WorldWideScience

Sample records for wind wheel electric

  1. Arrangement for adapting a wind wheel to an electric power generator

    Energy Technology Data Exchange (ETDEWEB)

    Beusse, H

    1977-08-11

    The invention is concerned with a device for adapting a wind wheel to an electric power generator in such a way that the wind wheel will always be operated with a maximum performance coefficient, that another source of energy, e.g. a prime mover, can supply the power deficit if the wind power is not sufficient, and that the generator at the output of the facility is kept mains-synchronous of constant speed and constant voltage. According to the invention, the shaft power of the wind power engine is transmitted to a first generator driving an electromotor. The motor is coupled to a second generator feeding into a consumer grid. By means of an anemometer the excitation output of the motor is controled in such manner that the speed of the generator is practically constant-provided a sufficient supply of wind is available. On the shaft of the output generator a prinse mover, e.g. a Diesel engine, is mounted being controllable for contant speed by means of a controll device in such a way that the prime mover takes over the missing amount of power if the wind supply falls short of the power taken off at the generator output.

  2. Design procedure for a wind-wheel with self-adjusting blade mechanism

    Directory of Open Access Journals (Sweden)

    Gennady A. Oborsky

    2014-12-01

    Full Text Available Developed is a wind-wheel design equipped with the self-adjusting blade. The blade is positioned eccentrically to the balance wheel and can freely rotate around its axis. Elaborated is the method of calculating the energy characteristics for a wind-wheel with the self-adjusting blade, considering not only the wind force but the force of air counter flow resistance to the blade’s rotation. Initially, the blade being located at an angle α = 45 to the wheel rotation plane, the air flow rotates the wheel with the maximum force. Thus, the speed of rotation increases that involves the increase in air counter flow resistance and results in blade turning with respective angle α reduction. This, consequently, reduces the torque. When the torsional force and the resistance enter into equilibrium, the blade takes a certain angle α, and the wheel speed becomes constant. This wind-wheel design including a self-adjusting blade allows increasing the air flow load ratio when compared to the wind-wheel equipped with a jammed blade.

  3. Theoretical design study of the MSFC wind-wheel turbine

    Science.gov (United States)

    Frost, W.; Kessel, P. A.

    1982-01-01

    A wind wheel turbine (WWT) is studied. Evaluation of the probable performance, possible practical applications, and economic viability as compared to other conventional wind energy systems is discussed. The WWT apparatus is essentially a bladed wheel which is directly exposed to the wind on the upper half and exposed to wind through multiple ducting on the lower half. The multiple ducts consist of a forward duct (front concentrator) and two side ducts (side concentrators). The forced rotation of the wheel is then converted to power through appropriate subsystems. Test results on two simple models, a paper model and a stainless steel model, are reported. Measured values of power coefficients over wind speeds ranging from 4 to 16 m/s are given. An analytical model of a four bladed wheel is also developed. Overall design features of the wind turbine are evaluated and discussed. Turbine sizing is specified for a 5 and 25 kW machine. Suggested improvements to the original design to increase performance and performance predictions for an improved WWT design are given.

  4. Effects of setting angle on performance of fish-bionic wind wheel

    Science.gov (United States)

    Li, G. S.; Yang, Z. X.; Song, L.; Chen, Q.; Li, Y. B.; Chen, W.

    2016-08-01

    With the energy crisis and the increasing environmental pollutionmore and more efforts have been made about wind power development. In this paper, a new type of vertical axis named the fish-bionic wind wheel was proposed, and the outline of wind wheel was constructed by curve of Fourier fitting and polynomial equations. This paper attempted to research the relationship between the setting angle and the wind turbine characteristics by computational fluid dynamics (CFD) simulation. The results showed that the setting angle of the fish-bionic wind wheel has some significant effects on the efficiency of the wind turbine, Within the range of wind speed from 13m/s to 15m/s, wind wheel achieves the maximum efficiency when the setting angle is at 37 degree. The conclusion will work as a guideline for the improvement of wind turbine design.

  5. Propulsion Wheel Motor for an Electric Vehicle

    Science.gov (United States)

    Figuered, Joshua M. (Inventor); Herrera, Eduardo (Inventor); Waligora, Thomas M. (Inventor); Bluethmann, William J. (Inventor); Farrell, Logan Christopher (Inventor); Lee, Chunhao J. (Inventor); Vitale, Robert L. (Inventor); Winn, Ross Briant (Inventor); Eggleston, IV, Raymond Edward (Inventor); Guo, Raymond (Inventor); hide

    2016-01-01

    A wheel assembly for an electric vehicle includes a wheel rim that is concentrically disposed about a central axis. A propulsion-braking module is disposed within an interior region of the wheel rim. The propulsion-braking module rotatably supports the wheel rim for rotation about the central axis. The propulsion-braking module includes a liquid cooled electric motor having a rotor rotatable about the central axis, and a stator disposed radially inside the rotor relative to the central axis. A motor-wheel interface hub is fixedly attached to the wheel rim, and is directly attached to the rotor for rotation with the rotor. The motor-wheel interface hub directly transmits torque from the electric motor to the wheel rim at a 1:1 ratio. The propulsion-braking module includes a drum brake system having an electric motor that rotates a cam device, which actuates the brake shoes.

  6. High frequency vibration characteristics of electric wheel system under in-wheel motor torque ripple

    Science.gov (United States)

    Mao, Yu; Zuo, Shuguang; Wu, Xudong; Duan, Xianglei

    2017-07-01

    With the introduction of in-wheel motor, the electric wheel system encounters new vibration problems brought by motor torque ripple excitation. In order to analyze new vibration characteristics of electric wheel system, torque ripple of in-wheel motor based on motor module and vector control system is primarily analyzed, and frequency/order features of the torque ripple are discussed. Then quarter vehicle-electric wheel system (QV-EWS) dynamics model based on the rigid ring tire assumption is established and the main parameters of the model are identified according to tire free modal test. Modal characteristics of the model are further analyzed. The analysis indicates that torque excitation of in-wheel motor is prone to arouse horizontal vibration, in which in-phase rotational, anti-phase rotational and horizontal translational modes of electric wheel system mainly participate. Based on the model, vibration responses of the QV-EWS under torque ripple are simulated. The results show that unlike vertical low frequency (lower than 20 Hz) vibration excited by road roughness, broadband torque ripple will arouse horizontal high frequency (50-100 Hz) vibration of electric wheel system due to participation of the three aforementioned modes. To verify the theoretical analysis, the bench experiment of electric wheel system is conducted and vibration responses are acquired. The experiment demonstrates the high frequency vibration phenomenon of electric wheel system and the measured order features as well as main resonant frequencies agree with simulation results. Through theoretical modeling, analysis and experiments this paper reveals and explains the high frequency vibration characteristics of electric wheel system, providing references for the dynamic analysis, optimal design of QV-EWS.

  7. Optimization of electrical parameters of windings used in axial flux electrical machines

    International Nuclear Information System (INIS)

    Uhrik, M.

    2012-01-01

    This paper deals with shape optimization of windings used in electrical machines with disc type construction. These machines have short axial length what makes them suitable for use in small wind-power turbines or in-wheel traction drives. Disc type construction of stator offers more possibilities for winding arrangements than are available in classical machines with cylindrical construction. To find out the best winding arrangement for the novel disc type machine construction a series of analytical calculations, simulations and experimental measurements were performed. (Authors)

  8. The Use of Design Models of Wind-Electric Set with a Horizontal Axis of Rotation of the Wind Wheel for Dynamic Calculations at Urban Development

    Directory of Open Access Journals (Sweden)

    Konstantinov Igor

    2016-01-01

    Full Text Available The issues of modern urban development raise a significant question about an environmental cleanliness of progressing cities. Energy sources which are running on fuel cause tremendous harm to the atmosphere. Therefore, special attention is paid to the rational use of natural renewable resources such as wind and solar energy. Wind-electric sets, or wind turbines, are able to work autonomously, which is also important for the development of modern “smart” cities. Currently, the most commonly used design of wind turbines is the system which has the form of a tower of circular cross section (also called pipe, which carries at the upper end a nacelle with wind wheel. When such a system is being designed in urban conditions the wind pulsation and seismic calculations are added to the standard calculations. These added calculations are dynamic loads. It is known that in the process of solution of dynamic tasks design models of various levels of approximation can be used. It occurs due to stages of the design and other factors. The question of errors, which are associated with the use of a dissected, or partitioned, design scheme, raises.

  9. Design and analysis of new fault-tolerant permanent magnet motors for four-wheel-driving electric vehicles

    Science.gov (United States)

    Liu, Guohai; Gong, Wensheng; Chen, Qian; Jian, Linni; Shen, Yue; Zhao, Wenxiang

    2012-04-01

    In this paper, a novel in-wheel permanent-magnet (PM) motor for four-wheel-driving electrical vehicles is proposed. It adopts an outer-rotor topology, which can help generate a large drive torque, in order to achieve prominent dynamic performance of the vehicle. Moreover, by adopting single-layer concentrated-windings, fault-tolerant teeth, and the optimal combination of slot and pole numbers, the proposed motor inherently offers negligible electromagnetic coupling between different phase windings, hence, it possesses a fault-tolerant characteristic. Meanwhile, the phase back electromotive force waveforms can be designed to be sinusoidal by employing PMs with a trapezoidal shape, eccentric armature teeth, and unequal tooth widths. The electromagnetic performance is comprehensively investigated and the optimal design is conducted by using the finite-element method.

  10. Dynamic motion stabilization for front-wheel drive in-wheel motor electric vehicles

    Directory of Open Access Journals (Sweden)

    Jia-Sheng Hu

    2015-12-01

    Full Text Available This article presents a new dynamic motion stabilization approach to front-wheel drive in-wheel motor electric vehicles. The approach includes functions such as traction control system, electronic differential system, and electronic stability control. The presented electric vehicle was endowed with anti-skid performance in longitudinal accelerated start; smooth turning with less tire scrubbing; and safe driving experience in two-dimensional steering. The analysis of the presented system is given in numerical derivations. For practical verifications, this article employed a hands-on electric vehicle named Corsa-electric vehicle to carry out the tests. The presented approach contains an integrated scheme which can achieve the mentioned functions in a single microprocessor. The experimental results demonstrated the effectiveness and feasibility of the presented methodology.

  11. Coupled vibration study of the blade of the flexible wind wheel with the low-speed shafting

    International Nuclear Information System (INIS)

    Su, L Y; Zhao, R Z; Liu, H; Meng, Z R

    2013-01-01

    Movement and deformation of flexible wind wheel has a profound effect on dynamics of the low-speed shafting in Megawatt wind turbine. The paper is based on the power production1.2 MW wind turbine, vibration characteristics of elastic wind wheel with the low-speed shafting were studied. In order to obtain the finite element model, the author created a physical model of this coupled system and used the minimum energy principle to simplify the model. While its single blade simplified as cantilever. Using modal superposition method for solving the coupled system model. Structural mechanics equations were used to solve the simple blade finite element model. Analyzing the natural frequency of the coupled system and the stress diagram, the results indicate that in the coupling system, low frequency vibration occurs in the low-speed shaft bearing, while the high-frequency vibration happens on wind turbine blades. In the low-frequency vibration process, blades vibration and low-speed shaft vibration there is a strong correlation. Contrast inherent frequency of the wind wheel with natural frequency of a single blade, the results show that the frequency of the wind wheel slightly less than it in the single blade

  12. Two wheel speed robust sliding mode control for electric vehicle drive

    Directory of Open Access Journals (Sweden)

    Abdelfatah Nasri

    2008-01-01

    Full Text Available Nowadays the uses of electrical power resources are integrated in the modern vehicle motion traction chain so new technologies allow the development of electric vehicles (EV by means of static converters-related electric motors. All mechanical transmission devices are eliminated and vehicle wheel motion can be controlled by means of power electronics. The proposed propulsing system consists of two induction motors (IM that ensure the drive of the two back driving wheels. The proposed control structure-called independent machines- for speed control permit the achievement of an electronic differential. The electronic differential system ensures the robust control of the vehicle behavior on the road. It also allows controlling independently, every driving wheel to turn at different speeds in any curve. This paper presents the study and the sliding mode control strategy of the electric vehicle driving wheels.

  13. A Study of Torque Vectoring and Traction Control for an All-Wheel Drive Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Maharun Mui’nuddin

    2014-07-01

    Full Text Available Common vehicle always experience energy loss during cornering manoeuver. Thus, to ensure it did not happened especially at high speed, a study of torque vectoring and traction control need to be made since it can increase the traction control of tyres during cornering at high speed. The study of torque vectoring and traction control for an all-wheel drive electric vehicle was conducted by modelling an all-wheel drive electric vehicle (EV in ADAMS/Car software. In addition, an optimal control algorithm will be developed for best performance to minimize energy losses using MATLAB/Simulink software. Furthermore, to prove the effectiveness of the all-wheel drive electric, the torque and traction control simulation of the all-wheel drive electric vehicle will be compared with uncontrolled electric vehicle model. According to the result, torque vectoring and traction control of in-wheel motor in all wheel drive EV can help to increase the performance of the electric vehicle during cornering manoeuver. In conclusion, this study of torque vectoring and traction control for an all-wheel drive electric vehicle will help researchers to improve the design of the future electric vehicle in term of the vehicle performance during cornering manoeuvre.

  14. Wind-powered wheel locomotion, initiated by leaping somersaults, in larvae of the southeastern beach tiger beetle (Cicindela dorsalis media.

    Directory of Open Access Journals (Sweden)

    Alan Harvey

    2011-03-01

    Full Text Available Rapid movement is challenging for elongate, soft-bodied animals with short or no legs. Leaping is known for only a few animals with this "worm-like" morphology. Wheel locomotion, in which the animal's entire body rolls forward along a central axis, has been reported for only a handful of animals worldwide. Here we present the first documented case of wind-powered wheel locomotion, in larvae of the coastal tiger beetle Cicindela dorsalis media. When removed from their shallow burrows, larvae easily can be induced to enter a behavioral sequence that starts with leaping; while airborne, larvae loop their body into a rotating wheel and usually either "hit the ground rolling" or leap again. The direction larvae wheel is closely related to the direction in which winds are blowing; thus, all our larvae wheeled up-slope, as winds at our study site consistently blew from sea to land. Stronger winds increased both the proportion of larvae wheeling, and the distance traveled, exceeding 60 m in some cases. In addition, the proportion of larvae that wheel and the distance traveled by wheeling larvae are significantly greater on smooth sandy beaches than on beach surfaces made rough and irregular by pedestrian, equestrian, and vehicular traffic. Like other coastal species of tiger beetles, C. dorsalis media has suffered major declines in recent years that are clearly correlated with increased human impacts. The present study suggests that the negative effects of beach traffic may be indirect, preventing larvae from escaping from predators using wheel locomotion by disrupting the flat, hard surface necessary for efficient wheeling.

  15. Rear suspension design for an in-wheel-drive electric car

    NARCIS (Netherlands)

    George, Ashwin Dayal; Besselink, Igo

    2016-01-01

    The in-wheel motor configuration can provide more flexibility to electric car design, making the car more compact and lightweight. However, current suspension systems are not designed to incorporate an in-wheel powertrain, and studies have shown deterioration in ride comfort and handling when more

  16. Optimal Electrical Energy Slewing for Reaction Wheel Spacecraft

    Science.gov (United States)

    Marsh, Harleigh Christian

    The results contained in this dissertation contribute to a deeper level of understanding to the energy required to slew a spacecraft using reaction wheels. This work addresses the fundamental manner in which spacecrafts are slewed (eigenaxis maneuvering), and demonstrates that this conventional maneuver can be dramatically improved upon in regards to reduction of energy, dissipative losses, as well as peak power. Energy is a fundamental resource that effects every asset, system, and subsystem upon a spacecraft, from the attitude control system which orients the spacecraft, to the communication subsystem to link with ground stations, to the payloads which collect scientific data. For a reaction wheel spacecraft, the attitude control system is a particularly heavy load on the power and energy resources on a spacecraft. The central focus of this dissertation is reducing the burden which the attitude control system places upon the spacecraft in regards to electrical energy, which is shown in this dissertation to be a challenging problem to computationally solve and analyze. Reducing power and energy demands can have a multitude of benefits, spanning from the initial design phase, to in-flight operations, to potentially extending the mission life of the spacecraft. This goal is approached from a practical standpoint apropos to an industry-flight setting. Metrics to measure electrical energy and power are developed which are in-line with the cost associated to operating reaction wheel based attitude control systems. These metrics are incorporated into multiple families of practical high-dimensional constrained nonlinear optimal control problems to reduce the electrical energy, as well as the instantaneous power burdens imposed by the attitude control system upon the spacecraft. Minimizing electrical energy is shown to be a problem in L1 optimal control which is nonsmooth in regards to state variables as well as the control. To overcome the challenge of nonsmoothness, a

  17. Experimental investigation into the mechanism of the polygonal wear of electric locomotive wheels

    Science.gov (United States)

    Tao, Gongquan; Wang, Linfeng; Wen, Zefeng; Guan, Qinghua; Jin, Xuesong

    2018-06-01

    Experiments were conducted at field sites to investigate the mechanism of the polygonal wear of electric locomotive wheels. The polygonal wear rule of electric locomotive wheels was obtained. Moreover, two on-track tests have been carried out to investigate the vibration characteristics of the electric locomotive's key components. The measurement results of wheels out-of-round show that most electric locomotive wheels exhibit polygonal wear. The main centre wavelength in the 1/3 octave bands is 200 mm and/or 160 mm. The test results of vibration characteristics indicate that the dominating frequency of the vertical acceleration measured on the axle box is approximately equal to the passing frequency of a polygonal wheel, and does not vary with the locomotive speed during the acceleration course. The wheelset modal analysis using the finite element method (FEM) indicates that the first bending resonant frequency of the wheelset is quite close to the main vibration frequency of the axle box. The FEM results are verified by the experimental modal analysis of the wheelset. Moreover, different plans were designed to verify whether the braking system and the locomotive's adhesion control have significant influence on the wheel polygon or not. The test results indicate that they are not responsible for the initiation of the wheel polygon. The first bending resonance of the wheelset is easy to be excited in the locomotive operation and it is the root cause of wheel polygon with centre wavelength of 200 mm in the 1/3 octave bands.

  18. DIAGNOSIS OF THE WINDING MACHINE IN THE OLD SHAFT WITH SKIP IN LONEA MINING PLANT

    Directory of Open Access Journals (Sweden)

    Răzvan Bogdan ITU

    2017-05-01

    Full Text Available To study the operation of the winding machine in the Old Shaft with Skip in Lonea Mining Plant, the dynamic analysis of the driving wheel (Koepe wheel was performed, by resistive electric tensometry methods, acceleration measurements, and vibromechanical analysis on the bearings of Koepe driving wheels, on functioning cycles and vibromechanical analysis of the reduction gear. The paper presents aspects regarding vibromechanical measurements and resistive electric tensometry methods in the winding machine..

  19. Decoupling control of steering and driving system for in-wheel-motor-drive electric vehicle

    Science.gov (United States)

    Zhang, Han; Zhao, Wanzhong

    2018-02-01

    To improve the maneuverability and stability of in-wheel-motor-drive electric vehicle, a control strategy based on nonlinear decoupling control method is proposed in this paper, realizing the coordinated control of the steering and driving system. At first, the nonlinear models of the in-wheel-motor-drive electric vehicle and its sub-system are constructed. Then the inverse system decoupling theory is applied to decompose the nonlinear system into several independent subsystems, which makes it possible to realize the coordinated control of each subsystem. Next, the μ-Synthesis theory is applied to eliminate the influence of model uncertainty, improving the stability, robustness and tracking performance of in-wheel-motor-drive electric vehicle. Simulation and experiment results and numerical analyses, based on the electric vehicle actuated by in-wheel-motors, prove that the proposed control method is effective to accomplish the decoupling control of the steering and driving system in both simulation and real practice.

  20. Wheeled Vehicle Electrical Systems. Military Curriculum Materials for Vocational and Technical Education.

    Science.gov (United States)

    Army Ordnance Center and School, Aberdeen Proving Ground, MD.

    This course is one of several subcourses that make up the entire Army correspondence course on wheeled vehicle maintenance. The subcourse is designed to provide the student with information about the operation, malfunction diagnosis, maintenance, and repair of wheeled vehicle electrical systems. It provides the basic theory, and also includes…

  1. A novel dual motor drive system for three wheel electric vehicles

    Science.gov (United States)

    Panmuang, Piyapat; Thongsan, Taweesak; Suwapaet, Nuchida; Laohavanich, Juckamass; Photong, Chonlatee

    2018-03-01

    This paper presents a novel dual motor drive system used for three wheel electric vehicles that have one free wheel at the front and two wheels with a drive system at the end of the vehicles. A novel dual motor drive system consists of two identical DC motors that are independently controlled by its speed-torque controller. Under light load conditions, only one of the DC motors will operate around it rated whilst under hard load conditions both of the DC motors will operate. With this drive system, the motors will operate only at its high performance at rated or else no operate to retain longer lifetime. The simulated results for the Skylab three wheel electric vehicle prototype with 8kW at full load (high torque, low speed) and around 4kW at light/normal operating loads (regular speed-torque) showed that the proposed system provides better dynamic responses with faster overshoot current/voltage recovery time, has lower investment costs, has longer lifetime of the motors and allows the motors to always operate at their high performance and thus achieve more cost effective system compared to a single motor drive system with 8kW DC motors.

  2. Wheel Slip Control for Improving Traction-Ability and Energy Efficiency of a Personal Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Kanghyun Nam

    2015-07-01

    Full Text Available In this paper, a robust wheel slip control system based on a sliding mode controller is proposed for improving traction-ability and reducing energy consumption during sudden acceleration for a personal electric vehicle. Sliding mode control techniques have been employed widely in the development of a robust wheel slip controller of conventional internal combustion engine vehicles due to their application effectiveness in nonlinear systems and robustness against model uncertainties and disturbances. A practical slip control system which takes advantage of the features of electric motors is proposed and an algorithm for vehicle velocity estimation is also introduced. The vehicle velocity estimator was designed based on rotational wheel dynamics, measurable motor torque, and wheel velocity as well as rule-based logic. The simulations and experiments were carried out using both CarSim software and an experimental electric vehicle equipped with in-wheel-motors. Through field tests, traction performance and effectiveness in terms of energy saving were all verified. Comparative experiments with variations of control variables proved the effectiveness and practicality of the proposed control design.

  3. Design and Analysis of a Novel Speed-Changing Wheel Hub with an Integrated Electric Motor for Electric Bicycles

    Directory of Open Access Journals (Sweden)

    Yi-Chang Wu

    2013-01-01

    Full Text Available The aim of this paper is to present an innovative electromechanical device which integrates a brushless DC (BLDC hub motor with a speed-changing wheel hub stored on the rear wheel of an electric bicycle. It combines a power source and a speed-changing mechanism to simultaneously provide functions of power generation and transmission for electric bicycles. As part of the proposed integrated device, the wheel hub consists of a basic planetary gear train providing three forward speeds including a low-speed gear, a direct drive, and a high-speed gear. Each gear is manually controlled by the shift control sleeve to selectively engage or disengage four pawl-and-ratchet clutches based on its clutching sequence table. The number of gear teeth of each gear element of the wheel hub is synthesized. The BLDC hub motor is an exterior-rotor-type permanent-magnet synchronous motor. Two-dimensional finite-element analysis (FEA software is employed to facilitate the motor design and performance analysis. An analysis of the power transmission path at each gear is provided to verify the validity of the proposed design. The results of this work are beneficial to the embodiment, design, and development of novel electromechanical devices for the power and transmission systems of electric bicycles.

  4. A Multiple Data Fusion Approach to Wheel Slip Control for Decentralized Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Dejun Yin

    2017-04-01

    Full Text Available Currently, active safety control methods for cars, i.e., the antilock braking system (ABS, the traction control system (TCS, and electronic stability control (ESC, govern the wheel slip control based on the wheel slip ratio, which relies on the information from non-driven wheels. However, these methods are not applicable in the cases without non-driven wheels, e.g., a four-wheel decentralized electric vehicle. Therefore, this paper proposes a new wheel slip control approach based on a novel data fusion method to ensure good traction performance in any driving condition. Firstly, with the proposed data fusion algorithm, the acceleration estimator makes use of the data measured by the sensor installed near the vehicle center of mass (CM to calculate the reference acceleration of each wheel center. Then, the wheel slip is constrained by controlling the acceleration deviation between the actual wheel and the reference wheel center. By comparison with non-control and model following control (MFC cases in double lane change tests, the simulation results demonstrate that the proposed control method has significant anti-slip effectiveness and stabilizing control performance.

  5. Analysis of Wheel Hub Motor Drive Application in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Sun Yuechao

    2017-01-01

    Full Text Available Based on the comparative analysis of the performance characteristics of centralized and distributed drive electric vehicles, we found that the wheel hub motor drive mode of the electric vehicles with distributed drive have compact structure, high utilization ratio of interior vehicle space, lower center of vehicle gravity, good driving stability, easy intelligent control and many other advantages, hence in line with the new requirements for the development of drive performance of electric vehicles, and distributed drive will be the ultimate mode of electric vehicles in the future.

  6. DIAGNOSIS OF THE WINDING MACHINE IN THE OLD SHAFT WITH SKIP IN LONEA MINING PLANT

    OpenAIRE

    Răzvan Bogdan ITU; Vilhelm ITU

    2017-01-01

    To study the operation of the winding machine in the Old Shaft with Skip in Lonea Mining Plant, the dynamic analysis of the driving wheel (Koepe wheel) was performed, by resistive electric tensometry methods, acceleration measurements, and vibromechanical analysis on the bearings of Koepe driving wheels, on functioning cycles and vibromechanical analysis of the reduction gear. The paper presents aspects regarding vibromechanical measurements and resistive electric tensometry me...

  7. Useful energy from wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Mayer-Schwinning, W

    1976-01-01

    The work group regards the use of wind energy as the third leg of energy technology. It calculates the wind utilization in Vogelsberg over an area of 1500 km/sup 2/ with 5 plants each 100 m big on 1 km/sup 2/ as example. Production of 14,000 MW electricity through 7500 wind wheels can be generated with an investment sum of up to 28 thousand million D-Mark without maintenance costs.

  8. Modal Analysis of In-Wheel Motor-Driven Electric Vehicle Based on Bond Graph Theory

    Directory of Open Access Journals (Sweden)

    Di Tan

    2017-01-01

    Full Text Available A half-car vibration model of an electric vehicle driven by rear in-wheel motors was developed using bond graph theory and the modular modeling method. Based on the bond graph model, modal analysis was carried out to study the vibration characteristics of the electric vehicle. To verify the effectiveness of the established model, the results were compared to ones computed on the ground of modal analysis and Newton equations. The comparison shows that the vibration model of the electric vehicle based on bond graph theory not only is able to better compute the natural frequency but also can easily determine the deformation mode, momentum mode, and other isomorphism modes and describe the dynamic characteristics of an electric vehicle driven by in-wheel motors more comprehensively than other modal analysis methods.

  9. Vehicle Dynamics Control of In-wheel Electric Motor Drive Vehicles Based on Averaging of Tire Force Usage

    Science.gov (United States)

    Masaki, Nobuo; Iwano, Haruo; Kamada, Takayoshi; Nagai, Masao

    For in-wheel electric motor drive vehicles, a new vehicle dynamics control which is based on the tire force usage rate is proposed. The new controller adopts non-linear optimal control could manage the interference between direct yaw-moment control and the tire force usage rate. The new control is considered total longitudinal and transverse tire force. Therefore the controller can prevent tire force saturation near tire force limit during cornering. Simulations and test runs by the custom made four wheel drive in-wheel motor electric vehicle show that higher driving stability performance compared to the performance of the same vehicle without control.

  10. Decrease in Ground-Run Distance of Small Airplanes by Applying Electrically-Driven Wheels

    Science.gov (United States)

    Kobayashi, Hiroshi; Nishizawa, Akira

    A new takeoff method for small airplanes was proposed. Ground-roll performance of an airplane driven by electrically-powered wheels was experimentally and computationally studied. The experiments verified that the ground-run distance was decreased by half with a combination of the powered driven wheels and propeller without increase of energy consumption during the ground-roll. The computational analysis showed the ground-run distance of the wheel-driven aircraft was independent of the motor power when the motor capability exceeded the friction between tires and ground. Furthermore, the distance was minimized when the angle of attack was set to the value so that the wing generated negative lift.

  11. Underground disposal techniques of radioactive wastes and wind power generation in Europe

    International Nuclear Information System (INIS)

    Mori, Yoshiaki

    2003-01-01

    The 25th business report on foreign survey of electric power civil engineering technology. On the 25th foreign survey held by the Society of Electric Power Civil Engineering, Technology, disposal of high-level radioactive wastes (HLRWs) in Switzerland and Sweden, and wind power generation in Spain and Denmark were focused. As a result, it was found that opalinas clay and calcite under survey and investigation of host rock candidates for disposal of HLRWs are stable rock stratum with extremely low water permeability and without groundwater stream. At present, basic research and concrete disposing method are under advancement through actual scale tests. To obtain peoples' understanding on necessity, safety, cost-sharing, and so on of this business, it is essential to easily and precisely technical contents with high level generation specialty. And, on wind power generation, it is necessary to install wind wheels at a position enough to become maximum in wind energy usable from wind observation data and to maintain the wheel mechanically and electrically. Here were described outlines on the survey with its members and schedules. (G.K.)

  12. Wind power. [electricity generation

    Science.gov (United States)

    Savino, J. M.

    1975-01-01

    A historical background on windmill use, the nature of wind, wind conversion system technology and requirements, the economics of wind power and comparisons with alternative systems, data needs, technology development needs, and an implementation plan for wind energy are presented. Considerable progress took place during the 1950's. Most of the modern windmills feature a wind turbine electricity generator located directly at the top of their rotor towers.

  13. Wind power bidding in electricity markets with high wind penetration

    International Nuclear Information System (INIS)

    Vilim, Michael; Botterud, Audun

    2014-01-01

    Highlights: • We analyze the pricing systems and wind power trading in electricity markets. • We propose a model that captures the relation between market prices and wind power. • A probabilistic bidding model can increase profits for wind power producers. • Profit maximizing bidding strategies carry risks for power system operators. • We conclude that modifications of current market designs may be needed. - Abstract: Objective: The optimal day-ahead bidding strategy is studied for a wind power producer operating in an electricity market with high wind penetration. Methods: A generalized electricity market is studied with minimal assumptions about the structure of the production, bidding, or consumption of electricity. Two electricity imbalance pricing schemes are investigated, the one price and the two price scheme. A stochastic market model is created to capture the price effects of wind power production and consumption. A bidding algorithm called SCOPES (Supply Curve One Price Estimation Strategy) is developed for the one price system. A bidding algorithm called MIMICS (Multivariate Interdependence Minimizing Imbalance Cost Strategy) is developed for the two price system. Results: Both bidding strategies are shown to have advantages over the assumed “default” bidding strategy, the point forecast. Conclusion: The success of these strategies even in the case of high deviation penalties in a one price system and the implicit deviation penalties of the two price system has substantial implications for power producers and system operators in electricity markets with a high level of wind penetration. Practice implications: From an electricity market design perspective, the results indicate that further penalties or regulations may be needed to reduce system imbalance

  14. Project considerations and design of systems for wheeling cogenerated power

    Energy Technology Data Exchange (ETDEWEB)

    Tessmer, R.G. Jr.; Boyle, J.R.; Fish, J.H. III; Martin, W.A.

    1994-08-01

    Wheeling electric power, the transmission of electricity not owned by an electric utility over its transmission lines, is a term not generally recognized outside the electric utility industry. Investigation of the term`s origin is intriguing. For centuries, wheel has been used to describe an entire machine, not just individual wheels within a machine. Thus we have waterwheel, spinning wheel, potter`s wheel and, for an automobile, wheels. Wheel as a verb connotes transmission or modification of forces and motion in machinery. With the advent of an understanding of electricity, use of the word wheel was extended to be transmission of electric power as well as mechanical power. Today, use of the term wheeling electric power is restricted to utility transmission of power that it doesn`t own. Cogeneration refers to simultaneous production of electric and thermal power from an energy source. This is more efficient than separate production of electricity and thermal power and, in many instances, less expensive.

  15. Diagnostics of Electric Equipment Windings

    Directory of Open Access Journals (Sweden)

    I. I. Branovitsky

    2007-01-01

    Full Text Available The paper presents methodology and results of the investigations pertaining to study of influence of short-circuited turns on transient electrical processes in electric motor windings. Dependence of their damped speed and value of the difference signal, obtained at reciprocal subtraction of damped oscillation curves in absence and in presence of short-circuited turns, on number of turns in the tested windings. It has been determined that damped oscillation curves, immediately attributed to short-circuited turns, have peak values along temporary axis which are areas of the largest transient process sensitivity to КЗ turns.Methodology for diagnostics of single- and three-phase electric motor windings and also other electric equipment, being realized in DO-1 device, has been developed in the paper. The men­tioned device makes it possible to carry out visual comparison and quantitative analysis of damped oscillation curves in the tested windings with standard ones which are set in the device memory and their difference signals.

  16. A Nontoxic Barlow's Wheel

    Science.gov (United States)

    Daffron, John A.; Greenslade, Thomas B.

    2015-01-01

    Barlow's wheel has been a favorite demonstration since its invention by Peter Barlow (1776-1862) in 1822.1 In the form shown in Fig. 1, it represents the first electric motor. The interaction between the electric current passing from the axle of the wheel to the rim and the magnetic field produced by the U-magnet produces a torque that turns the wheel. The original device used mercury to provide electrical contact to the rim, and the dangers involved with the use of this heavy metal have caused the apparatus to disappear from the lecture hall.

  17. Haulage trucks model with four electric separate wheel drives

    Directory of Open Access Journals (Sweden)

    R. Setlak

    2005-02-01

    Full Text Available This article contains a course of work of the construction of a vehicle model that has four electrical motors built into each wheel. During the project two models of a vehicle were constructed. A microprocessor based control system has also been designed and built. A vehicle is controlled by a steering unit which contains a steering wheel with a force feedback system, push buttons, an accelerator and a brake. The connection between a steering unit and a model is realized by interface RS-485. The driving motors are dc motors with permanent magnets. Power supply consists of an acid battery located in the vehicle. The vehicle control system is divided into two parts. The first part is built into the vehicle and operates as a vehicle main control system and the second is built into a steering unit and operates as the main control steering system.

  18. Frequency and time domain characteristics of digital control of electric vehicle in-wheel drives

    Directory of Open Access Journals (Sweden)

    Jarzebowicz Leszek

    2017-12-01

    Full Text Available In-wheel electric drives are promising as actuators in active safety systems of electric and hybrid vehicles. This new function requires dedicated control algorithms, making it essential to deliver models that reflect better the wheel-torque control dynamics of electric drives. The timing of digital control events, whose importance is stressed in current research, still lacks an analytical description allowing for modeling its influence on control system dynamics. In this paper, authors investigate and compare approaches to the analog and discrete analytical modeling of torque control loop in digitally controlled electric drive. Five different analytical models of stator current torque component control are compared to judge their accuracy in representing drive control dynamics related to the timing of digital control events. The Bode characteristics and stepresponse characteristics of the analytical models are then compared with those of a reference model for three commonly used cases of motor discrete control schemes. Finally, the applicability of the presented models is discussed.

  19. Equilibrium pricing in electricity markets with wind power

    Science.gov (United States)

    Rubin, Ofir David

    Estimates from the World Wind Energy Association assert that world total wind power installed capacity climbed from 18 Gigawatt (GW) to 152 GW from 2000 to 2009. Moreover, according to their predictions, by the end of 2010 global wind power capacity will reach 190 GW. Since electricity is a unique commodity, this remarkable expansion brings forward several key economic questions regarding the integration of significant amount of wind power capacity into deregulated electricity markets. The overall dissertation objective is to develop a comprehensive theoretical framework that enables the modeling of the performance and outcome of wind-integrated electricity markets. This is relevant because the state of knowledge of modeling electricity markets is insufficient for the purpose of wind power considerations. First, there is a need to decide about a consistent representation of deregulated electricity markets. Surprisingly, the related body of literature does not agree on the very economic basics of modeling electricity markets. That is important since we need to capture the fundamentals of electricity markets before we introduce wind power to our study. For example, the structure of the electric industry is a key. If market power is present, the integration of wind power has large consequences on welfare distribution. Since wind power uncertainty changes the dynamics of information it also impacts the ability to manipulate market prices. This is because the quantity supplied by wind energy is not a decision variable. Second, the intermittent spatial nature of wind over a geographical region is important because the market value of wind power capacity is derived from its statistical properties. Once integrated into the market, the distribution of wind will impact the price of electricity produced from conventional sources of energy. Third, although wind power forecasting has improved in recent years, at the time of trading short-term electricity forwards, forecasting

  20. Wind electric power generation

    International Nuclear Information System (INIS)

    Groening, B.; Koch, M.; Canter, B.; Moeller, T.

    1995-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of private wind turbines. For each wind turbine the name of the site and of the type of turbine is given, and the power generation data are given for the month in question together with the total production in 1988 and 1989. Also the data of operation start are given. On the map of Denmark the sites of the wind turbines are marked. The statistics for December 1994 comprise 2328 wind turbines

  1. Wind/Hybrid Electricity Applications

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, Lori [Iowa Department of Natural Resources, Des Moines, IA (United States)

    2001-03-01

    Wind energy is widely recognized as the most efficient and cost effective form of new renewable energy available in the Midwest. New utility-scale wind farms (arrays of large turbines in high wind areas producing sufficient energy to serve thousands of homes) rival the cost of building new conventional forms of combustion energy plants, gas, diesel and coal power plants. Wind energy is not subject to the inflationary cost of fossil fuels. Wind energy can also be very attractive to residential and commercial electric customers in high wind areas who would like to be more self-sufficient for their energy needs. And wind energy is friendly to the environment at a time when there is increasing concern about pollution and climate change. However, wind energy is an intermittent source of power. Most wind turbines start producing small amounts of electricity at about 8-10 mph (4 meters per second) of wind speed. The turbine does not reach its rated output until the wind reaches about 26-28 mph (12 m/s). So what do you do for power when the output of the wind turbine is not sufficient to meet the demand for energy? This paper will discuss wind hybrid technology options that mix wind with other power sources and storage devices to help solve this problem. This will be done on a variety of scales on the impact of wind energy on the utility system as a whole, and on the commercial and small-scale residential applications. The average cost and cost-benefit of each application along with references to manufacturers will be given. Emerging technologies that promise to shape the future of renewable energy will be explored as well.

  2. Wind electric power generation

    International Nuclear Information System (INIS)

    Koch, M. K.; Wind, L.; Canter, B.; Moeller, T.

    2002-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of the private wind turbines. For each wind turbine the name of the site and of the type of turbine is given, and the power generation data are given for the month in question together with the total production in 2000 and 2001. Also the data of operation start are given. On the map of Denmark the sites of the wind turbines are marked. (SM)

  3. Wind electric power generation

    International Nuclear Information System (INIS)

    Koch, M.K.; Wind, L.; Canter, B.; Moeller, T.

    2001-01-01

    The monthly statistics of wind electric power generation in Denmark are compiled from information given by the owners of the private wind turbines. For each wind turbine the name of the site and of the type of turbine is given, and the power generation data are given for the month in question together with the total production in 1999 and 2000. Also the data of operation start are given. On the map of Denmark the sites of the wind turbines are marked. (CLS)

  4. Wheeling in Canada

    International Nuclear Information System (INIS)

    Fytche, E.L.

    1991-01-01

    The quest for economic efficiency, or lowest cost, in the electricity supply industry is furthered by trading between high and low cost utilities, one aspect being transporting or wheeling power through the transmission system of a third party. Some of the pressures and constraints limiting wheeling are discussed. A simple formula is presented for determining whether trading and wheeling are worthwhile. It is demonstrated for assumed capital and operating cost levels, the viability of nine cases where bulk power or economy energy would need to be wheeled across provincial boundaries in order to reach potential buyers. Wheeling in Canada is different from the situation in the USA, due to large distances spanned by Canadian utilities and because most are provincial crown corporations, with different territorial interests and profit motivations than investor-owned utilities. Most trading in electricity has been between contiguous neighbours, for mutual advantage. New technology allows power transmission over distances of up to 1000 miles, and the economics of Canada's electrical supply could be improved, with means including access to low cost coal of Alberta, and remote hydro in British Columbia, Manitoba, Quebec and Labrador. Nuclear plants could be located anywhere but suffer from an unfriendly public attitude. A bridge across the Prairies appears uneconomic due to cost of transmission, and also due to low valuation given to Alberta coal. 7 refs., 2 figs., 3 tabs

  5. Parallel electric fields from ionospheric winds

    International Nuclear Information System (INIS)

    Nakada, M.P.

    1987-01-01

    The possible production of electric fields parallel to the magnetic field by dynamo winds in the E region is examined, using a jet stream wind model. Current return paths through the F region above the stream are examined as well as return paths through the conjugate ionosphere. The Wulf geometry with horizontal winds moving in opposite directions one above the other is also examined. Parallel electric fields are found to depend strongly on the width of current sheets at the edges of the jet stream. If these are narrow enough, appreciable parallel electric fields are produced. These appear to be sufficient to heat the electrons which reduces the conductivity and produces further increases in parallel electric fields and temperatures. Calculations indicate that high enough temperatures for optical emission can be produced in less than 0.3 s. Some properties of auroras that might be produced by dynamo winds are examined; one property is a time delay in brightening at higher and lower altitudes

  6. Electrical and non-electrical environment of wind turbine main components

    DEFF Research Database (Denmark)

    Holboell, J.; Henriksen, M.; Olsen, R.S.

    of the electrical components or even lead to catastrophic component failure. In the present paper, results are presented from investigations on existing standards which give detailed descriptions of the environmental and operational conditions of wind turbine components. It is found that there is currently a lack...... of application standards for wind turbine electrical equipment. Component-level environmental requirements as given in equipment-specific standards are compared with the environment described in the IEC's 61400 series concerning wind turbines. Based on methods defined in IEC 60721, the non-electrical environment...... of wind turbine is described by means of specific classes. In the paper, new class combinations are suggested covering the different operating conditions the components are exposed to. The class combinations include factors of climatic, mechanical and chemical character. The factors occur in different...

  7. Reducing Energy Demand Using Wheel-Individual Electric Drives to Substitute EPS-Systems

    Directory of Open Access Journals (Sweden)

    Jürgen Römer

    2018-01-01

    Full Text Available The energy demand of vehicles is influenced, not only by the drive systems, but also by a number of add-on systems. Electric vehicles must satisfy this energy demand completely from the battery. Hence, the use of power steering systems directly result in a range reduction. The “e2-Lenk” joint project funded by the German Federal Ministry of Education and Research (BMBF involves a novel steering concept for electric vehicles to integrate the function of steering assistance into the drive-train. Specific distribution of driving torque at the steered axle allows the steering wheel torque to be influenced to support the steering force. This provides a potential for complete substitution of conventional power steering systems and reduces the vehicle’s energy demand. This paper shows the potential of wheel-individual drives influencing the driver’s steering torque using a control technique based on classical EPS control plans. Compared to conventional power-assisted steering systems, a reduced energy demand becomes evident over a wide range of operating conditions.

  8. Small Wind Electric Systems An Alaska Consumer's Guide

    International Nuclear Information System (INIS)

    O'Dell, K.

    2001-01-01

    The Alaska Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a state wind resource map and a list of state incentives and state contacts for more information

  9. Small Wind Electric Systems: A Vermont Consumer's Guide

    International Nuclear Information System (INIS)

    O'Dell, K.

    2001-01-01

    The Vermont Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a state wind resource map and a list of state incentives and state contacts for more information

  10. Development and validation of a new kind of coupling element for wheel-hub motors

    Science.gov (United States)

    Perekopskiy, Sergey; Kasper, Roland

    2018-05-01

    For the automotive industry, electric powered vehicles are becoming an increasingly relevant factor in the competition against climate change. Application of one special example - a wheel-hub motor, for electric powered vehicle can support this challenge. Patented slotless air gap winding invented at the chair of mechatronics of the Otto von Guericke University Magdeburg has great application potential in constantly growing e-mobility field, especially for wheel-hub motors based on this technology due to its advantages, such as a high gravimetric power density and high efficiency. However, advantages of this technology are decreased by its sensibility to the loads out of driving maneuvers by dimensional variations of air gap consistency. This article describes the development and validation of a coupling element for the designed wheel-hub motor. To find a suitable coupling concept first the assembly structure of the motor was analyzed and developed design of the coupling element was checked. Based on the geometry of the motor and wheel a detailed design of the coupling element was generated. The analytical approach for coupling element describes a potential of the possible loads on the coupling element. The FEM simulation of critical load cases for the coupling element validated results of the analytical approach.

  11. Small Wind Electric Systems: A Kansas Consumer's Guide

    International Nuclear Information System (INIS)

    O'Dell, K.

    2001-01-01

    The Kansas Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of state incentives and state contacts for more information

  12. The design of wind turbine for electrical power generation in Malaysian wind characteristics

    International Nuclear Information System (INIS)

    Abas Ab Wahab; Chong Wen Thong

    2000-01-01

    The paper describes the study of a wind turbine for electrical power generation in Malaysia wind characteristics. In this research, the wind turbine is designs based on the local wind characteristics and tries to avoid the problems faced in the past (turbine design, access, manpower and technical). The new wind turbine rotor design for a medium speed wind speed turbine utilises the concept of open-close type of horizontal axis (up-wind) wind turbine is intended to widen the optimum performance range for electrical generation in Malaysia wind characteristics. The wind turbine has been designed to cut-in at a lower speed, and to provide the rotation speed that high enough to run a generator. The analysis and design of new low speed wind turbine blades and open-close turbine rotor and prediction of turbine performance are being detailed in this paper. (Author)

  13. Single-wheel drive with new electric components. Einzelradantrieb mit neuen E-Komponenten

    Energy Technology Data Exchange (ETDEWEB)

    Westendorf, H. (Fichtel und Sachs AG, Schweinfurt (Germany)); Schiebold, S. (Fichtel und Sachs AG, Schweinfurt (Germany)); Ehrhart, P. (Fichtel und Sachs AG, Schweinfurt (Germany)); Lindner, L. (Fichtel und Sachs AG, Schweinfurt (Germany))

    1991-01-01

    Fundamentally important developments and innovations in the fields of magnetic materials, plastics technology and electronics, together with new control concepts, make a new drive concept possible for passenger cars produced in series. The concept, which makes use of a combustion engine and an all-electric power transmission with a single-wheel drive, is presented, together with its components. (orig./HW)

  14. The prospects for retail wheeling

    International Nuclear Information System (INIS)

    O'Donnell, E.H.; Center, J.A.

    1992-01-01

    This paper as published is an outline of a presentation on retail wheeling of electric power. The topics discussed are development of increased wholesale transmission access, government regulatory policies on wholesale transmission, examples of past and present retail transmission access agreements, examples of Federal Energy Regulatory Commission jurisdiction over retail wheeling, and state policies on retail wheeling

  15. Wind turbine cost of electricity and capacity factor

    International Nuclear Information System (INIS)

    Cavallo, A.J.

    1995-01-01

    Wind turbines are currently designed to minimize the cost of electricity at the wind turbine (the busbar cost) in a given wind regime, ignoring constraints on the capacitor factor (the ratio of the average power output to the maximum power output). The trade-off between these two quantities can be examined in a straightforward fashion; it is found that the capacitor factor can be increased by a factor of 1.3 above its value at the cost minimum for a 10 percent increase in the cost of electricity. This has important implications for the large scale integration of wind electricity on utility grids where the cost of transmission and storage may be a significant fraction of the cost of delivered electricity. (Author)

  16. The Relationship Between Electricity Price and Wind Power Generation in Danish Electricity Markets

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte

    2010-01-01

    of competitive electricity markets in some ways, is chosen as the studied power system. The relationship between the electricity price (both the spot price and the regulation price) and the wind power generation in an electricity market is investigated in this paper. The spot price, the down regulation price...... and the up regulation price generally decreases when the wind power penetration in the power system increases. The statistical characteristics of the spot price for different wind power penetration are analyzed. The findings of this paper may be useful for wind power generation companies to make the optimal...... bidding strategy and may be also useful for the optimal operation of modern power systems with high wind power penetrations....

  17. Survey of wind power potential for wind-based electricity at ...

    African Journals Online (AJOL)

    The potential for wind-generated electricity is examined using 22 months wind data collected from a prospective site located in the southern highlands of Tanzania. While the data for the year 2001 was from March to December that of 2002 was for all the twelve months of the year. Characteristics of monthly and annual wind ...

  18. Preliminary Design of Reluctance Motors for Light Electric Vehicles Driving

    Directory of Open Access Journals (Sweden)

    TRIFA, V.

    2009-02-01

    Full Text Available The paper presents the aspects regarding FEM analysis of a reluctant motor for direct driving of the light electric vehicles. The reluctant motor take into study is of special construction suitable for direct drive of a light electric vehicle. It is an inverse radial reluctant motor, with a fixed stator mounted on front wheel shaft and an external toothed rotor fixed on the front wheel itself. A short presentation of preliminary design is continued with the FEM analysis in order to provide the optimal geometry of the motor and adequate windings.

  19. Wind farm electrical power production model for load flow analysis

    International Nuclear Information System (INIS)

    Segura-Heras, Isidoro; Escriva-Escriva, Guillermo; Alcazar-Ortega, Manuel

    2011-01-01

    The importance of renewable energy increases in activities relating to new forms of managing and operating electrical power: especially wind power. Wind generation is increasing its share in the electricity generation portfolios of many countries. Wind power production in Spain has doubled over the past four years and has reached 20 GW. One of the greatest problems facing wind farms is that the electrical power generated depends on the variable characteristics of the wind. To become competitive in a liberalized market, the reliability of wind energy must be guaranteed. Good local wind forecasts are therefore essential for the accurate prediction of generation levels for each moment of the day. This paper proposes an electrical power production model for wind farms based on a new method that produces correlated wind speeds for various wind farms. This method enables a reliable evaluation of the impact of new wind farms on the high-voltage distribution grid. (author)

  20. Small Wind Electric Systems: A U.S. Consumer's Guide

    International Nuclear Information System (INIS)

    O'Dell, K.

    2001-01-01

    The U.S. Consumer's Guide for Small Wind Electric systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy

  1. Study on the Rollover Characteristic of In-Wheel-Motor-Driven Electric Vehicles Considering Road and Electromagnetic Excitation

    OpenAIRE

    Di Tan; Haitao Wang; Qiang Wang

    2016-01-01

    For in-wheel-motor-driven electric vehicles, the motor is installed in the wheel directly. Tyre runout and uneven load can cause magnet gap deformation in the motor, which will produce electromagnetic forces that further influence the vehicle rollover characteristics. To study the rollover characteristics, a verified 16-degree-of-freedom rollover dynamic model is introduced. Next, the vehicle rollover characteristics both with and without electromagnetic force are analyzed under conditions of...

  2. High Penetrated Wind Farm Impacts on the Electricity Price

    DEFF Research Database (Denmark)

    Haji Bashi, Mazaher; Yousefi, G. R.; Bak, Claus Leth

    2016-01-01

    of the high penetrated wind farm integration into electricity markets. Then, stochastic programming approach is employed to compare the volume of trades for a typical wind farm in a high and low wind penetrated market. Although increasing price spikes and volatility was reported in the literature......Energy trading policies, intermittency of wind farm output power, low marginal cost of the production, are the key factors that cause the wind farms to be effective on the electricity price. In this paper, the Danish electricity market is studied as a part of Nord Pool. Considering the completely...... fossil fuel free overview in Danish energy policies, and the currently great share of wind power (more than 100% for some hours) in supplying the load, it is an interesting benchmark for the future electricity markets. Negative prices, price spikes, and price volatility are considered as the main effects...

  3. Gas-fired wind power and electric hydrogen

    NARCIS (Netherlands)

    Hemmes, K.

    2006-01-01

    In the seemingly endless discussions about the pros and cons of wind power even its advocates have to agree that though wind can fly, with offshore wind farms soon to become reality, this only exacerbates the problem of the winds changeability. Even now the major producers of electricity and power

  4. A comparative assessment of battery and fuel cell electric vehicles using a well-to-wheel analysis

    International Nuclear Information System (INIS)

    Li, Mengyu; Zhang, Xiongwen; Li, Guojun

    2016-01-01

    Battery electric vehicles (BEVs) and fuel cell electric vehicles (FCEVs) are increasingly prevalent in the transportation sector due to growing concerns about climate change, urban air pollution and oil dependence. This theoretical study reports the results of well-to-wheel (WTW) analyses for BEVs and FCEVs in different energy resource and technology pathways in China in terms of fossil energy use, total energy use and greenhouse gas (GHG) emissions. The energy types include coal, natural gas, renewable energy and nuclear energy resources. Special attention is given to the effects of vehicle heating loads on the WTW performances of BEVs and FCEVs. Energy use and GHG emissions reductions from BEVs and FCEVs in different pathways are examined and compared to those of gasoline-based internal engine vehicles (ICEVs). When considering the cabin heating load in vehicles, FCEVs using natural gas as the energy source outperformed all the BEVs in terms of total energy use and GHG emissions. FCEVs adopting new energy-based pathways can achieve the same WTW efficiencies as BEVs, and these efficiencies may be even higher if the hydrogen used by FCEVs is produced by the pathways of solar-solid oxide electrolysis cell (SOEC) systems, solar-thermochemical systems or nuclear-SOEC systems. - Highlights: • A well-to-wheel analysis is performed for electric vehicle technologies in China. • The effects of cabin heating on well-to-wheel performances are investigated. • The performances of different electric vehicle pathways are presented in detail. • FCEVs with natural gas pathways outperformed BEVs.

  5. System design and energetic characterization of a four-wheel-driven series–parallel hybrid electric powertrain for heavy-duty applications

    International Nuclear Information System (INIS)

    Wang, Enhua; Guo, Di; Yang, Fuyuan

    2015-01-01

    Highlights: • A novel four-wheel-driven series–parallel hybrid powertrain is proposed. • A system model and a rule-based control strategy are designed. • Energetic performance is compared to a rear-wheel-driven hybrid powertrain. • Less torsional oscillation and more robust regenerative braking are achieved. - Abstract: Powertrain topology design is vital for system performance of a hybrid electric vehicle. In this paper, a novel four-wheel-driven series–parallel hybrid electric powertrain is proposed. A motor is connected to the differential of the rear axle. An auxiliary power unit is linked to the differential of the front axle via a clutch. First, a mathematical model was established to evaluate the fuel-saving potential. A rule-based energy management algorithm was subsequently designed, and its working parameters were optimized. The hybrid powertrain system was applied to a transit bus, and the system characteristics were analyzed. Compared to an existing coaxial power-split hybrid powertrain, the fuel economy of the four-wheel-driven series–parallel hybrid powertrain can be at the same level under normal road conditions. However, the proposed four-wheel-driven series–parallel hybrid powertrain can recover braking energy more efficiently under road conditions with a low adhesive coefficient and can alleviate the torsional oscillation occurring at the existing coaxial power-split hybrid powertrain. Therefore, the four-wheel-driven series–parallel hybrid powertrain is a good solution for transit buses toward more robust performance.

  6. Development of a Cooperative Braking System for Front-Wheel Drive Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Di Zhao

    2018-02-01

    Full Text Available Most electric vehicles adopt cooperative braking systems that can blend friction braking torque with regenerative braking torque to achieve higher energy efficiency while maintaining a certain braking performance and driving safety. This paper presented a new cooperative regenerative braking system that contained a fully-decoupled hydraulic braking mechanism based on a modified electric stability control system. The pressure control algorithm and brake force distribution strategy were also discussed. Dynamic models of a front wheel drive electric car equipped with this system and a simulation platform with a driver model and driving cycles were established. Tests to evaluate the braking performance and energy regeneration were simulated and analyzed on this platform and the simulation results showed the feasibility and effectiveness of this system.

  7. Design of driving control strategy of torque distribution for two - wheel independent drive electric vehicle

    Science.gov (United States)

    Zhang, Chuanwei; Zhang, Dongsheng; Wen, Jianping

    2018-02-01

    In order to coordinately control the torque distribution of existing two-wheel independent drive electric vehicle, and improve the energy efficiency and control stability of the whole vehicle, the control strategies based on fuzzy control were designed which adopt the direct yaw moment control as the main line. For realizing the torque coordination simulation of the two-wheel independent drive vehicle, the vehicle model, motor model and tire model were built, including the vehicle 7 - DOF dynamics model, motion equation, torque equation. Finally, in the Carsim - Simulink joint simulation platform, the feasibility of the drive control strategy was verified.

  8. A Nontoxic Barlow's Wheel

    Science.gov (United States)

    Daffron, John A.; Greenslade, Thomas B., Jr.

    2015-01-01

    Barlow's wheel has been a favorite demonstration since its invention by Peter Barlow (1776-1862) in 1822. In the form shown in Fig. 1, it represents the first electric motor. The interaction between the electric current passing from the axle of the wheel to the rim and the magnetic field produced by the U-magnet produces a torque that turns…

  9. Small Wind Electric Systems: A New Mexico Consumer's Guide

    International Nuclear Information System (INIS)

    O'Dell, K.

    2001-01-01

    The New Mexico Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a state wind resource map and a list of state incentives and state contacts for more information

  10. Small Wind Electric Systems: A South Dakota Consumer's Guide

    International Nuclear Information System (INIS)

    O'Dell, K.

    2001-01-01

    The South Dakota Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a state wind resource map and a list of state incentives and state contacts for more information

  11. SIMULATION MODELS OF HEAVY TRUCKS TRAFFIC CONTROL WITH ELECTRIC DC DRIVE

    Directory of Open Access Journals (Sweden)

    N. N. Hurski

    2015-01-01

    Full Text Available A model of the straight course of movement of the mobile machine with a traction electric motor DC. Traffic management controller provides a closed classical scheme with feedback. The mathematical model of the electric DC motor with the energy dissipation in the rotor bearings. Design scheme of mobile machines include speed dial controller, traction electric motor, gearbox, transmission and progressively moving mass on the elastic­dissipative wheel. The results of the simulation of the machine in the form of temporary processes of change control signals, voltage and current in the windings of the motor and traction power developed on the wheel.

  12. Optimal electricity market for wind power

    International Nuclear Information System (INIS)

    Holttinen, H.

    2005-01-01

    This paper is about electricity market operation when looking from the wind power producers' point of view. The focus in on market time horizons: how many hours there is between the closing and delivering the bids. The case is for the Nordic countries, the Nordpool electricity market and the Danish wind power production. Real data from year 2001 was used to study the benefits of a more flexible market to wind power producer. As a result of reduced regulating market costs from better hourly predictions to the market, wind power producer would gain up to 8% more if the time between market bids and delivery was shortened from the day ahead Elspot market (hourly bids by noon for 12-36 h ahead). An after sales market where surplus or deficit production could be traded 2 h before delivery could benefit the producer almost as much, gaining 7%

  13. Does wind energy mitigate market power in deregulated electricity markets?

    International Nuclear Information System (INIS)

    Ben-Moshe, Ori; Rubin, Ofir D.

    2015-01-01

    A rich body of literature suggests that there is an inverse relationship between wind power penetration rate into the electricity market and electricity prices, but it is unclear whether these observations can be generalized. Therefore, in this paper we seek to analytically characterize market conditions that give rise to this inverse relationship. For this purpose, we expand a recently developed theoretical framework to facilitate flexibility in modeling the structure of the electric industry with respect to the degree of market concentration and diversification in the ownership of wind power capacity. The analytical results and their attendant numerical illustrations indicate that the introduction of wind energy into the market does not always depress electricity prices. Such a drop in electricity prices is likely to occur when the number of firms is large enough or the ownership of wind energy is sufficiently diversified, or most often a combination of the two. Importantly, our study defines the circumstances in which the question of which type of firm invests in wind power capacity is crucial for market prices. - Highlights: • Studies show that electricity prices decrease with increased wind power capacity. • We investigate market conditions that give rise to this inverse relationship. • Average prices for wind energy are systematically lower than average market prices. • Conventional generation firms may increase market power by investing in wind farms. • Energy policy should seek to diversify the ownership of wind power capacity

  14. Feasibility study of wind-generated electricity for rural applications in southwestern Ohio

    Science.gov (United States)

    Kohring, G. W.

    The parameters associated with domestic production of wind generated electricity for direct use by small farms and rural homes in the southwestern Ohio region are discussed. The project involves direct utility interfaced electricity generation from a horizontal axis, down-wind, fixed pitch, wind powered induction generator system. Goals of the project are to determine: the ability to produce useful amounts of domestic wind generated electricity in the southwestern Ohio region; economic justification for domestic wind generated electrical production; and the potential of domestic wind generated electricity for reducing dependence on non-renewable energy resources in the southwestern Ohio region.

  15. Wind power electricity: the bigger the turbine, the greener the electricity?

    Science.gov (United States)

    Caduff, Marloes; Huijbregts, Mark A J; Althaus, Hans-Joerg; Koehler, Annette; Hellweg, Stefanie

    2012-05-01

    Wind energy is a fast-growing and promising renewable energy source. The investment costs of wind turbines have decreased over the years, making wind energy economically competitive to conventionally produced electricity. Size scaling in the form of a power law, experience curves and progress rates are used to estimate the cost development of ever-larger turbines. In life cycle assessment, scaling and progress rates are seldom applied to estimate the environmental impacts of wind energy. This study quantifies whether the trend toward larger turbines affects the environmental profile of the generated electricity. Previously published life cycle inventories were combined with an engineering-based scaling approach as well as European wind power statistics. The results showed that the larger the turbine is, the greener the electricity becomes. This effect was caused by pure size effects of the turbine (micro level) as well as learning and experience with the technology over time (macro level). The environmental progress rate was 86%, indicating that for every cumulative production doubling, the global warming potential per kWh was reduced by 14%. The parameters, hub height and rotor diameter were identified as Environmental Key Performance Indicators that can be used to estimate the environmental impacts for a generic turbine. © 2012 American Chemical Society

  16. Stochastic Optimal Wind Power Bidding Strategy in Short-Term Electricity Market

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte

    2012-01-01

    Due to the fluctuating nature and non-perfect forecast of the wind power, the wind power owners are penalized for the imbalance costs of the regulation, when they trade wind power in the short-term liberalized electricity market. Therefore, in this paper a formulation of an imbalance cost...... minimization problem for trading wind power in the short-term electricity market is described, to help the wind power owners optimize their bidding strategy. Stochastic optimization and a Monte Carlo method are adopted to find the optimal bidding strategy for trading wind power in the short-term electricity...... market in order to deal with the uncertainty of the regulation price, the activated regulation of the power system and the forecasted wind power generation. The Danish short-term electricity market and a wind farm in western Denmark are chosen as study cases due to the high wind power penetration here...

  17. Reliable fuzzy H∞ control for active suspension of in-wheel motor driven electric vehicles with dynamic damping

    Science.gov (United States)

    Shao, Xinxin; Naghdy, Fazel; Du, Haiping

    2017-03-01

    A fault-tolerant fuzzy H∞ control design approach for active suspension of in-wheel motor driven electric vehicles in the presence of sprung mass variation, actuator faults and control input constraints is proposed. The controller is designed based on the quarter-car active suspension model with a dynamic-damping-in-wheel-motor-driven-system, in which the suspended motor is operated as a dynamic absorber. The Takagi-Sugeno (T-S) fuzzy model is used to model this suspension with possible sprung mass variation. The parallel-distributed compensation (PDC) scheme is deployed to derive a fault-tolerant fuzzy controller for the T-S fuzzy suspension model. In order to reduce the motor wear caused by the dynamic force transmitted to the in-wheel motor, the dynamic force is taken as an additional controlled output besides the traditional optimization objectives such as sprung mass acceleration, suspension deflection and actuator saturation. The H∞ performance of the proposed controller is derived as linear matrix inequalities (LMIs) comprising three equality constraints which are solved efficiently by means of MATLAB LMI Toolbox. The proposed controller is applied to an electric vehicle suspension and its effectiveness is demonstrated through computer simulation.

  18. The Value of Wind Technology Innovation: Implications for the U.S. Power System, Wind Industry, Electricity Consumers, and Environment

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Trieu T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lantz, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mowers, Matthew [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wiser, Ryan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-21

    Improvements to wind technologies have, in part, led to substantial deployment of U.S. wind power in recent years. The degree to which technology innovation will continue is highly uncertain adding to uncertainties in future wind deployment. We apply electric sector modeling to estimate the potential wind deployment opportunities across a range of technology advancement projections. The suite of projections considered span a wide range of possible cost and technology innovation trajectories, including those from a recent expert elicitation of wind energy experts, a projection based on the broader literature, and one reflecting estimates based on a U.S. DOE research initiative. In addition, we explore how these deployment pathways may impact the electricity system, electricity consumers, the environment, and the wind-related workforce. Overall, our analysis finds that wind technology innovation can have consequential implications for future wind power development throughout the United States, impact the broader electricity system, lower electric system and consumer costs, provide potential environmental benefits, and grow the U.S. wind workforce.

  19. Overall Optimization for Offshore Wind Farm Electrical System

    DEFF Research Database (Denmark)

    Hou, Peng; Hu, Weihao; Chen, Cong

    2017-01-01

    Based on particle swarm optimization (PSO), an optimization platform for offshore wind farm electrical system (OWFES) is proposed in this paper, where the main components of an offshore wind farm and key technical constraints are considered as input parameters. The offshore wind farm electrical...... system is optimized in accordance with initial investment by considering three aspects: the number and siting of offshore substations (OS), the cable connection layout of both collection system (CS) and transmission system (TS) as well as the selection of electrical components in terms of voltage level...... that save 3.01% total cost compared with the industrial layout, and can be a useful tool for OWFES design and evaluation....

  20. Optimal contracts for wind power producers in electricity markets

    KAUST Repository

    Bitar, E.; Giani, A.; Rajagopal, R.; Varagnolo, D.; Khargonekar, P.; Poolla, K.; Varaiya, P.

    2010-01-01

    This paper is focused on optimal contracts for an independent wind power producer in conventional electricity markets. Starting with a simple model of the uncertainty in the production of power from a wind turbine farm and a model for the electric

  1. Wind power electric systems modeling, simulation and control

    CERN Document Server

    Rekioua, Djamila

    2014-01-01

    The book helps readers understand key concepts in standalone and grid connected wind energy systems and features analysis into the modeling and optimization of commonly used configurations through the implementation of different control strategies.Utilizing several electrical machinery control approaches, such as vector control and direct torque control 'Wind Power Electric Systems' equips readers with the means to understand, assess and develop their own wind energy systems and to evaluate the performance of such systems.Mathematical models are provided for each system and a corresponding MAT

  2. Systems and methods for an integrated electrical sub-system powered by wind energy

    Science.gov (United States)

    Liu, Yan [Ballston Lake, NY; Garces, Luis Jose [Niskayuna, NY

    2008-06-24

    Various embodiments relate to systems and methods related to an integrated electrically-powered sub-system and wind power system including a wind power source, an electrically-powered sub-system coupled to and at least partially powered by the wind power source, the electrically-powered sub-system being coupled to the wind power source through power converters, and a supervisory controller coupled to the wind power source and the electrically-powered sub-system to monitor and manage the integrated electrically-powered sub-system and wind power system.

  3. Wind power and a liberalised North European electricity exchange

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, L H; Morthorst, P E; Skytte, K [and others

    1999-03-01

    Conditions for wind power on a liberalised North European electrical power market are addressed in the paper. Results are presented from a recently completed study carried out by Risoe National Laboratory in collaboration with the Danish electric utilities Eltra, Elsam and Elkraft. A main result from the study is, that the market will be able to provide the necessary power regulation, that will be required year 2005 as consequence of the expected wind power capacity extension, according to the Danish energy plan, Energy21. The averege sales price on the market for the wind-generated electricity is less than the average spot market price, due to provision of power regulation to balance the unpredictability of the wind power. This reduction in the market value of wind power has been calculated to 10-20 DKK/MWh of 1.3-2.7 EUR/MWh. (au)

  4. Static In-wheel Wireless Charging Systems for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Chirag Panchal

    2017-09-01

    Full Text Available Wireless charging is a popular upcoming technology with uses ranging from mobile phone charging through to electric vehicle EV charging. Large air gaps found in current EV wireless charging systems WCS pose a hurdle of its success. Air gaps in WCS cause issues in regards to efficiency power transfer and electromagnetic compatibility EMC leakage issues. A static In-Wheel WCS IW-WCS is presented which significantly reduces the issues associated with large air gaps. A small scale laboratory prototype utilizing a standard 10mm steel reinforced tyre has been created and compared to a typical 30mm air gap. The IW-WCS has been investigated by experimental and finite element method FEM based electro-magnetic field simulation methods to validate performance.

  5. The VGOT Darrieus wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ponta, F.L.; Otero, A.D.; Lago, L. [University of Buenos Aires (Argentina). College of Engineering

    2004-07-01

    We present the actual state of development of a non-conventional new vertical-axis wind turbine. The concepts introduced here involve the constructive aspects of variable-geometry oval-trajectory (VGOT) Darrieus wind turbines. The key feature of a VGOT machine is that each blade slides over rails mounted on a wagon instead of rotating around a central vertical axis. Each wagon contains its own electrical generation system coupled to the power-wheels and the electricity is collected by a classical third rail system. The VGOT concept allows increasing the area swept by the blades, and hence the power output of the installation, without the structural problems and the low rotational speed associated with a classical Darrieus rotor of large diameter. We also propose some engineering solutions for the VGOT design and present a brief economic analysis of the feasibility of the project. (author)

  6. Optimal control of mode transition for four-wheel-drive hybrid electric vehicle with dry dual-clutch transmission

    Science.gov (United States)

    Zhao, Zhiguo; Lei, Dan; Chen, Jiayi; Li, Hangyu

    2018-05-01

    When the four-wheel-drive hybrid electric vehicle (HEV) equipped with a dry dual clutch transmission (DCT) is in the mode transition process from pure electrical rear wheel drive to front wheel drive with engine or hybrid drive, the problem of vehicle longitudinal jerk is prominent. A mode transition robust control algorithm which resists external disturbance and model parameter fluctuation has been developed, by taking full advantage of fast and accurate torque (or speed) response of three electrical power sources and getting the clutch of DCT fully involved in the mode transition process. Firstly, models of key components of driveline system have been established, and the model of five-degrees-of-freedom vehicle longitudinal dynamics has been built by using a Uni-Tire model. Next, a multistage optimal control method has been produced to realize the decision of engine torque and clutch-transmitted torque. The sliding-mode control strategy for measurable disturbance has been proposed at the stage of engine speed dragged up. Meanwhile, the double tracking control architecture that integrates the model calculating feedforward control with H∞ robust feedback control has been presented at the stage of speed synchronization. Finally, the results from Matlab/Simulink software and hardware-in-the-loop test both demonstrate that the proposed control strategy for mode transition can not only coordinate the torque among different power sources and clutch while minimizing vehicle longitudinal jerk, but also provide strong robustness to model uncertainties and external disturbance.

  7. Wind turbines - generating noise or electricity?

    International Nuclear Information System (INIS)

    Russell, Eric

    1999-01-01

    Wind turbine technology has made great strides in the past few years. Annual energy output is up by two orders of magnitude and nacelle weight and noise has been halved. Computational fluid dynamics has paid a part in advancing knowledge of air flow and turbulence around wind generators. Current research is focused on how to increase turbine size and improve efficiency. A problem is that while larger wind turbines will produce cheaper electricity, the noise problem will mean that the number of acceptable sites will decrease. The biggest wind generators will need about 800 m clearance from the nearest house. (UK)

  8. Reliability & availability of wind turbine electrical & electronic components

    NARCIS (Netherlands)

    Tavner, P.; Faulstich, S.; Hahn, B.; Bussel, van G.J.W.

    2010-01-01

    Recent analysis of European onshore wind turbine reliability data has shown that whilst wind turbine mechanical subassemblies tend to have relatively low failure rates but long downtimes, electrical and electronic subassemblies have relatively high failure rates and short downtimes. For onshore wind

  9. Managing Wind-based Electricity Generation and Storage

    Science.gov (United States)

    Zhou, Yangfang

    Among the many issues that profoundly affect the world economy every day, energy is one of the most prominent. Countries such as the U.S. strive to reduce reliance on the import of fossil fuels, and to meet increasing electricity demand without harming the environment. Two of the most promising solutions for the energy issue are to rely on renewable energy, and to develop efficient electricity storage. Renewable energy---such as wind energy and solar energy---is free, abundant, and most importantly, does not exacerbate the global warming problem. However, most renewable energy is inherently intermittent and variable, and thus can benefit greatly from coupling with electricity storage, such as grid-level industrial batteries. Grid storage can also help match the supply and demand of an entire electricity market. In addition, electricity storage such as car batteries can help reduce dependence on oil, as it can enable the development of Plug-in Hybrid Electric Vehicles, and Battery Electric Vehicles. This thesis focuses on understanding how to manage renewable energy and electricity storage properly together, and electricity storage alone. In Chapter 2, I study how to manage renewable energy, specifically wind energy. Managing wind energy is conceptually straightforward: generate and sell as much electricity as possible when prices are positive, and do nothing otherwise. However, this leads to curtailment when wind energy exceeds the transmission capacity, and possible revenue dilution when current prices are low but are expected to increase in the future. Electricity storage is being considered as a means to alleviate these problems, and also enables buying electricity from the market for later resale. But the presence of storage complicates the management of electricity generation from wind, and the value of storage for a wind-based generator is not entirely understood. I demonstrate that for such a combined generation and storage system the optimal policy does not

  10. Motion Control of Four-Wheel Independently Actuated Electric Ground Vehicles considering Tire Force Saturations

    Directory of Open Access Journals (Sweden)

    Rongrong Wang

    2013-01-01

    Full Text Available A vehicle stability control approach for four-wheel independently actuated (FWIA electric vehicles is presented. The proposed control method consists of a higher-level controller and a lower-level controller. An adaptive control-based higher-level controller is designed to yield the vehicle virtual control efforts to track the desired vehicle motions due to the possible modeling inaccuracies and parametric uncertainties. The lower-level controller considering tire force saturation is given to allocate the required control efforts to the four in-wheel motors for providing the desired tire forces. An analytic method is given to distribute the high-level control efforts, without using the numerical-optimization-based control allocation algorithms. Simulations based on a high-fidelity, CarSim, and full-vehicle model show the effectiveness of the control approach.

  11. Utilization of excess wind power in electric vehicles

    International Nuclear Information System (INIS)

    Hennings, Wilfried; Mischinger, Stefan; Linssen, Jochen

    2013-01-01

    This article describes the assessment of future wind power utilization for charging electric vehicles (EVs) in Germany. The potential wind power production in the model years 2020 and 2030 is derived by extrapolating onshore wind power generation and offshore wind speeds measured in 2007 and 2010 to the installed onshore and offshore wind turbine capacities assumed for 2020 and 2030. The energy consumption of an assumed fleet of 1 million EVs in 2020 and 6 million in 2030 is assessed using detailed models of electric vehicles, real world driving cycles and car usage. It is shown that a substantial part of the charging demand of EVs can be met by otherwise unused wind power, depending on the amount of conventional power required for stabilizing the grid. The utilization of wind power is limited by the charging demand of the cars and the bottlenecks in the transmission grid. -- Highlights: •Wind power available for charging depends on minimum required conventional power (must-run). •With 20 GW must-run power, 50% of charging can be met by excess wind power. •Grid bottlenecks decrease charging met by wind power from 50 % to 30 %. •With zero must-run power, only very little wind power is available for charging

  12. Wind energy. Market prospects to 2006

    International Nuclear Information System (INIS)

    Huckle, R.

    2002-01-01

    Renewable energy is becoming an increasingly significant source in the energy portfolio of most countries. Several sources of renewable energy are now being pursued commercially and wind energy is the most advanced in terms of installed electricity generation capacity. Of all types of renewable energy wind energy is the one with which there is the greatest experience - wind wheels and windmills have been used in various forms for hundreds of years. Chapter 1 is an introduction to the market study. Chapter 2 begins with a review of the wind energy industry. Topics included here are the case for wind energy (sustainability, security, non-polluting etc), market structure (the relationship between developers, operators, manufacturers, consortia etc) and environmental issues. This is followed by a discussion of the wind energy market for major countries in terms of installed wind power capacity. Within each country market there is an account of government policy, major wind energy programmes, major projects with information on developers and wind turbine manufacturers. A market analysis is given which includes an economic review, wind energy targets (where they exist) and forecasts to 2006. Chapter 3 is a review of wind turbine applications covering electricity generation for public supply networks, stand alone/community applications, water pumping and water desalination. Chapter 4 provides the basic principles of wind turbine operation and associated technologies. A brief account is given of the development of wind turbines and the main components such as the tower, rotor blades, gearbox, generator and electrical controls. Electricity generation and control are outlined and the challenge of electricity storage is also discussed. Meteorological factors (wind speed etc) and the move towards off-shore wind farms are also covered. Chapter 5 contains profiles of leading wind project developers and wind turbine manufacturers. A selection of existing and proposed wind farms

  13. LCA of electricity systems with high wind power penetration

    DEFF Research Database (Denmark)

    Turconi, Roberto; O' Dwyer, C. O.; Flynn, D.

    Electricity systems are shifting from being based on fossil fuels towards renewable sources to enhance energy security and mitigate climate change. However, by introducing high shares of variable renewables - such as wind and solar - dispatchable power plants are required to vary their output...... to fulfill the remaining electrical demand, potentially increasing their environmental impacts [1,2]. In this study the environmental impacts of potential short-term future electricity systems in Ireland with high shares of wind power (35-50% of total installed capacity) were evaluated using life cycle...... considered: while not outweighing the benefits from increasing wind energy, cycling emissions are not negligible and should thus be systematically included (i.e. by using emission factors per unit of fuel input rather than per unit of power generated). Cycling emissions increased with the installed wind...

  14. Small Wind Electric Systems: A Virginia Consumer's Guide

    Energy Technology Data Exchange (ETDEWEB)

    2003-06-01

    The purpose of the Small Wind Electric Systems Consumer's: A Virginia Consumer's Guide is to provide consumers with enough information to help them determine if a small wind electric system will work for them based on their wind resource, the type and size of their sites, and their economics. The cover of this guide contains a Virginia wind resource map and information about state incentives and contacts for more information.

  15. Study on the Rollover Characteristic of In-Wheel-Motor-Driven Electric Vehicles Considering Road and Electromagnetic Excitation

    Directory of Open Access Journals (Sweden)

    Di Tan

    2016-01-01

    Full Text Available For in-wheel-motor-driven electric vehicles, the motor is installed in the wheel directly. Tyre runout and uneven load can cause magnet gap deformation in the motor, which will produce electromagnetic forces that further influence the vehicle rollover characteristics. To study the rollover characteristics, a verified 16-degree-of-freedom rollover dynamic model is introduced. Next, the vehicle rollover characteristics both with and without electromagnetic force are analyzed under conditions of the Fixed Timing Fishhook steering and grade B road excitation. The results show that the electromagnetic force has a certain effect on the load transfer and can reduce the antirollover performance of the vehicle. Therefore, the effect of the electromagnetic force on the rollover characteristic should be considered in the vehicle design. To this end, extensive analysis was conducted on the effect of the road level, vehicle speed, and the road adhesion coefficient on the vehicle rollover stability. The results indicate that vehicle rollover stability worsens when the above-mentioned factors increase, the most influential factor being the road adhesion coefficient followed by vehicle speed and road level. This paper can offer certain theory basis for the design of the in-wheel-motor-driven electric vehicles.

  16. Integrating wind output with bulk power operations and wholesale electricity markets

    International Nuclear Information System (INIS)

    Hirst, E.

    2002-01-01

    Wind farms have three characteristics that complicate their widespread application as an electricity resource: limited control, unpredictability and variability. Therefore the integration of wind output into bulk power electric systems is qualitatively different from that of other types of generators. The electric system operator must move other generators up or down to offset the time-varying wind fluctuations. Such movements raise the costs of fuel and maintenance for these other generators. Not only is wind power different, it is new. The operators of bulk power systems have limited experience in integrating wind output into the larger system. As a consequence, market rules that treat wind fairly - neither subsidizing nor penalizing its operation - have not yet been developed. The lack of data and analytical methods encourages wind advocates and sceptics to rely primarily on their biases and beliefs in suggesting how wind should be integrated into bulk power systems. This project helps fill this data and analysis gap. Specifically, it develops and applies a quantitative method for the integration of a wind resource into a large electric system. The method permits wind to bid its output into a short-term forward market (specifically, an hour-ahead energy market) or to appear in real time and accept only intrahour and hourly imbalance payments for the unscheduled energy it delivers to the system. Finally, the method analyses the short-term (minute-to-minute) variation in wind output to determine the regulation requirement the wind resource imposes on the electrical system. (author)

  17. Gas-fired wind power and electric hydrogen

    OpenAIRE

    Hemmes, K.

    2006-01-01

    In the seemingly endless discussions about the pros and cons of wind power even its advocates have to agree that though wind can fly, with offshore wind farms soon to become reality, this only exacerbates the problem of the winds changeability. Even now the major producers of electricity and power grid companies foresee grave difficulties from the peaks and dips in supply of this green power source. Dr Kas Hemmes of the faculty of Systems Engineering, Policy Analysis, and Management at TU Del...

  18. Optimization of an implicit constrained multi-physics system for motor wheels of electric vehicle

    International Nuclear Information System (INIS)

    Lei, Fei; Du, Bin; Liu, Xin; Xie, Xiaoping; Chai, Tian

    2016-01-01

    In this paper, implicit constrained multi-physics model of a motor wheel for an electric vehicle is built and then optimized. A novel optimization approach is proposed to solve the compliance problem between implicit constraints and stochastic global optimization. Firstly, multi-physics model of motor wheel is built from the theories of structural mechanics, electromagnetism and thermal physics. Then, implicit constraints are applied from the vehicle performances and magnetic characteristics. Implicit constrained optimization is carried out by a series of unconstrained optimization and verifications. In practice, sequentially updated subspaces are designed to completely substitute the original design space in local areas. In each subspace, a solution is obtained and is then verified by the implicit constraints. Optimal solutions which satisfy the implicit constraints are accepted as final candidates. The final global optimal solution is optimized from those candidates. Discussions are carried out to discover the differences between optimal solutions with unconstrained problem and different implicit constrained problems. Results show that the implicit constraints have significant influences on the optimal solution and the proposed approach is effective in finding the optimals. - Highlights: • An implicit constrained multi-physics model is built for sizing a motor wheel. • Vehicle dynamic performances are applied as implicit constraints for nonlinear system. • An efficient novel optimization is proposed to explore the constrained design space. • The motor wheel is optimized to achieve maximum efficiency on vehicle dynamics. • Influences of implicit constraints on vehicle performances are compared and analyzed.

  19. Potential for increased wind-generated electricity utilization using heat pumps in urban areas

    International Nuclear Information System (INIS)

    Waite, Michael; Modi, Vijay

    2014-01-01

    Highlights: • Large-scale wind power and increased electric heat pumps were evaluated. • A deterministic model of wind power and electricity demand was developed. • Sub-models for space heating and domestic hot water demand were developed. • Increased use of heat pumps can improve the viability of large-scale wind power. • Larger wind power capacity can meet a target utilization rate with more heat pumps. - Abstract: The U.S. has substantial wind power potential, but given wind’s intermittent availability and misalignment with electricity demand profiles, large-scale deployment of wind turbines could result in high electricity costs due to energy storage requirements or low utilization rates. While fuel switching and heat pumps have been proposed as greenhouse gas (GHG) emissions and energy reduction strategies at the building scale, this paper shows that heat pump adoption could have additional system-wide benefits by increasing the utilization of wind-generated electricity. A model was developed to evaluate the effects of coupling large-scale wind power installations in New York State with increased use of electric heat pumps to meet a portion of space heating and domestic hot water (DHW) demands in New York City. The analysis showed significant increases in wind-generated electricity utilization with increased use of heat pumps, allowing for higher installed capacity of wind power. One scenario indicates that 78.5% annual wind-generated electricity utilization can be achieved with 3 GW of installed wind power capacity generated electricity equal to 20% of existing NYC annual electricity demand; if 20% of space heating and DHW demands are provided by heat pumps, the 78.5% utilization rate can be achieved with an increase of total wind power capacity to 5 GW. Therefore, this integrated supply–demand approach could provide additional system-wide emissions reductions

  20. Estimation of Longitudinal Force and Sideslip Angle for Intelligent Four-Wheel Independent Drive Electric Vehicles by Observer Iteration and Information Fusion.

    Science.gov (United States)

    Chen, Te; Chen, Long; Xu, Xing; Cai, Yingfeng; Jiang, Haobin; Sun, Xiaoqiang

    2018-04-20

    Exact estimation of longitudinal force and sideslip angle is important for lateral stability and path-following control of four-wheel independent driven electric vehicle. This paper presents an effective method for longitudinal force and sideslip angle estimation by observer iteration and information fusion for four-wheel independent drive electric vehicles. The electric driving wheel model is introduced into the vehicle modeling process and used for longitudinal force estimation, the longitudinal force reconstruction equation is obtained via model decoupling, the a Luenberger observer and high-order sliding mode observer are united for longitudinal force observer design, and the Kalman filter is applied to restrain the influence of noise. Via the estimated longitudinal force, an estimation strategy is then proposed based on observer iteration and information fusion, in which the Luenberger observer is applied to achieve the transcendental estimation utilizing less sensor measurements, the extended Kalman filter is used for a posteriori estimation with higher accuracy, and a fuzzy weight controller is used to enhance the adaptive ability of observer system. Simulations and experiments are carried out, and the effectiveness of proposed estimation method is verified.

  1. The Electrostatic Wind Energy Converter : Electrical performance of a high voltage prototype

    NARCIS (Netherlands)

    Djairam, D.

    2008-01-01

    Wind energy is converted to electrical energy by letting the wind move charged particles against the direction of an electric field. The advantage of this type of conversion is that no rotational movement, which occurs in conventional wind turbines, is required. An electrostatic wind energy

  2. Benefits for wind energy in electricity markets from using short term wind power prediction tools: a simulation study

    International Nuclear Information System (INIS)

    Usaola, J.; Ravelo, O.; Gonzalez, G.; Soto, F.; Davila, M.C.; Diaz-Guerra, B.

    2004-01-01

    One of the characteristics of wind energy, from the grid point of view, is its non-dispatchability, i.e. generation cannot be ordered, hence integration in electrical networks may be difficult. Short-term wind power prediction-tools could make this integration easier, either by their use by the grid System Operator, or by promoting the participation of wind farms in the electricity markets and using prediction tools to make their bids in the market. In this paper, the importance of a short-term wind power-prediction tool for the participation of wind energy systems in electricity markets is studied. Simulations, according to the current Spanish market rules, have been performed to the production of different wind farms, with different degrees of accuracy in the prediction tool. It may be concluded that income from participation in electricity markets is increased using a short-term wind power prediction-tool of average accuracy. This both marginally increases income and also reduces the impact on system operation with the improved forecasts. (author)

  3. Wind energy status in renewable electrical energy production in Turkey

    International Nuclear Information System (INIS)

    Kaygusuz, Kamil

    2010-01-01

    Main electrical energy sources of Turkey are thermal and hydraulic. Most of the thermal sources are derived from natural gas. Turkey imports natural gas; therefore, decreasing usage of natural gas is very important for both economical and environmental aspects. Because of disadvantages of fossil fuels, renewable energy sources are getting importance for sustainable energy development and environmental protection. Among the renewable sources, Turkey has very high wind energy potential. The estimated wind power capacity of Turkey is about 83,000 MW while only 10,000 MW of it seems to be economically feasible to use. Start 2009, the total installed wind power capacity of Turkey was only 4.3% of its total economical wind power potential (433 MW). However, the strong development of wind energy in Turkey is expected to continue in the coming years. In this study, Turkey's installed electric power capacity, electric energy production is investigated and also Turkey current wind energy status is examined. (author)

  4. General motors front wheel drive 2-mode hybrid transmission

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, James [General Motors Corp., Pontiac, MI (United States). New Transmission Products Group.; Holmes, Alan G. [General Motors Corp., Pontiac, MI (United States). Powertrain Hybrid Architecture

    2009-07-01

    General Motors now expands the application of two-mode hybrid technology to front wheel drive vehicles with the development of a hybrid electric transmission packaged into essentially the same space as a conventional automatic transmission for front wheel drive. This was accomplished using a space-efficient arrangement based on two planetary gear sets and electric motor-generators with large internal diameters. A combination of damper and hydraulically-controlled clutch allow comfortable shutdown and restarting of large-displacement engines in front wheel drive vehicles. The hybrid system delivers electric low-speed urban driving, two continuously variable ranges of transmission speed ratios, four fixed transmission speed ratios, electric acceleration boosting, and regenerative braking. In the first vehicle application, the two-mode hybrid helps to reduce vehicle fuel consumption by approximately one-third. (orig.)

  5. The time has come for retail wheeling

    International Nuclear Information System (INIS)

    Dahlen, D.O.; Achinger, S.K.

    1993-01-01

    Retail wheeling, the transmission and distribution of electric power for end users, fosters competition and promotes the efficient use of resources. Access to electric-utility transmission and distribution systems would establish competitive electric markets by permitting retail customers to obtain the lowest cost for energy which would meet their specific needs. Among electric utilities and their customers, the idea of allowing market forces to attract supply and set prices is a current controversy. To counter the anticompetitive effects of recent mergers in the wholesale market, the Federal Energy Regulatory Commission (FERC) has mandated open transmission access for wholesale customers. However, the FERC denied access to retail customers and qualifying facilities (QF) in both its Northeast Utilities (FERC case No. EC-90-1 90) and PacifiCorp (U.S. Circuit Court of Appeals for D.C., 89-1333) decisions. Retail wheeling will benefit both consumers and producers. The ability of large customers to purchase power from the lowest cost sources and have it transmitted to their facilities, will save American industrial and commercial customers at least $15 billion annually. The Increased efficiency resulting from competition would also reduce residential electric bills. Through retail wheeling, independent power producers can market their capacity to a greater customer base, and traditional utilities will benefit from access to other utilities markets with the more efficient utilities prospering. Retail wheeling will, therefore, reward efficient utilities and encourage inefficient utilities to improve

  6. Electric vehicles and large-scale integration of wind power

    DEFF Research Database (Denmark)

    Liu, Wen; Hu, Weihao; Lund, Henrik

    2013-01-01

    with this imbalance and to reduce its high dependence on oil production. For this reason, it is interesting to analyse the extent to which transport electrification can further the renewable energy integration. This paper quantifies this issue in Inner Mongolia, where the share of wind power in the electricity supply...... was 6.5% in 2009 and which has the plan to develop large-scale wind power. The results show that electric vehicles (EVs) have the ability to balance the electricity demand and supply and to further the wind power integration. In the best case, the energy system with EV can increase wind power...... integration by 8%. The application of EVs benefits from saving both energy system cost and fuel cost. However, the negative consequences of decreasing energy system efficiency and increasing the CO2 emission should be noted when applying the hydrogen fuel cell vehicle (HFCV). The results also indicate...

  7. Estimation of longitudinal force, lateral vehicle speed and yaw rate for four-wheel independent driven electric vehicles

    Science.gov (United States)

    Chen, Te; Xu, Xing; Chen, Long; Jiang, Haobing; Cai, Yingfeng; Li, Yong

    2018-02-01

    Accurate estimation of longitudinal force, lateral vehicle speed and yaw rate is of great significance to torque allocation and stability control for four-wheel independent driven electric vehicle (4WID-EVs). A fusion method is proposed to estimate the longitudinal force, lateral vehicle speed and yaw rate for 4WID-EVs. The electric driving wheel model (EDWM) is introduced into the longitudinal force estimation, the longitudinal force observer (LFO) is designed firstly based on the adaptive high-order sliding mode observer (HSMO), and the convergence of LFO is analyzed and proved. Based on the estimated longitudinal force, an estimation strategy is then presented in which the strong tracking filter (STF) is used to estimate lateral vehicle speed and yaw rate simultaneously. Finally, co-simulation via Carsim and Matlab/Simulink is carried out to demonstrate the effectiveness of the proposed method. The performance of LFO in practice is verified by the experiment on chassis dynamometer bench.

  8. Integrated Fault Diagnosis Algorithm for Motor Sensors of In-Wheel Independent Drive Electric Vehicles

    Science.gov (United States)

    Jeon, Namju; Lee, Hyeongcheol

    2016-01-01

    An integrated fault-diagnosis algorithm for a motor sensor of in-wheel independent drive electric vehicles is presented. This paper proposes a method that integrates the high- and low-level fault diagnoses to improve the robustness and performance of the system. For the high-level fault diagnosis of vehicle dynamics, a planar two-track non-linear model is first selected, and the longitudinal and lateral forces are calculated. To ensure redundancy of the system, correlation between the sensor and residual in the vehicle dynamics is analyzed to detect and separate the fault of the drive motor system of each wheel. To diagnose the motor system for low-level faults, the state equation of an interior permanent magnet synchronous motor is developed, and a parity equation is used to diagnose the fault of the electric current and position sensors. The validity of the high-level fault-diagnosis algorithm is verified using Carsim and Matlab/Simulink co-simulation. The low-level fault diagnosis is verified through Matlab/Simulink simulation and experiments. Finally, according to the residuals of the high- and low-level fault diagnoses, fault-detection flags are defined. On the basis of this information, an integrated fault-diagnosis strategy is proposed. PMID:27973431

  9. Integrated Fault Diagnosis Algorithm for Motor Sensors of In-Wheel Independent Drive Electric Vehicles.

    Science.gov (United States)

    Jeon, Namju; Lee, Hyeongcheol

    2016-12-12

    An integrated fault-diagnosis algorithm for a motor sensor of in-wheel independent drive electric vehicles is presented. This paper proposes a method that integrates the high- and low-level fault diagnoses to improve the robustness and performance of the system. For the high-level fault diagnosis of vehicle dynamics, a planar two-track non-linear model is first selected, and the longitudinal and lateral forces are calculated. To ensure redundancy of the system, correlation between the sensor and residual in the vehicle dynamics is analyzed to detect and separate the fault of the drive motor system of each wheel. To diagnose the motor system for low-level faults, the state equation of an interior permanent magnet synchronous motor is developed, and a parity equation is used to diagnose the fault of the electric current and position sensors. The validity of the high-level fault-diagnosis algorithm is verified using Carsim and Matlab/Simulink co-simulation. The low-level fault diagnosis is verified through Matlab/Simulink simulation and experiments. Finally, according to the residuals of the high- and low-level fault diagnoses, fault-detection flags are defined. On the basis of this information, an integrated fault-diagnosis strategy is proposed.

  10. Adaptive Backstepping Self-balancing Control of a Two-wheel Electric Scooter

    Directory of Open Access Journals (Sweden)

    Nguyen Ngoc Son

    2014-10-01

    Full Text Available This paper introduces an adaptive backstepping control law for a two-wheel electric scooter (eScooter with a nonlinear uncertain model. Adaptive backstepping control is integrated with feedback control that satisfies Lyapunov stability. By using the recursive structure to find the controlled function and estimate uncertain parameters, an adaptive backstepping method allows us to build a feedback control law that efficiently controls a self-balancing controller of the eScooter. Additionally, a controller area network (CAN bus with high reliability is applied for communicating between the modules of the eScooter. Simulation and experimental results demonstrate the robustness and good performance of the proposed adaptive backstepping control.

  11. Wind power plant for electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Landsiedel, E

    1978-11-09

    The invention concerns a wind power plant which rotates on a vertical axis and is suitable for the generation of electricity. This wind power machine with a vertical axis can be mounted at any height, so that it can catch the wind on the vertical axis of rotation. Further, it does not have to be turned into the direction of the wind and fixed. The purpose of the invention is to obtain equal load on the structure due to the vertical axis. The purpose of the invention is fulfilled by having the wind vanes fixed above one another from the bottom to the top in 6 different directions. The particular advantage of the invention lies in the fact that the auxiliary blades can bring the other blades to the operating position in good time, due to their particular method of fixing.

  12. Variable cross-section windings for efficiency improvement of electric machines

    Science.gov (United States)

    Grachev, P. Yu; Bazarov, A. A.; Tabachinskiy, A. S.

    2018-02-01

    Implementation of energy-saving technologies in industry is impossible without efficiency improvement of electric machines. The article considers the ways of efficiency improvement and mass and dimensions reduction of electric machines with electronic control. Features of compact winding design for stators and armatures are described. Influence of compact winding on thermal and electrical process is given. Finite element method was used in computer simulation.

  13. Market integration of wind power in electricity system balancing

    DEFF Research Database (Denmark)

    Sorknæs, Peter; Andersen, Anders N.; Tang, Jens

    2013-01-01

    In most countries markets for electricity are divided into wholesale markets on which electricity is traded before the operation hour, and real-time balancing markets to handle the deviations from the wholesale trading. So far, wind power has been sold only on the wholesale market and has been...... known to increase the need for balancing. This article analyses whether wind turbines in the future should participate in the balancing markets and thereby play a proactive role. The analysis is based on a real-life test of proactive participation of a wind farm in West Denmark. It is found...... that the wind farm is able to play a proactive role regarding downward regulation and thereby increase profits....

  14. Wind power feed-in impact on electricity prices in Germany 2009-2013

    Directory of Open Access Journals (Sweden)

    François Benhmad

    2016-07-01

    Full Text Available Until quite recently no electricity system had faced the challenges associated with high penetrations of renewable energy sources (RES. In this paper, we carry out an empirical analysis for Germany, as a country with high penetration of wind energy, to investigate the well-known merit-order effect. Our main empirical findings suggest that the increasing share of wind power in-feed induces a decrease of electricity spot price level but an increase of spot prices volatility. Furthermore, the relationship between wind power and spot electricity prices can be strongly impacted by European electricity grids interconnection which behaves like a safety valve lowering volatility and limiting the price decrease. Therefore, the impacts of wind generated electricity on electricity spot markets are less clearly pronounced in interconnected systems.

  15. A combined modeling approach for wind power feed-in and electricity spot prices

    International Nuclear Information System (INIS)

    Keles, Dogan; Genoese, Massimo; Möst, Dominik; Ortlieb, Sebastian; Fichtner, Wolf

    2013-01-01

    Wind power generation and its impacts on electricity prices has strongly increased in the EU. Therefore, appropriate mark-to-market evaluation of new investments in wind power and energy storage plants should consider the fluctuant generation of wind power and uncertain electricity prices, which are affected by wind power feed-in (WPF). To gain the input data for WPF and electricity prices, simulation models, such as econometric models, can serve as a data basis. This paper describes a combined modeling approach for the simulation of WPF series and electricity prices considering the impacts of WPF on prices based on an autoregressive approach. Thereby WPF series are firstly simulated for each hour of the year and integrated in the electricity price model to generate an hourly resolved price series for a year. The model results demonstrate that the WPF model delivers satisfying WPF series and that the extended electricity price model considering WPF leads to a significant improvement of the electricity price simulation compared to a model version without WPF effects. As the simulated series of WPF and electricity prices also contain the correlation between both series, market evaluation of wind power technologies can be accurately done based on these series. - Highlights: • Wind power feed-in can be directly simulated with stochastic processes. • Non-linear relationship between wind power feed-in and electricity prices. • Price reduction effect of wind power feed-in depends on the actual load. • Considering wind power feed-in effects improves the electricity price simulation. • Combined modeling of both parameters delivers a data basis for evaluation tools

  16. Small Wind Electric Systems: A North Carolina Consumer's Guide

    Energy Technology Data Exchange (ETDEWEB)

    2005-03-01

    Small Wind Electric Systems: A North Carolina Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  17. Electric power from vertical-axis wind turbines

    Science.gov (United States)

    Touryan, K. J.; Strickland, J. H.; Berg, D. E.

    1987-12-01

    Significant advancements have occurred in vertical axis wind turbine (VAWT) technology for electrical power generation over the last decade; in particular, well-proven aerodynamic and structural analysis codes have been developed for Darrieus-principle wind turbines. Machines of this type have been built by at least three companies, and about 550 units of various designs are currently in service in California wind farms. Attention is presently given to the aerodynamic characteristics, structural dynamics, systems engineering, and energy market-penetration aspects of VAWTs.

  18. Reliability Assessment of Wind Farm Electrical System Based on a Probability Transfer Technique

    Directory of Open Access Journals (Sweden)

    Hejun Yang

    2018-03-01

    Full Text Available The electrical system of a wind farm has a significant influence on the wind farm reliability and electrical energy yield. The disconnect switch installed in an electrical system cannot only improve the operating flexibility, but also enhance the reliability for a wind farm. Therefore, this paper develops a probabilistic transfer technique for integrating the electrical topology structure, the isolation operation of disconnect switch, and stochastic failure of electrical equipment into the reliability assessment of wind farm electrical system. Firstly, as the traditional two-state reliability model of electrical equipment cannot consider the isolation operation, so the paper develops a three-state reliability model to replace the two-state model for incorporating the isolation operation. In addition, a proportion apportion technique is presented to evaluate the state probability. Secondly, this paper develops a probabilistic transfer technique based on the thoughts that through transfer the unreliability of electrical system to the energy transmission interruption of wind turbine generators (WTGs. Finally, some novel indices for describing the reliability of wind farm electrical system are designed, and the variance coefficient of the designed indices is used as a convergence criterion to determine the termination of the assessment process. The proposed technique is applied to the reliability assessment of a wind farm with the different topologies. The simulation results show that the proposed techniques are effective in practical applications.

  19. Wind energy as a significant source of electricity for the United States

    International Nuclear Information System (INIS)

    Nix, R.G.

    1996-06-01

    This paper discusses wind energy and its potential to significantly impact the generation of electricity within the US. The principles and the equipment used to convert wind energy to electricity are described, as is the status of current technology. Markets and production projections are given. There is discussion of the advances required to reduce the selling cost of electricity generated from the wind from today's price of about $0.05 per kilowatt-hour to full cost-competitiveness with gas- and coal-based electricity

  20. Electricity generating system. [Wind/diesel/flywheel system

    Energy Technology Data Exchange (ETDEWEB)

    Moody, R.L.

    1992-02-05

    An electricity generating system is described which includes a water tank with electric heating elements connected to the water cooling system of a diesel engine which is heated by excess output of the system. Power in excess of that required by a load which is generated by a wind turbine driven generator runs up a flywheel and further excess is absorbed in the tank. A fan associated with a radiator connected to the tank may be operated to dissipate further excess power. When the load requirements exceed the output of the generators linked to the wind turbine and the flywheel the engine operates a synchronous alternator. (author).

  1. Electricity storage. A solution for wind power integration? Study on the economic and institutional aspects of the implementation of electricity storage for the integration of wind power

    International Nuclear Information System (INIS)

    Hendriks, R.H.

    2004-06-01

    In today's society a power outage can lead to major financial damage. It is therefore of high importance that the electricity system is reliable and that customers can rely on high security of supply. To prevent power outages, the electricity system has to be in balance continuously: supply and load have to be equal. Currently the majority of the electricity generation is done by conventional power plants of which the operation schedule is fully controllable. This means that these plants can be operated in such a way that electricity demand, which varies during the day, can be met continuously. The integration of a large share of wind power in the electricity supply system however, can lead to problems with respect to the balancing of the electricity system. This is caused by the fact that wind power has an intermittent character. Its production fluctuates and is uncertain: it therefore cannot be used to follow the varying load. Electricity storage could contribute to the integration of wind power in the electricity supply system. Storage systems can decouple the timing of generation and consumption of electricity and can therefore compensate for the fluctuations in wind power production. This investigation aims at identifying what problems the integration of a large share of wind power will cause and how electricity storage can resolve these problems. Subsequently, the implementation costs of storage systems for the identified applications will be investigated. Finally, the current regulatory environment will be discussed to evaluate whether it is geared to the implementation of electricity storage. Therefore, the following research question is formulated: Under which technological and institutional preconditions will it be advantageous to implement electricity storage systems, in combination with wind farms, in the next 20 years? To answer the research question the following subquestions have been formulated: (1) What are the implications of the market design on

  2. Bidirectional ionic wind in nonpremixed counterflow flames with DC electric fields

    KAUST Repository

    Park, Daegeun

    2016-05-05

    Under an electric field, ions in the reaction zone of a flame generate a bulk flow motion called ionic wind. Because the majority of ions are positive, ionic wind is commonly considered to be unidirectional toward the cathode. A more thorough understanding of the effects of electric fields on flames could be obtained by clarifying the role of minor negative ions in the ionic wind. Here, we report on the effects of direct current on nonpremixed counterflow flames by visualizing the ionic wind. We found that the original flow field separates near the flame when it locates at a flow stagnation plane, resulting in a double-stagnant flow configuration. This evidences a bidirectional ionic wind blowing from the flame to both the cathode and the anode due to the positive and the negative ions, respectively. Meanwhile, an electric body force pulls the flame toward the cathode. Thus, the electric field affects the strain rate and the axial location of the stoichiometry, which are important for characterizing nonpremixed counterflow flames. In addition, measurement of the electric current density roughly showed a nearly saturated current when these flames restabilized under relatively high voltage. Detailed explanations of flame behavior, electric currents, and flow characteristics of various fuels are discussed in this study.

  3. Integrating wind power in EU electricity systems. Economic and technical issues

    International Nuclear Information System (INIS)

    Van Werven, M.J.N.; Beurskens, L.W.M.; Pierik, J.T.G.

    2005-02-01

    In view of the ongoing process of liberalisation of the electricity market and the expected increase of wind power pursuant the RES-E Directive (Renewable Energy Sources - Electricity) and the need to minimise the costs of the RES-E targets, this study discusses the technical and economic impacts of integrating wind power into the electricity system. Furthermore, two options for reducing costs of intermittency are researched: forecasting of wind power output and electricity storage. An increasing penetration of wind power into the electricity system causes additional costs, partly due to the fact that the energy source of wind power is uncontrollable, variable (on the short term as well as on the longer term), and unpredictable (especially on the longer term). Consequently, balancing generation and demand becomes more complicated, creating a need for additional secondary and tertiary control. Although the sources of increasing costs are becoming more clearly understood, as are means to mitigate them, the quantification of costs of operating an electricity system with high wind penetration is very hard. Two possible options to reduce costs of intermittency are discussed in this report: forecasting of wind power output and electricity storage. The need for and benefit of wind energy forecasting have been increasingly recognised in recent years. Forecasting of wind power directs on increasing the predictability of the resource and improved forecasting can help to enhance the balancing of supply and demand. DG (distributed generation) operators can provide better information about their expected power output, energy suppliers can submit better estimates of electricity production to the TSO (Transmission System Operator), and system operators can improve network management through better information about expected power flows. Electricity storage systems can, at the same time, offer different services to a number of actors. Next to benefits that result from price

  4. OPTIMIZATION OF HEATING OF GEAR WHEEL USING NUMERICAL MODELING

    Directory of Open Access Journals (Sweden)

    Soňa Benešová

    2013-09-01

    Full Text Available Successful heat treating and carburizing of gear wheels for wind turbine gear boxes requires that plastic deformation in the wheel is minimized. Numerical modeling using the DEFORM software was aimed at exploring the effects of the base, on which the gear wheel rests during heating, on the heating process. Homogeneous heating was assumed. It was found that the base heats up more quickly than the workpiece. It is the consequence of the base's shape and volume. As a result, the base expands and slides against the wheel, predominantly at the first heating stage. Later on, it prevents the gear wheel from expanding, causing plastic deformation in the wheel. The findings were used for designing new heating schedules to minimize these undesirable interactions and to reduce the plastic deformation to a negligible magnitude. In addition, this paper presents an example of a practical use of numerical modeling in the DEFORM software.

  5. OPTIMIZATION OF HEATING OF GEAR WHEEL USING NUMERICAL MODELING

    Directory of Open Access Journals (Sweden)

    Sona Benesova

    2013-05-01

    Full Text Available Successful heat treating and carburizing of gear wheels for wind turbine gear boxes requires that plastic deformation in the wheel is minimized. Numerical modeling using the DEFORM software was aimed at exploring the effects of the base, on which the gear wheel rests during heating, on the heating process. Homogeneous heating was assumed. It was found that the base heats up more quickly than the workpiece. It is the consequence of the base's shape and volume. As a result, the base expands and slides against the wheel, predominantly at the first heating stage. Later on, it prevents the gear wheel from expanding, causing plastic deformation in the wheel. The findings were used for designing new heating schedules to minimize these undesirable interactions and to reduce the plastic deformation to a negligible magnitude. In addition, this paper presents an example of a practical use of numerical modeling in the DEFORM software.

  6. Solar wind power electric plant on Vis (Croatia)

    International Nuclear Information System (INIS)

    1998-01-01

    A project of a solar photovoltaic electric power plant presented by the Republic of Croatia at the meeting of the E.P.I.A. Mission for photovoltaic technology of the Mediterranean countries, aroused a great interest of the representatives of the invited countries. However, the interest within Croatia in the project has disappeared although E.P.I.A. offered a financing of two thirds of costs. There are attempts to construct 1800 kw wind-driven generators at the same location not taking into consideration a possibility of building a hybrid solar-wind-power electric plant. The chance that the solar part is completely of domestic origin is not accepted but the preference is given to the building of imported wind-driven generators. (orig.)

  7. International energy technology collaboration: wind power integration into electricity systems

    International Nuclear Information System (INIS)

    Justus, D.

    2006-01-01

    A rapid growth of wind power since the 1990s has led to notable market shares in some electricity markets. This growth is concentrated in a few countries with effective Research, Development and Demonstration (RD and D) programmes and with policies that support its diffusion into the market place. The speed and depth of its penetration in these electricity markets have amplified the need to address grid integration concerns, so as not to impede the further penetration of wind power. Research on technologies, tools and practices for integrating large amounts of wind power into electricity supply systems is attempting to respond to this need. In recent years, existing international collaborative research efforts have expanded their focus to include grid integration of wind power and new consortia have been formed to pool knowledge and resources. Effective results benefit a few countries that already have a significant amount of wind in their electricity supply fuel mix, as well as to the potential large markets worldwide. This paper focuses on the challenge of bringing significant amounts of intermittent generating sources into grids dominated by large central generating units. It provides a brief overview of the growth of wind power, mainly since 1990, the technical and operational issues related to integration and selected collaborative programmes underway to address grid integration concerns. (author)

  8. Wind up with continuous intra-day electricity markets? The integration of large-share wind power generation in Denmark

    International Nuclear Information System (INIS)

    Karanfil, Fatih; Li, Yuanjing

    2015-01-01

    This paper suggests an innovative idea to examine the functionality of an electricity intra-day market by testing causality among its fundamental components. As fluctuations of poorly predicted wind power generation are challenging the stability of the current electricity system, an intra-day market design can play an important role in managing wind forecast errors. Using Danish and Nordic data, it investigates the main drivers of the price difference between the intra-day and day-ahead markets, and causality between wind forecast errors and their counterparts. Our results show that the wind and conventional generation forecast errors significantly cause the intra-day price to differ from the day-ahead price, and that the relative intra-day price decreases with the unexpected amount of wind generation. Cross-border electricity exchanges are found to be important to handle wind forecast errors. Additionally, some zonal differences with respect to both causality and impulse responses are detected. This paper provides the first evidence on the persuasive functioning of the intra-day market in the case of Denmark, whereby intermittent production deviations are effectively reduced, and wind forecast errors are jointly handled through the responses from demand, conventional generation, and intra-day international electricity trade. (authors)

  9. The hydraulic wheel

    International Nuclear Information System (INIS)

    Alvarez Cardona, A.

    1985-01-01

    The present article this dedicated to recover a technology that key in disuse for the appearance of other techniques. It is the hydraulic wheel with their multiple possibilities to use their energy mechanical rotational in direct form or to generate electricity directly in the fields in the place and to avoid the high cost of transport and transformation. The basic theory is described that consists in: the power of the currents of water and the hydraulic receivers. The power of the currents is determined knowing the flow and east knowing the section of the flow and its speed; they are given you formulate to know these and direct mensuration methods by means of floodgates, drains and jumps of water. The hydraulic receivers or properly this hydraulic wheels that are the machines in those that the water acts like main force and they are designed to transmit the biggest proportion possible of absolute work of the water, the hydraulic wheels of horizontal axis are the common and they are divided in: you rotate with water for under, you rotate with side water and wheels with water for above. It is analyzed each one of them, their components are described; the conditions that should complete to produce a certain power and formulate them to calculate it. There are 25 descriptive figures of the different hydraulic wheels

  10. High penetration wind generation impacts on spot prices in the Australian national electricity market

    International Nuclear Information System (INIS)

    Cutler, Nicholas J.; Boerema, Nicholas D.; MacGill, Iain F.; Outhred, Hugh R.

    2011-01-01

    This paper explores wind power integration issues for the South Australian (SA) region of the Australian National Electricity Market (NEM) by assessing the interaction of regional wind generation, electricity demand and spot prices over 2 recent years of market operation. SA's wind energy penetration has recently surpassed 20% and it has only a limited interconnection with other regions of the NEM. As such, it represents an interesting example of high wind penetration in a gross wholesale pool market electricity industry. Our findings suggest that while electricity demand continues to have the greatest influence on spot prices in SA, wind generation levels have become a significant secondary influence, and there is an inverse relationship between wind generation and price. No clear relationship between wind generation and demand has been identified although some periods of extremely high demand may coincide with lower wind generation. Periods of high wind output are associated with generally lower market prices, and also appear to contribute to extreme negative price events. The results highlight the importance of electricity market and renewable policy design in facilitating economically efficient high wind penetrations. - Highlights: → In South Australia (SA) wind generation is having an influence on market prices. → Little or no correlation is found between wind generation and demand. → Wind farms in SA are receiving a lower average price than in other States. → The results highlight the importance of appropriate electricity market design.

  11. Utility-sized Madaras wind plants

    Science.gov (United States)

    Whitford, D. H.; Minardi, J. E.

    1981-01-01

    An analysis and technological updating were conducted for the Madaras Rotor Power Plant concept, to determine its ability to compete both technically and economically with horizontal axis wind turbine generators currently under development. The Madaras system uses large cylinders rotating vertically atop each regularly spaced flatcar of a train to propel them, by means of Magnus-effect interaction with the wind, along a circular or oval track. Alternators geared to the wheels of each car generate electrical power, which is transmitted to a power station by a trolley system. The study, consisting of electromechanical design, wind tunnel testing, and performance and cost analyses, shows that utility-sized plants greater than 228 MW in capacity and producing 975,000 kWh/year are feasible. Energy costs for such plants are projected to be between 22% lower and 12% higher than horizontal axis turbine plants of comparable output.

  12. Generation Ratio Availability Assessment of Electrical Systems for Offshore Wind Farms

    DEFF Research Database (Denmark)

    Zhao, Menghua; Chen, Zhe; Blaabjerg, Frede

    2007-01-01

    An availability index, Generation Ratio Availability (GRA), is proposed to evaluate the electrical system of offshore wind farms (OWF). The GRA is the probability that at least a certain percent of wind power could be transferred to the grid system through the concerned electrical system. The GRA....... Comprehensive studies have been conducted to investigate the influence of the network design, component parameters, and wind-speed regimes on the GRA. The analysis presented in this paper is useful for both future wind farm planning and existing OWF evaluation....

  13. Meeting residential space heating demand with wind-generated electricity

    International Nuclear Information System (INIS)

    Hughes, Larry

    2010-01-01

    Worldwide, many electricity suppliers are faced with the challenge of trying to integrate intermittent renewables, notably wind, into their energy mix to meet the needs of those services that require a continuous supply of electricity. Solutions to intermittency include the use of rapid-response backup generation and chemical or mechanical storage of electricity. Meanwhile, in many jurisdictions with lengthy heating seasons, finding secure and preferably environmentally benign supplies of energy for space heating is also becoming a significant challenge because of volatile energy markets. Most, if not all, electricity suppliers treat these twin challenges as separate issues: supply (integrating intermittent renewables) and demand (electric space heating). However, if space heating demand can be met from an intermittent supply of electricity, then both of these issues can be addressed simultaneously. One such approach is to use off-the-shelf electric thermal storage systems. This paper examines the potential of this approach by applying the output from a 5.15 MW wind farm to the residential heating demands of detached households in the Canadian province of Prince Edward Island. The paper shows that for the heating season considered, up to 500 households could have over 95 percent of their space heating demand met from the wind farm in question. The benefits as well as the limitations of the approach are discussed in detail. (author)

  14. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan H; Wiser, Ryan H; Fripp, Matthias

    2008-05-01

    Wind power production is variable, but also has diurnal and seasonal patterns. These patterns differ between sites, potentially making electric power from some wind sites more valuable for meeting customer loads or selling in wholesale power markets. This paper investigates whether the timing of wind significantly affects the value of electricity from sites in California and the Northwestern United States. We use both measured and modeled wind data and estimate the time-varying value of wind power with both financial and load-based metrics. We find that the potential difference in wholesale market value between better-correlated and poorly correlated wind sites is modest, on the order of 5-10 percent. A load-based metric, power production during the top 10 percent of peak load hours, varies more strongly between sites, suggesting that the capacity value of different wind projects could vary by as much as 50 percent based on the timing of wind alone.

  15. Study on the Attitude Control of Spacecraft Using Reaction Wheels

    Directory of Open Access Journals (Sweden)

    Ju-Young Du

    1998-06-01

    Full Text Available Attitude determination and control of satellite is important component which determines the accomplish satellite missions. In this study, attitude control using reaction wheels and momentum dumping of wheels are considered. Attitude control law is designed by Sliding control and LQR. Attitude maneuver control law is obtained by Shooting method. Wheels momentum dumping control law is designed by Bang-Bang control. Four reaction wheels are configurated for minimized the electric power consumption. Wheels control torque and magnetic moment of magnetic torquer are limited.

  16. Integration of electric drive vehicles in the Danish electricity network with high wind power penetration

    DEFF Research Database (Denmark)

    Chandrashekhara, Divya K; Østergaard, Jacob; Larsen, Esben

    2010-01-01

    /conventional) which are likely to fuel these cars. The study was carried out considering the Danish electricity network state around 2025, when the EDV penetration levels would be significant enough to have an impact on the power system. Some of the interesting findings of this study are - EDV have the potential......This paper presents the results of a study carried out to examine the feasibility of integrating electric drive vehicles (EDV) in the Danish electricity network which is characterised by high wind power penetration. One of the main aims of this study was to examine the effect of electric drive...... vehicles on the Danish electricity network, wind power penetration and electricity market. In particular the study examined the effect of electric drive vehicles on the generation capacity constraints, load curve, cross border transmission capacity and the type of generating sources (renewable...

  17. Multi-winding homopolar electric machine

    Science.gov (United States)

    Van Neste, Charles W

    2012-10-16

    A multi-winding homopolar electric machine and method for converting between mechanical energy and electrical energy. The electric machine includes a shaft defining an axis of rotation, first and second magnets, a shielding portion, and a conductor. First and second magnets are coaxial with the shaft and include a charged pole surface and an oppositely charged pole surface, the charged pole surfaces facing one another to form a repulsive field therebetween. The shield portion extends between the magnets to confine at least a portion of the repulsive field to between the first and second magnets. The conductor extends between first and second end contacts and is toroidally coiled about the first and second magnets and the shield portion to develop a voltage across the first and second end contacts in response to rotation of the electric machine about the axis of rotation.

  18. An energy management system for a directly-driven electric scooter

    International Nuclear Information System (INIS)

    Yang, Yee-Pien; Liu, Jieng-Jang; Hu, Tsung-Hsien

    2011-01-01

    An energy management system with an electronic gearshift and regenerative braking is presented to improve the gross efficiency and driving range of an electric scooter, driven directly by a four-phase axial-flux DC brushless wheel motor. The integration of stator windings, batteries, ultracapacitors, and a digital controller constitutes an energy management system, which features smooth electronic gear shifting and regenerative braking. The gross efficiency of the experimental scooter is improved in the drivable range by 20% with respect to that without regenerative braking. The battery-to-wheel efficiency was also above 70% for both low- and high-speed gears.

  19. An energy management system for a directly-driven electric scooter

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yee-Pien, E-mail: ypyang@ntu.edu.t [Department of Mechanical Engineering, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei, Taiwan (China); Liu, Jieng-Jang, E-mail: jjliu@ntu.edu.t [Department of Mechanical Engineering, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei, Taiwan (China); Hu, Tsung-Hsien, E-mail: elvishu@artc.org.t [Department of Mechanical Engineering, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei, Taiwan (China)

    2011-01-15

    An energy management system with an electronic gearshift and regenerative braking is presented to improve the gross efficiency and driving range of an electric scooter, driven directly by a four-phase axial-flux DC brushless wheel motor. The integration of stator windings, batteries, ultracapacitors, and a digital controller constitutes an energy management system, which features smooth electronic gear shifting and regenerative braking. The gross efficiency of the experimental scooter is improved in the drivable range by 20% with respect to that without regenerative braking. The battery-to-wheel efficiency was also above 70% for both low- and high-speed gears.

  20. An energy management system for a directly-driven electric scooter

    Energy Technology Data Exchange (ETDEWEB)

    Yee-Pien Yang; Jieng-Jang Liu; Tsung-Hsien Hu [Department of Mechanical Engineering, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei (China)

    2011-01-15

    An energy management system with an electronic gearshift and regenerative braking is presented to improve the gross efficiency and driving range of an electric scooter, driven directly by a four-phase axial-flux DC brushless wheel motor. The integration of stator windings, batteries, ultracapacitors, and a digital controller constitutes an energy management system, which features smooth electronic gear shifting and regenerative braking. The gross efficiency of the experimental scooter is improved in the drivable range by 20% with respect to that without regenerative braking. The battery-to-wheel efficiency was also above 70% for both low- and high-speed gears. (author)

  1. Hydrogen from nuclear plus wind using real-time electricity prices

    International Nuclear Information System (INIS)

    Miller, A.I.; Duffey, R.B.; Fairlie, M.; Anders, P.

    2004-01-01

    During the early years of hydrogen's use as a vehicle fuel, penetration of the market will be small. This favours distributed production by electrolysis, which avoids the scale-dependent costs of distribution from centralized plants. For electrolysis actually to be the preferred option, capital equipment for electrolysis must be reasonably cheap but the dominant cost component is the electricity price. By about 2006, advanced designs of nuclear reactors should be available to produce electricity at around 30 US$/MW.h at the plant gate. The best approach to producing low-cost electrolytic hydrogen is shown to be use of such reactors to supply electricity to the grid at times of peak price and demand and to make hydrogen at other times In this paper, this model has been used to calculate the production costs for electrolytic hydrogen at the location where the electricity is generated, using the actual prices of electricity paid by the Alberta Power Pool in 2002 and 2003 and by the Ontario Grid for 2003. The analysis shows clearly that by optimizing the co-production of hydrogen and electricity (referred to as the H 2 /e process) the cost for hydrogen produced can comfortably meet the US Department of Energy's target of 2000 US$/tonne. Because of its lower availability factor, wind-produced electricity cannot meet this cost target. However, if wind power availability can reach 35%, an intermittent supplementary current of wind-generated electricity may economically be fed to an electrolytic plant primarily supplied by nuclear power. Additional current raises the voltage for electrolysis but there would be only small additional capital costs. The two non-CO 2 -emitting sources, nuclear and wind could become complementary, providing an affordable way of storing wind-generated electricity when the supply exceeds demand in electricity markets The analyses presented in this paper looks at the case of bulk production of H 2 /e in a 'wholesale' energy market and does not

  2. Electricity network limitations on large-scale deployment of wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Fairbairn, R.J.

    1999-07-01

    This report sought to identify limitation on large scale deployment of wind energy in the UK. A description of the existing electricity supply system in England, Scotland and Wales is given, and operational aspects of the integrated electricity networks, licence conditions, types of wind turbine generators, and the scope for deployment of wind energy in the UK are addressed. A review of technical limitations and technical criteria stipulated by the Distribution and Grid Codes, the effects of system losses, and commercial issues are examined. Potential solutions to technical limitations are proposed, and recommendations are outlined.

  3. A Wind Farm Electrical Systems Evaluation with EeFarm-II

    Directory of Open Access Journals (Sweden)

    Jan Pierik

    2010-03-01

    Full Text Available EeFarm-II is used to evaluate 13 different electrical systems for a 200 MW wind farm with a 100 km connection to shore. The evaluation is based on component manufacturer data of 2009. AC systems are compared to systems with DC connections inside the wind farm and DC connection to shore. Two options have the best performance for this wind farm size and distance: the AC system and the system with a DC connection to shore. EeFarm-II is a user friendly computer program for wind farm electrical and economic evaluation. It has been built as a Simulink Library in the graphical interface of Matlab-Simulink. EeFarm-II contains models of wind turbines, generators, transformers, AC cables, inductors, nodes, splitters, PWM converters, thyristor converters, DC cables, choppers and statcoms.

  4. Electric Vehicles in Power Systems with 50% Wind Power Penetration

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Foosnæs, Anders; Xu, Zhao

    2009-01-01

    will be an important balancing measure to enable the Danish government’s energy strategy, which implies 50% wind power penetration in the electric power system. An EV will be a storage device for smoothing power fluctuations from renewable resources especially wind power and provide valuable system services...... for a reliable power system operation. Cost-benefit analysis shows that intelligent bidirectional charging – vehicle to grid (V2G) – provides a socio-economic profit of 150 million Euro/year in the Danish electric power system in 2025 assuming that 15% of the Danish road transport need is supplied by electricity....... This paper analyse the potential for using EVs in Denmark and identify the benefits of the electric power system with high wind power generation by intelligent charging of the EVs. Based on the analysis important technology gabs are identified, and the corresponding research and development initiatives...

  5. Farmers’ Comparative Use Assessment Of Wind And Electric Pump For Irrigation

    Directory of Open Access Journals (Sweden)

    Diaba Kwasi Selassie

    2015-10-01

    Full Text Available Keta District provides one of the best wind regimes in Ghana and farming is the main occupation of most people in the communities of the district, notably the anloga community. A small size wind pump (1.6m rotor diameter is currently in operation in Anloga in the Keta District on pilot bases to verify its cost effectiveness compared with the hydro electric power technology. The high electricity tariff paid every month for power consumption deterred majority of the farmers using hydro electricity technology for pumping. A survey conducted revealed that out of about 50 farmers, only 29% engaged in the use of electric power for pumping whilst 69% still use the manual method. 2% of the farmers are using wind energy technology on pilot bases. Farmers in these coastal communities may have engaged in the use of wind energy for water pumping but for its high initial cost.

  6. Integration of wind power in the liberalized Dutch electricity market

    NARCIS (Netherlands)

    Ummels, B.C.; Gibescu, M.; Kling, W.L.; Paap, G.C.

    2006-01-01

    Wind power is becoming a large-scale electricity generation technology in a number of European countries, including the Netherlands.Owing to the variability and unpredictability of wind power production, large-scale wind power can be foreseen to have large consequences for balancing generation and

  7. Combined hydro-wind generation bids in a pool-based electricity market

    International Nuclear Information System (INIS)

    Angarita, Jorge L.; Usaola, Julio; Martinez-Crespo, Jorge

    2009-01-01

    Present regulatory trends are promoting the direct participation of wind energy in electricity markets. The final result of these markets sets the production scheduling for the operation time, including a power commitment from the wind generators. However, wind resources are uncertain, and the final power delivered usually differs from the initial power committed. This imbalance produces an overcost in the system, which must be paid by those who produce it, e.g., wind generators among others. As a result, wind farm revenue decreases, but it could increase by allowing wind farms to submit their bids to the markets together with a hydro generating unit, which may easily modify its production according to the expected imbalance. This paper presents a stochastic optimization technique that maximizes the joint profit of hydro and wind generators in a pool-based electricity market, taking into account the uncertainty of wind power prediction. (author)

  8. Electrical components library for HAWC2; Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Cutululis, N.A.; Larsen, Torben J.; Soerensen, Poul; Hansen, Anca D. (Risoe National Lab., DTU, Wind Energy Dept., Roskilde (DK)); Iov, F. (Aalborg Univ., Institute of Energy Technology (DK))

    2007-12-15

    The work presented in this report is part of the EFP project called ''A Simulation Platform to Model, Optimize and Design Wind Turbines'' partly funded by the Danish Energy Authority under contract number 1363/04-0008. The project is carried out in cooperation between Risoe National Laboratory and Aalborg University. In this project, the focus is on the development of a simulation platform for wind turbine systems using different simulation tools. This report presents the electric component library developed for use in the aeroelastic code HAWC2. The developed library includes both steady state and dynamical models for fixed and variable speed wind turbines. A simple steady-state slip model was developed for the fixed speed wind turbine. This model is suitable for aeroelastic design of wind turbines under normal operation. A dynamic model of an induction generator for the fixed speed wind turbine was developed. The model includes the dynamics of the rotor fluxes. The model is suitable for a more detailed investigation of the mechanical-electrical interaction, both under normal and fault operation. For the variable speed wind turbine, a steadystate model, typically used in aeroelastic design, was implemented. The model can be used for normal and, to some extent, for fault operation. The reduced order dynamic model of a DFIG was implemented. The model includes only the active power controller and can be used for normal operation conditions. (au)

  9. Wheel slip control with torque blending using linear and nonlinear model predictive control

    Science.gov (United States)

    Basrah, M. Sofian; Siampis, Efstathios; Velenis, Efstathios; Cao, Dongpu; Longo, Stefano

    2017-11-01

    Modern hybrid electric vehicles employ electric braking to recuperate energy during deceleration. However, currently anti-lock braking system (ABS) functionality is delivered solely by friction brakes. Hence regenerative braking is typically deactivated at a low deceleration threshold in case high slip develops at the wheels and ABS activation is required. If blending of friction and electric braking can be achieved during ABS events, there would be no need to impose conservative thresholds for deactivation of regenerative braking and the recuperation capacity of the vehicle would increase significantly. In addition, electric actuators are typically significantly faster responding and would deliver better control of wheel slip than friction brakes. In this work we present a control strategy for ABS on a fully electric vehicle with each wheel independently driven by an electric machine and friction brake independently applied at each wheel. In particular we develop linear and nonlinear model predictive control strategies for optimal performance and enforcement of critical control and state constraints. The capability for real-time implementation of these controllers is assessed and their performance is validated in high fidelity simulation.

  10. Electric industry restructuring, ancillary services, and the potential impact on wind

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, B.; Hirst, E. [Oak Ridge National Lab., TN (United States); Parsons, B.; Porter, K. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1997-12-31

    The new competitive electric power environment raises increased challenges for wind power. The DOE and EPRI wind programs have dealt extensively with the traditional vertically integrated utility planning and operating environment in which the host utility owns the generation (or purchases the power) and provides dispatch and transmission services. Under this traditional environment, 1794 MW of wind power, principally in California, have been successfully integrated into the U.S. electric power system. Another 4200 MW are installed elsewhere in the world. As issues have arisen, such as intermittency and voltage regulation, they have been successfully addressed with accepted power system procedures and practices. For an intermittent, non-dispatchable resource such as wind, new regulatory rules affecting power transmission services, raise questions about which ancillary services wind plants will be able to sell, which they will be required to purchase, and what the economic impacts will be on individual wind projects. This paper begins to look at issues of concern to wind in a restructured electric industry. The paper first briefly looks at the range of unbundled services and comments on their unique significance to wind. To illustrate the concerns that arise with restructuring, the paper then takes a more detailed look at a single service: regulation. Finally, the paper takes a brief look at technologies and strategies that could improve the competitive position of wind.

  11. Forecasting and decision-making in electricity markets with focus on wind energy

    DEFF Research Database (Denmark)

    Jónsson, Tryggvi

    This thesis deals with analysis, forecasting and decision making in liberalised electricity markets. Particular focus is on wind power, its interaction with the market and the daily decision making of wind power generators. Among recently emerged renewable energy generation technologies, wind power...... derivation of practically applicable tools for decision making highly relevant. The main characteristics of wind power differ fundamentally from those of conventional thermal power. Its effective generation capacity varies over time and is directly dependent on the weather. This dependency makes future...... has become the global leader in terms of installed capacity and advancement. This makes wind power an ideal candidate to analyse the impact of growing renewable energy generation capacity on the electricity markets. Furthermore, its present status of a significant supplier of electricity makes...

  12. Electricity market design for facilitating the integration of wind energy. Experience and prospects with the Australian National Electricity Market

    International Nuclear Information System (INIS)

    MacGill, Iain

    2010-01-01

    Australia has been an early and enthusiastic adopter of both electricity industry restructuring and market-based environmental regulation. The Australian National Electricity Market (NEM) was established in 1999 and Australia also implemented one of the world's first renewable energy target schemes in 2001. With significant recent growth in wind generation, Australia provides an interesting case for assessing different approaches to facilitating wind integration into the electricity industry. Wind project developers in Australia must assess both potential energy market and Tradeable Green Certificate income streams when making investments. Wind-farm energy income depends on the match of its uncertain time varying output with the regional half hourly market price; a price that exhibits daily, weekly and seasonal patterns and considerable uncertainty. Such price signals assist in driving investments that maximize project value to the electricity industry as a whole, including integration costs and benefits for other participants. Recent NEM rule changes will formally integrate wind generation in the market's scheduling processes while a centralized wind forecasting system has also been introduced. This paper outlines experience to date with wind integration in the NEM, describes the evolution of market rules in response and assesses their possible implications for facilitating high future wind penetrations. (author)

  13. Wind power impacts and electricity storage - a time scale perspective

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Meibom, Peter

    2012-01-01

    Integrating large amounts of wind power in energy systems poses balancing challenges due to the variable and only partly predictable nature of wind. The challenges cover different time scales from intra-hour, intra-day/day-ahead to several days and seasonal level. Along with flexible electricity...... demand options, various electricity storage technologies are being discussed as candidates for contributing to large-scale wind power integration and these also differ in terms of the time scales at which they can operate. In this paper, using the case of Western Denmark in 2025 with an expected 57% wind...... power penetration, wind power impacts on different time scales are analysed. Results show consecutive negative and high net load period lengths indicating a significant potential for flexibility measures capable of charging/activating demand and discharging/inactivating demand in periods of 1 h to one...

  14. Global changes in total and wind electricity (1990–2014

    Directory of Open Access Journals (Sweden)

    María del P. Pablo-Romero

    2017-03-01

    Full Text Available Wind energy is one of the renewable energies which have less adverse environmental impact and is becoming economically affordable long before several other renewable energies. Over recent years, substantial additions have been noted in wind energy capacity, although many differences can be observed between countries. Using the latest available data, this paper provides a concise analysis of wind energy and electricity consumption trends for the period 1990–2014 in a dual perspective, by principal world regions and by per capita gross national income levels in 2014. Electricity consumption has been divided into three types of energy: non-renewable, renewable excluding wind and wind energy. Annual rates of change, energy intensity, energy in per capita terms and some ratios have been analyzed. Notable regional differences and trends are observed in the studied variables. The first 15 European Union countries, other developed countries (ODC and East Asian (EAS and South Asian countries (SAS are the regions which currently have the highest wind capacity.

  15. Contribution of wind energy to future electricity requirements of Pakistan

    International Nuclear Information System (INIS)

    Harijan, K.; Uqaili, M. A.; Memon, M.

    2007-01-01

    Pakistan is an energy deficit country. About half of the country's population has no access to electricity and per capita supply is only 520 kWh. About 67% of the conventional electricity is generated from fossil fuels with 51% and 16% share of gas and oil respectively. It has been projected that electricity demand in Pakistan would increase at an average annual growth rate of 5% to 12% under different scenarios. The indigenous reserves of oil and gas are limited and the country heavily depends on imported oil. The oil import bill is a serious strain on the country's economy and has been deteriorating the balance of payment situation. Pakistan is becoming increasingly more dependent on a few sources of supply and its energy security often hangs on the fragile threat of imported oil that is subject to supply disruptions and price volatility. The production and consumption of fossil fuels also adversely affects the quality of the environment due to indiscriminate release of toxic substances. Pakistan spends huge amount on the degradation of the environment. This shows that Pakistan must develop alternate, indigenous and environment friendly energy resources such as wind energy to meet its future electricity requirements. This paper presents an overview of wind power generation potential and assessment of its contribution to future electricity requirements of Pakistan under different policy scenarios. The country has about 1050 km long coastline. The technical potential of centralized grid connected wind power and wind home systems in the coastal area of the country has been estimated as about 484 TWh and 0.135 TWh per year respectively. The study concludes that wind power could meet about 20% to 50% of the electricity demand in Pakistan by the year 2030. The development and utilization of wind power would reduce the pressure on oil imports, protect the environment from pollution and improve the socio-economic conditions of the people

  16. Integrating large-scale cogeneration of hydrogen and electricity from wind and nuclear sources (NUWINDTM)

    International Nuclear Information System (INIS)

    Miller, A. I.; Duffey, R. B.

    2008-01-01

    As carbon-free fuels, hydrogen and electricity are headed for major roles in replacing hydrocarbons as the world constrains carbon dioxide (CO 2 ) emissions. This will apply particularly to the transport sector. A general trend toward electric drive on-board vehicles is already evident and hydrogen converted to electricity by a fuel cell is likely to be a major source of on-board electricity. The major car manufacturers continue to invest heavily in this option and significant government initiatives in both the USA and Canada are beginning demonstration deployments of the infrastructure needed for hydrogen refueling. However, early adoption of hydrogen as a transport fuel may well be concentrated on heavy-duty transportation: trains, ships and trucks, where battery storage of electricity is unlikely to be practical. But both hydrogen and electricity are secondary fuels and are only effective if the source of the primary energy is a low CO 2 emitter such as nuclear and wind. A competitive cost is also essential and, to achieve this, one must rely on off-peak electricity prices. This paper examines historical data for electricity prices and the actual output of the main wind farms in Ontario to show how nuclear and wind can be combined to generate hydrogen by water electrolysis at prices that are competitive with fossil-based hydrogen production. The NuWind TM concept depends on operating electrolysis cells over an extended range of current densities to accommodate the inherent variability of wind and of electricity prices as they vary in open markets. The cost of co-producing hydrogen with electricity originating from nuclear plants (80%) and from wind turbines (20%) is very close to that of production from a constantly available electricity source. In contrast, the price of hydrogen produced using electricity from wind alone is estimated to cost about $1500/tonne more than hydrogen from NuWind or nuclear alone because the electrolysis facility must be much larger

  17. Development of electric machines with superconducting windings

    International Nuclear Information System (INIS)

    Glebov, I.A.; Novitskij, V.G.

    1977-01-01

    Some studies are discussed performed in the USSR with the aim to develop the most promising electrical machines with superconducting windings, i.e. powerful (more than 1 MW) cryoturbogenerators for power heat and nuclear plants, electric motors of more than 10,000 kW, reverse systems of an electric driver and unipolar generators for electrolysis industry. The design and performances of the simulator of a 1500 kW cryoturbogenerator are given. Problems of coooling and oscillations of the simulator rotor are considered

  18. Contrasting electricity demand with wind power supply: case study in Hungary

    International Nuclear Information System (INIS)

    Kiss, P.; Janosi, I. M.; Varga, L.

    2009-01-01

    We compare the demand of a large electricity consumer with supply given by wind farms installed at two distant geographic locations. Obviously such situation is rather unrealistic, however our main goal is a quantitative characterization of the intermittency of wind electricity. The consumption pattern consists of marked daily and weekly cycles interrupted by periods of holidays. In contrast, wind electricity production has neither short-time nor seasonal periodicities. We show that wind power integration over a restricted area cannot provide a stable base load supply, independently of the excess capacity. Further essential result is that the statistics are almost identical for a weekly periodic pattern of consumption and a constant load of the same average value. The length of both adequate supply and shortfall intervals exhibits a scale-free (power-law) frequency distribution, possible consequences are shortly discussed. (author)

  19. Contrasting Electricity Demand with Wind Power Supply: Case Study in Hungary

    Directory of Open Access Journals (Sweden)

    Imre M. Jánosi

    2009-09-01

    Full Text Available We compare the demand of a large electricity consumer with supply given by wind farms installed at two distant geographic locations. Obviously such situation is rather unrealistic, however our main goal is a quantitative characterization of the intermittency of wind electricity. The consumption pattern consists of marked daily and weekly cycles interrupted by periods of holidays. In contrast, wind electricity production has neither short-time nor seasonal periodicities. We show that wind power integration over a restricted area cannot provide a stable baseload supply, independently of the excess capacity. Further essential result is that the statistics are almost identical for a weekly periodic pattern of consumption and a constant load of the same average value. The length of both adequate supply and shortfall intervals exhibits a scale-free (power-law frequency distribution, possible consequences are shortly discussed.

  20. Optimal Wind Power Uncertainty Intervals for Electricity Market Operation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ying; Zhou, Zhi; Botterud, Audun; Zhang, Kaifeng

    2018-01-01

    It is important to select an appropriate uncertainty level of the wind power forecast for power system scheduling and electricity market operation. Traditional methods hedge against a predefined level of wind power uncertainty, such as a specific confidence interval or uncertainty set, which leaves the questions of how to best select the appropriate uncertainty levels. To bridge this gap, this paper proposes a model to optimize the forecast uncertainty intervals of wind power for power system scheduling problems, with the aim of achieving the best trade-off between economics and reliability. Then we reformulate and linearize the models into a mixed integer linear programming (MILP) without strong assumptions on the shape of the probability distribution. In order to invest the impacts on cost, reliability, and prices in a electricity market, we apply the proposed model on a twosettlement electricity market based on a six-bus test system and on a power system representing the U.S. state of Illinois. The results show that the proposed method can not only help to balance the economics and reliability of the power system scheduling, but also help to stabilize the energy prices in electricity market operation.

  1. Performance Evaluation of an In-Wheel Motor Cooling System in an Electric Vehicle/Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Dong Hyun Lim

    2014-02-01

    Full Text Available High power and miniaturization of motors in an in-wheel drive system, which is installed inside the wheels of a vehicle, are required for directly driving the wheels. In addition, an efficient cooling system is required to ensure high driving performance and durability. This study experimentally evaluated the heat dissipation performance of a 35-kW-class large-capacity in-wheel motor equipped with an internal-circulation-type oil-cooling system that exhibits high cooling performance and can be easily miniaturized to this motor. Temperatures of the coil and stator core of cooling systems with and without a radiator were measured in real time under in-wheel motor driving conditions. It was found that operating the cooling system at a continuous-rating maximum speed without the radiator was difficult. We confirmed that under continuous-rating base speed and continuous-rating maximum speed driving conditions, the cooling system with the radiator showed thermally stable operation. Furthermore, under maximum-rating base speed and maximum-rating maximum speed driving conditions, the cooling system with the radiator provided additional driving times of approximately 22 s and 2 s, respectively.

  2. Fluid Mechanics of a High Performance Racing Bicycle Wheel

    Science.gov (United States)

    Mercat, Jean-Pierre; Cretoux, Brieuc; Huat, Francois-Xavier; Nordey, Benoit; Renaud, Maxime; Noca, Flavio

    2013-11-01

    In 2012, MAVIC released the most aerodynamic bicycle wheel on the market, the CXR 80. The french company MAVIC has been a world leader for many decades in the manufacturing of bicycle wheels for competitive events such as the Olympic Games and the Tour de France. Since 2010, MAVIC has been in a research partnership with the University of Applied Sciences in Geneva, Switzerland, for the aerodynamic development of bicycle wheels. While most of the development up to date has been performed in a classical wind tunnel, recent work has been conducted in an unusual setting, a hydrodynamic towing tank, in order to achieve low levels of turbulence and facilitate quantitative flow visualization (PIV). After a short introduction on the aerodynamics of bicycle wheels, preliminary fluid mechanics results based on this novel setup will be presented.

  3. Optimal wind-hydro solution for the Marmara region of Turkey to meet electricity demand

    International Nuclear Information System (INIS)

    Dursun, Bahtiyar; Alboyaci, Bora; Gokcol, Cihan

    2011-01-01

    Wind power technology is now a reliable electricity production system. It presents an economically attractive solution for the continuously increasing energy demand of the Marmara region located in Turkey. However, the stochastic behavior of wind speed in the Marmara region can lead to significant disharmony between wind energy production and electricity demand. Therefore, to overcome wind's variable nature, a more reliable solution would be to integrate hydropower with wind energy. In this study, a methodology to estimate an optimal wind-hydro solution is developed and it is subsequently applied to six typical different site cases in the Marmara region in order to define the most beneficial configuration of the wind-hydro system. All numerical calculations are based on the long-term wind speed measurements, electrical load demand and operational characteristics of the system components. -- Research highlights: → This study is the first application of a wind-hydro pumped storage system in Turkey. → The methodology developed in this study is applied to the six sites in the Marmara region of Turkey. A wind - hydro pumped storage system is proposed to meet the electric energy demand of the Marmara region.

  4. Optimisation of electrical system for offshore wind farms via genetic algorithm

    DEFF Research Database (Denmark)

    Chen, Zhe; Zhao, Menghua; Blaabjerg, Frede

    2009-01-01

    An optimisation platform based on genetic algorithm (GA) is presented, where the main components of a wind farm and key technical specifications are used as input parameters and the electrical system design of the wind farm is optimised in terms of both production cost and system reliability....... The power losses, wind power production, initial investment and maintenance costs are considered in the production cost. The availability of components and network redundancy are included in the reliability evaluation. The method of coding an electrical system to a binary string, which is processed by GA......, is developed. Different GA techniques are investigated based on a real example offshore wind farm. This optimisation platform has been demonstrated as a powerful tool for offshore wind farm design and evaluation....

  5. Short-Term Wind Electric Power Forecasting Using a Novel Multi-Stage Intelligent Algorithm

    Directory of Open Access Journals (Sweden)

    Haoran Zhao

    2018-03-01

    Full Text Available As the most efficient renewable energy source for generating electricity in a modern electricity network, wind power has the potential to realize sustainable energy supply. However, owing to its random and intermittent instincts, a high permeability of wind power into a power network demands accurate and effective wind energy prediction models. This study proposes a multi-stage intelligent algorithm for wind electric power prediction, which combines the Beveridge–Nelson (B-N decomposition approach, the Least Square Support Vector Machine (LSSVM, and a newly proposed intelligent optimization approach called the Grasshopper Optimization Algorithm (GOA. For data preprocessing, the B-N decomposition approach was employed to disintegrate the hourly wind electric power data into a deterministic trend, a cyclic term, and a random component. Then, the LSSVM optimized by the GOA (denoted GOA-LSSVM was applied to forecast the future 168 h of the deterministic trend, the cyclic term, and the stochastic component, respectively. Finally, the future hourly wind electric power values can be obtained by multiplying the forecasted values of these three trends. Through comparing the forecasting performance of this proposed method with the LSSVM, the LSSVM optimized by the Fruit-fly Optimization Algorithm (FOA-LSSVM, and the LSSVM optimized by Particle Swarm Optimization (PSO-LSSVM, it is verified that the established multi-stage approach is superior to other models and can increase the precision of wind electric power prediction effectively.

  6. Private wind powered electricity generators for industry in the UK

    Science.gov (United States)

    Thabit, S. S.; Stark, J.

    This paper investigates the impact of the provisions of the new Energy Act, 1983 on industrial wind-powered private generators of electricity and the effects of published tariffs on various industrial working patterns. Up to 30 percent savings can be achieved in annual electricity bill costs for an industrial generator/user of electricity working a single daily shift, if located in a favorable, 7 m/s mean annual wind speed regime. Variation of the availability charge between Electricity Boards about a base value of 0.70 pounds sterling/kVA was found to have insignificant (+ or - 1.3 percent) impact on total electricity bill costs. It was also shown that for industrial users of electricity, the simpler two-rate purchase terms were commercially adequate when compared with the four-rate alternative where expensive metering becomes necessary.

  7. A proposed national wind power R and D program. [offshore wind power system for electric energy supplies

    Science.gov (United States)

    Heronemus, W.

    1973-01-01

    An offshore wind power system is described that consists of wind driven electrical dc generators mounted on floating towers in offshore waters. The output from the generators supplies underwater electrolyzer stations in which water is converted into hydrogen and oxygen. The hydrogen is piped to shore for conversion to electricity in fuel cell stations. It is estimated that this system can produce 159 x 10 to the ninth power kilowatt-hours per year. It is concluded that solar energy - and that includes wind energy - is the only way out of the US energy dilemma in the not too distant future.

  8. Optimal contracts for wind power producers in electricity markets

    KAUST Repository

    Bitar, E.

    2010-12-01

    This paper is focused on optimal contracts for an independent wind power producer in conventional electricity markets. Starting with a simple model of the uncertainty in the production of power from a wind turbine farm and a model for the electric energy market, we derive analytical expressions for optimal contract size and corresponding expected optimal profit. We also address problems involving overproduction penalties, cost of reserves, and utility of additional sensor information. We obtain analytical expressions for marginal profits from investing in local generation and energy storage. ©2010 IEEE.

  9. Roadmap of retail electricity market reform in China: assisting in mitigating wind energy curtailment

    Science.gov (United States)

    Yu, Dezhao; Qiu, Huadong; Yuan, Xiang; Li, Yuan; Shao, Changzheng; Lin, You; Ding, Yi

    2017-01-01

    Among the renewable energies, wind energy has gained the rapidest development in China. Moreover wind power generation has been penetrated into power system in a large scale. However, the high level wind curtailment also indicates a low efficiency of wind energy utilization over the last decade in China. One of the primary constraints on the utilization of wind energy is the lack of an electricity market, in which renewable energies can compete equally with traditional fossil fuel generation. Thus the new round electric power industry reform is essential in China. The reform involves implementing new pricing mechanism, introducing retail-side competition, promoting the consumption of renewable energy. The new round reform can be a promising solution for promoting the development and consumption of wind energy generation in China. Based on proposed reform policies of electric power industry, this paper suggests a roadmap for retail electricity market reform of China, which consists of three stages. Barriers to the efficient utilization of wind energy are also analysed. Finally, this paper introduces several efficient measures for mitigating wind curtailment in each stage of reform.

  10. Hybrid Test Bed of Wind Electric Generator with Photovoltaic Panels

    OpenAIRE

    G.D.Anbarasi Jebaselvi; S.Paramasivam

    2014-01-01

    Driven by the increasing costs of power production and decreasing fossil fuel reserves with the addition of global environmental concerns, renewable energy is now becoming significant fraction of total electricity production in the world. Advancements in the field of wind electric generator technology and power electronics help to achieve rapid progress in hybrid power system which mainly involves wind, solar and diesel energy with a good battery back-up. Here the discussion brings about the ...

  11. Bulk electric system reliability evaluation incorporating wind power and demand side management

    Science.gov (United States)

    Huang, Dange

    Electric power systems are experiencing dramatic changes with respect to structure, operation and regulation and are facing increasing pressure due to environmental and societal constraints. Bulk electric system reliability is an important consideration in power system planning, design and operation particularly in the new competitive environment. A wide range of methods have been developed to perform bulk electric system reliability evaluation. Theoretically, sequential Monte Carlo simulation can include all aspects and contingencies in a power system and can be used to produce an informative set of reliability indices. It has become a practical and viable tool for large system reliability assessment technique due to the development of computing power and is used in the studies described in this thesis. The well-being approach used in this research provides the opportunity to integrate an accepted deterministic criterion into a probabilistic framework. This research work includes the investigation of important factors that impact bulk electric system adequacy evaluation and security constrained adequacy assessment using the well-being analysis framework. Load forecast uncertainty is an important consideration in an electrical power system. This research includes load forecast uncertainty considerations in bulk electric system reliability assessment and the effects on system, load point and well-being indices and reliability index probability distributions are examined. There has been increasing worldwide interest in the utilization of wind power as a renewable energy source over the last two decades due to enhanced public awareness of the environment. Increasing penetration of wind power has significant impacts on power system reliability, and security analyses become more uncertain due to the unpredictable nature of wind power. The effects of wind power additions in generating and bulk electric system reliability assessment considering site wind speed

  12. Excessive price reduction and extreme volatility in wind dominant electricity markets; solutions and emerging challenges

    DEFF Research Database (Denmark)

    Farashbashi-Astaneh, Seyed-Mostafa; Chen, Zhe; Mousavi, Omid Alizadeh

    2013-01-01

    High intermittency in the nature of wind power emphasize conceptual revising in the mechanisms of electricity markets with high wind power penetration levels. This paper introduces overmuch price reduction and high price volatility as two adverse consequences in future wind dominant electricity...... is developed. The paper indicates discriminatory pricing approach can be beneficial in high penetration of wind power because it alleviates high price variations and spikiness in one hand and prevents overmuch price reduction in wind dominant electricity markets on the other hand....... markets. While high price volatility imposes elevated risk levels for both electricity suppliers and consumers, excessive price reduction of electricity is a disincentive for investment in new generation capacity and might jeopardizes system adequacy in long term. A comparative study between marginal...

  13. Simulation of an offshore wind farm using fluid power for centralized electricity generation

    Directory of Open Access Journals (Sweden)

    A. Jarquin Laguna

    2017-07-01

    Full Text Available A centralized approach for electricity generation within a wind farm is explored through the use of fluid power technology. This concept considers a new way of generation, collection and transmission of wind energy inside a wind farm, in which electrical conversion does not occur during any intermediate conversion step before the energy has reached the offshore central platform. A numerical model was developed to capture the relevant physics from the dynamic interaction between different turbines coupled to a common hydraulic network and controller. This paper presents a few examples of the time domain simulation results for a hypothetical hydraulic wind farm subject to turbulent wind conditions. The performance and operational parameters of individual turbines are compared with those of a reference wind farm based on conventional wind turbine generator technology using the same wind farm layout and environmental conditions. For the presented case studies, results indicate that the individual wind turbines are able to operate within operational limits. Despite the stochastic turbulent wind conditions and wake effects, the hydraulic wind farm is able to produce electricity with reasonable performance in both below and above rated conditions. With the current pressure control concept, a continuous operation of the hydraulic wind farm is shown including the full stop of one or more turbines.

  14. Simulation of an offshore wind farm using fluid power for centralized electricity generation

    International Nuclear Information System (INIS)

    Jarquin-Laguna, A

    2016-01-01

    A centralized approach for electricity generation within a wind farm is explored through the use of fluid power technology. This concept considers a new way of generation, collection and transmission of wind energy inside a wind farm, in which electrical conversion does not occur during any intermediate conversion step before the energy has reached the offshore central platform. A numerical model was developed to capture the relevant physics from the dynamic interaction between different turbines coupled to a common hydraulic network and controller. This paper presents two examples of the time-domain simulation results for an hypothetical hydraulic wind farm subject to turbulent wind conditions. The performance and operational parameters of individual turbines are compared with those of a reference wind farm with conventional technology turbines, using the same wind farm layout and environmental conditions. For the presented case study, results indicate that the individual wind turbines are able to operate within operational limits with the current pressure control concept. Despite the stochastic turbulent wind input and wake effects, the hydraulic wind farm is able to produce electricity with reasonable performance in both below and above rated conditions. (paper)

  15. Strategic bidding for wind power producers in electricity markets

    International Nuclear Information System (INIS)

    Sharma, Kailash Chand; Bhakar, Rohit; Tiwari, H.P.

    2014-01-01

    Highlights: • Game theoretic bidding strategy approach developed to optimize wind power producers bids. • Rival behavior modeled through Stochastic Cournot model. • Location based dual imbalance price mechanism proposed to obtain imbalance charges. • Proposed approach evaluated using two realistic case studies. • Proposed approach increases profit of strategic wind power producers significantly. - Abstract: In evolving electricity markets, wind power producers (WPPs) would increase their profit through strategic bidding. However, generated power by WPPs is highly random, which may result into heavy imbalance charges. In markets dominated by wind generators, they would optimize their offered bids, considering rival behavior. In oligopolistic day-ahead electricity markets, this strategic behavior can be represented as a Stochastic Cournot model. Wind uncertainty is represented by scenarios generated using Auto Regressive Moving Average (ARMA) model. With a consideration of wind power uncertainty and imbalance charges, strategic WPPs can maximize their expected payoff or profit through the proposed Nash equilibrium based bidding strategy. Nash equilibrium is obtained using payoff matrix approach. Proposed approach is evaluated on two realistic case studies considering different technical constraints. Obtained results shows that proposed bidding strategy mechanism offers quantum increase in profit for WPPs, when their behavior is modeled in a game theoretic framework. Flexibility of approach offers opportunities for its extension to associated challenges

  16. Performance of a 10 kilowatt wind-electric water pumping system for irrigating crops

    Energy Technology Data Exchange (ETDEWEB)

    Vick, B.D.; Clark, R.N. [Conservation and Production Research Lab., Bushland, TX (United States); Molla, S. [Texas A& M Univ., College Station, TX (United States)

    1997-12-31

    A 10 kW wind-electric water pumping system was tested for field crop irrigation at pumping depths from 50 to 120 m. The wind turbine for this system used a permanent magnet alternator that powered off-the-shelf submersible motors and pumps without the use of an inverter. Pumping performance was determined at the USDA-Agricultural Research Service (ARS), Wind Energy Laboratory in Bushland, TX for the 10 kW wind turbine using a pressure valve and a pressure tank to simulate different pumping depths. Pumping performance was measured for two 10 kW wind turbines of the same type at farms near the cities of Garden City, TX and Stiles, TX. The pumping performance data collected at these actual wells compared favorably with the data collected at the USDA-ARS, Wind Energy Laboratory. If utility generated electricity was accessible, payback on the wind turbine depended on the cost of utility generated electricity and the transmission line extension cost.

  17. The role of hydrogen in high wind energy penetration electricity systems: the Irish case

    International Nuclear Information System (INIS)

    Gonzalez, A.; McKeogh, E.; Gallachoir, B.O.

    2004-01-01

    The deployment of wind energy is constrained by wind uncontrollability, which poses operational problems on the electricity supply system at high penetration levels, lessening the value of wind-generated electricity to a significant extent. This paper studies the viability of hydrogen production via electrolysis using wind power that cannot be easily accommodated on the system. The potential benefits of hydrogen and its role in enabling a large penetration of wind energy are assessed, within the context of the enormous wind energy resource in Ireland. The exploitation of this wind resource may in the future give rise to significant amounts of surplus wind electricity, which could be used to produce hydrogen, the zero-emissions fuel that many experts believe will eventually replace fossil fuels in the transport sector. In this paper the operation of a wind powered hydrogen production system is simulated and optimised. The results reveal that, even allowing for significant cost-reductions in electrolyser and associated balance-of-plant equipment, low average surplus wind electricity cost and a high hydrogen market price are also necessary to achieve the economic viability of the technology. These conditions would facilitate the installation of electrolysis units of sufficient capacity to allow an appreciable increase in installed wind power in Ireland. The simulation model was also used to determine the CO 2 abatement potential associated with the wind energy/hydrogen production. (author)

  18. Electricity cost effects of expanding wind power and integrating energy sectors

    DEFF Research Database (Denmark)

    Rodriguez, Victor Adrian Maxwell; Sperling, Karl; Hvelplund, Frede Kloster

    2015-01-01

    Recently, questions have arisen in Denmark as to how and why public funding should be allocated to wind power producers. This is, among other reasons, due to pressure from industrial electricity consumers who want their overall energy costs lowered. Utilising existing wind power subsidies across...... conditions which could allow wind power producers to reduce their reliance on subsidies. It is found that the strategy may be effective in lowering the overall energy costs of electricity consumers. Further, it is found possible to scale up this strategy and realise benefits on a national scale....

  19. Efficient promotion of electricity production from offshore wind

    International Nuclear Information System (INIS)

    Panzer, Christian; Auer, Hans; Lettner, Georg

    2014-01-01

    Efficient promotion of electricity production from offshore wind stands in dynamic relationship with various influence factors, the most important of which are promotion instruments, topographic givens, regulation of grid connection, and supraregional market integration concepts. Using three case studies from different countries to highlight national differences in the promotion of offshore wind power plants the present analysis points out ways of improving the efficiency of promotion instruments.

  20. Hydrogen from nuclear plus wind using real-time electricity prices. Abstract 154

    International Nuclear Information System (INIS)

    Miller, A.I.; Duffey, R.B.; Fairlie, M.

    2004-01-01

    'Full text:' During the early years of hydrogen's use as a vehicle fuel, penetration of the market will be small. This favours distributed production by electrolysis, which avoids the scale-dependent costs of distribution from centralized plants. For electrolysis actually to be the preferred option, capital equipment for electrolysis must be reasonably cheap but the dominant cost component is the electricity price. By about 2006, advanced designs of nuclear reactors should be available to produce electricity at around 30 US$/MW.h. The best approach to producing low-cost electrolytic hydrogen is shown to be use of such reactors to supply electricity to the grid at times of peak price and demand and to make hydrogen at other times. This model has been analysed using the actual prices of electricity paid by the Alberta Power Pool in 2002 and 2003 and by the Ontario Grid for 2003. The analysis shows clearly that this route electrolytic hydrogen can comfortably meet the US Department of Energy's hydrogen production-cost target of 2000$/t. Because of its low availability wind-produced electricity cannot meet this cost target. However, if wind availability can reach 35% availability, an intermittent supplementary current of wind-generated electricity may economically be fed to an electrolytic plant primarily supplied by nuclear power. Additional current raises the voltage for electrolysis but there would be only small additional capital costs. The two non-CO 2 -emitting sources, nuclear and wind (or other intermittent renewables with costs comparable to advanced nuclear) could become complementary, providing an affordable way of storing wind-generated electricity. (author)

  1. Multi-functional Electric Module for a Vehicle

    Science.gov (United States)

    Bluethmann, William J. (Inventor); Waligora, Thomas M. (Inventor); Fraser-Chanpong, Nathan (Inventor); Reed, Ryan (Inventor); Akinyode, Akinjide Akinniyi (Inventor); Spain, Ivan (Inventor); Dawson, Andrew D. (Inventor); Figuered, Joshua M. (Inventor); Herrera, Eduardo (Inventor); Markee, Mason M. (Inventor)

    2015-01-01

    A multi-functional electric module (eModule) is provided for a vehicle having a chassis, a master controller, and a drive wheel having a propulsion-braking module. The eModule includes a steering control assembly, mounting bracket, propulsion control assembly, brake controller, housing, and control arm. The steering control assembly includes a steering motor controlled by steering controllers in response to control signals from the master controller. A mounting feature of the bracket connects to the chassis. The propulsion control assembly and brake controller are in communication with the propulsion-braking module. The control arm connects to the lower portion and contains elements of a suspension system, with the control arm being connectable to the drive wheel via a wheel input/output block. The controllers are responsive to the master controller to control a respective steering, propulsion, and braking function. The steering motor may have a dual-wound stator with windings controlled via the respective steering controllers.

  2. A Quantitative Analysis of the Impact of Wind Energy Penetration on Electricity Prices in Ireland

    OpenAIRE

    O'Flaherty, Micheál; Riordan, Niall; O'Neill, Noel; Ahern, Ciara

    2014-01-01

    The maturity of wind technology combined with availability of suitable sites means Ireland is on course to generate 40% of its electricity from the wind by 2020.This work sets out to quantify, to what degree, if any, increased wind penetration translates into reduced wholesale and retail prices for electricity. The consensus from the literature is that increasing wind penetration reduces wholesale electricity prices, but views vary as to what degree this translates into reduced retail prices ...

  3. Present and prospective role of wind energy in electricity supply

    International Nuclear Information System (INIS)

    Sesto, E.; Ancona, D.F.

    1995-01-01

    Information is provided on world-wide wind energy applications for the production of electricity and the various factors driving the wind turbine market: technology improvements and cost reduction, national research, incentives, utility and public acceptance. Possible restraints to (noise, aesthetics) and benefits (especially in isolated systems) from wind plant integration in utility systems are considered, as well as the use of stand-alone wind systems. Some possible forecasts on the role of wind energy in the next two decades are also given. 4 refs., 2 figs., 1 tab

  4. Electrical system studies for the grid connection of wind farms

    International Nuclear Information System (INIS)

    Arp, K.; Hanson, J.; Hopp, S.; Zimmermann, W.

    2007-01-01

    Wind power is gaining momentum in the world's energy balance. Several issues have to be addressed whenever power-generating devices are connected to the grid. The paper describes studies needed to evaluate the influence of wind farms on the connected transmission system and how faults in the system impact on induction generators in a wind farm. Some generalized results of studies for an offshore wind farm in the North Sea and a Bulgarian wind farm show how studies can influence the layout of the internal network and the electrical equipment. (authors)

  5. A development of the distributive law of points on the multi-wheeled machine wheels with electro-mechanical transmission, made under the scheme "motor-axis"

    Directory of Open Access Journals (Sweden)

    M. M. Jileikin

    2014-01-01

    Full Text Available Currently, developers of multi-wheeled vehicles (MWV show growing interest in electromechanical drive in the «motor-axis» implementation. However, in designing the traction electric drive (TED based on such approach the problems arise, primarily, from a lack of creating experience and of ready algorithmic solutions to control the traction motors. The use of methods to implement the individual TED is impossible because of the presence of cross-axle differential in the leading axle drive, which does not allow the input torque control of each wheel singly. The paper offers a law to control a traction electric drive of MWV leading axles that comprises the law to control the tractive effort torque and braking moment on the leading axles as well as algorithms of anti-lock brake and traction control systems.An analysis of simulation modeling results shows an efficiency of the developed law that allows control of the traction electric drive of MWV leading axles. The control law includes an algorithm to control the tractive effort torque and braking moment on the driving-wheels, as well as algorithms of anti-lock brake and traction systems.At stationary (constant speed rotation and non-stationary (elk test maneuvering there was no spin of vehicle wheels. Angular speeds of the wheels vary smoothly. Partial loss of vehicle stability when making maneuvers on ice may be reduced through development of algorithms for dynamic stabilization, which will improve the MWV road-holding and trajectory ability. Fullscale tests of MWV with traction electric drive implemented using a “motor-axis" approach are required to have a final answer on the performance and effectiveness of the developed control law.

  6. First Wheel of the Hadronic EndCap Calorimeter Completed

    CERN Multimedia

    Oram, C.J.

    2002-01-01

    With the LAr calorimeters well advanced in module production, the attention is turning to Batiment 180 where the calorimeter modules are formed into complete detectors and inserted into their respective cryostats. For the Hadronic End Cap (HEC) Group the task in B180 is to assemble the wheels, rotate them into their final orientation, and put them onto the cradle in front of the End Cap Cryostat. These tasks have been completed for the first HEC wheel in the B180 End Cap Clean Room. Given that this wheel weighs 70 tons the group is very relieved to have established that these gymnastics with the wheel proceed in a routine fashion. To assemble a wheel we take modules that have already been cold tested, do the final electrical testing and locate them onto the HEC wheel assembly table. Four wheels are required in total, each consisting of 32 modules. Wheel assembly is done in the horizontal position, creating a doughnut-like object sitting on the HEC table. The first picture shows the last module being added ...

  7. Impacts from new 50 MW wind power plant - Bogdnaci on the price of electrical energy in Macedonia

    International Nuclear Information System (INIS)

    Minovski, D.; Sarac, V.; Causevski, A.

    2012-01-01

    The paper presents the impact from the new planned wind power plant Bogdnaci on the price for the end users of electrical energy in Republic of Macedonia. In the next years, 50 MW wind power will be installed in the Macedonian electric power system. Production of electricity from wind power plants is unpredictable and of stochastic nature i.e. depends on the weather or the wind speed at the appropriate locations. Output of wind power plants is changing every minute, thus changing in the hourly level can be from 0 - 100%, even several times depending on the occurrence of winds. Changes in output of wind power plants, leads to increased demand for operational reserve in a power system. Preferential price of electrical energy from the wind power plants and increased operational reserve in the electric power system will have big impact on the final price of electrical energy in Republic of Macedonia. (Authors)

  8. Optimal grid design and logistic planning for wind and biomass based renewable electricity supply chains under uncertainties

    International Nuclear Information System (INIS)

    Osmani, Atif; Zhang, Jun

    2014-01-01

    In this work, the grid design and optimal allocation of wind and biomass resources for renewable electricity supply chains under uncertainties is studied. Due to wind intermittency, generation of wind electricity is not uniform and cannot be counted on to be readily available to meet the demand. Biomass represents a type of stored energy and is the only renewable resource that can be used for producing biofuels and generating electricity whenever required. However, amount of biomass resources are finite and might not be sufficient to meet the demand for electricity and biofuels. Potential of wind and biomass resources is therefore jointly analyzed for electricity generation. Policies are proposed and evaluated for optimal allocation of finite biomass resources for electricity generation. A stochastic programming model is proposed that optimally balances the electricity demand across the available supply from wind and biomass resources under uncertainties in wind speed and electricity sale price. A case study set in the American Midwest is presented to demonstrate the effectiveness of the proposed model by determining the optimal decisions for generation and transmission of renewable electricity. Sensitivity analysis shows that level of subsidy for renewable electricity production has a major impact on the decisions. - Highlights: • Stochastic optimization model for wind/biomass renewable electricity supply chain. • Multiple uncertainties in wind speeds and electricity sale price. • Proposed stochastic model outperforms the deterministic model under uncertainties. • Uncertainty affects grid connectivity and allocation of power generation capacity. • Location of wind farms is found to be insensitive to the stochastic environment

  9. Stability of the Small Electric Vehicle with Two In-Wheel Motors

    Directory of Open Access Journals (Sweden)

    Heerwan P.M.

    2017-01-01

    Full Text Available For a small electric vehicle (EV with the rear two in-wheel motors, the hydraulic brake system and the mechanical brake system are installed at the front and rear tire respectively. The mechanical brake system is used at the rear tire because there is no enough space for the hydraulic brake system. In a braking condition, the in-wheel motor at the rear tire will generate the regenerative braking force and it can improve the braking performance of the vehicle. However, during braking on the low adhesion road surface, anti-lock brake system (ABS is very crucial to prevent the tire from lock-up. To improve the safety and stability of the vehicle, the combination of anti-skid control system and direct yaw moment control system is proposed. The anti-skid control system contains a hydraulic unit of ABS at the front tires and regenerative brake timing control at the rear tires. The control method of the regenerative brake timing control is same as ABS and it will turn on and off to prevent the tire from lock-up. On the other hand, the direct yaw moment control system is developed to increase the steer performance of the vehicle. The optimal control is used as the control strategy method to control the yaw moment. The simulation is developed in MATLAB Simulink and the result shows that the proposed model can improve the stopping distance from 9 seconds to 8.2 seconds. In addition, the combination of skid control and yaw moment control also improved the steer performance of the vehicle.

  10. Study on Differential Regenerative Braking Torque Control to Increase the Stability of the Small Electric Vehicle with Four In-Wheel Motors

    Directory of Open Access Journals (Sweden)

    Ali N. M.

    2017-01-01

    Full Text Available Based on the advantages of the electric motor such as fast and precise torque response, the performance of the electric vehicle (EV can be improved. During braking or driving on the cornering, the vehicle will over steer or under steer if a car turns by more or less than the amount commanded by the driver. To improve the stability of the small EV with four in-wheel motors, the differential regenerative braking torque control is proposed. In this system, the regenerative braking torque at each wheel will be controlled individually based on the value of slip ratio. If the slip ratio is greater than the optimum value, the regenerative brake will turn off. In this situation, the electric motor will not produce the regenerative braking torque. Conversely, if the slip ratio lower than the optimum value, the regenerative brake will turn on and the electric motor will generate the regenerative braking torque. In the numerical analysis, to investigate the effectiveness of the proposed model, the road condition is set to an icy road on the left tire and dry asphalt on the right tire. From the simulation results, the differential regenerative braking torque control can prevent the tire from lock-up and avoid the vehicle from skidding.

  11. Evaluation of wind energy investment interest and electricity generation cost analysis for Turkey

    International Nuclear Information System (INIS)

    Akdag, Seyit Ahmet; Gueler, Oender

    2010-01-01

    Turkey has remarkable wind energy potential, but its utilisation rate is very low. However, in 2007, energy investors applied to the Energy Market Regulatory Authority (EMRA) with 751 wind projects to obtain a 78180.2 MW wind power plant license. This paper first presents an overview of wind energy development in the world and then reviews related situations in Turkey. Second, to motivate the interest in wind energy investment, new wind power plant license applications in Turkey are analysed. Finally, wind electricity generation cost analyses were performed at 14 locations in Turkey. Capacity factors of investigated locations were calculated between 19.7% and 56.8%, and the production cost of electrical energy was between 1.73 and 4.99 cent/kW h for two different wind shear coefficients. (author)

  12. Compatibility Between Electric Components in Wind Farms

    DEFF Research Database (Denmark)

    Holdyk, Andrzej; Holbøll, Joachim; Arana Aristi, Iván

    2011-01-01

    The paper describes a method for investigation of the compatibility between electric components in wind farms by identifying critical resonances at different points of an offshore wind farm (OWF), based on systematic variation of critical parameters. In this way, the design of future OWF can...... be improved at a very early stage of the process. It is also revealed what parameters are the most important ones when considering compatibility. It was observed that a change of capacitance in the collection grid shifts the resonance peaks. A change in WT transformer capacitances influences the admittance...

  13. 3D dynamic modeling of spherical wheeled self-balancing mobile robot

    OpenAIRE

    İnal, Ali Nail

    2012-01-01

    Ankara : The Department of Electrical and Electronics Engineering and the Graduate School of Engineering and Science of Bilkent University, 2012. Thesis (Master's) -- Bilkent University, 2012. Includes bibliographical references. In recent years, dynamically stable platforms that move on spherical wheels, also known as BallBots, gained popularity in the robotics literature as an alternative locomotion method to statically stable wheeled mobile robots. In contrast to wheeled ...

  14. Assessing the value of wind generation in future carbon constrained electricity industries

    International Nuclear Information System (INIS)

    Vithayasrichareon, Peerapat; MacGill, Iain F.

    2013-01-01

    This paper employs a novel Monte-Carlo based generation portfolio assessment tool to explore the implications of increasing wind penetration and carbon prices within future electricity generation portfolios under considerable uncertainty. This tool combines optimal generation mix techniques with Monte Carlo simulation and portfolio analysis methods to determine expected overall generation costs, associated cost uncertainty and expected CO 2 emissions for different possible generation portfolios. A case study of an electricity industry with coal, Combined Cycle Gas Turbines (CCGT), Open Cycle Gas Turbines (OCGT) and wind generation options that faces uncertain future fossil-fuel prices, carbon pricing, electricity demand and plant construction costs is presented to illustrate some of the key issues associated with growing wind penetrations. The case study uses half-hourly demand and wind generation data from South Eastern Australia, and regional estimates of new-build plant costs and characteristics. Results suggest that although wind generation generally increases overall industry costs, it reduces associated cost uncertainties and CO 2 emissions. However, there are some cases in which wind generation can reduce the overall costs of generation portfolios. The extent to which wind penetration affects industry expected costs and uncertainties depends on the level of carbon price and the conventional technology mix in the portfolios. - Highlights: ► A probabilistic portfolio analysis tool to assess generation portfolios with wind power. ► Explore the impacts of wind penetrations and carbon prices under uncertainties. ► Wind generation increases overall portfolio costs but reduces cost risks and emissions. ► The value of wind power depends on the carbon price and the technology mix. ► Complex interactions between wind penetration level and carbon pricing.

  15. Electrical Collection and Transmission Systems for Offshore Wind Power: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.; Bowen, A.; Fingersh, L.J.; Wan, Y.

    2007-03-01

    The electrical systems needed for offshore wind farms to collect power from wind turbines--and transmit it to shore--will be a significant cost element of these systems. This paper describes the development of a simplified model of the cost and performance of such systems.

  16. Global long-term cost dynamics of offshore wind electricity generation

    NARCIS (Netherlands)

    Gernaat, David E H J; Van Vuuren, Detlef P.; Van Vliet, Jasper; Sullivan, Patrick; Arent, Douglas J.

    2014-01-01

    Using the IMAGE/TIMER (The Targets IMage Energy Regional) long-term integrated assessment model, this paper explores the regional and global potential of offshore wind to contribute to global electricity production. We develop long-term cost supply curve for offshore wind, a representation of the

  17. Wheel/rail noise generated by a high-speed train investigated with a line array of microphones

    Science.gov (United States)

    Barsikow, B.; King, W. F.; Pfizenmaier, E.

    1987-10-01

    Radiated noise generated by a high-speed electric train travelling at speeds up to 250 km/h has been measured with a line array of microphones mounted along the wayside in two different orientations. The test train comprised a 103 electric locomotive, four Intercity coaches, and a dynamo coach. Some of the wheels were fitted with experimental wheel-noise absorbers. By using the directional capabilities of the array, the locations of the dominant sources of wheel/rail radiated noise were identified on the wheels. For conventional wheels, these sources lie near or on the rim at an average height of about 0·2 m above the railhead. The effect of wheel-noise absorbers and freshly turned treads on radiated noise were also investigated.

  18. Implications of driving patterns on well-to-wheel performance of plug-in hybrid electric vehicles.

    Science.gov (United States)

    Raykin, Leon; MacLean, Heather L; Roorda, Matthew J

    2012-06-05

    This study examines how driving patterns (distance and conditions) and the electricity generation supply interact to impact well-to-wheel (WTW) energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW performance of a PHEV is compared with that of a similar (nonplug-in) gasoline hybrid electric vehicle and internal combustion engine vehicle (ICEV). Driving PHEVs for short distances between recharging generally results in lower WTW total and fossil energy use and GHG emissions per kilometer compared to driving long distances, but the extent of the reductions depends on the electricity supply. For example, the shortest driving pattern in this study with hydroelectricity uses 81% less fossil energy than the longest driving pattern. However, the shortest driving pattern with coal-based electricity uses only 28% less fossil energy. Similar trends are observed in reductions relative to the nonplug-in vehicles. Irrespective of the electricity supply, PHEVs result in greater reductions in WTW energy use and GHG emissions relative to ICEVs for city than highway driving conditions. PHEVs charging from coal facilities only reduce WTW energy use and GHG emissions relative to ICEVs for certain favorable driving conditions. The study results have implications for environmentally beneficial PHEV adoption and usage patterns.

  19. 75 FR 27550 - Electrical Interconnection of the Juniper Canyon I Wind Project

    Science.gov (United States)

    2010-05-17

    ... DEPARTMENT OF ENERGY Bonneville Power Administration Electrical Interconnection of the Juniper Canyon I Wind Project AGENCY: Bonneville Power Administration (BPA), Department of Energy (DOE). ACTION... would be generated from their proposed Juniper Canyon I Wind Energy Project (Wind Project) in Klickitat...

  20. The production of wind-generated electricity

    International Nuclear Information System (INIS)

    2013-11-01

    After some key data on installed wind power and its evolution in the World (notably in China and in the USA), in European countries and in France, an overview of the sector economic evolution in France in terms of jobs in different fields (fabrication, electricity production, studies and installations), this publication comments the various benefits of wind energy and its necessary framework for a sane development. Strengths are discussed: a local and clean energy source, a predictable and manageable energy source, an increasing competitiveness. Issues to be considered are also discussed: control of acoustic and landscape impacts, protection of biodiversity, management of interactions with military, meteorological and civil aviation radars, a necessary more steady and coherent regulation. After a discussion of the possibilities offered by small wind energy installations (between 1 and 36 kW), actions undertaken by the ADEME are overviewed. A conclusion outlines the role of wind energy on the supply-demand balance in the French power system, its contribution to the reduction of greenhouse gas emissions, the positive environmental impact, the importance of societal appropriation, and the importance of developing this sector while keeping on reducing consumptions

  1. Centralized electricity generation in offshore wind farms using hydraulic networks

    NARCIS (Netherlands)

    Jarquin Laguna, A.

    2017-01-01

    The work presented in this thesis explores a new way of generation, collection and transmission of wind energy inside a wind farm, in which the electrical conversion does not occur during any intermediate conversion step before the energy has reached the offshore central platform. A centralized

  2. Fault Detection and Isolation for Wind Turbine Electric Pitch System

    DEFF Research Database (Denmark)

    Zhu, Jiangsheng; Ma, Kuichao; Hajizadeh, Amin

    2017-01-01

    This paper presents a model-based fault detection and isolation scheme applied on electric pitch system of wind turbines. Pitch system is one of the most critical components due to its effect on the operational safety and the dynamics of wind turbines. Faults in this system should be precisely...... detected to prevent failures and decrease downtime. To detect faults of electric pitch actuators and sensors, an extended kalman filter (EKF) based multiple model adaptive estimation (MMAE) designed to estimate the states of the system. The proposed method is demonstrated in case studies. The simulation...

  3. The Effect of Wind Power on Electricity Prices in Denmark

    DEFF Research Database (Denmark)

    Jonsson, Tryggvi; Madsen, Henrik

    This report is the result of a special course taken by the author at IMM DTU under the guidance of professor Henrik Madsen. The aim of the project is to analyze the influence wind energy has on the electricity spot price in Western Denmark and investigate how information about wind power production...... can be used to model the electricity spot price. Various model types were tried, giving very different performance. Here, only the models that performed best are discussed in order to keep focus on the projects goal....

  4. Stator for a rotating electrical machine having multiple control windings

    Science.gov (United States)

    Shah, Manoj R.; Lewandowski, Chad R.

    2001-07-17

    A rotating electric machine is provided which includes multiple independent control windings for compensating for rotor imbalances and for levitating/centering the rotor. The multiple independent control windings are placed at different axial locations along the rotor to oppose forces created by imbalances at different axial locations along the rotor. The multiple control windings can also be used to levitate/center the rotor with a relatively small magnetic field per unit area since the rotor and/or the main power winding provides the bias field.

  5. Wind energy in a competitive electricity supply environment

    Energy Technology Data Exchange (ETDEWEB)

    Strbac, G; Jenkins, N [Manchester Centre for Electrical Energy, Manchester (United Kingdom)

    1996-12-31

    In the UK, there has been an increasing interest in the commercial aspects of the impact of wind energy on transmission and distribution networks. In a competitive electricity supply environment, mechanisms for pricing network services are considered to be the main vehicle for evaluating that impact. This article reviews the major pricing strategies based on embedded costs, short and long run marginal costing theory as well as time-of-use pricing, and comments on the influence of each particular strategy on the calculated value of wind energy. Also, prospective tools for evaluating savings in capital and operating network costs due to wind generation, are identified. (author)

  6. Wind energy in a competitive electricity supply environment

    Energy Technology Data Exchange (ETDEWEB)

    Strbac, G.; Jenkins, N. [Manchester Centre for Electrical Energy, Manchester (United Kingdom)

    1995-12-31

    In the UK, there has been an increasing interest in the commercial aspects of the impact of wind energy on transmission and distribution networks. In a competitive electricity supply environment, mechanisms for pricing network services are considered to be the main vehicle for evaluating that impact. This article reviews the major pricing strategies based on embedded costs, short and long run marginal costing theory as well as time-of-use pricing, and comments on the influence of each particular strategy on the calculated value of wind energy. Also, prospective tools for evaluating savings in capital and operating network costs due to wind generation, are identified. (author)

  7. Numerical and experimental analysis of a solid desiccant wheel

    Directory of Open Access Journals (Sweden)

    Koronaki Irene P.

    2016-01-01

    Full Text Available The rotary desiccant dehumidifier is an important component which can be used in air conditioning systems in order to reduce the electrical energy consumption and introduce renewable energy sources. In this study a one dimensional gas side resistance model is presented for predicting the performance of the desiccant wheel. Measurements from two real sorption wheels are used in order to validate the model. One wheel uses silica gel as desiccant material and the other lithium chloride. The simulation results are in good agreement with the experimental data. The model is used to compare the counter flow with the co-current wheel arrangements and to explain why the counter flow one is more efficient for air dehumidification.

  8. The UK electricity market and the wind industry - a perspective of 1998 proposals

    International Nuclear Information System (INIS)

    Batley, S.L.; Twidell, J.W.; Gibbons, C.

    1997-01-01

    After April 1st 1998, the Public Electricity Supplier monopoly ( in England, Wales and Scotland) over their local franchise market will cease and all customers, regardless of size, will be able to choose their supplier. These changes will have a major impact on the UK wind energy industry. An increased number of Second Tier Suppliers will compete with existing market players for electricity purchase from generators and sale of electricity to consumers. Market changes should improve possibilities for wind generators to obtain a Second Tier Supplier licence and serve the domestic, small demand, market. There may also be market opportunities to sell to specialist 'green' suppliers. The post 1998 changes are of importance to the European Union 'Guarantee of Result' project, which aims to promote small scale wind systems through guaranteed quality and performance of systems. For the Guarantee of Results to be utilised in the UK, all markets for the generated electricity from a wind system must be considered and evaluated. (Author)

  9. Wheeling rates evaluation using optimal power flows

    International Nuclear Information System (INIS)

    Muchayi, M.; El-Hawary, M. E.

    1998-01-01

    Wheeling is the transmission of electrical power and reactive power from a seller to a buyer through a transmission network owned by a third party. The wheeling rates are then the prices charged by the third party for the use of its network. This paper proposes and evaluates a strategy for pricing wheeling power using a pricing algorithm that in addition to the fuel cost for generation incorporates the optimal allocation of the transmission system operating cost, based on time-of-use pricing. The algorithm is implemented for the IEEE standard 14 and 30 bus system which involves solving a modified optimal power flow problem iteratively. The base of the proposed algorithm is the hourly spot price. The analysis spans a total time period of 24 hours. Unlike other algorithms that use DC models, the proposed model captures wheeling rates of both real and reactive power. Based on the evaluation, it was concluded that the model has the potential for wide application in calculating wheeling rates in a deregulated competitive power transmission environment. 9 refs., 3 tabs

  10. Modeling an autonomous wind turbine electric pump system

    Directory of Open Access Journals (Sweden)

    Andreea Forcos

    2009-10-01

    Full Text Available Being one of the variable renewable energy sources, wind energy integration can be made using storage methods. All of these have been developed during time, but one might be more accessible than others because is using a free natural resource, water. This is pump storage. The purpose of this paper is modeling an autonomous wind turbine connected to an electric pump, in the aim of storage, and finally the determination of the efficiency.

  11. Arrangement for matching a wind rotor to an electrical generator

    Energy Technology Data Exchange (ETDEWEB)

    Beusse, H

    1978-04-06

    The invention concerns an arrangement for matching a wind power machine to an electrical generator, which feeds a consumer network. According to the invention first generator using the shaft horsepower of the wind power machine feeds an electric water, which is coupled to a second generator, whose power is taken to the consumer network. The output signal of a computer which has the annemometer feeding into it controls the excitation of the motor at sufficient wind speed, so that the speed of rotation of the second generator is practically constant, and a spted regulator takes excess energy via a controlled rectifier (thyristor) to a shunt circuit of the motor, if the wind power exceeds the load taken from the output of the second generator. As an extension of the arrangement according to the invention it is proposed to arrange a Diesel engine in the shaft of the second generator, which can be controlled at constant speed by the control device, so that it takes over the missing output if the wind power is less than the load at the generator output. Apart from this, it is proposed that the loading of the wind rotor should be controlled by the control device so that it only comes in if the wind rotor has reached a stable working point after accelerating on no load.

  12. The role of capacitance in a wind-electric water pumping system

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Shitao [West Texas A& M Univ., Canyon, TX (United States); Clark, R.N. [Conservation and Production Research Lab., Bushland, TX (United States)

    1997-12-31

    The development of controllers for wind-electric water pumping systems to enable the use of variable voltage, variable frequency electricity to operate standard AC submersible pump motors has provided a more efficient and flexible water pumping system to replace mechanical windmills. A fixed capacitance added in parallel with the induction motor improves the power factor and starting ability of the pump motor at the lower cut-in frequency. The wind-electric water pumping system developed by USDA-Agricultural Research Service, Bushland, TX, operated well at moderate wind speeds (5-12 m/s), but tended to lose synchronization in winds above 12 m/s, especially if they were gusty. Furling generally did not occur until synchronization had been lost and the winds had to subside before synchronization could be reestablished. The frequency needed to reestablish synchronization was much lower (60-65 Hz) than the frequency where synchronization was lost (70-80 Hz). As a result, the load (motor and pump) stayed off an excessive amount of time thus causing less water to be pumped and producing a low system efficiency. The controller described in this paper dynamically connects additional capacitance of the proper amount at the appropriate time to keep the system synchronized (running at 55 to 60 Hz) and pumping water even when the wind speed exceeds 15 m/s. The system efficiency was improved by reducing the system off-line time and an additional benefit was reducing the noise caused by the high speed blade rotation when the load was off line in high winds.

  13. Investigation of the Promotion of Wind Power Consumption Using the Thermal-Electric Decoupling Techniques

    Directory of Open Access Journals (Sweden)

    Shuang Rong

    2015-08-01

    Full Text Available In the provinces of north China, combined heat and electric power generations (CHP are widely utilized to provide both heating source and electricity. While, due to the constraint of thermal-electric coupling within CHP, a mass of wind turbines have to offline operate during heating season to maintain the power grid stability. This paper proposes a thermal-electric decoupling (TED approach to release the energy waste. Within the thermal-electric decoupling system, heat storage and electric boiler/heat pump are introduced to provide an auxiliary thermal source during hard peak shaving period, thus relying on the participation of an outside heat source, the artificial electric power output change interval could be widened to adopt more wind power and reduce wind power curtailment. Both mathematic models and methods are proposed to calculate the evaluation indexes to weight the effect of TED, by using the Monte Carlo simulation technique. Numerical simulations have been conducted to demonstrate the effectiveness of the proposed methods, and the results show that the proposed approach could relieve up to approximately 90% of wind power curtailment and the ability of power system to accommodate wind power could be promoted about 32%; moreover, the heating source is extended, about 300 GJ heat could be supplied by TED during the whole heating season, which accounts for about 18% of the total heat need.

  14. Wind energy research activities of the Dutch Electricity Generating Board

    International Nuclear Information System (INIS)

    Halberg, N.

    1990-01-01

    The varying degrees of penetration of wind energy conversion systems (WECs) into the Dutch electricity generating system has been examined. A simulation has been carried out using wind data recorded at 6 sites spread across the area of interest in the Netherlands. The recorded wind data has been used in conjunction with a production costing model normally used by Sep (the Dutch Electricity Generating Board) for planning purposes. This model was modified to give a correct assessment of the quantity and value of fuel savings made by WECs. System studies were carried out for the year 2000 for zero wind penetration and for three distinctive penetration degrees of WECs, namely 5%, 10% and 15%. After incorporation of the WECS capacity, adjustments were made to the basic plant mix to allow the capacity credit WECs. Separate production cost simulations were executed for each distinct WECS capacity factor. Economic assessments were carried out using standard procedures. Except for the unpredictable development of fuel prices, the capital costs of the WECs proved to be the determinant for the economic viability of wind power. Significant improvements in costs and performance, as may be achieved through additional technological advances, are needed to made wind power competitive in widespread utility applications. (Author)

  15. Production of electricity from the wind: a preliminary feasibility study for Greece

    Energy Technology Data Exchange (ETDEWEB)

    Galanis, N

    1977-01-01

    Wind statistics for Greece show that the conditions prevailing on the Aegean islands--i.e. considerable amounts of wind energy, small electrical loads and high generation costs--are especially favorable for the installation of wind turbine generators (WTGs). This study gives preliminary design parameters for WTGs at six locations and evaluates their performance. The duration of operation varies from 5000 to 7400 hours annually and the specific production is between 2300 and 3600 kwh/kw. The installation of the WTGs would result in diesel fuel savings corresponding to a month's consumption. Finally, the cost of wind generated electricity will be lower than that from diesel engines one to three years after the installation of the WTGs.

  16. Wind energy and electricity prices. Exploring the 'merit order effect'

    International Nuclear Information System (INIS)

    Morthost, P.E.; Ray, S.; Munksgaard, J.; Sinner, A.F.

    2010-04-01

    This report focuses on the effect of wind energy on the electricity price in the power market. As the report will discuss, adding wind into the power mix has a significant influence on the resulting price of electricity, the so called merit order effect (MOE). The merit order effect has been quantified and discussed in many scientific publications. This report ends the first phase of a study on the MOE, evaluating the impact of EWEA's 2020 scenarios on future European electricity prices. The basic principles of the merit order effect are provided in the first part of the document. The literature review itself contains methods and tools not only to quantify the merit order effect but also in order to forecast its future range and volume.

  17. Public and private attitudes towards 'green' electricity: the case of Swedish wind power

    International Nuclear Information System (INIS)

    Ek, Kristina

    2005-01-01

    There exists a political goal in Sweden and elsewhere to increase the use of renewable energy and wind power seems to be a favourable choice from an environmental perspective. However, although the public generally expresses a positive attitude towards wind power, the experience often shows that specific wind power projects face resistance from the local population. This paper analyses the attitudes towards wind power among the electricity consumers as well as the foundations of these attitudes. Results are based on a postal survey that was sent out to 1000 Swedish house owners. According to the results, the public is generally positive towards wind power. The probability of finding an average individual in support of wind power decreases with age and income. People with an interest in environmental issues are, however, more likely to be positive towards wind power than the average respondent and the results do not support the NIMBY-hypothesis. In addition, people that are more inclined to express public preferences are also more likely to be positive towards wind electricity than people who are less inclined to do so. These results imply, for instance, that the potential of markets for 'green' electricity may be limited, other support schemes is thus required if the politically stated goal to increase wind power capacity is to be fulfilled

  18. Efficient promotion of electricity production from offshore wind; Effiziente Foerderung der Stromerzeugung aus Offshore-Wind

    Energy Technology Data Exchange (ETDEWEB)

    Panzer, Christian; Auer, Hans; Lettner, Georg [Technische Univ. Wien (Austria). Energy Economics Group (EEG)

    2014-03-15

    Efficient promotion of electricity production from offshore wind stands in dynamic relationship with various influence factors, the most important of which are promotion instruments, topographic givens, regulation of grid connection, and supraregional market integration concepts. Using three case studies from different countries to highlight national differences in the promotion of offshore wind power plants the present analysis points out ways of improving the efficiency of promotion instruments.

  19. Electric Generators and their Control for Large Wind Turbines

    DEFF Research Database (Denmark)

    Boldea, Ion; Tutelea, Lucian; Rallabandi, Vandana

    2017-01-01

    induction generator, the cage rotor induction generator, and the synchronous generator with DC or permanent magnet excitation. The operating principle, performance, optimal design, and the modeling and control of the machine-side converter for each kind of generator are adressed and evaluated. In view......The electric generator and its power electronics interface for wind turbines (WTs) have evolved rapidly toward higher reliability and reduced cost of energy in the last 40 years. This chapter describes the up-to-date electric generators existing in the wind power industry, namely, the doubly fed...... of the fact that individual power rating of WTs has increased to around 10 MW, generator design and control technologies required to reach this power rating are discussed....

  20. Integration of wind energy in the Dutch electricity system in the context of the Northwestern European market for electricity. Final report

    International Nuclear Information System (INIS)

    Benz, E.; Hewicker, C.; Moldovan, N.; Stienstra, G.; Van der Veen, W.

    2010-04-01

    A study was conducted of the integration of large volumes of wind energy in the Dutch electricity system in the context of a Northwest European electricity market for the year 2020. This study contributes to answering the questions that are at the centre of the project 'Fuel mix'. The following aspects are addressed: the capacity to combine large volumes of wind energy in the Dutch electricity system with the use of CHP; the impact of electricity costs; the influence on CO2 emissions and fuel use; the correlation between the electricity production of CHP units; wind parks and coal-fired plants. In this study the Dutch electricity system is simulated in connection with the framework of the regional electricity market in Northwest Europe for the year 2020. The conducted simulations are based on perfect competition with the marginal cost price of the production units as offer price in the electricity market. To this end the chronological production simulation model (PLEXOS) was used, which takes into account the dynamic operational management and limitations of the electricity plants and the transmission grid. [nl

  1. Preliminary Design and Investigation of Integrated Compressor with Composite Material Wheel

    Science.gov (United States)

    Wang, Jifeng; Müller, Norbert

    2012-06-01

    An integrated water vapor compressor with composite material wheel is developed and strength analysis using FEM is presented. The design of wound composite material allows for integrating all rotating parts of the drive that may simply reduce to only the rotor of the electrical motor, since no drive shaft is required anymore. This design can reduce the number of parts and mass, which is convenient for engineers to maintain the compressor. The electrical motors are brushless DC motors operating through a frequency drive and apply a torque on the wheels through the materials bonded in the wheel shrouds. This system allows a large amount of compression to be produced in a multi-stage compression setup. To determine the stress and vibration characteristics of this integrated compressor, numerical analysis is carried out using FEM. The simulation result shows that the integrated compressor with composite material wheel can be used in a chiller system where water as a refrigerant.

  2. Assessment of wind energy potential for electricity generation

    African Journals Online (AJOL)

    Wind energy is proposed as an alternative source of electricity to fossil fuel generators .... can be connected to the national grid line to supplement the shortfall that arises during the dry ... systems are environmentally friendly. By generating ...

  3. Vehicle Velocity and Roll Angle Estimation with Road and Friction Adaptation for Four-Wheel Independent Drive Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Linhui Zhao

    2014-01-01

    Full Text Available Vehicle velocity and roll angle are important information for active safety control systems of four-wheel independent drive electric vehicle. In order to obtain robustness estimation of vehicle velocity and roll angle, a novel method is proposed based on vehicle dynamics and the measurement information provided by the sensors equipped in modern cars. The method is robust with respect to different road and friction conditions. Firstly, the dynamic characteristics of four-wheel independent drive electric vehicle are analyzed, and a four-degree-of-freedom nonlinear dynamic model of vehicle and a tire longitudinal dynamic equation are established. The relationship between the longitudinal and lateral friction forces is derived based on Dugoff tire model. The unknown input reconstruction technique of sliding mode observer is used to achieve longitudinal tire friction force estimation. A simple observer is designed for the estimation of the roll angle of the vehicle. And then using the relationship, the estimated longitudinal friction forces and roll angle, a sliding mode observer for vehicle velocity estimation is provided, which does not need to know the tire-road friction coefficient and road angles. Finally, the proposed method is evaluated experimentally under a variety of maneuvers and road conditions.

  4. Policy instruments for regulating the development of wind power in a liberated electricity market

    Energy Technology Data Exchange (ETDEWEB)

    Morthorst, P E [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    Wind power is facing the dual challenge of entering a liberated electricity market and at the same time being one of the main contributors to the reduction of greenhouse gas emissions. The paper analyses the importance of the existing standard payment schemes in the development of wind power, and how this might be affected by the introduction of a liberated electricity market. The existing Danish standard payment scheme has strongly encouraged investments in wind turbines. It has been and still is very effective in promoting a high wind power capacity development, but at a high economic cost to the Danish Government. Different models of conditions for wind power at an electricity exchange do exist, but all seem to introduce a higher risk to the individual wind turbine owner than seen with the present payment scheme. In short it might be stated that going from the existing standard payment system to a market based system, the political uncertainty is converted to a market risk for the individual wind turbine owner. (au)

  5. Policy instruments for regulating the development of wind power in a liberated electricity market

    International Nuclear Information System (INIS)

    Morthorst, P.E.

    1999-01-01

    Wind power is facing the dual challenge of entering a liberated electricity market and at the same time being one of the main contributors to the reduction of greenhouse gas emissions. The paper analyses the importance of the existing standard payment schemes in the development of wind power, and how this might be affected by the introduction of a liberated electricity market. The existing Danish standard payment scheme has strongly encouraged investments in wind turbines. It has been and still is very effective in promoting a high wind power capacity development, but at a high economic cost to the Danish Government. Different models of conditions for wind power at an electricity exchange do exist, but all seem to introduce a higher risk to the individual wind turbine owner than seen with the present payment scheme. In short it might be stated that going from the existing standard payment system to a market based system, the political uncertainty is converted to a market risk for the individual wind turbine owner. (au)

  6. Policy instruments for regulating the development of wind power in a liberated electricity market

    International Nuclear Information System (INIS)

    Morthorst, P.E.

    1999-01-01

    Wind power is facing the dual challenge of entering a liberated electricity market and at the same time being one of the main contributors to the reduction of greenhouse gas emissions. The paper analyses the importance of the existing standard payment schemes in the development of wind power, and how this might be affected by the introduction of a liberated electricity market. The existing Danish standard payment scheme has strongly encouraged investments in wind turbines. It has been and still is very effective in promoting a high wind power capacity development, but at a high economic cost to the Danish Government. Different models of conditions for wind power at an electricity exchange do exist, but all seem to introduce a higher risk to the individual wind turbine owner than seen with the present payment scheme. In short it might be stated that going from the existing standard payment system to a market based system, the political uncertainty is converted to a market risk for the individual wind turbine owner. (author)

  7. Bidirectional ionic wind in nonpremixed counterflow flames with DC electric fields

    KAUST Repository

    Park, Daegeun; Chung, Suk-Ho; Cha, Min

    2016-01-01

    Under an electric field, ions in the reaction zone of a flame generate a bulk flow motion called ionic wind. Because the majority of ions are positive, ionic wind is commonly considered to be unidirectional toward the cathode. A more thorough

  8. Optimal Operation of Plug-In Electric Vehicles in Power Systems with High Wind Power Penetrations

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Chen, Zhe

    2013-01-01

    in the power systems with high wind power penetrations. In this paper, the integration of plug-in electric vehicles in the power systems with high wind power penetrations is proposed and discussed. Optimal operation strategies of PEV in the spot market are proposed in order to decrease the energy cost for PEV......The Danish power system has a large penetration of wind power. The wind fluctuation causes a high variation in the power generation, which must be balanced by other sources. The battery storage based Plug-In Electric Vehicles (PEV) may be a possible solution to balance the wind power variations...... owners. Furthermore, the application of battery storage based aggregated PEV is analyzed as a regulation services provider in the power system with high wind power penetrations. The western Danish power system where the total share of annual wind power production is more than 27% of the electrical energy...

  9. Two new wheels for ATLAS

    CERN Multimedia

    2002-01-01

    Juergen Zimmer (Max Planck Institute), Roy Langstaff (TRIUMF/Victoria) and Sergej Kakurin (JINR), in front of one of the completed wheels of the ATLAS Hadronic End Cap Calorimeter. A decade of careful preparation and construction by groups in three continents is nearing completion with the assembly of two of the four 4 m diameter wheels required for the ATLAS Hadronic End Cap Calorimeter. The first two wheels have successfully passed all their mechanical and electrical tests, and have been rotated on schedule into the vertical position required in the experiment. 'This is an important milestone in the completion of the ATLAS End Cap Calorimetry' explains Chris Oram, who heads the Hadronic End Cap Calorimeter group. Like most experiments at particle colliders, ATLAS consists of several layers of detectors in the form of a 'barrel' and two 'end caps'. The Hadronic Calorimeter layer, which measures the energies of particles such as protons and pions, uses two techniques. The barrel part (Tile Calorimeter) cons...

  10. Electrical network limitations on large-scale deployment of offshore wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Power, P.B.

    2001-07-01

    In this report we have summarised the electrical network limitations to the connection of offshore wind energy schemes in the United Kingdom. The offshore wind resource in the United Kingdom could enable energy production in excess of 230 TWh to be realised. The wind resource of the UK coast should enable 4 GW of wind generation (13.4 GWh assuming 30% load factor) to be developed, providing appropriate technical and commercial arrangements can be made. (author)

  11. Design and optimization of resistance wire electric heater for hypersonic wind tunnel

    Science.gov (United States)

    Rehman, Khurram; Malik, Afzaal M.; Khan, I. J.; Hassan, Jehangir

    2012-06-01

    The range of flow velocities of high speed wind tunnels varies from Mach 1.0 to hypersonic order. In order to achieve such high speed flows, a high expansion nozzle is employed in the converging-diverging section of wind tunnel nozzle. The air for flow is compressed and stored in pressure vessels at temperatures close to ambient conditions. The stored air is dried and has minimum amount of moisture level. However, when this air is expanded rapidly, its temperature drops significantly and liquefaction conditions can be encountered. Air at near room temperature will liquefy due to expansion cooling at a flow velocity of more than Mach 4.0 in a wind tunnel test section. Such liquefaction may not only be hazardous to the model under test and wind tunnel structure; it may also affect the test results. In order to avoid liquefaction of air, a pre-heater is employed in between the pressure vessel and the converging-diverging section of a wind tunnel. A number of techniques are being used for heating the flow in high speed wind tunnels. Some of these include the electric arc heating, pebble bed electric heating, pebble bed natural gas fired heater, hydrogen burner heater, and the laser heater mechanisms. The most common are the pebble bed storage type heaters, which are inefficient, contaminating and time consuming. A well designed electrically heating system can be efficient, clean and simple in operation, for accelerating the wind tunnel flow up to Mach 10. This paper presents CFD analysis of electric preheater for different configurations to optimize its design. This analysis has been done using ANSYS 12.1 FLUENT package while geometry and meshing was done in GAMBIT.

  12. A Wind Farm Electrical Systems Evaluation with EeFarm-II

    NARCIS (Netherlands)

    Pierik, J.; Axelsson, U.; Eriksson, E.; Salomonsson, D.; Bauer, P.; Czech, B.

    2010-01-01

    EeFarm-II is used to evaluate 13 different electrical systems for a 200 MW wind farm with a 100 km connection to shore. The evaluation is based on component manufacturer data of 2009. AC systems are compared to systems with DC connections inside the wind farm and DC connection to shore. Two options

  13. Well-to-wheel analysis of direct and indirect use of natural gas in passenger vehicles

    International Nuclear Information System (INIS)

    Curran, Scott J.; Wagner, Robert M.; Graves, Ronald L.; Keller, Martin; Green, Johney B.

    2014-01-01

    The abundance of natural gas in the United States because of the number of existing natural gas reserves and the recent advances in extracting unconventional reserves has been one of the main drivers for low natural gas prices. A question arises of what is the optimal use of natural gas as a transportation fuel. Is it more efficient to use natural gas in a stationary power application to generate electricity to charge electric vehicles, compress natural gas for onboard combustion in vehicles, or re-form natural gas into a denser transportation fuel? This study investigates the well-to-wheels energy use and greenhouse gas emissions from various natural gas to transportation fuel pathways and compares the results to conventional gasoline vehicles and electric vehicles using the US electrical generation mix. Specifically, natural gas vehicles running on compressed natural gas are compared against electric vehicles charged with electricity produced solely from natural gas combustion in stationary power plants. The results of the study show that the dependency on the combustion efficiency of natural gas in stationary power can outweigh the inherent efficiency of electric vehicles, thus highlighting the importance of examining energy use on a well-to-wheels basis. - Highlights: • Well-to-wheels analysis shows differences in use of natural gas for transportation. • Well-to-wheels approach needed to evaluate total energy use and greenhouse gas emissions. • Well-to-wheels energy and GHG (greenhouse gas) emissions depend on efficiency of the prime mover. • Efficiency of power generation critical for low GHG emissions with electric vehicles. • Fuel economy critical for low GHG emissions with compressed natural gas vehicles

  14. Results from an investigation of the integration of wind energy into the El Paso Electric grid system

    Energy Technology Data Exchange (ETDEWEB)

    Moroz, E.M.; Parks, N.J.; Swift, A.H.; Traichal, P.A. [Univ. of Texas, El Paso, TX (United States)

    1997-12-31

    This paper documents some preliminary results from an evaluation of the costs and benefits to be gained from the integration of wind generated electricity into the El Paso Electric grid system. The study focused on the utilization of the considerable known wind potential of the Guadalupe/Delaware Mountains region, but also looked at other energetic wind resources within 15 miles of El Paso Electric`s Grid. The original project`s goal was to identify the added value of wind in terms of jobs, line support, risk reduction etc., that wind energy could bring to El Paso Electric. Although these goals have not yet been achieved the potential for water savings and reductions in gaseous emissions have been documented. Thus this paper focuses mainly on the water consumption and criteria pollutant emissions that could be avoided by adding wind energy to El Paso Electric`s generation mix. Preliminary data from a renewables attitude survey indicates that, from the 338 respondents, there is overwhelming public support for utilizing such renewable sources of electricity. This case study, which should be of direct relevance to the arid southwestern states and beyond, was sponsored by the Environmental Protection Agency (EPA) and conducted in cooperation with El Paso Electric.

  15. Presentation of a stochastic model estimating the wind energy contribution in remote island electrical networks

    International Nuclear Information System (INIS)

    Kaldellis, J.K.; Kapsali, M.; Tiligadas, D.

    2012-01-01

    Highlights: ► This study estimates the maximum wind energy contribution to an isolated micro-grid. ► An integrated computational tool is developed on the basis of stochastic analysis. ► The probability distribution of the wind energy surplus and deficit is estimated. ► The results indicate that a strict penetration limit is imposed to wind energy. -- Abstract: The electrification in remote islands whose electricity distribution network is not connected to the mainland’s grid is mostly based on Autonomous Power Stations (APSs) that are usually characterized by a considerably high electricity production cost, while at the same time the contribution of Renewable Energy Sources (RES) in these regions accounts for less than 10% of the total electricity generation. This actually results from the fact that despite the excellent wind potential of most of these islands, the wind energy contribution is significantly restricted from limits imposed to protect the remote electrical grids from possible instability problems, due to the stochastic wind speed behavior and the variable electricity consumption. On the basis of probability distribution of the load demand of a representative Greek island and the corresponding data related to the available wind potential, the present study estimates the maximum – acceptable by the local grid – wind energy contribution. For that reason, an integrated computational algorithm has been developed from first principles, based on a stochastic analysis. According to the results obtained, it becomes evident that with the current wind turbine technology, wind energy cannot play a key role in coping with the electrification problems encountered in many Greek island regions, excluding however the case of introducing bulk energy storage systems that may provide considerable recovery of the remarkable wind energy rejections expected.

  16. Electric wheel hub motor; Elektrischer Radnabenmotor

    Energy Technology Data Exchange (ETDEWEB)

    Groeninger, Michael; Kock, Alexander [IFAM Bremen (Germany); Horch, Felix [IFAM Bremen (Germany). Komponentenentwicklung; Pleteit, Hermann [IFAM Bremen (Germany). Abt. Giessereitechnologie und Komponentenentwicklung

    2012-02-15

    The bundled competences of the participating Fraunhofer Institutes have made it possible to develop a wheel hub motor that has essentially overcome currently existing technical hurdles, enabling its use in a vehicle. In addition to direct technical challenges such as sealing against external influences, high bearing stiffness requirements, necessary high torque densities and simple integration in the chassis, the safety aspects required by modern vehicles were also taken into account. A drive system that guarantees safe driving states, even in the case of malfunction, was developed through the combination of recuperative braking with a classic mechanical braking system and redundant motor design. (orig.)

  17. Environmental Benefits of Using Wind Generation to Power Plug-In Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Mahdi Hajian

    2011-08-01

    Full Text Available As alternatives to conventional vehicles, Plug-in Hybrid Electric Vehicles (PHEVs running off electricity stored in batteries could decrease oil consumption and reduce carbon emissions. By using electricity derived from clean energy sources, even greater environmental benefits are obtainable. This study examines the potential benefits arising from the widespread adoption of PHEVs in light of Alberta’s growing interest in wind power. It also investigates PHEVs’ capacity to mitigate natural fluctuations in wind power generation.

  18. Correlated wind-power production and electric load scenarios for investment decisions

    International Nuclear Information System (INIS)

    Baringo, L.; Conejo, A.J.

    2013-01-01

    Highlights: ► Investment models require an accurate representation of the involved uncertainty. ► Demand and wind power production are correlated and uncertain parameters. ► Two methodologies are provided to represent uncertainty and correlation. ► An accurate uncertainty representation is crucial to get optimal results. -- Abstract: Stochastic programming constitutes a useful tool to address investment problems. This technique represents uncertain input data using a set of scenarios, which should accurately describe the involved uncertainty. In this paper, we propose two alternative methodologies to efficiently generate electric load and wind-power production scenarios, which are used as input data for investment problems. The two proposed methodologies are based on the load- and wind-duration curves and on the K-means clustering technique, and allow representing the uncertainty of and the correlation between electric load and wind-power production. A case study pertaining to wind-power investment is used to show the interest of the proposed methodologies and to illustrate how the selection of scenarios has a significant impact on investment decisions.

  19. Optimal Wind Energy Integration in Large-Scale Electric Grids

    Science.gov (United States)

    Albaijat, Mohammad H.

    The major concern in electric grid operation is operating under the most economical and reliable fashion to ensure affordability and continuity of electricity supply. This dissertation investigates the effects of such challenges, which affect electric grid reliability and economic operations. These challenges are: 1. Congestion of transmission lines, 2. Transmission lines expansion, 3. Large-scale wind energy integration, and 4. Phaser Measurement Units (PMUs) optimal placement for highest electric grid observability. Performing congestion analysis aids in evaluating the required increase of transmission line capacity in electric grids. However, it is necessary to evaluate expansion of transmission line capacity on methods to ensure optimal electric grid operation. Therefore, the expansion of transmission line capacity must enable grid operators to provide low-cost electricity while maintaining reliable operation of the electric grid. Because congestion affects the reliability of delivering power and increases its cost, the congestion analysis in electric grid networks is an important subject. Consequently, next-generation electric grids require novel methodologies for studying and managing congestion in electric grids. We suggest a novel method of long-term congestion management in large-scale electric grids. Owing to the complication and size of transmission line systems and the competitive nature of current grid operation, it is important for electric grid operators to determine how many transmission lines capacity to add. Traditional questions requiring answers are "Where" to add, "How much of transmission line capacity" to add, and "Which voltage level". Because of electric grid deregulation, transmission lines expansion is more complicated as it is now open to investors, whose main interest is to generate revenue, to build new transmission lines. Adding a new transmission capacity will help the system to relieve the transmission system congestion, create

  20. Transmission cost minimization strategies for wind-electric generating facilities

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, R. [Northern States Power Company, Minneapolis, MN (United States)

    1997-12-31

    Integrating wind-electric generation facilities into existing power systems presents opportunities not encountered in conventional energy projects. Minimizing outlet cost requires probabilistic value-based analyses appropriately reflecting the wind facility`s operational characteristics. The wind resource`s intermittent nature permits relaxation of deterministic criteria addressing outlet configuration and capacity required relative to facility rating. Equivalent capacity ratings of wind generation facilities being a fraction of installed nameplate rating, outlet design studies contingency analyses can concentrate on this fractional value. Further, given its non-dispatchable, low capacity factor nature, a lower level of redundancy in outlet facilities is appropriate considering the trifling contribution to output unreliability. Further cost reduction opportunities arise from {open_quotes}wind speed/generator power output{close_quotes} and {open_quotes}wind speed/overhead conductor rating{close_quotes} functions` correlation. Proper analysis permits the correlation`s exploitation to safely increase line ratings. Lastly, poor correlation between output and utility load may permit use of smaller conductors, whose higher (mostly off-peak) losses are economically justifiable.

  1. Device for delivering cryogen to rotary super-conducting winding of cryogen-cooled electrical machine

    International Nuclear Information System (INIS)

    Filippov, I.F.; Gorbunov, G.S.; Khutoretsky, G.M.; Popov, J.S.; Skachkov, J.V.; Vinokurov, A.A.

    1980-01-01

    A device is disclosed for delivering cryogen to a superconducting winding of a cryogen-cooled electrical machine comprising a pipe articulated along the axis of the electrical machine and intended to deliver cryogen. One end of said pipe is located in a rotary chamber which communicates through channels with the space of the electrical machine, and said space accommodating its superconducting winding. The said chamber accommodates a needle installed along the chamber axis, and the length of said needle is of sufficient length such that in the advanced position of said cryogen delivering pipe said needle reaches the end of the pipe. The layout of the electrical machine increases the reliability and effectiveness of the device for delivering cryogen to the superconducting winding, simplifies the design of the device and raises the efficiency of the electrical machine

  2. Impact of wind generation on the operation and development of the UK electricity systems

    International Nuclear Information System (INIS)

    Strbac, Goran; Shakoor, Anser; Pudjianto, Danny; Black, Mary; Bopp, Thomas

    2007-01-01

    Although penetration of wind generation may displace a significant amount of energy produced by large conventional plant, there are issues associated with the extent to which wind generation will be able to replace the capacity and flexibility of conventional generating plant. This is important since wind power is variable, so it will be necessary to retain a significant proportion of conventional plant to ensure security of supply especially under conditions of high demand and low wind. Hence, the capacity value of wind generation will be limited as it will not be possible to displace conventional generation capacity on a ''megawatt for megawatt'' basis. Wind power is variable and not easy to predict, hence various forms of additional reserves will be needed to maintain the balance between supply and demand at all times. Additionally, if the majority of wind generation plant is located in Scotland and the North of England, reinforcement of the transmission network will be needed to accommodate the increases in the north-south flow of electricity. In this paper an assessment of the costs and benefits of wind generation on the UK electricity system is carried out, assuming different levels of wind power capacity. Overall, it is concluded that the system will be able to accommodate significant increases in wind power generation with relatively small increases in overall costs of supply, about 5% of the current domestic electricity price in case of 20% energy produced by wind power. (author)

  3. Price volatility in wind dominant electricity markets

    DEFF Research Database (Denmark)

    Farashbashi-Astaneh, Seyed-Mostafa; Chen, Zhe

    2013-01-01

    High penetration of intermittent renewable energy sources causes price volatility in future electricity markets. This is specially the case in European countries that plan high penetration levels. This highlights the necessity for revising market regulations and mechanisms in accordance...... to generation combination portfolio. Proposed solutions should be able to tackle with emerging challenges which are mainly due to high variability and unpredictability of intermittent renewable resources. In this paper high price volatility will be introduced as an emerging challenge in wind dominant...... electricity markets. High price volatility is unappreciated because it imposes high financial risk levels to both electricity consumers and producers. Additionally high price variations impede tracking price signals by consumers in future smart grid and jeopardize implementation of demand response concepts...

  4. Fluid power network for centralized electricity generation in offshore wind farms

    NARCIS (Netherlands)

    Jarquin-Laguna, A.

    2014-01-01

    An innovative and completely different wind-energy conversion system is studied where a centralized electricity generation within a wind farm is proposed by means of a hydraulic network. This paper presents the dynamic interaction of two turbines when they are coupled to the same hydraulic network.

  5. Dynamic Model of a Wind Turbine for the Electric Energy Generation

    Directory of Open Access Journals (Sweden)

    José de Jesús Rubio

    2014-01-01

    Full Text Available A novel dynamic model is introduced for the modeling of the wind turbine behavior. The objective of the wind turbine is the electric energy generation. The analytic model has the characteristic that considers a rotatory tower. Experiments show the validity of the proposed method.

  6. The economic benefit of short-term forecasting for wind energy in the UK electricity market

    International Nuclear Information System (INIS)

    Barthelmie, R.J.; Murray, F.; Pryor, S.C.

    2008-01-01

    In the UK market, the total price of renewable electricity is made up of the Renewables Obligation Certificate and the price achieved for the electricity. Accurate forecasting improves the price if electricity is traded via the power exchange. In order to understand the size of wind farm for which short-term forecasting becomes economically viable, we develop a model for wind energy. Simulations were carried out for 2003 electricity prices for different forecast accuracies and strategies. The results indicate that it is possible to increase the price obtained by around pound 5/MWh which is about 14% of the electricity price in 2003 and about 6% of the total price. We show that the economic benefit of using short-term forecasting is also dependant on the accuracy and cost of purchasing the forecast. As the amount of wind energy requiring integration into the grid increases, short-term forecasting becomes more important to both wind farm owners and the transmission/distribution operators. (author)

  7. Sharing wind power forecasts in electricity markets: A numerical analysis

    International Nuclear Information System (INIS)

    Exizidis, Lazaros; Kazempour, S. Jalal; Pinson, Pierre; Greve, Zacharie de; Vallée, François

    2016-01-01

    Highlights: • Information sharing among different agents can be beneficial for electricity markets. • System cost decreases by sharing wind power forecasts between different agents. • Market power of wind producer may increase by sharing forecasts with market operator. • Extensive out-of-sample analysis is employed to draw reliable conclusions. - Abstract: In an electricity pool with significant share of wind power, all generators including conventional and wind power units are generally scheduled in a day-ahead market based on wind power forecasts. Then, a real-time market is cleared given the updated wind power forecast and fixed day-ahead decisions to adjust power imbalances. This sequential market-clearing process may cope with serious operational challenges such as severe power shortage in real-time due to erroneous wind power forecasts in day-ahead market. To overcome such situations, several solutions can be considered such as adding flexible resources to the system. In this paper, we address another potential solution based on information sharing in which market players share their own wind power forecasts with others in day-ahead market. This solution may improve the functioning of sequential market-clearing process through making more informed day-ahead schedules, which reduces the need for balancing resources in real-time operation. This paper numerically evaluates the potential value of sharing forecasts for the whole system in terms of system cost reduction. Besides, its impact on each market player’s profit is analyzed. The framework of this study is based on a stochastic two-stage market setup and complementarity modeling, which allows us to gain further insights into information sharing impacts.

  8. Experimental results of wind powered pumping plant with electrical transmission

    International Nuclear Information System (INIS)

    Falchetta, M.; Prischich, D.; Benedetti, A.; Cara, G.

    1992-01-01

    A demonstrative application of deep well pumping system employing a wind powered pumping plant with an electric transmission was set-up and tested for two years at the test field of the Casaccia center of ENEA (Italian Agency for Energy, New Technologies and the Environment), near Rome. The tests permitted the evaluation of the practical performance, advantages and drawbacks of a wind pumping plant of this type, in order to permit a design optimization and a proper choice of components and of control strategies for future commercial applications. The main point of investigation was the evaluation of the effectiveness of a control scheme based on a 'permanent link' between electric generator and electric motor, avoiding any electronics and switching components, and leading to a very robust and reliable means of transferring energy to the pump at variable speed, and at low cost

  9. Wind pumps for agriculture: Cost and environmental benefits (comparisons with electric and combustion engine driven pumps)

    International Nuclear Information System (INIS)

    Piccoli, F.

    1991-01-01

    After describing initial and running costs of a group of wind-pumps, the author calculates and compares, as far as agricultural and zootechnical purposes are concerned, the costs for each cubic meter of water extracted through wind-powered, electric and internal-combustion engines. The comparisons clearly show, under adequate wind conditions, that wind-pumps are economically more suitable than electric and motor pumps with similar delivery heads

  10. A study of novel regenerative braking system based on supercapacitor for electric vehicle driven by in-wheel motors

    Directory of Open Access Journals (Sweden)

    Li-qiang Jin

    2015-03-01

    Full Text Available Taking supercapacitor and battery pack as the energy storage unit, a novel type of regenerative braking system for electric vehicle driven by in-wheel motors is presented, and a braking energy regeneration control strategy is set up. Then, a co-simulation test based on CRUISE and Simulink is conducted. The results of simulation show that the novel type of system can ensure the safety of battery pack and significantly improve the rate of energy regeneration.

  11. The impact of wind forecast errors on the efficiency of the Ontario electricity market

    International Nuclear Information System (INIS)

    Ng, H.

    2008-01-01

    Ontario's Independent System Operator (IESO) is currently involved in a number of wind projects in the province, and has developed both a resource commitment and dispatch timeline in relation to increased wind power penetration in the Ontario electricity grid. This presentation discussed the impacts of wind forecast errors on the province's electricity market. Day-ahead planning is used to commit fossil fuels and gas resources, while 3-hours ahead planning is used to commit generation in real time. Inter-ties are committed 1 hour ahead of dispatch. Over-forecasts for wind can cause market prices to increase in real-time, or cause markets to miss opportunities to schedule cheaper imports. The inefficient scheduling caused by overforecasts can also lead to exports not being purchases at high enough prices. Under-forecasts can cause market prices to decrease, and may cause imports to be scheduled that would not have been economic at lower prices. The scheduling difficulties related to under-forecasting can cause markets to miss opportunities to schedule efficient exports. Wind facility forecast errors typically improve closer to real-time. One-hour ahead wind forecast errors can reach approximately 12 per cent. The annual costs of overforecasting are under $200,000. Underforecasting costs are usually less than $30,000. The costs of the wind forecasting inefficiencies are relatively small in the $10 billion electricity market. It was concluded that system operators will continue to track forecast errors and inefficiencies as wind power capacity in the electric power industry increases. tabs., figs

  12. Magnetic power conversion with machines containing full or porous wheel heat exchangers

    Science.gov (United States)

    Egolf, Peter W.; Kitanovski, Andrej; Diebold, Marc; Gonin, Cyrill; Vuarnoz, Didier

    2009-04-01

    A first part of the article contains a thermodynamic theory describing the temperature distribution in a Curie wheel. The occurring nonlinear ordinary differential equation has an analytical solution. If a Curie wheel is stabilized by levitation, it is named Palmy wheel. These wheels show a full structure, and because of this reason, their uptake of heat from a flame (Curie wheel) or by (solar) light absorption (Palmy wheel) only on the periphery of a cylinder is very limited. To improve the method, a modification of the principle by introducing a convective heat transport into a porous wheel is discussed. By this the power conversion rate from a heat flux to mechanical and electric power is very much increased. The second part of the article presents results of a theoretical/numerical study on the efficiencies of magnetic power conversion plants operating with porous wheels. Furthermore, these efficiencies—which are promising—are compared with those of existing power conversion plants, as e.g. geothermal binary cycle power plants.

  13. Magnetic power conversion with machines containing full or porous wheel heat exchangers

    International Nuclear Information System (INIS)

    Egolf, Peter W.; Kitanovski, Andrej; Diebold, Marc; Gonin, Cyrill; Vuarnoz, Didier

    2009-01-01

    A first part of the article contains a thermodynamic theory describing the temperature distribution in a Curie wheel. The occurring nonlinear ordinary differential equation has an analytical solution. If a Curie wheel is stabilized by levitation, it is named Palmy wheel. These wheels show a full structure, and because of this reason, their uptake of heat from a flame (Curie wheel) or by (solar) light absorption (Palmy wheel) only on the periphery of a cylinder is very limited. To improve the method, a modification of the principle by introducing a convective heat transport into a porous wheel is discussed. By this the power conversion rate from a heat flux to mechanical and electric power is very much increased. The second part of the article presents results of a theoretical/numerical study on the efficiencies of magnetic power conversion plants operating with porous wheels. Furthermore, these efficiencies-which are promising-are compared with those of existing power conversion plants, as e.g. geothermal binary cycle power plants

  14. DESIGN AND DEVELOPMENT OF A 1/3 SCALE VERTICAL AXIS WIND TURBINE FOR ELECTRICAL POWER GENERATION

    Directory of Open Access Journals (Sweden)

    Altab Md. Hossain

    2007-12-01

    Full Text Available This research describes the electrical power generation in Malaysia by the measurement of wind velocity acting on the wind turbine technology. The primary purpose of the measurement over the 1/3 scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. The electrical power produced by the wind turbine is influenced by its two major part, wind power and belt power transmission system. The blade and the drag area system are used to determine the powers of the wind that can be converted into electric power as well as the belt power transmission system. In this study both wind power and belt power transmission system has been considered. A set of blade and drag devices have been designed for the 1/3 scaled wind turbine at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL. Test has been carried out on the wind turbine with the different wind velocities of 5.89 m/s, 6.08 m/s and 7.02 m/s. From the experiment, the wind power has been calculated as 132.19 W, 145.40 W and 223.80 W. The maximum wind power is considered in the present study.

  15. DESIGN AND DEVELOPMENT OF A 1/3 SCALE VERTICAL AXIS WIND TURBINE FOR ELECTRICAL POWER GENERATION

    Directory of Open Access Journals (Sweden)

    Altab Hossain

    2007-01-01

    Full Text Available This research describes the electrical power generation in Malaysia by the measurement of wind velocity acting on the wind turbine technology. The primary purpose of the measurement over the 1/3 scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. The electrical power produced by the wind turbine is influenced by its two major part, wind power and belt power transmission system. The blade and the drag area system are used to determine the powers of the wind that can be converted into electric power as well as the belt power transmission system. In this study both wind power and belt power transmission system has been considered. A set of blade and drag devices have been designed for the 1/3 scaled wind turbine at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL. Test has been carried out on the wind turbine with the different wind velocities of 5.89 m/s, 6.08 m/s and 7.02 m/s. From the experiment, the wind power has been calculated as 132.19 W, 145.40 W and 223.80 W. The maximum wind power is considered in the present study.

  16. Wind integration in self-regulating electric load distributions

    Energy Technology Data Exchange (ETDEWEB)

    Parkinson, Simon; Wang, Dan; Crawford, Curran; Djilali, Ned [University of Victoria, Department of Mechanical Engineering, Institute for Integrated Energy Systems, STN CSC, Victoria, BC (Canada)

    2012-12-15

    The purpose of this paper is to introduce and assess an alternative method of mitigating short-term wind energy production variability through the control of electric loads. In particular, co-located populations of electric vehicles and heat pumps are targeted to provide regulation-based ancillary services, as the inherent operational flexibility and autonomous device-level control strategy associated with these load-types provide an ideal platform to mitigate enhanced variability within the power system. An optimal control strategy capable of simultaneously balancing these grid-side objectives with those typically expected on the demand-side is introduced. End-use digital communication hardware is used to track and control population dynamics through the development of online aggregate load models equivalent to conventional dispatchable generation. The viability of the proposed load control strategy is assessed through model-based simulations that explicitly track end-use functionality of responsive devices within a power systems analysis typically implemented to observe the effects of integrated wind energy systems. Results indicate that there is great potential for the proposed method to displace the need for increased online regulation reserve capacity in systems considering a high penetration of wind energy, thereby allowing conventional generation to operate more efficiently. (orig.)

  17. Electrical production for domestic and industrial applications using hybrid PV-wind system

    International Nuclear Information System (INIS)

    Essalaimeh, S.; Al-Salaymeh, A.; Abdullat, Y.

    2013-01-01

    Highlights: ► Modeling and building hybrid system of PV and wind turbine. ► Investigation of the electrical generation under Amman–Jordan’s climate. ► Configuration of theoretical and actual characteristics of the hybrid system. ► Testing effects of dust, inclination and load on the electrical generation. ► Financial analysis for various applications. - Abstract: The present work shows an experimental investigation of using a combination of solar and wind energies as hybrid system for electrical generation under the Jordanian climate conditions. The generated electricity has been utilized for different types of applications and mainly for space heating and cooling. The system has also integration with grid connection to have more reliable system. Measurements included the solar radiation intensity, the ambient temperature, the wind speed and the output power from the solar PV panels and wind turbine. The performance characteristic of the PV panels has been obtained by varying the load value through a variable resistance. Some major factors have been studied and practically measured; one of them is the dust effect on electrical production efficiency for photovoltaic panels. Another factor is the inclination of the PV panels, where varying the angle of inclination has a seasonal importance for gathering the maximum solar intensity. Through mathematical calculation and the collected and measured data, a simple payback period has been calculated of the hybrid system in order to study the economical aspects of installing such a system under Jordanian climate conditions and for different usages and local tariffs including domestic, industrial and commercial applications. It was found through this work that the generated electricity of hybrid system and under Jordanian climate conditions can be utilized for electrical heating and cooling through split units and resistive heaters.

  18. Medium-term energy hub management subject to electricity price and wind uncertainty

    International Nuclear Information System (INIS)

    Najafi, Arsalan; Falaghi, Hamid; Contreras, Javier; Ramezani, Maryam

    2016-01-01

    Highlights: • A new model for medium-term energy hub management is proposed. • Risk aversion is considered in medium-term energy hub management. • Stochastic programing is used to solve the medium-term energy hub management problem. • Electricity price and wind uncertainty are considered. - Abstract: Energy hubs play an important role in implementing multi-carrier energy systems. More studies are required in both their modeling and operating aspects. In this regard, this paper attempts to develop medium-term management of an energy hub in restructured power systems. A model is presented to manage an energy hub which has electrical energy and natural gas as inputs and electrical and heat energy as outputs. Electricity is procured in various ways, either purchasing it from a pool-based market and bilateral contracts, or producing it from a Combined Heat and Power (CHP) unit, a diesel generator unit and Wind Turbine Generators (WTGs). Pool prices and wind turbine production are subject to uncertainty, which makes energy management a complex puzzle. Heat demand is also procured by a furnace and a CHP unit. Energy hub managers should make decisions whether to purchase electricity from the electricity market and gas from the gas network or to produce electricity using a set of generators to meet the electrical and heat demands in the presence of uncertainties. The energy management objective is to minimize the total cost subject to several technical constraints using stochastic programming. Conditional Value at Risk (CVaR), a well-known risk measure, is used to reduce the unfavorable risk of costs. In doing so, the proposed model is illustrated using a sample test case with actual prices, load and wind speed data. The results show that the minimum cost is obtained by the best decisions involving the electricity market and purchasing natural gas for gas facilities. Considering risk also increases the total expected cost and decreases the CVaR.

  19. The facilitation of wind generation in Ireland's electricity market using demand response.

    OpenAIRE

    Finn, Patrick M.

    2011-01-01

    peer-reviewed As part of a European Union climate change and energy package that aims to reduce greenhouse gases by 20%, reach 20% penetration of renewable energy, and improve energy efficiency by 20% by 2020, Ireland has committed to generating 40% of its electricity using indigenous renewable sources, primarily wind, by 2020. As wind is an intermittent energy source, a key challenge will be to increase the flexibility of the electricity system in order to maximise yields from th...

  20. Nonlinear Cascade Strategy for Longitudinal Control of Electric Vehicle.

    Science.gov (United States)

    El Majdoub, K; Giri, F; Ouadi, H; Chaoui, F Z

    2014-01-01

    The problem of controlling the longitudinal motion of front-wheels electric vehicle (EV) is considered making the focus on the case where a single dc motor is used for both front wheels. Chassis dynamics are modelled applying relevant fundamental laws taking into account the aerodynamic effects and the road slope variation. The longitudinal slip, resulting from tire deformation, is captured through Kiencke's model. Despite its highly nonlinear nature the complete model proves to be utilizable in longitudinal control design. The control objective is to achieve a satisfactory vehicle speed regulation in acceleration/deceleration stages, despite wind speed and other parameters uncertainty. An adaptive controller is developed using the backstepping design technique. The obtained adaptive controller is shown to meet its objectives in presence of the changing aerodynamics efforts and road slope.

  1. Transmission and wind investment in a deregulated electricity industry

    DEFF Research Database (Denmark)

    Maurovich-Horvat, Lajos; Boomsma, Trine Krogh; Siddiqui, Afzal S.

    2015-01-01

    Adoption of dispersed renewable energy technologies requires transmission network expansion. Besides the transmission system operator (TSO), restructuring of electricity industries has introduced a merchant investor (MI), who earns congestion rents from constructing new lines. We compare these tw...... proportion of energy is produced by wind. In effect, withholding of generation capacity by producers prompts more transmission investment since the TSO aims to increase welfare by subsidizing wind and the MI creates more flow to maximize profit....

  2. Pricing Electricity in Pools With Wind Producers

    DEFF Research Database (Denmark)

    Morales González, Juan Miguel; Conejo, A. J.; Kai Liu

    2012-01-01

    This paper considers an electricity pool that includes a significant number of wind producers and is cleared through a network-constrained auction, one day in advance and on an hourly basis. The hourly auction is formulated as a two-stage stochastic programming problem, where the first stage...... represents the clearing of the market and the second stage models the system operation under a number of plausible wind production realizations. This formulation co-optimizes energy and reserve, and allows deriving both pool energy prices and balancing energy prices. These prices result in both cost recovery...... for producers and revenue reconciliation. A case study of realistic size is used to illustrate the functioning of the proposed pricing scheme....

  3. Comparison between two braking control methods integrating energy recovery for a two-wheel front driven electric vehicle

    International Nuclear Information System (INIS)

    Itani, Khaled; De Bernardinis, Alexandre; Khatir, Zoubir; Jammal, Ahmad

    2016-01-01

    Highlights: • Comparison between two braking methods for an EV maximizing the energy recovery. • Wheels slip ratio control based on robust sliding mode and ECE R13 control methods. • Regenerative braking control strategy. • Energy recovery of a HESS with respect to road surface type and road condition. - Abstract: This paper presents the comparison between two braking methods for a two-wheel front driven Electric Vehicle maximizing the energy recovery on the Hybrid Energy Storage System. The first method consists in controlling the wheels slip ratio while braking using a robust sliding mode controller. The second method will be based on ECE R13H constraints for an M1 passenger vehicle. The vehicle model used for simulation is a simplified five degrees of freedom model. It is driven by two 30 kW permanent magnet synchronous motor (PMSM) recovering energy during braking phases. Several simulation results for extreme braking conditions will be performed and compared on various road type surfaces using Matlab/Simulink®. For an initial speed of 80 km/h, simulation results demonstrate that the difference of energy recovery efficiency between the two control braking methods is beneficial to the ECE constraints control method and it can vary from 3.7% for high friction road type to 11.2% for medium friction road type. At low friction road type, the difference attains 6.6% due to different reasons treated in the paper. The stability deceleration is also discussed and detailed.

  4. Sharing wind power forecasts in electricity markets: A numerical analysis

    DEFF Research Database (Denmark)

    Exizidis, Lazaros; Pinson, Pierre; Kazempour, Jalal

    2016-01-01

    In an electricity pool with significant share of wind power, all generators including conventional and wind power units are generally scheduled in a day-ahead market based on wind power forecasts. Then, a real-time market is cleared given the updated wind power forecast and fixed day......-ahead decisions to adjust power imbalances. This sequential market-clearing process may cope with serious operational challenges such as severe power shortage in real-time due to erroneous wind power forecasts in day-ahead market. To overcome such situations, several solutions can be considered such as adding...... flexible resources to the system. In this paper, we address another potential solution based on information sharing in which market players share their own wind power forecasts with others in day-ahead market. This solution may improve the functioning of sequential market-clearing process through making...

  5. Electric solar wind sail mass budget model

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2013-02-01

    Full Text Available The electric solar wind sail (E-sail is a new type of propellantless propulsion system for Solar System transportation, which uses the natural solar wind to produce spacecraft propulsion. The E-sail consists of thin centrifugally stretched tethers that are kept charged by an onboard electron gun and, as such, experience Coulomb drag through the high-speed solar wind plasma stream. This paper discusses a mass breakdown and a performance model for an E-sail spacecraft that hosts a mission-specific payload of prescribed mass. In particular, the model is able to estimate the total spacecraft mass and its propulsive acceleration as a function of various design parameters such as the number of tethers and their length. A number of subsystem masses are calculated assuming existing or near-term E-sail technology. In light of the obtained performance estimates, an E-sail represents a promising propulsion system for a variety of transportation needs in the Solar System.

  6. Electricity from Wind for Off-Grid Applications in Bangladesh: A Techno-Economic Assessment

    Directory of Open Access Journals (Sweden)

    Md. Mustafizur Rahman

    2017-03-01

      Keywords: GHG emission, cost of electricity, off-grid, wind energy, electricity generation. Article History: Received October 15th 2016; Received in revised form January 26th 2017; Accepted February 4th 2017; Available online How to Cite This Article: Rahman, M.M., Baky, M.A.H, and Islam, A.K.M.S. (2017 Electricity from Wind for Off-Grid Applications in Bangladesh: A Techno-Economic Assessment. International Journal of Renewable Energy Develeopment, 6(1, 55-64. http://dx.doi.org/10.14710/ijred.6.1.55-64

  7. Analysis and Design of a Permanent Magnet Bi-Stable Electro-Magnetic Clutch Unit for In-Wheel Electric Vehicle Drives

    Directory of Open Access Journals (Sweden)

    Wanli Cai

    2015-06-01

    Full Text Available Clutches have been used in internal combustion vehicles and concentrated electric vehicles (EVs to smoothen impulsion while starting and shifting. This paper proposes a permanent magnet bi-stable electromagnetic clutch unit (PMBECU which is specially introduced into in-wheel EVs to make the rigid connection between hub and wheel more flexible. Firstly, the operation principle of the PMBECU is illustrated. Then, the basic magnetic circuit model is presented and analyzed, followed by optimal design of the main structural parameters by investigating the PM leakage flux coefficient. Further, according to the basic electromagnetic characteristics of the PMBECU, the current pulse supply is put forward, and the minimum pulse width which enables the operation of the PMBECU and its dynamic characteristics are analyzed by an improved finite element method. Finally, a prototype machine is manufactured and tested to validate all the analysis results.

  8. The Electric Wind of Venus: A Global and Persistent Polar Wind -Like Ambipolar Electric Field Sufficient for the Direct Escape of Heavy Ionospheric Ions

    Science.gov (United States)

    Collinson, Glyn A.; Frahm, Rudy A.; Glocer, Alex; Coates, Andrew J.; Grebowsky, Joseph M.; Barabash, Stas; Domagal-Goldman, Shawn D.; Federov, Andrei; Futaana, Yoshifumi; Gilbert, Lin K.; hide

    2016-01-01

    Understanding what processes govern atmospheric escape and the loss of planetary water is of paramount importance for understanding how life in the universe can exist. One mechanism thought to be important at all planets is an ambipolar electric field that helps ions overcome gravity. We report the discovery and first quantitative extraterrestrial measurements of such a field at the planet Venus. Unexpectedly, despite comparable gravity, we show the field to be five times stronger than in Earths similar ionosphere. Contrary to our understanding, Venus would still lose heavy ions (including oxygen and all water-group species) to space, even if there were no stripping by the solar wind. We therefore find that it is possible for planets to lose heavy ions to space entirely through electric forces in their ionospheres and such an electric wind must be considered when studying the evolution and potential habitability of any planet in any star system.

  9. Automated phased array ultrasonic inspection system for rail wheel sets

    International Nuclear Information System (INIS)

    Grosser, Paul; Weiland, M.G.

    2013-01-01

    This paper covers the design, system automation, calibration and validation of an automated ultrasonic system for the inspection of new and in service wheel set assemblies from diesel-electric locomotives and gondola cars. This system uses Phased Array (PA) transducers for flaw detection and Electro-Magnetic Acoustic Transducers (EMAT) for the measurement of residual stress. The system collects, analyses, evaluates and categorizes the wheel sets automatically. This data is archived for future comparison and trending. It is also available for export to a portal lathe for increased efficiency and accuracy of machining, therefore allowing prolonged wheel life.

  10. Wind power as an electrical energy source in Illinois

    Science.gov (United States)

    Wendland, W. M.

    1982-03-01

    A preliminary estimate of the total wind power available in Illinois was made using available historical data, and projections of cost savings due to the presence of wind-generated electricity were attempted. Wind data at 10 m height were considered from nine different sites in the state, with three years data nominally being included. Wind-speed frequency histograms were developed for day and night periods, using a power law function to extrapolate the 10 m readings to 20 m. Wind speeds over the whole state were found to average over 8 mph, the cut-in point for most wind turbines, for from 40-63% of the time. A maximum of 75% run-time was determined for daylight hours in April-May. A reference 1.8 kW windpowered generator was used in annual demand projections for a reference one family home, using the frequency histograms. The small generator was projected to fulfill from 25-53% of the annual load, and, based on various cost assumptions, exhibited paybacks taking from 14-27 yr.

  11. One kilometer (1 km) electric solar wind sail tether produced automatically.

    Science.gov (United States)

    Seppänen, Henri; Rauhala, Timo; Kiprich, Sergiy; Ukkonen, Jukka; Simonsson, Martin; Kurppa, Risto; Janhunen, Pekka; Hæggström, Edward

    2013-09-01

    We produced a 1 km continuous piece of multifilament electric solar wind sail tether of μm-diameter aluminum wires using a custom made automatic tether factory. The tether comprising 90,704 bonds between 25 and 50 μm diameter wires is reeled onto a metal reel. The total mass of 1 km tether is 10 g. We reached a production rate of 70 m/24 h and a quality level of 1‰ loose bonds and 2‰ rebonded ones. We thus demonstrated that production of long electric solar wind sail tethers is possible and practical.

  12. Exploration of dispatch model integrating wind generators and electric vehicles

    International Nuclear Information System (INIS)

    Haque, A.N.M.M.; Ibn Saif, A.U.N.; Nguyen, P.H.; Torbaghan, S.S.

    2016-01-01

    Highlights: • A novel business model for the BRPs is analyzed. • Imbalance cost of wind generation is considered in the UC-ED model. • Smart charging of EVs is included into the UC-ED problem to mitigate the imbalance cost. • Effects of smart charging on generation cost, CO 2 emissions and total network load are assessed. - Abstract: In recent years, the share of renewable energy sources (RES) in the electricity generation mix has been expanding rapidly. However, limited predictability of the RES poses challenges for traditional scheduling and dispatching mechanisms based on unit commitment (UC) and economic dispatch (ED). This paper presents an advanced UC-ED model to incorporate wind generators as RES-based units alongside conventional centralized generators. In the proposed UC-ED model, an imbalance cost is introduced reflecting the wind generation uncertainty along with the marginal generation cost. The proposed UC-ED model aims to utilize the flexibility of fleets of plug-in electric vehicles (PEVs) to optimally compensate for the wind generation uncertainty. A case study with 15 conventional units and 3 wind farms along with a fixed-sized PEV fleet demonstrates that shifting of PEV fleets charging at times of high wind availability realizes generation cost savings. Nevertheless, the operational cost saving incurred by controlled charging appears to diminish when dispatched wind energy becomes considerably larger than the charging energy of PEV fleets. Further analysis of the results reveals that the effectiveness of PEV control strategy in terms of CO 2 emission reduction is strongly coupled with generation mix and the proposed control strategy is favored in cases where less pollutant-based plants like nuclear and hydro power are profoundly dominant.

  13. Simulation study of solar wind push on a charged wire: basis of solar wind electric sail propulsion

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2007-03-01

    Full Text Available One possibility for propellantless propulsion in space is to use the momentum flux of the solar wind. A way to set up a solar wind sail is to have a set of thin long wires which are kept at high positive potential by an onboard electron gun so that the wires repel and deflect incident solar wind protons. The efficiency of this so-called electric sail depends on how large force a given solar wind exerts on a wire segment and how large electron current the wire segment draws from the solar wind plasma when kept at a given potential. We use 1-D and 2-D electrostatic plasma simulations to calculate the force and present a semitheoretical formula which captures the simulation results. We find that under average solar wind conditions at 1 AU the force per unit length is (5±1×10−8 N/m for 15 kV potential and that the electron current is accurately given by the well-known orbital motion limited (OML theory cylindrical Langmuir probe formula. Although the force may appear small, an analysis shows that because of the very low weight of a thin wire per unit length, quite high final speeds (over 50 km/s could be achieved by an electric sailing spacecraft using today's flight-proved components. It is possible that artificial electron heating of the plasma in the interaction region could increase the propulsive effect even further.

  14. Influence of wind power, plug-in electric vehicles, and heat storages on power system investments

    DEFF Research Database (Denmark)

    Kiviluoma, Juha; Meibom, Peter

    2010-01-01

    Due to rising fuel costs, the substantial price for CO2 emissions and decreasing wind power costs, wind power might become the least expensive source of power for an increasing number of power systems. This poses the questions of how wind power might change optimal investments in other forms...... of power production and what kind of means could be used to increase power system flexibility in order to incorporate the variable power production from wind power in a cost-effective manner. We have analysed possible effects using an investment model that combines heat and power production and simulates...... electric vehicles. The model runs in an hourly time scale in order to accommodate the impact of variable power production from wind power. Electric vehicles store electricity for later use and can thus serve to increase the flexibility of the power system. Flexibility can also be upgraded by using heat...

  15. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply; Executive Summary (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    2008-12-01

    This document is a 21-page summary of the 200+ page analysis that explores one clearly defined scenario for providing 20% of our nation's electricity demand with wind energy by 2030 and contrasts it to a scenario of no new U.S. wind power capacity.

  16. statistical analysis of wind speed for electrical power generation

    African Journals Online (AJOL)

    HOD

    sites are suitable for the generation of electrical energy. Also, the results ... Nigerian Journal of Technology (NIJOTECH). Vol. 36, No. ... parameter in the wind-power generation system. ..... [3] A. Zaharim, A. M Razali, R. Z Abidin, and K Sopian,.

  17. Novel wind powered electric vehicle charging station with vehicle-to-grid (V2G) connection capability

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2017-01-01

    Highlights: • The only wind powered EV charging station reported in the literature. • The charging station maximally converts wind energy into electric energy. • Novel fast and highly accurate MPPT technique implemented in the EV charging station. • The charging station is grid-connected type with vehicle-to-grid (V2G) technology. • The charging station balances load demand in the grid connected to it. - Abstract: In this study, a novel grid-connected wind powered electric vehicle (EV) charging station with vehicle-to-grid (V2G) technology is designed and constructed. The wind powered EV charging station consists of a wind energy conversion system (WECS), a unidirectional DC/DC converter connected to the WECS, a maximum power point tracking (MPPT) controller, 15 bidirectional DC/DC converters dedicated to 15 charging stations provided for charging EVs, and a three-phase bidirectional DC/AC inverter connected to the grid. The contribution of this work is that the grid-connected wind powered EV charging station presented in this work is the only constructed EV charging station reported in the literature that uses wind energy as a renewable resource to produce electric energy for charging EVs, and moreover, it maximally converts wind energy into electric energy because it uses a novel fast and highly accurate MPPT technique proposed in this study. Other works are only simulated models without any new MPPT consideration. It is demonstrated that the constructed wind powered EV charging station is a perfect charging station that not only produces electric energy to charge EVs but also balances load demand in the grid connected to it.

  18. PROVIDING QUALITY OF ELECTRIC POWER IN ELECTRIC POWER SYSTEM IN PARALLEL OPERATION WITH WIND TURBINE

    Directory of Open Access Journals (Sweden)

    Yu. A. Rolik

    2016-01-01

    Full Text Available The problem of providing electric power quality in the electric power systems (EPS that are equipped with sufficiently long air or cable transmission lines is under consideration. This problem proved to be of particular relevance to the EPS in which a source of electrical energy is the generator of wind turbines since the wind itself is an instable primary energy source. Determination of the degree of automation of voltage regulation in the EPS is reduced to the choice of methods and means of regulation of power quality parameters. The concept of a voltage loss and the causes of the latter are explained by the simplest power system that is presented by a single-line diagram. It is suggested to regulate voltage by means of changing parameters of the network with the use of the method of reducing loss of line voltage by reducing its reactance. The latter is achieved by longitudinal capacitive compensation of the inductive reactance of the line. The effect is illustrated by vector diagrams of currents and voltages in the equivalent circuits of transmission lines with and without the use of longitudinal capacitive compensation. The analysis of adduced formulas demonstrated that the use of this method of regulation is useful only in the systems of power supply with a relatively low power factor (cosφ < 0.7 to 0.9. This power factor is typical for the situation of inclusion the wind turbine with asynchronous generator in the network since the speed of wind is instable. The voltage regulation fulfilled with the aid of the proposed method will make it possible to provide the required quality of the consumers’ busbars voltage in this situation. In is turn, it will make possible to create the necessary conditions for the economical transmission of electric power with the lowest outlay of reactive power and the lowest outlay of active power losses.

  19. Advanced Control of Wind Electric Pumping System for Isolated Areas Application

    OpenAIRE

    Mohamed Barara; Abderrahim Bennassar; Ahmed Abbou; Mohammed Akherraz; Badre Bossoufi

    2014-01-01

    The supply water in remote areas of windy region is one of most attractive application of wind energy conversion .This paper proposes an advanced controller suitable for wind-electric pump in isolated applications in order to have a desired debit from variation of reference speed of the pump also the control scheme of DC voltage of SIEG for feed the pump are presented under step change in wind speed. The simulation results showed a good performance of the global proposed control system.

  20. THE EIGHT-WHEEL LOCOMOTIVE DC3 WITH THE SECOND TYPE OF RATING UNLOADING AND ADDITIONAL LOADING OF WHEELS AND DEFLECTIONS SPRING SUSPENSION DURING TRACTION EFFORTS TRANSFER FROM BOGIES TO BODY WITH USING RECLINING TRACTIONS

    Directory of Open Access Journals (Sweden)

    V. A. Bratash

    2010-11-01

    Full Text Available In the article the calculation formulas for determination of unloadings (finishings loadings of wheels and bendings of a spring suspension of 8-wheel electric locomotive DS 3 with the hauling transmission of the second kind at the transmission of tractive forces from the bogies to the body through sloping tractions are presented. Numerical calculations are executed on the example of mainline freight-and-passenger electric locomotive DS 3.

  1. Influence of wind power, plug-in electric vehicles, and heat storages on power system investments

    International Nuclear Information System (INIS)

    Kiviluoma, Juha; Meibom, Peter

    2010-01-01

    Due to rising fuel costs, the substantial price for CO 2 emissions and decreasing wind power costs, wind power might become the least expensive source of power for an increasing number of power systems. This poses the questions of how wind power might change optimal investments in other forms of power production and what kind of means could be used to increase power system flexibility in order to incorporate the variable power production from wind power in a cost-effective manner. We have analysed possible effects using an investment model that combines heat and power production and simulates electric vehicles. The model runs in an hourly time scale in order to accommodate the impact of variable power production from wind power. Electric vehicles store electricity for later use and can thus serve to increase the flexibility of the power system. Flexibility can also be upgraded by using heat storages with heat from heat pumps, electric heat boilers and combined heat and power (CHP) plants. Results show that there is great potential for additional power system flexibility in the production and use of heat. (author)

  2. Exploitation of wind as an energy source to meet the world's electricity demand

    International Nuclear Information System (INIS)

    Sesto, Ezio; Casale, Claudio

    1998-01-01

    This paper provides an introduction to the basic aspects of the exploitation of wind energy for electricity generation, as regards both the characteristics of the source and the features and state-of-the-art of today's wind energy conversion systems. It also provides an overview of worldwide applications of wind energy and of the various factors currently driving the wind turbine market. Possible restraints to and benefits from wind plant integration in utility systems are considered, as well as the use of stand-alone wind systems. Some possible forecasts on the role of wind energy in the next two decades are also given

  3. Application of genetic algorithm in electrical system optimization for offshore wind farms

    DEFF Research Database (Denmark)

    Chen, Zhe; Zhao, M.; Blaabjerg, Frede

    2008-01-01

    Genetic Algorithm (GA) has been widely used in solving optimization problem in different areas. This paper illustrates the application of GA in the electrical system design for offshore wind farms, where the main components of a wind farm and key technical specifications are used as input...

  4. Carbon price instead of support schemes: wind power investments by the electricity market

    International Nuclear Information System (INIS)

    Petitet, Marie; Finon, Dominique; Janssen, Tanguy

    2014-10-01

    In this paper we study the development of wind power by the electricity market without any usual support scheme which is aimed at subsidizing non mature renewables, with the sole incentive of a significant carbon price. Long term electricity market and investment decisions simulation by system dynamics modelling is used to trace the electricity generation mix evolution over a 20-year period in a pure thermal system. A range of stable carbon price, as a tax could be, is tested in order to determine the value above which wind power development by market forces becomes economically possible. Not only economic competitiveness in terms of cost price, but also profitability against traditional fossil fuel technologies are necessary for a market-driven development of wind power. Results stress that wind power is really profitable for investors only if the carbon price is very significantly higher than the price required for making wind power MWh's cost price competitive with CCGT and coal-fired plants on the simplistic basis of levelized costs. In this context, the market-driven development of wind power seems only possible if there is a strong commitment to climate policy, reflected by the preference for a stable and high carbon price rather than a fuzzy price of an emission trading scheme. Besides, results show that market-driven development of wind power would require a sky-rocketing carbon price if the initial technology mix includes a share of nuclear plants even with a moratorium on new nuclear development. (authors)

  5. A progress report on an isolated Darrieus Wind Electrical System

    International Nuclear Information System (INIS)

    Katzberg, J.D.; Stewart, W.D.; Berwald, H.

    1991-01-01

    This paper discusses an isolated electrical generation system powered by a Darrieus Wind Turbine nearing completion on the farm of W. D. Stewart near Arcola (NE 5-9-4 W2). This is providing the University of Regina with a unique facility for the study of the economics and operation of isolated wind power systems, and for investigating the control and dynamics of such systems and alternatives for blade materials and coverings

  6. Electric power from offshore wind via synoptic-scale interconnection.

    Science.gov (United States)

    Kempton, Willett; Pimenta, Felipe M; Veron, Dana E; Colle, Brian A

    2010-04-20

    World wind power resources are abundant, but their utilization could be limited because wind fluctuates rather than providing steady power. We hypothesize that wind power output could be stabilized if wind generators were located in a meteorologically designed configuration and electrically connected. Based on 5 yr of wind data from 11 meteorological stations, distributed over a 2,500 km extent along the U.S. East Coast, power output for each hour at each site is calculated. Each individual wind power generation site exhibits the expected power ups and downs. But when we simulate a power line connecting them, called here the Atlantic Transmission Grid, the output from the entire set of generators rarely reaches either low or full power, and power changes slowly. Notably, during the 5-yr study period, the amount of power shifted up and down but never stopped. This finding is explained by examining in detail the high and low output periods, using reanalysis data to show the weather phenomena responsible for steady production and for the occasional periods of low power. We conclude with suggested institutions appropriate to create and manage the power system analyzed here.

  7. Electric power from offshore wind via synoptic-scale interconnection

    Science.gov (United States)

    Kempton, Willett; Pimenta, Felipe M.; Veron, Dana E.; Colle, Brian A.

    2010-01-01

    World wind power resources are abundant, but their utilization could be limited because wind fluctuates rather than providing steady power. We hypothesize that wind power output could be stabilized if wind generators were located in a meteorologically designed configuration and electrically connected. Based on 5 yr of wind data from 11 meteorological stations, distributed over a 2,500 km extent along the U.S. East Coast, power output for each hour at each site is calculated. Each individual wind power generation site exhibits the expected power ups and downs. But when we simulate a power line connecting them, called here the Atlantic Transmission Grid, the output from the entire set of generators rarely reaches either low or full power, and power changes slowly. Notably, during the 5-yr study period, the amount of power shifted up and down but never stopped. This finding is explained by examining in detail the high and low output periods, using reanalysis data to show the weather phenomena responsible for steady production and for the occasional periods of low power. We conclude with suggested institutions appropriate to create and manage the power system analyzed here. PMID:20368464

  8. Simulation study of solar wind push on a charged wire: basis of solar wind electric sail propulsion

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2007-03-01

    Full Text Available One possibility for propellantless propulsion in space is to use the momentum flux of the solar wind. A way to set up a solar wind sail is to have a set of thin long wires which are kept at high positive potential by an onboard electron gun so that the wires repel and deflect incident solar wind protons. The efficiency of this so-called electric sail depends on how large force a given solar wind exerts on a wire segment and how large electron current the wire segment draws from the solar wind plasma when kept at a given potential. We use 1-D and 2-D electrostatic plasma simulations to calculate the force and present a semitheoretical formula which captures the simulation results. We find that under average solar wind conditions at 1 AU the force per unit length is (5±1×10−8 N/m for 15 kV potential and that the electron current is accurately given by the well-known orbital motion limited (OML theory cylindrical Langmuir probe formula. Although the force may appear small, an analysis shows that because of the very low weight of a thin wire per unit length, quite high final speeds (over 50 km/s could be achieved by an electric sailing spacecraft using today's flight-proved components. It is possible that artificial electron heating of the plasma in the interaction region could increase the propulsive effect even further.

  9. Mechanical Design Engineering Enabler Project wheel and wheel drives

    Science.gov (United States)

    Nutt, Richard E.; Couch, Britt K.; Holley, John L., Jr.; Garris, Eric S.; Staut, Paul V.

    1992-01-01

    Our group was assigned the responsibility of designing the wheel and wheel drive system for a proof-of-concept model of the lunar-based ENABLER. ENABLER is a multi-purpose, six wheeled vehicle designed to lift and transport heavy objects associated with the construction of a lunar base. The resulting design was based on the performance criteria of the ENABLER. The drive system was designed to enable the vehicle to achieve a speed of 7 mph on a level surface, climb a 30 percent grade, and surpass a one meter high object and one meter wide crevice. The wheel assemblies were designed to support the entire weight of the vehicle on two wheels. The wheels were designed to serve as the main component of the vehicle's suspension and will provide suitable traction for lunar-type surfaces. The expected performance of the drive system for the ENABLER was influenced by many mechanical factors. The expected top speed on a level sandy surface is 4 mph instead of the desired 7 mph. This is due to a lack of necessary power at the wheels. The lack of power resulted from dimension considerations that allowed only an eight horsepower engine and also from mechanical inefficiencies of the hydraulic system. However, the vehicle will be able to climb a 30 percent grade, surpass a one meter high object and one meter wide crevice. The wheel assemblies will be able to support the entire weight of the vehicle on two wheels. The wheels will also provide adequate suspension for the vehicle and sufficient traction for lunar-type surfaces.

  10. Effect of blade flutter and electrical loading on small wind turbine noise

    Science.gov (United States)

    The effect of blade flutter and electrical loading on the noise level of two different size wind turbines was investigated at the Conservation and Production Research Laboratory (CPRL) near Bushland, TX. Noise and performance data were collected on two blade designs tested on a wind turbine rated a...

  11. Effects in atmospheric electricity daily variation controlled by solar wind

    International Nuclear Information System (INIS)

    Ptitsyna, N.G.; Tyasto, M.I.; Levitin, A.E.; Gromova, L.A.; Tuomi, T.; AN SSSR, Moscow

    1995-01-01

    An analysis of fair weather atmospheric electricity, one of the environmental factors which affects the biosphere, is conducted. A distinct difference in the diurnal variation of atmospheric electric field at Helsinki is found between disturbed and extremely quiet conditions in the magnetosphere in winter before midnight. The comparison with the numerical model of the ionospheric electric field based on the solar wind parameters reveals that the maximum contribution of the magnetospheric-ionospheric generator to atmospheric electric field is about 100-150 v/m which assumes values of about 30% of the surface field. 8 refs.; 2 figs

  12. Design of an Electric Commutated Frog-Leg Winding Permanent-Magnet DC Machine

    Directory of Open Access Journals (Sweden)

    Hang Zhang

    2014-03-01

    Full Text Available An electric commutated frog-leg winding permanent-magnet (PM DC machine is proposed in this paper. It has a semi-closed slotted stator with a classical type of mesh winding introduced from the conventional brushed DC machine and a polyphase electric commutation besides a PM excitation rotor and a circular arrayed Hall position sensor. Under the cooperation between the position sensor and the electric commutation, the proposed machine is basically operated on the same principle of the brushed one. Because of its simplex frog-leg winding, the combination between poles and slots is designed as 4/22, and the number of phases is set as 11. By applying an exact analytical method, which is verified comparable with the finite element analyses (FEA, to the prediction of its instantaneous magnetic field, electromotive force (EMF, cogging torque and output torque, it is well designed with a series of parameters in dimension aiming at the lowest cogging torque. A 230 W, 4-pole, and 22-slot new machine is prototyped and tested to verify the analysis.

  13. Assessing the impact of wind generation on wholesale prices and generator dispatch in the Australian National Electricity Market

    International Nuclear Information System (INIS)

    Forrest, Sam; MacGill, Iain

    2013-01-01

    Growing climate change and energy security concerns are driving major wind energy deployment in electricity industries around the world. Despite its many advantages, growing penetrations of this highly variable and somewhat unpredictable energy source pose new challenges for electricity industry operation. One issue receiving growing attention is the so-called ‘merit order effect’ of wind generation in wholesale electricity markets. Wind has very low operating costs and therefore tends to displace higher cost conventional generation from market dispatch, reducing both wholesale prices and conventional plant outputs. This paper extends the current literature on this effect through an empirical study employing a range of econometric techniques to quantify the impacts of growing wind penetrations in the Australian National Electricity Market (NEM). The results suggest that wind is having a marked impact on spot market prices and, while wind is primarily offsetting higher operating cost gas generation, it is now also significantly reducing dispatch of emissions intensive brown coal generation. Great care needs to be taken in extrapolating these results to longer-term implications, however, the study does propose a methodology for assessing this effect, highlights the impacts that wind is already having on NEM outcomes and suggests promising directions for future research. - Highlights: ► Proposes methodologies to estimate short run impact of wind on electricity markets. ► Quantifies the merit order effect of wind generation on wholesale spot price. ► Wind is found to be significantly effecting gas fired generation. ► Evidence is found for wind having a notable impact on baseload coal generation. ► Discusses the implications for development of wind generation in Australia

  14. Large-scale wind power integration and wholesale electricity trading benefits: Estimation via an ex post approach

    International Nuclear Information System (INIS)

    Gil, Hugo A.; Gomez-Quiles, Catalina; Riquelme, Jesus

    2012-01-01

    The integration of large-scale wind power has brought about a series of challenges to the power industry, but at the same time a number of benefits are being realized. Among those, the ability of wind power to cause a decline in the electricity market prices has been recognized. In quantifying this effect, some models used in recent years are based on simulations of the market supply-side and the price clearing process. The accuracy of the estimates depend on the quality of the input data, the veracity of the adopted scenarios and the rigorousness of the solution technique. In this work, a series of econometric techniques based on actual ex post wind power and electricity price data are implemented for the estimation of the impact of region-wide wind power integration on the local electricity market clearing prices and the trading savings that stem from this effect. The model is applied to the case of Spain, where the estimated savings are compared against actual credit and bonus expenses to ratepayers. The implications and extent of these results for current and future renewable energy policy-making are discussed. - Highlights: ► Wholesale electricity market trading benefits by wind power are quantified. ► Actual wind power forecast-based bids and electricity price data from Spain are used. ► Different econometric tools are used and compared for improved estimation accuracy. ► Estimated benefits outweigh current credit overhead paid to wind farms in Spain. ► An economically efficient benefit surplus allocation framework is proposed.

  15. Integrating wind power using intelligent electric water heating

    International Nuclear Information System (INIS)

    Fitzgerald, Niall; Foley, Aoife M.; McKeogh, Eamon

    2012-01-01

    Dwindling fossil fuel resources and pressures to reduce greenhouse gas emissions will result in a more diverse range of generation portfolios for future electricity systems. Irrespective of the portfolio mix the overarching requirement for all electricity suppliers and system operators is to instantaneously meet demand, to operate to standards and reduce greenhouse gas emissions. Therefore all electricity market participants will ultimately need to use a variety of tools to balance the power system. Thus the role of demand side management with energy storage will be paramount to integrate future diverse generation portfolios. Electric water heating has been studied previously, particularly at the domestic level to provide load control, peak shave and to benefit end-users financially with lower bills, particularly in vertically integrated monopolies. In this paper a number of continuous direct load control demand response based electric water heating algorithms are modelled to test the effectiveness of wholesale electricity market signals to study the system benefits. The results are compared and contrasted to determine which control algorithm showed the best potential for energy savings, system marginal price savings and wind integration.

  16. European Short-term Electricity Market Designs under High Penetration of Wind Power

    NARCIS (Netherlands)

    Chaves Avila, J.P.

    2014-01-01

    The EU has ambitious policies for decarbonization of the electricity sector. Due to recent technological developments, wind power already represents a significant share of the generation mix in some European countries. As a result, short-term electricity markets and balancing arrangements must be

  17. Technologies for production of Electricity and Heat in Sweden. Wind energy in perspective of international development

    DEFF Research Database (Denmark)

    Clausen, Niels-Erik; Lawaetz, Henrik; Lemming, Jørgen Kjærgaard

    energy consumption in 2020 compared to 39.8% in 2005. To stimulate the development of wind energy and to promote a specific national goals Sweden is mainly using an electricity certificate system. The target is to increase the production of electricity from renewable sources by 17 TWh in 2016, relative...... to corresponding production in 2002. There is not at specific target for the use of wind energy. A future energy system that includes a high proportion of wind energy will be expected to meet the same requirements for security of supply and economic efficiency as the energy systems of today. The variability...... of wind power create a specific challenges for the future energy systems compared to those of today. The economics of wind power depends mainly of investment cost, operation and maintenance costs, electricity production and turbine lifetime. An average turbine installed in Europe has a total investment...

  18. A 100% renewable electricity generation system for New Zealand utilising hydro, wind, geothermal and biomass resources

    International Nuclear Information System (INIS)

    Mason, I.G.; Page, S.C.; Williamson, A.G.

    2010-01-01

    The New Zealand electricity generation system is dominated by hydro generation at approximately 60% of installed capacity between 2005 and 2007, augmented with approximately 32% fossil-fuelled generation, plus minor contributions from geothermal, wind and biomass resources. In order to explore the potential for a 100% renewable electricity generation system with substantially increased levels of wind penetration, fossil-fuelled electricity production was removed from an historic 3-year data set, and replaced by modelled electricity production from wind, geothermal and additional peaking options. Generation mixes comprising 53-60% hydro, 22-25% wind, 12-14% geothermal, 1% biomass and 0-12% additional peaking generation were found to be feasible on an energy and power basis, whilst maintaining net hydro storage. Wind capacity credits ranged from 47% to 105% depending upon the incorporation of demand management, and the manner of operation of the hydro system. Wind spillage was minimised, however, a degree of residual spillage was considered to be an inevitable part of incorporating non-dispatchable generation into a stand-alone grid system. Load shifting was shown to have considerable advantages over installation of new peaking plant. Application of the approach applied in this research to countries with different energy resource mixes is discussed, and options for further research are outlined.

  19. Study on Power Switching Process of a Hybrid Electric Vehicle with In-Wheel Motors

    Directory of Open Access Journals (Sweden)

    Shaohua Wang

    2016-01-01

    Full Text Available Hybrid electric vehicles with in-wheel motors (IWM achieve a variety of driving modes by two power sources—the engine and the IWM. One of the critical problems that exists in such vehicle is the different transient characteristics between the engine and the IWM. Therefore, switching processes between the power sources have noteworthy impacts on vehicle dynamics and driving performance. For the particular switching process of the pure electric mode to the engine driving mode, a specific control strategy coordinating clutch torque, motor torque, and engine torque was proposed to solve drivability issues caused by inconsistent responses of different power sources during the mode transition. The specific switching process could be described as follows: the engine was started by IWM with the clutch serving as a key enabling actuator, dynamic torque compensation through IWM was implemented after engine started, and, meanwhile, engine speed was controlled to track the target speed through the closed loop PID control strategy. The bench tests results showed that the vehicle jerk caused during mode switching was reduced and fast and smooth mode switching was realized, which leads to the improvement of vehicle’s riding comfort.

  20. Forecasting Electricity Spot Prices Accounting for Wind Power Predictions

    DEFF Research Database (Denmark)

    Jónsson, Tryggvi; Pinson, Pierre; Nielsen, Henrik Aalborg

    2013-01-01

    A two-step methodology for forecasting of electricity spot prices is introduced, with focus on the impact of predicted system load and wind power generation. The nonlinear and nonstationary influence of these explanatory variables is accommodated in a first step based on a nonparametric and time...

  1. Wind Power Development and Energy Storage under China’s Electricity Market Reform—A Case Study of Fujian Province

    Directory of Open Access Journals (Sweden)

    Dunguo Mou

    2018-01-01

    Full Text Available This paper, based on the Fujian provincial 500 kV grid and part of the 220 kV grid and the key power plants, including hydro, coal, nuclear, gas, wind and pumping and storage hydro powers (PSHP connected to the grid, constructs an independent electricity market model. Using data that are very close to reality about coal fired power production costs, along with data about power plants’ technical constraints, this paper studies the effect of wind power on Fujian’s provincial electricity market. Firstly, the paper analyzes the relationship between wind speed and wind power output and the effects of short-term power output fluctuation on frequency modulation and voltage regulation. Secondly, under supposition of the production costs following quadratic functions, the paper analyzes the effects of changes in wind power output on the electricity supply costs under optimal power flow. Thirdly, using the bidding model in the Australian Electricity Market Operator for reference and supposing that, in a competitive market, coal fired power plants can bid 6 price bands according to their capacity, the paper analyzes effects of wind power on electricity prices under optimal power flow, the stabilizing effects of PSHP and the minimum PSHP capacity needed to stabilize the electricity market. Finally, using a daily load curve, this paper simulates the electricity prices’ fluctuation under optimal power flow and PSHP’s stabilizing effect. The results show that, although PSHP has a large external social welfare effect, it can hardly make a profit. In the end, this paper puts forward some policy suggestions for Fujian province’s wind and nuclear power development, PSHP construction and electricity market development.

  2. Controllable and affordable utility-scale electricity from intermittent wind resources and compressed air energy storage (CAES)

    International Nuclear Information System (INIS)

    Cavallo, Alfred

    2007-01-01

    World wind energy resources are substantial, and in many areas, such as the US and northern Europe, could in theory supply all of the electricity demand. However, the remote or challenging location (i.e. offshore) and especially the intermittent character of the wind resources present formidable barriers to utilization on the scale required by a modern industrial economy. All of these technical challenges can be overcome. Long distance transmission is well understood, while offshore wind technology is being developed rapidly. Intermittent wind power can be transformed to a controllable power source with hybrid wind/compressed air energy storage (CAES) systems. The cost of electricity from such hybrid systems (including transmission) is affordable, and comparable to what users in some modern industrial economies already pay for electricity. This approach to intermittent energy integration has many advantages compared to the current strategy of forcing utilities to cope with supply uncertainty and transmission costs. Above all, it places intermittent wind on an equal technical footing with every other generation technology, including nuclear power, its most important long-term competitor

  3. Combined wind, hydropower and photovoltaic systems for generation of electric power and control of water resources

    International Nuclear Information System (INIS)

    Abid, M.; Karimov, K.S.; Akhmedov, K.M.

    2011-01-01

    In this paper the present day energy consumption and potentialities of utilization of wind- and hydropower resources in some Central and Southern Asian Republics, in particular, in the Republic of Tajikistan, Kyrgyzstan and Pakistan are presented. The maximum consumption of electric power is observed in winter time when hydropower is the minimum, but wind power is the maximum. At the same time water is needed mostly in summer time for irrigation and in winter time for generation of electric power. This results in conflicts between countries that utilize water mostly for irrigation and those which use water for generation of electric power. It is proposed that the utilization of water with the supplement of wind and solar energy will facilitate the proper and efficient management of water resources in Central Asia. In the future in Tajikistan, wind power systems with a capacity of 30-100 MW and more will be installed, providing power balance of the country in winter; hence saving water in reservoirs, especially in drought years. This will provide the integration of electricity generated by wind, hydroelectric power and photovoltaic system in the unified energy system of the country. (author)

  4. Wind energy. To produce electricity with the wind

    International Nuclear Information System (INIS)

    Bareau, Helene

    2015-11-01

    This guide addresses the different aspects of wind-based power generation. It outlines the role of wind energy to meet objectives related to the share of renewable energies in the French energy mix, that wind energy is actually replacing fossil energies, that it is based on local resources within higher safety and less wastage, that current advances are made to integrate wind energy production into the grid, and that it is a solution to diversify energy production. Some figures are presented and commented, regarding onshore wind energy production in France, the location of wind farms, and wind energy production in comparison with other renewable sources. The operation of a wind turbine is described and the different types of wind turbines are evoked. The issue of wind farm planning with citizen participation is addressed: regional planning, studies of pre-feasibility for location selection, procedure, and content of the impact study (radars, fauna and flora, landscapes, safety, health). Other features are outlined: a planned dismantling, and a globally favourable perception. The next part addresses offshore wind energy: the interesting potential of stronger and more reliable wind at sea (European situation, French opportunities, elements comprised in an offshore wind farm), impacts (on marine ecosystems, on neighbouring localities, and interests for visitors). Economic aspects are then addressed: cost and profitability, economic spin-offs, and perspectives. The last part concerns individuals and the possibilities to participate to wind farm projects or to invest in small wind turbines with some prerequisites (constant and steady winds, installation assessment, required expertise, indispensable preliminary steps, costs, aids and profitability)

  5. Flexible interaction of plug-in electric vehicle parking lots for efficient wind integration

    International Nuclear Information System (INIS)

    Heydarian-Forushani, E.; Golshan, M.E.H.; Shafie-khah, M.

    2016-01-01

    Highlights: • Interactive incorporation of plug-in electric vehicle parking lots is investigated. • Flexible energy and reserve services are provided by electric vehicle parking lots. • Uncertain characterization of electric vehicle owners’ behavior is taken into account. • Coordinated operation of parking lots can facilitate wind power integration. - Abstract: The increasing share of uncertain wind generation has changed traditional operation scheduling of power systems. The challenges of this additional variability raise the need for an operational flexibility in providing both energy and reserve. One key solution is an effective incorporation of plug-in electric vehicles (PEVs) into the power system operation process. To this end, this paper proposes a two-stage stochastic programming market-clearing model considering the network constraints to achieve the optimal scheduling of conventional units as well as PEV parking lots (PLs) in providing both energy and reserve services. Different from existing works, the paper pays more attention to the uncertain characterization of PLs takes into account the arrival/departure time of PEVs to/from the PL, the initial state of charge (SOC) of PEVs, and their battery capacity through a set of scenarios in addition to wind generation scenarios. The results reveal that although the cost saving as a consequence of incorporating PL to the grid is below 1% of total system cost, however, flexible interactions of PL in the energy and reserve markets can promote the integration of wind power more than 13.5%.

  6. Electrical Power Grid Delivery Dynamic Analysis: Using Prime Mover Engines to Balance Dynamic Wind Turbine Output

    Energy Technology Data Exchange (ETDEWEB)

    Diana K. Grauer; Michael E. Reed

    2011-11-01

    This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.

  7. The energetic implications of curtailing versus storing wind- and solar-generated electricity

    Science.gov (United States)

    Barnhart, C. J.; Dale, M.; Brandt, A. R.; Benson, S. M.

    2013-12-01

    Rapid deployment of power generation technologies harnessing wind and solar resources continues to reduce the carbon intensity of the power grid. But as these technologies comprise a larger fraction of power supply, their variable, weather-dependent nature poses challenges to power grid operation. Today, during times of power oversupply or unfavorable market conditions, power grid operators curtail these resources. Rates of curtailment are expected to increase with increased renewable electricity production. That is unless technologies are implemented that can provide grid flexibility to balance power supply with power demand. Curtailment is an obvious forfeiture of energy and it decreases the profitability of electricity from curtailed generators. What are less obvious are the energetic costs for technologies that provide grid flexibility. We present a theoretical framework to calculate how storage affects the energy return on energy investment (EROI) ratios of wind and solar resources. Our methods identify conditions under which it is more energetically favorable to store energy than it is to simply curtail electricity production. Electrochemically based storage technologies result in much smaller EROI ratios than large-scale geologically based storage technologies like compressed air energy storage (CAES) and pumped hydroelectric storage (PHS). All storage technologies paired with solar photovoltaic (PV) generation yield EROI ratios that are greater than curtailment. Due to their low energy stored on electrical energy invested (ESOIe) ratios, conventional battery technologies reduce the EROI ratios of wind generation below curtailment EROI ratios. To yield a greater net energy return than curtailment, battery storage technologies paired with wind generation need an ESOIe>80. We identify improvements in cycle life as the most feasible way to increase battery ESOIe. Depending upon the battery's embodied energy requirement, an increase of cycle life to 10

  8. Reliability constrained generation expansion planning with consideration of wind farms uncertainties in deregulated electricity market

    International Nuclear Information System (INIS)

    Hemmati, Reza; Hooshmand, Rahmat-Allah; Khodabakhshian, Amin

    2013-01-01

    Highlights: • Generation expansion planning is presented in deregulated electricity market. • Wind farm uncertainty is modeled in the problem. • The profit of each GENCO is maximized and also the safe operation of system is satisfied. • Salve sector is managed as an optimization programming and solved by using PSO technique. • Master sector is considered in pool market and Cournot model is used to simulate it. - Abstract: This paper addresses reliability constrained generation expansion planning (GEP) in the presence of wind farm uncertainty in deregulated electricity market. The proposed GEP aims at maximizing the expected profit of all generation companies (GENCOs), while considering security and reliability constraints such as reserve margin and loss of load expectation (LOLE). Wind farm uncertainty is also considered in the planning and GENCOs denote their planning in the presence of wind farm uncertainty. The uncertainty is modeled by probability distribution function (PDF) and Monte-Carlo simulation (MCS) is used to insert uncertainty into the problem. The proposed GEP is a constrained, nonlinear, mixed-integer optimization programming and solved by using particle swarm optimization (PSO) method. In this paper, Electricity market structure is modeled as a pool market. Simulation results verify the effectiveness and validity of the proposed planning for maximizing GENCOs profit in the presence of wind farms uncertainties in electricity market

  9. Distributed and self-adaptive vehicle speed estimation in the composite braking case for four-wheel drive hybrid electric car

    Science.gov (United States)

    Zhao, Z.-G.; Zhou, L.-J.; Zhang, J.-T.; Zhu, Q.; Hedrick, J.-K.

    2017-05-01

    Considering the controllability and observability of the braking torques of the hub motor, Integrated Starter Generator (ISG), and hydraulic brake for four-wheel drive (4WD) hybrid electric cars, a distributed and self-adaptive vehicle speed estimation algorithm for different braking situations has been proposed by fully utilising the Electronic Stability Program (ESP) sensor signals and multiple powersource signals. Firstly, the simulation platform of a 4WD hybrid electric car was established, which integrates an electronic-hydraulic composited braking system model and its control strategy, a nonlinear seven degrees-of-freedom vehicle dynamics model, and the Burckhardt tyre model. Secondly, combining the braking torque signals with the ESP signals, self-adaptive unscented Kalman sub-filter and main-filter adaptable to the observation noise were, respectively, designed. Thirdly, the fusion rules for the sub-filters and master filter were proposed herein, and the estimation results were compared with the simulated value of a real vehicle speed. Finally, based on the hardware in-the-loop platform and by picking up the regenerative motor torque signals and wheel cylinder pressure signals, the proposed speed estimation algorithm was tested under the case of moderate braking on the highly adhesive road, and the case of Antilock Braking System (ABS) action on the slippery road, as well as the case of ABS action on the icy road. Test results show that the presented vehicle speed estimation algorithm has not only a high precision but also a strong adaptability in the composite braking case.

  10. An parametric investigation into the effect of low induction rotor (LIR) wind turbines on the levelised cost of electricity of a 1 GW offshore wind farm in a North Sea wind climate

    NARCIS (Netherlands)

    R. Quinn; B. Bulder; Gerard Schepers

    In this report, the details of an investigation into the eect of the low induction wind turbines on the Levelised Cost of Electricity (LCoE) in a 1GW oshore wind farm is outlined. The 10 MW INNWIND.EU conventional wind turbine and its low induction variant, the 10 MW AVATAR wind turbine, are

  11. The market value and impact of offshore wind on the electricity spot market: Evidence from Germany

    International Nuclear Information System (INIS)

    Ederer, Nikolaus

    2015-01-01

    Highlights: • Market value of offshore wind based on feed-in and weather data is assessed. • Merit order effect caused by wind energy is simulated for 2006–2014. • Results indicate same impact of on- and offshore wind on market price and value. • Steadier wind resource offshore imposes less variability on market price. • Characteristic of variable wind feed-in cannot be blamed for price deterioration. - Abstract: Although the expansion of offshore wind has recently increased in Germany, as in other countries, it is still forced to defend its role in long-term energy policy plans, particularly against its onshore counterpart, to secure future expansion targets and financial support. The objective of this article is to investigate the economic effects of offshore wind on the electricity spot market and thus open up another perspective that has not been part of the debate about offshore vs. onshore wind thus far. A comprehensive assessment based on a large amount of market, feed-in and weather data in Germany revealed that the market value of offshore wind is generally higher than that of onshore wind. Simulating the merit order effect on the German day-ahead electricity market for the short term and long term in the years 2006–2014 aimed to identify the reason for this observation and show whether it is also an indication of a lower impact on the electricity spot market due to a steadier wind resource prevailing offshore. Although the results suggest no difference regarding the impact on market price and value, they indeed reveal that offshore wind imposes less variability on the spot market price than onshore wind. In addition, the long-term simulation proved that the ongoing price deterioration cannot be blamed on the characteristic of variable wind production

  12. Decision support for the definition of wind turbine systems adequacy to site specificities and weak electrical networks

    International Nuclear Information System (INIS)

    Arbaoui, A.

    2006-10-01

    A decision support system for the definition of wind turbine systems is developed by taking into account the wind and site characteristics, the wind turbine components and the electrical network properties close to the site. The approach is based on functional analysis, on the investigation of the functional fluxes and on the definition of a model suitable for supporting decision at the preliminary stages of wind turbine design. The complete set of solutions derived from the model is determined using a Constraint Satisfaction Problem solver. The intrinsic capability of the model to support decision is derived from the investigation of the model parsimony, precision, exactness and specialization. The model takes into account performance criteria resulting from knowledge of manufacturers, distributors and investors. These criteria are used to discriminate design alternatives. Design alternatives correspond to choices of site (wind, electric network) and wind turbine architectures (related to 7 design variables). Performance criteria are the cost of electric kWh, the amount of energy being produced and the discounted total cost of the project. Electric network connection to wind turbines is taken into account through slow variations of the voltage and Flickers phenomenon. First, the maximal rate of penetration of the wind turbine energy production is determined. Next, two design alternatives have been investigated to improve wind turbine system integration in electric distribution networks. These alternatives are a reactive power control system and an inertial energy storage system. Inertial storage systems seem to be more expensive than reactive power control systems for this type of application. The influence of site specificities on decision making process has been established through three different sites (a Mediterranean site and two sites located in northern Europe). Profits relative to the cost of kWh appear to be high for Mediterranean sites. Most of the

  13. The role of co-located storage for wind power producers in conventional electricity markets

    KAUST Repository

    Bitar, E.; Rajagopal, R.; Khargonekar, P.; Poolla, K.

    2011-01-01

    In this paper we study the problem of optimizing contract offerings for an independent wind power producer (WPP) participating in conventional day-ahead forward electricity markets for energy. As wind power is an inherently variable source of energy

  14. The Development of Lightweight Commercial Vehicle Wheels Using Microalloying Steel

    Science.gov (United States)

    Lu, Hongzhou; Zhang, Lilong; Wang, Jiegong; Xuan, Zhaozhi; Liu, Xiandong; Guo, Aimin; Wang, Wenjun; Lu, Guimin

    Lightweight wheels can reduce weight about 100kg for commercial vehicles, and it can save energy and reduce emission, what's more, it can enhance the profits for logistics companies. The development of lightweight commercial vehicle wheels is achieved by the development of new steel for rim, the process optimization of flash butt welding, and structure optimization by finite element methods. Niobium micro-alloying technology can improve hole expansion rate, weldability and fatigue performance of wheel steel, and based on Niobium micro-alloying technology, a special wheel steel has been studied whose microstructure are Ferrite and Bainite, with high formability and high fatigue performance, and stable mechanical properties. The content of Nb in this new steel is 0.025% and the hole expansion rate is ≥ 100%. At the same time, welding parameters including electric upsetting time, upset allowance, upsetting pressure and flash allowance are optimized, and by CAE analysis, an optimized structure has been attained. As a results, the weight of 22.5in×8.25in wheel is up to 31.5kg, which is most lightweight comparing the same size wheels. And its functions including bending fatigue performance and radial fatigue performance meet the application requirements of truck makers and logistics companies.

  15. Effects of interruptible load program on equilibrium outcomes of electricity markets with wind power

    Energy Technology Data Exchange (ETDEWEB)

    An, Xuena; Zhang, Shaohua; Li, Xue [Shanghai Univ. (China). Key Lab. of Power Station Automation Technology

    2013-07-01

    High wind power penetration presents a lot of challenges to the flexibility and reliability of power system operation. In this environment, various demand response (DR) programs have got much attention. As an effective measure of demand response programs, interruptible load (IL) programs have been widely used in electricity markets. This paper addresses the problem of impacts of the IL programs on the equilibrium outcomes of electricity wholesale markets with wind power. A Cournot equilibrium model of wholesale markets with wind power is presented, in which IL programs is included by a market demand model. The introduction of the IL programs leads to a non-smooth equilibrium problem. To solve this equilibrium problem, a novel solution method is proposed. Numerical examples show that IL programs can lower market price and its volatility significantly, facilitate the integration of wind power.

  16. Preliminary Investigation on Generation of Electricity Using Micro Wind Turbines Placed on A Car

    Directory of Open Access Journals (Sweden)

    Yogendra Chaudhary

    2017-03-01

    Full Text Available Wind energy is one of the prominent resources for renewable energy and it is traditionally extracted using stationary wind turbines. However, it can also be extracted using mini or micro wind turbines on a moving body, such as an automobile, while cruising at high speeds on freeways. If the electricity is produced using air flowing around the vehicle without affecting aerodynamic performance of the vehicle, it can be used to charge up the battery or power up additional accessories of the vehicle. For the first time, in the present work, a preliminary investigation was carried out to generate electricity by utilizing air flow on a moving car. Initially, a correlation between the car speed and wind velocity was established using an anemometer. Placing a set of two micro wind turbines along with two micro generators on the rear end of the car trunk, the present study investigated the feasibility of generating electricity from these micro wind turbines while evaluating the effect of drag force on the performance of the car through the experimental approach and computational fluid dynamics (CFD simulations. Both approaches confirmed negligible effect of drag force on the vehicle performance in terms of gas mileage and changes in drag coefficient values. Following these studies, the micro wind turbines were also tested for electricity generation at various cruising speeds of the car ranging from 50 to 80 mph on the freeways. The voltage and power generated always showed an increasing trend with increasing the car speed, however they saturated when a cut off limit was setup with the voltage controllers. A maximum voltage of 3.5 V and a maximum current of 0.8 A were generated by each micro wind turbine when a cut off limit was used along with a load consisting of four LED bulbs in parallel with 3.5 V and 0.2 A rating each. On the other hand, when the tests were repeated without using the cut-off limit, a maximum voltage of 18.91 V and a maximum current

  17. Magnetic bearing flywheels for electric storage

    Energy Technology Data Exchange (ETDEWEB)

    Poubeau, P C

    1981-01-01

    A magnetic bearing flywheel was designed. In order to have a simple, reliable system, magnetic suspension with a single servoloop for one degree of freedom of the rotor was used, four other degrees of freedom being controlled passively and the sixth one, corresponding to the rotation axis. The motor that transfers electric energy to the rotor is of the ironless brushless dc type with electronic commutation. It is operated alternatively for accelerating the wheel and then as a generator for delivering the stored energy. The use of high stress composite materials in the rotor greatly increases the operational limits of this equipment. Key characteristics of kinetic energy storage are mentioned along with a wide range of applications. Besides energy storage for satellites, these include power smoothing for solar and wind energy systems as well as backup power supplies, e.g., for electric vehicles.

  18. Design of Electricity Markets for Efficient Balancing of Wind Power Generation

    OpenAIRE

    Scharff, Richard

    2015-01-01

    Deploying wind power to a larger extent is one solution to reduce negative environmental impacts of electric power supply. However, various challenges are connected with increasing wind power penetration levels. From the perspective of transmission system operators, this includes balancing of varying as well as - to some extent - uncertain generation levels. From the perspective of power generating companies, changes in the generation mix will affect the market's merit order and, hence, their...

  19. Wind energy generation for electric power production, preliminary studies. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, A

    1976-03-01

    Studies of wind power generation done by SAAB-Scania during 1975 are described. The project deals with generation of electricity for delivery to the transmission system. Both plants with horizontal axis and plants with vertical axis have been studied. A projected pilot plant with a rotor of 18 meter and an effect of 50 kW at 10 m/s wind velocity is described. Suggestions are made for a continuation of the project.

  20. Short-term optimal wind power generation capacity in liberalized electricity markets

    International Nuclear Information System (INIS)

    Olsina, Fernando; Roescher, Mark; Larisson, Carlos; Garces, Francisco

    2007-01-01

    Mainly because of environmental concerns and fuel price uncertainties, considerable amounts of wind-based generation capacity are being added to some deregulated power systems. The rapid wind development registered in some countries has essentially been driven by strong subsidizing programs. Since wind investments are commonly isolated from market signals, installed wind capacity can be higher than optimal, leading to distortions of the power prices with a consequent loss of social welfare. In this work, the influence of wind generation on power prices in the framework of a liberalized electricity market has been assessed by means of stochastic simulation techniques. The developed methodology allows investigating the maximal wind capacity that would be profitably deployed if wind investments were subject to market conditions only. For this purpose, stochastic variables determining power prices are accurately modeled. A test system resembling the size and characteristics of the German power system has been selected for this study. The expected value of the optimal, short-term wind capacity is evaluated for a considerable number of random realizations of power prices. The impact of dispersing the wind capacity over statistical independent wind sites has also been evaluated. The simulation results reveal that fuel prices, installation and financing costs of wind investments are very influential parameters on the maximal wind capacity that might be accommodated in a market-based manner

  1. Origami Wheel Transformer: A Variable-Diameter Wheel Drive Robot Using an Origami Structure.

    Science.gov (United States)

    Lee, Dae-Young; Kim, Sa-Reum; Kim, Ji-Suk; Park, Jae-Jun; Cho, Kyu-Jin

    2017-06-01

    A wheel drive mechanism is simple, stable, and efficient, but its mobility in unstructured terrain is seriously limited. Using a deformable wheel is one of the ways to increase the mobility of a wheel drive robot. By changing the radius of its wheels, the robot becomes able to pass over not only high steps but also narrow gaps. In this article, we propose a novel design for a variable-diameter wheel using an origami-based soft robotics design approach. By simply folding a patterned sheet into a wheel shape, a variable-diameter wheel was built without requiring lots of mechanical parts and a complex assembly process. The wheel's diameter can change from 30 to 68 mm, and it is light in weight at about 9.7 g. Although composed of soft materials (fabrics and films), the wheel can bear more than 400 times its weight. The robot was able to change the wheel's radius in response to terrain conditions, allowing it to pass over a 50-mm gap when the wheel is shrunk and a 50-mm step when the wheel is enlarged.

  2. The role of co-located storage for wind power producers in conventional electricity markets

    KAUST Repository

    Bitar, E.

    2011-06-01

    In this paper we study the problem of optimizing contract offerings for an independent wind power producer (WPP) participating in conventional day-ahead forward electricity markets for energy. As wind power is an inherently variable source of energy and is difficult to predict, we explore the extent to which co-located energy storage can be used to improve expected profit and mitigate the the financial risk associated with shorting on the offered contracts. Using a simple stochastic model for wind power production and a model for the electricity market, we show that the problem of determining optimal contract offerings for a WPP with co-located energy storage can be solved using convex programming.

  3. The impact of Production Tax Credits on the profitable production of electricity from wind in the U.S

    International Nuclear Information System (INIS)

    Xi Lu; Tchou, Jeremy; McElroy, Michael B.; Nielsen, Chris P.

    2011-01-01

    A spatial financial model using wind data derived from assimilated meteorological condition was developed to investigate the profitability and competitiveness of onshore wind power in the contiguous U.S. It considers not only the resulting estimated capacity factors for hypothetical wind farms but also the geographically differentiated costs of local grid connection. The levelized cost of wind-generated electricity for the contiguous U.S. is evaluated assuming subsidy levels from the Production Tax Credit (PTC) varying from 0 to 4 cents /kWh under three cost scenarios: a reference case, a high cost case, and a low cost case. The analysis indicates that in the reference scenario, current PTC subsidies of 2.1 cents /kWh are at a critical level in determining the competitiveness of wind-generated electricity compared to conventional power generation in local power market. Results from this study suggest that the potential for profitable wind power with the current PTC subsidy amounts to more than seven times existing demand for electricity in the entire U.S. Understanding the challenges involved in scaling up wind energy requires further study of the external costs associated with improvement of the backbone transmission network and integration into the power grid of the variable electricity generated from wind. - Highlights: → Wind power competitiveness is driven by meteorology and proximity to the grid. → We spatially model U.S. onshore wind under ranges of subsidies and costs. → Wind power is competitive at a PTC subsidy of 2.1 cents/kWh. → Under current PTC levels, profitable wind potential far exceeds U.S. power demand.

  4. Understanding Power Electronics and Electrical Machines in Multidisciplinary Wind Energy Conversion System Courses

    Science.gov (United States)

    Duran, M. J.; Barrero, F.; Pozo-Ruz, A.; Guzman, F.; Fernandez, J.; Guzman, H.

    2013-01-01

    Wind energy conversion systems (WECS) nowadays offer an extremely wide range of topologies, including various different types of electrical generators and power converters. Wind energy is also an application of great interest to students and with a huge potential for engineering employment. Making WECS the main center of interest when teaching…

  5. The impact of wind generation on the electricity spot-market price level and variance: The Texas experience

    International Nuclear Information System (INIS)

    Woo, C.K.; Horowitz, I.; Moore, J.; Pacheco, A.

    2011-01-01

    The literature on renewable energy suggests that an increase in intermittent wind generation would reduce the spot electricity market price by displacing high fuel-cost marginal generation. Taking advantage of a large file of Texas-based 15-min data, we show that while rising wind generation does indeed tend to reduce the level of spot prices, it is also likely to enlarge the spot-price variance. The key policy implication is that increasing use of price risk management should accompany expanded deployment of wind generation. - Highlights: → Rising wind generation in ERCOT tends to reduce electricity spot prices. → Rising wind generation in ERCOT is also likely to enlarge the spot-price variance. → Increased price risk management should accompany expanded wind power deployment.

  6. Electric utility application of wind energy conversion systems on the island of Oahu

    Energy Technology Data Exchange (ETDEWEB)

    Lindley, C.A.; Melton, W.C.

    1979-02-23

    This wind energy application study was performed by The Aerospace Corporation for the Wind Systems Branch of the Department of Energy. The objective was to identify integration problems for a Wind Energy Conversion System (WECS) placed into an existing conventional utility system. The integration problems included environmental, institutional and technical aspects as well as economic matters, but the emphasis was on the economics of wind energy. The Hawaiian Electric Company utility system on the island of Oahu was selected for the study because of the very real potential for wind energy on that island, and because of the simplicity afforded in analyzing that isolated utility.

  7. Elimination of torque pulsations in a direct drive EV wheel motor

    Energy Technology Data Exchange (ETDEWEB)

    Hredzak, B.; Gair, S. [Napier Univ., Edinburgh (United Kingdom); Eastham, J.F. [Univ. of Bath (United Kingdom)

    1996-09-01

    Double sided axial field machines are attractive for direct wheel drives in electric vehicles. This is due to the fact that stator/rotor misalignments can be accommodated. In this case the stator of the machine is envisaged mounted on the chassis of the car while the rotor directly drives the road wheel. Since the wheel is perturbed by the road surface the rotor will move vertically between the outside stator assemblies and thus give rise to torque pulsations. A vector control scheme has been implemented whereby the torque pulsations are eliminated by (i) calculation of the flux variation due to the rotor perturbation and (ii) using this signal for the modulation of the motor input current.

  8. Cost of electricity generated and fuel saving of an optimized wind-diesel electricity supply for village in Tangier-area (Morocco)

    International Nuclear Information System (INIS)

    Nfaoui, H.; Buret, J.

    1996-01-01

    In several of the remote areas of Morocco, diesel generators are used to provide electrical power. Such systems are often characterized by poor efficiency and high maintenance costs. The integration of wind turbine with a diesel/battery hybrid system is becoming cost-effective in wind locations. In previous works (Nfaoul et al, 1990, 1994a, 1994b), the wind characteristics in Tangier-area were studied on the basis of 12 years (1978-1989) of hourly average wind speed data. A wind/diesel energy system with battery storage has been modelled using the Tangiers wind regime over a one year period (1989), and synthesized consumer load data based on the characteristics of typical usage of domestic appliances, along with the estimated working patterns of a local isolated community. In this work, we use a more realistic hourly consumer load, which is the result of an experiment realized in a Maroccan village using a diesel engine to provide electricity for lighting and audio-visual. The 1989 wind data were reworked for a large series of measurements (12 years). The optimum wind turbine size and the benefits of a storage system on fuel saving are also reviewed. This work is concerned with diesel fuel consumption: an optimum design of the considered system is to be found which minimises the cost energy generation over the equipments' lifetime. Given the economic assumption made (the most important being a fuel price of 4.5 Dh/litre and an interest rate of 5% net of inflation), the wind/diesel energy system has been shown to be competitive with diesel-only generation in the wind regime of the Tangier location for the cost per unit wind turbine swept area less than 3000 Dh/m 2 (8Dh=1$). (author)

  9. Wind energy integration in the Spanish electrical system

    Energy Technology Data Exchange (ETDEWEB)

    Alonso Garcia, Olivia; Torre Rodriguez, Miguel de la; Prieto Garcia, Eduardo; Martinez Villanueva, Sergio; Rodriguez Garcia, Juan Manuel [Red Electrica de Espana s.a. (Spain)

    2009-07-01

    Integration of significant amounts of wind power in electrical systems represents a challenge for TSOs, due to the technological and distributed particularities of wind generators and to the variability of its primary resource. The proposed paper describes the implications of massive wind power integration in the Spanish system in terms of technical requirements and operation measures. Concerning technical specifications for wind producers, the former criteria are nowadays being reviewed and the new requirements under discussion right now (grid code) are here introduced. Stability studies for the horizon 2016 (about 29 GW of wind power installed) and beyond have been performed and the obtrained results for the considered scenarios have led to a series of necessary criteria which relate to the next topics: - increased fault ride-though capabilities, - voltage maintenance and support in static and dynamic, - restoration of primary regulation reserves to the system, - active power and ramp controlling. Innovative solutions for wind power control, already operative in Spain, such as the dedicated control centre for renewable energies and other special producers (CECRE) will still provide the necessary tools and infrastructure to optimise integration limits in real time, maximizing renewable energy production and assuring security, as well as the communication with the renewable control centres. Regarding system balancing, while currently being able to appropriately deliver demand coverage, the main concern is the dispacement by wind power of conventional generation that will be required shortly afterwards to cover peak demand. Further concerns are the need to keep appropriate sizing of downward reserves during off-peak hours. This is normally dealt with market mechanisms leading combined cycle units to daily shut-down and start-up. When wind forecast errors occur and wind production is higher than expected, the system may run out of downward reserve and combined cycle

  10. Wind energy integration in the Spanish electrical system

    International Nuclear Information System (INIS)

    Alonso Garcia, Olivia; Torre Rodriguez, Miguel de la; Prieto Garcia, Eduardo; Martinez Villanueva, Sergio; Rodriguez Garcia, Juan Manuel

    2009-01-01

    Integration of significant amounts of wind power in electrical systems represents a challenge for TSOs, due to the technological and distributed particularities of wind generators and to the variability of its primary resource. The proposed paper describes the implications of massive wind power integration in the Spanish system in terms of technical requirements and operation measures. Concerning technical specifications for wind producers, the former criteria are nowadays being reviewed and the new requirements under discussion right now (grid code) are here introduced. Stability studies for the horizon 2016 (about 29 GW of wind power installed) and beyond have been performed and the obtrained results for the considered scenarios have led to a series of necessary criteria which relate to the next topics: - increased fault ride-though capabilities, - voltage maintenance and support in static and dynamic, - restoration of primary regulation reserves to the system, - active power and ramp controlling. Innovative solutions for wind power control, already operative in Spain, such as the dedicated control centre for renewable energies and other special producers (CECRE) will still provide the necessary tools and infrastructure to optimise integration limits in real time, maximizing renewable energy production and assuring security, as well as the communication with the renewable control centres. Regarding system balancing, while currently being able to appropriately deliver demand coverage, the main concern is the dispacement by wind power of conventional generation that will be required shortly afterwards to cover peak demand. Further concerns are the need to keep appropriate sizing of downward reserves during off-peak hours. This is normally dealt with market mechanisms leading combined cycle units to daily shut-down and start-up. When wind forecast errors occur and wind production is higher than expected, the system may run out of downward reserve and combined cycle

  11. FENCH-analysis of electricity generation greenhouse gas emissions from solar and wind power in Germany

    International Nuclear Information System (INIS)

    Hartmann, D.

    1997-01-01

    The assessment of energy supply systems with regard to the influence on climate change requires not only the quantification of direct emissions caused by the operation of a power plant. It also has to take into account indirect emissions resulting from e.g. construction and dismounting of the power plant. Processes like manufacturing the materials for building the plant, the transportation of components and the construction and maintenance of the power plant are included. A tool to determine and assess the energy and mass flows is the Life Cycle Analysis (LCA) which allows the assessment of environmental impacts related to a product or service. In this paper a FENCH (Full Energy Chain)-analysis based on a LCA of electricity production from wind and solar power plants under operation conditions typical for application its Germany is presented. The FENCH-analysis is based on two methods, Process Chain Analysis (PCA) and Input-Output-Analysis (IOA) which are illustrated by the example of an electricity generation from a wind power plant. The calculated results are shown for the cumulated (indirect and direct) Greenhouse-Gas (GHG)-emissions for an electricity production from wind and solar power plants. A comparison of the results to the electricity production from a coal fired power plant is performed. At last a comparison of 1 kWh electricity from renewable energy to 1 kWh from fossil energy carrier has to be done, because the benefits of 1 kWh electricity from various types of power plants are different. Electricity from wind energy depends on the meteorological conditions while electricity from a fossil fired power plant is able to follow the power requirements of the consumers nearly all the time. By considering the comparison of the different benefit provided the GHG-Emissions are presented. (author)

  12. The use of an axial flux permanent magnet in-wheel direct drive in an electric bicycle

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, P.R. [Norwegian University of Science and Technology, Trondheim (Norway). Dept. of Electrical Power Engineering; Patterson, D.; O' Keefe, C.; Swenson, J. [Northern Territory University, Darwin (Australia). NT Centre for Energy Research

    2001-03-01

    The research described in this paper concentrates on the development of an electronic converter. Successful completion of this converter provides the final component for the larger electric bicycle project. The controller developed for the bicycle is rated at 400 W and is hard-switched. It uses MOSFETs as power switching devices. There are three Hall effect sensors placed 120 electrical degrees apart from each other in the motor for velocity and position sensing. The torque generated by the machine is controlled by hysteresis band current control. In order for the motor/controller to be commercially viable, particular attention was paid to the costs of the controller. The result, an efficient yet cheap controller. Measurement of efficiency is difficult in high performance power electronic controllers (Patterson DJA very high efficiency controller for an axial flux permanent magnet wheel drive in a solar powered vehicle. 2nd IEEE International Conference on Power Electronics Drives and Energy Systems for Industrial Growth, IEEE PEDES '98, Perth, 30th November-3rd December, 1998). The paper includes discussion of a calorimetric method for measurement. (author)

  13. An Omnidirectional Mobile Millimeters Size Micro-Robot with Novel Duel-Wheels

    Directory of Open Access Journals (Sweden)

    Zhenbo Li

    2006-09-01

    Full Text Available A millimeters size omni-directional mobile micro-robot is presented in this paper. A unique duel-wheel structure is designed for no-slip motion during the steering, by turning the slip friction between the wheel and ground into rolling friction. The robot was driven by four electromagnetic micromotors with 2.1mm×2.1mm×1.3mm size. Three of them are for translation and the other one is for rotation. Kinematics model is analyzed to prove the omni-directional mobility. Virtual-Winding Approach (VWA and PWM-Based Vector-Synthesize Approach(PBVSA current control methods are presented to satisfy a requirement of higher positioning accuracy. Experimental results demonstrate the feasibility of this concept.

  14. An Omnidirectional Mobile Millimeters Size Micro-Robot with Novel Duel-Wheels

    Directory of Open Access Journals (Sweden)

    Chen Zhang

    2008-11-01

    Full Text Available A millimeters size omni-directional mobile micro-robot is presented in this paper. A unique duel-wheel structure is designed for no-slip motion during the steering, by turning the slip friction between the wheel and ground into rolling friction. The robot was driven by four electromagnetic micromotors with 2.1mm?2.1mm?1.3mm size. Three of them are for translation and the other one is for rotation. Kinematics model is analyzed to prove the omni-directional mobility. Virtual-Winding Approach (VWA and PWM-Based VectorSynthesize Approach(PBVSA current control methods are presented to satisfy a requirement of higher positioning accuracy. Experimental results demonstrate the feasibility of this concept.

  15. Electric vehicles in Danish power system with large penetration of wind power

    DEFF Research Database (Denmark)

    Yang, Lihui; Xu, Zhao; Østergaard, Jacob

    2011-01-01

    Electric vehicles (EVs) provide a unique opportunity for reducing the CO2 emissions from the transport sector. At the same time, EVs have the potential to play an important role in the economical and reliable operation of an electricity system with high penetration of renewable energy. An analysi......). The managing structure of V2G adopting virtual power plant (VPP) technology is proposed. © 2011 State Grid Electric Power Research Institute Press....... is made of the potential for using EVs in Denmark, and the benefits of the electric power system with high wind power generation by intelligent charging and discharging of EVs are enumerated. Based on the analysis, important technological gaps are identified, and the corresponding research and development...... initiatives of the recently established EDISON program are described. Moreover, the latest development of the EDISON program is treated, that is, EDISON as a research consortium to design a new model for the Danish power system with high penetration of wind power and EVs with vehicle to grid (V2G...

  16. Risk assessment of electric generation systems with high wind penetration

    International Nuclear Information System (INIS)

    Salgado Duarte, Yorlandys; Castillo Serpa, Alfredo M. del

    2017-01-01

    The research evaluates the risk function of an Electric Generation System (SGE) with high wind power penetration using the Sequential Monte Carlo Simulation (SMCS) method, which allows calculating indicators that characterize the performance of the SGE with expected average values. The research uses a Markov model of two states or four states according to the characteristics of the generator to simulate the instantaneous capacity. The primary sources of each conventional generator are assumed to be always available; however, wind power depends on the wind behavior in each analyzed region. In this research, the Chronological Series and Weibull models are used to model the wind behavior, and the analyzes are performed in the IEEE-RTS system. The work shows that the behavior of the probabilistic indicators used to analyze the static capacity of the SGE is determined by the model used to simulate the stochastic of the generators and by the primary energy source. (author)

  17. Partial analysis of wind power limit in an electric micro system using continuation power flow

    International Nuclear Information System (INIS)

    Fiallo Guerrero, Jandry; Santos Fuentefria, Ariel; Castro Fernández, Miguel

    2013-01-01

    The wind power insertion in the power system is an important issue and can create some instability problems in voltage and system frequency due to stochastic origin of wind. Know the Wind Power Limit that can insert in an electric grid without losing stability is a very important matter. Existing in bibliography a few methods for calculation of wind power limit, some of them are based in static constrains, an example is a method based in a continuation power flow analysis. In the present work the method is applied in an electric micro system formed when the system is disconnected of the man grid, the main goal was prove the method in a weak and island network. The software used in the simulations was the Power System Analysis Toolbox (PSAT). (author)

  18. Dynamic Analysis of Electrical Power Grid Delivery: Using Prime Mover Engines to Balance Dynamic Wind Turbine Output

    Energy Technology Data Exchange (ETDEWEB)

    Diana K. Grauer

    2011-10-01

    This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.

  19. Stochastic Optimal Regulation Service Strategy for a Wind Farm Participating in the Electricity Market

    DEFF Research Database (Denmark)

    Zhang, Baohua; Hu, Weihao; Chen, Zhe

    2015-01-01

    in the stochastic optimization to deal with the uncertainty of the up regulation price and the up regulation activation of the power system.The Danish short-term electricity market and a wind farm in western Denmark are chosen to evaluate the effect of the proposed strategy. Simulation results showthe proposed......As modern wind farmshave the ability to provideregulation service for the power system, wind power plant operators may be motivated to participate in the regulating market to maximize their profit.In this paper, anoptimal regulation servicestrategy for a wind farm to participate...... strategy can increase the revenue of wind farms by leavinga certain amount of wind powerfor regulation service....

  20. Resilience of electricity grids against transmission line overloads under wind power injection at different nodes.

    Science.gov (United States)

    Schiel, Christoph; Lind, Pedro G; Maass, Philipp

    2017-09-14

    A steadily increasing fraction of renewable energy sources for electricity production requires a better understanding of how stochastic power generation affects the stability of electricity grids. Here, we assess the resilience of an IEEE test grid against single transmission line overloads under wind power injection based on the dc power flow equations and a quasi-static grid response to wind fluctuations. Thereby we focus on the mutual influence of wind power generation at different nodes. We find that overload probabilities vary strongly between different pairs of nodes and become highly affected by spatial correlations of wind fluctuations. An unexpected behaviour is uncovered: for a large number of node pairs, increasing wind power injection at one node can increase the power threshold at the other node with respect to line overloads in the grid. We find that this seemingly paradoxical behaviour is related to the topological distance of the overloaded line from the shortest path connecting the wind nodes. In the considered test grid, it occurs for all node pairs, where the overloaded line belongs to the shortest path.

  1. Electric Vehicles for Improved Operation of Power Systems with High Wind Power Penetration

    OpenAIRE

    Larsen, Esben; Chandrashekhara, Divya K; Østergaard, Jacob

    2008-01-01

    In a power system with a high share of wind energy the wind fluctuation causes a variation in the power generation, which must be compensated from other sources. The situation in Denmark with a penetration of more than 20% wind in yearly average is presented. The introduction of electric drive vehicles (EDV) as flexible loads can improve the system operation. Bidirectional power exchange through batteries (vehicle to grid) can be seen as a storage system in the grid. An analysis of possible e...

  2. Feasibility study on economic operation of wind farms in the electric power system of the Republic of Croatia

    International Nuclear Information System (INIS)

    Rabadan, L.P.; Sansevic, M.; Klarin, B.

    1996-01-01

    In this work are analyzed island and coastal locations on the Adriatic Sea as possible sites of wind farms. The analysis is based on the expert system developed by authors of other literature. The macrolocation selection is performed by the multicriterial decision-making method and in compliance with the current world approach to their wind potential and some other criteria. The choice of wind turbine generator (WTG) unit is based on the fundamental criteria: operational efficiency on the given location, price per installed kW, and price of the generated electricity. The results obtained in this study show that the contribution in electricity yield from the selected wind power plants could amount to 4.33% of the electricity generated by the Croatian power plants in the year 1990. The calculations of electricity costs are based on the quantity of electricity obtained by simulating the operation of the best WTG units selected from the ES database and including other influential factors. In the choice of macrolocations and WTG units the fuzzy method is implemented as part of the ES. (author)

  3. The Potential of hybrid solar-wind electricity generation in Ghana

    International Nuclear Information System (INIS)

    Tibiru, Ayirewura Vitus

    2013-07-01

    In this work the potential of harnessing electricity from solar and wind sources in Ghana is evaluated both quantitatively and qualitatively. In this regard solar, wind and other relevant data were collected (over a period of one year) from various parts of Ghana. Detailed assessment of the capacity or potential of power production from hybrid solar-wind sources is done with the use of empirical mathematical formulae and the PRO VITUS model incorporated in the 'ENERGY X' software. The various characteristics of wind, solar and available energy resources for the five locations over a one year period have been studied too. The annual mean wind speed at a height of 10 m above ground level for five locations namely Accra, Kumasi, Takoradi, Sunyani and Tamale are 2.38 ms"-"1 ± 0.05, 2.39 ms"-"1 ± 0.05, 2.38 ms"-"1 ± 0.06, 2.18 ms"-"1 ± 0.05 and 2.47 ± ms"-"1 respectively and their corresponding annual mean solar radiations are 228.71 Wm"-"2 ± 9.81, 187.69 Wm"-"2 ± 9.60, 236.58 Wm"-"2 ± 10.39, 200.99 Wm"-"2 ± 9.88 and 231.63 Wm"-"2 . Thus, the five sites hold potential for hybrid solar-wind energy exploitation. (au)

  4. Evaluating the impact of electrical grid connection on the wind turbine performance for Hofa wind farm scheme in Jordan

    International Nuclear Information System (INIS)

    Abderrazzaq, M.H.; Aloquili, O.

    2008-01-01

    The growth of wind energy is attributed to the development of turbine size and the increase in number of units in each wind farm. The current modern design of large wind turbines (WT) is directed towards producing efficient, sensitive and reliable units. To achieve this goal, modern turbines are equipped with several devices which are operated with highly advanced electronic circuits. Sensing instruments, measuring devices and control processes of major systems and subsystems are based on various types of electronic apparatus and boards. These boards are very sensitive to the voltage variations caused by abnormal conditions in both the turbine itself and the electric grid to which the wind farm is connected. This paper evaluates wind farm records and proposes a number of methods to overcome such obstacles associated with the design of large wind turbines. Several cases of grid abnormality such as sudden feeder interruption due to the short circuit, network disconnection, voltage variation and circuit breaker opening affecting wind turbines operation and availability are classified and presented. The weight of such impact is determined for each type of disturbances associated with electronic problems in the wind turbine. Wind turbine performance at Hofa wind farm scheme in Jordan is taken as a case study

  5. Estimation of Equivalent Thermal Conductivity for Impregnated Electrical Windings Formed from Profiled Rectangular Conductors

    OpenAIRE

    Ayat, Sabrina S; Wrobel, Rafal; Goss, James; Drury, David

    2016-01-01

    In order to improve accuracy and reduce model setting-up, and solving time in thermal analysis of electrical machines, transformers and wound passive components, the multi-material winding region is frequently homogenised. The existing winding homogenization techniques are predo-minantly focused on winding constructions with round conductors, where thermal conductivity across conductors is usually assumed to be isotropic. However, for the profiled rectangular conductors that assumption is no ...

  6. Wind: new wind markets

    International Nuclear Information System (INIS)

    Cameron, A.

    2005-01-01

    The June 2005 edition of 'Wind Force 12' suggests that wind could generate 12% of global electricity requirements by 2020. But what moves a potential market into an emerging one? Geographical factors include a good wind resource, plenty of open space and the ability to get the generated electricity to end-users. A country's political framework is equally important, with fixed price systems, renewable quota systems and political will all playing a part. Some potential wind markets around the world are thought to have the conditions necessary to become key players in the wind industry. The emerging markets in countries such as Australia, Brazil, Canada, France, Japan and the Philippines are highlighted as examples

  7. A weather regime characterisation of Irish wind generation and electricity demand in winters 2009–11

    Science.gov (United States)

    Cradden, Lucy C.; McDermott, Frank

    2018-05-01

    Prolonged cold spells were experienced in Ireland in the winters of 2009–10 and 2010–11, and electricity demand was relatively high at these times, whilst wind generation capacity factors were low. Such situations can cause difficulties for an electricity system with a high dependence on wind energy. Studying the atmospheric conditions associated with these two winters offers insights into the large-scale drivers for cold, calm spells, and helps to evaluate if they are rare events over the long-term. The influence of particular atmospheric patterns on coincidental winter wind generation and weather-related electricity demand is investigated here, with a focus on blocking in the North Atlantic/European sector. The occurrences of such patterns in the 2009–10 and 2010–11 winters are examined, and 2010–11 in particular was found to be unusual in a long-term context. The results are discussed in terms of the relevance to long-term planning and investment in the electricity system.

  8. Utilizing a vanadium redox flow battery to avoid wind power deviation penalties in an electricity market

    International Nuclear Information System (INIS)

    Turker, Burak; Arroyo Klein, Sebastian; Komsiyska, Lidiya; Trujillo, Juan José; Bremen, Lueder von; Kühn, Martin; Busse, Matthias

    2013-01-01

    Highlights: • Vanadium redox flow battery utilized for wind power grid integration was studied. • Technical and financial analyses at single wind farm level were performed. • 2 MW/6 MW h VRFB is suitable for mitigating power deviations for a 10 MW wind farm. • Economic incentives might be required in the short-term until the VRFB prices drop. - Abstract: Utilizing a vanadium redox flow battery (VRFB) for better market integration of wind power at a single wind farm level was evaluated. A model which combines a VRFB unit and a medium sized (10 MW) wind farm was developed and the battery was utilized to compensate for the deviations resulting from the forecast errors in an electricity market bidding structure. VRFB software model which was introduced in our previous paper was integrated with real wind power data, power forecasts and market data based on the Spanish electricity market. Economy of the system was evaluated by financial assessments which were done by considering the VRFB costs and the amount of deviation penalty payments resulting from forecast inaccuracies

  9. Wind Energy Study and Energy Cost of Wind Electricity Generation in Nigeria: Past and Recent Results and a Case Study for South West Nigeria

    Directory of Open Access Journals (Sweden)

    Oluseyi O. Ajayi

    2014-12-01

    Full Text Available The study assessed the wind energy potential of ten selected sites in the south western region of Nigeria and carried out a cost benefit analysis of wind power generation at those sites. Twenty four years’ (1987 to 2010 wind speed data at 10 m height obtained from the Nigerian meteorological agency were employed to classify the sites wind profiles for electricity generation. The energy cost analysis of generating wind electricity from the sites was also carried out. The outcome showed that sites in Lagos and Oyo States were adequately suited for large scale generation with average wind speeds ranged between 2.9 and 5.8 m/s. Those from other sites may be suitable for small scale generation or as wind farms, with several small turbines connected together, to generate large enough wind power. The turbine matching results shows that turbines cut-in and rated wind speeds of between 2.0 and 3.0 m/s, and between 10 and 12.0 m/s respectively will be very suited to all the sites, particularly those in locations outside Lagos and Oyo States. The energy cost analysis shows that generation cost can be as low as 0.02 €/kWh and as high as 5.03/kWh, depending on the turbine model employed.

  10. Impact of Penetration Wind Turbines on Transient Stability in Sulbagsel Electrical Interconnection System

    Science.gov (United States)

    Nurtrimarini Karim, Andi; Mawar Said, Sri; Chaerah Gunadin, Indar; Darusman B, Mustadir

    2018-03-01

    This paper presents a rotor angle analysis when transient disturbance occurs when wind turbines enter the southern Sulawesi electrical interconnection system (Sulbagsel) both without and with the addition of a Power Stabilizer (PSS) control device. Time domain simulation (TDS) method is used to analyze the rotor angle deviation (δ) and rotor angle velocity (ω). A total of 44 buses, 47 lines, 6 transformers, 15 generators and 34 loads were modeled for analysis after the inclusion of large-scale wind turbines in the Sidrap and Jeneponto areas. The simulation and computation results show the addition of PSS devices to the system when transient disturbance occurs when the winds turbine entering the Sulbagsel electrical system is able to dampen and improve the rotor angle deviation (δ) and the rotor angle velocity (ω) towards better thus helping the system to continue operation at a new equilibrium point.

  11. Life-cycle analysis of energy and greenhouse gas emissions of automotive fuels in India: Part 1 – Tank-to-Wheel analysis

    International Nuclear Information System (INIS)

    Gupta, S.; Patil, V.; Himabindu, M.; Ravikrishna, R.V.

    2016-01-01

    As part of a two-part life cycle efficiency and greenhouse gas emission analysis for various automotive fuels in the Indian context, this paper presents the first part, i.e., Tank-to-Wheel analysis of various fuel/powertrain configurations for a subcompact passenger car. The Tank-to-Wheel analysis was applied to 28 fuel/powertrain configurations using fuels such as gasoline, diesel, compressed natural gas, liquefied petroleum gas and hydrogen with various conventional and hybrid electric powertrains. The gasoline-equivalent fuel economy and carbon dioxide emission results for individual fuel/powertrain configuration are evaluated and compared. It is found that the split hybrid configuration is best among hybrids as it leads to fuel economy improvement and carbon dioxide emissions reduction by 20–40% over the Indian drive cycle. Further, the engine efficiency, engine on-off time and regenerative braking energy assessment is done to evaluate the causes for higher energy efficiency of hybrid electric vehicles. The hybridization increases average engine efficiency by 10–60% which includes 19–23% of energy recovered at wheel through regenerative braking over the drive cycle. Overall, the Tank-to-Wheel energy use and efficiency results are evaluated for all fuel/powertrain configurations which show Battery Electric Vehicle, fuel cell vehicles and diesel hybrids are near and long term energy efficient vehicle configurations. - Highlights: • Tank-to-Wheel energy use & CO_2 emissions for subcompact car on Indian driving cycle. • Gasoline, diesel, CNG, LPG, hydrogen and electric vehicles are evaluated in this study. • First comprehensive Tank-to-Wheel analysis for India on small passenger car platform. • Parallel, series and split hybrid electric vehicles with various fuels are analysed.

  12. A Two-Wheeled, Self-Balancing Electric Vehicle Used As an Environmentally Friendly Individual Means of Transport

    Science.gov (United States)

    Bździuch, D.; Grzegożek, W.

    2016-09-01

    This paper shows a concept of a model of a two-wheeled self-balancing vehicle with an electric motor drive as an environmentally-friendly personal transporter. The principle of work, modelling of construction and performing a simulation are presented and discussed. The visualization of the designed vehicle was made thanks to using Solid Works a computer-aided design program. The vehicle was modelled as an inverted pendulum. The stability of the mechanism in the equilibrium position was studied. An exemplary steering system was also subjected to the analysis that compared two controllers: PID and LQR which enabled to monitor the balance of the vehicle when the required conditions were fulfilled. Modelling of work of the controllers and the evaluation of the obtained results in required conditions were performed in the MATLAB environment.

  13. Reliability Assessment of Offshore Wind Turbines Considering Faults of Electrical / Mechanical Components

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2013-01-01

    For offshore wind turbines, the cost contribution to Cost of Energy from inspections and Operation & Maintenance can be substantial, and can be expected to increase when wind farms are placed at deeper water depths, further from the coast and in more harsh environments. Estimates of the reliability...... is considered and related to reliability estimation by taking into account faults e.g. due to failure of an electrical component or loss of grid....

  14. Technologies for production of electricity and heat in Sweden. Wind energy in perspective of international development

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Niels-Erik; Lawaetz, Henrik; Lemming, Joergen; Morthorst, Poul Erik

    2008-12-15

    The development of the wind energy technology has been very successful from the 1970s and up till now. Initially there was a battle between wind turbine concepts, but the commercial winner today is the three-bladed horizontal axis, upwind, electricity producing and grid connected wind turbine with availability on mature markets somewhere around 99%. An important contributor to the growth of the European market for wind energy technology has been EU framework legislation combined with legislation at the national level. The binding target for renewable energy in Sweden is proposed to be 49% of the final energy consumption in 2020 compared to 39.8% in 2005. To stimulate the development of wind energy and to promote a specific national goals Sweden is mainly using an electricity certificate system. The target is to increase the production of electricity from renewable sources by 17 TWh in 2016, relative to corresponding production in 2002. There is not at specific target for the use of wind energy. A future energy system that includes a high proportion of wind energy will be expected to meet the same requirements for security of supply and economic efficiency as the energy systems of today. The variability of wind power create a specific challenges for the future energy systems compared to those of today. The economics of wind power depends mainly of investment cost, operation and maintenance costs, electricity production and turbine lifetime. An average turbine installed in Europe has a total investment cost of 1.230 Euro/kW with a typically variation from approximately 1000 Euro/kW to approximately 1400 Euro/kW. The calculated costs per kWh wind generated power range from approximately 7-10 cEuro/kWh at sites with low average wind speeds to approximately 5-6.5 cEuro/kWh at good coastal positions, with an average of approximately 7cEuro/kWh at a medium wind site. Offshore costs are largely dependent on weather and wave conditions, water depth, and distance to the

  15. Comparing electricity transitions: A historical analysis of nuclear, wind and solar power in Germany and Japan

    International Nuclear Information System (INIS)

    Cherp, Aleh; Vinichenko, Vadim; Jewell, Jessica; Suzuki, Masahiro; Antal, Miklós

    2017-01-01

    This paper contributes to understanding national variations in using low-carbon electricity sources by comparing the evolution of nuclear, wind and solar power in Germany and Japan. It develops and applies a framework for analyzing low-carbon electricity transitions based on interplay of techno-economic, political and socio-technical processes. We explain why in the 1970s–1980s, the energy paths of the two countries were remarkably similar, but since the 1990s Germany has become a leader in renewables while phasing out nuclear energy, whereas Japan has deployed less renewables while becoming a leader in nuclear power. We link these differences to the faster growth of electricity demand and energy insecurity in Japan, the easier diffusion of onshore wind power technology and the weakening of the nuclear power regime induced by stagnation and competition from coal and renewables in Germany. We show how these changes involve the interplay of five distinct mechanisms which may also play a role in other energy transitions. - Highlights: • We identify five mechanisms which play a role in national low-carbon electricity transitions. • Use of nuclear, wind and solar power in Germany and Japan diverged in the 1990s. • Wind power diffused to Germany from Denmark but different geography stalled it in Japan. • Demand growth and energy insecurity prompted nuclear power expansion in Japan. • Competition with domestic coal and wind led to the demise of nuclear power in Germany.

  16. Danish Wind Power

    DEFF Research Database (Denmark)

    Lund, Henrik; Hvelplund, Frede; Østergaard, Poul Alberg

    In a normal wind year, Danish wind turbines generate the equivalent of approx. 20 percent of the Danish electricity demand. This paper argues that only approx. 1 percent of the wind power production is exported. The rest is used to meet domestic Danish electricity demands. The cost of wind power...... misleading. The cost of CO2 reduction by use of wind power in the period 2004-2008 was only 20 EUR/ton. Furthermore, the Danish wind turbines are not paid for by energy taxes. Danish wind turbines are given a subsidy via the electricity price which is paid by the electricity consumers. In the recent years...... is paid solely by the electricity consumers and the net influence on consumer prices was as low as 1-3 percent on average in the period 2004-2008. In 2008, the net influence even decreased the average consumer price, although only slightly. In Denmark, 20 percent wind power is integrated by using both...

  17. Electricity for road transport, flexible power systems and wind power

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Lars Henrik; Ravn, H.; Meibom, P. (and others)

    2011-12-15

    The aim of the project is to analyse the potential synergistic interplay that may arise between the power sector and the transport sector, if parts of the road transport energy needs are based on electricity via the utilisation of plug-in hybrid electric vehicles and pure electric vehicles. The project focuses on the technical elements in the chain that comprises: 1: The electric vehicle status, potentials and expected development. Electric batteries are in focus in this part of the analysis. 2: Analysis of plug-in hybrid electric vehicle interacting with a local grid. 3: Analysis of grid-vehicle connection systems including technical regulation options and analysis of needs for standardisation. 4: Setting up scenarios covering potential developments for utilizing electric drive trains in road transport. Period: Up to year 2030. 5: Analysis of capacity constraints in the electricity grid (transmission and distribution) as consequence of increasing electricity demand, and new flexible consumption patterns from segments in the transport sector, and as consequence of increasing capacity on wind power in the system. 6: Setting up and analysis of combined scenarios covering both the heat and power system and the transport sector. (Author)

  18. Wind-generated Electricity in China: Decreasing Potential, Inter-annual Variability and Association with Changing Climate.

    Science.gov (United States)

    Sherman, Peter; Chen, Xinyu; McElroy, Michael B

    2017-11-24

    China hosts the world's largest market for wind-generated electricity. The financial return and carbon reduction benefits from wind power are sensitive to changing wind resources. Wind data derived from an assimilated meteorological database are used here to estimate what the wind generated electricity in China would have been on an hourly basis over the period 1979 to 2015 at a geographical resolution of approximately 50 km × 50 km. The analysis indicates a secular decrease in generating potential over this interval, with the largest declines observed for western Inner Mongolia (15 ± 7%) and the northern part of Gansu (17 ± 8%), two leading wind investment areas. The decrease is associated with long-term warming in the vicinity of the Siberian High (SH), correlated also with the observed secular increase in global average surface temperatures. The long-term trend is modulated by variability relating to the Pacific Decadal Oscillation (PDO) and the Arctic Oscillation (AO). A linear regression model incorporating indices for the PDO and AO, as well as the declining trend, can account for the interannual variability of wind power, suggesting that advances in long-term forecasting could be exploited to markedly improve management of future energy systems.

  19. Windonomics. Empirical essays on the economics of wind power in the Nordic electricity market

    Energy Technology Data Exchange (ETDEWEB)

    Mauritzen, Johannes

    2012-07-01

    From the introduction: The following chapters in this dissertation take up three topics surrounding the interaction of wind power investment in Denmark and the functioning of the deregulated Nordic electricity market. The first two chapters take up the issue of how wind power a affects prices in the deregulated market. I find that electricity price variation in the spot market is lower in days with more wind power. In the following chapter I extend this analysis to see how wind power in Denmark affects prices in neighbouring hydro power dominated Norway. I find that wind power affects the magnitude of trade between the countries asymmetrically - dependent on the net direction of trade. I also find that wind power has a slight but statistically significant negative effect on prices in Norway, likely due to a slackening of hydro power producers supply constraints. The last chapter starts with the observation that most turbines are scrapped in order to make room for a newer turbine. An opportunity cost that comes from the interaction of scarce land resources, technological change and government policy is then a dominant reason for the scrapping of wind turbines. This leads to the implication that turbines located on windier, better situated land have a higher risk of being scrapped. Policy is also shown to have a strong and in some respects unexpected effect on scrappings. Over the last two decades two major trends have taken place in power markets around the world. The first has been a movement towards market based power systems. Vertically integrated power companies have been split into component generation, transmission and retailing companies. Generation and retailing have been opened to competition. Increasingly, regulated prices and bilateral trade are being replaced by regulated markets that establish prices through auction mechanisms. The second trend has been investment in renewable and intermittent energy sources - notably wind power. What started as

  20. Flywheel in an all-electric propulsion system

    Energy Technology Data Exchange (ETDEWEB)

    Lundin, Johan

    2011-07-01

    Energy storage is a crucial condition for both transportation purposes and for the use of electricity. Flywheels can be used as actual energy storage but also as power handling device. Their high power capacity compared to other means of storing electric energy makes them very convenient for smoothing power transients. These occur frequently in vehicles but also in the electric grid. In both these areas there is a lot to gain by reducing the power transients and irregularities. The research conducted at Uppsala Univ. and described in this thesis is focused on an all-electric propulsion system based on an electric flywheel with double stator windings. The flywheel is inserted in between the main energy storage (assumed to be a battery) and the traction motor in an electric vehicle. This system has been evaluated by simulations in a Matlab model, comparing two otherwise identical drivelines, one with and one without a flywheel. The flywheel is shown to have several advantages for an all-electric propulsion system for a vehicle. The maximum power from the battery decreases more than ten times as the flywheel absorbs and supplies all the high power fluxes occurring at acceleration and braking. The battery delivers a low and almost constant power to the flywheel. The amount of batteries needed de- creases whereas the battery lifetime and efficiency increases. Another benefit the flywheel configuration brings is a higher energy efficiency and hence less need for cooling. The model has also been used to evaluate the flywheel functionality for an electric grid application. The power from renewable intermittent energy sources such as wave, wind and current power can be smoothened by the fly- wheel, making these energy sources more efficient and thereby competitive with a remaining high power quality in the electric grid

  1. Estimating the Backup Reaction Wheel Orientation Using Reaction Wheel Spin Rates Flight Telemetry from a Spacecraft

    Science.gov (United States)

    Rizvi, Farheen

    2013-01-01

    A report describes a model that estimates the orientation of the backup reaction wheel using the reaction wheel spin rates telemetry from a spacecraft. Attitude control via the reaction wheel assembly (RWA) onboard a spacecraft uses three reaction wheels (one wheel per axis) and a backup to accommodate any wheel degradation throughout the course of the mission. The spacecraft dynamics prediction depends upon the correct knowledge of the reaction wheel orientations. Thus, it is vital to determine the actual orientation of the reaction wheels such that the correct spacecraft dynamics can be predicted. The conservation of angular momentum is used to estimate the orientation of the backup reaction wheel from the prime and backup reaction wheel spin rates data. The method is applied in estimating the orientation of the backup wheel onboard the Cassini spacecraft. The flight telemetry from the March 2011 prime and backup RWA swap activity on Cassini is used to obtain the best estimate for the backup reaction wheel orientation.

  2. Simulating price patterns for tradable green certificates to promote electricity generation from wind

    International Nuclear Information System (INIS)

    Ford, A.

    2007-01-01

    This article uses computer simulation to anticipate the price dynamics in a market for Tradable Green Certificates (TGCs). These markets have been used in Europe to promote generation of electricity from renewable resources like wind. Similar markets have been proposed in the United States of America (USA) where the certificates are called Renewable Energy Credits (RECs). The certificates are issued to the generating companies for each megawatt-hour of renewable electricity generation. The companies may sell the certificates in a market, and the revenues from certificate sales provide an extra incentive to invest in new generating capacity. Proponents argue that this market-based incentive can be designed to support government mandates for a growing fraction of electricity generation from renewable sources. In the USA, these mandates are set by the states and are known as Renewable Portfolio Standards (RPS). We simulate the price dynamics of a market designed to support an aggressive mandate for wind generation in the northwestern USA. The simulations show that the certificate price climbs rapidly to the cap in the early years after the market opens. Investors then react to these high prices with construction of new wind capacity. After a few years, wind generation meets, and then exceeds the requirement. We show that this pattern appears again and again when the simulations are repeated with wide variations in the estimates of behavioral parameters. We use the model to study the impact of different trading strategies by the wind companies and by the distribution companies. We also study the simulated market response if the USA adopts the carbon allowance market envisioned in The Climate Stewardship Act. The article concludes with recommendations for policy makers involved in TGC market design. [Author

  3. Simulating price patterns for tradable green certificates to promote electricity generation from wind

    International Nuclear Information System (INIS)

    Ford, Andrew; Vogstad, Klaus; Flynn, Hilary

    2007-01-01

    This article uses computer simulation to anticipate the price dynamics in a market for Tradable Green Certificates (TGCs). These markets have been used in Europe to promote generation of electricity from renewable resources like wind. Similar markets have been proposed in the United States of America (USA) where the certificates are called Renewable Energy Credits (RECs). The certificates are issued to the generating companies for each megawatt-hour of renewable electricity generation. The companies may sell the certificates in a market, and the revenues from certificate sales provide an extra incentive to invest in new generating capacity. Proponents argue that this market-based incentive can be designed to support government mandates for a growing fraction of electricity generation from renewable sources. In the USA, these mandates are set by the states and are known as Renewable Portfolio Standards (RPS). We simulate the price dynamics of a market designed to support an aggressive mandate for wind generation in the northwestern USA. The simulations show that the certificate price climbs rapidly to the cap in the early years after the market opens. Investors then react to these high prices with construction of new wind capacity. After a few years, wind generation meets, and then exceeds the requirement. We show that this pattern appears again and again when the simulations are repeated with wide variations in the estimates of behavioral parameters. We use the model to study the impact of different trading strategies by the wind companies and by the distribution companies. We also study the simulated market response if the USA adopts the carbon allowance market envisioned in The Climate Stewardship Act. The article concludes with recommendations for policy makers involved in TGC market design

  4. Techno-economic feasibility of hybrid diesel/PV/wind/battery electricity generation systems for non-residential large electricity consumers under southern Iran climate conditions

    International Nuclear Information System (INIS)

    Baneshi, Mehdi; Hadianfard, Farhad

    2016-01-01

    Highlights: • A hybrid electricity generation system for a large electricity consumer was studied. • The PV and wind electricity potentials under given climate conditions were evaluated. • Technical, economical, and environmental issues of different systems were discussed. • The optimum configuration of components was obtained. • The impacts of governmental incentives on economic viability of systems were examined. - Abstract: This paper aims to study the techno-economical parameters of a hybrid diesel/PV/wind/battery power generation system for a non-residential large electricity consumer in the south of Iran. As a case study, the feasibility of running a hybrid system to meet a non-residential community’s load demand of 9911 kWh daily average and 725 kW peak load demand was investigated. HOMER Pro software was used to model the operation of the system and to identify the appropriate configuration of it based on comparative technical, economical, and environmental analysis. Both stand alone and grid connected systems were modeled. The impacts of annual load growth and governmental energy policies such as providing low interest loan to renewable energy projects, carbon tax, and modifying the grid electricity price on viability of the system were discussed. Results show that for off-grid systems the cost of electricity (COE) and the renewable fraction of 9.3–12.6 ₵/kWh and 0–43.9%, respectively, are achieved with photovoltaic (PV) panel, wind turbine, and battery sizes of 0–1000 kW, 0–600 kW, and 1300 kWh, respectively. For on grid systems without battery storage the range of COE and renewable fraction are 5.7–8.4 ₵/kWh and 0–53%, respectively, for the same sizes of PV panel and wind turbine.

  5. Generation of electricity by wind power

    Energy Technology Data Exchange (ETDEWEB)

    Golding, E W

    1976-01-01

    Information on wind power is presented concerning the history of windmills; estimation of the energy obtainable from the wind; wind characteristics and distribution; wind power sites; wind surveys; wind flow over hills; measurement of wind velocity; wind structure and its determination; wind data and energy estimation; testing of wind driven ac generators; wind-driven machines; propeller type windmills; plants for isolated premises and small communities; economy of wind power generation; construction costs for large wind-driven generators; relationship of wind power to other power sources; research and development; and international cooperation.

  6. Electricity generation comparison of food waste-based bioenergy with wind and solar powers: A mini review

    Directory of Open Access Journals (Sweden)

    Ngoc Bao Dung Thi

    2016-09-01

    Full Text Available The food waste treatment-based anaerobic digestion has been proven to play a primary role in electricity industry with high potentially economic benefits, which could reduce electricity prices in comparison with other renewable energy resources such as wind and solar power. The levelized costs of electricity were reported to be 65, 190, 130 and 204 US$ MWh−1 for food waste treatment in anaerobic landfill, anaerobic digestion biogas, solar power, and wind power, respectively. As examples, the approaches of food waste treatment via anaerobic digestion to provide a partial energy supply for many countries in future were estimated as 42.9 TWh yr−1 in China (sharing 0.87% of total electricity generation, 7.04 TWh yr−1 in Japan (0.64% of total electricity generation and 13.3 TWh yr−1 in the US (0.31% of total electricity generation. Electricity generation by treating food waste is promised to play an important role in renewable energy management. Comparing with wind and solar powers, converting food waste to bioenergy provides the lowest investment costs (500 US$ kW−1 and low operation cost (0.1 US$ kWh−1. With some limits in geography and season of other renewable powers, using food waste for electricity generation is supposedly to be a suitable solution for balancing energy demand in many countries.

  7. The sun and the wind. Green and gray electricity

    International Nuclear Information System (INIS)

    Pryor, A.

    1999-01-01

    Electricity generation is one of the essential technologies that sustain modern life. When the electricity is cut off life in a modern city is unendurable. It is as vital as transport and communication. Yet it is a poorly understood technology. For most people, it comes from a socket on the wall. Knowing so little of its origin, they fantasise about 'green' sources like the sun and the wind and think it is sheer perversity for engineers to persevere with 'grey' sources like grubby, coal-burning power stations or nuclear reactors. Energy is a central concept of modern physics. This led on to the powerful idea of the conservation of energy: the sum of energy in all its forms stays constant in a closed system; energy can neither be created nor destroyed. But if that is so, people may be puzzled by all this talk of our profligate energy consumption leading to an 'energy crisis'. In strict physics although energy is not consumed it is degraded to lower temperatures and made less available. But physics offers us no convenient definition oi available energy and, when discussing the so-called energy crisis it is probably better not to use the word 'energy'. The crisis is real enough but it boils down to two particular problems: (i) we are running short of fuel for electricity generation; (ii) there are looming shortages of portable fuel (liquid or gas), above all for our cars, trucks, ships ant aeroplanes, but also for industrial and domestic heating. These are the two key problems: electricity generation and portable fuel. Moreover, though the final exhaustion of the world's reserves of coal, oil, and gas may not happen for many decades, they are finite and the end is in sight. Also there is widespread concern about the atmospheric contamination which comes from burning fossil fuels. In this essay the author discusses electricity generation alone, where there are realistic alternatives to fossil fuels: nuclear reactors and hydroelectricity generators, but not, we suggest

  8. Effect of wheel speed on magnetic and mechanical properties of melt spun Fe-6.5 wt.% Si high silicon steel

    Science.gov (United States)

    Ouyang, Gaoyuan; Jensen, Brandt; Tang, Wei; Dennis, Kevin; Macziewski, Chad; Thimmaiah, Srinivasa; Liang, Yongfeng; Cui, Jun

    2018-05-01

    Fe-Si electric steel is the most widely used soft magnetic material in electric machines and transformers. Increasing the silicon content from 3.2 wt.% to 6.5 wt.% brings about large improvement in the magnetic and electrical properties. However, 6.5 wt.% silicon steel is inherited with brittleness owing to the formation of B2 and D03 ordered phase. To obtain ductility in Fe-6.5wt.% silicon steel, the ordered phase has to be bypassed with methods like rapid cooling. In present paper, the effect of cooling rate on magnetic and mechanical properties of Fe-6.5wt.% silicon steel is studied by tuning the wheel speed during melt spinning process. The cooling rate significantly alters the ordering and microstructure, and thus the mechanical and magnetic properties. X-ray diffraction data shows that D03 ordering was fully suppressed at high wheel speeds but starts to nucleate at 10m/s and below, which correlates with the increase of Young's modulus towards low wheel speeds as tested by nanoindentation. The grain sizes of the ribbons on the wheel side decrease with increasing wheel speeds, ranging from ˜100 μm at 1m/s to ˜8 μm at 30m/s, which lead to changes in coercivity.

  9. Invited article: Electric solar wind sail: toward test missions.

    Science.gov (United States)

    Janhunen, P; Toivanen, P K; Polkko, J; Merikallio, S; Salminen, P; Haeggström, E; Seppänen, H; Kurppa, R; Ukkonen, J; Kiprich, S; Thornell, G; Kratz, H; Richter, L; Krömer, O; Rosta, R; Noorma, M; Envall, J; Lätt, S; Mengali, G; Quarta, A A; Koivisto, H; Tarvainen, O; Kalvas, T; Kauppinen, J; Nuottajärvi, A; Obraztsov, A

    2010-11-01

    The electric solar wind sail (E-sail) is a space propulsion concept that uses the natural solar wind dynamic pressure for producing spacecraft thrust. In its baseline form, the E-sail consists of a number of long, thin, conducting, and centrifugally stretched tethers, which are kept in a high positive potential by an onboard electron gun. The concept gains its efficiency from the fact that the effective sail area, i.e., the potential structure of the tethers, can be millions of times larger than the physical area of the thin tethers wires, which offsets the fact that the dynamic pressure of the solar wind is very weak. Indeed, according to the most recent published estimates, an E-sail of 1 N thrust and 100 kg mass could be built in the rather near future, providing a revolutionary level of propulsive performance (specific acceleration) for travel in the solar system. Here we give a review of the ongoing technical development work of the E-sail, covering tether construction, overall mechanical design alternatives, guidance and navigation strategies, and dynamical and orbital simulations.

  10. Treatment Wetland Aeration without Electricity? Lessons Learned from the First Experiment Using a Wind-Driven Air Pump

    Directory of Open Access Journals (Sweden)

    Johannes Boog

    2016-11-01

    Full Text Available Aerated treatment wetlands have become an increasingly recognized technology for treating wastewaters from domestic and various industrial origins. To date, treatment wetland aeration is provided by air pumps which require access to the energy grid. The requirement for electricity increases the ecological footprint of an aerated wetland and limits the application of this technology to areas with centralized electrical infrastructure. Wind power offers another possibility as a driver for wetland aeration, but its use for this purpose has not yet been investigated. This paper reports the first experimental trial using a simple wind-driven air pump to replace the conventional electric air blowers of an aerated horizontal subsurface flow wetland. The wind-driven air pump was connected to a two-year old horizontal flow aerated wetland which had been in continuous (24 h aeration since startup. The wind-driven aeration system functioned, however it was not specifically adapted to wetland aeration. As a result, treatment performance decreased compared to prior continuous aeration. Inconsistent wind speed at the site may have resulted in insufficient pressure within the aeration manifold, resulting in insufficient air supply to the wetland. This paper discusses the lessons learned during the experiment.

  11. The response of a high-speed train wheel to a harmonic wheel-rail force

    International Nuclear Information System (INIS)

    Sheng, Xiaozhen; Liu, Yuxia; Zhou, Xin

    2016-01-01

    The maximum speed of China's high-speed trains currently is 300km/h and expected to increase to 350-400km/h. As a wheel travels along the rail at such a high speed, it is subject to a force rotating at the same speed along its periphery. This fast moving force contains not only the axle load component, but also many components of high frequencies generated from wheel-rail interactions. Rotation of the wheel also introduces centrifugal and gyroscopic effects. How the wheel responds is fundamental to many issues, including wheel-rail contact, traction, wear and noise. In this paper, by making use of its axial symmetry, a special finite element scheme is developed for responses of a train wheel subject to a vertical and harmonic wheel-rail force. This FE scheme only requires a 2D mesh over a cross-section containing the wheel axis but includes all the effects induced by wheel rotation. Nodal displacements, as a periodic function of the cross-section angle 6, can be decomposed, using Fourier series, into a number of components at different circumferential orders. The derived FE equation is solved for each circumferential order. The sum of responses at all circumferential orders gives the actual response of the wheel. (paper)

  12. Analysis of vehicle dynamics under sadden cross wind

    Science.gov (United States)

    Walczak, S.

    2016-09-01

    In this paper, the way of calculating aerodynamic forces acting on a vehicle passing in the region of sadden cross wind was presented. The CarDyn, a vehicle dynamics simulation program, developed by the author was used. The effects of the cross wind were studied with a fixed steering wheel simulation. On the base of computer simulations the car cross wind sensitivity were determined, and vehicle responses such as lateral offset, side acceleration and yaw angular velocity are presented.

  13. Offshore Floating Wind Turbine-driven Deep Sea Water Pumping for Combined Electrical Power and District Cooling

    Science.gov (United States)

    Sant, T.; Buhagiar, D.; Farrugia, R. N.

    2014-06-01

    A new concept utilising floating wind turbines to exploit the low temperatures of deep sea water for space cooling in buildings is presented. The approach is based on offshore hydraulic wind turbines pumping pressurised deep sea water to a centralised plant consisting of a hydro-electric power system coupled to a large-scale sea water-cooled air conditioning (AC) unit of an urban district cooling network. In order to investigate the potential advantages of this new concept over conventional technologies, a simplified model for performance simulation of a vapour compression AC unit was applied independently to three different systems, with the AC unit operating with (1) a constant flow of sea surface water, (2) a constant flow of sea water consisting of a mixture of surface sea water and deep sea water delivered by a single offshore hydraulic wind turbine and (3) an intermittent flow of deep sea water pumped by a single offshore hydraulic wind turbine. The analysis was based on one year of wind and ambient temperature data for the Central Mediterranean that is known for its deep waters, warm climate and relatively low wind speeds. The study confirmed that while the present concept is less efficient than conventional turbines utilising grid-connected electrical generators, a significant portion of the losses associated with the hydraulic transmission through the pipeline are offset by the extraction of cool deep sea water which reduces the electricity consumption of urban air-conditioning units.

  14. Offshore Floating Wind Turbine-driven Deep Sea Water Pumping for Combined Electrical Power and District Cooling

    International Nuclear Information System (INIS)

    Sant, T; Buhagiar, D; Farrugia, R N

    2014-01-01

    A new concept utilising floating wind turbines to exploit the low temperatures of deep sea water for space cooling in buildings is presented. The approach is based on offshore hydraulic wind turbines pumping pressurised deep sea water to a centralised plant consisting of a hydro-electric power system coupled to a large-scale sea water-cooled air conditioning (AC) unit of an urban district cooling network. In order to investigate the potential advantages of this new concept over conventional technologies, a simplified model for performance simulation of a vapour compression AC unit was applied independently to three different systems, with the AC unit operating with (1) a constant flow of sea surface water, (2) a constant flow of sea water consisting of a mixture of surface sea water and deep sea water delivered by a single offshore hydraulic wind turbine and (3) an intermittent flow of deep sea water pumped by a single offshore hydraulic wind turbine. The analysis was based on one year of wind and ambient temperature data for the Central Mediterranean that is known for its deep waters, warm climate and relatively low wind speeds. The study confirmed that while the present concept is less efficient than conventional turbines utilising grid-connected electrical generators, a significant portion of the losses associated with the hydraulic transmission through the pipeline are offset by the extraction of cool deep sea water which reduces the electricity consumption of urban air-conditioning units

  15. Cost analysis of an electricity supply chain using modification of price based dynamic economic dispatch in wheeling transaction scheme

    Science.gov (United States)

    Wahyuda; Santosa, Budi; Rusdiansyah, Ahmad

    2018-04-01

    Deregulation of the electricity market requires coordination between parties to synchronize the optimization on the production side (power station) and the transport side (transmission). Electricity supply chain presented in this article is designed to facilitate the coordination between the parties. Generally, the production side is optimized with price based dynamic economic dispatch (PBDED) model, while the transmission side is optimized with Multi-echelon distribution model. Both sides optimization are done separately. This article proposes a joint model of PBDED and multi-echelon distribution for the combined optimization of production and transmission. This combined optimization is important because changes in electricity demand on the customer side will cause changes to the production side that automatically also alter the transmission path. The transmission will cause two cost components. First, the cost of losses. Second, the cost of using the transmission network (wheeling transaction). Costs due to losses are calculated based on ohmic losses, while the cost of using transmission lines using the MW - mile method. As a result, this method is able to provide best allocation analysis for electrical transactions, as well as emission levels in power generation and cost analysis. As for the calculation of transmission costs, the Reverse MW-mile method produces a cheaper cost than the Absolute MW-mile method

  16. Stackelberg Game Model of Wind Farm and Electric Vehicle Battery Switch Station

    Science.gov (United States)

    Jiang, Zhe; Li, Zhimin; Li, Wenbo; Wang, Mingqiang; Wang, Mengxia

    2017-05-01

    In this paper, a cooperation method between wind farm and Electric vehicle battery switch station (EVBSS) was proposed. In the pursuit of maximizing their own benefits, the cooperation between wind farm and EVBSS was formulated as a Stackelberg game model by treating them as decision makers in different status. As the leader, wind farm will determine the charging/discharging price to induce the charging and discharging behavior of EVBSS reasonably. Through peak load shifting, wind farm could increase its profits by selling more wind power to the power grid during time interval with a higher purchase price. As the follower, EVBSS will charge or discharge according to the price determined by wind farm. Through optimizing the charging /discharging strategy, EVBSS will try to charge with a lower price and discharge with a higher price in order to increase its profits. Since the possible charging /discharging strategy of EVBSS is known, the wind farm will take the strategy into consideration while deciding the charging /discharging price, and will adjust the price accordingly to increase its profits. The case study proved that the proposed cooperation method and model were feasible and effective.

  17. Fault diagnosis of direct-drive wind turbine based on support vector machine

    International Nuclear Information System (INIS)

    An, X L; Jiang, D X; Li, S H; Chen, J

    2011-01-01

    A fault diagnosis method of direct-drive wind turbine based on support vector machine (SVM) and feature selection is presented. The time-domain feature parameters of main shaft vibration signal in the horizontal and vertical directions are considered in the method. Firstly, in laboratory scale five experiments of direct-drive wind turbine with normal condition, wind wheel mass imbalance fault, wind wheel aerodynamic imbalance fault, yaw fault and blade airfoil change fault are carried out. The features of five experiments are analyzed. Secondly, the sensitive time-domain feature parameters in the horizontal and vertical directions of vibration signal in the five conditions are selected and used as feature samples. By training, the mapping relation between feature parameters and fault types are established in SVM model. Finally, the performance of the proposed method is verified through experimental data. The results show that the proposed method is effective in identifying the fault of wind turbine. It has good classification ability and robustness to diagnose the fault of direct-drive wind turbine.

  18. Critical success factors for BOT electric power projects in China: Thermal power versus wind power

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhen-Yu. [School of Business Administration, North China Electric Power University, Beijing 102206 (China); Zuo, Jian; Zillante, George [School of Natural and Built Environments, University of South Australia, Adelaide 5001 (Australia); Wang, Xin-Wei [Shandong Nuclear Power Equipment Manufacturing Co. Ltd, Haiyang, Shandong 265118 (China)

    2010-06-15

    Chinese electric power industry has adopted Build-Operate-Transfer (BOT) approach in a number of projects to alleviate the pressure of sole state-owned investment. The Chinese government has taken enormous efforts to create an environment to facilitate the application of BOT approach in electric power projects. Moreover, the growing attention on the sustainability issues puts the traditional major source of electricity - thermal power project under more strict scrutiny. As a result, various renewable energy projects, particularly the wind power projects have involved private sector funds. Both thermal power and wind power projects via BOT approach have met with a varying degree of success. Therefore, it is imperative to understand the factors contributing towards the success of both types of BOT power projects. Using an extensive literature survey, this paper identifies 31 success factors under 5 categories for Chinese BOT electric power projects. This is followed by a questionnaire survey to exam relative significance of these factors. The results reveal the different levels of significance of success factors for BOT thermal power projects versus wind power projects. Finally, survey results were analyzed to explore the underlying construction and distributions among the identified success factors. This study provides a valuable reference for all involved parties that are interested in developing BOT electric power projects in China. (author)

  19. Wind power development in the United States: Effects of policies and electricity transmission congestion

    Science.gov (United States)

    Hitaj, Claudia

    In this dissertation, I analyze the drivers of wind power development in the United States as well as the relationship between renewable power plant location and transmission congestion and emissions levels. I first examine the role of government renewable energy incentives and access to the electricity grid on investment in wind power plants across counties from 1998-2007. The results indicate that the federal production tax credit, state-level sales tax credit and production incentives play an important role in promoting wind power. In addition, higher wind power penetration levels can be achieved by bringing more parts of the electricity transmission grid under independent system operator regulation. I conclude that state and federal government policies play a significant role in wind power development both by providing financial support and by improving physical and procedural access to the electricity grid. Second, I examine the effect of renewable power plant location on electricity transmission congestion levels and system-wide emissions levels in a theoretical model and a simulation study. A new renewable plant takes the effect of congestion on its own output into account, but ignores the effect of its marginal contribution to congestion on output from existing plants, which results in curtailment of renewable power. Though pricing congestion removes the externality and reduces curtailment, I find that in the absence of a price on emissions, pricing congestion may in some cases actually increase system-wide emissions. The final part of my dissertation deals with an econometric issue that emerged from the empirical analysis of the drivers of wind power. I study the effect of the degree of censoring on random-effects Tobit estimates in finite sample with a particular focus on severe censoring, when the percentage of uncensored observations reaches 1 to 5 percent. The results show that the Tobit model performs well even at 5 percent uncensored observations

  20. From the water wheel to turbines and hydroelectricity. Technological evolution and revolutions

    Science.gov (United States)

    Viollet, Pierre-Louis

    2017-08-01

    Since its appearance in the first century BC, the water wheel has developed with increasing pre-industrial activities, and has been at the origin of the industrial revolution for metallurgy, textile mills, and paper mills. Since the nineteenth century, the water wheel has become highly efficient. The reaction turbine appeared by 1825, and continued to undergo technological development. The impulsion turbine appeared for high chutes, by 1880. Other turbines for low-head chutes were further designed. Turbine development was associated, after 1890, with the use of hydropower to generate electricity, both for industrial activities, and for the benefits of cities. A model ;one city + one plant; was followed in the twentieth century by more complex and efficient schemes when electrical interconnection developed, together with pumped plants for energy storage.

  1. EFFECTS OF THE PENETRATION OF WIND POWER IN THE BRAZILIAN ELECTRICITY MARKET

    Directory of Open Access Journals (Sweden)

    Milton M. Herrera

    2016-12-01

    Full Text Available Climate variability has been the main driver for renewables in the Brazilian electricity market. This article analyzes the vulnerabilities of the dependence on hydropower in renewable energy production due to climate variation, as well as wind power penetration in Brazil, given a set of wind industry policies. Despite Brazilian renewable energy increase, the study shows the impact in energy supply in north region, due to the lack of transmission infrastructure. In Brazil, the potential trade-offs between renewables growth, and transmission infrastructure inconsistencies in terms of policy implementation are not yet well analyzed. Simulation results show the potential conflicts between energy policies aimed at increasing the wind power supply and boundaries in transmission infrastructure.

  2. Effects of the penetration of wind power in the brazilian electricity market

    Directory of Open Access Journals (Sweden)

    Milton M. Herrera

    2016-12-01

    Full Text Available Climate variability has been the main driver for renewables in the Brazilian electricity market. This article analyzes the vulnerabilities of the dependence on hydropower in renewable energy production due to climate variation, as well as wind power penetration in Brazil, given a set of wind industry policies. Despite Brazilian renewable energy increase, the study shows the impact in energy supply in north region, due to the lack of transmission infrastructure. In Brazil, the potential trade-offs between renewables growth, and transmission infrastructure inconsistencies in terms of policy implementation are not yet well analyzed. Simulation results show the potential conflicts between energy policies aimed at increasing the wind power supply and boundaries in transmission infrastructure.

  3. Engineering IT-enabled sustainable electricity services the tale of two low-cost green Azores Islands

    CERN Document Server

    Xie, Le; Liu, Qixing

    2013-01-01

    Engineering IT-Enabled Electricity Services: The Tale of Two Low-Cost Green Azores Islands covers sustainable energy services to customers - a balanced choice and coordination of energy generated by traditional and alternative sources. The “Green Islands” project represents a decade of work by over a dozen researchers who have developed a model designed to utilize the potential of distributed clean resources. The key is the proper use of Information Technology (IT).  Sited on two islands in the Azores, the project developed the model of careful forecasting of demand and supply, down to the minute, coordinating the output of conventional power plants, wind energy, fly wheels, hydroelectricity, demand reduction, and even plug-in electric vehicles to take full advantage of the clean resources available. This contributed volume presents methods for predicting variable resources, such as wind power generation, and analyzes the achievable accuracy of these predictions. Throughout this book, contributors sho...

  4. Umbrella Wheel - a stair-climbing and obstacle-handling wheel design concept

    DEFF Research Database (Denmark)

    Iversen, Simon; Jouffroy, Jerome

    2017-01-01

    This paper proposes a new design for stair-climbing using a wheel that can split into segments and walk up stairs or surmount other obstacles often found where humans traverse, while still being able to retain a perfectly round shape for traveling on smooth ground. Using this change of configurat......This paper proposes a new design for stair-climbing using a wheel that can split into segments and walk up stairs or surmount other obstacles often found where humans traverse, while still being able to retain a perfectly round shape for traveling on smooth ground. Using this change...... of configuration, staircases with a wide range of dimensions can be covered efficiently and safely. The design, named Umbrella Wheel, can consist of as many wheel segments as desired, and as few as two. A smaller or higher number of wheel segments has advantages and disadvantages depending on the specific...

  5. Wind power demonstration and siting problems. [for recharging electrically driven automobiles

    Science.gov (United States)

    Bergey, K. H.

    1973-01-01

    Technical and economic feasibility studies on a small windmill to provide overnight charging for an electrically driven car are reported. The auxiliary generator provides power for heating and cooling the vehicle which runs for 25 miles on battery power alone, and for 50 miles with the onboard charger operating. The blades for this windmill have a diameter of 12 feet and are coupled through to a conventional automobile alternator so that they are able to completely recharge car batteries in 8 hours. Optimization of a windmill/storage system requires detailed wind velocity information which permits rational sitting of wind power system stations.

  6. A fuzzy logic sliding mode controlled electronic differential for a direct wheel drive EV

    Science.gov (United States)

    Ozkop, Emre; Altas, Ismail H.; Okumus, H. Ibrahim; Sharaf, Adel M.

    2015-11-01

    In this study, a direct wheel drive electric vehicle based on an electronic differential system with a fuzzy logic sliding mode controller (FLSMC) is studied. The conventional sliding surface is modified using a fuzzy rule base to obtain fuzzy dynamic sliding surfaces by changing its slopes using the global error and its derivative in a fuzzy logic inference system. The controller is compared with proportional-integral-derivative (PID) and sliding mode controllers (SMCs), which are usually preferred to be used in industry. The proposed controller provides robustness and flexibility to direct wheel drive electric vehicles. The fuzzy logic sliding mode controller, electronic differential system and the overall electrical vehicle mechanism are modelled and digitally simulated by using the Matlab software. Simulation results show that the system with FLSMC has better efficiency and performance compared to those of PID and SMCs.

  7. 3D Electric Waveforms of Solar Wind Turbulence

    Science.gov (United States)

    Kellogg, P. J.; Goetz, K.; Monson, S. J.

    2018-01-01

    Electric fields provide the major coupling between the turbulence of the solar wind and particles. A large part of the turbulent spectrum of fluctuations in the solar wind is thought to be kinetic Alfvén waves; however, whistlers have recently been found to be important. In this article, we attempt to determine the mode identification of individual waveforms using the three-dimensional antenna system of the SWaves experiments on the STEREO spacecraft. Samples are chosen using waveforms with an apparent periodic structure, selected visually. The short antennas of STEREO respond to density fluctuations and to electric fields. Measurement of four quantities using only three antennas presents a problem. Methods to overcome or to ignore this difficulty are presented. We attempt to decide whether the waveforms correspond to the whistler mode or the Alfvén mode by using the direction of rotation of the signal. Most of the waveforms are so oblique—nearly linearly polarized—that the direction cannot be determined. However, about one third of the waveforms can be identified, and whistlers and Alfvén waves are present in roughly equal numbers. The selected waveforms are very intense but intermittent and are orders of magnitude stronger than the average, yet their accumulated signal accounts for a large fraction of the average. The average, however, is supposed to be the result of a turbulent mixture of many waves, not short coherent events. This presents a puzzle for future work.

  8. Preliminary experimental evaluation of a four wheel motors, batteries plus ultracapacitors and series hybrid powertrain

    Energy Technology Data Exchange (ETDEWEB)

    Rambaldi, Lorenzo [Interuniversity Research Center on Sustainable Development, Sapienza University of Rome, Rome (Italy); Bocci, Enrico [Department of Mechanics and Aeronautics, Sapienza University of Rome, Rome (Italy); Orecchini, Fabio [Guglielmo Marconi University, Rome (Italy)

    2011-02-15

    This paper reports the preliminary experimental evaluation of a four wheel motors series hybrid prototype equipped with an internal combustion engine coupled to a generator and an energy recovery system (batteries plus ultracapacitors). The paper analyses global efficiency (energy dissipated to overcome the dissipative forces on energy dissipated in fuel), autonomy in electric configuration, and the efficiency of the regenerative braking system. The tests were carried out in a test cell equipped with a chassis dynamometer. The tests were performed according to the current regulated procedures. A constant speed test was performed in order to evaluate the autonomy of the vehicle in the electric configuration. The results show that the real tank to wheels efficiency is about 30% for HOST as a series hybrid and 79% for HOST as an electric vehicle. (author)

  9. Research on Optimized Torque-Distribution Control Method for Front/Rear Axle Electric Wheel Loader

    Directory of Open Access Journals (Sweden)

    Zhiyu Yang

    2017-01-01

    Full Text Available Optimized torque-distribution control method (OTCM is a critical technology for front/rear axle electric wheel loader (FREWL to improve the operation performance and energy efficiency. In the paper, a longitudinal dynamics model of FREWL is created. Based on the model, the objective functions are that the weighted sum of variance and mean of tire workload is minimal and the total motor efficiency is maximal. Four nonlinear constraint optimization algorithms, quasi-newton Lagrangian multiplier method, sequential quadratic programming, adaptive genetic algorithms, and particle swarm optimization with random weighting and natural selection, which have fast convergent rate and quick calculating speed, are used as solving solutions for objective function. The simulation results show that compared to no-control FREWL, controlled FREWL utilizes the adhesion ability better and slips less. It is obvious that controlled FREWL gains better operation performance and higher energy efficiency. The energy efficiency of FREWL in equipment transferring condition is increased by 13–29%. In addition, this paper discussed the applicability of OTCM and analyzed the reason for different simulation results of four algorithms.

  10. Design of Wheeled Mobile Robot with Tri-Star Wheel as Rescue Robot

    Directory of Open Access Journals (Sweden)

    Rafiuddin Syam

    2014-10-01

    Full Text Available This study aims to design, and analyze a mobile robot that can handle some of the obstacles, they are uneven surfaces, slopes, can also climb stairs. WMR in this study is Tristar wheel that is containing three wheels for each set. On average surface only two wheels in contact with the surface, if there is an uneven surface or obstacle then the third wheel will rotate with the rotation center of the wheel in contact with the leading obstacle then only one wheel in contact with the surface. This study uses the C language program. Furthermore, the minimum thrust to be generated torque of the motor and transmission is 9.56 kg. The results obtained by calculation and analysis of DC motors used must have a torque greater than 14.67 kg.cm. Minimum thrust to be generated motor torque and the transmission is 9.56 kg. The experimental results give good results for robot to moving forward, backward, turn left, turn right and climbing the stairs.

  11. Utility-cogenerator game for pricing power sales and wheeling fees

    International Nuclear Information System (INIS)

    Kuwahata, Akeo; Asano, Hiroshi

    1994-01-01

    The authors studied an extensive game model of an electricity market where a cogenerator sells excess electricity to an electric utility or to an end user. They found that a buy-back system (the utility purchases cogenerated power) is as efficient as a cogenerator-customer wheeling system and that these two systems are more desirable than a monopoly system for the regulator. The buy-back rate should be equal to (LP bargaining solution) or less than (Nash bargaining solution) the marginal cost of the electric utility. They also conducted an analysis of a two-period electricity market in which they found that the cogenerator that can supply excess power during peak period obtains the market advantage

  12. Integration of plug-in hybrid electric vehicles in a regional wind-thermal power system

    International Nuclear Information System (INIS)

    Goeransson, Lisa; Karlsson, Sten; Johnsson, Filip

    2010-01-01

    This study investigates consequences of integrating plug-in hybrid electric vehicles (PHEVs) in a wind-thermal power system supplied by one quarter of wind power and three quarters of thermal generation. Four different PHEV integration strategies, with different impacts on the total electric load profile, have been investigated. The study shows that PHEVs can reduce the CO 2 -emissions from the power system if actively integrated, whereas a passive approach to PHEV integration (i.e. letting people charge the car at will) is likely to result in an increase in emissions compared to a power system without PHEV load. The reduction in emissions under active PHEV integration strategies is due to a reduction in emissions related to thermal plant start-ups and part load operation. Emissions of the power sector are reduced with up to 4.7% compared to a system without PHEVs, according to the simulations. Allocating this emission reduction to the PHEV electricity consumption only, and assuming that the vehicles in electric mode is about 3 times as energy efficient as standard gasoline operation, total emissions from PHEVs would be less than half the emissions of a standard car, when running in electric mode.

  13. Sun, wind and electric generation; Sol, viento y generacion electrica

    Energy Technology Data Exchange (ETDEWEB)

    Huacuz Villamar, Jorge M. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1995-12-31

    A description is made of the electric generation known as the photovoltaic-wind power hybrid systems at the generation station of X-Calak which is located in the zone known as Punta Herrero-X-Calak Corridor, in the Southern coast of the Quintana Roo State. This is a technology in development, in which the solar and the wind energy are combined, to offer an alternative of electric generation that can be economical, reliable and of low impact on the environment. Mention is made of the experiences gathered in this station as well as the results obtained [Espanol] Se describe la tecnologia de generacion electrica conocida como sistemas hibridos fotovoltaico-eolico en la planta generadora de X-Calak, la cual esta localizada en la zona conocida como el corredor Punta Herrero-X-Calak, en la costa sur del estado de Quintana Roo. Esta es una tecnologia en desarrollo, en donde se combina la energia solar y energia eolica, para ofrecer una alternativa de generacion electrica que pretende ser economica, confiable y de bajo impacto sobre el medio ambiente. Se mencionan las experiencias obtenidas en esta planta asi como los resultados obtenidos

  14. Sun, wind and electric generation; Sol, viento y generacion electrica

    Energy Technology Data Exchange (ETDEWEB)

    Huacuz Villamar, Jorge M [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    A description is made of the electric generation known as the photovoltaic-wind power hybrid systems at the generation station of X-Calak which is located in the zone known as Punta Herrero-X-Calak Corridor, in the Southern coast of the Quintana Roo State. This is a technology in development, in which the solar and the wind energy are combined, to offer an alternative of electric generation that can be economical, reliable and of low impact on the environment. Mention is made of the experiences gathered in this station as well as the results obtained [Espanol] Se describe la tecnologia de generacion electrica conocida como sistemas hibridos fotovoltaico-eolico en la planta generadora de X-Calak, la cual esta localizada en la zona conocida como el corredor Punta Herrero-X-Calak, en la costa sur del estado de Quintana Roo. Esta es una tecnologia en desarrollo, en donde se combina la energia solar y energia eolica, para ofrecer una alternativa de generacion electrica que pretende ser economica, confiable y de bajo impacto sobre el medio ambiente. Se mencionan las experiencias obtenidas en esta planta asi como los resultados obtenidos

  15. The Economics of Storage, Transmission and Drought: Integrating Variable Wind Power into Spatially Separated Electricity Grids

    NARCIS (Netherlands)

    Scora, H.; Sopinka, A.; Kooten, van G.C.

    2012-01-01

    To mitigate the high variability of wind and make it a more viable renewable energy source, observers recommend greater integration of spatially-separated electrical grids, with high transmission lines linking load centers, scattered wind farms and hydro storage sites. In this study, we examine the

  16. Review of DC System Technologies for Large Scale Integration of Wind Energy Systems with Electricity Grids

    Directory of Open Access Journals (Sweden)

    Sheng Jie Shao

    2010-06-01

    Full Text Available The ever increasing development and availability of power electronic systems is the underpinning technology that enables large scale integration of wind generation plants with the electricity grid. As the size and power capacity of the wind turbine continues to increase, so is the need to place these significantly large structures at off-shore locations. DC grids and associated power transmission technologies provide opportunities for cost reduction and electricity grid impact minimization as the bulk power is concentrated at single point of entry. As a result, planning, optimization and impact can be studied and carefully controlled minimizing the risk of the investment as well as power system stability issues. This paper discusses the key technologies associated with DC grids for offshore wind farm applications.

  17. Statement on Wind Power

    Energy Technology Data Exchange (ETDEWEB)

    2010-01-15

    Wind power will grow in importance in future electricity supply. In the next few decades it will to some degree replace fossil power but it will, at the same time also depend on fossil-b beyond, when wind power is expected to have a substantial share of the electricity market, CO{sub 2} emission-free electricity plants that are well suited for balancing the wind intermittency will be required. Predictions of the future penetration of wind power into the electricity market are critically dependent on a number of policy measures and will be especially influenced by climate driven energy policies. Very large investments will also be necessary as is shown by the lEA's Blue Map Scenario which includes 5,000 TWh wind electricity by 2050 at a cost of USD 700 billion. This implies an average 8% increase of wind electricity per year energy system, i.e. an energy system so large that it affects the entire world. The Energy Committee's scenario for electricity production in the year 2050 includes 5,000 TWh wind electricity out of a total of 45,000 TWh. Wind electricity thus has a within presently reached penetration of wind energy in a single country and within the calculated future projections of its penetration. Future large continental and intercontinental power grids may enable higher penetrations of wind energy since contributions of wind power from a larger area will tend to reduce its intermittency. Also, large-scale storage systems (thermal storage as is intermittent power systems. These alternatives have been discussed from a technical point of view [3] but for the required large-scale systems, further studies on the social, environmental and economical implications are needed

  18. Inexact stochastic risk-aversion optimal day-ahead dispatch model for electricity system management with wind power under uncertainty

    International Nuclear Information System (INIS)

    Ji, Ling; Huang, Guo-He; Huang, Lu-Cheng; Xie, Yu-Lei; Niu, Dong-Xiao

    2016-01-01

    High penetration of wind power generation and deregulated electricity market brings a great challenge to the electricity system operators. It is crucial to make optimal strategy among various generation units and spinning reserve for supporting the system safety operation. By integrating interval two-stage programming and stochastic robust programming, this paper proposes a novel robust model for day-ahead dispatch and risk-aversion management under uncertainties. In the proposed model, the uncertainties are expressed as interval values with different scenario probability. The proposed method requires low computation, and still retains the complete information. A case study is to validate the effectiveness of this approach. Facing the uncertainties of future demand and electricity price, the system operators need to make optimal dispatch strategy for thermal power units and wind turbine, and arrange proper spinning reserve and flexible demand response program to mitigate wind power forecasting error. The optimal strategies provide the system operators with better trade-off between the maximum benefits and the minimum system risk. In additional, two different market rules are compared. The results show that extra financial penalty for the wind power dispatch deviation is another efficient way to enhance the risk consciousness of decision makers and lead to more conservative strategy. - Highlights: • An inexact two-stage stochastic robust programming model for electricity system with wind power penetration. • Uncertainties expressed as discrete intervals and probability distributions. • Demand response program was introduced to adjust the deviation in real-time market. • Financial penalty for imbalance risk from wind power generation was evaluated.

  19. Electronic differential control of 2WD electric vehicle considering steering stability

    Science.gov (United States)

    Hua, Yiding; Jiang, Haobin; Geng, Guoqing

    2017-03-01

    Aiming at the steering wheel differential steering control technology of rear wheel independent driving electric wheel, considering the assisting effect of electronic differential control on vehicle steering, based on the high speed steering characteristic of electric wheel car, the electronic differential speed of auxiliary wheel steering is also studied. A yaw moment control strategy is applied to the vehicle at high speed. Based on the vehicle stability reference value, yaw rate is used to design the fuzzy controller to distribute the driving wheel torque. The simulation results show that the basic electronic differential speed function is realized based on the yaw moment control strategy, while the vehicle stability control is improved and the driving safety is enhanced. On the other hand, the torque control strategy can also assist steering of vehicle.

  20. Wind Power in Electrical Distribution Systems

    DEFF Research Database (Denmark)

    Chen, Zhe

    2013-01-01

    Recent years, wind power is experiencing a rapid growth, large number of wind turbines/wind farms have been installed and connected to power systems. In addition to the large centralised wind farms connected to transmission grids, many distributed wind turbines and wind farms are operated as dist...

  1. MATHEMATICAL MODEL OF ATTITUDE CONTROL BUCKET‐WHEEL EXCAVATOR

    Directory of Open Access Journals (Sweden)

    Ivana ONDERKOVÁ

    2013-07-01

    Full Text Available This lecture deals with the application problems of convertibility GPS system at paddle excavator K 800. The claims of the modern operating surface mining of the excavators requires a lot of information for monitoring of mining process, capacity mining, selective extraction etc. The utilization of monitoring the excavator setting by GPS system proved to be the only one proper because the receivers are resistant to the vibration, dust, temperature divergence and weather changeable. Only the direct contact with communications satellite is required. It means that they can´t be located in a metal construction space (shadow caused by construction elements, influence of electrical high voltage cables even they can´t be located close to the paddle wheel on the paddle boom (shadow possibility caused by cuttinng edge created during lower gangplanks mining. This is the reason that GPS receivers are set uppermost on the metal construction excavator and the mathematical formulation is required for determination of paddle wheel petting. The relations for calculation of the paddle wheel coordinate were defined mathematically and after that the mathematical model was composed.

  2. Using distributed fuel cells to compete with established utilities under rules permitting retail wheeling

    International Nuclear Information System (INIS)

    Miller, D.A.; Mathur, A.

    1996-01-01

    Regulatory reform in the electricity industry clearly has many implications for the corporate structure of electric utilities, the pricing of energy products and services, and the quality of service received by customers. But it also has implications for the selection of energy generating technologies. The rise of the cogenerator and independent power producer has been a major force in the expanded use of combined-cycle power plants and their technological advancement. The next stage of increased deregulation, retail wheeling, must also lead to further technological change, because the economic climate determines the operational characteristics required of new generating resources. This paper discusses the use of distributed fuel cells to compete with established utilities in areas where retail wheeling has been instituted. It will cover in detail the unique advantages of the technology under this industry configuration. The paper will pay particular attention to the operational and design characteristics of fuel cells that will provide companies the flexibility they require to compete successfully. Finally, the paper will discuss the implications for the use of distributed fuel cells of alternative retail wheeling implementation schemes

  3. Valence of wind power, photovoltaic and peak-load power plants as a part of the entire electricity system

    International Nuclear Information System (INIS)

    Schüppel, A.

    2014-01-01

    The transition to a higher share of renewable energy sources in the electricity sector leads to a multitude of challenges for the current electricity system. Within this thesis, the development of wind power and photovoltaics generation capacities in Germany is analysed based on the evaluation of technical and economic criteria. In order to derive those criteria, different scenarios with a separated and combined increase of wind and photovoltaics capacity are simulated using the model ATLANTIS. The results are compared to a reference scenario without additional wind and PV capacities. Furthermore, the value and functionality of the energy only market based on economic methods, as well as the value of peak load power plants based on opportunity costs are determined. The results of this thesis show, that the current market system is able to gain an additional annual welfare of four to six billion Euro at the best. This result shows that the task of optimising the power plant dispatch is well fulfilled by the current market design. However, the effects, e.g. fuel costs, which may influence this margin. The value of wind power and photovoltaics within the overall electricity system can be derived from the effort which is necessary to integrate these generation technologies into the existing system, and the changes in total costs of electricity generation. Based on the evaluation of time dependencies (seasonality of energy yield from wind and PV) as well as the development of total generation costs, the conclusion can be drawn that wind power is the more suitable RES generation technology for Germany. However, when it comes to grid integration measures, PV shows better results due to a higher generation potential in Southern Germany, which leads to a higher degree of utilisation. Therefore, there is no need to transport electricity from Northern to Southern Germany as it is the case with wind power. A common expansion of wind power and photovoltaics even shows slight

  4. How to improve the design of the electrical system in future wind power plants

    DEFF Research Database (Denmark)

    Arana Aristi, Iván; Holbøll, Joachim; Bak, C. L.

    2009-01-01

    This paper presents three topics which are important for better performance of future wind farms. The topics are investigated in three coordinated Ph.D. projects ongoing at the Technical University of Denmark (DTU), Aalborg University (AAU) and DONG Energy. The objective of all projects is to imp...... and wind farm transformers, and to develop a methodology on how to select appropriate equipment for the power system, control system and protection system....... is to improve the understanding of the main electrical components in wind farms, based on available information, measurement data and simulation tools. The aim of these projects is to obtain validated models of wind turbine (WT) generators, WT converters, WT transformers, submarine cables, circuit breakers...

  5. Turning the wind into hydrogen: The long-run impact on electricity prices and generating capacity

    International Nuclear Information System (INIS)

    Green, Richard; Hu, Helen; Vasilakos, Nicholas

    2011-01-01

    Hydrogen production via electrolysis has been proposed as a way of absorbing the fluctuating electricity generated by wind power, potentially allowing the use of cheap electricity at times when it would otherwise be in surplus. We show that large-scale adoption of electrolysers would change the shape of the load-duration curve for electricity, affecting the optimal capacity mix. Nuclear power stations will replace gas-fired power stations, as they are able to run for longer periods of time. Changes in the electricity capacity mix will be much greater than changes to the pattern of prices. The long-run supply price of hydrogen will thus tend to be insensitive to the amount produced. - Research Highlights: → Hydrogen production from electrolysis may offset intermittent wind generation. → The generation capacity mix will change in response to changed demand patterns. → The long-run equilibrium supply curve for hydrogen will be quite flat. → The production cost will be very sensitive to fuel prices paid by generators.

  6. Optimal Overcurrent Relay Coordination in Presence of Inverter-based Wind Farms and Electrical Energy Storage Devices

    DEFF Research Database (Denmark)

    Javadi, Mohammad Sadegh; Esmaeel Nezhad, Ali; Anvari-Moghaddam, Amjad

    2018-01-01

    This paper investigates the coordination problem of overcurrent relays (OCRs) in presence of wind power generation and electrical energy storage (EES) systems. As the injected short-circuit current of inverter-based devices connected to the electrical grid is a function of the power electronic...... mainly matter for the EES system operating in either charging or discharging modes, as well. This paper evaluates different operation strategies considering the variations of the load demand and the presence of large-scale wind farms as well as an EES system, while validating the suggested method...

  7. The hybrid electric vehicle revolution, off road

    Energy Technology Data Exchange (ETDEWEB)

    Wood, B.E. [ePower Technologies (United States)

    2004-07-01

    In this presentation the author presents concepts and details of hybrid vehicles in general, including their benefits, then describes off-road hybrid vehicles. Hybrid vehicles have been experimented with for over a century. Demonstrator vehicles include a diesel-electric tractor, an electric lawn tractor, a hybrid snow thrower, and a hybrid wheel loader. A duty cycle for the loader is shown with battery-assisted acceleration, and regenerative braking. Both of these keep the size of the engine small, the loads on it less variable, thus improving fuel economy. A hybrid excavator and its duty cycle is shown. A fuel cell lift truck that is currently in design is illustrated. The author then describes the possibilities of the hydrogen economy where sourcing and infrastructure are yet to be demonstrated on a commercial scale. The author predicts that off-road hydrogen fuel cell vehicles will be commercially viable five years before on-road applications. The author predicts hydrogen sourced from biogas, photovoltaics, and wind power. tabs, figs.

  8. Wind power integration with heat pumps, heat storages, and electric vehicles – Energy systems analysis and modelling

    DEFF Research Database (Denmark)

    Hedegaard, Karsten

    The fluctuating and only partly predictable nature of wind challenges an effective integration of large wind power penetrations. This PhD thesis investigates to which extent heat pumps, heat storages, and electric vehicles can support the integration of wind power. Considering the gaps in existing...... in an energy system context. Energy systems analyses reveal that the heat pumps can even without flexible operation contribute significantly to facilitating larger wind power investments and reducing system costs, fuel consumption, and CO2 emissions. When equipping the heat pumps with heat storages, only...... moderate additional benefits are achieved. Hereof, the main benefit is that the need for investing in peak/reserve capacities can be reduced through peak load shaving. It is more important to ensure flexible operation of electric vehicles than of individual heat pumps, due to differences in the load...

  9. A dynamic wheel-rail impact analysis of railway track under wheel flat by finite element analysis

    Science.gov (United States)

    Bian, Jian; Gu, Yuantong; Murray, Martin Howard

    2013-06-01

    Wheel-rail interaction is one of the most important research topics in railway engineering. It involves track impact response, track vibration and track safety. Track structure failures caused by wheel-rail impact forces can lead to significant economic loss for track owners through damage to rails and to the sleepers beneath. Wheel-rail impact forces occur because of imperfections in the wheels or rails such as wheel flats, irregular wheel profiles, rail corrugations and differences in the heights of rails connected at a welded joint. A wheel flat can cause a large dynamic impact force as well as a forced vibration with a high frequency, which can cause damage to the track structure. In the present work, a three-dimensional finite element (FE) model for the impact analysis induced by the wheel flat is developed by the use of the FE analysis (FEA) software package ANSYS and validated by another validated simulation. The effect of wheel flats on impact forces is thoroughly investigated. It is found that the presence of a wheel flat will significantly increase the dynamic impact force on both rail and sleeper. The impact force will monotonically increase with the size of wheel flats. The relationships between the impact force and the wheel flat size are explored from this FEA and they are important for track engineers to improve their understanding of the design and maintenance of the track system.

  10. Marketing research with respect to centralized electric power generation with wind turbines. Verkenning van de markt voor centrale elektriciteitsopwekking met windenergie

    Energy Technology Data Exchange (ETDEWEB)

    Lenstra, W.J.; Van den Doel, J.C.

    1985-01-01

    The electric utilities so far are not eager to invest in wind power as long as the price per kWh wind power is higher than saved fuel costs. The price the electric utilities are willing to pay for surplus wind power still remains low. Combined with price expectations in the near future for fossil fuels the market does not show great prospects. Wind turbine manufacturers were asked about price-quantity curves of wind turbine types: 3 MW, 1 MW, and 300 kW respectively. Combining the demand and supply side of the market it seems possible in areas having a good wind regime to exploit wind power in a cost-effective way. For a market incentive a wind power capacity of 400 MW: 75-3 MW wind turbines, 120-1 MW wind turbines, 15-300 kW wind turbines and 50 MW for demonstration projects for proving the viability of the technology. 3 figs., 2 tabs.

  11. Wind Turbine Providing Grid Support

    DEFF Research Database (Denmark)

    2011-01-01

    changing the operation of the wind turbine to a more efficient working point.; When the rotational speed of the rotor reaches a minimum value, the wind turbine enters a recovery period to re-accelerate the rotor to the nominal rotational speed while further contributing to the stability of the electrical......A variable speed wind turbine is arranged to provide additional electrical power to counteract non-periodic disturbances in an electrical grid. A controller monitors events indicating a need to increase the electrical output power from the wind turbine to the electrical grid. The controller...... is arranged to control the wind turbine as follows: after an indicating event has been detected, the wind turbine enters an overproduction period in which the electrical output power is increased, wherein the additional electrical output power is taken from kinetic energy stored in the rotor and without...

  12. Reinventing the wheel: comparison of two wheel cage styles for assessing mouse voluntary running activity.

    Science.gov (United States)

    Seward, T; Harfmann, B D; Esser, K A; Schroder, E A

    2018-04-01

    Voluntary wheel cage assessment of mouse activity is commonly employed in exercise and behavioral research. Currently, no standardization for wheel cages exists resulting in an inability to compare results among data from different laboratories. The purpose of this study was to determine whether the distance run or average speed data differ depending on the use of two commonly used commercially available wheel cage systems. Two different wheel cages with structurally similar but functionally different wheels (electromechanical switch vs. magnetic switch) were compared side-by-side to measure wheel running data differences. Other variables, including enrichment and cage location, were also tested to assess potential impacts on the running wheel data. We found that cages with the electromechanical switch had greater inherent wheel resistance and consistently led to greater running distance per day and higher average running speed. Mice rapidly, within 1-2 days, adapted their running behavior to the type of experimental switch used, suggesting these running differences are more behavioral than due to intrinsic musculoskeletal, cardiovascular, or metabolic limits. The presence of enrichment or location of the cage had no detectable impact on voluntary wheel running. These results demonstrate that mice run differing amounts depending on the type of cage and switch mechanism used and thus investigators need to report wheel cage type/wheel resistance and use caution when interpreting distance/speed run across studies. NEW & NOTEWORTHY The results of this study highlight that mice will run different distances per day and average speed based on the inherent resistance present in the switch mechanism used to record data. Rapid changes in running behavior for the same mouse in the different cages demonstrate that a strong behavioral factor contributes to classic exercise outcomes in mice. Caution needs to be taken when interpreting mouse voluntary wheel running activity to

  13. Electric vehicles to support large wind power penetration in future danish power systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte; Thøgersen, Paul

    2012-01-01

    Electric Vehicles (EVs) could play major role in the future intelligent grids to support a large penetration of renewable energy in Denmark, especially electricity production from wind turbines. The future power systems aims to phase-out big conventional fossil-fueled generators with large number...... on low voltage residential networks. Significant amount of EVs could be integrated in local distribution grids with the support of intelligent grid and smart charging strategies....

  14. The electricity market - wind energy after NFFO and in liberalized markets

    International Nuclear Information System (INIS)

    Johns, J.H.

    1997-01-01

    The paper will compare the benefits of leasing and other forms of asset based finance to the wind industry, as compared to conventional sources of finance for both the small and large developer. It will explore the attitudes of specialist and major leasing finance houses to the renewable energy industry in general and wind in particular. To date, leasing has been used more widely in municipal waste projects, although the UK tax regime means that there are also strong advantages to leasing for wind. The paper will examine the sensitivity of sources of leasing and debt finance to possible changes in the electricity markets in the UK, it will identify practical problems to be overcome in applying leasing and provide practical tips to developers. It will also examine some of the issues relevant to firms seeking to participate in overseas markets with the help of UK financiers. (Author)

  15. Investigation of value and costs of wind energy in the electric system. Report - Final meeting, Paris, 30 January 2013

    International Nuclear Information System (INIS)

    2013-01-01

    This document contains five Power Point presentations which respectively address: the values and costs of wind energy in the electric system (economic assessment of wind energy in the French electric system), the analysis principles and methods (economic assessment and comparison of two scenarios defined by six different parameters: consumption, energy price, wind energy deployment, evolution of the nuclear fleet, nuclear load factor, potential of demand side management), the analysis of the energy substitution value, the value analysis of the peak management, and the impact on infrastructures and system services

  16. The Influence of Wheel/Rail Contact Conditions on the Microstructure and Hardness of Railway Wheels

    Directory of Open Access Journals (Sweden)

    Paul Molyneux-Berry

    2014-01-01

    Full Text Available The susceptibility of railway wheels to wear and rolling contact fatigue damage is influenced by the properties of the wheel material. These are influenced by the steel composition, wheel manufacturing process, and thermal and mechanical loading during operation. The in-service properties therefore vary with depth below the surface and with position across the wheel tread. This paper discusses the stress history at the wheel/rail contact (derived from dynamic simulations and observed variations in hardness and microstructure. It is shown that the hardness of an “in-service” wheel rim varies significantly, with three distinct effects. The underlying hardness trend with depth can be related to microstructural changes during manufacturing (proeutectoid ferrite fraction and pearlite lamellae spacing. The near-surface layer exhibits plastic flow and microstructural shear, especially in regions which experience high tangential forces when curving, with consequentially higher hardness values. Between 1 mm and 7 mm depth, the wheel/rail contacts cause stresses exceeding the material yield stress, leading to work hardening, without a macroscopic change in microstructure. These changes in material properties through the depth of the wheel rim would tend to increase the likelihood of crack initiation on wheels toward the end of their life. This correlates with observations from several train fleets.

  17. 49 CFR 570.10 - Wheel assemblies.

    Science.gov (United States)

    2010-10-01

    ... bead through one full wheel revolution and note runout in excess of one-eighth of an inch. (c) Mounting... 49 Transportation 6 2010-10-01 2010-10-01 false Wheel assemblies. 570.10 Section 570.10... Pounds or Less § 570.10 Wheel assemblies. (a) Wheel integrity. A tire rim, wheel disc, or spider shall...

  18. Transmission and wind investment in a deregulated electricity industry

    DEFF Research Database (Denmark)

    Maurovich-Horvat, Lajos; Boomsma, Trine Krogh; Fleten, Stein-Erik

    2013-01-01

    carrying out investment in wind farms. In this paper, we analyse the interaction between the two conflicting objectives under various assumptions about the electricity market structure and the degree of producers' market power. Via a three-node illustrative example, we show that a merchant investor...... the auspices of a regulated welfare-maximising planner, recent restructuring of electricity industries has introduced a merchant model for transmission investment, which provides congestion rents from construction of a new line. Thus, the merchant investor's incentives are different from those of producers...... typically builds less transmission capacity than a welfare-maximising transmission system operator or central planner. Although social welfare is lower and nodal prices are generally higher with a merchant investor and when producers are assumed to behave à la Cournot, the effect of lower price response...

  19. Combined scheduling of electricity and heat in a microgrid with volatile wind power

    DEFF Research Database (Denmark)

    Xu, Lizhong; Yang, Guang Ya; Xu, Zhao

    2011-01-01

    An optimization model is developed for scheduling electricity and heat production in a microgrid under a day-ahead market environment considering the operation constraints and the volatility of wind power generation. The model optimizes the total operation costs from energy and heating consumption...... into a mixed-integer programming (MIP) problem. Numerical simulations present the efficacy of the proposed model for day-ahead scheduling of a microgrid with wind penetration under the deregulated environment. © 2011 State Grid Electrtic Resarch Institute Press....

  20. Wind power

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    This publication describes some of the technical, economic, safety and institutional considerations involved in the selection, installation and evaluation of a wind generation system. This information is presented, where possible, in practical, non-technical terms. The first four sections provide background information, theory, and general knowledge, while the remaining six sections are of a more specific nature to assist the prospective owner of a wind generator in his calculations and selections. Meteorological information is provided relating to the wind regime in Nova Scotia. The section on cost analysis discusses some of the factors and considerations which must be examined in order to provide a logical comparison between the alternatives of electricity produced from other sources. The final two sections are brief summaries of the regulations and hazards pertaining to the use of wind generators. The cost of wind-generated electricity is high compared to present Nova Scotia Power Corporation rates, even on Sable Island, Nova Scotia's highest wind area. However, it may be observed that Sable Island is one of the areas of Nova Scotia which is not presently supplied through the power grid and, particularly if there was a significant increase in the price of diesel oil, wind-generated electricity may well be the most economical alternative in that area. Generally speaking, however, where a consumer can purchase electricity at the normal domestic rate, wind generators are not economical, and they will not become economical unless there is a great reduction in their cost, an great increase in electricity rates, or both. Includes glossary. 23 figs., 11 tabs.

  1. Price Forecasting of Electricity Markets in the Presence of a High Penetration of Wind Power Generators

    OpenAIRE

    Saber Talari; Miadreza Shafie-khah; Gerardo J. Osório; Fei Wang; Alireza Heidari; João P. S. Catalão

    2017-01-01

    Price forecasting plays a vital role in the day-ahead markets. Once sellers and buyers access an accurate price forecasting, managing the economic risk can be conducted appropriately through offering or bidding suitable prices. In networks with high wind power penetration, the electricity price is influenced by wind energy; therefore, price forecasting can be more complicated. This paper proposes a novel hybrid approach for price forecasting of day-ahead markets, with high penetration of wind...

  2. Design of Wheeled Mobile Robot with Tri-Star Wheel as Rescue Robot

    Directory of Open Access Journals (Sweden)

    Rafiuddin Syam

    2016-05-01

    Full Text Available This study aims to design, and analyze a mobilerobot that can handle some of the obstacles, they are unevensurfaces, slopes, can also climb stairs. WMR in this study is Tristarwheel that is containing three wheels for each set. Onaverage surface only two wheels in contact with the surface, ifthere is an uneven surface or obstacle then the third wheel willrotate with the rotation center of the wheel in contact with theleading obstacle then only one wheel in contact with the surface.This study uses the C language program. Furthermore, theminimum thrust to be generated torque of the motor andtransmission is 9.56 kg. The results obtained by calculation andanalysis of DC motors used must have a torque greater than14.67 kg.cm. Minimum thrust to be generated motor torque andthe transmission is 9.56 kg. The experimental results give goodresults for robot to moving forward, backward, turn left, turnright and climbing the stairs

  3. Real-Time Tariffs for Electric Vehicles in Wind Power based Power Systems

    DEFF Research Database (Denmark)

    Morais, Hugo; Sousa, Tiago; Silva, Marco

    2013-01-01

    ’ behaviour and also the impact in load diagram. The paper proposes the energy price variation according to the relation between wind generation and power consumption. The proposed strategy was tested in two different days in the Danish power system. January 31st and August 13th 2013 were selected because......The use of Electric Vehicles (EVs) will change significantly the planning and management of power systems in a near future. This paper proposes a real-time tariff strategy for the charge process of the EVs. The main objective is to evaluate the influence of real-time tariffs in the EVs owners...... of the high quantities of wind generation. The main goal is to evaluate the changes in the EVs charging diagram with the energy price preventing wind curtailment....

  4. Careers in Wind Energy

    Science.gov (United States)

    Liming, Drew; Hamilton, James

    2011-01-01

    As a common form of renewable energy, wind power is generating more than just electricity. It is increasingly generating jobs for workers in many different occupations. Many workers are employed on wind farms: areas where groups of wind turbines produce electricity from wind power. Wind farms are frequently located in the midwestern, western, and…

  5. The contribution of wind energy to electric power generation; Der Beitrag der Windenergie zur Stromerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The conference discussed the following five subjects: (1) Status and perspectives of wind power in Germany and Japan; (2) Grid connection of wind power systems; (3) Wind power and electric power supply; (4) Future fields of application, technical perspectives; (5) Panel discussion. [German] Der Tagungsband beinhaltet Beitraege in fuenf Bloecken, die die folgenden Ueberschriften haben: (1) Stand und Perspektiven der Windenergienutzung in Deutschland und Japan; (2) Netzintegration von Windenergieanlagen; (3) Windenergie in der elektrischen Energieversorgung; (4) zukuenftige Anwendungsfelder, technische Perspektiven sowie (5) Paneldiskussion. (AKF)

  6. Valuation framework for large scale electricity storage in a case with wind curtailment

    International Nuclear Information System (INIS)

    Loisel, Rodica; Mercier, Arnaud; Gatzen, Christoph; Elms, Nick; Petric, Hrvoje

    2010-01-01

    This paper investigates the value of large scale applications of electricity storage in selected European power systems in the context of wind generation confronted with a grid bottleneck. It analyzes the market value to 2030 of two storage technologies, assuming the market situation projected for Germany and France. The analysis assesses the evolution of storage economics based on the net present value of cash flows. Sensitivities to market and regulatory drivers of value are assessed, e.g. electricity price spreads, ancillary services revenues, wind curtailment and the level of carbon prices. The paper concludes by suggesting possible ways to improve the competitiveness of electricity storage, such as research and development and deployment programmes, and changes to the design of power markets and regulatory arrangements to enable storage owners to better capture the benefits of storage. Such changes would allow electricity storage, where economically viable, to play a critical role in establishing a future sustainable European power system. - Research highlights: →CAES and PHS are not cost-effective for current market design in France and Germany → Market reforms are run to reward bottleneck avoiding and ancillary reserves → Storage is profitable when all potential socio-economic benefits are aggregated → R and D and D programs for storage improvement are economically and socially justified.

  7. Price Forecasting of Electricity Markets in the Presence of a High Penetration of Wind Power Generators

    Directory of Open Access Journals (Sweden)

    Saber Talari

    2017-11-01

    Full Text Available Price forecasting plays a vital role in the day-ahead markets. Once sellers and buyers access an accurate price forecasting, managing the economic risk can be conducted appropriately through offering or bidding suitable prices. In networks with high wind power penetration, the electricity price is influenced by wind energy; therefore, price forecasting can be more complicated. This paper proposes a novel hybrid approach for price forecasting of day-ahead markets, with high penetration of wind generators based on Wavelet transform, bivariate Auto-Regressive Integrated Moving Average (ARIMA method and Radial Basis Function Neural Network (RBFN. To this end, a weighted time series for wind dominated power systems is calculated and added to a bivariate ARIMA model along with the price time series. Moreover, RBFN is applied as a tool to correct the estimation error, and particle swarm optimization (PSO is used to optimize the structure and adapt the RBFN to the particular training set. This method is evaluated on the Spanish electricity market, which shows the efficiency of this approach. This method has less error compared with other methods especially when it considers the effects of large-scale wind generators.

  8. Wind energy conversion system

    Science.gov (United States)

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  9. The impact of wind power on APX day-ahead electricity prices in the Netherlands VVM-Intermittency project

    Energy Technology Data Exchange (ETDEWEB)

    Nieuwenhout, F.D.J. [ECN Policy Studies, Amsterdam (Netherlands); Brand, A.J. [ECN Wind Energy, Petten (Netherlands)

    2013-02-15

    A detailed analysis was conducted to assess to what extent availability of wind energy has influenced day-ahead electricity prices in the Netherlands over the period 2006-2009. With a meteorological model, time series of day-ahead wind forecasts were generated, and these were compared with APX-ENDEX day-ahead market prices. Wind energy contributes to only 4% of electricity generation in the Netherlands, but was found to depress average day-ahead market prices by about 5%. With the help of the bid curves on the APX-ENDEX day-ahead market for 2009, a model was developed to assess the impact of increasing levels of wind generation on power prices in the Netherlands. One of the main findings is that the future impact on prices will be less than in the past. With an increase of installed wind capacity from 2200 MW to 6000 MW, average day-ahead prices are expected to be depressed by an additional 6% in case no additional conventional generation is assumed. Taking into account existing government policy on wind and ongoing investments in new conventional power plants, prices in 2016 will be only 3% lower.

  10. Wind speed reductions by large-scale wind turbine deployments lower turbine efficiencies and set low wind power potentials

    Science.gov (United States)

    Miller, Lee; Kleidon, Axel

    2017-04-01

    Wind turbines generate electricity by removing kinetic energy from the atmosphere. Large numbers of wind turbines are likely to reduce wind speeds, which lowers estimates of electricity generation from what would be presumed from unaffected conditions. Here, we test how well wind power potentials that account for this effect can be estimated without explicitly simulating atmospheric dynamics. We first use simulations with an atmospheric general circulation model (GCM) that explicitly simulates the effects of wind turbines to derive wind power limits (GCM estimate), and compare them to a simple approach derived from the climatological conditions without turbines [vertical kinetic energy (VKE) estimate]. On land, we find strong agreement between the VKE and GCM estimates with respect to electricity generation rates (0.32 and 0.37 We m-2) and wind speed reductions by 42 and 44%. Over ocean, the GCM estimate is about twice the VKE estimate (0.59 and 0.29 We m-2) and yet with comparable wind speed reductions (50 and 42%). We then show that this bias can be corrected by modifying the downward momentum flux to the surface. Thus, large-scale limits to wind power can be derived from climatological conditions without explicitly simulating atmospheric dynamics. Consistent with the GCM simulations, the approach estimates that only comparatively few land areas are suitable to generate more than 1 We m-2 of electricity and that larger deployment scales are likely to reduce the expected electricity generation rate of each turbine. We conclude that these atmospheric effects are relevant for planning the future expansion of wind power.

  11. Comparative Study of Electric Energy Storages and Thermal Energy Auxiliaries for Improving Wind Power Integration in the Cogeneration System

    Directory of Open Access Journals (Sweden)

    Yanjuan Yu

    2018-01-01

    Full Text Available In regards to the cogeneration system in Northern China, mainly supported by combined heat and power (CHP plants, it usually offers limited operation flexibility due to the joint production of electric and thermal power. For that large-scale wind farms included in the cogeneration system, a large amount of wind energy may have to be wasted. To solve this issue, the utilization of the electric energy storages and the thermal energy auxiliaries are recommended, including pumped hydro storage (PHS, compressed air energy storage (CAES, hydrogen-based energy storage (HES, heat storage (HS, electric boilers (EB, and heat pumps (HP. This paper proposes a general evaluation method to compare the performance of these six different approaches for promoting wind power integration. In consideration of saving coal consumption, reducing CO2 emissions, and increasing investment cost, the comprehensive benefit is defined as the evaluation index. Specifically, a wind-thermal conflicting expression (WTCE is put forward to simplify the formulation of the comprehensive benefit. Further, according to the cogeneration system of the West Inner Mongolia (WIM power grid, a test system is modelled to perform the comparison of the six different approaches. The results show that introducing the electric energy storages and the thermal energy auxiliaries can both contribute to facilitating wind power integration, and the HP can provide the best comprehensive benefit.

  12. Large-scale integration of optimal combinations of PV, wind and wave power into the electricity supply

    DEFF Research Database (Denmark)

    Lund, Henrik

    2006-01-01

    This article presents the results of analyses of large-scale integration of wind power, photo voltaic (PV) and wave power into a Danish reference energy system. The possibility of integrating Renewable Energy Sources (RES) into the electricity supply is expressed in terms of the ability to avoid...... ancillary services are needed in order to secure the electricity supply system. The idea is to benefit from the different patterns in the fluctuations of different renewable sources. And the purpose is to identify optimal mixtures from a technical point of view. The optimal mixture seems to be when onshore...... wind power produces approximately 50% of the total electricity production from RES. Meanwhile, the mixture between PV and wave power seems to depend on the total amount of electricity production from RES. When the total RES input is below 20% of demand, PV should cover 40% and wave power only 10%. When...

  13. Winds of change: How high wind penetrations will affect investment incentives in the GB electricity sector

    International Nuclear Information System (INIS)

    Steggals, Will; Gross, Robert; Heptonstall, Philip

    2011-01-01

    Wind power is widely expected to expand rapidly in Britain over the next decade. Large amounts of variable wind power on the system will increase market risks, with prices more volatile and load factors for conventional thermal plant lower and more uncertain. This extra market risk may discourage investment in generation capacity. Financial viability for thermal plant will be increasingly dependent on price spikes during periods of low wind. Increased price risk will also make investment in other forms of low-carbon generation (e.g. nuclear power) more challenging. A number of policies can reduce the extent to which generators are exposed to market risks and encourage investment. However, market risks play a fundamental role in shaping efficient investment and dispatch patterns in a liberalised market. Therefore, measures to improve price signals and market functioning (such as a stronger carbon price and developing more responsive demand) are desirable. However, the scale of the investment challenge and increased risk mean targeted measures to reduce (although not eliminate) risk exposure, such as capacity mechanisms and fixed price schemes, may have increasing merit. The challenge for policy is to strike the right balance between market and planned approaches. - Research highlights: → Analyses how increases penetrations of wind power effect electricity market functioning. → Assesses the impacts of this on investment incentives for different technologies. → Discusses implications for policy and market design.

  14. The potentialities of the wind driven engines with Magnus effect

    International Nuclear Information System (INIS)

    Bychkov, N.M.; Gorelov, V.P.; Gorelov, S.V.; Kachanov, A.N.

    1999-01-01

    Possibilities of wind engine realizing of Magnus effect like of untraditional kind energy source is shown in the article. In this engine instead of traditional propellers the rotatable cylinders are installed. According interaction of the cylinders with wind the Magnus force arises. Magnus force exceeds propellers rise force in 5-10 times and maintain very large turning moment of wind wheel and most effective operation of engine, especially at low wind rates. Advantage of the engine consists in that it switch on under wind rate 1 m/c, when for propeller one requires 4-5 m/c

  15. Wind-powered electrical systems : highway rest areas, weigh stations, and team section buildings.

    Science.gov (United States)

    2009-02-01

    This project considered the use of wind for providing electrical power at Illinois Department of Transportation : (IDOT) highway rest areas, weigh stations, and team section buildings. The goal of the project was to determine : the extent to which wi...

  16. Determination of wind energy potential and its implementation concept for the electricity market in the Vojvodina region (north Serbia: An overview

    Directory of Open Access Journals (Sweden)

    Micić Tanja

    2014-01-01

    Full Text Available Renewable energy sources play an important role in the future not only for the European countries, but for many countries worldwide. Most cost-effective and reliable large wind energy conversion systems are becoming the main focus of wind energy research and technology development, all in order to make wind energy competitive with other more traditional sources of electrical energy like coal, gas and nuclear generation. Serbia, along with neighboring countries, has a high potential for developing energy production from renewable energy sources. Wind energy in Serbia, despite its great potential, is only partly studied and insufficiently used. This study aims to provide summary of wind energy potentials in the region of Vojvodina, which is an important economic region in northern Serbia. Its existing electrical energy status is thoroughly investigated according to the recent developments of wind energy production on global, regional and local scale. The main purpose of this study is the implementation of energy efficiency concept with purpose of satisfying the needs of Serbian electricity market.

  17. 75 FR 6020 - Electrical Interconnection of the Lower Snake River Wind Energy Project

    Science.gov (United States)

    2010-02-05

    ... DEPARTMENT OF ENERGY Bonneville Power Administration Electrical Interconnection of the Lower Snake River Wind Energy Project AGENCY: Bonneville Power Administration (BPA), Department of Energy (DOE... (BPA) has decided to offer Puget Sound Energy Inc., a Large Generator Interconnection Agreement for...

  18. Wind energy in the agricultural sector. Tailwind or head wind?

    International Nuclear Information System (INIS)

    Van der Knijff, A.

    1999-06-01

    The state of the art in the use of wind energy in the agricultural sector in the Netherlands is given in order to map opportunities. Obstacles to expansion of wind capacity in that sector in the short term are described, as well as the most important developments with respect to wind energy. An estimated 275 wind turbines with a capacity of 50 MW are in use in the Netherlands. This means that the agricultural sector accounts for approximately 14% of the total wind capacity in the Netherlands (363 MW in 1998). Most of the agricultural businesses supply all the electricity generated to the public networks. Only a small number of farmers use some of the generated electricity themselves. The most important obstacles for the agrarian sector are the proposed policies of provinces and municipalities, the limited capacity of the public electricity network, and the lack of clarity regarding the liberalisation of the electricity market. In particular, provincial and municipal policies (solitary wind turbines versus wind farms) will determine the prospects for the future of wind energy in the agrarian sector. Despite possible adversities, there are good prospects for the future for the sector because farmers own land in windy locations. 33 refs

  19. Hybrid power system (hydro, solar and wind) for rural electricity generation

    International Nuclear Information System (INIS)

    Mahinda Kurukulasuriya

    2000-01-01

    Generation of affordable cheap electric energy for rural development by a hybrid power system (10-50 kW) of hydropower, solar and wind energies on self determining basis and computer application to determine its performance. In this paper the following topics were discussed, design of hybrid power system, its justification and economic analysis, manufacturing and installation of the system. (Author)

  20. Analysis of torque transmitting behavior and wheel slip prevention control during regenerative braking for high speed EMU trains

    Science.gov (United States)

    Xu, Kun; Xu, Guo-Qing; Zheng, Chun-Hua

    2016-04-01

    The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability, improving the adhesion utilization, and achieving deep energy recovery. There remain technical challenges mainly because of the nonlinear, uncertain, and varying features of wheel-rail contact conditions. This research analyzes the torque transmitting behavior during regenerative braking, and proposes a novel methodology to detect the wheel-rail adhesion stability. Then, applications to the wheel slip prevention during braking are investigated, and the optimal slip ratio control scheme is proposed, which is based on a novel optimal reference generation of the slip ratio and a robust sliding mode control. The proposed methodology achieves the optimal braking performance without the wheel-rail contact information. Numerical simulation results for uncertain slippery rails verify the effectiveness of the proposed methodology.

  1. Estimating the electricity prices, generation costs and CO_2 emissions of large scale wind energy exports from Ireland to Great Britain

    International Nuclear Information System (INIS)

    Cleary, Brendan; Duffy, Aidan; Bach, Bjarne; Vitina, Aisma; O’Connor, Alan; Conlon, Michael

    2016-01-01

    The share of wind generation in the Irish and British electricity markets is set to increase by 2020 due to renewable energy (RE) targets. The United Kingdom (UK) and Ireland have set ambitious targets which require 30% and 40% of electricity demand to come from RE, mainly wind, by 2020, respectively. Ireland has sufficient indigenous onshore wind energy resources to exceed the RE target, while the UK faces uncertainty in achieving its target. A possible solution for the UK is to import RE directly from large scale onshore and offshore wind energy projects in Ireland; this possibility has recently been explored by both governments but is currently on hold. Thus, the aim of this paper is to estimate the effects of large scale wind energy in the Irish and British electricity markets in terms of wholesale system marginal prices, total generation costs and CO_2 emissions. The results indicate when the large scale Irish-based wind energy projects are connected directly to the UK there is a decrease of 0.6% and 2% in the Irish and British wholesale system marginal prices under the UK National Grid slow progression scenario, respectively. - Highlights: • Modelling the Irish and British electricity markets. • Investigating the impacts of large scale wind energy within the markets. • Results indicate a reduction in wholesale system marginal prices in both markets. • Decrease in total generation costs and CO_2 emissions in both markets.

  2. Meeting the Electrical Energy Needs of a Residential Building with a Wind-Photovoltaic Hybrid System

    Directory of Open Access Journals (Sweden)

    Mohammad Hosein Mohammadnezami

    2015-03-01

    Full Text Available A complete hybrid system including a photovoltaic cell, a wind turbine, and battery is modeled to determine the best approach for sizing the system to meet the electrical energy needs of a residential building. In evaluating system performance, the city of Tehran is used as a case study. Matlab software is used for analyzing the data and optimizing the system for the given application. Further, the cost of the system design is investigated, and shows that the electrical cost of the hybrid system in Tehran is 0.62 US$/kWh, which is 78% less expensive than a wind turbine system and 34% less expensive than a photovoltaic system.

  3. Canadian Wind Energy Association small wind conference proceedings : small wind policy developments (turbines of 300 kW or less)

    International Nuclear Information System (INIS)

    2005-01-01

    The small wind session at the Canadian Wind Energy Association's (CanWEA) annual conference addressed policies affecting small wind, such as net metering, advanced renewable tariffs and interconnections. It also addressed CanWEA's efforts in promoting small wind turbines, particularly in remote northern communities, small businesses and within the residential sector. Small wind systems are typically installed in remote communities to offset utility supplied electricity at the retail price level. In certain circumstances, small wind and hybrid systems can produce electricity at less than half the cost of traditional electricity sources, which in remote communities is typically diesel generators. Small wind turbines require different materials and technologies than large wind turbines. They also involve different local installation requirements, different by-laws, tax treatment and environmental assessments. Small wind turbines are typically installed for a range of factors, including energy independence, energy price stability and to lower environmental impacts of traditional power generation. The small wind session at the conference featured 14 presentations, of which 4 have been catalogued separately for inclusion in this database. tabs., figs

  4. European wind integration study (EWIS). Towards a successful integration of large scale wind power into European electricity grids. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Winter, W.

    2010-03-15

    Large capacities of wind generators have already been installed and are operating in Germany (26GW) and Spain (16GW). Installations which are as significant in terms of proportion to system size are also established in Denmark (3.3GW), the All Island Power System of Ireland and Northern Ireland (1.5GW), and Portugal (3.4GW). Many other countries expect significant growth in wind generation such that the total currently installed capacity in Europe of 68GW is expected to at least double by 2015. Yet further increases can be expected in order to achieve Europe's 2020 targets for renewable energy. The scale of this development poses big challenges for wind generation developers in terms of obtaining suitable sites, delivering large construction projects, and financing the associated investments from their operations. Such developments also impact the networks and it was to address the immediate transmission related challenges that the European Wind Integration Study (EWIS) was initiated by Transmission System Operators (TSOs) with the objective of ensuring the most effective integration of large scale wind generation into Europe's transmission networks and electricity system. The challenges anticipated and addressed include: 1) How to efficiently accommodate wind generation when markets and transmission access arrangements have evolved for the needs of traditional controllable generation. 2) How to ensure supplies remain secure as wind varies (establishing the required backup/reserves for low wind days and wind forecast errors as well as managing network congestion in windy conditions). 3) How to maintain the quality and reliability of supplies given the new generation characteristics. 4) How to achieve efficient network costs by suitable design and operation of network connections, the deeper infrastructure including offshore connections, and crossborder interconnections. EWIS has focused on the immediate network related challenges by analysing detailed

  5. Optimal Bidding Strategies for Wind Power Producers in the Day-ahead Electricity Market

    Directory of Open Access Journals (Sweden)

    Xiaolin Liu

    2012-11-01

    Full Text Available Wind Power Producers (WPPs seek to maximize profit and minimize the imbalance costs when bidding into the day-ahead market, but uncertainties in the hourly available wind and forecasting errors make the bidding risky. This paper assumes that hourly wind power output given by the forecast follows a normal distribution, and proposes three different bidding strategies, i.e., the expected profit-maximization strategy (EPS, the chance-constrained programming-based strategy (CPS and the multi-objective bidding strategy (ECPS. Analytical solutions under the three strategies are obtained. Comparisons among the three strategies are conducted on a hypothetical wind farm which follows the Spanish market rules. Results show that bid under the EPS is highly dependent on market clearing price, imbalance prices, and also the mean value and standard deviation of wind forecast, and that bid under the CPS is largely driven by risk parameters and the mean value and standard deviation of the wind forecast. The ECPS combining both EPS and CPS tends to choose a compromise bid. Furthermore, the ECPS can effectively control the tradeoff between expected profit and target profit for WPPs operating in volatile electricity markets.

  6. Co-Design Based Lateral Motion Control of All-Wheel-Independent-Drive Electric Vehicles with Network Congestion

    Directory of Open Access Journals (Sweden)

    Wanke Cao

    2017-10-01

    Full Text Available All-wheel-independent-drive electric vehicles (AWID-EVs have considerable advantages in terms of energy optimization, drivability and driving safety due to the remarkable actuation flexibility of electric motors. However, in their current implementations, various real-time data in the vehicle control system are exchanged via a controller area network (CAN, which causes network congestion and network-induced delays. These problems could lead to systemic instability and make the system integration difficult. The goal of this paper is to provide a design methodology that can cope with all these challenges for the lateral motion control of AWID-EVs. Firstly, a continuous-time model of an AWID-EV is derived. Then an expression for determining upper and lower bounds on the delays caused by CAN is presented and with which a discrete-time model of the closed-loop CAN system is derived. An expression on the bandwidth utilization is introduced as well. Thirdly, a co-design based scheme combining a period-dependent linear quadratic regulator (LQR and a dynamic period scheduler is designed for the resulting model and the stability criterion is also derived. The results of simulations and hard-in-loop (HIL experiments show that the proposed methodology can effectively guarantee the stability of the vehicle lateral motion control while obviously declining the network congestion.

  7. Grinding Characteristics Of Directionally Aligned SiC Whisker Wheel-Comparison With Al2O3 Fiber Wheel

    Institute of Scientific and Technical Information of China (English)

    魏源迁; 山口胜美; 菊泽贤二; 洞口严; 中根正喜

    2003-01-01

    A unique SiC whisker wheel was invented,in which the whiskers were aligned normally to the grinding wheel surface.In this paper,grindabilities of the SiC whisker wheel are investigated and compared with those of other wheels of SiC grains,Al2O3 grains,as well as Al2O3 long and short fibres which were also aligned normally to the grinding wheel surface,respectively.The main research contents concern grinding characteristics of a directionally aligned SiC whisker wheel such as material-removal volume,wheel-wear rates,integrity of the ground surfaces,grinding ratios and grinding efficiency.Furthermore,grinding wheels of whiskers and fibres have a common disadvantage:they tend to load easily.The authors have proposed a simple method of loading-free grinding to overcome this propensity and investigate some related grinding characteristics under loading-free grinding conditions.

  8. Analysing the impact of renewable electricity support schemes on power prices: The case of wind electricity in Spain

    International Nuclear Information System (INIS)

    Saenz de Miera, Gonzalo; Rio Gonzalez, Pablo del; Vizcaino, Ignacio

    2008-01-01

    It is sometimes argued that renewables are 'expensive'. However, although it is generally true that the private costs of renewable electricity generation are certainly above those of conventional electricity, that statement fails to consider the social benefits provided by electricity from renewable energy sources (RES-E), including environmental and socioeconomic ones. This paper empirically analyses an additional albeit usually neglected benefit: the reduction in the wholesale price of electricity as a result of more RES-E generation being fed into the grid. The case of wind generation in Spain shows that this reduction is greater than the increase in the costs for the consumers arising from the RES-E support scheme (the feed-in tariffs), which are charged to the final consumer. Therefore, a net reduction in the retail electricity price results, which is positive from a consumer point of view. This provides an additional argument for RES-E support and contradicts one of the usual arguments against RES-E deployment: the excessive burden on the consumer

  9. Tracked Vehicle Road Wheel Puller

    Science.gov (United States)

    2009-02-01

    employed for removing smaller-size components, such as bolts and the like. U.S. Patent No. 5,410,792, issued to Freeman (3), discloses a caster wheel ...separation of the rubberized annular layer from the outer annular surface of the wheel . Figure 5 further illustrates a modification of the wheel puller...2001. 2. Rubino et al. Pulling Tool. U.S. Patent 5,479,688, 1996. 3. Freeman. Caster Wheel Axle Extraction Apparatus. U.S. Patent 5,410,792

  10. Strategic wind power trading considering rival wind power production

    DEFF Research Database (Denmark)

    Exizidis, Lazaros; Kazempour, Jalal; Pinson, Pierre

    2016-01-01

    In an electricity market with high share of wind power, it is expected that wind power producers may exercise market power. However, wind producers have to cope with wind’s uncertain nature in order to optimally offer their generation, whereas in a market with more than one wind producers, uncert...... depending on the rival’s wind generation, given that its own expected generation is not high. Finally, as anticipated, expected system cost is higher when both wind power producers are expected to have low wind power generation......In an electricity market with high share of wind power, it is expected that wind power producers may exercise market power. However, wind producers have to cope with wind’s uncertain nature in order to optimally offer their generation, whereas in a market with more than one wind producers......, uncertainty of rival wind power generation should also be considered. Under this context, this paper addresses the impact of rival wind producers on the offering strategy and profits of a pricemaker wind producer. A stochastic day-ahead market setup is considered, which optimizes the day-ahead schedules...

  11. Probabilistic Constrained Load Flow Considering Integration of Wind Power Generation and Electric Vehicles

    DEFF Research Database (Denmark)

    Vlachogiannis, Ioannis (John)

    2009-01-01

    A new formulation and solution of probabilistic constrained load flow (PCLF) problem suitable for modern power systems with wind power generation and electric vehicles (EV) demand or supply is represented. The developed stochastic model of EV demand/supply and the wind power generation model...... are incorporated into load flow studies. In the resulted PCLF formulation, discrete and continuous control parameters are engaged. Therefore, a hybrid learning automata system (HLAS) is developed to find the optimal offline control settings over a whole planning period of power system. The process of HLAS...

  12. Local cyclic deformation behavior and microstructure of railway wheel materials

    International Nuclear Information System (INIS)

    Walther, F.; Eifler, D.

    2004-01-01

    The current investigations concentrate on the relation between the loading and environmental conditions, the local microstructure and the fatigue behavior of highly stressed railway wheel and tire steels. Experiments under stress control and total strain control were performed at ambient temperature with servohydraulic testing systems. Superimposed mean loadings allow an evaluation of cyclic creep and mean stress relaxation effects. Strain, temperature and electrical measuring techniques were used to characterize the cyclic deformation behavior of specimens from different depth positions of the cross-sections of UIC-specified wheel components (UIC: International Railway Union). The measured values show a strong interrelation. The microstructural characterization of the different material conditions was done by light and scanning electron microscopy together with digital image processing

  13. Analysis of cost estimation and wind energy evaluation using wind energy conversion systems (WECS) for electricity generation in six selected high altitude locations in Nigeria

    International Nuclear Information System (INIS)

    Ohunakin, S. Olayinka; Ojolo, S. Joshua; Ogunsina, S. Babatunde; Dinrifo, R. Rufus

    2012-01-01

    Two commercial wind turbines namely AN Bonus 300 kW/33 and AN Bonus 1 MW/54 were technically assessed for electricity generation in six selected high altitude sites spreading across the North-West and North-East geopolitical regions of Nigeria by computing their capacity factors, annual power and energy outputs. The economic evaluation of using the two wind energy conversion systems (medium and large) for electric power generation in the selected locations were also estimated using the present value cost method. The results showed that capacity factors of the two turbines in the selected sites ranged between 4.6 and 43%. Average minimum cost per kW h was obtained in Kano as $0.0222/kW h with AN Bonus 1 MW while the highest average cost is $0.2074/kW h with AN Bonus 300 kW in Kaduna. The highest cost in each of the location was obtained with the medium WECs (AN Bonus 300 kW). In addition, Kano and Katsina were also found to be very economical for any of the adopted wind turbine models. Gusau and Kaduna, at cost of unit energy of about $0.30/kW h were found to be more profitable for non-connected electrical and mechanical applications (water pumping, battery charging) than diesel generator. - Highlights: ► All the locations considered have mean wind speeds above 4.8 m/s. ► Economical wind applications are possible in Kano and Katsina. ► Highest capacity factor and energy output are obtained using AN Bonus 1 MW in Kano. ► Specific cost of unit energy per kW h is cheaper using AN Bonus 1 MW.

  14. Technical and commercial aspects of the connection of wind turbines to electricity supply networks in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, P. [Garrad Hassan & Partners Ltd., Glasgow (United Kingdom)

    1996-12-31

    This paper reviews some technical and commercial issues now topical for wind energy developments in Europe. The technical issues are important because of the weak nature of the existing electricity systems in rural or upland areas. Several commercial issues are considered which may improve the economics of wind energy as market incentives are gradually withdrawn. 9 refs.

  15. How does market power affect the impact of large scale wind investment in 'energy only' wholesale electricity markets?

    International Nuclear Information System (INIS)

    Browne, Oliver; Poletti, Stephen; Young, David

    2015-01-01

    In the short run, it is well known that increasing wind penetration is likely to reduce spot market electricity prices due to the merit order effect. The long run effect is less clear because there will be a change in new capacity investment in response to the wind penetration. In this paper we examine the interaction between capacity investment, wind penetration and market power by first using a least-cost generation expansion model to simulate capacity investment with increasing amounts of wind generation, and then using a computer agent-based model to predict electricity prices in the presence of market power. We find the degree to which firms are able to exercise market power depends critically on the ratio of capacity to peak demand. For our preferred long run generation scenario we show market power increases for some periods as wind penetration increases however the merit order counteracts this with the results that prices overall remain flat. Returns to peakers increase significantly as wind penetration increases. The market power in turn leads to inefficient dispatch which is exacerbated with large amounts of wind generation. - Highlights: • Increasing investment in wind generation is analyzed using an agent based model. • In an energy only market, increased total capacity reduces market power. • Increasing wind penetration results in more market power in some periods. • Market power causes dispatch inefficiencies, which grow as wind capacity increases.

  16. Multi-Temporal Decomposed Wind and Load Power Models for Electric Energy Systems

    Science.gov (United States)

    Abdel-Karim, Noha

    This thesis is motivated by the recognition that sources of uncertainties in electric power systems are multifold and may have potentially far-reaching effects. In the past, only system load forecast was considered to be the main challenge. More recently, however, the uncertain price of electricity and hard-to-predict power produced by renewable resources, such as wind and solar, are making the operating and planning environment much more challenging. The near-real-time power imbalances are compensated by means of frequency regulation and generally require fast-responding costly resources. Because of this, a more accurate forecast and look-ahead scheduling would result in a reduced need for expensive power balancing. Similarly, long-term planning and seasonal maintenance need to take into account long-term demand forecast as well as how the short-term generation scheduling is done. The better the demand forecast, the more efficient planning will be as well. Moreover, computer algorithms for scheduling and planning are essential in helping the system operators decide what to schedule and planners what to build. This is needed given the overall complexity created by different abilities to adjust the power output of generation technologies, demand uncertainties and by the network delivery constraints. Given the growing presence of major uncertainties, it is likely that the main control applications will use more probabilistic approaches. Today's predominantly deterministic methods will be replaced by methods which account for key uncertainties as decisions are made. It is well-understood that although demand and wind power cannot be predicted at very high accuracy, taking into consideration predictions and scheduling in a look-ahead way over several time horizons generally results in more efficient and reliable utilization, than when decisions are made assuming deterministic, often worst-case scenarios. This change is in approach is going to ultimately require new

  17. French enterprises build on wind power

    International Nuclear Information System (INIS)

    Rap, C.

    2013-01-01

    Being confronted by the economic crisis French enterprises look for diversification towards sectors which appear to bear promise of growth. The wind industry is one of them despite the slowing demand for land-based installations. A wind turbine is made of 11 components which represents a total of 3000 parts. A series of French enterprises benefit from this market by specialising in narrow market niches like bearings, toothed wheels,... This document gathers short information notes on the following enterprises: SKF, Mersen, les Forges de Trie-Chateau, Guerton, Rollix, and NTN-SNR. (A.C.)

  18. Wind-Electric Power Potential Assessment for Three Locations in East Java-Indonesia

    Directory of Open Access Journals (Sweden)

    Ali Musyafa

    2011-08-01

    Full Text Available This paper reports our effort to asses wind energy potentials for three locations in East Java. We used wind speed data over a period of almost 3 years, i.e. in period of June 2006 – August 2008. Data were taken from direct measurement in locations in East Java Province, i.e. Sampang (Madura, Juanda (Surabaya, and Sawahan (Nganjuk. The short-term of wind speed mean in monthly signifies to wind-speed value ”which parallels to the wind turbine power curve value” were used to estimate the annual energy output for a 1 MW installed capacity wind farm on the each site 100 of 10kW rated wind turbines were used in the analysis. The short term of wind speed mean at Surabaya and Nganjuk were 2.34, 3.03 and 1.97 m/s at 2 m Above Ground Level (AGL, respectively. In both locations, wind speeds were observed during the day time between 04.00 and 18.00 and relatively smaller ones between 19.00 and 03.00 period. Meanwhile, in Sampang (Madura the higher wind speeds were observed between 20.00 and 06.00, and relatively smaller between 07.00 and 19.00 period. The 1 MW windfarm at Sampang, Surabaya and Nganjuk can produce 1.284; 1.199 and 1.008 MWh of electricity yearly, taking into consideration of the temperature adjustment coefficien of about 6 %. The plant capacity factor at Sampang, Surabaya and Nganjuk were found to be 30.02 %, 30.00 % and 30.01 % respectively. Additionally, it is noticed that these site can contribute to the avoidance of 0.904; 0.846 and 0.709 tons/year of CO2 equivalent Green House Gases (GHG from entering into the local atmosphere, thus creating a clean and healthy athmosphere for local inhabitants.

  19. Grinding Wheel System

    Science.gov (United States)

    Malkin, Stephen; Gao, Robert; Guo, Changsheng; Varghese, Biju; Pathare, Sumukh

    2003-08-05

    A grinding wheel system includes a grinding wheel with at least one embedded sensor. The system also includes an adapter disk containing electronics that process signals produced by each embedded sensor and that transmits sensor information to a data processing platform for further processing of the transmitted information.

  20. Analysis of the imbalance price scheme in the Spanish electricity market: A wind power test case

    International Nuclear Information System (INIS)

    Bueno-Lorenzo, Miriam; Moreno, M. Ángeles; Usaola, Julio

    2013-01-01

    This work investigates the interaction between wind power and electricity markets. The paper is focused on balancing markets pricing policies. The proposal of a new imbalance price scheme is included and conveniently evaluated. This proposed scheme tries to minimise the use of ancillary services to compensate for deviations in searching for a more efficient market design. The effectiveness of imbalance prices as market signals is also examined, and policy recommendations regarding imbalance services are discussed. Two test cases are included that analyse the participation of a wind power producer in the Spanish electricity market using a stochastic optimisation strategy. For this purpose, the uncertainty of the variables is considered, i.e., wind power production and prediction, intraday and imbalance prices. Test cases were run with real data for 10 months, and realistic results are presented along with a hypothetical test case. The regulation of the imbalance prices may not be adequate for the Spanish electricity market because an error drop is not sufficiently encouraged. Therefore, we suggest the application of a new imbalance price scheme, which includes an additional constraint. The conclusions of this paper can be assumed to be general policy recommendations

  1. High speed reaction wheels for satellite attitude control and energy storage

    Science.gov (United States)

    Studer, P.; Rodriguez, E.

    1985-01-01

    The combination of spacecraft attitude control and energy storage (ACES) functions in common hardware, to synergistically maintain three-axis attitude control while supplying electrical power during earth orbital eclipses, allows the generation of control torques by high rotating speed wheels that react against the spacecraft structure via a high efficiency bidirectional energy conversion motor/generator. An ACES system encompasses a minimum of four wheels, controlling power and the three torque vectors. Attention is given to the realization of such a system with composite flywheel rotors that yield high energy density, magnetic suspension technology yielding low losses at high rotational speeds, and an ironless armature permanent magnet motor/generator yielding high energy conversion efficiency.

  2. Wind energy for electricity generation; Generacion electrica con energia del viento

    Energy Technology Data Exchange (ETDEWEB)

    Huacuz Villamar, Jorge M; Borja Diaz, Marco Antonio R. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-09-01

    A description is made of electricity generation utilizing wind energy (Eoloelectric Generation). The case of Mexico is reviewed in respect to this technology, mentioning a small power plant of 1.5 Megawatts installed by the Comision Federal de Electricidad in the zone of La Ventosa in the State of Oaxaca. Mention is made of the possible causes why Mexico has not advanced in this type of power plants for power generation as in other countries like Germany, Spain and India. The advance in these countries is shown as well as the growth statistics of the wind power in the world. It is concluded that there is not in Mexico a strategy for wind energy utilization for electricity generation in spite of the potential benefits this technology offers [Espanol] Se describe el caso de la generacion electrica utilizando la energia del viento (Generacion Eoloelectrica). Se aborda el caso de Mexico respecto a esta tecnologia, mencionando una pequena central de 1.5 Megawatts (MW) instalada por la Comision Federal de Electricidad (CFE) en la zona de la Ventosa, Oaxaca. Se mencionan las posibles causas por las que en Mexico este tipo de centrales de generacion de energia no ha avanzado como en otros paises, por ejemplo: Alemania, Espana y la India. Se muestran los avances de estos paises, asi como una estadistica del crecimiento de la generacion eoloelectrica en el mundo. Se concluye en que no existe en Mexico una estrategia para la generacion eoloelectrica a pesar de los beneficios potenciales que ofrece esta tecnologia

  3. Recovery tread wheel pairs of machining

    Directory of Open Access Journals (Sweden)

    Igor IVANOV

    2013-01-01

    Full Text Available The basic methods of resurfacing wheels are determined and analised. It’sshown that for raising resource of used wheels and decreasing requirements of railwaytransport for new wheels it’s reasonable to use methods of recovering not only geometricparameters of rim, but also its mechanical properties. It’s marked that use of infeedprofile high-speed grinding (VPVSh enables to intensify significantly process ofmechanical treatment of wheel rim profile both when its resurfacing in service and whenmanufacturing new wheel.

  4. Large-scale integration of off-shore wind power and regulation strategies of cogeneration plants in the Danish electricity system

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2005-01-01

    The article analyses how the amount of a small-scale CHP plants and heat pumps and the regulation strategies of these affect the quantity of off-shore wind power that may be integrated into Danish electricity supply......The article analyses how the amount of a small-scale CHP plants and heat pumps and the regulation strategies of these affect the quantity of off-shore wind power that may be integrated into Danish electricity supply...

  5. Wind on the moors

    International Nuclear Information System (INIS)

    Martin, S.

    1992-01-01

    A local town councillor describes the setting up of a wind farm in the south Pennines which plans to sell electricity to the local electricity suppliers. The Coal Clough wind farm will generate sufficient electricity to meet the average demand of 7,500 households and will be managed by a consortium known as Wind Resources Limited linking the construction company and the utilities aiming to buy the electricity produced. While wind power offers many environmental advantages over other means of power generation, local opposition was strong on the basis of the noise produced and clearly visible structures in an area designated as being of outstanding natural beauty. (UK)

  6. SIZING AND COSTING OPTIMISATION OF A TYPICAL WIND/PV HYBRID ELECTRICITY GENERATION SYSTEM FOR A TYPICAL RESIDENTIAL BUILDING IN URBAN ARMIDALE NSW, AUSTRALIA

    Directory of Open Access Journals (Sweden)

    Yasser Maklad

    2014-04-01

    Full Text Available This study investigates the wind and solar electricity generation availability and potentiality for residential buildings in Armidale NSW, Australia. The main purpose of this study is to design an appropriate wind-PV hybrid system to cover the electricity consumption of typical residential buildings of various occupancy rates and relevant various average electrical daily consumption. In order to do achieve that, monthly average solar irradiance monthly average wind speed historical data observed at weather station belongs to the Australian bureau of meteorology in Armidale town over a fourteen years period from 1997–2010. Simulation of solar photovoltaic panels and wind turbines were conducted to obtain the optimal hybrid system sizing and best efficient with lowest cost. Correlations between the solar and wind power data were carried out on an hourly, daily, and monthly basis. It is shown that the hybrid system can be applied for the efficient and economic utilization of wind and solar renewable energy sources.

  7. Computation of wheel-rail contact force for non-mapping wheel-rail profile of Translohr tram

    Science.gov (United States)

    Ji, Yuanjin; Ren, Lihui; Zhou, Jinsong

    2017-09-01

    Translohr tram has steel wheels, in V-like arrangements, as guide wheels. These operate over the guide rails in inverted-V arrangements. However, the horizontal and vertical coordinates of the guide wheels and guide rails are not always mapped one-to-one. In this study, a simplified elastic method is proposed in order to calculate the contact points between the wheels and the rails. By transforming the coordinates, the non-mapping geometric relationship between wheel and rail is converted into a mapping relationship. Considering the Translohr tram's multi-point contact between the guide wheel and the guide rail, the elastic-contact hypothesis take into account the existence of contact patches between the bodies, and the location of the contact points is calculated using a simplified elastic method. In order to speed up the calculation, a multi-dimensional contact table is generated, enabling the use of simulation for Translohr tram running on curvatures with different radii.

  8. Contextualizing avian mortality: A preliminary appraisal of bird and bat fatalities from wind, fossil-fuel, and nuclear electricity

    International Nuclear Information System (INIS)

    Sovacool, Benjamin K.

    2009-01-01

    This article explores the threats that wind farms pose to birds and bats before briefly surveying the recent literature on avian mortality and summarizing some of the problems with it. Based on operating performance in the United States and Europe, this study offers an approximate calculation for the number of birds killed per kWh generated for wind electricity, fossil-fuel, and nuclear power systems. The study estimates that wind farms and nuclear power stations are responsible each for between 0.3 and 0.4 fatalities per gigawatt-hour (GWh) of electricity while fossil-fueled power stations are responsible for about 5.2 fatalities per GWh. While this paper should be respected as a preliminary assessment, the estimate means that wind farms killed approximately seven thousand birds in the United States in 2006 but nuclear plants killed about 327,000 and fossil-fueled power plants 14.5 million. The paper concludes that further study is needed, but also that fossil-fueled power stations appear to pose a much greater threat to avian wildlife than wind and nuclear power technologies.

  9. Contextualizing avian mortality: A preliminary appraisal of bird and bat fatalities from wind, fossil-fuel, and nuclear electricity

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore, Singapore 259772 (Singapore)], E-mail: bsovacool@nus.edu.sg

    2009-06-15

    This article explores the threats that wind farms pose to birds and bats before briefly surveying the recent literature on avian mortality and summarizing some of the problems with it. Based on operating performance in the United States and Europe, this study offers an approximate calculation for the number of birds killed per kWh generated for wind electricity, fossil-fuel, and nuclear power systems. The study estimates that wind farms and nuclear power stations are responsible each for between 0.3 and 0.4 fatalities per gigawatt-hour (GWh) of electricity while fossil-fueled power stations are responsible for about 5.2 fatalities per GWh. While this paper should be respected as a preliminary assessment, the estimate means that wind farms killed approximately seven thousand birds in the United States in 2006 but nuclear plants killed about 327,000 and fossil-fueled power plants 14.5 million. The paper concludes that further study is needed, but also that fossil-fueled power stations appear to pose a much greater threat to avian wildlife than wind and nuclear power technologies.

  10. Contextualizing avian mortality. A preliminary appraisal of bird and bat fatalities from wind, fossil-fuel, and nuclear electricity

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore, Singapore 259772 (Singapore)

    2009-06-15

    This article explores the threats that wind farms pose to birds and bats before briefly surveying the recent literature on avian mortality and summarizing some of the problems with it. Based on operating performance in the United States and Europe, this study offers an approximate calculation for the number of birds killed per kWh generated for wind electricity, fossil-fuel, and nuclear power systems. The study estimates that wind farms and nuclear power stations are responsible each for between 0.3 and 0.4 fatalities per gigawatt-hour (GWh) of electricity while fossil-fueled power stations are responsible for about 5.2 fatalities per GWh. While this paper should be respected as a preliminary assessment, the estimate means that wind farms killed approximately seven thousand birds in the United States in 2006 but nuclear plants killed about 327,000 and fossil-fueled power plants 14.5 million. The paper concludes that further study is needed, but also that fossil-fueled power stations appear to pose a much greater threat to avian wildlife than wind and nuclear power technologies. (author)

  11. Maximum capacity model of grid-connected multi-wind farms considering static security constraints in electrical grids

    International Nuclear Information System (INIS)

    Zhou, W; Oodo, S O; He, H; Qiu, G Y

    2013-01-01

    An increasing interest in wind energy and the advance of related technologies have increased the connection of wind power generation into electrical grids. This paper proposes an optimization model for determining the maximum capacity of wind farms in a power system. In this model, generator power output limits, voltage limits and thermal limits of branches in the grid system were considered in order to limit the steady-state security influence of wind generators on the power system. The optimization model was solved by a nonlinear primal-dual interior-point method. An IEEE-30 bus system with two wind farms was tested through simulation studies, plus an analysis conducted to verify the effectiveness of the proposed model. The results indicated that the model is efficient and reasonable.

  12. Maximum capacity model of grid-connected multi-wind farms considering static security constraints in electrical grids

    Science.gov (United States)

    Zhou, W.; Qiu, G. Y.; Oodo, S. O.; He, H.

    2013-03-01

    An increasing interest in wind energy and the advance of related technologies have increased the connection of wind power generation into electrical grids. This paper proposes an optimization model for determining the maximum capacity of wind farms in a power system. In this model, generator power output limits, voltage limits and thermal limits of branches in the grid system were considered in order to limit the steady-state security influence of wind generators on the power system. The optimization model was solved by a nonlinear primal-dual interior-point method. An IEEE-30 bus system with two wind farms was tested through simulation studies, plus an analysis conducted to verify the effectiveness of the proposed model. The results indicated that the model is efficient and reasonable.

  13. Wheel speed management control system for spacecraft

    Science.gov (United States)

    Goodzeit, Neil E. (Inventor); Linder, David M. (Inventor)

    1991-01-01

    A spacecraft attitude control system uses at least four reaction wheels. In order to minimize reaction wheel speed and therefore power, a wheel speed management system is provided. The management system monitors the wheel speeds and generates a wheel speed error vector. The error vector is integrated, and the error vector and its integral are combined to form a correction vector. The correction vector is summed with the attitude control torque command signals for driving the reaction wheels.

  14. Studies for Characterisation of Electrical Properties of DC Collection System in Offshore Wind Farms

    DEFF Research Database (Denmark)

    Chen, Yu-Hsing; Dincan, Catalin Gabriel; Olsen, Rolant Joannesarson

    2016-01-01

    Offshore HVDC-connected wind farms where the wind plant power collection network becomes DC, rather than AC, offer reduced electrical losses, lower equipment ratings potentially leading to lower bill-of-material cost, and undiminished functionality. However, no standards exist for an offshore...... medium-voltage DC power collection cable-based system, routing power from MVDC wind turbines all the way to the HVDC export cable. To progress, it is therefore important to establish some common reference for the design and performance of the components needed in an MVDC collection network. Any suggested...... of the MVDC power collection, regardless of choice of turbine converter circuit, MVDC cable configuration, use of DC circuit breakers, substation converter circuit, control and protection. The paper presents the necessary list of studies, and includes examples of simulation results for an exemplary MVDC wind...

  15. Equivalent circuit and characteristic simulation of a brushless electrically excited synchronous wind power generator

    Science.gov (United States)

    Wang, Hao; Zhang, Fengge; Guan, Tao; Yu, Siyang

    2017-09-01

    A brushless electrically excited synchronous generator (BEESG) with a hybrid rotor is a novel electrically excited synchronous generator. The BEESG proposed in this paper is composed of a conventional stator with two different sets of windings with different pole numbers, and a hybrid rotor with powerful coupling capacity. The pole number of the rotor is different from those of the stator windings. Thus, an analysis method different from that applied to conventional generators should be applied to the BEESG. In view of this problem, the equivalent circuit and electromagnetic torque expression of the BEESG are derived on the basis of electromagnetic relation of the proposed generator. The generator is simulated and tested experimentally using the established equivalent circuit model. The experimental and simulation data are then analyzed and compared. Results show the validity of the equivalent circuit model.

  16. Electricity market participation of wind farms: the success story of the Spanish pragmatism

    Energy Technology Data Exchange (ETDEWEB)

    Rivier Abbad, Juan, E-mail: jrivier@iberdrola.e [Iberdrola Renovables, 28033 Madrid (Spain)

    2010-07-15

    In the last 10 years, more than 15 GW of wind power (Asociacion Empresarial Eolica (Spanish Wind Energy Association), Nota de prensa (Press release) 17 de enero de 2008. (http://www.aeeolica.org/doc/NP_080117_Espana_supera_los_15000_MW_eolicos.pdf)) have been installed in Spain, of which more than 3.5 GW in 2007. Furthermore, plans are to reach 20 GW by 2010 and there are expectations of an installed capacity exceeding 40 GW by 2020. This article will present the innovative solutions for technical and economical integration that allow to reach such high level wind penetration objectives (the system peaks at around 44 GW and is almost isolated). It will be described how the regulation has evolved from a pure Feed-in-Tariff to a market+premium option, where technical and economic integration has been a priority. Today, approximately 97% of installed wind capacity accesses the Spanish wholesale electricity market. Market integration has been crucial, sending the correct signals to participants to look for the optimum technical solutions. Technical improvements have come from both wind power producers (fault-ride-through capabilities, visibility and controllability of wind power, power production forecasting, reactive power control) and the system operator (specific control centre dedicated to Renewable Energy Sources (RES), new security analysis tools, gaining technical confidence of wind capabilities).

  17. Worldwide potential of wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Flavin, C

    1982-01-01

    A well-documented discussion is presented dealing with the worldwide potential of wind energy as a source of electrical and mechanical power. It is pointed out that 2% of the solar insolation is converted to wind kinetic energy; it is constantly renewed and nondepletable. Efficiency of windmills are discussed (20 to 40%) and payback periods of less than 5 years are cited. Effects of wind velocity and site location are described. Wind pumps are reviewed and the need for wind pumps, particularly in the developing countries is stressed. The generation of electricity by windmills using small turbines is reviewed and appears promising in areas with wind velocities greater than 12 mi/hr. The development of large windmills and groups of windmills (windfarms) for large scale electrical power is discussed, illustrated, and reviewed (offshore sites included). Environmental and safety problems are considered as well as the role of electrical utilities, government support and research activities. It is concluded that the potential contribution of wind energy is immense and that mechanical windmills may become one of the most important renewable technologies. Electrical generating potential is estimated at 20 to 30% of electrical needs. International programs are discussed briefly. 57 references. (MJJ)

  18. Wind power production: from the characterisation of the wind resource to wind turbine technologies

    International Nuclear Information System (INIS)

    Beslin, Guy; Multon, Bernard

    2016-01-01

    Illustrated by graphs and tables, this article first describes the various factors and means related to the assessment of wind resource in the World, in Europe, and the factors which characterize a local wind resource. In this last respect, the authors indicate how local topography is taken into account to calculate wind speed, how time variations are taken into account (at the yearly, seasonal or daily level), the different methods used to model a local wind resource, how to assess the power recoverable by a wind turbine with horizontal axis (notion of Betz limit). In the second part, the authors present the different wind turbines, their benefits and drawbacks: vertical axis, horizontal axis (examples of a Danish-type wind turbine, of wind turbines designed for extreme conditions). Then, they address the technology of big wind turbines: evolution of technology and of commercial offer, aerodynamic characteristics of wind turbine and benefit of a varying speed (technological solutions, importance of the electric generator). They describe how to choose a wind turbine, how product lines are organised, how the power curve and energy capacity are determined. The issue of integration of wind energy into the power system is then addressed. The next part addressed the economy of wind energy production (annualized production cost, order of magnitude of wind electric power production cost). Future trends are discussed and offshore wind energy production is briefly addressed

  19. Kinetic-Scale Electric and Magnetic Field Fluctuations in the Solar Wind at 1 AU: THEMIS/ARTEMIS Observations

    Science.gov (United States)

    Salem, C. S.; Hanson, E.; Bonnell, J. W.; Chaston, C. C.; Bale, S. D.; Mozer, F.

    2017-12-01

    We present here an analysis of kinetic-scale electromagnetic fluctuations in the solar wind using data from THEMIS and ARTEMIS spacecraft. We use high-time resolution electric and magnetic field measurements, as well as density fluctuations, up to 128 samples per second, as well as particle burst plasma data during carefully selected solar wind intervals. We focus our analysis on a few such intervals spanning different values of plasma beta and angles between the local magnetic field and the radial Sun-Earth direction. We discuss the careful analysis process of characterizing and removing the different instrumental effects and noise sources affecting the electric and magnetic field data at those scales, above 0.1 Hz or so, above the breakpoint marking the start of the so-called dissipation range of solar wind turbulence. We compute parameters such as the electric to magnetic field ratio, the magnetic compressibility, magnetic helicity, and other relevant quantities in order to diagnose the nature of the fluctuations at those scales between the ion and electron cyclotron frequencies, extracting information on the dominant modes composing the fluctuations. We also discuss the presence and role of coherent structures in the measured fluctuations. The nature of the fluctuations in the dissipation or dispersive scales of solar wind turbulence is still debated. This observational study is also highly relevant to the current Turbulent Dissipation Challenge.

  20. Nordic wind power conference 2007. Proceedings

    International Nuclear Information System (INIS)

    Cutululis, Nicolaos; Soerensen, Poul

    2007-11-01

    This fourth Nordic Wind Power Conference was focused on power system integration and electrical systems of wind turbines and wind farms. NWPC presents the newest research results related to technical electrical aspects of wind power, spanning from power system integration to electrical design and control of wind turbines. The first NWPC was held in Trondheim (2000), Norway, the second in Gothenburg (2004), Sweden, and the third in Espoo (2006), Finland. Invited speakers, oral presentation of papers and poster sessions ensured this to be a valuable event for professionals and high-level students wanting to strengthen their knowledge on wind power integration and electrical systems. (au)

  1. Nordic wind power conference 2007. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Cutululis, N; Soerensen, P [eds.

    2007-11-15

    This fourth Nordic Wind Power Conference was focused on power system integration and electrical systems of wind turbines and wind farms. NWPC presents the newest research results related to technical electrical aspects of wind power, spanning from power system integration to electrical design and control of wind turbines. The first NWPC was held in Trondheim (2000), Norway, the second in Gothenburg (2004), Sweden, and the third in Espoo (2006), Finland. Invited speakers, oral presentation of papers and poster sessions ensured this to be a valuable event for professionals and high-level students wanting to strengthen their knowledge on wind power integration and electrical systems. (au)

  2. Study into the Potential and Feasibility of a Standalone Solar-Wind Hybrid Electric Energy Supply System

    Energy Technology Data Exchange (ETDEWEB)

    Bekele, Getachew

    2009-12-15

    The tendency to use renewable energy resources has grown continuously over the past few decades, be it due to fear over warnings of global warming or because of the depletion and short life of fossil fuels or even as a result of the interest which has developed among researchers doing scientific research into it. This work can be considered as joining any of these groups with an objective of giving electric light to the poor population living in one of the poorest nations in the world. The aim of the work is to investigate supplying electric energy from solar-wind hybrid resources to remotely located communities detached from the main grid line in Ethiopia. The communities in mind are one of two types; the first is the majority of the poor population residing in the country-side; and the other is people relocated by the Government from the over-used and dry regions to relatively productive and fertile ones in line with the long-term poverty reduction plan. The work was begun by investigating wind energy and solar energy potentials at four geographically different locations in Ethiopia by compiling data from different sources and analyzing it using a software tool. The locations are Addis Ababa (09:02N, 038:42E), Mekele (13:33N,39:30E), Nazret (08:32N, 039:22E), and Debrezeit (8:44N, 39:02E). The results related to wind energy potential are given in terms of the monthly Average wind speed, the wind speed probability density function (PDF), the wind speed cumulative density function (CDF), the wind speed duration curve (DC), and power density plots for all four selected sites. According to the results obtained through the analysis, the wind energy potential, even if it is not exceptional, is irrefutably high enough to be exploited for generating electric energy. The solar energy potential, based on sunshine duration data collected over a period of 7 - 11 years and radiation data obtained from different sources, has been calculated using regression coefficients

  3. Danish Wind Power Export and Cost

    DEFF Research Database (Denmark)

    Lund, Henrik; Hvelplund, Frede; Alberg Østergaard, Poul

    In a normal wind year, Danish wind turbines generate the equivalent of approx. 20 percent of the Danish electricity demand. This paper argues that only approx. 1 percent of the wind power production is exported. The rest is used to meet domestic Danish electricity demands. The cost of wind power...... misleading. The cost of CO2 reduction by use of wind power in the period 2004-2008 was only 20 EUR/ton. Furthermore, the Danish wind turbines are not paid for by energy taxes. Danish wind turbines are given a subsidy via the electricity price which is paid by the electricity consumers. In the recent years...... is paid solely by the electricity consumers and the net influence on consumer prices was as low as 1-3 percent on average in the period 2004-2008. In 2008, the net influence even decreased the average consumer price, although only slightly. In Denmark, 20 percent wind power is integrated by using both...

  4. Wheel inspection system environment.

    Science.gov (United States)

    2008-11-18

    International Electronic Machines Corporation (IEM) has developed and is now marketing a state-of-the-art Wheel Inspection System Environment (WISE). WISE provides wheel profile and dimensional measurements, i.e. rim thickness, flange height, flange ...

  5. MICRO-ARC DIELECTRIC COATINGS ON ALUMINUM ALLOYS OF GRINDING WHEEL FRAMEWORKS

    Directory of Open Access Journals (Sweden)

    Yury GUTSALENKO

    2018-05-01

    Full Text Available It is presented the development of local electrically insulating coatings for tool of the technologies of high-efficient processing with the introduction the energy of electrical discharges into the cutting zone to maintain a working capacity of grinding wheels with diamond-metal composition of the working part. Development is an alternative to the electrical insulation upgrade of spindle units of universal grinding machines. The dielectric properties of micro-arc oxide coatings on deformable aluminum alloys formed on an alternating current in the regime of an arbitrarily falling power in alkali-silicate solutions have been studied. Information about the features of practical implementation of development is given.

  6. Wind blows where (and when) it wants: an analysis of the French electricity production, September-December 2010 - preliminary analysis

    International Nuclear Information System (INIS)

    2011-01-01

    This document analyses the set of data published on the RTE web site and concerning the electricity production and consumption in France from September to December 2010. Having a closer look to the wind energy production, it notably shows that, as expected, all steerable means of production play a coordinated role in covering the required power needs. The analysis of the wind energy power shows a 23 pc average efficiency which is associated to the strong fluctuations which are typical for this type of intermittent production. It notices that time and energy distributions of wind energy power supplied to the network are not related to increased electricity needs during this autumn period which is marked by several cold waves

  7. The Design of a Permanent Magnet In-Wheel Motor with Dual-Stator and Dual-Field-Excitation Used in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Peng Gao

    2018-02-01

    Full Text Available The in-wheel motor has received more attention owing to its simple structure, high transmission efficiency, flexible control, and easy integration design. It is difficult to achieve high performance with conventional motors due to their dimensions and structure. This paper presents a new dual-stator and dual-field-excitation permanent-magnet in-wheel motor (DDPMIM that is based on the structure of the conventional in-wheel motor and the structure of both the radial and axial magnetic field motor. The finite element analysis (FEA model of the DDPMIM is established and compared with that of the conventional in-wheel motor. The results show that the DDPMIM achieves a higher output torque at low speeds and that the flux-weakening control strategy is not needed in the full speed range.

  8. Analysing the impact of renewable electricity support schemes on power prices: The case of wind electricity in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Saenz de Miera, Gonzalo [Department of Public Economics, Universidad Autonoma de Madrid, Campus de Cantoblanco, Madrid 28049 (Spain); del Rio Gonzalez, Pablo [Institute for Public Policies, Centro de Ciencias Humanas y Sociales, CSIC, C/Albasanz 26-28, 28037 Madrid (Spain); Vizcaino, Ignacio [Iberdrola, C/Tomas Redondo, 1, Madrid 28033 (Spain)

    2008-09-15

    It is sometimes argued that renewables are 'expensive'. However, although it is generally true that the private costs of renewable electricity generation are certainly above those of conventional electricity, that statement fails to consider the social benefits provided by electricity from renewable energy sources (RES-E), including environmental and socioeconomic ones. This paper empirically analyses an additional albeit usually neglected benefit: the reduction in the wholesale price of electricity as a result of more RES-E generation being fed into the grid. The case of wind generation in Spain shows that this reduction is greater than the increase in the costs for the consumers arising from the RES-E support scheme (the feed-in tariffs), which are charged to the final consumer. Therefore, a net reduction in the retail electricity price results, which is positive from a consumer point of view. This provides an additional argument for RES-E support and contradicts one of the usual arguments against RES-E deployment: the excessive burden on the consumer. (author)

  9. What day-ahead reserves are needed in electric grids with high levels of wind power?

    International Nuclear Information System (INIS)

    Mauch, Brandon; Apt, Jay; Jaramillo, Paulina; Carvalho, Pedro M S

    2013-01-01

    Day-ahead load and wind power forecasts provide useful information for operational decision making, but they are imperfect and forecast errors must be offset with operational reserves and balancing of (real time) energy. Procurement of these reserves is of great operational and financial importance in integrating large-scale wind power. We present a probabilistic method to determine net load forecast uncertainty for day-ahead wind and load forecasts. Our analysis uses data from two different electric grids in the US with similar levels of installed wind capacity but with large differences in wind and load forecast accuracy, due to geographic characteristics. We demonstrate that the day-ahead capacity requirements can be computed based on forecasts of wind and load. For 95% day-ahead reliability, this required capacity ranges from 2100 to 5700 MW for ERCOT, and 1900 to 4500 MW for MISO (with 10 GW of installed wind capacity), depending on the wind and load forecast values. We also show that for each MW of additional wind power capacity for ERCOT, 0.16–0.30 MW of dispatchable capacity will be used to compensate for wind uncertainty based on day-ahead forecasts. For MISO (with its more accurate forecasts), the requirement is 0.07–0.13 MW of dispatchable capacity for each MW of additional wind capacity. (letter)

  10. Wind turbine storage systems

    International Nuclear Information System (INIS)

    Ibrahim, H.; Ilinca, A.; Perron, J.

    2005-01-01

    Electric power is often produced in locations far from the point of utilization which creates a challenge in stabilizing power grids, particularly since electricity cannot be stored. The production of decentralized electricity by renewable energy sources offers a greater security of supply while protecting the environment. Wind power holds the greatest promise in terms of environmental protection, competitiveness and possible applications. It is known that wind energy production is not always in phase with power needs because of the uncertainty of wind. For that reason, energy storage is the key for the widespread integration of wind energy into the power grids. This paper proposed various energy storage methods that can be used in combination with decentralized wind energy production where an imbalance exists between electricity production and consumption. Energy storage can play an essential role in bringing value to wind energy, particularly if electricity is to be delivered during peak hours. Various types of energy storage are already in use or are being developed. This paper identified the main characteristics of various electricity storage techniques and their applications. They include stationary or embarked storage for long or short term applications. A comparison of characteristics made it possible to determine which types of electricity storage are best suited for wind energy. These include gravity energy; thermal energy; compressed air energy; coupled storage with natural gas; coupled storage with liquefied gas; hydrogen storage for fuel cells; chemical energy storage; storage in REDOX batteries; storage by superconductive inductance; storage in supercondensers; and, storage as kinetic energy. 21 refs., 21 figs

  11. The wind power of Mexico

    International Nuclear Information System (INIS)

    Hernandez-Escobedo, Q.; Manzano-Agugliaro, F.; Zapata-Sierra, A.

    2010-01-01

    The high price of fossil fuels and the environmental damage they cause have encouraged the development of renewable energy resources, especially wind power. This work discusses the potential of wind power in Mexico, using data collected every 10 min between 2000 and 2008 at 133 automatic weather stations around the country. The wind speed, the number of hours of wind useful for generating electricity and the potential electrical power that could be generated were estimated for each year via the modelling of a wind turbine employing a logistic curve. A linear correlation of 90.3% was seen between the mean annual wind speed and the mean annual number of hours of useful wind. Maps were constructed of the country showing mean annual wind speeds, useful hours of wind, and the electrical power that could be generated. The results show that Mexico has great wind power potential with practically the entire country enjoying more than 1700 h of useful wind per year and the potential to generate over 2000 kW of electrical power per year per wind turbine installed (except for the Chiapas's State). Indeed, with the exception of six states, over 5000 kW per year could be generated by each turbine. (author)

  12. Four-Wheel Vehicle Suspension System

    Science.gov (United States)

    Bickler, Donald B.

    1990-01-01

    Four-wheel suspension system uses simple system of levers with no compliant components to provide three-point suspension of chassis of vehicle while maintaining four-point contact with uneven terrain. Provides stability against tipping of four-point rectangular base, without rocking contact to which rigid four-wheel frame susceptible. Similar to six-wheel suspension system described in "Articulated Suspension Without Springs" (NPO-17354).

  13. Analysis of electricity price in Danish competitive electricity market

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte

    2012-01-01

    electricity markets in some ways, is chosen as the studied power system. 10 year actual data from the Danish competitive electricity market are collected and analyzed. The relationship among the electricity price (both the spot price and the regulation price), the consumption and the wind power generation...... in an electricity market is investigated in this paper. The spot price and the regulation price generally decrease when the wind power penetration in the power system increases or the consumption of the power system decreases. The statistical characteristics of the spot price and the regulation price for different...... consumption periods and wind power penetration are analyzed. Simulation results show that the findings of this paper are useful for wind power generation companies to make the optimal bidding strategy so that the imbalance cost of trading wind power on the electricity market could be reduced....

  14. Railway bogie vibration analysis by mathematical simulation model and a scaled four-wheel railway bogie set

    Science.gov (United States)

    Visayataksin, Noppharat; Sooklamai, Manon

    2018-01-01

    The bogie is the part that connects and transfers all the load from the vehicle body onto the railway track; interestingly the interaction between wheels and rails is the critical point for derailment of the rail vehicles. However, observing or experimenting with real bogies on rail vehicles is impossible due to the operational rules and safety concerns. Therefore, this research aimed to develop a vibration analysis set for a four-wheel railway bogie by constructing a four-wheel bogie with scale of 1:4.5. The bogie structures, including wheels and axles, were made from an aluminium alloy, equipped with springs and dampers. The bogie was driven by an electric motor using 4 round wheels instead of 2 straight rails, with linear velocity between 0 to 11.22 m/s. The data collected from the vibration analysis set was compared to the mathematical simulation model to investigate the vibration behavior of the bogie, especially the hunting motion. The results showed that vibration behavior from a scaled four-wheel railway bogie set significantly agreed with the mathematical simulation model in terms of displacement and hunting frequency. The critical speed of the wheelset was found by executing the mathematical simulation model at 13 m/s.

  15. Commercial wind power

    International Nuclear Information System (INIS)

    Braun, G.W.; Smith, D.R.

    1992-01-01

    In 1990 the 23,000 wind turbines in the world connected to utility grids were rated at a total of 2200 MW and produced 3,353,000,000 kWh of electricity. This represents the residential use of a city with population of 1,000,000 at US energy use rates, or 2,000,000 at European rates. Denmark produced about 2% of its electricity from the wind, while California and Hawaii produced about 1% of theirs. California wind farms produced 76% of the world total, and Pacific Gas and Electric Company (PG and E) received nearly half of this. In addition to these grid-connected turbines, more than 50,000 smaller turbines (averaging about 100 watts each) supplied electricity to remote areas, such as Mongolia. Such non-grid-connected turbines can be components of hybrid generation systems when combined with energy storage and/or complementary power sources. However, the emphasis of this paper is on utility-connected wind turbines. Wind also supplies mechanical energy, such as for water pumping

  16. The Reaction Wheel Pendulum

    CERN Document Server

    Block, Daniel J; Spong, Mark W

    2007-01-01

    This monograph describes the Reaction Wheel Pendulum, the newest inverted-pendulum-like device for control education and research. We discuss the history and background of the reaction wheel pendulum and other similar experimental devices. We develop mathematical models of the reaction wheel pendulum in depth, including linear and nonlinear models, and models of the sensors and actuators that are used for feedback control. We treat various aspects of the control problem, from linear control of themotor, to stabilization of the pendulum about an equilibrium configuration using linear control, t

  17. Electric Vehicles for Improved Operation of Power Systems with High Wind Power Penetration

    DEFF Research Database (Denmark)

    Larsen, Esben; Chandrashekhara, Divya K; Østergaard, Jacob

    2008-01-01

    In a power system with a high share of wind energy the wind fluctuation causes a variation in the power generation, which must be compensated from other sources. The situation in Denmark with a penetration of more than 20% wind in yearly average is presented. The introduction of electric drive...... vehicles (EDV) as flexible loads can improve the system operation. Bidirectional power exchange through batteries (vehicle to grid) can be seen as a storage system in the grid. An analysis of possible economical incentives for the vehicle owners will be shown. By control of EDV charging through a price...... signal from the day ahead market the economical incentives for an EDV-owner will be small. If the EDV's can participate in the regulation of the grid through ancillary services the incentives will be increased to an attractive level....

  18. Valuation of switchable tariff for wind energy

    International Nuclear Information System (INIS)

    Yu, Wang; Sheble, Gerald B.; Lopes, Joao A. Pecas; Matos, Manuel Antonio

    2006-01-01

    The current fixed tariff remuneration for wind energy is not compatible with the deregulation of the electric power industry. The time-varying and location-dependent value of renewable energy is not acknowledged. The newly announced switchable tariff for wind energy in the Spanish electricity market provides a promising solution to compensating renewable energy within the deregulated electric power industry. The new switchable tariff provides wind generators more flexibility in operating wind generation assets. Such flexibilities provide option value in coordinating the seasonality of wind energy, demand on electric power and electricity prices movement. This paper models and valuates the flexibility on switching tariff as real compound options for wind generators. Numerical examples valuate wind generation assets under fixed tariff, spot market price taking, and yearly and monthly switchable tariffs. The optimal switching strategies are identified. The impacts of the switchable tariff on sitting criteria and values of wind generation assets are investigated. An improvement on the yearly switchable tariff is suggested to further reduce the operation risk of wind generators and fully explore the efficiency provided by competitive electricity markets. (author)

  19. Electrical Aspects of Wind Turbines

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede

    2009-01-01

    This is the most authoritative single volume on offshore wind power yet published. Distinguished experts, mainly from Europe's leading universities, have contributed a collection of peer reviewed papers on the interfaces between wind power technology and marine engineering. The range of issues...

  20. Generation of electricity from wind

    International Nuclear Information System (INIS)

    Debroy, S.K.; Behera, S.; Murty, J.S.

    1997-01-01

    Bulk power can be generated by using a chain of wind mills with the current level of technology. Wind turbine technology has improved considerably resulting in better efficiency, availability and capacity factor including a significant reduction in the cost of manufacture and installation