.

    2013-01-01

    Transfer of mechanical energy between solid spherical particles and a Newtonian carrier fluid has been explored in two-way coupled direct numerical simulations of turbulent channel flow. The inertial particles have been treated as individual point particles in a Lagrangian framework and their

  10. Effect of antenna-depletion in photosystem II on excitation energy transfer in Arabidopsis thaliana

    NARCIS (Netherlands)

    Van Oort, Bart; Alberts, Marieke; De Bianchi, Silvia; Dall'Osto, Luca; Bassi, Roberto; Trinkunas, Gediminas; Croce, Roberta; van Amerongen, Herbert

    2010-01-01

    The role of individual photosynthetic antenna complexes of Photosystem II (PSII) both in membrane organization and excitation energy transfer have been investigated. Thylakoid membranes from wild-type Arabidopsis thaliana, and three mutants lacking light-harvesting complexes CP24, CP26, or CP29,

  11. "Super-Reducing" Photocatalysis: Consecutive Energy and Electron Transfers with Polycyclic Aromatic Hydrocarbons.

    Science.gov (United States)

    Brasholz, Malte

    2017-08-21

    Donation welcome: Recent developments in visible-light photocatalysis allow the utilization of increasingly negative reduction potentials. Successive energy and electron transfer with polycyclic aromatic hydrocarbons enables the catalytic formation of strongly reducing arene radical anions, classical stoichiometric reagents for one-electron reduction in organic synthesis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Cascaded plasmon-plasmon coupling mediated energy transfer across stratified metal-dielectric nanostructures.

    Science.gov (United States)

    Golmakaniyoon, Sepideh; Hernandez-Martinez, Pedro Ludwig; Demir, Hilmi Volkan; Sun, Xiao Wei

    2016-10-04

    Surface plasmon (SP) coupling has been successfully applied to nonradiative energy transfer via exciton-plasmon-exciton coupling in conventionally sandwiched donor-metal film-acceptor configurations. However, these structures lack the desired efficiency and suffer poor photoemission due to the high energy loss. Here, we show that the cascaded exciton-plasmon-plasmon-exciton coupling in stratified architecture enables an efficient energy transfer mechanism. The overlaps of the surface plasmon modes at the metal-dielectric and dielectric-metal interfaces allow for strong cross-coupling in comparison with the single metal film configuration. The proposed architecture has been demonstrated through the analytical modeling and numerical simulation of an oscillating dipole near the stratified nanostructure of metal-dielectric-metal-acceptor. Consistent with theoretical and numerical results, experimental measurements confirm at least 50% plasmon resonance energy transfer enhancement in the donor-metal-dielectric-metal-acceptor compared to the donor-metal-acceptor structure. Cascaded plasmon-plasmon coupling enables record high efficiency for exciton transfer through metallic structures.

  13. Grid to vehicle and vehicle to grid energy transfer using single ...

    African Journals Online (AJOL)

    ... (PF) half-bridge boost converter and bidirectional DC-DC converter based energy transfer from electrical vehicle to grid(V2G) and grid to vehicle (G2V) is proposed with detailed analysis. The efficiency of this conversion system is high because there is only one series semiconductor on-state voltage drop at any instant.

  14. Forster resonance energy transfer rate in any dielectric nanophotonic medium with weak dispersion

    DEFF Research Database (Denmark)

    Wubs, Martijn; Vos, Willem L.

    2016-01-01

    Motivated by the ongoing debate about nanophotonic control of Forster resonance energy transfer (FRET), notably by the local density of optical states (LDOS), we study FRET and spontaneous emission in arbitrary nanophotonic media with weak dispersion and weak absorption in the frequency overlap...

  15. Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple

    NARCIS (Netherlands)

    Van Wijngaarden, J.T.; Scheidelaar, S.; Vlugt, T.J.H.; Reid, M.F.; Meijerink, A.

    2010-01-01

    Downconversion of one visible photon into two infrared photons has been reported for the lanthanide ion couple (Pr3+, Yb3+) in a variety of host lattices. The mechanism responsible for downconversion is controversial and has been reported to be either a two-step energy transfer process (via two

  16. Energy transfer in an elastic collision/Discussion on question raised ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 6. Energy transfer in an elastic collision / Discussion on question raised In Vol. 1. No. 3. Classroom Volume 1 Issue 6 June 1996 pp 77-78. Fulltext. Click here to view fulltext PDF. Permanent link:

  17. Preparation, single-molecule manipulation and energy transfer investigation of a polyfluorene-graft-DNA polymer

    DEFF Research Database (Denmark)

    Madsen, Mikael; Christensen, Rasmus S.; Krissanaprasit, Abhichart

    2017-01-01

    with the conjugated polyfluorene backbone, but the protruding single-stranded DNA provides the material with an exceptional addressability. This allows us to demonstrate controlled single polymer patterning, as well as energy transfer between two different polymer-DNA conjugates. Finally, we demonstrate highly...

  18. Detection of three porcine vesicular viruses using multiplex real-time primer-probe energy transfer

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Uttenthal, Åse; Aguero, M.

    2006-01-01

    Rapid identification of the etiologic agent in infected animals is important for the control of an outbreak of vesicular disease in livestock. We have in the present study developed a multiplex real-time reverse transcription-PCR, based on primer-probe energy transfer (PriProET), for simultaneous...

  19. Local shell-to-shell energy transfer via nonlocal interactions in fluid ...

    Indian Academy of Sciences (India)

    The computation has been done using first-order perturbative field theory. In three dimensions, magnitude of triad interactions is large for nonlocal triads, and small for local triads. However, the shell-to-shell energy transfer rate is found to be local and forward. This result is due to the fact that the nonlocal triads occupy much ...

  20. Local shell-to-shell energy transfer via nonlocal interactions in fluid ...

    Indian Academy of Sciences (India)

    August 2005 physics pp. 297–310. Local shell-to-shell energy transfer via nonlocal interactions in fluid turbulence. MAHENDRA K VERMA1, ARVIND AYYER2, OLIVIER ... MS received 1 October 2004; revised 2 March 2005; accepted 13 April 2005 ...... Kraichnan [23,24] first raised the above objection, and proposed.

  1. Energy transfer, volumetric expansion, and removal of oral biofilms by non-contact brushing

    NARCIS (Netherlands)

    Busscher, H. J.; Jager, D.; Finger, G.; Schaefer, N.; van der Mei, H. C.

    Non-contact removal of oral biofilms offers advantages beyond the reach of bristles, but it is unknown how energy transfer for removal from brush-to-biofilm occurs. In the present study we evaluated non-contact, oral biofilm removal by oscillating-rotating and sonic toothbrushes, and their acoustic

  2. Continuous-flow protease assay based on fluorescence resonance energy transfer

    NARCIS (Netherlands)

    Hirata, J.; Ariese, F.; Gooijer, C.; Irth, H.

    2003-01-01

    A homogeneous continuous-flow assay using fluorescence resonance energy transfer (FRET) for detection was developed to measure the hydrolysis of HIV Protease Substrate 1 (to which two choromophores, EDANS and DABCYL are covalently attached) by a protease (e.g. Subtilisin Carlsberg) and the influence

  3. A fluorescence resonance energy transfer-based method for histone methyltransferases

    DEFF Research Database (Denmark)

    Devkota, Kanchan; Lohse, Brian; Nyby Jakobsen, Camilla

    2015-01-01

    A simple dye–quencher fluorescence resonance energy transfer (FRET)-based assay for methyltransferases was developed and used to determine kinetic parameters and inhibitory activity at EHMT1 and EHMT2. Peptides mimicking the truncated histone H3 tail were functionalized in each end with a dye...

  4. Foerster resonance energy transfer in inhomogeneous non-dispersive nanophotonic environments

    DEFF Research Database (Denmark)

    Wubs, Martijn; Vos, Willem L.

    A nondispersive inhomogeneous dielectric environment of a donor-acceptor pair of quantum emitters affects their Foerster resonance energy transfer (FRET) rate. We find that this rate does not depend on the emission frequency and hence not on the local optical density of states (LDOS...

  5. Förster resonance energy transfer by formation of a mechanically interlocked [2]rotaxane

    NARCIS (Netherlands)

    Ogoshi, T.; Yamafuji, D.; Yamagishi, T.; Brouwer, A.M.

    2013-01-01

    A[2]rotaxane has been constructed from a di-pyrene appended pillar[5]arene wheel, a pyridinium axle, and a perylene stopper. It shows efficient Forster resonance energy transfer from pyrene to perylene by formation of a mechanically interlocked [2]rotaxane.

  6. Efficient Energy Transfer in Supramolecular, Hydrogen-Bonded Polypyridylruthenium-Osmium Complexes

    NARCIS (Netherlands)

    Rau, Sven; Schäfer, Bernhard; Schebesta, Sebastian; Grüßing, André; Poppitz, Wolfgang; Walther, Dirk; Duati, Marco; Browne, Wesley R.; Vos, Johannes G.

    Hydrogen bond association between ruthenium bibenzimidazole and carboxylated polypyridylosmium complexes results in stable supramolecular aggregates. The determined stability constant of logK approximate to 6 +/- 0.3 allows efficient energy transfer from the ruthenium to the osmium moiety. (C)

  7. Dynamics of pulsed expansion of polyatomic gas cloud: Internal-translational energy transfer contribution

    International Nuclear Information System (INIS)

    Morozov, A. A.

    2007-01-01

    Polyatomic gas cloud expansion under pulsed laser evaporation is studied on the basis of one-dimensional direct Monte Carlo simulation. The effect of rotational-translational (RT) and vibrational-translational (VT) energy transfer on dynamics of the cloud expansion is considered. Efficiency of VT energy transfer dependence on the amount of evaporated matter is discussed. To analyze VT energy transfer impact, the number of collisions per molecule during the expansion is calculated. The data are generally in good agreement with available analytical and numerical predictions. Dependencies of the effective number of vibrational degrees of freedom on the number of vibrationally inelastic collisions are obtained and generalized. The importance of the consideration of energy transfer from the internal degrees of freedom to the translational ones is illustrated by an example of pulsed laser evaporation of polytetrafluoroethylene (PTFE). Based on the obtained regularities, analysis of experimental data on pulsed laser evaporation of aniline is performed. The calculated aniline vibrational temperature correlates well with the experimentally measured one

  8. Intramolecular energy transfer at donor-acceptor interactions in model and biological membranes

    International Nuclear Information System (INIS)

    Umarova, Fatima T.

    2011-01-01

    Intramolecular triplet-triplet energy transfer between molecules of sensibilisator and photochrome for registration of protein interactions in the membrane preparation of Na,K-ATPase was investigated. Erythrosinithiocyanate (ERITC) was used as the triplet label of sensibilisator, and 4-acetoamido-4 -isothiocyanatostilbene-2,2 disullfonic acid (SITS) was used as the photochrome label. Na,K-ATPase preparations were covalently bound with ERITC in active centre of enzyme, and SITS molecules were covalently bound by NH2-groups. In model system, in chymotrypsinogene molecule, SITS and ERITC labels were used also. The cis-trans-isomerization of SITS was initiated by triplet-triplet energy transfer from light excited ERITC molecule to photochrome. The kinetics of isomerization was recorded by the SITS fluorescence measurements. The constant of rate of triplet-triplet energy transfer from ERITC to cis-isomers of SITS in Na,K-ATPase was determined as (3-7)x10 3 M -1 s -1 , and in model system it equals 1x 10 7 M 1 s -1 . The value of energy transfer between loos molecules of erythrosine and SITS in buffer solution equaled to 7x10 7 M -1 s -1 . This drop of R m y in the membrane preparation of Na,K-ATPase at 10 4 reflected the decrease in the frequency of label collisions caused by the increase in the media viscosity and steric hindrances. (author)

  9. Photoinduced energy and charge transfer in layered porphyrin-gold nanoparticle thin films

    NARCIS (Netherlands)

    Kotiaho, Anne; Lahtinen, Riikka; Lehtivuori, Heli; Tkachenko, Nikolai V.; Lemmetyinen, Helge

    2008-01-01

    In thin films of porphyrin (H2P) and gold nanoparticles (AuNPs), photoexcitation of porphyrins leads to energy and charge transfer to the gold nanoparticles. Alternating layers of porphyrins and octanethiol protected gold nanoparticles (dcore ∼3 nm) were deposited on solid substrates via the

  10. Energy partitioning in single-electron transfer events between gaseous dications and their neutral counterparts

    Czech Academy of Sciences Publication Activity Database

    Schröder, Detlef

    2012-01-01

    Roč. 18, č. 2 (2012), s. 139-148 ISSN 1469-0667 R&D Projects: GA ČR GA203/09/1223 Institutional research plan: CEZ:AV0Z40550506 Keywords : coincidence techniques * dications * electron transfer * energy partitioning * synchrotron radiation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.259, year: 2012

  11. Energy transfer within Zn-porphyrin dendrimers: Study of the singlet-singlet annihilation kinetics

    Czech Academy of Sciences Publication Activity Database

    Larsen, J.; Brüggemann, B.; Polívka, Tomáš; Sundström, V.; Akesson, E.; Sly, J.; Crossley, M.J.

    2005-01-01

    Roč. 109, č. 47 (2005), s. 10654-10662 ISSN 1089-5639 Institutional research plan: CEZ:AV0Z50510513 Keywords : Energy transfer * Zn-porphyrin Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.898, year: 2005

  12. A new energy transfer channel from carotenoids to chlorophylls in purple bacteria.

    Science.gov (United States)

    Feng, Jin; Tseng, Chi-Wei; Chen, Tingwei; Leng, Xia; Yin, Huabing; Cheng, Yuan-Chung; Rohlfing, Michael; Ma, Yuchen

    2017-07-10

    It is unclear whether there is an intermediate dark state between the S 2 and S 1 states of carotenoids. Previous two-dimensional electronic spectroscopy measurements support its existence and its involvement in the energy transfer from carotenoids to chlorophylls, but there is still considerable debate on the origin of this dark state and how it regulates the energy transfer process. Here we use ab initio calculations on excited-state dynamics and simulated two-dimensional electronic spectrum of carotenoids from purple bacteria to provide evidence supporting that the dark state may be assigned to a new A g + state. Our calculations also indicate that groups on the conjugation backbone of carotenoids may substantially affect the excited-state levels and the energy transfer process. These results contribute to a better understanding of carotenoid excited states.Carotenoids harvest energy from light and transfer it to chlorophylls during photosynthesis. Here, Feng et al. perform ab initio calculations on excited-state dynamics and simulated 2D electronic spectrum of carotenoids, supporting the existence of a new excited state in carotenoids.

  13. Beta-carotene to bacteriochlorophyll-c energy transfer in self-assembled aggregates mimicking chlorosomes

    Czech Academy of Sciences Publication Activity Database

    Alster, J.; Polívka, Tomáš; Arellano, J.B.; Chábera, P.; Vácha, František; Pšenčík, J.

    2010-01-01

    Roč. 373, 1-2 (2010), s. 90-97 ISSN 0301-0104 R&D Projects: GA ČR GA206/09/0375 Institutional research plan: CEZ:AV0Z50510513 Keywords : carotenoids * chlorosomes * energy transfer Subject RIV: BO - Biophysics Impact factor: 2.017, year: 2010

  14. Radio- and thermaluminescence and energy transfer processes in Ce 3+ (Tb 3+ )-doped photosphate scintillating glasses

    Czech Academy of Sciences Publication Activity Database

    Nikl, Martin; Mareš, Jiří A.; Mihóková, Eva; Nitsch, Karel; Solovieva, Natalia; Babin, V.; Krasnikov, A.; Zazubovich, S.; Martini, M.; Vedda, A.

    2001-01-01

    Roč. 33, - (2001), s. 593-596 ISSN 1350-4487 R&D Projects: GA MŠk ME 462 Grant - others:NATO(XX) sfp 973510 Institutional research plan: CEZ:AV0Z1010914 Keywords : scintillator * phosphate glasses * transfer processes * energy migration Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.003, year: 2001

  15. Incorporating the Delphi Technique to investigate renewable energy technology transfer in Saudi Arabia

    Science.gov (United States)

    Al-Otaibi, Nasir K.

    Saudi Arabia is a major oil-producing nation facing a rapidly-growing population, high unemployment, climate change, and the depletion of its natural resources, potentially including its oil supply. Technology transfer is regarded as a means to diversify countries' economies beyond their natural resources. This dissertation examined the opportunities and barriers to utilizing technology transfer successfully to build renewable energy resources in Saudi Arabia to diversify the economy beyond oil production. Examples of other developing countries that have successfully used technology transfer to transform their economies are explored, including Japan, Malayasia, and the United Arab Emirates. Brazil is presented as a detailed case study to illustrate its transition to an economy based to a much greater degree than before on renewable energy. Following a pilot study, the Delphi Method was used in this research to gather the opinions of a panel of technology transfer experts consisting of 10 heterogeneous members of different institutions in the Kingdom of Saudi Arabia, including aviation, telecommunication, oil industry, education, health systems, and military and governmental organizations. In three rounds of questioning, the experts identified Education, Dependence on Oil, and Manpower as the 3 most significant factors influencing the potential for success of renewable energy technology transfer for Saudi Arabia. Political factors were also rated toward the "Very Important" end of a Likert scale and were discussed as they impact Education, Oil Dependence, and Manpower. The experts' opinions are presented and interpreted. They form the basis for recommended future research and discussion of how in light of its political system and its dependence on oil, Saudi Arabia can realistically move forward on renewable energy technology transfer and secure its economic future.

  16. Minimal Model of Quantum Kinetic Clusters for the Energy-Transfer Network of a Light-Harvesting Protein Complex.

    Science.gov (United States)

    Wu, Jianlan; Tang, Zhoufei; Gong, Zhihao; Cao, Jianshu; Mukamel, Shaul

    2015-04-02

    The energy absorbed in a light-harvesting protein complex is often transferred collectively through aggregated chromophore clusters. For population evolution of chromophores, the time-integrated effective rate matrix allows us to construct quantum kinetic clusters quantitatively and determine the reduced cluster-cluster transfer rates systematically, thus defining a minimal model of energy-transfer kinetics. For Fenna-Matthews-Olson (FMO) and light-havrvesting complex II (LCHII) monomers, quantum Markovian kinetics of clusters can accurately reproduce the overall energy-transfer process in the long-time scale. The dominant energy-transfer pathways are identified in the picture of aggregated clusters. The chromophores distributed extensively in various clusters can assist a fast and long-range energy transfer.

  17. On the Statistical Properties of Turbulent Energy Transfer Rate in the Inner Heliosphere

    Science.gov (United States)

    Sorriso-Valvo, Luca; Carbone, Francesco; Perri, Silvia; Greco, Antonella; Marino, Raffaele; Bruno, Roberto

    2018-01-01

    The transfer of energy from large to small scales in solar wind turbulence is an important ingredient of the long-standing question of the mechanism of the interplanetary plasma heating. Previous studies have shown that magnetohydrodynamic (MHD) turbulence is statistically compatible with the observed solar wind heating as it expands in the heliosphere. However, in order to understand which processes contribute to the plasma heating, it is necessary to have a local description of the energy flux across scales. To this aim, it is customary to use indicators such as the magnetic field partial variance of increments (PVI), which is associated with the local, relative, scale-dependent magnetic energy. A more complete evaluation of the energy transfer should also include other terms, related to velocity and cross-helicity. This is achieved here by introducing a proxy for the local, scale-dependent turbulent energy transfer rate ɛ_{Δ t}(t), based on the third-order moment scaling law for MHD turbulence. Data from Helios 2 are used to determine the statistical properties of such a proxy in comparison with the magnetic and velocity fields PVI, and the correlation with local solar wind heating is computed. PVI and ɛ_{Δ t}(t) are generally well correlated; however, ɛ_{Δ t}(t) is a very sensitive proxy that can exhibit large amplitude values, both positive and negative, even for low amplitude peaks in the PVI. Furthermore, ɛ_{Δ t}(t) is very well correlated with local increases of the temperature when large amplitude bursts of energy transfer are localized, thus suggesting an important role played by this proxy in the study of plasma energy dissipation.

  18. Study of energy transfer mechanism from ZnO nanocrystals to Eu(3+) ions.

    Science.gov (United States)

    Mangalam, Vivek; Pita, Kantisara; Couteau, Christophe

    2016-12-01

    In this work, we investigate the efficient energy transfer occurring between ZnO nanocrystals (ZnO-nc) and europium (Eu(3+)) ions embedded in a SiO2 matrix prepared using the sol-gel technique. We show that a strong red emission was observed at 614 nm when the ZnO-nc were excited using a continuous optical excitation at 325 nm. This emission is due to the radiative (5)D0 → (7)F2 de-excitation of the Eu(3+) ions and has been conclusively shown to be due to the energy transfer from the excited ZnO-nc to the Eu(3+) ions. The photoluminescence excitation spectra are also examined in this work to confirm the energy transfer from ZnO-nc to the Eu(3+) ions. Furthermore, we study various de-excitation processes from the excited ZnO-nc and their contribution to the energy transfer to Eu(3+) ions. We also report the optimum fabrication process for maximum red emission at 614 nm from the samples where we show a strong dependence on the annealing temperature and the Eu(3+) concentration in the sample. The maximum red emission is observed with 12 mol% Eu(3+) annealed at 450 °C. This work provides a better understanding of the energy transfer mechanism from ZnO-nc to Eu(3+) ions and is important for applications in photonics, especially for light emitting devices.

  19. Resonant energy transfer and cross relaxation between Sm3+ ions in LiYF4 crystals

    International Nuclear Information System (INIS)

    Yamaga, Mitsuo; Uno, Hideaki; Tsuda, Shin-ichiro; Wells, Jon-Paul R.; Han, Thomas P.J.

    2012-01-01

    Luminescence decay curves of Sm 3+ ions in LiYF 4 crystals doped with 1, 5 and 10 mol% Sm 3+ are multi-exponential, whereas that in a LiYF 4 crystal doped with 0.1 mol% Sm 3+ is well approximated by a single exponential function with a decay time of 4.8 ms. The average luminescence decay times decrease from 4.8 to 0.60 ms with the increasing Sm 3+ concentrations between 1 and 10 mol%. The decay curves for all crystals are found to be almost independent of the temperature between 15 and 300 K. The decrease of the decay times for the higher Sm 3+ concentrations indicates energy transfer between two Sm 3+ ions. Taking the crystal structure of LiYF 4 into account, it is deduced that a single-step energy transfer process for the 1 and 5 mol% Sm 3+ concentrations occurs from a Sm 3+ ion at the origin of (0 0 0) to one of the Sm 3+ ions substituting for the first nearest neighbor Y 3+ sites and beyond within a sphere with an approximate radius of less than 0.7 nm. On the other hand, a multi-step energy transfer process dominates for the highest concentration (10 mol%) because the calculated average distance between two Sm 3+ ions in the 10 mol% Sm 3+ sample is comparable with the migration length of the single-step energy transfer process estimated from the 1 and 5 mol% Sm 3+ samples. - Highlights: ► The decay time and the quantum yield of the Sm 3+ luminescence in LiYF 4 . ► The formation probability of Sm 3+ -Sm 3+ pairs in LiYF 4 . ► The resonant energy transfer between two Sm 3+ ions. ► The luminescence quenching due to cross relaxation between two Sm 3+ ions.

  20. Near-field effects and energy transfer in hybrid metal-oxide nanostructures.

    Science.gov (United States)

    Herr, Ulrich; Kuerbanjiang, Balati; Benel, Cahit; Papageorgiou, Giorgos; Goncalves, Manuel; Boneberg, Johannes; Leiderer, Paul; Ziemann, Paul; Marek, Peter; Hahn, Horst

    2013-01-01

    One of the big challenges of the 21st century is the utilization of nanotechnology for energy technology. Nanoscale structures may provide novel functionality, which has been demonstrated most convincingly by successful applications such as dye-sensitized solar cells introduced by M. Grätzel. Applications in energy technology are based on the transfer and conversion of energy. Following the example of photosynthesis, this requires a combination of light harvesting, transfer of energy to a reaction center, and conversion to other forms of energy by charge separation and transfer. This may be achieved by utilizing hybrid nanostructures, which combine metallic and nonmetallic components. Metallic nanostructures can interact strongly with light. Plasmonic excitations of such structures can cause local enhancement of the electrical field, which has been utilized in spectroscopy for many years. On the other hand, the excited states in metallic structures decay over very short lifetimes. Longer lifetimes of excited states occur in nonmetallic nanostructures, which makes them attractive for further energy transfer before recombination or relaxation sets in. Therefore, the combination of metallic nanostructures with nonmetallic materials is of great interest. We report investigations of hybrid nanostructured model systems that consist of a combination of metallic nanoantennas (fabricated by nanosphere lithography, NSL) and oxide nanoparticles. The oxide particles were doped with rare-earth (RE) ions, which show a large shift between absorption and emission wavelengths, allowing us to investigate the energy-transfer processes in detail. The main focus is on TiO2 nanoparticles doped with Eu(3+), since the material is interesting for applications such as the generation of hydrogen by photocatalytic splitting of water molecules. We use high-resolution techniques such as confocal fluorescence microscopy for the investigation of energy-transfer processes. The experiments are

  1. Near-field effects and energy transfer in hybrid metal-oxide nanostructures

    Directory of Open Access Journals (Sweden)

    Ulrich Herr

    2013-05-01

    Full Text Available One of the big challenges of the 21st century is the utilization of nanotechnology for energy technology. Nanoscale structures may provide novel functionality, which has been demonstrated most convincingly by successful applications such as dye-sensitized solar cells introduced by M. Grätzel. Applications in energy technology are based on the transfer and conversion of energy. Following the example of photosynthesis, this requires a combination of light harvesting, transfer of energy to a reaction center, and conversion to other forms of energy by charge separation and transfer. This may be achieved by utilizing hybrid nanostructures, which combine metallic and nonmetallic components. Metallic nanostructures can interact strongly with light. Plasmonic excitations of such structures can cause local enhancement of the electrical field, which has been utilized in spectroscopy for many years. On the other hand, the excited states in metallic structures decay over very short lifetimes. Longer lifetimes of excited states occur in nonmetallic nanostructures, which makes them attractive for further energy transfer before recombination or relaxation sets in. Therefore, the combination of metallic nanostructures with nonmetallic materials is of great interest. We report investigations of hybrid nanostructured model systems that consist of a combination of metallic nanoantennas (fabricated by nanosphere lithography, NSL and oxide nanoparticles. The oxide particles were doped with rare-earth (RE ions, which show a large shift between absorption and emission wavelengths, allowing us to investigate the energy-transfer processes in detail. The main focus is on TiO2 nanoparticles doped with Eu3+, since the material is interesting for applications such as the generation of hydrogen by photocatalytic splitting of water molecules. We use high-resolution techniques such as confocal fluorescence microscopy for the investigation of energy-transfer processes. The

  2. Correlation between the Open-Circuit Voltage and Charge Transfer State Energy in Organic Photovoltaic Cells.

    Science.gov (United States)

    Zou, Yunlong; Holmes, Russell J

    2015-08-26

    In order to further improve the performance of organic photovoltaic cells (OPVs), it is essential to better understand the factors that limit the open-circuit voltage (VOC). Previous work has sought to correlate the value of VOC in donor-acceptor (D-A) OPVs to the interface energy level offset (EDA). In this work, measurements of electroluminescence are used to extract the charge transfer (CT) state energy for multiple small molecule D-A pairings. The CT state as measured from electroluminescence is found to show better correlation to the maximum VOC than EDA. The difference between EDA and the CT state energy is attributed to the Coulombic binding energy of the CT state. This correlation is demonstrated explicitly by inserting an insulating spacer layer between the donor and acceptor materials, reducing the binding energy of the CT state and increasing the measured VOC. These results demonstrate a direct correlation between maximum VOC and CT state energy.

  3. 78 FR 31986 - In the Matter of Energy Solutions Inc.; Order Approving Indirect Transfer of Import and Export...

    Science.gov (United States)

    2013-05-28

    ... with applicable provisions of laws, regulations and orders issued by the Commission pursuant thereto... NUCLEAR REGULATORY COMMISSION [Docket Nos. 11005621, 11005896, 11005620, 11005897, 11006061... Energy Solutions Inc.; Order Approving Indirect Transfer of Import and Export Licenses I EnergySolutions...

  4. Probing Bioluminescence Resonance Energy Transfer in Quantum Rod-Luciferase Nanoconjugates.

    Science.gov (United States)

    Alam, Rabeka; Karam, Liliana M; Doane, Tennyson L; Coopersmith, Kaitlin; Fontaine, Danielle M; Branchini, Bruce R; Maye, Mathew M

    2016-02-23

    We describe the necessary design criteria to create highly efficient energy transfer conjugates containing luciferase enzymes derived from Photinus pyralis (Ppy) and semiconductor quantum rods (QRs) with rod-in-rod (r/r) microstructure. By fine-tuning the synthetic conditions, CdSe/CdS r/r-QRs were prepared with two different emission colors and three different aspect ratios (l/w) each. These were hybridized with blue, green, and red emitting Ppy, leading to a number of new BRET nanoconjugates. Measurements of the emission BRET ratio (BR) indicate that the resulting energy transfer is highly dependent on QR energy accepting properties, which include absorption, quantum yield, and optical anisotropy, as well as its morphological and topological properties, such as aspect ratio and defect concentration. The highest BR was found using r/r-QRs with lower l/w that were conjugated with red Ppy, which may be activating one of the anisotropic CdSe core energy levels. The role QR surface defects play on Ppy binding, and energy transfer was studied by growth of gold nanoparticles at the defects, which indicated that each QR set has different sites. The Ppy binding at those sites is suggested by the observed BRET red-shift as a function of Ppy-to-QR loading (L), where the lowest L results in highest efficiency and furthest shift.

  5. Light Absorption and Energy Transfer in the Antenna Complexes of Photosynthetic Organisms.

    Science.gov (United States)

    Mirkovic, Tihana; Ostroumov, Evgeny E; Anna, Jessica M; van Grondelle, Rienk; Govindjee; Scholes, Gregory D

    2017-01-25

    The process of photosynthesis is initiated by the capture of sunlight by a network of light-absorbing molecules (chromophores), which are also responsible for the subsequent funneling of the excitation energy to the reaction centers. Through evolution, genetic drift, and speciation, photosynthetic organisms have discovered many solutions for light harvesting. In this review, we describe the underlying photophysical principles by which this energy is absorbed, as well as the mechanisms of electronic excitation energy transfer (EET). First, optical properties of the individual pigment chromophores present in light-harvesting antenna complexes are introduced, and then we examine the collective behavior of pigment-pigment and pigment-protein interactions. The description of energy transfer, in particular multichromophoric antenna structures, is shown to vary depending on the spatial and energetic landscape, which dictates the relative coupling strength between constituent pigment molecules. In the latter half of the article, we focus on the light-harvesting complexes of purple bacteria as a model to illustrate the present understanding of the synergetic effects leading to EET optimization of light-harvesting antenna systems while exploring the structure and function of the integral chromophores. We end this review with a brief overview of the energy-transfer dynamics and pathways in the light-harvesting antennas of various photosynthetic organisms.

  6. Modeling energy transfer in molecular collisions: Statistical theory versus experiment for highly excited toluene and azulene

    Science.gov (United States)

    Nilsson, Daniel; Nordholm, Sture

    2003-12-01

    The recent development and application of the method of kinetically controlled selective ionization has produced detailed and reliable data on the collisional energy transfer kernel P(E',E) entering master equation theories of unimolecular reaction rates. Here we test the ability of our partially ergodic collision theory (PECT) to predict the functional form of the observed kernel leaving only one parameter, the first moment of the distribution , to be input from other sources. The data explored here include two reactant molecules, toluene and azulene, in collisions with 18 and 8 medium molecules, respectively, ranging from inert gas atoms to n-heptane. The initial energy of the reactant molecule is varied from 10 000 cm-1 to 49 000 cm-1 and 30 000 cm-1, respectively. The energy transfer efficiency βE is about one-tenth of its ergodic collision limit of unity. The PECT is found to fit the monoexponential form of the kernel determined from the experimental data over a broad range of initial energies E including tail regions of very low probability. A minor but systematic deviation is observed for nearly elastic collisions of large medium molecules. The functional fit is good enough to effectively allow the three parameters of the monoexponential experimental kernel to be replaced by a single parameter representing energy transfer efficiency.

  7. Energy transfer from quantum dots to metal-organic frameworks for enhanced light harvesting.

    Science.gov (United States)

    Jin, Shengye; Son, Ho-Jin; Farha, Omar K; Wiederrecht, Gary P; Hupp, Joseph T

    2013-01-23

    Because of their efficient energy-transport properties, porphyrin-based metal-organic frameworks (MOFs) are attractive compounds for solar photochemistry applications. However, their absorption bands provide limited coverage in the visible spectral range for light-harvesting applications. We report here the functionalization of porphyrin-based MOFs with CdSe/ZnS core/shell quantum dots (QDs) for the enhancement of light harvesting via energy transfer from the QDs to the MOFs. The broad absorption band of the QDs in the visible region offers greater coverage of the solar spectrum by QD-MOF hybrid structures. We show through time-resolved emission studies that photoexcitation of the QDs is followed by energy transfer to the MOFs with efficiencies of more than 80%. This sensitization approach can result in a >50% increase in the number of photons harvested by a single monolayer MOF structure with a monolayer of QDs on the surface of the MOF.

  8. Wave packet methods for the direct calculation of energy-transfer moments in molecular collisions

    International Nuclear Information System (INIS)

    Bradley, K.S.; Schatz, G.C.; Balint-Kurti, G.G.

    1999-01-01

    The authors present a new wave packet based theory for the direct calculation of energy-transfer moments in molecular collision processes. This theory does not contain any explicit reference to final state information associated with the collision dynamics, thereby avoiding the need for determining vibration-rotation bound states (other than the initial state) for the molecules undergoing collision and also avoiding the calculation of state-to-state transition probabilities. The theory applies to energy-transfer moments of any order, and it generates moments for a wide range of translational energies in a single calculation. Two applications of the theory are made that demonstrate its viability; one is to collinear He + H 2 and the other to collinear He + CS 2 (with two active vibrational modes in CS 2 ). The results of these applications agree well with earlier results based on explicit calculation of transition probabilities

  9. Energy transfer between fusion biliproteins co-expressed with phycobiliprotein in Escherichia coli.

    Science.gov (United States)

    Ma, Qiong; Zhou, Nan; Zhou, Ming

    2016-10-01

    In cyanobacteria, phycobiliproteins (PBS) show excellent energy transfer among the chromophores absorbing over most of the visible. The energy transfers are used to study phycobilisome assembly and bioimaging. Using All4261GAF2(C81L) as energy donor, ApcE(1-240/Δ87-130) as energy acceptor, we co-expressed fusion protein ApcE(1-240/Δ87-130)::All4261GAF2(C81L) with phycobiliprotein in Escherichia Coli and studied the energy transfer between two protein domains. With N-terminal His6 tag, ApcE(1-240/Δ87-130)::All4261GAF2(C81L) cannot be purified by nickel-affinity column. We added six histidines in the C-terminal of ApcE(1-240/Δ87-130)::All4261GAF2(C81L) and co-expressed it with phycobiliprotein. ApcE(1-240/Δ87-130)::PCB-All4261GAF2(C81L)His6 was purified successfully and only singly chromophorylated at All4261GAF2(C81L)His6 domain. The singly chromophorylate ApcE(1-240/Δ87-130)::PCB-All4261GAF2(C81L)His6 was incubated with fresh PCB and the doubly chromophorylated PCB-ApcE(1-240/Δ87-130)::PCB-All4261GAF2(C81L)His6 was obtained. The double chromophored fusion protein absorbed light in the range of 615-660 nm, and fluoresced only at 668 nm. Photochemistry analysis showed that excitation energy transfer from the short-wavelength absorbing at All4261GAF2(C81L) domain was achieved successfully to the long-wavelength absorbing at the ApcE(1-240/Δ87-130) domain. Copyright © 2016. Published by Elsevier Inc.

  10. Nonphotochemical Hole-Burning Studies of Energy Transfer Dynamics in Antenna Complexes of Photosynthetic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, Satoshi [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    This thesis contains the candidate's original work on excitonic structure and energy transfer dynamics of two bacterial antenna complexes as studied using spectral hole-burning spectroscopy. The general introduction is divided into two chapters (1 and 2). Chapter 1 provides background material on photosynthesis and bacterial antenna complexes with emphasis on the two bacterial antenna systems related to the thesis research. Chapter 2 reviews the underlying principles and mechanism of persistent nonphotochemical hole-burning (NPHB) spectroscopy. Relevant energy transfer theories are also discussed. Chapters 3 and 4 are papers by the candidate that have been published. Chapter 3 describes the application of NPHB spectroscopy to the Fenna-Matthews-Olson (FMO) complex from the green sulfur bacterium Prosthecochloris aestuarii; emphasis is on determination of the low energy vibrational structure that is important for understanding the energy transfer process associated within three lowest energy Qy-states of the complex. The results are compared with those obtained earlier on the FMO complex from Chlorobium tepidum. In Chapter 4, the energy transfer dynamics of the B800 molecules of intact LH2 and B800-deficient LH2 complexes of the purple bacterium Rhodopseudomonas acidophila are compared. New insights on the additional decay channel of the B800 ring of bacteriochlorophylla (BChla) molecules are provided. General conclusions are given in Chapter 5. A version of the hole spectrum simulation program written by the candidate for the FMO complex study (Chapter 3) is included as an appendix. The references for each chapter are given at the end of each chapter.

  11. Coherent Structures and Spectral Energy Transfer in Turbulent Plasma: A Space-Filter Approach

    Science.gov (United States)

    Camporeale, E.; Sorriso-Valvo, L.; Califano, F.; Retinò, A.

    2018-03-01

    Plasma turbulence at scales of the order of the ion inertial length is mediated by several mechanisms, including linear wave damping, magnetic reconnection, the formation and dissipation of thin current sheets, and stochastic heating. It is now understood that the presence of localized coherent structures enhances the dissipation channels and the kinetic features of the plasma. However, no formal way of quantifying the relationship between scale-to-scale energy transfer and the presence of spatial structures has been presented so far. In the Letter we quantify such a relationship analyzing the results of a two-dimensional high-resolution Hall magnetohydrodynamic simulation. In particular, we employ the technique of space filtering to derive a spectral energy flux term which defines, in any point of the computational domain, the signed flux of spectral energy across a given wave number. The characterization of coherent structures is performed by means of a traditional two-dimensional wavelet transformation. By studying the correlation between the spectral energy flux and the wavelet amplitude, we demonstrate the strong relationship between scale-to-scale transfer and coherent structures. Furthermore, by conditioning one quantity with respect to the other, we are able for the first time to quantify the inhomogeneity of the turbulence cascade induced by topological structures in the magnetic field. Taking into account the low space-filling factor of coherent structures (i.e., they cover a small portion of space), it emerges that 80% of the spectral energy transfer (both in the direct and inverse cascade directions) is localized in about 50% of space, and 50% of the energy transfer is localized in only 25% of space.

  12. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    International Nuclear Information System (INIS)

    Yu, L.D.; Wongkham, W.; Prakrajang, K.; Sangwijit, K.; Inthanon, K.; Thongkumkoon, P.; Wanichapichart, P.; Anuntalabhochai, S.

    2013-01-01

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  13. Synergistic "ping-pong" energy transfer for efficient light activation in a chromophore-catalyst dyad.

    Science.gov (United States)

    Quaranta, Annamaria; Charalambidis, Georgios; Herrero, Christian; Margiola, Sofia; Leibl, Winfried; Coutsolelos, Athanassios; Aukauloo, Ally

    2015-10-07

    The synthesis of a porphyrin-Ru(II) polypyridine complex where the porphyrin acts as a photoactive unit and the Ru(II) polypyridine as a catalytic precursor is described. Comparatively, the free base porphyrin was found to outperform the ruthenium based chromophore in the yield of light induced electron transfer. Mechanistic insights indicate the occurrence of a ping-pong energy transfer from the (1)LC excited state of the porphyrin chromophore to the (3)MCLT state of the catalyst and back to the (3)LC excited state of the porphyrin unit. The latter, triplet-triplet energy transfer back to the chromophore, efficiently competes with fast radiationless deactivation of the excited state at the catalyst site. The energy thus recovered by the chromophore allows improved yield of formation of the oxidized form of the chromophore and concomitantly of the oxidation of the catalytic unit by intramolecular charge transfer. The presented results are among the rare examples where a porphyrin chromophore is successfully used to drive an oxidative activation process where reductive processes prevail in the literature.

  14. Machine learning for quantum dynamics: deep learning of excitation energy transfer properties.

    Science.gov (United States)

    Häse, Florian; Kreisbeck, Christoph; Aspuru-Guzik, Alán

    2017-12-01

    Understanding the relationship between the structure of light-harvesting systems and their excitation energy transfer properties is of fundamental importance in many applications including the development of next generation photovoltaics. Natural light harvesting in photosynthesis shows remarkable excitation energy transfer properties, which suggests that pigment-protein complexes could serve as blueprints for the design of nature inspired devices. Mechanistic insights into energy transport dynamics can be gained by leveraging numerically involved propagation schemes such as the hierarchical equations of motion (HEOM). Solving these equations, however, is computationally costly due to the adverse scaling with the number of pigments. Therefore virtual high-throughput screening, which has become a powerful tool in material discovery, is less readily applicable for the search of novel excitonic devices. We propose the use of artificial neural networks to bypass the computational limitations of established techniques for exploring the structure-dynamics relation in excitonic systems. Once trained, our neural networks reduce computational costs by several orders of magnitudes. Our predicted transfer times and transfer efficiencies exhibit similar or even higher accuracies than frequently used approximate methods such as secular Redfield theory.

  15. The influence of compressibility on nonlinear spectral energy transfer - Part 1: Fundamental mechanisms

    Science.gov (United States)

    Praturi, Divya Sri; Girimaji, Sharath

    2017-11-01

    Nonlinear spectral energy transfer by triadic interactions is one of the foundational processes in fluid turbulence. Much of our current knowledge of this process is contingent upon pressure being a Lagrange multiplier with the only function of re-orienting the velocity wave vector. In this study, we examine how the nonlinear spectral transfer is affected in compressible turbulence when pressure is a true thermodynamic variable with a wave character. We perform direct numerical simulations of multi-mode evolution at different turbulent Mach numbers of Mt = 0.03 , 0.6 . Simulations are performed with initial modes that are fully solenoidal, fully dilatational and mixed solenoidal-dilatational. It is shown that solenoidal-solenoidal interactions behave in canonical manner at all Mach numbers. However, dilatational and mixed mode interactions are profoundly different. This is due to the fact that wave-pressure leads to kinetic-internal energy exchange via the pressure-dilatation mechanism. An important consequence of this exchange is that the triple correlation term, responsible for spectral transfer, experiences non-monotonic behavior resulting in inefficient energy transfer to other modes.

  16. High-precision gas gain and energy transfer measurements in Ar–CO{sub 2} mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Şahin, Özkan, E-mail: osahin@uludag.edu.tr [Department of Physics, Uludağ University, 16059 Bursa (Turkey); Kowalski, Tadeusz Z. [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków (Poland); Veenhof, Rob [Department of Physics, Uludağ University, 16059 Bursa (Turkey); RD51 collaboration, CERN, Genève (Switzerland)

    2014-12-21

    Ar–CO{sub 2} is a Penning mixture since a fraction of the energy stored in Ar 3p{sup 5}3d and higher excited states can be transferred to ionize CO{sub 2} molecules. In the present work, concentration and pressure dependence of Penning transfer rate and photon feedback parameter in Ar–CO{sub 2} mixtures have been investigated with recent systematic high-precision gas gain measurements which cover the range 1–50% CO{sub 2} at 400, 800, 1200, 1800 hPa and gas gain from 1 to 5×10{sup 5}.

  17. Nuclear fragmentation energy and momentum transfer distributions in relativistic heavy-ion collisions

    Science.gov (United States)

    Khandelwal, Govind S.; Khan, Ferdous

    1989-01-01

    An optical model description of energy and momentum transfer in relativistic heavy-ion collisions, based upon composite particle multiple scattering theory, is presented. Transverse and longitudinal momentum transfers to the projectile are shown to arise from the real and absorptive part of the optical potential, respectively. Comparisons of fragment momentum distribution observables with experiments are made and trends outlined based on our knowledge of the underlying nucleon-nucleon interaction. Corrections to the above calculations are discussed. Finally, use of the model as a tool for estimating collision impact parameters is indicated.

  18. Energy Transfer in Supramolecular Heteronuclear Lanthanide Dimers and Application to Fluoride Sensing in Water.

    Science.gov (United States)

    Nonat, Aline; Liu, Tao; Jeannin, Olivier; Camerel, Franck; Charbonnière, Loïc J

    2018-03-12

    In the presence of fluoride anions, [LnL(H 2 O)] + complexes, based on the coordination of a lanthanide (Ln) cation into the cavity of a C 2v symmetrical cyclen-based ligand (L), self-assemble in water to form [(LnL) 2 F] + dimers. The crystal structures of the Yb hydrated monomer and of the fluorinated dimer are reported and analyzed to unravel the impact of the cumulative effect of weak hydrogen bonding and aromatic stacking interactions in the supramolecular assembly. The assembly is stable over a broad range of pH 3-8. A combination of equimolar amounts of Eu and Tb complexes led to a quasistatistical mixture of homo- and heterodimers, as observed by using electrospray mass spectrometry. In the heterodimers, selective excitation into the 7 F 6 → 5 D 4 absorption band of the Tb center at λ=488 nm allowed the observation of a Tb-to-Eu downshifting energy transfer, not observed in the absence of fluoride ions. Analysis of the excited-state lifetimes of the dimers within the frame of the Förster theory of energy transfer showed the transfer to have an efficiency of 34 %, with a corresponding Förster radius of 4.1 Å; thereby, unraveling the short Ln-Ln distance as a crucial parameter of the energy-transfer process. By using equimolar mixtures of the Tb and Eu complexes, the energy-transfer phenomenon was used for a ratiometric sensing of fluoride anions in water with a detection limit of 17.7 nm. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Charge Versus Energy Transfer in Atomically Thin Graphene-Transition Metal Dichalcogenide van der Waals Heterostructures

    Science.gov (United States)

    Froehlicher, Guillaume; Lorchat, Etienne; Berciaud, Stéphane

    2018-01-01

    Made from stacks of two-dimensional materials, van der Waals heterostructures exhibit unique light-matter interactions and are promising for novel optoelectronic devices. The performance of such devices is governed by near-field coupling through, e.g., interlayer charge and/or energy transfer. New concepts and experimental methodologies are needed to properly describe two-dimensional heterointerfaces. Here, we report an original study of interlayer charge and energy transfer in atomically thin metal-semiconductor [i.e., graphene-transition metal dichalcogenide (TMD, here molybdenum diselenide, MoSe2 )] heterostructures using a combination of microphotoluminescence and Raman scattering spectroscopies. The photoluminescence intensity in graphene /MoSe2 is quenched by more than 2 orders of magnitude and rises linearly with the incident photon flux, demonstrating a drastically shortened (about 1 ps) room-temperature MoSe2 exciton lifetime. Key complementary insights are provided from a comprehensive analysis of the graphene and MoSe2 Raman modes, which reveals net photoinduced electron transfer from MoSe2 to graphene and hole accumulation in MoSe2 . Remarkably, the steady-state Fermi energy of graphene saturates at 290 ±15 meV above the Dirac point. This reproducible behavior is observed both in ambient air and in vacuum and is discussed in terms of intrinsic factors (i.e., band offsets) and environmental effects. In this saturation regime, balanced photoinduced flows of electrons and holes may transfer to graphene, a mechanism that effectively leads to energy transfer. Using a broad range of incident photon fluxes and diverse environmental conditions, we find that the presence of net photoinduced charge transfer has no measurable impact on the near-unity photoluminescence quenching efficiency in graphene /MoSe2 . This absence of correlation strongly suggests that energy transfer to graphene (either in the form of electron exchange or dipole-dipole interaction) is the

  20. Charge Versus Energy Transfer in Atomically Thin Graphene-Transition Metal Dichalcogenide van der Waals Heterostructures

    Directory of Open Access Journals (Sweden)

    Guillaume Froehlicher

    2018-01-01

    Full Text Available Made from stacks of two-dimensional materials, van der Waals heterostructures exhibit unique light-matter interactions and are promising for novel optoelectronic devices. The performance of such devices is governed by near-field coupling through, e.g., interlayer charge and/or energy transfer. New concepts and experimental methodologies are needed to properly describe two-dimensional heterointerfaces. Here, we report an original study of interlayer charge and energy transfer in atomically thin metal-semiconductor [i.e., graphene-transition metal dichalcogenide (TMD, here molybdenum diselenide, MoSe_{2}] heterostructures using a combination of microphotoluminescence and Raman scattering spectroscopies. The photoluminescence intensity in graphene/MoSe_{2} is quenched by more than 2 orders of magnitude and rises linearly with the incident photon flux, demonstrating a drastically shortened (about 1 ps room-temperature MoSe_{2} exciton lifetime. Key complementary insights are provided from a comprehensive analysis of the graphene and MoSe_{2} Raman modes, which reveals net photoinduced electron transfer from MoSe_{2} to graphene and hole accumulation in MoSe_{2}. Remarkably, the steady-state Fermi energy of graphene saturates at 290±15  meV above the Dirac point. This reproducible behavior is observed both in ambient air and in vacuum and is discussed in terms of intrinsic factors (i.e., band offsets and environmental effects. In this saturation regime, balanced photoinduced flows of electrons and holes may transfer to graphene, a mechanism that effectively leads to energy transfer. Using a broad range of incident photon fluxes and diverse environmental conditions, we find that the presence of net photoinduced charge transfer has no measurable impact on the near-unity photoluminescence quenching efficiency in graphene/MoSe_{2}. This absence of correlation strongly suggests that energy transfer to graphene (either in the form of electron

  1. Probing intermolecular protein-protein interactions in the calcium-sensing receptor homodimer using bioluminescence resonance energy transfer (BRET)

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Hansen, Jakob L; Sheikh, Søren P

    2002-01-01

    -induced intermolecular movements in the CaR homodimer using the new bioluminescence resonance energy transfer technique, BRET2, which is based on the transference of energy from Renilla luciferase (Rluc) to the green fluorescent protein mutant GFP2. We tagged CaR with Rluc and GFP2 at different intracellular locations...

  2. Decoherence approach to energy transfer and work done by slowly driven systems

    Science.gov (United States)

    Wang, Wen-ge

    2018-01-01

    A main problem, which is met when computing the energy transfer of or work done by a quantum system, comes from the fact that the system may lie in states with coherence in its energy eigenstates. As is well known, when the so-called environment-induced decoherence has happened with respect to a preferred basis given by the energy basis, no coherence exists among the energy basis and the energy change of the system can be computed in a definite way. I argue that one may make use of this property, in the search for an appropriate definition of quantum work for a total system that does not include any measuring apparatus. To show how this idea may work, in this paper, I study decoherence properties of a generic slowly driven system, which is weakly coupled to a huge environment whose main body is a complex quantum system. It is shown that decoherence may generically happen for such a system.

  3. Resonant energy transfer under the influence of the evanescent field from the metal

    Science.gov (United States)

    Poudel, Amrit; Chen, Xin; Ratner, Mark A.

    2017-06-01

    We present a quantum framework based on a density matrix of a dimer system to investigate the quantum dynamics of excitation energy transfer (EET) in the presence of the evanescent field from the metal and the phonon bath. Due to the spatial correlation of the electric field in the vicinity of the metal, the spectral density of the evanescent field is similar to that of a shared phonon bath. However, the EET dynamics under the influence of the evanescent field is an open and a new problem. Here we use a thin metallic film to investigate the effect of the evanescent field on the excitation energy transfer in a dimer system based on a density matrix approach. Our results indicate that a thin metallic film enhances the energy transfer rate at the expense of absorbing energy during the process. Since the spectral density of the evanescent field is affected by the geometry of the medium and the distance of a dimer system from the medium, our results demonstrate the possibility to tune EET based on material geometry and distances. Our model also serves as an expansion to quantum heat engine models and provides a framework to investigate the EET in light harvesting molecular networks under the influence of the evanescent field.

  4. Laboratory Studies of Thermal Energy Charge Transfer of Silicon and Iron Ions in Astrophysical Plasmas

    Science.gov (United States)

    Kwong, Victor H. S.

    1997-01-01

    The laser ablation/ion storage facility at the UNLV Physics Department is dedicated to the study of atomic processes in low temperature plasmas. Our current program is directed to the study of charge transfer of multiply charged ions and neutrals that are of importance to astrophysics at energies less than 1 eV (about 10(exp 4) K). Specifically, we measure the charge transfer rate coefficient of ions such as N(2+), Si(3+), Si(3+), with helium and Fe(2+) with molecular and atomic hydrogen. All these ions are found in a variety of astrophysical plasmas. Their electron transfer reactions with neutral atoms can affect the ionization equilibrium of the plasma.

  5. 78 FR 57375 - Toutant Hydro Power, Inc.; Energy System, LLC.; Notice of Application for Transfer of License...

    Science.gov (United States)

    2013-09-18

    ... Power, Inc. (transferor) and Energy System, LLC (transferee) filed an application for transfer of... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Toutant Hydro Power, Inc.; Energy System, LLC.; Notice of Application for...

  6. Spectroscopic studies of the energy transfer processes important to obtain holmium laser action in the Er:Tm:Ho:YLF

    International Nuclear Information System (INIS)

    Tarelho, Luiz Vicente Gomes

    1995-01-01

    There are several processes of energy transfer between Er, Tm and Ho ions in YLF crystal that could be evaluated using the Foerster-Dexter method. Energy transfer processes, important to understand Holmium laser action, were studied, specially involving the energy transfer between the first excited states of Er and Tm donors and Ho acceptor. The back-transfer processes were evaluated too in order to minimize the system losses. Another important process to understand Ho laser action in the host is the energy diffusion mechanism between donor ions due to excitation migration processes which take place before the energy transfer to Ho. The proposed model of energy transfer was developed to include the diffusion mechanism between donors in the absence and presence of the acceptors. The energy transfer probability was evaluated including the back-transfer processes besides the diffusion assistance. A laser medium model based on the fundamental spectroscopic parameters was used in order to determine the ideal donor acceptor concentrations in order to maximize the laser action of Ho at 2,1 μm. (author)

  7. Low light adaptation: energy transfer processes in different types of light harvesting complexes from Rhodopseudomonas palustris.

    Science.gov (United States)

    Moulisová, Vladimíra; Luer, Larry; Hoseinkhani, Sajjad; Brotosudarmo, Tatas H P; Collins, Aaron M; Lanzani, Guglielmo; Blankenship, Robert E; Cogdell, Richard J

    2009-12-02

    Energy transfer processes in photosynthetic light harvesting 2 (LH2) complexes isolated from purple bacterium Rhodopseudomonas palustris grown at different light intensities were studied by ground state and transient absorption spectroscopy. The decomposition of ground state absorption spectra shows contributions from B800 and B850 bacteriochlorophyll (BChl) a rings, the latter component splitting into a low energy and a high energy band in samples grown under low light (LL) conditions. A spectral analysis reveals strong inhomogeneity of the B850 excitons in the LL samples that is well reproduced by an exponential-type distribution. Transient spectra show a bleach of both the low energy and high energy bands, together with the respective blue-shifted exciton-to-biexciton transitions. The different spectral evolutions were analyzed by a global fitting procedure. Energy transfer from B800 to B850 occurs in a mono-exponential process and the rate of this process is only slightly reduced in LL compared to high light samples. In LL samples, spectral relaxation of the B850 exciton follows strongly nonexponential kinetics that can be described by a reduction of the bleach of the high energy excitonic component and a red-shift of the low energetic one. We explain these spectral changes by picosecond exciton relaxation caused by a small coupling parameter of the excitonic splitting of the BChl a molecules to the surrounding bath. The splitting of exciton energy into two excitonic bands in LL complex is most probably caused by heterogenous composition of LH2 apoproteins that gives some of the BChls in the B850 ring B820-like site energies, and causes a disorder in LH2 structure.

  8. Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors

    Directory of Open Access Journals (Sweden)

    Kenny F. Chou

    2015-06-01

    Full Text Available Förster (or fluorescence resonance energy transfer amongst semiconductor quantum dots (QDs is reviewed, with particular interest in biosensing applications. The unique optical properties of QDs provide certain advantages and also specific challenges with regards to sensor design, compared to other FRET systems. The brightness and photostability of QDs make them attractive for highly sensitive sensing and long-term, repetitive imaging applications, respectively, but the overlapping donor and acceptor excitation signals that arise when QDs serve as both the donor and acceptor lead to high background signals from direct excitation of the acceptor. The fundamentals of FRET within a nominally homogeneous QD population as well as energy transfer between two distinct colors of QDs are discussed. Examples of successful sensors are highlighted, as is cascading FRET, which can be used for solar harvesting.

  9. Beyond superquenching: Hyper-efficient energy transfer from conjugated polymers to gold nanoparticles

    Science.gov (United States)

    Fan, Chunhai; Wang, Shu; Hong, Janice W.; Bazan, Guillermo C.; Plaxco, Kevin W.; Heeger, Alan J.

    2003-01-01

    Gold nanoparticles quench the fluorescence of cationic polyfluorene with Stern–Volmer constants (KSV) approaching 1011 M—1, several orders of magnitude larger than any previously reported conjugated polymer–quencher pair and 9–10 orders of magnitude larger than small molecule dye–quencher pairs. The dependence of KSV on ionic strength, charge and conjugation length of the polymer, and the dimensions (and thus optical properties) of the nanoparticles suggests that three factors account for this extraordinary efficiency: (i) amplification of the quenching via rapid internal energy or electron transfer, (ii) electrostatic interactions between the cationic polymer and anionic nanoparticles, and (iii) the ability of gold nanoparticles to quench via efficient energy transfer. As a result of this extraordinarily high KSV, quenching can be observed even at subpicomolar concentrations of nanoparticles, suggesting that the combination of conjugated polymers with these nanomaterials can potentially lead to improved sensitivity in optical biosensors. PMID:12750470

  10. Influence of relaxation processes in polymers on energy transfer by triplet levels

    International Nuclear Information System (INIS)

    Ibraev, N.Kh.; Zhunusbekov, A.M.

    1996-01-01

    Temperature influence on triplet-triplet (T-T) energy transfer between molecules of eosin and 3,4-benzopyrene is studied. Polyvenylbuteryl films have been used in capacity of polymer matrix. Calculation has being carried out on spectral-kinetic unit. It is revealed, that 3,4-benzopyrene triplets have been formed in polymer matrix after end of T-T energy transfer. These triplets join in a reaction of mixed triplet-triplet annihilation with non-blow out triplets of eosin and its sensitize slowed fluorescence (SF) of donor. This explains non-exponent character of eosin's dumping kinetics. Non-linear dependence of SF output ration to eosin phosphorescence output under presence of 3,4-benzopyrene molecules in film indicates on process of mixed annihilation. Fractal character of SF donor and acceptor has been evidenced about microscopical distribution of phosphor in polymer. 13 refs., 5 figs

  11. Heat Transfer Analysis of Encapsulated Phase Change Materials for Thermal Energy Storage

    Science.gov (United States)

    Elmozughi, Ali F.

    Thermal analysis of high temperature phase change materials (PCMs) is conducted. Transient two dimensional heat transfer analysis is performed to investigate high temperature energy storage and retrieval for concentrated solar power applications. The phase change materials are considered are NaNO 3 and the eutectic of MgCl2 and NaCl. Phase change material is encapsulated by a stainless steel in a cylindrical shaped capsule. Energy storage/retrieval into/from various sizes of encapsulated phase change material (EPCM) capsules is simulated for both laminar and turbulent flow conditions of the heat transfer fluid (HTF) by an accurate modeling of the propagating liquid/solid interface in a PCM. Heat transfer inside EPCM capsule and the phase change of PCM are modeled by an enthalpy - porosity method. A two-dimensional cylindrical shaped EPCM capsule or tube is considered in simulations using gas (air) and liquid (Therminol/VP-1) as heat transfer fluids in a cross flow and an axial flow arrangement. The energy storage/retrieval times into/out of the EPCM capsule is dictated by the surface heat transfer of the EPCM for the capsule sizes considered in this study. A single horizontally placed rod in a channel with different blockage ratios for laminar and turbulence flows of HTF is studied in the present study. It is illustrated by the present work that enthalpy-porosity method can be applied to simulate heat transfer at the capsule level and the system level. System level storage module is a thermocline that includes an arrangement of several EPCMs for several megawatts of thermal energy storage (TES) for several hours used in concentrated solar power applications and other industrial thermal systems. Transport phenomena inside the EPCM are modeled accurately by considering a 20% air void and the buoyancy-driven convection in a stainless steel capsule. The effects of the thermal expansion and the volume expansion due to phase change on the energy storage and retrieval

  12. Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors

    Science.gov (United States)

    Chou, Kenny F.; Dennis, Allison M.

    2015-01-01

    Förster (or fluorescence) resonance energy transfer amongst semiconductor quantum dots (QDs) is reviewed, with particular interest in biosensing applications. The unique optical properties of QDs provide certain advantages and also specific challenges with regards to sensor design, compared to other FRET systems. The brightness and photostability of QDs make them attractive for highly sensitive sensing and long-term, repetitive imaging applications, respectively, but the overlapping donor and acceptor excitation signals that arise when QDs serve as both the donor and acceptor lead to high background signals from direct excitation of the acceptor. The fundamentals of FRET within a nominally homogeneous QD population as well as energy transfer between two distinct colors of QDs are discussed. Examples of successful sensors are highlighted, as is cascading FRET, which can be used for solar harvesting. PMID:26057041

  13. Differences in energy transfer of a cyanobacterium, Synechococcus sp. PCC 7002, grown in different cultivation media.

    Science.gov (United States)

    Niki, Kenta; Aikawa, Shimpei; Yokono, Makio; Kondo, Akihiko; Akimoto, Seiji

    2015-08-01

    Currently, cyanobacteria are regarded as potential biofuel sources. Large-scale cultivation of cyanobacteria in seawater is of particular interest because seawater is a low-cost medium. In the present study, we examined differences in light-harvesting and energy transfer processes in the cyanobacterium Synechococcus sp. PCC 7002 grown in different cultivation media, namely modified A medium (the optimal growth medium for Synechococcus sp. PCC 7002) and f/2 (a seawater medium). The concentrations of nitrate and phosphate ions were varied in both media. Higher nitrate ion and/or phosphate ion concentrations yielded high relative content of phycobilisome. The cultivation medium influenced the energy transfers within phycobilisome, from phycobilisome to photosystems, within photosystem II, and from photosystem II to photosystem I. We suggest that the medium also affects charge recombination at the photosystem II reaction center and formation of a chlorophyll-containing complex.

  14. Investigating real-time activation of adenosine receptors by bioluminescence resonance energy transfer technique

    Science.gov (United States)

    Huang, Yimei; Yang, Hongqin; Zheng, Liqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen

    2013-02-01

    Adenosine receptors play important roles in many physiological and pathological processes, for example regulating myocardial oxygen consumption and the release of neurotransmitters. The activations of adenosine receptors have been studied by some kinds of techniques, such as western blot, immunohistochemistry, etc. However, these techniques cannot reveal the dynamical response of adenosine receptors under stimulation. In this paper, bioluminescence resonance energy transfer technique was introduced to study the real-time activation of adenosine receptors by monitoring the dynamics of cyclic adenosine monophosphate (cAMP) level. The results showed that there were significant differences between adenosine receptors on real-time responses under stimulation. Moreover, the dynamics of cAMP level demonstrated that competition between adenosine receptors existed. Taken together, our study indicates that monitoring the dynamics of cAMP level using bioluminescence resonance energy transfer technique could be one potential approach to investigate the mechanism of competitions between adenosine receptors.

  15. Molecular beam studies of energy transfer in scattering from crystal surfaces

    International Nuclear Information System (INIS)

    Guthrie, W.L.

    1983-01-01

    The translational energy distributions and angular distributions of D 2 O produced from the reaction of incident D 2 and O 2 on a (111) platinum single crystal surface have been measured through the use of a molecular beam-surface scattering apparatus equipped with a time-of-flight spectrometer. The translation energies were measured over the surface temperature range T/sub s/ = 664 K - 913 K and at scattering angles of 7 0 and 40 0 from the surface normal. The D 2 O translational energy, , was found to be approximately half the equilibrium value over the temperature range examined, with /2k varying from 280 K to 480 K. These results are discussed in terms of a non-equilibrium desorption model. The two-photon ionization spectrometer was built to investigate the internal rotational and vibrational energy distributions of NO scattered from Pt(111) surfaces. The rotational energy distributions were measured over the crystal temperature range of T/sub s/ = 400 K - 1200 K. The translational energy distributions and angular distributions were measured using the time-of-flight spectrometer over the crystal temperature range of 400 K - 110 K and for beam translational energies of 0.046 eV, 0.11 eV and 0.24 eV, so that complete energy exchange information for translation, rotation and vibration is available for this gas-surface system. Significant energy transfer was observed in all three modes

  16. Electronic energy transfer between coumarin 460 and Eu3+ in thorium phosphate xerogel

    International Nuclear Information System (INIS)

    Genet, M.; Brandel, V.; Lahalle, M.P.; Simoni, E.

    1990-01-01

    Optical spectroscopy experiments performed on thorium phosphate xerogels, doped with both a laser dye (coumarin 460) and europium, have pointed out the existence of an electronic energy transfer from coumarin 460 to the 5 D 3 level of Eu 3+ . Indeed, the excitation spectrum of the red fluorescence of Eu 3+ in thorium phosphate xerogel doped simultaneously with coumarin 460 exhibits a broad band corresponding to the absorption of coumarin 460 in this optical region [fr

  17. Fluorescence resonance energy transfer sensors for quantitative monitoring of pentose and disaccharide accumulation in bacteria

    Directory of Open Access Journals (Sweden)

    Looger Loren L

    2008-06-01

    Full Text Available Abstract Background Engineering microorganisms to improve metabolite flux requires detailed knowledge of the concentrations and flux rates of metabolites and metabolic intermediates in vivo. Fluorescence resonance energy transfer sensors represent a promising technology for measuring metabolite levels and corresponding rate changes in live cells. These sensors have been applied successfully in mammalian and plant cells but potentially could also be used to monitor steady-state levels of metabolites in microorganisms using fluorimetric assays. Sensors for hexose and pentose carbohydrates could help in the development of fermentative microorganisms, for example, for biofuels applications. Arabinose is one of the carbohydrates to be monitored during biofuels production from lignocellulose, while maltose is an important degradation product of starch that is relevant for starch-derived biofuels production. Results An Escherichia coli expression vector compatible with phage λ recombination technology was constructed to facilitate sensor construction and was used to generate a novel fluorescence resonance energy transfer sensor for arabinose. In parallel, a strategy for improving the sensor signal was applied to construct an improved maltose sensor. Both sensors were expressed in the cytosol of E. coli and sugar accumulation was monitored using a simple fluorimetric assay of E. coli cultures in microtiter plates. In the case of both nanosensors, the addition of the respective ligand led to concentration-dependent fluorescence resonance energy transfer responses allowing quantitative analysis of the intracellular sugar levels at given extracellular supply levels as well as accumulation rates. Conclusion The nanosensor destination vector combined with the optimization strategy for sensor responses should help to accelerate the development of metabolite sensors. The new carbohydrate fluorescence resonance energy transfer sensors can be used for in vivo

  18. Investigation of inelastic scattering of ultracold neutrons with small energy transfer at solid state surfaces

    International Nuclear Information System (INIS)

    Lychagin, E.V.; Muzychka, A.Yu.; Nekhaev, G.V.; Strelkov, A.V.; Shvetsov, V.N.; Nesvizhevskij, V.V.; Tal'daev, R.R.

    2001-01-01

    Inelastic scattering of neutrons with small energy transfer of ∼10 -7 eV was investigated using gravitational UCN spectrometer. The probability of such a process at stainless steel and beryllium surfaces was measured. It was also estimated at copper surface. The measurement showed that the detected flux of neutrons scattered at beryllium and copper surfaces is ∼ 2 times higher at room temperature compared to that at the liquid nitrogen temperature. (author)

  19. Trade Fairs and Transfer of Knowledge : Green Energy and Home Design on Display

    OpenAIRE

    Schjønsby, Håkon

    2009-01-01

    This thesis investigates knowledge transfer at trade fairs and examines how private and official actors are involved in these processes. The thesis analyzes empirical findings from two case studies. Casa Pasarela which is a trade fair for home design, and Genera a trade fair for renewable energy. Both trade fairs took place in Madrid spring 2009 and were arranged by IFEMA. The theoretical approaches used in this thesis are concepts from evolutionary economics which mainly include types of kno...

  20. Triplet–triplet energy transfer in artificial and natural photosynthetic antennas

    OpenAIRE

    Ho, Junming; Kish, Elizabeth; Méndez-Hernández, Dalvin D.; WongCarter, Katherine; Pillai, Smitha; Kodis, Gerdenis; Niklas, Jens; Poluektov, Oleg G.; Gust, Devens; Moore, Thomas A.; Moore, Ana L.; Batista, Victor S.; Robert, Bruno

    2017-01-01

    Rapid chlorophyll-to-carotenoid triplet–triplet energy transfer (T-TET) in photosynthetic organisms is crucial to photoprotection from singlet oxygen. Photosynthesis reengineered for increased efficiency will result in increased oxygen levels in the cells, and the need to ensure adequately rapid T-TET will arise. Using a combination of theoretical and experimental studies on artificial and natural carotenoid–chlorophyll complexes, we have identified spectroscopic markers indicative of specifi...

  1. Radiofrequency Thermal Ablation Heat Energy Transfer in anEx-VivoModel.

    Science.gov (United States)

    Thakur, Shivani; Lavito, Sandi; Grobner, Elizabeth; Grobner, Mark

    2017-12-01

    Little work has been done to consider the temperature changes and energy transfer that occur in the tissue outside the vein with ultrasound-guided vein ablation therapy. In this experiment, a Ex-Vivo model of the human calf was used to analyze heat transfer and energy degradation in tissue surrounding the vein during endovascular radiofrequency ablation (RFA). A clinical vein ablation protocol was used to determine the tissue temperature distribution in 10 per cent agar gel. Heat energy from the radiofrequency catheter was measured for 140 seconds at fixed points by four thermometer probes placed equidistant radially at 0.0025, 0.005, and 0.01 m away from the RFA catheter. The temperature rose 1.5°C at 0.0025 m, 0.6°C at 0.005 m, and 0.0°C at 0.01 m from the RFA catheter. There was a clinically insignificant heat transfer at the distances evaluated, 1.4 ± 0.2 J/s at 0.0025 m, 0.7 ± 0.3 J/s at 0.0050 m, and 0.3 ± 0.0 J/s at 0.01 m. Heat degradation occurred rapidly: 4.5 ± 0.5 J (at 0.0025 m), 4.0 ± 1.6 J (at 0.0050 m), and 3.9 ± 3.6 J (at 0.01 m). Tumescent anesthesia injected one centimeter around the vein would act as a heat sink to absorb the energy transferred outside the vein to minimize tissue and nerve damage and will help phlebologists strategize options for minimizing damage.

  2. Spiro-linked hyperbranched architecture in electrophosphorescent conjugated polymers for tailoring triplet energy back transfer.

    Science.gov (United States)

    Shao, Shiyang; Ma, Zhihua; Ding, Junqiao; Wang, Lixiang; Jing, Xiabin; Wang, Fosong

    2012-04-17

    A spiro-linked hyperbranched architecture has been incorporated into electrophosphorescent conjugated polymers for the first time, aiming at simultaneously tailoring the intra- and intermolecular triplet energy back transfer from the phosphorescent guest to the conjugated polymer host. Based on a prototype with this unique structure, slower decay of triplet excitons, and 5-8 fold enhancement of device efficiencies are obtained compared with the conventional blending counterpart. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Local description of the energy transfer process in a packed bed heat exchanger

    International Nuclear Information System (INIS)

    Costa, M.L.M.; Sampaio, R.; Gama, R.M.S. da.

    1990-01-01

    The energy transfer process in a packed-bed heat exchanger, in counter0flow arrangement is considered. The phenomenon is described through a Continuum Theory of Mixtures approach, in which fluid and solid (porous matrix) are regarded as continuous constituents possessing, each one, its own temperature and velocity fields. The heat 'exchangers consists of two channels, separated by an impermeable wall without thermal resistence, in which there exists a saturated flow. Some particular cases are simulated. (author)

  4. Understanding and modeling Förster-type resonance energy transfer (FRET) introduction to FRET

    CERN Document Server

    Govorov, Alexander; Demir, Hilmi Volkan

    2016-01-01

    This Brief presents a historical overview of the Förster-type nonradiative energy transfer and a compilation of important progress in FRET research, starting from Förster until today, along with a summary of the current state-of-the-art. Here the objective is to provide the reader with a complete account of important milestones in FRET studies and FRET applications as well as a picture of the current status.

  5. Image Processing for Bioluminescence Resonance Energy Transfer Measurement—BRET-Analyzer

    OpenAIRE

    Chastagnier, Yan; Moutin, Enora; Hemonnot, Anne-Laure; Perroy, Julie

    2018-01-01

    A growing number of tools now allow live recordings of various signaling pathways and protein-protein interaction dynamics in time and space by ratiometric measurements, such as Bioluminescence Resonance Energy Transfer (BRET) Imaging. Accurate and reproducible analysis of ratiometric measurements has thus become mandatory to interpret quantitative imaging. In order to fulfill this necessity, we have developed an open source toolset for Fiji—BRET-Analyzer—allowing a systematic analysis, from ...

  6. Enhancement of the efficiency of dye lasers using electron energy transfer processes

    Energy Technology Data Exchange (ETDEWEB)

    Levin, M.B.; Uzhinov, B.M. (Moskovskii Gosudarstvennyi Universitet, Moscow (USSR))

    1990-04-01

    Various types of electron energy transfer processes are considered, which are associated with the introduction of energy donors (Dn) and triplet quenchers (TQ) into the acceptor dye solutions with the use of luminescent light filters (LLF) in the pumping system. Mixed solutions are proposed which make it possible to increase the efficiency of the coumarine 314 dye laser by a factor of 1.8. In lasers using unsubstituted and B rhodamines, the simultaneous action of Dn, TQ, and LLF leads, in the optimal cases, to a three-to-ten-fold increase in the efficiency, making the efficiency of these dyes close to that of rhodamine 6G. 50 refs.

  7. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications

    Energy Technology Data Exchange (ETDEWEB)

    Zalba, Belen; Marin, Jose M. [Dpto. Ingenieria Mecanica, Campus Politecnico, Universidad de Zaragoza, EUITIZ ' EDIFICIO B.3' Maria de Luna 3 (Actur), 50015, Zaragoza (Spain); Cabeza, Luisa F. [Dpt.d' Informatica i Enginyeria Industrial, Escola, Universitaria Politecnica, Universitat de Lleida, CREA, Jaurne 11,69,25001, Lleida (Spain); Mehling, Harald [ZAE Bayem, Division 1: Energy Conversion and Storage, Walther-Meissner-Str. 6, 85748, Garching (Germany)

    2003-02-01

    Thermal energy storage in general, and phase change materials (PCMs) in particular, have been a main topic in research for the last 20 years, but although the information is quantitatively enormous, it is also spread widely in the literature, and difficult to find. In this work, a review has been carried out of the history of thermal energy storage with solid-liquid phase change. Three aspects have been the focus of this review: materials, heat transfer and applications. The paper contains listed over 150 materials used in research as PCMs, and about 45 commercially available PCMs. The paper lists over 230 references. (Author)

  8. Theoretical characterization of excitation energy transfer in chlorosome light-harvesting antennae from green sulfur bacteria.

    Science.gov (United States)

    Fujita, Takatoshi; Huh, Joonsuk; Saikin, Semion K; Brookes, Jennifer C; Aspuru-Guzik, Alán

    2014-06-01

    We present a theoretical study of excitation dynamics in the chlorosome antenna complex of green photosynthetic bacteria based on a recently proposed model for the molecular assembly. Our model for the excitation energy transfer (EET) throughout the antenna combines a stochastic time propagation of the excitonic wave function with molecular dynamics simulations of the supramolecular structure and electronic structure calculations of the excited states. We characterized the optical properties of the chlorosome with absorption, circular dichroism and fluorescence polarization anisotropy decay spectra. The simulation results for the excitation dynamics reveal a detailed picture of the EET in the chlorosome. Coherent energy transfer is significant only for the first 50 fs after the initial excitation, and the wavelike motion of the exciton is completely damped at 100 fs. Characteristic time constants of incoherent energy transfer, subsequently, vary from 1 ps to several tens of ps. We assign the time scales of the EET to specific physical processes by comparing our results with the data obtained from time-resolved spectroscopy experiments.

  9. Collisional energy transfer in Na(4p--3d)--He,H2 collisions

    International Nuclear Information System (INIS)

    Kleiber, P.D.; Wong, T.H.; Bililign, S.

    1993-01-01

    We have investigated the direct collisional energy transfer process Na*(4p)+M→Na*(3d)+M, where M=He,H 2 under gas cell conditions. We have measured the temporal profiles of the Na(3d--3p) sensitized fluorescence as a function of quenching gas pressure and fit the profiles to a two-state rate equation model to obtain the quenching rate coefficients from the Na*(4p) state. The total energy transfer rate coefficient out of the 4p state for He is small [(0.5±0.2)x10 -10 cm 3 /s]. The total quenching rate coefficient out of the 4p state is much larger for H 2 [(3.9±0.5)x10 -10 cm 3 /s]. Evidence suggests that the energy transfer rate coefficient for the 4p--3d process is ∼2.0x10 -10 cm 3 /s with the remainder of the 4p quenching being predominantly reactive. We also compare the far-red wing absorption line shapes for the NaHe and NaH 2 systems

  10. Infrared emission properties and energy transfer in ZnO-SiO2:Yb3+ composites

    International Nuclear Information System (INIS)

    Xiao, F.; Chen, R.; Shen, Y.Q.; Liu, B.; Gurzadyan, G.G.; Dong, Z.L.; Zhang, Q.Y.; Sun, H.D.

    2011-01-01

    Graphical abstract: Highlights: → ZnO-SiO 2 :Yb 3+ composites have been prepared via a facile sol-gel method. Intense near-infrared emission at around 1 μm has been obtained upon broadband ultraviolet light excitation. → Efficient energy transfer from ZnO quantum dots to Yb 3+ ions has been clarified by the systematic measurements and analysis of static and time resolved photoluminescence spectra. → Codoping with Li + ions leads to about twice enhancement of the near-infrared luminescence intensity around 1 μm at room temperature. - Abstract: Intense near-infrared emission at 1 μm has been obtained in ZnO-SiO 2 :Yb 3+ composites via a facile sol-gel method upon broadband ultraviolet light excitation. Systematic optical measurements including static and time-resolved photoluminescence have been performed to elucidate the energy transfer from ZnO quantum dots to Yb 3+ ions. The dependence of energy transfer efficiency on Yb 3+ concentration has been investigated in detail. Codoping with Li + ions leads to about twice enhancement of the near-infrared luminescence intensity around 1 μm at room temperature. The enhancement in the luminescence intensity could be mostly attributed to the modification of the local symmetry around Yb 3+ ions by codoping with Li + ions.

  11. Bioluminescence resonance energy transfer (BRET) imaging in plant seedlings and mammalian cells.

    Science.gov (United States)

    Xie, Qiguang; Soutto, Mohammed; Xu, Xiaodong; Zhang, Yunfei; Johnson, Carl Hirschie

    2011-01-01

    Bioluminescence resonance energy transfer (BRET) has become a widely used technique to monitor protein-protein interactions. It involves resonance energy transfer between a bioluminescent donor and a fluorescent acceptor. Because the donor emits photons intrinsically, fluorescence excitation is unnecessary. Therefore, BRET avoids some of the problems inherent in fluorescence resonance energy transfer (FRET) approaches, such as photobleaching, autofluorescence, and undesirable stimulation of photobiological processes. In the past, BRET signals have generally been too dim to be effectively imaged. Newly available cameras that are more sensitive coupled to image splitter now enable BRET imaging in plant and mammalian cells and tissues. In addition, new substrates and enhanced luciferases enable brighter signals that allow even subcellular BRET imaging. Here, we report methods for BRET imaging of (1) localization of COP1 dimerization in plant cells and tissues and (2) subcellular distributions of interactions of the CCAAT/Enhancer Binding Protein α (C/EBPα) in single mammalian cells. We also discuss methods for the correction of BRET images for tissues that absorb light of different spectra. This progress should catalyze further applications of BRET for imaging and high-throughput assays.

  12. Dynamics and quantumness of excitation energy transfer through a complex quantum network

    Science.gov (United States)

    Qin, M.; Shen, H. Z.; Zhao, X. L.; Yi, X. X.

    2014-10-01

    Understanding the mechanisms of efficient and robust energy transfer in organic systems provides us with insights for the optimal design of artificial systems. In this paper, we explore the dynamics of excitation energy transfer (EET) through a complex quantum network by a toy model consisting of three sites coupled to environments. We study how the coherent evolution and the noise-induced decoherence work together to reach efficient EET and illustrate the role of the phase factor attached to the coupling constant in the EET. By comparing the differences between the Markovian and non-Markovian dynamics, we discuss the effect of environment and the spatial structure of system on the dynamics and the efficiency of EET. A intuitive picture is given to show how the exciton is transferred through the system. Employing the simple model, we show the robustness of EET efficiency under the influence of the environment and elucidate the important role of quantum coherence in EET. We go further to study the quantum feature of the EET dynamics by quantumness and show the importance of quantum coherence from a different perspective. We calculate the energy current in the EET and its quantumness, and results for different system parameters are presented and discussed.

  13. Evidence of Energy Transfer from Tryptophan to BSA/HSA Protected Gold Nanoclusters.

    Science.gov (United States)

    Raut, Sangram; Chib, Rahul; Butler, Susan; Borejdo, Julian; Gryczynski, Zygmunt; Gryczynski, Ignacy

    2014-09-01

    This work reports on the chromophores interactions within protein-protected gold nanoclusters. We conducted spectroscopic studies of fluorescence emissions originated from gold nanoclusters and intrinsic tryptophan (Trp) in BSA or HSA proteins. Both, steady state fluorescence and lifetime measurements show a significant Forster resonance energy transfer (FRET) from Trp to the gold nanocluster. Tryptophan lifetimes in the case of protein-protected gold nanoclusters are 2.6ns and 2.3ns for BSA and HSA Au clusters while 5.8ns for native BSA and 5.6 for native HSA. The apparent distances from Trp to gold nanocluster emission center, we estimated as 24.75A 0 for BSA and 23.80A 0 for HSA. We also studied a potassium iodide (KI) quenching of protein-protected gold nanoclusters and compared with the quenching of BSA and HAS alone. The rates of Trp quenching were smaller in BSA-Au and HSA-Au nanoclusters than in the case of free proteins, which is consistent with shorter lifetime of quenched Trp(s) and lower accessibility for KI. While Trp residues were quenched by KI, the emissions originated from nanoclusters were practically unquenched. In summary, for BSA and HSA Au clusters, we found 55% and 59% energy transfer efficiency respectively from tryoptophan to gold clusters. We believe this interaction can be used to our advantage in terms of developing resonance energy transfer based sensing applications.

  14. Study of energy transfer to solvent in radiation graft polymerization of styrene onto polyethylene

    International Nuclear Information System (INIS)

    Rabie, A.; Odian, G.

    1977-01-01

    The radiation-initiated graft polymerization of styrene onto polyethylene was studied to determine whether energy transfer to diluent was responsible for the previously observed high orders of dependence of the grafting rate on monomer concentration. n-Octane was used as the diluent instead of benzene. If energy transfer from excited polyethylene to benzene were present, it should not be with n-octane. The percent swelling of polyethylene by various n-octane--styrene mixtures was determined. The compositions of various n-octane--styrene mixtures absorbed inside polyethylene were determined by ultraviolet and refractive index measurements and found to be richer in styrene than the corresponding mixtures in which the polyethylene had been placed. The graft polymerization rates were determined at 0.000761, 0.0371, and 0.213 Mrad/hr and plotted against the inside styrene concentrations on a log-log scale to yield the kinetic orders of dependence of rate on monomer as 2, 3, and 3, respectively. It was concluded that energy transfer to diluent was not responsible for the high-order dependence observed

  15. Interfacial energies of aqueous mixtures and porous coverings for enhancing pool boiling heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Melendez, Elva [CIICAp, Universidad Autonoma del Estado de Morelos, 62210 (Mexico); Reyes, Rene [Departamento de Ingenieria Quimica y Alimentos, Universidad de las Americas Puebla, Santa Catarina Martir Cholula, Puebla 72820 (Mexico)

    2006-08-15

    The interfacial energies effects on pool boiling were measured for combinations of aqueous ethanol mixtures and cationic surfactants. The mixture with 16% ethanol by weight had the lowest contact angle (associated to the highest wettability) and produced the highest convective heat transfer coefficient, h, among the aqueous ethanol mixtures. The surfactant sodium-lauryl-sulfate added at 100 ppm (its calculated critical micelle concentration CMC) to the 16% ethanol aqueous mixture produced an additional increment of the wettability of the mixture and of the h values; other concentrations of the surfactant reduced de contact angle and h values. The effect of these interfacial energies represents a mass-transfer contribution to pool boiling and the proposal of mixture effects both as increased spreadability and as micelle states. Several randomly constructed porous coverings, contributing to the breakage of vapor slugs around the heater, were tested; produced the highest h values for average pore diameters of 0.5 mm, and covering thickness of 0.972 mm. The synergistic effect on h of the interfacial energies of mixtures at their critical micelle concentration, and porous coverings was measured. Therefore, the independent driving forces combined in this study for increasing pool boiling heat transfer are (a) spreadability of the liquid on the solid; (b) the bubble's size reduction, achieved by micelle states; and (c) the bubble's breakage, induced by the porous coverings, for vapor flow not under pressure drop control. (author)

  16. Green Stimulated Emission Boosted by Nonradiative Resonant Energy Transfer from Blue Quantum Dots.

    Science.gov (United States)

    Gao, Yuan; Yu, Guannan; Wang, Yue; Dang, Cuong; Sum, Tze Chien; Sun, Handong; Demir, Hilmi Volkan

    2016-07-21

    Thanks to their tunability and versatility, the colloidal quantum dots (CQDs) made of II-VI semiconductor compound offer the potential to bridge the "green gap" in conventional semiconductors. However, when the CQDs are pumped to much higher initial excitonic states compared to their bandgap, multiexciton interaction is enhanced, leading to a much higher stimulated emission threshold. Here, to circumvent this drawback, for the first time, we show a fully colloidal gain in green enabled by a partially indirect pumping approach assisted by Förster resonance energy transfer process. By introducing the blue CQDs as exciton donors, the lasing threshold of the green CQDs, is reduced dramatically. The blue CQDs thus serve as an energy-transferring buffer medium to reduce excitation energy from pumping photons in a controlled way by injecting photoinduced excitons into green CQDs. Our newly developed colloidal pumping scheme could enable efficient CQD lasers of full visible colors by a single pump source and cascaded exciton transfer. This would potentially pave the way for an efficient multicolor laser for lighting and display applications.

  17. An efficient and biocompatible fluorescence resonance energy transfer system based on lanthanide-doped nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Di Weihua; Sakka, Yoshio [World Premier International Research (WPI) Center Initiative on Materials Nanoarchitronics (MANA), National Institute for Materials Science - NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Li Jie [Nanotechnology Innovation Center, NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Shirahata, Naoto, E-mail: weihdi@yahoo.com.cn, E-mail: SAKKA.Yoshio@nims.go.jp [Fine Particle Processing Group, Nano Ceramics Center, NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2010-11-12

    This work demonstrates an efficient and bio-friendly fluorescence resonance energy transfer (FRET) system based on lanthanide-doped inorganic nanoparticles. A facile aqueous route was used to synthesize the CePO{sub 4}:Tb nanorods with homogeneous colloidal dispersion, which emits a bright green light with a high quantum yield ({approx}0.36) and a long fluorescence lifetime ({approx}3.50 ms) upon UV excitation. Upon treatment of CePO{sub 4}:Tb with aqueous Rhodamine B (RhB), an efficient FRET occurs from the Tb{sup 3+} to the RhB molecules, giving rise to well resolved and ratiometric emissions of donors and acceptors, respectively, with an energy transfer efficiency of up to 0.85. When incubated with HeLa cells at 37 deg. C, the CePO{sub 4}:Tb treated with RhB shows bright intracellular luminescence, indicating that it can be successfully internalized inside the cells and the FRET remains in the living cells. Moreover, the cytotoxic measurements demonstrate good biocompatibility and low cytotoxicity of our present FRET system. The advantages presented above including high quantum yield of donors, high energy transfer efficiency, ratiometric fluorescent emission and good biocompatibility, indicate the high potential of the CePO{sub 4}:Tb/RhB FRET system for monitoring biological events.

  18. Impact Vibration Attenuation for a Flexible Robotic Manipulator through Transfer and Dissipation of Energy

    Directory of Open Access Journals (Sweden)

    Yushu Bian

    2013-01-01

    Full Text Available Due to the presence of system flexibility, impact can excite severe large amplitude vibration responses of the flexible robotic manipulator. This impact vibration exhibits characteristics of remarkable nonlinearity and strong energy. The main goal of this study is to put forward an energy-based control method to absorb and attenuate large amplitude impact vibration of the flexible robotic manipulator. The method takes advantage of internal resonance and is implemented through a vibration absorber based on the transfer and dissipation of energy. The addition of the vibration absorber to the flexible arm generates a coupling effect between vibration modes of the system. By means of analysis on 2:1 internal resonance, the exchange of energy is proven to be existent. The impact vibrational energy can be transferred from the arm to the absorber and dissipated through the damping of the absorber. The results of numerical simulations are promising and preliminarily verify that the method is feasible and can be used to combat large amplitude impact vibration of the flexible manipulator undergoing rigid motion.

  19. Investigation of incomplete linear momentum transfer in heavy ion reactions at intermediate energies

    International Nuclear Information System (INIS)

    Leray, S.

    1986-07-01

    At intermediate energies, heavy ion central collisions lead to the incomplete fusion of the incident nuclei while part of the initial linear momentum is carried away by fast light particles. Experiments were performed with 30 MeV per nucleon neon and 20, 35 and 44 MeV per nucleon argon projectiles bombarding heavy targets. Results obtained with 30 MeV per nucleon neon and 20 MeV per nucleon argon beams are in good agreement with an empirical law established with lighter projectiles. On the contrary, 35 and 44 MeV per nucleon argon projectiles do not follow the same law and fission fragments progressively disappear. A simple model explains the evolution of the amount of transferred linear momentum versus incident energy. The disappearance of the fusion products of the composite system observed with argon projectiles beyond 35 MeV per nucleon is explained by a limitation of the excitation energy per nucleon which can be deposited in a nucleus. The limit is evaluated from nucleon binding energy in nuclei and probability to emit clusters and is in good agreement with experimental data. Because of the coupling between intrinsic motion of nucleons and relative motion of nuclei, some nucleons have a kinetic energy high enough to be emitted: a theoretical model is proposed which rather well fits the data concerning fast nucleons but cannot explain the measured amounts of transferred linear momentum. This is attributed to the existence of other mechanisms [fr

  20. Anomalous resonance-radiation energy-transfer rate in a scattering dispersive medium

    International Nuclear Information System (INIS)

    Shekhtman, V.L.

    1992-01-01

    This paper describes a generalization of the concept of group velocity as an energy-transfer rate in a dispersive medium with complex refractive index when the polaritons, which are energy carriers, undergo scattering, in contrast to the classical concept of the group velocity of free polaritons (i.e., without scattering in the medium). The concept of delay time from quantum multichannel-scattering, theory is used as the fundamental concept. Based on Maxwell's equations and the new mathematical Φ-function method, a consistent conceptual definition of group velocity in terms of the ratio of the coherent-energy flux density to the coherent-energy density is obtained for the first time, and a critical analysis of the earlier (Brillouin) understanding of energy-transfer rate is given in the light of radiation-trapping theory and the quantum theory of resonance scattering. The role of generalized group velocity is examined for the interpretation of the phenomenon of multiple resonance scattering, or radiation diffusion. The question of causality for the given problem is touched upon; a new relationship is obtained, called the microcausality condition, which limits the anomalous values of group velocity by way of the indeterminacy principle and the relativistic causality principle for macroscopic time intervals directly measurable in experiment, whereby attention is focused on the connection of the given microcausality condition and the well-known Wigner inequality for the time delay of spherical waves. 22 refs

  1. Energy transfer in compressible magnetohydrodynamic turbulence for isothermal self-gravitating fluids

    Science.gov (United States)

    Banerjee, Supratik; Kritsuk, Alexei G.

    2018-02-01

    Three-dimensional, compressible, magnetohydrodynamic turbulence of an isothermal, self-gravitating fluid is analyzed using two-point statistics in the asymptotic limit of large Reynolds numbers (both kinetic and magnetic). Following an alternative formulation proposed by Banerjee and Galtier [Phys. Rev. E 93, 033120 (2016), 10.1103/PhysRevE.93.033120; J. Phys. A: Math. Theor. 50, 015501 (2017), 10.1088/1751-8113/50/1/015501], an exact relation has been derived for the total energy transfer. This approach results in a simpler relation expressed entirely in terms of mixed second-order structure functions. The kinetic, thermodynamic, magnetic, and gravitational contributions to the energy transfer rate can be easily separated in the present form. By construction, the new formalism includes such additional effects as global rotation, the Hall term in the induction equation, etc. The analysis shows that solid-body rotation cannot alter the energy flux rate of compressible turbulence. However, the contribution of a uniform background magnetic field to the flux is shown to be nontrivial unlike in the incompressible case. Finally, the compressible, turbulent energy flux rate does not vanish completely due to simple alignments, which leads to a zero turbulent energy flux rate in the incompressible case.

  2. Designed azurins show lower reorganization free energies for intraprotein electron transfer

    DEFF Research Database (Denmark)

    Farver, Ole; Marshall, Nicholas M; Wherland, Scot

    2013-01-01

    Low reorganization free energies are necessary for fast electron transfer (ET) reactions. Hence, rational design of redox proteins with lower reorganization free energies has been a long-standing challenge, promising to yield a deeper understanding of the underlying principles of ET reactivity...... a wide range of reduction potentials while leaving the metal binding site effectively undisrupted. We find that the reorganization free energies of ET within the mutants are indeed lower than that of WT azurin, increasing the intramolecular ET rate constants almost 10-fold: changes that are correlated...... with increased flexibility of their copper sites. Moreover, the lower reorganization free energy results in the ET rate constants reaching a maximum value at higher driving forces, as predicted by the Marcus theory....

  3. Relaxation of superfluid vortex bundles via energy transfer to the normal fluid

    International Nuclear Information System (INIS)

    Kivotides, Demosthenes

    2007-01-01

    We apply numerical and computational analyses to the decay of a topologically nontrivial, bundle-structured superfluid vortex tangle via mutual friction effected energy transfer to an initially stationary, viscous normal fluid. We demonstrate that, as long as the coherent superfluid vorticity structures remain intact, the induced normal-fluid vorticity acquires a similar to the superfluid vorticity morphology, and the normal-fluid energy spectrum mimics the superfluid energy spectrum presenting a low-wavenumber scaling regime. After a (smaller than the integral advective time scale) transient, the superfluid vorticity bundles disintegrate; this is followed by the decay of normal-fluid energy. The kinetic energies of the two fluids are mismatched throughout the decay period, and the dismantling of coherent vorticity destroys the low-wavenumber energy spectrum scaling in both fluids. At the point of maximum normal-fluid energy, the circulation of the induced normal-fluid vortices is comparable to the ''macroscopic'' circulation of the superfluid vorticity bundles. We show that the superfluid dynamics are dominated throughout the decay period by inertial rather than mutual friction effects, that the formation of bundlelike coherent superfluid vortices cannot be the outcome of pure (reconnecting) Biot-Savart dynamics, and that superfluid vortex length dynamics are not analogous to superfluid energy dynamics. We conjecture that the dynamics of fully developed, turbulent thermal superfluid flow could be described in terms of interactions of cyclic coherent vorticity patterns in both fluids

  4. Comparison of excitation energy transfer in cyanobacterial photosystem I in solution and immobilized on conducting glass.

    Science.gov (United States)

    Szewczyk, Sebastian; Giera, Wojciech; D'Haene, Sandrine; van Grondelle, Rienk; Gibasiewicz, Krzysztof

    2017-05-01

    Excitation energy transfer in monomeric and trimeric forms of photosystem I (PSI) from the cyanobacterium Synechocystis sp. PCC 6803 in solution or immobilized on FTO conducting glass was compared using time-resolved fluorescence. Deposition of PSI on glass preserves bi-exponential excitation decay of ~4-7 and ~21-25 ps lifetimes characteristic of PSI in solution. The faster phase was assigned in part to photochemical quenching (charge separation) of excited bulk chlorophylls and in part to energy transfer from bulk to low-energy (red) chlorophylls. The slower phase was assigned to photochemical quenching of the excitation equilibrated over bulk and red chlorophylls. The main differences between dissolved and immobilized PSI (iPSI) are: (1) the average excitation decay in iPSI is about 11 ps, which is faster by a few ps than for PSI in solution due to significantly faster excitation quenching of bulk chlorophylls by charge separation (~10 ps instead of ~15 ps) accompanied by slightly weaker coupling of bulk and red chlorophylls; (2) the number of red chlorophylls in monomeric PSI increases twice-from 3 in solution to 6 after immobilization-as a result of interaction with neighboring monomers and conducting glass; despite the increased number of red chlorophylls, the excitation decay accelerates in iPSI; (3) the number of red chlorophylls in trimeric PSI is 4 (per monomer) and remains unchanged after immobilization; (4) in all the samples under study, the free energy gap between mean red (emission at ~710 nm) and mean bulk (emission at ~686 nm) emitting states of chlorophylls was estimated at a similar level of 17-27 meV. All these observations indicate that despite slight modifications, dried PSI complexes adsorbed on the FTO surface remain fully functional in terms of excitation energy transfer and primary charge separation that is particularly important in the view of photovoltaic applications of this photosystem.

  5. Investigation of sensitizer ions tunable-distribution in fluoride nanoparticles for efficient accretive three-center energy transfer

    International Nuclear Information System (INIS)

    Guo, Hui; Yu, Hua; Lao, Aiqing; Chang, Lifen; Gao, Shaohua; Zhang, Haoxiong; Zhou, Taojie; Zhao, Lijuan

    2014-01-01

    Cooperative upconversion luminescence of Yb 3+ -Yb 3+ couples and three-center energy transfer mechanisms have been deeply investigated in Yb 3+ doped and Yb 3+ -Tb 3+ co-doped β-PbF 2 nanoparticles. As sensitizer ions, the distribution of Yb 3+ ions, which is a key factor that affects the cooperative upconversion luminescence and three-center energy transfer processes, can be tuned by the structure of nanoparticles. Based on the three-center distributions in tetragonal PbYb x Tb 1−x F 5 nanoparticles, two different energy transfer models, Cooperative Energy Transfer (CET) and Accretive Energy Transfer (AET) mechanisms were established. Especially, AET model is observed and verified in this work for the first time. Experimental results obtained from photoluminescence spectroscopy study are in agreement with the theoretical calculations by applying rate equations in these models, strongly supporting the proposed three-center energy transfer mechanisms. The sensitization between Yb 3+ ions only existing in AET process can greatly improve the energy transfer rates, further to enhance the quantum efficiency. The results that the calculated luminescence quantum efficiency in AET quantum cutting process is much higher than that in CET process (134% and 104%, respectively), can benefit for further increasing the conversion efficiency of c-Si solar cells.

  6. Resonance energy transfer between fluorescent BSA protected Au nanoclusters and organic fluorophores.

    Science.gov (United States)

    Raut, Sangram; Rich, Ryan; Fudala, Rafal; Butler, Susan; Kokate, Rutika; Gryczynski, Zygmunt; Luchowski, Rafal; Gryczynski, Ignacy

    2014-01-07

    Bovine serum albumin (BSA) protected nanoclusters (Au and Ag) represent a group of nanomaterials that holds great promise in biophysical applications due to their unique fluorescence properties and lack of toxicity. These metal nanoclusters have utility in a variety of disciplines including catalysis, biosensing, photonics, imaging and molecular electronics. However, they suffer from several disadvantages such as low fluorescence quantum efficiency (typically near 6%) and broad emission spectrum (540 nm to 800 nm). We describe an approach to enhance the apparent brightness of BSA Au clusters by linking them with a high extinction donor organic dye pacific blue (PB). In this conjugate PB acts as a donor to BSA Au clusters and enhances its brightness by resonance energy transfer (RET). We found that the emission of BSA Au clusters can be enhanced by a magnitude of two-fold by resonance energy transfer (RET) from the high extinction donor PB, and BSA Au clusters can act as an acceptor to nanosecond lifetime organic dyes. By pumping the BSA Au clusters using a high extinction donor, one can increase the effective brightness of less bright fluorophores like BSA Au clusters. Moreover, we prepared another conjugate of BSA Au clusters with the near infrared (NIR) dye Dylight 750 (Dy750), where BSA Au clusters act as a donor to Dy750. We observed that BSA Au clusters can function as a donor, showing 46% transfer efficiency to the NIR dye Dy750 with a long lifetime component in the acceptor decay through RET. Such RET-based probes can be used to prevent the problems of a broad emission spectrum associated with the BSA Au clusters. Moreover, transferring energy from BSA Au clusters to Dy750 will result in a RET probe with a narrow emission spectrum and long lifetime component which can be utilized in imaging applications.

  7. Epidemiology of distal radius fractures in polytrauma patients and the influence of high traumatic energy transfer.

    Science.gov (United States)

    Ferree, Steven; van der Vliet, Quirine M J; Nawijn, Femke; Bhashyam, Abhiram R; Houwert, Roderick M; Leenen, Luke P H; Hietbrink, Falco

    2018-03-01

    For several extremity fractures differences in morphology, incidence rate and functional outcome were found when polytrauma patients were compared to patients with an isolated injury. This is not proven for distal radius fractures (DRF). Therefore, this study aimed to analyse fracture morphology in relation to energy transfer in both poly- and mono-trauma patients with a DRF. This was a retrospective cohort study. All patients aged 16 years and older with a DRF were included. Patients with an Injury Severity Score of 16 or higher were classified as polytrauma patients. Injuries were defined as high or low energy. All DRFs were classified using the AO/OTA fracture classification system. A total of 830 patients with a DRF were included, 12% were polytrauma. The incidence rate of DRF in polytrauma patients was 3.5%. Ipsilateral upper extremity injury was found in >30% of polytrauma and high-energy monotrauma patients, compared to 5% in low-energy monotrauma patients. More type C DRF were found in polytrauma and high-energy monotrauma patients versus low-energy monotrauma patients. Operative intervention rates for all types of DRF were similar for polytrauma and high-energy monotrauma patients. Non-union rates were higher in polytrauma patients. Higher energy mechanisms of injury, in polytrauma and high-energy monotrauma patients, were associated with more severe complex articular distal radius fractures and more ipsilateral upper extremity injuries. Polytrauma and high-energy monotrauma patient have a similar fracture morphology. However, polytrauma patients have in addition to more injured body regions also more non-union related interventions than high-energy monotrauma patients. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Hybrid detection of target sequence DNA based on phosphorescence resonance energy transfer.

    Science.gov (United States)

    Miao, Yanming; Lv, Jinzhi; Yan, Guiqin

    2017-08-15

    The severe background fluorescence and scattering light of real biological samples or environmental samples largely reduce the sensitivity and accuracy of fluorescence resonance energy transfer sensors based on fluorescent quantum dots (QDs). To solve this problem, we designed a novel target sequence DNA biosensor based on phosphorescent resonance energy transfer (PRET). This sensor relied on Mn-doped ZnS (Mn-ZnS) room-temperature phosphorescence (RTP) QDs/poly-(diallyldimethylammonium chloride) (PDADMAC) nanocomposite (QDs + ) as the energy donor and the single-strand DNA-ROX as the energy receptor. Thereby, an RTP biosensor was built and used to quantitatively detect target sequence DNA. This biosensor had a detection limit of 0.16nM and a linear range of 0.5-20nM for target sequence DNA. The dependence on RTP of QDs effectively avoided the interference from background fluorescence and scattering light in biological samples. Moreover, this sensor did not need sample pretreatment. Thus, this sensor compared with FRET is more feasible for quantitative detection of target sequence DNA in biological samples. Interestingly, the QDs + nanocomposite prolonged the phosphorescence lifetime of Mn-ZnS QDs by 2.6 times to 4.94ms, which was 5-6 magnitude-order larger than that of fluorescent QDs. Thus, this sensor largely improves the optical properties of QDs and permits chemical reactions at a long enough time scale. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Exact relations for energy transfer in self-gravitating isothermal turbulence.

    Science.gov (United States)

    Banerjee, Supratik; Kritsuk, Alexei G

    2017-11-01

    Self-gravitating isothermal supersonic turbulence is analyzed in the asymptotic limit of large Reynolds numbers. Based on the inviscid invariance of total energy, an exact relation is derived for homogeneous (not necessarily isotropic) turbulence. A modified definition for the two-point energy correlation functions is used to comply with the requirement of detailed energy equipartition in the acoustic limit. In contrast to the previous relations (S. Galtier and S. Banerjee, Phys. Rev. Lett. 107, 134501 (2011)PRLTAO0031-900710.1103/PhysRevLett.107.134501; S. Banerjee and S. Galtier, Phys. Rev. E 87, 013019 (2013)PLEEE81539-375510.1103/PhysRevE.87.013019), the current exact relation shows that the pressure dilatation terms play practically no role in the energy cascade. Both the flux and source terms are written in terms of two-point differences. Sources enter the relation in a form of mixed second-order structure functions. Unlike the kinetic and thermodynamic potential energies, the gravitational contribution is absent from the flux term. An estimate shows that, for the isotropic case, the correlation between density and gravitational acceleration may play an important role in modifying the energy transfer in self-gravitating turbulence. The exact relation is also written in an alternative form in terms of two-point correlation functions, which is then used to describe scale-by-scale energy budget in spectral space.

  10. Competition between electronic energy transfer and relaxation in Xe doped Ar and Ne matrices studied by photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Schwentner, N.; Koch, E.E.

    1976-01-01

    Thin films of solid Ar and Ne doped with 1% Xe were excited with photons in the energy range from 10 eV to 20 eV in order to measure the energy distribution of the emitted electrons. Binding energies of th host and guest levels are deduced. When host excitons are excited, strong emission of electrons is observed indicating an efficient transfer of the host exciton energy to the Xe guest atoms. The energy of the free excitons is transferred, as can be deduced from the kinetic energy of the photoemitted electrons, rather than the energy of the bound (self-trapped) excitons which are observed in luminescence experiments. Furthermore, there is a striking difference between the Ar and the Ne matrix: In the Ne matrix a fast relaxation from the n = 2 to the n = 1 state was observed and only the energy of the n = 1 exciton is transferred even when higher excitons are excited, in contrast to Ar, where the transferred energy is higher for excitation of the n = 2 excitons than for n = 1. From these observations, time hierarchies for the competition between electronic energy transfer and relaxation are deduced. (orig.) [de

  11. Energy transfer based emission analysis of (Tb³⁺, Sm³⁺): lithium zinc phosphate glasses.

    Science.gov (United States)

    Reddy, C Parthasaradhi; Naresh, V; Ramaraghavulu, R; Rudramadevi, B H; Reddy, K T Ramakrishna; Buddhudu, S

    2015-06-05

    The present paper reports on the results pertaining to photoluminescence properties of Tb(3+), Sm(3+) and energy transfer from Tb(3+) to Sm(3+) ions in lithium zinc phosphate (LZP) glass matrix prepared by melt quenching method. Besides photoluminescence studies thermal stability for the LZP glass is also evaluated from TG-DTA measurement. Tb(3+) doped glasses have exhibited a prominent green emission at 547 nm assigned to (5)D4→(7)F5 transitions on exciting at λ(exci)=377 nm. The quenching phenomenon in Tb(3+) emission on varying its concentration has been discussed from cross-relaxations. Sm(3+) incorporated glasses have shown strong orange emission at 603 nm assigned to (4)G5/2→(6)H7/2 transition upon exciting with λ(exci)=404 nm. The possibility of energy transfer process taking place between these two ions is understood from the significant spectral overlap of Sm(3+) absorption and Tb(3+) emission. Migration of excitation energy from Tb(3+) ions to Sm(3+) ions at λ(exci)=375 nm is evaluated from the emission spectra of (0.5 mol.% Tb(3+)+(0.5-2.0 mol.%) Sm(3+)) co-doped glasses. The emission intensity of Sm(3+) has enhanced while Tb(3+) emission intensity decreased with an increase in Sm(3+) concentration suggesting the occurrence of energy transfer through cross-relaxations from Tb(3+) ((5)D4) to Sm(3+) ((4)G5/2). The mechanism behind energy transfer process has been further explained from energy level diagram, decay profiles and confirmed by calculating energy transfer parameters (energy transfer efficiency (η) and energy transfer probability (P)) of co-doped glasses. The dipole-dipole interaction is found to be more responsible for energy transfer Tb(3+) ((5)D4) to Sm(3+) ((4)G5/2) ions in LZP glass matrix. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Laboratory Studies of Thermal Energy Charge Transfer of Multiply Charged Ions in Astrophysical Plasmas

    Science.gov (United States)

    Kwong, Victor H. S.

    2003-01-01

    The laser ablation/ion storage facility at the UNLV Physics Department has been dedicated to the study of atomic and molecular processes in low temperature plasmas. Our program focuses on the charge transfer (electron capture) of multiply charged ions and neutrals important in astrophysics. The electron transfer reactions with atoms and molecules is crucial to the ionization condition of neutral rich photoionized plasmas. With the successful deployment of the Far Ultraviolet Spectroscopic Explorer (FUSE) and the Chandra X-ray Observatory by NASA high resolution VUV and X-ray emission spectra fiom various astrophysical objects have been collected. These spectra will be analyzed to determine the source of the emission and the chemical and physical environment of the source. The proper interpretation of these spectra will require complete knowledge of all the atomic processes in these plasmas. In a neutral rich environment, charge transfer can be the dominant process. The rate coefficients need to be known accurately. We have also extended our charge transfer measurements to KeV region with a pulsed ion beam. The inclusion of this facility into our current program provides flexibility in extending the measurement to higher energies (KeV) if needed. This flexibility enables us to address issues of immediate interest to the astrophysical community as new observations are made by high resolution space based observatories.

  13. Construction of Highly Efficient Resonance Energy Transfer Platform inside a Nanosphere for Ultrasensitive Electrochemiluminescence Detection.

    Science.gov (United States)

    Chen, Miao-Miao; Wang, Ying; Cheng, Shi-Bo; Wen, Wei; Zhang, Xiuhua; Wang, Shengfu; Huang, Wei-Hua

    2018-03-29

    Electrochemiluminescence (ECL) detection has attracted increasing attention as a promising analytical approach. A considerable number of studies showed that ECL intensity can be definitely improved by resonance energy transfer (RET), while the RET efficiency is strongly dependent on the distance between exited donors and acceptors. Herein we disclose for the first time a highly enhanced RET strategy to promote the energy transfer efficiency by co-encapsulating the donor ([Ru(bpy)3]2+)/acceptor (CdTe quantum dots, CdTe QDs) pairs into a silica nanosphere. Plenty of [Ru(bpy)3]2+ and CdTe QDs closed packed inside a single nanosphere greatly shortens the electron-transfer path and increases the RET probability, therefore significantly enhancing the luminous efficiency. Further combining with molecularly imprinting technique, we develop a novel ECL sensor for ultrasensitive and highly selective detection of target molecules. Proof of concept experiments showed that extremely low detection limits of sub-fg/mL (S/N=3) with broad linear ranges (fg/mL to ng/mL) could be obtained for detection of two kinds of mycotoxin (α-ergocryptine and ochratoxin A) that are recognized as potential health hazards at very low concentrations. This strategy combining enhanced RET system and molecularly imprinting technique, represents a versatile ECL platform toward low-cost, rapid, ultrasensitive and highly selective detection of target molecules in diverse applications.

  14. Near-field thermal upconversion and energy transfer through a Kerr medium.

    Science.gov (United States)

    Khandekar, Chinmay; Rodriguez, Alejandro W

    2017-09-18

    We present an approach for achieving large Kerr χ (3) -mediated thermal energy transfer at the nanoscale that exploits a general coupled-mode description of triply resonant, four-wave mixing processes. We analyze the efficiency of thermal upconversion and energy transfer from mid- to near-infrared wavelengths in planar geometries involving two slabs supporting far-apart surface plasmon polaritons and separated by a nonlinear χ (3) medium that is irradiated by externally incident light. We study multiple geometric and material configurations and different classes of intervening mediums-either bulk or nanostructured lattices of nanoparticles embedded in nonlinear materials-designed to resonantly enhance the interaction of the incident light with thermal slab resonances. We find that even when the entire system is in thermodynamic equilibrium (at room temperature) and under typical drive intensities ~ W/μm 2 , the resulting upconversion rates can approach and even exceed thermal flux rates achieved in typical symmetric and non-equilibrium configurations of vacuum-separated slabs. The proposed nonlinear scheme could potentially be exploited to achieve thermal cooling and refrigeration at the nanoscale, and to actively control heat transfer between materials with dramatically different resonant responses.

  15. Energy Transfer and Thermalization Between Tm^3+ and Ho^3+ Ions in YLF

    Science.gov (United States)

    Walsh, Brian M.; di Bartolo, Baldassare

    1996-03-01

    The dynamical interaction between Tm^3+ and Ho^3+ ions in co-doped YLF:Tm,Ho is probed by direct excitation of the Tm ^3F4 level with a Co:MgF2 laser tuned to 1.75μm. Energy transfer and thermalization between the Tm ^3F4 and Ho ^5I7 levels is observed by measuring the luminescence temporal response of these levels following the excitation pulse. Direct evidence for the transfer is seen by a correspondence between the initial decay of Tm ^3F4 luminescence and the initial rise in Ho ^5I7 luminescence. Thermalization is observed at later times when the two levels reach thermal equilibrium and begin to decay at the same rate. A rate equation approach is presented to model the temporal response data. Treating the Tm-Ho system as a coupled set of rate equations, they are solved in closed form for low excitation densities. These closed form solutions governing the excited state populations residing in the Tm ^3F4 and Ho ^5I7 levels are fit to the luminescence temporal response data. Values for the fitting parameters are obtained from which energy transfer rates are extracted. (This research was supported by NASA grant NAG1-955)

  16. Vibrational relaxation and energy transfer of matrix isolated HCl and DCl

    International Nuclear Information System (INIS)

    Wiesenfeld, J.M.

    1977-12-01

    Vibrational kinetic and spectroscopic studies have been performed on matrix-isolated HCl and DCl between 9 and 20 K. Vibrational relaxation rates for v = 2 and v = 1 were measured by a tunable infrared laser-induced, time-resolved fluorescence technique. In an Ar matrix, vibrational decay times are faster than radiative and it is found that HCl relaxes about 35 times more rapidly than CCl, in spite of the fact that HCl must transfer more energy to the lattice than DCl. This result is explained by postulating that the rate-determining step for vibrational relaxation produces a highly rotationally excited guest in a V yield R step; rotational relaxation into lattice phonons follows rapidly. HCl v = 1, but not v = 2, excitation rapidly diffuses through the sample by a resonant dipole-dipole vibrational energy transfer process. Molecular complexes, and in particular the HCl dimer, relax too rapidly for direct observation, less than or approximately 1 μs, and act as energy sinks in the energy diffusion process. The temperature dependence for all these processes is weak--less than a factor of two between 9 and 20 K. Vibrational relaxation of HCl in N 2 and O 2 matrices is unobservable, presumably due to rapid V yield V transfer to the host. A V yield R binary collision model for relaxation in solids is successful in explaining the HCl(DCl)/Ar results as well as results of other experimenters. The model considers relaxation to be the result of ''collisions'' due to molecular motion in quantized lattice normal modes--gas phase potential parameters can fit the matrix kinetic data

  17. Vibrational relaxation and energy transfer of matrix isolated HCl and DCl

    Energy Technology Data Exchange (ETDEWEB)

    Wiesenfeld, J.M.

    1977-12-01

    Vibrational kinetic and spectroscopic studies have been performed on matrix-isolated HCl and DCl between 9 and 20 K. Vibrational relaxation rates for v = 2 and v = 1 were measured by a tunable infrared laser-induced, time-resolved fluorescence technique. In an Ar matrix, vibrational decay times are faster than radiative and it is found that HCl relaxes about 35 times more rapidly than CCl, in spite of the fact that HCl must transfer more energy to the lattice than DCl. This result is explained by postulating that the rate-determining step for vibrational relaxation produces a highly rotationally excited guest in a V yield R step; rotational relaxation into lattice phonons follows rapidly. HCl v = 1, but not v = 2, excitation rapidly diffuses through the sample by a resonant dipole-dipole vibrational energy transfer process. Molecular complexes, and in particular the HCl dimer, relax too rapidly for direct observation, less than or approximately 1 ..mu..s, and act as energy sinks in the energy diffusion process. The temperature dependence for all these processes is weak--less than a factor of two between 9 and 20 K. Vibrational relaxation of HCl in N/sub 2/ and O/sub 2/ matrices is unobservable, presumably due to rapid V yield V transfer to the host. A V yield R binary collision model for relaxation in solids is successful in explaining the HCl(DCl)/Ar results as well as results of other experimenters. The model considers relaxation to be the result of ''collisions'' due to molecular motion in quantized lattice normal modes--gas phase potential parameters can fit the matrix kinetic data.

  18. Recent advances in energy transfer in bulk and nanoscale luminescent materials: from spectroscopy to applications.

    Science.gov (United States)

    Liu, Xiaofeng; Qiu, Jianrong

    2015-12-07

    Transfer of energy occurs endlessly in our universe by means of radiation. Compared to energy transfer (ET) in free space, in solid state materials the transfer of energy occurs in a rather confined manner, which is usually mediated by real or virtual particles, including not only photons, but also electrons, phonons, and excitons. In the present review, we discuss the recent advances in optical ET by resonance mediated with photons in solid materials as well as their nanoscale counterparts, with focus on the photoluminescence behavior pertaining to ET between optically active centers, such as rare earth (RE) ions. This review begins with a brief discussion on the classification of optical ET together with an overview of the theoretical formulations and experimental method for the examination of ET. We will then present a comprehensive discussion on the ET in practical systems in which normal photoluminescence, upconversion and quantum cutting resulted from ET involving metal ions, QDs, organic species, 2D materials and plasmonic nanostructures. Diverse ET systems are therefore simply categorized into cases of ion-ion interactions and non-ion interactions. Special attention has been paid to the progress in the manipulation of spatially confined ET in nanostructured systems including core-shell structures, as well as the ET in multiple exciton generation found in QDs and organic molecules, which behave quite similarly to resonance ET between metal ion centers. Afterwards, we will discuss the broad spectrum of applications of ET in the aforementioned systems, including solid state lighting, solar energy utilization, bio-imaging and diagnosis, and sensing. In the closing part, along with a short summary, we discuss further research focus regarding the problems and possible future directions of optical ET in solids.

  19. Modeling Electronic-Nuclear Interactions for Excitation Energy Transfer Processes in Light-Harvesting Complexes.

    Science.gov (United States)

    Lee, Mi Kyung; Coker, David F

    2016-08-18

    An accurate approach for computing intermolecular and intrachromophore contributions to spectral densities to describe the electronic-nuclear interactions relevant for modeling excitation energy transfer processes in light harvesting systems is presented. The approach is based on molecular dynamics (MD) calculations of classical correlation functions of long-range contributions to excitation energy fluctuations and a separate harmonic analysis and single-point gradient quantum calculations for electron-intrachromophore vibrational couplings. A simple model is also presented that enables detailed analysis of the shortcomings of standard MD-based excitation energy fluctuation correlation function approaches. The method introduced here avoids these problems, and its reliability is demonstrated in accurate predictions for bacteriochlorophyll molecules in the Fenna-Matthews-Olson pigment-protein complex, where excellent agreement with experimental spectral densities is found. This efficient approach can provide instantaneous spectral densities for treating the influence of fluctuations in environmental dissipation on fast electronic relaxation.

  20. What my dogs forced me to learn about thermal energy transfer

    Science.gov (United States)

    Bohren, Craig F.

    2015-05-01

    Some objects feel colder to the touch than others at the same (room) temperature. But explaining why by linear, single-factor reasoning is inadequate because the time-dependent thermal energy transfer at solid interfaces initially at different temperatures is determined by the thermal inertia √{ k ρ c } , a function of three thermophysical properties: thermal conductivity k, density ρ, and specific heat capacity per unit mass c. In time-dependent problems 1 / √{ k ρ c } plays the role of a resistance. As an example, although the thermal conductivity of aluminum is 16 times that of stainless steel, this does not translate into a 16-fold difference in interfacial thermal energy flux densities. Nor does it result in a markedly greater perceived coldness of aluminum; the difference is barely perceptible. Similarly, despite the 600-fold difference in the thermal conductivity of iron relative to that of wood, the ratio of thermal energy flux densities is only about 4.6.

  1. High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells

    KAUST Repository

    Hardin, Brian E.

    2010-08-11

    The energy relay dye, 4-(Dicyanomethylene)-2-methyl-6-(4- dimethylaminostyryl)-4H-pyran (DCM), was used with a near-infrared sensitizing dye, TT1, to increase the overall power conversion efficiency of a dye-sensitized solar cell (DSC) from 3.5% to 4.5%. The unattached DCM dyes exhibit an average excitation transfer efficiency (EÌ?TE) of 96% inside TT1-covered, mesostructured TiO2 films. Further performance increases were limited by the solubility of DCM in an acetonitrile based electrolyte. This demonstration shows that energy relay dyes can be efficiently implemented in optimized dye-sensitized solar cells, but also highlights the need to design highly soluble energy relay dyes with high molar extinction coefficients. © 2010 American Chemical Society.

  2. 75 FR 16091 - Glen Falls Hydro, LLC; Essex Energy Partners, LLC; Notice of Application for Transfer of License...

    Science.gov (United States)

    2010-03-31

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Glen Falls Hydro, LLC; Essex Energy Partners, LLC; Notice of Application for Transfer of License, and Soliciting Comments and Motions To Intervene March 24, 2010. On March 8, 2010...

  3. 75 FR 69063 - Port Bailey Wild Enterprises, LLC; PB Energy, Inc.; Notice of Application for Transfer of License...

    Science.gov (United States)

    2010-11-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Port Bailey Wild Enterprises, LLC; PB Energy, Inc.; Notice of Application for Transfer of License, and Soliciting Comments and Motions To Intervene November 3, 2010. On October...

  4. Methods for associating or dissociating guest materials with a metal organic framework, systems for associating or dissociating guest materials within a series of metal organic frameworks, thermal energy transfer assemblies, and methods for transferring thermal energy

    Science.gov (United States)

    McGrail, B. Peter; Brown, Daryl R.; Thallapally, Praveen K.

    2016-08-02

    Methods for releasing associated guest materials from a metal organic framework are provided. Methods for associating guest materials with a metal organic framework are also provided. Methods are provided for selectively associating or dissociating guest materials with a metal organic framework. Systems for associating or dissociating guest materials within a series of metal organic frameworks are provided. Thermal energy transfer assemblies are provided. Methods for transferring thermal energy are also provided.

  5. The Transfer of Energy Technologies in a Developing Country Context Towards Improved Practice from Past Successes and Failures

    OpenAIRE

    Lindiwe O. K. Mabuza; Alan C. Brent; Maxwell Mapako

    2007-01-01

    Technology transfer of renewable energy technologies is very often unsuccessful in the developing world. Aside from challenges that have social, economic, financial, institutional and environmental dimensions, technology transfer has generally been misunderstood, and largely seen as mere delivery of high tech equipment from developed to developing countries or within the developing world from R&D institutions to society. Technology transfer entails much more, including, but not limited to: en...

  6. Book of short papers : International symposium on convective heat and mass transfer in sustainable energy conv - 09. Volume 2

    International Nuclear Information System (INIS)

    2009-01-01

    This book contains the short papers from the International Symposium on convective heat and Mass Transfer in sustainable Energy ( conv-09), organized on behalf of the International Centre for Heat and Mass Transfer, it was held on April 26- 1st May, In Hammamet, Tunisia. The objective of this conference is to bring together researchers in a forum to exchange innovative ideas, methods and results, and visions of the future related to the general theme of convective heat and mass transfer

  7. Book of short papers : International symposium on convective heat and mass transfer in sustainable energy Conv - 09. Volume 1

    International Nuclear Information System (INIS)

    2009-01-01

    This book contains the short papers from the International Symposium on Convective heat and Mass Transfer in sustainable Energy ( Conv-09), organized on behalf of the International Centre for Heat and Mass Transfer, it was held on April 26- 1st May, In Hammamet, Tunisia. The objective of this conference is to bring together researchers in a forum to exchange innovative ideas, methods and results, and visions of the future related to the general theme of convective heat and mass transfer

  8. Construction of Vibronic Diabatic Hamiltonian for Excited-State Electron and Energy Transfer Processes.

    Science.gov (United States)

    Xie, Yu; Jiang, Shengshi; Zheng, Jie; Lan, Zhenggang

    2017-12-21

    Photoinduced excited-state electron and energy transfer processes are crucial in biological photoharvesting systems and organic photovoltaic devices. We discuss the construction of a diabatic vibronic Hamiltonian for the proper treatment of these processes involving the projection approach acting on both electronic wave functions and vibrational modes. In the electronic part, the wave function projection approach is used to construct the diabatic Hamiltonian in which both local excited states and charge-transfer states are included on the same footing. For the vibrational degrees of freedom, the vibronic couplings in the diabatic Hamiltonian are obtained in the basis of the pseudonormal modes localized on each monomer site by applying delocalized-to-localized mode projection. This systematic approach allows us to construct the vibronic diabatic Hamiltonian in molecular aggregates.

  9. Analysing success of regulatory policy transfers: Evidence from Turkish energy markets

    International Nuclear Information System (INIS)

    Dastan, Seyit Ali

    2011-01-01

    Economic regulation of public utilities has become a worldwide phenomenon with the preceding privatisation stream. It is questionable to transfer regulatory models hastily without customising the policy options or introducing necessary institutional reforms enabling the achievement of expected results of regulatory reform. Institutional configuration of a country affects credibility of regulatory commitments, quality of regulatory design, and way of policy transfer. Turkey’s energy market regulation experience confirms the decisive role of institutions in shaping the regulatory framework. - Highlights: ► The last quarter of the 20th century witnessed public sector reforms all over the world. ► The British model of utility regulation swept globally. ► In Turkey’s adoption of the utility regulation model, different factors affected in various ways. ► Higher political stability and regulatory experience provide faith in the regulatory framework.

  10. Enhancement of Resonant Energy Transfer Due to an Evanescent Wave from the Metal

    Energy Technology Data Exchange (ETDEWEB)

    Poudel, Amrit [Department; Chen, Xin [Center of Nanomaterials; Ratner, Mark A. [Department

    2016-02-29

    The high density of evanescent modes in the vicinity of a metal leads to enhancement of the near-field Förster resonant energy transfer (FRET) rate. We present a classical approach to calculate the FRET rate based on the dyadic Green’s function of an arbitrary dielectric environment and consider the nonlocal limit of material permittivity in the case of the metallic half-space and thin film. In a dimer system, we find that the FRET rate is enhanced due to shared evanescent photon modes bridging a donor and an acceptor. Furthermore, a general expression for the FRET rate for multimer systems is derived. The presence of a dielectric environment and the path interference effect enhance the transfer rate, depending on the combination of distance and geometry.

  11. Distance-dependent energy transfer between indole and anthracene moieties in Langmuir Blodgett films

    Science.gov (United States)

    Saha, D. C.; Bhattacharjee, D.; Misra, T. N.

    1998-09-01

    1,2-Diphenyl indole (DPI) and 9,10-diphenyl anthracene (DPA) are non-amphiphilic molecules but form excellent LB films when mixed with stearic acid (SA). Spectroscopic investigations of these films indicate formation of aggregates of DPI and DPA in the mixed LB films. DPA has been used as the quencher of the fluorescence of the DPI donor. Distance-dependent energy transfer between donor and acceptor monolayers in the LB film, where they can be precisely separated by inert spacers of stearic acid layers of varied thickness, is shown to satisfy Khun's quadratic equation. This suggests that the donor excitations are delocalized. The large critical transfer distance estimated from the experimental results has been attributed to the formation of aggregates of the molecules in a LB monolayer.

  12. Non-linear dynamics in biological microtubules: solitons and dissipation-free energy transfer

    Science.gov (United States)

    Mavromatos, Nick E.

    2017-08-01

    I review some recent developments concerning soliton solutions in biological microtubules and their significance in transferring energy without dissipation. I discuss various types of soliton solutions, as well as ‘spikes’, of the associated non-linear Lagrange equations describing the dynamics of a ‘pseudo-spin non-linear σ-model’ that models the dynamics of a microtubule system with dipole-dipole interactions. These results will hopefully contribute to a better understanding of the functional properties of microtubules, including the motor protein dynamics and the information transfer processes. With regards to the latter we also speculate on the use of microtubules as ‘logical’ gates. Our considerations are classical, but the soliton solutions may have a microscopic quantum origin, which we briefly touch upon.

  13. Fundamental studies of energy-and hole/electron- transfer in hydroporphyrin architectures

    Energy Technology Data Exchange (ETDEWEB)

    Bocian, David F. [University of California, Riverside, CA (United States)

    2014-08-20

    The long-term objective of the Bocian/Holten/Lindsey research program is to design, synthesize, and characterize tetrapyrrole-based molecular architectures that absorb sunlight, funnel energy, and separate charge with high efficiency and in a manner compatible with current and future solar-energy conversion schemes. The synthetic tetrapyrroles include porphyrins and hydroporphyrins; the latter classes of molecules encompass analogues of the naturally occurring chlorophylls and bacteriochlorophylls (e.g., chlorins, bacteriochlorins, and their derivatives). The attainment of the goals of the research program requires the close interplay of molecular design and synthesis (Lindsey group), static and time-resolved optical spectroscopic measurements (Holten group), and electrochemical, electron paramagnetic resonance, and resonance Raman studies, as well as density functional theory calculations (Bocian Group). The proposed research encompasses four interrelated themes: (1) Determination of the rates of ground-state hole/electron transfer between (hydro)porphyrins in multipigment arrays as a function of array size, distance between components, linker type, site of linker connection, and frontier molecular orbital composition. (2) Examination of excited-state energy transfer among hydroporphyrins in multipigment arrrays, including both pairwise and non-adjacent transfer, with a chief aim to identify the relative contributions of through-space (Förster) and through-bond (Dexter) mechanisms of energy transfer, including the roles of site of linker connection and frontier molecular orbital composition. (3) Elucidation of the role of substituents in tuning the spectral and electronic properties of bacteriochlorins, with a primary aim of learning how to shift the long-wavelength absorption band deeper into the near-infrared region. (4) Continued development of the software package PhotochemCAD for spectral manipulations and calculations through the compilation of a database

  14. Dose conversion factors and linear energy transfer for irradiation of thin blood layers with low-energy X rays

    International Nuclear Information System (INIS)

    Verhaegen, F.; Seuntjens, J.

    1994-01-01

    For irradiation of thin samples of biological material with low-energy X rays, conversion of measured air kerma, free in air to average absorbed dose to the sample is necessary. In the present paper, conversion factors from measured air kerma to average absorbed dose in thin blood samples are given for four low-energy X-ray qualities (14-50 kVp). These factors were obtained by Monte Carlo simulation of a practical sample holder. Data for different thicknesses of the blood and backing layer are presented. The conversion factors are found to depend strongly on the thicknesses of the blood layer and backing layer. In radiobiological work, knowledge of linear energy transfer (LET) values for the radiation quality used is often required. Track-averaged LET values for low-energy X rays are presented in this work. It is concluded that the thickness of the sample does not influence the LET value appreciably, indicating that for all radiobiological purposes this value can be regarded as a constant throughout the sample. Furthermore, the large difference between the LET value for a 50 kV spectrum found in this work and the value given in ICRU Report 16 is pointed out. 16 refs., 7 figs., 1 tab

  15. Activation energy of etching for CR-39 as a function of linear energy transfer of the incident particles

    CERN Document Server

    Awad, E M

    1999-01-01

    In this work, we have studied the effect of the radiation damage caused by the incident particles on the activation energy of etching for CR-39 samples. The damage produced by the incident particle is expressed in terms of the linear energy transfer (LET). CR-39 samples from American Acrylic were irradiated to three different LET particles. These are N (LET sub 2 sub 0 sub 0 = 20 KeV/mu m) as a light particle, Fe (LET sub 2 sub 0 sub 0 = 110 KeV/mu m) as a medium particle and fission fragments (ff) from a sup 2 sup 5 sup 2 Cf source as heavy particles. In general the bulk etch rate was calculated using the weight difference method and the track etch rate was determined using the track geometry at various temperatures (50-90 deg. C) and concentrations (4-9 N) of the NaOH etchant. The average activation energy E sub b related to the bulk etch rate v sub b was calculated from 1n v sub b vs. 1/T. The average activation energy E sub t related to the track etch rate v sub t was estimated from 1n v sub t vs. 1/T. It...

  16. Analysis of intercomponent energy transfer in the interaction of oscillating-grid turbulence with an impermeable boundary

    Science.gov (United States)

    McCorquodale, Mark W.; Munro, R. J.

    2018-01-01

    New experimental results are presented that investigate the nature of the intercomponent energy transfer that occurs in the interaction between oscillating-grid turbulence and a solid impermeable boundary, using instantaneous velocity measurements obtained from two-dimensional particle imaging velocimetry (PIV). Estimates of the pressure-strain correlation term (Πij s) of the transport equation of the Reynolds stress tensor, which represents intercomponent energy transfer, are obtained using the PIV data from a balance of the remaining terms of the transport equation. The influence of Πij s on the flow is examined by computing the energy spectra and conditional turbulent statistics associated with events in which intercomponent energy transfer is thought to be concentrated. Data reported here are in support of viscous and "return-to-isotropy" mechanisms governing the intercomponent energy transfer previously proposed, respectively, by Perot and Moin [J. Fluid Mech. 295, 199-227 (1995)] and Walker et al. [J. Fluid Mech. 320, 19-51 (1996)]. However, the data reported also indicate the presence of a weak net intercomponent energy transfer from the boundary-normal velocity components to the boundary-tangential velocity components over a thin region outside the viscous sublayer which is not captured within existing models of intercomponent energy transfer at the boundary.

  17. Large impact of reorganization energy on photovoltaic conversion due to interfacial charge-transfer transitions.

    Science.gov (United States)

    Fujisawa, Jun-ichi

    2015-05-14

    Interfacial charge-transfer (ICT) transitions are expected to be a novel charge-separation mechanism for efficient photovoltaic conversion featuring one-step charge separation without energy loss. Photovoltaic conversion due to ICT transitions has been investigated using several TiO2-organic hybrid materials that show organic-to-inorganic ICT transitions in the visible region. In applications of ICT transitions to photovoltaic conversion, there is a significant problem that rapid carrier recombination is caused by organic-inorganic electronic coupling that is necessary for the ICT transitions. In order to solve this problem, in this work, I have theoretically studied light-to-current conversions due to the ICT transitions on the basis of the Marcus theory with density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. An apparent correlation between the reported incident photon-to-current conversion efficiencies (IPCE) and calculated reorganization energies was clearly found, in which the IPCE increases with decreasing the reorganization energy consistent with the Marcus theory in the inverted region. This activation-energy dependence was systematically explained by the equation formulated by the Marcus theory based on a simple excited-state kinetic scheme. This result indicates that the reduction of the reorganization energy can suppress the carrier recombination and enhance the IPCE. The reorganization energy is predominantly governed by the structural change in the chemical-adsorption moiety between the ground and ICT excited states. This work provides crucial knowledge for efficient photovoltaic conversion due to ICT transitions.

  18. Multinucleon effects in muon capture on 3He at high energy transfer

    International Nuclear Information System (INIS)

    Kuhn, S.E.; Cummings, W.J.; Dodge, G.E.; Hanna, S.S.; King, B.H.; Shin, Y.M.; Congleton, J.G.; Helmer, R.; Schubank, R.B.; Stevenson, N.R.; Wienands, U.; Lee, Y.K.; Mason, G.R.; King, B.E.; Chung, K.S.; Lee, J.M.; Rosenzweig, D.P.

    1994-01-01

    Energy spectra of both protons and deuterons emitted following the capture of negative muons by 3 He nuclei have been measured for energies above 15 MeV. A limited number of proton-neutron pairs emitted in coincidence were also observed. A simple plane wave impulse approximation (PWIA) model calculation yields fair agreement with the measured proton energy spectra, but underpredicts the measured rate of deuteron production above our energy threshold by a large factor. A more sophisticated PWIA calculation for the two-body breakup channel, based on a realistic three-body wave function for the initial state, is closer to the deuteron data at moderate energies, but still is significantly lower near the kinematic end point. The proton-neutron coincidence data also point to the presence of significant strength involving more than one nucleon in the capture process at high energy transfer. These results indicate that additional terms in the capture matrix element beyond the impulse approximation contribution may be required to explain the experimental data. Specifically, the inclusion of nucleon-nucleon correlations in the initial or final state and meson exchange current contributions could bring calculations into better agreement with our data. A fully microscopic calculation would thus open the possibility for a quantitative test of multinucleon effects in the weak interaction

  19. Studies of transfer reactions of photosensitized electrons involving complexes of transition metals in view of solar energy storage

    International Nuclear Information System (INIS)

    Takakubo, Masaaki

    1984-01-01

    This research thesis addresses electron transfer reactions occurring during photosynthesis, for example, photosensitized reaction in which chlorophyll is the sensitizer. More specifically, the author studied experimentally electron photo-transfers with type D sensitizers (riboflavin, phenoxazine and porphyrin), and various complexes of transition metals. After a presentation of these experiments, the author describes the photosensitisation process (photo-physics of riboflavin, oxygen deactivation, sensitized photo-oxidation and photo-reduction). The theoretical aspect of electron transfer is then addressed: generalities, deactivation of the riboflavin triplet, initial efficiency of electron transfer. Experimental results on three basic processes (non-radiative deactivation, energy transfer, electron transfer) are interpreted in a unified way by using the non-radiative transfer theory. Some applications are described: photo-electrochemical batteries, photo-oxidation and photo-reduction of the cobalt ion

  20. 40 CFR 74.48 - Transfer of allowances from the replacement of thermal energy-process sources. [Reserved

    Science.gov (United States)

    2010-07-01

    ... replacement of thermal energy-process sources. [Reserved] 74.48 Section 74.48 Protection of Environment... and Transfer and End of Year Compliance § 74.48 Transfer of allowances from the replacement of thermal energy—process sources. [Reserved] ...