WorldWideScience

Sample records for wind turbine dynamics

  1. Nonlinear Dynamics of Wind Turbine Wings

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther

    , large wind turbines become increasingly flexible and dynamically sensitive. This project focuses on the structural analysis of highly flexible wind turbine wings, and the aerodynamic loading of wind turbine wings under large changes in flow field due to elastic deformations and changing wind conditions....

  2. Dynamic Phase Compensation of wind turbines

    DEFF Research Database (Denmark)

    Soerensen, P.; Skaarup, J.; Iov, Florin

    2004-01-01

    This paper describes a dynamic phase compensation unit for a wind turbine with directly connected induction generators. The compensation unit is based on thyristor switched capacitors, where conventional wind turbine compensations use mechanical contactors to switch the capacitors. The unit modules...

  3. Dynamic Properties of Offshore Wind Turbine Foundations

    DEFF Research Database (Denmark)

    Damgaard, Mads

    , there is a general consensus that offshore wind-generated electricity is still too expensive to be competitive with conventional energy sources. As a consequence, the overall weight of the turbine and foundation is kept to a minimum resulting in a flexible and dynamically active structural system—even at low......Increasing oil prices and energy demands combined with a general acceptance that fossil fuels drive the climate changes justify the development of new sustainable energy solutions. Although offshore wind energy has proven potential to produce reliable quantities of renewable energy...... frequencies. The highly variable and cyclic loads on the rotor, tower and foundation, caused by wind and wave loads as well as low-frequent excitations from the rotor blades, all demand special fatigue design considerations and create an even greater demand for a fuller appreciation of how the wind turbine...

  4. Structural Dynamic Behavior of Wind Turbines

    Science.gov (United States)

    Thresher, Robert W.; Mirandy, Louis P.; Carne, Thomas G.; Lobitz, Donald W.; James, George H. III

    2009-01-01

    The structural dynamicist s areas of responsibility require interaction with most other members of the wind turbine project team. These responsibilities are to predict structural loads and deflections that will occur over the lifetime of the machine, ensure favorable dynamic responses through appropriate design and operational procedures, evaluate potential design improvements for their impact on dynamic loads and stability, and correlate load and control test data with design predictions. Load prediction has been a major concern in wind turbine designs to date, and it is perhaps the single most important task faced by the structural dynamics engineer. However, even if we were able to predict all loads perfectly, this in itself would not lead to an economic system. Reduction of dynamic loads, not merely a "design to loads" policy, is required to achieve a cost-effective design. The two processes of load prediction and structural design are highly interactive: loads and deflections must be known before designers and stress analysts can perform structural sizing, which in turn influences the loads through changes in stiffness and mass. Structural design identifies "hot spots" (local areas of high stress) that would benefit most from dynamic load alleviation. Convergence of this cycle leads to a turbine structure that is neither under-designed (which may result in structural failure), nor over-designed (which will lead to excessive weight and cost).

  5. Dynamic Response Analysis of an Offshore Wind Turbine

    OpenAIRE

    Li, Yu

    2011-01-01

    The offshore wind power is an attractive renewable energy resource. To improve the wind power generation capacity, there is a strong desire for offshore wind turbine to go to deep waters. For offshore fixed wind turbine, stronger foundation like jacket structure has a good applicability for deeper water depth. A 70-meters jacket substructure for offshore wind turbine is designed. This thesis focuses on the dynamic structural response analysis of this jacket substructure, with a particular foc...

  6. On the Dynamical Property of a Small Wind Turbine

    OpenAIRE

    烏谷, 隆; 大屋, 裕二; 渡辺, 公彦; Takashi, KARASUDANI; Yuji, OHYA; Kimihiko, WATANABE; 九大応力研; Res Inst for Appl Mech, Kyushu University

    2009-01-01

    We theoretically and experimentally studied on the dynamical property of a small wind turbine. A numerical model of a wind turbine was given. We derived formulas of response time to the change of wind speed and load as a function of the power coefficient, inertial moment and wind speed. We got the expression for the phase difference between wind and power variations. These results were in good agreement with the numerical simulation for the model.

  7. Dynamic stall model for wind turbine airfoils

    DEFF Research Database (Denmark)

    Larsen, J.W.; Nielsen, S.R.K.; Krenk, Steen

    2007-01-01

    conditions, nonstationary effects are included by three mechanisms: a delay of the lift coefficient of fully attached flow via a second-order filter, a delay of the development of separation represented via a first-order filter, and a lift contribution due to leading edge separation also represented via......A model is presented for aerodynamic lift of wind turbine profiles under dynamic stall. The model combines memory delay effects under attached flow with reduced lift due to flow separation under dynamic stall conditions. The model is based on a backbone curve in the form of the static lift...... as a function of the angle of attack. The static lift is described by two parameters, the lift at fully attached flow and the degree of attachment. A relationship between these parameters and the static lift is available from a thin plate approximation. Assuming the parameters to be known during static...

  8. Stochastic dynamic stiffness of surface footing for offshore wind turbines

    DEFF Research Database (Denmark)

    Vahdatirad, Mohammadjavad; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    2014-01-01

    Highlights •This study concerns the stochastic dynamic stiffness of foundations for large offshore wind turbines. •A simple model of wind turbine structure with equivalent coupled springs at the base is utilized. •The level of uncertainties is quantified through a sensitivity analysis. •Estimation...

  9. Reliability analysis of wind turbines exposed to dynamic loads

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2014-01-01

    Wind turbines are exposed to highly dynamic loads that cause fatigue and extreme load effects which are subject to significant uncertainties. Further, reduction of cost of energy for wind turbines are very important in order to make wind energy competitive compared to other energy sources......, substructure and foundation considering especially fatigue loads. The function of a wind turbine is highly dependent on many electrical and mechanical components as well as a control system also reliability aspects of these components are discussed and it is described how there reliability influences...

  10. Design of airborne wind turbine and computational fluid dynamics analysis

    Science.gov (United States)

    Anbreen, Faiqa

    Wind energy is a promising alternative to the depleting non-renewable sources. The height of the wind turbines becomes a constraint to their efficiency. Airborne wind turbine can reach much higher altitudes and produce higher power due to high wind velocity and energy density. The focus of this thesis is to design a shrouded airborne wind turbine, capable to generate 70 kW to propel a leisure boat with a capacity of 8-10 passengers. The idea of designing an airborne turbine is to take the advantage of higher velocities in the atmosphere. The Solidworks model has been analyzed numerically using Computational Fluid Dynamics (CFD) software StarCCM+. The Unsteady Reynolds Averaged Navier Stokes Simulation (URANS) with K-epsilon turbulence model has been selected, to study the physical properties of the flow, with emphasis on the performance of the turbine and the increase in air velocity at the throat. The analysis has been done using two ambient velocities of 12 m/s and 6 m/s. At 12 m/s inlet velocity, the velocity of air at the turbine has been recorded as 16 m/s. The power generated by the turbine is 61 kW. At inlet velocity of 6 m/s, the velocity of air at turbine increased to 10 m/s. The power generated by turbine is 25 kW.

  11. Dynamic wind turbine models in power system simulation tool

    DEFF Research Database (Denmark)

    Hansen, A.; Jauch, Clemens; Soerensen, P.

    The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT. The developed models are a part of the results of a national research project, whose overall objective is to create a model database in different simulation tools. The report...... provides a description of the wind turbine modelling, both at a component level and at a system level....

  12. Dynamic behavior of parked wind turbine at extreme wind speed

    DEFF Research Database (Denmark)

    Totsuka, Yoshitaka; Imamura, Hiroshi; Yde, Anders

    2016-01-01

    In wind turbine design process, a series of load analysis is generally performed to determine ultimate and fatigue loads under various design load cases (DLCs) which is specified in IEC 61400. These design load scenario covers not only normal operating condition but also startup, shutdown, parked...... and other scenario which is assumed to occur during the expected lifetime of wind turbine. This research focus on vibration problem under 50-year storm conditions while rotor is parked and blades are feathered. In this parked scenario, effect of a wind direction change of up to ± 180 degrees for both cases...... of standstill and idling is analyzed by time domain simulations using two different coupled aero-hydro-servo-elastic codes. Trend in modern wind turbines is development of bigger, lighter and more flexible rotors where vibration issues may cause aero-elastic instabilities which have a serious impact...

  13. Contribution to a dynamic wind turbine model validation from a wind farm islanding experiment

    DEFF Research Database (Denmark)

    Pedersen, Jørgen Kaas; Pedersen, Knud Ole Helgesen; Poulsen, Niels Kjølstad

    2003-01-01

    Measurements from an islanding experiment on the Rejsby Hede wind farm, Denmark, are used for the validation of the dynamic model of grid-connected, stall-controlled wind turbines equipped with induction generators. The simulated results are found to be in good agreement with the measurements...... and possible discrepancies are explained. The work with the wind turbine model validation relates to the dynamic stability investigations on incorporation of large amount of wind power in the Danish power grid, where the dynamic wind turbine model is applied....

  14. Coupled Dynamic Modeling of Floating Wind Turbine Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wayman, E. N.; Sclavounos, P. D.; Butterfield, S.; Jonkman, J.; Musial, W.

    2006-03-01

    This article presents a collaborative research program that the Massachusetts Institute of Technology (MIT) and the National Renewable Energy Laboratory (NREL) have undertaken to develop innovative and cost-effective floating and mooring systems for offshore wind turbines in water depths of 10-200 m. Methods for the coupled structural, hydrodynamic, and aerodynamic analysis of floating wind turbine systems are presented in the frequency domain. This analysis was conducted by coupling the aerodynamics and structural dynamics code FAST [4] developed at NREL with the wave load and response simulation code WAMIT (Wave Analysis at MIT) [15] developed at MIT. Analysis tools were developed to consider coupled interactions between the wind turbine and the floating system. These include the gyroscopic loads of the wind turbine rotor on the tower and floater, the aerodynamic damping introduced by the wind turbine rotor, the hydrodynamic damping introduced by wave-body interactions, and the hydrodynamic forces caused by wave excitation. Analyses were conducted for two floater concepts coupled with the NREL 5-MW Offshore Baseline wind turbine in water depths of 10-200 m: the MIT/NREL Shallow Drafted Barge (SDB) and the MIT/NREL Tension Leg Platform (TLP). These concepts were chosen to represent two different methods of achieving stability to identify differences in performance and cost of the different stability methods. The static and dynamic analyses of these structures evaluate the systems' responses to wave excitation at a range of frequencies, the systems' natural frequencies, and the standard deviations of the systems' motions in each degree of freedom in various wind and wave environments. This article in various wind and wave environments. This article explores the effects of coupling the wind turbine with the floating platform, the effects of water depth, and the effects of wind speed on the systems' performance. An economic feasibility analysis of

  15. Aeroelastic modal dynamics of wind turbines including anisotropic effects

    DEFF Research Database (Denmark)

    Skjoldan, Peter Fisker

    Several methods for aeroelastic modal analysis of a rotating wind turbine are developed and used to analyse the modal dynamics of two simplified models and a complex model in isotropic and anisotropic conditions. The Coleman transformation is used to enable extraction of the modal frequencies...... frequency is thus identified as the dominant frequency in the response of a pure excitation of the mode observed in the inertial frame. A modal analysis tool based directly on the complex aeroelastic wind turbine code BHawC is presented. It uses the Coleman approach in isotropic conditions...... and the computationally efficient implicit Floquet analysis in anisotropic conditions. The tool is validated against system identifications with the partial Floquet method on the nonlinear BHawC model of a 2.3 MW wind turbine. System identification results show that nonlinear effects on the 2.3 MW turbine in most cases...

  16. Dynamic Models for Wind Turbines and Wind Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M.; Santoso, S.

    2011-10-01

    The primary objective of this report was to develop universal manufacturer-independent wind turbine and wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Manufacturer-specific models of wind turbines are favored for use in wind power interconnection studies. While they are detailed and accurate, their usages are limited to the terms of the non-disclosure agreement, thus stifling model sharing. The primary objective of the work proposed is to develop universal manufacturer-independent wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Each of these models includes representations of general turbine aerodynamics, the mechanical drive-train, and the electrical characteristics of the generator and converter, as well as the control systems typically used. To determine how realistic model performance is, the performance of one of the models (doubly-fed induction generator model) has been validated using real-world wind power plant data. This work also documents selected applications of these models.

  17. Importance of Dynamic Inflow Model Predictive Control of Wind Turbines

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Knudsen, Torben; Overgaard, Anders

    2015-01-01

    The efficiency of including dynamic inflow in the model based design of wind turbine controller has been discussed for many years in the wind energy community with out getting to a safe conclusion. This paper delivers a good argument in favor of including dynamic inflow. The main contributions...... pronounces. For this the well accepted NREL 5MW reference turbine simulated with FAST is used. The main result is a reduction in tower fatigue load at 22% while power error, rotor speed error, generator torque and pitch rate is improved from 2 to 33%....

  18. Wake flow control using a dynamically controlled wind turbine

    Science.gov (United States)

    Castillo, Ricardo; Wang, Yeqin; Pol, Suhas; Swift, Andy; Hussain, Fazle; Westergaard, Carsten; Texas Tech University Team

    2016-11-01

    A wind tunnel based "Hyper Accelerated Wind Farm Kinematic-Control Simulator" (HAWKS) is being built at Texas Tech University to emulate controlled wind turbine flow physics. The HAWKS model turbine has pitch, yaw and speed control which is operated in real model time, similar to that of an equivalent full scale turbine. Also, similar to that of a full scale wind turbine, the controls are developed in a Matlab Simulink environment. The current diagnostic system consists of power, rotor position, rotor speed measurements and PIV wake characterization with four cameras. The setup allows up to 7D downstream of the rotor to be mapped. The purpose of HAWKS is to simulate control strategies at turnaround times much faster than CFD and full scale testing. The fundamental building blocks of the simulator have been tested, and demonstrate wake steering for both static and dynamic turbine actuation. Parameters which have been studied are yaw, rotor speed and combinations hereof. The measured wake deflections for static yaw cases are in agreement with previously reported research implying general applicability of the HAWKS platform for the purpose of manipulating the wake. In this presentation the general results will be introduced followed by an analysis of the wake turbulence and coherent structures when comparing static and dynamic flow cases. The outcome of such studies could ultimately support effective wind farm wake flow control strategies. Texas Emerging Technology Fund (ETF).

  19. Yaw dynamics of horizontal axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.C. (Utah Univ., Salt Lake City, UT (United States))

    1992-05-01

    Designers of a horizontal axis wind turbine yaw mechanism are faced with a difficult decision. They know that if they elect to use a yaw- controlled rotor then the system will suffer increased initial cost and increased inherent maintenance and reliability problems. On the other hand, if they elect to allow the rotor to freely yaw they known they will have to account for unknown and random, though bounded, yaw rates. They will have a higher-risk design to trade-off against the potential for cost savings and reliability improvement. The risk of a yaw-free system could be minimized if methods were available for analyzing and understanding yaw behavior. The complexity of yaw behavior has, until recently, discouraged engineers from developing a complete yaw analysis method. The objectives of this work are to (1) provide a fundamental understanding of free-yaw mechanics and the design concepts most effective at eliminating yaw problems, and (2) provide tested design tools and guidelines for use by free-yaw wind systems manufacturers. The emphasis is on developing practical and sufficiently accurate design methods.

  20. The Dynamic Stiffness of Surface Footings for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Vahdatirad, Mohammadjavad; Andersen, Lars; Clausen, Johan

    2011-01-01

    This study concerns the dynamic stiffness of foundations for large offshore wind turbines. Especially, the purpose of the analysis is to quantify the uncertainties related to the first natural frequency of a turbine supported by a surface footing on layered soil. The dynamic properties...... due to sediment transportation. Further, the stiffness and density of the materials within a single layer is subject to uncertainties. This leads to uncertainties of the dynamic stiffness of the foundation and therefore the natural frequencies. The aim of the study is to quantify the level...

  1. Code Shift: Grid Specifications and Dynamic Wind Turbine Models

    DEFF Research Database (Denmark)

    Ackermann, Thomas; Ellis, Abraham; Fortmann, Jens

    2013-01-01

    Grid codes (GCs) and dynamic wind turbine (WT) models are key tools to allow increasing renewable energy penetration without challenging security of supply. In this article, the state of the art and the further development of both tools are discussed, focusing on the European and North American...

  2. Review of computational fluid dynamics for wind turbine wake aerodynamics

    NARCIS (Netherlands)

    B. Sanderse (Benjamin); S.P. van der Pijl (Sander); B. Koren (Barry)

    2011-01-01

    textabstractThis article reviews the state-of-the-art numerical calculation of wind turbine wake aerodynamics. Different computational fluid dynamics techniques for modeling the rotor and the wake are discussed. Regarding rotor modeling, recent advances in the generalized actuator approach and the

  3. Vertical-axis wind turbine experiments at full dynamic similarity

    Science.gov (United States)

    Duvvuri, Subrahmanyam; Miller, Mark; Brownstein, Ian; Dabiri, John; Hultmark, Marcus

    2017-11-01

    This study presents results from pressurized (upto 200 atm) wind tunnel tests of a self-spinning 5-blade model Vertical-Axis Wind Turbine (VAWT). The model is geometrically similar (scale ratio 1:22) to a commercially available VAWT, which has a rotor diameter of 2.17 meters and blade span of 3.66 meters, and is used at the Stanford university field lab. The use of pressurized air as working fluid allows for the unique ability to obtain full dynamic similarity with field conditions in terms of matched Reynolds numbers (Re), tip-speed ratios (λ), and Mach number (M). Tests were performed across a wide range of Re and λ, with the highest Re exceeding the maximum operational field Reynolds number (Remax) by a factor of 3. With an extended range of accessible Re conditions, the peak turbine power efficiency was seen to occur roughly at Re = 2 Remax and λ = 1 . Beyond Re > 2 Remax the turbine performance is invariant in Re for all λ. A clear demonstration of Reynolds number invariance for an actual full-scale wind turbine lends novelty to this study, and overall the results show the viability of the present experimental technique in testing turbines at field conditions.

  4. Wind turbine control systems: Dynamic model development using system identification and the fast structural dynamics code

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, J.G.; Wright, A.D.; Butterfield, C.P.

    1996-10-01

    Mitigating the effects of damaging wind turbine loads and responses extends the lifetime of the turbine and, consequently, reduces the associated Cost of Energy (COE). Active control of aerodynamic devices is one option for achieving wind turbine load mitigation. Generally speaking, control system design and analysis requires a reasonable dynamic model of {open_quotes}plant,{close_quotes} (i.e., the system being controlled). This paper extends the wind turbine aileron control research, previously conducted at the National Wind Technology Center (NWTC), by presenting a more detailed development of the wind turbine dynamic model. In prior research, active aileron control designs were implemented in an existing wind turbine structural dynamics code, FAST (Fatigue, Aerodynamics, Structures, and Turbulence). In this paper, the FAST code is used, in conjunction with system identification, to generate a wind turbine dynamic model for use in active aileron control system design. The FAST code is described and an overview of the system identification technique is presented. An aileron control case study is used to demonstrate this modeling technique. The results of the case study are then used to propose ideas for generalizing this technique for creating dynamic models for other wind turbine control applications.

  5. Dynamic Modeling of Wind Turbine Gearboxes and Experimental Validation

    DEFF Research Database (Denmark)

    Pedersen, Rune

    is presented. The model takes into account the effects of load and applied grinding corrections. The results are verified by comparing to simulated and experimental results reported in the existing literature. Using gear data loosely based on a 1 MW wind turbine gearbox, the gear mesh stiffness is expanded...... analysis in relation to gear dynamics. A multibody model of two complete 2.3MWwind turbine gearboxes mounted back-to-back in a test rig is built. The mean values of the proposed gear mesh stiffnesses are included. The model is validated by comparing with calculated and measured eigenfrequencies and mode...

  6. Aerodynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Momentum method is also covered, as are eigenmodes and the dynamic behavior of a turbine. The new material includes a description of the effects of the dynamics and how this can be modeled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Further......Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition, it has been entirely updated and substantially extended to reflect advances in technology, research into rotor aerodynamics and the structural...... response of the wind turbine structure. Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element...

  7. Aerodynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition, it has been entirely updated and substantially extended to reflect advances in technology, research into rotor aerodynamics and the structural...... response of the wind turbine structure. Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element...... Momentum method is also covered, as are eigenmodes and the dynamic behavior of a turbine. The new material includes a description of the effects of the dynamics and how this can be modeled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Further...

  8. Microtab dynamic modelling for wind turbine blade load rejection

    OpenAIRE

    MacQuart, Terence; Maheri, Alireza; Busawon, Krishna

    2014-01-01

    A dynamic model characterising the effect of microtab deployment on the aerodynamics of its base aerofoil is presented. The developed model predicts the transient aerodynamic coefficients consistent with the experimental and computational data reported in the literature. The proposed model is then used to carry out investigation on the effectiveness of microtabs in load alleviation and lifespan increase of wind turbine blades. Simulating a bang–bang controller, different load rejection scenar...

  9. Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Yeoman, J.C. Jr.

    1978-12-01

    This evaluation of wind turbines is part of a series of Technology Evaluations of possible components and subsystems of community energy systems. Wind turbines, ranging in size from 200 W to 10 MW, are discussed as candidates for prime movers in community systems. Estimates of performance characteristics and cost as a function of rated capacity and rated wind speed are presented. Data concerning material requirements, environmental effects, and operating procedures also are given and are represented empirically to aid computer simulation.

  10. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    is also covered, as are eigenmodes and the dynamic behaviour of a turbine. The book describes the effects of the dynamics and how this can be modelled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Furthermore, it examines how to calculate......Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...... Turbines (VAWT). Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum method...

  11. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...... Turbines (VAWT). Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum method...... is also covered, as are eigenmodes and the dynamic behaviour of a turbine. The book describes the effects of the dynamics and how this can be modelled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Furthermore, it examines how to calculate...

  12. Dynamic Response of Offshore Wind Turbines subjected to Joint Wave and Wind Loads

    DEFF Research Database (Denmark)

    Liu, Weiliang; Chen, Jianbing; Liu, Wenfeng

    2013-01-01

    This paper investigates the dynamic response of offshore wind turbine systems subjected joint wind and wave loads. Relying on the finite element model, Kane’s equation is adopted to consider the rotation of blades. Besides, the generator-torque control and blade-pitch control are taken into consi...

  13. Aeroelastic modal dynamics of wind turbines including anisotropic effects

    Energy Technology Data Exchange (ETDEWEB)

    Fisker Skjoldan, P.

    2011-03-15

    Several methods for aeroelastic modal analysis of a rotating wind turbine are developed and used to analyse the modal dynamics of two simplified models and a complex model in isotropic and anisotropic conditions. The Coleman transformation is used to enable extraction of the modal frequencies, damping, and periodic mode shapes of a rotating wind turbine by describing the rotor degrees of freedom in the inertial frame. This approach is valid only for an isotropic system. Anisotropic systems, e.g., with an unbalanced rotor or operating in wind shear, are treated with the general approaches of Floquet analysis or Hill's method which do not provide a unique reference frame for observing the modal frequency, to which any multiple of the rotor speed can be added. This indeterminacy is resolved by requiring that the periodic mode shape be as constant as possible in the inertial frame. The modal frequency is thus identified as the dominant frequency in the response of a pure excitation of the mode observed in the inertial frame. A modal analysis tool based directly on the complex aeroelastic wind turbine code BHawC is presented. It uses the Coleman approach in isotropic conditions and the computationally efficient implicit Floquet analysis in anisotropic conditions. The tool is validated against system identifications with the partial Floquet method on the nonlinear BHawC model of a 2.3 MW wind turbine. System identification results show that nonlinear effects on the 2.3 MW turbine in most cases are small, but indicate that the controller creates nonlinear damping. In isotropic conditions the periodic mode shape contains up to three harmonic components, but in anisotropic conditions it can contain an infinite number of harmonic components with frequencies that are multiples of the rotor speed. These harmonics appear in calculated frequency responses of the turbine. Extreme wind shear changes the modal damping when the flow is separated due to an interaction between

  14. Non-linear dynamic response of a wind turbine blade

    Science.gov (United States)

    Chopra, I.; Dugundji, J.

    1979-01-01

    The paper outlines the nonlinear dynamic analysis of an isolated three-degree flap-lag-feather wind turbine blade under a gravity field and with shear flow. Lagrangian equations are used to derive the nonlinear equations of motion of blade for arbitrarily large angular deflections. The limit cycle analysis for forced oscillations and the determination of the principal parametric resonance of the blade due to periodic forces from the gravity field and wind shear are performed using the harmonic balance method. Results are obtained first for a two-degree flap-lag blade, then the effect of the third degree of freedom (feather) is studied. The self-excited flutter solutions are obtained for a uniform wind and with gravity forces neglected. The effects of several parameters on the blade stability are examined, including coning angle, structural damping, Lock number, and feather frequency. The limit cycle flutter solution of a typical configuration shows a substantial nonlinear softening spring behavior.

  15. Dynamic responses of a wind turbine drivetrain under turbulent wind and voltage disturbance conditions

    Directory of Open Access Journals (Sweden)

    Chengwu Li

    2016-05-01

    Full Text Available Wind energy is known as one of the most efficient clean renewable energy sources and has attracted extensive research interests in both academic and industry fields. In this study, the effects of turbulent wind and voltage disturbance on a wind turbine drivetrain are analyzed, and a wind turbine drivetrain dynamic model combined with the electric model of a doubly fed induction generator is established. The proposed model is able to account for the dynamic interaction between turbulent wind, voltage disturbance, and mechanical system. Also, the effects of time-varying meshing stiffness, transmission error, and bearing stiffness are included in the mechanical part of the coupled dynamic model. From the resultant model, system modes are computed. In addition, by considering the actual control strategies in the simulation process, the effects of turbulent wind and voltage disturbance on the geared rotor system are analyzed. The computational results show that the turbulent wind and voltage disturbance can cause adverse effects on the wind turbine drivetrain, especially the gearbox. A series of parametric studies are also performed to understand the influences of generator and gearbox parameters on the drivetrain system dynamics. Finally, the appropriate generator parameters having a positive effect on the gearbox in alleviating the extreme loads and the modeling approach for investigating the transient performance of generator are discussed.

  16. Dynamic wind turbine models in power system simulation tool

    DEFF Research Database (Denmark)

    Hansen, Anca D.; Iov, Florin; Sørensen, Poul

    This report presents a collection of models and control strategies developed and implemented in the power system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second edition of Risø-R-1400(EN) and it gathers and describes a whole wind turbine model database...... built-op and developed during several national research projects, carried out at Risø DTU National Laboratory for Sustainable Energy and Aalborg University, in the period 2001-2007. The overall objective of these projects was to create a wind turbine model database able to support the analysis...... of the interaction between the mechanical structure of the wind turbine and the electrical grid during different operational modes. The report provides thus a description of the wind turbines modelling, both at a component level and at a system level. The report contains both the description of DIgSILENT built...

  17. The impact of wind energy turbine piles on ocean dynamics

    Science.gov (United States)

    Grashorn, Sebastian; Stanev, Emil V.

    2016-04-01

    The small- and meso-scale ocean response to wind parks has not been investigated in the southern North Sea until now with the help of high-resolution numerical modelling. Obstacles such as e.g. wind turbine piles may influence the ocean current system and produce turbulent kinetic energy which could affect sediment dynamics in the surrounding area. Two setups of the unstructured-grid model SCHISM (Semi-implicit Cross-scale Hydroscience Integrated System Model) have been developed for an idealized channel including a surface piercing cylindrical obstacle representing the pile and a more realistic test case including four exemplary piles. Experiments using a constant flow around the obstacles and a rotating M2 tidal wave are carried out. The resulting current and turbulence patterns are investigated to estimate the influence of the obstacles on the surrounding ocean dynamics. We demonstrate that using an unstructured ocean model provides the opportunity to embed a high-resolution representation of a wind park turbine pile system into a coarser North Sea setup, which is needed in order to perform a seamless investigation of the resulting geophysical processes.

  18. Wind Turbine Technologies

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela

    2017-01-01

    of innovative concepts, with proven technology for both generators and power electronics [4]. The continuously increased and concentrated electrical penetration of large wind turbines into electrical power systems inspires the designers to develop both custom generators and power electronics [5......The wind turbine technology is a very complex technology involving multidisciplinary and broad technical disciplines such as aerodynamics, mechanics, structure dynamics, meteorology as well as electrical engineering addressing the generation, transmission, and integration of wind turbines...... into the power system. Wind turbine technology has matured over the years and become the most promising and reliable renewable energy technology today. It has moved very fast, since the early 1980s, from wind turbines of a few kilowatts to today’s multimegawatt-sized wind turbines [13]. Besides their size...

  19. Experimental study of dynamic stall on Darrieus wind turbine blades

    Science.gov (United States)

    Brochier, G.; Fraunie, P.; Beguier, C.; Paraschivoiu, I.

    1985-12-01

    An experimental study of periodic vortex phenomena was performed on a model of a two straight-bladed Darrieus wind turbine under controlled-rotation conditions in the IMST water tunnel. The main focus of interest was the tip-speed ratios at which dynamic stall appears. Observations of this phenomenon from dye emission and the formation of hydrogen bubbles were made in the form of photographs, film and video recordings. Velocity measurements were obtained using the Laser-Doppler Velocimeter and components of velocity fluctuations could be determined quantitatively.

  20. Wind turbine design : evaluation of dynamic loads on large offshore wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Froeyd, Lars

    2012-07-01

    A design method for combined aerodynamic and structural (aeroelastic) design of large wind turbine blades has been developed, with the purpose of facilitating conceptual design, parametric studies, optimisation, or cost analysis of offshore wind turbines using more advances aero-servo-hydro-elastic analyses. The aerodynamic design is based on blade element momentum theory, which is the most common approach for engineering analysis of wind turbines, due to a combination of speed and accuracy. A parametric blade model is developed which allows the balde geometry, in terms of airfoil characteristics and the design tip speed ratio to yield optimal glide number and induction factors. The focus is on e realistic and manufacturable design with near-optimum properties and a smooth aerodynamic shell spanning from a cylindric shape at the blade root to thin airfoils close to the tip. The structural design is based on a parametric internal structural definition constrained by the shell geometry. The structure is divide in six material zones consisting of leading and trailing edge, fore and aft shells, main spar, and shear webs, and initial material lay up of each zone is defined from a parametric description developed in an earlier large-scale blade design study. The final structural design is found through an iterative process, by determining the beam properties using laminate theory of slender, thin-walled beams, and investigating the material strains and blade deflections of a set of quasi-static design load cases. The design load cases were selected from the design standards after a thorough discussion and evaluation of the most severe load cases, based on aero-servo-hydro-elastic wind turbine simulations. The blade designs are found to have realistic properties in terms of blade mass and stiffness distributions and natural frequencies. This is argued for by comparing with available wind turbine balde data from commercial wind turbines and reference wind turbine design

  1. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...

  2. Wind turbine

    Science.gov (United States)

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  3. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...... a classical pitch and torque regulator to control rotational speed and power, while the section on structural dynamics has been extended with a simplified mechanical system explaining the phenomena of forward and backward whirling modes. Readers will also benefit from a new chapter on Vertical Axis Wind...... Turbines (VAWT). Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum method...

  4. Dynamic wind turbine models in power system simulation tool DIgSILENT

    DEFF Research Database (Denmark)

    Hansen, A.D.; Jauch, C.; Sørensen, Poul Ejnar

    2004-01-01

    The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT (Version 12.0). The developed models are a part of the results of a national research project, whose overall objective is to create amodel database in different simulation tools......-electrical components of the wind turbine (wind model, aerodynamic model, mechanical model). Theinitialisation issues on the wind turbine models into the power system simulation are also presented. However, the main attention in this report is drawn to the modelling at the system level of two wind turbine concepts: 1....... This model database should be able to support the analysis of the interaction between the mechanical structure of the wind turbine and the electrical grid during different operational modes. The reportprovides a description of the wind turbines modelling, both at a component level and at a system level...

  5. Dynamic Analysis of Wind Turbines Including Soil-Structure Interaction

    DEFF Research Database (Denmark)

    Harte, M.; Basu, B.; Nielsen, Søren R.K.

    2012-01-01

    blades and includes the effect of centrifugal stiffening due to rotation. The foundation of the structure is modeled as a rigid gravity based foundation with two DOF whose movement is related to the surrounding soil by means of complex impedance functions generated using cone model. Transfer functions...... for displacement of the turbine system are obtained and the modal frequencies of the combined turbine-foundation system are estimated. Simulations are presented for the MDOF turbine structure subjected to wind loading for different soil stiffness conditions. Steady state and turbulent wind loading, developed using...... blade element momentum theory and the Kaimal spectrum, have been considered. Soil stiffness and damping properties acquired from DNV/Risø standards are used as a comparison. The soil-structure interaction is shown to affect the response of the wind turbine. This is examined in terms of the turbine...

  6. Analysis methods for wind turbine control and electrical system dynamics

    Science.gov (United States)

    Hinrichsen, E. N.

    1995-01-01

    The integration of new energy technologies into electric power systems requires methods which recognize the full range of dynamic events in both the new generating unit and the power system. Since new energy technologies are initially perceived as small contributors to large systems, little attention is generally paid to system integration, i.e. dynamic events in the power system are ignored. As a result, most new energy sources are only capable of base-load operation, i.e. they have no load following or cycling capability. Wind turbines are no exception. Greater awareness of this implicit (and often unnecessary) limitation is needed. Analysis methods are recommended which include very low penetration (infinite bus) as well as very high penetration (stand-alone) scenarios.

  7. Wind turbine state estimation

    DEFF Research Database (Denmark)

    Knudsen, Torben

    2014-01-01

    Dynamic inflow is an effect which is normally not included in the models used for wind turbine control design. Therefore, potential improvement from including this effect exists. The objective in this project is to improve the methods previously developed for this and especially to verify...... the results using full-scale wind turbine data. The previously developed methods were based on extended Kalman filtering. This method has several drawback compared to unscented Kalman filtering which has therefore been developed. The unscented Kalman filter was first tested on linear and non-linear test cases...... which was successful. Then the estimation of a wind turbine state including dynamic inflow was tested on a simulated NREL 5MW turbine was performed. This worked perfectly with wind speeds from low to nominal wind speed as the output prediction errors where white. In high wind where the pitch actuator...

  8. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...... is also covered, as are eigenmodes and the dynamic behaviour of a turbine. The book describes the effects of the dynamics and how this can be modelled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Furthermore, it examines how to calculate...... a classical pitch and torque regulator to control rotational speed and power, while the section on structural dynamics has been extended with a simplified mechanical system explaining the phenomena of forward and backward whirling modes. Readers will also benefit from a new chapter on Vertical Axis Wind...

  9. Time-Varying Dynamic Properties of Offshore Wind Turbines Evaluated by Modal Testing

    DEFF Research Database (Denmark)

    Damgaard, Mads; Andersen, J. K. F.; Ibsen, Lars Bo

    2014-01-01

    resonance of the wind turbine structure. In this paper, free vibration tests and a numerical Winkler type approach are used to evaluate the dynamic properties of a total of 30 offshore wind turbines located in the North Sea. Analyses indicate time-varying eigenfrequencies and damping ratios of the lowest...

  10. Dynamic Model of a Wind Turbine for the Electric Energy Generation

    Directory of Open Access Journals (Sweden)

    José de Jesús Rubio

    2014-01-01

    Full Text Available A novel dynamic model is introduced for the modeling of the wind turbine behavior. The objective of the wind turbine is the electric energy generation. The analytic model has the characteristic that considers a rotatory tower. Experiments show the validity of the proposed method.

  11. System Reduction in Nonlinear Multibody Dynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Holm-Jørgensen, Kristian; Nielsen, Søren R.K.; Rubak, Rune

    2007-01-01

    In this paper the system reduction in nonlinear multibody dynamics of wind turbines is investigated for various updating schemes of the moving frame of reference. In one case, the moving frame of reference is updated to a stiff body, relative to which the elastic deformations are fixed at one end....... In the other case, the stiff body motion is defined as the chord line connecting the end points of the beam, and the elastic deformations are simply supported at the end points. The system reduction is performed by discretizing the spatial motion into a set of rigid body modes and linear elastic eigenmodes...... determined from an FE-beam model complying to the definitions of the stiff bodymotions. Moreover, certain nonlinear effects have been included. These encompass the non-conservative rotation of the aerodynamic load during large elastic deformations and application of the aerodynamic and inertial loads...

  12. Dynamic wind turbine models in power system simulation tool DIgSILENT

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.D.; Iov, F.; Soerensen, Poul.; Cutululis, N.; Jauch, C.; Blaabjerg, F.

    2007-08-15

    This report presents a collection of models and control strategies developed and implemented in the power system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second edition of Risoe-R-1400(EN) and it gathers and describes a whole wind turbine model database built-op and developed during several national research projects, carried out at Risoe DTU National Laboratory for Sustainable Energy and Aalborg University, in the period 2001-2007. The overall objective of these projects was to create a wind turbine model database able to support the analysis of the interaction between the mechanical structure of the wind turbine and the electrical grid during different operational modes. The report provides thus a description of the wind turbines modelling, both at a component level and at a system level. The report contains both the description of DIgSILENT built-in models for the electrical components of a grid connected wind turbine (e.g. induction generators, power converters, transformers) and the models developed by the user, in the dynamic simulation language DSL of DIgSILENT, for the non-electrical components of the wind turbine (wind model, aerodynamic model, mechanical model). The initialisation issues on the wind turbine models into the power system simulation are also presented. The main attention in the report is drawn to the modelling at the system level of the following wind turbine concepts: (1) Fixed speed active stall wind turbine concept (2) Variable speed doubly-fed induction generator wind turbine concept (3) Variable speed multi-pole permanent magnet synchronous generator wind turbine concept These wind turbine concept models can be used and even extended for the study of different aspects, e.g. the assessment of power quality, control strategies, connection of the wind turbine at different types of grid and storage systems. Different control strategies have been developed and implemented for these wind turbine

  13. Computational Fluid Dynamics based Fault Simulations of a Vertical Axis Wind Turbines

    Science.gov (United States)

    Park, Kyoo-seon; Asim, Taimoor; Mishra, Rakesh

    2012-05-01

    Due to depleting fossil fuels and a rapid increase in the fuel prices globally, the search for alternative energy sources is becoming more and more significant. One of such energy source is the wind energy which can be harnessed with the use of wind turbines. The fundamental principle of wind turbines is to convert the wind energy into first mechanical and then into electrical form. The relatively simple operation of such turbines has stirred the researchers to come up with innovative designs for global acceptance and to make these turbines commercially viable. Furthermore, the maintenance of wind turbines has long been a topic of interest. Condition based monitoring of wind turbines is essential to maintain continuous operation of wind turbines. The present work focuses on the difference in the outputs of a vertical axis wind turbine (VAWT) under different operational conditions. A Computational Fluid Dynamics (CFD) technique has been used for various blade configurations of a VAWT. The results indicate that there is significant degradation in the performance output of wind turbines as the number of blades broken or missing from the VAWT increases. The study predicts the faults in the blades of VAWTs by monitoring its output.

  14. Wind Turbine Modeling for Computational Fluid Dynamics: December 2010 - December 2012

    Energy Technology Data Exchange (ETDEWEB)

    Tossas, L. A. M.; Leonardi, S.

    2013-07-01

    With the shortage of fossil fuel and the increasing environmental awareness, wind energy is becoming more and more important. As the market for wind energy grows, wind turbines and wind farms are becoming larger. Current utility-scale turbines extend a significant distance into the atmospheric boundary layer. Therefore, the interaction between the atmospheric boundary layer and the turbines and their wakes needs to be better understood. The turbulent wakes of upstream turbines affect the flow field of the turbines behind them, decreasing power production and increasing mechanical loading. With a better understanding of this type of flow, wind farm developers could plan better-performing, less maintenance-intensive wind farms. Simulating this flow using computational fluid dynamics is one important way to gain a better understanding of wind farm flows. In this study, we compare the performance of actuator disc and actuator line models in producing wind turbine wakes and the wake-turbine interaction between multiple turbines. We also examine parameters that affect the performance of these models, such as grid resolution, the use of a tip-loss correction, and the way in which the turbine force is projected onto the flow field.

  15. Wind turbine state estimation

    OpenAIRE

    Knudsen, Torben

    2014-01-01

    Dynamic inflow is an effect which is normally not included in the models used for wind turbine control design. Therefore, potential improvement from including this effect exists. The objective in this project is to improve the methods previously developed for this and especially to verify the results using full-scale wind turbine data. The previously developed methods were based on extended Kalman filtering. This method has several drawback compared to unscented Kalman filtering which has the...

  16. Data Driven Modelling of the Dynamic Wake Between Two Wind Turbines

    DEFF Research Database (Denmark)

    Knudsen, Torben; Bak, Thomas

    2012-01-01

    turbine. This paper establishes flow models relating the wind speeds at turbines in a farm. So far, research in this area has been mainly based on first principles static models and the data driven modelling done has not included the loading of the upwind turbine and its impact on the wind speed downwind....... This paper is the first where modern commercial mega watt turbines are used for data driven modelling including the upwind turbine loading by changing power reference. Obtaining the necessary data is difficult and data is therefore limited. A simple dynamic extension to the Jensen wake model is tested...... without much success. The best model turns out to be non linear with upwind turbine loading and wind speed as inputs. Using a transformation of these inputs it is possible to obtain a linear model and use well proven system identification methods. Finally it is shown that including the upwind wind...

  17. Dynamic aeroelastic stability of vertical-axis wind turbines under constant wind velocity

    Science.gov (United States)

    Nitzsche, Fred

    1994-05-01

    The flutter problem associated with the blades of a class of vertical-axis wind turbines called Darrieus is studied in detail. The spinning blade is supposed to be initially curved in a particular shape characterized by a state of pure tension at the blade cross section. From this equilibrium position a three-dimensional linear perturbation pattern is superimposed to determine the dynamic aeroelastic stability of the blade in the presence of free wind speed by means of the Floquet-Lyapunov theory for periodic systems.

  18. Dynamic modeling of fluid power transmissions for wind turbines

    NARCIS (Netherlands)

    Diepeveen, N.F.B.; Jarquin Laguna, A.

    2011-01-01

    Fluid power transmission for wind turbines is quietly gaining more ground/interest. The principle of the various concepts presented so far is to convert aerodynamic torque of the rotor blades into a pressurized fluid flow by means of a positive displacement pump. At the other end of the fluid power

  19. Static and dynamic wind turbine simulator using a converter controlled dc motor

    Energy Technology Data Exchange (ETDEWEB)

    Monfared, Mohammad; Rastegar, Hasan [Department of Electrical Engineering, Amirkabir University of Technology, Tehran (Iran); Madadi Kojabadi, Hossein [Department of Electrical Engineering, Sahand University of Technology, Tabriz 51335-1996 (Iran)

    2008-05-15

    This paper describes a new wind turbine simulator for dynamic conditions. The authors have developed an experimental platform to simulate the static and dynamic characteristics of real wind energy conversion system. This system consists of a 3 kW dc motor, which drives a synchronous generator. The converter is a 3 kW single-phase half-controlled converter. MATLAB/Simulink real time control software interfaced to I/O board and a converter controlled dc motor are used instead of a real wind turbine. A MATLAB/Simulink model is developed that obtains wind profiles and, by applying real wind turbine characteristics in dynamics and rotational speed of dc motor, calculates the command shaft torque of a real wind turbine. Based on the comparison between calculated torques with command one, the shaft torque of dc motor is regulated accordingly by controlling armature current demand of a single-phase half-controlled ac-dc converter. Simulation and experimental results confirm the effectiveness of proposed wind turbine simulator in emulating and therefore evaluating various turbines under a wide variety of wind conditions. (author)

  20. Dynamic stall analysis of horizontal-axis-wind-turbine blades using computational fluid dynamics

    Science.gov (United States)

    Sayed, Mohamed A.; Kandil, Hamdy A.; Morgan, El-Sayed I.

    2012-06-01

    Dynamic stall has been widely known to significantly affect the performance of the wind turbines. In this paper, aerodynamic simulation of the unsteady low-speed flow past two-dimensional wind turbine blade profiles, developed by the National Renewable Energy Laboratory (NREL), will be performed. The aerodynamic simulation will be performed using Computational Fluid Dynamics (CFD). The governing equations used in the simulations are the Unsteady-Reynolds-Averaged-Navier-Stokes (URANS) equations. The unsteady separated turbulent flow around an oscillating airfoil pitching in a sinusoidal pattern in the regime of low Reynolds number is investigated numerically. The investigation employs the URANS approach with the most suitable turbulence model. The development of the light dynamic stall of the blades under consideration is studied. The S809 blade profile is simulated at different mean wind speeds. Moreover, the S826 blade profile is also considered for analysis of wind turbine blade which is the most suitable blade profile for the wind conditions in Egypt over the site of Gulf of El-Zayt. In order to find the best oscillating frequency, different oscillating frequencies are studied. The best frequency can then be used for the blade pitch controller. The comparisons with the experimental results showed that the used CFD code can accurately predict the blade profile unsteady aerodynamic loads.

  1. Towards reduced order modelling for predicting the dynamics of coherent vorticity structures within wind turbine wakes.

    Science.gov (United States)

    Debnath, M; Santoni, C; Leonardi, S; Iungo, G V

    2017-04-13

    The dynamics of the velocity field resulting from the interaction between the atmospheric boundary layer and a wind turbine array can affect significantly the performance of a wind power plant and the durability of wind turbines. In this work, dynamics in wind turbine wakes and instabilities of helicoidal tip vortices are detected and characterized through modal decomposition techniques. The dataset under examination consists of snapshots of the velocity field obtained from large-eddy simulations (LES) of an isolated wind turbine, for which aerodynamic forcing exerted by the turbine blades on the atmospheric boundary layer is mimicked through the actuator line model. Particular attention is paid to the interaction between the downstream evolution of the helicoidal tip vortices and the alternate vortex shedding from the turbine tower. The LES dataset is interrogated through different modal decomposition techniques, such as proper orthogonal decomposition and dynamic mode decomposition. The dominant wake dynamics are selected for the formulation of a reduced order model, which consists in a linear time-marching algorithm where temporal evolution of flow dynamics is obtained from the previous temporal realization multiplied by a time-invariant operator.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).

  2. Dynamic fault simulation of wind turbines using commercial simulation tools

    DEFF Research Database (Denmark)

    Lund, Torsten; Eek, Jarle; Uski, Sanna

    2005-01-01

    This paper compares the commercial simulation tools: PSCAD/EMTDC, PowerFactory, SIMPOW and PSS/E for analysing fault sequences defined in the Danish grid code requirements for wind turbines connected to a voltage level below 100 kV. Both symmetrical and unsymmetrical faults are analysed. The devi......This paper compares the commercial simulation tools: PSCAD/EMTDC, PowerFactory, SIMPOW and PSS/E for analysing fault sequences defined in the Danish grid code requirements for wind turbines connected to a voltage level below 100 kV. Both symmetrical and unsymmetrical faults are analysed....... The deviations and the reasons for the deviations between the tools are stated. The simulation models are imple-mented using the built-in library components of the simulation tools with exception of the mechanical drive-train model, which had to be user-modeled in PowerFactory and PSS/E....

  3. Wind Shear, Gust, and Yaw-Induced Dynamic Stall on Wind-Turbine Blades

    Science.gov (United States)

    laBastide, B. P.; Wong, J. G.; Rival, D. E.

    2016-09-01

    This study examined the effect of a spanwise angle of attack gradient on the growth and stability of a dynamic stall vortex on a rotating blade. It was found that a spanwise angle of attack gradient induces a corresponding spanwise vorticity gradient, which, in combination with spanwise flow, results in a redistribution of circulation along the blade. Specifically, when replicating the angle of attack gradient experienced by a wind turbine at the 30% span position during a gust event, the spanwise vorticity gradient was aligned such that circulation was transported from areas of high circulation to areas of low circulation. This in turn increased the local dynamic stall vortex growth rate, which corresponds to an increase in the lift coefficient, and a decrease in the local vortex stability at this point. Reversing the relative alignment of the spanwise vorticity gradient and spanwise flow results in circulation transport from towards areas of high circulation generation, which acted to reduce local circulation and thereby stabilize the vortex. This circulation redistribution behaviour describes a mechanism by which the fluctuating loads on a wind turbine are magnified, which is detrimental to turbine lifetime and performance.

  4. Small scale experimental study of the dynamic response of a tension leg platform wind turbine

    DEFF Research Database (Denmark)

    Hansen, Anders Mandrup; Laugesen, Robert; Bredmose, Henrik

    2014-01-01

    A floating Tension Leg Platform (TLP) wind turbine was constructed at scale 1/200 and its dynamic response was analysed experimentally in co-directional wind and waves. The wind turbine was Froude scaled and a new rotor was designed to yield maximum power and Froude scaled thrust at the low model...... wind speeds and irregular sea states as well as a range of regular waves. It was found that an increase in wind speed reduces the wave-induced floater motion but causes slightly larger nacelle displacements. Further, the orientation of the spokes relative to the direction of wind and waves influences...... the pitch stiffness and thereby the nacelle displacements. Inclining the tendons towards the wind turbine reduces the nacelle displacements significantly and reduces the occurrence of slack tendons, but increases the inline tilt-motion of the rotor. Application of a very stiff mooring configuration...

  5. Aerodynamics of wind turbines

    CERN Document Server

    Hansen, Martin O L

    2015-01-01

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design a classical pitch and torque regulator to control rotational speed and power, while the section on structural dynamics has been extended with a simplified mechanical system explaining the phenomena of forward and backward whirling modes. Readers will also benefit from a new chapter on Vertical Axis W

  6. A simple dynamic wake model for time dependent wind turbine yaw

    Science.gov (United States)

    Shapiro, Carl; Meneveau, Charles; Gayme, Dennice

    2016-11-01

    This work develops a time dependent wake model for wind farms that better captures the spanwise and streamwise propagation of fluctuations generated by changes in turbine thrust and yaw angle. The model builds on classic wake models by incorporating time dependence and turbine yawing. These extensions enable us to capture the spanwise skewness in the yawed turbine wake as well as the dynamic advection of the wake downstream. This model is then compared to large eddy simulations of a wind farm with upstream rows of wind turbines dynamically yawing their rotors. An important advantage of the model is it allows us to take advantage of predictions of dynamic flow phenomena to coordinate the action of individual wind turbines for farm level control. We use the model to further explore the potential of wind farms to use wind turbine yaw to provide important services to the power grid through power tracking. This work is supported by NSF (SEP-1230788 and OISE-1243482, the WINDINSPIRE project).

  7. Next Generation Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Cheraghi, S. Hossein [Western New England Univ., Springfield, MA (United States); Madden, Frank [FloDesign Wind Turbine Corp., Waltham, MA (United States)

    2012-09-01

    The goal of this collaborative effort between Western New England University's College of Engineering and FloDesign Wind Turbine (FDWT) Corporation to wok on a novel areodynamic concept that could potentially lead to the next generation of wind turbines. Analytical studies and early scale model tests of FDWT's Mixer/Ejector Wind Turbine (MEWT) concept, which exploits jet-age advanced fluid dynamics, indicate that the concept has the potential to significantly reduce the cost of electricity over conventional Horizontal Axis Wind Turbines while reducing land usage. This project involved the design, fabrication, and wind tunnel testing of components of MEWT to provide the research and engineering data necessary to validate the design iterations and optimize system performance. Based on these tests, a scale model prototype called Briza was designed, fabricated, installed and tested on a portable tower to investigate and improve the design system in real world conditions. The results of these scale prototype efforts were very promising and have contributed significantly to FDWT's ongoing development of a product scale wind turbine for deployment in multiple locations around the U.S. This research was mutually beneficial to Western New England University, FDWT, and the DOE by utilizing over 30 student interns and a number of faculty in all efforts. It brought real-world wind turbine experience into the classroom to further enhance the Green Engineering Program at WNEU. It also provided on-the-job training to many students, improving their future employment opportunities, while also providing valuable information to further advance FDWT's mixer-ejector wind turbine technology, creating opportunities for future project innovation and job creation.

  8. Research on dynamic characteristics of wind turbine tower with different analysis methods

    Directory of Open Access Journals (Sweden)

    Ji YAO

    2015-08-01

    Full Text Available A wind turbine located in Yunnan is taken as an example in this paper. By using the analytical method and the finite element method, the modal analysis of wind turbine tower is carried out, then the structural dynamic behavior is obtained. Based on the comparison of the results from different calculation methods, the rigidity and the resonance of tower induced by wind wheel rotation are studied. The research shows that, the finite element model is simplified, while the results of this method are rich; the transient resonance inevitably appears for two times in the starting process for the flexible wind tower which has the structure of symmetry basically; while in the normal operation stage, the wind wheel would not induce the resonance for flexible tower. The research provides a theoretical basis for the design of wind turbine tower.

  9. Dynamics of Vertical Axis Wind Turbines (Darrieus Type)

    OpenAIRE

    El-Sayed, A. F. Abdel Azim; Hirsch, C.; Derdelinckx, R.

    1995-01-01

    A computing package that combines finite element methods for evaluating the resonance frequencies and modes of turbine subcomponents (blade, tower and shaft) together with the aerodynamic calculations for forces and moments taking into consideration the dynamic stall as well as the dynamic response is developed. This method was applied to a realistic VAWT; namely; the PIONEER I built in the Netherlands by Fokker company. A reasonable agreement between the calculated and field results was p...

  10. Superconducting Wind Turbine Generators

    OpenAIRE

    Yunying Pan; Danhzen Gu

    2016-01-01

    Wind energy is well known as a renewable energy because its clean and less polluted characteristic, which is the foundation of development modern wind electricity. To find more efficient wind turbine is the focus of scientists around the world. Compared from conventional wind turbines, superconducting wind turbine generators have advantages at zero resistance, smaller size and lighter weight. Superconducting wind turbine will inevitably become the main trends in this area. This paper intends ...

  11. Floating wind turbine system

    Science.gov (United States)

    Viterna, Larry A. (Inventor)

    2009-01-01

    A floating wind turbine system with a tower structure that includes at least one stability arm extending therefrom and that is anchored to the sea floor with a rotatable position retention device that facilitates deep water installations. Variable buoyancy for the wind turbine system is provided by buoyancy chambers that are integral to the tower itself as well as the stability arm. Pumps are included for adjusting the buoyancy as an aid in system transport, installation, repair and removal. The wind turbine rotor is located downwind of the tower structure to allow the wind turbine to follow the wind direction without an active yaw drive system. The support tower and stability arm structure is designed to balance tension in the tether with buoyancy, gravity and wind forces in such a way that the top of the support tower leans downwind, providing a large clearance between the support tower and the rotor blade tips. This large clearance facilitates the use of articulated rotor hubs to reduced damaging structural dynamic loads. Major components of the turbine can be assembled at the shore and transported to an offshore installation site.

  12. Understanding Dynamic Model Validation of a Wind Turbine Generator and a Wind Power Plant: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Zhang, Ying Chen; Gevorgian, Vahan; Kosterev, Dmitry

    2016-09-01

    Regional reliability organizations require power plants to validate the dynamic models that represent them to ensure that power systems studies are performed to the best representation of the components installed. In the process of validating a wind power plant (WPP), one must be cognizant of the parameter settings of the wind turbine generators (WTGs) and the operational settings of the WPP. Validating the dynamic model of a WPP is required to be performed periodically. This is because the control parameters of the WTGs and the other supporting components within a WPP may be modified to comply with new grid codes or upgrades to the WTG controller with new capabilities developed by the turbine manufacturers or requested by the plant owners or operators. The diversity within a WPP affects the way we represent it in a model. Diversity within a WPP may be found in the way the WTGs are controlled, the wind resource, the layout of the WPP (electrical diversity), and the type of WTGs used. Each group of WTGs constitutes a significant portion of the output power of the WPP, and their unique and salient behaviors should be represented individually. The objective of this paper is to illustrate the process of dynamic model validations of WTGs and WPPs, the available data recorded that must be screened before it is used for the dynamic validations, and the assumptions made in the dynamic models of the WTG and WPP that must be understood. Without understanding the correct process, the validations may lead to the wrong representations of the WTG and WPP modeled.

  13. Fully Coupled Three-Dimensional Dynamic Response of a Tension-Leg Platform Floating Wind Turbine in Waves and Wind

    DEFF Research Database (Denmark)

    Kumari Ramachandran, Gireesh Kumar Vasanta; Bredmose, Henrik; Sørensen, Jens Nørkær

    2014-01-01

    A dynamic model for a tension-leg platform (TLP) floating offshore wind turbine is proposed. The model includes three-dimensional wind and wave loads and the associated structural response. The total system is formulated using 17 degrees of freedom (DOF), 6 for the platform motions and 11 for the...

  14. Fully Coupled Three-Dimensional Dynamic Response of a TLP Floating Wind Turbine in Waves and Wind

    DEFF Research Database (Denmark)

    Ramachandran, Gireesh Kumar V.R.; Bredmose, Henrik; Sørensen, Jens Nørkær

    2013-01-01

    A dynamic model for a tension-leg platform (TLP) floating offshore wind turbine is proposed. The model includes threedimensional wind and wave loads and the associated structural response. The total system is formulated using 17 degrees of freedom (DOF), 6 for the platform motions and 11 for the ...

  15. Dynamic investigation of twist-bend coupling in a wind turbine blade

    DEFF Research Database (Denmark)

    Luczak, M.; Manzato, S.; Peeters, B.

    2011-01-01

    This paper presents some results and aspects of the multidisciplinary and interdisciplinary research oriented for the experimental and numerical study in static and dynamic domains on the bend-twist coupling in the full scale section of a wind turbine blade structure. The main goal of the conducted...... research is to confirm experimentally the numerical prediction of modification of the dynamic and static properties of a wind turbine blade. The bend-twist coupling was implemented by adding angled UD (UniDirectional) layers on the suction and pressure side of the blade. Static and dynamic tests were...... performed on a section of the full scale wind turbine blade provided by VestasWind Systems A/S. The results are presented and compared with the measurements of the original and modified blade. Comparison analysis confirmed that UD layers introduce measurable bend-twist couplings, which was not present...

  16. Introduction to wind turbine aerodynamics

    CERN Document Server

    Schaffarczyk, Alois Peter

    2014-01-01

    Wind-Turbine Aerodynamics is a self-contained textbook which shows how to come from the basics of fluid mechanics to modern wind turbine blade design. It presents a fundamentals of fluid dynamics and inflow conditions, and gives a extensive introduction into theories describing the aerodynamics of wind turbines. After introducing experiments the book applies the knowledge to explore the impact on blade design.The book is an introduction for professionals and students of very varying levels.

  17. Non-linear dynamics of wind turbine wings

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther; Nielsen, Søren R.K.

    2006-01-01

    The paper deals with the formulation of non-linear vibrations of a wind turbine wing described in a wing fixed moving coordinate system. The considered structural model is a Bernoulli-Euler beam with due consideration to axial twist. The theory includes geometrical non-linearities induced....... Important non-linear couplings between the fundamental blade mode and edgewise modes have been identified based on a resonance excitation of the wing, caused by a harmonically varying support point motion with the circular frequency omega. Assuming that the fundamental blade and edgewise eigenfrequencies...

  18. Roughness Effects on Wind-Turbine Wake Dynamics in a Boundary-Layer Wind Tunnel

    DEFF Research Database (Denmark)

    Barlas, Emre; Buckingham, Sophia; van Beeck, Jeroen

    2016-01-01

    Increasing demand in wind energy has resulted in increasingly clustered wind farms, and raised the interest in wake research dramatically in the last couple of years. To this end, the present work employs an experimental approach with scaled three-bladed wind-turbine models in a large boundary...

  19. A 100-kW wind turbine blade dynamics analysis, weight-balance, and structural test results

    Science.gov (United States)

    Anderson, W. D.

    1975-01-01

    The results of dynamic analyses, weight and balance tests, static stiffness tests, and structural vibration tests on the 60-foot-long metal blades for the ERDA-NASA 100-kW wind turbine are presented. The metal blades are shown to be free from structural or dynamic resonance at the wind turbine design speed. Aeroelastic instabilities are unlikely to occur within the normal operating range of the wind turbine.

  20. Computational Fluid Dynamics Prediction of a Modified Savonius Wind Turbine with Novel Blade Shapes

    Directory of Open Access Journals (Sweden)

    Wenlong Tian

    2015-07-01

    Full Text Available The Savonius wind turbine is a type of vertical axis wind turbine (VAWTs that is simply composed of two or three arc-type blades which can generate power even under poor wind conditions. A modified Savonius wind turbine with novel blade shapes is introduced with the aim of increasing the power coefficient of the turbine. The effect of blade fullness, which is a main shape parameter of the blade, on the power production of a two-bladed Savonius wind turbine is investigated using transient computational fluid dynamics (CFD. Simulations are based on the Reynolds Averaged Navier-Stokes (RANS equations with a renormalization group turbulent model. This numerical method is validated with existing experimental data and then utilized to quantify the performance of design variants. Results quantify the relationship between blade fullness and turbine performance with a blade fullness of 1 resulting in the highest coefficient of power, 0.2573. This power coefficient is 10.98% higher than a conventional Savonius turbine.

  1. Gearbox and Drivetrain Models to Study Dynamic Effects of Modern Wind Turbines: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Girsang, I. P.; Dhupia, J. S.; Muljadi, E.; Singh, M.; Pao, L. Y.

    2013-10-01

    Wind turbine drivetrains consist of components that directly convert kinetic energy from the wind to electrical energy. Guaranteeing robust and reliable drivetrain designs is therefore important to minimize turbine downtime. Current drivetrain models often lack the ability to model both the impacts of electrical transients as well as wind turbulence and shear in one package. In this work, thecapability of the FAST wind turbine computer-aided engineering tool, developed by the National Renewable Energy Laboratory, is enhanced through integration of a dynamic model of the drivetrain. The dynamic drivetrain model is built using Simscape in the MATLAB/Simulink environment and incorporates detailed electrical generator models. This model can be used in the future to test advanced controlschemes to extend life of the gearbox.

  2. Long-term dynamic behavior of monopile supported offshore wind turbines in sand

    Directory of Open Access Journals (Sweden)

    Lu-Qing Yu

    2015-03-01

    Full Text Available The complexity of the loads acting on the offshore wind turbines (OWTs structures and the significance of investigation on structure dynamics are explained. Test results obtained from a scaled wind turbine model are also summarized. The model is supported on monopile, subjected to different types of dynamic loading using an innovative out of balance mass system to apply cyclic/dynamic loads. The test results show the natural frequency of the wind turbine structure increases with the number of cycles, but with a reduced rate of increase with the accumulation of soil strain level. The change is found to be dependent on the shear strain level in the soil next to the pile which matches with the expectations from the element tests of the soil. The test results were plotted in a non-dimensional manner in order to be scaled to predict the prototype consequences using element tests of a soil using resonant column apparatus.

  3. Effects of elastic support on the dynamic behaviors of the wind turbine drive train

    Science.gov (United States)

    Wang, Shuaishuai; Zhu, Caichao; Song, Chaosheng; Han, Huali

    2017-09-01

    The reliability and service life of wind turbines are influenced by the complex loading applied on the hub, especially amidst a poor external wind environment. A three-point elastic support, which includes the main bearing and two torque arms, was considered in this study. Based on the flexibilities of the planet carrier and the housing, a coupled dynamic model was developed for a wind turbine drive train. Then, the dynamic behaviors of the drive train for different elastic support parameters were computed and analyzed. Frequency response functions were used to examine how different elastic support parameters influence the dynamic behaviors of the drive train. Results showed that the elastic support parameters considerably influenced the dynamic behaviors of the wind turbine drive train. A large support stiffness of the torque arms decreased the dynamic response of the planet carrier and the main bearing, whereas a large support stiffness of the main bearing decreased the dynamic response of planet carrier while increasing that of the main bearing. The findings of this study provide the foundation for optimizing the elastic support stiffness of the wind turbine drive train.

  4. Uncovering wind turbine properties through two-dimensional stochastic modeling of wind dynamics.

    Science.gov (United States)

    Raischel, Frank; Scholz, Teresa; Lopes, Vitor V; Lind, Pedro G

    2013-10-01

    Using a method for stochastic data analysis borrowed from statistical physics, we analyze synthetic data from a Markov chain model that reproduces measurements of wind speed and power production in a wind park in Portugal. We show that our analysis retrieves indeed the power performance curve, which yields the relationship between wind speed and power production, and we discuss how this procedure can be extended for extracting unknown functional relationships between pairs of physical variables in general. We also show how specific features, such as the rated speed of the wind turbine or the descriptive wind speed statistics, can be related to the equations describing the evolution of power production and wind speed at single wind turbines.

  5. A Novel Dynamic Co-Simulation Analysis for Overall Closed Loop Operation Control of a Large Wind Turbine

    Directory of Open Access Journals (Sweden)

    Ching-Sung Wang

    2016-08-01

    Full Text Available A novel dynamic co-simulation methodology of overall wind turbine systems is presented. This methodology combines aerodynamics, mechanism dynamics, control system dynamics, and subsystems dynamics. Aerodynamics and turbine properties were modeled in FAST (Fatigue, Aerodynamic, Structures, and Turbulence, and ADAMS (Automatic Dynamic Analysis of Mechanical Systems performed the mechanism dynamics; control system dynamics and subsystem dynamics such as generator, pitch control system, and yaw control system were modeled and built in MATLAB/SIMULINK. Thus, this comprehensive integration of methodology expands both the flexibility and controllability of wind turbines. The dynamic variations of blades, rotor dynamic response, and tower vibration can be performed under different inputs of wind profile, and the control strategies can be verified in the different closed loop simulation. Besides, the dynamic simulation results are compared with the measuring results of SCADA (Supervisory Control and Data Acquisition of a 2 MW wind turbine for ensuring the novel dynamic co-simulation methodology.

  6. Turbulence and wind turbines

    DEFF Research Database (Denmark)

    Brand, Arno J.; Peinke, Joachim; Mann, Jakob

    2011-01-01

    The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed.......The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed....

  7. A comparison between the dynamics of horizontal and vertical axis offshore floating wind turbines.

    Science.gov (United States)

    Borg, M; Collu, M

    2015-02-28

    The need to further exploit offshore wind resources in deeper waters has led to a re-emerging interest in vertical axis wind turbines (VAWTs) for floating foundation applications. However, there has been little effort to systematically compare VAWTs to the more conventional horizontal axis wind turbine (HAWT). This article initiates this comparison based on prime principles, focusing on the turbine aerodynamic forces and their impact on the floating wind turbine static and dynamic responses. VAWTs generate substantially different aerodynamic forces on the support structure, in particular, a potentially lower inclining moment and a substantially higher torque than HAWTs. Considering the static stability requirements, the advantages of a lower inclining moment, a lower wind turbine mass and a lower centre of gravity are illustrated, all of which are exploitable to have a less costly support structure. Floating VAWTs experience increased motion in the frequency range surrounding the turbine [number of blades]×[rotational speed] frequency. For very large VAWTs with slower rotational speeds, this frequency range may significantly overlap with the range of wave excitation forces. Quantitative considerations are undertaken comparing the reference NREL 5 MW HAWT with the NOVA 5 MW VAWT. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  8. Coupled dynamic response analysis of a multi-column tension-leg-type floating wind turbine

    Science.gov (United States)

    Zhao, Yong-sheng; Yang, Jian-min; He, Yan-ping; Gu, Min-tong

    2016-07-01

    This paper presents a coupled dynamic response analysis of a multi-column tension-leg-type floating wind turbine (WindStar TLP system) under normal operation and parked conditions. Wind-only load cases, wave-only load cases and combined wind and wave load cases were analyzed separately for the WindStar TLP system to identify the dominant excitation loads. Comparisons between an NREL offshore 5-MW baseline wind turbine installed on land and the WindStar TLP system were performed. Statistics of selected response variables in specified design load cases (DLCs) were obtained and analyzed. It is found that the proposed WindStar TLP system has small dynamic responses to environmental loads and it thus has almost the same mean generator power output under operating conditions as the land-based system. The tension mooring system has a sufficient safety factor, and the minimum tendon tension is always positive in all selected DLCs. The ratio of ultimate load of the tower base fore-aft bending moment for the WindStar TLP system versus the land-based system can be as high as 1.9 in all of the DLCs considered. These results will help elucidate the dynamic characteristics of the proposed WindStar TLP system, identify the difference in load effect between it and land-based systems, and thus make relevant modifications to the initial design for the WindStar TLP system.

  9. Assessment of dynamic substructuring of a wind turbine foundation applicable for aeroelastic simulations

    DEFF Research Database (Denmark)

    Damgaard, Mads; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    2015-01-01

    Dynamic vibration response of a wind turbine structure is examined. Emphasis is put on the dynamic interaction between the foundation and the subsoil, since stiffness and energy dissipation of the substructure affect the dynamic response of the wind turbine. Based on a standard lumped-parameter m......Dynamic vibration response of a wind turbine structure is examined. Emphasis is put on the dynamic interaction between the foundation and the subsoil, since stiffness and energy dissipation of the substructure affect the dynamic response of the wind turbine. Based on a standard lumped......-parameter model fitted to the frequency response of the ground, a surface foundation is implemented into the aeroelastic code FLEX5. In case of a horizontal stratum overlaying a homogeneous half-space and within the low frequency range, analyses show that a standard lumped-parametermodel provides an accurate...... prediction of the frequency dependent foundation stiffness. The generalized stiffness matrix of the substructure is found to be in a reasonable agreement with the corresponding values based on a Guyan reduction scheme. In addition, experimental findings based on traditional and operational modal techniques...

  10. Effect of oscillation frequency on wind turbine airfoil dynamic stall

    Science.gov (United States)

    Zhou, Z.; Li, C.; Nie, J. B.; Chen, Y.

    2013-12-01

    At the same oscillation amplitude, Reynolds Number, mean angle of attack, the dynamic stall characteristics of the NREL S809 airfoil undergoing sinusoidal pitch oscillations of different oscillation frequencies were investigated with modified k-ω SST turbulence model of CFD solution for two-dimensional numerical simulation. The predicted lift, drag coefficients and moment coefficients were compared with the Ohio State University wind tunnel test results, which showed a good agreement. The birth, development and breaking off of eddies were analyzed through streamline distribution around airfoil and the influence of oscillation frequencies on dynamic stall characteristics was also described and analyzed in detail, which enrich the database of dynamic stall characteristics needed by the quantization of oscillation frequencies on dynamic characteristics and prove that sliding mesh method is reliable when dealing with dynamic stall problems.

  11. Research on the influence of helical strakes on dynamic response of floating wind turbine platform

    Science.gov (United States)

    Ding, Qin-wei; Li, Chun

    2017-04-01

    The stability of platform structure is the paramount guarantee of the safe operation of the offshore floating wind turbine. The NREL 5MW floating wind turbine is established based on the OC3-Hywind Spar Buoy platform with the supplement of helical strakes for the purpose to analyze the impact of helical strakes on the dynamic response of the floating wind turbine Spar platform. The dynamic response of floating wind turbine Spar platform under wind, wave and current loading from the impact of number, height and pitch ratio of the helical strakes is analysed by the radiation and diffraction theory, the finite element method and orthogonal design method. The result reveals that the helical strakes can effectively inhibit the dynamic response of the platform but enlarge the wave exciting force; the best parameter combination is two pieces of helical strakes with the height of 15% D ( D is the diameter of the platform) and the pitch ratio of 5; the height of the helical strake and its pitch ratio have significant influence on pitch response.

  12. A discrete force allocation algorithm for modelling wind turbines in computational fluid dynamics

    DEFF Research Database (Denmark)

    Réthoré, Pierre-Elouan; Sørensen, Niels N.

    2012-01-01

    , this algorithm does not address the specific cases where discrete forces are present. The velocities and pressure exhibit some significant numerical fluctuations at the position where the body forces are applied. While this issue is limited in space, it is usually critical to accurately estimate the velocity...... the possibility of coarsening the mesh where the forces are applied and have a considerable effect in reducing the computational cost of modelling wind turbines, wind farms and forests. This approach gives excellent results with three test cases where an analytical solution is known. This correction is also......This paper describes an algorithm for allocating discrete forces in computational fluid dynamics (CFD). Discrete forces are useful in wind energy CFD. They are used as an approximation of the wind turbine blades’ action on the wind (actuator disc/line), to model forests and to model turbulent...

  13. Wind Turbine Blade Design

    OpenAIRE

    Peter J. Schubel; Richard J. Crossley

    2012-01-01

    A detailed review of the current state-of-art for wind turbine blade design is presented, including theoretical maximum efficiency, propulsion, practical efficiency, HAWT blade design, and blade loads. The review provides a complete picture of wind turbine blade design and shows the dominance of modern turbines almost exclusive use of horizontal axis rotors. The aerodynamic design principles for a modern wind turbine blade are detailed, including blade plan shape/quantity, aerofoil selection ...

  14. On the Behavior of Pliable Plate Dynamics in Wind: Application to Vertical Axis Wind Turbines

    Science.gov (United States)

    Cosse, Julia Theresa

    Numerous studies have shown that flexible materials improve resilience and durability of a structure. Several studies have investigated the behavior of elastic plates under the influence of a free stream, such as studies of the fluttering flag and others of shape reconfiguration, due to a free stream. The principle engineering contribution of this thesis is the design and development of a vertical axis wind turbine that features pliable blades which undergo various modes of behavior, ultimately leading to rotational propulsion of the turbine. The wind turbine design was tested in a wind tunnel and at the Caltech Laboratory for Optimized Wind Energy. Ultimately, the flexible blade vertical axis wind turbine proved to be an effective way of harnessing the power of the wind. In addition, this body of work builds on the current knowledge of elastic cantilever plates in a free stream flow by investigating the inverted flag. While previous studies have focused on the fluid structure interaction of a free stream on elastic cantilever plates, none had studied the plate configuration where the trailing edge was clamped, leaving the leading edge free to move. Furthermore, the studies presented in this thesis establish the geometric boundaries of where the large-amplitude flapping occurs.

  15. Automated modal tracking and fatigue assessment of a wind turbine based on continuous dynamic monitoring

    Directory of Open Access Journals (Sweden)

    Oliveira Gustavo

    2015-01-01

    Full Text Available The paper describes the implementation of a dynamic monitoring system at a 2.0 MW onshore wind turbine. The system is composed by two components aiming at the structural integrity and fatigue assessment. The first component enables the continuous tracking of modal characteristics of the wind turbine (natural frequency values, modal damping ratios and mode shapes in order to detect abnormal deviations of these properties, which may be caused by the occurrence of structural damage. On the other hand, the second component allows the estimation of the remaining fatigue lifetime of the structure based on the analysis of the measured cycles of structural vibration.

  16. Dynamic wind turbine models in power system simulation tool DIgSILENT

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Iov, F.; Sørensen, Poul Ejnar

    , mechanical model). The initialisation issues on the wind turbine models into the power system simulation are also presented. The main attention in the report is drawn to the modelling at the system level of the following wind turbine concepts: 1. Fixed speed active stall wind turbine concept 2. Variable...... speed doubly-fed induction generator wind turbine concept 3. Variable speed multi-pole permanent magnet synchronous generator wind turbine concept These wind turbine concept models can be used and even extended for the study of different aspects, e.g. the assessment of power quality, control strategies...

  17. Wake Influence on Dynamic Load Characteristics of Offshore Floating Wind Turbines

    DEFF Research Database (Denmark)

    Jeon, Minu; Lee, Soogab; Kim, Taeseong

    2016-01-01

    dynamic wake method, and unsteady vortex lattice method. The Offshore Code Comparison Collaboration Hywind model is chosen for offshore floating wind-turbine simulation. Results show that the blade-element momentum theory underestimates the rotor torque and speed. Moreover, although responses...

  18. Dynamic modeling and control of DFIG-based wind turbines under balanced network conditions

    DEFF Research Database (Denmark)

    Mehdipour, Cyrous; Hajizadeh, Amin; Mehdipour, Iman

    2016-01-01

    The performance of wind power station is researched by utilizing a detailed model which includes a wind turbine (WT), doubly fed induction generator (DFIG) and power electronic devices. In the initial stage, a comprehensive review and definition of each part of this system are presented....... Then dynamic modeling and simulation of a sample power system are carried out. The operation of a DFIG coupled with WT under balanced condition of a power grid is investigated and stationary reference frame is utilized for analysis of a wind energy conversion system. At the second step, a wind power station...

  19. Wind turbines acoustic measurements

    Science.gov (United States)

    Trematerra, Amelia; Iannace, Gino

    2017-07-01

    The importance of wind turbines has increased over the last few years throughout the European Community. The European energy policy guidelines state that for the year 2020 20% of all energy must be produced by alternative energy sources. Wind turbines are an important type of energy production without petrol. A wind speed in a range from 2.5 m/s to 25.0 m/s is needed. One of the obstacles to the widespread diffusion of wind turbine is noise generation. This work presents some noise measurements of wind turbines in the South of Italy, and discusses the noise problems for the people living near wind farms.

  20. Dynamic stall - The case of the vertical axis wind turbine

    Science.gov (United States)

    Laneville, A.; Vittecoq, P.

    1986-05-01

    This paper presents the results of an experimental investigation on a driven Darrieus turbine rotating at different tip speed ratios. For a Reynolds number of 3.8 x 10 to the 4th, the results indicate the presence of dynamic stall at tip speed ratio less than 4, and that helicopter blade aerodynamics can be used in order to explain some aspects of the phenomenon. It was observed that in deep stall conditions, a vortex is formed at the leading edge; this vortex moves over the airfoil surface with 1/3 of the airfoil speed and then is shed at the trailing edge. After its shedding, the vortex can interact with the airfoil surface as the blade passes downstream.

  1. Wind Turbine Blade Design

    Directory of Open Access Journals (Sweden)

    Richard J. Crossley

    2012-09-01

    Full Text Available A detailed review of the current state-of-art for wind turbine blade design is presented, including theoretical maximum efficiency, propulsion, practical efficiency, HAWT blade design, and blade loads. The review provides a complete picture of wind turbine blade design and shows the dominance of modern turbines almost exclusive use of horizontal axis rotors. The aerodynamic design principles for a modern wind turbine blade are detailed, including blade plan shape/quantity, aerofoil selection and optimal attack angles. A detailed review of design loads on wind turbine blades is offered, describing aerodynamic, gravitational, centrifugal, gyroscopic and operational conditions.

  2. Dynamic analysis of a 5-MW tripod offshore wind turbine by considering fluid-structure interaction

    Science.gov (United States)

    Zhang, Li-wei; Li, Xin

    2017-10-01

    Fixed offshore wind turbines usually have large underwater supporting structures. The fluid influences the dynamic characteristics of the structure system. The dynamic model of a 5-MW tripod offshore wind turbine considering the pile-soil system and fluid structure interaction (FSI) is established, and the structural modes in air and in water are obtained by use of ANSYS. By comparing low-order natural frequencies and mode shapes, the influence of sea water on the free vibration characteristics of offshore wind turbine is analyzed. On basis of the above work, seismic responses under excitation by El-Centro waves are calculated by the time-history analysis method. The results reveal that the dynamic responses such as the lateral displacement of the foundation and the section bending moment of the tubular piles increase substantially under the influence of the added-mass and hydrodynamic pressure of sea water. The method and conclusions presented in this paper can provide a theoretical reference for structure design and analysis of offshore wind turbines fixed in deep seawater.

  3. Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields

    DEFF Research Database (Denmark)

    Guntur, Srinivas; Sørensen, Niels N.; Schreck, Scott

    2016-01-01

    This paper presents an investigation of two well-known aerodynamic phenomena, rotational augmentation and dynamic stall, together in the inboard parts of wind turbine blades. This analysis is carried out using the following: (1) the National Renewable Energy Laboratory’s Unsteady Aerodynamics...... a reduced order dynamic stall model that uses rotationally augmented steady-state polars obtained from steady Phase VI experimental sequences, instead of the traditional two-dimensional, non-rotating data. The aim of this work is twofold. First, the blade loads estimated by the DDES simulations are compared...... with those from the dynamic stall model. This allowed the differences between the stall phenomenon on the inboard parts of harmonically pitching blades on a rotating wind turbine and the classic dynamic stall representation in two-dimensional flow to be investigated. Results indicated a good qualitative...

  4. Dynamic Effects of Anchor Positional Tolerance on Tension Moored Floating Wind Turbine

    Science.gov (United States)

    Wright, Christopher; Pakrashi, Vikram; Murphy, Jimmy

    2016-09-01

    For water depths greater than 60m floating wind turbines will become the most economical option for generating offshore wind energy. Tension mooring stabilised units are one type of platform being considered by the offshore wind energy industry. The complex mooring arrangement used by this type of platform means that the dynamics are greatly effected by offsets in the positioning of the anchors. This paper examines the issue of tendon anchor position tolerances. The dynamic effects of three positional tolerances are analysed in survival state using the time domain FASTLink. The severe impact of worst case anchor positional offsets on platform and turbine survivability is shown. The worst anchor misposition combinations are highlighted and should be strongly avoided. Novel methods to mitigate this issue are presented.

  5. Dynamic modeling and performance evaluation of axial flux PMSG based wind turbine system with MPPT control

    Directory of Open Access Journals (Sweden)

    Vahid Behjat

    2014-12-01

    Full Text Available This research work develops dynamic model of a gearless small scale wind power generation system based on a direct driven single sided outer rotor AFPMSG with coreless armature winding. Dynamic modeling of the AFPMSG based wind turbine requires machine parameters. To this end, a 3D FEM model of the generator is developed and from magnetostatic and transient analysis of the FEM model, machine parameters are calculated and utilized in dynamic modeling of the system. A maximum power point tracking (MPPT-based FOC control approach is used to obtain maximum power from the variable wind speed. The simulation results show the proper performance of the developed dynamic model of the AFPMSG, control approach and power generation system.

  6. Dynamic Analysis of Wind Turbine Planetary Gears Using an Extended Harmonic Balance Approach: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.; Keller, J.; Parker, R. G.

    2012-06-01

    The dynamics of wind turbine planetary gears with gravity effects are investigated using an extended harmonic balance method that extends established harmonic balance formulations to include simultaneous internal and external excitations. The extended harmonic balance method with arc-length continuation and Floquet theory is applied to a lumped-parameter planetary gear model including gravity, fluctuating mesh stiffness, bearing clearance, and nonlinear tooth contact to obtain the planetary gear dynamic response. The calculated responses compare well with time domain integrated mathematical models and experimental results. Gravity is a fundamental vibration source in wind turbine planetary gears and plays an important role in system dynamics, causing hardening effects induced by tooth wedging and bearing-raceway contacts. Bearing clearance significantly reduces the lowest resonant frequencies of translational modes. Gravity and bearing clearance together lowers the speed at which tooth wedging occurs lower than the resonant frequency.

  7. Structural Dynamic Analysis of Semi-Submersible Floating Vertical Axis Wind Turbines

    Directory of Open Access Journals (Sweden)

    Jeremiah Ishie

    2016-12-01

    Full Text Available The strong and stable wind at offshore locations and the increasing demand for energy have made the application of wind turbines in deeper water surge. A novel concept of a 5 MW baseline Floating Vertical Axis Wind Turbine (FVAWT and a 5 MW optimised FVAWT with the DeepWind Darrieus rotor and the optimised DeepWind Darrieus rotor, respectively, were studied extensively. The structural responses, fatigue damages, platform global motions and mooring line dynamics of the FVAWTs were investigated comprehensively during normal operating conditions under steady wind and turbulent wind conditions, using a coupled non-linear aero-hydro-servo-elastic code (the Simo-Riflex-DMS code which was developed by Wang et al. for modeling FVAWTs. This coupled code incorporates the models for the turbulent wind field, aerodynamics, hydrodynamics, structural dynamics, and generator controller. The simulation is performed in a fully coupled manner in time domain. The comparison of responses under different wind conditions were used to demonstrate the effect of turbulence on both FVAWTs dynamic responses. The turbulent wind condition has the advantage of reducing the 2P effects. Furthermore, comparative studies of the FVAWTs responses were undertaken to explore the advantages of adopting the optimised 5 MW DeepWind Darrieus rotor over the baseline model. The results identified the 5 MW optimised FVAWT to having: lower Fore-Aft (FA but higher lower Side-Side (SS bending moments of structural components; lower motions amplitude; lower short-term fatigue equivalent loads and a further reduced 2P effects.

  8. Active control: Wind turbine model

    DEFF Research Database (Denmark)

    Bindner, H.

    1999-01-01

    This report is a part of the reporting of the work done in the project 'Active Control of Wind Turbines'. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to designcontrollers. This report describes the model...... developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This hasbeen done with extensive use of measurements as the basis for selection of model complexity and model....... The models are all formulated as linear differential equations. The models are validated throughcomparisons with measurements performed on a Vestas WD 34 400 kW wind turbine. It is shown from a control point of view simple linear models can be used to describe the dynamic behavior of a pitch controlled wind...

  9. Preliminary analysis of dynamic stall effects on a 91-meter wind turbine rotor

    Science.gov (United States)

    Wilson, Robert E.

    1995-01-01

    Analytical investigation of dynamic stall on HAWT (horizontal-axis wind turbines) rotor loads was conducted. Dynamic stall was modeled using the Gormont approach on the MOD-2 rotor, treating the blade as a rigid body teetering about a fixed axis. Blade flapwise bending moments at station 370 were determined with and without dynamic stall for spatial variations in local wind speed due to wind shear and yaw. The predicted mean flapwise bending moments were found to be in good agreement with test results. Results obtained with and without dynamic stall showed no significant difference for the mean flapwise bending moment. The cyclic bending moments calculated with and without dynamic stall effects were substantially the same. None of the calculated cyclic loads reached the level of the cyclic loads measured on the MOD-2 using the Boeing five-minute-average technique.

  10. Eco-innovation Dynamics at a Large State-Owned Wind Turbine Manufacture in China

    DEFF Research Database (Denmark)

    Yang, Yan; YIN, Shoujun

    This paper discloses the learning process and stakeholder relations in eco-innovation dynamics at a large state-owned wind turbine manufacture in China in the past 7 years. Based on an understanding of eco-innovation and eco-innovation dynamics, we propose an analytical framework of eco-innovatio......This paper discloses the learning process and stakeholder relations in eco-innovation dynamics at a large state-owned wind turbine manufacture in China in the past 7 years. Based on an understanding of eco-innovation and eco-innovation dynamics, we propose an analytical framework of eco......-innovation dynamics from a multi-perspective of learning, triple helix and path dependence. We find that, in case company’s developing wind turbine business: (1) individual and collective learning were characterized by a Do-Use-Interact mode in product innovation and assembly procedure innovation and diverse learning...... approaches were employed; (2)its product development, marketing strategy and stakeholder relations were considerably affected by central government and local government on policies, directives, regulations; (3) co-R&D with foreign companies provided it an important learning platform on product development...

  11. Fully Coupled Dynamic Analysis of a Floating Wind Turbine System

    National Research Council Canada - National Science Library

    Withee, Jon

    2004-01-01

    ... have been developed and are being proposed for operation in offshore areas where environmental restrictions are less restrictive, large wind resources exist, and open sea areas are available for wind farm development...

  12. Structural analysis of floating offshore wind turbine tower based on flexible multibody dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kwang Phil; Jo, A Ra [Daewoo Shipbuilding and Marine Engineering, Co., Ltd., Seoul (Korea, Republic of); Cha, Ju Hwan [Mokpo Nat' l Univ., Muan (Korea, Republic of)

    2012-12-15

    In this study, we perform the structural analysis of a floating offshore wind turbine tower by considering the dynamic response of the floating platform. A multibody system consisting of three blades, a hub, a nacelle, the platform, and the tower is used to model the floating wind turbine. The blades and the tower are modeled as flexible bodies using three dimensional beam elements. The aerodynamic force on the blades is calculated by the Blade Element Momentum (BEM) theory with hub rotation. The hydrostatic, hydrodynamic, and mooring forces are considered for the platform. The structural dynamic responses of the tower are simulated by numerically solving the equations of motion. From the simulation results, the time history of the internal forces at the nodes, such as the bending moment and stress, are obtained. In conclusion, the internal forces are compared with those obtained from static analysis to assess the effects of wave loads on the structural stability of the tower.

  13. Flexible dynamic analysis of an offshore wind turbine installed on a floating spar platform

    Directory of Open Access Journals (Sweden)

    Xiangqian Zhu

    2016-05-01

    Full Text Available Flexible dynamic analysis is a critical process in designing offshore wind turbines that are composed of several huge components. This process was implemented with a hybrid method of finite element multibody system using commercial software in this article. Based on this method, the tower and blades were modeled as flexible components using three-dimensional solid elements. The effect of flexible deformation of the tower and blades on the global motions of the floating wind turbine was investigated by comparing the simulation results from the flexible body modeling with those from the rigid body modeling. The tower, blades, and spar platform were divided into sections according to the geometry configuration of the 5-MW OC3-Hywind floating wind turbine. The time- and position-dependent loads, coming from the wind, wave, and mooring system, were expressed approximately with respect to the divided sections. The relationships between the global motions and the external loads were studied, which indicated that the wind loads had dominant influences on the translational motions and the rotational motions were mainly generated by the propagating waves.

  14. Wind Turbines Wake Aerodynamics

    DEFF Research Database (Denmark)

    Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.

    2003-01-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions...

  15. Aerodynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition, it has been entirely updated and substantially extended to reflect advances in technology, research into rotor aerodynamics and the structural...

  16. Influence of pore water in the seabed on dynamic response of offshore wind turbines on monopiles

    DEFF Research Database (Denmark)

    Bayat, Mehdi; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    2017-01-01

    Highlights •Sandy soil can present reduction of soil stiffness and maximum value of damping. •Equivalent dashpot and mass at the pile cap are highly dependent on the soil type. •Dynamic soil stiffness for offshore monopile foundation is calculated. •Soil damping around offshore monopile wind...... turbine foundation is calculated. •The effect of pore pressure and load frequency is illustrated....

  17. Small wind turbine

    OpenAIRE

    Vélez Castellano, Didier

    2010-01-01

    The main objective is to develop a project on installing a small wind turbine at the University of Glyndwr in Wrexham Wales. Today are immersed in a world seeking clean energy for reduce greenhouse gases because this problem is becoming a global reality. So installing a small wind turbine at the university would provide large quantity of clean energy to supply a workshop and also reduce the expulsion of CO2 into the atmosphere. The main characteristic of the turbine under...

  18. A brief review on wind turbine aerodynamics

    National Research Council Canada - National Science Library

    TongguangWang

    2012-01-01

    .... The aerodynamic models including blade momentum theory, vortex wake model, dynamic stall and rotational effect, and their applications in wind turbine aerodynamic performance prediction are discussed and documented...

  19. A Comparative Computational Fluid Dynamics Study on an Innovative Exhaust Air Energy Recovery Wind Turbine Generator

    Directory of Open Access Journals (Sweden)

    Seyedsaeed Tabatabaeikia

    2016-05-01

    Full Text Available Recovering energy from exhaust air systems of building cooling towers is an innovative idea. A specific wind turbine generator was designed in order to achieve this goal. This device consists of two Giromill vertical axis wind turbines (VAWT combined with four guide vanes and two diffuser plates. It was clear from previous literatures that no comprehensive flow behavior study had been carried out on this innovative device. Therefore, the working principle of this design was simulated using the Analysis System (ANSYS Fluent computational fluid dynamics (CFD package and the results were compared to experimental ones. It was perceived from the results that by introducing the diffusers and then the guide vanes, the overall power output of the wind turbine was improved by approximately 5% and 34%, respectively, compared to using VAWT alone. In the case of the diffusers, the optimum angle was found to be 7°, while for guide vanes A and B, it was 70° and 60° respectively. These results were in good agreement with experimental results obtained in the previous experimental study. Overall, it can be concluded that exhaust air recovery turbines are a promising form of green technology.

  20. Random Vibration and Dynamic Analysis of a Planetary Gear Train in a Wind Turbine

    Directory of Open Access Journals (Sweden)

    Jianming Yang

    2016-01-01

    Full Text Available Premature failure of gearboxes is a big challenge facing the wind power industry. It highly depends on fully understanding the embedded dynamics to solve this problem. To this end, this paper investigates the random vibration and dynamics of planetary gear trains (PGTs in wind turbines under the excitation of wind turbulence. The turbulence is represented by the Von Karmon spectrum and implemented by passing white noise through a 2nd-order shaping filter. Then, extra equations are formed and added to the original governing equations of motion. With this augmented equation set, a recursive numerical algorithm based on stochastic Newmark scheme is applied to solve for the statistics of the responses starting from initial conditions. After simulation, the variances of the vibration responses and the dynamic meshing forces at gear meshes are obtained.

  1. Noise from wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Fegeant, Olivier [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Building Sciences

    2002-02-01

    A rapid growth of installed wind power capacity is expected in the next few years. However, the siting of wind turbines on a large scale raises concerns about their environmental impact, notably with respect to noise. To this end, variable speed wind turbines offer a promising solution for applications in densely populated areas like the European countries, as this design would enable an efficient utilisation of the masking effect due to ambient noise. In rural and recreational areas where wind turbines are sited, the ambient noise originates from the action of wind on the vegetation and about the listener's ear (pseudo-noise). It shows a wind speed dependence similar to that of the noise from a variable speed wind turbine and can therefore mask the latter for a wide range of conditions. However, a problem inherent to the design of these machines is their proclivity to pure tone generation, because of the enhanced difficulty of avoiding structural resonances in the mechanical parts. Pure tones are deemed highly annoying and are severely regulated by most noise policies. In relation to this problem, the vibration transmission of structure-borne sound to the tower of the turbine is investigated, in particular when the tower is stiffened at its upper end. Furthermore, since noise annoyance due to wind turbine is mostly a masking issue, the wind-related sources of ambient noise are studied and their masking potentials assessed. With this aim, prediction models for wind-induced vegetation noise and pseudo-noise have been developed. Finally, closely related to the effect of masking, is the difficulty, regularly encountered by local authorities and wind farm developers, to measure noise immission from wind turbines. A new measurement technique has thus been developed in the course of this work. Through improving the signal-to-noise ratio between wind turbine noise and ambient noise, the new technique yields more accurate measurement results.

  2. Dynamic response sensitivity of an offshore wind turbine for varying subsoil conditions

    DEFF Research Database (Denmark)

    Damgaard, Mads; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    2015-01-01

    and damping ratios are random with probability distributions and cannot be fixed on deterministic values due to physical and statistical uncertainties related to the soil properties. In this paper, a comprehensive study is performed on the dynamic response of an offshore wind turbine installed on a monopile......-hydro-elastic simulations are conducted in the nonlinear multi-body code HAWC2. Correlation of wind speeds and waves is derived on basis of wind–wave scatter diagrams from the North Sea. Slight changes of the soil stiffness, the soil damping and the presence of sediment transportation at seabed are shown to be critical...

  3. Achieving Full Dynamic Similarity with Small-Scale Wind Turbine Models

    Science.gov (United States)

    Miller, Mark; Kiefer, Janik; Westergaard, Carsten; Hultmark, Marcus

    2016-11-01

    Power and thrust data as a function of Reynolds number and Tip Speed Ratio are presented at conditions matching those of a full scale turbine. Such data has traditionally been very difficult to acquire due to the large length-scales of wind turbines, and the limited size of conventional wind tunnels. Ongoing work at Princeton University employs a novel, high-pressure wind tunnel (up to 220 atmospheres of static pressure) which uses air as the working fluid. This facility allows adjustment of the Reynolds number (via the fluid density) independent of the Tip Speed Ratio, up to a Reynolds number (based on chord and velocity at the tip) of over 3 million. Achieving dynamic similarity using this approach implies very high power and thrust loading, which results in mechanical loads greater than 200 times those experienced by a similarly sized model in a conventional wind tunnel. In order to accurately report the power coefficients, a series of tests were carried out on a specially designed model turbine drive-train using an external testing bench to replicate tunnel loading. An accurate map of the drive-train performance at various operating conditions was determined. Finally, subsequent corrections to the power coefficient are discussed in detail. Supported by: National Science Foundation Grant CBET-1435254 (program director Gregory Rorrer).

  4. Frequency domain modeling and dynamic characteristics evaluation of existing wind turbine systems

    Science.gov (United States)

    Chiang, Chih-Hung; Yu, Chih-Peng

    2016-04-01

    It is quite well accepted that frequency domain procedures are suitable for the design and dynamic analysis of wind turbine structures, especially for floating offshore wind turbines, since random wind loads and wave induced motions are most likely simulated in the frequency domain. This paper presents specific applications of an effective frequency domain scheme to the linear analysis of wind turbine structures in which a 1-D spectral element was developed based on the axially-loaded member. The solution schemes are summarized for the spectral analyses of the tower, the blades, and the combined system with selected frequency-dependent coupling effect from foundation-structure interactions. Numerical examples demonstrate that the modal frequencies obtained using spectral-element models are in good agreement with those found in the literature. A 5-element mono-pile model results in less than 0.3% deviation from an existing 160-element model. It is preliminarily concluded that the proposed scheme is relatively efficient in performing quick verification for test data obtained from the on-site vibration measurement using the microwave interferometer.

  5. Analysis of Dynamic Interactions between Different Drivetrain Components with a Detailed Wind Turbine Model

    Science.gov (United States)

    Bartschat, A.; Morisse, M.; Mertens, A.; Wenske, J.

    2016-09-01

    The presented work describes a detailed analysis of the dynamic interactions among mechanical and electrical drivetrain components of a modern wind turbine under the influence of parameter variations, different control mechanisms and transient excitations. For this study, a detailed model of a 2MW wind turbine with a gearbox, a permanent magnet synchronous generator and a full power converter has been developed which considers all relevant characteristics of the mechanical and electrical subsystems. This model includes an accurate representation of the aerodynamics and the mechanical properties of the rotor and the complete mechanical drivetrain. Furthermore, a detailed electrical modelling of the generator, the full scale power converter with discrete switching devices, its filters, the transformer and the grid as well as the control structure is considered. The analysis shows that, considering control measures based on active torsional damping, interactions between mechanical and electrical subsystems can significantly affect the loads and thus the individual lifetime of the components.

  6. Simulating Dynamic Stall Effects for Vertical Axis Wind Turbines Applying a Double Multiple Streamtube Model

    Directory of Open Access Journals (Sweden)

    Eduard Dyachuk

    2015-02-01

    Full Text Available The complex unsteady aerodynamics of vertical axis wind turbines (VAWT poses significant challenges to the simulation tools. Dynamic stall is one of the phenomena associated with the unsteady conditions for VAWTs, and it is in the focus of the study. Two dynamic stall models are compared: the widely-used Gormont model and a Leishman–Beddoes-type model. The models are included in a double multiple streamtube model. The effects of flow curvature and flow expansion are also considered. The model results are assessed against the measured data on a Darrieus turbine with curved blades. To study the dynamic stall effects, the comparison of force coefficients between the simulations and experiments is done at low tip speed ratios. Simulations show that the Leishman–Beddoes model outperforms the Gormont model for all tested conditions.

  7. Dynamics of a Flywheel Energy Storage System Supporting a Wind Turbine Generator in a Microgrid

    Science.gov (United States)

    Nair S, Gayathri; Senroy, Nilanjan

    2016-02-01

    Integration of an induction machine based flywheel energy storage system with a wind energy conversion system is implemented in this paper. The nonlinear and linearized models of the flywheel are studied, compared and a reduced order model of the same simulated to analyze the influence of the flywheel inertia and control in system response during a wind power change. A quantification of the relation between the inertia of the flywheel and the controller gain is obtained which allows the system to be considered as a reduced order model that is more controllable in nature. A microgrid setup comprising of the flywheel energy storage system, a two mass model of a DFIG based wind turbine generator and a reduced order model of a diesel generator is utilized to analyse the microgrid dynamics accurately in the event of frequency variations arising due to wind power change. The response of the microgrid with and without the flywheel is studied.

  8. WIND TURBINES FOR WIND POWER INSTALLATIONS

    Directory of Open Access Journals (Sweden)

    Barladean A.S.

    2008-04-01

    Full Text Available The problem of wind turbine choice for wind power stations is examined in this paper. It is shown by comparison of parameters and characteristics of wind turbines, that for existing modes and speeds of wind in territory of Republic of Moldova it is necessary to use multi-blade small speed rotation wind turbines of fan class.

  9. Dynamic Calculation Design of Vertical Wind Turbine | Okhueleigbe ...

    African Journals Online (AJOL)

    The Nigeria power system is facing shortage of power due to poor generation. The country is now trying to shift to the utilization of renewable energy in the production of electrical power so as to have a mix energy generation system. One of the renewable energies is the kinetic energy of wind. For this energy to be properly ...

  10. Aeroservoelasticity of Wind Turbines

    DEFF Research Database (Denmark)

    Kallesøe, Bjarne Skovmose

    2007-01-01

    This thesis deals with the fundamental aeroelastic interaction between structural motion, Pitch action and control for a wind turbine blade. As wind turbines become larger, the interaction between pitch action, blade motion, aerodynamic forces, and control become even more important to understand...... to a 2D blade section model, and it can be used instead of this in many applications, giving a transparent connection to a real wind turbine blade. In this work the aeroelastic blade model is used to analyze interaction between pitch action, blade motion and wind speed variations. Furthermore the model...... conditions. So, a new aeroelastic blade model has been derived, which includes important features of large wind turbines, yet simple enough to be suitable for analytical analysis and control design....

  11. Wind turbine pitch optimization

    DEFF Research Database (Denmark)

    Biegel, Benjamin; Juelsgaard, Morten; Stoustrup, Jakob

    2011-01-01

    We consider a static wind model for a three-bladed, horizontal-axis, pitch-controlled wind turbine. When placed in a wind field, the turbine experiences several mechanical loads, which generate power but also create structural fatigue. We address the problem of finding blade pitch profiles......% compared to any constant pitch profile while sacrificing at most 7% of the maximum attainable output power. Using iterative learning, we show that very similar performance can be achieved by using only load measurements, with no knowledge of the wind field or wind turbine model....... for maximizing power production while simultaneously minimizing fatigue loads. In this paper, we show how this problem can be approximately solved using convex optimization. When there is full knowledge of the wind field, numerical simulations show that force and torque RMS variation can be reduced by over 96...

  12. Phase Angle Calculation Dynamics of Type 4 Wind Turbines in RMS Simulations during Severe Voltage Dips

    DEFF Research Database (Denmark)

    Altin, Müfit; Göksu, Ömer; Sørensen, Poul Ejnar

    2016-01-01

    In order to conduct power system simulations with high shares of wind energy, standard wind turbine models, which are aimed to be generic rms models for a wide range of wind turbine types, have been developed. As a common practice of rms simulations, the power electronic interface of wind turbines...... is assumed to be ideally synchronized, i.e. grid synchronization (e.g. PLL) is not included in simplified wind turbine models. As will be shown in this paper, this practice causes simulation convergence problems during severe voltage dips and when the loss of synchronism occurs. In order to provide...... the simulation convergence without adding complexity to the generic models, a first order filtering approach is proposed as a phase angle calculation algorithm in the grid synchronization of the rms type 4 wind turbine models. The proposed approach provides robustness for the simulation of large scale power...

  13. Dynamic vibrations in wind energy systems: Application to vertical axis wind turbine

    Science.gov (United States)

    Mabrouk, Imen Bel; El Hami, Abdelkhalak; Walha, Lassâad; Zghal, Bacem; Haddar, Mohamed

    2017-02-01

    Dynamic analysis of Darrieus turbine bevel spur gear subjected to transient aerodynamic loads is carried out in the present study. The aerodynamic torque is obtained by solving the two dimensional unsteady incompressible Navies Stocks equation with the k-ω shear stress transport turbulence model. The results are presented for several values of tip speed ratio. The two-dimensional Computational Fluid Dynamics model is validated with experimental results. The optimum tip speed ratio is achieved, giving the best overall performance. In this study, we developed a lamped mass dynamic model with 14 degrees of freedom. This model is excited by external and internal issues sources. The main factors of these excitations are the periodic fluctuations of the gear meshes' stiffness and the unsteady aerodynamic torque oscillations. The vibration responses are obtained in time and frequency domains. The originality of our work is the correlation between the complexity of the aerodynamic phenomenon and the non-stationary dynamics vibration of the mechanical gearing system. The effect of the rotational speed on the dynamic behavior of the Darrieus turbine is also discussed. The present study shows that the variation of rotor rotational speed directly affects the torque production. However, there is a small change in the dynamic vibration of the studied gearing system.

  14. Monitoring of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    White, Jonathan R.; Adams, Douglas E.; Paquette, Josh

    2017-07-25

    Method and apparatus for determining the deflection or curvature of a rotating blade, such as a wind turbine blade or a helicopter blade. Also, methods and apparatus for establishing an inertial reference system on a rotating blade.

  15. Vertical axis wind turbines

    Science.gov (United States)

    Krivcov, Vladimir [Miass, RU; Krivospitski, Vladimir [Miass, RU; Maksimov, Vasili [Miass, RU; Halstead, Richard [Rohnert Park, CA; Grahov, Jurij [Miass, RU

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  16. System Reduction in Multibody Dynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Holm-Jørgensen, Kristian; Nielsen, Søren R.K.

    2009-01-01

    in the expansion via a quasi-static correction. The results show that by using the derived reduction scheme it is only necessary with 2 dynamical modes for the blade substructure when the remaining modes are treated as quasi-static. Moreover, it is shown that it has little to none effect if the gyroscopic...

  17. Wind turbines and health

    Energy Technology Data Exchange (ETDEWEB)

    Rideout, K.; Copes, R.; Bos, C. [National Colaborating Centre for Environmental Health, Vancouver, BC (Canada)

    2010-01-15

    This document summarized the potential health hazards associated with wind turbines, such as noise and low frequency sound, vibration and infrasound; electromagnetic fields (EMF); shadow flicker; and ice throw and structural failure. Various symptoms can be attributed to wind turbines, including dizziness, sleep disruption, and headaches. A review of available research regarding potential health affects to residents living in close proximity to wind turbines showed that the sound level associated with wind turbines at common residential setbacks is not sufficient to damage hearing, but may lead to annoyance and sleep disturbance. Research has shown that wind turbines are not a significant source of EMF exposure, and although shadows caused by the blades may be annoying, they are not likely to cause epileptic seizures at normal operational speeds. The risk of injury from ice throw can be minimized with setbacks of 200 to 400 m. Examples of Canadian wind turbine setback guidelines and regulations were also offered. It was concluded that setbacks and operational guidelines can be utilized in combination to address safety hazards, sound levels, land use issues, and impacts on people. 46 refs., 2 tabs., 2 figs.

  18. Investigation of a FAST-OrcaFlex Coupling Module for Integrating Turbine and Mooring Dynamics of Offshore Floating Wind Turbines: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Masciola, M.; Robertson, A.; Jonkman, J.; Driscoll, F.

    2011-10-01

    To enable offshore floating wind turbine design, the following are required: accurate modeling of the wind turbine structural dynamics, aerodynamics, platform hydrodynamics, a mooring system, and control algorithms. Mooring and anchor design can appreciably affect the dynamic response of offshore wind platforms that are subject to environmental loads. From an engineering perspective, system behavior and line loads must be studied well to ensure the overall design is fit for the intended purpose. FAST (Fatigue, Aerodynamics, Structures and Turbulence) is a comprehensive simulation tool used for modeling land-based and offshore wind turbines. In the case of a floating turbine, continuous cable theory is used to emulate mooring line dynamics. Higher modeling fidelity can be gained through the use of finite element mooring theory. This can be achieved through the FASTlink coupling module, which couples FAST with OrcaFlex, a commercial simulation tool used for modeling mooring line dynamics. In this application, FAST is responsible for capturing the aerodynamic loads and flexure of the wind turbine and its tower, and OrcaFlex models the mooring line and hydrodynamic effects below the water surface. This paper investigates the accuracy and stability of the FAST/OrcaFlex coupling operation.

  19. Computationally Efficient Modelling of Dynamic Soil-Structure Interaction of Offshore Wind Turbines on Gravity Footings

    DEFF Research Database (Denmark)

    Damgaard, Mads; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    2014-01-01

    The formulation and quality of a computationally efficient model of offshore wind turbine surface foundations is examined. The aim is to establish a model, workable in the frequency and time domain, that can be applied in aeroelastic codes for fast and reliable evaluation of the dynamic structural...... to wave propagating in the subsoil–even for soil stratifications with low cut-in frequencies. In this regard, utilising discrete second-order models for the physical interpretation of a rational filter puts special demands on the Newmark β-scheme, where the time integration in most cases only provides...

  20. A graphical interface based model for wind turbine drive train dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Manwell, J.F.; McGowan, J.G.; Abdulwahid, U.; Rogers, A. [Univ. of Massachusetts, Amherst, MA (United States); McNiff, B. [McNiff Light Industry, Blue Hill, ME (United States)

    1996-12-31

    This paper presents a summary of a wind turbine drive train dynamics code that has been under development at the University of Massachusetts, under National Renewable Energy Laboratory (NREL) support. The code is intended to be used to assist in the proper design and selection of drive train components. This work summarizes the development of the equations of motion for the model, and discusses the method of solution. In addition, a number of comparisons with analytical solutions and experimental field data are given. The summary includes conclusions and suggestions for future work on the model. 13 refs., 10 figs.

  1. Calibration and Validation of a Spar-Type Floating Offshore Wind Turbine Model using the FAST Dynamic Simulation Tool: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Browning, J. R.; Jonkman, J.; Robertson, A.; Goupee, A. J.

    2012-11-01

    In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50th scale in a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states.

  2. Stochastic dynamic response analysis of a floating vertical-axis wind turbine with a semi-submersible floater

    DEFF Research Database (Denmark)

    Wang, Kai; Moan, Torgeir; Hansen, Martin Otto Laver

    2016-01-01

    Floating vertical-axis wind turbines (FVAWTs) provide the potential for utilizing offshore wind resources in moderate and deep water because of their economical installation and maintenance. Therefore, it is important to assess the performance of the FVAWT concept. This paper presents a stochastic...... dynamic response analysis of a 5MW FVAWT based on fully coupled nonlinear time domain simulations. The studied FVAWT, which is composed of a Darrieus rotor and a semi-submersible floater, is subjected to various wind and wave conditions. The global motion, structural response and mooring line tension...... on the response is demonstrated by comparing the floating wind turbine with the equivalent land-based wind turbine. Additionally, by comparing the behaviour of FVAWTs with flexible and rigid rotors, the effect of rotor flexibility is evaluated. Furthermore, the FVAWT is also investigated in the parked condition...

  3. Nonlinear Legendre Spectral Finite Elements for Wind Turbine Blade Dynamics: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q.; Sprague, M. A.; Jonkman, J.; Johnson, N.

    2014-01-01

    This paper presents a numerical implementation and examination of new wind turbine blade finite element model based on Geometrically Exact Beam Theory (GEBT) and a high-order spectral finite element method. The displacement-based GEBT is presented, which includes the coupling effects that exist in composite structures and geometric nonlinearity. Legendre spectral finite elements (LSFEs) are high-order finite elements with nodes located at the Gauss-Legendre-Lobatto points. LSFEs can be an order of magnitude more efficient that low-order finite elements for a given accuracy level. Interpolation of the three-dimensional rotation, a major technical barrier in large-deformation simulation, is discussed in the context of LSFEs. It is shown, by numerical example, that the high-order LSFEs, where weak forms are evaluated with nodal quadrature, do not suffer from a drawback that exists in low-order finite elements where the tangent-stiffness matrix is calculated at the Gauss points. Finally, the new LSFE code is implemented in the new FAST Modularization Framework for dynamic simulation of highly flexible composite-material wind turbine blades. The framework allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples showing validation and LSFE performance will be provided in the final paper.

  4. Pitchcontrol of wind turbines using model free adaptivecontrol based on wind turbine code

    DEFF Research Database (Denmark)

    Zhang, Yunqian; Chen, Zhe; Cheng, Ming

    2011-01-01

    As the wind turbine is a nonlinear high-order system, to achieve good pitch control performance, model free adaptive control (MFAC) approach which doesn't need the mathematical model of the wind turbine is adopted in the pitch control system in this paper. A pseudo gradient vector whose estimation...... value is only based on I/O data of the wind turbine is identified and then the wind turbine system is replaced by a dynamic linear time-varying model. In order to verify the correctness and robustness of the proposed model free adaptive pitch controller, the wind turbine code FAST which can predict...

  5. Alcoa wind turbines

    Science.gov (United States)

    Ai, D. K.

    1979-01-01

    An overview of Alcoa's wind energy program is given with emphasis on the the development of a low cost, reliable Darrieus Vertical Axis Wind Turbine System. The design layouts and drawings for fabrication are now complete, while fabrication and installation to utilize the design are expected to begin shortly.

  6. Wind flow through shrouded wind turbines

    Science.gov (United States)

    2017-03-01

    THROUGH SHROUDED WIND TURBINES by Jonathan P. Scheuermann March 2017 Thesis Advisor: Muguru Chandrasekhara Second Reader: Kevin Jones THIS......CODE 13. ABSTRACT (maximum 200 words) Wall pressure distributions and cross section flow distribution on wind turbine shroud designs, determined

  7. Wind turbine control and monitoring

    CERN Document Server

    Luo, Ningsu; Acho, Leonardo

    2014-01-01

    Maximizing reader insights into the latest technical developments and trends involving wind turbine control and monitoring, fault diagnosis, and wind power systems, 'Wind Turbine Control and Monitoring' presents an accessible and straightforward introduction to wind turbines, but also includes an in-depth analysis incorporating illustrations, tables and examples on how to use wind turbine modeling and simulation software.   Featuring analysis from leading experts and researchers in the field, the book provides new understanding, methodologies and algorithms of control and monitoring, comput

  8. Wind Turbine Acoustics

    Science.gov (United States)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    2009-01-01

    Wind turbine generators, ranging in size from a few kilowatts to several megawatts, are producing electricity both singly and in wind power stations that encompass hundreds of machines. Many installations are in uninhabited areas far from established residences, and therefore there are no apparent environmental impacts in terms of noise. There is, however, the potential for situations in which the radiated noise can be heard by residents of adjacent neighborhoods, particularly those neighborhoods with low ambient noise levels. A widely publicized incident of this nature occurred with the operation of the experimental Mod-1 2-MW wind turbine, which is described in detail elsewhere. Pioneering studies which were conducted at the Mod-1 site on the causes and remedies of noise from wind turbines form the foundation of much of the technology described in this chapter.

  9. Validation of the Beddoes-Leishman Dynamic Stall Model for Horizontal Axis Wind Turbines using MEXICO data

    NARCIS (Netherlands)

    Pereira, R.; Schepers, G.; Pavel, M.D.

    2011-01-01

    The aim of this study is to assess the load predicting capability of a classical Beddoes-Leishman dynamic stall model in a horizontal axis wind turbine (HAWT) environment, in the presence of yaw-misalignment. The dynamic stall model was tailored to the HAWT environment, and validated against

  10. Effects of gear modifications on the dynamic characteristics of wind turbine gearbox considering elastic support of the gearbox

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuaishuai; Zhu, Caichao; Song, Chaosheng; Liu, Huachao; Tan, Jianjun [Chongqing University, Chongqing (China); Bai, Houyi [Chongqing Wangjiang Industrial Co., Ltd., Chongqing (China)

    2017-03-15

    The reliability and service life of wind turbines are directly influenced by the dynamic performance of the gearbox under the time varying wind loads. The control of vibration behavior is essential for the achievement of a 20-year service life. We developed a rigid flexible coupled dynamic model for a wind turbine gearbox. The planet carrier, the housing, and the bed plate are modelled as flexibilities while other components are assumed as rigid bodies. The actual three points elastic supporting are considered and a strip based mesh model is used to represent the engagement of the gear pairs. The effects of gear tooth modifications on the dynamics were investigated. Finally, we conducted a dynamic test for the wind turbine gearbox in the wind field. Results showed that the contact characteristics of gear pairs were improved significantly; the peak-to-peak value of transmission error of each gear pair was reduced; the amplitudes of the vibration acceleration and the structural noise of the wind turbine gearbox were lowered after suitable tooth modification.

  11. Reliability Analysis of Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2008-01-01

    In order to minimise the total expected life-cycle costs of a wind turbine it is important to estimate the reliability level for all components in the wind turbine. This paper deals with reliability analysis for the tower and blades of onshore wind turbines placed in a wind farm. The limit states......) the reliability level for a wind turbine placed in a wind farm is considered, and wake effects from neighbouring wind turbines is taken into account. An illustrative example with calculation of the reliability for mudline bending of the tower is considered. In the example the design is determined according...

  12. Wind turbine noise diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Richarz, W. [Aerocoustics Engineering Ltd., Toronto, ON (Canada); Richarz, H.

    2009-07-01

    This presentation proposed a self-consistent model for broad-band noise emitted from modern wind turbines. The simple source model was consistent with the physics of sound generation and considered the unique features of wind turbines. Although the acoustics of wind turbines are similar to those of conventional propellers, the dimensions of wind turbines pose unique challenges in diagnosing noise emission. The general features of the sound field were deduced. Source motion and source directivity appear to be responsible for amplitude variations. The amplitude modulation is likely to make wind-turbine noise more audible, and may be partly responsible for annoyance that has been reported in the literature. Acoustic array data suggests that broad-band noise is emitted predominantly during the downward sweep of each rotor blade. Source motion and source directivity account for the observed pattern. Rotor-tower interaction effects are of lesser importance. Predicted amplitude modulation ranges from 1 dB to 6dB. 2 refs., 9 figs.

  13. Impacts of Providing Inertial Response on Dynamic Loads of Wind Turbine Drivetrains: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Girsang, I. P.; Dhupia, J.; Singh, M.; Gevorgian, V.; Muljadi, E.; Jonkman, J.

    2014-09-01

    There has been growing demand from the power industry for wind power plants to support power system operations. One such requirement is for wind turbines to provide ancillary services in the form of inertial response. When the grid frequency drops, it is essential for wind turbine generators (WTGs) to inject kinetic energy stored in their inertia into the grid to help arrest the frequency decline. However, the impacts of inertial response on the structural loads of the wind turbine have not been given much attention. To bridge this gap, this paper utilizes a holistic model for both fixed-speed and variable-speed WTGs by integrating the aeroelastic wind turbine model in FAST, developed by the National Renewable Energy Laboratory, with the electromechanical drivetrain model in SimDriveline and SimPowerSystems.

  14. Dynamic modeling of a spar-type floating offshore wind turbine

    NARCIS (Netherlands)

    Savenije, L.B.; Ashuri, T.; Van Bussel, G.J.W.; Staerdahl, J.W.

    2010-01-01

    The installation of floating wind farms in deeper water is encouraged by the stronger and steadier wind, the lower visibility and noise impact, the absence of road restrictions, but also the absence or shortage of shallow water. In the summer of 2009, the first large-scale floating wind turbine

  15. Superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Mijatovic, Nenad; Seiler, Eugen

    2010-01-01

    We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future......, the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10...... offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However...

  16. Evaluation of different turbine concepts for wind power

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Sandra; Bernhoff, Hans; Leijon, Mats [Swedish Centre for Renewable Electric Energy Conversion, Division for Electricity and Lightning Research, Box 534, 751 21 Uppsala (Sweden)

    2008-06-15

    Every year the number of installed wind power plants in the world increases. The horizontal axis wind turbine is the most common type of turbine but there exist other types. Here, three different wind turbines are considered; the horizontal axis wind turbine and two different concepts of vertical axis wind turbines; the Darrieus turbine and the H-rotor. This paper aims at making a comparative study of these three different wind turbines from the most important aspects including structural dynamics, control systems, maintenance, manufacturing and electrical equipment. A case study is presented where three different turbines are compared to each other. Furthermore, a study of blade areas for different turbines is presented. The vertical axis wind turbine appears to be advantageous to the horizontal axis wind turbine in several aspects. (author)

  17. Effects of soil–structure interaction on real time dynamic response of offshore wind turbines on monopiles

    DEFF Research Database (Denmark)

    Damgaard, M.; Zania, Varvara; Andersen, L.V.

    2014-01-01

    , a computationally efficient modelling approach of including the dynamic soil–structure interaction into aeroelastic codes is presented with focus on monopile foundations. Semi-analytical frequency-domain solutions are applied to evaluate the dynamic impedance functions of the soil–pile system at a number...... normal operating mode. The aeroelastic response is evaluated for three different foundation conditions, i.e. apparent fixity length, the consistent lumped-parameter model and fixed support at the seabed. The effect of soil–structure interaction is shown to be critical for the design, estimated in terms......Offshore wind turbines are highly dynamically loaded structures, their response being dominated by the interrelation effects between the turbine and the support structure. Since the dynamic response of wind turbine structures occurs in a frequency range close to the excitation frequencies related...

  18. Calibration and validation of a spar-type floating offshore wind turbine model using the FAST dynamic simulation tool

    Science.gov (United States)

    Browning, J. R.; Jonkman, J.; Robertson, A.; Goupee, A. J.

    2014-12-01

    High-quality computer simulations are required when designing floating wind turbines because of the complex dynamic responses that are inherent with a high number of degrees of freedom and variable metocean conditions. In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50th scale in a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states. Wave basin tests with the spar attached to a scale model of the NREL 5-megawatt reference wind turbine were performed at the Maritime Research Institute Netherlands under the DeepCwind project. This project included free-decay tests, tests with steady or turbulent wind and still water (both periodic and irregular waves with no wind), and combined wind/wave tests. The resulting data from the 1/50th model was scaled using Froude scaling to full size and used to calibrate and validate a full-size simulated model in FAST. Results of the model calibration and validation include successes, subtleties, and limitations of both wave basin testing and FAST modeling capabilities.

  19. Wind Turbine Loads Induced by Terrain and Wakes: An Experimental Study through Vibration Analysis and Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Francesco Castellani

    2017-11-01

    Full Text Available A wind turbine is a very well-known archetype of energy conversion system working at non-stationary regimes. Despite this, a deep mechanical comprehension of wind turbines operating in complicated conditions is still challenging, especially as regards the analysis of experimental data. In particular, wind turbines in complex terrain represent a very valuable testing ground because of the possible combination of wake effects among nearby turbines and flow accelerations caused by the terrain morphology. For these reasons, in this work, a cluster of four full-scale wind turbines from a very complex site is studied. The object of investigation is vibrations, at the level of the structure (tower and drive-train. Data collected by the on-board condition monitoring system are analyzed and interpreted in light of the knowledge of wind conditions and operating parameters collected by the Supervisory Control And Data Acquisition (SCADA. A free flow Computational Fluid Dynamics (CFD simulation is also performed, and it allows one to better interpret the vibration analysis. The main outcome is the interpretation of how wakes and flow turbulences appear in the vibration signals, both at the structural level and at the drive-train level. Therefore, this wind to gear approach builds a connection between flow phenomena and mechanical phenomena in the form of vibrations, representing a precious tool for assessing loads in different working conditions.

  20. Offshore Wind Turbine Design

    DEFF Research Database (Denmark)

    Frandsen, Sten; Hansen, Erik Asp; Ibsen, Lars Bo

    2006-01-01

    Current offshore wind turbine design methods have matured to a 1st generation state, manifested in the draft of a possible standard, IEC 61400-3 (2005). It is now time to investigate the possibilities of improving existing methods. To do so in an efficient manner a clear identification of the most...... important uncertainty drivers specific for offshore wind turbine design loads is required. Describing the initial efforts in a Danish research project, the paper points to focal points for research and development. These are mainly: soil-structure interaction, improved modelling of wave loads from deep...

  1. Challenges in Simulation of Aerodynamics, Hydrodynamics, and Mooring-Line Dynamics of Floating Offshore Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Matha, D.; Schlipf, M.; Cordle, A.; Pereira, R.; Jonkman, J.

    2011-10-01

    This paper presents the current major modeling challenges for floating offshore wind turbine design tools and describes aerodynamic and hydrodynamic effects due to rotor and platform motions and usage of non-slender support structures.

  2. Creating a benchmark of vertical axis wind turbines in dynamic stall for validating numerical models

    DEFF Research Database (Denmark)

    Castelein, D.; Ragni, D.; Tescione, G.

    2015-01-01

    An experimental campaign using Particle Image Velocimetry (2C-PIV) technique has been conducted on a H-type Vertical Axis Wind Turbine (VAWT) to create a benchmark for validating and comparing numerical models. The turbine is operated at tip speed ratios (TSR) of 4.5 and 2, at an average chord...

  3. Wind conditions for wind turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B.

    1999-04-01

    Delegates from Europe and USA attended the meeting and discussed general aspects of wind conditions for wind turbine design. The subjects and the presented papers covered a very broad range of aspects of wind conditions and related influence on the wind turbine. (EHS)

  4. Floating substructure flexibility of large-volume 10MW offshore wind turbine platforms in dynamic calculations

    Science.gov (United States)

    Borg, Michael; Melchior Hansen, Anders; Bredmose, Henrik

    2016-09-01

    Designing floating substructures for the next generation of 10MW and larger wind turbines has introduced new challenges in capturing relevant physical effects in dynamic simulation tools. In achieving technically and economically optimal floating substructures, structural flexibility may increase to the extent that it becomes relevant to include in addition to the standard rigid body substructure modes which are typically described through linear radiation-diffraction theory. This paper describes a method for the inclusion of substructural flexibility in aero-hydro-servo-elastic dynamic simulations for large-volume substructures, including wave-structure interactions, to form the basis of deriving sectional loads and stresses within the substructure. The method is applied to a case study to illustrate the implementation and relevance. It is found that the flexible mode is significantly excited in an extreme event, indicating an increase in predicted substructure internal loads.

  5. Determination of fault operation dynamical constraints for the design of wind turbine DFIG drives

    CERN Document Server

    Aguglia, Davide; Wamkeue, René; Cros, Jérôme

    2010-01-01

    This paper presents an efficient design tool for the estimation of the transient electromagnetic peak torque and transient rotor over-voltages of wind turbines (WT) doubly-fed induction generators (DFIG) during severe fault conditions on the grid side. This versatile and robust tool is well adapted to the implementation in a DFIG drives CAD environment using iterative optimization procedures. In such an application, it is used to compute the dynamical constraints function during the integrated design process of the whole drive including the generator, the gearbox and the power converters. Results show that it is necessary to take into account the dynamical constraints under fault operation, during the early steps of the system design process. Another application of the tool is also illustrated in the paper: the design of the protection system (i.e. the crowbar resistance) for a given generator, a given gearbox and a given power converter.

  6. Numerical study on a single bladed vertical axis wind turbine under dynamic stall

    Energy Technology Data Exchange (ETDEWEB)

    Bangga, Galih [Institute of Aerodynamics and Gas Dynamics, University of Stuttgart, Stuttgart (Germany); Hutomo, Go; Sasongko, Herman [Dept. of Mechanical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya (Indonesia); Wiranegara, Raditya [School of Mechanical Aerospace and Civil Engineering, University of Manchester, Manchester (United Kingdom)

    2017-01-15

    The aim of this study is to investigate the flow development of a single bladed vertical axis wind turbine using Computational fluid dynamics (CFD) methods. The blade is constructed using the NACA 0012 profile and is operating under stalled conditions at tip speed ratio of 2. Two dimensional simulations are performed using a commercial CFD package, ANSYS Fluent 15.0, employing the Menter-SST turbulence model. For the preliminary study, simulations of the NACA 0012 airfoil under static conditions are carried out and compared with available measurement data and calculations using the boundary layer code XFOIL. The CFD results under the dynamic case are presented and the resulting aerodynamic forces are evaluated. The turbine is observed to generate negative power at certain azimuth angles which can be divided into three main zones. The blade vortex interaction is observed to strongly influence the flow behavior near the blade and contributes to the power production loss. However, the impact is considered small since it covers only 6.4 % of the azimuth angle range where the power is negative compared to the dynamic stall impact which covers almost 22 % of the azimuth angle range.

  7. Type IV Wind Turbine Model

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Margaris, Ioannis D.

    project to be incorporated in the wind power plant level. This document describes the Type 4 wind turbine simulation model, implemented in the EaseWind project. The implemented wind turbine model is one of the initial necessary steps toward integrating new control services in the wind power plant level....... In the project, this wind turbine model will be further incorporated in a wind power plant model together with the implementation in the wind power control level of the new control functionalities (inertial response, synchronising power and power system damping). For this purpose an aggregate wind power plant...... (WPP) will be considered. The aggregate WPP model, which will be based on the upscaling of the individual wind turbine model on the electrical part, will make use of an equivalent wind speed. The implemented model follows the basic structure of the generic standard Type 4 wind turbine model proposed...

  8. A NASTRAN-based computer program for structural dynamic analysis of Horizontal Axis Wind Turbines

    Science.gov (United States)

    Lobitz, Don W.

    1995-01-01

    This paper describes a computer program developed for structural dynamic analysis of horizontal axis wind turbines (HAWT's). It is based on the finite element method through its reliance on NASTRAN for the development of mass, stiffness, and damping matrices of the tower end rotor, which are treated in NASTRAN as separate structures. The tower is modeled in a stationary frame and the rotor in one rotating at a constant angular velocity. The two structures are subsequently joined together (external to NASTRAN) using a time-dependent transformation consistent with the hub configuration. Aerodynamic loads are computed with an established flow model based on strip theory. Aeroelastic effects are included by incorporating the local velocity and twisting deformation of the blade in the load computation. The turbulent nature of the wind, both in space and time, is modeled by adding in stochastic wind increments. The resulting equations of motion are solved in the time domain using the implicit Newmark-Beta integrator. Preliminary comparisons with data from the Boeing/NASA MOD2 HAWT indicate that the code is capable of accurately and efficiently predicting the response of HAWT's driven by turbulent winds.

  9. Wind turbine reliability analysis

    OpenAIRE

    Pinar Pérez, Jesús María; García Márquez, Fausto Pedro; Tobias, Andrew Mark; Papaelias, Mayorkinos

    2013-01-01

    Against the background of steadily increasing wind power generation worldwide, wind turbine manufacturers are continuing to develop a range of configurations with different combinations of pitch control, rotor speeds, gearboxes, generators and converters. This paper categorizes the main designs, focusing on their reliability by bringing together and comparing data from a selection of major studies in the literature. These are not particularly consistent but plotting failure rates against hour...

  10. Characterization of the High-Speed-Stage Bearing Skidding of Wind Turbine Gearboxes Induced by Dynamic Electricity Grid Events: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Helsen, Jan; Guillaume, Patrick; Guo, Yi; Keller, Jonathan

    2016-05-18

    Bearing behavior is an important factor for wind turbine drivetrain reliability. Extreme loads and dynamic excitations pose challenges to the bearing design and therefore its performance. Excessive skidding of the bearing rollers should be avoided because it can cause scuffing failures. Excitations coming from wind and the electricity grid can subject the drivetrain to fluctuating torque and nontorque loads. Wind-induced excitations have been investigated predominantly in literature. However, modern wind turbines are subjected more and more to grid-induced loads because of stricter electricity grid regulations. For example, during fault-ride-through events, turbines are required to stay connected for a longer period of time during the grid failure. This work investigates the influence of electrically induced excitations on the skidding behaviour of the tapered roller bearings on the high-speed stage of a wind turbine gearbox. This skidding behaviour during dynamic events is described as a potential bearing failure initiator by many researchers; however, only limited full-scale dynamic testing is documented. Therefore, a dedicated gridloss-type event is defined in the paper and conducted in a dynamometer test on a full-scale wind turbine nacelle. During the event, a complete electricity grid failure is simulated while the turbine is at rated speed and predefined torque levels. Particular focus is on the characterization of the high-speed shaft tapered roller bearing slip behavior. Strain-gauge bridges in grooves along the circumference of the outer ring are used to characterize the bearing load zone in detail. It is shown that during the torque reversals of the transient event, roller slip can be induced. This indicates the potential of the applied load case to go beyond the preload of the tapered roller bearing. Furthermore, the relation between the applied torque and skidding level is studied.

  11. Characterization of the High-Speed-Stage Bearing Skidding of Wind Turbine Gearboxes Induced by Dynamic Electricity Grid Events

    Energy Technology Data Exchange (ETDEWEB)

    Helsen, Jan; Guillaume, Patrick; Guo, Yi; Keller, Jonathan

    2016-07-01

    Bearing behavior is an important factor for wind turbine drivetrain reliability. Extreme loads and dynamic excitations pose challenges to the bearing design and therefore its performance. Excessive skidding of the bearing rollers should be avoided because it can cause scuffing failures. Excitations coming from wind and the electricity grid can subject the drivetrain to fluctuating torque and nontorque loads. Wind-induced excitations have been investigated predominantly in literature. However, modern wind turbines are subjected more and more to grid-induced loads because of stricter electricity grid regulations. For example, during fault-ride-through events, turbines are required to stay connected for a longer period of time during the grid failure. This work investigates the influence of electrically induced excitations on the skidding behaviour of the tapered roller bearings on the high-speed stage of a wind turbine gearbox. This skidding behaviour during dynamic events is described as a potential bearing failure initiator by many researchers; however, only limited full-scale dynamic testing is documented. Therefore, a dedicated gridloss-type event is defined in the paper and conducted in a dynamometer test on a full-scale wind turbine nacelle. During the event, a complete electricity grid failure is simulated while the turbine is at rated speed and predefined torque levels. Particular focus is on the characterization of the high-speed shaft tapered roller bearing slip behavior. Strain-gauge bridges in grooves along the circumference of the outer ring are used to characterize the bearing load zone in detail. It is shown that during the torque reversals of the transient event, roller slip can be induced. This indicates the potential of the applied load case to go beyond the preload of the tapered roller bearing. Furthermore, the relation between the applied torque and skidding level is studied.

  12. Tornado type wind turbines

    Science.gov (United States)

    Hsu, Cheng-Ting

    1984-01-01

    A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

  13. Wind turbine spoiler

    Science.gov (United States)

    Sullivan, W.N.

    An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

  14. Wind Turbine Blade

    DEFF Research Database (Denmark)

    2010-01-01

    The invention relates to a blade for a wind turbine, particularly to a blade that may be produced by an advanced manufacturing process for producing a blade with high quality structural components. Particularly, the structural components, which are preferably manufactured from fibre reinforced...

  15. Wind turbine airfoil catalogue

    DEFF Research Database (Denmark)

    Bertagnolio, F.; Sørensen, Niels N.; Johansen, Jeppe

    2001-01-01

    The aim of this work is two-sided. Firstly, experimental results obtained for numerous sets of airfoil measurements (mainly intended for wind turbine applications) are collected and compared with computational results from the 2D Navier-Stokes solverEllipSys2D, as well as results from the panel...

  16. Dynamic Reliability Analysis of Gear Transmission System of Wind Turbine in Consideration of Randomness of Loadings and Parameters

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2014-01-01

    Full Text Available A dynamic model of gear transmission system of wind turbine is built with consideration of randomness of loads and parameters. The dynamic response of the system is obtained using the theory of random sampling and the Runge-Kutta method. According to rain flow counting principle, the dynamic meshing forces are converted into a series of luffing fatigue load spectra. The amplitude and frequency of the equivalent stress are obtained using equivalent method of Geber quadratic curve. Moreover, the dynamic reliability model of components and system is built according to the theory of probability of cumulative fatigue damage. The system reliability with the random variation of parameters is calculated and the influence of random parameters on dynamic reliability of components is analyzed. In the end, the results of the proposed method are compared with that of Monte Carlo method. This paper can be instrumental in the design of wind turbine gear transmission system with more advantageous dynamic reliability.

  17. Comparison of wind turbine wake properties in non‐sheared inflow predicted by different computational fluid dynamics rotor models

    DEFF Research Database (Denmark)

    Troldborg, Niels; Zahle, Frederik; Réthoré, Pierre-Elouan

    2015-01-01

    The wake of the 5MW reference wind turbine designed by the National Renewable Energy Laboratory (NREL) is simulated using computational fluid dynamics with a fully resolved rotor geometry, an actuator line method and an actuator disc method, respectively. Simulations are carried out prescribing...

  18. Robust ℋ∞ Dynamic Output Feedback Control Synthesis with Pole Placement Constraints for Offshore Wind Turbine Systems

    Directory of Open Access Journals (Sweden)

    Tore Bakka

    2012-01-01

    Full Text Available The problem of robust ℋ∞ dynamic output feedback control design with pole placement constraints is studied for a linear parameter-varying model of a floating wind turbine. A nonlinear model is obtained and linearized using the FAST software developed for wind turbines. The main contributions of this paper are threefold. Firstly, a family of linear models are represented based on an affine parameter-varying model structure for a wind turbine system. Secondly, the bounded parameter-varying parameters are removed using upper bounded inequalities in the control design process. Thirdly, the control problem is formulated in terms of linear matrix inequalities (LMIs. The simulation results show a comparison between controller design based on a constant linear model and a controller design for the linear parameter-varying model. The results show the effectiveness of our proposed design technique.

  19. Probabilistic Modeling of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei

    Wind energy is one of several energy sources in the world and a rapidly growing industry in the energy sector. When placed in offshore or onshore locations, wind turbines are exposed to wave excitations, highly dynamic wind loads and/or the wakes from other wind turbines. Therefore, most components...... in a wind turbine experience highly dynamic and time-varying loads. These components may fail due to wear or fatigue, and this can lead to unplanned shutdown repairs that are very costly. The design by deterministic methods using safety factors is generally unable to account for the many uncertainties. Thus......, a reliability assessment should be based on probabilistic methods where stochastic modeling of failures is performed. This thesis focuses on probabilistic models and the stochastic modeling of the fatigue life of the wind turbine drivetrain. Hence, two approaches are considered for stochastic modeling...

  20. Dynamic Analysis of a Floating Vertical Axis Wind Turbine Under Emergency Shutdown Using Hydrodynamic Brake

    DEFF Research Database (Denmark)

    Wang, K.; Hansen, Martin Otto Laver; Moan, T.

    2014-01-01

    Emergency shutdown is always a challenge for an operating vertical axis wind turbine. A 5-MW vertical axis wind turbine with a Darrieus rotor mounted on a semi-submersible support structure was examined in this study. Coupled non-linear aero-hydro-servo-elastic simulations of the floating vertical...... axis wind turbine were carried out for emergency shutdown cases over a range of environmental conditions based on correlated wind and wave data. When generator failure happens, a brake should be applied to stop the acceleration of the rotor to prevent the rotor from overspeeding and subsequent disaster...... the hydrodynamic brake and mechanical brake was also investigated. The application of the hydrodynamic brake is expected to be efficient for rotor shutdown and for reducing the platform motions and structural loads....

  1. High-efficiency wind turbine

    Science.gov (United States)

    Hein, L. A.; Myers, W. N.

    1980-01-01

    Vertical axis wind turbine incorporates several unique features to extract more energy from wind increasing efficiency 20% over conventional propeller driven units. System also features devices that utilize solar energy or chimney effluents during periods of no wind.

  2. Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields

    Energy Technology Data Exchange (ETDEWEB)

    Guntur, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schreck, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sorensen, N. N. [Technical Univ. of Denmark, Lyngby (Denmark); Bergami, L. [Technical Univ. of Denmark, Lyngby (Denmark)

    2015-04-22

    It is well known that airfoils under unsteady flow conditions with a periodically varying angle of attack exhibit aerodynamic characteristics different from those under steady flow conditions, a phenomenon commonly known as dynamic stall. It is also well known that the steady aerodynamic characteristics of airfoils in the inboard region of a rotating blade differ from those under steady two-dimensional (2D) flow conditions, a phenomenon commonly known as rotational augmentation. This paper presents an investigation of these two phenomena together in the inboard parts of wind turbine blades. This analysis is carried out using data from three sources: (1) the National Renewable Energy Laboratory’s Unsteady Aerodynamics Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation, (2) data from unsteady Delayed Detached Eddy Simulations (DDES) carried out using the Technical University of Denmark’s in-house flow solver Ellipsys3D, and (3) data from a simplified model based on the blade element momentum method with a dynamic stall subroutine that uses rotationally augmented steady-state polars obtained from steady Phase VI experimental sequences, instead of the traditional 2D nonrotating data. The aim of this work is twofold. First, the blade loads estimated by the DDES simulations are compared to three select cases of the N sequence experimental data, which serves as a validation of the DDES method. Results show reasonable agreement between the two data in two out of three cases studied. Second, the dynamic time series of the lift and the moment polars obtained from the experiments are compared to those from the dynamic stall subroutine that uses the rotationally augmented steady polars. This allowed the differences between the stall phenomenon on the inboard parts of harmonically pitching blades on a rotating wind turbine and the classic dynamic stall representation in 2D flow to be

  3. Wind turbine aerodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.A. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering, Wind Energy Group

    2010-07-01

    The need for clean, renewable electricity in remote communities of Canada and the world was discussed in this presentation. The University of Waterloo Wind Energy Laboratory (WEL) performs research in a large scale indoor environment on wind turbines, blade aerodynamics, and aeroacoustics. A key area of research involves developing turbines for remote off-grid communities where climatic conditions are challenging. This presentation outlined research that is underway on wind energy and off-grid renewable energy systems. Many communities in Canada and remote communities in the rest of the world are not connected to the grid and are dependent on other means to supply electrical energy to their community. Remote communities in northern Canada have no road access and diesel is the dominant source of electrical energy for these communities. All of the community supply of diesel comes from brief winter road access or by air. The presentation discussed existing diesel systems and the solution of developing local renewable energy sources such as wind, hydro, biomass, geothermal, and solar power. Research goals, wind energy activities, experimental equipment, and the results were also presented. Research projects have been developed in wind energy; hydrogen generation/storage/utilization; power electronics/microgrid; and community engagement. figs.

  4. Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Maniaci, D. C.; Li, Y.

    2012-04-01

    This paper describes a recent study to investigate the applicability of a horizontal-axis wind turbine (HAWT) structural dynamics and unsteady aerodynamics analysis program (FAST and AeroDyn respectively) to modeling the forces on marine hydrokinetic (MHK) turbines. It summarizes the added mass model that has been added to AeroDyn. The added mass model only includes flow acceleration perpendicular to the rotor disc, and ignores added mass forces caused by blade deflection. A model of the National Renewable Energy Laboratory's (NREL) Unsteady Aerodynamics Experiment (UAE) Phase VI wind turbine was analyzed using FAST and AeroDyn with sea water conditions and the new added mass model. The results of this analysis exhibited a 3.6% change in thrust for a rapid pitch case and a slight change in amplitude and phase of thrust for a case with 30 degrees of yaw.

  5. Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code

    Energy Technology Data Exchange (ETDEWEB)

    Maniaci, D. C.; Li, Y.

    2011-10-01

    This paper describes a recent study to investigate the applicability of a horizontal-axis wind turbine (HAWT) structural dynamics and unsteady aerodynamics analysis program (FAST and AeroDyn respectively) to modeling the forces on marine hydrokinetic (MHK) turbines. This paper summarizes the added mass model that has been added to AeroDyn. The added mass model only includes flow acceleration perpendicular to the rotor disc, and ignores added mass forces caused by blade deflection. A model of the National Renewable Energy Laboratory's (NREL) Unsteady Aerodynamics Experiment (UAE) Phase VI wind turbine was analyzed using FAST and AeroDyn with sea water conditions and the new added mass model. The results of this analysis exhibited a 3.6% change in thrust for a rapid pitch case and a slight change in amplitude and phase of thrust for a case with 30{sup o} of yaw.

  6. Aeroservoelasticity of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Skovmose Kallesoee, B.

    2007-12-14

    This thesis deals with the fundamental aeroelastic interaction between structural motion, Pitch action and control for a wind turbine blade. As wind turbines become larger, the interaction between pitch action, blade motion, aerodynamic forces, and control become even more important to understand and address. The main contribution of this thesis is the development of an aeroelastic blade model which on the one hand includes the important effects of steady state blade deformation, gravity and pitch action, and on the other it is transparent, suitable for analytical analysis and parameter studies, and furthermore linear and therefore suitable for control design. The development of the primary aeroelastic blade model is divided into four steps: 1) Nonlinear partial differential equations (PDEs) of structural blade motion are derived together with equations of pitch action and rotor speed; the individual terms in these equations are discussed and given physical interpretations; 2) Steady state blade deformation and induced velocities are computed by combining the PDEs with a steady state aerodynamic model; 3) Aeroelastic modes of motion are computed by combining the linearized PDEs with a linear unsteady aerodynamic model; this model is used to analyze how blade deformation effects the modes of motion; and 4) the linear aeroelastic blade model is derived by a modal expansion of the linearized PDEs combined with a linear unsteady aerodynamic model. The aeroelastic blade model has many similarities to a 2D blade section model, and it can be used instead of this in many applications, giving a transparent connection to a real wind turbine blade. In this work the aeroelastic blade model is used to analyze interaction between pitch action, blade motion and wind speed variations. Furthermore the model is used to develop a state estimator for estimating the wind speed and wind shear, and to suggest a load reducing controller. The state estimator estimates the wind shear very

  7. Assessment of the Dynamic Behaviour of Saturated Soil Subjected to Cyclic Loading from Offshore Monopile Wind Turbine Foundations

    DEFF Research Database (Denmark)

    Damgaard, Mads; Bayat, Mehdi; Andersen, Lars Vabbersgaard

    2014-01-01

    The fatigue life of offshore wind turbines strongly depends on the dynamic behaviour of the structures including the underlying soil. To diminish dynamic amplification and avoid resonance, the eigenfrequency related to the lowest eigenmode of the wind turbine should not coalesce with excitation...... frequencies related to strong wind, wave and ice loading. Typically, lateral response of monopile foundations is analysed using a beam on a nonlinear Winkler foundation model with soil-pile interaction recommended by the design regulations. However, as it will be shown in this paper, the guideline approaches...... consequently underestimate the eigenfrequency compared to full-scale measurements. This discrepancy leads the authors to investigate the influence of pore water pressure by utilising a numerical approach and consider the soil medium as a two-phase system consisting of a solid skeleton and a single pore fluid...

  8. Elastic deformations of floaters for offshore wind turbines: Dynamic modelling and sectional load calculations

    DEFF Research Database (Denmark)

    Borg, Michael; Bredmose, Henrik; Hansen, Anders Melchior

    2017-01-01

    is considered through a reduced set of modes, selected based on their relevance to the external load frequency range, and represented with a superelement. The implementation of this method in aeroelastic simulation tool HAWC2 and wavestructure analysis programWAMIT is described, highlighting the practical...... challenges. A case study of the DTU 10MW Reference Wind Turbine installed on the Triple Spar concept is presented to illustrate the method. The results show that the substructure flexible modes, global platform motion and wind turbine loads can influence sectional loads within the substructure....

  9. Computational Fluid Dynamic Analysis of a Floating Offshore Wind Turbine Experiencing Platform Pitching Motion

    Directory of Open Access Journals (Sweden)

    Thanhtoan Tran

    2014-08-01

    Full Text Available The objective of this study is to illustrate the unsteady aerodynamic effects of a floating offshore wind turbine experiencing the prescribed pitching motion of a supporting floating platform as a sine function. The three-dimensional, unsteady Reynolds Averaged Navier-Stokes equations with the shear-stress transport (SST k-ω turbulence model were applied. Moreover, an overset grid approach was used to model the rigid body motion of a wind turbine blade. The current simulation results are compared to various approaches from previous studies. The unsteady aerodynamic loads of the blade were demonstrated to change drastically with respect to the frequency and amplitude of platform motion.

  10. Shape Optimization of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Wang, Xudong; Shen, Wen Zhong; Zhu, Wei Jun

    2009-01-01

    This paper presents a design tool for optimizing wind turbine blades. The design model is based on an aerodynamic/aero-elastic code that includes the structural dynamics of the blades and the Blade Element Momentum (BEM) theory. To model the main aero-elastic behaviour of a real wind turbine...... in the European Commision-sponsored project Model Experiments in Controlled Conditions, (MEXICO) and the computed aero-elastic results are examined against the FLEX code for flow post the Tjereborg 2 MW rotor. To illustrate the optimization technique, three wind turbine rotors of different sizes (the MEXICO 25 k...

  11. Generic dynamic wind turbine models for power system stability analysis: A comprehensive review

    DEFF Research Database (Denmark)

    Honrubia-Escribano, A.; Gómez-Lázaro, E.; Fortmann, J.

    2018-01-01

    obtained by IEC and WECC working groups in the course of their research, which have motivated the publication of the IEC 61400-27 in February 2015. The final published versions of the generic models developed according to the existing four wind turbine technology types are detailed, highlighting...... the subsequent changes made during the development phase. The main differences between IEC and WECC generic models are also analyzed. Not only is the final model structure presented but we also provide a complete description of the physical behavior of wind turbines facing power system stability problems....... Results are thus of great interest to grid operators, software developers, wind farm owners and researchers focused on the integration of wind energy into power systems....

  12. Controls of Hydraulic Wind Turbine

    OpenAIRE

    Zhang Yin; Kong Xiangdong; Hao Li; Ai Chao

    2016-01-01

    In this paper a hydraulic wind turbine generator system was proposed based on analysis the current wind turbines technologies. The construction and principles were introduced. The mathematical model was verified using MATLAB and AMsim. A displacement closed loop of swash plate of motor and a speed closed loop of generator were setup, a PID control is introduced to maintain a constant speed and fixed frequency at wind turbine generator. Simulation and experiment demonstrated that the system ca...

  13. Comprehensive analysis of the dynamic behavior of grid-connected DFIG-based wind turbines under LVRT conditions

    DEFF Research Database (Denmark)

    Alsmadi, Yazan M.; Xu, Longya; Blaabjerg, Frede

    2015-01-01

    presents a comprehensive study of the LVRT of grid-connected DFIG-based wind turbines. It provides a detailed investigation of the transient characteristics and the dynamic behavior of DFIGs during symmetrical and asymmetrical grid voltage sags. A detailed theoretical study supported by computer......Power generation and grid stability have become key issues in the last decade. The high penetration of large capacity wind generation into the electric power grid has led to serious concerns about their influence on the dynamic behavior of power systems. The Low-Voltage Ride-Through (LVRT...

  14. Wind Turbine Radar Cross Section

    Directory of Open Access Journals (Sweden)

    David Jenn

    2012-01-01

    Full Text Available The radar cross section (RCS of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axis helical design, are shown. The unique electromagnetic scattering features, the effect of materials, and methods of mitigating wind turbine clutter are also discussed.

  15. Controls of Hydraulic Wind Turbine

    Directory of Open Access Journals (Sweden)

    Zhang Yin

    2016-01-01

    Full Text Available In this paper a hydraulic wind turbine generator system was proposed based on analysis the current wind turbines technologies. The construction and principles were introduced. The mathematical model was verified using MATLAB and AMsim. A displacement closed loop of swash plate of motor and a speed closed loop of generator were setup, a PID control is introduced to maintain a constant speed and fixed frequency at wind turbine generator. Simulation and experiment demonstrated that the system can connect grid to generate electric and enhance reliability. The control system demonstrates a high performance speed regulation and effectiveness. The results are great significant to design a new type hydraulic wind turbine system.

  16. Computational Aerodynamics and Aeroacoustics for Wind Turbines

    DEFF Research Database (Denmark)

    Shen, Wen Zhong

    To analyse the aerodynamic performance of wind turbine rotors, the main tool in use today is the 1D-Blade Element Momentum (BEM) technique combined with 2D airfoil data. Because of its simplicity, the BEM technique is employed by industry when designing new wind turbine blades. However, in order...... by year (about ten times every five years from statistics over the last twenty years), CFD has now become a popular tool for studying the aerodynamics of wind turbines. The present thesis consists of 19 selected papers dealing with the development and use of CFD methods for studying the aerodynamics...... and aero-acoustics of wind turbines. The papers are written in the period from 1997 to 2008 and numbered according to the list in page v. The work consists of two parts: an aerodynamic part based on Computational Fluid Dynamics and an aero-acoustic part based on Computational Aero Acoustics for wind...

  17. Improved fault ride through capability of DFIG based wind turbines using synchronous reference frame control based dynamic voltage restorer.

    Science.gov (United States)

    Rini Ann Jerin, A; Kaliannan, Palanisamy; Subramaniam, Umashankar

    2017-09-01

    Fault ride through (FRT) capability in wind turbines to maintain the grid stability during faults has become mandatory with the increasing grid penetration of wind energy. Doubly fed induction generator based wind turbine (DFIG-WT) is the most popularly utilized type of generator but highly susceptible to the voltage disturbances in grid. Dynamic voltage restorer (DVR) based external FRT capability improvement is considered. Since DVR is capable of providing fast voltage sag mitigation during faults and can maintain the nominal operating conditions for DFIG-WT. The effectiveness of the DVR using Synchronous reference frame (SRF) control is investigated for FRT capability in DFIG-WT during both balanced and unbalanced fault conditions. The operation of DVR is confirmed using time-domain simulation in MATLAB/Simulink using 1.5MW DFIG-WT. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Integrated analysis of wind turbines - The impact of power systems on wind turbine design

    DEFF Research Database (Denmark)

    Barahona Garzón, Braulio

    Megawatt-size wind turbines nowadays operate in very complex environmental conditions, and increasingly demanding power system requirements. Pursuing a cost-effective and reliable wind turbine design is a multidisciplinary task. However nowadays, wind turbine design and research areas...... conditions that stem from disturbances in the power system. An integrated simulation environment, wind turbine models, and power system models are developed in order to take an integral perspective that considers the most important aeroelastic, structural, electrical, and control dynamics. Applications...... of the integrated simulation environment are presented. The analysis of an asynchronous machine, and numerical simulations of a fixedspeed wind turbine in the integrated simulation environment, demonstrate the effects on structural loads of including the generator rotor fluxes dynamics in aeroelastic studies. Power...

  19. New high profitable wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Frankovic, Bernard [Rijeka Univ., Faculty of Engineering, Rijeka (Croatia); Vrsalovic, Ivan [Rijekaprojekt d.o.o., Rijeka (Croatia)

    2001-11-01

    To generate more quantities of electric energy from wind it is necessary to use a new type of wind turbine built in the regulable mantle's nozzle. This wind turbine type replaces the free air stream from wind by a programmed, i.e. regulated, and partially concentrated stream of air. The nozzle shell is designed as an aerodynamically shaped ring with wings with its lower pressure side pointed towards the centre so that the lift force on each part of the wing is directed radially towards the centre. This induces centrifugal reaction force in the airflow that causes the stream field to expand strongly downstream of the rotor and includes a greater number of streamlines in the active stream in front of the rotor (upstream). Thus the nozzle forces a higher mass flow rate of air through the turbine. The higher mass flow and higher velocity reduction behind the rotor result in a higher energy output from the wind turbine in the nozzle. In this way the wind turbine efficiency is multiplied. New turbines induce more power from weaker and medium winds and their lasting time, because of the relation p = f(v{sup 3}) (i.e. the power corresponds to wind velocity raised to third power). Wind turbine nozzle produces three times more energy than conventional wind turbine. Short economic analysis for conditions of the island of Lastovo indicates that profit gained by new turbines is up to five times higher than by conventional turbines. The new wind turbine nozzle should generate interest and demand on an international market, even for regions with weaker winds. (Author)

  20. Interaction of Atmospheric Turbulence with Blade Boundary Layer Dynamics on a 5MW Wind Turbine using Blade-Boundary-Layer-Resolved CFD with hybrid URANS-LES.

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, Ganesh [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pennsylvania State Univ., University Park, PA (United States); Brasseur, James [Pennsylvania State Univ., University Park, PA (United States); Univ. of Colorado, Boulder, CO (United States); Lavely, Adam; Jayaraman, Balaji; Craven, Brent

    2016-01-04

    We describe the response of the NREL 5 MW wind turbine blade boundary layer to the passage of atmospheric turbulence using blade-boundary-layer-resolved computational fluid dynamics with hybrid URANS-LES modeling.

  1. Using High-Fidelity Computational Fluid Dynamics to Help Design a Wind Turbine Wake

    DEFF Research Database (Denmark)

    Churchfield, Matthew J.; Wang, Qi; Scholbrock, A.

    2016-01-01

    We describe the process of using large-eddy simulations of wind turbine wake flow to help design a wake measurement campaign. The main goal of the experiment is to measure wakes and wake deflection that result from intentional yaw misalignment under a variety of atmospheric conditions at the Scaled...... Wind Farm Technology facility operated by Sandia National Laboratories in Lubbock, Texas. Prior simulation studies have shown that wake deflection may be used for wind-plant control that maximizes plant power output. In this study, simulations are performed to characterize wake deflection and general...

  2. Wind Turbine Contingency Control Through Generator De-Rating

    Science.gov (United States)

    Frost, Susan; Goebel, Kai; Balas, Mark

    2013-01-01

    Maximizing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. In that context, systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage to the turbine. Advanced contingency control is one way to enable autonomous decision-making by providing the mechanism to enable safe and efficient turbine operation. The work reported herein explores the integration of condition monitoring of wind turbines with contingency control to balance the trade-offs between maintaining system health and energy capture. The contingency control involves de-rating the generator operating point to achieve reduced loads on the wind turbine. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.

  3. Concept design and coupled dynamic response analysis on 6-MW spar-type floating offshore wind turbine

    Science.gov (United States)

    Meng, Long; Zhou, Tao; He, Yan-ping; Zhao, Yong-sheng; Liu, Ya-dong

    2017-10-01

    Tower, Spar platform and mooring system are designed in the project based on a given 6-MW wind turbine. Under wind-induced only, wave-induced only and combined wind and wave induced loads, dynamic response is analyzed for a 6-MW Spar-type floating offshore wind turbine (FOWT) under operating conditions and parked conditions respectively. Comparison with a platform-fixed system (land-based system) of a 6-MW wind turbine is carried out as well. Results demonstrate that the maximal out-of-plane deflection of the blade of a Spar-type system is 3.1% larger than that of a land-based system; the maximum response value of the nacelle acceleration is 215% larger for all the designed load cases being considered; the ultimate tower base fore-aft bending moment of the Spar-type system is 92% larger than that of the land-based system in all of the Design Load Cases (DLCs) being considered; the fluctuations of the mooring tension is mainly wave-induced, and the safety factor of the mooring tension is adequate for the 6-MW FOWT. The results can provide relevant modifications to the initial design for the Spar-type system, the detailed design and model basin test of the 6-MW Spar-type system.

  4. Floating offshore wind turbines for shallow waters

    Energy Technology Data Exchange (ETDEWEB)

    Bulder, B.H.; Peeringa, J.M.; Pierik, J.T.G. [ECN Wind Energy, Petten (Netherlands); Henderson, A. [Section Wind Energy, Delft University of Technology, Delft (Netherlands); Huijsmans, R.H.M.; Van Hees, M.Th. [Maritime Research Institute Netherlands, MARIN, Wageningen (Netherlands); Snijders, E.J.B. [Marine Structure Consultants MSC, Schiedam (Netherlands); Wijnants, G.H.; Wolf, M.J. [TNO, Delft (Netherlands)

    2003-06-01

    Bottom mounted Offshore wind turbines seem to have a promising future but they are restricted to shallow waters such as in Northern Europe. Many projects are planned or are in the phase of construction in the North Sea and the Baltic Sea. All projects planned to date are in water depths of up to approximately 25 m. The research project reported in this paper investigated the technical and economical feasibility of floating wind energy systems in deeper waters, of approximately 50 m and deeper. It is assumed that at a certain water depth floating wind turbines will have better economics than bottom mounted wind turbines. Floating wind energy systems seem to have some advantages over bottom mounted wind energy systems, such as: lower cost installation (in a harbour); lower maintenance cost; lower removal cost. But floating wind energy systems have their own technical challenges, such as dynamic interactions between floater and wind turbine; floater conceptual design including mooring system, taking into account restriction w.rt. stability of floater and wind turbine, minimizing wave induced motion, water depth, etc. This paper summarises the activities undertaken within the FloatWind feasibility study carried out during 2001-2002. Full details are to be found in the Final Report, also available from ECN or any of the authors.

  5. Dynamic responses of a semi-type offshore floating wind turbine during normal state and emergency shutdown

    Science.gov (United States)

    Hu, Zhi-qiang; Li, Liang; Wang, Jin; Hu, Qiu-hao; Shen, Ma-cheng

    2016-03-01

    This paper addresses joint wind-wave induced dynamic responses of a semi-type offshore floating wind turbine (OFWT) under normal states and fault event conditions. The analysis in this paper is conducted in time domain, using an aero-hydro-servo-elastic simulation code-FAST. Owing to the unique viscous features of the reference system, the original viscous damping model implemented in FAST is replaced with a quadratic one to gain an accurate capture of viscous effects. Simulation cases involve free-decay motion in still water, steady motions in the presence of regular waves and wind as well as dynamic response in operational sea states with and without wind. Simulations also include the cases for transient responses induced by fast blade pitching after emergency shutdown. The features of platform motions, local structural loads and a typical mooring line tension force under a variety of excitations are obtained and investigated.

  6. Wind power integration : From individual wind turbine to wind park as a power plant

    NARCIS (Netherlands)

    Zhou, Y.

    2009-01-01

    As power capacities of single wind turbine, single wind park and total wind power installation are continuously increasing, the wind power begins to challenge the safety operation of the power system. This thesis focuses on the grid integration aspects such as the dynamic behaviours of wind power

  7. Optimization of wind turbine rotors

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, Tor Anders

    1999-07-01

    The Constrained Steepest Descent method has been applied to the optimization of wind turbine rotors through the development of a numerical model. The model consists of an optimization kernel, an aerodynamic model, a structural dynamic model of a rotating beam, and a cost model for the wind turbine. The cost of energy is minimized directly by varying the blade design, the rotational speed and the resulting design of the drive-train and tower. The aerodynamic model is a combination of a fast engineering model based on strip-theory and two and three-dimensional Euler solvers. The two-dimensional Euler solver is used for generation of pre-stall airfoil data. Comparisons with experimental data verify that the engineering model effectively approximates non-stalled flow, except at the blade tip. The three-dimensional Euler solver is in good agreement with the experimental data at the tip, and is therefore a useful supplement for corrections of the tip-loss model, and evaluation of an optimized design. The structural dynamic model evaluates stresses and deformations for the blade. It is based on constitutive relations for a slender beam that are solved with the equations of motions using a finite-difference method. The cost model evaluates the design change of the wind turbine and the resulting costs that occur when a change in blade design modifies the blade mass and the overall forces. The cost model is based on engineering design rules for the drive-train and tower. The model was applied using a Danish 600 kW wind turbine as a reference. Two rotors were optimized using traditional NACA airfoils and a new low-lift airfoil family developed specifically for wind turbine purposes. The cost of energy decreased four percent for the NACA rotor, and seven percent for the low-lift rotor. Optimizations with a high number of degrees of freedom show that a designer has considerable flexibility in choosing some primary parameters such as rated power and rotor diameter, if the rest

  8. Wind turbine airfoil catalogue

    OpenAIRE

    Bertagnolio, F.; Sørensen, Niels N.; Johansen, Jeppe; Fuglsang, P.

    2001-01-01

    The aim of this work is two-sided. Firstly, experimental results obtained for numerous sets of airfoil measurements (mainly intended for wind turbine applications) are collected and compared with computational results from the 2D Navier-Stokes solverEllipSys2D, as well as results from the panel method code XFOIL. Secondly, we are interested in validating the code EllipSys2D and finding out for which airfoils it does not perform well compared to the experiments, as well as why, when it does so...

  9. Hub vortex instability and wake dynamics in axial flow wind turbines

    Science.gov (United States)

    Foti, Daniel; Howard, Kevin; Yang, Xiaolei; Guala, Michele; Sotiropoulos, Fotis

    2014-11-01

    The near wake region of an axial flow wind turbine has two distinct shear layers: an outer tip vortex shear layer, which rotates in the same direction as the rotor, and an inner counter-rotating hub vortex shear layer. Recent simulations (Kang et al., J. Fluid Mech. 744, 376 (2014)), corroborated with experiments (Chamorro et al., J. Fluid Mech. 716, 658 (2013)), showed that the hub vortex can undergo spiral vortex breakdown immediately downstream of the turbine. The precessing hub vortex core intercepts and interacts with the tip vortex shear layer causing the large-scale wake meandering motions in the far wake to intensify. These results were obtained for an axial flow hydrokinetic turbine in a turbulent open channel flow. Here we integrate high-resolution LES with experiments to show that a hub vortex instability also occurs in the near wake of a wind turbine in a wind tunnel. We show that the interactions of the hub vortex with the outer flow have significant effects on the wake meandering amplitude and frequency. Our results reinforce the conclusions of Kang et al. (2014) that the hub vortex must be included in wake models to simulate wake interactions at the power plant scale and optimize turbine siting for realistic terrain and wind conditions. This work was supported by DOE (DE-EE0002980, DE-EE0005482 and DE-AC04-94AL85000), the NSF (IIP-1318201), the IREE early career award (UMN) and NSF CAREER: Geophysical Flow Control (CBET-1351303). Computational resources were provided by MSI.

  10. Wave Influenced Wind and the Effect on Offshore Wind Turbine Performance

    OpenAIRE

    Kalvig, Siri; Manger, Eirik; Bjørn H. Hjertager; Jakobsen, Jasna B.

    2014-01-01

    In this paper the effect of wave influenced wind on offshore wind turbines is studied numerically. The wave is seen as a dynamical roughness that influences the wind flow and hence the wind turbine performance. An actuator line representation of the NREL's 5 MW offshore baseline wind turbine is placed in a simulation domain with a moving mesh that resolves the ocean waves. These wave influenced wind turbine simulations, WIWiTS, show that the wave will influence the wind field at the turbine r...

  11. Wind Turbine Test Wind Matic WM 15S

    OpenAIRE

    Friis Pedersen, Troels

    1986-01-01

    The report describes standard measurements performed on a Wind-Matic WM 15S, 55 kW wind turbine. The measurements carried out and reported here comprises the power output, system efficiency, energy production, transmission efficiency, rotor power, rotor efficiency, air-brakes efficiency, dynamical behaviour of the turbine, loads at cut-in and braking, rotor torque at stopped condition, and noise emission.

  12. Wind Turbine Test Wind Matic WM 15S

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels

    The report describes standard measurements performed on a Wind-Matic WM 15S, 55 kW wind turbine. The measurements carried out and reported here comprises the power output, system efficiency, energy production, transmission efficiency, rotor power, rotor efficiency, air-brakes efficiency, dynamical...... behaviour of the turbine, loads at cut-in and braking, rotor torque at stopped condition, and noise emission....

  13. Wind Turbine Providing Grid Support

    DEFF Research Database (Denmark)

    2011-01-01

    A variable speed wind turbine is arranged to provide additional electrical power to counteract non-periodic disturbances in an electrical grid. A controller monitors events indicating a need to increase the electrical output power from the wind turbine to the electrical grid. The controller...

  14. Wind turbines and idiopathic symptoms

    DEFF Research Database (Denmark)

    Blanes-Vidal, Victoria; Schwartz, Joel

    2016-01-01

    Whether or not wind turbines pose a risk to human health is a matter of heated debate. Personal reactions to other environmental exposures occurring in the same settings as wind turbines may be responsible of the reported symptoms. However, these have not been accounted for in previous studies. W...

  15. An experimental study of the effect of mooring systems on the dynamics of a SPAR buoy-type floating offshore wind turbine

    Science.gov (United States)

    Hong, Sinpyo; Lee, Inwon; Park, Seong Hyeon; Lee, Cheolmin; Chun, Ho-Hwan; Lim, Hee Chang

    2015-09-01

    An experimental study of the effect of mooring systems on the dynamics of a SPAR buoy-type floating offshore wind turbine is presented. The effects of the Center of Gravity (COG), mooring line spring constant, and fair-lead location on the turbine's motion in response to regular waves are investigated. Experimental results show that for a typical mooring system of a SPAR buoy-type Floating Offshore Wind Turbine (FOWT), the effect of mooring systems on the dynamics of the turbine can be considered negligible. However, the pitch decreases notably as the COG increases. The COG and spring constant of the mooring line have a negligible effect on the fairlead displacement. Numerical simulation and sensitivity analysis show that the wind turbine motion and its sensitivity to changes in the mooring system and COG are very large near resonant frequencies. The test results can be used to validate numerical simulation tools for FOWTs.

  16. Load prediction of stall regulated wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, A.; Dahlberg, J.Aa. [Aeronautical Research Inst. of Sweden, Bromma (Sweden); Carlen, I. [Chalmers Univ. of Technology, Goeteborg (Sweden). Div. of Marine Structural Engineering; Ganander, H. [Teknikgruppen AB, Sollentua (Sweden)

    1996-12-01

    Measurements of blade loads on a turbine situated in a small wind farm shows that the highest blade loads occur during operation close to the peak power i.e. when the turbine operates in the stall region. In this study the extensive experimental data base has been utilised to compare loads in selected campaigns with corresponding load predictions. The predictions are based on time domain simulations of the wind turbine structure, performed by the aeroelastic code VIDYN. In the calculations a model were adopted in order to include the effects of dynamic stall. This paper describes the work carried out so far within the project and key results. 5 refs, 10 figs

  17. Wind Turbines Adaptation to the Variability of the Wind Field

    Science.gov (United States)

    Ulianov, Yuriy; Martynenko, Gennadii; Misaylov, Vitaliy; Soliannikova, Iuliia

    2010-05-01

    including combined RF-acoustic antenna installed coaxially with the gondola of the wind power turbine. The work of the technique is synchronized with rotation of blades to eliminate their shielding action. Dangerous in terms of dynamic strength is the wind load pulse, the rise time which is comparable with the period of the natural frequency of the wind turbine elements (blade, tower, rotor, etc.). The amplitude decay of resonant vibrations at critical values of the speed of rotation can be realized through the use of mechanical elastic supports with nonlinear artificial dampers. They have a high coefficient of resistance, but may cause self-excited oscillations. We propose the way to deal with raised vibration of wind turbine elements at the expense of short-term increase of damping in the range of critical rotary axis speeds or during impulsive effects of wind loadings (wind gusts). This is possible through the use of non-linear electromagnetic dampers or active magnetic bearings. Their feature is the possibility of varying the mechanical stiffness and damping properties by changing the electrical parameters of electromagnets. The controlling of these parameters is carried out by the control system (CS) with the information feedback on the spatial-temporal structure of the wind field obtained from IRASS. In the composition of the CS can also be included the rotational speed sensor of the WPT rotor. This approach to the adaptation of wind turbines will allow to reduce vibration and to perform early compensation of the load on their components, which arise under the wind gusts. In addition, corrections about the wind field obtained with IRASS, would increase the mean power of WPT.

  18. Dynamics of helical vortices behind a wind turbine in a stratified atmosphere

    Science.gov (United States)

    Mao, Xuerui; Hussain, Fazle

    2017-11-01

    The wind turbine wake features helical vortices, which are shed from the tips of blades and inflict undesirable fatigue loading on downstream turbines. Prior studies of helical vortices focused on their hydrodynamic instabilities and the following breakup in the neutrally stable, isothermal atmospheres in which the buoyancy force is balanced by gravity. However, the atmosphere is typically mostly unstable during the day and mostly stable at night, but is seldom neutral. The present numerical work addresses the development of helical vortices in a thermally stratified atmosphere and also concentrates on the stable condition which is typical for offshore applications. The Boussinesq approximation is invoked to account for the thermal stratification effect, and an actuator line model is adopted for the turbine blades. In our direct numerical simulations, the helical vortices are found to be increasingly elliptic downstream and subsequently interact with the hub vortex to produce a new mode of breakup into turbulence. Such elliptic structures increase the width of the wake and subsequently the interaction between aligned turbines in large-scale offshore wind farms.

  19. Type-specific dynamic measurements on wind turbines at the test site Schnittlingen (Germany, F.R.)

    Science.gov (United States)

    Boehnisch, Helmut; Kussmann, Alfred; Reiniger, Klaus; Thiesen, Reimer

    1988-12-01

    Results of research on recording high dynamical data from rotating systems are presented. Two telemetry PCM (pulse code modulation) systems are used. The data of high-speed short-term measurement campaigns and of the long-time measurements are preprocessed on the test site process computers for averaging and first verification. Final evaluation of the data is done off-line on the DFVLR (Deutsche Forschungs und Versuchsanstalt fuer Luft und Raumfahrt) main frame computers. Of special interest are weather conditions, particularly their influence on the behavior of the control system and on the performance of wind turbines. Typical analyzed data of the tested turbines and interesting weather conditions are presented. A list of experiences and recommendations on wind test work are given.

  20. Experimental investigation on the wake interference among wind turbines sited in atmospheric boundary layer winds

    Science.gov (United States)

    Tian, W.; Ozbay, A.; Wang, X. D.; Hu, H.

    2017-08-01

    We examined experimentally the effects of incoming surface wind on the turbine wake and the wake interference among upstream and downstream wind turbines sited in atmospheric boundary layer (ABL) winds. The experiment was conducted in a large-scale ABL wind tunnel with scaled wind turbine models mounted in different incoming surface winds simulating the ABL winds over typical offshore/onshore wind farms. Power outputs and dynamic loadings acting on the turbine models and the wake flow characteristics behind the turbine models were quantified. The results revealed that the incoming surface winds significantly affect the turbine wake characteristics and wake interference between the upstream and downstream turbines. The velocity deficits in the turbine wakes recover faster in the incoming surface winds with relatively high turbulence levels. Variations of the power outputs and dynamic wind loadings acting on the downstream turbines sited in the wakes of upstream turbines are correlated well with the turbine wakes characteristics. At the same downstream locations, the downstream turbines have higher power outputs and experience greater static and fatigue loadings in the inflow with relatively high turbulence level, suggesting a smaller effect of wake interference for the turbines sited in onshore wind farms.

  1. Wind Turbine Test. Wind Matic WM 17S

    OpenAIRE

    Friis Pedersen, Troels

    1986-01-01

    The report describes standard measurements performed on a Wind-Matic WM 17S, 75 kW wind turbine. The measurements carried out and reported here comprises the power output, system efficiency, energy production, transmission efficiency, rotor power, rotor efficiency, air-brakes efficiency, structural dynamics, loads at cut-in and braking, rotor torque at stopped condition, and noise emission.

  2. Control of hydrostatic transmission wind turbine

    Science.gov (United States)

    Rajabhandharaks, Danop

    In this study, we proposed a control strategy for a wind turbine that employed a hydrostatic transmission system for transmitting power from the wind turbine rotor via a hydraulic transmission line to a ground level generator. Wind turbine power curve tracking was achieved by controlling the hydraulic pump displacement and, at the other end of the hydraulic line, the hydraulic motor displacement was controlled so that the overall transmission loss was minimized. Steady state response, dynamic response, and system stability were assessed. The maximum transmission efficiency obtained ranged from 79% to 84% at steady state when the proposed control strategy was implemented. The leakage and friction losses of the hydraulic components were the main factors that compromised the efficiency. The simulation results showed that the system was stable and had fast and well-damped transient response. Double wind turbine system sharing hydraulic pipes, a hydraulic motor, and a generator were also studied. The hydraulic pipe diameter used in the double-turbine system increased by 27% compared to the single-turbine system in order to make the transmission coefficient comparable between both systems. The simulation results suggested that the leakage losses were so significant that the efficiency of the system was worsened compared with the single-turbine system. Future studies of other behavioral aspects and practical issues such as fluid dynamics, structure strength, materials, and costs are needed.

  3. System Identification for the Clipper Liberty C96 Wind Turbine

    Science.gov (United States)

    Showers, Daniel

    System identification techniques are powerful tools that help improve modeling capabilities of real world dynamic systems. These techniques are well established and have been successfully used on countless systems in many areas. However, wind turbines provide a unique challenge for system identification because of the difficulty in measuring its primary input: wind. This thesis first motivates the problem by demonstrating the challenges with wind turbine system identification using both simulations and real data. It then suggests techniques toward successfully identifying a dynamic wind turbine model including the notion of an effective wind speed and how it might be measured. Various levels of simulation complexity are explored for insights into calculating an effective wind speed. In addition, measurements taken from the University of Minnesota's Clipper Liberty C96 research wind turbine are used for a preliminary investigation into the effective wind speed calculation and system identification of a real world wind turbine.

  4. Synthetic-jet-based dynamic stall control on a scaled finite span wind turbine S817 blade

    Science.gov (United States)

    Rice, Thomas; Taylor, Keith; Amitay, Michael

    2016-11-01

    As wind turbines increase in size, so do many of the adverse effects associated with unsteady flow fields. Yawed flow, unsteady gusts, atmospheric boundary layers, and even free stream turbulence can cause unsteady loading, which are detrimental to the blades' structure. In order to decrease unsteady loading, synthetic jet actuators were installed on a scaled finite span cantilevered wind turbine blade having an S817 airfoil shape. The S817 airfoil shape is of the blade tips on the NREL CART3, which will be used next year on full scale field testing of active flow control. The model has been tested in the wind tunnel with and without active flow control, using load, surface pressure, and PIV measurements to characterize the airfoil's stall behavior during static and dynamic conditions, and the effect of flow control on its aerodynamic performance. Surface-mounted microphones were also used to detect dominant frequencies in the flow field. Dynamic stall was also simulated by pitching the airfoil through stall in a sinusoidal pitching motion. Synthetic jets, placed near the leading edge, were shown to increase lift both in the static and dynamic cases, in addition to attaching the flow and reducing hysteresis during dynamic pitching, showing a decrease in structural loading.

  5. Aerodynamics of wind turbines emerging topics

    CERN Document Server

    Amano, R S

    2014-01-01

    Focusing on Aerodynamics of Wind Turbines with topics ranging from Fundamental to Application of horizontal axis wind turbines, this book presents advanced topics including: Basic Theory for Wind turbine Blade Aerodynamics, Computational Methods, and Special Structural Reinforcement Technique for Wind Turbine Blades.

  6. On Advanced Control Methods toward Power Capture and Load Mitigation in Wind Turbines

    OpenAIRE

    Yuan Yuan; Jiong Tang

    2017-01-01

    This article provides a survey of recently emerged methods for wind turbine control. Multivariate control approaches to the optimization of power capture and the reduction of loads in components under time-varying turbulent wind fields have been under extensive investigation in recent years. We divide the related research activities into three categories: modeling and dynamics of wind turbines, active control of wind turbines, and passive control of wind turbines. Regarding turbine dynamics, ...

  7. Non-steady dynamics of atmospheric turbulence interaction with wind turbine loadings through blade-boundary-layer-resolved CFD

    Science.gov (United States)

    Vijayakumar, Ganesh

    Modern commercial megawatt-scale wind turbines occupy the lower 15-20% of the atmospheric boundary layer (ABL), the atmospheric surface layer (ASL). The current trend of increasing wind turbine diameter and hub height increases the interaction of the wind turbines with the upper ASL which contains spatio-temporal velocity variations over a wide range of length and time scales. Our interest is the interaction of the wind turbine with the energetic integral-scale eddies, since these cause the largest temporal variations in blade loadings. The rotation of a wind turbine blade through the ABL causes fluctuations in the local velocity magnitude and angle of attack at different sections along the blade. The blade boundary layer responds to these fluctuations and in turn causes temporal transients in local sectional loads and integrated blade and shaft bending moments. While the integral scales of the atmospheric boundary layer are ˜ O(10--100m) in the horizontal with advection time scales of order tens of seconds, the viscous surface layer of the blade boundary layer is ˜ O(10 -- 100 mum) with time scales of order milliseconds. Thus, the response of wind turbine blade loadings to atmospheric turbulence is the result of the interaction between two turbulence dynamical systems at extremely disparate ranges of length and time scales. A deeper understanding of this interaction can impact future approaches to improve the reliability of wind turbines in wind farms, and can underlie future improvements. My thesis centers on the development of a computational framework to simulate the interaction between the atmospheric and wind turbine blade turbulence dynamical systems using a two step one-way coupled approach. Pseudo-spectral large eddy simulation (LES) is used to generate a true (equilibrium) atmospheric boundary layer over a flat land with specified surface roughness and heating consistent with the stability state of the daytime lower troposphere. Using the data from the

  8. Review paper on wind turbine aerodynamics

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Aagaard Madsen, Helge

    2011-01-01

    The paper describes the development and description of the aerodynamic models used to estimate the aerodynamic loads on wind turbine constructions. This includes a status of the capabilities of computation fluid dynamics and the need for reliable airfoil data for the simpler engineering models....... Also a discussion of the use of passive and active aerodynamic devices is included such as, e.g., Vortex Generators and distributed active flaps. Finally the problem of wakes in wind farms is addressed and a section of the likely future development of aerodynamic models for wind turbines is included...

  9. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    a classical pitch and torque regulator to control rotational speed and power, while the section on structural dynamics has been extended with a simplified mechanical system explaining the phenomena of forward and backward whirling modes. Readers will also benefit from a new chapter on Vertical Axis Wind...... the vibration of the whole construction, as well as the time varying loads and global case studies....

  10. Wind Turbine Blade Design for Subscale Testing

    Science.gov (United States)

    Hassanzadeh, Arash; Naughton, Jonathan W.; Kelley, Christopher L.; Maniaci, David C.

    2016-09-01

    Two different inverse design approaches are proposed for developing wind turbine blades for sub-scale wake testing. In the first approach, dimensionless circulation is matched for full scale and sub-scale wind turbine blades for equal shed vorticity in the wake. In the second approach, the normalized normal and tangential force distributions are matched for large scale and small scale wind turbine blades, as these forces determine the wake dynamics and stability. The two approaches are applied for the same target full scale turbine blade, and the shape of the blades are compared. The results show that the two approaches have been successfully implemented, and the designed blades are able to produce the target circulation and target normal and tangential force distributions.

  11. Power Curves in a Wind Turbine Array: A Numerical Study

    DEFF Research Database (Denmark)

    Meyer Forsting, Alexander Raul

    The impact of measuring a power curve inside a wind turbine array is investigated using computational fluid dynamics. The array consists of five aligned rotors that yaw with the free-stream wind direction. The flow-field in front of a wind turbine array changes with wind direction and hence...... the individual power output of each turbine. By incorporating the current IEC standards on power performance measurements, the bias in the power performance of turbines in an array over an isolated rotor is determined. The power change depends on the position of the turbine in the array and reaches maximally 9...

  12. Wind turbines and environment management

    Science.gov (United States)

    Vaneck, P.; Koekebakker, P.

    1983-05-01

    The environment protection and management aspects of small and large scale wind turbines are examined. Legal aspects on municipal level are discussed. The relation with regional and national management is illustrated by investigations for a planned wind energy park. It is argued that because of environment effects and long term management procedures, the establishment of wind energy generators causes many problems.

  13. The aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming; Troldborg, Niels

    2013-01-01

    In the paper we present state-of-the-art of research in wind turbine aerodynamics. We start be giving a brief historical review and a survey over aerodynamic research in wind energy. Next, we focus on some recent research results obtained by our wind energy group at Department of Mechanical...

  14. Using High-Fidelity Computational Fluid Dynamics to Help Design a Wind Turbine Wake Measurement Experiment

    Science.gov (United States)

    Churchfield, M.; Wang, Q.; Scholbrock, A.; Herges, T.; Mikkelsen, T.; Sjöholm, M.

    2016-09-01

    We describe the process of using large-eddy simulations of wind turbine wake flow to help design a wake measurement campaign. The main goal of the experiment is to measure wakes and wake deflection that result from intentional yaw misalignment under a variety of atmospheric conditions at the Scaled Wind Farm Technology facility operated by Sandia National Laboratories in Lubbock, Texas. Prior simulation studies have shown that wake deflection may be used for wind-plant control that maximizes plant power output. In this study, simulations are performed to characterize wake deflection and general behavior before the experiment is performed to ensure better upfront planning. Beyond characterizing the expected wake behavior, we also use the large-eddy simulation to test a virtual version of the lidar we plan to use to measure the wake and better understand our lidar scan strategy options. This work is an excellent example of a “simulation-in-the-loop” measurement campaign.

  15. Dynamic Analysis of Fluid Power Drive-trains for Variable Speed Wind Turbines : A Parameter Study

    NARCIS (Netherlands)

    Jarquin Laguna, A.; Diepeveen, N.F.B.

    2013-01-01

    In the pursuit of making wind energy technology more economically attractive, the application of fluid power technology for the transmission of wind energy is being developed by several parties all over the world. This paper presents a dynamic model of a fluid power transmission for variable speed

  16. Integrating Structural Health Management with Contingency Control for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Kai Goebel

    2013-01-01

    Full Text Available Maximizing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. In that context, systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage to the turbine. Advanced contingency control is one way to enable autonomous decision-making by providing the mechanism to enable safe and efficient turbine operation. The work reported herein explores the integration of condition monitoring of wind turbine blades with contingency control to balance the trade-offs between maintaining system health and energy capture. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.

  17. Modeling and Control of Wind Turbine

    OpenAIRE

    Luis Arturo Soriano; Wen Yu; Jose de Jesus Rubio

    2013-01-01

    In recent years, the energy production by wind turbines has been increasing, because its production is environmentally friendly; therefore, the technology developed for the production of energy through wind turbines brings great challenges in the investigation. This paper studies the characteristics of the wind turbine in the market and lab; it is focused on the recent advances of the wind turbine modeling with the aerodynamic power and the wind turbine control with the nonlinear, fu...

  18. New Structural-Dynamics Module for Offshore Multimember Substructures within the Wind Turbine Computer-Aided Engineering Tool FAST: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Song, H.; Damiani, R.; Robertson, A.; Jonkman, J.

    2013-08-01

    FAST, developed by the National Renewable Energy Laboratory (NREL), is a computer-aided engineering (CAE) tool for aero-hydro-servo-elastic analysis of land-based and offshore wind turbines. This paper discusses recent upgrades made to FAST to enable loads simulations of offshore wind turbines with fixed-bottom, multimember support structures (e.g., jackets and tripods, which are commonly used in transitional-depth waters). The main theory and strategies for the implementation of the multimember substructure dynamics module (SubDyn) within the new FAST modularization framework are introduced. SubDyn relies on two main engineering schematizations: 1) a linear frame finite-element beam (LFEB) model and 2) a dynamics system reduction via Craig-Bampton's method. A jacket support structure and an offshore system consisting of a turbine atop a jacket substructure were simulated to test the SubDyn module and to preliminarily assess results against results from a commercial finite-element code.

  19. Smart dynamic rotor control using active flaps on a small-scale wind turbine: aeroelastic modeling and comparison with wind tunnel measurements

    DEFF Research Database (Denmark)

    Barlas, Thanasis K.; van Wingerden, W.; Hulskamp, A.W.

    2013-01-01

    In this paper, the proof of concept of a smart rotor is illustrated by aeroelastic simulations on a small-scale rotor and comparison with wind tunnel experiments. The application of advanced feedback controllers using actively deformed flaps in the wind tunnel measurements is shown to alleviate...... dynamic loads leading to considerable fatigue load reduction. The numerical method for aeroelastically simulating such an experiment is described, together with the process of verifying the methods for accurate prediction of the load reduction potential of such concepts. The small-scale rotor is simulated...... using the aeroelastic tool, load predictions are compared with the wind tunnel measurements, and similar control concepts are compared and evaluated in the numerical environment. Conclusions regarding evaluation of the performance of smart rotor concepts for wind turbines are drawn from this threefold...

  20. Wind lens technology and its application to wind and water turbine and beyond

    OpenAIRE

    Ohya Yuji; Karasudani Takashi; Nagai Tomoyuki; Watanabe Koichi

    2017-01-01

    Wind lens is a new type of wind power system consisting of a simple brimmed ring structure that surrounds the rotor causing greater wind to pass through the turbine. As a consequence, the turbine's efficiency of capturing energy from the wind gets dramatically increased. A Wind lens turbine can generate 2–5 times the power of an existing wind turbine given at the same rotor diameter and incoming wind speed. This fluid dynamical effect is also effective in the water. We have developed 1–3 kW W...

  1. Modern Control Design for Flexible Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A. D.

    2004-07-01

    Control can improve energy capture and reduce dynamic loads in wind turbines. In the 1970s and 1980s, wind turbines used classical control designs to regulate power and speed. The methods used, however, were not always successful. Modern turbines are larger, mounted on taller towers, and more dynamically active than their predecessors. Control systems to regulate turbine power and maintain stable, closed-loop behavior in the presence of turbulent wind inflow will be critical for these designs. This report applies modern state-space control design methods to a two-bladed teetering hub upwind machine at the National Wind Technology Center (NWTC), which is managed by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in Golden, Colorado. The design objective is to regulate turbine speed and enhance damping in several low-damped flexible modes of the turbine. Starting with simple control algorithms based on linear models, complexity is added incrementally until the desired performance is firmly established.

  2. Computer control for remote wind turbine operation

    Energy Technology Data Exchange (ETDEWEB)

    Manwell, J.F.; Rogers, A.L.; Abdulwahid, U.; Driscoll, J. [Univ. of Massachusetts, Amherst, MA (United States)

    1997-12-31

    Light weight wind turbines located in harsh, remote sites require particularly capable controllers. Based on extensive operation of the original ESI-807 moved to such a location, a much more sophisticated controller than the original one has been developed. This paper describes the design, development and testing of that new controller. The complete control and monitoring system consists of sensor and control inputs, the control computer, control outputs, and additional equipment. The control code was written in Microsoft Visual Basic on a PC type computer. The control code monitors potential faults and allows the turbine to operate in one of eight states: off, start, run, freewheel, low wind shut down, normal wind shutdown, emergency shutdown, and blade parking. The controller also incorporates two {open_quotes}virtual wind turbines,{close_quotes} including a dynamic model of the machine, for code testing. The controller can handle numerous situations for which the original controller was unequipped.

  3. Probabilistic Design of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Toft, H.S.

    2010-01-01

    Probabilistic design of wind turbines requires definition of the structural elements to be included in the probabilistic basis: e.g., blades, tower, foundation; identification of important failure modes; careful stochastic modeling of the uncertain parameters; recommendations for target reliability....... It is described how uncertainties in wind turbine design related to computational models, statistical data from test specimens, results from a few full-scale tests and from prototype wind turbines can be accounted for using the Maximum Likelihood Method and a Bayesian approach. Assessment of the optimal...... reliability level by cost-benefit optimization is illustrated by an offshore wind turbine example. Uncertainty modeling is illustrated by an example where physical, statistical and model uncertainties are estimated....

  4. An experimental study of the effect of mooring systems on the dynamics of a SPAR buoy-type floating offshore wind turbine

    Directory of Open Access Journals (Sweden)

    Sinpyo Hong

    2015-05-01

    Full Text Available An experimental study of the effect of mooring systems on the dynamics of a SPAR buoy-type floating offshore wind turbine is presented. The effects of the Center of Gravity (COG, mooring line spring constant, and fair-lead location on the turbine’s motion in response to regular waves are investigated. Experimental results show that for a typical mooring system of a SPAR buoy-type Floating Offshore Wind Turbine (FOWT, the effect of mooring systems on the dynamics of the turbine can be considered negligible. However, the pitch decreases notably as the COG increases. The COG and spring constant of the mooring line have a negligible effect on the fairlead displacement. Numerical simulation and sensitivity analysis show that the wind turbine motion and its sensitivity to changes in the mooring system and COG are very large near resonant frequencies. The test results can be used to validate numerical simulation tools for FOWTs.

  5. A Method for Modeling of Floating Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Wang, Kai; Hansen, Martin Otto Laver; Moan, Torgeir

    2013-01-01

    It is of interest to investigate the potential advantages of floating vertical axis wind turbine (FVAWT) due to its economical installation and maintenance. A novel 5MW vertical axis wind turbine concept with a Darrieus rotor mounted on a semi-submersible support structure is proposed in this paper....... In order to assess the technical and economic feasibility of this novel concept, a comprehensive simulation tool for modeling of the floating vertical axis wind turbine is needed. This work presents the development of a coupled method for modeling of the dynamics of a floating vertical axis wind turbine....... This integrated dynamic model takes into account the wind inflow, aerodynamics, hydrodynamics, structural dynamics (wind turbine, floating platform and the mooring lines) and a generator control. This approach calculates dynamic equilibrium at each time step and takes account of the interaction between the rotor...

  6. Optical monitoring and operational modal analysis of large wind turbines

    NARCIS (Netherlands)

    Özbek, M.

    2013-01-01

    Identification of the dynamic properties and the corresponding structural response of wind turbines is essential for optimizing the energy produced, ensuring safe and reliable operation and increasing the life-time of the system. As the sizes of modern wind turbines increase, their dynamic behaviors

  7. CFD analysis of a Darrieus wind turbine

    Science.gov (United States)

    Niculescu, M. L.; Cojocaru, M. G.; Pricop, M. V.; Pepelea, D.; Dumitrache, A.; Crunteanu, D. E.

    2017-07-01

    The Darrieus wind turbine has some advantages over the horizontal-axis wind turbine. Firstly, its tip speed ratio is lower than that of the horizontal-axis wind turbine and, therefore, its noise is smaller, privileging their placement near populated areas. Secondly, the Darrieus wind turbine does needs no orientation mechanism with respect to wind direction in contrast to the horizontal-axis wind turbine. However, the efficiency of the Darrieus wind turbine is lower than that of the horizontal-axis wind turbine since its aerodynamics is much more complex. With the advances in computational fluids and computers, it is possible to simulate the Darrieus wind turbine more accurately to understand better its aerodynamics. For these reasons, the present papers deals with the computational aerodynamics of a Darrieus wind turbine applying the state of the art of CFD methods (anisotropic turbulence models, transition from laminar to turbulent, scale adaptive simulation) to better understand its unsteady behavior.

  8. A Component Mode Synthesis Algorithm for Multibody Dynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Holm-Jørgensen, Kristian; Nielsen, Søren R.K.

    2009-01-01

    is by use of fixed-fixed eigenmodes for the innermost substructure and fixed-free eigenmodes for the outermost substructure. The other approach is by use of fixed-free eigenmodes for both substructures. The fixed-fixed method shows good correspondence with the full FE model which is not the case...... for the fixed-free method due to incompatible displacements and rotations at the interface between the two substructures. Moreover, the results from the reduced model by use of constant constraint modes and constant fixed interface modes over a large operating areal for the wind turbine blade are almost...

  9. Reliability Assessment Of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2014-01-01

    Reduction of cost of energy for wind turbines are very important in order to make wind energy competitive compared to other energy sources. Therefore the turbine components should be designed to have sufficient reliability but also not be too costly (and safe). This paper presents models for unce......Reduction of cost of energy for wind turbines are very important in order to make wind energy competitive compared to other energy sources. Therefore the turbine components should be designed to have sufficient reliability but also not be too costly (and safe). This paper presents models...... for uncertainty modeling and reliability assessment of especially the structural components such as tower, blades, substructure and foundation. But since the function of a wind turbine is highly dependent on many electrical and mechanical components as well as a control system also reliability aspects...... of these components are discussed and it is described how there reliability influences the reliability of the structural components. Two illustrative examples are presented considering uncertainty modeling, reliability assessment and calibration of partial safety factors for structural wind turbine components exposed...

  10. Lightning protection of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, T.; Brask, M.H. [DEFU (Denmark); Jensen, F.V.; Raben, N. [SEAS (Denmark); Saxov, J. [Nordjyllandsvaerket (Denmark); Nielsen, L. [Vestkraft (Denmark); Soerensen, P.E. [Risoe National Lab. (Denmark)

    1999-03-01

    Lightning damage to wind turbines is a serious problem for Danish power companies, who have experienced some cases with very costly lightning damage and a large number of cases with minor damage. The most costly cases include one catastrophic damage to an entire wind turbine, and several cases of destruction of blades, main bearings, generators and control systems. Over the years there have been several hundreds of cases with minor damage - typically damage and interruptions of the control and communication systems, or the power systems. The Danish power companies anticipate that the lightning threat will be even bigger for the large off-shore wind turbine installations that are currently being planned in Denmark. Furthermore, it is known from the off-shore wind turbines at Vindeby in Denmark that the costs of inspection and particularly repair work must be expected to be much higher off-shore as compared to wind turbines on land. These considerations was the background for a two year project concerned with investigation of lighting damages and with the formulation of a DEFU Recommendation for lightning protection of wind turbines, which was published in January 1999. The project was funded by the Danish power companies Elsam, Eltra, Elkraft and by DEFU. (au)

  11. Influence of pile–soil interaction on the dynamic properties of offshore wind turbines supported by jacket foundations

    DEFF Research Database (Denmark)

    Yi, Jin-Hak; Kim, Sun-Bin; Yoon, Gil-Lim

    2015-01-01

    Monopiles are the most widely utilized foundation for offshore wind turbines (OWTs) in shallow waters. However, jacket-type foundations are being considered as one of the good alternatives to monopole foundations for relatively deep water in the range of 25–50 m of water depth. Jacket structures...... properties of jacketsupported OWTs are investigated. The jacket structure is modeled as a four-legged multi-member structure with vertical pre-piles, and the PSI effects on dynamic properties of the structure are evaluated using Monte Carlo simulation considering uncertainties in soil properties....

  12. Prediction models for wind speed at turbine locations in a wind farm

    DEFF Research Database (Denmark)

    Knudsen, Torben; Bak, Thomas; Soltani, Mohsen

    2011-01-01

    In wind farms, individual turbines disturb the wind field by generating wakes that influence other turbines in the farm. From a control point of view, there is an interest in dynamic optimization of the balance between fatigue and production, and an understanding of the relationship between turbine....... Copyright © 2011 John Wiley & Sons, Ltd....

  13. Large superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Magnusson, Niklas; Jensen, Bogi Bech

    2012-01-01

    To realize large (>10 MW) direct-driven off-shore wind turbines, a number of steps are needed to reduce weight and cost compared to on-shore technologies. One of the major challenges is to provide drive trains which can comply with the large torque as the turbine rotor diameter is scaled up...... and thereby having a smaller size and weight [1, 2]. A 5 MW superconducting wind turbine generator forms the basics for the feasibility considerations, particularly for the YBCO and MgB2 superconductors entering the commercial market. Initial results indicate that a 5 MW generator with an active weight of 34...

  14. MOD-2 wind turbine development

    Science.gov (United States)

    Gordon, L. H.; Andrews, J. S.; Zimmerman, D. K.

    The development of the Mod-2 turbine, designed to achieve a cost of electricity for the 100th production unit that will be competitive with conventional electric power generation is discussed. The Mod-2 wind turbine system (WTS) background, project flow, and a chronology of events and problem areas leading to Mod-2 acceptance are addressed. The role of the participating utility during site preparation, turbine erection and testing, remote operation, and routine operation and maintenance activity is reviewed. The technical areas discussed pertain to system performance, loads, and controls. Research and technical development of multimegawatt turbines is summarized.

  15. Investigation of Counter-Rotating Wind Turbine Performance using Computational Fluid Dynamics Simulation

    Science.gov (United States)

    Koehuan, V. A.; Sugiyono; Kamal, S.

    2017-11-01

    Investigation of the dual rotor counter-rotating wind turbine (CRWT) performance using non-dimensional parameters of the rotor diameter ratio and the rotor axial distance ratio against the characteristics of power coefficient with tip speed ratio (TSR) as input parameters have been successfully carried through CFD simulation. CFD simulation used k-e turbulence realizable with hexahedral meshing to predict the CRWT performance to the rotor diameter ratio of D1/D2 1 and rotor axial distance ratio with the s826 airfoil that has been applied to the single rotor wind turbine. The best CRWT performance obtained on the rotor diameter ratio of D1/D2 = 1.0 with the peak power coefficient of 0.5219 or increased to ΔCp, max = 16.49% from the single rotor. CRWT performance through the addition of rotor axial distance ratio showed the power coefficient of the front rotor continued to rise closely to the single rotor performance while the rear rotor will continue to decline. However, the overall CRWT performance were relatively stable after the ratio of the distance Z/D1 = 0.5 with the peak power coefficient of 0.5348 or increased to ΔCp, max = 19.37%.

  16. Frequency weighted model predictive control of wind turbine

    DEFF Research Database (Denmark)

    Klauco, Martin; Poulsen, Niels Kjølstad; Mirzaei, Mahmood

    2013-01-01

    accordingly. In practice is very hard to measure the effective wind speed, this quantity will be estimated using measurements from the turbine itself. For this purpose stationary predictive Kalman filter has been used. Stochastic simulations of the wind turbine behaviour with applied frequency weighted model......This work is focused on applying frequency weighted model predictive control (FMPC) on three blade horizontal axis wind turbine (HAWT). A wind turbine is a very complex, non-linear system influenced by a stochastic wind speed variation. The reduced dynamics considered in this work...... are the rotational degree of freedom of the rotor and the tower for-aft movement. The MPC design is based on a receding horizon policy and a linearised model of the wind turbine. Due to the change of dynamics according to wind speed, several linearisation points must be considered and the control design adjusted...

  17. Structural Robustness Evaluation of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Giuliani, Luisa; Bontempi, Franco

    2010-01-01

    Wind turbines are complex structures that should deal with adverse weather conditions, are exposed to impacts or ship collisions and, due to the strategic roles in the energetic supplying, can be the goal of military or malevolent attacks. Even if a structure cannot be design to resist any...... in the framework of a safe design: it depends on different factors, like exposure, vulnerability and robustness. Particularly, the requirement of structural vulnerability and robustness are discussed in this paper and a numerical application is presented, in order to evaluate the effects of a ship collision...... on the structural system of an offshore wind turbine. The investigation resorts nonlinear dynamic analyses performed on the finite element model of the turbine and considers three different scenarios for the ship collision. The review of the investigation results allows for an evaluation of the turbine structural...

  18. Actuator Line Modeling of Wind Turbine Wakes

    DEFF Research Database (Denmark)

    Troldborg, Niels

    2009-01-01

    This thesis contains a comprehensive 3D Navier-Stokes computational study of the characteristics of wakes of wind turbines operating in various flow conditions including interacting wakes between a row of turbines. The computations were carried out using the actuator line technique combined...... and it is shown that the turbines are subject to rather severe yaw moments, even in situations where the mean wind is oriented along the row. This observation is indicative of large scale dynamics of the wakes....... with the 3D Navier Stokes solver EllipSys3D and a LES turbulence model. Simple models, based on applying body forces in the computational domain, are developed for imposing sheared and turbulent infow and their validity is discussed. A few computations on stand alone turbines are compared to measurements...

  19. Extreme Response for Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2009-01-01

    The characteristic load on wind turbines during operation are among others dependent on the mean wind speed, the turbulence intensity and type and settings of the control system. The characteristic load during operation is normally estimated by statistical extrapolation of a limited number...

  20. Study of the stall delay phenomenon and of wind turbine blade dynamics using numerical approaches and NREL's wind tunnel tests

    Energy Technology Data Exchange (ETDEWEB)

    Breton, Simon-Philippe

    2008-06-15

    the modeling of the stall phenomenon which involves very complex aerodynamics. The NREL wind tunnel results were further scrutinized in term of the root flapwise and edgewise bending moments. This allowed to study the dynamics of the NREL blades, at the same time as verifying the consistency between these moments and different loads measured in these tests. Measurements of these moments at the root of the rigid NREL blades in head-on flow showed vibrations corresponding to the two first oscillation modes of the blades, in respectively the flapwise and edgewise directions. These features observed in both an upwind and a downwind configuration were presumed to follow from the presence of the tower. In the downwind configuration, dynamic effects affecting one blade when going through the shadow of the tower were found to be transmitted to the other blade in both the teetered and the rigid configurations. Modelling of the root edgewise and flapwise bending moments was performed by calculating two dynamic estimates based on forces measured respectively along the blade and in the hub region. The simulations generally reproduced the dynamic effects well, and they suggested a systematic error in the measurement of the root flapwise bending moment in the upwind configuration. Inaccuracies in measuring the tangential forces on the blade at high wind speeds were also detected. Offshore wind energy, that is expected to soon lead the development of the wind energy technology, was thereafter studied, where downwind turbines that were given special attention in the dynamic analysis above might reveal themselves as a more adapted solution. The many advantages as well as challenges related to this technology were acknowledged. The status of this technology was investigated in both Europe and North America, and it revealed that Europe is in advance regarding all aspects of wind energy over North America, where it still is at a planning stage. Important plans were however found to exist

  1. Flow interaction of diffuser augmented wind turbines

    Science.gov (United States)

    Göltenbott, U.; Ohya, Y.; Yoshida, S.; Jamieson, P.

    2016-09-01

    Up-scaling of wind turbines has been a major trend in order to reduce the cost of energy generation from the wind. Recent studies however show that for a given technology, the cost always rises with upscaling, notably due to the increased mass of the system. To reach capacities beyond 10 MW, multi-rotor systems (MRS) have promising advantages. On the other hand, diffuser augmented wind turbines (DAWTs) can significantly increase the performance of the rotor. Up to now, diffuser augmentation has only been applied to single small wind turbines. In the present research, DAWTs are used in a multi-rotor system. In wind tunnel experiments, the aerodynamics of two and three DAWTs, spaced in close vicinity in the same plane normal to a uniform flow, have been analysed. Power increases of up to 5% and 9% for the two and three rotor configurations are respectively achieved in comparison to a stand-alone turbine. The physical dynamics of the flows are analysed on the basis of the results obtained with a stand-alone turbine.

  2. CFD for wind and tidal offshore turbines

    CERN Document Server

    Montlaur, Adeline

    2015-01-01

    The book encompasses novel CFD techniques to compute offshore wind and tidal applications. Computational fluid dynamics (CFD) techniques are regarded as the main design tool to explore the new engineering challenges presented by offshore wind and tidal turbines for energy generation. The difficulty and costs of undertaking experimental tests in offshore environments have increased the interest in the field of CFD which is used to design appropriate turbines and blades, understand fluid flow physical phenomena associated with offshore environments, predict power production or characterise offshore environments, amongst other topics.

  3. Modeling of Wind Turbine Gearbox Mounting

    Directory of Open Access Journals (Sweden)

    Morten K. Ebbesen

    2011-10-01

    Full Text Available In this paper three bushing models are evaluated to find a best practice in modeling the mounting of wind turbine gearboxes. Parameter identification on measurements has been used to determine the bushing parameters for dynamic simulation of a gearbox including main shaft. The stiffness of the main components of the gearbox has been calculated. The torsional stiffness of the main shaft, gearbox and the mounting of the gearbox are of same order of magnitude, and eigenfrequency analysis clearly reveals that the stiffness of the gearbox mounting is of importance when modeling full wind turbine drivetrains.

  4. Load Extrapolation During Operation for Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2008-01-01

    In the recent years load extrapolation for wind turbines has been widely considered in the wind turbine industry. Loads on wind turbines during operations are normally dependent on the mean wind speed, the turbulence intensity and the type and settings of the control system. All these parameters...

  5. Foundations for offshore wind turbines.

    Science.gov (United States)

    Byrne, B W; Houlsby, G T

    2003-12-15

    An important engineering challenge of today, and a vital one for the future, is to develop and harvest alternative sources of energy. This is a firm priority in the UK, with the government setting a target of 10% of electricity from renewable sources by 2010. A component central to this commitment will be to harvest electrical power from the vast energy reserves offshore, through wind turbines or current or wave power generators. The most mature of these technologies is that of wind, as much technology transfer can be gained from onshore experience. Onshore wind farms, although supplying 'green energy', tend to provoke some objections on aesthetic grounds. These objections can be countered by locating the turbines offshore, where it will also be possible to install larger capacity turbines, thus maximizing the potential of each wind farm location. This paper explores some civil-engineering problems encountered for offshore wind turbines. A critical component is the connection of the structure to the ground, and in particular how the load applied to the structure is transferred safely to the surrounding soil. We review previous work on the design of offshore foundations, and then present some simple design calculations for sizing foundations and structures appropriate to the wind-turbine problem. We examine the deficiencies in the current design approaches, and the research currently under way to overcome these deficiencies. Designs must be improved so that these alternative energy sources can compete economically with traditional energy suppliers.

  6. Model Predictive Control of Wind Turbines

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    Wind turbines play a major role in the transformation from a fossil fuel based energy production to a more sustainable production of energy. Total-cost-of-ownership is an important parameter when investors decide in which energy technology they should place their capital. Modern wind turbines...... the need for maintenance of the wind turbine. Either way, better total-cost-of-ownership for wind turbine operators can be achieved by improved control of the wind turbines. Wind turbine control can be improved in two ways, by improving the model on which the controller bases its design or by improving...

  7. Control system on a wind turbine

    OpenAIRE

    Varpe, Steffen Andreas

    2008-01-01

    The aim for this project is to prepare a wind turbine controller and a wind turbine computer model suitable for controller development. The wind turbine is a Vestas V27, and the wind turbine drive train is modified by ChapDrive with a specified hydraulic transmission. Both the pitch and the rotor speed can be regulated for the modified wind turbine. The model is primarily based on a set of given wind turbine rotor characteristics, transmission specifications and transmission test data. The co...

  8. Reliability Modeling of Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik

    Cost reductions for offshore wind turbines are a substantial requirement in order to make offshore wind energy more competitive compared to other energy supply methods. During the 20 – 25 years of wind turbines useful life, Operation & Maintenance costs are typically estimated to be a quarter...... to one third of the total cost of energy. Reduction of Operation & Maintenance costs will result in significant cost savings and result in cheaper electricity production. Operation & Maintenance processes mainly involve actions related to replacements or repair. Identifying the right times when...... for Operation & Maintenance planning. Concentrating efforts on development of such models, this research is focused on reliability modeling of Wind Turbine critical subsystems (especially the power converter system). For reliability assessment of these components, structural reliability methods are applied...

  9. Reliability Assessment of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2015-01-01

    but manufactured in series production based on many component tests, some prototype tests and zeroseries wind turbines. These characteristics influence the reliability assessment where focus in this paper is on the structural components. Levelized Cost Of Energy is very important for wind energy, especially when...... comparing to other energy sources. Therefore much focus is on cost reductions and improved reliability both for offshore and onshore wind turbines. The wind turbine components should be designed to have sufficient reliability level with respect to both extreme and fatigue loads but also not be too costly...... (and safe). In probabilistic design the single components are designed to a level of reliability, which accounts for an optimal balance between failure consequences, cost of operation & maintenance, material costs and the probability of failure. Furthermore, using a probabilistic design basis...

  10. Reliability assessment of Wind turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2015-01-01

    but manufactured in series production based on many component tests, some prototype tests and zeroseries wind turbines. These characteristics influence the reliability assessment where focus in this paper is on the structural components. Levelized Cost Of Energy is very important for wind energy, especially when...... comparing to other energy sources. Therefore much focus is on cost reductions and improved reliability both for offshore and onshore wind turbines. The wind turbine components should be designed to have sufficient reliability level with respect to both extreme and fatigue loads but also not be too costly...... (and safe). In probabilistic design the single components are designed to a level of reliability, which accounts for an optimal balance between failure consequences, cost of operation & maintenance, material costs and the probability of failure. Furthermore, using a probabilistic design basis...

  11. Ultimate loading of wind turbines

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Ronold, K.; Ejsing Jørgensen, Hans

    1999-01-01

    to establish partial safety factors for design of such components against this failure mode, structuralreliability methods must be applied. This type of analysis accounts for the variability of the external (wind) loading (as addressed in the analyses of the general wind climate) - and thereby the induced......An extreme loading study has been conducted comprising a general wind climate analysis as well as a wind turbine reliability study. In the wind climate analysis, the distribution of the (horizontal) turbulence standard deviation, conditioned on the meanwind speed, has been approximated by fitting......, a design turbulence intensity for off-shore application is proposed which, in the IEC code framework, is applicable for extreme as well as for fatigue loaddetermination. In order to establish a rational method to analyse wind turbine components with respect to failure in ultimate loading, and in addition...

  12. Model-Based Control of a Ballast-Stabilized Floating Wind Turbine Exposed to Wind and Waves

    DEFF Research Database (Denmark)

    Christiansen, Søren

    2013-01-01

    The wind turbine is a commercial product which is competing against other sources of energy, such as coal and gas. This competition drives a constant development to reduce costs and improve effi-ciency in order to reduce the total cost of the energy. The latest offshore development is the floating...... wind turbine, for water depths beyond 50 meters where winds are stronger and less turbulent. A floating wind turbine is subject to not only aerodynamics and wind induced loads, but also to hy-drodynamics and wave induced loads. In contrast to a bottom fixed wind turbine, the floating structure......, the hydrodynamics and the loads change the dynamic behavior of a floating wind turbine. Consequently, conventional wind turbine control cause instabilities on floating wind turbines. This work addresses the control of a floating spar buoy wind turbine, and focuses on the impact of the additional platform dynamics...

  13. Wake characteristics of wind turbines in utility-scale wind farms

    Science.gov (United States)

    Yang, Xiaolei; Foti, Daniel; Sotiropoulos, Fotis

    2017-11-01

    The dynamics of turbine wakes is affected by turbine operating conditions, ambient atmospheric turbulent flows, and wakes from upwind turbines. Investigations of the wake from a single turbine have been extensively carried out in the literature. Studies on the wake dynamics in utility-scale wind farms are relatively limited. In this work, we employ large-eddy simulation with an actuator surface or actuator line model for turbine blades to investigate the wake dynamics in utility-scale wind farms. Simulations of three wind farms, i.e., the Horns Rev wind farm in Denmark, Pleasant Valley wind farm in Minnesota, and the Vantage wind farm in Washington are carried out. The computed power shows a good agreement with measurements. Analysis of the wake dynamics in the three wind farms is underway and will be presented in the conference. This work was support by Xcel Energy (RD4-13). The computational resources were provided by National Renewable Energy Laboratory.

  14. Effect of the number of blades on the dynamics of floating straight-bladed vertical axis wind turbines

    DEFF Research Database (Denmark)

    Cheng, Zhengshun; Aagaard Madsen, Helge; Gao, Zhen

    2017-01-01

    Floating vertical axis wind turbines (VAWTs) are promising solutions for exploiting the wind energy resource in deep waters due to their potential cost-of-energy reduction. The number of blades is one of the main concerns when designing a VAWT for offshore application. In this paper, the effect...... of blade number on the performance of VAWTs and dynamic behavior of floating VAWTs was comprehensively studied in a fully coupled aero-hydro-servo-elastic way. Three VAWTs with straight and parallel blades, with identical solidity and with a blade number varying from two to four, were designed using...... the actuator cylinder method and adapted to a semi-submersible platform. A generator torque controller was also designed based on a PI control algorithm. Time domain simulations demonstrated that the aerodynamic loads and structural responses are strongly dependent on the number of blades. In particular...

  15. Wind turbines and human health.

    Science.gov (United States)

    Knopper, Loren D; Ollson, Christopher A; McCallum, Lindsay C; Whitfield Aslund, Melissa L; Berger, Robert G; Souweine, Kathleen; McDaniel, Mary

    2014-01-01

    The association between wind turbines and health effects is highly debated. Some argue that reported health effects are related to wind turbine operation [electromagnetic fields (EMF), shadow flicker, audible noise, low-frequency noise, infrasound]. Others suggest that when turbines are sited correctly, effects are more likely attributable to a number of subjective variables that result in an annoyed/stressed state. In this review, we provide a bibliographic-like summary and analysis of the science around this issue specifically in terms of noise (including audible, low-frequency noise, and infrasound), EMF, and shadow flicker. Now there are roughly 60 scientific peer-reviewed articles on this issue. The available scientific evidence suggests that EMF, shadow flicker, low-frequency noise, and infrasound from wind turbines are not likely to affect human health; some studies have found that audible noise from wind turbines can be annoying to some. Annoyance may be associated with some self-reported health effects (e.g., sleep disturbance) especially at sound pressure levels >40 dB(A). Because environmental noise above certain levels is a recognized factor in a number of health issues, siting restrictions have been implemented in many jurisdictions to limit noise exposure. These setbacks should help alleviate annoyance from noise. Subjective variables (attitudes and expectations) are also linked to annoyance and have the potential to facilitate other health complaints via the nocebo effect. Therefore, it is possible that a segment of the population may remain annoyed (or report other health impacts) even when noise limits are enforced. Based on the findings and scientific merit of the available studies, the weight of evidence suggests that when sited properly, wind turbines are not related to adverse health. Stemming from this review, we provide a number of recommended best practices for wind turbine development in the context of human health.

  16. Wind Turbines and Human Health

    Science.gov (United States)

    Knopper, Loren D.; Ollson, Christopher A.; McCallum, Lindsay C.; Whitfield Aslund, Melissa L.; Berger, Robert G.; Souweine, Kathleen; McDaniel, Mary

    2014-01-01

    The association between wind turbines and health effects is highly debated. Some argue that reported health effects are related to wind turbine operation [electromagnetic fields (EMF), shadow flicker, audible noise, low-frequency noise, infrasound]. Others suggest that when turbines are sited correctly, effects are more likely attributable to a number of subjective variables that result in an annoyed/stressed state. In this review, we provide a bibliographic-like summary and analysis of the science around this issue specifically in terms of noise (including audible, low-frequency noise, and infrasound), EMF, and shadow flicker. Now there are roughly 60 scientific peer-reviewed articles on this issue. The available scientific evidence suggests that EMF, shadow flicker, low-frequency noise, and infrasound from wind turbines are not likely to affect human health; some studies have found that audible noise from wind turbines can be annoying to some. Annoyance may be associated with some self-reported health effects (e.g., sleep disturbance) especially at sound pressure levels >40 dB(A). Because environmental noise above certain levels is a recognized factor in a number of health issues, siting restrictions have been implemented in many jurisdictions to limit noise exposure. These setbacks should help alleviate annoyance from noise. Subjective variables (attitudes and expectations) are also linked to annoyance and have the potential to facilitate other health complaints via the nocebo effect. Therefore, it is possible that a segment of the population may remain annoyed (or report other health impacts) even when noise limits are enforced. Based on the findings and scientific merit of the available studies, the weight of evidence suggests that when sited properly, wind turbines are not related to adverse health. Stemming from this review, we provide a number of recommended best practices for wind turbine development in the context of human health. PMID:24995266

  17. Cross-Wind Modal Properties of Offshore Wind Turbines Identified by Full Scale Testing

    DEFF Research Database (Denmark)

    Damgaard, Mads; Ibsen, Lars Bo; Andersen, Lars Vabbersgaard

    2013-01-01

    to additional costs, the structural response must be analysed with reliable estimations of the dynamic properties of the wind turbines. Based on a thorough investigation of “rotor-stop” tests performed on offshore wind turbines supported by a monopile foundation for different wind parks in the period 2006...

  18. Model Fidelity Study of Dynamic Transient Loads in a Wind Turbine Gearbox: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.; Keller, J.; Moan, T.; Xing, Y.

    2013-04-01

    Transient events cause high loads in the drivetrain components so measuring and calculating these loads can improve confidence in drivetrain design. This paper studies the Gearbox Reliability Collaborative 750kW wind turbine gearbox response during transient events using a combined experimental and modeling approach. The transient events include emergency shut-downs and start-ups measured during a field testing period in 2009. The drivetrain model is established in the multibody simulation tool Simpack. A detailed study of modeling fidelity required for accurate load prediction is performed and results are compared against measured loads. A high fidelity model that includes shaft and housing flexibility and accurate bearing stiffnesses is important for the higher-speed stage bearing loads. Each of the transient events has different modeling requirements.

  19. Improvement of grid frequency dynamic characteristic with novel wind turbine based on electromagnetic coupler

    DEFF Research Database (Denmark)

    You, Rui; Barahona, Braulio; Chai, Jianyun

    2017-01-01

    A synchronous generator is directly coupled to grid in the novel wind turbine drive train concept based on electromagnetic coupler (WT-EMC). Similarly to conventional power plants, WT-EMC has inherent (inertial) grid frequency support capability, albeit rather limited due to its configuration...... imbalance in the grid and then rapidly regulate the output power of WT-EMC. Based on the calculated electromagnetic torque of the synchronous generator in WT-EMC—acquired faster than the calculated grid frequency—the synchronous generator mechanical torque is controlled to track its electromagnetic...... torque to stabilize the rotor speed, therefore directly improving the grid frequency. The proposed control strategy effectiveness is firstly tested through simulations and then validated on a specially built experimental platform....

  20. Global surface pressure measurements of static and dynamic stall on a wind turbine airfoil at low Reynolds number

    Science.gov (United States)

    Disotell, Kevin J.; Nikoueeyan, Pourya; Naughton, Jonathan W.; Gregory, James W.

    2016-05-01

    Recognizing the need for global surface measurement techniques to characterize the time-varying, three-dimensional loading encountered on rotating wind turbine blades, fast-responding pressure-sensitive paint (PSP) has been evaluated for resolving unsteady aerodynamic effects in incompressible flow. Results of a study aimed at demonstrating the laser-based, single-shot PSP technique on a low Reynolds number wind turbine airfoil in static and dynamic stall are reported. PSP was applied to the suction side of a Delft DU97-W-300 airfoil (maximum thickness-to-chord ratio of 30 %) at a chord Reynolds number of 225,000 in the University of Wyoming open-return wind tunnel. Static and dynamic stall behaviors are presented using instantaneous and phase-averaged global pressure maps. In particular, a three-dimensional pressure topology driven by a stall cell pattern is detected near the maximum lift condition on the steady airfoil. Trends in the PSP-measured pressure topology on the steady airfoil were confirmed using surface oil visualization. The dynamic stall case was characterized by a sinusoidal pitching motion with mean angle of 15.7°, amplitude of 11.2°, and reduced frequency of 0.106 based on semichord. PSP images were acquired at selected phase positions, capturing the breakdown of nominally two-dimensional flow near lift stall, development of post-stall suction near the trailing edge, and a highly three-dimensional topology as the flow reattaches. Structural patterns in the surface pressure topologies are considered from the analysis of the individual PSP snapshots, enabled by a laser-based excitation system that achieves sufficient signal-to-noise ratio in the single-shot images. The PSP results are found to be in general agreement with observations about the steady and unsteady stall characteristics expected for the airfoil.

  1. Kaman 40 kW wind turbine generator - control system dynamics

    Science.gov (United States)

    Perley, R.

    1981-01-01

    The generator design incorporates an induction generator for application where a utility line is present and a synchronous generator for standalone applications. A combination of feed forward and feedback control is used to achieve synchronous speed prior to connecting the generator to the load, and to control the power level once the generator is connected. The dynamics of the drive train affect several aspects of the system operation. These were analyzed to arrive at the required shaft stiffness. The rotor parameters that affect the stability of the feedback control loop vary considerably over the wind speed range encountered. Therefore, the controller gain was made a function of wind speed in order to maintain consistent operation over the whole wind speed range. The velocity requirement for the pitch control mechanism is related to the nature of the wind gusts to be encountered, the dynamics of the system, and the acceptable power fluctuations and generator dropout rate. A model was developed that allows the probable dropout rate to be determined from a statistical model of wind gusts and the various system parameters, including the acceptable power fluctuation.

  2. Experimental Comparison of Dynamic Responses of a Tension Moored Floating Wind Turbine Platform with and without Spring Dampers

    Science.gov (United States)

    Wright, C.; O'Sullivan, K.; Murphy, J.; Pakrashi, V.

    2015-07-01

    The offshore wind industry is rapidly maturing and is now expanding to more extreme environments in deeper water and farther from shore. To date fixed foundation types (i.e. monopoles, jackets) have been primarily used but become uneconomical in water depths greater than 50m. Floating foundations have more complex dynamics but at the moment no design has reached commercialization, although a number of devices are being tested at prototype stage. The development of concepts is carried out through physical model testing of scaled devices such that to better understand the dynamics of the system and validate numerical models. This paper investigates the testing of a scale model of a tension moored wind turbine at two different scales and in the presence and absence of a spring damper controlling its dynamic response. The models were tested under combined wave and wind thrust loading conditions. The analysis compares the motions of the platform at different scales and structural conditions through RAO, testing a mooring spring damper for load reductions.

  3. Offshore Wind Turbine Foundation Design

    DEFF Research Database (Denmark)

    Passon, Patrik

    continued into 2015 it is even more important to drive down the costs of energy for renewable energy sources such as offshore wind energy in order to arrive at a sustainable future on a global level.Cost of energy reductions for offshore wind turbines (OWTs) can be achieved by optimizations on different......-wave correlations are typically subjected to sequential load calculation approaches in an iterative and collaborative process between foundation designer and wind turbine manufacturer. Involvement of these different design parties may be motivated by various aspects such as introduction of state-of-the-art design......Offshore wind energy has greatly matured during the last decade with an annually installed energy capacity exceeding 1 GW. A key factor for further large-scale development of offshore wind energy is a cost of energy reduction. Given for example the drop in oil price since summer 2014, which has...

  4. Probabilistic Design of Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard

    During the last decades, wind turbines have been continuously developed with the aim of maximizing the life cycle benefits (production of electricity) minus the costs of planning, materials, installation, operation & maintenance as well as possible failure. In order to continue this development...... to variations in the constituent materials and the manufacturing process. Additionally, methods for estimating failure of composites are subjected to significant uncertainties. The reliability of wind turbine blades are assessed in both ultimate and fatigue limit states. In the ultimate limit state...... the extreme load effects well and more consistent than the existing methods. Blades for wind turbines are normally made of composite material which consists of fiber and matrix materials. The material properties of structures made by composite materials are often subjected to a significant uncertainty due...

  5. Vertical axis wind turbine airfoil

    Science.gov (United States)

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  6. NREL Software Aids Offshore Wind Turbine Designs (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2013-10-01

    NREL researchers are supporting offshore wind power development with computer models that allow detailed analyses of both fixed and floating offshore wind turbines. While existing computer-aided engineering (CAE) models can simulate the conditions and stresses that a land-based wind turbine experiences over its lifetime, offshore turbines require the additional considerations of variations in water depth, soil type, and wind and wave severity, which also necessitate the use of a variety of support-structure types. NREL's core wind CAE tool, FAST, models the additional effects of incident waves, sea currents, and the foundation dynamics of the support structures.

  7. Materials for Wind Turbine Blades: An Overview

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Branner, Kim; Petersen, Helga Nørgaard

    2017-01-01

    A short overview of composite materials for wind turbine applications is presented here. Requirements toward the wind turbine materials, loads, as well as available materials are reviewed. Apart from the traditional composites for wind turbine blades (glass fibers/epoxy matrix composites), natural...... composites, hybrid and nanoengineered composites are discussed. Manufacturing technologies for wind turbine composites, as well their testing and modelling approaches are reviewed....

  8. Materials for Wind Turbine Blades: An Overview.

    Science.gov (United States)

    Mishnaevsky, Leon; Branner, Kim; Petersen, Helga Nørgaard; Beauson, Justine; McGugan, Malcolm; Sørensen, Bent F

    2017-11-09

    A short overview of composite materials for wind turbine applications is presented here. Requirements toward the wind turbine materials, loads, as well as available materials are reviewed. Apart from the traditional composites for wind turbine blades (glass fibers/epoxy matrix composites), natural composites, hybrid and nanoengineered composites are discussed. Manufacturing technologies for wind turbine composites, as well their testing and modelling approaches are reviewed.

  9. Dynamic response evaluation of sensorless MPPT method for hybrid PV-DFIG wind turbine system

    Directory of Open Access Journals (Sweden)

    Danvu Nguyen

    2016-01-01

    Full Text Available This research proposes a sensorless Maximum Power Point Tracking (MPPT method for a hybrid Photovoltaic-Wind system, which consists of Photovoltaic (PV system and Doubly-Fed Induction Generator (DFIG Wind Turbine. In the hybrid system, the DC/DC converter output of the PV system is directly connected to the DC-link of DFIG’s back-to-back converter. Therefore, the PV inverter and its associated circuit can be removed in this structure. Typically, the PV power is monitored by using PV current sensor and PV voltage sensor for MPPT. In this paper, the powers of converters on grid side and rotor side of DFIG are used to estimate the PV power without the PV current sensor. That can efficiently reduce the cost of the hybrid system. The detailed analysis of the sensorless MPPT method, which includes derived equations and operation response, is also presented in this paper. In addition, an overview of PV-DFIG research in literature is stated to supply comprehensive knowledge of related research.

  10. Damping Wind and Wave Loads on a Floating Wind Turbine

    Directory of Open Access Journals (Sweden)

    Torben Knudsen

    2013-08-01

    Full Text Available Offshore wind energy capitalizes on the higher and less turbulent wind speeds at sea. To enable deployment of wind turbines in deep-water locations, structures are being explored, where wind turbines are placed on a floating platform. This combined structure presents a new control problem, due to the partly unconstrained movement of the platform and ocean wave excitation. If this additional complexity is not dealt with properly, this may lead to a significant increase in the structural loads and, potentially, instability of the controlled system. In this paper, the wave excitation is investigated, and we show the influence that both wind speed, wave frequencies and misalignment between wind and waves have on the system dynamics. A new control model is derived that extends standard turbine models to include the hydrodynamics, additional platform degrees of freedom, the platform mooring system and tower side-side motion, including gyroscopic effects. The models support a model-based design that includes estimators for wind speed and wave frequency. The design is applied to a number of examples representing different wind and wave conditions and successfully demonstrates a reduction in the structural oscillations, while improving power performance.

  11. Crack Monitoring of Operational Wind Turbine Foundations.

    Science.gov (United States)

    Perry, Marcus; McAlorum, Jack; Fusiek, Grzegorz; Niewczas, Pawel; McKeeman, Iain; Rubert, Tim

    2017-08-21

    The degradation of onshore, reinforced-concrete wind turbine foundations is usually assessed via above-ground inspections, or through lengthy excavation campaigns that suspend wind power generation. Foundation cracks can and do occur below ground level, and while sustained measurements of crack behaviour could be used to quantify the risk of water ingress and reinforcement corrosion, these cracks have not yet been monitored during turbine operation. Here, we outline the design, fabrication and field installation of subterranean fibre-optic sensors for monitoring the opening and lateral displacements of foundation cracks during wind turbine operation. We detail methods for in situ sensor characterisation, verify sensor responses against theoretical tower strains derived from wind speed data, and then show that measured crack displacements correlate with monitored tower strains. Our results show that foundation crack opening displacements respond linearly to tower strain and do not change by more than ±5 μ m. Lateral crack displacements were found to be negligible. We anticipate that the work outlined here will provide a starting point for real-time, long-term and dynamic analyses of crack displacements in future. Our findings could furthermore inform the development of cost-effective monitoring systems for ageing wind turbine foundations.

  12. Operation Design of Wind Turbines in Strong Wind Conditions

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Montes, Melissa Barroso; Odgaard, Peter Fogh

    2012-01-01

    optimally. In order to reduce the possible increased loading, fatigue due to the wind gusts, control strategies have been considered for both constant sped and variable speed pitch regulated wind turbines. The control study shows that the designed controllers can reduce the standard deviations efficiently......In order to reduce the impact on the electrical grid from the shutdown of MW wind turbines at wind speeds higher than the cut-out wind speed of 25 m/s, we propose in this paper to run the turbines at high wind speeds up to 40 m/s. Two different operation designs are made for both constant speed...... and variable speed pitch regulated wind turbines. The variable speed design is more suitable for wind turbines to run at very high wind speeds which can help the turbine braking system to stop the turbine at the new "cut-out" wind speed. Reference power, rotational speed and pitch angle have been designed...

  13. Optimal Structural Reliability of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Tarp-Johansen, N.J.

    2005-01-01

    The main failure modes of modern large wind turbines are fatigue failure of wings, hub, shaft and main tower, local buckling of main tower, and failure of the foundation. This paper considers reliability-based optimal design of wind turbines. Compared to onshore wind turbines and building...

  14. A novel floating offshore wind turbine concept

    DEFF Research Database (Denmark)

    Vita, Luca; Schmidt Paulsen, Uwe; Friis Pedersen, Troels

    2009-01-01

    This paper will present a novel concept of a floating offshore wind turbine. The new concept is intended for vertical-axis wind turbine technology. The main purpose is to increase simplicity and to reduce total costs of an installed offshore wind farm. The concept is intended for deep water...... and large size turbines....

  15. Wind lens technology and its application to wind and water turbine and beyond

    Directory of Open Access Journals (Sweden)

    Ohya Yuji

    2017-01-01

    Full Text Available Wind lens is a new type of wind power system consisting of a simple brimmed ring structure that surrounds the rotor causing greater wind to pass through the turbine. As a consequence, the turbine's efficiency of capturing energy from the wind gets dramatically increased. A Wind lens turbine can generate 2–5 times the power of an existing wind turbine given at the same rotor diameter and incoming wind speed. This fluid dynamical effect is also effective in the water. We have developed 1–3 kW Wind lens turbines and a 100 kW Wind lens turbine. In addition to the enhanced output power, Wind lens turbine is quiet. The technology is now used in an offshore experiment with a hexagonal float 18 meters in diameter set off the coast of Hakata Bay in Fukuoka City. Moreover, we are now pursuing larger size Wind lens turbines through multi-rotor design consisting of multiple Wind lens turbines in a same vertical plane to embody larger total power output.

  16. Built Environment Wind Turbine Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Forsyth, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sinclair, K. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Oteri, F. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-11-01

    The market currently encourages BWT deployment before the technology is ready for full-scale commercialization. To address this issue, industry stakeholders convened a Rooftop and Built-Environment Wind Turbine Workshop on August 11 - 12, 2010, at the National Wind Technology Center, located at the U.S. Department of Energy’s National Renewable Energy Laboratory in Boulder, Colorado. This report summarizes the workshop.

  17. Duration Test Report for the Viryd CS8 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Roadman, J.; Murphy, M.; van Dam, J.

    2013-06-01

    This report summarizes the results of a duration noise test that the National Renewable Energy Laboratory (NREL) conducted on the Viryd CS8 wind turbine. This test was conducted in accordance with Clause 9.4 of the International Electrotechnical Commission's (IEC) standard, Wind turbines - Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed. 2.0:2006-03. NREL researchers evaluated the turbine based on structural integrity and material degradation, quality of environmental protection, and dynamic behavior.

  18. New guidelines for wind turbine gearboxes

    Energy Technology Data Exchange (ETDEWEB)

    McNiff, B. [McNiff Light Industry, Blue Hill, ME (United States); Errichello, R. [GEARTECH, Townsend, MT (United States)

    1997-12-31

    The American Gear Manufacturers Association in cooperation with the American Wind Energy Association will soon be publishing AGMA/AWEA 921-A97 {open_quotes}Recommended Practices for Design and Specification of Gearboxes for Wind Turbine Generator Systems.{close_quotes} Much has been learned about the unique operation and loading of gearboxes in wind turbine applications since the burgeoning of the modern wind turbine industry in the early 1980`s. AGMA/AWEA 921-A97 documents this experience in a manner that provides valuable information to assist gear manufacturers and wind turbine designers, operators, and manufacturers in developing reliable wind turbine gearboxes. The document provides information on procurement specification development, wind turbine architecture, environmental considerations, and gearbox load determination, as well as the design, manufacturing, quality assurance, lubrication, operation and maintenance of wind turbine gearboxes. This paper presents the salient parts of the practices recommended in AGMA/AWEA 921-A97.

  19. An investigation on wind turbine resonant vibrations

    DEFF Research Database (Denmark)

    Tibaldi, Carlo; Kim, Taeseong; Larsen, Torben J.

    2016-01-01

    Wind turbine resonant vibrations are investigated based on aeroelastic simulations both in frequency and time domain. The investigation focuses on three different aspects: the need of a precise modeling when a wind turbine is operating close to resonant conditions; the importance of estimating wind...... turbine loads also at low turbulence intensity wind conditions to identify the presence of resonances; and the wind turbine response because of external excitations. In the first analysis, three different wind turbine models are analysed with respect to the frequency and damping of the aeroelastic modes....... Fatigue loads on the same models are then investigated with two different turbulence intensities to analyse the wind turbine response. In the second analysis, a wind turbine model is excited with an external force. This analysis helps in identifying the modes that might be excited, and therefore...

  20. Experiences in dynamic simulation and controller adaptations of floating offshore wind turbines; Erfahrungen zur dynamischen Simulation und Regelung schwimmender Offshore-Windkraftanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Heege, Andreas; Gaull, Andreas; Gonzalez Horcas, Sergio; Bonnet, Paul [LMS Samtech Iberica, Barcelona (Spain); Defourny, Michel [LMS Samtech Headquarters, Liege (Belgium)

    2013-06-01

    The Impact of wave loading on the generated power quality of floating wind turbines is analysed by non-linear numerical simulation in time domain. The mathematical formulation relies on an implicit non-linear dynamic Finite Element Method which is extended by Multi-Body-System/MBS functionalities, aerodynamics based on the Blade Element Momentum theory, controller functionalities and hydrodynamic loads. Offshore loads are formulated in terms of hydrostatic buoyancy and hydrodynamic wave loads which are approximated through Morison's equation. In order to reduce wave Induced power oscillations of floating offshore wind turbines, there is presented an enhanced blade pitch strategy which improves substantially the power quality. (orig.)

  1. Rotor and wind turbine formalism

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    2017-01-01

    The main conventions used in this book for the study of rotors are introduced in this chapter. The main assumptions and notations are provided. The formalism specific to wind turbines is presented. The forces, moments, velocities and dimensionless coefficients used in the study of rotors...

  2. Design of Wind Turbine Vibration Monitoring System

    Directory of Open Access Journals (Sweden)

    Shoubin Wang

    2013-04-01

    Full Text Available In order to ensure safety of wind turbine operation and to reduce the occurrence of faults as well as to improve the reliability of wind turbine operation, a vibration monitoring for wind turbine is developed. In this paper, it analyses the enlargement of all the parts of the structure and the working mechanism, the research method of wind turbine operation vibration is introduced, with the focus being the use of the sensor principle. Finally the hardware design and software of this system is introduced and the main function of this system is described, which realizes condition monitoring of the work state of wind turbines.

  3. Modelling and control of large wind turbine

    OpenAIRE

    zafar, syed hammad

    2013-01-01

    In order to make the wind energy an economical alternative for energy production, upscaling of turbine to 10 - 15MW may be necessary to reduce the overall cost of energy production. This production target requires a considerable increase in the turbine size and placing the turbines at high wind speed locations. But increase in turbine size also increases the uneven load distribution across the turbine structure. Therefore an efficient load reduction technique is necessary to increase the turb...

  4. Design and development of nautilus whorl-wind turbine

    Science.gov (United States)

    R, Pramod; Kumar, G. B. Veeresh; Harsha, P. Sai Sri; Kumar, K. A. Udaya

    2017-07-01

    Our life is directly related to energy and its consumption, and the issues of energy research are extremely important and highly sensitive. Scientists and researchers attempt to accelerate solutions for wind energy generation, design parameters under the influence of novel policies adopted for energy management and the concerns for global warming and climate change. The objective of this study is to design a small wind turbine that is optimized for the constraints that come with residential use. The study is aimed at designing a wind turbine for tapping the low speed wind in urban locations. The design process includes the selection of the wind turbine type and the determination of the blade airfoil, finding the maximum drag model and manufacturing of the turbine economically. In this study, the Nautilus turbine is modeled, simulated and the characteristic curves are plotted. The cutting in wind speed for the turbine is around 1m/s. The turbine rotates in a range of 20 rpm to 500 rpm at wind speeds 1m/s to 10m/s On a below average day at noon where the wind speed are usually low the turbine recorded an rpm of 120 (average value) at 4m/s wind speeds. This study focuses on a computational fluid dynamics analysis of compressible radially outward flow.

  5. Smart Wind Turbine : Analysis and Autonomous Flap

    NARCIS (Netherlands)

    Bernhammer, L.O.

    2015-01-01

    Wind turbines convert kinetic energy of the wind into electrical energy. Unfortunately, this process is everything but constant, as the wind source shows large fluctuations with high and low frequencies. This turbulence, together with the wind shear and yawed inflow, excites the turbine structure,

  6. Structured, Gain-Scheduled Control of Wind Turbines

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher

    2013-01-01

    Improvements in cost-effectiveness and reliability of wind turbines is a constant in the industry. This requires new knowledge and systematic methods for analyzing and designing the interaction of structural dynamics, aerodynamics, and controllers. This thesis presents novel methods and theoretical...... control developments, which contributes to the analysis and design of wind turbines in an integrated aeroservoelastic process. From a control point of view, a wind turbine is a challenging system since the wind, which is the energy source driving the machine, is a poorly known disturbance. Additionally......, wind turbines inherently exhibit time-varying nonlinear dynamics along their nominal operating trajectory, motivating the use of advanced control techniques such as gain-scheduling, to counteract performance degradation or even instability problems by continuously adapting to the dynamics of the plant...

  7. Wind Turbine Wake in Atmospheric Turbulence

    DEFF Research Database (Denmark)

    Rethore, Pierre-Elouan

    This thesis describes the different steps needed to design a steady-state computational fluid dynamics (CFD) wind farm wake model. The ultimate goal of the project was to design a tool that could analyze and extrapolate systematically wind farm measurements to generate wind maps in order...... to calibrate faster and simpler engineering wind farm wake models. The most attractive solution was the actuator disc method with the steady state k-ε turbulence model. The first step to design such a tool is the treatment of the forces. This thesis presents a computationally inexpensive method to apply......) shows that the problem mainly comes from the assumptions of the eddy-viscosity concept, which are deeply invalidated in the wind turbine wake region. Different models that intent to correct the k-ε model's issues are investigated, of which none of them is found to be adequate. The mixing of the wake...

  8. Dynamics and Control of Lateral Tower Vibrations in Offshore Wind Turbines by Means of Active Generator Torque

    Directory of Open Access Journals (Sweden)

    Zili Zhang

    2014-11-01

    Full Text Available Lateral tower vibrations of offshore wind turbines are normally lightly damped, and large amplitude vibrations induced by wind and wave loads in this direction may significantly shorten the fatigue life of the tower. This paper proposes the modeling and control of lateral tower vibrations in offshore wind turbines using active generator torque. To implement the active control algorithm, both the mechanical and power electronic aspects have been taken into consideration. A 13-degrees-of-freedom aeroelastic wind turbine model with generator and pitch controllers is derived using the Euler–Lagrangian approach. The model displays important features of wind turbines, such as mixed moving frame and fixed frame-defined degrees-of-freedom, couplings of the tower-blade-drivetrain vibrations, as well as aerodynamic damping present in different modes of motions. The load transfer mechanisms from the drivetrain and the generator to the nacelle are derived, and the interaction between the generator torque and the lateral tower vibration are presented in a generalized manner. A three-dimensional rotational sampled turbulence field is generated and applied to the rotor, and the tower is excited by a first order wave load in the lateral direction. Next, a simple active control algorithm is proposed based on active generator torques with feedback from the measured lateral tower vibrations. A full-scale power converter configuration with a cascaded loop control structure is also introduced to produce the feedback control torque in real time. Numerical simulations have been carried out using data calibrated to the referential 5-MW NREL (National Renewable Energy Laboratory offshore wind turbine. Cases of drivetrains with a gearbox and direct drive to the generator are considered using the same time series for the wave and turbulence loadings. Results show that by using active generator torque control, lateral tower vibrations can be significantly mitigated for

  9. Method and apparatus for wind turbine braking

    Science.gov (United States)

    Barbu, Corneliu [Laguna Hills, CA; Teichmann, Ralph [Nishkayuna, NY; Avagliano, Aaron [Houston, TX; Kammer, Leonardo Cesar [Niskayuna, NY; Pierce, Kirk Gee [Simpsonville, SC; Pesetsky, David Samuel [Greenville, SC; Gauchel, Peter [Muenster, DE

    2009-02-10

    A method for braking a wind turbine including at least one rotor blade coupled to a rotor. The method includes selectively controlling an angle of pitch of the at least one rotor blade with respect to a wind direction based on a design parameter of a component of the wind turbine to facilitate reducing a force induced into the wind turbine component as a result of braking.

  10. Ducted wind turbine optimization : A numerical approach

    NARCIS (Netherlands)

    Dighe, V.V.; De Oliveira Andrade, G.L.; van Bussel, G.J.W.

    2017-01-01

    The practice of ducting wind turbines has shown a beneficial effect on the overall performance, when compared to an open turbine of the same rotor diameter1. However, an optimization study specifically for ducted wind turbines (DWT’s) is missing or incomplete. This work focuses on a numerical

  11. Wind Turbine Converter Control Interaction with Complex Wind Farm Systems

    DEFF Research Database (Denmark)

    Kocewiak, Lukasz Hubert; Hjerrild, Jesper; Bak, Claus Leth

    2013-01-01

    in this study. It is shown that wind farm components, such as long high-voltage alternating current cables and park transformers, can introduce significant low-frequency series resonances seen from the wind turbine terminals that can affect wind turbine control system operation and overall wind farm stability...

  12. Operation Design of Wind Turbines in Strong Wind Conditions

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Montes, Melissa Barroso; Odgaard, Peter Fogh

    2012-01-01

    In order to reduce the impact on the electrical grid from the shutdown of MW wind turbines at wind speeds higher than the cut-out wind speed of 25 m/s, we propose in this paper to run the turbines at high wind speeds up to 40 m/s. Two different operation designs are made for both constant speed...

  13. Dynamics Analysis of Wind Energy Production Development

    Science.gov (United States)

    Berg, V. I.; Zakirzakov, A. G.; Gordievskaya, E. F.

    2017-01-01

    The paper presents the analysis of the introduction experience and dynamics development of the world wind energy production. Calculated the amount of wind energy sources investments and the production capacity growth dynamics of the wind turbines. The studies have shown that the introduction dynamics of new wind energy sources is higher than any other energy source.

  14. On the Fatigue Analysis of Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, Herbert J.

    1999-06-01

    Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. Operational experiences with these large rotating machines indicated that their components (primarily blades and blade joints) were failing at unexpectedly high rates, which led the wind turbine community to develop fatigue analysis capabilities for wind turbines. Our ability to analyze the fatigue behavior of wind turbine components has matured to the point that the prediction of service lifetime is becoming an essential part of the design process. In this review paper, I summarize the technology and describe the ''best practices'' for the fatigue analysis of a wind turbine component. The paper focuses on U.S. technology, but cites European references that provide important insights into the fatigue analysis of wind turbines.

  15. Simulation and Analysis of Wind Turbine Wakes

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær

    2017-01-01

    Modern wind turbines are often clustered in wind farms in which the turbines are fully or partially influenced by the wake of upstream located turbines. As a consequence, the wake behind the wind turbines has a lower mean wind speed and an increased turbulence level, as compared to the undisturbed...... flow outside the farm. Hence, wake interaction leads to a decreased total production of power, caused by lower kinetic energy in the wind, and an increase in the turbulence intensity. The turbulence created from wind turbine wakes is mainly due to the presence of the distinct tip and root vortices......, which eventually break down and forms small-scale turbulent structures. If a wind turbine is located in a wake consisting of tip and root vortices, the fatigue loading is more severe than in the case where the tip vortices have already broken down by instability mechanisms. Therefore, understanding...

  16. Wind Turbine Generator System Acoustic Noise Test Report for the Gaia Wind 11-kW Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Huskey, A.

    2011-11-01

    This report details the acoustic noise test conducted on the Gaia-Wind 11-kW wind turbine at the National Wind Technology Center. The test turbine is a two- bladed, downwind wind turbine with a rated power of 11 kW. The test turbine was tested in accordance with the International Electrotechnical Commission standard, IEC 61400-11 Ed 2.1 2006-11 Wind Turbine Generator Systems -- Part 11 Acoustic Noise Measurement Techniques.

  17. Modelling of Wind Turbine Loads nearby a Wind Farm

    Science.gov (United States)

    Roscher, B.; Werkmeister, A.; Jacobs, G.; Schelenz, R.

    2017-05-01

    Each wind turbine experiences a variety of loads during its lifetime, especially inside a wind farm due to the wake effect between the turbines. This paper describes a possibility to observe a load spectrum while considering wake effects in a wind farm by through the turbulence intensity. The turbulence intensity is distributed along the wind rose of Alpha Ventus. For each turbulence intensity, a Weibull characteristic is calculated. The resulting wind fields are used to determine the loads through a multibody simulation of an imaginary wind turbine located at FINO-1, representing a closely placed wind turbine at the outer edge of a wind farm. These loads are analyzed and summed up. As expected, the change of the turbulence intensity due to the wake effect has an impact on the internal loading of a wind turbine inside a wind farm. Based on the assumed loading conditions, the maximum loads increased by a factor of almost 2.5.

  18. Numerical computations of wind turbine wakes

    Energy Technology Data Exchange (ETDEWEB)

    Ivanell, Stefan S.A.

    2009-01-15

    Numerical simulations of the Navier-Stokes equations are performed to achieve a better understanding of the behaviour of wakes generated by wind turbines. The simulations are performed by combining the in-house developed computer code EllipSys3D with the actuator line and disc methodologies. In the actuator line and disc methods the blades are represented by a line or a disc on which body forces representing the loading are introduced. The body forces are determined by computing local angles of attack and using tabulated aerofoil coefficients. The advantage of using the actuator disc technique is that it is not necessary to resolve blade boundary layers. Instead the computational resources are devoted to simulating the dynamics of the flow structures. In the present study both the actuator line and disc methods are used. Between approximately six to fourteen million mesh points are used to resolve the wake structure in a range from a single turbine wake to wake interaction in a farm containing 80 turbines. These 80 turbines are however represented by 20 actuator discs due to periodicity because of numerical limitations. In step one of this project the objective was to find a numerical method suitable to study both the flow structures in the wake behind a single wind turbine and to simulate complicated interaction between a number of turbines. The study resulted in an increased comprehension of basic flow features in the wake, but more importantly in the use of a numerical method very suitable for the upcoming purpose. The second objective of the project was to study the basic mechanisms controlling the length of the wake to obtain better understanding of the stability properties of wakes generated by wind turbine rotors. The numerical model was based on large eddy simulations of the Navier-Stokes equations using the actuator line method to generate the wake and the tip vortices. To determine critical frequencies the flow is disturbed by inserting a harmonic

  19. Wind turbine technology principles and design

    CERN Document Server

    Adaramola, Muyiwa

    2014-01-01

    IntroductionPart I: AerodynamicsWind Turbine Blade Design; Peter J. Schubel and Richard J. CrossleyA Shrouded Wind Turbine Generating High Output Power with Wind-Lens Technology; Yuji Ohya and Takashi KarasudaniEcomoulding of Composite Wind Turbine Blades Using Green Manufacturing RTM Process; Brahim AttafAerodynamic Shape Optimization of a Vertical-Axis Wind Turbine Using Differential Evolution; Travis J. Carrigan, Brian H. Dennis, Zhen X. Han, and Bo P. WangPart II: Generators and Gear Systems

  20. Wind turbine sound power measurements.

    Science.gov (United States)

    Keith, Stephen E; Feder, Katya; Voicescu, Sonia A; Soukhovtsev, Victor; Denning, Allison; Tsang, Jason; Broner, Norm; Richarz, Werner; van den Berg, Frits

    2016-03-01

    This paper provides experimental validation of the sound power level data obtained from manufacturers for the ten wind turbine models examined in Health Canada's Community Noise and Health Study (CNHS). Within measurement uncertainty, the wind turbine sound power levels measured using IEC 61400-11 [(2002). (International Electrotechnical Commission, Geneva)] were consistent with the sound power level data provided by manufacturers. Based on measurements, the sound power level data were also extended to 16 Hz for calculation of C-weighted levels. The C-weighted levels were 11.5 dB higher than the A-weighted levels (standard deviation 1.7 dB). The simple relationship between A- and C- weighted levels suggests that there is unlikely to be any statistically significant difference between analysis based on either C- or A-weighted data.

  1. Wind Turbine Manufacturing Process Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

    2012-04-26

    To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

  2. The VGOT Darrieus wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ponta, F.L.; Otero, A.D.; Lago, L. [University of Buenos Aires (Argentina). College of Engineering

    2004-07-01

    We present the actual state of development of a non-conventional new vertical-axis wind turbine. The concepts introduced here involve the constructive aspects of variable-geometry oval-trajectory (VGOT) Darrieus wind turbines. The key feature of a VGOT machine is that each blade slides over rails mounted on a wagon instead of rotating around a central vertical axis. Each wagon contains its own electrical generation system coupled to the power-wheels and the electricity is collected by a classical third rail system. The VGOT concept allows increasing the area swept by the blades, and hence the power output of the installation, without the structural problems and the low rotational speed associated with a classical Darrieus rotor of large diameter. We also propose some engineering solutions for the VGOT design and present a brief economic analysis of the feasibility of the project. (author)

  3. Dynamic response mitigation of floating wind turbine platforms using tuned liquid column dampers.

    Science.gov (United States)

    Jaksic, V; Wright, C S; Murphy, J; Afeef, C; Ali, S F; Mandic, D P; Pakrashi, V

    2015-02-28

    In this paper, we experimentally study and compare the effects of three combinations of multiple tuned liquid column dampers (MTLCDs) on the dynamic performance of a model floating tension-leg platform (TLP) structure in a wave basin. The structural stability and safety of the floating structure during operation and maintenance is of concern for the performance of a renewable energy device that it might be supporting. The dynamic responses of the structure should thus be limited for these renewable energy devices to perform as intended. This issue is particularly important during the operation of a TLP in extreme weather conditions. Tuned liquid column dampers (TLCDs) can use the power of sloshing water to reduce surge motions of a floating TLP exposed to wind and waves. This paper demonstrates the potential of MTLCDs in reducing dynamic responses of a scaled TLP model through an experimental study. The potential of using output-only statistical markers for monitoring changes in structural conditions is also investigated through the application of a delay vector variance (DVV) marker for different conditions of control for the experiments. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  4. Superconducting Wind Turbine Generators

    DEFF Research Database (Denmark)

    Mijatovic, Nenad

    on the HTS field winding performance were examined and verified throughout a series of Locked Armature experiments. The interaction have been defined in the terms of two (direct and quadrature) axis machine theory (Park transformation), where significant reduction of ~ 20% was observed for the rated armature...

  5. Smart turbine control with remote wind sensing

    Energy Technology Data Exchange (ETDEWEB)

    Dakin, E.A. [Catch the Wind Inc., Manassas, VA (United States)

    2009-07-01

    Turbine controls use anemometers and wind vanes located behind the turbine blades on the nacelle. Anemometer/wind vane limitations include calibration and the fact that they are affected by disturbed flow and do not represent inflow to the turbine. This presentation discussed smart turbine control with remote wind sensing in an effort to address the industry's needs. The presentation provided a hypothesis that forward looking LIDAR enables improved pointing accuracy which can lead to improved aerodynamic efficiency; reduced asymmetrical loading on turbine components; and more power production. A test equipment vindicator and laser wind sensor was illustrated as a potential technology. A test site, installation, and turbine control logic were also presented along with preliminary results. It was concluded that LIDAR data can keep the turbine aligned with the wind. tabs., figs.

  6. Wind speed reductions by large-scale wind turbine deployments lower turbine efficiencies and set low wind power potentials

    Science.gov (United States)

    Miller, Lee; Kleidon, Axel

    2017-04-01

    Wind turbines generate electricity by removing kinetic energy from the atmosphere. Large numbers of wind turbines are likely to reduce wind speeds, which lowers estimates of electricity generation from what would be presumed from unaffected conditions. Here, we test how well wind power potentials that account for this effect can be estimated without explicitly simulating atmospheric dynamics. We first use simulations with an atmospheric general circulation model (GCM) that explicitly simulates the effects of wind turbines to derive wind power limits (GCM estimate), and compare them to a simple approach derived from the climatological conditions without turbines [vertical kinetic energy (VKE) estimate]. On land, we find strong agreement between the VKE and GCM estimates with respect to electricity generation rates (0.32 and 0.37 We m-2) and wind speed reductions by 42 and 44%. Over ocean, the GCM estimate is about twice the VKE estimate (0.59 and 0.29 We m-2) and yet with comparable wind speed reductions (50 and 42%). We then show that this bias can be corrected by modifying the downward momentum flux to the surface. Thus, large-scale limits to wind power can be derived from climatological conditions without explicitly simulating atmospheric dynamics. Consistent with the GCM simulations, the approach estimates that only comparatively few land areas are suitable to generate more than 1 We m-2 of electricity and that larger deployment scales are likely to reduce the expected electricity generation rate of each turbine. We conclude that these atmospheric effects are relevant for planning the future expansion of wind power.

  7. Meteorological Controls on Wind Turbine Wakes

    DEFF Research Database (Denmark)

    Barthelmie, Rebecca J.; Hansen, Kurt Schaldemose; Pryor, S.C.

    2013-01-01

    is high, wake losses are proportionally larger and decrease to be virtually undetectable at wind speeds above rated wind speeds. Wind direction is also critical. Not only does it determine the effective spacing between turbines but also the wind speed distribution is primarily determined by synoptic......The primary control on the magnitude of the power losses induced by wind turbine wakes in large wind farms is the hub-height wind speed via its link to the turbine thrust coefficient. Hence, at low to moderate wind speeds (between cut-in and rated turbine wind speeds) when the thrust coefficient...... forcing and typically has a predominant direction from which wind speeds tend to be higher (from southwest for much of the central United States and northern Europe). Two other interlinked variables, turbulence intensity (TI), and atmospheric stability also dictate wake losses. Quantifying, understanding...

  8. Fatigue and extreme wave loads on bottom fixed offshore wind turbines. Effects from fully nonlinear wave forcing on the structural dynamics

    DEFF Research Database (Denmark)

    Schløer, Signe

    2013-01-01

    will transfer energy to higher frequencies which can be close to the wind turbines eigenfrequency. In the present thesis the response of an offshore wind turbine placed on a monopile foundation is investigated when exposed to linear and fully nonlinear irregular waves. The focus of the investigations...... effects of the wave nonlinearity. In first part of the thesis, the linear and nonlinear wave realizations are compared and the static wave forcing based on the two wave theories analysed. This analysis is followed by dynamic calculations where the effects of wave nonlinearity on the structural dynamics...... response due to the forces based on the potential-flow solver and Morison’s equation. Finally a small study of the effect of including wave directionality in the dynamic analysis is performed. All the analyses in this thesis contribute to the understanding of how important the wave nonlinearity...

  9. Ducted wind turbines : A potential energy shaper

    NARCIS (Netherlands)

    Dighe, V.V.

    2016-01-01

    In order to harvest wind resources more efficiently and to the greatest extent possible, unconventional wind turbine designs have been proposed, but never gained any acceptance in the marketplace. A team of researchers from TU Delft plans to revisit the concept of ducted wind turbines, which have

  10. 11kW Stand Alone Wind Turbine Based on Proven Wind Turbine

    DEFF Research Database (Denmark)

    Bindner, Henrik; Wodstrup, Jens; Andersen, Jesper

    2004-01-01

    The paper will present the rationale behind the design of a stand-alone version of a existing 11kW wind turbine that has been installed at 100 sites mainly in Denmark. The wind turbine has been developed as a part of the Danish household wind turbine programme that included certification......, and a measurement programme. The positive operational experience with the turbine has motivated the development of a stand-alone version. The stand-alone version uses the standard version of the wind turbine combined with a back-to-back converter arrangement in order to decouple the wind turbine from the grid...

  11. Midwest Consortium for Wind Turbine Reliability and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Scott R. Dana; Douglas E. Adams; Noah J. Myrent

    2012-05-11

    This report provides an overview of the efforts aimed to establish a student focused laboratory apparatus that will enhance Purdue's ability to recruit and train students in topics related to the dynamics, operations and economics of wind turbines. The project also aims to facilitate outreach to students at Purdue and in grades K-12 in the State of Indiana by sharing wind turbine operational data. For this project, a portable wind turbine test apparatus was developed and fabricated utilizing an AirX 400W wind energy converter. This turbine and test apparatus was outfitted with an array of sensors used to monitor wind speed, turbine rotor speed, power output and the tower structural dynamics. A major portion of this project included the development of a data logging program used to display real-time sensor data and the recording and creation of output files for data post-processing. The apparatus was tested in an open field to subject the turbine to typical operating conditions and the data acquisition system was adjusted to obtain desired functionality to facilitate use for student projects in existing courses offered at Purdue University and Indiana University. Data collected using the data logging program is analyzed and presented to demonstrate the usefulness of the test apparatus related to wind turbine dynamics and operations.

  12. Wind turbine pitch control using ICPSO-PID algorithm

    DEFF Research Database (Denmark)

    Xu, Chang; Tian, Qiangqiang; Shen, Wen Zhong

    2013-01-01

    For the traditional simplified first-order pitch-control system model, it is difficult to describe a real dynamic characteristic of a variable pitch action system, thus a complete high order mathematical model has to be developed for the pitch control of wind turbine generation (WTG). In the paper...... controller parameters quickly; and the feed-forward controller for wind speed can improve dynamics of a pitch-control system; additionally the power controller can allow a wind turbine to have a constant power output as a wind speed is over the rated one. Compared with a conventional PID, the controller...

  13. The Smart Wind Turbine

    OpenAIRE

    Halimi, Wissam; Salzmann, Christophe; Gillet, Denis

    2015-01-01

    Remote experimentation is at the core of Science Technology Engineering and Mathematics education supported by e-learning. The development and integration of remote labo- ratories in online learning activities is hindered by the inherited supporting infrastructure’s architecture and implementation. In this paper we present a remote experiment (The Smart Wind Tur- bine) built following the Smart Device Paradigm and integrated in an Inquiry Learning Space: the rich open educational resource def...

  14. Illustration of Modern Wind Turbine Ancillary Services

    DEFF Research Database (Denmark)

    Margaris, Ioannis D.; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2010-01-01

    Increasing levels of wind power penetration in modern power systems has set intensively high standards with respect to wind turbine technology during the last years. Security issues have become rather critical and operation of wind farms as conventional power plants is becoming a necessity as wind...... to power system security. An overview of ancillary services provided by wind turbine technology nowadays is provided, i.e., fault ride-through capability, reactive power supply and frequency-active power control....

  15. Simulation for Grid Connected Wind Turbines with Fluctuating

    Science.gov (United States)

    Ye, Ying; Fu, Yang; Wei, Shurong

    This paper establishes the whole dynamic model of wind turbine generator system which contains the wind speed model and DFIG wind turbines model .A simulation sample based on the mathematical models is built by using MATLAB in this paper. Research are did on the performance characteristics of doubly-fed wind generators (DFIG) which connected to power grid with three-phase ground fault and the disturbance by gust and mixed wind. The capacity of the wind farm is 9MW which consists of doubly-fed wind generators (DFIG). Simulation results demonstrate that the three-phase ground fault occurs on grid side runs less affected on the stability of doubly-fed wind generators. However, as a power source, fluctuations of the wind speed will run a large impact on stability of double-fed wind generators. The results also show that if the two disturbances occur in the meantime, the situation will be very serious.

  16. Small Wind Research Turbine: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D.; Meadors, M.

    2005-10-01

    The Small Wind Research Turbine (SWRT) project was initiated to provide reliable test data for model validation of furling wind turbines and to help understand small wind turbine loads. This report will familiarize the user with the scope of the SWRT test and support the use of these data. In addition to describing all the testing details and results, the report presents an analysis of the test data and compares the SWRT test data to simulation results from the FAST aeroelastic simulation model.

  17. Influence of refraction on wind turbine noise

    OpenAIRE

    Makarewicz, Rufin

    2013-01-01

    A semi-empirical method is applied to calculate the time-average sound level of wind turbine noise generation and propagation. Both are affected by wind shear refraction. Under upwind conditions the partially ensonified zone separates the fully ensonified zone (close to the turbine) and the shadow zone (far away from the turbine). Refraction is described in terms of the wind speed linear profile fitted to the power law profile. The rotating blades are treated as a two-dimensional circular sou...

  18. Model Predictive Control of Wind Turbines using Uncertain LIDAR Measurements

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Soltani, Mohsen; Poulsen, Niels Kjølstad

    2013-01-01

    The problem of Model predictive control (MPC) of wind turbines using uncertain LIDAR (LIght Detection And Ranging) measurements is considered. A nonlinear dynamical model of the wind turbine is obtained. We linearize the obtained nonlinear model for different operating points, which are determined...... by the effective wind speed on the rotor disc. We take the wind speed as a scheduling variable. The wind speed is measurable ahead of the turbine using LIDARs, therefore, the scheduling variable is known for the entire prediction horizon. By taking the advantage of having future values of the scheduling variable......, we simplify state prediction for the MPC. Consequently, the control problem of the nonlinear system is simplified into a quadratic programming. We consider uncertainty in the wind propagation time, which is the traveling time of wind from the LIDAR measurement point to the rotor. An algorithm based...

  19. Wind Turbine Control: Robust Model Based Approach

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood

    . Wind turbines are the most common wind energy conversion systems and are hoped to be able to compete economically with fossil fuel power plants in near future. However this demands better technology to reduce the price of electricity production. Control can play an essential part in this context...... wind turbine control using robust MPC. In general, robust MPC problems are very computationally demanding, however we have shown that with some approximations the resulting robust MPC problem can be specialized with reduced computational complexity. After a short introduction on wind energy and wind....... This is because, on the one hand, control methods can decrease the cost of energy by keeping the turbine close to its maximum efficiency. On the other hand, they can reduce structural fatigue and therefore increase the lifetime of the wind turbine. The power produced by a wind turbine is proportional...

  20. Grid support capabilities of wind turbines

    DEFF Research Database (Denmark)

    Michalke, Gabriele; Hansen, Anca Daniela

    2013-01-01

    turbines, such as fault ride-through and reactive power supply during voltage sags. To date different wind turbine concepts exist on the market comprising different control features in order to provide ancillary services to the power system. In the first place the present chapter emphasizes the most...... important issues related to wind power grid integration. Then different wind turbine concepts are characterized and their grid support capabilities are analysed and compared. Simulation cases are presented in which the respective wind turbine concepts are subjected to a voltage dip specified in a grid code....

  1. Wind Turbine Generator System Safety and Function Test Report for the Ventera VT10 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2012-11-01

    This report summarizes the results of a safety and function test that NREL conducted on the Ventera VT10 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  2. Wind Turbine Generator System Safety and Function Test Report for the Entegrity EW50 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2012-11-01

    This report summarizes the results of a safety and function test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  3. An Improved Rigid Multibody Model for the Dynamic Analysis of the Planetary Gearbox in a Wind Turbine

    Directory of Open Access Journals (Sweden)

    Wenguang Yang

    2016-01-01

    Full Text Available This paper proposes an improved rigid multibody model for the dynamic analysis of the planetary gearbox in a wind turbine. The improvements mainly include choosing the inertia frame as the reference frame of the carrier, the ring, and the sun and adding a new degree of freedom for each planet. An element assembly method is introduced to build the model, and a time-varying mesh stiffness model is presented. A planetary gear study case is employed to verify the validity of the improved model. Comparisons between the improvement model and the traditional model show that the natural characteristics are very close; the improved model can obtain the right equivalent moment of inertia of the planetary gear in the transient simulation, and all the rotation speeds satisfy the transmission relationships well; harmonic resonance and resonance modulation phenomena can be found in their vibration signals. The improved model is applied in a multistage gearbox dynamics analysis to reveal the prospects of the model. Modal analysis and transient analysis with and without time-varying mesh stiffness considered are conducted. The rotation speeds from the transient analysis are consistent with the theory, and resonance modulation can be found in the vibration signals.

  4. Orthogonal Analysis Based Performance Optimization for Vertical Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Lei Song

    2016-01-01

    Full Text Available Geometrical shape of a vertical axis wind turbine (VAWT is composed of multiple structural parameters. Since there are interactions among the structural parameters, traditional research approaches, which usually focus on one parameter at a time, cannot obtain performance of the wind turbine accurately. In order to exploit overall effect of a novel VAWT, we firstly use a single parameter optimization method to obtain optimal values of the structural parameters, respectively, by Computational Fluid Dynamics (CFD method; based on the results, we then use an orthogonal analysis method to investigate the influence of interactions of the structural parameters on performance of the wind turbine and to obtain optimization combination of the structural parameters considering the interactions. Results of analysis of variance indicate that interactions among the structural parameters have influence on performance of the wind turbine, and optimization results based on orthogonal analysis have higher wind energy utilization than that of traditional research approaches.

  5. Urban turbines (Part 2): Integrating wind turbines in high rise buildings[Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bries, E. de

    2002-07-01

    For the majority of wind turbine designers as well as architects and civil engineers, the concept of integrating a wind turbine in buildings can be regarded a new phenomenon. Integration of two different technologies requires novel ways of thinking, and competence in dealing with complexities in cost in relation to the shape of a building and its user functions. A recently completed research project in the Netherlands at the Technical University of Delft's department of civil engineering looks at structural building aspects as well as integration of wind turbines in buildings - a so-called Wind Turbine Building (WTB) - as a means to cover a sizable part of the internal energy use. (au)

  6. Wind tunnel tests of a free yawing downwind wind turbine

    NARCIS (Netherlands)

    Verelst, D.R.S.; Larsen, T.J.; Van Wingerden, J.W.

    2014-01-01

    This research paper presents preliminary results on a behavioural study of a free yawing downwind wind turbine. A series of wind tunnel tests was performed at the TU Delft Open Jet Facility with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off the

  7. Capturing the journey of wind from the wind turbines (poster)

    NARCIS (Netherlands)

    Giyanani, A.H.; Bierbooms, W.A.A.M.; Van Bussel, G.J.W.

    2015-01-01

    Wind turbine design, control strategies often assume Taylor’s frozen turbulence where the fluctuating part of the wind is assumed to be constant. In practise, the wind turbine faces higher turbulence in case of gusts and lower turbulence in some cases. With Lidar technology, the frozen turbulence

  8. Analysis of Impeller Type Wind Turbine

    Directory of Open Access Journals (Sweden)

    Ahmed y Qasim

    2011-12-01

    Full Text Available The new global development for wind turbines obliged inventors to create new wind turbine designs that have high efficiency and better than known designs. This paper proposes the impeller wind turbine, which uses more effectively the wind energy and depends only on the acting area of the vanes. The vane wind turbine is designed to increase the drag coefficient and output of a wind turbine that uses kinetic energy of the wind. It can be used worldwide due to its high efficiency, simple construction, and simple technology and can be made from cheap materials. Abstrak: Pembangunan global terkini turbin angin menyebabkan pereka harus membina rekaan terbaru turbin angin yang bercekapan tinggi yang lebih baik daripada rekaan-rekaan terdahulu. Kertas ini mencadangkan pendesak turbin angin, yang menggunakan kuasa angin secara lebih efektif dan bergantung hanya terhadap permukaan bilah kipas yang terlibat. Bilah kipas turbin angin direka sebegini untuk meningkatkan pekali seret dan juga keluaran daripada turbin angin tersebut yang menggunakan tenaga kinetik angin. Cara ini boleh digunakan secara meluas di serata dunia kerana ia bercekapan tinggi, mudah dibina, menggunakan teknologi yang ringkas dan diperbuat daripada bahan-bahan yang murah.

  9. Investigation of Dynamic Aerodynamics and Control of Wind Turbine Sections Under Relevant Inflow/Blade Attitude Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Naughton, Jonathan W. [University of Wyoming

    2014-08-05

    The growth of wind turbines has led to highly variable loading on the blades. Coupled with the relative reduced stiffness of longer blades, the need to control loading on the blades has become important. One method of controlling loads and maximizing energy extraction is local control of the flow on the wind turbine blades. The goal of the present work was to better understand the sources of the unsteady loading and then to control them. This is accomplished through an experimental effort to characterize the unsteadiness and the effect of a Gurney flap on the flow, as well as an analytical effort to develop control approaches. It was planned to combine these two efforts to demonstrate control of a wind tunnel test model, but that final piece still remains to be accomplished.

  10. Effects of setting angle and chord length on performance of four blades bionic wind turbine

    Science.gov (United States)

    Yang, Z. X.; Li, G. S.; Song, L.; Bai, Y. F.

    2017-11-01

    With the energy crisis and the increasing environmental pollution, more and more efforts have been made about wind power development. In this paper, a four blades bionic wind turbine was proposed, and the outline of wind turbine was constructed by the fitted curve. This paper attempted to research the effects of setting angle and chord length on performance of four blades bionic wind turbine by computational fluid dynamics (CFD) simulation. The results showed that the setting angle and chord length of the bionic wind turbine has some significant effects on the efficiency of the wind turbine, and within the range of wind speed from 7 m/s to 15 m/s, the wind turbine achieved maximum efficiency when the setting angle is 31 degree and the chord length is 125 mm. The conclusion will work as a guideline for the improvement of wind turbine design

  11. Power Control Design for Variable-Speed Wind Turbines

    OpenAIRE

    Francesc Pozo; Mauricio Zapateiro; Ningsu Luo; Leonardo Acho; Yolanda Vidal

    2010-01-01

    This important book presents a selection of new research on wind turbine technology, including aerodynamics, generators and gear systems, towers and foundations, control systems, and environmental issues. This book introduces some of the basic principle of wind turbine design. The different chapters discuss ways to analyze wind turbine performance, approaches for wind turbine improvement, fault detection in wind turbines, and how to mediate the adverse effects of wind turbine use. The boo...

  12. Analysis and design of a vertical axis wind turbine

    OpenAIRE

    Goyena Iriso, Joseba

    2011-01-01

    The main objective of this project is to design a new vertical axis wind turbine, specifically one Giromill wind turbine. The project development requires performing a previous study of the vertical axis wind turbines currently development. This study has to be performed before starting to design the wind turbine. Other very important aim is the development of a new vertical axis wind turbine. The after analyses that will result in the final design of the wind turbine will b...

  13. Collected Papers on Wind Turbine Technology

    Science.gov (United States)

    Spera, David A. (Editor)

    1995-01-01

    R and D projects on electricity generating wind turbines were conducted at the NASA Lewis Research Center from 1973 to 1988. Most projects were sponsored by the U.S. Department of Energy (DOE), a major element of its Federal Wind Energy Program. Another large wind turbine project was by the Bureau of Reclamation of the U.S. Department of Interior (DOI). From 1988 to 1995, NASA wind energy activities have been directed toward the transfer of technology to commercial and academic organizations. As part of these technology transfer activities, previously unpublished manuscripts have been assembled and presented here to share the wind turbine research results with the wind energy community. A variety of wind turbine technology topics are discussed: Wind and wake models; Airfoil properties; Structural analysis and testing; Control systems; Variable speed generators; and acoustic noise. Experimental and theoretical results are discussed.

  14. Operation and control of large wind turbines and wind farms. Final report

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Hansen, Anca Daniela; Thomsen, Kenneth

    2005-01-01

    of produced electricity into account. Dynamic models and control strategies for the wind farms have also been developed, with the aim to optimise theoperation of the wind farms considering participation in power system control of power (frequency) and reactive power (voltage), maximise power production, keep...... good power quality and limit mechanical loads and life time consumption. The projectdeveloped models for 3 different concepts for wind farms. Two of the concepts use active stall controlled wind turbines, one with AC connection and one with modern HVDC/VSC connection of the wind farm. The third concept......This report is the final report of a Danish research project “Operation and control of large wind turbines and wind farms”. The objective of the project has been to analyse and assess operational strategies and possibilities for control of different typesof wind turbines and different wind farm...

  15. Frequency Based Fault Detection in Wind Turbines

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2014-01-01

    In order to obtain lower cost of energy for wind turbines fault detection and accommodation is important. Expensive condition monitoring systems are often used to monitor the condition of rotating and vibrating system parts. One example is the gearbox in a wind turbine. This system is operated...... gearbox. Only the generator speed measurement which is available in even simple wind turbine control systems is used as input. Consequently this proposed scheme does not need additional sensors and computers for monitoring the condition of the wind gearbox. The scheme is evaluated on a wide-spread wind...

  16. Variable speed wind turbine control system

    Science.gov (United States)

    Conley, E.

    Variable speed wind turbine operation offers potential increased energy production if the turbine rotor is controlled to operate at constant blade tip speed to wind speed ratio. Two variable speed control systems are compared to a constant speed control system during field tests of a 5m Darrieus type wind turbine generator. Data indicates that a simple variable speed control scheme using wind rotor RPM as the single input signal can control the Darrieus test machine to operate at roughly constant blade tip to wind speed ratio and thus maximize energy production.

  17. Wind Turbine Generator System Power Performance Test Report for the ARE442 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    van Dam, J.; Jager, D.

    2010-02-01

    This report summarizes the results of a power performance test that NREL conducted on the ARE 442 wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 12: Power Performance Measurements of Electricity Producing Wind Turbines, IEC 61400-12-1 Ed.1.0, 2005-12. However, because the ARE 442 is a small turbine as defined by IEC, NREL also followed Annex H that applies to small wind turbines. In these summary results, wind speed is normalized to sea-level air density.

  18. Microprocessor control of a wind turbine generator

    Science.gov (United States)

    Gnecco, A. J.; Whitehead, G. T.

    1978-01-01

    This paper describes a microprocessor based system used to control the unattended operation of a wind turbine generator. The turbine and its microcomputer system are fully described with special emphasis on the wide variety of tasks performed by the microprocessor for the safe and efficient operation of the turbine. The flexibility, cost and reliability of the microprocessor were major factors in its selection.

  19. Optimization of power generation from shrouded wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Foote, Tudor; Agarwal, Ramesh [Department of Mechanical Engineering and Materials Science, Washington University in St. Louis (United States)

    2013-07-01

    In past several years, several studies have shown that the shrouded wind turbines can generate greater power compared to bare turbines. The objective of this study is to determine the potential of shrouded wind turbines for increased power generation by conducting numerical simulations. An analytical/computational study is performed by employing the well-known commercial Computational Fluid Dynamics (CFD) software FLUENT. An actuator disc model is used to model the turbine. The incompressible Navier-Stokes equations and a two equation realizable {kappa}-{epsilon} model are employed in the calculations. The power coefficient Cp and generated power are calculated for a large number of cases for horizontal axis wind turbines (HAWT) of various diameters and wind speeds for both bare and shrouded turbines. The design of the shroud is optimized by employing a single objective genetic algorithm; the objective being the maximization of the power coefficient Cp. It was found that the shroud indeed increases the Cp beyond the Betz’s limit significantly and as a result the generated power; this effect is consistent with that found in the recent literature that the shrouded wind-turbines can generate greater power than the bare turbines. The optimized shape of the shroud or diffuser further increases the generated power and Cp.

  20. Design of Wind Turbine Blades

    DEFF Research Database (Denmark)

    McGugan, Malcolm

    2016-01-01

    In this section the research program framework for European PhD network MARE-WINT is presented, particularly the technology development work focussing on reliability/maintenance and the models describing multi-body fluid structure interaction for the Rotor Blade structure. In order to give a cont...... a context for the effort undertaken by the individual researchers this section gives a general background for Wind Turbine blades identifying the trends and issues of importance for these structures as well as concepts for “smarter” blades that address these issues....

  1. Model Predictive Control of Wind Turbines using Uncertain LIDAR Measurements

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Soltani, Mohsen; Poulsen, Niels Kjølstad

    2013-01-01

    The problem of Model predictive control (MPC) of wind turbines using uncertain LIDAR (LIght Detection And Ranging) measurements is considered. A nonlinear dynamical model of the wind turbine is obtained. We linearize the obtained nonlinear model for different operating points, which are determined...... by the effective wind speed on the rotor disc. We take the wind speed as a scheduling variable. The wind speed is measurable ahead of the turbine using LIDARs, therefore, the scheduling variable is known for the entire prediction horizon. By taking the advantage of having future values of the scheduling variable...... on wind speed estimation and measurements from the LIDAR is devised to find an estimate of the delay and compensate for it before it is used in the controller. Comparisons between the MPC with error compensation, the MPC without error compensation and an MPC with re-linearization at each sample point...

  2. Aerodynamic interference between two Darrieus wind turbines

    Science.gov (United States)

    Schatzle, P. R.; Klimas, P. C.; Spahr, H. R.

    1980-02-01

    The effect of aerodynamic interference on the performance of two curved bladed Darrieus-type vertical axis wind turbines was calculated using a vortex/lifting line aerodynamic model. The turbines have a power-to-power separation distance of 1.5 turbine diameters, with the line of turbine centers varying with respect to the ambient wind direction. The effects of freestream turbulence were neglected. For the cases examined, the calculations showed that the downwind turbine power decrement (1) was significant only when the line of turbine centers was coincident with the ambient wind direction, (2) increased with increasing tip-speed-ratio, and (3) is due more to induced flow angularities downstream than to speed deficits near the downstream turbine.

  3. Dependency in State Transitions of Wind Turbines

    DEFF Research Database (Denmark)

    Herp, Jürgen; Ramezani, Mohammad Hossein; S. Nadimi, Esmaeil

    2017-01-01

    © 2017 IEEE. Turbine states and predicting the transition into failure states ahead of time is important in operation and maintenance of wind turbines. This study presents a method to monitor state transitions of a wind turbine based on the online inference on residuals. In a Bayesian framework...... the impact machine learning concepts have on the predictive performance of the presented models. In conclusion, a study on model residuals is performed to highlight the contribution to wind turbine monitoring. The presented algorithm can consistently detect the state transition under various configurations...

  4. Prototype bucket foundation for wind turbines

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Liingaard, Morten

    The first full scale prototype bucket foundation for wind turbines has been installed in October 2002 at Aalborg University offshore test facility in Frederikshavn, Denmark. The suction caisson and the wind turbine have been equipped with an online monitoring system, consisting of 15 accelerometers...

  5. Reliability-Based Optimization of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Tarp-Johansen, N.J.

    2004-01-01

    Reliability-based optimization of the main tower and monopile foundation of an offshore wind turbine is considered. Different formulations are considered of the objective function including benefits and building and failure costs of the wind turbine. Also different reconstruction policies in case...

  6. Advanced Wind Turbine Drivetrain Concepts. Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-12-01

    This report presents key findings from the Department of Energy’s Advanced Drivetrain Workshop, held on June 29-30, 2010, to assess different advanced drivetrain technologies, their relative potential to improve the state-of-the-art in wind turbine drivetrains, and the scope of research and development needed for their commercialization in wind turbine applications.

  7. Parametric study of composite wind turbine blades

    DEFF Research Database (Denmark)

    Kim, Taeseong; Branner, Kim; Hansen, Anders Melchior

    2011-01-01

    In this paper an anisotropic beam element for a composite wind turbine blades is developed. Eigenvalue analysis with the new beam element is conducted in order to understand its responses associated with the wind turbine performances. From the results of natural frequencies and mode shapes it is ...

  8. Wind Turbine Aerodynamics from an Aerospace Perspective

    NARCIS (Netherlands)

    van Garrel, Arne; ten Pas, Sebastiaan; Venner, Cornelis H.; van Muijden, Jaap

    2018-01-01

    The current challenges in wind turbine aerodynamics simulations share a number of similarities with the challenges that the aerospace industry has faced in the past. Some of the current challenges in the aerospace aerodynamics community are also relevant for today’s wind turbine aerodynamics

  9. The Electromagnetic Impact of Wind Turbines

    Science.gov (United States)

    2015-07-06

    efficiency of the re-radiation (p. 2-38). For this reason, if testing is conducted in the vicinity of this wind turbine , HF and VHF radios should avoid using......Applied Project 4. TITLE AND SUBTITLE THE ELECTROMAGNETIC IMPACT OF WIND TURBINES 5. FUNDING NUMBERS 6. AUTHOR(S) Gregory Sasarita and Charles R

  10. Voltage Quality of Grid Connected Wind Turbines

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede; Sun, Tao

    2004-01-01

    Grid connected wind turbines may cause quality problems, such as voltage variation and flicker. This paper discusses the voltage variation and flicker emission of grid connected wind turbines with doubly-fed induction generators. A method to compensate flicker by using a voltage source converter...... (VSC) based STATCOM is presented, which shows it is an efficient mean to improve voltage quality....

  11. Iterative feedback tuning of wind turbine controllers

    NARCIS (Netherlands)

    van Solingen, E.; Mulders, S.P.; van Wingerden, J.W.

    2017-01-01

    Traditionally, wind turbine controllers are designed using first principles or linearized or identified models. The aim of this paper is to show that with an automated, online, and model-free tuning strategy, wind turbine control performance can be significantly increased. For this purpose,

  12. Tjæreborg Wind Turbine (Esbjerg)

    DEFF Research Database (Denmark)

    Øye, Stig

    1991-01-01

    This paper presents the first measured timeseries for the Tjæreborg (Tjaereborg) Wind Turbine during operation with stepwise pitch angle changes.......This paper presents the first measured timeseries for the Tjæreborg (Tjaereborg) Wind Turbine during operation with stepwise pitch angle changes....

  13. Wind turbines fundamentals, technologies, application, economics

    CERN Document Server

    Hau, Erich

    2013-01-01

    "Wind Turbines" addresses all those professionally involved in research, development, manufacture and operation of wind turbines. It provides a cross-disciplinary overview of modern wind turbine technology and an orientation in the associated technical, economic and environmental fields.  In its revised third edition, special emphasis has been given to the latest trends in wind turbine technology and design, such as gearless drive train concepts, as well as on new fields of application, in particular the offshore utilisation of wind energy. The author has gained experience over decades designing wind energy converters with a major industrial manufacturer and, more recently, in technical consulting and in the planning of large wind park installations, with special attention to economics.

  14. Airfoil characteristics for wind turbines

    DEFF Research Database (Denmark)

    Bak, C.; Fuglsang, P.; Sørensen, Niels N.

    1999-01-01

    theory, 2) Actuator disc theory, 3) Numerical optimisation and 4) Quasi-3D CFD computations. The two former methods are based on 3D CFD computations and wind tunnel measurements on a 41-m full-scale rotorwith LM 19.1 blades. The derived airfoil characteristics show that the lift coefficient in stall...... lift coefficients in stall at the inboard part of the blade and low lift coefficients in stall at the outboard part of the bladecompared to 2D wind tunnel measurements....... to a commonly used set of airfoil characteristics. The numerical optimisation is based on both the 3D CFDcomputations and measurements on a 41-m rotor with LM 19.1 and LM 19.0 blades, respectively. The method requires power and loads from a turbine and is promising since a set of lift and drag curves is derived...

  15. Modelling Wind Turbine Inflow: The Induction Zone

    DEFF Research Database (Denmark)

    Meyer Forsting, Alexander Raul

    A wind turbine decelerates the wind in front of its rotor by extracting kinetic energy. The wind speed reduction is maximal at the rotor and negligible more than five rotor radii upfront. By measuring wind speed this far from the rotor, the turbine’s performance is determined without any rotor bi...

  16. Lightning protection system for a wind turbine

    Science.gov (United States)

    Costin, Daniel P [Chelsea, VT; Petter, Jeffrey K [Williston, VT

    2008-05-27

    In a wind turbine (104, 500, 704) having a plurality of blades (132, 404, 516, 744) and a blade rotor hub (120, 712), a lightning protection system (100, 504, 700) for conducting lightning strikes to any one of the blades and the region surrounding the blade hub along a path around the blade hub and critical components of the wind turbine, such as the generator (112, 716), gearbox (708) and main turbine bearings (176, 724).

  17. Small power wind turbine (Type DARRIEUS

    Directory of Open Access Journals (Sweden)

    Marcel STERE

    2012-03-01

    Full Text Available This presentation focuses on the calculation for small vertical axis wind turbines (VAWT for an urban application. The fixed-pitch straight – bladed vertical axis wind turbine (SB-VAWT is one of the simplest types of wind turbine and accepts wind from any angle (no yaw system. This turbine is useful for moderate wind speeds (3 - 6 m/s. A case study is presented based upon the use of well documented symmetrical NACA 0012 turbine blade profile. We describe a solution for VAWT. To perform a linear static analysis in the structure, the commercial finite element analysis code ANSYS is used because of its flexibility for handling information in files written in a more or less free format.

  18. 'Wind turbine syndrome': fact or fiction?

    Science.gov (United States)

    Farboud, A; Crunkhorn, R; Trinidade, A

    2013-03-01

    Symptoms, including tinnitus, ear pain and vertigo, have been reported following exposure to wind turbine noise. This review addresses the effects of infrasound and low frequency noise and questions the existence of 'wind turbine syndrome'. This review is based on a search for articles published within the last 10 years, conducted using the PubMed database and Google Scholar search engine, which included in their title or abstract the terms 'wind turbine', 'infrasound' or 'low frequency noise'. There is evidence that infrasound has a physiological effect on the ear. Until this effect is fully understood, it is impossible to conclude that wind turbine noise does not cause any of the symptoms described. However, many believe that these symptoms are related largely to the stress caused by unwanted noise exposure. There is some evidence of symptoms in patients exposed to wind turbine noise. The effects of infrasound require further investigation.

  19. Research in Aeroelasticity EFP-2006[Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bak, C.

    2007-07-15

    This report contains the results from the Energy Research Project 'Program for Research in Applied Aeroelasticity, EFP-2006' covering the period from 1. April 2006 to 31. March 2007. A summary of the main results from the project is given in the following. The aerodynamics for rotors incl. spinner and winglets were clarified and the needed premises for an optimal rotor were explained. Also, the influence of viscous effects on rotor blades was investigated and the results indicated a range of optimum tip speed ratios. The use of winglets for wind turbine rotor was investigated and it was found that they can be used successfully, but that downwind and short winglets are most efficient. Investigating a strategy for reduction of loads and vibrations at extreme wind speeds showed that there are considerably uncertainties in the numerical models and that the main concluding remark is that measurements on a real blade or a real turbine are needed to further conclude the investigation. In the study of flutter and other torsional vibrations of blades at large deflections, modeling and analysis of the dynamics of a hydraulic pitch system for a 5 MW wind turbine was carried out. It was shown that the compressibility of the hydraulic oil introduced a dynamic mode in the pitch bearing degree of freedom. Also, investigating flutter for blades at large deflections showed that the flutter limit for a 5MW blade was moved significantly compared to blades without large deflections. The influence of modeling nacelle components was investigated by developing a generalized method to interface dynamic systems to the aeroelastic program HAWC2 and by exemplify by modeling the nacelle of an aeroelastic wind turbine model in a more detailed way by including a single planet stage of a gearbox. This simplified gearbox model captures in essence the splitting of the driving torque from the rotor shaft to the frame of the nacelle and to the generator. Investigating the influence of wind

  20. Demonstration of the Ability of RCAS to Model Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Jonkman, J.; Cotrell, J.

    2003-08-01

    In recent years, the wind industry has sponsored the development, verification, and validation of comprehensive aeroelastic simulators, which are used for wind turbine design, certification, and research. Unfortunately, as wind turbines continue to grow in size and sometimes exhibit unconventional design characteristics, the existing codes do not always support the additional analysis features required for proper design. The development history, functionality, and advanced nature of RCAS (Rotorcraft Comprehensive Analysis System) make this code a sensible option. RCAS is an aeroelastic simulator developed over a 4-year cooperative effort amongst the U.S. Army's Aeroflightdynamics Directorate, Advanced Rotorcraft Technology (ART), Inc., and the helicopter industry. As its name suggests, RCAS was created for the rotorcraft industry but developed as a general purpose code for modeling the aerodynamic and structural response of any system with rotating and nonrotating subsystems (such as wind turbines). To demonstrate that RCAS can analyze wind turbines, models of a conventional, 1.5-MW, 3-bladed, upwind, horizontal axis wind turbine (HAWT) are created in RCAS and wind turbine analysis codes FAST (Fatigue, Aerodynamics, Structures, and Turbulence) and ADAMS (Automatic Dynamic Analysis of Mechanical Systems). Using these models, a side-by-side comparison of structural response predictions is performed under several test scenarios.

  1. Power generation from wind turbines in a solar chimney

    Energy Technology Data Exchange (ETDEWEB)

    Foote, Tudor [Graduate Student, Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States); Agarwal, Ramesh K. [William Palm Professor, Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States)

    2013-07-01

    Recent studies have shown that shrouded wind turbines can generate greater power compared to bare turbines. A solar chimney generates an upward draft of wind inside a tower and a shroud around the wind turbine. There are numerous empty silos on farms in the U.S. that can be converted to solar chimneys with minor modifications at modest cost. The objective of this study is to determine the potential of these silos/chimneys for generating wind power. The study is conducted through analytical/computational approach by employing the commercial Computational Fluid Dynamics (CFD) software. Computations are performed for five different geometric configurations consisting of a turbine, a cylindrical silo, and/or a venturi and/or a diffuser using the dimensions of typical silos and assuming Class 3 wind velocity. The incompressible Navier-Stokes equations with the Boussinesq approximation and a two equation realizable {kappa}-{epsilon} model are employed in the calculations, and the turbine is modeled as an actuator disk. The power coefficient (Cp) and generated power are calculated for the five cases. Consistent with recent literature, it was found that the silos with diffusers increase the Cp beyond Betz’s limit significantly and thus the generated power. It should be noted that Cp is calculated by normalizing it by the turbine area swept by the wind. This study shows the potential of using abandoned silos in the mid-west and other parts of the country for localized wind power generation.

  2. Rotating transformers in wind turbine applications

    Energy Technology Data Exchange (ETDEWEB)

    Hylander, J. [Chalmers Univ. of Technology, Goeteborg (Sweden); Engstroem, S. [Aegir konsult AB, Lidingoe (Sweden)

    1996-12-01

    The power consumption of rotating electrical components is often supplied via slip-rings in wind turbines. Slip-ring equipment is expensive and need maintenance and are prone to malfunction. If the slip-rings could be replaced with contact-less equipment better turbines could be designed. This paper presents the design, some FE calculations and some measurements on a prototype rotating transformer. The proposed transformer consists of a secondary rotating winding and a stationary exciting primary winding. The results indicate that this transformer could be used to replace slip-rings in wind turbines. 4 refs, 3 figs

  3. RBI Optimization of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Ramírez, José G. Rangel; Sørensen, John Dalsgaard

    2009-01-01

    support structure is a steel structure consisting of a tower and a monopile, tripod or jacket type foundation. This paper considers aspects of inspection and maintenance planning of fatigue prone details in jacket and tripod type of wind turbine support structures. Based on risk-based inspection planning...... methods for oil & gas installations, a framework for optimal inspection and maintenance planning of offshore wind turbines is presented. Special aspects for offshore wind turbines considered are the fatigue loading characteristics where usually the wind loading are dominating the wave loading, wake...

  4. Coupled Simulations of Wind Turbines and Offshore Support Structures : Strategies based on the Dynamic Substructuring Paradigm

    NARCIS (Netherlands)

    Van der Valk, P.L.C.

    2014-01-01

    Large scale offshore wind power has been recognized as a key technology to increase the share of renewable energy. However, as this energy source is currently still relatively expensive, efforts are made to significantly reduce its costs. Cost reductions are to be achieved, for instance, by

  5. Flow separation on wind turbines blades

    Science.gov (United States)

    Corten, G. P.

    2001-01-01

    the angle of attack. The art of designing stall rotors is to make the separated area on the blades extend in such a way, that the extracted power remains precisely constant, independent of the wind speed, while the power in the wind at cut-out exceeds the maximum power of the turbine by a factor of 8. Since the stall behaviour is influenced by many parameters, this demand cannot be easily met. However, if it can be met, the advantage of stall control is its passive operation, which is reliable and cheap. Problem Definition In practical application, stall control is not very accurate and many stall-controlled turbines do not meet their specifications. Deviations of the design-power in the order of tens of percent are regular. In the nineties, the aerodynamic research on these deviations focussed on: profile aerodynamics, computational fluid dynamics, rotational effects on separation and pressure measurements on test turbines. However, this did not adequately solve the actual problems with stall turbines. In this thesis, we therefore formulated the following as the essential question: "Does the separated blade area really extend with the wind speed, as we predict?" To find the answer a measurement technique was required, which 1) was applicable on large commercial wind turbines, 2) could follow the dynamic changes of the stall pattern, 3) was not influenced by the centrifugal force and 4) did not disturb the flow. Such a technique was not available, therefore we decided to develop it. Stall Flag Method For this method, a few hundred indicators are fixed to the rotor blades in a special pattern. These indicators, called "stall flags" are patented by the Netherlands Energy Research Foundation (ECN). They have a retro-reflective area which, depending on the flow direction, is or is not covered. A powerful light source in the field up to 500m behind the turbine illuminates the swept rotor area. The uncovered reflectors reflect the light to the source, where a digital video

  6. Adaptive Extremum Control and Wind Turbine Control

    DEFF Research Database (Denmark)

    Ma, Xin

    1997-01-01

    This thesis is divided into two parts, i.e., adaptive extremum control and modelling and control of a wind turbine. The rst part of the thesis deals with the design of adaptive extremum controllers for some processes which have the behaviour that process should have as high e ciency as possible...... in parameters, and thus directly lends itself to parameter estimation and adaptive control. The extremum control law is derived based on static optimization of a performance function. For a process with nonlinearity at output the intermediate signal between the linear part and nonlinear part plays an important...... role. If it can be emphasis on control design. The models have beenvalidated by experimental data obtained from an existing wind turbine. The e ective wind speed experienced by the rotor of a wind turbine, which is often required by some control methods, is estimated by using a wind turbine as a wind...

  7. Floating Foundations for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Andersen, Morten Thøtt

    -scale prototypes to full-scale pre-commercial wind parks. This thesis explores different aspects of numerical and physical modeling of floating offshore wind turbines. Numerical investigations, validated by physical test data, are used to highlight some of the implications of modeling these highly coupled aero......The concept of harnessing the power of the wind dates all the way back to the first ships traversing the seas. Later, windmills enabled the use of wind power for industrial purposes. Since then, technology has allowed the production of clean renewable energy through the use of wind turbines....... These turbines have traditionally been placed on land, but several factors have urged a move to offshore locations. Now the boundaries are being pushed into deeper and deeper waters, where the idea of floating offshore wind turbines has emerged. In less than a decade, these have gone from scattered small...

  8. Aerodynamic damping of nonlinearily wind-excited wind turbine blades

    NARCIS (Netherlands)

    Van der Male, P.; Van Dalen, K.N.; Metrikine, A.

    2013-01-01

    This paper presents the first step of the derivation of an aerodynamic damping matrix that can be adopted for the foundation design of a wind turbine. A single turbine blade is modelled as a discrete mass-spring system, representing the flap and edge wise motions. Nonlinear wind forcing is applied,

  9. Meteorological aspects of siting large wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hiester, T.R.; Pennell, W.T.

    1981-01-01

    This report, which focuses on the meteorological aspects of siting large wind turbines (turbines with a rated output exceeding 100 kW), has four main goals. The first is to outline the elements of a siting strategy that will identify the most favorable wind energy sites in a region and that will provide sufficient wind data to make responsible economic evaluations of the site wind resource possible. The second is to critique and summarize siting techniques that were studied in the Department of Energy (DOE) Wind Energy Program. The third goal is to educate utility technical personnel, engineering consultants, and meteorological consultants (who may have not yet undertaken wind energy consulting) on meteorological phenomena relevant to wind turbine siting in order to enhance dialogues between these groups. The fourth goal is to minimize the chances of failure of early siting programs due to insufficient understanding of wind behavior.

  10. Wind turbine power curve prediction with consideration of rotational augmentation effects

    Science.gov (United States)

    Tang, X.; Huang, X.; Sun, S.; Peng, R.

    2016-11-01

    Wind turbine power curve expresses the relationship between the rotor power and the hub wind speed. Wind turbine power curve prediction is of vital importance for power control and wind energy management. To predict power curve, the Blade Element Moment (BEM) method is used in both academic and industrial communities. Due to the limited range of angles of attack measured in wind tunnel testing and the three-dimensional (3D) rotational augmentation effects in rotating turbines, wind turbine power curve prediction remains a challenge especially at high wind speeds. This paper presents an investigation of considering the rotational augmentation effects using characterized lift and drag coefficients from 3D computational fluid dynamics (CFD) simulations coupled in the BEM method. A Matlab code was developed to implement the numerical calculation. The predicted power outputs were compared with the NREL Phase VI wind turbine measurements. The results demonstrate that the coupled method improves the wind turbine power curve prediction.

  11. Wind speed dynamical model in a wind farm

    DEFF Research Database (Denmark)

    Soleimanzadeh, Maryam; Wisniewski, Rafal

    2010-01-01

    This paper presents a model for wind speed in a wind farm. The basic purpose of the paper is to calculate approximately the wind speed in the vicinity of each wind turbine in a farm. In this regard the governing equations of flow will be solved for the whole wind farm. In ideal circumstances......, the dynamic model for wind flow will be established. The state space variables are determined based on a fine mesh defined for the farm. The end goal of this method is to assist the development of a dynamical model of a wind farm that can be engaged for better wind farm control strategies....

  12. Wind resource estimation and siting of wind turbines

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Mortensen, N.G.; Landberg, L.

    1994-01-01

    Detailed knowledge of the characteristics of the natural wind is necessary for the design, planning and operational aspect of wind energy systems. Here, we shall only be concerned with those meteorological aspects of wind energy planning that are termed wind resource estimation. The estimation...... of the wind resource ranges from the overall estimation of the mean energy content of the wind over a large area - called regional assessment - to the prediction of the average yearly energy production of a specific wind turbine at a specific location - called siting. A regional assessment will most often...... lead to a so-called wind atlas. A precise prediction of the wind speed at a given site is essential because for aerodynamic reasons the power output of a wind turbine is proportional to the third power of the wind speed, hence even small errors in prediction of wind speed may result in large deviations...

  13. Numerical investigation of wind turbine and wind farm aerodynamics

    Science.gov (United States)

    Selvaraj, Suganthi

    A numerical method based on the solution of Reynolds Averaged Navier Stokes equations and actuator disk representation of turbine rotor is developed and implemented in the OpenFOAM software suite for aerodynamic analysis of horizontal axis wind turbines (HAWT). The method and the implementation are validated against the 1-D momentum theory, the blade element momentum theory and against experimental data. The model is used for analyzing aerodynamics of a novel dual rotor wind turbine concept and wind farms. Horizontal axis wind turbines suffer from aerodynamic inefficiencies in the blade root region (near the hub) due to several non-aerodynamic constraints (e.g., manufacturing, transportation, cost, etc.). A new dual-rotor wind turbine (DRWT) concept is proposed that aims at mitigating these losses. A DRWT is designed using an existing turbine rotor for the main rotor (Risoe turbine and NREL 5 MW turbine), while the secondary rotor is designed using a high lift to drag ratio airfoil (the DU 96 airfoil from TU Delft). The numerical aerodynamic analysis method developed as a part of this thesis is used to optimize the design. The new DRWT design gives an improvement of about 7% in aerodynamic efficiency over the single rotor turbine. Wind turbines are typically deployed in clusters called wind farms. HAWTs also suffer from aerodynamic losses in a wind farm due to interactions with wind turbine wakes. An interesting mesoscale meteorological phenomenon called "surface flow convergence" believed to be caused by wind turbine arrays is investigated using the numerical method developed here. This phenomenon is believed to be caused by the pressure gradient set up by wind turbines operating in close proximity in a farm. A conceptual/hypothetical wind farm simulation validates the hypothesis that a pressure gradient is setup in wind farms due to turbines and that it can cause flow veering of the order of 10 degrees. Simulations of a real wind farm (Story County) are also

  14. Offshore wind turbines reliability, availability and maintenance

    CERN Document Server

    Tavner, Peter

    2012-01-01

    The first book to specifically focus on offshore wind turbine technology and which addresses practically wind turbine reliability and availability. The book draws on the author's experience of power generation reliability and availability and the condition monitoring of that plant to describe the problems facing the developers of offshore wind farms and the solutions available to them to raise availability, reduce cost of energy and improve through life cost.

  15. Wind turbine wake in atmospheric turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Rethore, P.-E.

    2009-10-15

    This thesis describes the different steps needed to design a steady-state computational fluid dynamics (CFD) wind farm wake model. The ultimate goal of the project was to design a tool that could analyze and extrapolate systematically wind farm measurements to generate wind maps in order to calibrate faster and simpler engineering wind farm wake models. The most attractive solution was the actuator disc method with the steady state k-epsilon turbulence model. The first step to design such a tool is the treatment of the forces. This thesis presents a computationally inexpensive method to apply discrete body forces into the finite-volume flow solver with collocated variable treatment (EllipSys), which avoids the pressure-velocity decoupling issue. The second step is to distribute the body forces in the computational domain accordingly to rotor loading. This thesis presents a generic flexible method that associates any kind of shapes with the computational domain discretization. The special case of the actuator disc performs remarkably well in comparison with Conway's heavily loaded actuator disc analytical solution and a CFD full rotor computation, even with a coarse discretization. The third step is to model the atmospheric turbulence. The standard k-epsilon model is found to be unable to model at the same time the atmospheric turbulence and the actuator disc wake and performs badly in comparison with single wind turbine wake measurements. A comparison with a Large Eddy Simulation (LES) shows that the problem mainly comes from the assumptions of the eddy-viscosity concept, which are deeply invalidated in the wind turbine wake region. Different models that intent to correct the k-epsilon model's issues are investigated, of which none of them is found to be adequate. The mixing of the wake in the atmosphere is a deeply non-local phenomenon that is not handled correctly by an eddy-viscosity model such as k-epsilon. (author)

  16. A Two-Bladed Concept Wind Turbine

    DEFF Research Database (Denmark)

    Kim, Taeseong

    2012-01-01

    This article shows the potential for reducing extreme loads with an innovative design of wind turbine, a partial pitch two-bladed concept turbine. The most extreme conditions to test a turbine are considered to be stand-still combined with a grid failure in which the wind comes from all directions...... from 0 to 360 degrees. All aeroelastic load simulations are done by using the aeroelastic code HAWC2. From the load comparisons between the partial pitch two-bladed turbine and a conventional three-bladed turbine it is observed that the partial pitch two-bladed turbine can reduce the extreme tower...... bottom bending moment by approximately 33% compared to the three-bladed turbine....

  17. Wind tunnel tests of a free yawing downwind wind turbine

    DEFF Research Database (Denmark)

    Verelst, David Robert; Larsen, Torben J.; van Wingerden, Jan-Willem

    2014-01-01

    . The discussed test cases show that the turbine is stable while operating in free yawing conditions. Further, the effect of the tower shadow passage on the blade flapwise strain measurement is evaluated. Finally, data from the experiment is compared with preliminary simulations using DTU Wind Energy......This research paper presents preliminary results on a behavioural study of a free yawing downwind wind turbine. A series of wind tunnel tests was performed at the TU Delft Open Jet Facility with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off...

  18. Operation and Equivalent Loads of Wind Turbines in Large Wind Farms

    Science.gov (United States)

    Andersen, Soren Juhl; Sorensen, Jens Norkaer; Mikkelsen, Robert Flemming

    2017-11-01

    Wind farms continue to grow in size and as the technology matures, the design of wind farms move towards including dynamic effects besides merely annual power production estimates. The unsteady operation of wind turbines in large wind farms has been modelled with EllipSys3D(Michelsen, 1992, and Sørensen, 1995) for a number of different scenarios using a fully coupled large eddy simulations(LES) and aero-elastic framework. The turbines are represented in the flow fields using the actuator line method(Sørensen and Shen, 2002), where the aerodynamic forces and deflections are derived from an aero-elastic code, Flex5(Øye, 1996). The simulations constitute a database of full turbine operation in terms of both production and loads for various wind speeds, turbulence intensities, and turbine spacings. The operating conditions are examined in terms of averaged power production and thrust force, as well as 10min equivalent flapwise bending, yaw, and tilt moment loads. The analyses focus on how the performance and loads change throughout a given farm as well as comparing how various input parameters affect the operation and loads of the wind turbines during different scenarios. COMWIND(Grant 2104-09- 067216/DSF), Nordic Consortium on Optimization and Control of Wind Farms, Eurotech Greentech Wind project, Winds2Loads, and CCA LES. Ressources Granted on SNIC and JESS. The Vestas NM80 turbine has been used.

  19. European wind turbine standards 2 (EWTS-2)

    Energy Technology Data Exchange (ETDEWEB)

    Pierik, J.T.G.; Dekker, J.W.M.; Braam, H. [and others

    1999-03-01

    A summary is given of the main results of the European Wind Turbine Standards II project. EWTS-II was completed in 1998 and included investigations on: 1) wind farms-wind field and turbine loading; 2) complex terrain and fatigue loading; 3) extreme wind conditions; 4) quantification of failure probabilities; 5) integration of blade tests in design; 6) power performance in complex terrain; 7) site evaluation. In addition to these scientific evaluations, the EWTS-II participants established an organization of qualified measuring institute in the field of wind energy, the MEASNET organization. MEASNET unified measurement procedures of the participating institutes and guarantees qualified measurements and mutual acceptance among its members. (LN)

  20. Stochastic wind turbine control in multiblade coordinates

    DEFF Research Database (Denmark)

    Thomsen, Sven Creutz; Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2010-01-01

    pitch controller design. In this way the variability of the wind can be estimated and compensated for by the controller. The wind turbine model is in general time-variant due to its rotational nature. For this reason the modeling and control is carried out in so-called multiblade coordinates......In this paper we consider wind turbine load attenuation through model based control. Asymmetric loads caused by the wind field can be reduced by pitching the blades individually. To this end we investigate the use of stochastic models of the wind which can be included in a model based individual...

  1. Composite materials for wind power turbine blades

    DEFF Research Database (Denmark)

    Brøndsted, P.; Lilholt, H.; Lystrup, Aa.

    2005-01-01

    Renewable energy resources, of which wind energy is prominent, are part of the solution to the global energy problem. Wind turbine and the rotorblade concepts are reviewed, and loadings by wind and gravity as important factors for the fatigue performance of the materials are considered. Wood...... procedures for documentation of properties are reviewed, and fatigue loading histories are discussed, together with methods for data handling and statistical analysis of (large) amounts of test data. Future challenges for materials in the field of wind turbines are presented, with a focus on thermoplastic...... composites, new structural materials concepts, new structural design aspects, structural health monitoring, and the coming trends and markets for wind energy....

  2. Design Load Basis for Offshore Wind turbines

    DEFF Research Database (Denmark)

    Natarajan, Anand; Hansen, Morten Hartvig; Wang, Shaofeng

    2016-01-01

    DTU Wind Energy is not designing and manufacturing wind turbines and does therefore not need a Design Load Basis (DLB) that is accepted by a certification body. However, to assess the load consequences of innovative features and devices added to existing offshore turbine concepts or new offshore...... turbine concept developed in our research, it is useful to have a full DLB that follows the current design standard and is representative of a general DLB used by the industry. It will set a standard for the offshore wind turbine design load evaluations performed at DTU Wind Energy, which is aligned...... with the challenges faced by the industry and therefore ensures that our research continues to have a strong foundation in this interaction. Furthermore, the use of a full DLB that follows the current standard can improve and increase the feedback from the research at DTU Wind Energy to the international...

  3. Effect of precipitation on wind turbine performance

    Science.gov (United States)

    Corrigan, R. D.; Demiglio, R. D.

    1985-01-01

    The effects of precipitation on wind turbine power output was analyzed. The tests were conducted on the two bladed Mod-0 horizontal axis wind turbine with three different rotor configurations. Experimental data from these tests are presented which clearly indicate that the performance of the Mod-0 wind turbine is affected by rain. Light rainfall degraded performance by as much as 20 percent while heavy rainfall degraded performance by as much as 30 percent. Snow mixed with drizzle degraded performance by as much as 36 percent at low windspeeds. Also presented are the results of an analysis to predict the effect of rain on wind turbine performance. This analysis used a blade element/momentum code with modified airfoil characteristics to account for the effect of rain and predicted a loss in performance of 31 percent in high winds with moderate rainfall rates. These predicted results agreed well with experimental data.

  4. Active load control techniques for wind turbines.

    Energy Technology Data Exchange (ETDEWEB)

    van Dam, C.P. (University of California, Davis, CA); Berg, Dale E.; Johnson, Scott J. (University of California, Davis, CA)

    2008-07-01

    This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

  5. Optimization of Wind Turbine Airfoils/Blades and Wind Farm Layouts

    Science.gov (United States)

    Chen, Xiaomin

    by the turbine can be significantly increased. Parametric studies are also conducted by varying the turbine diameter. In addition, a simplified dynamic inflow model is integrated into the BEM theory. It is shown that the improved BEM theory has superior performance in capturing the instantaneous behavior of wind turbines due to the existence of wind turbine wake or temporal variations in wind velocity. The dissertation also considers the Wind Farm layout optimization problem using a genetic algorithm. Both the Horizontal --Axis Wind Turbines (HAWT) and Vertical-Axis Wind Turbines (VAWT) are considered. The goal of the optimization problem is to optimally position the turbines within the wind farm such that the wake effects are minimized and the power production is maximized. The reasonably accurate modeling of the turbine wake is critical in determination of the optimal layout of the turbines and the power generated. For HAWT, two wake models are considered; both are found to give similar answers. For VAWT, a very simple wake model is employed. Finally, some preliminary investigation of shape optimization of 3D wind turbine blades at low Reynolds numbers is conducted. The optimization employs a 3D straight untapered wind turbine blade with cross section of NACA 0012 airfoils as the geometry of baseline blade. The optimization objective is to achieve maximum Cl/Cd as well as maximum Cl. The multi-objective genetic algorithm is employed together with the commercially available software FLUENT for calculation of the flow field using the Reynolds-Averaged Navier-Stokes (RANS) equations in conjunction with a one-equation Sparlart-Allmaras turbulence model. The results show excellent performance of the optimized wind turbine blade and indicate the feasibility of optimization on real wind turbine blades with more complex shapes in the future. (Abstract shortened by UMI.)

  6. Stability improvement of induction generator-based wind turbine systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Hu, Y.; Blaabjerg, Frede

    2007-01-01

    The stability improvement of induction-generator-based wind turbine systems under power system fault conditions has been studied. Two types of generators are considered, namely rotor short-circuited induction generators and dynamic slip-controlled wound rotor induction generators. The factors...... affecting the stability are analysed. The characteristics of the induction-generator-based wind turbines are described, and possible methods of improving stability of the wind generators are discussed. The system modelling is presented, and then the discussed methods of improving stability are investigated...

  7. Comparison between Dynamic Responses of Hollow and Solid Piles for Offshore Wind Turbine Foundations

    DEFF Research Database (Denmark)

    Bayat, Mehdi; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    2013-01-01

    the dynamic behavior of soil and interaction between soil and piles. To avert damage to offshore foundation, it becomes necessary to identify and quantify the soil-structure interaction and the related damping effects on the system. In this study, a single pile is investigated by means of boundary integral...... equations. The pile is modeled as a solid or hollow cylinder and the dynamic excitation is applied vertically. The surface along the entire interface is considered rough and with full contact between the soil and the structure. Somigliana’s identity, Betti’s reciprocal theorem and Green’s function...... are employed to derive the dynamic stiffness of pile, assuming that the soil is a linear viscoelastic medium. The dynamic stiffness is compared for solid and hollow cylinders by considering different values of material properties including the material damping. Modes of resonance and anti...

  8. Reliability Modeling of Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik

    components. Thus, models of reliability should be developed and applied in order to quantify the residual life of the components. Damage models based on physics of failure combined with stochastic models describing the uncertain parameters are imperative for development of cost-optimal decision tools...... for Operation & Maintenance planning. Concentrating efforts on development of such models, this research is focused on reliability modeling of Wind Turbine critical subsystems (especially the power converter system). For reliability assessment of these components, structural reliability methods are applied....... Further, reliability modeling of load sharing systems is considered and a theoretical model is proposed based on sequential order statistics and structural systems reliability methods. Procedures for reliability estimation are detailed and presented in a collection of research papers....

  9. Dynamic Stall Control on the Wind Turbine Airfoil via a Co-Flow Jet

    Directory of Open Access Journals (Sweden)

    He-Yong Xu

    2016-06-01

    Full Text Available Dynamic stall control of a S809 airfoil is numerically investigated by implementing a co-flow jet (CFJ. The numerical methods of the solver are validated by comparing results with the baseline experiment as well as a NACA 6415-based CFJ experiment, showing good agreement in both static and dynamic characteristics. The CFJ airfoil with inactive jet is simulated to study the impact that the jet channel imposes upon the dynamic characteristics. It is shown that the presence of a long jet channel could cause a negative effect of decreasing lift and increasing drag, leading to fluctuating extreme loads in terms of drag and moment. The main focus of the present research is the investigation of the dynamic characteristics of the CFJ airfoil with three different jet momentum coefficients, which are compared with the baseline, giving encouraging results. Dynamic stall can be greatly suppressed, showing a very good control performance of significantly increased lift and reduced drag and moment. Analysis of the amplitude of variation in the aerodynamic coefficients indicates that the fluctuating extreme aerodynamic loads are significantly alleviated, which is conducive to structural reliability and improved life cycle. The energy consumption analysis shows that the CFJ concept is applicable and economical in controlling dynamic stall.

  10. Doubly Fed Induction Generator Wind Turbines with Fuzzy Controller: A Survey

    Directory of Open Access Journals (Sweden)

    J. S. Sathiyanarayanan

    2014-01-01

    Full Text Available Wind energy is one of the extraordinary sources of renewable energy due to its clean character and free availability. With the increasing wind power penetration, the wind farms are directly influencing the power systems. The majority of wind farms are using variable speed wind turbines equipped with doubly fed induction generators (DFIG due to their advantages over other wind turbine generators (WTGs. Therefore, the analysis of wind power dynamics with the DFIG wind turbines has become a very important research issue, especially during transient faults. This paper presents fuzzy logic control of doubly fed induction generator (DFIG wind turbine in a sample power system. Fuzzy logic controller is applied to rotor side converter for active power control and voltage regulation of wind turbine.

  11. Doubly fed induction generator wind turbines with fuzzy controller: a survey.

    Science.gov (United States)

    Sathiyanarayanan, J S; Kumar, A Senthil

    2014-01-01

    Wind energy is one of the extraordinary sources of renewable energy due to its clean character and free availability. With the increasing wind power penetration, the wind farms are directly influencing the power systems. The majority of wind farms are using variable speed wind turbines equipped with doubly fed induction generators (DFIG) due to their advantages over other wind turbine generators (WTGs). Therefore, the analysis of wind power dynamics with the DFIG wind turbines has become a very important research issue, especially during transient faults. This paper presents fuzzy logic control of doubly fed induction generator (DFIG) wind turbine in a sample power system. Fuzzy logic controller is applied to rotor side converter for active power control and voltage regulation of wind turbine.

  12. Resonant vibration control of wind turbine blades

    DEFF Research Database (Denmark)

    Svendsen, Martin Nymann; Krenk, Steen; Høgsberg, Jan Becker

    2010-01-01

    The paper deals with introduction of damping to specific vibration modes of wind turbine blades, using a resonant controller with acceleration feedback. The wind turbine blade is represented by three-dimensional, two-node finite elements in a local, rotating frame of reference. The element....... The efficiency of the resonant controller is demonstrated for a representative turbine blade exposed to turbulent wind loading. It is found that the present explicit tuning procedure yields close to optimal tuning, with very limited modal spill-over and effective reduction of the vibration amplitudes....

  13. Wind Turbine Power Curves Incorporating Turbulence Intensity

    DEFF Research Database (Denmark)

    Sørensen, Emil Hedevang Lohse

    2014-01-01

    The performance of a wind turbine in terms of power production (the power curve) is important to the wind energy industry. The current IEC-61400-12-1 standard for power curve evaluation recognizes only the mean wind speed at hub height and the air density as relevant to the power production...

  14. Study on wind turbine arrangement for offshore wind farms

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Mikkelsen, Robert Flemming

    2011-01-01

    In this paper, the separation distance between two neighboring offshore wind turbines has been carried out by using the Actuator Line/Navier-Stokes technique developed at the Technical University of Denmark (DTU). Under offshore atmospheric conditions, Large Eddy Simulation has been performed...... for two Tjæreborg 2 MW wind turbines in tandem with separation distances of 4D, 5D, 6D, 7D, 8D and 10D at the design wind speed of 10 m/s. The power performance of the wake turbine showed to be about 23% of the first turbine at a separation distance of 4D while its performance reached about 50% at 7D due...... to the turbulence mixing. This study hints that the optimal separation distance between neighboring turbines for offshore wind farms should be 7 rotor diameters....

  15. Review of fluid and control technology of hydraulic wind turbines

    Science.gov (United States)

    Cai, Maolin; Wang, Yixuan; Jiao, Zongxia; Shi, Yan

    2017-09-01

    This study examines the development of the fluid and control technology of hydraulic wind turbines. The current state of hydraulic wind turbines as a new technology is described, and its basic fluid model and typical control method are expounded by comparing various study results. Finally, the advantages of hydraulic wind turbines are enumerated. Hydraulic wind turbines are expected to become the main development direction of wind turbines.

  16. Floating substructure flexibility of large-volume 10MW offshore wind turbine platforms in dynamic calculations

    DEFF Research Database (Denmark)

    Borg, Michael; Hansen, Anders Melchior; Bredmose, Henrik

    2016-01-01

    to the extent that it becomes relevant to include in addition to the standard rigid body substructure modes which are typically described through linear radiation-diffraction theory. This paper describes a method for the inclusion of substructural flexibility in aero-hydro-servo-elastic dynamic simulations...

  17. Inverse load calculation procedure for offshore wind turbines and application to a 5-MW wind turbine support structure: Inverse load calculation procedure for offshore wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Pahn, T. [Pahn Ingenieure, Am Seegraben 17b 03051 Cottbus Germany; Rolfes, R. [Institut f?r Statik und Dynamik, Leibniz Universit?t Hannover, Appelstra?e 9A 30167 Hannover Germany; Jonkman, J. [National Renewable Energy Laboratory, 15013 Denver West Parkway Golden Colorado 80401 USA

    2017-02-20

    A significant number of wind turbines installed today have reached their designed service life of 20 years, and the number will rise continuously. Most of these turbines promise a more economical performance if they operate for more than 20 years. To assess a continued operation, we have to analyze the load-bearing capacity of the support structure with respect to site-specific conditions. Such an analysis requires the comparison of the loads used for the design of the support structure with the actual loads experienced. This publication presents the application of a so-called inverse load calculation to a 5-MW wind turbine support structure. The inverse load calculation determines external loads derived from a mechanical description of the support structure and from measured structural responses. Using numerical simulations with the software fast, we investigated the influence of wind-turbine-specific effects such as the wind turbine control or the dynamic interaction between the loads and the support structure to the presented inverse load calculation procedure. fast is used to study the inverse calculation of simultaneously acting wind and wave loads, which has not been carried out until now. Furthermore, the application of the inverse load calculation procedure to a real 5-MW wind turbine support structure is demonstrated. In terms of this practical application, setting up the mechanical system for the support structure using measurement data is discussed. The paper presents results for defined load cases and assesses the accuracy of the inversely derived dynamic loads for both the simulations and the practical application.

  18. Wind technology development: Large and small turbines

    Science.gov (United States)

    Thresher, R. W.; Hock, S. M.; Loose, R. R.; Goldman, P.

    1994-12-01

    Wind technology has developed rapidly over the last decade with the design and development of advanced systems with improved performance, higher reliability, and lower costs. During the past several years, substantial gains have been made in wind turbine designs, lowering costs to an average of $0.05/kWh while further technology development is expected to allow the cost to drop below $0.04/kWh by 2000. As a result, wind is expected to be one of the least expensive forms of new electric generation in the next century. This paper will present the technology developments for both utility-scale wind turbines and remote, small-village wind turbines that are currently available or in development. Technology innovations are being adapted for remote and stand-alone power applications with smaller wind turbines. Hybrid power systems using smaller 1 to 50 (kW) wind turbines are being developed for non-grid-connected electrical generation applications. These village power systems typically use wind energy, photovoltaics, battery storage, and conventional diesel generators to power remote communities. Smaller turbines are being explored for application as distributed generation sources on utility grids to supply power during periods of peak demand, avoiding costly upgrades in distribution equipment. New turbine designs now account for turbulence-induced loads, unsteady aerodynamic stall effects, and complex fatigue loads, making use of new technology developments such as advanced airfoils. The new airfoils increase the energy capture, improve the operating efficiency, and reduce the sensitivity of the airfoils to operation roughness. Electronic controls are allowing variable rotor speed operation; while aerodynamic control devices, such as ailerons and flaps, are used to modulate power or stop the rotor in high-speed conditions. These technology trends and future turbine configurations are being sponsored and explored by the U.S. Department of Energy's Wind Energy Program.

  19. Airfoil characteristics for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bak, C.; Fuglsang, P.; Soerensen, N.N.; Aagaard Madsen, H. [Risoe National Lab., Roskilde (Denmark); Wen Zhong Shen; Noerkaer Soerensen, J. [Technical Univ. of Denmark, Lyngby (Denmark)

    1999-03-01

    Airfoil characteristics for use in the Blade Element Momentum (BEM) method calculating the forces on Horizontal Axis Wind Turbines (HAWT) are derived by use of systematic methods. The investigation and derivation of the airfoil characteristics are based on four different methods: 1) Inverse momentum theory, 2) Actuator disc theory, 3) Numerical optimisation and 4) Quasi-3D CFD computations. The two former methods are based on 3D CFD computations and wind tunnel measurements on a 41-m full-scale rotor with LM 19.1 blades. The derived airfoil characteristics show that the lift coefficient in stall at the tip is low and that it is high at the root compared to 2D airfoil characteristics. The use of these characteristics in aeroelastic calculations shows a good agreement in power and flap moments with measurements. Furthermore, a fatigue analysis shows a reduction in the loads of up to 15 % compared to a commonly used set of airfoil characteristics. The numerical optimisation is based on both the 3D CFD computations and measurements on a 41-m rotor with LM 19.1 and LM 19.0 blades, respectively. The method requires power and loads from a turbine and is promising since a set of lift and drag curves is derived that can be used to calculate mean values of power and loads. The lift in stall at the tip is low and at the root it is high compared to 2D airfoil characteristics. In particular the power curves were well calculated by use of the optimised airfoil characteristics. In the quasi-3D CFD computations, the airfoil characteristics are derived directly. This Navier-Stokes model takes into account rotational and 3D effects. The model enables the study of the rotational effect of a rotor blade at computing costs similar to what is typical for 2D airfoil calculations. The depicted results show that the model is capable of determining the correct qualitative behaviour for airfoils subject to rotation. The method shows that lift is high at the root compared to 2D airfoil

  20. Orthogonal Bases used for Feed Forward Control of Wind Turbines

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2011-01-01

    In optimizing wind turbines it can be of a large help to use information of wind speeds at upwind turbine for the control of downwind turbines, it is, however, problematic to use these measurements directly since they are highly influenced by turbulence behind the wind turbine rotor plane. In this......In optimizing wind turbines it can be of a large help to use information of wind speeds at upwind turbine for the control of downwind turbines, it is, however, problematic to use these measurements directly since they are highly influenced by turbulence behind the wind turbine rotor plane....... In this paper an orthogonal basis is use to extract the general trends in the wind signal, which are forward to the down wind turbines. This concept controller is designed and simulated on a generic 4.8 MW wind turbine model, which shows the potential of this proposed scheme....

  1. A neuro-fuzzy controlling algorithm for wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Li Lin [Tampere Univ. of Technology (Finland); Eriksson, J.T. [Tampere Univ. of Technology (Finland)

    1995-12-31

    The wind turbine control system is stochastic and nonlinear, offering a demanding field for different control methods. An improved and efficient controller will have great impact on the cost-effectiveness of the technology. In this article, a design method for a self-organizing fuzzy controller is discussed, which combines two popular computational intelligence techniques, neural networks and fuzzy logic. Based on acquisited dynamic parameters of the wind, it can effectively predict wind changes in speed and direction. Maximum power can always be extracted from the kinetic energy of the wind. Based on the stimulating experiments applying nonlinear dynamics to a `Variable Speed Fixed Angle` wind turbine, it is demonstrated that the proposed control model 3rd learning algorithm provide a predictable, stable and accurate performance. The robustness of the controller to system parameter variations and measurement disturbances is also discussed. (author)

  2. Effects of Capcitor Bank on Fault Ride Through Capibility of Induction Generator Based Wind Turbines

    DEFF Research Database (Denmark)

    Hu, Y; Chen, Zhe

    2010-01-01

    power system stability and supply security. Some existing wind turbines are still based on fixed speed induction generators, the effects of capacitor bank on such generators are discussed in this paper. The simulation study shows the capacitor bank may costeffectively improve the dynamic performance......Wind turbine installation is increasing rapidly. In some networks, wind power penetration is significantly high and the performance of wind turbine plays an important role in power system operation and control. Especially, the behavior of wind turbines during a power system disturbance would affect...... of the induction generators....

  3. Wind Turbine Safety and Function Test Report for the Gaia-Wind 11-kW Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Huskey, A.; Bowen, A.; Jager, D.

    2010-01-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers to wind energy expansion by providing independent testing results for small wind turbines (SWT). In total, four turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests performed on the turbines, including power performance, duration, noise, and power-quality tests. The results of the testing provide the manufacturers with reports that can be used for small wind turbine certification. The test equipment includes a Gaia-Wind 11-kW wind turbine mounted on an 18-m monopole tower. Gaia-Wind Ltd. manufactured the turbine in Denmark. The system was installed by the NWTC site operations group with guidance and assistance from Gaia-Wind.

  4. Wind turbine rotor aerodynamics : The IEA MEXICO rotor explained

    NARCIS (Netherlands)

    Zhang, Y.

    2017-01-01

    Wind turbines are operating under very complex and uncontrolled environmental conditions, including atmospheric turbulence, atmospheric boundary layer effects, directional and spatial variations in wind shear, etc. Over the past decades, the size of a commercial wind turbine has increased

  5. Wind Turbine Drivetrain Condition Monitoring - An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, S; Veers, P.

    2011-10-01

    This paper provides an overview of wind turbine drivetrain condition monitoring based on presentations from a condition monitoring workshop organized by the National Renewable Energy Laboratory in 2009 and on additional references.

  6. A Reinforced Blade for a Wind Turbine

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to a reinforced blade for a wind turbine having elongated reinforcing members in the blade extending substantially in the plane of the profile chord in order to strengthen the blade against edgewise and flapwise forces....

  7. Mobile measurement system for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Kildemoes Moeller, T.

    1997-06-01

    The aim of this project `Udviklingsafproevning af smaa moellevinger` has been to develop a mobile measurement system for wind turbines. The following report describes the measurement system. The project has been financed by the Danish Ministry of Energy. (au)

  8. Improved diffuser for augmenting a wind turbine

    Science.gov (United States)

    Foreman, K.M.; Gilbert, B.L.

    A diffuser for augmenting a wind turbine having means for energizing the boundary layer at several locations along the diffuser walls is improved by the addition of a short collar extending radially outward from the outlet of the diffuser.

  9. Fully vs. Sequentially Coupled Loads Analysis of Offshore Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Damiani, Rick; Wendt, Fabian; Musial, Walter; Finucane, Z.; Hulliger, L.; Chilka, S.; Dolan, D.; Cushing, J.; O' Connell, D.; Falk, S.

    2017-06-19

    The design and analysis methods for offshore wind turbines must consider the aerodynamic and hydrodynamic loads and response of the entire system (turbine, tower, substructure, and foundation) coupled to the turbine control system dynamics. Whereas a fully coupled (turbine and support structure) modeling approach is more rigorous, intellectual property concerns can preclude this approach. In fact, turbine control system algorithms and turbine properties are strictly guarded and often not shared. In many cases, a partially coupled analysis using separate tools and an exchange of reduced sets of data via sequential coupling may be necessary. In the sequentially coupled approach, the turbine and substructure designers will independently determine and exchange an abridged model of their respective subsystems to be used in their partners' dynamic simulations. Although the ability to achieve design optimization is sacrificed to some degree with a sequentially coupled analysis method, the central question here is whether this approach can deliver the required safety and how the differences in the results from the fully coupled method could affect the design. This work summarizes the scope and preliminary results of a study conducted for the Bureau of Safety and Environmental Enforcement aimed at quantifying differences between these approaches through aero-hydro-servo-elastic simulations of two offshore wind turbines on a monopile and jacket substructure.

  10. Power Electronics Converters for Wind Turbine Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Liserre, Marco; Ma, Ke

    2012-01-01

    The steady growth of installed wind power together with the upscaling of the single wind turbine power capability has pushed the research and development of power converters toward full-scale power conversion, lowered cost pr kW, increased power density, and also the need for higher reliability......, in the latter case with attention to series connection and parallel connection either electrical or magnetic ones (multiphase/windings machines/transformers). It is concluded that as the power level increases in wind turbines, medium-voltage power converters will be a dominant power converter configuration...

  11. Assessment of wind turbine load measurement instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Morfiadakis, E.; Papadopoulos, K. [CRES (Greece); Borg, N. van der [ECN, Petten (Netherlands); Petersen, S.M. [Risoe, Roskilde (Denmark); Seifert, H. [DEWI, Wilhelmshaven (Germany)

    1999-03-01

    In the framework of Sub-Task3 `Wind turbine load measurement instrumentation` of EU-project `European Wind Turbine Testing Procedure Development`, the load measurement techniques have been assessed by laboratory, full scale and numerical tests. The existing methods have been reviewed with emphasis on the strain gage application techniques on composite materials and recommendations are provided for the optimisation of load measurement techniques. (au) EU. 14 refs.

  12. Passively cooled direct drive wind turbine

    Science.gov (United States)

    Costin, Daniel P [Chelsea, VT

    2008-03-18

    A wind turbine is provided that passively cools an electrical generator. The wind turbine includes a plurality of fins arranged peripherally around a generator house. Each of the fins being oriented at an angle greater than zero degrees to allow parallel flow of air over the fin. The fin is further tapered to allow a constant portion of the fin to extend beyond the air stream boundary layer. Turbulence initiators on the nose cone further enhance heat transfer at the fins.

  13. A Detailed Study of the Rotational Augmentation and Dynamic Stall Phenomena for Wind Turbines

    DEFF Research Database (Denmark)

    Guntur, Srinivas

    . This thesis presents an investigation into these two phenomena, using data from the MEXICO and the NREL UAE Phase VI experiments, as well as data obtained from full rotor CFD computations carried out using the in-house flow solver Ellipsys3D. The experimental data, CFD data and that from some of the existing...... reduced order engineering models were analysed to understand rotational augmentation and dynamic stall from a modelling perspective. The first part of the analysis is concerned with steady state aerodynamics. Data from experiments and CFD were analysed in comparison with some of the existing rotational...... augmentation models, and the relative advantages of these models have been highlighted. The differences between separation characteristics on an airfoil in stationary vs. rotating conditions have not been clarified in the existing literature on this subject. Detailed flow field data obtained using full rotor...

  14. Modelling of a PMSG Wind Turbine with Autonomous Control

    Directory of Open Access Journals (Sweden)

    Chia-Nan Wang

    2014-01-01

    Full Text Available The aim of this research is to model an autonomous control wind turbine driven permanent magnetic synchronous generator (PMSG which feeds alternating current (AC power to the utility grid. Furthermore, this research also demonstrates the effects and the efficiency of PMSG wind turbine which is integrated by autonomous controllers. In order for well autonomous control, two voltage source inverters are used to control wind turbine connecting with the grid. The generator-side inverter is used to adjust the synchronous generator as well as separating the generator from the grid when necessary. The grid-side inverter controls the power flow between the direct current (DC bus and the AC side. Both of them are oriented control by space vector pulse width modulation (PWM with back-to-back frequency inverter. Moreover, the proportional-integral (PI controller is enhanced to control both of the inverters and the pitch angle of the wind turbine. Maximum power point tracking (MPPT is integrated in generator-side inverter to track the maximum power, when wind speed changes. The simulation results in Matlab Simulink 2012b showing the model have good dynamic and static performance. The maximum power can be tracked and the generator wind turbine can be operated with high efficiency.

  15. Maximum Output Power Tracking of Wind Turbine Using Intelligent Control

    OpenAIRE

    Mauridhi Hery Purnomo; Mochamad Ashari; Muldi Yuhendri

    2011-01-01

    The output power of wind turbine is determined by wind speed. The Output power can be adjusted by controlling the generator speed and pitch angle of wind turbine. When the wind speed below the wind turbine rated, the output power of generator can be maximized by controlling the generator speed at point of maximum power coefficient. When the wind speed above the wind turbine rated, output power of wind turbine will exceed the power generators rated. In this condition, the output power of wind ...

  16. Variability of the Wind Turbine Power Curve

    Directory of Open Access Journals (Sweden)

    Mahesh M. Bandi

    2016-09-01

    Full Text Available Wind turbine power curves are calibrated by turbine manufacturers under requirements stipulated by the International Electrotechnical Commission to provide a functional mapping between the mean wind speed v ¯ and the mean turbine power output P ¯ . Wind plant operators employ these power curves to estimate or forecast wind power generation under given wind conditions. However, it is general knowledge that wide variability exists in these mean calibration values. We first analyse how the standard deviation in wind speed σ v affects the mean P ¯ and the standard deviation σ P of wind power. We find that the magnitude of wind power fluctuations scales as the square of the mean wind speed. Using data from three planetary locations, we find that the wind speed standard deviation σ v systematically varies with mean wind speed v ¯ , and in some instances, follows a scaling of the form σ v = C × v ¯ α ; C being a constant and α a fractional power. We show that, when applicable, this scaling form provides a minimal parameter description of the power curve in terms of v ¯ alone. Wind data from different locations establishes that (in instances when this scaling exists the exponent α varies with location, owing to the influence of local environmental conditions on wind speed variability. Since manufacturer-calibrated power curves cannot account for variability influenced by local conditions, this variability translates to forecast uncertainty in power generation. We close with a proposal for operators to perform post-installation recalibration of their turbine power curves to account for the influence of local environmental factors on wind speed variability in order to reduce the uncertainty of wind power forecasts. Understanding the relationship between wind’s speed and its variability is likely to lead to lower costs for the integration of wind power into the electric grid.

  17. Computational aerodynamics and aeroacoustics for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Shen, W.Z.

    2009-10-15

    The present thesis consists of 19 selected papers dealing with the development and use of CFD methods for studying the aerodynamics and aero-acoustics of wind turbines. The papers are written in the period from 1997 to 2008 and numbered according to the list in page v. The work consists of two parts: an aerodynamic part based on Computational Fluid Dynamics and an aero-acoustic part based on Computational Aero Acoustics for wind turbines. The main objective of the research was to develop new computational tools and techniques for analysing flows about wind turbines. A few papers deal with applications of Blade Element Momentum (BEM) theory to wind turbines. In most cases the incompressible Navier-Stokes equations in primitive variables (velocity-pressure formulation) are employed as the basic governing equations. However, since fluid mechanical problems essentially are governed by vortex dynamics, it is sometimes advantageous to use the concept of vorticity (defined as the curl of velocity). In vorticity form the Navier-Stokes equations may be formulated in different ways, using a vorticity-stream function formulation, a vorticity-velocity formulation or a vorticity-potential-stream function formulation. In [1] - [3] two different vorticity formulations were developed for 2D and 3D wind turbine flows. In [4] and [5] numerical techniques for avoiding pressure oscillations were developed when solving the velocity-pressure coupling system in the in-house EllipSys2D/3D code. In [6] - [8] different actuator disc techniques combined with CFD are presented. This includes actuator disc, actuator line and actuator surface techniques, which were developed to simulate flows past one or more wind turbines. In [9] and [10] a tip loss correction method that improves the conventional models was developed for use in combination with BEM or actuator/Navier-Stokes computations. A simple and efficient technique for determining the angle of attack for flow past a wind turbine rotor

  18. Site-optimization of wind turbine generators

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, T.J. de; Thillerup, J. [Nordtank Energy Group, Richmond, VA (United States)

    1997-12-31

    The Danish Company Nordtank is one of the pioneers within the wind turbine industry. Since 1981 Nordtank has installed worldwide more than 2500 wind turbine generators with a total name plate capacity that is exceeding 450 MW. The opening up of new and widely divergent markets has demanded an extremely flexible approach towards wind turbine construction. The Nordtank product range has expanded considerable in recent years, with the main objective to develop wind energy conversion machines that can run profitable in any given case. This paper will describe site optimization of Nordtank wind turbines. Nordtank has developed a flexible design concept for its WTGs in the 500/750 kW range, in order to offer the optimal WTG solution for any given site and wind regime. Through this flexible design, the 500/750 turbine line can adjust the rotor diameter, tower height and many other components to optimally fit the turbine to each specific project. This design philosophy will be illustrated with some case histories of recently completed projects.

  19. The Effect of Blade Aeroelasticity and Turbine Parameters on Wind Turbine Noise

    OpenAIRE

    Wu, Daniel

    2017-01-01

    In recent years, the demand for wind energy has dramatically increased as well as the number and size of commercial wind turbines. These large turbines are loud and can cause annoyance to nearby communities. Therefore, the prediction of large wind turbine noise over long distances is critical. The wind turbine noise prediction is a very complex problem since it has to account for atmospheric conditions (wind and temperature), ground absorption, un-even terrain, turbine wake, and blade deforma...

  20. Modeling of the dynamics of wind to power conversion including high wind speed behavior

    DEFF Research Database (Denmark)

    Litong-Palima, Marisciel; Bjerge, Martin Huus; Cutululis, Nicolaos Antonio

    2016-01-01

    This paper proposes and validates an efficient, generic and computationally simple dynamic model for the conversion of the wind speed at hub height into the electrical power by a wind turbine. This proposed wind turbine model was developed as a first step to simulate wind power time series...... for power system studies. This paper focuses on describing and validating the single wind turbine model, and is therefore neither describing wind speed modeling nor aggregation of contributions from a whole wind farm or a power system area. The state-of-the-art is to use static power curves for the purpose...... of power system studies, but the idea of the proposed wind turbine model is to include the main dynamic effects in order to have a better representation of the fluctuations in the output power and of the fast power ramping especially because of high wind speed shutdowns of the wind turbine. The high wind...

  1. 3D CFD Analysis of a Vertical Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Andrea Alaimo

    2015-04-01

    Full Text Available To analyze the complex and unsteady aerodynamic flow associated with wind turbine functioning, computational fluid dynamics (CFD is an attractive and powerful method. In this work, the influence of different numerical aspects on the accuracy of simulating a rotating wind turbine is studied. In particular, the effects of mesh size and structure, time step and rotational velocity have been taken into account for simulation of different wind turbine geometries. The applicative goal of this study is the comparison of the performance between a straight blade vertical axis wind turbine and a helical blade one. Analyses are carried out through the use of computational fluid dynamic ANSYS® Fluent® software, solving the Reynolds averaged Navier–Stokes (RANS equations. At first, two-dimensional simulations are used in a preliminary setup of the numerical procedure and to compute approximated performance parameters, namely the torque, power, lift and drag coefficients. Then, three-dimensional simulations are carried out with the aim of an accurate determination of the differences in the complex aerodynamic flow associated with the straight and the helical blade turbines. Static and dynamic results are then reported for different values of rotational speed.

  2. Light Rotor: The 10-MW reference wind turbine

    DEFF Research Database (Denmark)

    Bak, Christian; Bitsche, Robert; Yde, Anders

    2012-01-01

    This paper describes the design of a rotor and a wind turbine for an artificial 10-MW wind turbine carried out in the Light Rotor project. The turbine called the Light Rotor 10-MW Reference Wind Turbine (LR10-MW RWT), is designed with existing methods and techniques and serves as a reference...

  3. Unsteady aerodynamic modelling of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Coton, F.N.; Galbraith, R.A. [Univ. og Glasgow, Dept. of Aerospace Engineering, Glasgow (United Kingdom)

    1997-08-01

    The following current and future work is discussed: Collaborative wind tunnel based PIV project to study wind turbine wake structures in head-on and yawed flow. Prescribed wake model has been embedded in a source panel representation of the wind tunnel walls to allow comparison with experiment; Modelling of tower shadow using high resolution but efficient vortex model in tower shadow domain; Extension of model to yawing flow; Upgrading and tuning of unsteady aerodynamic model for low speed, thick airfoil flows. Glasgow has a considerable collection of low speed dynamic stall data. Currently, the Leishman - Beddoes model is not ideally suited to such flows. For example: Range of stall onset criteria used for dynamic stall prediction including Beddoes. Wide variation of stall onset prediction. Beddoes representation was developed primarily with reference to compressible flows. Analyses of low speed data from Glasgow indicate deficiencies in the current model; Predicted versus measured response during ramp down motion. Modification of the Beddoes representation is required to obtain a fit with the measured data. (EG)

  4. Experimental and Numerical Study of the Aerodynamic Characteristics of an Archimedes Spiral Wind Turbine Blade

    OpenAIRE

    Kyung Chun Kim; Ho Seong Ji; Yoon Kee Kim; Qian Lu; Joon Ho Baek; Rinus Mieremet

    2014-01-01

    A new type of horizontal axis wind turbine adopting the Archimedes spiral blade is introduced for urban-use. Based on the angular momentum conservation law, the design formula for the blade was derived using a variety of shape factors. The aerodynamic characteristics and performance of the designed Archimedes wind turbine were examined using computational fluid dynamics (CFD) simulations. The CFD simulations showed that the new type of wind turbine produced a power coefficient (C p ) of appro...

  5. Numerical investigation of aerodynamic performance of darrieus wind turbine based on the magnus effect

    OpenAIRE

    L Khadir; H Mrad

    2016-01-01

    The use of several developmental approaches is the researchers’ major preoccupation with the DARRIEUS wind turbine. This paper presents the first approach and results of a wide computational investigation on the aerodynamics of a vertical axis DARRIEUS wind turbine based on the MAGNUS effect. Consequently, wind tunnel tests were carried out to ascertain overall performance of the turbine and two-dimensional unsteady computational fluid dynamics (CFD) models were generated to help understand t...

  6. Wind speed reductions by large-scale wind turbine deployments lower turbine efficiencies and set low generation limits.

    Science.gov (United States)

    Miller, Lee M; Kleidon, Axel

    2016-11-29

    Wind turbines generate electricity by removing kinetic energy from the atmosphere. Large numbers of wind turbines are likely to reduce wind speeds, which lowers estimates of electricity generation from what would be presumed from unaffected conditions. Here, we test how well wind power limits that account for this effect can be estimated without explicitly simulating atmospheric dynamics. We first use simulations with an atmospheric general circulation model (GCM) that explicitly simulates the effects of wind turbines to derive wind power limits (GCM estimate), and compare them to a simple approach derived from the climatological conditions without turbines [vertical kinetic energy (VKE) estimate]. On land, we find strong agreement between the VKE and GCM estimates with respect to electricity generation rates (0.32 and 0.37 We m(-2)) and wind speed reductions by 42 and 44%. Over ocean, the GCM estimate is about twice the VKE estimate (0.59 and 0.29 We m(-2)) and yet with comparable wind speed reductions (50 and 42%). We then show that this bias can be corrected by modifying the downward momentum flux to the surface. Thus, large-scale limits to wind power use can be derived from climatological conditions without explicitly simulating atmospheric dynamics. Consistent with the GCM simulations, the approach estimates that only comparatively few land areas are suitable to generate more than 1 We m(-2) of electricity and that larger deployment scales are likely to reduce the expected electricity generation rate of each turbine. We conclude that these atmospheric effects are relevant for planning the future expansion of wind power.

  7. Adaptive robust control of a class of non-affine variable-speed variable-pitch wind turbines with unmodeled dynamics.

    Science.gov (United States)

    Bagheri, Pedram; Sun, Qiao

    2016-07-01

    In this paper, a novel synthesis of Nussbaum-type functions, and an adaptive radial-basis function neural network is proposed to design controllers for variable-speed, variable-pitch wind turbines. Dynamic equations of the wind turbine are highly nonlinear, uncertain, and affected by unknown disturbance sources. Furthermore, the dynamic equations are non-affine with respect to the pitch angle, which is a control input. To address these problems, a Nussbaum-type function, along with a dynamic control law are adopted to resolve the non-affine nature of the equations. Moreover, an adaptive radial-basis function neural network is designed to approximate non-parametric uncertainties. Further, the closed-loop system is made robust to unknown disturbance sources, where no prior knowledge of disturbance bound is assumed in advance. Finally, the Lyapunov stability analysis is conducted to show the stability of the entire closed-loop system. In order to verify analytical results, a simulation is presented and the results are compared to both a PI and an existing adaptive controllers. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Investigating dynamic stall, 3-D and rotational effects on wind turbine blades by means of an unsteady quasi-3D Navier-Stokes solver

    Energy Technology Data Exchange (ETDEWEB)

    Chaviaropoulos, P.K. [CRES-Center for Renewable Energy Sources, Pikermi Attiki (Greece)

    1997-08-01

    The blade element codes provide surprisingly accurate predictions of the aerodynamic loads provided that they are `fed` with proper lift and drag - incidence curves for the profiles mounted on the rotor blades. The evident question is how one can obtain such data. It is common experience that the use of the mostly available steady two-dimensional profile data may lead to serious discrepancies between measured and simulated loads. Although several correction techniques have been proposed as a remedy during the last years, from simplified dynamic stall models suitably tuned for wind turbines to 3-D correction schemes for profile data, the problem is by no means over-passed. Especially for the three-dimensional effects it seems that part of the difficulty is due to our limited understanding of the physical mechanism which is responsible for the extra loading of the inner part of the blades. Recognizing the importance of the above aspects two relevant Joule projects have been launched, the concluded `Dynamic Stall and 3-D Effects` JOU2-CT93-0345 and the ongoing `VISCWIND` JOR3-CT95-0007 project. Part of the activities in the first and all the activities in the second project are devoted to the identification and quantification of the dynamic stall and three-dimensional effects experienced by the wind turbine blades using Navier-Stokes computations. The contribution of CRES in these two projects is briefly presented in this paper. (EG)

  9. Wind Farm Turbine Type and Placement Optimization

    Science.gov (United States)

    Graf, Peter; Dykes, Katherine; Scott, George; Fields, Jason; Lunacek, Monte; Quick, Julian; Rethore, Pierre-Elouan

    2016-09-01

    The layout of turbines in a wind farm is already a challenging nonlinear, nonconvex, nonlinearly constrained continuous global optimization problem. Here we begin to address the next generation of wind farm optimization problems by adding the complexity that there is more than one turbine type to choose from. The optimization becomes a nonlinear constrained mixed integer problem, which is a very difficult class of problems to solve. This document briefly summarizes the algorithm and code we have developed, the code validation steps we have performed, and the initial results for multi-turbine type and placement optimization (TTP_OPT) we have run.

  10. Analysis of counter-rotating wind turbines

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Zakkam, Vinod Arun Kumar; Sørensen, Jens Nørkær

    2007-01-01

    -Stokes code EllipSys3D. The analysis shows that the Annual Energy Production can be increased to about 43.5 %, as compared to a wind turbine with a single rotor. In order to determine the optimal settings of the CRWT turbine, parameters such as distance between two rotors and rotational speed have been......This paper presents a study on the performance of a wind turbine with two counter-rotating (CRWT) rotors. The characteristics of the two counter-rotating rotors are on a 3-bladed Nordtank 500 kW rotor. The analysis has been carried out by using an Actuator Line technique implemented in the Navier...

  11. Innovative multi rotor wind turbine designs

    Energy Technology Data Exchange (ETDEWEB)

    Kale, S.A.; Sapali, S.N. [College of Engineering. Mechanical Engineering Dept, Pune (India)

    2012-07-01

    Among the renewable energy sources, today wind energy is the most recognized and cost effective. Developers and researchers in this sector are optimistic and continuously working innovatively to improve the technology. The wind power obtained is proportional to the swept area of wind turbine. The swept area is increased by using a single rotor of large diameter or multi rotors in array. The rotor size is growing continuously with mature technology. Multi rotor technology has a long history and the multi rotor concept persists in a variety of modern innovative systems but the concept has fallen out of consideration in mainstream design from the perception that is complex and unnecessary as very large single rotor units are now technically feasible. This work addresses the evaluation of different multi rotor wind turbine systems. These innovative wind turbines are evaluated on the basis of feasibility, technological advantages, security of expected power performance, cost, reliability, impact of innovative system, comparison with existing wind turbine design. The findings of this work will provide guidelines for the practical and economical ways for further research on the multi rotor wind turbines. (Author)

  12. Jet spoiler arrangement for wind turbine

    Science.gov (United States)

    Cyrus, J. D.; Kablec, E. G.; Klimas, P. C.

    1983-09-01

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the end thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby including stal conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  13. Infrasound emission generated by wind turbines

    Science.gov (United States)

    Ceranna, Lars; Pilger, Christoph

    2014-05-01

    Aerodynamic noise emissions from the continuously growing number of wind turbines in Germany are creating increasing problems for infrasound recording systems. Such systems are equipped with highly sensitive micro pressure sensors, which are accurately measuring acoustic signals in a frequency range inaudible to humans. At infrasound station IGADE, north of Bremen, a constantly increasing background noise has been observed throughout the years since its installation in 2005. The spectral peaks are reflecting well the blade passing harmonics, which vary with prevailing wind speeds. Overall, a decrease is noted for the infrasound array's detection capability. This aspect is particularly important for the other two sites of the German infrasound stations I26DE in the Bavarian Forest and I27DE in Antarctica, because plans for installing wind turbines near these locations are being under discussion. These stations are part of the International Monitoring System (IMS) verifying compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT), and have to meet stringent specifications with respect to infrasonic background noise. Therefore data obtained during a field experiment with mobile micro-barometer stations for measuring the infrasonic pressure level of a single horizontal-axis wind turbine have been revisited. The results of this experiment successfully validate a theoretical model which estimates the generated sound pressure level of wind turbines and makes it possible to specify the minimum allowable distance between wind turbines and infrasound stations for undisturbed recording. Since the theoretical model also takes wind turbine design parameters into account, suitable locations for planned infrasound stations outside the determined disturbance range can be found, which will be presented; and vice versa, the model calculations' results for fixing the minimum distance for wind turbines planned for installation in the vicinity of an existing infrasound array.

  14. Wind farm performance - Power Analysis of a wind turbine

    OpenAIRE

    Esquinas Herrera, Alejandro

    2016-01-01

    Wind conditions from a wind farm situated in Ørland were analyzed based on a ten minute measurements in order to obtain the power and efficiency curves. The results from the analysis were compared with different curves provided from the company Vestas and with theoretical terms. Moreover, it was shown how is affected the power curve of the wind turbine by the wake effect of the other turbines. The different ways of plotting these curves based on wind speed either from the anemometer of the wi...

  15. Gravo-Aeroelastic Scaling for Extreme-Scale Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Fingersh, Lee J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Loth, Eric [University of Virginia; Kaminski, Meghan [University of Virginia; Qin, Chao [University of Virginia; Griffith, D. Todd [Sandia National Laboratories

    2017-06-09

    A scaling methodology is described in the present paper for extreme-scale wind turbines (rated at 10 MW or more) that allow their sub-scale turbines to capture their key blade dynamics and aeroelastic deflections. For extreme-scale turbines, such deflections and dynamics can be substantial and are primarily driven by centrifugal, thrust and gravity forces as well as the net torque. Each of these are in turn a function of various wind conditions, including turbulence levels that cause shear, veer, and gust loads. The 13.2 MW rated SNL100-03 rotor design, having a blade length of 100-meters, is herein scaled to the CART3 wind turbine at NREL using 25% geometric scaling and blade mass and wind speed scaled by gravo-aeroelastic constraints. In order to mimic the ultralight structure on the advanced concept extreme-scale design the scaling results indicate that the gravo-aeroelastically scaled blades for the CART3 are be three times lighter and 25% longer than the current CART3 blades. A benefit of this scaling approach is that the scaled wind speeds needed for testing are reduced (in this case by a factor of two), allowing testing under extreme gust conditions to be much more easily achieved. Most importantly, this scaling approach can investigate extreme-scale concepts including dynamic behaviors and aeroelastic deflections (including flutter) at an extremely small fraction of the full-scale cost.

  16. Optimal control of wind turbines in a turbulent boundary layer

    Science.gov (United States)

    Yilmaz, Ali Emre; Meyers, Johan

    2016-11-01

    In recent years, optimal control theory was combined with large-eddy simulations to study the optimal control of wind farms and their interaction with the atmospheric boundary layer. The individual turbine's induction factors were dynamically controlled in time with the aim of increasing overall power extraction. In these studies, wind turbines were represented using an actuator disk method. In the current work, we focus on optimal control on a much finer mesh (and a smaller computational domain), representing turbines with an actuator line method. Similar to Refs., optimization is performed using a gradient-based method, and gradients are obtained employing an adjoint formulation. Different cases are investigated, that include a single and a double turbine case both with uniform inflow, and with turbulent-boundary-layer inflow. The authors acknowledge support from the European Research Council (FP7-Ideas, Grant No. 306471).

  17. RELIABILITY OF MACHINE ELEMENTS IN WIND TURBINES

    Directory of Open Access Journals (Sweden)

    Willi GRUENDER

    2010-06-01

    Full Text Available Worldwide electrical energy production generated by wind turbines grows at a rate of 30 percent. This doubles the total production every three years. At the same time the power of individual stations goes up by 20 percent annually. Whereas today the towers, rotors and drive trains have to handle 5 MW, in about six to eight years they might produce up to fifteen MW. As a consequence, enormous pressure is put on the wind turbine manufacturers, the component suppliers and the operators. And because prototype and field testing is limited by its expense, the design of new turbines demands thorough analysis and simulation. Looking at the critical components of a wind turbine this paper describes advanced design tools which help to anticipate failures, but also assists in optimizing reliability and service life. Development of the software tools has been supported by research activities in many universities.

  18. New Urban Vertical Axis Wind Turbine Design

    Directory of Open Access Journals (Sweden)

    Alexandru-Mihai CISMILIANU

    2015-12-01

    Full Text Available This paper develops a different approach for enhancing the performance of Vertical Axis Wind Turbines for the use in the urban or rural environment and remote isolated residential areas. Recently the vertical axis wind turbines (VAWT have become more attractive due to the major advantages of this type of turbines in comparison to the horizontal axis wind turbines. We aim to enhance the overall performance of the VAWT by adding a second set of blades (3 x 2=6 blades following the rules of biplane airplanes. The model has been made to operate at a maximum power in the range of the TSR between 2 to 2.5. The performances of the VAWT were investigated numerically and experimentally and justify the new proposed design.

  19. Wind turbine remote control using Android devices

    Science.gov (United States)

    Rat, C. L.; Panoiu, M.

    2018-01-01

    This paper describes the remote control of a wind turbine system over the internet using an Android device, namely a tablet or a smartphone. The wind turbine workstation contains a LabVIEW program which monitors the entire wind turbine energy conversion system (WECS). The Android device connects to the LabVIEW application, working as a remote interface to the wind turbine. The communication between the devices needs to be secured because it takes place over the internet. Hence, the data are encrypted before being sent through the network. The scope was the design of remote control software capable of visualizing real-time wind turbine data through a secure connection. Since the WECS is fully automated and no full-time human operator exists, unattended access to the turbine workstation is needed. Therefore the device must not require any confirmation or permission from the computer operator in order to control it. Another condition is that Android application does not have any root requirements.

  20. Wind Turbine Controller to Mitigate Structural Loads on a Floating Wind Turbine Platform

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Paul A.; Peiffer, Antoine; Schlipf, David

    2016-06-24

    This paper summarizes the control design work that was performed to optimize the controller of a wind turbine on the WindFloat structure. The WindFloat is a semi-submersible floating platform designed to be a support structure for a multi-megawatt power-generating wind turbine. A controller developed for a bottom-fixed wind turbine configuration was modified for use when the turbine is mounted on the WindFloat platform. This results in an efficient platform heel resonance mitigation scheme. In addition several control modules, designed with a coupled linear model, were added to the fixed-bottom baseline controller. The approach was tested in a fully coupled nonlinear aero-hydroelastic simulation tool in which wind and wave disturbances were modeled. This testing yielded significant improvements in platform global performance and tower-base-bending loading.

  1. CFD and Wind Tunnel Analysis for Mounted-Wind Turbine in a Tall Building for Power Generation

    Directory of Open Access Journals (Sweden)

    Dany Perwita Sari

    2014-07-01

    Full Text Available A mounted wind turbine on the top of a tall building may provide high wind power in regions of high wind speed and low turbulence. The objective of this study is to evaluate wind speed on roof top models to optimize the wind turbine performance for power generation. Comparative analyses from three different roof top models were conducted. Computational Fluid Dynamics (CFD simulation and wind tunnel testing were performed to evaluate the performance of wind turbine. Wind speed on the building model with a geometric scale of 1:150 was measured in CFD simulation then it was validated in wind tunnel test. Results presented in this paper suggest that an increase of wind speed could be achieved with ¼ circular shapes around the rooftop which can provide additional wind speed of 55.24%, respectively.

  2. Detection of Damage in Operating Wind Turbines by Signature Distances

    Directory of Open Access Journals (Sweden)

    James F. Manwell

    2013-01-01

    Full Text Available Wind turbines operate in the atmospheric boundary layer and are subject to complex random loading. This precludes using a deterministic response of healthy turbines as the baseline for identifying the effect of damage on the measured response of operating turbines. In the absence of such a deterministic response, the stochastic dynamic response of the tower to a shutdown maneuver is found to be affected distinctively by damage in contrast to wind. Such a dynamic response, however, cannot be established for the blades. As an alternative, the estimate of blade damage is sought through its effect on the third or fourth modal frequency, each found to be mostly unaffected by wind. To discern the effect of damage from the wind effect on these responses, a unified method of damage detection is introduced that accommodates different responses. In this method, the dynamic responses are transformed to surfaces via continuous wavelet transforms to accentuate the effect of wind or damage on the dynamic response. Regions of significant deviations between these surfaces are then isolated in their corresponding planes to capture the change signatures. The image distances between these change signatures are shown to produce consistent estimates of damage for both the tower and the blades in presence of varying wind field profiles.

  3. Investigations of a building-integrated ducted wind turbine module

    Science.gov (United States)

    Dannecker, Robert K. W.; Grant, Andrew D.

    2002-01-01

    So far, wind energy has not played a major role in the group of technologies for embedded generation in the built environment. However, the wind flow around conventional tall buildings generates differential pressures, which may cause an enhanced mass flow through a building-integrated turbine. As a first step, a prototype of a small-scale ducted wind turbine has been developed and tested, which seems to be feasible for integration into the leading roof edge of such a building. Here an experimental and numerical investigation of the flow through building-integrated ducting is presented. Pressure and wind speed measurements have been carried out on a wind tunnel model at different angles of incident wind, and different duct configurations have been tested. It was confirmed that wind speeds up to 30% higher than in the approaching freestream may be induced in the duct, and good performance was obtained for angles of incident wind up to ±60°. The experimental work proceeded in parallel with computational fluid dynamics (CFD) modelling. The geometry of the system was difficult to represent to the required level of accuracy, and modelling was restricted to a few simple cases, for which the flow field in the building-integrated duct was compared with experimental results. Generally good agreement was obtained, indicating that CFD techniques could play a major role in the design process. Predicted power of the proposed device suggests that it will compare favourably with conventional small wind turbines and photovoltaics in an urban environment.

  4. Field verification program for small wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Windward Engineering, LLC

    2003-11-30

    In 1999 Windward Engineering (Windward) was awarded a Cooperative Agreement under the Field Verification Program with the Department of Energy (DOE) to install two Whisper H40 wind turbines, one at the NREL National Wind Technology Center (NWTC) and one at a test site near Spanish Fork, Utah. After installation, the turbine at the NWTC was to be operated, maintained, and monitored by NREL while the turbine in Spanish Fork was to be administered by Windward. Under this award DOE and Windward defined the primary objectives of the project as follows: (1) Determine and demonstrate the reliability and energy production of a furling wind turbine at a site where furling will be a very frequent event and extreme gusts can be expected during the duration of the tests. (2) Make engineering measurements and conduct limited computer modeling of the furling behavior to improve the industry understanding of the mechanics and nature of furling. We believe the project has achieved these objectives. The turbine has operated for approximately three and a half years. We have collected detailed engineering data approximately 75 percent of that time. Some of these data were used in an ADAMS model validation that highlighted the accuracies and inaccuracies of the computer modeling for a passively furling wind turbine. We also presented three papers at the American Wind Energy Association (AWEA) Windpower conferences in 2001, 2002, and 2003. These papers addressed the following three topics: (a) general overview of the project [1], (b) furling operation during extreme wind events [2], and (c) extrapolation of extreme (design) loads [3]. We believe these papers have given new insight into the mechanics and nature of furling and have set the stage for future research. In this final report we will highlight some of the more interesting aspects of the project as well as summarize the data for the entire project. We will also present information on the installation of the turbines as well as

  5. Small-Signal Stability of Wind Power System With Full-Load Converter Interfaced Wind Turbines

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Nielsen, Jørgen Nygaard; Jensen, Kim Høj

    2012-01-01

    . The WT is, furthermore, equipped with a park level WPP voltage controller and comparisons are presented. The WT model for this work is a validated dynamic model of the 3.6 MW Siemens Wind Power WT. The study is based on modal analysis which is complemented with time domain simulations on the nonlinear......Small-signal stability analysis of power system oscillations is a well established field within power system analysis, but not much attention has yet been paid to systems with a high penetration of wind turbines and with large wind power plants (WPP). In this paper a comprehensive analysis...... is presented which assesses the impact of full-load converter interfaced wind turbines on power system small-signal stability. The study is based on a 7 generator network with lightly damped inter-area modes. A detailed wind turbine (WT) model with all grid relevant control functions is used in the study...

  6. Power electronics converters for wind turbine systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Liserre, Marco; Ma, Ke

    2011-01-01

    The steady growth of installed wind power which reached 200 GW capacity in 2010, together with the up-scaling of the single wind turbine power capability - 7 MW’s has been announced by manufacturers - has pushed the research and development of power converters towards full scale power conversion,...

  7. Flow separation on wind turbines blades

    NARCIS (Netherlands)

    Corten, G.P.

    2001-01-01

    In the year 2000, 15GW of wind power was installed throughout the world, producing 100PJ of energy annually. This contributes to the total electricity demand by only 0.2%. Both the installed power and the generated energy are increasing by 30% per year world-wide. If the airflow over wind turbine

  8. Tjæreborg Wind Turbine

    DEFF Research Database (Denmark)

    Øye, Stig

    1991-01-01

    This paper presents results from the fourth measurement camapign at the Tjæreborg (Tjaereborg) WInd Turbine during operation with stepwise pitch angle changes. The measurements cover one hour of operation at wind speeds between 7 and 10 m/s aceraging approximately 8.7 m/s....

  9. A Numerical Model for a Floating TLP Wind Turbine

    DEFF Research Database (Denmark)

    Kumari Ramachandran, Gireesh Kumar Vasanta

    A numerical model is developed for a TLP configuration of a floating offshore wind turbine. The platform dynamics and hydrodynamic forces are derived and implemented in an advanced aero-elastic code, Flex5, to compute the hydro-aero-servo-elastic loads and responses on the floater and the wind...... turbine. This is achieved through three steps. In the first step, an independent 2D code with fourteen degrees of freedom (DOFs) is developed and the responses are verified for load cases concerning steady and spatially coherent turbulent wind with regular and irregular waves. In the second step, the 2D...... irregular waves. In addition, the effect of wind-wave misalignment is investigated. Further, in the third step, the 3D platform dynamics and wave loading are implemented into Flex5, resulting in a fully coupled hydro-aero-servo-elastic code. The implementation is tested to make the model reliable and robust...

  10. H∞ Based Control for Load Mitigation in Wind Turbines

    Directory of Open Access Journals (Sweden)

    Aron Pujana-Arrese

    2012-04-01

    Full Text Available This article demonstrates a strategy to design multivariable and multi-objective controllers based on the H∞ norm reduction applied to a wind turbine. The wind turbine model has been developed in the GH Bladed software and it is based on a 5 MW wind turbine defined in the Upwind European project. The designed control strategy works in the above rated power production zone and performs generator speed control and load reduction on the drive train and tower. In order to do this, two robust H∞ MISO (Multi-Input Single-Output controllers have been developed. These controllers generate collective pitch angle and generator torque set-point values to achieve the imposed control objectives. Linear models obtained in GH Bladed 4.0 are used, but the control design methodology can be used with linear models obtained from any other modelling package. Controllers are designed by setting out a mixed sensitivity problem, where some notch filters are also included in the controller dynamics. The obtained H∞ controllers have been validated in GH Bladed and an exhaustive analysis has been carried out to calculate fatigue load reduction on wind turbine components, as well as to analyze load mitigation in some extreme cases. The analysis compares the proposed control strategy based on H∞ controllers to a baseline control strategy designed using the classical control methods implemented on the present wind turbines.

  11. Safety Evaluation of a Hybrid Substructure for Offshore Wind Turbine

    Directory of Open Access Journals (Sweden)

    Min-Su Park

    2016-01-01

    Full Text Available Towers and rotor-nacelles are being enlarged to respond to the need for higher gross generation of the wind turbines. However, the accompanying enlargement of the substructure supporting these larger offshore wind turbines makes it strongly influenced by the effect of wave forces. In the present study, the hybrid substructure is suggested to reduce the wave forces by composing a multicylinder having different radii near free surface and a gravity substructure at the bottom of the multicylinder. In addition, the reaction forces acting on the substructure due to the very large dead load of the offshore wind turbine require very firm foundations. This implies that the dynamic pile-soil interaction has to be fully considered. Therefore, ENSOFT Group V7.0 is used to calculate the stiffness matrices on the pile-soil interaction conditions. These matrices are then used together with the loads at TP (Transition Piece obtained from GH-Bladed for the structural analysis of the hybrid substructure by ANSYS ASAS. The structural strength and deformation are evaluated to derive an ultimate structural safety of the hybrid substructure for various soil conditions and show that the first few natural frequencies of the substructure are heavily influenced by the wind turbine. Therefore, modal analysis is carried out through GH-Bladed to examine the resonance between the wind turbine and the hybrid substructure.

  12. Frequency based Wind Turbine Gearbox Fault Detection applied to a 750 kW Wind Turbine

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Nejad, Amir R.

    2014-01-01

    turbines. One of the critical components in modern wind turbines is the gearbox. Failures in the gearbox are costly both due to the cost of the gearbox itself, but also due to lost power generation during repair of it. Wind turbine gearboxes are consequently monitored by condition monitoring systems...... operating in parallel with the control system, and also uses additional sensors measuring different accelerations and noises, etc. In this paper gearbox data from high fidelity gearbox model of a 750 kW wind turbine gearbox, simulated with and without faults are used to shown the potential of frequency...... based detection schemes applied on measurements normally available in a wind controller system. This paper shows that two given faults in the gearbox can be detected using a frequency based detection approach applied to sensor signals normally available in the wind turbine control system. This means...

  13. CFD Analysis On The Performance Of Wind Turbine With Nozzles

    OpenAIRE

    Chunkyraj Kh; C. D. Hampali; Anand S. N.

    2015-01-01

    In this paper an effort has been made in dealing with fluid characteristic that enters a converging nozzle and analysis of the nozzle is carried out using Computational Fluid Dynamics package ANSYS WORKBENCH 14.5. The paper is the continuation of earlier work Analytical and Experimental performance evaluation of Wind turbine with Nozzles. First the CFD analysis will be carried out on nozzle in-front of wind turbine where streamline velocity at the exit volume flow rate in the nozzle and press...

  14. Development of CFD-based icing model for wind turbines

    DEFF Research Database (Denmark)

    Pedersen, Marie Cecilie; Martinez, Benjamin; Yin, Chungen

    2015-01-01

    Operation of wind turbines in cold climate areas is challenged by icing-induced problems, such as loss of production, safety issues and blade fatique. Production losses are especially a big issue in Sweden, and due to difficulties with on-site measurements, simulations are often used to get...... an understanding and to predict icing events. In this paper a case study of modeling icing using Computational Fluid Dynamics (CFD) is proposed. The case study aims to form the basic of a general CFD model for icing on wind turbine blade sections....

  15. Bayesian Estimation of Remaining Useful Life for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Nielsen, Jannie Sønderkær; Sørensen, John Dalsgaard

    2017-01-01

    To optimally plan maintenance of wind turbine blades, knowledge of the degradation processes and the remaining useful life is essential. In this paper, a method is proposed for calibration of a Markov deterioration model based on past inspection data for a range of blades, and updating of the model...... for a specific wind turbine blade, whenever information is available from inspections and/or condition monitoring. Dynamic Bayesian networks are used to obtain probabilities of inspection outcomes for a maximum likelihood estimation of the transition probabilities in the Markov model, and are used again when...

  16. Predicting Faults in Wind Turbines Using SCADA Data

    DEFF Research Database (Denmark)

    Borchersen, Anders Bech; Larsen, Jesper Abildgaard; Stoustrup, Jakob

    2013-01-01

    The cost of operation and maintenance of wind turbines is a significant part of the overall cost of wind turbines. To reduce this cost a method for enabling early fault detection is proposed and tested in this paper. The method is taking advantage of the fact that wind turbines in wind farms are ...

  17. Power Electronics as key technology in wind turbines

    DEFF Research Database (Denmark)

    Blaabjerg, Frede

    2005-01-01

    This paper discuss the development in wind turbines in a two-decade perspective looking at the technology based on track records. Different power electronic topologies for interfacing the wind turbine to the grid are discussed and related to the possibility for the wind turbine to act as a power...... source. Finally, future challenges in the wind energy field are discussed....

  18. Structural Reliability Aspects in Design of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2007-01-01

    Reliability assessment, optimal design and optimal operation and maintenance of wind turbines are an area of significant interest for the fast growing wind turbine industry for sustainable production of energy. Offshore wind turbines in wind farms give special problems due to wake effects inside ...

  19. Vortex system studies on small wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Montgomerie, Bjoern; Dahlberg, Jan-Aake [Swedish Defence Research Agency, Stockholm (Sweden). Div. of Aeronautics, FFA

    2003-10-01

    The wind tunnel experiment reported included a small wind turbine setup and smoke to visualize the trailing tip vortices for different wind turbine configurations. Several combinations of tunnel wind speeds and tip speed ratios generated a database where the end result functions were radius and pitch, of the tip vortex spirals, versus the downstream coordinate. The Reynolds number in the experiment was very low compared to that of full size turbines. The results should therefore be seen as valid only for low Reynolds numbers. The models were 18 and 25 cm diameter turbines. This is thought to be complementary to the information obtained in similar wind tunnel investigations for much larger models. The database is meant to be a fundamental tool for the construction of practical aerodynamic induction methods. Such methods typically employ the Biot-Savart law has been shown to lead to a flow field, which deviates considerably from that of reality. E.g. concentration into tip vortices does not happen when the flow is simulated with Biot-Savart law only. Thus, a combination of the induction method and its modification, based on investigations such as the one reported, is foreseen to replace the widely used Blade Element Momentum method for wind turbine loads and performance prediction.

  20. Optimal, reliability-based turbine placement in off-shore wind turbine parks

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2007-01-01

    Offshore wind turbines for electricity production placed in wind farms are expected to be of one of the major future contributors for sustainable energy production. In this paper some of the problems associated with optimal planning and design of wind turbine parks are addressed. The number of wind...... turbines in a park is usually restricted to be placed within a fixed, limited geographical area. Behind a wind turbine a wake is formed where the mean wind speed decreases and the turbulence intensity increases. The distance between the turbines is among other things dependent on the recovery of wind...... energy behind the neighboring turbines and the increased wind load. Models for the mean wind speed and turbulence intensity in wind turbine parks are considered with emphasis on modeling the spatial correlation. Representative limit state equations for structural failure of wind turbine towers...

  1. Fatigue Reliability of Offshore Wind Turbine Systems

    DEFF Research Database (Denmark)

    Marquez-Dominguez, Sergio; Sørensen, John Dalsgaard

    2012-01-01

    Optimization of the design of offshore wind turbine substructures with respect to fatigue loads is an important issue in offshore wind energy. A stochastic model is developed for assessing the fatigue failure reliability. This model can be used for direct probabilistic design and for calibration...... of appropriate partial safety factors / fatigue design factors (FDF) for steel substructures of offshore wind turbines (OWTs). The fatigue life is modeled by the SN approach. Design and limit state equations are established based on the accumulated fatigue damage. The acceptable reliability level for optimal...

  2. Variable diameter wind turbine rotor blades

    Science.gov (United States)

    Jamieson, Peter McKeich; Hornzee-Jones, Chris; Moroz, Emilian M.; Blakemore, Ralph W.

    2005-12-06

    A system and method for changing wind turbine rotor diameters to meet changing wind speeds and control system loads is disclosed. The rotor blades on the wind turbine are able to adjust length by extensions nested within or containing the base blade. The blades can have more than one extension in a variety of configurations. A cable winching system, a hydraulic system, a pneumatic system, inflatable or elastic extensions, and a spring-loaded jack knife deployment are some of the methods of adjustment. The extension is also protected from lightning by a grounding system.

  3. Wind turbine wake measurement in complex terrain

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Larsen, Gunner Chr.; Menke, Robert

    2016-01-01

    SCADA data from a wind farm and high frequency time series measurements obtained with remote scanning systems have been analysed with focus on identification of wind turbine wake properties in complex terrain. The analysis indicates that within the flow regime characterized by medium to large...... downstream distances (more than 5 diameters) from the wake generating turbine, the wake changes according to local atmospheric conditions e.g. vertical wind speed. In very complex terrain the wake effects are often “overruled” by distortion effects due to the terrain complexity or topology....

  4. Adaptive neuro-fuzzy methodology for noise assessment of wind turbine.

    Directory of Open Access Journals (Sweden)

    Shahaboddin Shamshirband

    Full Text Available Wind turbine noise is one of the major obstacles for the widespread use of wind energy. Noise tone can greatly increase the annoyance factor and the negative impact on human health. Noise annoyance caused by wind turbines has become an emerging problem in recent years, due to the rapid increase in number of wind turbines, triggered by sustainable energy goals set forward at the national and international level. Up to now, not all aspects of the generation, propagation and perception of wind turbine noise are well understood. For a modern large wind turbine, aerodynamic noise from the blades is generally considered to be the dominant noise source, provided that mechanical noise is adequately eliminated. The sources of aerodynamic noise can be divided into tonal noise, inflow turbulence noise, and airfoil self-noise. Many analytical and experimental acoustical studies performed the wind turbines. Since the wind turbine noise level analyzing by numerical methods or computational fluid dynamics (CFD could be very challenging and time consuming, soft computing techniques are preferred. To estimate noise level of wind turbine, this paper constructed a process which simulates the wind turbine noise levels in regard to wind speed and sound frequency with adaptive neuro-fuzzy inference system (ANFIS. This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.

  5. Adaptive Neuro-Fuzzy Methodology for Noise Assessment of Wind Turbine

    Science.gov (United States)

    Shamshirband, Shahaboddin; Petković, Dalibor; Hashim, Roslan; Motamedi, Shervin

    2014-01-01

    Wind turbine noise is one of the major obstacles for the widespread use of wind energy. Noise tone can greatly increase the annoyance factor and the negative impact on human health. Noise annoyance caused by wind turbines has become an emerging problem in recent years, due to the rapid increase in number of wind turbines, triggered by sustainable energy goals set forward at the national and international level. Up to now, not all aspects of the generation, propagation and perception of wind turbine noise are well understood. For a modern large wind turbine, aerodynamic noise from the blades is generally considered to be the dominant noise source, provided that mechanical noise is adequately eliminated. The sources of aerodynamic noise can be divided into tonal noise, inflow turbulence noise, and airfoil self-noise. Many analytical and experimental acoustical studies performed the wind turbines. Since the wind turbine noise level analyzing by numerical methods or computational fluid dynamics (CFD) could be very challenging and time consuming, soft computing techniques are preferred. To estimate noise level of wind turbine, this paper constructed a process which simulates the wind turbine noise levels in regard to wind speed and sound frequency with adaptive neuro-fuzzy inference system (ANFIS). This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method. PMID:25075621

  6. Adaptive neuro-fuzzy methodology for noise assessment of wind turbine.

    Science.gov (United States)

    Shamshirband, Shahaboddin; Petković, Dalibor; Hashim, Roslan; Motamedi, Shervin

    2014-01-01

    Wind turbine noise is one of the major obstacles for the widespread use of wind energy. Noise tone can greatly increase the annoyance factor and the negative impact on human health. Noise annoyance caused by wind turbines has become an emerging problem in recent years, due to the rapid increase in number of wind turbines, triggered by sustainable energy goals set forward at the national and international level. Up to now, not all aspects of the generation, propagation and perception of wind turbine noise are well understood. For a modern large wind turbine, aerodynamic noise from the blades is generally considered to be the dominant noise source, provided that mechanical noise is adequately eliminated. The sources of aerodynamic noise can be divided into tonal noise, inflow turbulence noise, and airfoil self-noise. Many analytical and experimental acoustical studies performed the wind turbines. Since the wind turbine noise level analyzing by numerical methods or computational fluid dynamics (CFD) could be very challenging and time consuming, soft computing techniques are preferred. To estimate noise level of wind turbine, this paper constructed a process which simulates the wind turbine noise levels in regard to wind speed and sound frequency with adaptive neuro-fuzzy inference system (ANFIS). This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.

  7. Evaluation of RCAS Inflow Models for Wind Turbine Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tangler, J.; Bir, G.

    2004-02-01

    The finite element structural modeling in the Rotorcraft Comprehensive Analysis System (RCAS) provides a state-of-the-art approach to aeroelastic analysis. This, coupled with its ability to model all turbine components, results in a methodology that can simulate complex system interactions characteristic of large wind. In addition, RCAS is uniquely capable of modeling advanced control algorithms and the resulting dynamic responses.

  8. Aerodynamic investigation of winglets on wind turbine blades using CFD

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Sørensen, Niels N.

    2006-01-01

    The present report describes the numerical investigation of the aerodynamics around a wind turbine blade with a winglet using Computational Fluid Dynamics, CFD. Five winglets were investigated with different twist distribution and camber. Four of them were pointing towards the pressure side...

  9. A Floating Offshore Wind Turbine in Extreme Wave Conditions

    DEFF Research Database (Denmark)

    Wehmeyer, Christof

    on the different crest front steepness values of the single wave, which is embedded in the nonlinear irregular background sea state. It was concluded that the embedded wave approach provided a controlled and time efficient engineering tool also for the floating offshore wind turbine generators.......The PhD work evaluated the performance of engineering procedures, used in the design of bottom fixed offshore wind turbines, for the hydrodynamic ULS analysis of a FOWT tension leg platform (TLP). Dynamically sensitive topsides have been included and water depths were considered, where wave shapes...... and peak enhancement factors, based on cyclonic storm conditions (Wehmeyer et al., 2012). 2. Based on Wehmeyer et al. (2012), a physical model test campaign was drafted, where an industry inspired floating offshore wind turbine was tested (Wehmeyer et al., 2013). 3. A comparison of measured pitch responses...

  10. Wind Turbine Micropitting Workshop: A Recap

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, S.

    2010-02-01

    Micropitting is a Hertzian fatigue phenomenon that affects many wind turbine gearboxes, and it affects the reliability of the machines. With the major growth and increasing dependency on renewable energy, mechanical reliability is an extremely important issue. The U.S. Department of Energy has made a commitment to improving wind turbine reliability and the National Renewable Energy Laboratory (NREL) has started a gearbox reliability project. Micropitting as an issue that needed attention came to light through this effort. To understand the background of work that had already been accomplished, and to consolidate some level of collective understanding of the issue by acknowledged experts, NREL hosted a wind turbine micropitting workshop, which was held at the National Wind Technology Center in Boulder, Colorado, on April 15 and 16, 2009.

  11. Virtual inertia for variable speed wind turbines

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Rudolph, Andreas Jakob; Münster-Swendsen, Janus

    2013-01-01

    Inertia provision for frequency control is among the ancillary services that different national grid codes will likely require to be provided by future wind turbines. The aim of this paper is analysing how the inertia response support from a variable speed wind turbine (VSWT) to the primary...... frequency control of a power system can be enhanced. Unlike fixed speed wind turbines, VSWTs do not inherently contribute to system inertia, as they are decoupled from the power system through electronic converters. Emphasis in this paper is on how to emulate VSWTs inertia using control of the power...... power with wind is also assessed and investigated. The intrinsic problems related to the implementation of virtual inertia are illustrated, addressing their origin in the action of pitch and power control. A solution is proposed, which aims at obtaining the same response as for the system with only...

  12. Diagnosis of wind turbine rotor system

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Mirzaei, Mahmood; Henriksen, Lars Christian

    2016-01-01

    is based on available standard sensors on wind turbines. The method can be used both on-line as well as off-line. Faults or changes in the rotor system will result in asymmetries, which can be monitored and diagnosed. This can be done by using the multi-blade coordinate transformation. Changes in the rotor......This paper describes a model free method for monitoring and fault diagnosis of the elements in a rotor system for a wind turbine. The diagnosis as well as the monitoring is done without using any model of the wind turbine and the applied controller or a description of the wind profile. The method...... system that can be diagnosed and monitored are: actuator faults, sensor faults and internal blade changes as e.g. change in mass of a blade....

  13. Development of superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Mijatovic, Nenad; Abrahamsen, Asger Bech

    2013-01-01

    In this paper, the commercial activities in the field of superconducting machines, particularly superconducting wind turbine generators, are reviewed and presented. Superconducting generators have the potential to provide a compact and light weight drive train at high torques and slow rotational...... speeds, because high magnetic fields can be produced by coils with very little loss. Three different superconducting wind turbine generator topologies have been proposed by three different companies. One is based on low temperature superconductors; one is based on high temperature superconductors...... and production volumes prohibit a large scale impact on the wind sector. The low temperature superconductors are readily available, but will need more sophisticated cooling. Eventually the Cost of Energy from superconducting wind turbines, with particular emphasis on reliability, will determine if they become...

  14. Scour protection around offshore wind turbines. Monopiles

    DEFF Research Database (Denmark)

    Nielsen, Anders Wedel; Sumer, B. Mutlu; Fredsøe, Jørgen

    2010-01-01

    The flow processes in a scour protection around a mono-pile in steady current is described in relation to transport of sediment in the scour protection based on physical model tests. Transport of sediment in the scour protection may cause sinking of the scour protection. TYhis may reduce...... the stability of the mono-pile and change for instance the natural frequency of the dynamic response odf an offshore wind turbine in an unfacorable manner. The most importans flow process with regard to transport of sediment and sinking of the scour protection in found to be the horseshoe vortex. It is found...... that a larger pile diameter relative to the size of the protection stones will cause a larger sinking and that two layers of stones will descrease the sinking relative to one layer of stones with the same size....

  15. Lightning protection for wind turbines in Vietnam

    Directory of Open Access Journals (Sweden)

    Thuan Nguyen

    2017-01-01

    Full Text Available Wind energy has become increasingly important in the total electrical energy supply mix in Vietnam over the last few years. Small, kW turbines were installed in isolated areas a decade ago, while wind farms of several MW to few hundred MW are now being connected directly to national grid, with many additional projects in planning or under construction to fulfill an objective of 6% of the total installed capacity by 2030 (approximately 6200 MW of wind energy component. The increase in wind farm generation results in increased damage from lightning. In this paper, the annual frequency of lightning strikes to wind turbines in Vietnam is calculated using electrogeometric model. Reported lightning incidents to three major wind farms in Vietnam are summarized. Possible causes of failure are discussed, and an EMTP simulation for each incident was performed accordingly. The simulations suggest the failure mechanisms as well the potential of improved grounding to reduce lightning induced damage in future windfarms.

  16. Semiconductor Laser Wind Lidar for Turbine Control

    DEFF Research Database (Denmark)

    Hu, Qi

    This thesis describes an experimentally oriented study of continuous wave (CW) coherent Doppler lidar system design. The main application is remote wind sensing for active wind turbine control using nacelle mounted lidar systems; and the primary focus is to devise an industrial instrument that can...... improve the efficiency of harvesting wind energy in commercial wind farms. This work attempts to provide a complete investigation of all the necessary building blocks in a CW wind lidar, from the light source to the optical transceiver. The basic concept of Doppler lidar is introduced along with a brief...... and demonstrated in this work. The challenge, aside from cost and compactness, is to ensure a long lifetime without regular maintenance, since the wind turbines are designed to last for 20 years. Finally, field test results of various measurement campaigns, designed to evaluate our lidar design, are presented here...

  17. Clemson University Wind Turbine Drivetrain Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Tuten, James Maner [Clemson Univ., SC (United States); Haque, Imtiaz [Clemson Univ., SC (United States); Rigas, Nikolaos [Clemson Univ., SC (United States)

    2016-03-30

    In November of 2009, Clemson University was awarded a competitive grant from the U.S. Department of Energy to design, build and operate a facility for full-scale, highly accelerated mechanical testing of next-generation wind turbine drivetrain technologies. The primary goal of the project was to design, construct, commission, and operate a state-of-the-art sustainable facility that permits full-scale highly accelerated testing of advanced drivetrain systems for large wind turbines. The secondary goal was to meet the objectives of the American Recovery and Reinvestment Act of 2009, especially in job creation, and provide a positive impact on economically distressed areas in the United States, and preservation and economic recovery in an expeditious manner. The project was executed according to a managed cooperative agreement with the Department of Energy and was an extraordinary success. The resultant new facility is located in North Charleston, SC, providing easy transportation access by rail, road or ship and operates on an open access model such that it is available to the U.S. Wind Industry for research, analysis, and evaluation activities. The 72 m by 97 m facility features two mechanical dynamometer test bays for evaluating the torque and blade dynamic forces experienced by the rotors of wind turbine drivetrains. The dynamometers are rated at 7.5 MW and 15 MW of low speed shaft power and are configured as independent test areas capable of simultaneous operation. All six degrees of freedom, three linear and three rotational, for blade and rotor dynamics are replicated through the combination of a drive motor, speed reduction gearbox and a controllable hydraulic load application unit (LAU). This new LAU setup readily supports accelerated lifetime mechanical testing and load analysis for the entire drivetrain system of the nacelle and easily simulates a wide variety of realistic operating scenarios in a controlled laboratory environment. The development of these

  18. Grid fault and design-basis for wind turbines - Final report

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Cutululis, Nicolaos Antonio; Markou, Helen

    . The fulfillment of the grid connection requirements poses challenges for the design of both the electrical system and the mechanical structure of wind turbines. The development of wind turbine models and novel control strategies to fulfill the TSO’s requirements are of vital importance in this design. Dynamic...... expertise in different specialized design areas for wind turbines. In order to quantify the impact of the grid faults and grid requirements fulfillment on wind turbines structural loads and thus on their lifetime, a rainflow and a statistical analysis for fatigue and ultimate structural loads, respectively...

  19. Overcoming icing effects on wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Maissan, J. [Yukon Energy Corp., Whitehorse, YT (Canada)

    2003-07-01

    Wind turbine blades in the Whitehorse area are often subjected to rime icing. High energy winds on ridges, hilltops and mountains result in cloud and rime ice formation. Reliable models and detectors for rime and glaze icing are needed in order to measure the duration and severity of icing. Currently, there is a limited supply of good models on the market, and they do not appear to cope well with severe rime icing. A two heated anemometer approach appears to be reasonably reliable. This paper describes a wind speed and icing event monitoring study at Haeckel Hill in which the performance of an iced turbine was compared with the performance of an ice-free turbine. Technological advancement in the area of blade icing include: the development of low temperature synthetic lubricants and fluids; heated wind instruments and ultrasonics; after-market blade heating systems and blade coatings; and, reductions in energy losses. The challenges that still need to be addressed include: ice detection for severe conditions; off-the-shelf blade heating systems; further reductions in energy losses; and, adaptations of turbine control algorithms. The paper includes a list of manufacturers who are working on equipment for use in cold/icing environments. The large turbine manufacturers include Vestas, Bonus, NEG Micon, Enercon, and Lagerwey. The small turbine manufacturers include Atlantic Orient, Vergnet, Northern Power Systems, and Bergey. 10 figs.

  20. Grid integration impacts on wind turbine design and development

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Cutululis, Nicolaos Antonio; Sørensen, Poul Ejnar

    2009-01-01

    to the wind turbine design and development. The survival of different wind turbine concepts and controls is strongly conditioned by their ability to comply with stringent grid connection requirements, imposed by utility companies. Beside its impact on the mechanical design and control of wind turbines......, the grid integration aspect has also an effect on wind turbines' role in the power system, on wind turbine technologies' survival on the market, as well as on the wind turbines' loads. Over the last years, it became obviously, that there it is an increasing need for design and research of wind turbines......This paper presents an overall perspective on contemporary issues like wind power plants and grid integration. The purpose is to present and discuss the impacts of emerging new grid connection requirements on modern wind turbines. The grid integration issue has caused several new challenges...