WorldWideScience

Sample records for wind velocities ranging

  1. Solar wind velocity and geomagnetic moment variations

    International Nuclear Information System (INIS)

    Kalinin, Yu.D.; Rozanova, T.S.

    1982-01-01

    The mean year values of the solar wind velocity have been calculated from the mean-year values of a geomagnetic activity index am according to the Svalgard equation of regression for the pe-- riod from 1930 to 1960. For the same years the values of the geomagnetic moment M and separately of its ''inner'' (causes of which'' are inside the Earth) and ''external'' (causes of which are outside the Earth) parts have been calculated from the mean year data of 12 magnetic observatories. The proof of the presence of the 11-year variation in the moment M has been obtained. It is concluded that the 11-year variations in M result from the variations of the solar wind velocity

  2. Extending the unambiguous velocity range using multiple carrier frequencies

    DEFF Research Database (Denmark)

    Zhang, Z.; Jakobsson, A.; Nikolov, Svetoslav

    2005-01-01

    Typically, velocity estimators based on the estimation of the Doppler shift will suffer from a limited unambiguous velocity range. Proposed are two novel multiple carrier based velocity estimators extending the velocity range above the Nyquist velocity limit. Numerical simulations indicate...

  3. A Model for Determining the Effect of the Wind Velocity on 100 M Sprinting Performance

    Directory of Open Access Journals (Sweden)

    Janjic Natasa

    2017-06-01

    Full Text Available This paper introduces an equation for determining instantaneous and final velocity of a sprinter in a 100 m run completed with a wind resistance ranging from 0.1 to 4.5 m/s. The validity of the equation was verified using the data of three world class sprinters: Carl Lewis, Maurice Green, and Usain Bolt. For the given constant wind velocity with the values + 0.9 and + 1.1 m/s, the wind contribution to the change of sprinter velocity was the same for the maximum as well as for the final velocity. This study assessed how the effect of the wind velocity influenced the change of sprinting velocity. The analysis led to the conclusion that the official limit of safely neglecting the wind influence could be chosen as 1 m/s instead of 2 m/s, if the velocity were presented using three, instead of two decimal digits. This implies that wind velocity should be rounded off to two decimal places instead of the present practice of one decimal place. In particular, the results indicated that the influence of wind on the change of sprinting velocity in the range of up to 2 m/s and was of order of magnitude of 10-3 m/s. This proves that the IAAF Competition Rules correctly neglect the influence of the wind with regard to such velocities. However, for the wind velocity over 2 m/s, the wind influence is of order 10-2 m/s and cannot be neglected.

  4. Wind shear proportional errors in the horizontal wind speed sensed by focused, range gated lidars

    DEFF Research Database (Denmark)

    Lindelöw, Per Jonas Petter; Courtney, Michael; Parmentier, R.

    2008-01-01

    altitude. The altitude errors of focused range gated lidars are likely to arise partly from an unaccounted shift of the weighting functions, describing the sample volume, due to the range dependent collection efficiency of the focused telescope. Possibilities of correcting the lidar measurements both...... an altitude dependent relation between the lidar error and the wind shear. A likely explanation for this relation is an error in the intended sensing altitude. At most this error is estimated to 9 in which induced errors in the horizontal wind velocity of up to 0.5 m/s as compared to a cup at the intended...... for wind velocity and wind shear dependent errors are discussed. The 2-parametric regression analysis described in this paper is proven to be a better approach when acceptance testing and calibrating lidars....

  5. Characterization of wind velocities in the wake of a full scale wind turbine using three ground-based synchronized WindScanners

    DEFF Research Database (Denmark)

    Yazicioglu, Hasan; Angelou, Nikolas; Mikkelsen, Torben Krogh

    2016-01-01

    , installed at Risoe test field, has been measured from 0 to 2 diameters downstream. For this, three ground-based synchronised short-range WindScanners and a spinner lidar have been used. The 3D wind velocity field has been reconstructed in horizontal and vertical planes crossing the hub. The 10-min mean...

  6. Wind Velocity Vertical Extrapolation by Extended Power Law

    Directory of Open Access Journals (Sweden)

    Zekai Şen

    2012-01-01

    Full Text Available Wind energy gains more attention day by day as one of the clean renewable energy resources. We predicted wind speed vertical extrapolation by using extended power law. In this study, an extended vertical wind velocity extrapolation formulation is derived on the basis of perturbation theory by considering power law and Weibull wind speed probability distribution function. In the proposed methodology not only the mean values of the wind speeds at different elevations but also their standard deviations and the cross-correlation coefficient between different elevations are taken into consideration. The application of the presented methodology is performed for wind speed measurements at Karaburun/Istanbul, Turkey. At this location, hourly wind speed measurements are available for three different heights above the earth surface.

  7. Wind turbine wake characterization using long-range Doppler lidar

    Science.gov (United States)

    Aitken, M.; Lundquist, J. K.; Hestmark, K.; Banta, R. M.; Pichugina, Y.; Brewer, A.

    2012-12-01

    Wind turbines extract energy from the freestream flow, resulting in a waked region behind the rotor which is characterized by reduced wind speed and increased turbulence. The velocity deficit in the wake diminishes with distance, as faster-moving air outside is gradually entrained. In a concentrated group of turbines, then, downwind machines experience very different inflow conditions compared to those in the front row. As utility-scale turbines rarely exist in isolation, detailed knowledge of the mean flow and turbulence structure inside wakes is needed to correctly model both power production and turbine loading at modern wind farms. To this end, the Turbine Wake and Inflow Characterization Study (TWICS) was conducted in the spring of 2011 to determine the reduction in wind speeds downstream from a multi-MW turbine located at the National Renewable Energy Laboratory's National Wind Technology Center (NWTC) near Boulder, Colorado. Full-scale measurements of wake dynamics are hardly practical or even possible with conventional sensors, such as cup anemometers mounted on meteorological (met) masts. Accordingly, the High Resolution Doppler Lidar (HRDL) developed by the National Oceanic and Atmospheric Administration's Earth System Research Laboratory was employed to investigate the formation and propagation of wakes under varying levels of ambient wind speed, shear, atmospheric stability, and turbulence. HRDL remotely senses line-of-sight wind velocities and has been used in several previous studies of boundary layer aerodynamics. With a fully steerable beam and a maximum range up to about 5 km, depending on atmospheric conditions, HRDL performed a comprehensive survey of the wind flow in front of and behind the turbine to study the shape, meandering, and attenuation of wakes. Due in large part to limited experimental data availability, wind farm wake modeling is still subject to an unacceptable amount of uncertainty, particularly in complex terrain. Here, analytical

  8. Characterization of wind velocities in the upstream induction zone of a wind turbine using scanning continuous-wave lidars

    DEFF Research Database (Denmark)

    Simley, Eric; Angelou, Nikolas; Mikkelsen, Torben Krogh

    2016-01-01

    9% and 3% of the freestream longitudinal wind speed were measured for the abovementioned high and low CP values, respectively. Turbulence statistics, calculated using 2.5-min time series, suggest that the standard deviation of the longitudinal wind component decreases close to the rotor, while...... Technical University’s Risø campus is investigated using a scanning Light Detection and Ranging (lidar) system. Three short-range continuous-wave “WindScanner” lidars are positioned in the field around the V27 turbine allowing detection of all three components of the wind velocity vectors within...... the induction zone. The time-averaged mean wind speeds at different locations in the upstream induction zone are measured by scanning a horizontal plane at hub height and a vertical plane centered at the middle of the rotor extending roughly 1.5 rotor diameters (D) upstream of the rotor. Turbulence statistics...

  9. Results of verification and investigation of wind velocity field forecast. Verification of wind velocity field forecast model

    International Nuclear Information System (INIS)

    Ogawa, Takeshi; Kayano, Mitsunaga; Kikuchi, Hideo; Abe, Takeo; Saga, Kyoji

    1995-01-01

    In Environmental Radioactivity Research Institute, the verification and investigation of the wind velocity field forecast model 'EXPRESS-1' have been carried out since 1991. In fiscal year 1994, as the general analysis, the validity of weather observation data, the local features of wind field, and the validity of the positions of monitoring stations were investigated. The EXPRESS which adopted 500 m mesh so far was improved to 250 m mesh, and the heightening of forecast accuracy was examined, and the comparison with another wind velocity field forecast model 'SPEEDI' was carried out. As the results, there are the places where the correlation with other points of measurement is high and low, and it was found that for the forecast of wind velocity field, by excluding the data of the points with low correlation or installing simplified observation stations to take their data in, the forecast accuracy is improved. The outline of the investigation, the general analysis of weather observation data and the improvements of wind velocity field forecast model and forecast accuracy are reported. (K.I.)

  10. Range/velocity limitations for time-domain blood velocity estimation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1993-01-01

    The traditional range/velocity limitation for blood velocity estimation systems using ultrasound is elucidated. It is stated that the equation is a property of the estimator used, not the actual physical measurement situation, as higher velocities can be estimated by the time domain cross...

  11. Effects of increasing tip velocity on wind turbine rotor design.

    Energy Technology Data Exchange (ETDEWEB)

    Resor, Brian Ray [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Maniaci, David Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Berg, Jonathan Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Richards, Phillip William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-05-01

    A reduction in cost of energy from wind is anticipated when maximum allowable tip velocity is allowed to increase. Rotor torque decreases as tip velocity increases and rotor size and power rating are held constant. Reduction in rotor torque yields a lighter weight gearbox, a decrease in the turbine cost, and an increase in the capacity for the turbine to deliver cost competitive electricity. The high speed rotor incurs costs attributable to rotor aero-acoustics and system loads. The increased loads of high speed rotors drive the sizing and cost of other components in the system. Rotor, drivetrain, and tower designs at 80 m/s maximum tip velocity and 100 m/s maximum tip velocity are created to quantify these effects. Component costs, annualized energy production, and cost of energy are computed for each design to quantify the change in overall cost of energy resulting from the increase in turbine tip velocity. High fidelity physics based models rather than cost and scaling models are used to perform the work. Results provide a quantitative assessment of anticipated costs and benefits for high speed rotors. Finally, important lessons regarding full system optimization of wind turbines are documented.

  12. Current Measurements Using Doppler Range Velocities over the Estuary of Yangtze River

    Science.gov (United States)

    Li, Huimin; Wang, Yunhua; Zhang, Yanmin

    2014-11-01

    Measurements of oceanic surface current using range velocity over Estuary of Yangtze River are examined based on range Doppler velocity retrieved from Advanced Synthetic Aperture Radar(ASAR). Sign Doppler Estimator (SDE) is employed to calculate Doppler Centroid with ASAR Imaging mode datasets. Both non- and geophysical errors are corrected to acquire more realistic surface current. In the process of corrections for geophysical errors, contributions of wind are removed utilizing phase velocity of wind-generated waves (Bragg resonant waves). In general, magnitude of retrieved current is approximately 1m/s, which is in reasonable concordance with long-term hydrological observations. Maps of ASAR-derived oceanic surface current seem to capture the synoptic characteristics of this Estuary. Assessments using tide table are implemented, which depict a potential in obtaining high precision currents. The derived results are encouraging and manifest that SAR does offer a valuable means to retrieve high-resolution current especially over coastal areas.

  13. Velocity Measurement Systems for a Low-speed Wind Tunnel

    Science.gov (United States)

    2015-04-29

    SECURITY CLASSIFICATION OF: Funds were provided by the ARO for the purchase of TSI hot-wire anemometer equipment and a Dantec particle- image...Velocity Measurement Systems for a Low-speed Wind Tunnel Report Title Funds were provided by the ARO for the purchase of TSI hot-wire anemometer equipment...Funds were provided by the Army Research Office for the purchase of TSI hot-wire anemometer equipment and a Dantec particle-image velocimetry system

  14. A method for measuring mean wind velocities in a canyon with tracer balloons

    Science.gov (United States)

    Sheih, C. M.; Billman, B. J.; Depaul, F. T.

    1985-08-01

    A method using balloons as tracers for measuring mean wind velocity in street canyons or mountain valleys has been developed. Tests of the method with numerical experiments showed that the method reproduced an assumed wind field quite well provided that the buoyancy component of the balloon velocity was larger than the downward velocity component of the wind. Tests of the method with measurements of wind velocity in a street canyon of downtown Chicago showed that the method yielded flow patterns quite similar to photographic results of flow visualization of phisical simulations by other investigators. However, no direct measurements of wind velocity were available for quantitative comparison.

  15. Characteristics of Wind Velocity and Temperature Change Near an Escarpment-Shaped Road Embankment

    Directory of Open Access Journals (Sweden)

    Young-Moon Kim

    2014-01-01

    Full Text Available Artificial structures such as embankments built during the construction of highways influence the surrounding airflow. Various types of damage can occur due to changes in the wind velocity and temperature around highway embankments. However, no study has accurately measured micrometeorological changes (wind velocity and temperature due to embankments. This study conducted a wind tunnel test and field measurement to identify changes in wind velocity and temperature before and after the construction of embankments around roads. Changes in wind velocity around an embankment after its construction were found to be influenced by the surrounding wind velocity, wind angle, and the level difference and distance from the embankment. When the level difference from the embankment was large and the distance was up to 3H, the degree of wind velocity declines was found to be large. In changes in reference wind velocities around the embankment, wind velocity increases were not proportional to the rate at which wind velocities declined. The construction of the embankment influenced surrounding temperatures. The degree of temperature change was large in locations with large level differences from the embankment at daybreak and during evening hours when wind velocity changes were small.

  16. Characteristics of Wind Velocity and Temperature Change Near an Escarpment-Shaped Road Embankment

    Science.gov (United States)

    Kim, Young-Moon; You, Ki-Pyo; You, Jang-Youl

    2014-01-01

    Artificial structures such as embankments built during the construction of highways influence the surrounding airflow. Various types of damage can occur due to changes in the wind velocity and temperature around highway embankments. However, no study has accurately measured micrometeorological changes (wind velocity and temperature) due to embankments. This study conducted a wind tunnel test and field measurement to identify changes in wind velocity and temperature before and after the construction of embankments around roads. Changes in wind velocity around an embankment after its construction were found to be influenced by the surrounding wind velocity, wind angle, and the level difference and distance from the embankment. When the level difference from the embankment was large and the distance was up to 3H, the degree of wind velocity declines was found to be large. In changes in reference wind velocities around the embankment, wind velocity increases were not proportional to the rate at which wind velocities declined. The construction of the embankment influenced surrounding temperatures. The degree of temperature change was large in locations with large level differences from the embankment at daybreak and during evening hours when wind velocity changes were small. PMID:25136681

  17. Entanglement-enhanced lidars for simultaneous range and velocity measurements

    Science.gov (United States)

    Zhuang, Quntao; Zhang, Zheshen; Shapiro, Jeffrey H.

    2017-10-01

    Lidar is a well-known optical technology for measuring a target's range and radial velocity. We describe two lidar systems that use entanglement between transmitted signals and retained idlers to obtain significant quantum enhancements in simultaneous measurements of these parameters. The first entanglement-enhanced lidar circumvents the Arthurs-Kelly uncertainty relation for simultaneous measurements of range and radial velocity from the detection of a single photon returned from the target. This performance presumes there is no extraneous (background) light, but is robust to the round-trip loss incurred by the signal photons. The second entanglement-enhanced lidar—which requires a lossless, noiseless environment—realizes Heisenberg-limited accuracies for both its range and radial-velocity measurements, i.e., their root-mean-square estimation errors are both proportional to 1 /M when M signal photons are transmitted. These two lidars derive their entanglement-based enhancements from the use of a unitary transformation that takes a signal-idler photon pair with frequencies ωS and ωI and converts it to a signal-idler photon pair whose frequencies are (ωS+ωI)/2 and (ωS-ωI)/2 . Insight into how this transformation provides its benefits is provided through an analogy to continuous-variable superdense coding.

  18. The Effect of Wind Velocity on the Cooling Rate of Water

    OpenAIRE

    Shrey Aryan

    2016-01-01

    The effect of wind velocity on the cooling rate of water was investigated by blowing air horizontally over the surface of water contained in a plastic water-bottle cap. The time taken for the temperature to fall to the average of the surrounding and initial temperatures was recorded at different values of wind velocity. It was observed that on increasing the wind velocity, the time taken to achieve average temperature not only decreased but also remained the same after a certain point.

  19. Semiconductor Laser Lidar Wind Velocity Sensor for Turbine Control

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Hu, Qi; Pedersen, Christian

    2014-01-01

    A dual line-of-sight CW lidar that measures both wind speed and direction is presented . The wind lidar employs a semiconductor laser, which allows for inexpensive remote sensors geared towards enhanced control of wind turbines .......A dual line-of-sight CW lidar that measures both wind speed and direction is presented . The wind lidar employs a semiconductor laser, which allows for inexpensive remote sensors geared towards enhanced control of wind turbines ....

  20. Characterization of wind velocities in the wake of a full scale wind turbine using three ground-based synchronized WindScanners

    Science.gov (United States)

    Yazicioglu, Hasan; Angelou, Nikolas; Mikkelsen, Torben; José Trujillo, Juan

    2016-09-01

    The wind energy community is in need of detailed full-field measurements in the wake of wind turbines. Here, three dimensional(3D) wind vector field measurements obtained in the near-wake region behind a full-scale test turbine are presented. Specifically, the wake of a NEG Nordtank turbine, installed at Risoe test field, has been measured from 0 to 2 diameters downstream. For this, three ground-based synchronised short-range WindScanners and a spinner lidar have been used. The 3D wind velocity field has been reconstructed in horizontal and vertical planes crossing the hub. The 10-min mean values of the three wind components reveal detailed information regarding the wake properties while propagating downwind over flat terrain. Furthermore, the wake centre is tracked from the measurements and its meander is investigated as function of yaw misalignment of the turbine. The centre-line wake deficit is calculated both in a Nacelle and Moving Frame of Reference. The results can be used in quantitative validation of numerical wake models.

  1. Addressing Spatial Variability of Surface-Layer Wind with Long-Range WindScanners

    DEFF Research Database (Denmark)

    Berg, Jacob; Vasiljevic, Nikola; Kelly, Mark C.

    2015-01-01

    This paper presents an analysis of mean wind measurements from a coordinated system of long-range WindScanners. From individual scan patterns the mean wind field was reconstructed over a large area, and hence it highlights the spatial variability. From comparison with sonic anemometers, the quality...

  2. Application of velocity filtering to optical-flow passive ranging

    Science.gov (United States)

    Barniv, Yair

    1992-01-01

    The performance of the velocity filtering method as applied to optical-flow passive ranging under real-world conditions is evaluated. The theory of the 3-D Fourier transform as applied to constant-speed moving points is reviewed, and the space-domain shift-and-add algorithm is derived from the general 3-D matched filtering formulation. The constant-speed algorithm is then modified to fit the actual speed encountered in the optical flow application, and the passband of that filter is found in terms of depth (sensor/object distance) so as to cover any given range of depths. Two algorithmic solutions for the problems associated with pixel interpolation and object expansion are developed, and experimental results are presented.

  3. Passive A-band Wind Sounder (PAWS) for measuring tropospheric wind velocity profile

    Science.gov (United States)

    Miecznik, Grzegorz; Pierce, Robert; Huang, Pei; Slaymaker, Philip A.; Kaptchen, Paul; Roark, Shane; Johnson, Brian R.; Heath, Donald F.

    2007-09-01

    The Passive A-Band Wind Sounder (PAWS) was funded through NASA's Instrument Incubator Program (IIP) to determine the feasibility of measuring tropospheric wind speed profiles from Doppler shifts in absorption O II A-band. It is being pursued as a low-cost and low-risk alternative capable of providing better wind data than is currently available. The instrument concept is adapted from the Wind Imaging Interferometer (WINDII) sensor on the Upper Atmosphere Research Satellite. The operational concept for PAWS is to view an atmospheric limb over an altitude range from the surface to 20 km with a Doppler interferometer in a sun-synchronous low-earth orbit. Two orthogonal views of the same sampling volume will be used to resolve horizontal winds from measured line-of-sight winds. A breadboard instrument was developed to demonstrate the measurement approach and to optimize the design parameters for the subsequent engineering unit and future flight sensor. The breadboard instrument consists of a telescope, collimator, filter assembly, and Michelson interferometer. The instrument design is guided by a retrieval model, which helps to optimize key parameters, spectral filter and optical path difference in particular.

  4. Extreme bottom velocities induced by wind wave and currents in the Gulf of Gdańsk

    Science.gov (United States)

    Cieślikiewicz, Witold; Dudkowska, Aleksandra; Gic-Grusza, Gabriela; Jędrasik, Jan

    2017-11-01

    The principal goal of this study is to get some preliminary insights about the intensity of water movement generated by wind waves, and due to the currents in the bottom waters of Gulf of Gdańsk, during severe storms. The Gulf of Gdańsk is located in the southern Baltic Sea. This paper presents the results of analysis of wave and current-induced velocities during extreme wind conditions, which are determined based on long-term historical records. The bottom velocity fields originated from wind wave and wind currents, during analysed extreme wind events, are computed independently of each other. The long-term wind wave parameters for the Baltic Sea region are derived from the 44-year hindcast wave database generated in the framework of the project HIPOCAS funded by the European Union. The output from the numerical wave model WAM provides the boundary conditions for the model SWAN operating in high-resolution grid covering the area of the Gulf of Gdańsk. Wind current velocities are calculated with the M3D hydrodynamic model developed in the Institute of Oceanography of the University of Gdańsk based on the POM model. The three dimensional current fields together with trajectories of particle tracers spreading out of bottom boundary layer are modelled, and the calculated fields of bottom velocities are presented in the form of 2D maps. During northerly winds, causing in the Gulf of Gdańsk extreme waves and most significant wind-driven circulation, the wave-induced bottom velocities are greater than velocities due to currents. The current velocities in the bottom layer appeared to be smaller by an order of magnitude than the wave-induced bottom orbital velocities. Namely, during most severe northerly storms analysed, current bottom velocities ranged about 0.1-0.15 m/s, while the root mean square of wave-induced near-seabed velocities reached maximum values of up to 1.4 m/s in the southern part of Gulf of Gdańsk.

  5. Analysis of trends between solar wind velocity and energetic electron fluxes at geostationary orbit using the reverse arrangement test

    Science.gov (United States)

    Aryan, Homayon; Boynton, Richard J.; Walker, Simon N.

    2013-02-01

    A correlation between solar wind velocity (VSW) and energetic electron fluxes (EEF) at the geosynchronous orbit was first identified more than 30 years ago. However, recent studies have shown that the relation between VSW and EEF is considerably more complex than was previously suggested. The application of process identification technique to the evolution of electron fluxes in the range 1.8 - 3.5 MeV has also revealed peculiarities in the relation between VSW and EEF at the geosynchronous orbit. It has been revealed that for a constant solar wind density, EEF increase with VSW until a saturation velocity is reached. Beyond the saturation velocity, an increase in VSW is statistically not accompanied with EEF enhancement. The present study is devoted to the investigation of saturation velocity and its dependency upon solar wind density using the reverse arrangement test. In general, the results indicate that saturation velocity increases as solar wind density decreases. This implies that solar wind density plays an important role in defining the relationship between VSW and EEF at the geosynchronous orbit.

  6. Offshore wind profiling using light detection and ranging measurements

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Hasager, Charlotte Bay; Gryning, Sven-Erik

    2009-01-01

    The advantages and limitations of the ZephlR (R), a continuous-wave, focused light detection and ranging (LiDAR) wind profiler, to observe offshore winds and turbulence characteristics were tested during a 6 month campaign at the tronsformer/platform of Hams Rev, the world's largest wind form....... The LiDAR system is a ground-based sensing technique which avoids the use of high and costly meteorological masts. Three different inflow conditions were selected to perform LiDAR wind profiling. Comparisons of LiDAR mean wind speeds against cup anemometers from different masts showed high correlations...... for the open sea sectors and good agreement with their longitudinal turbulence characteristics. Cup anemometer mean wind speed profiles were extended with LiDAR profiles up to 161 m on each inflow sector. The extension resulted in a good profile match for the three surrounding masts. These extended profiles...

  7. Wind-induced flow velocity effects on nutrient concentrations at Eastern Bay of Lake Taihu, China.

    Science.gov (United States)

    Jalil, Abdul; Li, Yiping; Du, Wei; Wang, Jianwei; Gao, Xiaomeng; Wang, Wencai; Acharya, Kumud

    2017-07-01

    Shallow lakes are highly sensitive to respond internal nutrient loading due to wind-induced flow velocity effects. Wind-induced flow velocity effects on nutrient suspension were investigated at a long narrow bay of large shallow Lake Taihu, the third largest freshwater lake in China. Wind-induced reverse/compensation flow and consistent flow field probabilities at vertical column of the water were measured. The probabilities between the wind field and the flow velocities provided a strong correlation at the surface (80.6%) and the bottom (65.1%) layers of water profile. Vertical flow velocity profile analysis provided the evidence of delay response time to wind field at the bottom layer of lake water. Strong wind field generated by the west (W) and west-north-west (WNW) winds produced displaced water movements in opposite directions to the prevailing flow field. An exponential correlation was observed between the current velocities of the surface and the bottom layers while considering wind speed as a control factor. A linear model was developed to correlate the wind field-induced flow velocity impacts on nutrient concentration at the surface and bottom layers. Results showed that dominant wind directions (ENE, E, and ESE) had a maximum nutrient resuspension contribution (nutrient resuspension potential) of 34.7 and 43.6% at the surface and the bottom profile layers, respectively. Total suspended solids (TSS), total nitrogen (TN), and total phosphorus (TP) average concentrations were 6.38, 1.5, and 0.03 mg/L during our field experiment at Eastern Bay of Lake Taihu. Overall, wind-induced low-to-moderate hydrodynamic disturbances contributed more in nutrient resuspension at Eastern Bay of Lake Taihu. The present study can be used to understand the linkage between wind-induced flow velocities and nutrient concentrations for shallow lakes (with uniform morphology and deep margins) water quality management and to develop further models.

  8. Velocity dispersion in fractured rocks in a wide frequency range

    Czech Academy of Sciences Publication Activity Database

    Vilhelm, J.; Rudajev, Vladimír; Lokajíček, Tomáš; Živor, Roman

    2013-01-01

    Roč. 90, March (2013), s. 138-146 ISSN 0926-9851 R&D Projects: GA AV ČR IAA300130906 Institutional research plan: CEZ:AV0Z30130516 Keywords : fracture stiffness * fractured rocks * seismic velocity measurement * velocity anisotropy * velocity dispersion Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.301, year: 2013

  9. The Effect of Wind Velocity on the Cooling Rate of Water

    Directory of Open Access Journals (Sweden)

    Shrey Aryan

    2016-01-01

    Full Text Available The effect of wind velocity on the cooling rate of water was investigated by blowing air horizontally over the surface of water contained in a plastic water-bottle cap. The time taken for the temperature to fall to the average of the surrounding and initial temperatures was recorded at different values of wind velocity. It was observed that on increasing the wind velocity, the time taken to achieve average temperature not only decreased but also remained the same after a certain point.

  10. Sonic Detection and Ranging (SODAR) Wind Profiler Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Coulter, Richard L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-04-01

    The SODAR (Sonic Detection and Ranging) wind profiler measures wind profiles and backscattered signal strength between (nominally) 15 meters (m) and 500 m. It operates by transmitting acoustic energy into the atmosphere and measuring the strength and frequency of backscattered energy. The strength of the backscattered signal is determined by the strength of temperature inhomogeneities with size on the order of 10 centimeters (cm). Assuming the scattering elements in the atmosphere are moving with the mean wind, the horizontal wind field can be derived. The U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Mobile Facility (AMF) has a system developed by Scintec, Inc. that transmits a sequence of frequencies to enhance signal determination.

  11. Velocity fluctuations in polar solar wind: a comparison between different solar cycles

    Directory of Open Access Journals (Sweden)

    B. Bavassano

    2009-02-01

    Full Text Available The polar solar wind is a fast, tenuous and steady flow that, with the exception of a relatively short phase around the Sun's activity maximum, fills the high-latitude heliosphere. The polar wind properties have been extensively investigated by Ulysses, the first spacecraft able to perform in-situ measurements in the high-latitude heliosphere. The out-of-ecliptic phases of Ulysses cover about seventeen years. This makes possible to study heliospheric properties at high latitudes in different solar cycles. In the present investigation we focus on hourly- to daily-scale fluctuations of the polar wind velocity. Though the polar wind is a quite uniform flow, fluctuations in its velocity do not appear negligible. A simple way to characterize wind velocity variations is that of performing a multi-scale statistical analysis of the wind velocity differences. Our analysis is based on the computation of velocity differences at different time lags and the evaluation of statistical quantities (mean, standard deviation, skewness, and kurtosis for the different ensembles. The results clearly show that, though differences exist in the three-dimensional structure of the heliosphere between the investigated solar cycles, the velocity fluctuations in the core of polar coronal holes exhibit essentially unchanged statistical properties.

  12. Velocity fluctuations in polar solar wind: a comparison between different solar cycles

    Directory of Open Access Journals (Sweden)

    B. Bavassano

    2009-02-01

    Full Text Available The polar solar wind is a fast, tenuous and steady flow that, with the exception of a relatively short phase around the Sun's activity maximum, fills the high-latitude heliosphere. The polar wind properties have been extensively investigated by Ulysses, the first spacecraft able to perform in-situ measurements in the high-latitude heliosphere. The out-of-ecliptic phases of Ulysses cover about seventeen years. This makes possible to study heliospheric properties at high latitudes in different solar cycles. In the present investigation we focus on hourly- to daily-scale fluctuations of the polar wind velocity. Though the polar wind is a quite uniform flow, fluctuations in its velocity do not appear negligible. A simple way to characterize wind velocity variations is that of performing a multi-scale statistical analysis of the wind velocity differences. Our analysis is based on the computation of velocity differences at different time lags and the evaluation of statistical quantities (mean, standard deviation, skewness, and kurtosis for the different ensembles. The results clearly show that, though differences exist in the three-dimensional structure of the heliosphere between the investigated solar cycles, the velocity fluctuations in the core of polar coronal holes exhibit essentially unchanged statistical properties.

  13. MEASUREMENT OF MOTION CORRECTED WIND VELOCITY USING AN AEROSTAT LOFTED SONIC ANEMOMETER

    Science.gov (United States)

    An aerostat-lofted, sonic anemometer was used to determine instantaneous 3 dimensional wind velocities at altitudes relevant to fire plume dispersion modeling. An integrated GPS, inertial measurement unit, and attitude heading and reference system corrected the wind data for th...

  14. Velocity field and coherent structures in the near wake of a utility-scale wind turbine

    Science.gov (United States)

    Hong, Jiarong; Dasari, Teja; Wu, Yue; Liu, Yun

    2017-11-01

    Super-large-scale particle image velocity (SLPIV) and the associated flow visualization technique using natural snowfall have been shown as an effective tool to probe turbulent velocity field and coherent structures around utility-scale wind turbines (Hong et al. Nature Comm. 2014). Here we present a follow-up study using the data collected during multiple deployments from 2014 to 2016 around the 2.5 MW turbine at EOLOS field station. The data include SLPIV measurements in the near wake of the turbine in a field of view of 120 m (height) x 60 m (width), and the visualization of tip vortex behavior near the bottom blade tip over a broad range of turbine operational conditions. SLPIV results indicate a highly intermittent flow field in the near wake, consisting of both intense wake expansion and contraction events. Such intermittent states of the near wake are shown to be influenced by both the incoming wind conditions and the turbine operation. The visualization of tip vortex behavior demonstrates the presence of the state of consistent vortex formation as well as various types of disturbed vortex states. The occurrence of these states is statistically analyzed and is shown to be correlated with turbine operational and response parameters under different field conditions. National Science Foundation Fluid Dynamics Program.

  15. Solar wind velocity and daily variation of cosmic rays

    International Nuclear Information System (INIS)

    Ahluwalia, H.S.; Riker, J.F.

    1985-01-01

    Recently parameters applicable to the solar wind and the interplanetary magnetic field (IMF) have become much better defined. Superior quality of data bases that are now available, particularly for the post-1971 period, make it possible to believe the long-term trends in the data. These data are correlated with the secular changes observed in the diurnal variation parameters obtained from neutron monitor data at Deep River and underground muon telescope data at Embudo (30 MEW) and Socorro (82 MWE). The annual mean amplitudes appear to have large values during the epochs of high speed solar wind streams. Results are discussed

  16. Regional Analysis of Long-term Local and Synoptic Effects on Wind Velocity and Energy Patterns in Complex Terrain

    Science.gov (United States)

    Belu, R.; Koracin, D. R.

    2017-12-01

    Investments in renewable energy are justified in both environmental and economic terms. Climate change risks call for mitigation strategies aimed to reduce pollutant emissions, while the energy supply is facing high uncertainty by the current or future global economic and political contexts. Wind energy is playing a strategic role in the efforts of any country for sustainable development and energy supply security. Wind energy is a weather and climate-dependent resource, having a natural spatio-temporal variability at time scales ranging from fraction of seconds to seasons and years, while at spatial scales is strongly affected by the topography and vegetation. Main objective of the study is to investigate spatio-temporal characteristics of the wind velocity in the Southwest U.S., that are relevant to wind energy assessment, analysis, development, operation, and grid integration, by using long-term multiple meteorological tower observations. Wind velocity data and other meteorological parameters from five towers, located near Tonopah, Nevada, operated between 2003 to 2008, and from three towers are located in Carson Valley, Nevada, operated between 2006 and 2014 were used in this study. Multi-annual wind speed data collected did not show significant increase trends with increasing elevation; the differences are mainly governed by the topographic complexity, including local atmospheric circulations. Auto- and cross-correlations show a strong coherence between the wind speed and direction with slowly decreasing amplitude of the multi-day periodicity with increasing lag periods. Besides pronounced diurnal periodicity at all locations, detrended fluctuation analysis also showed significant seasonal and annual periodicities, and long-memory persistence with similar characteristics. In spite of significant differences in mean wind speeds among the towers, due to location specifics, the relatively high auto- and cross-correlation coefficients among the towers indicate

  17. Improved velocity law parameterization for hot star winds (Research Note)

    Czech Academy of Sciences Publication Activity Database

    Krtička, J.; Kubát, Jiří

    2011-01-01

    Roč. 534, October (2011), A97/1-A97/3 ISSN 0004-6361 R&D Projects: GA ČR GA205/08/0003 Institutional research plan: CEZ:AV0Z10030501 Keywords : stars * winds * outflows Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.587, year: 2011

  18. Artificial neural network approach to spatial estimation of wind velocity data

    International Nuclear Information System (INIS)

    Oztopal, Ahmet

    2006-01-01

    In any regional wind energy assessment, equal wind velocity or energy lines provide a common basis for meaningful interpretations that furnish essential information for proper design purposes. In order to achieve regional variation descriptions, there are methods of optimum interpolation with classical weighting functions or variogram methods in Kriging methodology. Generally, the weighting functions are logically and geometrically deduced in a deterministic manner, and hence, they are imaginary first approximations for regional variability assessments, such as wind velocity. Geometrical weighting functions are necessary for regional estimation of the regional variable at a location with no measurement, which is referred to as the pivot station from the measurements of a set of surrounding stations. In this paper, weighting factors of surrounding stations necessary for the prediction of a pivot station are presented by an artificial neural network (ANN) technique. The wind speed prediction results are compared with measured values at a pivot station. Daily wind velocity measurements in the Marmara region from 1993 to 1997 are considered for application of the ANN methodology. The model is more appropriate for winter period daily wind velocities, which are significant for energy generation in the study area. Trigonometric point cumulative semivariogram (TPCSV) approach results are compared with the ANN estimations for the same set of data by considering the correlation coefficient (R). Under and over estimation problems in objective analysis can be avoided by the ANN approach

  19. Demonstration of short-range wind lidar in a high-performance wind tunnel

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Montes, Belen Fernández; Pedersen, Jens Engholm

    2012-01-01

    A short-range continuous-wave coherent laser radar (lidar) has been tested in a high-performance wind tunnel for possible use as a standard component in wind tunnels. The lidar was tested in a low as well as a high speed regime ranging from 5-35 m/s and 40-75 m/s, respectively. In both low and high...... future for short range lidars as a complement to LDA and other standard equipment in wind tunnels.......-speed regimes very good correlation with reference measurements was found. Furthermore different staring directions were tested and taking a simple geometrical correction into account very good correlation was again found. These measurements all demonstrate the high accuracy of the lidar and indicate a possible...

  20. Demonstration of short-range wind lidar in a high-performance wind tunnel

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Montes, Belen Fernández; Pedersen, Jens Engholm

    A short-range continuous-wave coherent laser radar (lidar) has been tested in a high-performance wind tunnel for possible use as a standard component in wind tunnels. The lidar was tested in a low as well as a high speed regime ranging from 5-35 m/s and 40-75 m/s, respectively. In both low and high...... future for short range lidars as a complement to LDA and other standard equipment in wind tunnels.......-speed regimes very good correlation with reference measurements was found. Furthermore different staring directions were tested and taking a simple geometrical correction into account very good correlation was again found. These measurements all demonstrate the high accuracy of the lidar and indicate a possible...

  1. Demonstration of short-range wind lidar in a high-performance wind tunnel

    OpenAIRE

    Pedersen, Anders Tegtmeier; Montes, Belen Fernández; Pedersen, Jens Engholm; Harris, Michael; Mikkelsen, Torben

    2012-01-01

    A short-range continuous-wave coherent laser radar (lidar) has been tested in a high-performance wind tunnel for possible use as a standard component in wind tunnels. The lidar was tested in a low as well as a high speed regime ranging from 5-35 m/s and 40-75 m/s, respectively. In both low and high-speed regimes very good correlation with reference measurements was found. Furthermore different staring directions were tested and taking a simple geometrical correction into account very good cor...

  2. Ocean Ekman Response to Wind Forcing in Frontal Regions and Implications for Vertical Velocity

    Science.gov (United States)

    Cronin, M. F.; Tozuka, T.

    2016-12-01

    Wind forcing is fundamental to the ocean circulation. According to the classic "Ekman" theory developed in the early twentieth century, wind-induced steady flow spirals to the right of the wind stress in the Northern Hemisphere and to the left in the Southern Hemisphere, resulting in a net wind-forced "Ekman" transport that is 90 degrees to the right of the wind stress in the Northern Hemisphere and to the left in the Southern Hemisphere. This theory, however, assumes that the near-surface ocean is uniform in density (i.e., has no fronts). In frontal regions the surface "geostrophic" currents have a vertical shear aligned with the density front and this oceanic "thermal wind" shear can balance a portion of the surface wind stress. In this study we show that in frontal regions, the classic Ekman response is altered. Surface ocean currents respond to the effective wind stress—the portion of the wind stress that is out of balance with the ocean's surface geostrophic shear. Consequently, the vertical velocity at the base of the mixed layer is better approximated by the curl of the effective wind stress, rather than the full wind stress. Wind blowing along a front can give rise to a local minimum in the effective wind stress and result in a secondary circulation with downwelling on the cold side of the front and upwelling on the warm side. Using data from the high-resolution Japanese Ocean general circulation model For the Earth Simulator (OFES), we show that these frontal effects cannot be ignored in the Tropics or in strong frontal regions in the extratropics, such as found in coastal regions and in western boundary currents of all basins. Furthermore, these frontal effects dominate the classic Ekman response in regions of both hemispheres where trade winds change to westerlies.

  3. Effect of Wind Velocity on Flame Spread in Microgravity

    Science.gov (United States)

    Prasad, Kuldeep; Olson, Sandra L.; Nakamura, Yuji; Fujita, Osamu; Nishizawa, Katsuhiro; Ito, Kenichi; Kashiwagi, Takashi; Simons, Stephen N. (Technical Monitor)

    2002-01-01

    A three-dimensional, time-dependent model is developed describing ignition and subsequent transition to flame spread over a thermally thin cellulosic sheet heated by external radiation in a microgravity environment. A low Mach number approximation to the Navier Stokes equations with global reaction rate equations describing combustion in the gas phase and the condensed phase is numerically solved. The effects of a slow external wind (1-20 cm/s) on flame transition are studied in an atmosphere of 35% oxygen concentration. The ignition is initiated at the center part of the sample by generating a line-shape flame along the width of the sample. The calculated results are compared with data obtained in the 10s drop tower. Numerical results exhibit flame quenching at a wind speed of 1.0 cm/s, two localized flames propagating upstream along the sample edges at 1.5 cm/s, a single line-shape flame front at 5.0 cm/s, three flames structure observed at 10.0 cm/s (consisting of a single line-shape flame propagating upstream and two localized flames propagating downstream along sample edges) and followed by two line-shape flames (one propagating upstream and another propagating downstream) at 20.0 cm/s. These observations qualitatively compare with experimental data. Three-dimensional visualization of the observed flame complex, fuel concentration contours, oxygen and reaction rate isosurfaces, convective and diffusive mass flux are used to obtain a detailed understanding of the controlling mechanism, Physical arguments based on lateral diffusive flux of oxygen, fuel depletion, oxygen shadow of the flame and heat release rate are constructed to explain the various observed flame shapes.

  4. Analysis of wind velocity and release angle effects on discus throw using computational fluid dynamics.

    Science.gov (United States)

    Rouboa, Abel I; Reis, Victor M; Mantha, Vishveshwar R; Marinho, Daniel A; Silva, António J

    2013-01-01

    The aim of this paper is to study the aerodynamics of discus throw. A comparison of numerical and experimental performance of discus throw with and without rotation was carried out using the analysis of lift and drag coefficients. Initial velocity corresponding to variation angle of around 35.5° was simulated. Boundary condition, on the top and bottom boundary edges of computational domain, was imposed in order to eliminate external influences on the discus; a wind resistance was calculated for the velocity values of 25 and 27 m/s. The results indicate that the flight distance (D) was strongly affected by the drag coefficient, the initial velocity, the release angle and the direction of wind velocity. It was observed that these variables change as a function of discus rotation. In this study, results indicate a good agreement of D between experimental values and numerical results.

  5. On a relation of geomagnetic activity, solar wind velocity and irregularity of daily rotation of the Earth

    International Nuclear Information System (INIS)

    Kalinin, Yu.D.; Kiselev, V.M.

    1980-01-01

    A possibility of the presence of statistic relation between the changes of the Earth rotation regime and the mean velocity of solar wind is discussed. The ratio between the solar wind velocity observed and planetary index of geomagnetic activity am is used to determine the annual average values of solar wind velocity beyond the twentieth cycle of solar activity. The restored changes of solar wind velocity are compared with solar conditioned variations of the Earth day duration and it is shown that the correspondence takes place only at frequencies lower the frequency of 11-year cycle [ru

  6. Analysis and forecasting of wind velocity in chetumal, quintana roo, using the single exponential smoothing method

    Energy Technology Data Exchange (ETDEWEB)

    Cadenas, E. [Facultad de Ingenieria Mecanica, Universidad Michoacana de San Nicolas de Hidalgo, Santiago Tapia No. 403, Centro (Mexico); Jaramillo, O.A.; Rivera, W. [Centro de Ivestigacion en Energia, Universidad Nacional Autonoma de Mexico, Apartado Postal 34, Temixco 62580, Morelos (Mexico)

    2010-05-15

    In this paper the analysis and forecasting of wind velocities in Chetumal, Quintana Roo, Mexico is presented. Measurements were made by the Instituto de Investigaciones Electricas (IIE) during two years, from 2004 to 2005. This location exemplifies the wind energy generation potential in the Caribbean coast of Mexico that could be employed in the hotel industry in the next decade. The wind speed and wind direction were measured at 10 m above ground level. Sensors with high accuracy and a low starting threshold were used. The wind velocity was recorded using a data acquisition system supplied by a 10 W photovoltaic panel. The wind speed values were measured with a frequency of 1 Hz and the average wind speed was recorded considering regular intervals of 10 min. First a statistical analysis of the time series was made in the first part of the paper through conventional and robust measures. Also the forecasting of the last day of measurements was made utilizing the single exponential smoothing method (SES). The results showed a very good accuracy of the data with this technique for an {alpha} value of 0.9. Finally the SES method was compared with the artificial neural network (ANN) method showing the former better results. (author)

  7. Filament formation in wind-cloud interactions- II. Clouds with turbulent density, velocity, and magnetic fields

    Science.gov (United States)

    Banda-Barragán, W. E.; Federrath, C.; Crocker, R. M.; Bicknell, G. V.

    2018-01-01

    We present a set of numerical experiments designed to systematically investigate how turbulence and magnetic fields influence the morphology, energetics, and dynamics of filaments produced in wind-cloud interactions. We cover 3D, magnetohydrodynamic systems of supersonic winds impacting clouds with turbulent density, velocity, and magnetic fields. We find that lognormal density distributions aid shock propagation through clouds, increasing their velocity dispersion and producing filaments with expanded cross-sections and highly magnetized knots and subfilaments. In self-consistently turbulent scenarios, the ratio of filament to initial cloud magnetic energy densities is ∼1. The effect of Gaussian velocity fields is bound to the turbulence Mach number: Supersonic velocities trigger a rapid cloud expansion; subsonic velocities only have a minor impact. The role of turbulent magnetic fields depends on their tension and is similar to the effect of radiative losses: the stronger the magnetic field or the softer the gas equation of state, the greater the magnetic shielding at wind-filament interfaces and the suppression of Kelvin-Helmholtz instabilities. Overall, we show that including turbulence and magnetic fields is crucial to understanding cold gas entrainment in multiphase winds. While cloud porosity and supersonic turbulence enhance the acceleration of clouds, magnetic shielding protects them from ablation and causes Rayleigh-Taylor-driven subfilamentation. Wind-swept clouds in turbulent models reach distances ∼15-20 times their core radius and acquire bulk speeds ∼0.3-0.4 of the wind speed in one cloud-crushing time, which are three times larger than in non-turbulent models. In all simulations, the ratio of turbulent magnetic to kinetic energy densities asymptotes at ∼0.1-0.4, and convergence of all relevant dynamical properties requires at least 64 cells per cloud radius.

  8. Sensitivity of stand transpiration to wind velocity in a mixed broadleaved deciduous forest

    Science.gov (United States)

    Dohyoung Kim; Ram Oren; A. Christopher Oishi; Cheng-I Hsieh; Nathan Phillips; Kimberly A. Novick; Paul C. Stoy

    2014-01-01

    Wind velocity (U) within and above forest canopies can alter the coupling between the vapor-saturated sub-stomatal airspace and the drier atmosphere aloft, thereby influencing transpiration rates. In practice, however, the actual increase in transpiration with increasing U depends on the aerodynamic resistance (RA) to vapor transfer compared to canopy resistance to...

  9. Computerized system for building 'the rose' of the winds and defining the velocity and the average density of the wind power for a given place

    International Nuclear Information System (INIS)

    Valkov, I.; Dekova, I.; Arnaudov, A.; Kostadinov, A.

    2002-01-01

    This paper considers the structure and the working principle of a computerized system for building 'the rose' of the winds. The behaviour of the system has been experimentally investigated and on the basis of the received data 'the rose' of the winds has been built, a diagram of the average wind velocity at a predefined step in the course of time has been made, and the average density of the wind power has been quantitatively defined. The proposed system enables possibilities for creating a data base of wind parameters, their processing and graphical visualizing of the received results. The system allows to improve the work of devices of wild's wind gauge type. (authors)

  10. The role of wind field induced flow velocities in destratification and hypoxia reduction at Meiling Bay of large shallow Lake Taihu, China.

    Science.gov (United States)

    Jalil, Abdul; Li, Yiping; Du, Wei; Wang, Wencai; Wang, Jianwei; Gao, Xiaomeng; Khan, Hafiz Osama Sarwar; Pan, Baozhu; Acharya, Kumud

    2018-01-01

    Wind induced flow velocity patterns and associated thermal destratification can drive to hypoxia reduction in large shallow lakes. The effects of wind induced hydrodynamic changes on destratification and hypoxia reduction were investigated at the Meiling bay (N 31° 22' 56.4″, E 120° 9' 38.3″) of Lake Taihu, China. Vertical flow velocity profile analysis showed surface flow velocities consistency with the wind field and lower flow velocity profiles were also consistent (but with delay response time) when the wind speed was higher than 6.2 m/s. Wind field and temperature found the control parameters for hypoxia reduction and for water quality conditions at the surface and bottom profiles of lake. The critical temperature for hypoxia reduction at the surface and the bottom profile was ≤24.1C° (below which hypoxic conditions were found reduced). Strong prevailing wind field (onshore wind directions ESE, SE, SSE and E, wind speed ranges of 2.4-9.1 m/s) reduced the temperature (22C° to 24.1C°) caused reduction of hypoxia at the near surface with a rise in water levels whereas, low to medium prevailing wind field did not supported destratification which increased temperature resulting in increased hypoxia. Non-prevailing wind directions (offshore) were not found supportive for the reduction of hypoxia in study area due to less variable wind field. Daytime wind field found more variable (as compared to night time) which increased the thermal destratification during daytime and found supportive for destratification and hypoxia reduction. The second order exponential correlation found between surface temperature and Chlorophyll-a (R 2 : 0.2858, Adjusted R-square: 0.2144 RMSE: 4.395), Dissolved Oxygen (R 2 : 0.596, Adjusted R-square: 0.5942, RMSE: 0.3042) concentrations. The findings of the present study reveal the driving mechanism of wind induced thermal destratification and hypoxic conditions, which may further help to evaluate the wind role in eutrophication

  11. Effect of wind turbine surge motion on rotor thrust and induced velocity

    DEFF Research Database (Denmark)

    Vaal, J.B., de; Hansen, Martin Otto Laver; Moan, T.

    2014-01-01

    velocity on a wind turbine rotor is investigated. Specifically, the performance of blade element momentum theory with a quasisteady wake as well as two widely used engineering dynamic inflow models is evaluated. A moving actuator disc model is used as reference, since the dynamics associated with the wake...... will be inherently included in the solution of the associated fluid dynamic problem. Through analysis of integrated rotor loads, induced velocities and aerodynamic damping, it is concluded that typical surge motions are sufficiently slow to not affect the wake dynamics predicted by engineering models significantly...

  12. Dynamic Data Filtering of Long-Range Doppler LiDAR Wind Speed Measurements

    Directory of Open Access Journals (Sweden)

    Hauke Beck

    2017-06-01

    Full Text Available Doppler LiDARs have become flexible and versatile remote sensing devices for wind energy applications. The possibility to measure radial wind speed components contemporaneously at multiple distances is an advantage with respect to meteorological masts. However, these measurements must be filtered due to the measurement geometry, hard targets and atmospheric conditions. To ensure a maximum data availability while producing low measurement errors, we introduce a dynamic data filter approach that conditionally decouples the dependency of data availability with increasing range. The new filter approach is based on the assumption of self-similarity, that has not been used so far for LiDAR data filtering. We tested the accuracy of the dynamic data filter approach together with other commonly used filter approaches, from research and industry applications. This has been done with data from a long-range pulsed LiDAR installed at the offshore wind farm ‘alpha ventus’. There, an ultrasonic anemometer located approximately 2.8 km from the LiDAR was used as reference. The analysis of around 1.5 weeks of data shows, that the error of mean radial velocity can be minimised for wake and free stream conditions.

  13. Development of tunable high pressure CO2 laser for lidar measurements of pollutants and wind velocities

    Science.gov (United States)

    Levine, J. S.; Guerra, M.; Javan, A.

    1980-01-01

    The problem of laser energy extraction at a tunable monochromatic frequency from an energetic high pressure CO2 pulsed laser plasma, for application to remote sensing of atmospheric pollutants by Differential Absorption Lidar (DIAL) and of wind velocities by Doppler Lidar, was investigated. The energy extraction principle analyzed is based on transient injection locking (TIL) at a tunable frequency. Several critical experiments for high gain power amplification by TIL are presented.

  14. Controlled Velocity Testing of an 8-kW Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Larwood, S.; Sencenbaugh, J.; Acker, B.

    2001-07-31

    This paper describes a case study of the controlled-velocity test of an 8-kW wind turbine. The turbine was developed in response to the U.S. Department of Energy's small wind turbine program. As background, the prototype development is discussed. The turbine mechanical and electrical components are described. The turbine was tested on a flatbed truck and driven down an airfield runway at constant relative wind speed. Horizontal furling was used to control over-speed. Various parameters were changed to determine their effects on furling. The testing showed that the machine had insufficient rotor offset for adequate furling. Also, a rotor resonance problem was discovered and remedied. Problems associated with taking the measurements made it difficult to determine if the truck test was a suitable method for code validation. However, qualitative observations gleaned from the testing justified the effort.

  15. A General Range-Velocity Processing Scheme for Discontinuous Spectrum FMCW Signal in HFSWR Applications

    Directory of Open Access Journals (Sweden)

    Mengguan Pan

    2016-01-01

    Full Text Available Discontinuous spectrum signal which has separate subbands distributed over a wide spectrum band is a solution to synthesize a wideband waveform in a highly congested spectrum environment. In this paper, we present a general range-velocity processing scheme for the discontinuous spectrum-frequency modulated continuous wave (DS-FMCW signal specifically. In range domain, we propose a simple time rearrangement operation which converts the range transform problem of the DS-FMCW signal to a general spectral estimation problem of nonuniformly sampled data. Conventional periodogram results in a dirty range spectrum with high sidelobes which cannot be suppressed by traditional spectral weighting. In this paper, we introduce the iterative adaptive approach (IAA in the estimation of the range spectrum. IAA is shown to have the ability to provide a clean range spectrum. On the other hand, the discontinuity of the signal spectrum has little impact on the velocity processing. However, with the range resolution improved, the influence of the target motion becomes nonnegligible. We present a velocity compensation strategy which includes the intersweep compensation and in-sweep compensation. Our processing scheme with the velocity compensation is shown to provide an accurate and clean range-velocity image which benefits the following detection process.

  16. High Dynamic Velocity Range Particle Image Velocimetry Using Multiple Pulse Separation Imaging

    Directory of Open Access Journals (Sweden)

    Tadhg S. O’Donovan

    2010-12-01

    Full Text Available The dynamic velocity range of particle image velocimetry (PIV is determined by the maximum and minimum resolvable particle displacement. Various techniques have extended the dynamic range, however flows with a wide velocity range (e.g., impinging jets still challenge PIV algorithms. A new technique is presented to increase the dynamic velocity range by over an order of magnitude. The multiple pulse separation (MPS technique (i records series of double-frame exposures with different pulse separations, (ii processes the fields using conventional multi-grid algorithms, and (iii yields a composite velocity field with a locally optimized pulse separation. A robust criterion determines the local optimum pulse separation, accounting for correlation strength and measurement uncertainty. Validation experiments are performed in an impinging jet flow, using laser-Doppler velocimetry as reference measurement. The precision of mean flow and turbulence quantities is significantly improved compared to conventional PIV, due to the increase in dynamic range. In a wide range of applications, MPS PIV is a robust approach to increase the dynamic velocity range without restricting the vector evaluation methods.

  17. High dynamic velocity range particle image velocimetry using multiple pulse separation imaging.

    Science.gov (United States)

    Persoons, Tim; O'Donovan, Tadhg S

    2011-01-01

    The dynamic velocity range of particle image velocimetry (PIV) is determined by the maximum and minimum resolvable particle displacement. Various techniques have extended the dynamic range, however flows with a wide velocity range (e.g., impinging jets) still challenge PIV algorithms. A new technique is presented to increase the dynamic velocity range by over an order of magnitude. The multiple pulse separation (MPS) technique (i) records series of double-frame exposures with different pulse separations, (ii) processes the fields using conventional multi-grid algorithms, and (iii) yields a composite velocity field with a locally optimized pulse separation. A robust criterion determines the local optimum pulse separation, accounting for correlation strength and measurement uncertainty. Validation experiments are performed in an impinging jet flow, using laser-Doppler velocimetry as reference measurement. The precision of mean flow and turbulence quantities is significantly improved compared to conventional PIV, due to the increase in dynamic range. In a wide range of applications, MPS PIV is a robust approach to increase the dynamic velocity range without restricting the vector evaluation methods.

  18. Spectroscopic Measurements of the Ion Velocity Distribution at the Base of the Fast Solar Wind

    Science.gov (United States)

    Jeffrey, Natasha L. S.; Hahn, Michael; Savin, Daniel W.; Fletcher, Lyndsay

    2018-03-01

    In situ measurements of the fast solar wind reveal non-thermal distributions of electrons, protons, and minor ions extending from 0.3 au to the heliopause. The physical mechanisms responsible for these non-thermal properties and the location where these properties originate remain open questions. Here, we present spectroscopic evidence, from extreme ultraviolet spectroscopy, that the velocity distribution functions (VDFs) of minor ions are already non-Gaussian at the base of the fast solar wind in a coronal hole, at altitudes of thermal equilibrium, (b) fluid motions such as non-Gaussian turbulent fluctuations or non-uniform wave motions, or (c) some combination of both. These observations provide important empirical constraints for the source region of the fast solar wind and for the theoretical models of the different acceleration, heating, and energy deposition processes therein. To the best of our knowledge, this is the first time that the ion VDF in the fast solar wind has been probed so close to its source region. The findings are also a timely precursor to the upcoming 2018 launch of the Parker Solar Probe, which will provide the closest in situ measurements of the solar wind at approximately 0.04 au (8.5 solar radii).

  19. Sensitivity analysis of nacelle lidar free stream wind speed measurements to wind-induction reconstruction model and lidar range configuration

    DEFF Research Database (Denmark)

    Svensson, Elin; Borraccino, Antoine; Meyer Forsting, Alexander Raul

    configurations. The wind speeds were reconstructed using both a onedimensional and two-dimensional induction model to test the sensitivity towards the wind-induction model. In all cases, the sensitivity of the reconstructed wind speed was determined from the wind speed error and root mean square error (RMSE...... based on the NKE sensitivity analysis results. Based on these results, it is recommended to configure nacelle lidars to measure at approximately 3-5 ranges. The minimum distance should be configured to roughly 0.5 rotor diameters (Drot) while it is recommended that the maximum range lay within 1-1.5Drot...

  20. SCALING OF THE ELECTRON DISSIPATION RANGE OF SOLAR WIND TURBULENCE

    International Nuclear Information System (INIS)

    Sahraoui, F.; Belmont, G.; Rétino, A.; Robert, P.; De Patoul, J.; Huang, S. Y.; Goldstein, M. L.

    2013-01-01

    Electron scale solar wind (SW) turbulence has attracted great interest in recent years. Considerable evidence exists that the turbulence is not fully dissipated near the proton scale, but continues cascading down to electron scales. However, the scaling of the magnetic energy spectra as well as the nature of the plasma modes involved at those small scales are still not fully determined. Here we survey 10 yr of the Cluster STAFF search-coil magnetometer waveforms measured in the SW and perform a statistical study of the magnetic energy spectra in the frequency range [1, 180] Hz. We found that 75% of the analyzed spectra exhibit breakpoints near the electron gyroscale ρ e , followed by steeper power-law-like spectra. We show that the scaling below the electron breakpoint cannot be determined unambiguously due to instrumental limitations that we discuss in detail. We compare our results to those reported in other studies and discuss their implications for the physical mechanisms involved and for theoretical modeling of energy dissipation in the SW

  1. Simulation of Wind Speed Effect on the Fall Velocity of Raindrops

    Directory of Open Access Journals (Sweden)

    Sefri Ayuliana

    2013-08-01

    causes the terminal velocities of raindrops to get larger, and so does their kinetic energy. In that condition, raindrops fall with certain inclination angle. The stronger wind speed, the larger raindrops’ inclination angle and their kinetic energy are when hitting soil surface. Therefore it increases the risk of soil erosion at place where the soil is unstable. Through this study, speed and direction of raindrop when hitting soil surface could be investigated in order to decrease the risk of avalanche at high risk area.

  2. Remote Sensing Data in Wind Velocity Field Modelling: a Case Study from the Sudetes (SW Poland)

    Science.gov (United States)

    Jancewicz, Kacper

    2014-06-01

    The phenomena of wind-field deformation above complex (mountainous) terrain is a popular subject of research related to numerical modelling using GIS techniques. This type of modelling requires, as input data, information on terrain roughness and a digital terrain/elevation model. This information may be provided by remote sensing data. Consequently, its accuracy and spatial resolution may affect the results of modelling. This paper represents an attempt to conduct wind-field modelling in the area of the Śnieżnik Massif (Eastern Sudetes). The modelling process was conducted in WindStation 2.0.10 software (using the computable fluid dynamics solver Canyon). Two different elevation models were used: the Global Land Survey Digital Elevation Model (GLS DEM) and Digital Terrain Elevation Data (DTED) Level 2. The terrain roughness raster was generated on the basis of Corine Land Cover 2006 (CLC 2006) data. The output data were post-processed in ArcInfo 9.3.1 software to achieve a high-quality cartographic presentation. Experimental modelling was conducted for situations from 26 November 2011, 25 May 2012, and 26 May 2012, based on a limited number of field measurements and using parameters of the atmosphere boundary layer derived from the aerological surveys provided by the closest meteorological stations. The model was run in a 100-m and 250-m spatial resolution. In order to verify the model's performance, leave-one-out cross-validation was used. The calculated indices allowed for a comparison with results of former studies pertaining to WindStation's performance. The experiment demonstrated very subtle differences between results in using DTED or GLS DEM elevation data. Additionally, CLC 2006 roughness data provided more noticeable improvements in the model's performance, but only in the resolution corresponding to the original roughness data. The best input data configuration resulted in the following mean values of error measure: root mean squared error of velocity

  3. Velocity-intermittency structure for wake flow of the pitched single wind turbine under different inflow conditions

    Science.gov (United States)

    Crist, Ryan; Cal, Raul Bayoan; Ali, Naseem; Rockel, Stanislav; Peinke, Joachim; Hoelling, Michael

    2017-11-01

    The velocity-intermittency quadrant method is used to characterize the flow structure of the wake flow in the boundary layer of a wind turbine array. Multifractal framework presents the intermittency as a pointwise Hölder exponent. A 3×3 wind turbine array tested experimentally provided a velocity signal at a 21×9 downstream location, measured via hot-wire anemometry. The results show a negative correlation between the velocity and the intermittency at the hub height and bottom tip, whereas the top tip regions show a positive correlation. Sweep and ejection based on the velocity and intermittency are dominant downstream from the rotor. The pointwise results reflect large-scale organization of the flow and velocity-intermittency events corresponding to a foreshortened recirculation region near the hub height and the bottom tip.

  4. Linear FMCW Laser Radar for Precision Range and Vector Velocity Measurements

    Science.gov (United States)

    Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockhard, George; Rubio, Manuel

    2008-01-01

    An all fiber linear frequency modulated continuous wave (FMCW) coherent laser radar system is under development with a goal to aide NASA s new Space Exploration initiative for manned and robotic missions to the Moon and Mars. By employing a combination of optical heterodyne and linear frequency modulation techniques and utilizing state-of-the-art fiber optic technologies, highly efficient, compact and reliable laser radar suitable for operation in a space environment is being developed. Linear FMCW lidar has the capability of high-resolution range measurements, and when configured into a multi-channel receiver system it has the capability of obtaining high precision horizontal and vertical velocity measurements. Precision range and vector velocity data are beneficial to navigating planetary landing pods to the preselected site and achieving autonomous, safe soft-landing. The all-fiber coherent laser radar has several important advantages over more conventional pulsed laser altimeters or range finders. One of the advantages of the coherent laser radar is its ability to measure directly the platform velocity by extracting the Doppler shift generated from the motion, as opposed to time of flight range finders where terrain features such as hills, cliffs, or slopes add error to the velocity measurement. Doppler measurements are about two orders of magnitude more accurate than the velocity estimates obtained by pulsed laser altimeters. In addition, most of the components of the device are efficient and reliable commercial off-the-shelf fiber optic telecommunication components. This paper discusses the design and performance of a second-generation brassboard system under development at NASA Langley Research Center as part of the Autonomous Landing and Hazard Avoidance (ALHAT) project.

  5. Wind direction/velocity and current direction/velocity data from current meter casts in a world wide distribution from 1970-12-06 to 1991-10-01 (NODC Accession 9700218)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Wind direction/velocity and current direction/velocity data were collected using current meter casts in a world wide distribution from December 6, 1970 to October 1,...

  6. Wind Field Reconstruction from Nacelle-Mounted Lidars Short Range Measurements

    DEFF Research Database (Denmark)

    Borraccino, Antoine; Schlipf, David; Haizmann, Florian

    2017-01-01

    IR Dual Mode). The reconstructed wind speed was within 0.5 % of the wind speed measured with a mast-top-mounted cup anemometer at 2.5 rotor diameters upstream of the turbine. The technique described in this paper overcomes measurement range limitations of the currently available nacelle lidar technology.......Profiling nacelle lidars probe the wind at several heights and several distances upstream of the rotor. The development of such lidar systems is relatively recent, and it is still unclear how to condense the lidar raw measurements into useful wind field characteristics such as speed, direction......, vertical and longitudinal gradients (wind shear). In this paper, we demonstrate an innovative method to estimate wind field characteristics using nacelle lidar measurements taken within the induction zone. Model-fitting wind field reconstruction techniques are applied to nacelle lidar measurements taken...

  7. Estimation of bubble-mediated air–sea gas exchange from concurrent DMS and CO2 transfer velocities at intermediate–high wind speeds

    Directory of Open Access Journals (Sweden)

    T. G. Bell

    2017-07-01

    Full Text Available Simultaneous air–sea fluxes and concentration differences of dimethylsulfide (DMS and carbon dioxide (CO2 were measured during a summertime North Atlantic cruise in 2011. This data set reveals significant differences between the gas transfer velocities of these two gases (Δkw over a range of wind speeds up to 21 m s−1. These differences occur at and above the approximate wind speed threshold when waves begin breaking. Whitecap fraction (a proxy for bubbles was also measured and has a positive relationship with Δkw, consistent with enhanced bubble-mediated transfer of the less soluble CO2 relative to that of the more soluble DMS. However, the correlation of Δkw with whitecap fraction is no stronger than with wind speed. Models used to estimate bubble-mediated transfer from in situ whitecap fraction underpredict the observations, particularly at intermediate wind speeds. Examining the differences between gas transfer velocities of gases with different solubilities is a useful way to detect the impact of bubble-mediated exchange. More simultaneous gas transfer measurements of different solubility gases across a wide range of oceanic conditions are needed to understand the factors controlling the magnitude and scaling of bubble-mediated gas exchange.

  8. AXAOTHER XL -- A spreadsheet for determining doses for incidents caused by tornadoes or high-velocity straight winds

    International Nuclear Information System (INIS)

    Simpkins, A.A.

    1996-09-01

    AXAOTHER XL is an Excel Spreadsheet used to determine dose to the maximally exposed offsite individual during high-velocity straight winds or tornado conditions. Both individual and population doses may be considered. Potential exposure pathways are inhalation and plume shine. For high-velocity straight winds the spreadsheet has the capability to determine the downwind relative air concentration, however for the tornado conditions, the user must enter the relative air concentration. Theoretical models are discussed and hand calculations are performed to ensure proper application of methodologies. A section has also been included that contains user instructions for the spreadsheet

  9. Influence of Rigid Body Motions on Rotor Induced Velocities and Aerodynamic Loads of a Floating Horizontal Axis Wind Turbine

    DEFF Research Database (Denmark)

    de Vaal, Jacobus B.; Hansen, Martin Otto Laver; Moan, Torgeir

    2014-01-01

    This paper discusses the influence of rigid body motions on rotor induced velocities and aerodynamic loads of a floating horizontal axis wind turbine. Analyses are performed with a simplified free wake vortex model specifically aimed at capturing the unsteady and non-uniform inflow typically......, and captures the essential influences of rigid body motions on the rotor loads, induced velocities and wake influence....... experienced by a floating wind turbine. After discussing the simplified model in detail, comparisons are made to a state of the art free wake vortex code, using test cases with prescribed platform motion. It is found that the simplified model compares favourably with a more advanced numerical model...

  10. An atlas of monthly mean distributions of SSMI surface wind speed, AVHRR/2 sea surface temperature, AMI surface wind velocity, TOPEX/POSEIDON sea surface height, and ECMWF surface wind velocity during 1993

    Science.gov (United States)

    Halpern, D.; Fu, L.; Knauss, W.; Pihos, G.; Brown, O.; Freilich, M.; Wentz, F.

    1995-01-01

    The following monthly mean global distributions for 1993 are presented with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States (U.S.) Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the Advanced Very High Resolution Radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) satellite; 10-m height wind speed and direction estimated from the Active Microwave Instrument (AMI) on the European Space Agency (ESA) European Remote Sensing (ERS-1) satellite; sea surface height estimated from the joint U.S.-France Topography Experiment (TOPEX)/POSEIDON spacecraft; and 10-m height wind speed and direction produced by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of annual mean, monthly mean, and sampling distributions are displayed.

  11. Measurements and correlations of turbulent burning velocities over wide ranges of fuels and elevated pressures

    KAUST Repository

    Bradley, Derek

    2013-01-01

    The implosion technique has been used to extend measurements of turbulent burning velocities over greater ranges of fuels and pressures. Measurements have been made up to 3.5 MPa and at strain rate Markstein numbers as low as 23. The implosion technique, with spark ignition at two opposite wall positions within a fan-stirred spherical bomb is capable of measuring turbulent burning velocities, at higher pressures than is possible with central ignition. Pressure records and schlieren high speed photography define the rate of burning and the smoothed area of the flame front. The first aim of the study was to extend the previous measurements with ethanol and propane-air, with further measurements over wider ranges of fuels and equivalence ratios with mixtures of hydrogen, methane, 10% hydrogen-90% methane, toluene, and i-octane, with air. The second aim was to study further the low turbulence regime in which turbulent burning co-exists with laminar flame instabilities. Correlations are presented of turbulent burning velocity normalised by the effective rms turbulent velocity acting on the flame front, ut=u0k , with the Karlovitz stretch factor, K, for different strain rate Markstein numbers, a decrease in which increases ut=u0k . Experimental correlations are presented for the present measurements, combined with previous ones. Different burning regimes are also identified, extending from that of mixed turbulence/laminar instability at low values of K to that at high values of K, in which ut=u0k is gradually reduced due to increasing localised flame extinctions. © 2012 The Combustion Institute.

  12. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    Directory of Open Access Journals (Sweden)

    J.-L. Caccia

    2004-11-01

    Full Text Available The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission in summer 2001. Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events. In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking, which is coherent with non-convective situations. In summer, due to the ground heating and to the interactions with thermal circulation, the

  13. Effect of wind waves on air-sea gas exchange: proposal of an overall CO2 transfer velocity formula as a function of breaking-wave parameter

    International Nuclear Information System (INIS)

    Zhao, D.; Suzuki, Y.; Komori, S.

    2003-01-01

    A new formula for gas transfer velocity as a function of the breaking-wave parameter is proposed based on correlating gas transfer with whitecap coverage. The new formula for gas transfer across an air-sea interface depends not only on wind speed but also on wind-wave state. At the same wind speed, a higher gas transfer velocity will be obtained for a more developed wind-sea, which is represented by a smaller spectral peak frequency of wind waves. We suggest that the large uncertainties in the traditional relationship of gas transfer velocity with wind speed be ascribed to the neglect of the effect of wind waves. The breaking-wave parameter can be regarded as a Reynolds number that characterizes the intensity of turbulence associated with wind waves in the downward-bursting boundary layer (DBBL). DBBL provides an effective way to exchange gas across the air-sea interface, which might be related to the surface renewal

  14. MeV-range velocity-space tomography from gamma-ray and neutron emission spectrometry measurements at JET

    DEFF Research Database (Denmark)

    Salewski, Mirko; Nocente, M.; Jacobsen, Asger Schou

    2017-01-01

    We demonstrate the measurement of a 2D MeV-range ion velocity distribution function by velocity-space tomography at JET. Deuterium ions were accelerated into the MeV-range by third harmonic ion cyclotron resonance heating. We made measurements with three neutron emission spectrometers and a high-...

  15. Carbon isotope evidence for the latitudinal distribution and wind speed dependence of the air-sea gas transfer velocity

    International Nuclear Information System (INIS)

    Krakauer, Nir Y.

    2006-01-01

    The air-sea gas transfer velocity is an important determinant of the exchange of gases, including CO 2 , between the atmosphere and ocean, but the magnitude of the transfer velocity and what factors control it remains poorly known. Here, we use oceanic and atmospheric observations of 14 C and 13 C to constrain the global mean gas transfer velocity as well as the exponent of its wind speed dependence, utilizing the distinct signatures left by the air-sea exchange of 14 CO 2 and 13 CO 2 . While the atmosphere and ocean inventories of 14 CO 2 and 13 CO 2 constrain the mean gas transfer velocity, the latitudinal pattern in the atmospheric and oceanic 14 C and 13 C distributions contain information about the wind speed dependence. We computed the uptake of bomb 14 C by the ocean for different transfer velocity patterns using pulse response functions from an ocean general circulation model, and evaluated the match between the predicted bomb 14 C concentrations and observationally based estimates for the 1970s-1990s. Using a wind speed climatology based on satellite measurements, we solved either for the best-fit global relationship between gas exchange and mean wind speed or for the mean gas transfer velocity over each of 11 ocean regions. We also compared the predicted consequences of different gas exchange relationships on the rate of change and interhemisphere gradient of 14 C in atmospheric CO 2 with tree-ring and atmospheric measurements. Our results suggest that globally, the dependence of the air-sea gas transfer velocity on wind speed is close to linear, with an exponent of 0.5 ± 0.4, and that the global mean gas transfer velocity at a Schmidt number of 660 is 20 ± 3 cm/hr, similar to the results of previous analyses. We find that the air-sea flux of 13 C estimated from atmosphere and ocean observations also suggests a lower than quadratic dependence of gas exchange on wind speed

  16. Wind field reconstruction from nacelle-mounted lidar short-range measurements

    Directory of Open Access Journals (Sweden)

    A. Borraccino

    2017-05-01

    Full Text Available Profiling nacelle lidars probe the wind at several heights and several distances upstream of the rotor. The development of such lidar systems is relatively recent, and it is still unclear how to condense the lidar raw measurements into useful wind field characteristics such as speed, direction, vertical and longitudinal gradients (wind shear. In this paper, we demonstrate an innovative method to estimate wind field characteristics using nacelle lidar measurements taken within the induction zone. Model-fitting wind field reconstruction techniques are applied to nacelle lidar measurements taken at multiple distances close to the rotor, where a wind model is combined with a simple induction model. The method allows robust determination of free-stream wind characteristics. The method was applied to experimental data obtained with two different types of nacelle lidar (five-beam Demonstrator and ZephIR Dual Mode. The reconstructed wind speed was within 0.5 % of the wind speed measured with a mast-top-mounted cup anemometer at 2.5 rotor diameters upstream of the turbine. The technique described in this paper overcomes measurement range limitations of the currently available nacelle lidar technology.

  17. Mobile network architecture of the long-range WindScanner system

    DEFF Research Database (Denmark)

    Vasiljevic, Nikola; Lea, Guillaume; Hansen, Per

    the requirements of running the long-range WindScanner system using a mobile network such as 3G. This architecture allows us to have the WindScanners and the master computer in different geographical locations, and in general facilitates deployments of the long-range WindScanner system.......In this report we have presented the network architecture of the long-range WindScanner system that allows utilization of mobile network connections without the use of static public IP addresses. The architecture mitigates the issues of additional fees and contractual obligations that are linked...... to the acquisition of the mobile network connections with static public IP addresses. The architecture consists of a hardware VPN solution based on the network appliances Z1 and MX60 from Cisco Meraki with additional 3G or 4G dongles. With the presented network architecture and appropriate configuration, we fulfill...

  18. Vegetation as an indicator of high wind velocity. Annual progress report, June 15, 1978--March 14, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Hewson, E. W.; Wade, J. E.; Baker, R. W.

    1979-03-01

    The most important results are presented of work completed during the past year of the study Vegetation as an Indicator of High Wind Velocity. The most important achievement during the past year was the completion of a draft of a handbook on the use of trees as an indicator of wind power potential. This handbook describes relationships between mean annual wind speed and indices of wind deformation of two species of trees widely distributed in the western United States. Work during the past year on other species of trees indicates that the techniques calibrated initially for only Douglas-fir and Ponderosa Pine can also be calibrated on other trees including broadleaf trees such as oaks.

  19. Diode laser lidar wind velocity sensor using a liquid-crystal retarder for non-mechanical beam-steering

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Iversen, Theis Faber Quist; Hu, Qi

    2014-01-01

    the lidar probe beam in two different lines-of-sight (LOS) with a 60° angular separation. Dual-LOS beam-steering isimplemented optically with no moving parts by means of a controllableliquid-crystal retarder (LCR). The LCR switches the polarization betweentwo orthogonal linear states of the lidar beam so......We extend the functionality of a low-cost CW diode lasercoherent lidar from radial wind speed (scalar) sensing to wind velocity(vector) measurements. Both speed and horizontal direction of the wind at~80 m remote distance are derived from two successive radial speedestimates by alternately steering...... it either transmits throughor reflects off a polarization splitter. The room-temperature switching timebetween the two LOS is measured to be in the order of 100μs in one switchdirection but 16 ms in the opposite transition. Radial wind speedmeasurement (at 33 Hz rate) while the lidar beam is repeatedly...

  20. Demonstration of synchronised scanning Lidar measurements of 2D velocity fields in a boundary-layer wind tunnel

    Science.gov (United States)

    van Dooren, M. F.; Kühn, M.; PetroviĆ, V.; Bottasso, C. L.; Campagnolo, F.; Sjöholm, M.; Angelou, N.; Mikkelsen, T.; Croce, A.; Zasso, A.

    2016-09-01

    This paper combines the currently relevant research methodologies of scaled wind turbine model experiments in wind tunnels with remote-sensing short-range WindScanner Lidar measurement technology. The wind tunnel of the Politecnico di Milano was equipped with three wind turbine models and two short-range WindScanner Lidars to demonstrate the benefits of synchronised scanning Lidars in such experimental surroundings for the first time. The dual- Lidar system can provide fully synchronised trajectory scans with sampling time scales ranging from seconds to minutes. First, staring mode measurements were compared to hot wire probe measurements commonly used in wind tunnels. This yielded goodness of fit coefficients of 0.969 and 0.902 for the 1 Hz averaged u- and v-components of the wind speed, respectively, validating the 2D measurement capability of the Lidar scanners. Subsequently, the measurement of wake profiles on a line as well as wake area scans were executed to illustrate the applicability of Lidar scanning to measuring small scale wind flow effects. The downsides of Lidar with respect to the hot wire probes are the larger measurement probe volume and the loss of some measurements due to moving blades. In contrast, the benefits are the high flexibility in conducting both point measurements and area scanning, and the fact that remote sensing techniques do not disturb the flow while measuring. The research campaign revealed a high potential for using short-range WindScanner Lidar for accurately measuring small scale flow structures in a wind tunnel.

  1. Demonstration and uncertainty analysis of synchronised scanning lidar measurements of 2D velocity fields in a boundary-layer wind tunnel

    OpenAIRE

    Dooren, Marijn F.; Campagnolo, Filippo; Sjöholm, Mikael; Angelou, Nikolas; Mikkelsen, Torben; Kühn, Martin

    2017-01-01

    This paper combines the research methodologies of scaled wind turbine model experiments in wind tunnels with short-range WindScanner lidar measurement technology. The wind tunnel at the Politecnico di Milano was equipped with three wind turbine models and two short-range WindScanner lidars to demonstrate the benefits of synchronised scanning lidars in such experimental surroundings for the first time. The dual-lidar system can provide fully synchronised trajectory scans with sampling timescal...

  2. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    Directory of Open Access Journals (Sweden)

    J.-L. Caccia

    2004-11-01

    Full Text Available The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission in summer 2001.

    Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events.

    In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking, which is coherent with non-convective situations.

    Influence of the tilting reflection mirror on the temperature and wind velocity retrieved by a polarizing atmospheric Michelson interferometer.

    Science.gov (United States)

    Zhang, Chunmin; Li, Ying

    2012-09-20

    The principles of a polarizing atmospheric Michelson interferometer are outlined. The tilt of its reflection mirror results in deflection of the reflected beam and affects the intensities of the observed inteferogram. This effect is systematically analyzed. Both rectangular and circular apertures are considered. The theoretical expression of the modulation depth and phase of the interferogram are derived. These parameters vary with the inclination angle of the mirror and the distance between the deflection center and the optical axis and significantly influence the retrieved temperature and wind speed. If the wind and temperature errors are required to be less than 3 m/s and 5 K, the deflection angle must be less than 0.5°. The errors are also dependent on the shape of aperture. If the reflection mirror is deflected in one direction, the temperature error is smaller for a circular aperture (1.3 K) than for a rectangular one (2.6 K), but the wind velocity errors are almost the same (less than 3 m/s). If the deflection center and incident light beam are coincident, the temperature errors are 3 × 10(-4) K and 0.45 K for circular and rectangular apertures, respectively. The wind velocity errors are 1.2 × 10(-3) m/s and 0.06 m/s. Both are small. The result would be helpful for theoretical research and development of the static polarization wind imaging interferometer.

  3. Wind stress, curl and vertical velocity in the Bay of Bengal during southwest monsoon, 1984

    Digital Repository Service at National Institute of Oceanography (India)

    Babu, M.T.; Heblekar, A.K.; Murty, C.S.

    Wind distribution observed during southwest monsoon of 1984 has used to derive the mean wind stress for the season at every 1 degree square grid and curl over the Bay of Bengal. Two regions of maximum wind stress are present over the Bay of Bengal...

  4. The acceptable air velocity range for local air movement in the Tropics

    DEFF Research Database (Denmark)

    Gong, Nan; Tham, K.W.; Melikov, Arsen Krikor

    2006-01-01

    and high velocity values. Most dissatisfaction with air movement is caused by thermal sensation, with air movement perception accounting for a smaller proportion. The subjects preferred air movement to be between "just right" and "slightly breezy" and preferred their thermal sensation to be between......The perception of locally applied airflow was studied with tropical subjects who had become passively acclimatized to hot conditions in the course of their day-to-day life. During the experiments, 24 subjects (male and female) performed normal office work in a room equipped with six workstations...... for 15 minutes, during which the subjects responded to computer-administered questionnaires on their thermal and draft sensations using visual-analogue scales. The results showed that the subjects preferred air movement within a certain range, i.e., a higher percentage was dissatisfied at both low...

  5. Forecasting Kp from solar wind data: input parameter study using 3-hour averages and 3-hour range values

    Directory of Open Access Journals (Sweden)

    Wintoft Peter

    2017-01-01

    Full Text Available We have developed neural network models that predict Kp from upstream solar wind data. We study the importance of various input parameters, starting with the magnetic component Bz, particle density n, and velocity V and then adding total field B and the By component. As we also notice a seasonal and UT variation in average Kp we include functions of day-of-year and UT. Finally, as Kp is a global representation of the maximum range of geomagnetic variation over 3-hour UT intervals we conclude that sudden changes in the solar wind can have a big effect on Kp, even though it is a 3-hour value. Therefore, 3-hour solar wind averages will not always appropriately represent the solar wind condition, and we introduce 3-hour maxima and minima values to some degree address this problem. We find that introducing total field B and 3-hour maxima and minima, derived from 1-minute solar wind data, have a great influence on the performance. Due to the low number of samples for high Kp values there can be considerable variation in predicted Kp for different networks with similar validation errors. We address this issue by using an ensemble of networks from which we use the median predicted Kp. The models (ensemble of networks provide prediction lead times in the range 20–90 min given by the time it takes a solar wind structure to travel from L1 to Earth. Two models are implemented that can be run with real time data: (1 IRF-Kp-2017-h3 uses the 3-hour averages of the solar wind data and (2 IRF-Kp-2017 uses in addition to the averages, also the minima and maxima values. The IRF-Kp-2017 model has RMS error of 0.55 and linear correlation of 0.92 based on an independent test set with final Kp covering 2 years using ACE Level 2 data. The IRF-Kp-2017-h3 model has RMSE = 0.63 and correlation = 0.89. We also explore the errors when tested on another two-year period with real-time ACE data which gives RMSE = 0.59 for IRF-Kp-2017 and RMSE = 0.73 for IRF

  6. Forecasting Kp from solar wind data: input parameter study using 3-hour averages and 3-hour range values

    Science.gov (United States)

    Wintoft, Peter; Wik, Magnus; Matzka, Jürgen; Shprits, Yuri

    2017-11-01

    We have developed neural network models that predict Kp from upstream solar wind data. We study the importance of various input parameters, starting with the magnetic component Bz, particle density n, and velocity V and then adding total field B and the By component. As we also notice a seasonal and UT variation in average Kp we include functions of day-of-year and UT. Finally, as Kp is a global representation of the maximum range of geomagnetic variation over 3-hour UT intervals we conclude that sudden changes in the solar wind can have a big effect on Kp, even though it is a 3-hour value. Therefore, 3-hour solar wind averages will not always appropriately represent the solar wind condition, and we introduce 3-hour maxima and minima values to some degree address this problem. We find that introducing total field B and 3-hour maxima and minima, derived from 1-minute solar wind data, have a great influence on the performance. Due to the low number of samples for high Kp values there can be considerable variation in predicted Kp for different networks with similar validation errors. We address this issue by using an ensemble of networks from which we use the median predicted Kp. The models (ensemble of networks) provide prediction lead times in the range 20-90 min given by the time it takes a solar wind structure to travel from L1 to Earth. Two models are implemented that can be run with real time data: (1) IRF-Kp-2017-h3 uses the 3-hour averages of the solar wind data and (2) IRF-Kp-2017 uses in addition to the averages, also the minima and maxima values. The IRF-Kp-2017 model has RMS error of 0.55 and linear correlation of 0.92 based on an independent test set with final Kp covering 2 years using ACE Level 2 data. The IRF-Kp-2017-h3 model has RMSE = 0.63 and correlation = 0.89. We also explore the errors when tested on another two-year period with real-time ACE data which gives RMSE = 0.59 for IRF-Kp-2017 and RMSE = 0.73 for IRF-Kp-2017-h3. The errors as function

  7. A sextupole-magnet as variable velocity selector for paramagnetic atomic beams in the thermal range

    International Nuclear Information System (INIS)

    Spindler, G.; Ebinghaus, H.; Steffens, E.

    1974-01-01

    The possibility of employing a sextupole-magnet as a velocity selector on account of its velocity dependent focusing properties for paramagnetic atomic beams is investigated. In comparison with a traditional velocity selector with rotating disks, a sextupole-magnet as velocity selector has the advantage of additional focusing and polarizing the atomic beam. Moreover it suppresses polymer molecules without an effective magnetic momentum of the electronic shell

  8. VLTI-AMBER velocity-resolved aperture-synthesis imaging of η Carinae with a spectral resolution of 12 000. Studies of the primary star wind and innermost wind-wind collision zone

    Science.gov (United States)

    Weigelt, G.; Hofmann, K.-H.; Schertl, D.; Clementel, N.; Corcoran, M. F.; Damineli, A.; de Wit, W.-J.; Grellmann, R.; Groh, J.; Guieu, S.; Gull, T.; Heininger, M.; Hillier, D. J.; Hummel, C. A.; Kraus, S.; Madura, T.; Mehner, A.; Mérand, A.; Millour, F.; Moffat, A. F. J.; Ohnaka, K.; Patru, F.; Petrov, R. G.; Rengaswamy, S.; Richardson, N. D.; Rivinius, T.; Schöller, M.; Teodoro, M.; Wittkowski, M.

    2016-10-01

    Context. The mass loss from massive stars is not understood well. η Carinae is a unique object for studying the massive stellar wind during the luminous blue variable phase. It is also an eccentric binary with a period of 5.54 yr. The nature of both stars is uncertain, although we know from X-ray studies that there is a wind-wind collision whose properties change with orbital phase. Aims: We want to investigate the structure and kinematics of η Car's primary star wind and wind-wind collision zone with a high spatial resolution of ~6 mas (~14 au) and high spectral resolution of R = 12 000. Methods: Observations of η Car were carried out with the ESO Very Large Telescope Interferometer (VLTI) and the AMBER instrument between approximately five and seven months before the August 2014 periastron passage. Velocity-resolved aperture-synthesis images were reconstructed from the spectrally dispersed interferograms. Interferometric studies can provide information on the binary orbit, the primary wind, and the wind collision. Results: We present velocity-resolved aperture-synthesis images reconstructed in more than 100 different spectral channels distributed across the Brγ 2.166 μm emission line. The intensity distribution of the images strongly depends on wavelength. At wavelengths corresponding to radial velocities of approximately -140 to - 376 km s-1 measured relative to line center, the intensity distribution has a fan-shaped structure. At the velocity of - 277 km s-1, the position angle of the symmetry axis of the fan is ~126°. The fan-shaped structure extends approximately 8.0 mas (~18.8 au) to the southeast and 5.8 mas (~13.6 au) to the northwest, measured along the symmetry axis at the 16% intensity contour. The shape of the intensity distributions suggests that the obtained images are the first direct images of the innermost wind-wind collision zone. Therefore, the observations provide velocity-dependent image structures that can be used to test three

  9. VLTI-AMBER Velocity-Resolved Aperture-Synthesis Imaging of Eta Carinae with a Spectral Resolution of 12 000: Studies of the Primary Star Wind and Innermost Wind-Wind Collision Zone

    Science.gov (United States)

    Weigelt, G.; Hofmann, K.-H.; Schertl, D.; Clementel, N.; Corcoran, M. F.; Damineli, A.; de Wit, W.-J.; Grellmann, R.; Groh, J.; Guieu, S.; hide

    2016-01-01

    The mass loss from massive stars is not understood well. Eta Carinae is a unique object for studying the massive stellar wind during the luminous blue variable phase. It is also an eccentric binary with a period of 5.54 yr. The nature of both stars is uncertain, although we know from X-ray studies that there is a wind-wind collision whose properties change with orbital phase. Aims. We want to investigate the structure and kinematics of Car's primary star wind and wind-wind collision zone with a high spatial resolution of approx.6 mas (approx.14 au) and high spectral resolution of R = 12 000. Methods. Observations of Car were carried out with the ESO Very Large Telescope Interferometer (VLTI) and the AMBER instrument between approximately five and seven months before the August 2014 periastron passage. Velocity-resolved aperture-synthesis images were reconstructed from the spectrally dispersed interferograms. Interferometric studies can provide information on the binary orbit, the primary wind, and the wind collision. Results. We present velocity-resolved aperture-synthesis images reconstructed in more than 100 di erent spectral channels distributed across the Br(gamma) 2.166 micron emission line. The intensity distribution of the images strongly depends on wavelength. At wavelengths corresponding to radial velocities of approximately -140 to -376 km/s measured relative to line center, the intensity distribution has a fan-shaped structure. At the velocity of -277 km/s, the position angle of the symmetry axis of the fan is 126. The fan-shaped structure extends approximately 8.0 mas (approx.18:8 au) to the southeast and 5.8 mas (approx.13:6 au) to the northwest, measured along the symmetry axis at the 16% intensity contour. The shape of the intensity distributions suggests that the obtained images are the first direct images of the innermost wind-wind collision zone. Therefore, the observations provide velocity-dependent image structures that can be used to test three

  10. Estimating a wind shear detection range for different altitude levels in the troposphere

    Directory of Open Access Journals (Sweden)

    V. A. Gorodnichev

    2014-01-01

    Full Text Available A so-called wind shear (a vector difference of wind speeds in two points of the space referred to the distance between them is of essential practical interest to air force. The wind shear is a hidden and cliffhanging phenomenon. The growth of aircraft incidents at their taking off and landing have drawn attention to this phenomenon.Laser methods are one of the advanced remote techniques to measure a speed and detect a wind shear. Remote laser methods of wind speed measurement are divided into Doppler and correlation ones. More simple (and, respectively, demanding less expensive equipment are correlation methods and near to them non-Doppler techniques.Today almost all existing wind correlation lidars run in the visible range. However, in terms of safety for an eye, other ranges: near infrared (IK and ultra-violet (UF ones are also of interest.The work assesses a sounding range of the aircraft lidar in UF, visible, and near IK spectral ranges to solve a problem of wind shear detection for different altitude levels in the troposphere.Results of calculations show that the sounding ranges decrease with increasing flight altitude (at lidar parameters used in calculations to be in range from ~ 2.7-3.3 km (the lowest atmospheric layer height ~ 0 to ~ 200 - 300 m (a flight altitude of 10 km. And the main reduction of the sounding range vs height is within the range of heights of 5-10 km. Such dependence is caused by the strong reduction of aerosol extinction and atmosphere scattering with the altitude increase in this altitude range.In a ground layer of the terrestrial atmosphere (height ~ 0 the greatest sounding range is realized for a wave length of 0.532 microns. With increasing flight altitude a difference in sounding ranges for the wave lengths of 0.355; 9.532 and 1.54 microns decreases, and at big heights the greatest range of sounding is realized for a wave length of 1.54 microns.

  11. Wind speed and wind power short and medium range predictions for complex terrain using artificial neural networks and ensemble calibration

    Science.gov (United States)

    Schicker, Irene; Papazek, Petrina; Kann, Alexander; Wang, Yong

    2017-04-01

    Reliable predictions of wind speed and wind power are vital for balancing the electricity network. Within the last two decades the amount of energy stemming from renewable sources increased substantially relying heavily on the prevailing synoptic conditions. Especially for regions with complex terrain and forested surfaces providing reliable predictions is a challenging task. Forecasts in the nowcasting as well as in the (two) day-ahead range are thus essential for the network balancing. Predictions of wind speed and wind power from the nowcasting to the +72-hour forecast range using NWP models in regions with complex terrain need a suitable horizontal, vertical and temporal resolution (e.g. 10 - 15 minute forecasts for the Nowcasting range) requiring high performance computing. To be able to provide sub-hourly to hourly forecasts different approaches such as model output statistics (MOS) or artificial neural networks (ANN) - including feed forward recurrent neural networks, fuzzy logic, particle swarm optimizations - are needed as computational costs are too high. To represent the forecast uncertainties additional probabilistic ensemble predictions are required increasing the computational needs. Ensemble prediction systems account for errors and uncertainties in the initial and boundary conditions, parameterizations, numeric, etc. Due to the underestimation of model and sampling errors ensemble predictions tend to be underdispersive and biased. They lack, too, sharpness and reliability. These shortcomings can be accounted for using statistical post-processing methods such as the non-homogeneous Gaussian regression (NGR) to calibrate an ensemble. These calibrated ensembles provide forecasts in the medium range for any arbitrary location where observations are available. In this study an ANN is used to provide forecasts for the nowcasting and medium-range with sub-hourly to hourly predictions for different Austrian sites, including high alpine sites as well as low

  12. HVDC Solution for Offshore Wind Park Comprising Turbines Equipped with Full-Range Converters

    DEFF Research Database (Denmark)

    Sharma, Ranjan; Rasmussen, Tonny Wederberg; Jensen, Kim Høj

    2010-01-01

    of a HVDC transmission system. The power system under study includes an offshore wind farm comprising turbines equipped with full range converters. The collection network is a local AC grid. Power transmission is done through HVDC system. The grid side VSC (voltage source converter) controls the DC voltage......This paper describes a power transmission technique from an offshore wind farm to an on-land AC (alternating current) grid through a HVDC (high voltage direct current) transmission system. The limitations of an AC transmission system for long distances are presented together with the advantages...... is controlled to operate as an infinite voltage source. The voltage and frequency of the collection grid is kept constant. When the connecting AC grid side fault occurs, the fault-ride-through is achieved by adjusting the voltage of the wind farm side AC collection grid through the wind farm side VSC. When...

  13. HVDC Solution for Offshore Wind Park Comprising Turbines Equipped with Full-Range Converters

    DEFF Research Database (Denmark)

    Sharma, Ranjan; Rasmussen, Tonny Wederberg; Jensen, Kim Høj

    2010-01-01

    This paper describes a power transmission technique from an offshore wind farm to an on-land AC (alternating current) grid through a HVDC (high voltage direct current) transmission system. The limitations of an AC transmission system for long distances are presented together with the advantages...... is controlled to operate as an infinite voltage source. The voltage and frequency of the collection grid is kept constant. When the connecting AC grid side fault occurs, the fault-ride-through is achieved by adjusting the voltage of the wind farm side AC collection grid through the wind farm side VSC. When...... of a HVDC transmission system. The power system under study includes an offshore wind farm comprising turbines equipped with full range converters. The collection network is a local AC grid. Power transmission is done through HVDC system. The grid side VSC (voltage source converter) controls the DC voltage...

  14. On the prediction of threshold friction velocity of wind erosion using soil reflectance spectroscopy

    Science.gov (United States)

    Li, Junran; Flagg, Cody B.; Okin, Gregory S.; Painter, Thomas H.; Dintwe, Kebonye; Belnap, Jayne

    2015-01-01

    Current approaches to estimate threshold friction velocity (TFV) of soil particle movement, including both experimental and empirical methods, suffer from various disadvantages, and they are particularly not effective to estimate TFVs at regional to global scales. Reflectance spectroscopy has been widely used to obtain TFV-related soil properties (e.g., moisture, texture, crust, etc.), however, no studies have attempted to directly relate soil TFV to their spectral reflectance. The objective of this study was to investigate the relationship between soil TFV and soil reflectance in the visible and near infrared (VIS–NIR, 350–2500 nm) spectral region, and to identify the best range of wavelengths or combinations of wavelengths to predict TFV. Threshold friction velocity of 31 soils, along with their reflectance spectra and texture were measured in the Mojave Desert, California and Moab, Utah. A correlation analysis between TFV and soil reflectance identified a number of isolated, narrow spectral domains that largely fell into two spectral regions, the VIS area (400–700 nm) and the short-wavelength infrared (SWIR) area (1100–2500 nm). A partial least squares regression analysis (PLSR) confirmed the significant bands that were identified by correlation analysis. The PLSR further identified the strong relationship between the first-difference transformation and TFV at several narrow regions around 1400, 1900, and 2200 nm. The use of PLSR allowed us to identify a total of 17 key wavelengths in the investigated spectrum range, which may be used as the optimal spectral settings for estimating TFV in the laboratory and field, or mapping of TFV using airborne/satellite sensors.

  15. Demonstration of synchronised scanning Lidar measurements of 2D velocity fields in a boundary-layer wind tunnel

    DEFF Research Database (Denmark)

    van Dooren, M F; Kühn, M.; Petrovic, V.

    2016-01-01

    of wake profiles on a line as well as wake area scans were executed to illustrate the applicability of Lidar scanning to measuring small scale wind flow effects. The downsides of Lidar with respect to the hot wire probes are the larger measurement probe volume and the loss of some measurements due......-range WindScanner Lidars to demonstrate the benefits of synchronised scanning Lidars in such experimental surroundings for the first time. The dualLidar system can provide fully synchronised trajectory scans with sampling time scales ranging from seconds to minutes. First, staring mode measurements were...... compared to hot wire probe measurements commonly used in wind tunnels. This yielded goodness of fit coefficients of 0.969 and 0.902 for the 1 Hz averaged u- and v-components of the wind speed, respectively, validating the 2D measurement capability of the Lidar scanners. Subsequently, the measurement...

  16. Accurate Hugoniots and sound velocities of bismuth under shock compression in the 38-100 GPa range

    Directory of Open Access Journals (Sweden)

    Feng Xi

    2018-01-01

    Full Text Available Dynamic compression experiments of bismuth (Bi in a shock pressure range of 38-100 GPa were conducted using an explosive drive. The time-resolved particle velocity profiles at the Bi/LiF (lithium fluoride interface and the impact velocities were recorded with a displacement interferometer system for any reflector (DISAR. Shock velocities of Bi were measured based on the shorted-pin technique. Sound velocities of Bi were obtained from the peak state time duration measurements with the overtake method. Uncertainties in the measured Hugoniots and sound velocities were analyzed carefully. The new Hugoniot relation, Us = (1.666 ± 0.057 km/s + (1.596 ± 0.037Up (1.13 km/s ≤Up≤2.05 km/s, was determined by fitting the measured shock velocity and particle velocity to a line. The relation between the Grüneisen coefficient and the density, γρ=const., is found to be a good approximation to describe the sound velocities of Bi above the shock-induced melting pressure, by carefully analysis of the sound velocity data.

  17. Wind, waves, and wing loading: Morphological specialization may limit range expansion of endangered albatrosses

    Science.gov (United States)

    Suryan, R.M.; Anderson, D.J.; Shaffer, S.A.; Roby, D.D.; Tremblay, Y.; Costa, D.P.; Sievert, P.R.; Sato, F.; Ozaki, K.; Balogh, G.R.; Nakamura, N.

    2008-01-01

    Among the varied adaptations for avian flight, the morphological traits allowing large-bodied albatrosses to capitalize on wind and wave energy for efficient long-distance flight are unparalleled. Consequently, the biogeographic distribution of most albatrosses is limited to the windiest oceanic regions on earth; however, exceptions exist. Species breeding in the North and Central Pacific Ocean (Phoebastria spp.) inhabit regions of lower wind speed and wave height than southern hemisphere genera, and have large intrageneric variation in body size and aerodynamic performance. Here, we test the hypothesis that regional wind and wave regimes explain observed differences in Phoebastria albatross morphology and we compare their aerodynamic performance to representatives from the other three genera of this globally distributed avian family. In the North and Central Pacific, two species (short-tailed P. albatrus and waved P. irrorata) are markedly larger, yet have the smallest breeding ranges near highly productive coastal upwelling systems. Short-tailed albatrosses, however, have 60% higher wing loading (weight per area of lift) compared to waved albatrosses. Indeed, calculated aerodynamic performance of waved albatrosses, the only tropical albatross species, is more similar to those of their smaller congeners (black-footed P. nigripes and Laysan P. immutabilis), which have relatively low wing loading and much larger foraging ranges that include central oceanic gyres of relatively low productivity. Globally, the aerodynamic performance of short-tailed and waved albatrosses are most anomalous for their body sizes, yet consistent with wind regimes within their breeding season foraging ranges. Our results are the first to integrate global wind and wave patterns with albatross aerodynamics, thereby identifying morphological specialization that may explain limited breeding ranges of two endangered albatross species. These results are further relevant to understanding past and

  18. Wind, waves, and wing loading: morphological specialization may limit range expansion of endangered albatrosses.

    Directory of Open Access Journals (Sweden)

    Robert M Suryan

    Full Text Available Among the varied adaptations for avian flight, the morphological traits allowing large-bodied albatrosses to capitalize on wind and wave energy for efficient long-distance flight are unparalleled. Consequently, the biogeographic distribution of most albatrosses is limited to the windiest oceanic regions on earth; however, exceptions exist. Species breeding in the North and Central Pacific Ocean (Phoebastria spp. inhabit regions of lower wind speed and wave height than southern hemisphere genera, and have large intrageneric variation in body size and aerodynamic performance. Here, we test the hypothesis that regional wind and wave regimes explain observed differences in Phoebastria albatross morphology and we compare their aerodynamic performance to representatives from the other three genera of this globally distributed avian family. In the North and Central Pacific, two species (short-tailed P. albatrus and waved P. irrorata are markedly larger, yet have the smallest breeding ranges near highly productive coastal upwelling systems. Short-tailed albatrosses, however, have 60% higher wing loading (weight per area of lift compared to waved albatrosses. Indeed, calculated aerodynamic performance of waved albatrosses, the only tropical albatross species, is more similar to those of their smaller congeners (black-footed P. nigripes and Laysan P. immutabilis, which have relatively low wing loading and much larger foraging ranges that include central oceanic gyres of relatively low productivity. Globally, the aerodynamic performance of short-tailed and waved albatrosses are most anomalous for their body sizes, yet consistent with wind regimes within their breeding season foraging ranges. Our results are the first to integrate global wind and wave patterns with albatross aerodynamics, thereby identifying morphological specialization that may explain limited breeding ranges of two endangered albatross species. These results are further relevant to

  19. Field computation of winds-aloft velocities from single theodolite pilot balloon observations

    Science.gov (United States)

    Bill C. Ryan

    1976-01-01

    The ability to determine wind speeds and directions in the first few thousand meters of the atmosphere is important in many forestry operations such as smolce management, aircraft seeding and spraying, prescribed burning, and wildfire suppression. A hand-held electronic calculator can be used to compute winds aloft as balloon observations are taken. Calculations can...

  1. Predicting viscous-range velocity gradient dynamics in large-eddy simulations of turbulence

    Science.gov (United States)

    Johnson, Perry; Meneveau, Charles

    2017-11-01

    The details of small-scale turbulence are not directly accessible in large-eddy simulations (LES), posing a modeling challenge because many important micro-physical processes depend strongly on the dynamics of turbulence in the viscous range. Here, we introduce a method for coupling existing stochastic models for the Lagrangian evolution of the velocity gradient tensor with LES to simulate unresolved dynamics. The proposed approach is implemented in LES of turbulent channel flow and detailed comparisons with DNS are carried out. An application to modeling the fate of deformable, small (sub-Kolmogorov) droplets at negligible Stokes number and low volume fraction with one-way coupling is carried out. These results illustrate the ability of the proposed model to predict the influence of small scale turbulence on droplet micro-physics in the context of LES. This research was made possible by a graduate Fellowship from the National Science Foundation and by a Grant from The Gulf of Mexico Research Initiative.

  2. Ecological types of the eastern slope of the Wind River Range, Shoshone National Forest, Wyoming

    Science.gov (United States)

    Aaron F. Wells; Janis L. Boettinger; Kent E. Houston; David W. Roberts

    2015-01-01

    This guide presents a classification of the Ecological Types of the eastern slope of the Wind River Range (WRR) on the Shoshone National Forest in west-central Wyoming. Ecological Types integrate vegetation and environmental characteristics, including climate, geology, landform, and soils, into a comprehensive ecosystem classification. The three objectives are: (1)...

  3. Estimation of wind velocity over a complex terrain using the Generalized Mapping Regressor

    Energy Technology Data Exchange (ETDEWEB)

    Beccali, M.; Marvuglia, A. [Dipartimento di Ricerche Energetiche ed Ambientali (DREAM), Universita degli Studi di Palermo, Viale delle Scienze - edificio 9, 90128 Palermo (Italy); Cirrincione, G. [Department de Genie Electrique, Universite de Picardie Jules Verne, 33, Rue Saint Leu, 80039 Amiens (France); Serporta, C. [ISSIA-CNR (Institute on Intelligent Systems for the Automation), Section of Palermo, Via Dante12, Palermo (Italy)

    2010-03-15

    Wind energy evaluation is an important goal in the conversion of energy systems to more environmentally friendly solutions. In this paper, we present a novel approach to wind speed spatial estimation on the isle of Sicily (Italy): an incremental self-organizing neural network (Generalized Mapping Regressor - GMR) is coupled with exploratory data analysis techniques in order to obtain a map of the spatial distribution of the average wind speed over the entire region. First, the topographic surface of the island was modelled using two different neural techniques and by exploiting the information extracted from a digital elevation model of the region. Then, GMR was used for automatic modelling of the terrain roughness. Afterwards, a statistical analysis of the wind data allowed for the estimation of the parameters of the Weibull wind probability distribution function. In the last sections of the paper, the expected values of the Weibull distributions were regionalized using the GMR neural network. (author)

  4. Estimation of the variations of ventilation rate and indoor radon concentration using the observed wind velocity and indoor-outdoor temperature difference

    International Nuclear Information System (INIS)

    Nagano, Katsuhiro; Inose, Yuichi; Kojima, Hiroshi

    2006-01-01

    The indoor radon concentration in the building depends on the ventilation rate. Measurement results of indoor-outdoor pressure difference showed the ventilation rate correlated closely with the indoor-outdoor pressure difference. The observation results showed that one of factor of indoor-outdoor pressure difference was the wind velocity. When the wind velocity is small, the ventilation rate is affected by the indoor-outdoor temperature difference and the effect depends on the wind velocity. The temporal variation of indoor radon concentration was predicted by the time depending indoor radon balance model and the ventilation rate estimated from the wind velocity and the indoor-outdoor temperature difference. The temporal variations of predicted radon concentration gave good agreement with the experimental values. The measurement method, indoor radon concentration and ventilation rate, factors of temporal variation of ventilation rate, and prediction of indoor radon concentration are reported. (S.Y.)

  5. Magnetic Geared Radial Axis Vertical Wind Turbine for Low Velocity Regimes

    Directory of Open Access Journals (Sweden)

    Wei Wei Teow

    2018-01-01

    Full Text Available In the 21st century, every country is seeking an alternative source of energy especially the renewable sources. There are considerable developments in the wind energy technology in recent years and in more particular on the vertical axis wind turbine (VAWT as they are modular, less installation cost and portable in comparison with that of the horizontal axis wind turbine (HAWT systems. The cut-in speed of a conventional wind turbine is 3.5 m/s to 5 m/s. Mechanical geared generators are commonly found in wind technology to step up power conversion to accommodate the needs of the generator. Wind turbine gearboxes suffer from overload problem and frequent maintenance in spite of the high torque density produced. However, an emerging alternative to gearing system is Magnetic Gear (MG as it offers significant advantages such as free from maintenance and inherent overload protection. In this project, numerical analysis is done on designed magnetic gear greatly affects the performance of the generator in terms of voltage generation. Magnetic flux density is distributed evenly across the generator as seen from the uniform sinusoidal output waveform. Consequently, the interaction of the magnetic flux of the permanent magnets has shown no disturbance to the output of the generator as the voltage generated shows uniform waveform despite the rotational speed of the gears. The simulation is run at low wind speed and the results show that the generator starts generating a voltage of 240 V at a wind speed of 1.04 m/s. This shows great improvement in the operating capability of the wind turbine.

  6. Influence of wind velocity fluctuation on air temperature difference between the fan and ground levels and the effect of frost protective fan operation

    International Nuclear Information System (INIS)

    Araki, T.; Matsuo, K.; Miyama, D.; Sumikawa, O.; Araki, S.

    2008-01-01

    We invested the influence of wind velocity fluctuation on air temperature difference between the fan (4.8 m) and ground levels (0.5 m) and the effect of frost protective fan operation in order to develop a new method to reduce electricity consumption due to frost protective fan operation. The results of the investigations are summarized as follows: (1) Air temperature difference between the fan (4.8 m) and ground levels (0.5 m) was decreased following an increase in wind velocity, and the difference was less than 1°C for a wind velocity more than 3.0 m/s at a height of 6.5 m. (2) When the wind velocity was more than 2-3 m/s, there was hardly any increase in the temperature of the leaves. In contrast, when the wind velocity was less than 2-3 m/s, an increase in the temperature of the leaves was observed. Based on these results, it is possible that when the wind velocity is greater than 2-3 m, it prevents thermal inversion. Therefore, there would be no warmer air for the frost protective fan to return to the tea plants and the air turbulence produced by the frost protective fan would not reach the plants under the windy condition

  7. Measurements of surface-layer turbulence in awide norwegian fjord using synchronized long-range doppler wind lidars

    DEFF Research Database (Denmark)

    Cheynet, Etienne; Jakobsen, Jasna B.; Snæbjörnsson, Jónas

    2017-01-01

    lidar data with point-measurement to reduce the uncertainties linked to the atmospheric stability and the spatial averaging of the lidar probe volume. The measured lateral coherence was associated with a decay coefficient larger than expected for the along-wind component, with a value around 21...... for a mean wind velocity bounded between 10m·s-1 and 14m·s-1, which may be related to a stable atmospheric stratification....

  8. X-RAY HIGH-RESOLUTION SPECTROSCOPY REVEALS FEEDBACK IN A SEYFERT GALAXY FROM AN ULTRA-FAST WIND WITH COMPLEX IONIZATION AND VELOCITY STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Longinotti, A. L. [Catedrática CONACYT—Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis E. Erro 1, Tonantzintla, Puebla, C.P. 72840, México (Mexico); Krongold, Y. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Apartado Postal 70264, 04510 Mexico D.F. (Mexico); Guainazzi, M.; Santos-Lleo, M.; Rodriguez-Pascual, P. [ESAC, P.O. Box, 78 E-28691 Villanueva de la Cañada, Madrid (Spain); Giroletti, M. [INAF Osservatorio di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Panessa, F. [INAF—Istituto di Astrofisica e Planetologia Spaziali di Roma (IAPS), Via del Fosso del Cavaliere 100, I-00133 Roma (Italy); Costantini, E. [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands)

    2015-11-10

    Winds outflowing from active galactic nuclei (AGNs) may carry significant amounts of mass and energy out to their host galaxies. In this paper we report the detection of a sub-relativistic outflow observed in the narrow line Seyfert 1 galaxy IRAS 17020+4544 as a series of absorption lines corresponding to at least five absorption components with an unprecedented wide range of associated column densities and ionization levels and velocities in the range of 23,000–33,000 km s{sup −1}, detected at X-ray high spectral resolution (E/ΔE ∼ 1000) with the ESA's observatory XMM-Newton. The charge states of the material constituting the wind clearly indicate a range of low to moderate ionization states in the outflowing gas and column densities that are significantly lower than observed in highly ionized ultra-fast outflows. We estimate that at least one of the outflow components may carry sufficient energy to substantially suppress star formation and heat the gas in the host galaxy. IRAS 17020+4544 therefore provides an interesting example of feedback by a moderately luminous AGN that is hosted in a spiral galaxy, a case barely envisaged in most evolution models, which often predict that feedback processes take place in massive elliptical galaxies hosting luminous quasars in a post-merger phase.

  9. Ion-Scale Spectral Break in the Normal Plasma Beta Range in the Solar Wind Turbulence

    Science.gov (United States)

    Wang, X.; Tu, C.-Y.; He, J.-S.; Wang, L.-H.

    2018-01-01

    The spectral break (fb) of magnetic fluctuations at the ion scale in the solar wind is considered to give important clue on the turbulence dissipation mechanism. Among several possible mechanisms, the most notable two are related respectively to proton thermal gyroradius ρi and proton inertial length di. The corresponding frequencies of them are fρi=VSW/(2πρi) and fdi=VSW/(2πdi), respectively, where VSW is the solar wind speed. However, no definite conclusion has been given for which one is more reasonable because the two parameters have similar value when plasma beta β ˜ 1. Here we do a statistical study to see if the two ratios fb/fρi and fb/fdi have different dependence on β in the solar wind turbulence with 0.1 fdi is statistically not dependent on β, and the average value of it is 0.48 ± 0.06. However, fb/fρi increases with increasing β clearly and is significantly smaller than fb/fdi when β fdi, and the influence of β could be negligible in the studied β range. It indicates a preference of the dissipation mechanism associated with di in the solar wind with 0.1 < β < 0.8. Further theoretical studies are needed to give detailed explanation.

  10. Hybrid simulations of the expanding solar wind: Temperatures and drift velocities

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Trávníček, Pavel; Mangeney, A.; Grappin, R.

    2003-01-01

    Roč. 30, č. 5 (2003), s. 15-1-15-4 ISSN 0094-8276 R&D Projects: GA AV ČR IAB3042106 Grant - others:CNRS(FR) PICS 1175 Institutional research plan: CEZ:AV0Z3042911 Keywords : expanding solar wind * hybrid simulations Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.422, year: 2003

  11. Coherent lidar modulated with frequency stepped pulse trains for unambiguous high duty cycle range and velocity sensing in the atmosphere

    DEFF Research Database (Denmark)

    Lindelöw, Per Jonas Petter; Mohr, Johan Jacob

    2007-01-01

    Range unambiguous high duty cycle coherent lidars can be constructed based on frequency stepped pulse train modulation, even continuously emitting systems could be envisioned. Such systems are suitable for velocity sensing of dispersed targets, like the atmosphere, at fast acquisition rates....... The lightwave synthesized frequency sweeper is a suitable generator yielding fast pulse repetition rates and stable equidistant frequency steps. Theoretical range resolution profiles of modulated lidars are presented....

  12. Group velocity effect on resonant, long-range wake-fields in slow wave structures

    CERN Document Server

    Smirnov, A V

    2002-01-01

    Synchronous wake-fields in a dispersive waveguide are derived in a general explicit form on the basis of a rigorous electro-dynamical approach using Fourier transformations. The fundamental role of group velocity in wake-field propagation, calculation of attenuation, amplitudes, form-factors and loss-factors is analyzed for single bunch radiation. Adiabatic tapering of the waveguide and bunch density variation is taken into account analytically for the time-domain fields. Effects of field 'compression/expansion' and group delays are demonstrated. The role of these effects is discussed for single bunch wake-fields, transient beam loading, BBU and HOMs. A novel waveguide structure with central rf coupling and both positive and negative velocities is proposed. It can be used effectively in both high-energy accelerators and single-section linacs.

  13. Alignment of stress, mean wind, and vertical gradient of the velocity vector

    DEFF Research Database (Denmark)

    Berg, Jacob; Mann, Jakob; Patton, E.G.

    2012-01-01

    In many applications in the atmospheric surface layer the turbulent-viscosity hypothesis is applied, i.e. the stress vector can be described through the vertical gradient of velocity. In the atmospheric surface layer, where the Coriolis force and baroclinic effects are considered negligible...

  14. An approach to improving transporting velocity in the long-range ultrasonic transportation of micro-particles

    International Nuclear Information System (INIS)

    Meng, Jianxin; Mei, Deqing; Yang, Keji; Fan, Zongwei

    2014-01-01

    In existing ultrasonic transportation methods, the long-range transportation of micro-particles is always realized in step-by-step way. Due to the substantial decrease of the driving force in each step, the transportation is lower-speed and stair-stepping. To improve the transporting velocity, a non-stepping ultrasonic transportation approach is proposed. By quantitatively analyzing the acoustic potential well, an optimal region is defined as the position, where the largest driving force is provided under the condition that the driving force is simultaneously the major component of an acoustic radiation force. To keep the micro-particle trapped in the optimal region during the whole transportation process, an approach of optimizing the phase-shifting velocity and phase-shifting step is adopted. Due to the stable and large driving force, the displacement of the micro-particle is an approximately linear function of time, instead of a stair-stepping function of time as in the existing step-by-step methods. An experimental setup is also developed to validate this approach. Long-range ultrasonic transportations of zirconium beads with high transporting velocity were realized. The experimental results demonstrated that this approach is an effective way to improve transporting velocity in the long-range ultrasonic transportation of micro-particles

  15. Tonopah Test Range Air Monitoring: CY2016 Meteorological, Radiological, and Wind Transported Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Jenny [Desert Research Inst. (DRI), Las Vegas, NV (United States); Nikolich, George [Desert Research Inst. (DRI), Las Vegas, NV (United States); Shadel, Craig [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCurdy, Greg [Desert Research Inst. (DRI), Las Vegas, NV (United States); Etyemezian, Vicken [Desert Research Inst. (DRI), Las Vegas, NV (United States); Miller, Julianne J [Desert Research Inst. (DRI), Las Vegas, NV (United States); Mizell, Steve [Desert Research Inst. (DRI), Las Vegas, NV (United States)

    2017-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This operation resulted in radionuclide-contaminated soils at the Clean Slate I, II, and III sites. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III, and at the TTR Sandia National Laboratories (SNL) Range Operations Control (ROC) center. The primary objective of the monitoring effort is to determine if wind blowing across the Clean Slate sites is transporting particles of radionuclide-contaminated soil beyond the physical and administrative boundaries of the sites.

  16. The stopping of heavy ions in the low-to-intermediate energy range: The apparent velocity threshold

    Energy Technology Data Exchange (ETDEWEB)

    Lifschitz, A.F. [Laboratoire d’Optique Apliquèe, ENSTA-CNRS-Ecole Polytechnique, Palaiseau (France); Arista, N.R., E-mail: arista@cab.cnea.gov.ar [División Colisiones Atómicas, Centro Atómico Bariloche, CNEA, 8400 Bariloche (Argentina)

    2013-12-01

    We present a non-linear study of the energy loss of heavy ions in solids, which is based on the transport cross section (TCS) and the extension of the Friedel sum rule (EFSR) for moving ions. We apply this approach to study the velocity dependence of the energy loss of heavy ions in the energy region below the stopping power maximum. With this formulation we are able to explain some striking effects in the energy loss of heavy ions which have been experimentally observed long time ago (Brown and Moak (1972) [14]), but have not been explained so far by the existing theoretical models: the deviations from the proportionality with ion velocity (predicted by alternative models in the low energy range), and the “apparent velocity threshold”.

  17. Parametric Instability, Inverse Cascade, and the 1/f Range of Solar-Wind Turbulence.

    Science.gov (United States)

    Chandran, Benjamin D G

    2018-02-01

    In this paper, weak turbulence theory is used to investigate the nonlinear evolution of the parametric instability in 3D low- β plasmas at wavelengths much greater than the ion inertial length under the assumption that slow magnetosonic waves are strongly damped. It is shown analytically that the parametric instability leads to an inverse cascade of Alfvén wave quanta, and several exact solutions to the wave kinetic equations are presented. The main results of the paper concern the parametric decay of Alfvén waves that initially satisfy e + ≫ e - , where e + and e - are the frequency ( f ) spectra of Alfvén waves propagating in opposite directions along the magnetic field lines. If e + initially has a peak frequency f 0 (at which fe + is maximized) and an "infrared" scaling f p at smaller f with -1 scaling throughout a range of frequencies that spreads out in both directions from f 0 . At the same time, e - acquires an f -2 scaling within this same frequency range. If the plasma parameters and infrared e + spectrum are chosen to match conditions in the fast solar wind at a heliocentric distance of 0.3 astronomical units (AU), then the nonlinear evolution of the parametric instability leads to an e + spectrum that matches fast-wind measurements from the Helios spacecraft at 0.3 AU, including the observed f -1 scaling at f ≳ 3 × 10 -4 Hz. The results of this paper suggest that the f -1 spectrum seen by Helios in the fast solar wind at f ≳ 3 × 10 -4 Hz is produced in situ by parametric decay and that the f -1 range of e + extends over an increasingly narrow range of frequencies as r decreases below 0.3 AU. This prediction will be tested by measurements from the Parker Solar Probe .

  18. Wind data for wind driven plant. [site selection for optimal performance

    Science.gov (United States)

    Stodhart, A. H.

    1973-01-01

    Simple, averaged wind velocity data provide information on energy availability, facilitate generator site selection and enable appropriate operating ranges to be established for windpowered plants. They also provide a basis for the prediction of extreme wind speeds.

  19. Doppler ultrasound velocities and resistive indexes immediately after pediatric liver transplantation: normal ranges and predictors of failure.

    Science.gov (United States)

    Jamieson, Lucy H; Arys, Bo; Low, Gavin; Bhargava, Ravi; Kumbla, Surekha; Jaremko, Jacob L

    2014-07-01

    We sought to determine the ranges of Doppler ultrasound findings immediately after pediatric liver transplantation that are associated with successful outcomes or postoperative complications. This study included consecutive children who underwent Doppler ultrasound less than 48 hours after liver transplantation from 2001 to 2011. Operative reports and clinical outcome data were recorded. We had 110 patients (54% girls) with mean age at transplantation of 2.9 years (median, 1.3 years; range, 0-14 years) and a median follow-up interval of 3.5 years. Two pediatric radiologists reviewed ultrasound images in consensus. We computed descriptive statistics, interindex correlations, and analysis of variance. Twenty-four of 110 patients had a vascular complication, most commonly hepatic arterial thrombosis (seven patients). Compared with published adult normal values, normal pediatric Doppler parameters at postoperative day 1 trended toward higher normal velocities and resistive indexes (up to 0.95). Absent or low-velocity common hepatic artery flow less than 50 cm/s or a common hepatic artery resistive index less than 0.50 were significantly associated with hepatic artery thrombosis, whereas absent or low-velocity portal venous flow less than 30 cm/s or low-velocity hepatic venous flow less than 25 cm/s were significantly associated with vascular complications and a monotonic hepatic venous waveform was significantly associated with venous complications. Flow in a pediatric liver on the first day after transplantation is normally hyperdynamic, especially in the youngest transplant recipients, and, as a result, low velocities or resistive indexes are particularly concerning for complications. The pediatric-specific ranges of expected posttransplantation Doppler ultrasound findings presented in this article should assist in identifying normal variation and potentially life-threatening complications.

  20. Global positioning system data analysis: velocity ranges and a new definition of sprinting for field sport athletes.

    Science.gov (United States)

    Dwyer, Dan B; Gabbett, Tim J

    2012-03-01

    Global positioning system (GPS) technology has improved the speed, accuracy, and ease of time-motion analyses of field sport athletes. The large volume of numerical data generated by GPS technology is usually summarized by reporting the distance traveled and time spent in various locomotor categories (e.g., walking, jogging, and running). There are a variety of definitions used in the literature to represent these categories, which makes it nearly impossible to compare findings among studies. The purpose of this work was to propose standard definitions (velocity ranges) that were determined by an objective analysis of time-motion data. In addition, we discuss the limitations of the existing definition of a sprint and present a new definition of sprinting for field sport athletes. Twenty-five GPS data files collected from 5 different sports (men's and women's field hockey, men's and women's soccer, and Australian Rules Football) were analyzed to identify the average velocity distribution. A curve fitting process was then used to determine the optimal placement of 4 Gaussian curves representing the typical locomotor categories. Based on the findings of these analyses, we make recommendations about sport-specific velocity ranges to be used in future time-motion studies of field sport athletes. We also suggest that a sprint be defined as any movement that reaches or exceeds the sprint threshold velocity for at least 1 second and any movement with an acceleration that occurs within the highest 5% of accelerations found in the corresponding velocity range. From a practical perspective, these analyses provide conditioning coaches with information on the high-intensity sprinting demands of field sport athletes, while also providing a novel method of capturing maximal effort, short-duration sprints.

  1. Prediction of velocity of the wind generation in Kobe City College of Technology; Kobe Kosen ni okeru furyoku hatsuden no yosoku

    Energy Technology Data Exchange (ETDEWEB)

    Akamatsu, K.; Kanemura, M.; Amako, K.

    1997-11-25

    Wind conditions, such as average wind velocity for 10 minutes, maximum instantaneous wind velocity and wind directions, are measured by the anemometer and anemoscope installed 3m above the roof of the Kobe City College of Technology`s Information Processing Center building, to collect the data necessary to validate possibility of wind power generation, if the wind system is installed in the college site. Monthly availability of power is estimated from the output power characteristics curve for a generator having a rated capacity of 200W and wind velocity data collected for 9 months. It will generate power of only 144kWh, even when operated to give the rated output, or approximately 8.5kWh at the highest in a month, because of availability of wind power limited to around 30% of the total as estimated from the relative frequency distribution. It is therefore desirable to install a number of units having a rated capacity of 200W or else a smaller number of larger units. Assuming that days that give the highest output for 24 hours last 1 month, a power of 54.3kWh will be generated. It is estimated, based on these results, that a hybrid unit, in which a wind power generator installed at a high place is combined with a solar unit, can provide power required for nighttime lighting, if a wind power unit having a rated capacity of 2kW is field-controlled under an optimum condition. 13 figs., 3 tabs.

  2. Application of Boost Converter to Increase the Speed Range of Dual-stator Winding Induction Generator in Wind Power Systems

    DEFF Research Database (Denmark)

    Kavousi, Ayoub; Fathi, S. Hamid; Milimonfared, Jafar

    2018-01-01

    In this paper, a topology using a Dual-stator Winding Induction Generator (DWIG) and a boost converter is proposed for the variable speed wind power application. At low rotor speeds, the generator saturation limits the voltage of the DWIG. Using a boost converter, higher DC voltage can be produce...

  3. Investigation of hopped frequency waveforms for range and velocity measurements of radar targets

    CSIR Research Space (South Africa)

    Kathree, U

    2015-10-01

    Full Text Available In the field of radar, High Range Resolution (HRR) profiles are often used to improve target tracking accuracy in range and to allow the radar system to produce an image of an object using techniques such as inverse synthetic aperture radar (ISAR...

  4. Tangential discontinuities in the solar wind: Correlated field and velocity changes in the Kelvin-Helmholtz Instability

    International Nuclear Information System (INIS)

    Neugebauer, M.; Alexander, C.J.; Schwenn, R.; Richter, A.K.

    1986-01-01

    Three-dimensional Helios plasma and field data are used to investigate the relative changes in direction of the velocity and magnetic field vectors across tangential discontinuities, (TDs) in the solar wind at solar distances of 0.29--0.50 AU. It is found for tangential discontinuities with both Δv and ΔB/B large that Δv and ΔB are closely aligned with each other, in agreement with the unexpected results of previous studies of tangential discontinuities observed at 1 AU and beyond. It is shown that this effect probably results from the destruction by the Kelvin-Helmholtz instability of TDs for which Δv and ΔB are not aligned. The observed decrease in the number of interplanetary discontinuities with increasing solar distance may be associated with the growth of the Kelvin-Helmholtz instability with decreasing Alfven speed

  5. Evaporation of Arabian light crude oil spilled on sea and on beach sands : influence of solar radiation and wind velocity

    International Nuclear Information System (INIS)

    Bergueiro, J.R.; Marti, A.; Fuertes, A.; Moreno, S.; Guijarro, S.

    1998-01-01

    The evaporation of crude oil resulting from a spill on sea water was studied to develop a simulation model. Evaporation takes place within a complex process of mass and energy transfer. The effects of physical and chemical variables (such as wind velocity and direct and diffused solar radiation) and the environmental conditions of the spillage were also considered. Arabian crude oil was used in the simulation model for crude oil spillage on sea water. An equation for the evaporation process was used to correlate the evaporated fraction of oil as a function of time. The area of spreading was determined as a function of the dominant stage at each moment of spreading. The evaporation of spilled crude oil on beach sand consisting of three different particle sizes was also studied and used for a simulation model for crude oil spillage on a polluted beach. 7 refs., 6 tabs., 10 figs

  6. FrFT-CSWSF: Estimating cross-range velocities of ground moving targets using multistatic synthetic aperture radar

    Directory of Open Access Journals (Sweden)

    Li Chenlei

    2014-10-01

    Full Text Available Estimating cross-range velocity is a challenging task for space-borne synthetic aperture radar (SAR, which is important for ground moving target indication (GMTI. Because the velocity of a target is very small compared with that of the satellite, it is difficult to correctly estimate it using a conventional monostatic platform algorithm. To overcome this problem, a novel method employing multistatic SAR is presented in this letter. The proposed hybrid method, which is based on an extended space-time model (ESTIM of the azimuth signal, has two steps: first, a set of finite impulse response (FIR filter banks based on a fractional Fourier transform (FrFT is used to separate multiple targets within a range gate; second, a cross-correlation spectrum weighted subspace fitting (CSWSF algorithm is applied to each of the separated signals in order to estimate their respective parameters. As verified through computer simulation with the constellations of Cartwheel, Pendulum and Helix, this proposed time-frequency-subspace method effectively improves the estimation precision of the cross-range velocities of multiple targets.

  7. Long Range Sound Propagation over Sea: Application to Wind Turbine Noise

    Energy Technology Data Exchange (ETDEWEB)

    Boue, Matieu

    2007-12-13

    The classical theory of spherical wave propagation is not valid at large distances from a sound source due to the influence of wind and temperature gradients that refract, i.e., bend the sound waves. This will in the downwind direction lead to a cylindrical type of wave spreading for large distances (> 1 km). Cylindrical spreading will give a smaller damping with distance as compared to spherical spreading (3 dB/distance doubling instead of 6 dB). But over areas with soft ground, i.e., grass land, the effect of ground reflections will increase the damping so that, if the effect of atmospheric damping is removed, a behavior close to a free field spherical spreading often is observed. This is the standard assumption used in most national recommendations for predicting outdoor sound propagation, e.g., noise from wind turbines. Over areas with hard surfaces, e.g., desserts or the sea, the effect of ground damping is small and therefore cylindrical propagation could be expected in the downwind direction. This observation backed by a limited number of measurements is the background for the Swedish recommendation, which suggests that cylindrical wave spreading should be assumed for distances larger than 200 m for sea based wind turbines. The purpose of this work was to develop measurement procedures for long range sound transmission and to apply this to investigate the occurrence of cylindrical wave spreading in the Baltic Sea. This work has been successfully finished and is described in this report. Another ambition was to develop models for long range sound transmission based on the parabolic equation. Here the work is not finished but must be continued in another project. Long term measurements were performed in the Kalmar strait, Sweden, located between the mainland and Oeland, during 2005 and 2006. Two different directive sound sources placed on a lighthouse in the middle of the strait produced low frequency tones at 80, 200 and 400 Hz. At the reception point on

  8. Research of Short-range Missile Motion in Terms of Different Wind Loads

    Directory of Open Access Journals (Sweden)

    A. N. Klishin

    2015-01-01

    Full Text Available When modeling the aircraft motion it is advisable to choose a particular model of the Earth, depending both on the task and on the required accuracy of calculation. The article describes various models of the Earth, such as the flat Earth with a plane-parallel field of gravity, spherical and non-rotating Earth with a plane-parallel field of gravity, spherical and non-rotating Earth with a central gravitational field, spherical and non-rotating Earth, taking into account the polar flattening of the Earth, spherical Earth based compression and polar daily rotation. The article also considers the influence of these models on the motion of the selected aircraft.To date, there is technical equipment to provide highly accurate description of the Earthshape, gravitational field, etc. The improved accuracy of the Earth model description results in more correct description of the trajectory and motion parameters of a ballistic missile. However, for short ranges (10-20 km this accuracy is not essential, and, furthermore, it increases time of calculation. Therefore, there is a problem of choosing the optimal description of the Earth parameters.The motion in the model of the Earth, which takes into account a daily rotation of the planet and polar flattening, is discussed in more detail, and the geographical latitude impact on coordinates of the points of fall of a ballistic missile is analyzed on the basis of obtained graphs.The article individually considers a problem of the wind effect on the aircraft motion and defines dependences of the missile motion on the parameters of different wind loads, such as wind speed and height of its action.A mathematical model of the missile motion was built and numerically integrated, using the Runge-Kutta 4th order method, for implementation and subsequent analysis.Based on the analysis of the calculation results in the abovementioned models of the Earth, differences in impact of these models on the parameters of the

  9. Sound limb loading in individuals with unilateral transfemoral amputation across a range of walking velocities.

    Science.gov (United States)

    Russell Esposito, Elizabeth; Aldridge Whitehead, Jennifer M; Wilken, Jason M

    2015-12-01

    Individuals with unilateral transfemoral amputation demonstrate significantly increased rates of osteoarthritis in their sound knee. This increased risk is likely the result of altered knee mechanical loading and gait compensations resulting from limited function in the prosthetic limb. Altered knee loading as calculated using loading rates and peak external knee adduction moments and impulses have been associated with both the development and progression of knee osteoarthritis in other populations. The purpose of this study was to determine if young individuals with transfemoral amputation demonstrate biomechanical indicators of increased knee osteoarthritis risk. Fourteen young male Service Members with unilateral transfemoral amputation and 14 able-bodied service members underwent biomechanical gait analysis at three standardized walking velocities. A two-way ANOVA (group × speed) with unpaired comparisons with Bonferroni-Holm post-hoc corrections assessed statistical significance and effect sizes (d) were calculated. Normalized peak external knee adduction moments and impulses were 25.7% (P 0.994) and 27.1% (P 1.019) lower, respectively, in individuals with trans-femoral amputation than controls when averaged across speeds, and effect sizes were large. External knee flexor moments were not, however, different between groups and effect sizes were generally small (P > 0.380, d amputation and effect sizes were large (P 1.644). Individuals with transfemoral amputation did not demonstrate biomechanical risk factors for high medial compartment knee joint loads, but the increased loading rates could place the sound knee at greater risk for cartilage or other tissue damage, even if not localized to the medial compartment. Published by Elsevier Ltd.

  10. Predicting the Velocity and Azimuth of Fragments Generated by the Range Destruction or Random Failure of Rocket Casings and Tankage

    Energy Technology Data Exchange (ETDEWEB)

    Eck, Marshall B.; Mukunda, Meera

    1988-10-01

    The details of a predictive analytical modeling process as well as the development of normalized relations for momentum partition as a function of SRM burn time and initial geometry are discussed in this paper. Methods for applying similar modeling techniques to liquid-tankage-over-pressure failures are also discussed. These methods have been calibrated against observed SRM ascent failures and on-orbit tankage failures. Casing-quadrant sized fragments with velocities exceeding 100 m/s resulted from Titan 34D-SRM range destruct actions at 10 sec mission elapsed time (MET). Casing-quadrant sized fragments with velocities of approximately 200 m/s resulted from STS-SRM range destruct actions at 110 sec MET. Similar sized fragments for Ariane third stage and Delta second stage tankage were predicted to have maximum velocities of 260 m/s and 480 m/s respectively. Good agreement was found between the predictions and observations for five specific events and it was concluded that the methods developed have good potential for use in predicting the fragmentation process of a number of generically similar casing and tankage systems. There are three copies in the file, one of these is loose.

  11. Frequency Diverse Array Radar Cramér-Rao Lower Bounds for Estimating Direction, Range, and Velocity

    Directory of Open Access Journals (Sweden)

    Yongbing Wang

    2014-01-01

    Full Text Available Different from phased-array radar, frequency diverse array (FDA radar offers range-dependent beampattern and thus provides new application potentials. But there is a fundamental question: what estimation performance can achieve for an FDA radar? In this paper, we derive FDA radar Cramér-Rao lower bounds (CRLBs for estimating direction, range (time delay, and velocity (Doppler shift. Two different data models including pre- and postmatched filtering are investigated separately. As the FDA radar has range-angle coupling, we use a simple transmit subaperturing strategy which divides the whole array into two subarrays, each uses a distinct frequency increment. Assuming temporally white Gaussian noise and linear frequency modulated transmit signal, extensive simulation examples are performed. When compared to conventional phased-array radar, FDA can yield better CRLBs for estimating the direction, range, and velocity. Moreover, the impacts of the element number and frequency increment are also analyzed. Simulation results show that the CRLBs decrease with the increase of the elements number and frequency increment.

  12. Determining position, velocity and acceleration of free-ranging animals with a low-cost unmanned aerial system.

    Science.gov (United States)

    Harvey, Richard J; Roskilly, Kyle; Buse, Chris; Evans, Hannah K; Hubel, Tatjana Y; Wilson, Alan M

    2016-09-01

    Unmanned aerial systems (UASs), frequently referred to as 'drones', have become more common and affordable and are a promising tool for collecting data on free-ranging wild animals. We used a Phantom-2 UAS equipped with a gimbal-mounted camera to estimate position, velocity and acceleration of a subject on the ground moving through a grid of GPS surveyed ground control points (area ∼1200 m(2)). We validated the accuracy of the system against a dual frequency survey grade GPS system attached to the subject. When compared with GPS survey data, the estimations of position, velocity and acceleration had a root mean square error of 0.13 m, 0.11 m s(-1) and 2.31 m s(-2), respectively. The system can be used to collect locomotion and localisation data on multiple free-ranging animals simultaneously. It does not require specialist skills to operate, is easily transported to field locations, and is rapidly and easily deployed. It is therefore a useful addition to the range of methods available for field data collection on free-ranging animal locomotion. © 2016. Published by The Company of Biologists Ltd.

  13. Data Quality Assessment Methods for the Eastern Range 915 MHz Wind Profiler Network

    Science.gov (United States)

    Lambert, Winifred C.; Taylor, Gregory E.

    1998-01-01

    The Eastern Range installed a network of five 915 MHz Doppler Radar Wind Profilers with Radio Acoustic Sounding Systems in the Cape Canaveral Air Station/Kennedy Space Center area to provide three-dimensional wind speed and direction and virtual temperature estimates in the boundary layer. The Applied Meteorology Unit, staffed by ENSCO, Inc., was tasked by the 45th Weather Squadron, the Spaceflight Meteorology Group, and the National Weather Service in Melbourne, Florida to investigate methods which will help forecasters assess profiler network data quality when developing forecasts and warnings for critical ground, launch and landing operations. Four routines were evaluated in this study: a consensus time period check a precipitation contamination check, a median filter, and the Weber-Wuertz (WW) algorithm. No routine was able to effectively flag suspect data when used by itself. Therefore, the routines were used in different combinations. An evaluation of all possible combinations revealed two that provided the best results. The precipitation contamination and consensus time routines were used in both combinations. The median filter or WW was used as the final routine in the combinations to flag all other suspect data points.

  14. Generalized similarity observed in finite range magnetohydrodynamic turbulence in the corona and solar wind

    Science.gov (United States)

    Nicol, R.; Leonardis, E.; Chapman, S. C.; Foullon, C.

    2011-12-01

    Fluctuations associated with fully developed magnetohydrodynamic (MHD) turbulent flows in an infinite medium are characterized by non-Gaussian statistics which are scale invariant; this implies power law power spectra and multiscaling for the Generalized Structure Functions (GSFs). Given an observable f(r,t) and assuming statistical stationary, the p'th order moment of the GSF of the fluctuating differences scales as Lzeta(p), where L is the observation scale and ζ (p) are the scaling exponents. For turbulence in a system that is of finite size, or that is not fully developed, the statistical property of scale invariance is replaced by a generalized scale invariance, or extended self- similarity (ESS), for which the various moments of the GSF have a power-law dependence on an initially unknown functions, G, such that Nicol, Generalized Similarity in Finite Range Solar Wind Magnetohydrodynamic Turbulence, Phys. Rev. Lett. 103, 241101 (2009); S. C. Chapman, R. M. Nicol, E. Leonardis, K. Kiyani, V. Carbone, Observation of universality in the generalized similarity of evolving solar wind turbulence as seen by ULYSSES, Ap. J. Letters, 695, L185, (2009)

  15. The effect of wind velocity, air temperature and humidity on NH 3 and SO 2 transfer into bean leaves ( phaseolus vulgaris L.)

    Science.gov (United States)

    van Hove, L. W. A.; Vredenberg, W. J.; Adema, E. H.

    The influence of wind velocity, air temperature and vapour pressure deficit of the air (VPD) on NH 3 and SO 2 transfer into bean leaves ( Phaseolus vulgaris L.) was examined using a leaf chamber. The measurements suggested a transition in the properties of the leaf boundary layer at a wind velocity of 0.3-0.4 ms -1 which corresponds to a Recrit value of about 2000. At higher wind velocities the leaf boundary layer resistance ( rb) was 1.5-2 times lower than can be calculated from the theory. Nevertheless, the assessed relationships between rb and wind velocity appeared to be similar to the theoretical derived relationship for rb. The NH 3 flux and in particular the SO 2 flux into the leaf strongly increased at a VPD decline. The increase of the NH 3 flux could be attributed to an increase of the stomatal conductance ( gs). However, the increase of the SO 2 flux could only partly be explained by an increase of gs. An apparent additional uptake was also observed for the NH 3 uptake at a low temperature and VPD. The SO 2 flux was also influenced by air temperature which could be explained by a temperature effect on gs. The results suggest that calculation of the NH 3 and SO 2 flux using data of gs gives a serious understimation of the real flux of these gases into leaves at a low temperature and VPD.

  16. An Estimate of Solar Wind Velocity Profiles in a Coronal Hole and a Coronal Streamer Area (6-40 R(radius symbol)

    Science.gov (United States)

    Patzold, M.; Tsurutani, B. T.; Bird, M. K.

    1995-01-01

    Total electron content data obtained from the Ulysses Solar Corona Experiment (SCE) in 1991 were used to select two data sets, one associated with a coronal hole and the other with coronal streamer crossings. (This is largely equatorial data shortly after solar maximum.) The solar wind velocity profile is estimated for these areas.

  17. Wind Field Reconstruction from Nacelle-Mounted Lidars Short Range Measurements

    OpenAIRE

    Borraccino, Antoine; Schlipf, David; Haizmann, Florian; Wagner, Rozenn

    2017-01-01

    Profiling nacelle lidars probe the wind at several heights and several distances upstream of the rotor. The development of such lidar systems is relatively recent, and it is still unclear how to condense the lidar raw measurements into useful wind field characteristics such as speed, direction, vertical and longitudinal gradients (wind shear). In this paper, we demonstrate an innovative method to estimate wind field characteristics using nacelle lidar measurements taken within the induction z...

  18. Three-wave interactions in a gravity-capillary range of wind waves

    Science.gov (United States)

    Kosnik, M.; Dulov, V.; Kudryavtsev, V.

    2009-04-01

    The effects of three-wave interactions on forming of short wind waves spectrum are investigated. Wavenumber spectrum in gravity-capillary and capillary range is found as a result of evolution of initial arbitrary spectrum under the influence of assigned sources of kinetic equation. Three-wave interactions are taken into account using exact collision integral without any additional assumptions simplifying a problem. Model validity is proved by reproducing Zaharov & Filonenko (1967) theoretical spectra describing the "energy equipartition" and "inertial interval" cases. Numerical calculations show that the main role of three-wave interactions consists in energy transfer from short gravity waves to waves of smaller lengths. The prominent feature of most of resulting spectra is a dip on curvature spectrum in the vicinity of phase speed minimum. Wind forcing, viscous dissipation and mechanism of generation of parasitic capillaries are considered in a number of calculations using parameterization for corresponding sources by Kudryavtsev, Makin, Chapron, 1999. The necessity of additional nonlinear dissipation terms in kinetic equation for short gravity and capillary waves is revealed. The results of calculation with this realistic parameterization of kinetic equation sources show that, when accounted, nonlinear dissipation and parasitic capillaries terms play much more significant part in capillary range than wave-wave interactions. The latter are important only in phase speed minimum area where the typical dip remains at the same wavenumber in all numerical experiments. This work was supported by the EU under the projects INTAS 05-1000008-8014, INTAS/ESA 06-1000025-9264 and Contract # SST5 CT 2006 031001 (MONRUK) of FP6.

  19. RETRACTED: The influence of sand diameter and wind velocity on sand particle lift-off and incident angles in the windblown sand flux

    Science.gov (United States)

    Bo, Tian-Li; Zheng, Xiao-Jing; Duan, Shao-Zhen; Liang, Yi-Rui

    2013-05-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal. This article has been retracted at the request of the Editors-in-Chief. This article also contains significant similarity with parts of text, written by the same author(s), that have appeared in Tian-Li Bo, Xiao-Jing Zheng, Shao-Zhen Duan, Yi-Rui Liang, The influence of wind velocity and sand grain diameter on the falling velocities of sand particles, Powder Technology, Volume 241, June 2013, Pages 158-165. Tian-Li Bo, Xiao-Jing Zheng, Shao-Zhen Duan, Yi-Rui Liang, Analysis of sand particles' lift-off and incident velocities in wind-blown sand flux, Acta Mechanica Sinica, April 2013, Volume 29, Issue 2, pp 158-165. Tian-Li Bo, Xiao-Jing Zheng, Shao-Zhen Duan, Yi-Rui Liang, Influence of sand grain diameter and wind velocity on lift-off velocities of sand particles, The European Physical Journal E, May 2013, 36:50. Tian-Li Bo, Shao-Zhen Duan, Xiao-Jing Zheng, Yi-Rui Liang, The influence of sand bed temperature on lift-off and falling parameters in windblown sand flux, Geomorphology, Volume 204, 1 January 2014, Pages 477-484. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.

  20. Application of Boost Converter to Increase the Speed Range of Dual-stator Winding Induction Generator in Wind Power Systems

    DEFF Research Database (Denmark)

    Kavousi, Ayoub; Fathi, S. Hamid; Milimonfared, Jafar

    2018-01-01

    while the DWIG operates at Maximum Power Point Tracking (MPPT) even at low speed and low voltage conditions. Semiconductor Excitation Controller (SEC) of the DWIG utilizes Control-Winding Voltage Oriented Control (CWVOC) method to adjust the voltage, considering V/f characteristics. For the proposed...

  1. A coaxial plasma gun with a controllable streaming velocity in the range of 2-90 km secsup(-1)

    International Nuclear Information System (INIS)

    Venkataramani, N.; Mattoo, S.K.

    1981-01-01

    A coaxial plasma gun capable of producing a plasma stream of velocity ranging between 2 and 90 km secsup(-1) is described. The velocity of the stream is controlled by a variable (0.2-25 Ω) NaCl salt solution resistor in the discharge path of the energy storage connected across the gun. The resistor dissipates an energy of 200 J in the gun discharge current pulse period of 25 μ sec and the consequent heating and dissociation of the electrolyte are insignificant. The electron density of the plasma stream ranges between 10 18 and 10 19 msup(-3) and the temperature is approximately 10 eV. The total number of ions per plasma pulse is approximately 10 18 . The energy transfer efficiency of the gun is approximately 10%. The low transfer efficiency is explained in terms of the experimental requirements and the performance of the valve which admits gas into the gun region. For evaluation of the performance of the gun, several diagnostics have been deployed. A specially designed high voltage capacitor probe is described. (author)

  2. Demonstration and uncertainty analysis of synchronised scanning lidar measurements of 2-D velocity fields in a boundary-layer wind tunnel

    Directory of Open Access Journals (Sweden)

    M. F. van Dooren

    2017-06-01

    Full Text Available This paper combines the research methodologies of scaled wind turbine model experiments in wind tunnels with short-range WindScanner lidar measurement technology. The wind tunnel at the Politecnico di Milano was equipped with three wind turbine models and two short-range WindScanner lidars to demonstrate the benefits of synchronised scanning lidars in such experimental surroundings for the first time. The dual-lidar system can provide fully synchronised trajectory scans with sampling timescales ranging from seconds to minutes. First, staring mode measurements were compared to hot-wire probe measurements commonly used in wind tunnels. This yielded goodness of fit coefficients of 0.969 and 0.902 for the 1 Hz averaged u and v components of the wind speed, respectively, validating the 2-D measurement capability of the lidar scanners. Subsequently, the measurement of wake profiles on a line as well as wake area scans were executed to illustrate the applicability of lidar scanning to the measurement of small-scale wind flow effects. An extensive uncertainty analysis was executed to assess the accuracy of the method. The downsides of lidar with respect to the hot-wire probes are the larger measurement probe volume, which compromises the ability to measure turbulence, and the possible loss of a small part of the measurements due to hard target beam reflection. In contrast, the benefits are the high flexibility in conducting both point measurements and area scanning and the fact that remote sensing techniques do not disturb the flow during measuring. The research campaign revealed a high potential for using short-range synchronised scanning lidars to measure the flow around wind turbines in a wind tunnel and increased the knowledge about the corresponding uncertainties.

  3. The importance of signals in the Doppler broadening range for middle-atmospheric microwave wind and ozone radiometry

    Science.gov (United States)

    Rüfenacht, Rolf; Kämpfer, Niklaus

    2017-09-01

    Doppler microwave radiometry is a novel technique for the measurement of horizontal wind profiles at altitudes between 10 and 0.03 hPa, where there is a substantial lack of observations. All wind radiometers currently in use rely on ground-based observations of microwave radiation emitted by atmospheric ozone. Besides the well-known primary ozone layer in the stratosphere a secondary ozone layer forms near 10-3 hPa during nighttime. We show that the emission signal of this secondary ozone layer cannot be neglected for the retrieval of mesospheric winds and that it can even alter nighttime ozone retrievals. However, the present study also demonstrates that with a reasonably adequate representation of the atmospheric reality in the mesopause region bias-free wind retrievals throughout the entire sensitive altitude range of the instruments can be achieved during day and nighttime. By applying the improved ozone a priori setup to real observation data the average zonal wind difference to models was substantially reduced and a realistic diurnal cycle was reproduced. Moreover the presence of the high nighttime mesopause ozone signal could enable future retrievals of mean winds beyond the altitude range dominated by pressure broadening.

  4. Remotely sensed wind speed predicts soaring behaviour in a wide-ranging pelagic seabird.

    Science.gov (United States)

    Gibb, Rory; Shoji, Akiko; Fayet, Annette L; Perrins, Chris M; Guilford, Tim; Freeman, Robin

    2017-07-01

    Global wind patterns affect flight strategies in many birds, including pelagic seabirds, many of which use wind-powered soaring to reduce energy costs during at-sea foraging trips and migration. Such long-distance movement patterns are underpinned by local interactions between wind conditions and flight behaviour, but these fine-scale relationships are far less well understood. Here we show that remotely sensed ocean wind speed and direction are highly significant predictors of soaring behaviour in a migratory pelagic seabird, the Manx shearwater ( Puffinus puffinus ). We used high-frequency GPS tracking data (10 Hz) and statistical behaviour state classification to identify two energetic modes in at-sea flight, corresponding to flap-like and soar-like flight. We show that soaring is significantly more likely to occur in tailwinds and crosswinds above a wind speed threshold of around 8 m s -1 , suggesting that these conditions enable birds to reduce metabolic costs by preferentially soaring over flapping. Our results suggest a behavioural mechanism by which wind conditions may shape foraging and migration ecology in pelagic seabirds, and thus indicate that shifts in wind patterns driven by climate change could impact this and other species. They also emphasize the emerging potential of high-frequency GPS biologgers to provide detailed quantitative insights into fine-scale flight behaviour in free-living animals. © 2017 The Author(s).

  5. Statistical Short-Range Guidance for Peak Wind Speed Forecasts at Edwards Air Force Base, CA

    Science.gov (United States)

    Dreher, Joseph G.; Crawford, Winifred; Lafosse, Richard; Hoeth, Brian; Burns, Kerry

    2009-01-01

    The peak winds near the surface are an important forecast element for space shuttle landings. As defined in the Flight Rules (FR), there are peak wind thresholds that cannot be exceeded in order to ensure the safety of the shuttle during landing operations. The National Weather Service Spaceflight Meteorology Group (SMG) is responsible for weather forecasts for all shuttle landings, and is required to issue surface average and 10-minute peak wind speed forecasts. They indicate peak winds are a challenging parameter to forecast. To alleviate the difficulty in making such wind forecasts, the Applied Meteorology Unit (AMU) developed a PC-based graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak wind thresholds for the Shuttle Landing Facility (SLF) at Kennedy Space Center (KSC; Lambert 2003). However, the shuttle occasionally may land at Edwards Air Force Base (EAFB) in southern California when weather conditions at KSC in Florida are not acceptable, so SMG forecasters requested a similar tool be developed for EAFB.

  6. Using epiphytic lichens to monitor nitrogen deposition near natural gas drilling operations in the Wind River Range, WY, USA

    Science.gov (United States)

    Jill A. McMurray; Dave W. Roberts; Mark E. Fenn; Linda H. Geiser; Sarah Jovan

    2013-01-01

    Rapid expansion of natural gas drilling in Sublette County, WY (1999-present), has raised concerns about the potential ecological effects of enhanced atmospheric nitrogen (N) deposition to the Wind River Range (WRR) including the Class I BridgerWilderness. We sampled annual throughfall (TF) N deposition and lichen thalli N concentrations under forest canopies in four...

  7. Changing Snow Cover and Stream Discharge in the Western United States - Wind River Range, Wyoming

    Science.gov (United States)

    Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Barton, Jonathan S.; Riggs, George A.

    2011-01-01

    Earlier onset of springtime weather has been documented in the western United States over at least the last 50 years. Because the majority (>70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack has important implications for the management of water resources. We studied ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover products, 40 years of stream discharge and meteorological station data and 30 years of snow-water equivalent (SWE) SNOw Telemetry (SNOTEL) data in the Wind River Range (WRR), Wyoming. Results show increasing air temperatures for.the 40-year study period. Discharge from streams in WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades. Changes in streamflow may be related to increasing air temperatures which are probably contributing to a reduction in snow cover, although no trend of either increasingly lower streamflow or earlier snowmelt was observed within the decade of the 2000s. And SWE on 1 April does not show an expected downward trend from 1980 to 2009. The extent of snow cover derived from the lowest-elevation zone of the WRR study area is strongly correlated (r=0.91) with stream discharge on 1 May during the decade of the 2000s. The strong relationship between snow cover and streamflow indicates that MODIS snow-cover maps can be used to improve management of water resources in the drought-prone western U.S.

  8. Windthrow Dynamics in Boreal Ontario: A Simulation of the Vulnerability of Several Stand Types across a Range of Wind Speeds

    Directory of Open Access Journals (Sweden)

    Kenneth A. Anyomi

    2017-06-01

    Full Text Available In Boreal North America, management approaches inspired by the variability in natural disturbances are expected to produce more resilient forests. Wind storms are recurrent within Boreal Ontario. The objective of this study was to simulate wind damage for common Boreal forest types for regular as well as extreme wind speeds. The ForestGALES_BC windthrow prediction model was used for these simulations. Input tree-level data were derived from permanent sample plot (PSP data provided by the Ontario Ministry of Natural Resources. PSPs were assigned to one of nine stand types: Balsam fir-, Jack pine-, Black spruce-, and hardwood-dominated stands, and, Jack pine-, spruce-, conifer-, hardwood-, and Red and White pine-mixed species stands. Morphological and biomechanical parameters for the major tree species were obtained from the literature. At 5 m/s, predicted windthrow ranged from 0 to 20%, with damage increasing to 2 to 90% for winds of 20 m/s and to 10 to 100% for winds of 40 m/s. Windthrow varied by forest stand type, with lower vulnerability within hardwoods. This is the first study to provide such broad simulations of windthrow vulnerability data for Boreal North America, and we believe this will benefit policy decisions regarding risk management and forest planning.

  9. The Effect of the Accelerometer Operating Range on Biomechanical Parameters: Stride Length, Velocity, and Peak Tibial Acceleration during Running

    Directory of Open Access Journals (Sweden)

    Christian Mitschke

    2018-01-01

    Full Text Available Previous studies have used accelerometers with various operating ranges (ORs when measuring biomechanical parameters. However, it is still unclear whether ORs influence the accuracy of running parameters, and whether the different stiffnesses of footwear midsoles influence this accuracy. The purpose of the present study was to systematically investigate the influence of OR on the accuracy of stride length, running velocity, and on peak tibial acceleration. Twenty-one recreational heel strike runners ran on a 15-m indoor track at self-selected running speeds in three footwear conditions (low to high midsole stiffness. Runners were equipped with an inertial measurement unit (IMU affixed to the heel cup of the right shoe and with a uniaxial accelerometer at the right tibia. Accelerometers (at the tibia and included in the IMU with a high OR of ±70 g were used as the reference and the data were cut at ±32, ±16, and at ±8 g in post-processing, before calculating parameters. The results show that the OR influenced the outcomes of all investigated parameters, which were not influenced by tested footwear conditions. The lower ORs were associated with an underestimation error for all biomechanical parameters, which increased noticeably with a decreasing OR. It can be concluded that accelerometers with a minimum OR of ±32 g should be used to avoid inaccurate measurements.

  10. Stress wave velocity and dynamic modulus of elasticity of yellow-poplar ranging from 100 to 10 percent moisture content

    Science.gov (United States)

    Jody D. Gray; Shawn T. Grushecky; James P. Armstrong

    2008-01-01

    Moisture content has a significant impact on mechanical properties of wood. In recent years, stress wave velocity has been used as an in situ and non-destructive method for determining the stiffness of wooden elements. The objective of this study was to determine what effect moisture content has on stress wave velocity and dynamic modulus of elasticity. Results...

  11. Snow Cover, Snowmelt Timing and Stream Power in the Wind River Range, Wyoming

    Science.gov (United States)

    Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Riggs, George A.

    2011-01-01

    Earlier onset of springtime weather, including earlier snowmelt, has been documented in the western United States over at least the last 50 years. Because the majority (is greater than 70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack (and shrinking glaciers) has important implications for the management of streamflow. The amount of water in a snowpack influences stream discharge which can also influence erosion and sediment transport by changing stream power, or the rate at which a stream can do work, such as move sediment and erode the stream bed. The focus of this work is the Wind River Range (WRR) in west-central Wyoming. Ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover, cloud-gap-filled (CGF) map products and 30 years of discharge and meteorological station data are studied. Streamflow data from streams in WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades, though no trend of either lower streamflow or earlier snowmelt was observed within the decade of the 2000s. Results show a statistically-significant trend at the 95% confidence level (or higher) of increasing weekly maximum air temperature (for three out of the five meteorological stations studied) in the decade of the 1970s, and also for the 40-year study period as a whole. The extent of snow-cover (percent of basin covered) derived from the lowest elevation zone (2500-3000 m) of the WRR, using MODIS CGF snow-cover maps, is strongly correlated with maximum monthly discharge on 30 April, where Spearman's Rank correlation, rs,=0.89 for the decade of the 2000s. We also investigated stream power for Bull Lake Creek above Bull Lake; and found a trend (significant at the 90% confidence level) toward reduced stream power from 1970 to 2009. Observed changes in streamflow and stream power may be related to increasing weekly maximum air temperature

  12. Model of wind shear conditional on turbulence and its impact on wind turbine loads

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Natarajan, Anand; Kelly, Mark C.

    2015-01-01

    fatigue load is achieved. The proposed wind shear model based on the wind measurements is thereby probabilistic in definition, with shear jointly distributed with wind turbulence. A simplified model for the wind shear exponent is further derived from the full stochastic model. The fatigue loads over......We analyse high-frequency wind velocity measurements from two test stations over a period of several years and at heights ranging from 60 to 200 m, with the objective to validate wind shear predictions as used in load simulations for wind turbine design. A validated wind shear model is thereby...... different turbine components are evaluated under the full wind measurements, using the developed wind shear model and with standard wind conditions prescribed in the IEC 61400-1 ed. 3. The results display the effect of the Wöhler exponent and reveal that under moderate turbulence, the effect of wind shear...

  13. Mathematical Modeling for Lateral Displacement Induced by Wind Velocity Using Monitoring Data Obtained from Main Girder of Sutong Cable-Stayed Bridge

    Directory of Open Access Journals (Sweden)

    Gao-Xin Wang

    2014-01-01

    Full Text Available Based on the health monitoring system installed on the main span of Sutong Cable-Stayed Bridge, GPS displacement and wind field are real-time monitored and analyzed. According to analytical results, apparent nonlinear correlation with certain discreteness exists between lateral static girder displacement and lateral static wind velocity; thus time series of lateral static girder displacement are decomposed into nonlinear correlation term and discreteness term, nonlinear correlation term of which is mathematically modeled by third-order Fourier series with intervention of lateral static wind velocity and discreteness term of which is mathematically modeled by the combined models of ARMA(7,4 and EGARCH(2,1. Additionally, stable power spectrum density exists in time series of lateral dynamic girder displacement, which can be well described by the fourth-order Gaussian series; thus time series of lateral dynamic girder displacement are mathematically modeled by harmonic superposition function. By comparison and verification between simulative and monitoring lateral girder displacements from September 1 to September 3, the presented mathematical models are effective to simulate time series of lateral girder displacement from main girder of Sutong Cable-Stayed Bridge.

  14. A comparative investigation of three PM-less MW power range wind generator topologies

    DEFF Research Database (Denmark)

    Bratiloveanu, Catalin-Rauti; Traian Cosmin Anghelus, Dumitru; Boldea, I.

    2012-01-01

    investigates by quasi 2D-FEM two dc stator polarized (to increase machine side PWM converter voltage utilization, that is to reduce peak kVA ratings and costs of the machine side PWM converter) directly-driven switched reluctance generators (one with circumferential field and one with transverse flux (with......-less topology are required before declaring them fit for industrial wind generators....

  15. Statistical Short-Range Guidance for Peak Wind Speed Forecasts on Kennedy Space Center/Cape Canaveral Air Force Station: Phase I Results

    Science.gov (United States)

    Lambert, Winifred C.; Merceret, Francis J. (Technical Monitor)

    2002-01-01

    This report describes the results of the ANU's (Applied Meteorology Unit) Short-Range Statistical Forecasting task for peak winds. The peak wind speeds are an important forecast element for the Space Shuttle and Expendable Launch Vehicle programs. The Keith Weather Squadron and the Spaceflight Meteorology Group indicate that peak winds are challenging to forecast. The Applied Meteorology Unit was tasked to develop tools that aid in short-range forecasts of peak winds at tower sites of operational interest. A 7 year record of wind tower data was used in the analysis. Hourly and directional climatologies by tower and month were developed to determine the seasonal behavior of the average and peak winds. In all climatologies, the average and peak wind speeds were highly variable in time. This indicated that the development of a peak wind forecasting tool would be difficult. Probability density functions (PDF) of peak wind speed were calculated to determine the distribution of peak speed with average speed. These provide forecasters with a means of determining the probability of meeting or exceeding a certain peak wind given an observed or forecast average speed. The climatologies and PDFs provide tools with which to make peak wind forecasts that are critical to safe operations.

  16. Device for the acquisition and visualization in real time of the velocity and direction of wind in a radiological post stage

    International Nuclear Information System (INIS)

    Ledo P, L.M.; Guibert G, R.; Dominguez L, O.; Alonso A, D.; Ramos V, E.O.

    2006-01-01

    The work shows the development, construction and post stage of a device dedicated to the acquisition and transmission in real time of the information on the behavior of the meteorological variables: velocity and wind direction. It is introduced for the first time in an observation position the automatic monitoring, in real time, using the tools that it offers the digitalisation of the information and the computation. The obtained data are registered in a PC, its are visualized appropriately and can be objects of later analysis. It was developed the application program Autoclima for such purpose. (Author)

  17. Techno-Economic and dynamic analysis of low velocity wind turbines for rural electrification in agricultural area of Ratchaburi Province, Thailand

    Science.gov (United States)

    Lipirodjanapong, Sumate; Namboonruang, Weerapol

    2017-07-01

    This paper presents the analysis of potential wind speed of electrical power generating using for agriculture in Ratchaburi province, Thailand. The total area is 1,900 square kilometers. First of all, the agriculture electrical load (AEL) data was investigated from all farming districts in Ratchaburi. Subsequently, the load data was analyzed and classified by the load power and energy consumption at individual district. The wind turbine generator (WTG) at capacity rate of 200w, 500w, 1,000w, and 2,000w were adopted to implement for the AEL in each area at wind speed range of 3 to 6 m/s. This paper shows the approach based on the wind speed at individual district to determine the capacity of WTG using the capacitor factor (CF) and the cost of energy (COE) in baht per unit under different WTG value rates. Ten locations for wind station installations are practical investigated. Results show that for instance, the Damnoen Sa-duak (DN-04) one of WTG candidate site is identically significant for economic investment of installing rated WTG. The results of COE are important to determine whether a wind site is good or not.

  18. Determining the bounds of skilful forecast range for probabilistic prediction of system-wide wind power generation

    Directory of Open Access Journals (Sweden)

    Dirk Cannon

    2017-06-01

    Full Text Available State-of-the-art wind power forecasts beyond a few hours ahead rely on global numerical weather prediction models to forecast the future large-scale atmospheric state. Often they provide initial and boundary conditions for nested high resolution simulations. In this paper, both upper and lower bounds on forecast range are identified within which global ensemble forecasts provide skilful information for system-wide wind power applications. An upper bound on forecast range is associated with the limit of predictability, beyond which forecasts have no more skill than predictions based on climatological statistics. A lower bound is defined at the lead time beyond which the resolved uncertainty associated with estimating the future large-scale atmospheric state is larger than the unresolved uncertainty associated with estimating the system-wide wind power response to a given large-scale state.The bounds of skilful ensemble forecast range are quantified for three leading global forecast systems. The power system of Great Britain (GB is used as an example because independent verifying data is available from National Grid. The upper bound defined by forecasts of GB-total wind power generation at a specific point in time is found to be 6–8 days. The lower bound is found to be 1.4–2.4 days. Both bounds depend on the global forecast system and vary seasonally. In addition, forecasts of the probability of an extreme power ramp event were found to possess a shorter limit of predictability (4.5–5.5 days. The upper bound on this forecast range can only be extended by improving the global forecast system (outside the control of most users or by changing the metric used in the probability forecast. Improved downscaling and microscale modelling of the wind farm response may act to decrease the lower bound. The potential gain from such improvements have diminishing returns beyond the short-range (out to around 2 days.

  19. Superposed epoch analysis of vertical ion velocity, electron temperature, field-aligned current, and thermospheric wind in the dayside auroral region as observed by DMSP and CHAMP

    Science.gov (United States)

    Kervalishvili, G.; Lühr, H.

    2016-12-01

    This study reports on the results obtained by a superposed epoch analysis (SEA) method applied to the electron temperature, vertical ion velocity, field-aligned current (FAC), and thermospheric zonal wind velocity at high-latitudes in the Northern Hemisphere. The SEA study is performed in a magnetic latitude versus magnetic local time (MLat-MLT) frame. The obtained results are based on observations collected during the years 2001-2005 by the CHAMP and DMSP (F13 and F15) satellites. The dependence on interplanetary magnetic field (IMF) orientations is also investigated using data from the NASA/GSFC's OMNI database. Further, the obtained results are subdivided into three Lloyd seasons of 130 days each, which are defined as follows: local winter (1 January ± 65 days), combined equinoxes (1 April and 1 October ± 32days), and local summer (1 July ± 65 days). A period of 130 days is needed by the CHAMP satellite to pass through all local times. The time and location of the electron temperature peaks from CHAMP measurements near the cusp region are used as the reference parameter for the SEA method to investigate the relationship between the electron temperature and other ionospheric quantities. The SEA derived MLat profiles of the electron temperature show a seasonal dependence, increasing from winter to summer, as expected. But, the temperature rise (difference between the reference temperature peak and the background electron temperature) strongly decreases towards local summer. The SEA derived MLat profiles of the ion vertical velocity at DMSP altitude show the same seasonal behaviour as the electron temperature rice. There exists a clear linear relation between these two variables with a quiet large correlation coefficient value, >0.9. The SEA derived MLat profiles of both, thermospheric zonal wind velocity and FAC, show a clear IMF By orientation dependence for all local seasons. The zonal wind velocity is prominently directed towards west in the MLat-MLT frame

  20. One-level modeling for diagnosing surface winds over complex terrain. II - Applicability to short-range forecasting

    Science.gov (United States)

    Alpert, P.; Getenio, B.; Zak-Rosenthal, R.

    1988-01-01

    The Alpert and Getenio (1988) modification of the Mass and Dempsey (1985) one-level sigma-surface model was used to study four synoptic events that included two winter cases (a Cyprus low and a Siberian high) and two summer cases. Results of statistical verification showed that the model is not only capable of diagnosing many details of surface mesoscale flow, but might also be useful for various applications which require operative short-range prediction of the diurnal changes of high-resolution surface flow over complex terrain, for example, in locating wildland fires, determining the dispersion of air pollutants, and predicting changes in wind energy or of surface wind for low-level air flights.

  1. Study on the Influence of Velocity, Turbulence Intensity and Temperature on Ammonia Emission Rate in a Wind Tunnel

    DEFF Research Database (Denmark)

    Rong, Li; Nielsen, P V; Zhang, Guo-Qiang

    2009-01-01

    Odor emissions from manure in livestock buildings are an important issue which concerns the human health and air quality as well as animals. Ammonia is one of the most important odors in pig houses. The objective of this paper is to investigate the influence of local velocity, turbulence intensit...

  2. Nearly constant ratio between the proton inertial scale and the spectrum break length scale in the plasma beta range from 0.2 to 1.4 in the solar wind turbulence

    Science.gov (United States)

    Wang, X.; Tu, C. Y.; He, J.; Wang, L.

    2017-12-01

    The spectrum break at the ion scale of the solar wind magnetic fluctuations are considered to give important clue on the turbulence dissipation mechanism. Among several possible mechanisms, the most notable ones are the two mechanisms that related respectively with proton thermal gyro-radius and proton inertial length. However, no definite conclusion has been given for which one is more reasonable because the two parameters have similar values in the normal plasma beta range. Here we do a statistical study for the first time to see if the two mechanism predictions have different dependence on the solar wind velocity and on the plasma beta in the normal plasma beta range in the solar wind at 1 AU. From magnetic measurements by Wind, Ulysses and Messenger, we select 60 data sets with duration longer than 8 hours. We found that the ratio between the proton inertial scale and the spectrum break scale do not change considerably with both varying the solar wind speed from 300km/s to 800km/s and varying the plasma beta from 0.2 to 1.4. The average value of the ratio times 2pi is 0.46 ± 0.08. However, the ratio between the proton gyro-radius and the break scale changes clearly. This new result shows that the proton inertial scale could be a single factor that determines the break length scale and hence gives a strong evidence to support the dissipation mechanism related to it in the normal plasma beta range. The value of the constant ratio may relate with the dissipation mechanism, but it needs further theoretical study to give detailed explanation.

  3. The total collision cross section of Ar-Ar as a function of velocity in the thermal range

    International Nuclear Information System (INIS)

    Linse, C.A.; Biesen, J.J.H. van den; Meijdenberg, C.J.N. van den

    1977-01-01

    To describe the Ar-Ar interaction several potentials have been proposed. These potentials have been derived starting from different bulk property data as well as spectroscopic and differential cross section data. The measurements of the glory structure in the total cross section as performed by Bredewout (1976) provided in principle an essential test for the existing potentials. However, the overall energy dependence of the measured cross sections was not in agreement with the theoretically predicted C 6 and C 8 values. Therefore new measurements were performed with improved angular and velocity resolution. There are still differences between the results of the measured and calculated cross sections. However, the energy dependence of the cross section remains within the limits to be expected from the theoretical predictions. (Auth.)

  4. Development of tunable high pressure CO2 laser for lidar measurements of pollutants and wind velocities, January 1976 to December 1977

    Science.gov (United States)

    Javan, A.

    1979-01-01

    A tunable multiatmospheric pulsed CO2 laser with emphasis on experimental features and supporting theoretical analyses important to differential absorption lidar and Doppler lidar measurement of pollutants and wind velocities is reported. The energy deposition and the means to produce the uniform high density plasma in the multiatmospheric medium, through UV preionization of an organic seed gas is discussed. Design features of the pulsed CO2 laser are presented. The radiative processes which are operative and prevent the laser from breaking into oscillations in a large number of modes over its broad amplification bandwidth are described. The mode competition for the transient pulsed laser oscillation in a standing wave and traveling wave ring laser configuration is discussed and contrasted with the approach to steady state oscillations. The latter findings are important to transient injection locking for production of a highly stable pulsed CO2 laser output.

  5. Statistical Short-Range Guidance for Peak Wind Forecasts on Kennedy Space Center/Cape Canaveral Air Force Station, Phase III

    Science.gov (United States)

    Crawford, Winifred

    2010-01-01

    This final report describes the development of a peak wind forecast tool to assist forecasters in determining the probability of violating launch commit criteria (LCC) at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The peak winds are an important forecast element for both the Space Shuttle and Expendable Launch Vehicle (ELV) programs. The LCC define specific peak wind thresholds for each launch operation that cannot be exceeded in order to ensure the safety of the vehicle. The 45th Weather Squadron (45 WS) has found that peak winds are a challenging parameter to forecast, particularly in the cool season months of October through April. Based on the importance of forecasting peak winds, the 45 WS tasked the Applied Meteorology Unit (AMU) to develop a short-range peak-wind forecast tool to assist in forecasting LCC violations.The tool includes climatologies of the 5-minute mean and peak winds by month, hour, and direction, and probability distributions of the peak winds as a function of the 5-minute mean wind speeds.

  6. P--V--T and sound velocity data for fluid n-D2 in the range 75-300 K and 2-20 kbar

    International Nuclear Information System (INIS)

    Liebenberg, D.H.; Mills, R.L.; Bronson, J.C.

    1977-11-01

    Simultaneous static measurements of pressure, volume, temperature, and sound velocity are reported in deuterium fluid in the range 75 less than or equal to T less than or equal to 300K and 2 less than or equal to P less than or equal to 20 kbar [0.2 to 2.0 GPa]. The 1340 sets of data points along the 33 different isotherms are presented so that they may be available for use in equation-of-state development

  7. Wind Energy

    International Nuclear Information System (INIS)

    Rodriguez D, J.M.

    1998-01-01

    The general theory of the wind energy conversion systems is presented. The availability of the wind resource in Colombia and the ranges of the speed of the wind in those which is possible economically to use the wind turbines are described. It is continued with a description of the principal technological characteristics of the wind turbines and are split into wind power and wind-powered pumps; and its use in large quantities grouped in wind farms or in autonomous systems. Finally, its costs and its environmental impact are presented

  8. Relationship Between Low-Velocity S-wave Anomalies, Asthenospheric Dynamics and Basaltic Volcanism in the Intraplate Setting of the Basin and Range, USA

    Science.gov (United States)

    Tibbetts, A. K.; Smith, E. I.; Conrad, C. P.; Lee, C.; Plank, T.; Yang, Y.

    2009-12-01

    Pliocene to Recent intraplate mafic volcanic rocks of the Basin and Range Province mostly formed by asthenospheric melting, as determined from calculated melting temperatures ranging from 1249-1521 degrees C. Here asthenosphere is defined by mantle rheology and temperature and not by geochemistry. The duration of melting in a volcanic field may be related to the size and shape of pockets of low velocity asthenosphere moving under the areas of volcanism. Seismic S-wave velocity profiles constrained by ambient noise and earthquake tomography of the mantle (Yang et al., 2008) show low velocity pockets, which may correspond to higher temperatures and/or higher water contents. The lack of wider scale volcanism in the Basin and Range despite large scale anomalies indicates that the anomalies are not the only cause of melting. The observed smaller scale magmatism can be explained by circulatory flow driven by the small scale structure of the anomalies causing localized melting within the anomalies. By applying an asthenospheric shear flow velocity of 0 cm/yr at the base of the lithosphere and 5 cm/yr east at depth (Silver & Holt 2002, Conrad et al., 2007), the distance the mantle has moved since the time of volcanism can be calculated for basalts of known age. Past positions of low-velocity anomalies in the asthenosphere combined with depths and temperatures of melting calculated using the silica-liquid geobarometer (Lee et al., 2009) were used to determine if a low velocity anomaly existed under an area of volcanism at the depth of melting and time of eruption. The data constraints used for calculating depths and temperatures of melting are dry, MgO > 7.5 wt.%, SiO2 > 44 wt.%, and Fe as 90% Fe2+. Depths and temperatures of melting were calculated for San Francisco in AZ; Amboy, Pisgah, Death Valley, Coso, Big Pine, Cima, Long Valley, in CA; Crater Flat, Lunar Crater, Reveille in NV; and Black Rock, Hurricane, Snow Canyon, UT; and others all of which have known ages. Ages

  9. Heterogeneous Boundary Layers through the Diurnal Cycle: Evaluation of the WRF Wind Farm Parameterization using Scanning Lidar Observations and Wind Turbine Power Measurements during a Range of Stability Conditions

    Science.gov (United States)

    Lundquist, J. K.

    2015-12-01

    As wind energy deployment increases, questions arise regarding impacts on local climates and how these impacts evolve with the diurnal cycle of the boundary layer. Satellite observations suggest nocturnal increases of surface temperatures, and measurements of turbine wakes document stronger and more persistent reductions of wind speed and increases in turbulence downwind of turbines during stable conditions. Validations of mesoscale parameterizations of these effects have been constrained to idealized conditions defined by neutrally-stratified conditions and/or limited wind directions and wind speeds, or by comparison to idealized large-eddy simulations. Synthesis of conventional meteorological measurements and unconventional measurements can offer unique insights for validating models over a large heterogeneous domain. The CWEX-13 field experiment provides an extensive dataset for such validation at spatial scales on the order of 10 km in a range of atmospheric stability and wind conditions. CWEX-13 took place within a 300 MW wind farm in central Iowa during summer 2013 and featured strong diurnal cycles. The wind turbines are sited irregularly, creating a heterogenous "canopy". Three profiling lidars, numerous surface flux stations, and a scanning lidar sampled wakes from multiple turbines. Further, the wind farm owner/operator has provided access to turbine power production and wind speed measurement data for model validation, providing ~ 200 measurements of proxies that integrate the wind profile over the rotor disk, from 40 m to 120 m above the surface. Building on previous work that identified optimal physics options, grid configurations, and boundary condition data sets by comparison to lidar wind profile measurements, we execute simulations with the WRF Wind Farm Parameterization for a ten-day period featuring moderate winds and strong diurnal cycles. We evaluate simulations with different modeling choices (e.g., vertical resolution, approaches to

  10. Strong double K-K transfer channel in near symmetric collision of Si+Ar at intermediate velocity range

    Energy Technology Data Exchange (ETDEWEB)

    Dhal, B.B.; Tiwari, U.; Tandon, P.N. [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Bombay 400 005 (India); Tribedi, L.C. [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Bombay 400 005 (India). E-mail: lokesh at tifr.res.in; Lee, T.G.; Lin, C.D. [J R Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506 (United States); Gulyas, L. [Nuclear Data Center, Japan Atomic Energy Research Institute, Tokai, Naka, Ibaraki 319-1195 (Japan)

    2000-03-14

    We present a combined study of single and double K-K electron transfer cross sections along with the single and double K-shell ionization of Ar induced by Si projectiles in the energy range 0.9-4.0 MeV u{sup -1}. The charge-state dependence of the normal and hypersatellite x-rays was used to derive the cross sections for the one- and two-electron processes, respectively. The enhancement in the fluorescence yields due to multiple vacancies was measured from the energy shifts and intensity ratios of the characteristic x-ray lines to derive K-shell vacancy production cross sections from x-ray production cross sections. The ratio of double to single K-K transfer cross sections is found to be quite large for this nearly symmetric collision system, whereas the ratio of double to single ionization cross sections is quite small. The measured single K-K transfer cross sections are reproduced very well by the two-centre close-coupling calculations whereas the double K-K transfer data are underestimated by the theory based on the independent-electron approximation (IEA). The K-shell ionization cross sections are found to deviate strongly from the calculations based on the continuum distorted wave eikonal initial state (CDW-EIS) and ECPSSR models. The CDW-EIS calculations along with the IEA model grossly underestimate the double ionization cross sections. It is stressed that in the case of two-electron processes the independent-electron model breaks down and the possible role of correlations between K-electrons is discussed. (author)

  11. Normal ranges and test-retest reproducibility of flow and velocity parameters in intracranial arteries measured with phase-contrast magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Correia de Verdier, Maria; Wikstroem, Johan [Uppsala University Hospital, Department of Radiology, Uppsala University, Uppsala (Sweden)

    2016-05-15

    The purpose of the present study was to investigate normal ranges and test-retest reproducibility of phase-contrast MRI (PC-MRI)-measured flow and velocity parameters in intracranial arteries. Highest flow (HF), lowest flow (LF), peak systolic velocity (PSV), and end diastolic velocity (EDV) were measured at two dates in the anterior (ACA), middle (MCA), and posterior (PCA) cerebral arteries of 30 healthy volunteers using two-dimensional PC-MRI at 3 T. Least detectable difference (LDD) was calculated. In the left ACA, HF was (mean (range, LDD)) 126 ml/min (36-312, 59 %), LF 61 ml/min (0-156, 101 %), PSV 64 cm/s (32-141, 67 %), and EDV 35 cm/s (18-55, 42 %); in the right ACA, HF was 154 ml/min (42-246, 49 %), LF 77 ml/min (0-156, 131 %), PSV 75 cm/s (26-161, 82 %), and EDV 39 cm/s (7-59, 67 %). In the left MCA, HF was 235 ml/min (126-372, 35 %), LF 116 ml/min (42-186, 48 %), PSV 90 cm/s (55-183, 39 %), and EDV 46 cm/s (20-66, 28 %); in the right MCA, HF was 238 ml/min (162-342, 44 %), LF 120 ml/min (72-216, 48 %), PSV 88 cm/s (55-141, 35 %), and EDV 45 cm/s (26-67, 23 %). In the left PCA, HF was 108 ml/min (42-168, 54 %), LF 53 ml/min (18-108, 64 %), PSV 50 cm/s (24-77, 63 %), and EDV 28 cm/s (14-40, 45 %); in the right PCA, HF was 98 ml/min (30-162, 49 %), LF 49 ml/min (12-84, 55 %), PSV 47 cm/s (27-88, 59 %), and EDV 27 cm/s (16-41, 45 %). PC-MRI-measured flow and velocity parameters in the main intracranial arteries have large normal ranges. Reproducibility is highest in MCA. (orig.)

  12. Methods for root effects, tip effects and extending the angle of attack range to {+-} 180 deg., with application to aerodynamics for blades on wind turbines and propellers

    Energy Technology Data Exchange (ETDEWEB)

    Montgomerie, Bjoern

    2004-06-01

    For wind turbine and propeller performance calculations aerodynamic data, valid for several radial stations along the blade, are used. For wind turbines the data must be valid for the 360 degree angle of attack range. The reason is that all kinds of abnormal conditions must be analysed especially during the design of the turbine. Frequently aerodynamic data are available from wind tunnel tests where the angle of attack range is from say -5 to +20 degrees. This report describes a method to extend such data to be valid for {+-} 180 degrees. Previously the extension of data has been very approximate following the whim of the moment with the analyst. Furthermore, the Himmelskamp effect at the root and tip effects are treated in the complete method.

  13. 3D position and velocity vector computations of objects jettisoned from the international space station using close-range photogrammetry approach

    Science.gov (United States)

    Papanyan, Valeri; Oshel, Edward; Adamo, Daniel

    2008-04-01

    Measurement of the jettisoned object departure trajectory and velocity vector in the International Space Station (ISS) reference frame is vitally important for prompt evaluation of the object's imminent orbit. We report on the first successful application of photogrammetric analysis of the ISS imagery for the prompt computation of the jettisoned object's position and velocity vectors. As post-EVA analyses examples, we present the Floating Potential Probe (FPP) and the Russian "Orlan" Space Suit jettisons, as well as the near-real-time (provided in several hours after the separation) computations of the Video Stanchion Support Assembly Flight Support Assembly (VSSA-FSA) and Early Ammonia Servicer (EAS) jettisons during the US astronauts space-walk. Standard close-range photogrammetry analysis was used during this EVA to analyze two on-board camera image sequences down-linked from the ISS. In this approach the ISS camera orientations were computed from known coordinates of several reference points on the ISS hardware. Then the position of the jettisoned object for each time-frame was computed from its image in each frame of the video-clips. In another, "quick-look" approach used in near-real time, orientation of the cameras was computed from their position (from the ISS CAD model) and operational data (pan and tilt) then location of the jettisoned object was calculated only for several frames of the two synchronized movies.

  14. Demonstration and uncertainty analysis of synchronised scanning lidar measurements of 2-D velocity fields in a boundary-layer wind tunnel

    DEFF Research Database (Denmark)

    van Dooren, Marijn Floris; Campagnolo, Filippo; Sjöholm, Mikael

    2017-01-01

    to demonstrate the benefits of synchronised scanning lidars in such experimental surroundings for the first time. The duallidar system can provide fully synchronised trajectory scans with sampling timescales ranging from seconds to minutes. First, staring mode measurements were compared to hot-wire probe...... as wake area scans were executed to illustrate the applicability of lidar scanning to the measurement of small-scale wind flow effects. An extensive uncertainty analysis was executed to assess the accuracy of the method. The downsides of lidar with respect to the hotwire probes are the larger measurement...... probe volume, which compromises the ability to measure turbulence, and the possible loss of a small part of the measurements due to hard target beam reflection. In contrast, the benefits are the high flexibility in conducting both point measurements and area scanning and the fact that remote sensing...

  15. Assessing the vegetation canopy influences on wind flow using wind ...

    Indian Academy of Sciences (India)

    The effectiveness of vegetation in reducing wind ... Wind erosion; roughness length; shear velocity ratio; shear stress ratio; roughness density; wind tunnel. J. Earth .... flow direction induced by its kinematic viscosity. An increase in shear stress causes a proportional increase in the height-dependent change in wind velocity.

  16. Wind energy in Mediterranean Basin

    International Nuclear Information System (INIS)

    Gaudiosi, G.

    1991-01-01

    In its examination of wind energy potential in the Mediterranean Basin, this paper provides brief notes on the Basin's geography; indicates power production and demand; describes the area's wind characteristics and wind monitoring activities; illustrates wind velocity distributions; estimates local wind power production potential; reviews the Basin's wind energy marketing situation and each bordering country's wind energy programs; surveys installed wind energy farms; and assesses national research and commercialization efforts

  17. Irradiation of biological molecules (DNA and RNA bases) by proton impact in the velocity range of the Bragg peak (20-150 keV/amu)

    International Nuclear Information System (INIS)

    Tabet, J.

    2007-11-01

    The aim of this work was to study the ionization of DNA and RNA base molecules by proton impact at energies between 20 and 150 keV/amu. The experiments developed over the course of this project made it possible not only to study the fragmentation of uracil, thymine, adenine, and cytosine, but also to measure absolute cross sections for different ionization processes initiated by proton interactions with these important biological molecules. Firstly, the experimental system enabled the contributions of two key ionization processes to be separated: direct ionization and electron capture. The corresponding mass spectra were measured and analyzed on an event-by-event basis. For uracil, the branching ratios for these two processes were measured as function of the projectile velocity. Secondly, we have developed a system to measure absolute cross sections for the electron capture process. The production rate of neutral atoms compared to protons was measured for the four biological molecules: uracil, cytosine, thymine, and adenine at different vaporization temperatures. This production rate varies as a function of the thickness of the target jet traversed by the protons. Accordingly, a deposit experiment was developed in order to characterize the density of molecules in the targeted gas jets. Theoretical and experimental study of the total effusion and density-profile of the gaseous molecular beams enabled us to deduce the thickness of the target jets traversed by the protons. Thus it was possible to determine absolute cross sections for the ionization of each of the four isolated biological molecules by 80 keV protons impact. To our knowledge, this work provides the first experimental absolute cross sections for DNA and RNA base ionization processes initiated by proton impact in the velocity range corresponding to the Bragg peak. (author)

  18. Validity of using tri-axial accelerometers to measure human movement - Part II: Step counts at a wide range of gait velocities.

    Science.gov (United States)

    Fortune, Emma; Lugade, Vipul; Morrow, Melissa; Kaufman, Kenton

    2014-06-01

    A subject-specific step counting method with a high accuracy level at all walking speeds is needed to assess the functional level of impaired patients. The study aim was to validate step counts and cadence calculations from acceleration data by comparison to video data during dynamic activity. Custom-built activity monitors, each containing one tri-axial accelerometer, were placed on the ankles, thigh, and waist of 11 healthy adults. ICC values were greater than 0.98 for video inter-rater reliability of all step counts. The activity monitoring system (AMS) algorithm demonstrated a median (interquartile range; IQR) agreement of 92% (8%) with visual observations during walking/jogging trials at gait velocities ranging from 0.1 to 4.8m/s, while FitBits (ankle and waist), and a Nike Fuelband (wrist) demonstrated agreements of 92% (36%), 93% (22%), and 33% (35%), respectively. The algorithm results demonstrated high median (IQR) step detection sensitivity (95% (2%)), positive predictive value (PPV) (99% (1%)), and agreement (97% (3%)) during a laboratory-based simulated free-living protocol. The algorithm also showed high median (IQR) sensitivity, PPV, and agreement identifying walking steps (91% (5%), 98% (4%), and 96% (5%)), jogging steps (97% (6%), 100% (1%), and 95% (6%)), and less than 3% mean error in cadence calculations. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Offshore winds using remote sensing techniques

    International Nuclear Information System (INIS)

    Pena, Alfredo; Hasager, Charlotte Bay; Gryning, Sven-Erik; Courtney, Michael; Antoniou, Ioannis; Mikkelsen, Torben; Soerensen, Paul

    2007-01-01

    Ground-based remote sensing instruments can observe winds at different levels in the atmosphere where the wind characteristics change with height: the range of heights where modern turbine rotors are operating. A six-month wind assessment campaign has been made with a LiDAR (Light Detection And Ranging) and a SoDAR (Sound Detection and Ranging) on the transformer/platform of the world's largest offshore wind farm located at the West coast of Denmark to evaluate their ability to observe offshore winds. The high homogeneity and low turbulence levels registered allow the comparison of LiDAR and SoDAR with measurements from cups on masts surrounding the wind farm showing good agreement for both the mean wind speed and the longitudinal component of turbulence. An extension of mean wind speed profiles from cup measurements on masts with LiDAR observations results in a good match for the free sectors at different wind speeds. The log-linear profile is fitted to the extended profiles (averaged over all stabilities and roughness lengths) and the deviations are small. Extended profiles of turbulence intensity are also shown for different wind speeds up to 161 m. Friction velocities and roughness lengths calculated from the fitted log-linear profile are compared with the Charnock model which seems to overestimate the sea roughness for the free sectors

  20. Program to determine space vehicle response to wind turbulence

    Science.gov (United States)

    Wilkening, H. D.

    1972-01-01

    Computer program was developed as prelaunch wind monitoring tool for Saturn 5 vehicle. Program accounts for characteristic wind changes including turbulence power spectral density, wind shear, peak wind velocity, altitude, and wind direction using stored variational statistics.

  1. Extreme winds in Denmark

    DEFF Research Database (Denmark)

    Kristensen, L.; Rathmann, O.; Hansen, S.O.

    2000-01-01

    ), Kegnaes (7 yr), Sprogo (20 yr), and Tystofte (16 yr). The measured data are wind speed, wind direction, temperature and pressure. The wind records are cleaned for terrain effects by means of WASP (Mortensew ct al., Technical Report I-666 (EN), Riso National Laboratory, 1993. Vol. 2. User's Guide......): assuming geostrophic balance, all the wind-velocity data are transformed to friction velocity u(*) and direction at standard conditions by means of the geostrophic drag law for neutral stratification. The basic wind velocity in 30 degrees sectors are obtained through ranking of the largest values...... of the friction velocity pressure pu(*)(2)/2 taken once every two months. The main conclusion is that the basic wind velocity is significantly larger at the west coast of Jutland (25 +/- 1 m/s) than at any of the other sites (22 +/- 1 m/s). These results are in agreement with those obtained by Jensen and Franck...

  2. Employment of satellite snowcover observations for improving seasonal runoff estimates. [Indus River and Wind River Range, Wyoming

    Science.gov (United States)

    Rango, A.; Salomonson, V. V.; Foster, J. L.

    1975-01-01

    Low resolution meteorological satellite and high resolution earth resources satellite data were used to map snowcovered area over the upper Indus River and the Wind River Mountains of Wyoming, respectively. For the Indus River, early Spring snowcovered area was extracted and related to April through June streamflow from 1967-1971 using a regression equation. Composited results from two years of data over seven Wind River Mountain watersheds indicated that LANDSAT-1 snowcover observations, separated on the basis of watershed elevation, could also be related to runoff in significant regression equations. It appears that earth resources satellite data will be useful in assisting in the prediction of seasonal streamflow for various water resources applications, nonhazardous collection of snow data from restricted-access areas, and in hydrologic modeling of snowmelt runoff.

  3. Reactive power control of DFIG wind turbines for power oscillation damping under a wide range of operating conditions

    OpenAIRE

    Edrah, Mohamed; Lo, Kwok L.; Anaya-Lara, Olimpo

    2016-01-01

    This study analyses the effect of replacing existing synchronous generators (SGs) equipped with power system stabilisers (PSS) by doubly fed induction generator (DFIG) based wind farms on the damping of power system oscillations in a multi-machine power system. A power system stabiliser was designed to enhance the capability of DFIG to damp power systems oscillations. The validity and effectiveness of the proposed controller are demonstrated on the widely used New England 10-machine 39-bus te...

  4. Coupling of an aeroacoustic model and a parabolic equation code for long range wind turbine noise propagation

    Science.gov (United States)

    Cotté, B.

    2018-05-01

    This study proposes to couple a source model based on Amiet's theory and a parabolic equation code in order to model wind turbine noise emission and propagation in an inhomogeneous atmosphere. Two broadband noise generation mechanisms are considered, namely trailing edge noise and turbulent inflow noise. The effects of wind shear and atmospheric turbulence are taken into account using the Monin-Obukhov similarity theory. The coupling approach, based on the backpropagation method to preserve the directivity of the aeroacoustic sources, is validated by comparison with an analytical solution for the propagation over a finite impedance ground in a homogeneous atmosphere. The influence of refraction effects is then analyzed for different directions of propagation. The spectrum modification related to the ground effect and the presence of a shadow zone for upwind receivers are emphasized. The validity of the point source approximation that is often used in wind turbine noise propagation models is finally assessed. This approximation exaggerates the interference dips in the spectra, and is not able to correctly predict the amplitude modulation.

  5. Investigation on wind energy-compressed air power system.

    Science.gov (United States)

    Jia, Guang-Zheng; Wang, Xuan-Yin; Wu, Gen-Mao

    2004-03-01

    Wind energy is a pollution free and renewable resource widely distributed over China. Aimed at protecting the environment and enlarging application of wind energy, a new approach to application of wind energy by using compressed air power to some extent instead of electricity put forward. This includes: explaining the working principles and characteristics of the wind energy-compressed air power system; discussing the compatibility of wind energy and compressor capacity; presenting the theoretical model and computational simulation of the system. The obtained compressor capacity vs wind power relationship in certain wind velocity range can be helpful in the designing of the wind power-compressed air system. Results of investigations on the application of high-pressure compressed air for pressure reduction led to conclusion that pressure reduction with expander is better than the throttle regulator in energy saving.

  6. Added damping of a wind turbine rotor : Two-dimensional discretization expressing the nonlinear wind-force dependency

    NARCIS (Netherlands)

    Van der Male, P.; Van Dalen, K.N.; Metrikine, A.

    2014-01-01

    In determining wind forces on wind turbine blades, and subsequently on the tower and the foundation, the blade response velocity cannot be neglected. This velocity alters the wind force, which depends on the wind velocity relative to that of the blades This blade response velocity component of the

  7. Fatigue damage from random vibration pulse process of tubular structural elements subject to wind

    DEFF Research Database (Denmark)

    Christensen, Claus F.; Ditlevsen, Ove Dalager

    1997-01-01

    In a wide range of the Reynolds number an elastically suspended circular cylinder surrounded by a homogeneous wind velocity field will generate vortex shedding of a frequency that by and large is proportional to the far field wind velocity. However, if the cylinder is free to vibrate, resonance...... of turbulence observed in the natural wind the undisturbed local wind velocity directly upstream to the cylinder varies as a sample from a random process. Thus the local wind velocity will cross in and out of the "iock in"-intervals in a random fashion causing pulse like bursts of strong vibrations. The paper...... describes a random pulse process model of this vibration behavior supported on the experimental work of the first author. Moreover, it is shown how the mean accumulated material fatigue damage per time unit according to the Palmgren-Miner rule can be evaluated by simulation....

  8. Extreme winds in Denmark

    DEFF Research Database (Denmark)

    Kristensen, L.; Rathmann, O.; Hansen, S.O.

    1999-01-01

    Wind-speed data from four sites in Denmark have been analyzed in order to obtain estimates of the basic wind velocity, defined as the 50-year wind speed (ten minute averages) under standard conditions, i.e. 10 meter over a homogeneous terrain with the roughness length 0.05 m. The sites are Skjern...

  9. Extreme winds in Denmark

    DEFF Research Database (Denmark)

    Kristensen, L.; Rathmann, Ole; Hansen, S.O.

    1999-01-01

    Wind-speed data from four sites in Denmark have been analyzed in order to obtain estimates of the basic wind velocity which is defined as the 50-year wind speed under standard conditions, i.e. ten-minute averages at the height 10 m over a uniform terrainwith the roughness length 0.05 m. The sites...

  10. Peran Kecepatan Angin Terhadap Peningkatan Kenyamanan Termis Manusia Di Lingkungan Beriklim Tropis Lembab (the Role of Wind Velocity on Increasing Human Thermal Comfort in Hot and Humid Environment)

    OpenAIRE

    Sangkertadi, Sangkertadi

    2006-01-01

    The most important factors which influence the condition of thermal comfort are clothing, temperature, humidity, air velocity, and types of activities. In hot and humid climate, feeling of comfort are associated with sweating. Air velocity can cool building occupants by increasing convective and evaporative heat loses. This paper intends to explore the techniques for evaluating of thermal comfort especially with introduction of PMV and DISC scales for the tropical humid environment. The study...

  11. Gas dynamics in the inner few AU around the Herbig B[e] star MWC297. Indications of a disk wind from kinematic modeling and velocity-resolved interferometric imaging

    Science.gov (United States)

    Hone, Edward; Kraus, Stefan; Kreplin, Alexander; Hofmann, Karl-Heinz; Weigelt, Gerd; Harries, Tim; Kluska, Jacques

    2017-10-01

    Aims: Circumstellar accretion disks and outflows play an important role in star formation. By studying the continuum and Brγ-emitting region of the Herbig B[e] star MWC297 with high-spectral and high-spatial resolution we aim to gain insight into the wind-launching mechanisms in young stars. Methods: We present near-infrared AMBER (R = 12 000) and CRIRES (R = 100 000) observations of the Herbig B[e] star MWC297 in the hydrogen Brγ-line. Using the VLTI unit telescopes, we obtained a uv-coverage suitable for aperture synthesis imaging. We interpret our velocity-resolved images as well as the derived two-dimensional photocenter displacement vectors, and fit kinematic models to our visibility and phase data in order to constrain the gas velocity field on sub-AU scales. Results: The measured continuum visibilities constrain the orientation of the near-infrared-emitting dust disk, where we determine that the disk major axis is oriented along a position angle of 99.6 ± 4.8°. The near-infrared continuum emission is 3.6 × more compact than the expected dust-sublimation radius, possibly indicating the presence of highly refractory dust grains or optically thick gas emission in the inner disk. Our velocity-resolved channel maps and moment maps reveal the motion of the Brγ-emitting gas in six velocity channels, marking the first time that kinematic effects in the sub-AU inner regions of a protoplanetary disk could be directly imaged. We find a rotation-dominated velocity field, where the blue- and red-shifted emissions are displaced along a position angle of 24° ± 3° and the approaching part of the disk is offset west of the star. The visibility drop in the line as well as the strong non-zero phase signals can be modeled reasonably well assuming a Keplerian velocity field, although this model is not able to explain the 3σ difference that we measure between the position angle of the line photocenters and the position angle of the dust disk. We find that the fit can be

  12. Wind conditions for wind turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B.

    1999-04-01

    Delegates from Europe and USA attended the meeting and discussed general aspects of wind conditions for wind turbine design. The subjects and the presented papers covered a very broad range of aspects of wind conditions and related influence on the wind turbine. (EHS)

  13. The Dependence of the Peak Velocity of High-Speed Solar Wind Streams as Measured in the Ecliptic by ACE and the STEREO satellites on the Area and Co-Latitude of their Solar Source Coronal Holes

    DEFF Research Database (Denmark)

    Hofmeister, Stefan J.; Veronig, Astrid; Temmer, Manuela

    2018-01-01

    We study the properties of 115 coronal holes in the time‐range from 2010/08 to 2017/03, the peak velocities of the corresponding high‐speed streams as measured in the ecliptic at 1AU, and the corresponding changes of the Kp index as marker of their geo‐effectiveness. We find that the peak velocit...

  14. PERAN KECEPATAN ANGIN TERHADAP PENINGKATAN KENYAMANAN TERMIS MANUSIA DI LINGKUNGAN BERIKLIM TROPIS LEMBAB (The Role of Wind Velocity on Increasing Human Thermal Comfort in Hot and Humid Environment

    Directory of Open Access Journals (Sweden)

    Sangkertadi Sangkertadi

    2006-07-01

    Full Text Available ABSTRAK Faktor utama yang mempengaruhi persepsi kenyamanan termis pada manusia adalah : pakaian, suhu, kelembaban dan kecepatan udara sekitar, serta jenis aktivitasnya. Di daerah beriklim panas dan lembab, rasa tidak nyaman berkaitan erat dengan keluarnya keringat. Angin dengan debit dan kecepatan tertentu dapat difungsikan untuk mendinginkan penghuni bangunan melalui proses evaporasi keringat dan proses perpindahan kalor secara konvektif. Tulisan ini menyajikan pendalaman tentang teknik mengevaluasi tingkat kenyamanan termis manusia di daerah beriklim tropis lembab khususnya dengan menggunakan skala DISC dan PMV. Studi ini difokuskan pada pengaruh kecepatan angin untuk meningkatkan kenyamanan termis manusia. Metode yang dipakai adalah simulasi numerik dengan menggunakan sejumlah persamaan praktis untuk penghitungan kenyamanan termis.   ABSTRACT The most important factors which influence the condition of thermal comfort are clothing, temperature, humidity, air velocity, and types of activities. In hot and humid climate, feeling of comfort are associated with sweating. Air velocity can cool building occupants by increasing convective and evaporative heat loses. This paper intends to explore the techniques for evaluating of thermal comfort especially with introduction of PMV and DISC scales for the tropical humid environment. The study is focused on the influence of air velocity to the scale number of both DSC and PMV. A simple numerical simulation with some of empirical correlations are used to estimate the index of thermal comfort

  15. Airborne lidar measurements to investigate the impact of long-range transported dust on shallow marine trade wind convection

    Science.gov (United States)

    Gross, S.; Gutleben, M.; Wirth, M.; Ewald, F.

    2017-12-01

    Aerosols and clouds are still main contributors to uncertainties in estimates and interpretation of the Earth's changing energy budget. Their interaction with the Earth's radiation budged has a direct component by scattering and absorbing solar and terrestrial radiation, and an indirect component, e.g. as aerosols modify the properties and thus the life-time of clouds or by changing the atmosphere's stability. Up to know now sufficient understanding in aerosol-cloud interaction and climate feedback is achieved. Thus studies with respect to clouds, aerosols, their interaction and influence on the radiation budged are highly demanded. In August 2016 the NARVAL-II (Next-generation airborne remote sensing for validation studies) mission took place. Measurements with a combined active (high spectral resolution and water vapor differential absorption lidar and cloud radar) and passive remote sensing (microwave radiometer, hyper spectral imager, radiation measurements) payload were performed with the German high altitude and long-range research aircraft HALO over the subtropical North-Atlantic Ocean to study shallow marine convection during the wet and dusty season. With this, NARVAL-II is follow-up of the NARVAL-I mission which took place during the dry and dust free season in December 2013. During NARVAL-II the measurement flights were designed the way to sample dust influenced areas as well as dust free areas in the trades. One main objective was to investigate the optical and macro physical properties of the dust layer, differences in cloud occurrence in dusty and non-dusty areas, and to study the influence of aerosols on the cloud properties and formation. This allows comparisons of cloud and aerosol distribution as well as their environment between the dry and the wet season, and of cloud properties and distribution with and without the influence of long-range transported dust across the Atlantic Ocean. In our presentation we will give an overview of the NARVAL

  16. Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas

    Directory of Open Access Journals (Sweden)

    F. Fécan

    1999-01-01

    Full Text Available Large-scale simulation of the soil-derived dust emission in semi-arid regions needs to account for the influence of the soil moisture on the wind erosion threshold. Soil water retention consists of molecular adsorption on the soil grain surface and capillary forces between the grain. Interparticle capillary forces (characterized by the moisture tension are the main factor responsible for the increase of the wind erosion threshold observed when the soil moisture increases. When the soil moisture content is close to but smaller than the maximum amount of adsorbed water, w' (depending on the soil texture, these capillary forces are considered as not strong enough to significantly increase the erosion threshold. An expression of the moisture tension as a function of soil moisture and w' is derived from retention curves. From this expression, a parametrization of the ratio of the wet to dry erosion thresholds has been developed as a function of soil moisture and soil texture. The coefficients of this parametrization have been determined by using experimental data from the literature. An empirical relationship between w' and soil clay content has been established. The erosion threshold ratios simulated for different soil textures were found to be in good agreement with the experimental data.Key words. Atmospheric composition and structure (Aerosols and particles · Hydrology (soil moisture

  17. Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas

    Energy Technology Data Exchange (ETDEWEB)

    Fecan, F.; Marticorena, B.; Bergametti, G. [Paris-7 Univ. (France). Lab. Interuniversitaire des Systemes Atmospheriques

    1999-01-01

    Large-scale simulation of the soil-derived dust emission in semiarid regions needs to account for the influence of the soil moisture on the wind erosion threshold. Soil water retention consists of molecular adsorption on the soil grain surface and capillary forces between the grain. Interparticle capillary forces (characterized by the moisture tension) are the main factor responsible for the increase of the wind erosion threshold observed when the soil moisture increases. When the soil moisture content is close to but smaller than the maximum amount of adsorbed water, w` (depending on the soil texture), these capillary forces are considered as not strong enough to significantly increase the erosion threshold. An expression of the moisture tension as a function of soil moisture and w` is derived from retention curves. From this expression, a parametrization of the ratio of the wet to dry erosion thresholds has been developed as a function of soil moisture and soil texture. The coefficients of this parametrization have been determined by using experimental data from the literature. An empirical relationship between w` and soil clay content has been established. The erosion threshold ratios simulated for different soil textures were found to be in good agreement with the experimental data. (orig.) 24 refs.

  18. Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas

    Directory of Open Access Journals (Sweden)

    F. Fécan

    Full Text Available Large-scale simulation of the soil-derived dust emission in semi-arid regions needs to account for the influence of the soil moisture on the wind erosion threshold. Soil water retention consists of molecular adsorption on the soil grain surface and capillary forces between the grain. Interparticle capillary forces (characterized by the moisture tension are the main factor responsible for the increase of the wind erosion threshold observed when the soil moisture increases. When the soil moisture content is close to but smaller than the maximum amount of adsorbed water, w' (depending on the soil texture, these capillary forces are considered as not strong enough to significantly increase the erosion threshold. An expression of the moisture tension as a function of soil moisture and w' is derived from retention curves. From this expression, a parametrization of the ratio of the wet to dry erosion thresholds has been developed as a function of soil moisture and soil texture. The coefficients of this parametrization have been determined by using experimental data from the literature. An empirical relationship between w' and soil clay content has been established. The erosion threshold ratios simulated for different soil textures were found to be in good agreement with the experimental data.

    Key words. Atmospheric composition and structure (Aerosols and particles · Hydrology (soil moisture

  19. Beam tracking strategies for studies of kinetic scales in the solar wind with THOR-CSW

    Science.gov (United States)

    De Keyser, Johan; Lavraud, Benoit; Neefs, Eddy; Berkenbosch, Sophie; Anciaux, Michel; Maggiolo, Romain

    2016-04-01

    Modern plasma spectrometers for monitoring the solar wind attempt to intelligently track the energy and direction of the solar wind beam in order to obtain solar wind velocity distributions more efficiently. Such beam tracking strategies offer some benefits, but also have their limitations and drawbacks. Benefits include an improved resolution and/or a faster velocity distribution function acquisition time. Limitations are due to instrument characteristics that tend to be optimized for a particular range of particle energies and arrival directions. A drawback is the risk to miss an important part of the velocity distribution or to lose track of the beam altogether. A comparison is presented of different beam tracking strategies under consideration for the THOR-CSW instrument in order to highlight a number of design decisions and their impact on the acquired velocity distributions. The gain offered by beam tracking in terms of increased time resolution turns out to be essential for studies of solar wind physics at kinetic scales.

  20. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Modulus

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  1. Wind, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Meridional

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Remote Sensing Inc. distributes science quality wind velocity data from the SeaWinds instrument onboard NASA's QuikSCAT satellite. SeaWinds is a microwave...

  2. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Zonal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  3. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Meridional

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  4. Wind, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Modulus

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Remote Sensing Inc. distributes science quality wind velocity data from the SeaWinds instrument onboard NASA's QuikSCAT satellite. SeaWinds is a microwave...

  5. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Curl

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  6. Climatology of Neutral vertical winds in the midlatitude thermosphere

    Science.gov (United States)

    Kerr, R.; Kapali, S.; Riccobono, J.; Migliozzi, M. A.; Noto, J.; Brum, C. G. M.; Garcia, R.

    2017-12-01

    More than one thousand measurements of neutral vertical winds, relative to an assumed average of 0 m/s during a nighttime period, have been made at Arecibo Observatory and the Millstone Hill Optical Facility since 2012, using imaging Fabry-Perot interferometers. These instruments, tuned to the 630 nm OI emission, are carefully calibrated for instrumental frequency drift using frequency stabilized lasers, allowing isolation of Doppler motion in the zenith with 1-2 m/s accuracy. As one example of the results, relative vertical winds at Arecibo during quiet geomagnetic conditions near winter solstice 2016, range ±70 m/s and have a one standard deviation statistical variability of ±34 m/s. This compares with a ±53 m/s deviation from the average meridional wind, and a ±56 m/s deviation from the average zonal wind measured during the same period. Vertical neutral wind velocities for all periods range from roughly 30% - 60% of the horizontal velocity domain at Arecibo. At Millstone Hill, the vertical velocities relative to horizontal velocities are similar, but slightly smaller. The midnight temperature maximum at Arecibo is usually correlated with a surge in the upward wind, and vertical wind excursions of more than 80 m/s are common during magnetic storms at both sites. Until this compilation of vertical wind climatology, vertical motions of the neutral atmosphere outside of the auroral zone have generally been assumed to be very small compared to horizontal transport. In fact, excursions from small vertical velocities in the mid-latitude thermosphere near the F2 ionospheric peak are common, and are not isolated events associated with unsettled geomagnetic conditions or other special dynamic conditions.

  7. Wind turbine

    Science.gov (United States)

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  8. Data-driven wind plant control

    NARCIS (Netherlands)

    Gebraad, P.M.O.

    2014-01-01

    Each wind turbine in a cluster of wind turbines (a wind power plant) can influence the performance of other turbines through the wake that forms downstream of its rotor. The wake has a reduced wind velocity, since the turbine extracts energy from the flow, and the obstruction by the wind turbine

  9. Remotely measuring the wind using turbine-mounted lidars: Application to power performance testing

    DEFF Research Database (Denmark)

    Borraccino, Antoine

    of the wind field reconstruction methods. Two wind models were developed in this thesis. The first one employs lidar measurement at a single distance – but several heights –, accounts for shear through a power law profile, and estimates hub height wind speed, direction and the shear exponent. The second model...... combines the wind model with a simple one-dimensional induction model. The lidar inputs were line-of-sight velocity measurements taken at multiple distances close to the rotor, from 0.5 to 1.25 rotor diameters. Using the combined wind-induction model, hub height free stream wind characteristics...... uncertainties were also quantified. Further, the annual energy production (AEP) was computed for a range of annual mean wind speeds. At 8ms−1, the lidar-estimated AEP was within 1% to the one obtained with the cup anemometer. The combined wind-induction reconstruction technique represents a paradigm shift...

  10. Forecasting winds over nuclear power plants statistics

    International Nuclear Information System (INIS)

    Marais, Ch.

    1997-01-01

    In the event of an accident at nuclear power plant, it is essential to forecast the wind velocity at the level where the efflux occurs (about 100 m). At present meteorologists refine the wind forecast from the coarse grid of numerical weather prediction (NWP) models. The purpose of this study is to improve the forecasts by developing a statistical adaptation method which corrects the NWP forecasts by using statistical comparisons between wind forecasts and observations. The Multiple Linear Regression method is used here to forecast the 100 m wind at 12 and 24 hours range for three Electricite de France (EDF) sites. It turns out that this approach gives better forecasts than the NWP model alone and is worthy of operational use. (author)

  11. Cryogenic cave carbonates from the Cold Wind Cave, Nízke Tatry Mountains, Slovakia: Extending the age range of cryogenic cave carbonate formation to the Saalian

    Directory of Open Access Journals (Sweden)

    Zak K.

    2009-07-01

    Full Text Available Cold Wind Cave, located at elevations ranging between 1,600 and 1,700 m a. s. l. in the main range of the Nízke Tatry Mountains(Slovakia, is linked in origin with the adjacent Dead Bats Cave. Together, these caves form a major cave system located within anarrow tectonic slice of Triassic sediments. Both caves have undergone complex multiphase development. A system of sub-horizontalcave levels characterized by large, tunnel-like corridors was formed during the Tertiary, when elevation differences surroundingthe cave were less pronounced than today. The central part of the Nízke Tatry Mountains, together with the cave systems, wasuplifted during the Neogene and Lower Pleistocene, which changed the drainage pattern of the area completely. The formation ofnumerous steep-sloped vadose channels and widespread cave roof frost shattering characterized cave development throughout theQuaternary.In the Cold Wind Cave, extensive accumulations of loose, morphologically variable crystal aggregates of secondary cave carbonateranging in size between less than 1 mm to about 35 mm was found on the surface of fallen limestone blocks. Based on the C andO stable isotope compositions of the carbonate (δ13C: 0.72 to 6.34 ‰, δ18O: –22.61 to –13.68 ‰ V-PDB and the negative relationbetween δ13C and δ18O, the carbonate crystal aggregates are interpreted as being cryogenic cave carbonate (CCC. Publishedmodels suggest the formation of CCC in slowly freezing water pools, probably on the surface of cave ice, most probably duringtransitions from stadials to interstadials. Though the formation of these carbonates is likely one of the youngest events in thesequence of formation of cave sediments of the studied caves, the 230Th/234U ages of three samples (79.7±2.3, 104.0±2.9, and180.0±6.3 ka are the oldest so far obtained for CCC in Central Europe. This is the first description of CCC formation in one caveduring two glacial periods (Saalian and Weichselian.

  12. Time-of-Flight Laser Anemometer for Velocity Measurements in the Atmosphere

    DEFF Research Database (Denmark)

    Lading, Lars; Jensen, A. Skov; Fog, C.

    1978-01-01

    In the system described, a 1W CW Ar II laser operates over a range of 70 m with spatial and temporal resolutions of mm and 10-100 m sec, respectively. Mean wind velocities obtained with a cup-anemometer agree within 10%...

  13. Numerical Investigation of Wind Conditions for Roof-Mounted Wind Turbines: Effects of Wind Direction and Horizontal Aspect Ratio of a High-Rise Cuboid Building

    Directory of Open Access Journals (Sweden)

    Takaaki Kono

    2016-11-01

    Full Text Available From the viewpoint of installing small wind turbines (SWTs on rooftops, this study investigated the effects of wind direction and horizontal aspect ratio (HAR = width/length of a high-rise cuboid building on wind conditions above the roof by conducting large eddy simulations (LESs. The LES results confirmed that as HAR decreases (i.e., as the building width decreases, the variation in wind velocity over the roof tends to decrease. This tendency is more prominent as the angle between the wind direction and the normal vector of the building’s leeward face with longer roof edge increases. Moreover, at windward corners of the roof, wind conditions are generally favorable at relatively low heights. In contrast, at the midpoint of the roof's windward edge, wind conditions are generally not favorable at relatively low heights. At leeward representative locations of the roof, the bottoms of the height range of favorable wind conditions are typically higher than those at the windward representative locations, but the favorable wind conditions are much better at the leeward representative locations. When there is no prevailing wind direction, the center of the roof is more favorable for installing SWTs than the corners or the edge midpoints of the roof.

  14. Scale-free texture of the fast solar wind

    Science.gov (United States)

    Hnat, B.; Chapman, S. C.; Gogoberidze, G.; Wicks, R. T.

    2011-12-01

    The higher-order statistics of magnetic field magnitude fluctuations in the fast quiet solar wind are quantified systematically, scale by scale. We find a single global non-Gaussian scale-free behavior from minutes to over 5 h. This spans the signature of an inertial range of magnetohydrodynamic turbulence and a ˜1/f range in magnetic field components. This global scaling in field magnitude fluctuations is an intrinsic component of the underlying texture of the solar wind and puts a strong constraint on any theory of solar corona and the heliosphere. Intriguingly, the magnetic field and velocity components show scale-dependent dynamic alignment outside of the inertial range.

  15. Transonic Wind Tunnel Modernization for Experimental Investigation of Dynamic Stall in a Wide Range of Mach Numbers by Plasma Actuators with Combined Energy/Momentum Action

    Science.gov (United States)

    2015-01-02

    wind tunnel for the study of plasma based methods for the control of dynamic stall for helicopter rotor blades. The tunnel has a 3D positioning...SECURITY CLASSIFICATION OF: This equipment grant supported the design and construction of a subsonic variable speed wind tunnel for the study of...plasma based methods for the control of dynamic stall for helicopter rotor blades. The tunnel has a 3D positioning system and servomotor mounted below

  16. Wind flow through shrouded wind turbines

    Science.gov (United States)

    2017-03-01

    velocity and model angle were varied . Additionally, static wall pressures and cross section flow were studied with the addition of a screen. The pressure...the geometry of a wind lens or flange on the shroud and a gradually diverging shape, proved to accelerate the flow through the duct. 14. SUBJECT...Tunnel velocity and model angle were varied . Additionally, static wall pressures and cross section flow were studied with the addition of a screen. The

  17. Stellar and wind parameters of massive stars from spectral analysis

    Science.gov (United States)

    Araya, Ignacio; Curé, Michel

    2017-11-01

    The only way to deduce information from stars is to decode the radiation it emits in an appropriate way. Spectroscopy can solve this and derive many properties of stars. In this work we seek to derive simultaneously the stellar and wind characteristics of a wide range of massive stars. Our stellar properties encompass the effective temperature, the surface gravity, the stellar radius, the micro-turbulence velocity, the rotational velocity and the Si abundance. For wind properties we consider the mass-loss rate, the terminal velocity and the line-force parameters α, k and δ (from the line-driven wind theory). To model the data we use the radiative transport code Fastwind considering the newest hydrodynamical solutions derived with Hydwind code, which needs stellar and line-force parameters to obtain a wind solution. A grid of spectral models of massive stars is created and together with the observed spectra their physical properties are determined through spectral line fittings. These fittings provide an estimation about the line-force parameters, whose theoretical calculations are extremely complex. Furthermore, we expect to confirm that the hydrodynamical solutions obtained with a value of δ slightly larger than ~ 0.25, called δ-slow solutions, describe quite reliable the radiation line-driven winds of A and late B supergiant stars and at the same time explain disagreements between observational data and theoretical models for the Wind-Momentum Luminosity Relationship (WLR).

  18. Role of Wind Tunnels in Aircraft Design

    Indian Academy of Sciences (India)

    large wind tunnels simulating the actual flight conditions as nearly as possible. Often, several wind tunnels ... wind tunnel tests can be 'scaled' to the actual velocity and actual body size using suitable scaling laws. A typical wind tunnel consists ofa test section ... tion and control positions. Some of this instrumentation like six.

  19. Wind Tunnel Tests on Aerodynamic Characteristics of two types of Iced Conductors with Elastic Support

    Science.gov (United States)

    Yi, You; Cheng, He; Xinxin, Wang

    2018-01-01

    The wind tunnel tests were carried out to obtain the variation laws of static aerodynamic characteristics of crescent and D-shape iced conductor with different wind velocities, wind attack angles and torsional elastic support stiffness. Test results show that the variation of wind velocity has a relatively large influence on the aerodynamic coefficients of crescent conductor with torsional elastic support 1. However, the influence on that of D-shape conductor is not obvious. With the increase of the torsional elastic support stiffness, the lift and moment coefficient curves of the crescent iced conductor form an obvious peak phenomenon in the range of 0 ° ∼30°. Meanwhile, the wind attack angle position corresponding to the maximum value of the lift and moment coefficients of the D-shape iced conductor appear a backward moving phenomenon.

  20. Orbital velocity

    OpenAIRE

    Modestino, Giuseppina

    2016-01-01

    The trajectory and the orbital velocity are determined for an object moving in a gravitational system, in terms of fundamental and independent variables. In particular, considering a path on equipotential line, the elliptical orbit is naturally traced, verifying evidently the keplerian laws. The case of the planets of the solar system is presented.

  1. The benefit of wind atlases in wind energy and their verification

    Science.gov (United States)

    Bethke, Julia; Kampmeyer, Jens; Mengelkamp, Heinz-Theo

    2014-05-01

    1 INTRODUCTION Wind atlases such as reanalysis data and downscaled data sets are widely used in the wind energy sector, e.g. for long-term correlation of short-term measurements or initial site search. Due to the financial impact of statements derived from wind atlases, their verification is of high importance. Here, different wind atlases are verified in-depth with numerous certified high-quality mast measurements covering a broad range of heights up to 200 m. In contrast to the commonly used weather stations, high masts allow for an evaluation of vertical profiles and atmospheric stability. The following questions will be addressed: What are wind atlases? How well are they performing? Which benefit do wind atlases have in wind energy? 2 APPROACH The performance of commonly used reanalysis data, e.g. MERRA, ERA-Interim, and two data sets downscaled from MERRA reanalysis data is investigated. The first downscaled data set is derived by the mesoscale model MM5 and has a spatial and temporal resolution of 20 km and 10 min, respectively. The second downscaled data set is derived by the WRF model and has a spatial and temporal resolution of 3 km and 10 min, respectively. Certified high-quality measurements of 45 met masts with 160 anemometers covering a range of complexity types, measurement heights between 30 m and 200 m and a time period of 2 years are compared to the wind atlases. Hourly values are analysed. 3 RESULTS The correlation with hourly measurements of wind speed is very good for all data sets. Correlation increases with decreasing terrain complexity. Wind directions are also met very well by all data sets. The frequency distributions of wind speed and therefore, the Weibull parameters are reproduced very well by the downscaled data sets for a broad range of velocities, however underestimating higher velocities. MERRA generally strongly overestimates wind speed. Diurnal and annual cycles as well as vertical profiles are reproduced more accurately by the

  2. Experimental study of wind tunnel performance by a two-component laserDopplerAnemometer

    Directory of Open Access Journals (Sweden)

    M Pourmahabadian

    2005-10-01

    Full Text Available Background and Aims: This survey studies the wind tunnel performance by a two- componentlaser Doppler Anemometer, so some experiments were carried out to assess the performance of awind tunnel.Method: The tunnel was capable to produce air velocity of up to 40 m/s.. Measurements ofvelocity profiles have been made actors the test section of wind tunnel through the using a twocomponentfiber optic Laser Doppler anemometer. Measurements of velocity profiles andturbulence intensities have been made across the test section of the wind tunnel using a twocomponentfiber optic Laser Doppler anemometer (I.D.A for wind speeds ranging from 1 to3m/s.Results: Performance rests of velocity profiles at a given flow rate and various position of aerosolgenerator showed that although uniformity of flow dependent to the place of an atomizer (asaerosol generator but the variation of wind speed across the test section meets the wind speedrequirements, as specified by US EPAfor 3m/s only.Conclusion:At time which particles velocity reach to less than one micron, the air velocity relateson the similarity of particles and

  3. Gas transfer velocities in small forested ponds

    Science.gov (United States)

    Holgerson, Meredith A.; Farr, Emily R.; Raymond, Peter A.

    2017-05-01

    Inland waters actively exchange gases with the atmosphere, and the gas exchange rate informs system biogeochemistry, ecology, and global carbon budgets. Gas exchange in medium- to large-sized lakes is largely regulated by wind; yet less is known about processes regulating gas transfer in small ponds where wind speeds are low. In this study, we determined the gas transfer velocity, k600, in four small (water temperature; however, the explanatory power was weak (R2 water bodies, we compiled direct measurements of k600 from 67 ponds and lakes worldwide. Our k600 estimates were within the range of estimates for other small ponds, and variability in k600 increased with lake size. However, the majority of studies were conducted on medium-sized lakes (0.01 to 1 km2), leaving small ponds and large lakes understudied. Overall, this study adds four small ponds to the existing body of research on gas transfer velocities from inland waters and highlights uncertainty in k600, with implications for calculating metabolism and carbon emissions in inland waters.

  4. Noise from wind turbines

    International Nuclear Information System (INIS)

    Andersen, B.; Jakobsen, J.

    1992-11-01

    Based on a previous project concerning the calculation of the amount of noise emanating from wind turbine arrays, this one examines the subject further by investigating whether there could be significant differences in the amount of noise made by individual wind turbines in an array, and whether the noise is transmitted in varying directions - so that when it is carried in the same direction as the wind blows it would appear to be louder. The aim was also to determine whether the previously used method of calculation lacked precision. It was found that differences in noise niveaux related to individual wind turbines were insignificant and that noise was not so loud when it was not borne in the direction of the wind. It was necessary to change the method of calculation as reckoning should include the influence of the terrain, wind velocity and distance. The measuring and calculation methods are exemplified and the resulting measurements are presented in detail. (AB)

  5. Effects of forward velocity on turbulent jet mixing noise

    Science.gov (United States)

    Plumblee, H. E., Jr. (Editor)

    1976-01-01

    Flight simulation experiments were conducted in an anechoic free jet facility over a broad range of model and free jet velocities. The resulting scaling laws were in close agreement with scaling laws derived from theoretical and semiempirical considerations. Additionally, measurements of the flow structure of jets were made in a wind tunnel by using a laser velocimeter. These tests were conducted to describe the effects of velocity ratio and jet exit Mach number on the development of a jet in a coflowing stream. These turbulence measurements and a simplified Lighthill radiation model were used in predicting the variation in radiated noise at 90 deg to the jet axis with velocity ratio. Finally, the influence of forward motion on flow-acoustic interactions was examined through a reinterpretation of the 'static' numerical solutions to the Lilley equation.

  6. Laser Doppler detection systems for gas velocity measurement.

    Science.gov (United States)

    Huffaker, R M

    1970-05-01

    The velocity of gas flow has been remotely measured using a technique which involves the coherent detection of scattered laser radiation from small particles suspended in the fluid utilizing the doppler effect. Suitable instrumentation for the study of wind tunnel type and atmospheric flows are described. Mainly for reasons of spatial resolution, a function of the laser wavelength, the wind tunnel system utilizes an argon laser operating at 0.5 micro. The relaxed spatial resolution requirement of atmospheric applications allows the use of a carbon dioxide laser, which has superior performance at a wavelength of 10.6 micro, a deduction made from signal-to-noise ratio considerations. Theoretical design considerations are given which consider Mie scattering predictions, two-phase flow effects, photomixing fundamentals, laser selection, spatial resolution, and spectral broadening effects. Preliminary experimental investigations using the instrumentation are detailed. The velocity profile of the flow field generated by a 1.27-cm diam subsonic jet was investigated, and the result compared favorably with a hot wire investigation conducted in the same jet. Measurements of wind velocity at a range of 50 m have also shown the considerable promise of the atmospheric system.

  7. Wind energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role wind energy may have in the energy future of the US. The topics discussed in the chapter include historical aspects of wind energy use, the wind energy resource, wind energy technology including intermediate-size and small wind turbines and intermittency of wind power, public attitudes toward wind power, and environmental, siting and land use issues

  8. Relationship Between Satellite-Derived Snow Cover and Snowmelt-Runoff Timing and Stream Power in the Wind River Range, Wyoming

    Science.gov (United States)

    Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Riggs, George A.

    2010-01-01

    Earlier onset of springtime weather including earlier snowmelt has been documented in the western United States over at least the last 50 years. Because the majority (>70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack (and shrinking glaciers) has important implications for streamflow management. The amount of water in a snowpack influences stream discharge which can also influence erosion and sediment transport by changing stream power, or the rate at which a stream can do work such as move sediment and erode the stream bed. The focus of this work is the Wind River Range (WRR) in west-central Wyoming. Ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover, cloud- gap-filled (CGF) map products and 30 years of discharge and meteorological station data are studied. Streamflow data from six streams in the WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades, though no trend of either lower streamflow or earlier snowmelt was observed using MODIS snow-cover maps within the decade of the 2000s. Results show a statistically-significant trend at the 95% confidence level (or higher) of increasing weekly maximum air temperature (for three out of the five meteorological stations studied) in the decade of the 1970s, and also for the 40-year study period. MODIS-derived snow cover (percent of basin covered) measured on 30 April explains over 89% of the variance in discharge for maximum monthly streamflow in the decade of the 2000s using Spearman rank correlation analysis. We also investigated stream power for Bull Lake Creek Above Bull Lake from 1970 to 2009; a statistically-significant end toward reduced stream power was found (significant at the 90% confidence level). Observed changes in streamflow and stream power may be related to increasing weekly maximum air temperature measured during the 40-year study period. The

  9. Dependence of the surf zone aerosol on wind direction and wind speed at a coastal site on the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Tymon Zieliński

    2003-09-01

    Full Text Available Since 1992 lidar-based measurements have been carried out under various meteorological conditions and at various times of the year. The aerosol optical properties were determined in the marine boundary layer as a function of altitude using such factors as wind direction, duration and velocity and aerosol size distribution and concentration. It was confirmed that in all cases, the total aerosol concentration, size distribution and aerosol extinction increase with wind speed but decrease with altitude. In the range of wind velocities from 1 to 15 m s-1 the mean aerosol optical thickness of the atmosphere (VIS obtained from the lidar varied from 0.1 to 0.38 for offshore winds and from 0.01 to about 0.1 for onshore winds, while the Ångström parameter for VIS oscillated around 0.65 for onshore winds and around 1 for offshore winds. Both parameters depended strongly on the history of the air mass above the Baltic Sea. Such aerosol optical thicknesses are in agreement with those obtained by other researchers in the Baltic Sea area.

  10. ON THE COMPETITION BETWEEN RADIAL EXPANSION AND COULOMB COLLISIONS IN SHAPING THE ELECTRON VELOCITY DISTRIBUTION FUNCTION: KINETIC SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Landi, S.; Matteini, L. [Dipartimento di Fisica e Astronomia, Universita degli Studi di Firenze Largo E. Fermi 2, I-50125 Firenze (Italy); Pantellini, F. [LESIA, Observatoire de Paris 5, Place J. Janssen, F-92195 Meudon Cedex (France)

    2012-12-01

    We present numerical simulations of the solar wind using a fully kinetic model which takes into account the effects of particle's binary collisions in a quasi-neutral plasma in spherical expansion. Starting from an isotropic Maxwellian velocity distribution function for the electrons, we show that the combined effect of expansion and Coulomb collisions leads to the formation of two populations: a collision-dominated cold and dense population almost isotropic in velocity space and a weakly collisional, tenuous field-aligned and antisunward drifting population generated by mirror force focusing in the radially decreasing magnetic field. The relative weights and drift velocities for the two populations observed in our simulations are in excellent agreement with the relative weights and drift velocities for both core and strahl populations observed in the real solar wind. The radial evolution of the main moments of the electron velocity distribution function is in the range observed in the solar wind. The electron temperature anisotropy with respect to the magnetic field direction is found to be related to the ratio between the collisional time and the solar wind expansion time. Even though collisions are found to shape the electron velocity distributions and regulate the properties of the strahl, it is found that the heat flux is conveniently described by a collisionless model where a fraction of the electron thermal energy is advected at the solar wind speed. This reinforces the currently largely admitted fact that collisions in the solar wind are clearly insufficient to force the electron heat flux obey the classical Spitzer-Haerm expression where heat flux and temperature gradient are proportional to each other. The presented results show that the electron dynamics in the solar wind cannot be understood without considering the role of collisions.

  11. Sand Drift Potential by Wind in Shileh Plain of Sistan

    Directory of Open Access Journals (Sweden)

    S. Poormand

    2016-02-01

    directions from 1992 to 2003 in order to predict the volume of sand transportation and its direction using sand-rose and wind-rose softwares. As described earlier, in this research, the drift potential (DP is estimated for all possible wind speed categories, summed up for all categories of each direction sector using Fryberger’s Equation. The sand drift potential in Shileh was estimated about 3439 vector units with a resultant drift direction along the Southeast, which places it in the high class of wind erosive power based on the Fryberger and Dean (1979 classification method. The sand drift potential values show that the resultant drift direction is from the Northwest towards the Southeast. It was also found that the most powerful winds (the prevailing winds blow in the summer and the spring seasons, respectively. In contrast, the percentage of calm winds increases during autumn and winter times. The sand transport discharge was predicted to be 20.422 t m-1 year-1 using Lattau and Lattau Equation. With regard to the monthly sand rose, it was seen that the resultant drift potential was low in December and January and high in June and July. The prevailing wind direction ranged from North to Northwest in all seasons. The winds with the highest velocities were observed in the summer, while the winds with lower velocities were observed during the winter. Wind velocities higher than 11 m s-1 had the largest frequencies in the summer and the lowest frequencies in the winter. Wind unidirectional index (UDI is estimated to be 0.95, implying that the index provides a suitable condition for the creation of transverse (barchanoid dunes. Conclusion: The Sistan plain is one of the windiest places in the world that is exposed to wind erosion and dust storms. The result of this study is very important due to the construction of an international roadway that connects Chabahar port to Sistan plain and continues towards the Afghanistan border. Therefore, the practical result of this

  12. A long-range laser velocimeter

    Science.gov (United States)

    Reinath, Michael S.

    1991-01-01

    A long-range laser velocimeter (LV) developed for remote operation from within the flow fields of large wind tunnels is described. Emphasis is placed on recent improvements in optical hardware as well as recent additions to data acquisition and processing techniques. The method used for data reduction of photon resolved signals is outlined in detail, and measurement accuracy is discussed. To study the performance of the LV and verify the measurement accuracy, laboratory measurements were made in the flow field of a 10-cm-diameter, 30-m/s axisymetric jet. The measured velocity and turbulence intensity surveys are compared with measurements made with a hot-wire anemometer. Additionally, the LV was used during the flow calibration of the 80-ft x 120-ft wind tunnel to measure the test-section boundary-layer thickness at the maximum wind tunnel speed of 51.5 m/s. The requirements and techniques used to seed the flow are discussed, and boundary-layer surveys of mean velocity and turbulence intensity of the streamwise component and the component normal to the surface are presented. The streamwise component of mean velocity is compared with data obtained with a total pressure rake.

  13. Analysis of Wind Energy Potential and Vibrations Caused by Wind Turbine on Its Basement

    Czech Academy of Sciences Publication Activity Database

    Kaláb, Z.; Hanslian, David; Stolárik, M.; Pinka, M.

    2014-01-01

    Roč. 19, č. 3 (2014), s. 151-159 ISSN 1335-1788 Institutional support: RVO:68378289 Keywords : wind turbine * wind energy potential * wind map * wind map * experimental measurement * vibration velocity Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.329, year: 2014 http://actamont.tuke.sk/pdf/2014/n3/6kalab.pdf

  14. Solar Wind MHD Turbulence: Anomalous Scaling and Intermittency Effects in the Slow and Fast Wind

    Science.gov (United States)

    Salem, C.; Mangeney, A.; Bale, S. D.

    2007-12-01

    Although considerable progress has been made in the understanding of MHD turbulence over the past few decades through the analysis of in-situ solar wind data, two of the primary problems of solar wind MHD turbulence that still remain a puzzle are the nature of the nonlinear energy cascade, and the strong intermittent character of solar wind fluctuations in the inertial range. This intermittency modifies significantly the scaling exponents of actual power-law spectra, which are directly related to the physical nature of the energy cascade taking place in the solar wind. The identification of the most intermittent structures and their relation to dissipation represents then a crucial problem in the framework of turbulence. Anomalous scaling of both solar wind magnetic field and velocity fluctuations in the inertial range, as well as intermittency effects have recently been investigated in detail using Wavelet transforms on simultaneous WIND 3s resolution particle and magnetic field data from the 3DP and the MFi experiments respectively. Specifically, the Haar Wavelet transform is used to compute spectra, structure functions and probability distribution functions (PDFs). This powerful technique allows: (1) for a systematic study of intermittency effects on these spectra, structure functions and PDFs, thus for a clear determination of the actual scaling properties in the inertial range, and (2) for a direct and systematic identification of the most active, singular structures responsible for the intermittency in the solar wind. The analysis of structure functions and PDFs, as well as new results on the nature of the intermittent coherent structures will be presented. The turbulent properties and intermittency effects in different solar wind regimes will be also discussed.

  15. Wind tunnel experiments on the effects of tillage ridge features on wind erosion horizontal fluxes

    Directory of Open Access Journals (Sweden)

    M. Kardous

    2005-11-01

    Full Text Available In addition to the well-known soil factors which control wind erosion on flat, unridged surfaces, two specific processes affect the susceptibility of tillage ridged surfaces to wind erosion: ridge-induced roughness and ridge- trapping efficiency. In order to parameterize horizontal soil fluxes produced by wind over tillage ridges, eight-ridge configurations composed of sandy soil and exhibiting ridge heights to ridge spacing (RH/RS ratios ranging from 0.18 to 0.38 were experimented in a wind tunnel. These experiments are used to develop a parameterization of the horizontal fluxes over tillage ridged surfaces based only on the geometric characteristics of the ridges. Indeed, the key parameters controlling the horizontal flux, namely the friction velocity, threshold friction velocity and the adjustment coefficient, are derived through specific expressions, from ridge heights (RH and ridge spacing (RS. This parameterization was evaluated by comparing the results of the simulations to an additional experimental data set and to the data set obtained by Hagen and Armbrust (1992. In both cases, predicted and measured values are found to be in a satisfying agreement. This parameterization was used to evaluate the efficiency of ridges in reducing wind erosion. The results show that ridged surfaces, when compared to a loose, unridged soil surface, lead to an important reduction in the horizontal fluxes (exceeding 60%. Moreover, the effect of ridges in trapping particles contributes for more than 90% in the flux reduction while the ridge roughness effect is weak and decreases when the wind velocity increases.

  16. Wind tunnel experiments on the effects of tillage ridge features on wind erosion horizontal fluxes

    Directory of Open Access Journals (Sweden)

    M. Kardous

    2005-11-01

    Full Text Available In addition to the well-known soil factors which control wind erosion on flat, unridged surfaces, two specific processes affect the susceptibility of tillage ridged surfaces to wind erosion: ridge-induced roughness and ridge- trapping efficiency.

    In order to parameterize horizontal soil fluxes produced by wind over tillage ridges, eight-ridge configurations composed of sandy soil and exhibiting ridge heights to ridge spacing (RH/RS ratios ranging from 0.18 to 0.38 were experimented in a wind tunnel. These experiments are used to develop a parameterization of the horizontal fluxes over tillage ridged surfaces based only on the geometric characteristics of the ridges. Indeed, the key parameters controlling the horizontal flux, namely the friction velocity, threshold friction velocity and the adjustment coefficient, are derived through specific expressions, from ridge heights (RH and ridge spacing (RS. This parameterization was evaluated by comparing the results of the simulations to an additional experimental data set and to the data set obtained by Hagen and Armbrust (1992. In both cases, predicted and measured values are found to be in a satisfying agreement.

    This parameterization was used to evaluate the efficiency of ridges in reducing wind erosion. The results show that ridged surfaces, when compared to a loose, unridged soil surface, lead to an important reduction in the horizontal fluxes (exceeding 60%. Moreover, the effect of ridges in trapping particles contributes for more than 90% in the flux reduction while the ridge roughness effect is weak and decreases when the wind velocity increases.

  17. Wind lidar profile measurements in the coastal boundary layer: comparison with WRF modelling

    DEFF Research Database (Denmark)

    Floors, Rogier; Pena Diaz, Alfredo; Vincent, Claire Louise

    2012-01-01

    We use measurements from a pulsed wind lidar to study the wind speed profile in the planetary boundary layer (PBL) up to 600 m above the surface at a coastal site. Due to the high availability and quality of wind lidar data and the high vertical range of the measurements, it is possible to study...... of the smooth-to-rough transition at the coastline. When using a more representative roughness than the default, the biases in the surface friction velocity and heat flux are reduced and the wind speed is slightly improved. Both PBL schemes show too much mixing during stable conditions and an underestimation...... in the amount of observed low level jet. The wind speed predicted by WRF does not improve when a higher resolution is used. Therefore, both the inhomogeneous (westerly) and homogeneous (easterly) flow contribute to a large negative bias in the mean wind speed profile at heights between 100 and 200 m....

  18. A preliminary study of the impact of the ERS 1 C band scatterometer wind data on the European Centre for Medium-Range Weather Forecasts global data assimilation system

    Science.gov (United States)

    Hoffman, Ross N.

    1993-01-01

    A preliminary assessment of the impact of the ERS 1 scatterometer wind data on the current European Centre for Medium-Range Weather Forecasts analysis and forecast system has been carried out. Although the scatterometer data results in changes to the analyses and forecasts, there is no consistent improvement or degradation. Our results are based on comparing analyses and forecasts from assimilation cycles. The two sets of analyses are very similar except for the low level wind fields over the ocean. Impacts on the analyzed wind fields are greater over the southern ocean, where other data are scarce. For the most part the mass field increments are too small to balance the wind increments. The effect of the nonlinear normal mode initialization on the analysis differences is quite small, but we observe that the differences tend to wash out in the subsequent 6-hour forecast. In the Northern Hemisphere, analysis differences are very small, except directly at the scatterometer locations. Forecast comparisons reveal large differences in the Southern Hemisphere after 72 hours. Notable differences in the Northern Hemisphere do not appear until late in the forecast. Overall, however, the Southern Hemisphere impacts are neutral. The experiments described are preliminary in several respects. We expect these data to ultimately prove useful for global data assimilation.

  19. Winds from Luminous Late-Type Stars: II. Broadband Frequency Distribution of Alfven Waves

    Science.gov (United States)

    Airapetian, V.; Carpenter, K. G.; Ofman, L.

    2010-01-01

    We present the numerical simulations of winds from evolved giant stars using a fully non-linear, time dependent 2.5-dimensional magnetohydrodynamic (MHD) code. This study extends our previous fully non-linear MHD wind simulations to include a broadband frequency spectrum of Alfven waves that drive winds from red giant stars. We calculated four Alfven wind models that cover the whole range of Alfven wave frequency spectrum to characterize the role of freely propagated and reflected Alfven waves in the gravitationally stratified atmosphere of a late-type giant star. Our simulations demonstrate that, unlike linear Alfven wave-driven wind models, a stellar wind model based on plasma acceleration due to broadband non-linear Alfven waves, can consistently reproduce the wide range of observed radial velocity profiles of the winds, their terminal velocities and the observed mass loss rates. Comparison of the calculated mass loss rates with the empirically determined mass loss rate for alpha Tau suggests an anisotropic and time-dependent nature of stellar winds from evolved giants.

  20. Flight speed and performance of the wandering albatross with respect to wind.

    Science.gov (United States)

    Richardson, Philip L; Wakefield, Ewan D; Phillips, Richard A

    2018-01-01

    Albatrosses and other large seabirds use dynamic soaring to gain sufficient energy from the wind to travel large distances rapidly and with little apparent effort. The recent development of miniature bird-borne tracking devices now makes it possible to explore the physical and biological implications of this means of locomotion in detail. Here we use GPS tracking and concurrent reanalyzed wind speed data to model the flight performance of wandering albatrosses Diomedea exulans soaring over the Southern Ocean. We investigate the extent to which flight speed and performance of albatrosses is facilitated or constrained by wind conditions encountered during foraging trips. We derived simple equations to model observed albatross ground speed as a function of wind speed and relative wind direction. Ground speeds of the tracked birds in the along-wind direction varied primarily by wind-induced leeway, which averaged 0.51 (± 0.02) times the wind speed at a reference height of 5 m. By subtracting leeway velocity from ground velocity, we were able to estimate airspeed (the magnitude of the bird's velocity through the air). As wind speeds increased from 3 to 18 m/s, the airspeed of wandering albatrosses flying in an across-wind direction increased by 0.42 (± 0.04) times the wind speed (i.e. ~ 6 m/s). At low wind speeds, tracked birds increased their airspeed in upwind flight relative to that in downwind flight. At higher wind speeds they apparently limited their airspeeds to a maximum of around 20 m/s, probably to keep the forces on their wings in dynamic soaring well within tolerable limits. Upwind airspeeds were nearly constant and downwind leeway increased with wind speed. Birds therefore achieved their fastest upwind ground speeds (~ 9 m/s) at low wind speeds (~ 3 m/s). This study provides insights into which flight strategies are optimal for dynamic soaring. Our results are consistent with the prediction that the optimal range speed of albatrosses is higher

  1. Sensing the wind profile

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo

    This thesis consists of two parts. The first is a synopsis of the theoretical progress of the study that is based on a number of journal papers. The papers, which constitute the second part of the report, aim to analyze, measure, and model the wind prole in and beyond the surface layer by combining...... measurements are averaged for several stability conditions and compare well with the surface-layer wind profile. At Høvsøre, it is sufficient to scale the wind speed with the surface friction velocity, whereas at Horns Rev a new scaling is added, due to the variant roughness length. This new scaling is coupled...

  2. Dependence of optimal wind turbine spacing on wind farm length

    NARCIS (Netherlands)

    Stevens, Richard Johannes Antonius Maria

    2016-01-01

    Recent large eddy simulations have led to improved parameterizations of the effective roughness height of wind farms. This effective roughness height can be used to predict the wind velocity at hub-height as function of the geometric mean of the spanwise and streamwise turbine spacings and the

  3. Three dimensional winds: A maximum cross-correlation application to elastic lidar data

    Energy Technology Data Exchange (ETDEWEB)

    Buttler, William Tillman [Univ. of Texas, Austin, TX (United States)

    1996-05-01

    Maximum cross-correlation techniques have been used with satellite data to estimate winds and sea surface velocities for several years. Los Alamos National Laboratory (LANL) is currently using a variation of the basic maximum cross-correlation technique, coupled with a deterministic application of a vector median filter, to measure transverse winds as a function of range and altitude from incoherent elastic backscatter lidar (light detection and ranging) data taken throughout large volumes within the atmospheric boundary layer. Hourly representations of three-dimensional wind fields, derived from elastic lidar data taken during an air-quality study performed in a region of complex terrain near Sunland Park, New Mexico, are presented and compared with results from an Environmental Protection Agency (EPA) approved laser doppler velocimeter. The wind fields showed persistent large scale eddies as well as general terrain-following winds in the Rio Grande valley.

  4. Assessment of wind conditions at a fjord inlet by complementary use of sonic anemometers and lidars

    DEFF Research Database (Denmark)

    Jakobsen, Jasna Bogunovic; Cheynet, Etienne; Snæbjörnsson, Jonas

    2015-01-01

    . In a pilot study in Lysefjord, Norway, a pulsed long-range lidar and two short-range WindScanners were installed at the bridge site, together with a long-term monitoring system based on sonic anemometers. The deployment of the two types of lidars is described in more details and the complementary value......Wind velocity measurement devices based on the remote optical sensing, lidars, are extensively applied in wind energy research and wind farm operation. The present paper demonstrates the relevance and potential of lidar measurements for other windsensitive structures such as long-span bridges...... of the data from all three types of the instruments is illustrated. The emphasis is on the lidars’ potential to map the wind conditions along the whole span of a bridge in a complex terrain, as opposed to ”point” measurements achievable by sonic anemometers. The challenging balance between the spatial...

  5. Quality and Impact of Indian Doppler Weather Radar Wind Profiles: A Diagnostic Study

    Science.gov (United States)

    Sandeep, A.; Prasad, V. S.; Johny, C. J.

    2017-07-01

    In the tropics, efficient weather forecasts require high-quality vertical profiles of winds to overcome improper coupling of mass and wind fields and balance relationships in the region. The India Meteorological Department (IMD) operates the network of Doppler Weather Radar (DWR) in microwave frequencies (S-band or C-band) at various locations in India. The National Centre for Medium Range Weather Forecasting (NCMRWF) receives the volume velocity processing (VVP) wind profiles from all DWRs through the Global Telecommunication System (GTS) network in near real time. The radar VVP wind is a mean horizontal wind derived at different heights from radial velocities suitable for numerical weather prediction applications. Three numerical experiments, CNTL (without VVP winds), 3DVAR and HYBRID with the assimilation of VVP winds by means of 3-dimensional variational (3dvar) and hybrid data assimilation systems were conducted using the NCMRWF Global Forecast System (NGFS) model. This study had two objectives: (1) quality assessment of VVP winds and (2) investigation of the impact of VVP wind profiles on NGFS model forecast. The quality of VVP wind profiles was assessed against the NGFS model background and radiosonde wind profiles. The absolute values of zonal and meridional wind observation minus background (O-B) increased with the pressure for all DWRs. All radars exhibited the accepted (rejected) ratio as a decreasing (increasing) function of pressure. The resemblance between the zonal and meridional O-B statistics for 3DVAR and HYBRID experiments is apparently remarkable. The accepted VVP winds and radiosonde winds in both experiments (3DVAR and HYBRID) were consistent. The correlation coefficient ( R) was higher at Patna (Patiala) for zonal (meridional) winds in the 3DVAR experiment and at Patna (Jaipur) in the HYBRID experiment. At Chennai, the R value was lower in both the experiments for both wind components. However, because of the assimilation of VVP winds by

  6. Characterizing a Wind Energy Converter's Wake in distinct ABL Conditions by means of Long-Range Lidar Measurements in the Context of the Perdigão 2017 Experiment

    Science.gov (United States)

    Wildmann, N.; Kigle, S.; Hagen, M.; Gerz, T.

    2017-12-01

    As the resource wind is increasingly exploited to produce electricity, wind energy converter (WEC) deployment relocates to more complex terrain such as hilltops or mountain ridges. In that context, it is crucial to understand the interaction between the atmospheric boundary layer (ABL) flow and the WEC in order to predict downstream flow characteristics. In the context of the Perdigão 2017 experiment, the German Aerospace Center (DLR) performed full-scale wake measurements on a single WEC of type Enercon E82 with three Leosphere Windcube 200S long-range scanning lidar systems. The experimental setup covers two parallel ridges 1.4 km apart, separated by a 200 m deep valley. The ridges are oriented in NW-SE direction, perpendicular to main wind direction, which is SW. Two of the three scanning lidar systems are positioned downstream of the WEC in line with main wind direction to span a vertical plane, perpendicular to the ridges, with RHI scans. This allows investigating wake events with single or dual-doppler lidar techniques. The third lidar system, which is positioned along the WEC ridge, is used to measure the wake position outside the before mentioned measurement plane. Wake events in three different ABL regimes (neutral, stable and convective) are evaluated with respect to wake position, dispersion, propagation and the wind-speed deficit. It is found that wake position and propagation are strongly influenced by the atmospheric stability, forcing the wake to deviate from hub height, migrating to higher levels for convective regimes. For stable ABL conditions wakes descend into the valley, and are clearly detectable up to at least eight rotor diameters downstream of the WEC. The coplanar scanning strategy furthermore allows to calculate the two-dimensional wind vector in the vertical scanning plane, indicating that vertical wind components with up to 2 ms-1 play an important role in the interaction between ABL flow and WEC. With the help of the third lidar

  7. Wind resource estimation and siting of wind turbines

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Mortensen, N.G.; Landberg, L.

    1994-01-01

    Detailed knowledge of the characteristics of the natural wind is necessary for the design, planning and operational aspect of wind energy systems. Here, we shall only be concerned with those meteorological aspects of wind energy planning that are termed wind resource estimation. The estimation...... of the wind resource ranges from the overall estimation of the mean energy content of the wind over a large area - called regional assessment - to the prediction of the average yearly energy production of a specific wind turbine at a specific location - called siting. A regional assessment will most often...

  8. Lidar Turbulence Measurements for Wind Energy

    DEFF Research Database (Denmark)

    Mann, Jakob; Sathe, Ameya; Gottschall, Julia

    2012-01-01

    Modeling of the systematic errors in the second-order moments of wind speeds measured by continuous-wave (ZephIR) and pulsed (WindCube) lidars is presented. These lidars use the velocity azimuth display technique to measure the velocity vector. The model is developed for the line-of-sight averaging...

  9. Lidar Turbulence Measurements for Wind Energy

    DEFF Research Database (Denmark)

    Mann, Jakob; Sathe, Ameya; Gottschall, Julia

    2012-01-01

    Modeling of the systematic errors in the second-order moments of wind speeds measured by continuous-wave (ZephIR) and pulsed (WindCube) lidars is presented. These lidars use the velocity azimuth display technique to measure the velocity vector. The model is developed for the line-of-sight averagi...

  10. Analytic Theory of Wind-Driven Sea

    Science.gov (United States)

    Zakharov, V. E.

    2016-12-01

    Wind-driven sea is characterized by the spatial energy spectrum E(k), k - is a wave vector. The spectrum has a sharp maximum at k ≈ kp is defined by the wind velocity U and by the "wave-age" - degree of the sea development. For the"well developed sea" kp ≈ g/U2. For a typical value of U ≈ 15 m/sec (moderate gale) λp = 2π/kp≈ 100m. The minimalscale λcap λ > λcrit, λcrit ≈ 10-2λp. This range of scales contains more then 90% of wave energy. Wave dissipation in this range is negligibly small.2. Region of energy dissipation λ 5m/sec, the sea is also smooth and the dissipation is provided by transformation of gravity waves to capillary waves. For strong winds the dissipation is realized due to wave breaking. In this case one can observe the range of scales 5•10-2m method of theoretical physics. The statistical description of this part of the wind driven sea is described by the Hasselmann kinetic equation for the energy spectrum. This kinetic equation has a rich family of exact solutions, both stationary and time-dependent. It allows a comfortable and fast numerical simulations. Putting together results of the analytical theory and numerical simulations of waves it is possible to explain a bulk of facts, accumulated by experimentalists for decades.

  11. Power Spectra, Power Law Exponents, and Anisotropy of Solar Wind Turbulence at Small Scales

    Science.gov (United States)

    Podesta, J. J.; Roberts, D. A.; Goldstein, M. L.

    2006-01-01

    The Wind spacecraft provides simultaneous solar wind velocity and magnetic field measurements with 3- second time resolution, roughly an order of magnitude faster than previous measurements, enabling the small scale features of solar wind turbulence to be studied in unprecedented detail. Almost the entire inertial range can now be explored (the inertial range extends from approximately 1 to 10(exp 3) seconds in the spacecraft frame) although the dissipation range of the velocity fluctuations is still out of reach. Improved measurements of solar wind turbulence spectra at 1 AU in the ecliptic plane are presented including spectra of the energy and cross-helicity, the magnetic and kinetic energies, the Alfven ratio, the normalized cross-helicity, and the Elsasser ratio. Some recent observations and theoretical challenges are discussed including the observation that the velocity and magnetic field spectra often show different power law exponents with values close to 3/2 and 5/3, respectively; the energy (kinetic plus magnetic) and cross-helicity often have approximately equal power law exponents with values intermediate between 3/2 and 5/3; and the Alfven ratio, the ratio of the kinetic to magnetic energy spectra, is often a slowly increasing function of frequency increasing from around 0.4 to 1 for frequencies in the inertial range. Differences between high- and low-speed wind are also discussed. Comparisons with phenomenological turbulence theories show that important aspects of the physics are yet unexplained.

  12. Mass spectrometer for investigation of solar wind composition

    International Nuclear Information System (INIS)

    Kogan, V.T.; Kornienko, A.P.; Koshevenko, B.V.; Pavlov, A.K.; Chichagov, Yu.V.

    1989-01-01

    Mass-spectrometer designed for analysis of charged particles in solar wind is developed. Analysis of charged particle flux composition is realized in velocity space due to their selection. Properties of mass-spectrometer built using the scheme where analysis of ion composition after their passage through plane magnet with parallel boundaries is realized by means of electrostatic capacitor are considered. The suggested device differs from analog by fundamentally new possibility to carry out analysis of ion composition regardless of their energy within the selected range (solar wind). This property eliminates the necessity to carry out time successive energy analysis increases essentially mass-spectrometer sensitivity and enables to study fast processes

  13. Turning to the wind

    Science.gov (United States)

    Sorensen, B.

    1981-10-01

    Consideration is given the economic and technological aspects of both free-stream (horizontal-axis) and cross-wind (vertical-axis) wind energy conversion systems, with attention to operational devices ranging in rotor diameter from 10 to 40 m and in output from 22 to 630 kW. After a historical survey of wind turbine design and applications development, the near-term technical feasibility and economic attractiveness of combined wind/fossil-fueled generator and wind/hydroelectric systems are assessed. Also presented are estimates of wind energy potential extraction in the U.S. and Denmark, the industrial requirements of large-scale implementation, energy storage possibilities such as pumped hydro and flywheels, and cost comparisons of electrical generation by large and small wind systems, coal-fired plants, and light-water fission reactors.

  14. Influence of Icing on the Modal Behavior of Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Sudhakar Gantasala

    2016-10-01

    Full Text Available Wind turbines installed in cold climate sites accumulate ice on their structures. Icing of the rotor blades reduces turbine power output and increases loads, vibrations, noise, and safety risks due to the potential ice throw. Ice accumulation increases the mass distribution of the blade, while changes in the aerofoil shapes affect its aerodynamic behavior. Thus, the structural and aerodynamic changes due to icing affect the modal behavior of wind turbine blades. In this study, aeroelastic equations of the wind turbine blade vibrations are derived to analyze modal behavior of the Tjaereborg 2 MW wind turbine blade with ice. Structural vibrations of the blade are coupled with a Beddoes-Leishman unsteady attached flow aerodynamics model and the resulting aeroelastic equations are analyzed using the finite element method (FEM. A linearly increasing ice mass distribution is considered from the blade root to half-length and thereafter constant ice mass distribution to the blade tip, as defined by Germanischer Lloyd (GL for the certification of wind turbines. Both structural and aerodynamic properties of the iced blades are evaluated and used to determine their influence on aeroelastic natural frequencies and damping factors. Blade natural frequencies reduce with ice mass and the amount of reduction in frequencies depends on how the ice mass is distributed along the blade length; but the reduction in damping factors depends on the ice shape. The variations in the natural frequencies of the iced blades with wind velocities are negligible; however, the damping factors change with wind velocity and become negative at some wind velocities. This study shows that the aerodynamic changes in the iced blade can cause violent vibrations within the operating wind velocity range of this turbine.

  15. Extreme wind estimate for Hornsea wind farm

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo

    The purpose of this study is to provide estimation of the 50-year winds of 10 min and 1-s gust value at hub height of 100 m, as well as the design parameter shear exponent for the Hornsea offshore wind farm. The turbulence intensity required for estimating the gust value is estimated using two ap....... The greatest sector-wise extreme winds are from west to northwest. Different data, different periods and different methods have provided a range of values of the 50-year wind and accordingly the gust values, as summarized in Table 15.......The purpose of this study is to provide estimation of the 50-year winds of 10 min and 1-s gust value at hub height of 100 m, as well as the design parameter shear exponent for the Hornsea offshore wind farm. The turbulence intensity required for estimating the gust value is estimated using two...... approaches. One is through the measurements from the wind Doppler lidar, WindCube, which implies serious uncertainty, and the other one is through similarity theory for the atmospheric surface layer where the hub height is likely to belong to during strong storms. The turbulence intensity for storm wind...

  16. Dust in the wind: long range transport of dust in the atmosphere and its implications for global public and ecosystem health

    Science.gov (United States)

    Griffin, Dale W.; Kellogg, Christina A.; Shinn, Eugene A.

    2001-01-01

    Movement of soil particles in atmospheres is a normal planetary process. Images of Martian dust devils (wind-spouts) and dust storms captured by NASA's Pathfinder have demonstrated the significant role that storm activity plays in creating the red atmospheric haze of Mars. On Earth, desert soils moving in the atmosphere are responsible for the orange hues in brilliant sunrises and sunsets. In severe dust storm events, millions of tons of soil may be moved across great expanses of land and ocean. An emerging scientific interest in the process of soil transport in the Earth's atmosphere is in the field of public and ecosystem health. This article will address the benefits and the potential hazards associated with exposure to particle fallout as clouds of desert dust traverse the globe.

  17. Small scale wind power harnessing in Colombian oil industry facilities: Wind resource and technology issues

    Energy Technology Data Exchange (ETDEWEB)

    Giraldo, Mauricio; Nieto, Cesar; Escudero, Ana C.; Cobos, Juan C.; Delgado, Fernando

    2010-07-01

    Full text: Looking to improve its national and international standing, Colombia's national oil company, Ecopetrol, has set its goal on becoming involved on the production of energy from multiple sources, most importantly, on having an important percentage of its installed capacity from renewable sources. Part of this effort entices the evaluation of wind power potential on its facilities, including production, transportation and administrative, as well as identifying those technologies most suitable for the specific conditions of an equatorial country such as Colombia. Due to the lack of adequate site information, the first step consisted in superimposing national data to the facilities map of the company; this allowed for the selection of the first set of potential sites. From this set, the terminal at Covenas-Sucre was selected taking into account not only wind resource, but ease of access and power needs, as well as having a more or less representative wind potential in comparison to the rest of the country. A weather station was then installed to monitor wind variables. Measurements taken showed high variations in wind direction, and relatively low velocity profiles, making most commercially available wind turbines difficult to implement. In light of the above, a series of iterative steps were taken, first considering a range of individual Vertical Axis Wind Turbines (VAWT), given their capacity to adapt to changing wind directions. However, wind speed variations proved to be a challenge for individual VAWT's, i.e. Darriues turbines do not work well with low wind speeds, and Savonius turbines are not efficient of high wind speeds. As a result, a combined Darrieus- Savonius VAWT was selected given the capacity to adapt to both wind regimes, while at the same time modifying the size and shape of the blades in order to adapt to the lower average wind speeds present at the site. The resulting prototype is currently under construction and is scheduled to

  18. Vertical axis wind turbine wake in boundary layer flow in a wind tunnel

    Science.gov (United States)

    Rolin, Vincent; Porté-Agel, Fernando

    2016-04-01

    A vertical axis wind turbine is placed in a boundary layer flow in a wind tunnel, and its wake is investigated. Measurements are performed using an x-wire to measure two components of velocity and turbulence statistics in the wake of the wind turbine. The study is performed at various heights and crosswind positions in order to investigate the full volume of the wake for a range of tip speed ratios. The velocity deficit and levels of turbulence in the wake are related to the performance of the turbine. The asymmetric incoming boundary layer flow causes the rate of recovery in the wake to change as a function of height. Higher shear between the wake and unperturbed flow occurs at the top edge of the wake, inducing stronger turbulence and mixing in this region. The difference in flow relative to the blades causes the velocity deficit and turbulence level to change as a function of crosswind position behind the rotor. The relative difference diminishes with increasing tip speed ratio. Therefore, the wake becomes more homogeneous as tip speed ratio increases.

  19. Wind turbine power and sound in relation to atmospheric stability

    NARCIS (Netherlands)

    van den Berg, G. P.

    2008-01-01

    Atmospheric stability cannot, with respect to modem, toll wind turbines, be viewed as a 'small perturbation to a basic neutral state' This can be demonstrated by comparison of measured wind velocity at the height of the rotor with the wind velocity expected in a neutral or 'standard' atmosphere.

  20. Solar Wind Associated with Near Equatorial Coronal Hole M ...

    Indian Academy of Sciences (India)

    2015-05-25

    May 25, 2015 ... pute coronal hole radiative energy near the earth and it is found to be of similar order as that of ... hole and energy due to solar wind, it is conjectured that solar wind might have originated around the ..... velocity Vsw (assuming wind velocity is constant throughout from the source to the place of observation) ...

  1. Wind characteristics and energy potentialities of some selected sites ...

    African Journals Online (AJOL)

    The wind regime as observed in three meteorological stations in the north Cameroon are presented in form of velocity duration curves as well as in form of velocity frequency curves. Monthly average wind speed distributions were determined for each station. Based on the analysed data, the utilisation of wind for power ...

  2. Magnetic Origin of Black Hole Winds Across the Mass Scale

    Science.gov (United States)

    Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Tombesi, Francesco; Contopoulos, Ioannis

    2017-01-01

    Black hole accretion disks appear to produce invariably plasma outflows that result in blue-shifted absorption features in their spectra. The X-ray absorption-line properties of these outflows are quite diverse, ranging in velocity from non-relativistic (approx. 300 km/sec) to sub-relativistic (approx. 0.1c where c is the speed of light) and a similarly broad range in the ionization states of the wind plasma. We report here that semi-analytic, self-similar magnetohydrodynamic (MHD) wind models that have successfully accounted for the X-ray absorber properties of supermassive black holes, also fit well the high-resolution X-ray spectrum of the accreting stellar-mass black hole, GRO J1655-40. This provides an explicit theoretical argument of their MHD origin (aligned with earlier observational claims) and supports the notion of a universal magnetic structure of the observed winds across all known black hole sizes.

  3. Optimizing Lidar Scanning Strategies for Wind Energy Measurements (Invited)

    Science.gov (United States)

    Newman, J. F.; Bonin, T. A.; Klein, P.; Wharton, S.; Chilson, P. B.

    2013-12-01

    Environmental concerns and rising fossil fuel prices have prompted rapid development in the renewable energy sector. Wind energy, in particular, has become increasingly popular in the United States. However, the intermittency of available wind energy makes it difficult to integrate wind energy into the power grid. Thus, the expansion and successful implementation of wind energy requires accurate wind resource assessments and wind power forecasts. The actual power produced by a turbine is affected by the wind speeds and turbulence levels experienced across the turbine rotor disk. Because of the range of measurement heights required for wind power estimation, remote sensing devices (e.g., lidar) are ideally suited for these purposes. However, the volume averaging inherent in remote sensing technology produces turbulence estimates that are different from those estimated by a sonic anemometer mounted on a standard meteorological tower. In addition, most lidars intended for wind energy purposes utilize a standard Doppler beam-swinging or Velocity-Azimuth Display technique to estimate the three-dimensional wind vector. These scanning strategies are ideal for measuring mean wind speeds but are likely inadequate for measuring turbulence. In order to examine the impact of different lidar scanning strategies on turbulence measurements, a WindCube lidar, a scanning Halo lidar, and a scanning Galion lidar were deployed at the Southern Great Plains Atmospheric Radiation Measurement (ARM) site in Summer 2013. Existing instrumentation at the ARM site, including a 60-m meteorological tower and an additional scanning Halo lidar, were used in conjunction with the deployed lidars to evaluate several user-defined scanning strategies. For part of the experiment, all three scanning lidars were pointed at approximately the same point in space and a tri-Doppler analysis was completed to calculate the three-dimensional wind vector every 1 second. In another part of the experiment, one of

  4. An All-Fiber, Modular, Compact Wind Lidar for Wind Sensing and Wake Vortex Applications

    Science.gov (United States)

    Prasad, Narasimha S.; Sibell, Russ; Vetorino, Steve; Higgins, Richard; Tracy, Allen

    2015-01-01

    This paper discusses an innovative, compact and eyesafe coherent lidar system developed for wind and wake vortex sensing applications. With an innovative all-fiber and modular transceiver architecture, the wind lidar system has reduced size, weight and power requirements, and provides enhanced performance along with operational elegance. This all-fiber architecture is developed around fiber seed laser coupled to uniquely configured fiber amplifier modules. The innovative features of this lidar system, besides its all fiber architecture, include pulsewidth agility and user programmable 3D hemispherical scanner unit. Operating at a wavelength of 1.5457 microns and with a PRF of up to 20 KHz, the lidar transmitter system is designed as a Class 1 system with dimensions of 30"(W) x 46"(L) x 60"(H). With an operational range exceeding 10 km, the wind lidar is configured to measure wind velocities of greater than 120 m/s with an accuracy of +/- 0.2 m/s and allow range resolution of less than 15 m. The dynamical configuration capability of transmitted pulsewidths from 50 ns to 400 ns allows high resolution wake vortex measurements. The scanner uses innovative liquid metal slip ring and is built using 3D printer technology with light weight nylon. As such, it provides continuous 360 degree azimuth and 180 degree elevation scan angles with an incremental motion of 0.001 degree. The lidar system is air cooled and requires 110 V for its operation. This compact and modular lidar system is anticipated to provide mobility, reliability, and ease of field deployment for wind and wake vortex measurements. Currently, this wind lidar is undergoing validation tests under various atmospheric conditions. Preliminary results of these field measurements of wind characteristics that were recently carried out in Colorado are discussed.

  5. Ionization and thermal equilibrium models for O star winds based on time-independent radiation-driven wind theory

    Science.gov (United States)

    Drew, J. E.

    1989-01-01

    Ab initio ionization and thermal equilibrium models are calculated for the winds of O stars using the results of steady state radiation-driven wind theory to determine the input parameters. Self-consistent methods are used for the roles of H, He, and the most abundant heavy elements in both the statistical and the thermal equilibrium. The model grid was chosen to encompass all O spectral subtypes and the full range of luminosity classes. Results of earlier modeling of O star winds by Klein and Castor (1978) are reproduced and used to motivate improvements in the treatment of the hydrogen equilibrium. The wind temperature profile is revealed to be sensitive to gross changes in the heavy element abundances, but insensitive to other factors considered such as the mass-loss rate and velocity law. The reduced wind temperatures obtained in observing the luminosity dependence of the Si IV lambda 1397 wind absorption profile are shown to eliminate any prospect of explaining the observed O VI lambda 1036 line profiles in terms of time-independent radiation-driven wind theory.

  6. Ionization and thermal equilibrium models for O star winds based on time-independent radiation-driven wind theory

    International Nuclear Information System (INIS)

    Drew, J.E.

    1989-01-01

    Ab initio ionization and thermal equilibrium models are calculated for the winds of O stars using the results of steady state radiation-driven wind theory to determine the input parameters. Self-consistent methods are used for the roles of H, He, and the most abundant heavy elements in both the statistical and the thermal equilibrium. The model grid was chosen to encompass all O spectral subtypes and the full range of luminosity classes. Results of earlier modeling of O star winds by Klein and Castor (1978) are reproduced and used to motivate improvements in the treatment of the hydrogen equilibrium. The wind temperature profile is revealed to be sensitive to gross changes in the heavy element abundances, but insensitive to other factors considered such as the mass-loss rate and velocity law. The reduced wind temperatures obtained in observing the luminosity dependence of the Si IV lambda 1397 wind absorption profile are shown to eliminate any prospect of explaining the observed O VI lambda 1036 line profiles in terms of time-independent radiation-driven wind theory. 55 refs

  7. Device for the acquisition and visualization in real time of the velocity and direction of wind in a radiological post stage; Dispositivo para la adquisicion y visualizacion en tiempo real de la velocidad y direccion del viento en una posta radiologica

    Energy Technology Data Exchange (ETDEWEB)

    Ledo P, L.M.; Guibert G, R. [CEADEN, Calle 30 No. 502 e/5 y 7 Ave. Miramar, Ciudad La Habana (Cuba); Dominguez L, O.; Alonso A, D.; Ramos V, E.O. [CPHR, Calle 20 No. 4113 e/41 y 47, Playa, 11300 La Habana, A.P. 6195 C.P. 10600 (Cuba)]. e-mail: ledo@ceaden.edu.cu

    2006-07-01

    The work shows the development, construction and post stage of a device dedicated to the acquisition and transmission in real time of the information on the behavior of the meteorological variables: velocity and wind direction. It is introduced for the first time in an observation position the automatic monitoring, in real time, using the tools that it offers the digitalisation of the information and the computation. The obtained data are registered in a PC, its are visualized appropriately and can be objects of later analysis. It was developed the application program Autoclima for such purpose. (Author)

  8. Development of Data Acquisition System for Wind Energy Applications

    OpenAIRE

    西本,澄

    1992-01-01

    A Data acquisiton system developed for wind energy applications will be described in this paper. This system is composed of an anemometer with two blades downwind and a computer which processes wind data. Wind energy calculated from an average wind speed is inaccurate, since wind power increases with the cube of wind velocity. To decide the design and the site for a wind turbine system, it is very important to consider wind data on a long term basis, that is the total wind energy and distribu...

  9. A prediction model for wind speed ratios at pedestrian level with simplified urban canopies

    Science.gov (United States)

    Ikegaya, N.; Ikeda, Y.; Hagishima, A.; Razak, A. A.; Tanimoto, J.

    2017-02-01

    The purpose of this study is to review and improve prediction models for wind speed ratios at pedestrian level with simplified urban canopies. We adopted an extensive database of velocity fields under various conditions for arrays consisting of cubes, slender or flattened rectangles, and rectangles with varying roughness heights. Conclusions are summarized as follows: first, a new geometric parameter is introduced as a function of the plan area index and the aspect ratio so as to express the increase in virtual density that causes wind speed reduction. Second, the estimated wind speed ratios in the range 0.05 coefficients between the wind speeds averaged over the entire region, and the front or side region values are larger than 0.8. In contrast, in areas where the influence of roughness elements is significant, such as behind a building, the wind speeds are weakly correlated.

  10. Sensing the wind profile

    Energy Technology Data Exchange (ETDEWEB)

    Pena, A.

    2009-03-15

    This thesis consists of two parts. The first is a synopsis of the theoretical progress of the study that is based on a number of journal papers. The papers, which constitute the second part of the report, aim to analyze, measure, and model the wind prole in and beyond the surface layer by combining observations from cup anemometers with lidars. The lidar is necessary to extend the measurements on masts at the Horns Rev offshore wind farm and over at land at Hoevsoere, Denmark. Both sensing techniques show a high degree of agreement for wind speed measurements performed at either sites. The wind speed measurements are averaged for several stability conditions and compare well with the surface-layer wind profile. At Hoevsoere, it is sufficient to scale the wind speed with the surface friction velocity, whereas at Horns Rev a new scaling is added, due to the variant roughness length. This new scaling is coupled to wind prole models derived for flow over the sea and tested against the wind proles up to 160 m at Horns Rev. The models, which account for the boundary-layer height in stable conditions, show better agreement with the measurements than compared to the traditional theory. Mixing-length parameterizations for the neutral wind prole compare well with length-scale measurements up to 300 m at Hoevsoere and 950 m at Leipzig. The mixing-length-derived wind proles strongly deviate from the logarithmic wind prole, but agree better with the wind speed measurements. The length-scale measurements are compared to the length scale derived from a spectral analysis performed up to 160 m at Hoevsoere showing high agreement. Mixing-length parameterizations are corrected to account for stability and used to derive wind prole models. These compared better to wind speed measurements up to 300 m at Hoevsoere than the surface-layer wind prole. The boundary-layer height is derived in nearneutral and stable conditions based on turbulent momentum uxes only and in unstable conditions

  11. Wind observations from a forested hill: Relating turbulence statistics to surface characteristics in hilly and patchy terrain

    Directory of Open Access Journals (Sweden)

    Lukas Pauscher

    2018-01-01

    Full Text Available This study investigates turbulence characteristics as observed at a 200 m tall mast at a hilly and complex site. It thereby concentrates on turbulence statistics, which are important for the site suitability analysis of a wind turbine. The directional variations in terrain are clearly reflected in the observed turbulence intensities and drag. Integral turbulence statistics showed some variations from their typical flat terrain values. Footprint modelling was used to model the area of effect and to relate the observed turbulence characteristics to the ruggedness and roughness within the estimated fetch area. Among the investigated turbulence quantities, the normalised standard deviation of the wind velocity along the streamlines showed the highest correlation with the effective roughness and ruggedness within the footprint followed by the normalised friction velocity and normalised standard deviation of the vertical wind speed. A differentiation between the effects of roughness and ruggedness was not possible, as forest cover and complex orography are highly correlated at the investigated site. An analysis of turbulence intensity by wind speed indicated a strong influence of atmospheric stability. Stable conditions lead to an overall reduction in turbulence intensity for a wind speed range between approx. 6–12 m s−1 when compared to neutral stratification. The variance of the horizontal wind speed strongly varied over the height range which is typical for a modern wind turbine and was in the order of the differences between different standard turbulence classes for wind turbines.

  12. Wind Stress, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Curl

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  13. Wind Stress, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Meridional

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  14. Wind Stress, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Modulus

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  15. Wind Stress, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Zonal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  16. A tilting wind tunnel for fire behavior studies

    Science.gov (United States)

    David R. Weise

    1994-01-01

    The combined effects of wind velocity and slope on wildland fire behavior can be studied in the laboratory using a tilting wind tunnel. The tilting wind tunnel requires a commercially available fan to induce wind and can be positioned to simulate heading and backing fires spreading up and down slope. The tunnel is portable and can be disassembled for transport using a...

  17. Resolving the generation of starburst winds in Galaxy mergers

    Science.gov (United States)

    Hopkins, Philip F.; Kereš, Dusan; Murray, Norman; Hernquist, Lars; Narayanan, Desika; Hayward, Christopher C.

    2013-07-01

    We study galaxy superwinds driven in major mergers, using pc-scale resolution simulations with detailed models for stellar feedback that can self-consistently follow the generation of winds. The models include molecular cooling, star formation at high densities in giant molecular clouds, and gas recycling and feedback from supernovae (I and II), stellar winds and radiation pressure. We study mergers of systems from Small-Magellanic-Cloud-like dwarfs and Milky Way analogues to z ˜ 2 starburst discs. Multiphase superwinds are generated in all passages, with outflow rates up to ˜1000 M⊙ yr-1. However, the wind mass-loading efficiency (outflow rate divided by star formation rate, SFR) is similar to that in the isolated galaxy counterparts of each merger: it depends more on global galaxy properties (mass, size and escape velocity) than on the dynamical state or orbital parameters of the merger. Winds tend to be bi- or unipolar, but multiple `events' build up complex morphologies with overlapping, differently oriented bubbles and shells at a range of radii. The winds have complex velocity and phase structure, with material at a range of speeds up to ˜1000 km s-1 (forming a Hubble-like flow), and a mix of molecular, ionized and hot gas that depends on galaxy properties. We examine how these different phases are connected to different feedback mechanisms. These simulations resolve a problem in some `subgrid' models, where simple wind prescriptions can dramatically suppress merger-induced starbursts, often making it impossible to form Ultra Luminous Infrared Galaxies (ULIRGs). Despite large mass-loading factors (≳10-20) in the winds simulated here, the peak SFRs are comparable to those in `no wind' simulations. Wind acceleration does not act equally, so cold dense gas can still lose angular momentum and form stars, while these stars blow out gas that would not have participated in the starburst in the first place. Considerable wind material is not unbound, and falls

  18. Lidar Wind Profiler for the NextGen Airportal Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MassTech, Inc. proposes to develop a Lidar Wind Profiler for standoff sensing of concurrent 3-component wind velocities using an eye-safe, rugged, reliable optical...

  19. Wind noise under a pine tree canopy.

    Science.gov (United States)

    Raspet, Richard; Webster, Jeremy

    2015-02-01

    It is well known that infrasonic wind noise levels are lower for arrays placed in forests and under vegetation than for those in open areas. In this research, the wind noise levels, turbulence spectra, and wind velocity profiles are measured in a pine forest. A prediction of the wind noise spectra from the measured meteorological parameters is developed based on recent research on wind noise above a flat plane. The resulting wind noise spectrum is the sum of the low frequency wind noise generated by the turbulence-shear interaction near and above the tops of the trees and higher frequency wind noise generated by the turbulence-turbulence interaction near the ground within the tree layer. The convection velocity of the low frequency wind noise corresponds to the wind speed above the trees while the measurements showed that the wind noise generated by the turbulence-turbulence interaction is near stationary and is generated by the slow moving turbulence adjacent to the ground. Comparison of the predicted wind noise spectrum with the measured wind noise spectrum shows good agreement for four measurement sets. The prediction can be applied to meteorological estimates to predict the wind noise under other pine forests.

  20. Financing wind projects

    International Nuclear Information System (INIS)

    Manson, J.

    2006-01-01

    This presentation reviewed some of the partnership opportunities available from GE Energy. GE Energy's ecomagination commitment has promised to double research investment, make customers true partners and reduce greenhouse gases (GHGs). GE Energy's renewable energy team provides a broad range of financial products, and has recently funded 30 wind farms and 2 large solar projects. The company has a diverse portfolio of technology providers and wind regimes, and is increasing their investment in technology. GE Energy recognizes that the wind industry is growing rapidly and has received increased regulatory support that is backed by strong policy and public support. It is expected that Canada will have 3006 wind projects either planned or under construction by 2007. According to GE Energy, successful wind financing is dependent on the location of the site and its wind resources, as well as on the wind developer's power sales agreement. The success of a wind project is also determined by clear financing goals. Site-specific data is needed to determine the quality of wind resource, and off-site data can also be used to provide validation. Proximity to load centres will help to minimize capital costs. Power sales agreements should be based on the project's realistic net capacity factor as well as on the cost of the turbines. The economics of many wind farms is driven by the size of the turbines used. Public consultations are also needed to ensure the success of wind power projects. It was concluded that a good partner will have staying power in the wind power industry, and will understand the time-lines and needs that are peculiar to wind energy developers. refs., tabs., figs

  1. WIND VARIABILITY IN BZ CAMELOPARDALIS

    International Nuclear Information System (INIS)

    Honeycutt, R. K.; Kafka, S.; Robertson, J. W.

    2013-01-01

    Sequences of spectra of the nova-like cataclysmic variable (CV) BZ Cam were acquired on nine nights in 2005-2006 in order to study the time development of episodes of wind activity known to occur frequently in this star. We confirm the results of Ringwald and Naylor that the P-Cygni absorption components of the lines mostly evolve from higher expansion velocity to lower velocity as an episode progresses. We also commonly find blueshifted emission components in the Hα line profile, whose velocities and durations strongly suggest that they are also due to the wind. Curiously, Ringwald and Naylor reported common occurrences of redshifted Hα emission components in their BZ Cam spectra. We have attributed these emission components in Hα to occasions when gas concentrations in the bipolar wind (both front side and back side) become manifested as emission lines as they move beyond the disk's outer edge. We also suggest, based on changes in the P-Cygni profiles during an episode, that the progression from larger to smaller expansion velocities is due to the higher velocity portions of a wind concentration moving beyond the edge of the continuum light of the disk first, leaving a net redward shift of the remaining absorption profile. We derive a new orbital ephemeris for BZ Cam, using the radial velocity of the core of the He I λ5876 line, finding P = 0.15353(4). Using this period, the wind episodes in BZ Cam are found to be concentrated near the inferior conjunction of the emission line source. This result helps confirm that the winds in nova-like CVs are often phase dependent, in spite of the puzzling implication that such winds lack axisymmetry. We argue that the radiation-driven wind in BZ Cam receives an initial boost by acting on gas that has been lifted above the disk by the interaction of the accretion stream with the disk, thereby imposing flickering timescales onto the wind events, as well as leading to an orbital modulation of the wind due to the non

  2. Design and analysis of a small-scale vertical-axis wind turbine for rooftop power generation

    International Nuclear Information System (INIS)

    Abraham, J.P.; Mowry, G.S.; Erickson, R.A.

    2009-01-01

    This paper described a fluid flow model of a 2-blade vertical axis wind turbine designed for use in crowded urban and rooftop environments. The turbine featured a contoured blade developed to maximize rotational velocity and minimize drag forces. The model was used to determine the turbine's rotational velocities in a range of wind speeds. The analysis included a numerical simulation of air flow across the cup faces at all circumferential locations in order to determine pressure and drag forces. A rigid body dynamic analysis was then conducted to determine the rotational velocity of the turbine. Mass, momentum and turbulence closure equations were presented. Results of the study demonstrated that a turbine rotation rate of 137 rpm was achieved at wind velocities of 30 miles per hour. Wind speeds of 20 and 10 miles per hour resulted in rotational velocities of 91 and 43 rpm. It was concluded that the model can be used to predict the angular velocity of the vertical turbine system. 13 refs., 11 figs

  3. Range of wavelengths possible to estimate phase velocities of surface waves in microtremors; Bido tansaho ni okeru suitei kanona bidochu no hyomenha iso sokudo no hacho han`i

    Energy Technology Data Exchange (ETDEWEB)

    Miyakoshi, K.; Okada, H.; Ling, S. [Hokkaido University, Sapporo (Japan)

    1996-05-01

    To specify the maximum wavelength of the phase velocities that can be estimated by the spatial autocorrelation (SPAC) method or F-K method in microtremor exploration, investigations were conducted using numerical simulation. In view of feasibility, an equilateral triangle array was employed, the maximum radius of the array having 7 observation points being 0.10km. The dispersion curve of the Rayleigh wave basic mode was calculated from an underground structure model. White noise was used as the incident wave, and, in case the waves came in from multiple directions, a different phase spectrum was assigned to each direction. In searching for the maximum wave length of phase velocities that could be estimated, a limit was imposed upon estimation, and it was prescribed that the wavelength be the limit if the difference between the theoretical value and estimated phase velocity was 5% or higher. As the result, it was found that it is possible to estimate the phase velocity when the wavelength is up to approximately 10 times longer than the array maximum radius in the SPAC method, and up to approximately 5 times longer in case of the F-K method. 10 refs., 5 figs., 1 tab.

  4. Wind Structure and Wind Loading

    DEFF Research Database (Denmark)

    Brorsen, Michael

    The purpose of this note is to provide a short description of wind, i.e. of the flow in the atmosphere of the Earth and the loading caused by wind on structures. The description comprises: causes to the generation of windhe interaction between wind and the surface of the Earthhe stochastic nature...... of windhe interaction between wind and structures, where it is shown that wind loading depends strongly on this interaction...

  5. Comparison of analytical methods for calculation of wind loads

    Science.gov (United States)

    Minderman, Donald J.; Schultz, Larry L.

    1989-01-01

    The following analysis is a comparison of analytical methods for calculation of wind load pressures. The analytical methods specified in ASCE Paper No. 3269, ANSI A58.1-1982, the Standard Building Code, and the Uniform Building Code were analyzed using various hurricane speeds to determine the differences in the calculated results. The winds used for the analysis ranged from 100 mph to 125 mph and applied inland from the shoreline of a large open body of water (i.e., an enormous lake or the ocean) a distance of 1500 feet or ten times the height of the building or structure considered. For a building or structure less than or equal to 250 feet in height acted upon by a wind greater than or equal to 115 mph, it was determined that the method specified in ANSI A58.1-1982 calculates a larger wind load pressure than the other methods. For a building or structure between 250 feet and 500 feet tall acted upon by a wind rangind from 100 mph to 110 mph, there is no clear choice of which method to use; for these cases, factors that must be considered are the steady-state or peak wind velocity, the geographic location, the distance from a large open body of water, and the expected design life and its risk factor.

  6. Turbulence Driven by Common Non-stationary Weak Winds

    Science.gov (United States)

    Mahrt, L.

    2015-12-01

    Complications with analysis of turbulence in common non-stationary weak-wind conditions are briefly surveyed. The behavior of turbulent transport in the weak-wind stably stratified boundary layer is then examined in terms of the non-stationarity of the wind field using measurements from three field programs with towers ranging from 12 to 20 m and an extensive horizontal network of sonic anemometers. The relationship of the friction velocity to the stratification and small non-stationary submeso motions are studied from several points of view and nominally quantified. The relationship of the turbulence to the stratification is less systematic than expected due to the important submeso motions. Cause and effect relationships are difficult to isolate because the non-stationary momentum flux significantly modifies the profile of the non-stationary mean flow. The link between the turbulence and accelerations at the surface is examined in terms of the changing vertical structure of the wind profile and sudden increases of downward transport of momentum. The relationship between the heat flux, wind speed and stratification is investigated. Weak wind conditions include frequent vertical convergence of the heat flux and implied temperature advection.

  7. Generic Methodology for Field Calibration of Nacelle-Based Wind Lidars

    Directory of Open Access Journals (Sweden)

    Antoine Borraccino

    2016-11-01

    Full Text Available Nacelle-based Doppler wind lidars have shown promising capabilities to assess power performance, detect yaw misalignment or perform feed-forward control. The power curve application requires uncertainty assessment. Traceable measurements and uncertainties of nacelle-based wind lidars can be obtained through a methodology applicable to any type of existing and upcoming nacelle lidar technology. The generic methodology consists in calibrating all the inputs of the wind field reconstruction algorithms of a lidar. These inputs are the line-of-sight velocity and the beam position, provided by the geometry of the scanning trajectory and the lidar inclination. The line-of-sight velocity is calibrated in atmospheric conditions by comparing it to a reference quantity based on classic instrumentation such as cup anemometers and wind vanes. The generic methodology was tested on two commercially developed lidars, one continuous wave and one pulsed systems, and provides consistent calibration results: linear regressions show a difference of ∼0.5% between the lidar-measured and reference line-of-sight velocities. A comprehensive uncertainty procedure propagates the reference uncertainty to the lidar measurements. At a coverage factor of two, the estimated line-of-sight velocity uncertainty ranges from 3.2% at 3 m · s − 1 to 1.9% at 16 m · s − 1 . Most of the line-of-sight velocity uncertainty originates from the reference: the cup anemometer uncertainty accounts for ∼90% of the total uncertainty. The propagation of uncertainties to lidar-reconstructed wind characteristics can use analytical methods in simple cases, which we demonstrate through the example of a two-beam system. The newly developed calibration methodology allows robust evaluation of a nacelle lidar’s performance and uncertainties to be established. Calibrated nacelle lidars may consequently be further used for various wind turbine applications in confidence.

  8. Wind height distribution influence on offshore wind farm feasibility study

    Science.gov (United States)

    Benassai, Guido; Della Morte, Renata; Matarazzo, Antonio; Cozzolino, Luca

    2015-04-01

    The economic feasibility of offshore wind power utilization depends on the favourable wind conditions offshore as compared to sites on land. The higher wind speeds have to compensate the additional cost of offshore developments. However, not only the mean wind speed is different, but the whole flow regime, as can be seen in the vertical wind speed profile. The commonly used models to describe this profile have been developed mainly for land sites, so they have to be verified on the basis of field data. Monin-Obukhov theory is often used for the description of the wind speed profile at a different height with respect to a measurement height. Starting from the former, , the profile is predicted using two parameters, Obukhov length and sea surface roughness. For situations with near-neutral and stable atmospheric stratification and long (>30km) fetch, the wind speed increase with height is larger than what is predicted from Monin-Obukhov theory. It is also found that this deviation occurs at wind speeds important for wind power utilization, mainly at 5-9 ms-1. In the present study the influence of these aspects on the potential site productivity of an offshore wind farm were investigated, namely the deviation from the theory of Monin-Obukhov due to atmospheric stability and the influence of the fetch length on the Charnock model. Both these physical effects were discussed and examined in view of a feasibility study of a site for offshore wind farm in Southern Italy. Available data consisted of time histories of wind speeds and directions collected by National Tidegauge Network (Rete Mareografica Nazionale) at the height of 10m a.s.l. in ports. The theory of Monin-Obukhov was used to extrapolate the data to the height of the wind blades, while the Charnock model was used to extend the wind speed on the sea surface from the friction velocity on the ground. The models described were used to perform calculations for a feasibility study of an offshore wind farm in Southern

  9. Offshore Wind Power

    DEFF Research Database (Denmark)

    Negra, Nicola Barberis

    The aim of the project is to investigate the influence of wind farms on the reliability of power systems. This task is particularly important for large offshore wind farms, because failure of a large wind farm might have significant influence on the balance of the power system, and because offshore...... Carlo simulation is used for these calculations: this method, in spite of an extended computation time, has shown flexibility in performing reliability studies, especially in case of wind generation, and a broad range of results which can be evaluated. The modelling is then extended to the entire power...... system considering conventional power plants, distributed generation based on wind energy and CHP technology as well as the load and transmission facilities. In particular, the different models are used to represent two well-known test systems, the RBTS and the IEEE-RTS, and to calculate...

  10. Urban Wind Energy

    DEFF Research Database (Denmark)

    Beller, Christina

    for the installation of wind turbines in cities, with Copenhagen, DK, as example. Focus is taken on turbine with a swept area of maximum 5m2, since turbines of this size are relatively easy to be integrated in the urban space and are in the financial range for small companies as well as for private persons. Elements......New trends e.g. in architecture and urban planning are to reduce energy needs. Several technologies are employed to achieve this, and one of the technologies, not new as such, is wind energy. Wind turbines are installed in cities, both by companies and private persons on both old and new buildings...... the lower wind energy in cities other factors foster the attractiveness of urban wind energy application, like the demand or wish to reduce CO2 emissions and the possibility to produce energy directly to ones household....

  11. Aerodynamics of wind turbines emerging topics

    CERN Document Server

    Amano, R S

    2014-01-01

    Focusing on Aerodynamics of Wind Turbines with topics ranging from Fundamental to Application of horizontal axis wind turbines, this book presents advanced topics including: Basic Theory for Wind turbine Blade Aerodynamics, Computational Methods, and Special Structural Reinforcement Technique for Wind Turbine Blades.

  12. Three-beam aerosol backscatter correlation lidar for wind profiling

    Science.gov (United States)

    Prasad, Narasimha S.; Radhakrishnan Mylapore, Anand

    2017-03-01

    The development of a three-beam aerosol backscatter correlation (ABC) light detection and ranging (lidar) to measure wind characteristics for wake vortex and plume tracking applications is discussed. This is a direct detection elastic lidar that uses three laser transceivers, operating at 1030-nm wavelength with ˜10-kHz pulse repetition frequency and nanosec class pulse widths, to directly obtain three components of wind velocities. By tracking the motion of aerosol structures along and between three near-parallel laser beams, three-component wind speed profiles along the field-of-view of laser beams are obtained. With three 8-in. transceiver modules, placed in a near-parallel configuration on a two-axis pan-tilt scanner, the lidar measures wind speeds up to 2 km away. Optical flow algorithms have been adapted to obtain the movement of aerosol structures between the beams. Aerosol density fluctuations are cross-correlated between successive scans to obtain the displacements of the aerosol features along the three axes. Using the range resolved elastic backscatter data from each laser beam, which is scanned over the volume of interest, a three-dimensional map of aerosol density can be generated in a short time span. The performance of the ABC wind lidar prototype, validated using sonic anemometer measurements, is discussed.

  13. Aerodynamic Analysis of a Vertical Axis Wind Turbine in a Diffuser

    NARCIS (Netherlands)

    Geurts, B.M.; Simao Ferreira, C.; Van Bussel, G.J.W.

    Wind energy in the urban environment faces complex and often unfavorable wind conditions. High turbulence, lower average wind velocities and rapid changes in the wind direction are common phenomena in the complex built environments. A possible way to improve the cost-efficiency of urban wind

  14. Investigating the role of wind in generating surface currents over the slope area of the Laptev Sea, Arctic Ocean

    Science.gov (United States)

    Patteson, R. N.

    2017-12-01

    Mixing mechanisms of the Arctic Ocean have profound impacts on sea ice, global ocean dynamics, and arctic communities. This project used a two-year long time series of ocean current velocities collected from eight moorings located on the Eurasian basin, as well as ERA-interim wind data, to compare and assess relationships between current and wind velocities at different depths. Determining the strength of these correlations will further scientific understanding of the degree to which wind influences mixing, with implications for heat flux, diffusion, and sea ice changes. Using statistical analysis, I calculated whether a significant relationship between wind velocity and ocean currents existed beginning at the surface level ( 50m) .The final correlation values, ranging from R = 0.11 to R = 0.28, indicated a weak relationship between wind velocity and ocean currents at the surface for all eight mooring sites. The results for the surface depth imply that correlation likely decreases with increasing depths, and thus further testing of deeper depth levels was unnecessary. This finding suggests that there is another dominant factor at play in the ocean; we postulate that topography exerts a significant influence on subsurface mixing. This study highlights the need for further research of the different mechanisms and their importance in influencing the dynamic structure of the ocean.

  15. The influence of solar wind variability on magnetospheric ULF wave power

    International Nuclear Information System (INIS)

    Pokhotelov, D.; Rae, I.J.; Mann, I.R.

    2015-01-01

    Magnetospheric ultra-low frequency (ULF) oscillations in the Pc 4-5 frequency range play an important role in the dynamics of Earth's radiation belts, both by enhancing the radial diffusion through incoherent interactions and through the coherent drift-resonant interactions with trapped radiation belt electrons. The statistical distributions of magnetospheric ULF wave power are known to be strongly dependent on solar wind parameters such as solar wind speed and interplanetary magnetic field (IMF) orientation. Statistical characterisation of ULF wave power in the magnetosphere traditionally relies on average solar wind-IMF conditions over a specific time period. In this brief report, we perform an alternative characterisation of the solar wind influence on magnetospheric ULF wave activity through the characterisation of the solar wind driver by its variability using the standard deviation of solar wind parameters rather than a simple time average. We present a statistical study of nearly one solar cycle (1996-2004) of geosynchronous observations of magnetic ULF wave power and find that there is significant variation in ULF wave powers as a function of the dynamic properties of the solar wind. In particular, we find that the variability in IMF vector, rather than variabilities in other parameters (solar wind density, bulk velocity and ion temperature), plays the strongest role in controlling geosynchronous ULF power. We conclude that, although time-averaged bulk properties of the solar wind are a key factor in driving ULF powers in the magnetosphere, the solar wind variability can be an important contributor as well. This highlights the potential importance of including solar wind variability especially in studies of ULF wave dynamics in order to assess the efficiency of solar wind-magnetosphere coupling.

  16. Database on wind characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, K.S. [The Technical Univ. of Denmark (Denmark); Courtney, M.S. [Risoe National Lab., (Denmark)

    1999-08-01

    The organisations that participated in the project consists of five research organisations: MIUU (Sweden), ECN (The Netherlands), CRES (Greece), DTU (Denmark), Risoe (Denmark) and one wind turbine manufacturer: Vestas Wind System A/S (Denmark). The overall goal was to build a database consisting of a large number of wind speed time series and create tools for efficiently searching through the data to select interesting data. The project resulted in a database located at DTU, Denmark with online access through the Internet. The database contains more than 50.000 hours of measured wind speed measurements. A wide range of wind climates and terrain types are represented with significant amounts of time series. Data have been chosen selectively with a deliberate over-representation of high wind and complex terrain cases. This makes the database ideal for wind turbine design needs but completely unsuitable for resource studies. Diversity has also been an important aim and this is realised with data from a large range of terrain types; everything from offshore to mountain, from Norway to Greece. (EHS)

  17. Wind Turbines Adaptation to the Variability of the Wind Field

    Science.gov (United States)

    Ulianov, Yuriy; Martynenko, Gennadii; Misaylov, Vitaliy; Soliannikova, Iuliia

    2010-05-01

    WIND TURBINES ADAPTATION TO THE VARIABILITY OF THE WIND FIELD The subject of our scientific research is wind power turbines (WPT) with the horizontal axis which were now common in the world. Efficient wind turbines work is largely determined by non-stationarity of the wind field, expressed in its gustiness, the presence of vertical and horizontal shifts of wind speed and direction. At critical values of the wind parameters WPT has aerodynamic and mechanical overload, leading to breakdowns, premature wear and reduce the life of the wind turbine. To prevent accidents at the peak values of wind speed it is used the regulatory system of windwheels. WPT control systems provide a process orientation of the wind turbine rotor axis in the line of the mean wind. Wind turbines are also equipped with braking device used to protect against breakdowns when a significant increase in the wind. In general, all these methods of regulation are not always effective. Thus, in practice there may be situations when the wind speed is many times greater than the stated limit. For example, if there are microbursts in the atmospheric boundary layer, low-level wind shears caused by its gust front, storms, etc. It is required for a wind power turbine adaptation to intensive short-term wind impulses and considerable vertical wind shifts that the data about them shall be obtained ahead of time. To do this it is necessary to have the information on the real structure of the wind field in the area of the blade sweep for the minimum range against the wind that is determined by the mean speed and the system action time. The implementation of acoustic and laser traditional wind sounding systems is limited by ambient acoustic noise, by heavy rain, snowfall and by fog. There are free of these disadvantages the inclined radioacoustic sounding (IRASS) technique which works for a system of remote detection and control of wind gusts. IRASS technique is realized as low-potential Doppler pulse radar

  18. Implementing a wind measurement Doppler Lidar based on a molecular iodine filter to monitor the atmospheric wind field over Beijing

    Science.gov (United States)

    Du, Li-fang; Yang, Guo-tao; Wang, Ji-hong; Yue, Chuan; Chen, Lin-xiang

    2017-02-01

    A wind measurement Doppler Lidar system was developed, in which injection seeded laser was used to generate narrow linewidth laser pulse. Frequency stabilization was achieved through absorption of iodine molecules. Commands that control the instrumental system were based on the PID algorithm and coded using VB language. The frequency of the seed laser was locked to iodine molecular absorption line 1109 which is close to the upper edge of the absorption range,with long-time (>4 h) frequency-locking accuracy being ≤0.5 MHz and long-time frequency stability being 3.55×10-9. Design the continuous light velocity measuring system, which concluded the cure about doppler frequency shift and actual speed of chopped wave plate, the velocity error is less than 0.4 m/s. The experiment showed that the stabilized frequency of the seed laser was different from the transmission frequency of the Lidar. And such frequency deviation is known as Chirp of the laser pulse. The real-time measured frequency difference of the continuous and pulsed lights was about 10 MHz, long-time stability deviation was around 5 MHz. When the temporal and spatial resolutions were respectively set to 100 s and 96 m, the wind velocity measurement error of the horizontal wind field at the attitude of 15-35 km was within ±5 m/s, the results showed that the wind measurement Doppler Lidar implemented in Yanqing, Beijing was capable of continuously detecting in the middle and low atmospheric wind field at nighttime. With further development of this technique, system measurement error could be lowered, and long-run routine observations are promising.

  19. Turbulence and other processes for the scale-free texture of the fast solar wind

    Science.gov (United States)

    Hnat, B.; Chapman, S. C.; Gogoberidze, G.; Wicks, R. T.

    2012-04-01

    The higher-order statistics of magnetic field magnitude fluctuations in the fast quiet solar wind are quantified systematically, scale by scale. We find a single global non-Gaussian scale-free behavior from minutes to over 5 hours. This spans the signature of an inertial range of magnetohydrodynamic turbulence and a ˜1/f range in magnetic field components. This global scaling in field magnitude fluctuations is an intrinsic component of the underlying texture of the solar wind which co-exists with the signature of MHD turbulence but extends to lower frequencies. Importantly, scaling and non- Gaussian statistics of fluctuations are not unique to turbulence and can imply other physical mechanisms- our results thus place a strong constraint on theories of the dynamics of the solar corona and solar wind. Intriguingly, the magnetic field and velocity components also show scale-dependent dynamic alignment outside of the inertial range of MHD turbulence.

  20. LIDAR Wind Speed Measurements of Evolving Wind Fields

    Energy Technology Data Exchange (ETDEWEB)

    Simley, E.; Pao, L. Y.

    2012-07-01

    Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

  1. Wind turbine reliability analysis

    OpenAIRE

    Pinar Pérez, Jesús María; García Márquez, Fausto Pedro; Tobias, Andrew Mark; Papaelias, Mayorkinos

    2013-01-01

    Against the background of steadily increasing wind power generation worldwide, wind turbine manufacturers are continuing to develop a range of configurations with different combinations of pitch control, rotor speeds, gearboxes, generators and converters. This paper categorizes the main designs, focusing on their reliability by bringing together and comparing data from a selection of major studies in the literature. These are not particularly consistent but plotting failure rates against hour...

  2. Validation of sentinel-1A SAR coastal wind speeds against scanning LiDAR

    DEFF Research Database (Denmark)

    Ahsbahs, Tobias Torben; Badger, Merete; Karagali, Ioanna

    2017-01-01

    for SAR wind retrieval are not fully validated here. Ground based scanning light detection and ranging (LiDAR) offer high horizontal resolution wind velocity measurements with high accuracy, also in the coastal zone. This study, for the first time, examines accuracies of SAR wind retrievals at 10 m height...... with respect to the distance to shore by validation against scanning LiDARs. Comparison of 15 Sentinel-1A wind retrievals using the GMF called C-band model 5.N (CMOD5.N) versus LiDARs show good agreement. It is found, when nondimenionalising with a reference point, that wind speed reductions are between 4......% and 8% from 3 km to 1 km from shore. Findings indicate that SAR wind retrievals give reliable wind speed measurements as close as 1 km to the shore. Comparisons of SAR winds versus two different LiDAR configurations yield root mean square error (RMSE) of 1.31 ms-1 and 1.42 ms-1 for spatially averaged...

  3. Wind power

    International Nuclear Information System (INIS)

    Gipe, P.

    2007-01-01

    This book is a translation of the edition published in the USA under the title of ''wind power: renewable energy for home, farm and business''. In the wake of mass blackouts and energy crises, wind power remains a largely untapped resource of renewable energy. It is a booming worldwide industry whose technology, under the collective wing of aficionados like author Paul Gipe, is coming of age. Wind Power guides us through the emergent, sometimes daunting discourse on wind technology, giving frank explanations of how to use wind technology wisely and sound advice on how to avoid common mistakes. Since the mid-1970's, Paul Gipe has played a part in nearly every aspect of wind energy development from installing small turbines to promoting wind energy worldwide. As an American proponent of renewable energy, Gipe has earned the acclaim and respect of European energy specialists for years, but his arguments have often fallen on deaf ears at home. Today, the topic of wind power is cropping up everywhere from the beaches of Cape Cod to the Oregon-Washington border, and one wind turbine is capable of producing enough electricity per year to run 200 average American households. Now, Paul Gipe is back to shed light on this increasingly important energy source with a revised edition of Wind Power. Over the course of his career, Paul Gipe has been a proponent, participant, observer, and critic of the wind industry. His experience with wind has given rise to two previous books on the subject, Wind Energy Basics and Wind Power for Home and Business, which have sold over 50,000 copies. Wind Power for Home and Business has become a staple for both homeowners and professionals interested in the subject, and now, with energy prices soaring, interest in wind power is hitting an all-time high. With chapters on output and economics, Wind Power discloses how much you can expect from each method of wind technology, both in terms of energy and financial savings. The book updated models

  4. Velocity evolution of galaxy clustering

    Energy Technology Data Exchange (ETDEWEB)

    Saslaw, W.C.; Aarseth, S.J.

    1982-02-15

    We have examined the changing velocity distribution of galaxies as they cluster in computer models of the expanding universe. The models are 4000-body numerical simulations of galaxies with a large range of masses interacting gravitationally. Clustering in velocity space is measured by calculating the residual peculiar velocities around the Hubble expansion. These form ''Hubble streaks as clustering progresses. We distinguish isolated field galaxies from clustered galaxies. In contrast to the usual belief, the velocity dispersion of the most extreme field galaxies does not decrease adiabatically. Rather, it is dominated by the perturbations of distant large clusters as they form and it decreases much more slowly than the inverse expansion length scale, R/sup -1/. The velocity dispersion of extreme field galaxies is a good cosmological indicator of ..cap omega.. = rho/rho/sub crit/. Preliminary comparison of several simulations with observtions shows that our universe agrees better with low density models, ..cap omega..< or =0.1. The velocity dispersion of cluster centers of mass is a good cosmological marker as well. We also suggest another new method for estimating ..cap omega.., based on the history of extreme field galaxies.

  5. Detailed signal model of coherent wind measurement lidar

    Science.gov (United States)

    Ma, Yuechao; Li, Sining; Lu, Wei

    2016-11-01

    Lidar is short for light detection and ranging, which is a tool to help measuring some useful information of atmosphere. In the recent years, more and more attention was paid to the research of wind measurement by lidar. Because the accurate wind information can be used not only in weather report, but also the safety guarantee of the airplanes. In this paper, a more detailed signal model of wind measurement lidar is proposed. It includes the laser transmitting part which describes the broadening of the spectral, the laser attenuation in the atmosphere, the backscattering signal and the detected signal. A Voigt profile is used to describe the broadening of the transmitting laser spectral, which is the most common situation that is the convolution of different broadening line shapes. The laser attenuation includes scattering and absorption. We use a Rayleigh scattering model and partially-Correlated quadratic-Velocity-Dependent Hard-Collision (pCqSDHC) model to describe the molecule scattering and absorption. When calculate the particles scattering and absorption, the Gaussian particles model is used to describe the shape of particles. Because of the Doppler Effect occurred between the laser and atmosphere, the wind velocity can be calculated by the backscattering signal. Then, a two parameter Weibull distribution is used to describe the wind filed, so that we can use it to do the future work. After all the description, the signal model of coherent wind measurement lidar is decided. And some of the simulation is given by MATLAB. This signal model can describe the system more accurate and more detailed, so that the following work will be easier and more efficient.

  6. A mixing method for traceable air velocity measurements

    International Nuclear Information System (INIS)

    Sillanpää, S; Heinonen, M

    2008-01-01

    A novel and quite simple method to establish a traceability link between air velocity and the national standards of mass and time is presented in this paper. The method is based on the humidification of flowing air before the blower of a wind tunnel with a known mass flow of water. Then air velocity can be calculated as a function of humidification water flow. The method is compared against a Pitot-tube-based velocity measurement in a wind tunnel at the MIKES. The results of these two different methods agreed well, with a maximum difference of 0.7%

  7. Calculations of the cosmic ray modulation in interplanetary space taking into account the possible dependence of the transport travel for the scattering of the particles and of the velocity of the solar winds on the angles they make with the helioequator plane: The case of isotropic diffusion

    Science.gov (United States)

    Dorman, L. I.; Kobilinski, Z.

    1975-01-01

    The modulation of galactic cosmic rays is studied by the magnetic heterogeneities stream on the assumption that the diffusion coefficient is reduced whereas the solar wind velocity is increased with the growth of the angle between the sun's rotation axis and the direction of solar plasma motion. The stationary plane problem of isotropic diffusion is solved as it applies to two cases: (1) with due account of particle retardation by the antiphermium mechanism; and (2) without an account of the above mechanism. This problem is solved by the grid method in the polar coordinate system. The results of the calculations are followed by a discussion of the method of solution and of the errors.

  8. Solar Wind Variation with the Cycle

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... The average solar wind density, velocity and temperature measured at the Earth's orbit show specific decadal variations and trends, which are of the order of the first tens per cent during the last three solar cycles. Statistical, spectral and correlation characteristics of the solar wind are reviewed with the ...

  9. Effect of fall wind on wind power generation; Furyoku hatsuden ni okeru dashikaze no koka

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, H. [Nihon University, Tokyo (Japan)

    1997-11-25

    Wind conditions in Arakawa Town, Niigata Prefecture, were surveyed by anemometers and anemoscopes installed at 3 different points, and the data are analyzed to develop the prediction model for investigating possibility of introduction of wind mills there. Outlined herein is power generated by fall wind by comparing predicted power availability with the actual results. In order to investigate possibility of power generation by fall wind, the wind conditions and power availability are simulated using the observed wind condition data. Predicted wind velocity involves a large error at a point where frequency of prevailing wind direction is high, and direction in which average wind velocity is high coincides with direction in which land is slanted at a high slope. Fall wind occurs locally for geographical reasons. Location of the wind mill must be carefully considered, because it is complex, although potentially gives a larger quantity of power. A wind mill of 400kW can produce power of around 600MWh annually, when it is located at the suited site confirmed by the wind condition analysis results. 6 refs., 5 figs., 6 tabs.

  10. Comparative study of the behavior of wind-turbines in a wind farm

    Energy Technology Data Exchange (ETDEWEB)

    Migoya, Emilio; Crespo, Antonio; Garcia, Javier; Manuel, Fernando; Jimenez, Angel [Universidad Politecnica de Madrid (UPM), Madrid (Spain). Departamento de Ingenieria Energetica y Fluidomecanica, Laboratorio de Mecanica de Fluidos; Moreno, Fermin [Comision Nacional de la Energia, Madrid (Spain); Costa, Alexandre [Energia Eolica, Division de Energias Renovables, CIEMAT, Madrid (Spain)

    2007-10-15

    The Sotavento wind farm is an experimental wind farm which has different types of wind turbines. It is located in an area whose topography is moderately complex, and where wake effects can be significant. One of the objectives of Sotavento wind farm is to compare the performances of the different machines; particularly regarding power production, maintenance and failures. However, because of wakes and topography, the different machines are not working under identical conditions. Two linearized codes have been used to estimate topography effects: UPMORO and WAsP. For wind directions in which topography is abrupt, the non-linear flow equations have been solved with the commercial code FLUENT, although the results are only qualitatively used. For wake effects, the UPMPARK code has been applied. As a result, the incident velocity over each wind turbine is obtained, and the power production is estimated by means of the power curve of each machine. Experimental measurements give simultaneously the wind characteristics at the measuring stations, the wind velocity, at the nacelle anemometer, and the power production of each wind turbine. These experimental results are employed to validate the numerical predictions. The main objective of this work is to deduce and validate a relationship between the wind characteristics measured in the anemometers and the wind velocity and the power output in each machine. (author)

  11. Optimization of wind speed on dispersion of pollutants using ...

    Indian Academy of Sciences (India)

    https://www.ias.ac.in/article/fulltext/sadh/040/05/1657-1666. Keywords. Receptor model; dispersion model; wind velocity; optimization; coupled model. ... The current research work proposed a coupled receptor-dispersion model to reduce the difference between predicted concentrations through optimized wind velocity used ...

  12. Sensor comparison study for load alleviating wind turbine pitch control

    DEFF Research Database (Denmark)

    Kragh, Knud Abildgaard; Hansen, Morten Hartvig; Henriksen, Lars Christian

    2014-01-01

    of angle of attack and relative velocity at a radial position of the blades, and upstream inflow measurements from a spinner mounted light detection and ranging (LiDAR) sensor that enables preview of the incoming flow field. The results show that for stationary inflow conditions, the three different......As the size of wind turbines increases, the load alleviating capabilities of the turbine controller are becoming increasingly important. Load alleviating control schemes have traditionally been based on feedback from load sensor; however, recent developments of measurement technologies have enabled...... control on the basis of preview measurements of the inflow acquired using, e.g., light detection and ranging. The potential of alleviating load variations that are caused by mean wind speed changes through feed-forward control have been demonstrated through both experiments and simulations in several...

  13. Sustainable use of marine resources through offshore wind and mussel farm co-location

    DEFF Research Database (Denmark)

    Di Tullio, Giacomo R.; Mariani, Patrizio; Benassai, Guido

    2018-01-01

    wind farms and open-water mussel cultivation. An index of co-location sustainability (SI) was developed based on the application of MCE technique constructed with physical and biological parameters on the basis of remote-sensing data. The relevant physical factors considered were wind velocity, depth...... range, concerning the site location for energy production, and sea surface temperature anomaly. The biological variables used were Chlorofill-a (as a measurement of the productivity) and Particle Organic Carbon(POC) concentration, in order to assess their influence on the probable benefits and complete...

  14. Rotor and wind turbine formalism

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    2017-01-01

    The main conventions used in this book for the study of rotors are introduced in this chapter. The main assumptions and notations are provided. The formalism specific to wind turbines is presented. The forces, moments, velocities and dimensionless coefficients used in the study of rotors...

  15. Wind dependence on the flow rate in a natural draught cooling tower

    International Nuclear Information System (INIS)

    Baer, E.; Ernst, G.; Wurz, D.

    1981-01-01

    The efficiency of a natural draught cooling tower depends, among other things, on the effect of the wind on the flow in the tower stack. Determinations were made on a natural draught wet cooling tower 100 metres high, for the purpose of studying this effects. As characteristic quantity, a typical height was determined, the values of which were worked out from the results of the measurements. The efficiency of the stack is affected the most in the case of average wind velocities (when the velocity of the wind is about equal to the mean velocity of the plume). This effect diminishes when the velocity of the wind increases. In the case of average wind velocities, the direction of the wind has an effect, owing to the neighbouring buildings; for slightly greater wind velocities, no effect could be found [fr

  16. UniTTe WP3/MC1: Measuring the inflow towards a Nordtank 500kW turbine using three short-range WindScanners and one SpinnerLidar

    DEFF Research Database (Denmark)

    Angelou, Nikolas; Sjöholm, Mikael

    This report provides a description of the experimental setup and the wind scanner remote sensing instruments used in the first measurement campaign of the work package 3 of the UniTTe project. The objective of the campaign was the detailed mapping of the upwind flow in front of a wind turbine...

  17. Quality assessment of weather radar wind profiles during bird migration

    NARCIS (Netherlands)

    Holleman, I.; van Gasteren, H.; Bouten, W.

    2008-01-01

    Wind profiles from an operational C-band Doppler radar have been combined with data from a bird tracking radar to assess the wind profile quality during bird migration. The weather radar wind profiles (WRWPs) are retrieved using the well-known volume velocity processing (VVP) technique. The X-band

  18. Coastal Ohio Wind Project

    Energy Technology Data Exchange (ETDEWEB)

    Gorsevski, Peter [Bowling Green State Univ., OH (United States); Afjeh, Abdollah [Univ. of Toledo, OH (United States); Jamali, Mohsin [Univ. of Toledo, OH (United States); Bingman, Verner [Bowling Green State Univ., OH (United States)

    2014-04-04

    reduced the wake size and enhanced the vortices in the flow downstream of the turbine-tower compared with the tower alone case. Mean and rms velocity distributions from hot wire anemometer data confirmed that in a downwind configuration, the wake of the tower dominates the flow, thus the flow fields of a tower alone and tower-turbine combinations are nearly the same. For the upwind configuration, the mean velocity shows a narrowing of the wake compared with the tower alone case. The downwind configuration wake persisted longer than that of an upwind configuration; however, it was not possible to quantify this difference because of the size limitation of the wind tunnel downstream of the test section. The water tunnel studies demonstrated that the scale model studies could be used to adequately produce accurate motions to model the motions of a wind turbine platform subject to large waves. It was found that the important factors that affect the platform is whether the platform is submerged or surface piercing. In the former, the loads on the platform will be relatively reduced whereas in the latter case, the structure pierces the wave free surface and gains stiffness and stability. The other important element that affects the movement of the platform is depth of the sea in which the wind turbine will be installed. Furthermore, the wildlife biology component evaluated migratory patterns by different monitoring systems consisting of marine radar, thermal IR camera and acoustic recorders. The types of radar used in the project are weather surveillance radar and marine radar. The weather surveillance radar (1988 Doppler), also known as Next Generation Radar (NEXRAD), provides a network of weather stations in the US. Data generated from this network were used to understand general migratory patterns, migratory stopover habitats, and other patterns caused by the effects of weather conditions. At a local scale our marine radar was used to complement the datasets from NEXRAD and

  19. Wind Turbine Acoustics

    Science.gov (United States)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    2009-01-01

    Wind turbine generators, ranging in size from a few kilowatts to several megawatts, are producing electricity both singly and in wind power stations that encompass hundreds of machines. Many installations are in uninhabited areas far from established residences, and therefore there are no apparent environmental impacts in terms of noise. There is, however, the potential for situations in which the radiated noise can be heard by residents of adjacent neighborhoods, particularly those neighborhoods with low ambient noise levels. A widely publicized incident of this nature occurred with the operation of the experimental Mod-1 2-MW wind turbine, which is described in detail elsewhere. Pioneering studies which were conducted at the Mod-1 site on the causes and remedies of noise from wind turbines form the foundation of much of the technology described in this chapter.

  20. Wind farm production estimates

    DEFF Research Database (Denmark)

    Larsen, Torben J.; Larsen, Gunner Chr.; Aagaard Madsen, Helge

    2012-01-01

    inves- tigated for a full polar (i.e. as function of mean inflow wind direction). This investigation relates to a mean wind speed bin defined as 8m=s±1m=s. The impact of ambient turbu- lence intensity and turbine inter spacing on the production of a wind turbine operating under full wake conditions...... is investi- gated. Four different turbine inter spacings, ranging between 3.8 and 10.4 rotor diameters, are analyzed for ambient turbu- lence intensities varying between 2% and 20%. This analysis is based on full scale production data from three other wind farms Wieringermeer [3], Horns Rev [4] and Nysted [5......]. A very satisfactory agreement between experimental data and predictions is observed. This paper finally includes additionally an analysis of the production impact caused by atmospheric stability effects. For this study, atmospheric stability conditions are defined in terms of the Monin-Obukhov length...

  1. Vertical velocities at an ocean front

    Directory of Open Access Journals (Sweden)

    Pedro Vélez-Belchí

    2001-07-01

    Full Text Available Simple scaling arguments conclude that the dominant motions in the ocean are horizontal. However, the vertical velocity plays a crucial role, connecting the active upper layer with the deep ocean. Vertical velocities are mostly associated with the existence of non-transient atmospheric wind forcing or with the presence of mesoscale features. The former are the well known upwelling areas, usually found at the eastern side of the oceans and characterised by upward vertical velocities. The latter have been observed more recently in a number of areas of the world´s oceans, where the vertical velocity has been found to be of the order of several tens of meters per day, that is, an order of magnitude higher than the largest vertical velocity usually observed in upwelling areas. Nevertheless, at present, vertical velocities cannot be measured and indirect methods are therefore needed to estimate them. In this paper, the vertical velocity field is inferred via the quasi-geostrophic omega equation, using density data from a quasi-permanent upper ocean front located at the northern part of the western Alborán gyre.

  2. A Tall-Tower Instrument for Mean and Fluctuating Velocity, Fluctuating Temperature and Sensible Heat Flux Measurements

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Thomson, D. W.

    1979-01-01

    For an ongoing elevated-source, urban-scale tracer experiment, an instrument system to measure the three-dimensional wind velocity and the turbulent sensible heat flux was developed. The wind velocity was measured with a combination of cup anemometer, propeller (vertical) and vane sensor. The tem......For an ongoing elevated-source, urban-scale tracer experiment, an instrument system to measure the three-dimensional wind velocity and the turbulent sensible heat flux was developed. The wind velocity was measured with a combination of cup anemometer, propeller (vertical) and vane sensor...

  3. Gas transfer velocities for quantifying methane, oxygen and other gas fluxes through the air-water interface of wetlands with emergent vegetation

    Science.gov (United States)

    Poindexter, C.; Variano, E. A.

    2012-12-01

    Empirical models for the gas transfer velocity, k, in the ocean, lakes and rivers are fairly well established, but there are few data to predict k for wetlands. We have conducted experiments in a simulated emergent marsh in the laboratory to explore the relationship between k, wind shear and thermal convection. Now we identify the implications of these results for gas transfer in actual wetlands by (1) quantifying the range of wind conditions in emergent vegetation canopies and the range of thermal convection intensities in wetland water columns, and (2) describing the non-linear interaction of these two stirring forces over their relevant ranges in wetlands. We measured mean wind speeds and wind speed variance within the shearless region of a Schoenoplectus-Typha marsh canopy in the Sacramento-San Joaquin Delta (Northern California, USA). The mean wind speed within this region, , is significantly smaller than wind above the canopy. Based on our laboratory experiments, for calm or even average wind conditions in this emergent marsh k600 is only on the order 0.1 cm hr-1 (for neutrally or stably stratified water columns). We parameterize unstable thermal stratification and the resulting thermal convection using the heat flux through the air-water interface, q. We analyzed a water temperature record for the Schoenoplectus-Typha marsh to obtain a long-term heat flux record. We used these heat flux data along with short-term heat flux data from other wetlands in the literature to identify the range of the gas transfer velocity associated with thermal convection in wetlands. The typical range of heat fluxes through water columns shaded by closed emergent canopies (-200 W m-2 to +200 W m-2) yields k600 values of 0.5 - 2.5 cm hr-1 according to the model we developed in the laboratory. Thus for calm or average wind conditions, the gas transfer velocity associated with thermal convection is significantly larger than the gas transfer velocity associated with wind shear

  4. Aeroservoelasticity of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Skovmose Kallesoee, B.

    2007-12-14

    This thesis deals with the fundamental aeroelastic interaction between structural motion, Pitch action and control for a wind turbine blade. As wind turbines become larger, the interaction between pitch action, blade motion, aerodynamic forces, and control become even more important to understand and address. The main contribution of this thesis is the development of an aeroelastic blade model which on the one hand includes the important effects of steady state blade deformation, gravity and pitch action, and on the other it is transparent, suitable for analytical analysis and parameter studies, and furthermore linear and therefore suitable for control design. The development of the primary aeroelastic blade model is divided into four steps: 1) Nonlinear partial differential equations (PDEs) of structural blade motion are derived together with equations of pitch action and rotor speed; the individual terms in these equations are discussed and given physical interpretations; 2) Steady state blade deformation and induced velocities are computed by combining the PDEs with a steady state aerodynamic model; 3) Aeroelastic modes of motion are computed by combining the linearized PDEs with a linear unsteady aerodynamic model; this model is used to analyze how blade deformation effects the modes of motion; and 4) the linear aeroelastic blade model is derived by a modal expansion of the linearized PDEs combined with a linear unsteady aerodynamic model. The aeroelastic blade model has many similarities to a 2D blade section model, and it can be used instead of this in many applications, giving a transparent connection to a real wind turbine blade. In this work the aeroelastic blade model is used to analyze interaction between pitch action, blade motion and wind speed variations. Furthermore the model is used to develop a state estimator for estimating the wind speed and wind shear, and to suggest a load reducing controller. The state estimator estimates the wind shear very

  5. The Coincidence Tracker: Electronic Equipment for a Time-of-Flight Wind-Speed Measurement System

    DEFF Research Database (Denmark)

    Fog, Christian

    1982-01-01

    The electronic part of a laser-beam measuring system for wind velocity is described. Pulses of light scattered from aerosols are treated, first in a pair of adaptive filters, then in a tracker that calculates the wind velocity on-line while applying some knowledge about the velocity to be expected...

  6. The physics of galactic winds driven by active galactic nuclei

    Science.gov (United States)

    Faucher-Giguère, Claude-André; Quataert, Eliot

    2012-09-01

    Active galactic nuclei (AGN) drive fast winds in the interstellar medium of their host galaxies. It is commonly assumed that the high ambient densities and intense radiation fields in galactic nuclei imply short cooling times, thus making the outflows momentum conserving. We show that cooling of high-velocity shocked winds in AGN is in fact inefficient in a wide range of circumstances, including conditions relevant to ultraluminous infrared galaxies (ULIRGs), resulting in energy-conserving outflows. We further show that fast energy-conserving outflows can tolerate a large amount of mixing with cooler gas before radiative losses become important. For winds with initial velocity vin ≳ 10 000 km s-1, as observed in ultraviolet and X-ray absorption, the shocked wind develops a two-temperature structure. While most of the thermal pressure support is provided by the protons, the cooling processes operate directly only on the electrons. This significantly slows down inverse Compton cooling, while free-free cooling is negligible. Slower winds with vin ˜ 1000 km s-1, such as may be driven by radiation pressure on dust, can also experience energy-conserving phases but under more restrictive conditions. During the energy-conserving phase, the momentum flux of an outflow is boosted by a factor ˜vin/2vs by work done by the hot post-shock gas, where vs is the velocity of the swept-up material. Energy-conserving outflows driven by fast AGN winds (vin ˜ 0.1c) may therefore explain the momentum fluxes Ṗ≫LAGN/c of galaxy-scale outflows recently measured in luminous quasars and ULIRGs. Shocked wind bubbles expanding normal to galactic discs may also explain the large-scale bipolar structures observed in some systems, including around the Galactic Centre, and can produce significant radio, X-ray and γ-ray emission. The analytic solutions presented here will inform implementations of AGN feedback in numerical simulations, which typically do not include all the important

  7. The design of wind turbine for electrical power generation in Malaysian wind characteristics

    International Nuclear Information System (INIS)

    Abas Ab Wahab; Chong Wen Thong

    2000-01-01

    The paper describes the study of a wind turbine for electrical power generation in Malaysia wind characteristics. In this research, the wind turbine is designs based on the local wind characteristics and tries to avoid the problems faced in the past (turbine design, access, manpower and technical). The new wind turbine rotor design for a medium speed wind speed turbine utilises the concept of open-close type of horizontal axis (up-wind) wind turbine is intended to widen the optimum performance range for electrical generation in Malaysia wind characteristics. The wind turbine has been designed to cut-in at a lower speed, and to provide the rotation speed that high enough to run a generator. The analysis and design of new low speed wind turbine blades and open-close turbine rotor and prediction of turbine performance are being detailed in this paper. (Author)

  8. Optimal short range trajectories for helicopters

    Science.gov (United States)

    Slater, G. L.; Erzberger, H.

    1983-01-01

    An optimal flight path algorithm using a simplified altitude state model and an apriori climb-cruise-descent flight profile has been developed and applied to determine minimum fuel and minimum cost trajectories for a helicopter flying a fixed range trajectory. The performance model is based on standard flight manual data and is such that on-line trajectory optimization is feasible with a relatively small computer. The results show that the optimal flight path and optimal cruise altitude can represent a 10 percent fuel saving on a minimum fuel trajectory. The optimal trajectories show considerable variability due to helicopter weight, ambient winds and the relative cost trade-off between time and fuel. In general, 'reasonable' variations from the optimal velocities and cruise altitudes do not significantly degrade the optimal cost.

  9. New insights into the wind-dust relationship in sandblasting and direct aerodynamic entrainment from wind tunnel experiments

    KAUST Repository

    Parajuli, Sagar Prasad

    2016-01-22

    Numerous parameterizations have been developed for predicting wind erosion, yet the physical mechanism of dust emission is not fully understood. Sandblasting is thought to be the primary mechanism, but recent studies suggest that dust emission by direct aerodynamic entrainment can be significant under certain conditions. In this work, using wind tunnel experiments, we investigated some of the lesser understood aspects of dust emission in sandblasting and aerodynamic entrainment for three soil types, namely clay, silty clay loam, and clay loam. First, we explored the role of erodible surface roughness on dust emitted by aerodynamic entrainment. Second, we compared the emitted dust concentration in sandblasting and aerodynamic entrainment under a range of wind friction velocities. Finally, we explored the sensitivity of emitted dust particle size distribution (PSD) to soil type and wind friction velocity in these two processes. The dust concentration in aerodynamic entrainment showed strong positive correlation, no significant correlation, and weak negative correlation, for the clay, silty clay loam, and clay loam, respectively, with the erodible soil surface roughness. The dust in aerodynamic entrainment was significant constituting up to 28.3, 41.4, and 146.4% compared to sandblasting for the clay, silty clay loam, and clay loam, respectively. PSD of emitted dust was sensitive to soil type in both sandblasting and aerodynamic entrainment. PSD was sensitive to the friction velocity in aerodynamic entrainment but not in sandblasting. Our results highlight the need to consider the details of sandblasting and direct aerodynamic entrainment processes in parameterizing dust emission in global/regional climate models.

  10. Optimization of Wind Farm Layout in Complex Terrain

    DEFF Research Database (Denmark)

    Xu, Chang; Yang, Jianchuan; Li, Chenqi

    2013-01-01

    Microscopic site selection for wind farms in complex terrain is a technological difficulty in the development of onshore wind farms. This paper presented a method for optimizing wind farm layout in complex terrain. This method employed Lissaman and Jensen wake models, took wind velocity distribut......Microscopic site selection for wind farms in complex terrain is a technological difficulty in the development of onshore wind farms. This paper presented a method for optimizing wind farm layout in complex terrain. This method employed Lissaman and Jensen wake models, took wind velocity...... are subject to boundary conditions and minimum distance conditions. The improved genetic algorithm (GA) for real number coding was used to search the optimal result. Then the optimized result was compared to the result from the experienced layout method. Results show the advantages of the present method...

  11. On the Use of a Range Trigger for the Mars Science Laboratory Entry Descent and Landing

    Science.gov (United States)

    Way, David W.

    2011-01-01

    In 2012, during the Entry, Descent, and Landing (EDL) of the Mars Science Laboratory (MSL) entry vehicle, a 21.5 m Viking-heritage, Disk-Gap-Band, supersonic parachute will be deployed at approximately Mach 2. The baseline algorithm for commanding this parachute deployment is a navigated planet-relative velocity trigger. This paper compares the performance of an alternative range-to-go trigger (sometimes referred to as Smart Chute ), which can significantly reduce the landing footprint size. Numerical Monte Carlo results, predicted by the POST2 MSL POST End-to-End EDL simulation, are corroborated and explained by applying propagation of uncertainty methods to develop an analytic estimate for the standard deviation of Mach number. A negative correlation is shown to exist between the standard deviations of wind velocity and the planet-relative velocity at parachute deploy, which mitigates the Mach number rise in the case of the range trigger.

  12. Electrical Aspects of Wind Turbines

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede

    2009-01-01

    This is the most authoritative single volume on offshore wind power yet published. Distinguished experts, mainly from Europe's leading universities, have contributed a collection of peer reviewed papers on the interfaces between wind power technology and marine engineering. The range of issues...

  13. Database on wind characteristics - Analyses of wind turbine design loads

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, K.S.

    2004-01-01

    The main objective of IEA R&D Wind Annex XVII - Database on Wind Characteristics - has been to provide wind energy planners, designers and researchers, as well as the international wind engineering community in general, with a source of actual wind fielddata (time series and resource data) observed...... in a wide range of different wind climates and terrain types. Connected to an extension of the initial Annex period, the scope for the continuation was widened to include also support to the international windturbine standardisation efforts.. The project partners are Sweden, Norway, U.S.A., The Netherlands...... and Denmark, with Denmark as the Operating Agent. The reporting of the continuation of Annex XVII falls in two separate parts. Part one accounts in detailsfor the available data in the established database bank, and part two describes various data analyses performed with the overall purpose of improving...

  14. Three-dimensional structure of wind turbine wakes as measured by scanning lidar

    Science.gov (United States)

    Bodini, Nicola; Zardi, Dino; Lundquist, Julie K.

    2017-08-01

    The lower wind speeds and increased turbulence that are characteristic of turbine wakes have considerable consequences on large wind farms: turbines located downwind generate less power and experience increased turbulent loads. The structures of wakes and their downwind impacts are sensitive to wind speed and atmospheric variability. Wake characterization can provide important insights for turbine layout optimization in view of decreasing the cost of wind energy. The CWEX-13 field campaign, which took place between June and September 2013 in a wind farm in Iowa, was designed to explore the interaction of multiple wakes in a range of atmospheric stability conditions. Based on lidar wind measurements, we extend, present, and apply a quantitative algorithm to assess wake parameters such as the velocity deficits, the size of the wake boundaries, and the location of the wake centerlines. We focus on wakes from a row of four turbines at the leading edge of the wind farm to explore variations between wakes from the edge of the row (outer wakes) and those from turbines in the center of the row (inner wakes). Using multiple horizontal scans at different elevations, a three-dimensional structure of wakes from the row of turbines can be created. Wakes erode very quickly during unstable conditions and can in fact be detected primarily in stable conditions in the conditions measured here. During stable conditions, important differences emerge between the wakes of inner turbines and the wakes of outer turbines. Further, the strong wind veer associated with stable conditions results in a stretching of the wake structures, and this stretching manifests differently for inner and outer wakes. These insights can be incorporated into low-order wake models for wind farm layout optimization or for wind power forecasting.

  15. Horizontal Axis Wind Turbine Experiments at Full-Scale Reynolds Numbers

    Science.gov (United States)

    Miller, Mark; Kiefer, Janik; Nealon, Tara; Westergaard, Carsten; Hultmark, Marcus

    2017-11-01

    Achieving high Reynolds numbers on a wind turbine model remains a major challenge for experimentalists. Since Reynolds number effects need to be captured accurately, matching this parameter is of great importance. The challenge stems from the large scale ratio between model and full-size, typically on the order of 1:100. Traditional wind tunnels are limited due to finite tunnel size, with velocity as the only free-parameter available for increasing the Reynolds number. Unfortunately, increasing the velocity 100 times is untenable because it violates Mach number matching with the full-scale and results in unfeasible rotation rates. Present work in Princeton University's high pressure wind tunnel makes it possible to evaluate the Reynolds number sensitivity with regard to wind turbine aerodynamics. This facility, which uses compressed air as the working fluid, allows for adjustment of the Reynolds number, via the fluid density, independent of the Tip Speed Ratio (TSR) and Mach number. Power and thrust coefficients will be shown as a function of Reynolds number and TSR for a model wind turbine. The Reynolds number range investigated exceeds 10 ×106 based on diameter and free-stream conditions or 3 ×106 based on the tip chord, matching those of the full-scale. National Science Foundation and Andlinger Center for Energy and the Environment.

  16. Design and Characterization of the UTIAS Anechoic Wind Tunnel

    Science.gov (United States)

    Chow, Derrick H. F.

    The anechoic open-jet wind tunnel facility at the University of Toronto Institute for Aerospace Studies was updated and characterized to meet the needs of current and future aeroacoustic experiments. The wind tunnel inlet was resurfaced and flow-conditioning screens were redesigned to improve the freestream turbulence intensity to below 0.4% in the test section. The circular nozzle was replaced with a square secondary contraction that increased the maximum test section velocity to 75 m/s and improved flow uniformity to over 99% across a usable cross-sectional area of 500 mm x 500 mm. Acoustic baffles were installed in front of the wind tunnel inlet and foam wedges were installed in the anechoic chamber. The overall background sound pressure levels in the chamber were improved by 8-18 db over the range of operational freestream velocities. The anechoic chamber cut-off frequency is 170 Hz and the reverberation time for a 60 dB sound power decay is 0.032 s.

  17. Wind energy

    CERN Document Server

    Woll, Kris

    2016-01-01

    Across the country, huge open spaces are covered in gently turning wind turbines. In Wind Energy, explore how these machines generate electricity, learn about the history of wind power, and discover the latest advances in the field. Easy-to-read text, vivid images, and helpful back matter give readers a clear look at this subject. Features include a table of contents, infographics, a glossary, additional resources, and an index. Aligned to Common Core Standards and correlated to state standards. Core Library is an imprint of Abdo Publishing, a division of ABDO.

  18. Modelling of environmental and climatic problems: Wind and water erosion

    International Nuclear Information System (INIS)

    Aslan, Z.

    2004-01-01

    Magnitude of wind and water erosion mainly depend on wind velocity, rainfall rate, slope and soil characteristics. The main purpose of this lecture is to define the role of small, meso and large scale phenomena (local and synoptic fluctuations) on water and wind erosion. These lecture notes present some results on wind speed simulation and seasonal fluctuations of water deficit for the selected station in different erosion risque and transition regions of Turkey. (author)

  19. Scaling laws and intermittent structures in solar wind MHD turbulence

    Science.gov (United States)

    Veltri, Pierluigi; Mangeney, André

    1999-06-01

    Thirteen months of velocity and magnetic field data from ISEE space experiment have been used to calculate spectra and structure functions using Haar wavelets technique in the range from 1 minute to about 1 day. Using conditioned structure function definition we have been able to eliminate the intermittency effects in the spectra and thus to evidentiate which kind of phenomenology of nonlinear cascade between Kolmogorov and Kraichnan is taking place in Solar Wind turbulence. By the same technique the most intermittent structures in solar wind turbulence can also be identified and they turn out to be either shock waves or one dimensional current sheets, at variance with ordinary fluid intermittency, where the most intermittent structures are two dimensional vortices.

  20. Dynamic modelling and robust control of a wind energy conversion system

    NARCIS (Netherlands)

    Steinbuch, M.

    1989-01-01

    The application of wind energy conversion systems for the production of electrical energy requires a cheap and reliable operation. Especially at high wind velocities fluctuations from the wind field result in large mechanical loads of the wind turbine. Also fluctuations in the grid voltage may yield

  1. Application of a three-dimensional aeroelastic model to study the wind-induced response of bridge stay cables in unsteady wind conditions

    Science.gov (United States)

    Raeesi, Arash; Cheng, Shaohong; Ting, David S.-K.

    2016-08-01

    The possibility of bridge stay cables experiencing violent dry inclined cable galloping raises great concern in the engineering community. Numerous experimental and analytical studies have been conducted to investigate this phenomenon, most of which were in the context of steady wind past a rigid cylindrical body. Real stay cables however, are generally long and flexible. They are exposed to more "broad" range of atmospheric boundary layer type of wind velocity profile which is also unsteady and turbulent by nature. To better understand the physics underlying this type of wind-induced cable vibration and to elucidate various contributing factors, a more realistic analytical model which is capable of addressing the above elements is imperative. In the current paper, a three-dimensional aeroelastic model is proposed to study the aerodynamic response of an inclined and/or yawed slender flexible cylindrical body subjected to unsteady mean wind, with practical application to wind-induced vibrations of bridge stay cables under no precipitation condition. The non-linear aerodynamic forces derived in the present study are combined with the cable free vibration equations available in literature to obtain the equations of motion for the wind-induced vibration of stay cables, which are solved numerically by an explicit finite difference scheme. The proposed three-dimensional aeroelastic model and numerical solution technique are validated by comparing the predicted cable free vibration responses with existing data in the literature. The mechanism which triggers dry inclined cable galloping and the required conditions for its growth are explored. In addition, the impact of different initial conditions and various unsteady mean wind scenarios on this violent cable motion are investigated. Results show that the occurrence of dry inclined cable galloping is associated with an opposite-phase relation between the relative wind speed and the aerodynamic force along the direction of

  2. Estimation of vector velocity

    DEFF Research Database (Denmark)

    2000-01-01

    Using a pulsed ultrasound field, the two-dimensional velocity vector can be determined with the invention. The method uses a transversally modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation. The new...

  3. Intermittent structures in atmospheric wind fields

    Energy Technology Data Exchange (ETDEWEB)

    Yueksek, Oersan; Muecke, Tanja; Peinke, Joachim [Wind Center for Wind Energy Research, University of Oldenburg (Germany)

    2011-07-01

    For design processes and load calculations of wind energy convertors (WEC) realistic synthetic wind fields are needed. The widely used norm is the standard IEC 61400. The IEC standard considers different simulation methods based on Gaussian statistics. However, the analysis of the measured wind fields by means of velocity increment statistics yields that these do not obey Gaussian statistics but are quite intermittent. The intermittent nature of atmospheric wind affects the whole chain of the wind energy conversion process and is assumed to be a major effect for additional loads and fatigue. A recently proposed method based on continuous time random walks (CTRWs) adequately reproduces the intermittency of turbulent atmospheric velocity increments on small time scales and provides wind fields with the desired high order two point statistics. In this work, we analyze highly time-resolved data sets measured in an extensive grid over the whole rotor plane of a WEC. The atmospheric wind fields are characterized statistically and the dependency of the higher order two point statistics on turbulence intensity, mean wind speed and height is shown. With this knowledge we are able to generate synthetic CTRW wind fields with the correct small scale structure.

  4. Wind, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Modulus

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time wind divergence data originating with wind velocity measurements from the ASCAT instrument onboard EUMETSAT's ASCAT...

  5. Wind, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Zonal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time wind divergence data originating with wind velocity measurements from the ASCAT instrument onboard EUMETSAT's ASCAT...

  6. Wind, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Meridional

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time wind divergence data originating with wind velocity measurements from the ASCAT instrument onboard EUMETSAT's ASCAT...

  7. Wind, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Divergence

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time wind divergence data originating with wind velocity measurements from the ASCAT instrument onboard EUMETSAT's ASCAT...

  8. World Wind

    Data.gov (United States)

    National Aeronautics and Space Administration — World Wind allows any user to zoom from satellite altitude into any place on Earth, leveraging high resolution LandSat imagery and SRTM elevation data to experience...

  9. Drivers of imbalance cost of wind power

    DEFF Research Database (Denmark)

    Obersteiner, C.; Siewierski, T.; Andersen, Anders

    2010-01-01

    In Europe an increasing share of wind power is sold on the power market. Therefore more and more wind power generators become balancing responsible and face imbalance cost that reduce revenues from selling wind power. A comparison of literature illustrates that the imbalance cost of wind power...... varies in a wide range. To explain differences we indentify parameters influencing imbalance cost and compare them for case studies in Austria, Denmark and Poland. Besides the wind power forecast error also the correlation between imbalance and imbalance price influences imbalance cost significantly...... of imperfect forecast is better suited to reflect real cost incurred due to inaccurate wind power forecasts....

  10. PREDICTION OF POWER GENERATION OF SMALL SCALE VERTICAL AXIS WIND TURBINE USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Altab Hossain

    2009-01-01

    Full Text Available Renewable energy from the wind turbine has been focused for the alternative source of power generation due to the following advances of the of the wind turbine. Firstly, the wind turbine is highly efficient and eco-friendly. Secondly, the turbine has the ability to response for the changeable power generation based on the wind velocity and structural framework. However, the competitive efficiency of the wind turbine is necessary to successfully alternate the conventional power sources. The most relevant factor which affects the overall efficiency of the wind turbine is the wind velocity and the relative turbine dimensions. Artificial intelligence systems are widely used technology that can learn from examples and are able to deal with non-linear problems. Compared with traditional approach, fuzzy logic approach is more efficient for the representation, manipulation and utilization. Therefore, the primary purpose of this work was to investigate the relationship between wind turbine power generation and wind velocity, and to illustrate how fuzzy expert system might play an important role in prediction of wind turbine power generation. The main purpose of the measurement over the small scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. Prediction of power generation at the different wind velocities has been tested at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL and results concerning the daily prediction have been obtained.

  11. 78 FR 29364 - Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4...

    Science.gov (United States)

    2013-05-20

    ...-005, QF07-257-004] Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4, LLC, Exelon Wind 5, LLC, Exelon Wind 6, LLC, Exelon Wind 7, LLC, Exelon Wind 8, LLC, Exelon Wind 9, LLC, Exelon Wind 10, LLC, Exelon Wind 11, LLC, High Plains Wind Power, LLC v. Xcel Energy...

  12. Gas Transfer Velocity in the Presence of Wave Breaking

    Science.gov (United States)

    Li, S.

    2016-02-01

    Wave breaking is known to intensify the gas exchange across the air-sea interface through air entrainment and enhancement of the near-surface turbulence. We proposed a composite model for the gas transfer velocity by examining the near-surface turbulence induced by wave breaking, which was determined based on the combination of the vertical distribution of the turbulence in the wave-affected layer and the breaking wave energy dissipation rate in the wave-breaking layer. The gas transfer velocity was calculated as a function of the air frictional velocity, wave age, and whitecap coverage. The model was validated for both the wind and wave-age dependence against field and laboratory measurements. The results supported the hypothesis that the large uncertainties in the traditional wind speed-based gas transfer velocities at moderate to high wind speeds can be ascribed to the neglect of the wind-wave effect, which is mainly attributed to the whitecap coverage as a function of the wind-wave Reynolds number.

  13. Floating Foundations for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Andersen, Morten Thøtt

    The concept of harnessing the power of the wind dates all the way back to the first ships traversing the seas. Later, windmills enabled the use of wind power for industrial purposes. Since then, technology has allowed the production of clean renewable energy through the use of wind turbines......-stage physical prototype testing in wave basins without wind generating capabilities, and hence allows testing of a wider range of concepts....

  14. Using eddy covariance to measure the dependence of air–sea CO2 exchange rate on friction velocity

    Directory of Open Access Journals (Sweden)

    S. Landwehr

    2018-03-01

    Full Text Available Parameterisation of the air–sea gas transfer velocity of CO2 and other trace gases under open-ocean conditions has been a focus of air–sea interaction research and is required for accurately determining ocean carbon uptake. Ships are the most widely used platform for air–sea flux measurements but the quality of the data can be compromised by airflow distortion and sensor cross-sensitivity effects. Recent improvements in the understanding of these effects have led to enhanced corrections to the shipboard eddy covariance (EC measurements.Here, we present a revised analysis of eddy covariance measurements of air–sea CO2 and momentum fluxes from the Southern Ocean Surface Ocean Aerosol Production (SOAP study. We show that it is possible to significantly reduce the scatter in the EC data and achieve consistency between measurements taken on station and with the ship underway. The gas transfer velocities from the EC measurements correlate better with the EC friction velocity (u* than with mean wind speeds derived from shipboard measurements corrected with an airflow distortion model. For the observed range of wind speeds (u10 N = 3–23 m s−1, the transfer velocities can be parameterised with a linear fit to u*. The SOAP data are compared to previous gas transfer parameterisations using u10 N computed from the EC friction velocity with the drag coefficient from the Coupled Ocean–Atmosphere Response Experiment (COARE model version 3.5. The SOAP results are consistent with previous gas transfer studies, but at high wind speeds they do not support the sharp increase in gas transfer associated with bubble-mediated transfer predicted by physically based models.

  15. Computing discharge using the index velocity method

    Science.gov (United States)

    Levesque, Victor A.; Oberg, Kevin A.

    2012-01-01

    Application of the index velocity method for computing continuous records of discharge has become increasingly common, especially since the introduction of low-cost acoustic Doppler velocity meters (ADVMs) in 1997. Presently (2011), the index velocity method is being used to compute discharge records for approximately 470 gaging stations operated and maintained by the U.S. Geological Survey. The purpose of this report is to document and describe techniques for computing discharge records using the index velocity method. Computing discharge using the index velocity method differs from the traditional stage-discharge method by separating velocity and area into two ratings—the index velocity rating and the stage-area rating. The outputs from each of these ratings, mean channel velocity (V) and cross-sectional area (A), are then multiplied together to compute a discharge. For the index velocity method, V is a function of such parameters as streamwise velocity, stage, cross-stream velocity, and velocity head, and A is a function of stage and cross-section shape. The index velocity method can be used at locations where stage-discharge methods are used, but it is especially appropriate when more than one specific discharge can be measured for a specific stage. After the ADVM is selected, installed, and configured, the stage-area rating and the index velocity rating must be developed. A standard cross section is identified and surveyed in order to develop the stage-area rating. The standard cross section should be surveyed every year for the first 3 years of operation and thereafter at a lesser frequency, depending on the susceptibility of the cross section to change. Periodic measurements of discharge are used to calibrate and validate the index rating for the range of conditions experienced at the gaging station. Data from discharge measurements, ADVMs, and stage sensors are compiled for index-rating analysis. Index ratings are developed by means of regression

  16. WIND TURBINE OPERATION PARAMETER CHARACTERISTICS AT A GIVEN WIND SPEED

    Directory of Open Access Journals (Sweden)

    Zdzisław Kamiński

    2014-06-01

    Full Text Available This paper discusses the results of the CFD simulation of the flow around Vertical Axis Wind Turbine rotor. The examined rotor was designed following patent application no. 402214. The turbine operation is characterised by parameters, such as opening angle of blades, power, torque, rotational velocity at a given wind velocity. Those parameters have an impact on the performance of entire assembly. The distribution of forces acting on the working surfaces in the turbine can change, depending on the angle of rotor rotation. Moreover, the resultant force derived from the force acting on the oncoming and leaving blades should be as high as possible. Accordingly, those parameters were individually simulated over time for each blade in three complete rotations. The attempts to improve the performance of the entire system resulted in a new research trend to improve the performance of working turbine rotor blades.

  17. EDITORIAL: Wind energy

    Science.gov (United States)

    Mann, Jakob; Nørkær Sørensen, Jens; Morthorst, Poul-Erik

    2008-01-01

    Wind energy is rapidly growing. In 2006 the installed generating capacity in the world increased by 25%, a growth rate which has more or less been sustained during the last decade. And there is no reason to believe that this growth will slow significantly in the coming years. For example, the United Kingdom's goal for installed wind turbines by 2020 is 33 GW up from 2 GW in 2006, an average annual growth rate of 22% over that period. More than half of all turbines are installed in Europe, but United States, India and lately China are also rapidly growing markets. The cradle of modern wind energy was set by innovative blacksmiths in rural Denmark. Now the wind provides more than 20% of the electrical power in Denmark, the industry has professionalized and has close ties with public research at universities. This focus issue is concerned with research in wind energy. The main purposes of research in wind energy are to: decrease the cost of power generated by the wind; increase the reliability and predictability of the energy source; investigate and reduce the adverse environmental impact of massive deployment of wind turbines; build research based educations for wind energy engineers. This focus issue contains contributions from several fields of research. Decreased costs cover a very wide range of activities from aerodynamics of the wind turbine blades, optimal site selection for the turbines, optimization of the electrical grid and power market for a fluctuating source, more efficient electrical generators and gears, and new materials and production techniques for turbine manufacturing. The United Kingdom recently started the construction of the London Array, a 1 GW off-shore wind farm east of London consisting of several hundred turbines. To design such a farm optimally it is necessary to understand the chaotic and very turbulent flow downwind from a turbine, which decreases the power production and increases the mechanical loads on other nearby turbines. Also

  18. Anisotropic third-moment estimates of the energy cascade in solar wind turbulence using multispacecraft data.

    Science.gov (United States)

    Osman, K T; Wan, M; Matthaeus, W H; Weygand, J M; Dasso, S

    2011-10-14

    The first direct determination of the inertial range energy cascade rate, using an anisotropic form of Yaglom's law for magnetohydrodynamic turbulence, is obtained in the solar wind with multispacecraft measurements. The two-point mixed third-order structure functions of Elsässer fluctuations are integrated over a sphere in magnetic field-aligned coordinates, and the result is consistent with a linear scaling. Therefore, volume integrated heating and cascade rates are obtained that, unlike previous studies, make only limited assumptions about the underlying spectral geometry of solar wind turbulence. These results confirm the turbulent nature of magnetic and velocity field fluctuations in the low frequency limit, and could supply the energy necessary to account for the nonadiabatic heating of the solar wind.

  19. Surface Stress with Non-stationary Weak Winds and Stable Stratification

    Science.gov (United States)

    Mahrt, L.; Thomas, Christoph K.

    2016-04-01

    The behaviour of turbulent transport in the weak-wind, stably-stratified, boundary layer over land is examined in terms of the non-stationarity of the wind field using measurements from three field programs. These field programs include towers ranging from 12 to 20 m in height and an extensive horizontal network of sonic anemometers. The relationship of the friction velocity to the stratification and non-stationary submeso motions is investigated from several points of view and nominally quantified. The relationship of the turbulence to the stratification is less systematic than expected partly due to enhancement of the turbulence by submeso motions. Cause and effect relationships are difficult to isolate because the non-stationary momentum flux significantly modifies the profile of the non-stationary mean flow. The link between the turbulence and accelerations at the surface is examined in terms of the changing vertical structure of the wind profile and sudden increases in the downward transport of momentum.

  20. Wind energy and social acceptability

    International Nuclear Information System (INIS)

    Feurtey, E.

    2008-01-01

    This document was prepared as part of a decentralized collaboration between Quebec and France to share knowledge regarding strategies and best practices in wind power development. It reviewed the social acceptance of Quebec's wind power industry, particularly at the municipal level. The wind industry is growing rapidly in Quebec, and this growth has generated many reactions ranging from positive to negative. The purpose of this joint effort was to describe decision making steps to developing a wind turbine array. The history of wind development in Quebec was discussed along with the various hardware components required in a wind turbine and different types of installations. The key element in implementing wind turbine arrays is to establish public acceptance of the project, followed by a good regulatory framework to define the roles and responsibilities of participants. The production of electricity from wind turbines constitutes a clean and renewable source of energy. Although it is associated with a reduction in greenhouse gas emissions, this form of energy can also have negative environmental impacts, including noise. The revenues generated by wind parks are important factors in the decision making process. Two case studies in Quebec were presented. refs., tabs., figs.

  1. Synthetic atmospheric turbulence and wind shear in large eddy simulations of wind turbine wakes

    DEFF Research Database (Denmark)

    Keck, Rolf-Erik; Mikkelsen, Robert Flemming; Troldborg, Niels

    2014-01-01

    of the synthetic methods is found to be adequate to model atmospheric turbulence, and the wake flow results of the model are in good agreement with field data. An investigation is also carried out to estimate the wake transport velocity, used to model wake meandering in lower-order models. The conclusion......A method of generating a synthetic ambient wind field in neutral atmosphere is described and verified for modelling the effect of wind shear and turbulence on a wind turbine wake using the flow solver EllipSys3D. The method uses distributed volume forces to represent turbulent fluctuations...... is that the appropriate transport velocity of the wake lies somewhere between the centre velocity of the wake deficit and the free stream velocity. Copyright © 2013 John Wiley & Sons, Ltd....

  2. Wind turbine noise diagnostics

    International Nuclear Information System (INIS)

    Richarz, W.; Richarz, H.

    2009-01-01

    This presentation proposed a self-consistent model for broad-band noise emitted from modern wind turbines. The simple source model was consistent with the physics of sound generation and considered the unique features of wind turbines. Although the acoustics of wind turbines are similar to those of conventional propellers, the dimensions of wind turbines pose unique challenges in diagnosing noise emission. The general features of the sound field were deduced. Source motion and source directivity appear to be responsible for amplitude variations. The amplitude modulation is likely to make wind-turbine noise more audible, and may be partly responsible for annoyance that has been reported in the literature. Acoustic array data suggests that broad-band noise is emitted predominantly during the downward sweep of each rotor blade. Source motion and source directivity account for the observed pattern. Rotor-tower interaction effects are of lesser importance. Predicted amplitude modulation ranges from 1 dB to 6dB. 2 refs., 9 figs.

  3. The Impact of Wind Speed Changes on the Surface Stress in the Weak-wind Stable Boundary Layer

    Science.gov (United States)

    Thomas, C. K.

    2015-12-01

    The behaviour of turbulent transport in the weak-wind stably stratified boundary layer is examined in terms of the non-stationarity of the wind field based upon field observations. Extensive sonic anemometer measurements from horizontal networks and vertical towers ranging from 12 to 20 m height were collected from three field programs in moderately sloped terrain with a varying degree of surface heterogeneity, namely the Shallow Cold Pool (SCP) and the Flow Over Snow Surfaces (FLOSS) II experiments in Colorado (USA), and the Advanced Canopy Resolution Experiment (ARCFLO) in Oregon (USA). The relationship of the friction velocity to the stratification and small non-stationary submeso motions is studied from several points of view and nominally quantified. The relationship of the turbulence to the stratification is less systematic than expected due to the important submeso-scale motions. Consequently, the roles of the wind speed and stratification are not adequately accommodated by a single non-dimensional combination, such as the bulk Richardson number. Howver, cause and effect relationships are difficult to isolate because the non-stationary momentum flux significantly modifies the profile of the non-stationary mean flow. The link between the turbulence and accelerations at the surface is examined in terms of the changing vertical structure of the wind profile and sudden increases of downward transport of momentum. The latter may be significant in explaining the small-scale weak turbulence during stable stratification and deviations from conventional flux-profile relationships.

  4. The critical ionization velocity

    International Nuclear Information System (INIS)

    Raadu, M.A.

    1980-06-01

    The critical ionization velocity effect was first proposed in the context of space plasmas. This effect occurs for a neutral gas moving through a magnetized plasma and leads to rapid ionization and braking of the relative motion when a marginal velocity, 'the critical velocity', is exceeded. Laboratory experiments have clearly established the significance of the critical velocity and have provided evidence for an underlying mechanism which relies on the combined action of electron impact ionization and a collective plasma interaction heating electrons. There is experimental support for such a mechanism based on the heating of electrons by the modified two-stream instability as part of a feedback process. Several applications to space plasmas have been proposed and the possibility of space experiments has been discussed. (author)

  5. Antarctic Ice Velocity Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This compilation of recent ice velocity data of the Antarctic ice sheet is intended for use by the polar scientific community. The data are presented in tabular form...

  6. High Velocity Gas Gun

    Science.gov (United States)

    1988-01-01

    A video tape related to orbital debris research is presented. The video tape covers the process of loading a High Velocity Gas Gun and firing it into a mounted metal plate. The process is then repeated in slow motion.

  7. Integrated spatial assessment of wind erosion risk in Hungary

    Science.gov (United States)

    Pásztor, László; Négyesi, Gábor; Laborczi, Annamária; Kovács, Tamás; László, Elemér; Bihari, Zita

    2016-11-01

    Wind erosion susceptibility of Hungarian soils was mapped on the national level integrating three factors of the complex phenomenon of deflation (physical soil features, wind characteristics, and land use and land cover). Results of wind tunnel experiments on erodibility of representative soil samples were used for the parametrization of a countrywide map of soil texture compiled for the upper 5 cm layer of soil, which resulted in a map representing threshold wind velocity exceedance. Average wind velocity was spatially estimated with 0.5' resolution using the Meteorological Interpolation based on Surface Homogenised Data Basis (MISH) method elaborated for the spatial interpolation of surface meteorological elements. The probability of threshold wind velocity exceedance was determined based on values predicted by the soil texture map at the grid locations. Ratio values were further interpolated to a finer 1 ha resolution using sand and silt content of the uppermost (0-5 cm) layer of soil as spatial co-variables. Land cover was also taken into account, excluding areas that are not relevant to wind erosion (forests, water bodies, settlements, etc.), to spatially assess the risk of wind erosion. According to the resulting map of wind erosion susceptibility, about 10 % of the total area of Hungary can be identified as susceptible to wind erosion. The map gives more detailed insight into the spatial distribution of wind-affected areas in Hungary compared to previous studies.

  8. Integrated spatial assessment of wind erosion risk in Hungary

    Directory of Open Access Journals (Sweden)

    L. Pásztor

    2016-11-01

    Full Text Available Wind erosion susceptibility of Hungarian soils was mapped on the national level integrating three factors of the complex phenomenon of deflation (physical soil features, wind characteristics, and land use and land cover. Results of wind tunnel experiments on erodibility of representative soil samples were used for the parametrization of a countrywide map of soil texture compiled for the upper 5 cm layer of soil, which resulted in a map representing threshold wind velocity exceedance. Average wind velocity was spatially estimated with 0.5′ resolution using the Meteorological Interpolation based on Surface Homogenised Data Basis (MISH method elaborated for the spatial interpolation of surface meteorological elements. The probability of threshold wind velocity exceedance was determined based on values predicted by the soil texture map at the grid locations. Ratio values were further interpolated to a finer 1 ha resolution using sand and silt content of the uppermost (0–5 cm layer of soil as spatial co-variables. Land cover was also taken into account, excluding areas that are not relevant to wind erosion (forests, water bodies, settlements, etc., to spatially assess the risk of wind erosion. According to the resulting map of wind erosion susceptibility, about 10 % of the total area of Hungary can be identified as susceptible to wind erosion. The map gives more detailed insight into the spatial distribution of wind-affected areas in Hungary compared to previous studies.

  9. WIND TURBINES FOR WIND POWER INSTALLATIONS

    Directory of Open Access Journals (Sweden)

    Barladean A.S.

    2008-04-01

    Full Text Available The problem of wind turbine choice for wind power stations is examined in this paper. It is shown by comparison of parameters and characteristics of wind turbines, that for existing modes and speeds of wind in territory of Republic of Moldova it is necessary to use multi-blade small speed rotation wind turbines of fan class.

  10. Maximum Likelihood Blood Velocity Estimator Incorporating Properties of Flow Physics

    DEFF Research Database (Denmark)

    Schlaikjer, Malene; Jensen, Jørgen Arendt

    2004-01-01

    )-data under investigation. The flow physic properties are exploited in the second term, as the range of velocity values investigated in the cross-correlation analysis are compared to the velocity estimates in the temporal and spatial neighborhood of the signal segment under investigation. The new estimator...... has been compared to the cross-correlation (CC) estimator and the previously developed maximum likelihood estimator (MLE). The results show that the CMLE can handle a larger velocity search range and is capable of estimating even low velocity levels from tissue motion. The CC and the MLE produce...... for the CC and the MLE. When the velocity search range is set to twice the limit of the CC and the MLE, the number of incorrect velocity estimates are 0, 19.1, and 7.2% for the CMLE, CC, and MLE, respectively. The ability to handle a larger search range and estimating low velocity levels was confirmed...

  11. Integrated roof wind energy system

    Directory of Open Access Journals (Sweden)

    Moonen S.P.G.

    2012-10-01

    Full Text Available Wind is an attractive renewable source of energy. Recent innovations in research and design have reduced to a few alternatives with limited impact on residential construction. Cost effective solutions have been found at larger scale, but storage and delivery of energy to the actual location it is used, remain a critical issue. The Integrated Roof Wind Energy System is designed to overcome the current issues of urban and larger scale renewable energy system. The system is built up by an axial array of skewed shaped funnels that make use of the Venturi Effect to accelerate the wind flow. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a vertical-axis wind turbine in the top of the roof for generation of a relatively high amount of energy. The methods used in this overview of studies include an array of tools from analytical modelling, PIV wind tunnel testing, and CFD simulation studies. The results define the main design parameters for an efficient system, and show the potential for the generation of high amounts of renewable energy with a novel and effective system suited for the built environment.

  12. Radiation hydrodynamic simulations of line-driven disk winds for ultra-fast outflows

    Science.gov (United States)

    Nomura, Mariko; Ohsuga, Ken; Takahashi, Hiroyuki R.; Wada, Keiichi; Yoshida, Tessei

    2016-02-01

    Using two-dimensional radiation hydrodynamic simulations, we investigate the origin of the ultra-fast outflows (UFOs) that are often observed in luminous active galactic nuclei (AGNs). We found that the radiation force due to the spectral lines generates strong winds (line-driven disk winds) that are launched from the inner region of accretion disks (˜30 Schwarzschild radii). A wide range of black hole masses (MBH) and Eddington ratios (ε) was investigated to study the conditions causing the line-driven winds. For MBH = 106-109 M⊙ and ε = 0.1-0.7, funnel-shaped disk winds appear, in which dense matter is accelerated outward with an opening angle of 70°-80° and with 10% of the speed of light. If we observe the wind along its direction, the velocity, the column density, and the ionization state are consistent with those of the observed UFOs. As long as obscuration by the torus does not affect the observation of X-ray bands, the UFOs could be statistically observed in about 13%-28% of the luminous AGNs, which is not inconsistent with the observed ratio (˜40%). We also found that the results are insensitive to the X-ray luminosity and the density of the disk surface. Thus, we can conclude that UFOs could exist in any luminous AGNs, such as narrow-line Seyfert 1s and quasars with ε > 0.1, with which fast line-driven winds are associated.

  13. Experimental Study of a Small Scale Hydraulic System for Mechanical Wind Energy Conversion into Heat

    Directory of Open Access Journals (Sweden)

    Tadas Zdankus

    2016-07-01

    Full Text Available Significant potential for reducing thermal energy consumption in buildings of moderate and cold climate countries lies within wind energy utilisation. Unlike solar irradiation, character of wind speeds in Central and Northern Europe correspond to the actual thermal energy demand in buildings. However, mechanical wind energy undergoes transformation into electrical energy before being actually used as thermal energy in most wind energy applications. The study presented in this paper deals with hydraulic systems, designed for small-scale applications to eliminate the intermediate energy transformation as it converts mechanical wind energy into heat directly. The prototype unit containing a pump, flow control valve, oil tank and piping was developed and tested under laboratory conditions. Results of the experiments showed that the prototype system is highly efficient and adjustable to a broad wind velocity range by modifying the definite hydraulic system resistance. Development of such small-scale replicable units has the potential to promote “bottom-up” solutions for the transition to a zero carbon society.

  14. Determination of wind erosion next to shelterbelts

    Directory of Open Access Journals (Sweden)

    Jana Dufková

    2007-01-01

    Full Text Available The influence of shelterbelts on the erodibility of soil by wind was studied at three chosen shelterbelts of Southern Moravia, Czech Republic – near the shelterbelts in the cadastral areas of Dolní Dunajovice, Micmanice and Suchá Loz. Ambulatory measurements of wind velocity as so as soil sampling for soil humidity analyses, non-erodible and clay particles analyses were done during the year of 2006. Subsequently, real erodibility of soil by wind was determined at these three areas. Results of the measurements and calculations verify positive effect of shelterbelts consisted in wind velocity decreasing (at about 78% in average, soil humidity increasing (at about 102% in average and soil resistance increasing (at about 70% in average at the leeward side of the shelterbelts.

  15. The sound of high winds. The effect of atmospheric stability on wind turbine sound and microphone noise

    International Nuclear Information System (INIS)

    Van den Berg, G.P.

    2006-01-01

    In this thesis issues are raised concerning wind turbine noise and its relationship to altitude dependent wind velocity. The following issues are investigated: what is the influence of atmospheric stability on the speed and sound power of a wind turbine?; what is the influence of atmospheric stability on the character of wind turbine sound?; how widespread is the impact of atmospheric stability on wind turbine performance: is it relevant for new wind turbine projects; how can noise prediction take this stability into account?; what can be done to deal with the resultant higher impact of wind turbine sound? Apart from these directly wind turbine related issues, a final aim was to address a measurement problem: how does wind on a microphone affect the measurement of the ambient sound level?

  16. Wind and IMP 8 Solar Wind, Magnetosheath and Shock Data

    Science.gov (United States)

    2004-01-01

    The purpose of this project was to provide the community access to magnetosheath data near Earth. We provided 27 years of IMP 8 magnetosheath proton velocities, densities, and temperatures with our best (usually 1-min.) time resolution. IMP 8 crosses the magnetosheath twice each 125 day orbit, and we provided magnetosheath data for the roughly 27 years of data for which magnetometer data are also available (which are needed to reliably pick boundaries). We provided this 27 years of IMP 8 magnetosheath data to the NSSDC; this data is now integrated with the IMP 8 solar wind data with flags indicating whether each data point is in the solar wind, magnetosheath, or at the boundary between the two regions. The plasma speed, density, and temperature are provided for each magnetosheath point. These data are also available on the MIT web site ftp://space .mit.edu/pub/plasma/imp/www/imp.html. We provide ASCII time-ordered rows of data giving the observation time, the spacecraft position in GSE, the velocity is GSE, the density and temperature for protons. We also have analyzed and archived on our web site the Wind magnetosheath plasma parameters. These consist of ascii files of the proton and alpha densities, speeds, and thermal speeds. These data are available at ftp://space.mit.edu/pub/plasma/wind/sheath These are the two products promised in the work statement and they have been completed in full.

  17. Experimental data on load test and performance parameters of a LENZ type vertical axis wind turbine in open environment condition.

    Science.gov (United States)

    Sivamani, Seralathan; T, Micha Premkumar; Sohail, Mohammed; T, Mohan; V, Hariram

    2017-12-01

    Performance and load testing data of a three bladed two stage LENZ type vertical axis wind turbine from the experiments conducted in an open environment condition at Hindustan Institute of Technology and Science, Chennai (location 23.2167°N, 72.6833°E) are presented here. Low-wind velocity ranging from 2 to 11 m/s is available everywhere irrespective of climatic seasons and this data provides the support to the researchers using numerical tool to validate and develop an enhanced Lenz type design. Raw data obtained during the measurements are processed and presented in the form so as to compare with other typical outputs. The data is measured at different wind speeds prevalent in the open field condition ranging from 3 m/s to 9 m/s.

  18. Wind power integration connection and system operational aspects

    CERN Document Server

    Fox, Brendan

    2014-01-01

    Wind Power Integration provides a wide-ranging discussion on all major aspects of wind power integration into electricity supply systems. This second edition has been fully revised and updated to take account of the significant growth in wind power deployment in the past few years. New discussions have been added to describe developments in wind turbine generator technology and control, the network integration of wind power, innovative ways to integrate wind power when its generation potential exceeds 50% of demand, case studies on how forecasting errors have affected system operation, and an update on how the wind energy sector has fared in the marketplace. Topics covered include: the development of wind power technology and its world-wide deployment; wind power technology and the interaction of various wind turbine generator types with the utility network; and wind power forecasting and the challenges faced by wind energy in modern electricity markets.

  19. Pricing offshore wind power

    International Nuclear Information System (INIS)

    Levitt, Andrew C.; Kempton, Willett; Smith, Aaron P.; Musial, Walt; Firestone, Jeremy

    2011-01-01

    Offshore wind offers a very large clean power resource, but electricity from the first US offshore wind contracts is costlier than current regional wholesale electricity prices. To better understand the factors that drive these costs, we develop a pro-forma cash flow model to calculate two results: the levelized cost of energy, and the breakeven price required for financial viability. We then determine input values based on our analysis of capital markets and of 35 operating and planned projects in Europe, China, and the United States. The model is run for a range of inputs appropriate to US policies, electricity markets, and capital markets to assess how changes in policy incentives, project inputs, and financial structure affect the breakeven price of offshore wind power. The model and documentation are made publicly available. - Highlights: → We calculate the Breakeven Price (BP) required to deploy offshore wind plants. → We determine values for cost drivers and review incentives structures in the US. → We develop 3 scenarios using today's technology but varying in industry experience. → BP differs widely by Cost Scenario; relative policy effectiveness varies by stage. → The low-range BP is below regional market values in the Northeast United States.

  20. 3D WindScanner lidar measurements of wind and turbulence around wind turbines, buildings and bridges

    Science.gov (United States)

    Mikkelsen, T.; Sjöholm, M.; Angelou, N.; Mann, J.

    2017-12-01

    WindScanner is a distributed research infrastructure developed at DTU with the participation of a number of European countries. The research infrastructure consists of a mobile technically advanced facility for remote measurement of wind and turbulence in 3D. The WindScanners provide coordinated measurements of the entire wind and turbulence fields, of all three wind components scanned in 3D space. Although primarily developed for research related to on- and offshore wind turbines and wind farms, the facility is also well suited for scanning turbulent wind fields around buildings, bridges, aviation structures and of flow in urban environments. The mobile WindScanner facility enables 3D scanning of wind and turbulence fields in full scale within the atmospheric boundary layer at ranges from 10 meters to 5 (10) kilometers. Measurements of turbulent coherent structures are applied for investigation of flow pattern and dynamical loads from turbines, building structures and bridges and in relation to optimization of the location of, for example, wind farms and suspension bridges. This paper presents our achievements to date and reviews briefly the state-of-the-art of the WindScanner measurement technology with examples of uses for wind engineering applications.

  1. Velocity spectrum for the Iranian plateau

    Science.gov (United States)

    Bastami, Morteza; Soghrat, M. R.

    2018-01-01

    Peak ground acceleration (PGA) and spectral acceleration values have been proposed in most building codes/guidelines, unlike spectral velocity (SV) and peak ground velocity (PGV). Recent studies have demonstrated the importance of spectral velocity and peak ground velocity in the design of long period structures (e.g., pipelines, tunnels, tanks, and high-rise buildings) and evaluation of seismic vulnerability in underground structures. The current study was undertaken to develop a velocity spectrum and for estimation of PGV. In order to determine these parameters, 398 three-component accelerograms recorded by the Building and Housing Research Center (BHRC) were used. The moment magnitude (Mw) in the selected database was 4.1 to 7.3, and the events occurred after 1977. In the database, the average shear-wave velocity at 0 to 30 m in depth (Vs30) was available for only 217 records; thus, the site class for the remaining was estimated using empirical methods. Because of the importance of the velocity spectrum at low frequencies, the signal-to-noise ratio of 2 was chosen for determination of the low and high frequency to include a wider range of frequency content. This value can produce conservative results. After estimation of the shape of the velocity design spectrum, the PGV was also estimated for the region under study by finding the correlation between PGV and spectral acceleration at the period of 1 s.

  2. Retrieval of vertical wind profiles during monsoon from satellite ...

    Indian Academy of Sciences (India)

    algorithm which ensures the retrieval of vertical profiles of winds using satellite tracked cloud motion vector winds. Under the assumption that accurate measurements of wind are available at the above mentioned levels, the r.m.s. error of retrieval of each component of wind is estimated to range between. 2 msю1 and 6 ...

  3. Shuttlecock Velocity of a Badminton Drop Shot

    Directory of Open Access Journals (Sweden)

    Ampharin Ongvises

    2013-12-01

    Full Text Available In a badminton ‘drop shot’, the shuttlecock is struck by a non-rotating racquet at low speed. In this investigation, a shuttlecock was hit by a badminton racquet in a linear collision, simulating a drop shot. The collision was recorded with high-speed video and the velocities of the racquet and shuttlecock determined. The relationship between the impact velocity of the racquet and the velocity of the shuttlecock as it leaves the badminton racquet after collision was found to be proportional over the range tested.

  4. Database on wind characteristics - Analyses of wind turbine design loads

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.C.; Hansen, K.S.

    2004-06-01

    The main objective of IEA R and D Wind Annex XVII - Database on Wind Characteristics - has been to provide wind energy planners, designers and researchers, as well as the international wind engineering community in general, with a source of actual wind field data (time series and resource data) observed in a wide range of different wind climates and terrain types. Connected to an extension of the initial Annex period, the scope for the continuation was widened to include also support to the international wind turbine standardisation efforts.. The project partners are Sweden, Norway, U.S.A., The Netherlands and Denmark, with Denmark as the Operating Agent. The reporting of the continuation of Annex XVII falls in two separate parts. Part one accounts in details for the available data in the established database bank, and part two describes various data analyses performed with the overall purpose of improving the design load cases with relevance for to wind turbine structures. The present report constitutes the second part of the Annex XVII reporting. Both fatigue and extreme load aspects are dealt with, however, with the main emphasis on the latter. The work has been supported by The Ministry of Environment and Energy, Danish Energy Agency, The Netherlands Agency for Energy and the Environment (NOVEM), The Norwegian Water Resources and Energy Administration (NVE), The Swedish National Energy Administration (STEM) and The Government of the United States of America. (au)

  5. The Impact of Variable Wind Shear Coefficients on Risk Reduction of Wind Energy Projects

    Science.gov (United States)

    Thomson, Allan; Yoonesi, Behrang; McNutt, Josiah

    2016-01-01

    Estimation of wind speed at proposed hub heights is typically achieved using a wind shear exponent or wind shear coefficient (WSC), variation in wind speed as a function of height. The WSC is subject to temporal variation at low and high frequencies, ranging from diurnal and seasonal variations to disturbance caused by weather patterns; however, in many cases, it is assumed that the WSC remains constant. This assumption creates significant error in resource assessment, increasing uncertainty in projects and potentially significantly impacting the ability to control gird connected wind generators. This paper contributes to the body of knowledge relating to the evaluation and assessment of wind speed, with particular emphasis on the development of techniques to improve the accuracy of estimated wind speed above measurement height. It presents an evaluation of the use of a variable wind shear coefficient methodology based on a distribution of wind shear coefficients which have been implemented in real time. The results indicate that a VWSC provides a more accurate estimate of wind at hub height, ranging from 41% to 4% reduction in root mean squared error (RMSE) between predicted and actual wind speeds when using a variable wind shear coefficient at heights ranging from 33% to 100% above the highest actual wind measurement. PMID:27872898

  6. Wind power

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the wind power. It presents the principles, the technology takes off, its applications and technology focus, the global market trends and the outlooks and Total commitments in the domain. (A.L.B.)

  7. Wind energy

    International Nuclear Information System (INIS)

    Portilla S, L.A.

    1995-01-01

    The wind energy or eolic energy is a consequence of solar energy, the one which is absorbed by the atmosphere and is transformed into energy of movement of large bulks of air. In this process the atmosphere acts as the filter to the solar radiation and demotes the ultraviolet beams that result fatal to life in the Earth. The ionosphere is the most external cap and this is ionized by means of absorption process of ultraviolet radiation arising to the Sun. The atmosphere also acts as a trap to the infrared radiation, it that results from the continual process of energetic degradation. In this way, the interaction between Earth - Atmospheres, is behaved as a great greenhouse, maintaining the constant temperatures, including in the dark nights. Processes as the natural convection (that occur by the thermodynamic phenomenon), equatorial calmness, trade winds and against trade winds and global distribution of the air currents are described. The other hand, techniques as the transformation of the wind into energy and its parameters also are shown

  8. Turbulence in the solar wind: spectra from Voyager 2 data at 5 AU

    International Nuclear Information System (INIS)

    Fraternale, F; Gallana, L; Iovieno, M; Tordella, D; Opher, M; Richardson, J D

    2016-01-01

    Fluctuations in the flow velocity and magnetic fields are ubiquitous in the Solar System. These fluctuations are turbulent, in the sense that they are disordered and span a broad range of scales in both space and time. The study of solar wind turbulence is motivated by a number of factors all keys to the understanding of the Solar Wind origin and thermodynamics. The solar wind spectral properties are far from uniformity and evolve with the increasing distance from the sun. Most of the available spectra of solar wind turbulence were computed at 1 astronomical unit, while accurate spectra on wide frequency ranges at larger distances are still few. In this paper we consider solar wind spectra derived from the data recorded by the Voyager 2 mission during 1979 at about 5 AU from the sun. Voyager 2 data are an incomplete time series with a voids/signal ratio that typically increases as the spacecraft moves away from the sun (45% missing data in 1979), making the analysis challenging. In order to estimate the uncertainty of the spectral slopes, different methods are tested on synthetic turbulence signals with the same gap distribution as V2 data. Spectra of all variables show a power law scaling with exponents between −2.1 and −1.1, depending on frequency subranges. Probability density functions (PDFs) and correlations indicate that the flow has a significant intermittency. (invited comment)

  9. Wind Energy Japan

    Energy Technology Data Exchange (ETDEWEB)

    Komatsubara, Kazuyo [Embassy of the Kingdom of the Netherlands, Tokyo (Japan)

    2012-06-15

    An overview is given of wind energy in Japan: Background; Wind Energy in Japan; Japanese Wind Energy Industry; Government Supports; Useful Links; Major Japanese Companies; Profiles of Major Japanese Companies; Major Wind Energy Projects in Japan.

  10. High-resolution vertical velocities and their power spectrum observed with the MAARSY radar - Part 1: frequency spectrum

    Science.gov (United States)

    Li, Qiang; Rapp, Markus; Stober, Gunter; Latteck, Ralph

    2018-04-01

    The Middle Atmosphere Alomar Radar System (MAARSY) installed at the island of Andøya has been run for continuous probing of atmospheric winds in the upper troposphere and lower stratosphere (UTLS) region. In the current study, we present high-resolution wind measurements during the period between 2010 and 2013 with MAARSY. The spectral analysis applying the Lomb-Scargle periodogram method has been carried out to determine the frequency spectra of vertical wind velocity. From a total of 522 days of observations, the statistics of the spectral slope have been derived and show a dependence on the background wind conditions. It is a general feature that the observed spectra of vertical velocity during active periods (with wind velocity > 10 m s-1) are much steeper than during quiet periods (with wind velocity active periods, whereas a very asymmetric distribution with a maximum at around -1 is observed during quiet periods. The slope profiles along altitudes reveal a significant height dependence for both conditions, i.e., the spectra become shallower with increasing altitudes in the upper troposphere and maintain roughly a constant slope in the lower stratosphere. With both wind conditions considered together the general spectra are obtained and their slopes are compared with the background horizontal winds. The comparisons show that the observed spectra become steeper with increasing wind velocities under quiet conditions, approach a spectral slope of -5/3 at a wind velocity of 10 m s-1 and then roughly maintain this slope (-5/3) for even stronger winds. Our findings show an overall agreement with previous studies; furthermore, they provide a more complete climatology of frequency spectra of vertical wind velocities under different wind conditions.

  11. Guest Editorial Modeling and Advanced Control of Wind Turbines/Wind Farms

    Energy Technology Data Exchange (ETDEWEB)

    Hu, J.; Hou, Y.; Zhu, Z.; Xu, D.; Xu, D.; Muljadi, E.; Liu, F.; Iwanski, G.; Geng, H.; Erlich, I.; Wen, J.; Harnefors, L.; Fan, L.; El Moursi, M. S.; Kjaer, P. C.; Nelson, R. J.; Cardenas, R.; Feng, S.; Islam, S.; Qiao, W.; Yuan, X.

    2017-09-01

    The papers in this special section brings together papers focused on the recent advancements and breakthroughs in the technology of modeling and enhanced active/reactive power control of wind power conversion systems, ranging from components of wind turbines to wind farms.

  12. Wind potential assessment of Quebec Province

    International Nuclear Information System (INIS)

    Ilinca, A.; Chaumel, J.-L.; Retiveau, J.-L.

    2003-01-01

    The paper presents the development of a comprehensive wind atlas of the Province of Quebec. This study differs from previous studies by 1) use of a standard classification index to categorize the wind resource, 2) extensive review of surface and upper air data available for the Province to define the wind resource, and 3) integration of available wind data with the topography of the Province. The wind resource in the Province of Quebec is classified using the scheme proposed by Battelle-Pacific Northwest Laboratory (PNL). The Battelle-PNL classification is a numerical one which includes rankings from Wind Power Class 1 (lowest) to Wind Power Class 7 (highest). Associated with each numerical classification is a range of wind power and associated mean wind speed at 10 m and 50 m above ground level. For this study, a classification for 30 m above ground level was interpolated and used. A significant amount of wind data was gathered for the Province. These data were obtained from Atmospheric Environment Service (AES), Canada, from wind project developers, and from climatological summaries of surface and upper air data. A total of 35 primary data sites were selected in the Province. Although a number of wind data sites in the Province were identified and used in the analysis, large areas of the Province lacked any specific wind information. The Province was divided into grid blocks having dimensions of 1/4 o latitude by 1/3 o longitude. Each grid block is assigned a numerical Wind Power Class value ranging from 1 to 7. This value is based on the integration of the available wind data and the topography within the square. The majority of the Province was classified as 1 or 2. Coastal locations and topographic features in the interior of the Province typically have Wind Power Class 3 or higher. (author)

  13. Wavelength Drift Corrector for Wind Lidar Receivers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a key innovation to improve wavelength-sensitive lidar measurements (such as wind velocity) using photon-counting receivers. A novel binning technique to...

  14. Lidar Wind Profiler for the NextGen Airportal Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The development of a standoff sensor that can measure 3D components of wind velocity in the vicinity of an airport has the potential to improve airport throughput,...

  15. Retrieval of sea surface velocities using sequential ocean colour monitor (OCM) data

    Digital Repository Service at National Institute of Oceanography (India)

    Prasad, J.S.; Rajawat, A.S.; Pradhan, Y.; Chauhan, O.S.; Nayak, S.R.

    patterns in successive images. The technique provides actual flow during a specified period by integrating both tidal and wind influences. The current velocities retrieved were compared with synchronous data collected along east coast during GSI cruise ST...

  16. On the dependence of sea surface roughness on wind waves

    DEFF Research Database (Denmark)

    Johnson, H.K.; Højstrup, J.; Vested, H.J.

    1998-01-01

    The influence of wind waves on the momentum transfer (wind stress) between the atmosphere and sea surface was studied using new measured data from the RASEX experiment and other datasets compiled by Donelan et al. Results of the data analysis indicate that errors in wind friction velocity u...... that calculations of the wind friction velocities using the wave-spectra-dependent expression of Hansen and Larsen agrees quite well with measured values during RASEX. It also gives a trend in Charnock parameter consistent with that found by combining the field data. Last, calculations using a constant Charnock...... parameter (0.018) also give very good results for the wind friction velocities at the RASEX site....

  17. Investigation of gravity waves using horizontally resolved radial velocity measurements

    Science.gov (United States)

    Stober, G.; Sommer, S.; Rapp, M.; Latteck, R.

    2013-10-01

    The Middle Atmosphere Alomar Radar System (MAARSY) on the island of Andøya in Northern Norway (69.3° N, 16.0° E) observes polar mesospheric summer echoes (PMSE). These echoes are used as tracers of atmospheric dynamics to investigate the horizontal wind variability at high temporal and spatial resolution. MAARSY has the capability of pulse-to-pulse beam steering allowing for systematic scanning experiments to study the horizontal structure of the backscatterers as well as to measure the radial velocities for each beam direction. Here we present a method to retrieve gravity wave parameters from these horizontally resolved radial wind variations by applying velocity azimuth display and volume velocity processing. Based on the observations a detailed comparison of the two wind analysis techniques is carried out in order to determine the zonal and meridional wind as well as to measure first-order inhomogeneities. Further, we demonstrate the possibility to resolve the horizontal wave properties, e.g., horizontal wavelength, phase velocity and propagation direction. The robustness of the estimated gravity wave parameters is tested by a simple atmospheric model.

  18. Investigation of gravity waves using horizontally resolved radial velocity measurements

    Directory of Open Access Journals (Sweden)

    G. Stober

    2013-10-01

    Full Text Available The Middle Atmosphere Alomar Radar System (MAARSY on the island of Andøya in Northern Norway (69.3° N, 16.0° E observes polar mesospheric summer echoes (PMSE. These echoes are used as tracers of atmospheric dynamics to investigate the horizontal wind variability at high temporal and spatial resolution. MAARSY has the capability of pulse-to-pulse beam steering allowing for systematic scanning experiments to study the horizontal structure of the backscatterers as well as to measure the radial velocities for each beam direction. Here we present a method to retrieve gravity wave parameters from these horizontally resolved radial wind variations by applying velocity azimuth display and volume velocity processing. Based on the observations a detailed comparison of the two wind analysis techniques is carried out in order to determine the zonal and meridional wind as well as to measure first-order inhomogeneities. Further, we demonstrate the possibility to resolve the horizontal wave properties, e.g., horizontal wavelength, phase velocity and propagation direction. The robustness of the estimated gravity wave parameters is tested by a simple atmospheric model.

  19. Consistent modelling of wind turbine noise propagation from source to receiver.

    Science.gov (United States)

    Barlas, Emre; Zhu, Wei Jun; Shen, Wen Zhong; Dag, Kaya O; Moriarty, Patrick

    2017-11-01

    The unsteady nature of wind turbine noise is a major reason for annoyance. The variation of far-field sound pressure levels is not only caused by the continuous change in wind turbine noise source levels but also by the unsteady flow field and the ground characteristics between the turbine and receiver. To take these phenomena into account, a consistent numerical technique that models the sound propagation from the source to receiver is developed. Large eddy simulation with an actuator line technique is employed for the flow modelling and the corresponding flow fields are used to simulate sound generation and propagation. The local blade relative velocity, angle of attack, and turbulence characteristics are input to the sound generation model. Time-dependent blade locations and the velocity between the noise source and receiver are considered within a quasi-3D propagation model. Long-range noise propagation of a 5 MW wind turbine is investigated. Sound pressure level time series evaluated at the source time are studied for varying wind speeds, surface roughness, and ground impedances within a 2000 m radius from the turbine.

  20. Boundary layer heights derived from velocity spectra

    Energy Technology Data Exchange (ETDEWEB)

    Hoejstrup, J.; Barthelmie, R.J. [Risoe National Lab., Roskilde (Denmark); Kaellstrand, B. [Univ. of Uppsala, Uppsala (Sweden)

    1997-10-01

    It is a well-known fact that the height of the mixed layer determines the size of the largest and most energetic eddies that can be observed in the unstable boundary layer, and consequently a peak can be observed in the power spectra of the along-wind velocity component at scales comparable to the mixed layer depth. We will now show how the mixed layer depth can be derived from the u-specta and the results will be compared with direct measurements using pibal and tethersonde measurements. (au)

  1. Thermal Assessment of a Novel Combine Evaporative Cooling Wind Catcher

    Directory of Open Access Journals (Sweden)

    Azam Noroozi

    2018-02-01

    Full Text Available Wind catchers are one of the oldest cooling systems that are employed to provide sufficient natural ventilation in buildings. In this study, a laboratory scale wind catcher was equipped with a combined evaporative system. The designed assembly was comprised of a one-sided opening with an adjustable wetted pad unit and a wetted blades section. Theoretical analysis of the wind catcher was carried out and a set of experiments were organized to validate the results of the obtained models. The effect of wind speed, wind catcher height, and mode of the opening unit (open or closed was investigated on temperature drop and velocity of the moving air through the wind catcher as well as provided sensible cooling load. The results showed that under windy conditions, inside air velocity was slightly higher when the pad was open. Vice versa, when the wind speed was zero, the closed pad resulted in an enhancement in air velocity inside the wind catcher. At wind catcher heights of 2.5 and 3.5 m and wind speeds of lower than 3 m/s, cooling loads have been approximately doubled by applying the closed-pad mode.

  2. Velocity pump reaction turbine

    Science.gov (United States)

    House, P.A.

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  3. The Prescribed Velocity Method

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    The- velocity level in a room ventilated by jet ventilation is strongly influenced by the supply conditions. The momentum flow in the supply jets controls the air movement in the room and, therefore, it is very important that the inlet conditions and the numerical method can generate a satisfactory...... description of this momentum flow. The Prescribed Velocity Method is a practical method for the description of an Air Terminal Device which will save grid points close to the opening and ensure the right level of the momentum flow....

  4. Enhanced wind turbine noise prediction tool SILANT

    International Nuclear Information System (INIS)

    Boorsma, K.; Schepers, J.G.

    2012-02-01

    Wind turbine noise often is quantified in terms of time averaged overall sound power levels, whilst annoyance due to noise level fluctuations in mid- to high-range frequencies ('swish') are not taken into account. Recent experimental research on wind turbine noise has revealed the major causes of the swishing noise to be due to the directivity of the noise sources and convective amplification effects of the moving turbine blades. The findings have been incorporated in the noise prediction tool SILANT which in addition to sound power levels gives sound pressure level predictions for specified observer positions. The noise sources that are taken into account are trailing edge, inflow and tip noise, using the models of Brooks, Pope and Marcolini (BPM) and Amiet and Lowson. The blade is divided into a number of independent elements for which effective inflow velocity and angle of attack information is a necessary input. A distinction is made between the various profiles along the blade span by including their boundary layer displacement thicknesses at the trailing edge in a profile database. The propagation model includes directivity, convective amplification, Doppler shift and atmospheric absorption. The effect of the retarded time is taken into account individually for the separate elements along the blade span using the time dependent rotor azimuth position. A simple empirical model is applied to quantify meteorological effects influencing refraction and ground effects. Prediction results are compared to SIROCCO project measurements from microphones positioned in a circle around a turbine. The high spatial and temporal resolution of the SILANT simulations gives new insights in the variation of wind turbine inflow and trailing edge noise as a function of observer position, rotor azimuth angle and frequency band. The influence of directivity is illustrated for the dominant noise sources.

  5. Characterising Turbulence Intensity for Fatigue Load Analysis of Wind Turbines

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Larsen, Gunner Chr.

    2005-01-01

    Turbulence in wind velocity presents a major factor for modern wind turbine design as cost reduction as are sort for the dynamic structures. Therefore this paper contains a parametrisation of the turbulence intensity at given sites, relevant for the calculation of fatigue loading of wind turbines....... The parameterisation is based on wind speed measurements extracted from the “Database on Wind Characteristics” (www.winddata.com). The parameterisation is based on the LogNormal distribution, which has proven to be suitable distribution to describe the turbulence intensity distribution....

  6. Wind Diffusivity Current, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Modulus

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality Ekman current (in zonal, meridional, and modulus sets) and Ekman upwelling data. This data begins with wind velocity...

  7. Wind Diffusivity Current, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Meridional

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality Ekman current (in zonal, meridional, and modulus sets) and Ekman upwelling data. This data begins with wind velocity...

  8. Wind Diffusivity Current, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Zonal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality Ekman current (in zonal, meridional, and modulus sets) and Ekman upwelling data. This data begins with wind velocity...

  9. Simulations of large winds and wind shears induced by gravity wave breaking in the mesosphere and lower thermosphere (MLT region

    Directory of Open Access Journals (Sweden)

    X. Liu

    2014-05-01

    Full Text Available Using a fully nonlinear two-dimensional (2-D numerical model, we simulated gravity waves (GWs breaking and their contributions to the formation of large winds and wind shears in the mesosphere and lower thermosphere (MLT. An eddy diffusion coefficient is used in the 2-D numerical model to parameterize realistic turbulent mixing. Our study shows that the momentum deposited by breaking GWs accelerates the mean wind. The resultant large background wind increases the GW's apparent horizontal phase velocity and decreases the GW's intrinsic frequency and vertical wavelength. Both the accelerated mean wind and the decreased GW vertical wavelength contribute to the enhancement of wind shears. This, in turn, creates a background condition that favors the occurrence of GW instability, breaking, and momentum deposition, as well as mean wind acceleration, which further enhances the wind shears. We find that GWs with longer vertical wavelengths and faster horizontal phase velocity can induce larger winds, but they may not necessarily induce larger wind shears. In addition, the background temperature can affect the time and height of GW breaking, thus causing accelerated mean winds and wind shears.

  10. Wide Area Wind Field Monitoring Status & Results

    Energy Technology Data Exchange (ETDEWEB)

    Alan Marchant; Jed Simmons

    2011-09-30

    Volume-scanning elastic has been investigated as a means to derive 3D dynamic wind fields for characterization and monitoring of wind energy sites. An eye-safe volume-scanning lidar system was adapted for volume imaging of aerosol concentrations out to a range of 300m. Reformatting of the lidar data as dynamic volume images was successfully demonstrated. A practical method for deriving 3D wind fields from dynamic volume imagery was identified and demonstrated. However, the natural phenomenology was found to provide insufficient aerosol features for reliable wind sensing. The results of this study may be applicable to wind field measurement using injected aerosol tracers.

  11. Wind Loads on Structures

    DEFF Research Database (Denmark)

    Dyrbye, Claes; Hansen, Svend Ole

    Wind loads have to be taken into account when designing civil engineering structures. The wind load on structures can be systematised by means of the wind load chain: wind climate (global), terrain (wind at low height), aerodynamic response (wind load to pressure), mechanical response (wind...... pressure to structural response) and design criteria. Starting with an introduction of the wind load chain, the book moves on to meteorological considerations, atmospheric boundary layer, static wind load, dynamic wind load and scaling laws used in wind-tunnel tests. The dynamic wind load covers vibrations...... induced by wind turbulence, vortex shedding, flutter and galloping. The book gives a comprehensive treatment of wind effects on structures and it will be useful for consulting engineers designing wind-sensitive structures. It will also be valuable for students of civil engineering as textbook...

  12. Modelling Wind Turbine Inflow: The Induction Zone

    DEFF Research Database (Denmark)

    Meyer Forsting, Alexander Raul

    to the rotor, but requires exact knowledge of the flow deceleration to estimate the available, undis- turbed kinetic energy. Thus this thesis explores, mostly numerically, any wind turbine or environmental dependencies of this deceleration. The computational fluid dynamics model (CFD) employed is validated......A wind turbine decelerates the wind in front of its rotor by extracting kinetic energy. The wind speed reduction is maximal at the rotor and negligible more than five rotor radii upfront. By measuring wind speed this far from the rotor, the turbine’s performance is determined without any rotor bias...... significant parameter. Exploiting this singu- lar dependency, a fast semi-empirical model is devised that accurately predicts the velocity deficit upstream of a single turbine. Near-rotor mea-surements in combination with this model are able to retrieve the kinetic energy available to the turbine in flat...

  13. Stellar winds

    International Nuclear Information System (INIS)

    Weymann, R.J.

    1978-01-01

    It is known that a steady outflow of material at comparable rates of mass loss but vastly different speeds is now known to be ubiquitous phenomenon among both the luminous hot stars and the luminous but cool red giants. The flows are probably massive enough in both cases to give rise to significant effects on stellar evolution and the mass balance between stars and the interstellar medium. The possible mechanisms for these phenomena as well as the methods of observation used are described. In particular, the mass-loss processes in stars other than the sun that also involve a steady flow of matter are considered. The evidence for their existence is described, and then the question of whether the process thought to produce the solar wind is also responsible for producing these stellar winds is explored

  14. THE MULTIPHASE STRUCTURE AND POWER SOURCES OF GALACTIC WINDS IN MAJOR MERGERS

    Energy Technology Data Exchange (ETDEWEB)

    Rupke, David S. N. [Department of Physics, Rhodes College, Memphis, TN 38112 (United States); Veilleux, Sylvain, E-mail: drupke@gmail.com [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2013-05-01

    Massive, galaxy-scale outflows are known to be ubiquitous in major mergers of disk galaxies in the local universe. In this paper, we explore the multiphase structure and power sources of galactic winds in six ultraluminous infrared galaxies (ULIRGs) at z < 0.06 using deep integral field spectroscopy with the Gemini Multi-Object Spectrograph (GMOS) on Gemini North. We probe the neutral, ionized, and dusty gas phases using Na I D, strong emission lines ([O I], H{alpha}, and [N II]), and continuum colors, respectively. We separate outflow motions from those due to rotation and tidal perturbations, and find that all of the galaxies in our sample host high-velocity flows on kiloparsec scales. The properties of these outflows are consistent with multiphase (ionized, neutral, and dusty) collimated bipolar winds emerging along the minor axis of the nuclear disk to scales of 1-2 kpc. In two cases, these collimated winds take the form of bipolar superbubbles, identified by clear kinematic signatures. Less collimated (but still high-velocity) flows are also present on scales up to 5 kpc in most systems. The three galaxies in our sample with obscured QSOs host higher velocity outflows than those in the three galaxies with no evidence for an active galactic nucleus. The peak outflow velocity in each of the QSOs is in the range 1450-3350 km s{sup -1}, and the highest velocities (2000-3000 km s{sup -1}) are seen only in ionized gas. The outflow energy and momentum in the QSOs are difficult to produce from a starburst alone, but are consistent with the QSO contributing significantly to the driving of the flow. Finally, when all gas phases are accounted for, the outflows are massive enough to provide negative feedback to star formation.

  15. Doppler Lidar for Wind Measurements on Venus

    Science.gov (United States)

    Singh, Upendra N.; Emmitt, George D.; Yu, Jirong; Kavaya, Michael J.

    2010-01-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. The transmitter portion of the transceiver employs the high-pulse-energy, Ho:Tm:LuLiF, partially conductively cooled laser technology developed at NASA Langley. The transceiver is capable of 250 mJ pulses at 10 Hz. It is very similar to the technology envisioned for coherent Doppler lidar wind measurements from Earth and Mars orbit. The transceiver is coupled to the large optics and data acquisition system in the NASA Langley VALIDAR mobile trailer. The large optics consists of a 15-cm off-axis beam expanding telescope, and a full-hemispheric scanner. Vertical and horizontal vector winds are measured, as well as relative backscatter. The data acquisition system employs frequency domain velocity estimation and pulse accumulation. It permits real-time display of the processed winds and archival of all data. This lidar system was recently deployed at Howard University facility in Beltsville, Mary-land, along with other wind lidar systems. Coherent Doppler wind lidar ground-based wind measurements and comparisons with other sensors will be presented. A simulation and data product for wind measurement at Venus will be presented.

  16. A correlative study of simultaneously measured He(++) fluxes in the solar wind and in the magnetosphere utilizing Imp-1 and 1971-089A satellite data

    Science.gov (United States)

    Shelley, E. G.

    1975-01-01

    Simultaneously measured He(++) fluxes in the solar wind and in the magnetosphere were studied using data from the plasma spectrometer on the Imp I satellite and the energetic ion mass spectrometer on the low altitude polar orbiting satellite 1971-89A. A detailed comparison of the He(++) energy spectra measured simultaneously in the solar wind and in the low altitude dayside polar cusp on March 7, 1972 was made. The energy-per-unit-charge range of the energetic ion mass spectrometer on board the polar orbiting satellite was 700 eV to 12 keV. Within this range there was a clear maximum in the He(++) energy spectrum at approximately 1.5 keV/nucleon. There was not a clearly defined maximum in the H(+) spectrum, but the data were consistent with a peak between 0.7 and 1.0 keV/nucleon. Both spectra could be reasonably well fit with a convecting Maxwellian plus a high energy tail; however, the mean velocity for He(++) distribution was significantly greater than that for the H(+) distribution. The simultaneous solar wind measurements showed the mean velocities for both ion species to be approximately 600 km/sec. The discrepancies between the relative velocity distributions in the low altitude cusp and those in the solar wind are consistent with a potential difference of approximately 1.4 kV along their flow direction between the two points of observation.

  17. Turbulent Flow Inside and Above a Wind Farm: A Wind-Tunnel Study

    Directory of Open Access Journals (Sweden)

    Leonardo P. Chamorro

    2011-11-01

    Full Text Available Wind-tunnel experiments were carried out to better understand boundary layer effects on the flow pattern inside and above a model wind farm under thermally neutral conditions. Cross-wire anemometry was used to characterize the turbulent flow structure at different locations around a 10 by 3 array of model wind turbines aligned with the mean flow and arranged in two different layouts (inter-turbine separation of 5 and 7 rotor diameters in the direction of the mean flow by 4 rotor diameters in its span. Results suggest that the turbulent flow can be characterized in two broad regions. The first, located below the turbine top tip height, has a direct effect on the performance of the turbines. In that region, the turbulent flow statistics appear to reach equilibrium as close as the third to fourth row of wind turbines for both layouts. In the second region, located right above the first one, the flow adjusts slowly. There, two layers can be identified: an internal boundary layer where the flow is affected by both the incoming wind and the wind turbines, and an equilibrium layer, where the flow is fully adjusted to the wind farm. An adjusted logarithmic velocity distribution is observed in the equilibrium layer starting from the sixth row of wind turbines. The effective surface roughness length induced by the wind farm is found to be higher than that predicted by some existing models. Momentum recovery and turbulence intensity are shown to be affected by the wind farm layout. Power spectra show that the signature of the tip vortices, in both streamwise and vertical velocity components, is highly affected by both the relative location in the wind farm and the wind farm layout.

  18. Wind power variations under humid and arid meteorological conditions

    International Nuclear Information System (INIS)

    Şen, Zekâi

    2013-01-01

    Highlights: • It indicates the role of weather parameters’ roles in the wind energy calculation. • Meteorological variables are more significant in arid regions for wind power. • It provides opportunity to take into consideration air density variability. • Wind power is presented in terms of the wind speed, temperature and pressure. - Abstract: The classical wind power per rotor area per time is given as the half product of the air density by third power of the wind velocity. This approach adopts the standard air density as constant (1.23 g/cm 3 ), which ignores the density dependence on air temperature and pressure. Weather conditions are not taken into consideration except the variations in wind velocity. In general, increase in pressure and decrease in temperature cause increase in the wind power generation. The rate of increase in the pressure has less effect on the wind power as compared with the temperature rate. This paper provides the wind power formulation based on three meteorological variables as the wind velocity, air temperature and air pressure. Furthermore, from the meteorology point of view any change in the wind power is expressed as a function of partial changes in these meteorological variables. Additionally, weather conditions in humid and arid regions differ from each other, and it is interesting to see possible differences between the two regions. The application of the methodology is presented for two meteorology stations in Istanbul, Turkey, as representative of the humid regions and Al-Madinah Al-Monawwarah, Kingdom of Saudi Arabia, for arid region, both on daily record bases for 2010. It is found that consideration of air temperature and pressure in the average wind power calculation gives about 1.3% decrease in Istanbul, whereas it is about 13.7% in Al-Madinah Al-Monawwarah. Hence, consideration of meteorological variables in wind power calculations becomes more significant in arid regions

  19. Chaos in the solar wind flow near Earth

    Indian Academy of Sciences (India)

    We have done a time series analysis of daily average data of solar wind velocity, density and temperature at 1 AU measured by ACE spacecraft for a period of nine years. We have used the raw data without filtering to give a faithful representation of the nonlinear behaviour of the solar wind flow which is a novel one.

  20. Chaos in the solar wind flow near Earth

    Indian Academy of Sciences (India)

    Abstract. We have done a time series analysis of daily average data of solar wind velocity, density and temperature at 1 AU measured by ACE spacecraft for a period of nine years. We have used the raw data without filtering to give a faithful representation of the nonlinear behaviour of the solar wind flow which is a novel one ...

  1. On the length-scale of the wind profile

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Gryning, Sven-Erik; Mann, Jakob

    2010-01-01

    We present the results of an analysis of simultaneous sonic anemometer observations of wind speed and velocity spectra over flat and homogeneous terrain from 10 up to 160 m height performed at the National Test Station for Wind Turbines at Høvsøre, Denmark. The mixing length, l, derived from the ...

  2. Global wind power development: Economics and policies

    International Nuclear Information System (INIS)

    Timilsina, Govinda R.; Cornelis van Kooten, G.; Narbel, Patrick A.

    2013-01-01

    Existing literature indicates that theoretically, the earth's wind energy supply potential significantly exceeds global energy demand. Yet, only 2–3% of global electricity demand is currently derived from wind power despite 27% annual growth in wind generating capacity over the last 17 years. More than 95% of total current wind power capacity is installed in the developed countries plus China and India. Our analysis shows that the economic competitiveness of wind power varies at wider range across countries or locations. A climate change damage cost of US$20/tCO 2 imposed to fossil fuels would make onshore wind competitive to all fossil fuels for power generation; however, the same would not happen to offshore wind, with few exceptions, even if the damage cost is increased to US$100/tCO 2 . To overcome a large number of technical, financial, institutional, market and other barriers to wind power, many countries have employed various policy instruments, including capital subsidies, tax incentives, tradable energy certificates, feed-in tariffs, grid access guarantees and mandatory standards. Besides, climate change mitigation policies, such as the Clean Development Mechanism, have played a pivotal role in promoting wind power. Despite these policies, intermittency, the main technical constraint, could remain as the major challenge to the future growth of wind power. - Highlights: • Global wind energy potential is enormous, yet the wind energy contribution is very small. • Existing policies are boosting development of wind power. • Costs of wind energy are higher than cost of fossil-based energies. • Reasonable premiums for climate change mitigation substantially promote wind power. • Intermittency is the key challenge to future development of wind power

  3. Model Predictive Control with Constraints of a Wind Turbine

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian; Poulsen, Niels Kjølstad

    2007-01-01

    Model predictive control of wind turbines offer a more systematic approach of constructing controllers that handle constraints while focusing on the main control objective. In this article several controllers are designed for different wind conditions and appropriate switching conditions ensure...... an efficient control of the wind turbine over the entire range of wind speeds. Both onshore and floating offshore wind turbines are tested with the controllers....

  4. Wave propagation and group velocity

    CERN Document Server

    Brillouin, Léon

    1960-01-01

    Wave Propagation and Group Velocity contains papers on group velocity which were published during the First World War and are missing in many libraries. It introduces three different definitions of velocities: the group velocity of Lord Rayleigh, the signal velocity of Sommerfeld, and the velocity of energy transfer, which yields the rate of energy flow through a continuous wave and is strongly related to the characteristic impedance. These three velocities are identical for nonabsorbing media, but they differ considerably in an absorption band. Some examples are discussed in the last chapter

  5. Radar range measurements in the atmosphere.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2013-02-01

    The earths atmosphere affects the velocity of propagation of microwave signals. This imparts a range error to radar range measurements that assume the typical simplistic model for propagation velocity. This range error is a function of atmospheric constituents, such as water vapor, as well as the geometry of the radar data collection, notably altitude and range. Models are presented for calculating atmospheric effects on radar range measurements, and compared against more elaborate atmospheric models.

  6. Polar solar wind and interstellar wind properties from interplanetary Lyman-alpha radiation measurements

    Science.gov (United States)

    Witt, N.; Blum, P. W.; Ajello, J. M.

    1981-01-01

    The analysis of Mariner 10 observations of Lyman-alpha resonance radiation shows an increase of interplanetary neutral hydrogen densities above the solar poles. This increase is caused by a latitudinal variation of the solar wind velocity and/or flux. Using both the Mariner 10 results and other solar wind observations, the values of the solar wind flux and velocity with latitude are determined for several cases of interest. The latitudinal variation of interplanetary hydrogen gas, arising from the solar wind latitudinal variation, is shown to be most pronounced in the inner solar system. From this result it is shown that spacecraft Lyman-alpha observations are more sensitive to the latitudinal anisotropy for a spacecraft location in the inner solar system near the downwind axis.

  7. Wind Technologies & Evolving Opportunities (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Robichaud, R.

    2014-07-01

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  8. Effect of a rough surface on the aerodynamic characteristics of a two-bladed wind-powered engine with cylindrical blades

    Science.gov (United States)

    Tanasheva, N. K.; Kunakbaev, T. O.; Dyusembaeva, A. N.; Shuyushbayeva, N. N.; Damekova, S. K.

    2017-11-01

    We have reported the results of experiments on determining the drag coefficient and the thrust coefficient of a two-bladed wind-powered engine based on the Magnus effect with rotating rough cylinders in the range of air flow velocity of 4-10 m/s (Re = 26800-90000) for a constant rotation number of a cylindrical blade about its own axis. The results show that an increase in the Reynolds number reduces the drag coefficient and the thrust coefficient. The extent of the influence of the relative roughness on the aerodynamic characteristics of the two-bladed wind-powered engine has been experimentally established.

  9. Transverse Spectral Velocity Estimation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2014-01-01

    array probe is used along with two different estimators based on the correlation of the received signal. They can estimate the velocity spectrum as a function of time as for ordinary spectrograms, but they also work at a beam-to-flow angle of 90°. The approach is validated using simulations of pulsatile...... flow using the Womersly–Evans flow model. The relative bias of the mean estimated frequency is 13.6% and the mean relative standard deviation is 14.3% at 90°, where a traditional estimator yields zero velocity. Measurements have been conducted with an experimental scanner and a convex array transducer....... A pump generated artificial femoral and carotid artery flow in the phantom. The estimated spectra degrade when the angle is different from 90°, but are usable down to 60° to 70°. Below this angle the traditional spectrum is best and should be used. The conventional approach can automatically be corrected...

  10. Wave modelling for the North Indian Ocean using MSMR analysed winds

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Sudheesh, K.; Rupali, S.P.; Babu, M.T.; Jayakumar, S.; Saran, A.K.; Basu, S.K.; Kumar, R.; Sarkar, A.

    NCMRWF (National Centre for Medium Range Weather Forecast) winds assimilated with MSMR (Multi-channel Scanning Microwave Radiometer) winds are used as input to MIKE21 Offshore Spectral Wave model (OSW) which takes into account wind induced wave...

  11. The UNDP/GEF Baltic wind atlas

    DEFF Research Database (Denmark)

    Rathmann, O.

    2003-01-01

    was running for about two years it was only possible to get one full one-year data series for each site with start time ranging from primo May 2001 to primo October 2001. Themeasured data have been analysed according to the “Wind Atlas Method”, implying cleansing the wind data for nearby terrain effects......, and resulting in regional wind climates or Wind Atlases referring to a number of standard conditions. To the extentpossible measures have been taken to make the regional wind climates represent long-term wind statistics (> 10 year). This was done by using correlation techniques based on reference data from met...... of the three national meteorological institutes. All relevant data files regarding the 8 stations of the project will be available from the wind atlas web of Risø National Laboratory: www.windatlas.dk - with the exception of the private datameasured at Türisalu....

  12. Variable Winds in Early-B Hypergiants

    Science.gov (United States)

    Wolf, Bernhard; Rivinius, Thomas

    Early-B hypergiants belong to the most luminous stars in the Universe. They are characterized by high mass-loss rates (dot M≈ 10-5 M⊙yr-1) and low terminal wind velocities (v ∞≈400 km s-1) implying very dense winds. They represent a short-lived evolutionary phase and are of particular interest for evolutionary theories of massive stars with mass loss. Due to their high luminosity they play a key role in connection with the "wind momentum — luminosity relation". Among the main interesting characteristics of early-B hypergiants are the various kinds of photometric and spectroscopic variations. In several recent campaigns our group has performed extensive high dispersion spectroscopy of galactic early-B hypergiants with our fiber-fed echelle spectrograph Flash/Heros at the ESO-50 cm telescope. The main outcome was that their dense winds behave hydrodynamically differently to the less luminous supergiants of comparable spectral type. Outwardly accelerated propagating discrete absorption components of the P Cyg-type lines are the typical features rather than rotationally modulated line profile variations. These discrete absorptions could be traced in different spectral lines from photospheric velocities up to 75% of the terminal velocity. The stellar absorption lines show a pulsation-like radial velocity variability pattern lasting up to two weeks as the typical time scale. The radius variations connected with this pulsation-like motions are correlated with the emission height of the P Cyg-type profiles.

  13. A wind-tunnel investigation of wind-turbine wakes in yawed conditions

    Science.gov (United States)

    Bastankhah, Majid; Porté-Agel, Fernando

    2015-06-01

    Wind-tunnel experiments were performed to study the performance of a model wind turbine and its wake characteristics in a boundary layer under different operating conditions, including different yaw angles and tip speed ratios. High-resolution particle image- velocimetry (PIV) was used to measure the three velocity components in a horizontal plane at hub height covering a broad streamwise range from upstream of the turbine to the far- wake region. Additionally, thrust and power coefficients of the turbine were measured under different conditions. These power and thrust measurements, together with the highly-resolved flow measurements, enabled us to systematically study different wake properties. The near-wake region is found to have a highly complex structure influenced by different factors such as tip speed ratio and wake rotation. In particular, for higher tip speed ratios, a noticeable speed-up region is observed in the central part of near wake, which greatly affects the flow distribution in this region. In this regard, the behavior of the near wake for turbines with similar thrust coefficients but different tip speed ratios can vary widely. In contrast, it is shown that the mean streamwise velocity in the far wake of the turbine with zero yaw angle has a self-similar Gaussian distribution, and the strength of wake in this region is consistent with the magnitude of the thrust coefficient. With increasing yaw angle, as expected, the power and thrust coefficients decrease, and the wake deflection increases. The measurements also reveal that, in addition to turbulent momentum flux, lateral mean momentum flux boosts the flow entrainment in only one side of the wake, which results in a faster wake recovery in that side. It is also found that the induced velocity upstream of a yawed turbine has a non-symmetric distribution, and its distribution is in agreement with the available model in the literature. Moreover, the results suggest that in order to accurately

  14. Kahuku, Oahu wind summary. Period covered: August--November 1976

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, D.M.; Zalkan, R.L.; Walton, J.J.; Hill, K.L.

    1977-02-01

    Wind-energy measurements conducted by the Lawrence Livermore Laboratory on the island of Oahu, Hawaii, are discussed briefly. Measurement locations in northern Oahu are identified. The measurement site at Kahuku, Oahu, is described. Data obtained at the Kahuku location are summarized as daily and monthly mean velocities for August through November, 1976. Velocity duration curves for each month are also given.

  15. Friction velocity and aerodynamic roughness of conventional and undercutter tillage within the Columbia Plateau, USA

    Science.gov (United States)

    Friction velocity and aerodynamic roughness are characteristics of the soil-plant-atmosphere interface which affect wind erosion. Although exchange of momentum at the interface can be altered by land management practices, no attempts have been made to quantify the effect of tillage on friction veloc...

  16. Impact of wind waves on the air-sea fluxes: A coupled model

    Science.gov (United States)

    Kudryavtsev, V.; Chapron, B.; Makin, V.

    2014-02-01

    A revised wind-over-wave-coupling model is developed to provide a consistent description of the sea surface drag and heat/moister transfer coefficients, and associated wind velocity and temperature profiles. The spectral distribution of short wind waves in the decimeter to a few millimeters range of wavelengths is introduced based on the wave action balance equation constrained using the Yurovskaya et al. (2013) optical field wave measurements. The model is capable to reproduce fundamental statistical properties of the sea surface, such as the mean square slope and the spectral distribution of breaking crests length. The surface stress accounts for the effect of airflow separation due to wave breaking, which enables a better fit of simulated form drag to observations. The wave breaking controls the overall energy losses for the gravity waves, but also the generation of shorter waves including the parasitic capillaries, thus enhancing the form drag. Breaking wave contribution to the form drag increases rapidly at winds above 15 m/s where it exceeds the nonbreaking wave contribution. The overall impact of wind waves (breaking and nonbreaking) leads to a sheltering of the near-surface layer where the turbulent mixing is suppressed. Accordingly, the air temperature gradient in this sheltered layer increases to maintain the heat flux constant. The resulting deformation of the air temperature profile tends to lower the roughness scale for temperature compared to its value over the smooth surface.

  17. The observable properties of cool winds from galaxies, AGN, and star clusters - I. Theoretical framework

    Science.gov (United States)

    Krumholz, Mark R.; Thompson, Todd A.; Ostriker, Eve C.; Martin, Crystal L.

    2017-11-01

    Winds arising from galaxies, star clusters, and active galactic nuclei are crucial players in star and galaxy formation, but it has proven remarkably difficult to use observations of them to determine physical properties of interest, particularly mass fluxes. Much of the difficulty stems from a lack of a theory that links a physically realistic model for winds' density, velocity and covering factors to calculations of light emission and absorption. In this paper we provide such a model. We consider a wind launched from a turbulent region with a range of column densities, derive the differential acceleration of gas as a function of column density, and use this result to compute winds' absorption profiles, emission profiles and emission intensity maps in both optically thin and optically thick species. The model is sufficiently simple that all required computations can be done analytically up to straightforward numerical integrals, rendering it suitable for the problem of deriving physical parameters by fitting models to observed data. We show that our model produces realistic absorption and emission profiles for some example cases, and argue that the most promising methods of deducing mass fluxes are based on combinations of absorption lines of different optical depths, or on combining absorption with measurements of molecular line emission. In the second paper in this series, we expand on these ideas by introducing a set of observational diagnostics that are significantly more robust than those commonly in use, and that can be used to obtain improved estimates of wind properties.

  18. On Kinetic Slow Modes, Fluid Slow Modes, and Pressure-balanced Structures in the Solar Wind

    International Nuclear Information System (INIS)

    Verscharen, Daniel; Chen, Christopher H. K.; Wicks, Robert T.

    2017-01-01

    Observations in the solar wind suggest that the compressive component of inertial-range solar-wind turbulence is dominated by slow modes. The low collisionality of the solar wind allows for nonthermal features to survive, which suggests the requirement of a kinetic plasma description. The least-damped kinetic slow mode is associated with the ion-acoustic (IA) wave and a nonpropagating (NP) mode. We derive analytical expressions for the IA-wave dispersion relation in an anisotropic plasma in the framework of gyrokinetics and then compare them to fully kinetic numerical calculations, results from two-fluid theory, and magnetohydrodynamics (MHD). This comparison shows major discrepancies in the predicted wave phase speeds from MHD and kinetic theory at moderate to high β . MHD and kinetic theory also dictate that all plasma normal modes exhibit a unique signature in terms of their polarization. We quantify the relative amplitude of fluctuations in the three lowest particle velocity moments associated with IA and NP modes in the gyrokinetic limit and compare these predictions with MHD results and in situ observations of the solar-wind turbulence. The agreement between the observations of the wave polarization and our MHD predictions is better than the kinetic predictions, which suggests that the plasma behaves more like a fluid in the solar wind than expected.

  19. WIND TUNNEL RESEARCH ON THE INFLUENCE OF ACTIVE AIRFLOW ON THE LIFT FORCE GENERATED BY THE AIRFOIL

    Directory of Open Access Journals (Sweden)

    Paweł Magryta

    2013-09-01

    Full Text Available The paper discusses the results of wind tunnel tests of airfoils with additional active airflow applied to their upper surfaces. These studies were carried out for a range of velocities up to 28 m/s in an open wind tunnel. Several types of airfoils selected for the examination feature different geometries and are widely applied in today’s aviation industry. The changes in the lift and drag force generated by these airfoils were recorded during the study. The test bench for the tests was equipped with a compressor and a vacuum pump to enable airflow through some holes on the airfoil upper surface. A rapid prototyping method and a 3D printer based on a powder printing technique were applied to print the airfoils. All of their surfaces were subject to surface grinding to smooth their external surfaces. The wind tunnel tests with and without active airflow applied to airfoils are summarised in the paper.

  20. Electron characteristics in the high speed solar wind

    International Nuclear Information System (INIS)

    Feldman, W.C.

    1978-01-01

    Experimental work done since 1976 on the physics of electrons in the high speed solar wind is reviewed. The main new results are most electron parameters are uniform in the high speed solar wind indicating that it is a well defined, structure-free state of the coronal expansion. The higher energy unbound part of electron velocity distributions (the halo) is consistent with nearly collisionless propagation to 1AU from some heliocentric distance in the range between about 10 and 30 solar radii. The low energy bound electron (core) component appears to be strongly coupled to the protons as well as to one another through Coulomb and wave electron collisions. The first measured radial profile of the core-electron temperature in the high speed solar wind is best characterized in terms of two separate power laws applicable in the distance ranges between 0.47 and 0.62 AU and between 0.62 and 1.0 AU respectively. The best estimate for the power law indices in the inner and outer regions are α 1 = -1.14 +-0.24 and α 0 = +0.28 +-0.13, respectively. A relations of the form Q = γN/sub c/kT/sub c/U/(1 + βγ/sub sigma11 γcp) with = 10.7 and β = 4.2 may be useful in closing the Vlasov moment equations describing general solar wind flows in interplanetary space. The quantity Q is the total heat flux, N/sub c/ and T/sub c/ are the core-electron density and temperature respectively, k is Boltzmann's constant, U is the proton bulk speed in the solar corotating reference frame, /sub tsigma/ is the bounce period of a typical core electron and /+ sub tcp/ is the average core electron-proton Coulomb deflection time. 16 refs

  1. Wind Power Meteorology

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Mortensen, Niels Gylling; Landberg, Lars

    Wind power meteorology has evolved as an applied science, firmly founded on boundary-layer meteorology, but with strong links to climatology and geography. It concerns itself with three main areas: siting of wind turbines, regional wind resource assessment, and short-term prediction of the wind...... resource. The history, status and perspectives of wind power meteorology are presented, with emphasis on physical considerations and on its practical application. Following a global view of the wind resource, the elements of boundary layer meteorology which are most important for wind energy are reviewed......: wind profiles and shear, turbulence and gust, and extreme winds. The data used in wind power meteorology stem mainly from three sources: onsite wind measurements, the synoptic networks, and the re-analysis projects. Wind climate analysis, wind resource estimation and siting further require a detailed...

  2. INCAS TRISONIC WIND TUNNEL

    Directory of Open Access Journals (Sweden)

    Florin MUNTEANU

    2009-09-01

    Full Text Available The 1.2 m x 1.2 m Trisonic Blowdown Wind Tunnel is the largest of the experimental facilities at the National Institute for Aerospace Research - I.N.C.A.S. "Elie Carafoli", Bucharest, Romania. The tunnel has been designed by the Canadian company DSMA (now AIOLOS and since its commissioning in 1978 has performed high speed aerodynamic tests for more than 120 projects of aircraft, missiles and other objects among which the twin jet fighter IAR-93, the jet trainer IAR-99, the MIG-21 Lancer, the Polish jet fighter YRYDA and others. In the last years the wind tunnel has been used mostly for experimental research in European projects such as UFAST. The high flow quality parameters and the wide range of testing capabilities ensure the competitivity of the tunnel at an international level.

  3. Wind turbine spoiler

    Science.gov (United States)

    Sullivan, W.N.

    An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

  4. The effect of fog on radionuclide deposition velocities

    International Nuclear Information System (INIS)

    Gibb, R.; Carson, P.; Thompson, W.

    1997-01-01

    Current nuclear power station release models do not evaluate deposition under foggy atmospheric conditions. Deposition velocities and scavenging coefficients of radioactive particles entrained in fog are presented for the Point Lepreau area of the Bay of Fundy coast. It is recommended to calculate deposition based on fog deposition velocities. The deposition velocities can be calculated from common meteorological data. The range of deposition velocities is approximately 1 - 100 cm/s. Fog deposition is surface roughness dependent with forests having larger deposition and deposition velocities than soil or grasses. (author)

  5. Correlations at large scales and the onset of turbulence in the fast solar wind

    International Nuclear Information System (INIS)

    Wicks, R. T.; Roberts, D. A.; Mallet, A.; Schekochihin, A. A.; Horbury, T. S.; Chen, C. H. K.

    2013-01-01

    We show that the scaling of structure functions of magnetic and velocity fields in a mostly highly Alfvénic fast solar wind stream depends strongly on the joint distribution of the dimensionless measures of cross helicity and residual energy. Already at very low frequencies, fluctuations that are both more balanced (cross helicity ∼0) and equipartitioned (residual energy ∼0) have steep structure functions reminiscent of 'turbulent' scalings usually associated with the inertial range. Fluctuations that are magnetically dominated (residual energy ∼–1), and so have closely anti-aligned Elsasser-field vectors, or are imbalanced (cross helicity ∼1), and so have closely aligned magnetic and velocity vectors, have wide '1/f' ranges typical of fast solar wind. We conclude that the strength of nonlinear interactions of individual fluctuations within a stream, diagnosed by the degree of correlation in direction and magnitude of magnetic and velocity fluctuations, determines the extent of the 1/f region observed, and thus the onset scale for the turbulent cascade.

  6. Probabilistic Wind Speed Forecasting using Ensembles and Bayesian Model Averaging

    National Research Council Canada - National Science Library

    Sloughter, J. M; Gneiting, Tilmann; Raftery, Adrian E

    2008-01-01

    Probabilistic forecasts of wind speed are becoming critical as interest grows in wind as a clean and renewable source of energy, in addition to a wide range of other uses, from aviation to recreational boating...

  7. The dynamics of buoyant jets in a linearly stratified ambient cross-flow: Implications for the interaction between volcanic plumes and wind

    Science.gov (United States)

    Carazzo, Guillaume; Girault, Frédéric; Aubry, Thomas; Bouquerel, Hélène; Kaminski, Édouard

    2014-05-01

    Volcanic plumes produced by explosive eruptions commonly interact with atmospheric wind causing plume bending and a reduction of its maximum rise height. It is well known that the maximum height reached by a buoyant plume rising in a cross-flow with uniform velocity is controlled by the plume buoyancy flux at the source, the strength of the initial environmental density stratification, the wind velocity and the efficiency of turbulent entrainment. Although numerous studies have been carried out to understand the effects of variations of environmental and source conditions on the plume maximum height, turbulent entrainment has not been taken into account with the same level of detailed analysis. Here, we present new laboratory experiments aimed at better understanding the contribution of the turbulent entrainment to determining the plume maximum height. The experiments consist in injecting downward fresh water in a tank containing an aqueous NaCl solution with linear density stratification. The jet source is towed at a constant speed through the stationary fluid in order to produce a cross-flow. According to the range of source and environmental conditions, the buoyant jet is distorted or bent-over and its maximum rise height is reduced up to a factor of 2 when wind speed is high. We quantify the efficiency of turbulent entrainment due to wind in our experiments and we show that the dynamical regime strongly depends on the ratio of the horizontal wind speed and the vertical plume velocity, and on the Richardson number defined at the source. Our results provide a robust framework to characterize the entrainment coefficient due to wind in a 1D model of turbulent jet rising in a linearly stratified ambient cross-flow, and hence can be used for the assessment of the impact of atmospheric winds on the dynamics of explosive volcanic plumes.

  8. Study of wind forces on low-rise hip-roof building

    African Journals Online (AJOL)

    DR OKE

    Wind pressures on buildings and structures depend upon the velocity profile and turbulence ... the interaction between wind and structures numerically offering an alternative technique to practical applications. Earlier the ..... Areas of research are masonry structures, Computational Fluid Dynamics and Wind engineering.

  9. Prospecting for Wind

    Science.gov (United States)

    Swapp, Andy; Schreuders, Paul; Reeve, Edward

    2011-01-01

    Many people use wind to help meet their needs. Over the years, people have been able to harness or capture the wind in many different ways. More recently, people have seen the rebirth of electricity-generating wind turbines. Thus, the age-old argument about technology being either good or bad can also be applied to the wind. The wind can be a…

  10. Careers in Wind Energy

    Science.gov (United States)

    Liming, Drew; Hamilton, James

    2011-01-01

    As a common form of renewable energy, wind power is generating more than just electricity. It is increasingly generating jobs for workers in many different occupations. Many workers are employed on wind farms: areas where groups of wind turbines produce electricity from wind power. Wind farms are frequently located in the midwestern, western, and…

  11. Turbulent wind waves on a water current

    Directory of Open Access Journals (Sweden)

    M. V. Zavolgensky

    2008-05-01

    Full Text Available An analytical model of water waves generated by the wind over the water surface is presented. A simple modeling method of wind waves is described based on waves lengths diagram, azimuthal hodograph of waves velocities and others. Properties of the generated waves are described. The wave length and wave velocity are obtained as functions on azimuth of wave propagation and growth rate. Motionless waves dynamically trapped into the general picture of three dimensional waves are described. The gravitation force does not enter the three dimensional of turbulent wind waves. That is why these waves have turbulent and not gravitational nature. The Langmuir stripes are naturally modeled and existence of the rogue waves is theoretically proved.

  12. MEMS based Doppler velocity measurement system

    Science.gov (United States)

    Shin, Minchul

    The design, fabrication, modeling and characterization of a capacitive micromachined ultrasonic transducer (cMUT) based in-air Doppler velocity measurement system using a 1 cm2 planar array are described. Continuous wave operation in a narrowband was chosen in order to maximize range, as it allows for better rejection of broadband noise. The sensor array has a 160-185 kHz resonant frequency to achieve a 10 degree beamwidth. A model for the cMUT and the acoustic system which includes electrical, mechanical, and acoustic components is provided. Furthermore, characterization of the cMUT sensor with a variety of testing procedures is provided. Laser Doppler vibrometry (LDV), beampattern, reflection, and velocity testing characterize the performance of the sensors. The sensor is capable of measuring the velocity of a moving specular reflector with a resolution of 5 cm/s, an update rate of 0.016 second, and a range of 1.5 m.

  13. Longitudinal Variation and Waves in Jupiter's South Equatorial Wind Jet

    Science.gov (United States)

    Simon-Miller, A. A.; Rogers, John H.; Gierasch, Peter J.; Choi, David; Allison, Michael; Adamoli, Gianluigi; Mettig, Hans-Joerg

    2012-01-01

    We have conducted a detailed study of the cloud features in the strong southern equatorial wind jet near 7.5 S planetographic latitude. To understand the apparent variations in average zonal wind jet velocity at this latitude [e.g.. 1,2,3], we have searched for variations iIi both feature latitude and velocity with longitude and time. In particular, we focused on the repetitive chevron-shaped dark spots visible on most dates and the more transient large anticyclonic system known as the South Equatorial Disturbance (SED). These small dark spots are interpreted as cloud holes, and are often used as material tracers of the wind field.

  14. Megawatt wind turbines gaining momentum

    International Nuclear Information System (INIS)

    Oehlenschlaeger, K.; Madsen, B.T.

    1996-01-01

    Through the short history of the modern wind turbine, electric utilities have made it amply clear that they have held a preference for large scale wind turbines over smaller ones, which is why wind turbine builders through the years have made numerous attempts develop such machines - machines that would meet the technical, aesthetic and economic demands that a customer would require. Considerable effort was put into developing such wind turbines in the early 1980s. There was the U.S. Department of Energy's MOD 1-5 program, which ranged up to 3.2 MW, Denmark's Nibe A and B, 630 kW turbine and the 2 MW Tjaereborg machine, Sweden's Naesudden, 3 MW, and Germany's Growian, 3 MW. Most of these were dismal failures, though some did show the potential of MW technology. (au)

  15. Wind Energy Department annual progress report 2002

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, B.D.; Riis, U. (eds.)

    2003-12-01

    Research and development activities of the Wind Energy Department range from boundary layer meteorology, fluid dynamics, and structural mechanics to power and control engineering as well as wind turbine loading and safety. The overall purpose of our work is to meet the needs for knowledge, methods and procedures from government, the scientific community, and the wind turbine industry in particular. Our assistance to the wind turbine manufacturers serve to pave the way for technological development and thus further the exploitation of wind energy worldwide. We do this by means of research and innovation, education, testing and consultancy. In providing services for the wind turbine industry, we are involved in technology development, design, testing, procedures for operation and maintenance, certification and international wind turbine projects s as well as the solution of problems encountered in the application of wind energy, e.g. grid connection. A major proportion of these activities are on a commercial basis, for instance consultancy, software development, accredited testing of wind turbines and blades as well as approval and certification in co-operation with Det Norske Veritas. The departments activities also include research into atmospheric physics and environmental issues related to the atmosphere. One example is the development of online warning systems for airborne bacteria and other harmful substances. The department is organized in programmes according to its main scientific and technical activities. Research programmes: 1) Aeroelastic Design, AED; 2) Atmospheric Phyrics, ATM; 3) Electrical DEsign and Control, EDS; 4) Wind Power Meteorology, VKM; 5) Wind Turbines, VIM; 6) Wind Turbine Diagnostics, VMD. Commercial programmes: 1) The Test Station for Large Wind Turbines, Hoevsoere, HOeV; 2) Risoe Wind Consult, INR; 3) Wind Turbine Testing; 4) Sparkaer Blade Test Centre.(au)

  16. Energy costs form European wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Milborrow, D. [Windpower Monthly, Knebel (Denmark)

    1995-12-31

    Energy generation costs from European wind farms span a very wide range. Reasons for these variations, include differences in capital and operating costs, wind speeds and differing legislative and regulatory frameworks. This article compares costs, wind speeds and discount rates for British and German windfarms and sets these alongside data from elsewhere in the European Union. In this way it is possible to determine the reasons for differences in energy generation costs. (author)

  17. Energy costs form European wind farms

    International Nuclear Information System (INIS)

    Milborrow, D.

    1995-01-01

    Energy generation costs from European wind farms span a very wide range. Reasons for these variations, include differences in capital and operating costs, wind speeds and differing legislative and regulatory frameworks. This article compares costs, wind speeds and discount rates for British and German windfarms and sets these alongside data from elsewhere in the European Union. In this way it is possible to determine the reasons for differences in energy generation costs. (author)

  18. Field evaluation of remote wind sensing technologies: Shore-based and buoy mounted LIDAR systems

    Energy Technology Data Exchange (ETDEWEB)

    Herrington, Thomas [Stevens Inst. of Technology, Hoboken, NJ (United States)

    2017-11-03

    retrieve accurate wind vectors in the marine environment over large sampling ranges (10 to 12 km) and varying atmospheric aerosol levels. Atmospheric conditions and aerosol content within the coastal ocean region of the Mid-Atlantic seaboard of the US can vary significantly over short time periods in response to frontal passages and extratropical and tropical low pressure system passage offshore of the coast. Since aerosols provide the scattering medium for the determination of LIDAR Doppler shifts in the atmosphere the accuracy and range of LIDAR derived velocity measurements as a function of variation in aerosol content in the marine environment is a key research question to be addressed. In phase 1, it is desired to capture as much variation in atmospheric conditions and aerosol content as possible. To this end, collocated measurements of LIDAR and standard anemometer wind fields will be captured by the project PIs over all four seasons and during specific events (e.g., coastal low pressure system passage) in year 1. Additionally, since the meteorological masts are permanent structures, additional events can be captured over the three year duration of the field research project. All research instruments are owned by Fishermen’s Energy and made available to the PIs though a lease agreement as part of the DOE grant. Energy Fishermen’s Energy will be responsible for the operation and maintenance of the scanning LIDAR and met mast anemometers. On a daily basis, environmental data and systems performance indicators will be transmitted from each measurement station to the Fishermen’s project team consisting of both in-house personnel and equipment manufacturer engineers. Data sets include compiled LIDAR files as well as data sets from ancillary sensors. Diagnostic parameters to be monitored include standard deviations of measured values, battery levels and charging systems output, and the operational status. Once data have been confirmed as complete and reliable, files

  19. Wind Tunnel Modeling Of Wind Flow Over Complex Terrain

    Science.gov (United States)

    Banks, D.; Cochran, B.

    2010-12-01

    , vortex shedding, and local turbulence intensity and wind shear values. To achieve accurate results, attention must of course be paid to issues such as ensuring Reynolds number independence, avoiding blockage issues, and properly matching the velocity power spectrum, but once this is done, the laws of fluid mechanics take care of the rest. There will not be an overproduction of turbulent kinetic energy at the top of escarpments, or unacceptable dissipation of inlet turbulence levels. Modern atmospheric boundary layer wind tunnels are also often used to provide validation data for evaluating the performance of CFD model in complex flow environments. Present day computers have further increased the quality and quantity of data that can be economically obtained in a timely manner, for example through wind speed measurement using a computer controlled 3-D measurement positioning system Given this accuracy and widespread acceptance, it is perhaps surprising that ours was the only wind tunnel model in the Bolund blind experiment, an indication of how seldom physical modelling is used when estimating terrain effect for wind farms. In demonstrating how the Bolund test was modeled, this presentation will provide background on wind tunnel testing, including the governing scaling parameters. And we’ll see how our results compared to the full scale tests.

  20. Wind power development field test project under Japan Sea Museum program. Detailed wind characteristics survey; Nihonkai Museum koso ni okeru furyoku kaihatsu field test jigyo (fukyo seisa) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    A detailed wind characteristics survey was conducted at Kaio-machi, Niiminato-shi, Toyama Prefecture, on the assumption that a wind power generation system would be constructed. The survey was a 1-year project from October 1998 through September 1999, and wind characteristics such as the average wind speed, average wind direction, standard deviation of wind velocity, and the maximum instantaneous wind speed were observed. The observation point was fixed at 20m above ground, the minimum time unit for observation was 10 minutes, and the 10-minute average value was defined as the measured value. For the maximum instantaneous wind speed, the minimum time unit for observation was set to be 2 seconds. The yearly average wind speed was 3.7m/s and the maximum wind speed in the period was 26m/s. Winds came prevalently from SW (17.5%), and then from WSW (11.4%) and NNE (10.2%). The wind axis was in the NE-SW direction with a total wind direction occurrence rate of 62.0%. Turbulence intensity was 0.15 at wind speed 2.0m/s or more and 0.14 at wind speed 4.0m/s or more. Estimated wind turbine yearly operating factors of 32-79% were obtained using rated values of a 150kW, 300kW, and 750kW-class wind turbines. (NEDO)

  1. Research in aeroelasticity[Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bak, C.

    2006-05-15

    In the Energy Research Project 'Program for Research in Applied Aeroelasticity' (EFP2005), Risoe National Laboratory (Risoe) and the Technical University of Denmark (DTU) have applied and further developed the tools in the aeroelastic design complex. The main results from the project are: 1) Adding a winglet to a wind turbine blade for minimizing the induced drag of the blade led to the biggest increase in power of 1.4%. 2) Transient wind loads during pitch motion are determined using CFD. Compared to the NREL/NASA Ames test, reasonably good agreement is seen. 3) A general method was developed for the determination of 3D angle of attack for rotating blades from either measurements or numerical computations using CFD. 4) A model of the far wake behind wind turbines was developed for stability studies of the tip vortices in the far wake. 5) Investigating the blade root region showed that the power efficiency, CP, locally can be increased significantly beyond the Betz limit, but that the global CP for the rotor cannot exceed the Betz limit. When including tip losses and a minimum blade drag coefficient, a maximum rotor CP in the range of 0.51-0.52 was obtained. 6) A new airfoil family was designed and a 3D airfoil design tool was developed. Compared to the Risoe-B1 family, the new airfoil family showed similar or improved aerodynamic and structural characteristics. 7) Four different airfoils were analyzed to reveal the differences between 2D and 3D CFD. The major conclusions are the dependency of computational results to transition modelling, and the ability of 3D DES calculations to realistically simulate the turbulent wake of an airfoil in stall. 8) The capability of a theory for simulation of Gaussian turbulence driven gust events was demonstrated by emulating a violent shear gust event from a complex site. An asymptotic model for the PDF of the largest excursion from the mean level, during an arbitrary recurrence period, has been derived for a stochastic

  2. Nonspherical Radiation Driven Wind Models Applied to Be Stars

    Science.gov (United States)

    Arauxo, F. X.

    1990-11-01

    ABSTRACT. In this work we present a model for the structure of a radiatively driven wind in the meridional plane of a hot star. Rotation effects and simulation of viscous forces were included in the motion equations. The line radiation force is considered with the inclusion of the finite disk correction in self-consistent computations which also contain gravity darkening as well as distortion of the star by rotation. An application to a typical BlV star leads to mass-flux ratios between equator and pole of the order of 10 and mass loss rates in the range 5.l0 to Mo/yr. Our envelope models are flattened towards the equator and the wind terminal velocities in that region are rather high (1000 Km/s). However, in the region near the star the equatorial velocity field is dominated by rotation. RESUMEN. Se presenta un modelo de la estructura de un viento empujado radiativamente en el plano meridional de una estrella caliente. Se incluyeron en las ecuaciones de movimiento los efectos de rotaci6n y la simulaci6n de fuerzas viscosas. Se consider6 la fuerza de las lineas de radiaci6n incluyendo la correcci6n de disco finito en calculos autoconsistentes los cuales incluyen oscurecimiento gravitacional asi como distorsi6n de la estrella por rotaci6n. La aplicaci6n a una estrella tipica BlV lleva a cocientes de flujo de masa entre el ecuador y el polo del orden de 10 de perdida de masa en el intervalo 5.l0 a 10 Mo/ano. Nuestros modelos de envolvente estan achatados hacia el ecuador y las velocidads terminales del viento en esa regi6n son bastante altas (1000 Km/s). Sin embargo, en la regi6n cercana a la estrella el campo de velocidad ecuatorial esta dominado por la rotaci6n. Key words: STARS-BE -- STARS-WINDS

  3. Measuring and modelling of the wind on the scale of tall wind turbines

    DEFF Research Database (Denmark)

    Floors, Rogier Ralph

    and the friction velocity had a bias, which were related to the change in surface roughness. A higher-order boundary-layer scheme represented the wind profile of the westerly flow over sea better, while a first-order scheme modelled the flow from the east with low-level jets better. The wind profile shape...... to baroclinity. The variation of the resistance law constants in neutral, baroclinic conditions was approximately the same as in experiments that where assumed to be barotropic; part of the variation was explained by baroclinity showing the importance of including this effect when studying boundary-layer winds....

  4. Investigation of wind behaviour around high-rise buildings

    Science.gov (United States)

    Mat Isa, Norasikin; Fitriah Nasir, Nurul; Sadikin, Azmahani; Ariff Hairul Bahara, Jamil

    2017-09-01

    A study on the investigation of wind behaviour around the high-rise buildings is done through an experiment using a wind tunnel and computational fluid dynamics. High-rise buildings refer to buildings or structures that have more than 12 floors. Wind is invisible to the naked eye; thus, it is hard to see and analyse its flow around and over buildings without the use of proper methods, such as the use of wind tunnel and computational fluid dynamics software.The study was conducted on buildings located in Presint 4, Putrajaya, Malaysia which is the Ministry of Rural and Regional Development, Ministry of Information Communications and Culture, Ministry of Urban Wellbeing, Housing and Local Government and the Ministry of Women, Family, and Community by making scaled models of the buildings. The parameters in which this study is conducted on are, four different wind velocities used based on the seasonal monsoons, and wind direction. ANSYS Fluent workbench software is used to compute the simulations in order to achieve the objectives of this study. The data from the computational fluid dynamics are validated with the experiment done through the wind tunnel. From the results obtained through the use of the computation fluid dynamics, this study can identify the characteristics of wind around buildings, including boundary layer of the buildings, separation flow, wake region and etc. Then analyses is conducted on the occurance resulting from the wind that passes the buildings based on the velocity difference between before and after the wind passes the buildings.

  5. Influence of wind loading

    OpenAIRE

    MAVLONOV RAVSHANBEK ABDUJABBOROVICH; VAKKASOV KHAYRULLO SAYFULLAHANOVICH

    2015-01-01

    Each wind load is determined by a probabilistic-statistical method based on the concept of “equivalent static wind load”, on the assumption that structural frames and components/cladding behave elastically in strong wind.

  6. Tower Winds - Cape Kennedy

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Digitized data taken from Wind Gust Charts. Record contains hourly wind directions and speed with a peak wind recorded at the end of each day. Sorted by: station,...

  7. Wind energy program overview

    International Nuclear Information System (INIS)

    1992-02-01

    This overview emphasizes the amount of electric power that could be provided by wind power rather than traditional fossil fuels. New wind power markets, advances in technology, technology transfer, and wind resources are some topics covered in this publication

  8. Influence on surfers wind conditions east of the new Hanstholm harbour/wind turbine project

    DEFF Research Database (Denmark)

    Larsen, Torben J.; Astrup, Poul

    on the lee side, which is an important area for wind and kite surfers. In this study, both changes in mean wind velocities as well as the turbulence level are investigated for the surf area between a location called ”Fish Factory” to the location called ”Hamburg”. The interesting wind speed interval is 8-16m/s...... mainly from west, measured in 10m height. Results are extracted in several downstream locations specified by Grontmij covering the area used for surfing. It is expected that surfing mainly occurs for wind speeds above 10m/s (10m height) and the important parameters both level of mean wind speeds as well...

  9. Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction

    OpenAIRE

    Ju Feng; Wen Zhong Shen

    2015-01-01

    Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint distributions of wind speed and wind direction, which is based on the parameters of sector-wise Weibull distributions and interpolations between direction sectors. It is applied to the wind measurement data a...

  10. Denmark Wind Energy Programme

    DEFF Research Database (Denmark)

    Shen, Wen Zhong

    2014-01-01

    In this paper, a summary of some ongoing wind energy projects in Denmark is given. The research topics comprise computational model development, wind turbine design, low noise airfoil and blade design, control device development, wake modelling, and wind farm layout optimization.......In this paper, a summary of some ongoing wind energy projects in Denmark is given. The research topics comprise computational model development, wind turbine design, low noise airfoil and blade design, control device development, wake modelling, and wind farm layout optimization....

  11. Superconducting Wind Turbine Generators

    OpenAIRE

    Yunying Pan; Danhzen Gu

    2016-01-01

    Wind energy is well known as a renewable energy because its clean and less polluted characteristic, which is the foundation of development modern wind electricity. To find more efficient wind turbine is the focus of scientists around the world. Compared from conventional wind turbines, superconducting wind turbine generators have advantages at zero resistance, smaller size and lighter weight. Superconducting wind turbine will inevitably become the main trends in this area. This paper intends ...

  12. Lidar - Wind, Raman, and Other Sensing

    OpenAIRE

    Rocadenbosch Burillo, Francisco

    2003-01-01

    Lidar stands for Llght Detection and Ranging. Laser radars or lidars, which are optically the closest counterparts of conventional rnicrowave radars, take advantage of the relatively strong interaction of laser light with atmospheric constituents. They offer superior spatial and temporal resolution and are effective remote sensing instruments. Wind, Raman, and other lidar sensing instruments encompass a wide range of systems-unprecedented long-range wind, aerosol, and molecular chemical...

  13. Introduction to vector velocity imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Udesen, Jesper; Hansen, Kristoffer Lindskov

    it virtually impossible to compensate for the factor and obtain correct velocity estimates for either CFM or spectral velocity estimation. This talk will describe methods for finding the correct velocity by estimating both the axial and lateral component of the velocity vector. The transverse oscillation...... method introduces an ultrasound field that oscillation not only along the ultrasound beam both also transverse to it to estimate both the lateral and axial velocity for the full velocity vector. The correct velocity magnitude can be found from this as well as the instantaneous angle. This can be obtained...... over the full region of interest and a real time image at a frame rate of 20 Hz can be displayed. Real time videos have been obtained from both our research systems and from commercial BK Medical scanners. The vector velocity images reveal the full complexity of the human blood flow. It is easy to see...

  14. Analysis of turbulent wake behind a wind turbine

    DEFF Research Database (Denmark)

    Kermani, Nasrin Arjomand; Andersen, Søren Juhl; Sørensen, Jens Nørkær

    2013-01-01

    The aim of this study is to improve the classical analytical model for estimation of the rate of wake expansion and the decay of wake velocity deficit in the far wake region behind a wind turbine. The relations for a fully turbulent axisymmetric far wake were derived by applying the mass and mome......The aim of this study is to improve the classical analytical model for estimation of the rate of wake expansion and the decay of wake velocity deficit in the far wake region behind a wind turbine. The relations for a fully turbulent axisymmetric far wake were derived by applying the mass...... ambient wind velocities (higher thrust coefficients), this trend may be improved due to the faster recovery of the wake and therefore closer values to the theoretical approach may be obtained. In addition, the assumption of self-similarity behavior of the mean velocity profile, when scaled with center...

  15. Wind turbines, is it just wind?

    International Nuclear Information System (INIS)

    Boiteux, M.

    2012-01-01

    The author first outlines that wind energy is not only random, but almost absent in extreme situations when it would be needed (for example and notably, very cold weather without wind). He suggests the association of a gas turbine to each wind turbine, so that the gas turbine will replace non operating wind turbines. He notices that wind turbines are not proximity energy as they were said to be, and that profitability in fact requires tens of grouped giant wind turbines. He also outlines the high cost of construction of grids for the connection of these wind turbines. Thus, he states that wind energy is far from being profitable in the present conditions of electricity tariffs in France

  16. Cluster Analysis of the Wind Events and Seasonal Wind Circulation Patterns in the Mexico City Region

    Directory of Open Access Journals (Sweden)

    Susana Carreón-Sierra

    2015-07-01

    Full Text Available The residents of Mexico City face serious problems of air pollution. Identifying the most representative scenarios for the transport and dispersion of air pollutants requires the knowledge of the main wind circulation patterns. In this paper, a simple method to recognize and characterize the wind circulation patterns in a given region is proposed and applied to the Mexico City winds (2001–2006. This method uses a lattice wind approach to model the local wind events at the meso-β scale, and hierarchical cluster analysis to recognize their agglomerations in their phase space. Data of the meteorological network of Mexico City was used as input for the lattice wind model. The Ward’s clustering algorithm with Euclidean distance was applied to organize the model wind events in seasonal clusters for each year of the period. Comparison of the hourly population trends of these clusters permitted the recognition and detailed description of seven circulation patterns. These patterns resemble the qualitative descriptions of the Mexico City wind circulation modes reported by other authors. Our method, however, permitted also their quantitative characterization in terms of the wind attributes of velocity, divergence and vorticity, and an estimation of their seasonal and annual occurrence probabilities, which never before were quantified.

  17. Numerical simulations of flow fields through conventionally controlled wind turbines and wind farms

    International Nuclear Information System (INIS)

    Yilmaz, Ali Emre; Meyers, Johan

    2014-01-01

    In the current study, an Actuator-Line Model (ALM) is implemented in our in-house pseudo-spectral LES solver SP-WIND, including a turbine controller. Below rated wind speed, turbines are controlled by a standard-torque-controller aiming at maximum power extraction from the wind. Above rated wind speed, the extracted power is limited by a blade pitch controller which is based on a proportional-integral type control algorithm. This model is used to perform a series of single turbine and wind farm simulations using the NREL 5MW turbine. First of all, we focus on below-rated wind speed, and investigate the effect of the farm layout on the controller calibration curves. These calibration curves are expressed in terms of nondimensional torque and rotational speed, using the mean turbine-disk velocity as reference. We show that this normalization leads to calibration curves that are independent of wind speed, but the calibration curves do depend on the farm layout, in particular for tightly spaced farms. Compared to turbines in a lone-standing set-up, turbines in a farm experience a different wind distribution over the rotor due to the farm boundary-layer interaction. We demonstrate this for fully developed wind-farm boundary layers with aligned turbine arrangements at different spacings (5D, 7D, 9D). Further we also compare calibration curves obtained from full farm simulations with calibration curves that can be obtained at a much lower cost using a minimal flow unit

  18. The species velocity of trees in Alaska

    Science.gov (United States)

    Morrison, B. D.; Napier, J.; de Lafontaine, G.; Heath, K.; Li, B.; Hu, F.; Greenberg, J. A.

    2017-12-01

    Anthropogenic climate change has motivated interest in the paleo record to enhance our knowledge about past vegetation responses to climate change and help understand potential responses in the future. Additionally, polar regions currently experience the most rapid rates of climate change globally, prompting concern over changes in the ecological composition of high latitude ecosystems. Recent analyses have attempted to construct methods to estimate a species' ability to track climate change by computing climate velocity; a measure of the rate of climate displacement across a landscape which may indicate the speed an organism must migrate to keep pace with climate change. However, a challenge to using climate velocity in understanding range shifts is a lack of species-specificity in the velocity calculations: climate velocity does not actually use any species data in its analysis. To solve the shortcomings of climate velocity in estimating species displacement rates, we computed the "species velocity" of white spruce, green and grey alder populations across the state of Alaska from the Last Glacial Maximum (LGM) to today. Species velocity represents the rate and direction a species is required to migrate to keep pace with a changing climate following the LGM. We used a species distribution model to determine past and present white spruce and alder distributions using statistically downscaled climate data at 60m. Species velocity was then derived from the change in species distribution per year by the change in distribution over Alaska (km/yr). High velocities indicate locations where the species environmental envelope is changing drastically and must disperse rapidly to survive climate change. As a result, high velocity regions are more vulnerable to distribution shifts and higher risk of local extinction. Conversely, low species velocities indicate locations where the local climate envelope is shifting relatively slowly, reducing the stress to disperse quickly

  19. Field investigation of a wake structure downwind of a VANT (Vertical-Axis Wind Turbine) in a wind farm array

    Science.gov (United States)

    Liu, H. T.; Buck, J. W.; Germain, A. C.; Hinchee, M. E.; Solt, T. S.; Leroy, G. M.; Srnsky, R. A.

    1988-09-01

    The effects of upwind turbine wakes on the performance of a FloWind 17-m vertical-axis wind turbine (VAWT) were investigated through a series of field experiments conducted at the FloWind wind farm on Cameron Ridge, Tehachapi, California. From the field measurements, we derived the velocity and power/energy deficits under various turbine on/off configurations. Much information was provided to characterize the structure of VAWT wakes and to assess their effects on the performance of downwind turbines. A method to estimate the energy deficit was developed based on the measured power deficit and the wind speed distributions. This method may be adopted for other turbine types and sites. Recommendations are made for optimizing wind farm design and operations, as well as for wind energy management.

  20. Advanced structural wind engineering

    CERN Document Server

    Kareem, Ahsan

    2013-01-01

    This book serves as a textbook for advanced courses as it introduces state-of-the-art information and the latest research results on diverse problems in the structural wind engineering field. The topics include wind climates, design wind speed estimation, bluff body aerodynamics and applications, wind-induced building responses, wind, gust factor approach, wind loads on components and cladding, debris impacts, wind loading codes and standards, computational tools and computational fluid dynamics techniques, habitability to building vibrations, damping in buildings, and suppression of wind-induced vibrations. Graduate students and expert engineers will find the book especially interesting and relevant to their research and work.

  1. Wind for Schools (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, I.

    2010-05-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

  2. Effects of rotor location, coning, and tilt on critical loads in large wind turbines

    Science.gov (United States)

    Spera, D. A.; Janetzke, D. C.

    1978-01-01

    Several large (1500 kW) horizontal rotor configurations were analyzed to determine the effects on dynamic loads of upwind downwind rotor locations, coned and radial blade positions, and tilted and horizontal rotor axis positions. Loads were calculated for a range of wind velocities at three locations in the structure: (1) the blade shank; (2) the hub shaft; and (3) the yaw drive. Blade axis coning and rotor axis tilt were found to have minor effects on loads. However, locating the rotor upwind of the tower significantly reduced loads at all locations analyzed.

  3. The Portuguese man-of-war: Gone with the wind

    DEFF Research Database (Denmark)

    Ferrer, Luis; Pastor Rollan, Ane

    2017-01-01

    The Portuguese man-of-war (Physalia physalis) is a siphonophore that lives at the air–water interface of the sea. The wind is the main mechanism controlling its drift. In August 2010, a significant number of individuals of this species arrived at the Basque coast (southeastern Bay of Biscay......), causing a great socio-economic impact. Here we investigate the most likely region of origin and routes of these individuals using the Sediment, Oil spill and Fish Tracking model (SOFT). This model was run backwards in time using only the wind drag velocity (i.e., the wind velocity multiplied by a wind...... drag coefficient) to estimate the drift of these Portuguese man-of-war for one year and taking into account that the final destination was the Basque coast. The wind data were obtained with the Weather Research and Forecasting model (WRF). Six different simulations were carried out with SOFT using...

  4. Influence of Velocity on Variability in Gait Kinematics

    DEFF Research Database (Denmark)

    Yang, Sylvia X M; Larsen, Peter K; Alkjær, Tine

    2014-01-01

    Closed circuit television (CCTV) footage is often available from crime scenes and may be used to compare perpetrators with suspects. Usually, the footage comprises incomplete gait cycles at different velocities, making gait pattern identification from crimes difficult. This study investigated...... the concurrence of joint angles throughout a gait cycle at three different velocities (3.0, 4.5, 6.0 km/h). Six datasets at each velocity were collected from 16 men. A variability range VR throughout the gait cycle at each velocity for each joint angle for each person was calculated. The joint angles at each...... velocity were compared pairwise, and whenever this showed values within the VR of this velocity, the case was positive. By adding the positives throughout the gait cycle, phases with high and low concurrences were located; peak concurrence was observed at mid-stance phase. Striving for the same velocity...

  5. The influence of gas phase velocity fluctuations on primary atomization and droplet deformation

    Science.gov (United States)

    Kourmatzis, A.; Masri, A. R.

    2014-02-01

    The effects of grid-generated velocity fluctuations on the primary atomization and subsequent droplet deformation of a range of laminar liquid jets are examined using microscopic high-speed backlit imaging of the break-up zone and laser Doppler anemometry of the gas phase separately. This is done for fixed gas mean flow conditions in a miniature wind tunnel experiment utilizing a selection of fuels, turbulence-generating grids and two syringe sizes. The constant mean flow allows for an isolated study of velocity fluctuation effects on primary atomization in a close approximation to homogeneous decaying turbulence. The qualitative morphology of the primary break-up region is examined over a range of turbulence intensities, and spectral analysis is performed in order to ascertain the break-up frequency which, for a case of no grid, compares well with the existing literature. The addition of velocity fluctuations tends to randomize the break-up process. Slightly downstream of the break-up region, image processing is conducted in order to extract a number of metrics, which do not depend on droplet sphericity, and these include droplet aspect ratio and orientation, the latter quantity being somewhat unconventional in spray characterization. A turbulent Weber number which takes into account gas phase fluctuations is utilized to characterize the resulting droplet shapes, in addition to a mean Weber number . Above a a clear positive relationship exists between the mean aspect ratio of droplets and the turbulent Weber number where is varied by altering all relevant variables including the velocity root mean square, the initial droplet diameter, the surface tension and the density.

  6. Load attenuating passively adaptive wind turbine blade

    Science.gov (United States)

    Veers, Paul S.; Lobitz, Donald W.

    2003-01-07

    A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

  7. Financial analysis of wind power projects

    International Nuclear Information System (INIS)

    Juanico, Luis E.; Bergallo, Juan E.

    1999-01-01

    In this work a financial assessment of the economic competitiveness of wind power projects in Argentina compared with other no CO 2 emission sources, such as nuclear, was developed. Argentina has a market driven electrical grid system, and no greenhouse gas emissions penalty taxes, together with a very low natural gas cost and a sustained nuclear development program. For the financial analysis an average wind velocity source of 8 m/s, on several wind farms (from 2 machines to 60) built with new technology wind generators (750 kilowatts power, 900 dollar/kilowatt cost) operating over 20 years, was considered. The leveled cost obtained is decreasing while the number of machines is increasing, from 0,130 dollar/kilowatt-hour to 0,090 dollar/kilowatts-hour. This poor performance can be partially explained considering the higher interest rates in the argentine financial market (15%) than the ones in developed countries

  8. Wake flow characteristics at high wind speed

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Larsen, Torben J.; Larsen, Gunner Chr.

    2016-01-01

    Wake flow characteristic at high wind speeds is the main subject of this paper. Although the wake losses decrease at high wind speeds it has been found in a recent study that for multiple wake inflow the increase in loading due to wake effects are substantial even at wind speeds well above rated...... power. In the present study we simulate the wake flow for a row of turbines with the wind aligned with the row using a simplified approach. The velocity deficit, being a function of the thrust coefficient, is simulated based on the BEM solution for wake expansion. An axis-symmetric boundary layer...... equation model (the same as implemented in the DWM model) is subsequently used to develop the deficit down to the next turbine, and then the approach is successively repeated. Simulation results for four different spacing’s in a row with eight turbines show that there are two major flow regimes...

  9. Examples of Vector Velocity Imaging

    DEFF Research Database (Denmark)

    Hansen, Peter M.; Pedersen, Mads M.; Hansen, Kristoffer L.

    2011-01-01

    To measure blood flow velocity in vessels with conventional ultrasound, the velocity is estimated along the direction of the emitted ultrasound wave. It is therefore impossible to obtain accurate information on blood flow velocity and direction, when the angle between blood flow and ultrasound wa...

  10. Wind loads on flat plate photovoltaic array fields

    Science.gov (United States)

    Miller, R. D.; Zimmerman, D. K.

    1981-01-01

    The results of an experimental analysis (boundary layer wind tunnel test) of the aerodynamic forces resulting from winds acting on flat plate photovoltaic arrays are presented. Local pressure coefficient distributions and normal force coefficients on the arrays are shown and compared to theoretical results. Parameters that were varied when determining the aerodynamic forces included tilt angle, array separation, ground clearance, protective wind barriers, and the effect of the wind velocity profile. Recommended design wind forces and pressures are presented, which envelop the test results for winds perpendicular to the array's longitudinal axis. This wind direction produces the maximum wind loads on the arrays except at the array edge where oblique winds produce larger edge pressure loads. The arrays located at the outer boundary of an array field have a protective influence on the interior arrays of the field. A significant decrease of the array wind loads were recorded in the wind tunnel test on array panels located behind a fence and/or interior to the array field compared to the arrays on the boundary and unprotected from the wind. The magnitude of this decrease was the same whether caused by a fence or upwind arrays.

  11. Estimating wind frequency limits for natural ventilation at remote sites

    International Nuclear Information System (INIS)

    Su, B.; Aynsley, R.

    2006-01-01

    Detailed wind data are collected at a limited number of sites, usually at airports. When a building is sited remote from the nearest wind data collection site, estimating wind frequency is more complex. The techniques involved come from the discipline of wind engineering. Where there is a relatively flat terrain between the wind data-recording site and the building site, simple computations can be made to account for the wind velocities over intervening terrain roughness. Where significant topographic features such as hills or mountains are present between the wind data-recording site and the building site, then boundary layer wind tunnel studies will be necessary to determine the influence of such features on wind speed and direction. Rough estimates can be calculated using factors used in some wind loading codes. When buildings are to be designed to take advantage of the energy efficiency offered by natural ventilation, it is important to estimate the actual potential for such ventilation. The natural ventilation potential can be estimated in terms of the percentage of time when wind exceeds some minimum value. For buildings near airports this is a relatively simple procedure. Such estimates are important as they also indicate the likely percentage of time when fans or other energy consuming devices will be needed to maintain indoor thermal comfort. This paper identifies the wind engineering techniques that can be used for such estimates and gives examples of such calculations

  12. [Influences of land using patterns on the anti-wind erosion of meadow grassland].

    Science.gov (United States)

    Zhou, Yao-Zhi; Wang-Xu; Yang, Gui-Xia; Xin, Xiao-Ping

    2008-05-01

    In order to analyse the effects of the human disturbances to the ability of anti-wind erosion of the Hulunbuir meadow grassland, the methods of vegetation investigation and the wind tunnel experiment were made to research the changes of vegetation and the abilities of anti-wind erosion of meadow grassland under different using patterns of meadow grassland. The results indicate that, under different grazing intensities of meadow grassland, the critical wind velocity of soil erosion (v) changes with the vegetation cover according to the relation of second power function. Along with the grazing intensities increasing and the vegetation cover reducing, the velocity of soil erosion rapidly increased on the condition of similar wind velocity which is speedier than the critical wind velocity of soil erosion. When the meadow grassland is mildly grazed which the vegetation cover maintains 63%, the velocity of soil erosion is small even there is gale that the wind velocity reach 25 m/s. When the vegetation cover of meadow grassland reduced to less than 35%, the velocity of soil erosion rapidly increased with the vegetation cover's reducing on the condition of the wind velocity is among 20-25 m/s. And owing to the no-tillage cropland of meadow grassland is completely far from the protection of the vegetation, the soil wind erosion quantity achieves 682.1 kg/hm2 in a minute when the wind velocity is 25 m/s, which approaches the average formation quantity of soil (1 000 kg/hm2) in a year.

  13. Early wind engineering experiments in Denmark

    DEFF Research Database (Denmark)

    Larose, Guy; Franck, Niels

    1997-01-01

    distribution around bodies ranging from bird wings to buildings. The experiments shed light on the importance of suction on the overall wind loading. Martin Jensen combined field measurements of pressure distributions to model scale experiments to write "The Model-Law for Phenomena in Natural Wind...

  14. Canadian Wind Energy Association small wind conference proceedings : small wind policy developments (turbines of 300 kW or less)

    International Nuclear Information System (INIS)

    2005-01-01

    The small wind session at the Canadian Wind Energy Association's (CanWEA) annual conference addressed policies affecting small wind, such as net metering, advanced renewable tariffs and interconnections. It also addressed CanWEA's efforts in promoting small wind turbines, particularly in remote northern communities, small businesses and within the residential sector. Small wind systems are typically installed in remote communities to offset utility supplied electricity at the retail price level. In certain circumstances, small wind and hybrid systems can produce electricity at less than half the cost of traditional electricity sources, which in remote communities is typically diesel generators. Small wind turbines require different materials and technologies than large wind turbines. They also involve different local installation requirements, different by-laws, tax treatment and environmental assessments. Small wind turbines are typically installed for a range of factors, including energy independence, energy price stability and to lower environmental impacts of traditional power generation. The small wind session at the conference featured 14 presentations, of which 4 have been catalogued separately for inclusion in this database. tabs., figs

  15. Potential of Offshore Wind Energy and Extreme Wind Speed Forecasting on the West Coast of Taiwan

    Directory of Open Access Journals (Sweden)

    Pei-Chi Chang

    2015-02-01

    Full Text Available It is of great importance and urgency for Taiwan to develop offshore wind power. However, relevant data on offshore wind energy resources are limited. This study imported wind speeds measured by a tidal station and a buoy into the software WAsP to estimate the high-altitude wind speeds in the two areas. A light detection and ranging (Lidar system was set up near the tidal station and buoy. High-altitude wind speeds measured by the Lidar system were compared with the WAsP-estimated values, and it was discovered that the two data sets were consistent. Then, long-term wind speed data observed by buoys and tidal stations at various locations were imported into WAsP to forecast wind speeds at heights of 55–200 m on the west coast of Taiwan. The software WAsP Engineering was used to analyze the extreme wind speeds in the same areas. The results show that wind speeds at 100 m are approximately 9.32–11.24 m/s, which means that the coastal areas of west Taiwan are rich in wind energy resources. When a long-term 10-min average wind speed is used, the extreme wind speed on the west coast is estimated to be between 36.4 and 55.3 m/s.

  16. Application of short-range dual-Doppler lidars to evaluate the coherence of turbulence

    DEFF Research Database (Denmark)

    Cheynet, Etienne; Jakobsen, Jasna Bogunović; Snæbjörnsson, Jónas

    2016-01-01

    Two synchronized continuous wave scanning lidars are used to study the coherence of the along-wind and across-wind velocity components. The goal is to evaluate the potential of the lidar technology for application in wind engineering. The wind lidars were installed on the Lysefjord Bridge during...... models. The analytical predictions agree rather well with the measured coherence for the along-wind component. For increasing wavenumbers, larger discrepancies are, however, noticeable between the measured coherence and the theoretical predictions. The WindScanners are observed to slightly overestimate...

  17. Laboratory modeling of air-sea interaction under severe wind conditions

    Science.gov (United States)

    Troitskaya, Yuliya; Vasiliy, Kazakov; Nicolay, Bogatov; Olga, Ermakova; Mikhail, Salin; Daniil, Sergeev; Maxim, Vdovin

    2010-05-01

    Wind-wave interaction at extreme wind speed is of special interest now in connection with the problem of explanation of the sea surface drag saturation at the wind speed exceeding 30 m/s. The idea on saturation (and even reduction) of the coefficient of aerodynamic resistance of the sea surface at hurricane wind speed was first suggested by Emanuel (1995) on the basis of theoretical analysis of sensitivity of maximum wind speed in a hurricane to the ratio of the enthalpy and momentum exchange coefficients. Both field (Powell, Vickery, Reinhold, 2003, French et al, 2007, Black, et al, 2007) and laboratory (Donelan et al, 2004) experiments confirmed that at hurricane wind speed the sea surface drag coefficient is significantly reduced in comparison with the parameterization obtained at moderate to strong wind conditions. Two groups of possible theoretical mechanisms for explanation of the effect of the sea surface drag reduction can be specified. In the first group of models developed by Kudryavtsev & Makin (2007) and Kukulka,Hara Belcher (2007), the sea surface drag reduction is explained by peculiarities of the air flow over breaking waves. Another approach more appropriate for the conditions of developed sea exploits the effect of sea drops and sprays on the wind-wave momentum exchange (Andreas, 2004; Makin, 2005; Kudryavtsev, 2006). The main objective of this work is investigation of factors determining momentum exchange under high wind speeds basing on the laboratory experiment in a well controlled environment. The experiments were carried out in the Thermo-Stratified WInd-WAve Tank (TSWIWAT) of the Institute of Applied Physics. The parameters of the facility are as follows: airflow 0 - 25 m/s (equivalent 10-m neutral wind speed U10 up to 60 m/s), dimensions 10m x 0.4m x 0.7 m, temperature stratification of the water layer. Simultaneous measurements of the airflow velocity profiles and wind waves were carried out in the wide range of wind velocities. Airflow

  18. RECOMMENDED TRITIUM OXIDE DEPOSITION VELOCITY FOR USE IN SAVANNAH RIVER SITE SAFETY ANALYSES

    Energy Technology Data Exchange (ETDEWEB)

    Lee, P.; Murphy, C.; Viner, B.; Hunter, C.; Jannik, T.

    2012-04-03

    The Defense Nuclear Facilities Safety Board (DNFSB) has recently questioned the appropriate value for tritium deposition velocity used in the MELCOR Accident Consequence Code System Ver. 2 (Chanin and Young 1998) code when estimating bounding dose (95th percentile) for safety analysis (DNFSB 2011). The purpose of this paper is to provide appropriate, defensible values of the tritium deposition velocity for use in Savannah River Site (SRS) safety analyses. To accomplish this, consideration must be given to the re-emission of tritium after deposition. Approximately 85% of the surface area of the SRS is forested. The majority of the forests are pine plantations, 68%. The remaining forest area is 6% mixed pine and hardwood and 26% swamp hardwood. Most of the path from potential release points to the site boundary is through forested land. A search of published studies indicate daylight, tritiated water (HTO) vapor deposition velocities in forest vegetation can range from 0.07 to 2.8 cm/s. Analysis of the results of studies done on an SRS pine plantation and climatological data from the SRS meteorological network indicate that the average deposition velocity during daylight periods is around 0.42 cm/s. The minimum deposition velocity was determined to be about 0.1 cm/s, which is the recommended bounding value. Deposition velocity and residence time (half-life) of HTO in vegetation are related by the leaf area and leaf water volume in the forest. For the characteristics of the pine plantation at SRS the residence time corresponding to the average, daylight deposition velocity is 0.4 hours. The residence time corresponding to the night-time deposition velocity of 0.1 cm/s is around 2 hours. A simple dispersion model which accounts for deposition and re-emission of HTO vapor was used to evaluate the impact on exposure to the maximally exposed offsite individual (MOI) at the SRS boundary (Viner 2012). Under conditions that produce the bounding, 95th percentile MOI exposure

  19. Propagation of the Semidiurnal Internal Tide: Phase Velocity Versus Group Velocity

    Science.gov (United States)

    Zhao, Zhongxiang

    2017-12-01

    The superposition of two waves of slightly different wavelengths has long been used to illustrate the distinction between phase velocity and group velocity. The first-mode M2 and S2 internal tides exemplify such a two-wave model in the natural ocean. The M2 and S2 tidal frequencies are 1.932 and 2 cycles per day, respectively, and their superposition forms a spring-neap cycle in the semidiurnal band. The spring-neap cycle acts like a wave, with its frequency, wave number, and phase being the differences of the M2 and S2 internal tides. The spring-neap cycle and energy of the semidiurnal internal tide propagate at the group velocity. Long-range propagation of M2 and S2 internal tides in the North Pacific is observed by satellite altimetry. Along a 3,400 km beam spanning 24°-54°N, the M2 and S2 travel times are 10.9 and 11.2 days, respectively. For comparison, it takes the spring-neap cycle 21.1 days to travel over this distance. Spatial maps of the M2 phase velocity, the S2 phase velocity, and the group velocity are determined from phase gradients of the corresponding satellite observed internal tide fields. The observed phase and group velocities agree with theoretical values estimated using the World Ocean Atlas 2013 annual-mean ocean stratification.

  20. Model predictive control for wind power gradients

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel; Boyd, Stephen; Jørgensen, John Bagterp

    2015-01-01

    We consider the operation of a wind turbine and a connected local battery or other electrical storage device, taking into account varying wind speed, with the goal of maximizing the total energy generated while respecting limits on the time derivative (gradient) of power delivered to the grid. We...... wind data and modern wind forecasting methods. The simulation results using real wind data demonstrate the ability to reject the disturbances from fast changes in wind speed, ensuring certain power gradients, with an insignificant loss in energy production....... ranges. The system dynamics are quite non-linear, and the constraints and objectives are not convex functions of the control inputs, so the resulting optimal control problem is difficult to solve globally. In this paper, we show that by a novel change of variables, which focuses on power flows, we can...